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Abstract: 
We present restricted T-unification that is unification of terms under a given 
equational theory T with the restriction that not all variables are allowed to 
be substituted. Some relationships between restricted T-unification, 
unrestricted T-unification and T-matching (one-sided T-unification) are 
established. Our main result is that, in the case of an almost collapse free 
equational theory the most general restricted unifiers and for certain 
termpairs the most general matchers are also most general unrestricted 
unifiers, this does not hold for more general theories. Almost collapse free 
theories are theories, where only terms starting with projection symbols may 
collapse (Le to be T -equal) to variables. 
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t lotrQductioo 

Restricted T-unification is unification of terms under a given equational 
theory T, where only some of their variables are aJJowed to be substituted. 
Szabo mentioned this notion to be necessary for writing down some of his 
proofs more exactly (he used the notation 'partial T-unification' [Szab082]). 
However, he gave no definitions and he did not investigate the relationships 
of this notion with common ones. He described how to get unrestricted 
unification and matching as speciaJ cases. But this wiJJ only hold for a 
restricted form of matching, also called semi-unification in [Huet76l We 
present the necessary definitions and show some of the relationships between 
restricted T-unification, unrestricted T-unification, semi-T-unification and 
T-matching. For that purpose we introduce the class of 'almost collapse free' 
equational theories - a slight generalization of the we1Jknown coJIapse free 
theories [Szab082, Yelick85, Tiden85, Herold86l Collapse free theories have 
the property that no non-variable term is T-equal ('collapses') to a variable. In 
almost collapse free theories special terms starting with a projection symbol ­
a function symbol f for which the T-equation f(v 1,··.'Vi '···.vn ) =r Vi holds - may 

be T-equal to variables. For those theories we show that every most general 
restricted T-unifier, and for termpairs, where one term is ground. also every 
most general T-matcher, is a most general unrestricted T-unifier. Some 
eIamples demonstrate that this is not the case, if we admit arbitrary 
collapsing terms. 
This result is of high significance in the area of theory classification known 
under the notion 'unification hierarchy' [Siekmann84l Equational theories are 
classified by the cardinality of the most general unifier/ matcher sets into 
unitary. finitary, infinitary and nuJIary unifying/matching theories. We 
eltend this classification to restricted unification. Then our result above shows 
that in the case of almost collapse free theories every infinitary (nullary) 
restricted unifying theory is also infinitary (nullary) unrestricted unifying and 
every finitary (unitary) unrestricted unifying theory is also finitary (unitary) 
restricted unifying. These results will especially hold for semi-unification as a 
special kind of restricted unification. Some eIamples demonstrate that the 
classification in the restricted case cannot be obtained from the classification 
in the unrestricted case by replacing the blocked variables of a unification 
problem by free constants. There might eIist no free constants in the 
signature and addition of free constants will destroy decidability of unification 
(see appendix). 
There is some closer kinship between almost coJIapse free and collapse free 
theories: Every almost collapse free theory can be transformed into a co1!apse 
free theory without losing any information about the unification problems. 
This is an immediate consequence of a result holding for arbitrary theories: 
All projection symbols can be removed by recursively replacing terms 
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Restricted T-unification is unification of terms under a given equational
theory T, where only some of their variables are allowed to be substituted.
Szabo mentioned this notion to be necessary for writing down some of his
proofs more exactly (he used the notation 'partial T-unification' [Szab082]).
However, he gave no definitions and he did not investigate the relationships
of this notion with common ones. He described how to get unrestricted
unification and matching as special cases. But this will only hold for a
restricted form of matching, also called semi-unification in [Huet76]. We
present the necessary definitions and show some of the relationships between
restricted T—unil‘icaticn, unrestricted T—unification, semi-T—unification and
T-matching. For that purpose we introduce the class of 'almost collapse free'
equational theories - a slight generalization of the wellknown collapse free
theories [Szab082‚ Yelick85, Tiden85, Herold86]. Collapse free theories have
the prOperty that no non—variable term is T-equal ('collapses') to a variable. In
almost collapse free theories special terms starting with a projection symbol —
a function symbol f for which the T-equation f(v1,...,vi,...,vn) =T vi  holds — may
be T-equal to variables. For those theories we show that every most general
restricted T—unifier, and for termpairs, where one term is ground, also every
most general T—matcher, is a most general unrestricted T—unifier. Some
examples demonstrate that this is not the case, if we admit arbitrary
collapsing terms.
This result is of high significance in the area of theory classification known
under the notion 'unification hierarchy' [Siekmann84]. Equational theories are
classified by the cardinality of the most general unifier/matcher sets into
unitary. finitary. infinitary and nullary unifying/ matching theories. We
extend this classification to restricted unification. Then our result above shows
that in the case of almost collapse free theories every infinitary (nullary)
restricted unifying theory is also infinitary (nullary) unrestricted unifying and
every finitary (unitary) unrestricted unifying theory is also finitary (unitary)
restricted unifying. These results will especially hold for semi—unification as a
special kind of restricted unification. Some examples demonstrate that the
classification in the restricted case cannot be obtained from the classification
in the unrestricted case by replacing the blocked variables of a unification
problem by free constants. There might exist no free constants in the
signature and addition of free constants will destroy decidability of unification
(see appendix).
There is some closer kinship between almost collapse free and collapse free
theories: Every almost collapse free theory can be transformed into a collapse
free theory without losing any information about the unification problems.
This i s  an immediate consequence of a result holding for arbitrary theories:
All projection symbols can be  removed by recursively replacing terms
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starting with such function symbols by the argument they are projecting to. 
In this way we can map every unification problem of a given theory to a 
problem of a theory containing no projections with essentially the same 
solution set as the original problem. 
These theoretical investigations were triggered by some applications in 
automatic theorem proving [Loveland78]: Computation of semi-unifier sets 
from unifier sets are used in several reduction mechanisms of clause graph 
theorem provers' (for eIample subsumption and replacement factoring in the 
MKRP-system [Raph84]). 

The nelt section collects the definitions of terms, substitutions and equations. 
In section3 we define V-restricted unification and matching problems and we 
show the relationships between the solution sets of these problems. Almost 
collapse free theories and their kinship to collapse free theories are 
investigated in section4. The main theorem of this paper, which relates the 
minimal solution sets in the case of almost collapse free theories, is presented 
in sectionS. In the last section we classify the unification problems by the 
unification hierarchy and we show the relationships between the hierarchy 
classes. Finally we give an algorithm to compute the restricted unifiers from 
unrestricted unifiers and point out some applications of this algorithm in 
automatic theorem proving. In an appendil we demonstrate by an example 
that in some theories restricted unification is undecidable, while unrestricted 
unification is decidable. 

2 Terms. Substitutions. Equations 

In this section we summarize the common algebraic terminology [Gr:1tzer79, 
Burris&Sankappanavar83] used in unification theory [Siekmann84l 

Given a signature P.UPnof finite sets Po of n-aryfunetion symbols (n ~ 0), 

and a countable set V of varill1JJe symbols, we define the term IlIgebrl/ 

T:=T(',V) to be the least set with 
(0 V, 'o~T and (H)fEP and tJ, ... ,tnET ~ f(t 1,....t lET,n o

together with the usual operations induced by the function symbols. 
For any object 0 consisting of or containing terms, we use the follOWing 
abbreviations to denote the symbols occurring in this object: V(O) is the set of 
its variable symbols, '(0) is the set of its function symbols. 

The subslilulion monoid J::=J:(P.V) of a term algebra is the set of finitely 
representable endomorphisms on the term algebra being a monoid by the 
composition operation and the identity: 
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starting with such function symbols by the argument they are projecting to.
In this way we can map every unification problem of a given theory to a
problem of a theory containing no projections with essentially the same
solution set as the original problem.
These theoretical investigations were triggered by some applications in
automatic theorem proving [Loveland78]: Computation of semi—unifier sets
from unifier sets are used in several reduction mechanisms of clause graph
theorem provers‘ (for example subsumption and replacement factoring in the
MKRP—system [Raph84]).

The next section collects the definitions of terms, substitutions and equations.
In section3 we define V-restricted unification and matching problems and we
show the relationships between the solution sets of these problems. Almost
collapse free theories and their kinship to collapse free theories are
investigated in sectiond. The main theorem of this paper, which relates the
minimal solution sets in the case of almost collapse free theories, i s  presented
in sectionS. In the last section we classify the unification problems by the
unification hierarchy and we show the relationships between the hierarchy
classes. Finally we give an algorithm to compute the restricted unifiers from
unrestricted unifiers and point out some applications of this algorithm in
automatic theorem proving. In  an appendix we demonstrate by an example
that in some theories restricted unification is undecidable, while unrestricted
unification i s  decidable.

2 s ' ut’  B ation

In this section we summarize the common algebraic terminology [Grauen-79,
Burris&5ankappanavar83] used in unification theory [SiekmannBé].

Given a signature F-Ul'll of finite sets Pn of Hwy/Mamba symbols (n z 0),
and a countable set V of variable symbols, we define the term algebra
T==T(P.V) to be the least set with

(i) V. POST and (ii) rer“ and 11.... .tne'l' =9 flt,.....tn)e'l‘.
together with the usual operations induced by the function symbols.
For any object 0 consisting of or containing terms, we use the following
abbreviations to denote the symbols occurring in this object: WO) is the set of
its variable symbols, PIO) is the set of its function symbols.

The substratum}: manafd ===-ZG,“ of a term algebra is the set of finitely
representable endomorphisms on the term algebra being a monoid by the
composition operation and the identity:
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(i) Ee! (identity) 

Ull 6,n! ~ 6'(E! {composition) 

(ill)ce'o' f(t 1,···,t )eT ~ 6C=C,6f(tl'···.tn)cf(6tl'···~tn) (homomorphism)n
(iv)eseX ~ card({veV; ov*v})<oo. (finite domain) 

The set Dom6:={veV: 6V*V) is the domll.in, the set CodO:=(OVET: v~Domo} i~the 

cod0111W of the substitution 6. and VCodo:-V(Codt» is the set of variables
 
introduced by 6. Every substitution 6 can be finitely represented by the set
 
{vt- tsv:veDomts}. For VtiV the V-restriction oly of ME is defined by tslyv:»tSv
 

(veV) and 6Iyv:=v (V4V), that is Domeslyc;V, :Ely denotes the set of all
 

V-restrictions with fixed Vr;;Y. A substitution 9E:I: is called a V-renllmin6, jff
 
Domg=V, Codgc;Y\V and gv=qw ~ v=w ('v'v.weV). The tx1Dverse gC of a
 
V-renaming q is defined by: gCv=w. if v=qw and weDomq, and qCv=v otherwise.
 
The set of all V-renamings is written Ren(V).
 
2.Propositionl: (see [Herold83])
 
(i) qeRen(V) ~ gCeRen(gV) 
(ii) geRen(V) ~ qqc=g and ct9=ci. 

A finite set T:..{(s . t): s,teT} of term pairs is called an uiomlltizlltion of an 
(equational) theory, the elements are called uioms The equlltionm theory is 
the least E-invariant congruence relation =T on T containing the set T: 
(i) =T is an equivalence relation with: (s , t)ET ~ S=Tt 

(ii) s,~t, ..... sn~tn' fe'n ~ f(s" ... ,sn)=r!(t" ... ,tn) (congruence) 

Oil) S =rt . <:seE ~ 6S;-6t ~ -invariance) 

We only consider consistent theories, that are theories that do not collapse 
into a single equivalence class: 'v'v,weV: V=TW ~ V=W. We frequently call the 

axiomatization T itself a theory, and we write s - t instead of (s , t) for the 
axioms, if no confusion is possible. 
This algebraic notion of equational theories is equivalent to the common 
logicaJ one: the fact that s-Tt holds is known in first order (equational) logics 

as s...t is deducible from T and abbreviated by T t- s=1. 

It is wellknown that the relation =T can be constructed from T by a closure 

operator. For arbitrary sets of term pairs P we define the following operators. 
REfL(P):=Pu{{p , p): PET) 
8ijH(P):={(q , p): (p , q)eP) 
1RANS(P):={(p, q): (p, rUr , q)eP for some rer) 

(DN(P):={{f(Pl'···.Pn) . f(ql'""'CJn)): (Pi' qi)EP (t sisn) and fePn (nod)) 

8UB81'(P):={(op , oq): (p . q)ep and 6E~) 
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(i) eel: (identity)

(U) are! =9 are! (composition)
(iinoel'o, f(t„...‚tn)e'l' =9 ec=c,ef(t1,...,tn)=f(et1,..._etn) (homomorphism)

(Meet =9 cardllveV: cvsvnwo. (finite domain)
The set Dome:='(veV9 evsv) is the domain, the set Codc==(eVET= veDome) is the
endemic of the substitution 0, and VCode=-V(Code) is the set of variables
introduced by 6. Every substitution 6 can be finitely represented by the set
{w— ov=veDomo). For VEV the V—restrxblr’m clv of bez is defined by olvv==cv
(veV) and elvv==v (VW), that is Domolvcv. 2|v denotes the set of all

V-restrictions with fixed VEV. A substitution 962 is called a V-remmmg. in“
Dom9=V‚ CodcW and gv=qw =9 v=w (Vv,weV). The converse 9° of a
V-renaming g is defined by: 9°v=w, if v=9w and weDomg, and 9°v=v otherwise.
The set of all V-renamings is written Ren(V).
aflopgsitiom: (see [Herold83])
(i) 96Ren(V) =9 9°eRen(9V)
(ii) 9eRen(V) =99c and 9°9=9°.

A finite set T=={(s , t): std} of term pairs is called an ”mammal/b1) of an
(e’quational) theory, the elements are called album The equational wear? is
the least Z-invariant congruence relation =]. on T containing the set '1':
(i) =T is an equivalence relation with: (s , t)e'l‘ =9 s=Tt
(ii) sl---.rtI sn=.rtn,fel'n =9 f(s,,...,sn)=1.f(tl,...,tn) (congruence)
(iii)s=Tt,eeZ = e s  (S—invariance)
We only consider cum/31m! theories, that are theories that do not collapse
into a single equivalence class: Vv,weV= v=Tw =9 v=w. We frequently call the
axiomatization T itself a theory, and we write 3 - 1 instead of (s , t) for the
axioms, if no confusion is possible.
This algebraic notion of equational theories is equivalent to the common
logical one: the fact that s-Tt holds is known in first order (equational) logics
as s-t  is deal/able from T and abbreviated by 'l‘ l- s=t.

It i s  wellknown that the relation =1. can be  constructed from T by a closure
operator. For arbitrary sets of term pairs P we define the following Operators;

maplepuflp . p): pe'l')
SIJMIP)=={(q , p)= (p . q}
M8(P)=={(D . q}: (p , r).(r . (De? for some re'l')
mN(P)=={(f(p‚....‚pn) ‚f(q„...,qn))= (pi , qikP (lsisn) and fel'n (na-‚1.1 ))
MST(P)=={(op ,eq): (p , (flap and 662}



C( p ):-Rf:f'L(p )u~P )u'mANS(P)umN(P)u8UM1"(P). 
With CO(P): ..p and CD. I (P):=C{CD(P)) for each n~O, we obtain a representation of 
the equational theory =1' being useful for induction proofs: The relation =1 is 

just the union set U{CD(T): n~O}. 

2.Proposition2: (see [Burris&Sankappanavar83D 
V's,tET: s=1t ~ 3n~O: (s , t)e CD(T). 

Proof: It is easy to see, that U:=Utn(T): ~O} is a I:-invariant congruence 
relation =1 on T containing the set T. Hence =1 is a subset of U. Conversely, by 

induction one can easily see, that for each (s . t)e CD(T), the relation s=1t holds. 

An equation s=-rt is regulllr, iff V(s)=V(t). Equations t"'Tv with veV, t4V are 

called collapse equations. A theory is called regulllr, iff all equations are 
regUlar. A theory without collapse equations is called collapse free. Both 
properties are inherited from the axiomatization to the whole equational 
theory [Plonka69, Yelick8S, Tiden8S, Herold86l: 
2,Proposition]; 
(i) A theory is regUlar, iff all axioms are regular. 
(ii) A theory is collapse free, iff no axiom is a collapse axiom. 

For any s,teT, G,teJ: and Vr;,V we define the following relations on terms and 
substitutions: 
(i) (3 is T- equll1on V to l (6=Tl [V]), iff 6V=TlV 'VveV. 

(ii) s is a T- inst611t:e of t (S~1t), iff 3AeE with s=y.l.t. 

(Hi) s is T- equivll1enl to t (9=11), iff s~Tt and s~1t. 

(iv) GisaT-JiJstmt:eoft 00 V(G~Tt[V]),iff3AEEwith6=y.l.t[Vl 

(v) (3 is T- equiv8lent to t on V (G-Tt [V]), iff a~Tt [V] and a~1t [V]. 

If, V'" V, we drop the suffil [V1 The 'instance' relations are reflelive and 
transitive, and the 'equivalent' relations are in addition symmetric (that is 
they are equivalences). 
2,Propositioni: 
Let T be a theory. 
(i) Let LET and 6,td: with 6=rt [V(t)], then 6t=1t1. 

(ii) Let 6,n;:J: and Vs:WfiV with DomGS:V and VCodanW=0. 
Then l~,.es [V] implies l~r6 [W]. (FortsetzungsJemma) 

Proof: (i) can easily be seen by induction on the term structure. A proof of (ii) 
is given in [Herold86l 
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0(P)=-REFIIP)U81NP)UTMN8(P)UGJN(P)UM8T (P).
With C°(P)=-P and cm '(P)==B(C“(P)) for each n20. we obtain a representation of
the equational theory =1" being useful for induction proofs: The relation =T is
just the union set U{09(T): n20).
2.Progosition2: (see [Burris&Sankappanavar.83])

VsJe'l': s=Tt es Enzo: (s , tle BWT).

Haar": It is easy to see. that U==Ul3°('l‘)= n20} is a Z-invariant congruence
relation =T on 'l' containing the set '1'. Hence =1 is a subset of U. Conversely, by
induction one can easily see, that for each (s , Us cnt'r), the relation s=Tt holds.

An equation s=Tt is regular: iff V(s)==V(t). Equations t=Tv with veV. HW are
called collapse equations. A theory is called raga/£1: iff all equations are
regular. A theory without collapse equations is called collapse- free. Both
properties are inherited from the axiomatization to the whole equational
theory [Plonka69, Yelick85. TidenßS, Herold861=
2,2r990'sg'tion3=
(i) A theory is regular, iff all axioms are regular.
(ii) A theory is collapse free, iff no axiom is a collapse axiom.

For any s.te'l'. 6.162 and VsV we define the following relations on terms and
substitutions:
(i) o is 'l‘- aqua/on V to ‘l' (o=Tr [V]), iff ev=Trv VveV.
(ii) sis a Tabs-(mas of t (ssTt), iff Elle: with s=TAt.
(iii) s is T-eqw'wlem to t (5T1), iff ssTt and st.

(iv) o is a T-iiostznae of r an V (osT'r [V]), iff BAGS with barn [V].
(v) o is T-equivz/ent to r' an V (Gift [V]), iff osT'r [V]  and 621.1" [V].
If‘ V=V. we drop the suffix [V] .  The ‘instanoe' relations are reflexive and
transitive, and the 'equivalent' relations are in addition symmetric (that is
they are equivalences).2E . . l=

Let T be a theory.
(i) Let te'l' and eure! with 6=TT [WU].  then nt=Trt.

(ii) Let (are! and VEWEV with Dome-5V and VCodonW=H.
Then rsTß [V]  implies {51.6 [W].  (Fortsetzungslem ma)

Hoar: (i) can easily be seen by induction on the term structure. A proof of (ii)
is given in [Herold86].



3 Unification. Re.tricted Unification. MatcbiDI 

Unification theory is the general theory of solving equations [Huet76, Szab082, 
Siekmann8-4] and as usual we are interested in computing a base of the 

solution space. therefore we introduce the notion of the base of a substitution 
set as the set of its most general elements, that is, we admit only the 
~T-muimal elements. 

Let r~~ be any set of substitutions and W~V. Then }U: is a set of mostKeoerlll 
substitutions on W of r (abbreviated to 1)llse or jJ-StJI on W), iff the following 
conditions hold: 
(B 1)}U:Q: (correctness) 
(BZ)V6Er 36e~ with ()~,a [W] (completeness) 

(B3)V6,'fEllI:: 6ST'f [W] ~ 6--'[ (minimaJity) 

The set ~ may not exist and if it exists, it is not unique. However, it is unique
 
modulo the equivalence relation iiiT[Wl [Huet76, Fages&Huet831
 

The solution set of a given term equation is represented by the set of
 
substitutions equaliZing both terms.
 
3.Definition 1; (Unification)
 
For a pair of terms s,tET and a theory T, the set m;[s=Ttl:={6€E: 6S=r6t} is
 

called the set of T- unffiers of sand t or the .fOJution sel of the unrestricted
 
unffiCJltion proofem <s -Tt>. The set of mosl Kener81 T-unifiers llUI:[s-Tt] is
 

defined as a base on W:"V(s,t) of UI:[s=Ttl
 

We always choose a base llUI:[S=rt] with the additional property:
 

(*) V6EllUI:[S=-rtl: Dom6=V(s,t) and VCod6n V(s,t)=0.
 

This property is only technical and it is always fulfilled by an appropriate
 
ll-set [Huet76, Fage&Huet83 J. Some applications require, that the variable
 
disjointness holds for some superset Zof V(s,t), the set of protected variables;
 
this property is known as 'away from Z' in unification theory.
 

Sometimes one is interested in substituting only into the variables of one side
 
of an equation in order to solve it; for elample. to find out, Whether a term is
 
an instance of another one. This is called matching.
 
3.Definl1i!m2: (Matching)
 
For s,tET and a theory T let ML[s~Ttl=(6EJ:; s=y6tl be the set of T- marchers of
 

the ma/chinK problem <s ~ t>. Its base on W;=V(t). the set of most seneral
 

T-matchers, is denoted by P.Mr[s~Ttl.
 

The technical restriction will be (protected variables should not contain V(s)):
 
(*) V}.lellML[9~Ttl:Domll~V(t) and VCodp.n(V(t)\V(s))=0.
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Unification theory is the general theory of solving equations [H uet76, SzaboSZ,
Siekmann84] and as usual we are interested in computing a base of the

solution space. Therefore we introduce the notion of the base of a substitution
set as the set of its most general elements, that is, we admit only the
sT-maximal elements.

Let 2:: be any set of substitutions and WGV. Then 31}: is a set of mastgeaeral-
‚ft/Malfurion; an W of Z (abbreviated to base or ‚el—.net mW ), iff the following
conditions hold:
(Bl ) 112:2 (correctness)
(B2)V6<-:Z Beep: with 5515 [W]  (completeness)
(B§)Vo.reu£: ssTr [W]  = 5:1 (minimality)
The set 112 may not exist and if it exists, it is not unique. However, it is unique
modulo the equivalence relation =TIW] [Huet76, Fages&Huet83].

The solution set of a given term equation is represented by the set of
substitutions equalizing both terms.
mum (Unification) .
For a pair of terms s,teT and a theory T. the set LEIs=TtJ==ie= 68:1.61} is
called the set of T— (Jamie-rs of s and t or the solution se! of the unrestricted
yamaha) prob/em <s -Tt>. The set of most general T—unifiers pUZIs-Tt] is
defined as a base on W:=V(s,t) of U2[s=Tt].
We always choose a base pUE[s=Tt] with the additional property:
(at) VeqEIs—tL Domo=V(s,t) and VCodenV(s,t)=0.
This property is only technical and it is always fulfilled by an appropriate
u—set [Huet76, Fage&Huet83]. Some applications require, that the variable
disjointness holds for some superset Z of V(s.t). the set of protected variables,
this prooerty is known as 'away from Z' in unification theory.

Sometimes one is interested in substituting only into the variables of one side
of an equation in order to solve it, for example ,  to f ind out ,  whether a t erm is
an instance of another one. This is called matching.
3.Derinition21 (Matching)
For s,te‘l' and a theory T let MilssTt]:=(e: s=Tet} be the set of T- mate/Jere of
the matching problem <s 2T b. Its base on W==V(t), the set of most general
T-matchers, is denoted by pMlsTt].
The technical restriction will be (protected variables should nor. contain V(s))=
(x) VueulssTtL Domucvul and VCodpn(v(t)W(s))=fl.



Remark; 
A matcher is not a special unifier in general. For example, the substitution 
}l={xt-f(I)} is a matcher of the problem <£(x) ~0I), but not a unifier of the 

corresponding unification problem <£(1) =01>: }lEML[f(I)~e-I] but J,l4UL[f(I)=e-I1 

Here B denotes the empty theory. 

Matching is closely related to semi-unification [Huet76], where the domain of 
a unifier is not allowed to contain the variables of one of the two terms. This 
kinship is particularly close for equations, where both sides have disjoint 
variable sets - especially if one side contains no variables (see 
3.Proposition4(iii)). In several applications it is necessary to generalize this 
concept by restricting the domain of the unifiers to arbitrary subsets V of the 
variables of the unification problem [Szab082l We call this V-restricted 
unification. This is somewhat similar as if we regard the blocked variables of 
the problem as constants, a view often proposed in applications. However, this 
amounts to changes of the signature, which is not convenient and - as our 
definition shows - not necessary from a theoretical point of view. Moreover, 
such an extension of the signature might destroy the decidability of the 
solution problem of T-unification (see appendix). 
J,Definition3; (Restricted unification) 
Por a V-restricted unffiCJIlion problem <5 -T t . V> with VliV(5,t) the set 

ID:IV[s-Tt]I-{6El:lv' ess-y6t}-(6d:, ess-y6t. Dom&:V} is the V-restrkted solution 

set, also called the set of V-restricted T- un.illers of s,teT. The corresponding 
base on W:=V(s,t) is denoted by }lID:lv[s=rt], its elements are the mostKenerlll 

V-restrjeted T-unifiers of s and t. As a special case of V-restriction the 
problem <s =T t , V(t)\V(s» is called a semi-un.illalion problem. 

Again we require some technical property of the chosen J.l-sets:
 
(*) V'M llID:lv[s-rtl Domes-V and VCodesnV-0.
 

As for unification problems this property might be 'away from Z'. but for
 
restricted unification Z must not contain any of the blocked variables. 

Remarks: 
1. ill:lv[s"'rt]*0 is the solvability problem of V-restricted T -unification and 

UI:IJs"Tt].0 is just the wordproblem of the equational theory T. 

2. Every semi-unifier is a matcher, but not conversely (see the above 
eIample). 
3. Sometimes semi-unification is called matching and the more general 
definition of matching is not used. This seems to be allright for practical 
applications, because usually the instance problem will arise only for variable 
disjoint terms. 
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Remark:
A matcher is not a special unifier in general. For example, the substitution
win—f(x)} is a matcher of the problem (f(xlsgp, but not a unifier of the

corresponding unification problem (ft!) =91» ueMZIf(1)591] but peUZ[f(x)=gx].
Here B denotes the empty theory.

Matching is closely related to semi—unification [Huet76], where the domain of
a unifier is not allowed to contain the variables of one of the two terms. This
kinship is particularly close for equations, where both sides have disjoint
variable sets — especially if one side contains no variables (see
3.Proposition4(iii)). In several applications it is necessary to generalize this
concept by restricting the domain of the unifiers to arbitrary subsets V of the
variables of the unification problem [SzaboBZ]. We call this V—restricted
unification. This i s  somewhat similar as  if we regard the blocked variables of
the problem as constants, a view often proposed in applications. However, this
amounts to changes of the signature, which is not convenient and — as our
definition shows — not necessary from a theoretical point of view. Moreover,
such an extension of the signature might destroy the decidability of the
solution problem of T—unification (see appendix).
W (Restricted unification)
For a V—restn‘cted („zwar:/'em problem <s =T t , V) with VEW 3,1) the set
U2|v[s-Tt]:-{aeilw es-Tet}-{oe2: es-Tat, DomesV} is the V—restrjcled soll/aba
sei, also called the set of V-res'zrfcted T-  timers of s,te'l'. The corresponding
base on W==V(s,t) is denoted by uUZIV[s=Tt], its elements are the moslgenem/
V-restricted T—unifiers of s and 1. As a special case of V-restriction the
problem <a =Tt , V(t)\V(s)> is called a semi—umfläa‘m prob/em
Again we  require some technical property of the chosen u-sets:
(m) Voe pUZIvls-Tth Dome-V and VOodc-H.
As for unification problems this property might be 'away from Z‘. but for
restricted unification Z must not contain any of the blocked variables.

Rm
1. UZIV[s=-Tt]sfl is the mlvzbflfly prob/em of V-restricted T—unificaticn and
UZIHIs-sTtlcfi is just the wardproblem of the equational theory T.
2. Every semi-unifier is a matcher. but not conversely [see the above
example).
3. Sometimes semi—unification is called matching and the more general
definition of matching is not used. This seems to be allright for practical
applications, because usually the instance problem will arise only for variable
disjoint terms.



4. certain theoretical aspects require the use of another instance relation on 
the set lJtly[s=Tt] of restricted unifiers, namely 

6<idV] ~ 3AEJ: with DomlnVc:c.0':6¥,£[V], where VC""V(s,t). 

Notice, that there are two differences to the above relation: the first is, that 
only (;ertain substitutions, nol substitutinw into the blocked variables, are 
allowed; and the second is, that instantiation is retricted onto the set V. 
However, it is easy to see that both relations are the same on the set of 
restricted unifief5: 'Vo,tell:ly[s=,.t]; o<T'£[V] ~ O"5T,£[V(s,tl]. 

S. Szabo uses still another instance relation in his matching definition, which is 
in fact semi-unification: For instantiation only substitutions J.EJ: with 
DomlnVCodA-.0' are allowed. This differs on the set ULly[8-Tt] from our 

instance relation, but it will generate the same bases with the technical 
requirement (*) of 3.Defirtition3. 

The following proposition shows some relationships between these three 
kinds of solving equations, especially that V(s,t)-restrieted unification and 
unrestricted unification are essentially the same and that semi-unification and 
matching (for variable disjoint terms) are closely related. 
3.Propositioni: 
(i) For VCiWCiV(S,t) we have lltly[s""Tt]Cilltlw[s-Tt]Cillt[s"'Tt). 

(ii) ll:~(s.t)[S=Tt] is a complete subset of UL[s=rt], thus lllltly(s.t)[s=rt] is a 

base of the unrestricted unification problem. 
(iH) If V(s)nV(t)=.0', then }!ULIy(t)\'h}s=Tt] is a complete subset of ML[s~rt]. 

(iv) If V(s)=.0', then }!ID:[s=Tt] is a base of M~[s~Tt] on V(t)=V(s,t). 

Note, that (iH) is less trivial than (ii), because of the different variable sets, the 
instance relations for the ~-sets are based on. 

1 AlmoJl CoUlose free Theories 

We introduce the notion of projection equations and of almost collapse free 
theories, where projection equations are essentially the only collapse 
equations. We give some useful technical characterization of these theories, 
and we show that projections are superfluous in unification theory. 

1,Definition 1: (prolections, almost col1apse free) 
(i) Equations pO (v1""'Vi'".,vn)=rVj (for some i with l~i~n) with pairwise 

different v """VnCV lire called projection equation~j in this case p(i)cPn is 

called a projection symbol, projecting to the i-th argument. The set of 
projection symhol~ induced by T is denoted Pr 
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4-. Certain. theoretical aspects require the use of another instance relation on
the set UE|v[s=Tt] of restricted unifiers, namely

5<Tr[V] c: 31:52 with DomAnV°=6=o=1MIVL where V°=V(s,t).
Notice, that there are two differences to the above relation: the first is ,  that
only certain subst i tut ions ,  not subst i tut ing into the blocked variables,  are
allowed5 and the second is, that instantiation i s  retricted onto the set V.
However, it i s  easy to see that both relations are the s ame  on the set of
restricted unifiers: Vo,'reUZ|v[s--Tt]: o<T'r[V] @ osTT[V(s‚t)].
5 .  Szabo uses still another instance relation in his matching definition, which is.
in fact semi-unification: For instantiation only substitutions leg with
DomAnVCodA-fl are allowed. This differs on the set UEIVIs-Tt] from our

instance relation. bu t  it will generate the same bases with the technical
requirement  (x) of 3.Definition3.

The following proposition shows some relationships between these three
kinds of solving equations. especially that Vls,t)-restricted unification and
unrestr icted unification are essentially the same and that semi-unification and
matching (for variable disjoint terms) are closely related.
3.Proppsjtiont_l:
(i) For V§W§V(s,t) we have UZIvls=TtkUZIw[s-=TtkUZ[s=Tt].
(ii) U2|v(s_t)[s=Tt] is a complete subset of UE[s=Tt], thus uUE|'(s_l)[s=Tt] is a

baseof  the unrestricted unification problem.
(iii) If V_(s)flV(t)=ß‚ then “Umvmwmhfi” is a complete subset of NElssTt].
(iv) If Vls)=fl, then uUE[s~—-Tt] is a base of lssTt]  on V(t)=V(s,t).
Note. that (iii) i s  less  trivial than (ii). because of the different variable sets,  the
instance relations for the u-se ts  are based on.

4”  ti l l  I I I  .

We introduce the notion of projection equat ions  and of a lmost  collapse free-
theories, where projection equat ions are essentially the only collapse
equations.  We give some  useful  technical characterization of these theories,
and we show that  projections are superfluous in unification theory.

.iDetinitinnl; (pro 'Vections, almost collapse free)
(i) Equations pl1 ...vi.... vnl)=Tvi (for some i with . l s isn)  with pairwise
different  v l , . . . , vcv  are  called pro/helm]? equat ions;  in th i s  case ;)“)a is
called a ‚ara/bmw) symbol, gym/econ: to the i-th argument. The set of
projection symbols induced by T is denoted PT.
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(ii) A theory is called 41mo.fl cvJ16p:re fret!. jff the leading function symbol of 
every collapse equation i3 a projection symbol. 

Remarks: 
1. The consistency requirement for theories enforces that a projection symbol 
can project only to one of its arguments. 
2. Every coJIapse free theory is almost collapse free. 

We give an example for an axiomatization of an almost coJIapse free theory.
 
4.Example2:
 
Let T:={f(g(x)) = g(x) , g(x) = x . h(f(x)) = x}. Then all function symbols are
 
projection symbols, since the equations f(x)=r!, g(x)=,.x and h(x)=,.x can be
 

deduced. Obviously the theory is almost collapse free.
 

Almost collapse free theories can be characterized by some useful properties
 
of terms and substitutions: Every term that is T-equivalent to a variable is
 
T-equal to a variable, and every substitution that is T-equivalent to a
 
renaming is T-equal to a renaming (note, that on their domain renamings are
 
always T-equivalent to the identity).
 
4.Lemma3:
 
Let T be a theory. The following three statements are equiValent:
 
(i) T is almost coJlapse free. 
(ii) V'tET: liiTV for some veV ~ t=Tv' for some v'eV 

OH) V'6E:I: with DomGnVCOd6=0" and V'V~V: 

6=yt [V] ~ G=y9 [W] for some geRen(W). W:=VnDom6. 

Proof.. 0) ~ (ii): Let T be an aJmost ooJlapse free theory. Let t;v and veV, 

then there is some 6Ei: with lit=rv. Either t is a variable, or t has the form 

((t" ... ,t ) and hence 6((t" ....tn)=((6t1,... ,6tn)=Tv. Since T is almost collapse free, f n
must be a projection symbol: f(vl' ... ,vj.....vn)=rvi" We can deduce 

f(6tl, ... ,6ti, ... ,6tn)=,.llti=rv, that is tjETV. By induction on the nesting depth of the 

terms we obtain t'"'Tv' for some y'eV. 

(iil ==> (Hi): Let T have property (iD. Let 6EI. Dom6nVCod6=0 and 6=,-£ [Vl 

then £~,.o [V] and there is a 6EJ: with: V'IEV box=Tx and hence oX=TYx with 

some VxEV\V, by property (iD. Thus V'YEW:=VnDom6: eY=rYy. We define geL 

by gy:=vy for yeW and gy:=y otherwise. Then geRen(W): 

l. Cod~V\V by definition.
 
I1. Dom9~ W: By the definition of y holds Domqc=W. Now let yeW. Assume gy-y.
 
Then vy":'y and hence GY-TY' The consistency of the theory enforces
 

yeV(f5y~Vr.odfl or flY=Y· Roth i~ impos~ihle, ~ince yeWc:Doma and 
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(ii—) A theory is called almost mils/me free, iff the leading function symbol of
every collapse equation is a projection symbol.

1. The consistency requirement for theories enforces that a. projection symbol
can project only to one of its arguments.
2. Every collapse free theory is almost collapse free.

We give an example for an axiomatization of an almost collapse free theory.
4.Example2=
Let T:={f(g(x)) == g(x) . 3(1) = 1 , h(f(x)) = x}. Then all function symbols are
projection symbols, since the equations f(x)=.‚.x‚ g(x}=1.x and h(x)=Tx can be
deduced. Obviously the theory is almost collapse free.

Almost collapse free theories can be  characterized by  some useful  propert ies
of t e rms  and subst i tut ions:  Every te rm that is T-equivalent  to a var iable  is
T—equal to a variable, and every substitution that is T-equivalent to a
renaming is T—equal to a renaming (note, that on their domain renamings are
always T—equivalent to the identity).
4 .Lemma3 :
Let T be a theory. The following three statements are equivalent:
[i) T is almost collapse free.
(ii) Vte'l': t=Tv for some veV = t=Tv' for some v'eV

(iii) V662 with DomenVCodo=fl and VVEV:
&Te [V]  => 6=TQ [W]  for some qeRen(W). W:=VnDome..

W (i) = (ii): Let T be an almost collapse free theory. Let 1.v and veV,
then there is some 662 with'fitarv. Either t is a variable, or t has the form.
flt,,...,tn) and hence 6flt1,...,tn)=f(6t,,...btn)=.rv. Since '1' is almost collapse free, f
must be a projection symbol: f(vl‚...‚vi,...‚vn)=Tvi. We can deduce
not,,...bti,...btn)=Tbti=Tv, that is tinTv. By induction on the nesting depth of the
terms we obtain t=Tv' for some v'eV.
{ii}. = (iii): Let T have property (ii). Let set, DomenVCode=B and eaTe [V] ,
then 651.0 [V]  and there is a bei with: Ve  661=TX and hence ara—Tv“ with
some veW, by property (ii). Thus VyeW:=VnDome: 6y=Tvy. We define geil
by 9y==vy for yeW and 9y==y otherwise. Then geRen(W)=
I. @n  by definition.
II. [bmg—mW: By the definition of g holds DumgsW. Now let YEW. Assume gy-y.
Then vy-sy and hence ey—Ty. The consistency of the theory enforces
elakCode or oy=y. Both is impossible, since yeWcDome and
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DomonVCodo",.0. Therefore the assumption was wrong and hence yeDomq. 
I I I. Let 9I=9Y for x,yeW ~ vx =vy ~ OI=rOY ~ 6ox=f>oy ~ I=rY ~ I=y. 

By definition 6'"19 [W] holds. 

(iii) ~ (i): Let T have property WO. Let f(t1, ... ,ln}=rV be any collapse equation. 

Let v t "",Vn be pairwise different variables, not occurring in the collapse 

equation. Then f(v1,...,vn}2r!(tt ,... ,tn};-v (take A:={V1..-tl' ... ,v ..-t )} . Let 0 EE be n n

represented by 5:={v..-f(v1,... ,vn}}' Then DomenVCod6=.0 and 6iirE [{v}], since 

Aev"Tv with the above AEi:. Property OH} implies e=r9 [{v}l, that is f(V1,...,vn} 

is T-equal to a variable. Therefore f is a projection symbol. 

We want to show, that these theories are also in some unification theoretical 
sense 'almost' collapse free: Every almost collapse free theory can be 
transformed (by a computable mapping on the terms) into a collapse free 
theory. such that the transformed unification problems have essentially the 
same bases as the original problems. 
Given a theory T with the set Pr of its projection symbols. We define a 

mapping ': T )T, t 1-) l' recursively by 
(i) Vv£V, v':-v and V~Po: c',-c 

(iD Vfe'n\Pr , Vtt ...·.tnET: (f(t 1•...•t ))':=f(t1••...•t ·) andn n


Vp(j)ePnnPr , Vtv··,tneT: (p(j)(t11 ... ,t ))':=tj ' (n~l)
 n

and we extend this mapping to substitutions by 
(Hi) V'6E~, IEDom6: 6'1:::(61)'. 

The images of T and i: are denoted T' and i:1 Now we apply this mapping to • 

the aliomatization T and we obtain the axiomatization 
T':={(I' , r'): 0, r )ET}. 

Thus this mapping removes all projection symbols and we may regard the 
image T' of the term algebra T under this mapping as a term algebra with the 
reduced signature '\Pr. T' is then an uiomatization of an equational theory
 

on this reduced term algebra.
 
The following technical lemma shows more about the relationship between
 
the aliomatizations T and T', especially that they are equivalent on the
 
reduced term algebra T', that is, they induce the same equational theory on T'.
 
4.Lemma4:
 
(i) V'teT:t=rt'· 

(iD V'6EJ: V'teT: (6t)'=6·1'. 

(Hi)	 V'(1' , r')eT': 1'=,..-' (i.e. T I- T'), and more general: 
\.J ' ' '''I':s-r,t, , , I.e. T' " T 1-8=t.)( .	 " vS,lc .. >s-'rt I'S-,t~ 

(jv)	 Vs,lcT: 5- l >s'-"T,t' (i.e. T I- s""t ~ T'I- 8':t').r 
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Do-monVCodo=-ß. Therefore the assumption was wrong and hence yeDomg.
III. Let 91=9y for x‚yeW =;— vx=vy = 61=Toy :» 601315537 = 1=Ty => x=y.
By definition 5:19 [W]  holds.
(iii) a (i): Let T have property (iii). Let f(t,,...,tn)=Tv be any collapse equation.
Let v1....,vn be  pairwise different variables, not occurring in the collapse

equation. Then [(v1,...,vn)21.f(t',....tn)=~rv (take A==(vI<—t1,...,vn¢-tn}) . Let c e t be
represented by 6=={v<—f(v1,...,vn)}. Then DomenVCode=fl and ears [{v}]. since
Aev=Tv with the above MEZ. Property (iii) implies e=1g [(V)], that is f(v1....,vn)
is T—equal to a variable. Therefore f is a projection symbol.

We want to show, that these theories are also in some unification theoretical
sense 'almost' collapse free: Every almost collapse free theory can be
transformed (by  a computable mapping on the terms) into a collapse free
theory, such that the transformed unification problems have essentially the
same bases as  the original problems.
Given a theory T with the set P1. of its projection symbols. We define a

mapping ':'l' sTJH t' recursively by
(i) VveV= v':-v and VceFo: c'=-c

(ii) eFn\ PT , VII....‚tne'l': (f(tl‚...‚tn))'==f(t‚'‚...‚tn') and
mel'ni , Vt1‚...,tne'l'= (p“)u„...‚t„))'==t; (n21)

and we extend this mapping to substitutions by
(iii) V662, xeDome: e'x==(ex)'.
The images of '1' and Z are denoted T' and 2'. Now we apply this mapping to
the axiomatization T and we obtain the axiomatization

T'==((l' , r')= (l , rk'l').
Thus this mapping removes all projection symbols and we may regard the
image 1" of the term algebra 'l' under this mapping as a term algebra with the
reduced signature MPT. “1" is  then an axiomatization of an equational theory
on this reduced term algebra.
The following technical lemma shows more about the relationship between
the axiomatizations 'l‘ and “l", especially that they are equivalent on the
reduced term algebra 1", that is, they induce the same equational theory on 'l".
4.Len_tma4:
(i) Vte'l': I=Tt'.
(ii) Wei Vte'l': (6t)'=e't'.
(iii) V(l' , r')e'l"=l'=1.r' (Le. T l- T'). and more general:

Vs',l'eT‘=s'—T.t' >s'-Tt' (i.e.T'I- s'=t' a Tl— s'=t').

(iv) Vs.tcT: s—Tt > s'=T.t' (Le. T I— s=t => 1“ l- s'==t').
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Proof': (j) and (ji) can easily be derived from the above definition by 
structural in"duction on the terms. 
(iii) The first part is an immediate consequence of the definition of T'. The 
second parl rollows by lhe closure properly or the equational theories: -=r' is 

the least ~-invariant congruence containing T'. The assertion holds also, if we 

consider -T' as i:1-invariant congruence on the reduced term algebra r l 
. 

(iv) We use induction on the closure construction of an equational theory, 
Let s=Tt. Then (s , t)eCO(T) for some m:l (by 2.Proposition2). 

n-O: (s , t)eCO(T)-T '* (s' , t')eT' '* s'-T,t'.
 

n-m+ 1: (s . t)eCo+ t(T)=C(CO(TH.
 
In order to prove that s'=T't' holds, we distinguish between the different cases
 

of generating the pair (s , t) from term pairs in CO(T) by the five suboperators
 
defining the operator C.
 
REfL obvious
 
8ijM; (t , s)ECn(T) '* t'aT'S' '* S'-1't'
 

~S: 3reT with (5 , r),(r J t)eCO(T) '* 5'-1'r', r'E1't' ~ 5'=1't
 

fl)N: 3fePm with s..f(Sl' ... ,Sm)' t ..f(tt'· ...t ), (sl'tj)ecn(T) (t ~ism) ~ siT,t j (t ~ism)
m


easet; f4PT~ s-f(St',· .. ,sm') and t'-f(tt', .. ·,t. ') ... s'-T,t'
m

ease2: f -,p(j)eP for some j (1 -s:j-s:m) ::) S'-:Sl' and t'-=t ' ~ S'=T't'
r j 

SUBS1': 3<"jE~ with 5-050, t-=Ot ' (so' tolECO(T) ~ sO=1't ~ s'=T,t'o o 
Hence by induction 5'=1't'. 

Note, that this proor also holds, ir we reKard ":'T' as an equational theory on the 

t.erm algebra T' over the reduced signature P\Pr 

Now we can show t.hat deletion of all projection symbols in this way will not
 
affect the bases of the unifier sets of the unification problems, in ot.her words,
 
projection symbols are superfluous in a unification theoretical sense.
 
1.Theorem5;
 
With the above notations we obtain;
 
(i) UL'[s'=T't']:=(6'e!:'; 6'S'=r,6't'} is a complete subset of UL[s-rt1
 

(iil The base }1UL'[s'aT't'] of ID:'[s'-T,t'] is also a base of ID:[s-Tt1
 

Proof; 0) Correctness: ri'eID:'[s'=T't'l ~ ri'S'=T.ri't' ~ ri's'=yli't' (1~Lemma10i)+Oii)) ~
 

5's"',b't (4.Lemma4(i)) ~ 6'EID:[s=Tt l.
 
Completeness; 6em::[S=Tt] ~ 6s=ylit ~ ri's'=(6S)'=T,(rit)'=l)'t' (1.Lemma1(ii)+(iv)) ~
 

l)'eUL'[s'-T,t'l By 4.Lemma4(i)+(iil we obtain 6'I-o'I'-(61)';li1 VIEV(S,t) and
 

hence li~,li' lV(s,t)].
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Proof (1) and (ii)- can easily be derived from the above definition “by
structural induction on the terms. '
(iii) The f i r s t  pa r t  is  an immed ia t e  consequence of the definition of T'. The
second part follows by the closure property of the equational theories: =T. is

the least  i - invariant  congruence containing ‘1". The assertion holds also, if we
consider "1" as Z'—invariant congruence on the reduced term algebra '1".

(iv) We use induction on the closure construction of an equational  theory.
Let s=Tt. Then (3 , nemm for some n21 (by 2.Proposition2).
n-0= (s , t)eB°(T)-T => (s' , t'k'l" = s'-T.t'.
n—>n+1: (s . fleB“*‘(T)=C(B“(T)).
In  order  to prove that  s'=1..t' holds,  we distinguish between the different cases

of generating the pair (3 , t) from term pairs in B“(T) by the five suboperators
defining the operator 0 .
REFL- obvious
814% (t , SENT) ==»t'=1..s'=> s'-T.t'
“DUNS: Eire'l' with (s  , r),(r , 068“”) =» s'a-Tr', r 't '  => s‘=T.t
(ION: €"e with s=f(31,...,sm),t=f(t',...,tm), (sptilemt‘l‘) ( t s i sm)  ==» s i ‘ r ‘h  (Is ism)

Casel: “PT =; s-f(sl'‚...‚sm') and t'-f(t ',...,tm') =» s'-T.t'

CaseZ: f—pÜ’ePT for some j (1sjsm)=> s'vsl' and t‘-=ti' => s'=T.t'
811887: 3662 with s-oso, two'to, (so , t.0)eß“('l') => ‘n'—“Tin =; s'=T.t‚'
Hence by induction s’=T.t'.
Note, tha t  this  proof also holds, if we  regard "T' as  an equat ional  theory on the

term algebra T‘ over the reduced signature P\PT.

Now we can show that  deletion of all projection symbols in this way will not
affect the bases  of the unifier se t s  of the unification problems,  in other words,
projection symbols are superfluous in a unification theoretical sense.

With the above notations we obtain:
(i) UE'ls'=T.t']:={o'eZ': e‘s'=.l..e't'} is a complete subset of ums-Tu.
(ii) The base uUE‘[s'=T.t'] of UZ'ls'-T.t'] is also a base of Ul-Tt].
Proof: (i) Correctness: 6'6U2'[s'=1..t'] => 6's‘=.r.6't' = 6's‘=115't' (4LLemma4l-ii)+(iii)) =>-
6's=15't (4.Lemma4(i)) =; 6'eUE[s=Tt].
Completeness: beUl=Ttl ==» 63=T6t e 6's'=(6s)"=.r.(6t)':6't' (4.Lemma4(ii')+(iv)) =>
b'eUZ'[3'-T.t']. By 4-.Lemma4(i)+(ii) we obtain ö'x-ö'x'-(öx)'-‚äx V1£V(s‚t) and
hence 651E [V(s.,t)]..



(ii) Correctness: }lUL'[s'=T' t' ]sUE'[s'=T't' ]sUE[S=Tt ). 

Completeness: We must show that V6Eut[s,.t] 36'E}lut'[S''l,t']: 6:Sf'[V(s,t)). 

Let 6EUE[s""'Tt] ~ 6'eUr'ls'-rt') and 6:s~'[V(~,t.)] (by part (i)) :::} l:>'e}lUr'[s'""r t']: 

~1~l<5'lV(SI,tl)l By the <kl'inition or ~ sets Domfj'-V(s',t') and VCodo'nV(S,t).0 

and by 2.Proposition4(ii) we obtain that 6'~T6'lV(sjt)]. 4.Lcmma40ii) then 

implies 6':5;fS'l V(s,t)J. Hence 65~1 V(s,t)) by the transitivity of 5T[V(5,t)]. 

Minimalit.y: Lc.~t. (j';,('E~ur'ls'~rt.'] and IN. (j'::;Tt'[V(s,t)]. Then 6'~Tt,(V(s',t')1 and 

with 4.Lemma4(iv) fj'Srt'[V(s',f)]. By minimality of ).1ll:ls'=-r't'l with respect 

to :SrlV(s',t.'}], we obtain G'-,",('. Thus wc have shown also minimality with 

respect to ~T[V(s,t)l 

This theorem is a generalization of a result of [Szabo82l A collapse equation 
of the form f(V)=TV with feP 1 is called mODI/die. Szabo shows that monadic 

collapse equations are superfluous in a model theoretic sense: For every 
theory T there is a theory T' without monadic collapse equations. but with 
essentially the same models as T, that is they are 'definition-equivalent' (see 
also [Taylor79] for a more detailed definition of and some literature about 
these notions). It is easy to see that 04.Theorem5 holds for 
definition-equivalent theories T and 1'. 

Applying 4.TheoremS to almost collapse free theories we obtain that 
unification in almost collapse free theories is the same as unification in 
col1apse free theories. 
4.Corollary6: 
For each al most collapse free theory T there is a collapse free Lheory T', such 
that T-unification and l'-unification are related as above, that is 0) and (ij) of 
o4.TheoremS hold. 

The thtmry of 4.Example2 is a regular theory with monadic collapse equations 
and it is definition-equivalent to the theory indu<..-ed by the empty 
ax iomatization. Thus unification in this theory is the same as syntactic 
unification. 

These reHulLs can be prescribed with the nut ions of Lerm rewriting systems; 
The seL of projection equations of a theory can be regarded as a canonical 
term rewriLing sysLem. Then L' denotes just the normal form of a term Lwith 
respect to this term rewriting system (see [Huet&Oppen80]). 
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(ii) Correctness: pUZ'ls'=T.t‘]§UE'ls'——=T.t'lsUZl=Ttl

Completeness: We must show that V65U2[s=.rt] 36'EpUZ'[s'=T.t']= 65T6'[V(s,t)].

Let öeUl-Tt] = ö'eUZ'ls'-T.t'l and ösTö'lV(‚s.t)l (by part (i)) = aß'euLIZ'ls'=T.t'l=
ö'sT.<s'lV(s'‚t')l. By the definition of u sets Dom6'-V(s',t.’) and VCodo'nVlsUfi
and by 2.Proposition4lii) we obtain that 6's.[.6'lVl8,t)]. 4.Lemma4liii) then

implics 6's1o'lV(s,t)]. licncc ösTß'lV(s‚t.)] by the transitivity of sT[V(s,t)].
Minimality: Let.ß'‚t'e}1Ll2'ls'-—T.t.‘] and let o‘sTt'Wlstll. Then o'sTt'[V(s',t']], and
with 4.Lcmma4(iv) o‘sT.t'[V(s'.t‘)]. By minimality of uUZ'ls'art'] with respect
to s . lV( s ' , t ‘ ) ] ,  wc obtain o'a‘. Thus we havc shown also minimatity with
respect to sTWls,t)].
This theorem is a generalization of a result of [SzaboßZ]. A collapse equation
of the form f(v)=Tv with fel’l is called mamma. Szabo shows that monadic
collapse equations are superfluous in a model theoretic sense: For every
theory 1' there i s  a theory 'l" without monadic collapse equations, but with
essentially the same models as 'l', that is they are 'definition—equivalent' (see
also [Taylor79] for a more detailed definition of and some literature about
these notions). It is easy to see that 4.Th’eorem5 holds for
definition—equivalent theories T and T'.

Applying 4.Theorem5 to almost collapse free theories we obtain that
unification in almost collapse free theories is the same as unification in
collapse free theories.
4.Corollary6=
For each almost collapse free theory T there is a collapse free theory T', such
that T—unification and T'—unil‘ication are related as above. that i s  (i) and (ii) of
4.Theorem5 hold.

The theory of 4.Example2 is a regular theory with monadic collapse equations
and it is definition-equivalent to the theory induced by the empty
axiomatization. Thus unification in this theory is the same as syntactic
unification.

These results can be  prescribed with the notions ul" term rewriting systems:
The set of projection equations of a theory can be  regarded as a canonical
term rewriting system. Then t' denotes just the normal form of a term t with
respect to this term rewriting system (see [Huet&0ppen80]).



5 Relationhips Between Il-Sets 

In this section we show the main result, In almost collapse free theories the 
most general Y-restricted unifiers are most general unrestricted unifiers. 
Throughout this section we denote the blocked variables of aY-restricted 
unification problem by y c,... V(s,t)\Y. 

First we show, that a solvable unification problem has Y-restricted T-unifiers, 
iff there are some most general unrestricted unifiers being T-eqUivalent on 
the blocked variables to the identity, in other words, the substitution of the 
blocked variables is not essential to solve the problem. We collect these 
unifiers in the set 

Uy'={6€J,l UL[ s=,-t]: 6=-f [yc]}, 

for s,teT with existing J,lUL[s-rt] and for VCiV(S,t).
 

S.Lemmal:
 
Let s,t E T with existing J.lUL[s=:rt] and let Y~V(s,t). Then:
 

Uy*0 ~ ULly[s=rt ]*0. 

Proof.· "~" Let GEUy ~ 6iii,-t [VC] => 3Aei:: A6=.f [ycl that is AGW=,-W 'VweYc 

=> (AG)lvv=.l.ew 'VveV and (A6)lyw=w¥GW "IweVC => (A6)ly=rA.G lV(s,t)). By 

ESEJ.lm::[s-rt1 and with 2.Proposition4 we get (AG)lys-,.AGs-rAGt-r(A6)lyt. Hence 

(A6 )Iyem::ly[s=,-tl 

"<:" Let J.leULly[s-Tt] => J.leUL[s-rt] => 36EJ.lUL[s-rtl: J.l~r6 [V(s,t)]. Hence 3Aei: 

with J.l=yA.G lV(s,t)]. Since J.lw=w 'VweYc (remember that DomJ,l~Y), hence 

A6W=TJ,lw=w 'VweVc and hence 03!!yt [ycl This is eeUy. 

In almost collapse free theories the elements of Uv are T-equal to renamings 

(4.Lemma3), hence 
Uv={GEJ,lUL[s=,-t], 6=r98 [Vcl, 98ERen(YC)}. 

In this case we obtain a base of Y-restricted unifiers by composing the 
converses of these renamings with the corresponding unifiers, hence the set 

UC;={(gC6 )l ; GEU ' g;=g }v v e
is a base. This means that in almost collapse free theories the most general 
unrestricted unifiers differ from the restricted ones by a renaming of the 
blocked variables. 
5.TheQrem2: 
Let T be almost collapse free. Let s,teT with existing J,lUL[s-,.tl 

Then U .0 for V~V(s,t) implies UCis a base of ULlv[s'Tt). v
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S Relationhips Between u-Sets

In this section we show the main result: In almost collapse free theories the
most general V-restricted unifiers are most general unrestricted unifiers.
Throughout this section we denote the blocked variables of a V—restricted
unification problem by V°== Vls,t)\V.

First we show. that a solvable unification problem has  V—restricted T—unil‘iers.
il‘l there are some most general unrestricted unifiers being T-equivalent on
the blocked variables to the identity. in other words. the substitution of the
blocked variables is not essential to solve the problem. We collect these
unifiers in the set

Uv:={eqE[s=Tt]= cart: [V°]}.
for s,teT with existing pUZIs-Tt] and for VsVls,t).
1W
Let st  6 'l' with existing pLIZIs=Ttl and let V;V(s,t]. Then:

Uv=v=ß <=? UE|V[S=Tt]==ß'-

Proof-"=>" Let <5e => @Te [VC] = BAGS: les-are [V°], that is Aew=Tw VweV°
:(Ac)|vv=kcv VveV and (16)v=w=.r)lcw VweV‘ => (muffle [V(s.t)]. By
öepUZha-Tt] and with 2.Proposition4 we get (Ao)|vs-T)lcs-ct-T(Ac)lvt. Hence
(AclllveUEIVISartl.
”<=“ Let peUEIVh-Tt] => ueUEIs-Tt] ==» ElcqEIs-TtL usTo [V(s,t)]. Hence HAGE
with p=1lß [V(s,t)]. Since uw=w VweV° (remember that DomuEVi, hence
Aow=Tuw=w VweV° and hence 621.8 [W] .  This is ce.

In almost collapse free theories the elements cl“ UV are T—equal to renamings

”(4Lemma3), hence
UV={oepUZ[sart]= CHI-96 [V°]‚ goeRenWÜ}.

In this case we obtain a base of V—restricted unifiers by composing the
converses of these renamings with the corresponding unifiers, hence the set

U°:={(g°6llv= öe. 9==9„}
is a base. This means that in almost. collapse free theories the most general
unrestricted unil‘iers differ from the restricted ones. by a renaming of the
blocked variables.
5.Theg[em2=
Let T be almost collapse free. Let s,_te'l' with. existing uUZ['-s=Tt].
Then Uv 4-0 for V§V(s,t) implies U° is a. base of UElvls-Tt].



Proal": First we have to show the correctness: Ucco;m:lyls=rt).
 

Let (gCe)lyEUC. Since e is a T-unifier, hence also gCes=ytet. Let WEVc, then
 

rlt'JW=ilgw=9Cw=w (the first equation holds with 0=,-9 [Vcl, the second one by
 

2.Propositiont, and the last one by the definition of gC: DomgCnVC = 0). This
 
implies (gCe )ly=,-9co [V(s,t»), and with 2.Proposition4 we get (gCo)lvs=-r(cto)lvt.
 

Hence (clo)lveID:lv[s=rt).
 

NeIJ- we show the completeness. 'v'}leID:ly[s-,.t] 3vEUC. }l~Tv [V(s,t»).
 

Let }letu:lyls=ytl As in the second proof part of 5.Lemmal there is some (?}EUy,
 

that is 6-,.9 [ycl, with }l~,.e [V(s,t»).
 

With YCooonDomg=0 and with 2.Proposition 1 we get 6=(j6=(ll6. Obviously
 

g'tt'J~,.qc6 [V(s,t)] and as in the correctness part (gCo)ly=,.qco [V(s,t)]. Thus
 

with transitivity of the T-instance relation }l~T(gC6)ly [V(s,t)] holds.
 

Finally we show the minimality of If:
 
Given (QcG)ly , (Q,c6 ')l elf with (~tG)IY~r(QrCG')ly[V(s,O]. This impliesv 
gC6~Tg'C6' [V(s,t»), Le. 3Ad:: qC6.y.g'CO' [V(s,t»), and hence we obtain 

~t6=-rg.A.g'C6' [V(s,t»). By 6~=()CtO: 6=-rg.A.g'Ce' [V(s,t»), i.e. e~fS' [V(s,t)]. The
 

minimality of }lID:[s=Tt] implies 6=6', and hence (qCo )ly=(q'Co')Iy.
 

With the same techniques we can prove that most general V-restricted
 
unifiers are most general W-restricted unifiers, if V~W~V(s,t): In the above
 
lemma and theorem we can replace }lID:ls-,.t] by }lID:lw[s-,.t).
 

The next coroUary is an immediate consequence of 3.Proposition4(iii). It
 
shows that the results of the above lemma and the theorem also hold for
 
matching problems with variable disjoint terms.
 
'S .Corollary3:
 
Let s,teT with existing }lill:[s=-rtl If V(s)nV(t)=0, then we obtain (with V=V(O
 

and VC=V(s»:
 

0) Uy*0 ~ ML[s~rt]*0.
 

If T is in addition almost collapse free, then:
 
(ii) Uy*0 ~ UC:={(qCo)1 Y(t): OEUy} is a complete subset of M}:[s~rtl 

Remarks: 
1. In the correctness part of the theorem, we prove (~t6)ly"r9co [V(s,Ol this 

implies (~lo)lV-yO [V(s,t)]. Hence every most general restricted unifier is a 

most general unifier and we can abbreviate the above results by the following 
notation ( '1;1' means 'subset modulo =r'): 
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W First we have to show the correctness: cUZIVIs-Tt].
Let (o‘eNVeU‘. Since a is a T—unifier, hence also o‘esfi‘m. Let weV", then

9°ow=srg°9w=9°w=w (the first equation holds with cw [V°], the second one by
2.Proposition1, and the last one by the definition of 9°: Domg"rfl1Ic = 6) .  This
implies (9°e)|v=19°e ”(8,01,  and with 2.Proposition4 we get (9°6)lvs=.r(9°e)lvt.
Hence (9°o)IVEUZ|v[s=Tt].
Nez} we show the completeness: VueUElvls-Tt] 3veU°= Iii-[V [V(s,t)].
Let ueUZIVIs-Tt]. As in the second proof part or 5.Lemma1 there is some ee,

that is e-tlg [Vc]. with psp [V(s‚t)l.
With VCodenDom9=Z and with 2.Proposition1 we get emem‘o. Obviously

ggcesTgce [V(s.t)] and as in the correctness part (9°o)|v=19°e [V(s,t)]. Thus
with transitivity of the T-instance relation usT(9°e)Iv [V(s,t)] holds.
Finally we show the minimality of U”: _
Given (9°6)|V . (9"‘6')|V eUe with (9°6)|V.<.T(9'°6')|v [V(s,t)]. This implies
g°esTg'°e' [V(s,t)], i.e. BAGS: gcenrxg' e' [V(s,t)], and hence we obtain
gg‘earglg‘°6' [V(s,t)]. By e=ge=99°e= efiglgme' [V(s,t)], Le. 6516' [V(s,t)]. The
minimality of uU2[s=Tt] implies o=e', and hence (9collv=(9'°o'llv.

With the same techniques we can prove that most general V-restricted
unifiers are most general W-restricted uniliers. if V=W=V(s‚t)= In the above
lemma and theorem we can replace uUZIs-Tt] by uUZIWIs-Tt].

The next corollary is an immediate consequence of 3.Proposition4(iii). It
shows that the results of the above lemma and the theorem also hold for
matching problems with variable disjoint terms.

Let s,teT with existing uUl=Ttl if V(s)nV(t)=E. then we obtain (with V=Vlti
and V°=V(s))=
(i) Uvefl «e MlsTthfl.
If T is in addition almost collapse free, then:
(ii) UWE! => U°=={(9°ß)| ‚m: ee} is a complete subset of MEIssTt].

mm
1. In the correctness part of the theorem, we prove (9°ollvn1cce man]; this
implies (9°o)|V-To [V(s,t)]. Hence every most general restricted unifier is a
most general unifier and we can abbreviate the above results by the following
notation ( 'cT' means 'subset modulo ET”);
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(i) Vc;WsV(S,t) ~ v.UI:IV[S=Tt)c;TJ.lUI:!w[S=Tt)c;TJ.lUI:[S"'tt] C5.Theorem2) 

(ii) V(s)nV(t)-0 ~ J.lMr[s~Tt]c;TJ.lm:[s·Tt](S.Corollary3(H)). 

2. If T is coJJapse free, then Uv·{6EJ.lUI:[S-,.t]: 6"9~ [Vcl. 9~ERen(VC)}, since being 

T-equal to a renamin8 enforces bein8 identical to a renamin8. 

Let us demonstrate these results by an example,
 
S.E:IampleS:
 
Let T:·{fgx • fx} with f,geP tithe theory is almost collapse free (for ease of
 

notation we drop the parantheses for unary function symbols and abbreviate
 
multiple nestings of the same function symbol by exponents: COx:=x,
 
rn+ 

1x:=f(JUx) for feP ). Then consider the terms s:=fI and t:=fy.
 t 
1. The unification problem <s =r t> has a base J.lUI:[s=rt]={oOO}u(onm: n,m>O,n*m} 

.with 6nm:"'{X.....gnvnm y.....gIDvnm}' where vnmeV\{x,y} are pairwise differentf 

variables (n,m~O and n*m for n,m>O). 
2. For the semi-unification problem <s "'r t ,{yh we obtain U(y)={60m: m~O}, 

and a base is ue..h : m~O} wilh '( m·(9mC60m)/(y)·{y.....gmx), where 9m..b .... vOm}m
(m~O). 

3. The matching problem <s ~r t> has the same sets U(y) and UC
, but it has a 

base with a single matcher: }J.ML[s~Tt]={}J.} with J.l:>'f0"'{y....x}df. Every other 

element of If is aT-instance of V. on V(t)={y}: '(m=,.AJ.l [(y)] with A= (X.....gmI) 

(m,d). 
This also demonstrates that we cannot get minimality for UCin S.CorollarY3.
 

We give some counterexamples for the above results, if the preconditions are
 
weakened.
 
S·Examole6:
 
If we drop the 'almost collapse free' requirement, the examples (i)-(iH) are
 
semi-unification problems contradicting both 'S.r..oroJlary3 and 'S.Theorem2;
 
that is the most general unrestricted unifiers differ On general) from the
 
re~tricted one~ not only by a renaming of the hlocked variables.
 
Note, that the axiomatizaLiuns uf Lhese e.nmples just represent the three main
 
possibilities of violating the almost collapse free property with re8ular
 
theories.
 
(i) T:·{f(x,x) -x} (idempotence)
 
Consider the following terms s,·x and t,-f(y,z) and the substitutions
 
o:={I~f(u,v) , y....u , z.....v} and ~:"{Y""'x ,z.....x}. Then 6EJ.lUI:[s-Ttl, and J.lE~ML[S~Ttl.
 

but J.l~r6 [V(s,t)) with A={U.....I , V~I} and J.l'*r6 [V(s,t)), Le. the most general 

matcher (semi-unified is a proper instance of the most general unifier. Note, 
that 'S.Lem ma1 holds, since 6EU(y,z)' However, 6 is not T-equal to a renaming 
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(i) VEWEWSJ) => pUZIVIS=TtlsTuUEls=TtlETuUZIs-Tt] (5.Theorem2)
(ii) “flown-H ==» pMlsTtkTpUEIS-Tt] (5.Corollary3(ii)).

2. If T is collapse free. then Uv-(cqHs-Ttk 5'95 [W]. QueRenW‘H.  since being
T—equal to a renaming enforces being identical to a renaming.

Let us demonstrate these results by an exam ple:
a le =

Let T=-{l‘gx - fx] with figs?“ the theory is almost collapse free (for ease of
notation we drop the parentheses for unary function symbols and abbreviate
multiple nestings of the same function symbol by exponents: f°x:=x,
f“*‘x==f(l“x) for fellI ). Then consider the terms s:=fx and t:=l‘y.
1. The unification problem <s =1. t> has a base uUZIs=Tt]={eoo}u{cm= n,m>0,n¢m}

.with 6nm=={X+-anm , y4—gmvnm}‚ where vn_eV\{x,y} are pairwise different
variables (11,s and mm for n,m>0).
2. For the semi-unification problem (3 "rt  , {y}> we obtain U[y]={om= mo},
and a base is U°={tm= mzo} with rm-(9m°60_]|[y]-{y¢—gmx}. where gut-{RVM}
( s ) .
3. The matching problem (5 5T t> has the same sets Uhr) and U‘. but it has a
base with a single matcher: uMlsTtl={u} with paro={y<-x}eU°. Every other
element of U° is a T-instance of u on V(t)={y}= {mark}! [{Yll with A= {Ju-gmx}
(mal).
This also demonstrates that we cannot get minimality for U° in 5.Corollary3.

We give some counterexamples for the above results, if the preconditions are
weakened.
5.5;ample6=
If we drop the 'almost collapse free' requirement, the examples (ii-(iii) are
semi—unification problems contradicting both 5.Corollary3 and 5.Theorem2i
that is the most general unrestricted unifiers differ ( in general) from the
restricted ones not only by a renaming of the blocked variables.
Note, that the axiomatizations of these examples just represent the three main
possibilities of violating the almost collapse free property with regular
theories.
(1) T=-{f(x,x)-x} (idempotence)
Consider the following terms sad and t=-f(y,z) and the substitutions
c=={x<—f(u,v) ‚V+-u , 24—v} and tin-{ye}: . 24-1}. Then oepUEls-TIL and uepMElssTt],
but 1151:; [V(s‚t)] with A=lu<~x . Vex} and page [V(s,t)], Le. the most general
matcher (semi-unified is a proper instance of the most general unifier. Note,
that 5-.Lem mal  holds, since eeU[y z}.  However, 6 is not T-equal to a renaming

l 6



on the bolcked variables VC:=(x}. 
(ii) T:={f(t;I) '" d ~i (unit element) 
Let S:-I and t:-:f(y,z), let o=(x.-f(~T'1) , Yt-u , It-V) and J.l={yt-1 , zt-d. Then 0 is a 
most general unifier and J.l a most general matcher. With the substitution 
A={u+-l , v+-d we have again J.ls,.t5 [V(s,t)], but J.l$,.t5. 

OmT:""2{f(g(l» .. I}. 
Let 9:·1 and t:.f(y). Let 6:·(x+-f(U) , yt-u} and J.l:.(y+-g(I». Analogous to the 
former elamples J.l~r6 [V(s,t)] with A-(U+-g(I)} and J.l-r6. Again 6 i9 a most 

general unifier and J.l a most general matcher. 

'i.Blample7: 
This eIample shows, that S.Corollary3 does not hold for arbitrary matching 
problems, that is, if we drop the variable disjointness requirement. There may 
eIist more most general matchers than most general unifiers and in addition 
the latter may be proper instances of the former. if the terms have common 
variables. Note that the theory is collapse free. 

T;..{f(I,y) .. f(y,x» (commutativity) 
With the terms s:",f(a(I),y) and t:=f(x,z) and with the substitutions 
6;·{x+-U , y+-u . z.-a(u», J.l 

1
:-{I.-a(X) ,z+-y) and J!2:·(I+-y ,z+-g(x)) we obtain: 

OEJ.ltJt[S-,.t) and J.l1.J.l2EJ.lML[ssrt] and e~rJ.l2[V(s,t)] with A-{It-U , yt-u), but not 

conversely. On the other hand 6 and J!1 are not comparable in ST and 6 is the 

only most general unifier. Note, that the corresponding semi-unification 
problem <s =T t , V(t)\V,(sh has no solution. 

6 Consequences and Aoolications 

Depending on the cardinality of the J!-sets we classify the unification 
problems .and the theories. This jg known as unifiC1llioo hierarchy 
[Siekmann841 
6.Definition1: 
(i) A solvable unification problem is called nullary, iff the J.l-set does not
 
exist (the cardinality is null). IL is caHed Yn.liary/finilary/i.JJfiniluy, iff the
 
J.l-set eIists and its cardinality is one/finitelinfinite.
 
(ii) A theory is unilJJry/finilary unifying, irf every solvable unification
 
problem is unitaryIfinitary. JL is called nulJllFy/infinilllFY unifying, irf at least
 
one solvable unification problem is nUllarylinfinitary.
 
Analogously we define this for matching and restricted unification.
 

The following theorem describes the relationship between the hierarchy 
classes of restricted and unrestricted unification problems. 

17 

on the bolcked variables V°==(x}.
(ii) 1':---{f(l x) =- x} (unit element)
Let s==x and L-=f(y,z), let Min-They) ye-u, ze-v} and 11=-,{y«-l za} Theno is a.
most general unifier and 11 a most general matcher With the substitution
A=(u<—l ‚V+-1} we have again 11515 ”(3.01. but 11116.
(iii)T='={f(8(X)) = x}.
Let am! and t=-f(y). Let o:-{x+-f(u) . yi—u} and animus .  Analogous to the
former examples 11515 [V(s.t)] with him—3(1)) and 11-1116. Again a is a most
general unlfler and u a most general matcher.

W
This example shows. that 5.Corollary3 does not hold for arbitrary matching
problems. that is. if we drop the variable disiointness requirement. There may
exist more most general matchers than-”most general unifiers and in addition
the latter may be proper instances of the former. if the terms have common
variables. Note that the theory is collapse free.

T=={f(x.y) - f (37.1)} (commutativity)
With the terms s==f(g(x).y) and t==f(x.z) and with the substituuons
o=-{x«-u .ye-u .zc-gtuD. Muth-gt!) . M!) and 112:-tx+-y . Hm) we obtain:
oql-trt] and 111,112euMZissTt] and osTu2[V(s.t)] with A-{xeu ‚ya—u], but not
conversely. On the other hand 6 and 11I are not comparable in $1. and o is the
only most general unifier. Note, that the corresponding semi-unification
problem <s "r t . V(t)\V.(s)> has no solution.

15o

Depending on the cardinality of the u-sets we classify the unification
problems -and the theories. This is known as unification hierarchy
[Siekmann84].
6. fi to  1:
(i) A solvable unification problem is called nil/lazy, iff the p-set  does not
exist (the cardinality is null). It is  called wiry/fmflary/Jhfi'm'mry, iff the
p-set exists and its cardinality is one/finite/infinite.
(ii) A theory is unl'mry/l‘milary uni/ying, iff every solvable unification
problem is unit'ary/finilary. It is called nullzry/xhflbilary unifying, iff at least
one solvable unification problem is nullary/infinitat'y.
Analogously we define this for matching and restricted unification.

The following theorem describes the relationship between the hierarchy
classes of restricted and unrestricted unification problems.
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6Jheorem2:
 
Let T be an almo~t collapse free theory.
 
(i) If T is nullary restricted unifying, then T is nullary unifying.
 
If in addition the p.-set exists for each problem (that is T is not nullary), then
 
we have the following hierarchy results:
 
(ii) If T is unitaryIfinitary unifying, then T is unitary/finitary restricted
 
unifying.
 
(tiD If T is infinitary restricted unifying, then T is infinitary unifying.
 
Proof: (j) If T is not nullary unifying, every base exists and by 5.Theorem2
 
the bases of the restricted unification problems exist also.
 
(ii)+(iii) The bases of the restricted unification problems are subsets of the
 
bases of the unrestricted unification problems modulo T -equivalence
 
(5.Theorem2 and remarks in sectionS) and hence they have less or equaJ
 
cardinalities.
 

Since semi-unification is a special case of restricted unification, we at once
 
have the corresponding hierarchy results for semi-unification:
 
6.Corollaryl
 
Let T be an almost collapse free theory.
 
(i) If T is nullary semi-unifying, then T is nullary unifying. 
If in addition all ~ -sets exist, then: 
(ii) If T is unitary/finitary unifying, then T is unitary/finitary semi-unifying. 
(lii) If T is infinitary semi-unifying, then T is infinitary unifying. 

Remarks: 
1. The converses of the implications in 6.Corollary3 do not hold in general. 
Szabo gives an infinitary unifying, but unitary semi-unifying theory 
(Szabo82]. 
2. In 6.Theorem2 we of course have equivaJence, since by 3.Proposition-4(ii) 
unification is a special form of restricted unification. 
3. The results for semi-unification are covered by some results in {Szab082].
 

- Every unitary unifying theory is unitary semi-unifying.
 
- Every nullary semi-unifying theory is nullary unifying.
 

Here the theorie~ need not to be almost collapse free! However, Szabo's proof 
of the nullary case is incomplete, and moreover it is based upon the idea of 
replacing the blocked variables by ground terms, which is not possible in 
general (see 5. below and the appendix example). 
-4. We cannot get the nuHary hierarchy result for matching, since we obtain 
only completeness of the matcher sets constructed by our method. But of 
course we have the other results provided all the bases exist; 

-	 If T is unitarylfinitary unifying, then every T-matching problem for 
variable disjoint terms is unitarylfinitary. 

- If there is an infinitary T-matching problem with variable disjoint terms, 
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filhcmsa
Let T be an almost collapse free theory.
(1) If T is nullary restricted unifying, then 'f is nullary unifying.
If in addition the 11——set exists for each problem (that is T is not nullary), then
we have the following hierarchy results:
(ii) If 'l' is unitary/finitary unifying, then T is umtary/f1n1tary restricted
unifying.
(iii) If 'l' is infinitary restricted unifying, then T is infinitary unifying.
W: (1) If T is not nullary unifying, every base exists and by 5.Theorem2
the bases of the restricted unification problems exist also.
(ii)+(iii) The bases of the restricted unification problems are subsets of the
bases of the unrestricted unification problems modulo T-equivalence
(5.Theorem2 and remarks in sectionS) and hence they have less or equal
cardinalities.

Since semi-unification i s  a special case of restricted unification, we at once
have the corresponding hierarchy results for semi-unification:
flagellum
Let 'l' be an almost collapse free theory.
(i) If T is nullary semi-unifying, then ‘f is nullary unifying.
If in addition all u-sets exist, then:
(ii) If T is unitary/finitary unifying, then 'l‘ is unitary/finitary semi—unifying.
(iii) If T is infinitary semi-unifying, then T is infinitary unifying.

Remarks;
1. The converses of the implications in 6.Corollary3 do not hold in general.
Szabo gives an infinitary unifying, but unitary semi-unifying theory
[Szab082]
2. In 6.Theorem2 we of course have equivalence since by  3.  Propositionflii)
unification i s  a special form of restricted unification.
3. The results for semi--unification are covered by some results in [SzaboSZ].

- Every unitary unifying theory is unitary semi-unifying.
- Every nullary semi-unifying theory is nullary unifying.

Here the theories need not to be almost collapse free! However, Szabo's proof
of the nullary case is incomplete, and moreover it is based upon the idea of
replacing the blocked variables by ground terms, which is not possible in
general (see S. below and the appendix example).
4. We cannot get the nullary hierarchy result for matching, since we obtain
only completeness of the matcher sets constructed by our method. But of
course we have the other results provided all the bases exist:

- If T is unitary/finitary unifying, then every T—matching problem for
variable disjoint terms is unitary/finitsry.

- If there is an infinitary T-matching problem with variable disjoint terms.
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then T is infinitary unifying. 
Remember, that semi-unification is needed in applications instead of the 
general matching definition, so the results of 6.CorollarY3 are sufficient. 
5. Occasionally there has been the suggestion in the literature to simply 
replace, the blocked variables by some ground terms in order to prove such 
hierarchy results. That this does not work in general is demonstrated by the 
following example (which was an important motivation for this paper): 

Let c be the only constant, let f,g,h be unary functions, and let us assume, 
that there are no furt.her functions at. all. We again drop the parantheses. 
Let the theory be defined by 

T:={gh = gx , fc = c, gc = c , hc = c)
 
and consider the following variable disjoint terms:
 

s:=ghy and t:=gl.
 
Then the semi-unification problem <s =T t , (xl> has an infinite base
 

J.1ULlexis=rtl={6n: n~O) with 6n;={I....rnhy)(n~O), 

that 'is, it is an infinitary problem, and hence the theory will be infinitary
 
semi-unifying.
 
In order to show with the above idea that T is also infinitary unifying, we
 
have to replace the variable of s by a ground term to get an infinitary
 
unification problem. But with the only existing ground substitution ~={yt-C}
 

(all ground terms are T-equal to c) we get;
 
J.1lJL[~s=Tt]~m:[ghc=Tgx ]={{xt-C}}. 

Hence the corresponding unification problem is unitary. However, the 
theory is of course infinitary unifying by 6.Theorem2(iii) (T is collapse 
free). An infinitary unification problem will be given by original terms s 
and 1. 

From the main theorem of the last section we can infer an algorithm to 
compute most general restricted unlfiers from most general unifiers. This 
implies, that for every aJmost collapse free theory with an existing minimal 
unification algorithm (that is an algorithm computing a base for every 
solvable unification problem) there is also a minimal restricted unification 
algorithm. 
6,Algorithm2: 
Untrter_to_RestricteLUnifler 

.I1:m..u.t. - a (finite) base of unifjers of a unification problem <s =r t> 

- a subset V of the variables of sand t 
Output: - a base of V-restricted unifiers of the problem <s =T t , V>, if this 

problem is solvable
 
- FAILURE, if the problem is not solvable
 

- 11 there is no most general unifier with a V-renaming part,
 
then return FAI LURE.
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then T is infinitary unifying.
Remember, that semi-unification is needed in applications instead of the
general matching definition, so the results of 6.Corollary3 are sufficient.
5. Occasionally there has been the suggestion in the literature to simply
replace the blocked variables by some ground terms in order to prove such
hierarchy results. That this does not work in general is demonstrated by the
following example (which was an important motivation for this paper):

Let c be  the only constant, let f,g,h be unary functions, and let us assume,
that there are no further functions at all. We again drop the parantheses.
Let the theory be defined by

T=={gfx =gx , f c=c ,gc=c ,hc=c}
and consider the following variable disjoint terms:

s==ghy and t==gx.
Then the semi—unification problem <s =.r t , {x}> has aninfinite base

uU2I[x][s-=Tt]:={an: n20} with on:=(x+-f“hy] (n20),
that 'is, it is  an inf initary problem, and hence the theory will be inf initary
semi-unifying.
In order to show with the above idea that 'l‘ is also infinitary unifying, we
have to replace the variable of s by a ground term to get an infinitary
unification problem. But with the only existing ground substitution 3={y<-c]
(all ground terms are T—equal to c) we get:

uUZI3s=TtI=uUE[ghc=Tgxt—ci}.
Hence the corresponding unification problem is unitary. However, the
theory is of course infinitary unifying by 6.Theorem2(iii) (T is collapse
free). An infinitary unification problem will be given by original terms s
and t.

From the main theorem of the last section we can infer an algorithm to
compute most general restricted unifiers from most general unifiers. This
implies, that for every almost collapse free theory with an existing minimal
unification algorithm (that is an algorithm computing a base for every
solvable unification problem) there is also a minimal restricted unification
algorithm.

Unlfler_to.._Restricted_Unifier
input; - a ( f in i te )  base of unlflers of a unification problem <s =r  t>

- a subset V of the variables of s and t ”
Output: - a base of V-restricted unlflers of the problem <3 =T t , V>, if this

problem i s  solvable
— FAILURE, if the  problem i s  not solvable

- 11 there i s  no mos t  general unifier wi th  a V-re-naming part,
then return FAILURE.



-~ for each most general unifier with a V-renaming part QQ: 
remove the V-renaming part 
apply the converse of the V-renamlng to the codomaln of the rest. 

- Return all changed un1fiers. 

This algorithm is particularity useful for clause graph theorem proving 
procedures [Kowalski75] like the MKRP-system [Raph84] at Kaiserslautern: 
In clause graph procedures the clause sets are transformed into graphs with 

- nodes labelled with the literals of the clauses 
- arcs between nodes labelled by unifiable literals (with opposite sign) of 

different clauses (resolution linKs) 
- arcs between unifiable literals (with same sign) of different clauses 

(su!JslJmption links) 
The resolution links are labeHed by }lill:-sets and characterize resolution 
possibilities. The subsumption links support the application of the 
sub:mmption rule [Loveland78]: If there are two clauses C,D and a substitution 
}.l with }lC c; D, then the clause D can be removed. This can be extended to 
clause graphs using the above subsumption links [fusinger8 t l. Therefore these 
links should be labelled by semi-unification bases, but since the direction of 
the semi-unification problem is not known in advance, the links are also 
labelled by }lUL-sets and the semi-unification bases are computed 
dynamically by the above algorithm. 

7 Conclusions 

We have seen that for almost collapse free theories the most general 
restricted unifiers can be computed from a set of most general unrestricted 
unifiers. An open question is, whether this can be done in the general case. By 
S.Lemmat we can decide the restricted unification problem, if the minimal 
solution set of the unrestricted unification problem exists and is finite (if the 
unificaLion prohlem i~ infinitary, we obLain aL least a semi-deci~ion procedure 
for the resLricLed problem). The proof of Lhis lem ma gives some hints for 
cumputing restricted unifiers from those most general unifiers that are 
equivalent to the identity on the blocked variables: we have to instantiate 
Lhem and restricL the instances on the unblocked variables. Finding uut the 
appropriate instantiations - for al most collapse free theories, these are the 
renamings - mighl also lead to a minimal solution set. Solving this problem 
then wuuld also yield Lhe still missing hierarchy resulLs for theories with 
arbitrary collapse equations. 
Our result on the unification theoretical relationship between almost collapse 
free and collapse free theories (4.Corollary6) affects also the problem of 
combining unification algorithms of 'theories with disjoint function sets 
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— £15; for each most general unifier with a V-renaming part gg:
remove the V-renaming part
apply the converse of the V-renamlng to the codomain of the rest.

- eturp al l  changed unlflers.

This algorithm is particularity useful for clause graph theorem proving
procedures [Kowalski75l like the MKRP-system [Raph84] at Kaiserslautern:
In clause graph procedures the clause sets are transformed into graphs with

— nodes labelled with the literals of the clauses
- arcs between nodes labelled by unifiable literals (with opposite sign) of

different clauses (rem/union 113915)
— arcs between unifiable literals (with same sign) of different clauses

( subsumption Mob)
The resolution l inks are labelled by pUZ—sets and characterize resolution
possibilities. The subsumption links support the application of the
subsumption ru le [Loveland78]= I f  there are two clauses C‚D and a substitution
p with pc ;  D, then the clause D can be removed. This can be extended to
clause graphs using the above subsumption links [EisingerBl ]. Therefore these
links should be labelled by semi-unification bases, but since the direction of
the semi-unification problem is not known in advance. the links are also
labelled by pUZ—sets and the semi-unification bases are computed
dynamically by the above algorithm.

799nm;

We have seen that for almost collapse free theories the most general
restricted unifiers can be computed from a set of most general unrestricted
unifiers. An open question is, whether this can be done in the general case. By
5.Lemmal we can decide the restricted unification problem, if the minimal
solution set of the unrestricted unification problem exists and is  finite (if the
uni f icat ion p rob lem is i n f i n i t a r y ,  we ob ta in  a t  least a semi-decis ion procedure
for the restricted problem). The proof of this lemma gives some hints for
computing restricted unifiers from those most general unifiers that are
equivalent to the identity on the blocked variables: we have to instantiate
them and restrict the instances on the unblocked variables. Finding out the
appropriate instantiations - for almost collapse l‘ree theories, these are the
renamings - might also lead to a minimal solution set. Solving this problem
then would also yield the still missing hierarchy results for theories with
arbitrary collapse equations.
Our result on the unification theoretical relationship between almost collapse
free and collapse free theories (4.Corollary.6) affects also the problem of
combining unification algorithms of theories with disjoint function sets
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[Yelick85. Tiden85, Herold86l. This is still only solved for collapse free 
theories and our result yields, that the collapse free requirement can be 
weakened by admitting projection equations. 
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ADpendiJ 

We want to consider unification under distributivity and associativity and 
some extension to obtain an interesting undecidability result. 

Let + and x be binary function symbols written in infix notation: po 2={+'x}. Let 

us assu me that there also is at least one constant symbol: P" o={c}. Then our 

signature is r-poour2' We define the distributivity laws and the associativity 

law to be; 
DJ :={ XX(Y+z) = (xxy)+(xxz) } (left distributivity) 
Dc;",{ (I+Y)xZ = (IXZ)+(Yxz) ) (right distributivity) 
A :=( I+(y+Z) = Lt+y)+z } (associativity) 

The solvability problem of unification of V-terms in the theory OA:=OluDruA 
of distributivity and associativity is known to be undecidable [Szab082 l. 

Now given another signature p·POuP with Po·{a} and P -{f,g}, i.e. we have3 3
one constant and two ternary function symbols, we define some 
generalizations of the left and right distributivity and of the associativity 
aIioms for binary function symbols to ternary function symbols: 

013:= ( f(g(I,y,V),z,v) '" g(f(I,Z,V),f(y,z,v),v) }
 
Dc3:· {f(I,g(y,Z,v),v) = g(f(I,y,v).f(I,Z,V),v) }
 
A3 :z: {g(g(I,y,V),z,v) = g(x,g(y,z,v),v) }
 

Then we consider the col1apse free theory T:= D13uDr3uA3uTa with
 
Ta:= ( f(I,y,a) = a, [(I,y,f(U,v,w» = a, fCt,y,g(u,v,w» = a,
 

g(I,y,a) = a, g(I,y,f(U,v,w» = a, g(l,y,g(U,v,w» = a}. 
In this theory every term starting with a ternary function symbol (a compJe.r 
term) is T-equal to the constant a, if its third top argument is a non-variable. 
Every T-unification problem constructed with the signature P is solvable: We 
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Amanda

We want to consider unification under distributivity and associativity and
some extension to obtain an interesting undecidability result.

Let + and x be binary function symbols written in infix notation: F.;-{tx}. Let
us assume that there also is  at least one constant symbol: Fo={c}. Then our
signature is F-P'ouP'z. We define the distributivity laws and the associativity
law to be:

D1 :={ Xxiy+zl = (Xxy)+(x:<z) } (left distributivity)
Dr==i (x+y)xz = (1xz)+(yxz) } (right distributivity)
A :={ x+(y+z) = (x+y)+z } (associativity)

The solvability problem of unification of F-terms in the theory DAz=DluDruA
of distributivity and associativity is known to be undecidable [Szabo82].

Now given another signature F-POUPs with Po-{a} and P3-{f,g}. Le. we have
one constant and two ternary function symbols,  we define some
generalizations of the left and right dietributivity and of the associativity
axioms for binary function symbols to ternary function symbols:

D13 == { f(g(x.y,v)‚z‚v) = g(f(x‚z‚v).f(y;z.v).v) }
Dr3== {f(x.8(Y.z.v).v) = g[f(1,y.v),f{x.z,v).v) }
A3 === {3(g(x.y.v).z.v) = 8(I.8(Y.Z.V).V) }

Then we consider the collapse free theory T := Dl3UDr3UA3UT-a with
TI== { f(1.y,a) = a , f(1.y,f(u,v.w)) = a . f(1.y.g(u,v,w)) = a .

g(x,y.a) = a ,g(x.y.f(u,v,w)) = a ,g(1,y.8(u.v.w)) = a }.
In this theory every term starting with a ternary function symbol (a mam/e1
term) is T-equal to the constant a. if its third top argument is a non-variable.
Every T—unification problem constructed with the signature P is solvable: We
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substitute all variables of the problem by the constant a. Then both terms 
will become T-equal to the constant a by the subtheory ra. Hence unification 
under this theory is decidable within the given signature. 
But, if we introduce a new free constant b, unification in this theory will 
become undecidable. We can reduce a subset of the unification problems to 
the unfication under distributivity and associativity of binary function 
symbols introduced above. Therefore we consider a subset Tb of the term 

algebra T( pu{b},V) with the extended signature 'u{b}; 

(i) a,beTb and V~Tb 

(iH t 1,t2ETb ~ C(t l ,t2,b ),g(t1,t2,b leTb' 

That is, Tb is the subset of PU{b}-terms, where the third argument of every 

complex term is only allowed to be the constant b. Every r -unification 
problem <s -1 t> built up by those terms is solvable, iff the DA-unification 

problem <Si =DA 1'> is solvable. Here we obtain 5' and t' from sand t by the 

following mapping; 
(i) a H c, b H C and v H v VveV 

(ii) f(tl't2,b) 1-+ t 1
xt2, g(t1,t2,b) 1-+ t.+t2 Vt.,t2eT b. 

Thus in this theory unification will become undecidable, if we introduce new 
constants. 

An analogous reduction will demonstrate that restricted unification is not 
necessarily decidable, when unrestricted unification is. Take again the above 
theory r and the signature P. As we have seen, unification is decidable. 
However considering restricted unification problems <5 =r t, V(s,t)\b}>, 

where the variable I occurs at the third argument of each complex term, we 
get an undecidable set of problems. 

23
 

substitute all variables of the problem by the constant a. Then both terms
will become T-equal to the constant a by the subtheory Tn. Hence unification
under this theory is decidable within the given signature.
But. if we introduce a new free constant b, unification in this theory will
become undecidable. We can reduce a subset  of the unification problems to
the unfication under distributivity and associativity of binary function
symbols introduced above. Therefore we consider a subset '1'" of the term
algebra T( Pu{b},V) with the extended signature Pu{b}=

(i) a,be'l'h and Vs'l'b
(ii) t„t2e'rb => f(t„t2,b),g(t„t2‚b)e'l'b.

That is, Tb is the subset of FIRM—terms, where the third argument of every
complex term is only allowed to be the constant b. Every T—unification
problem <9 -1. t> built up by those terms is solvable, iff the DA—unification
problem <s' =DA t'> is solvable. Here we obtain s‘ and t' from s and t by the
following mapping:

(i) c ,bHcand-vHvVveV
(ii) f (tl.t2.b) H t'xtz. 8(t',t2,b) H tl+t2 VtI,t26Th.

Thus in this theory unification will become undecidable, if we introduce new
constants.

An analogous reduction will demonstrate that restricted unification is not
necessarily decidable, when unrestricted unification is. Take again the above
theory T and the signature 1'. As we have seen, unification is decidable.
However considering restricted unification problems <s =Tt, V(s,t)\{x}>,
where the variable x occurs at the third argument of each complex term, we
get an undecidable set of problems.
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