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Abstract:

We present restricted T-unification that is unification of terms under a given
equational theory T with the restriction that not all variables are allowed to
be substituted. Some relationships between restricted T-unification,
unrestricted T-unification and T-matching (one-sided T-unification) are
established. Our main result is that, in the case of an almost collapse free
equational theory the most general restricted unifiers and for certain
termpairs the most general matchers are also most general unrestricted
unifiers, this does not hold for more general theories. Almost collapse free
theories are theories, where only terms starting with projection symbols may
collapse (i.e to be T-equal) to variables.
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1 Iatroduction

Restricted T-unification is unification of terms under a given equational
theory T, where only some of their variables are allowed to be substituted.
Szabo mentioned this notion to be necessary for writing down some of his
proofs more exactly (he used the notation ‘partial T-unification' [Szabo82]).
However, he gave no definitions and he did not investigate the relationships
of this notion with common ones. He described how to get unrestricted
unification and matching as special cases. But this will only hold for a
restricted form of matching, also called semi-unification in [Huet76] We
present the necessary definitions and show some of the relationships between
restricted T-unification, unrestricted T-unification, semi-T-unification and
T-matching. For that purpose we introduce the class of 'almost collapse free’
equational theories - a slight generalization of the wellknown collapse free
theories [Szabo82, Yelick85, Tiden85, Herold86]. Collapse free theories have
the property that no non-variable term is T-equal (‘collapses’) 10 a variable. In
almost collapse free theories special terms starting with a projection symbol -
a function symbol f for which the T-equation f(v,,...\v,,...v )} =; v, holds - may

be T-equal to variables. For those theories we show that every most general
restricted T-unifier, and for termpairs, where one term is ground, also every
most general T-matcher, is a most general unrestricted T-unifier. Some
examples demonstrate that this is not the case, if we admit arbitrary
collapsing terms.

This result is of high significance in the area of theory classification known
under the notion ‘unification hierarchy' [Siekmann84]. Equational theories are
classified by the cardinality of the most general unifier/matcher sets into
unitary, finitary, infinitary and nullary unifying/matching theories. We
extend this classification to restricted unification. Then our result above shows
that in the case of almost collapse free theories every infinitary (nullary)
restricted unifying theory is also infinitary (nullary) unrestricted unifying and
every finitary (unitary) unrestricted unifying theory is also finitary (unitary)
restricted unifying. These results will especially hold for semi-unification as a
special kind of restricted unification. Some examples demonstrate that the
classification in the restricted case cannot be obtained from the classification
in the unrestricted case by replacing the blocked variables of a unification
problem by free constants. There might exist no free constants in the
signature and addition of free constants will destroy decidability of unification
(see appendix).

There is some closer kinship between almost collapse free and collapse free
theories: Every almost collapse free theory can be transformed into a collapse
free theory without losing any information about the unification problems.
This is an immediate consequence of a result holding for arbitrary theories:
All projection symbols can be removed by recursively replacing terms



starting with such function symbols by the argument they are projecting to.
In this way we can map every unification problem of a given theory to a
problem of a theory containing no projections with essentially the same
solution set as the original problem.

These theoretical investigations were triggered by some applications in
automatic theorem proving [Loveland78): Computation of semi-unifier sets
from unifier sets are used in several reduction mechanisms of clause graph
theorem provers (for example subsumption and replacement factoring in the
MKRP-system [Raph84]).

The next section collects the definitions of terms, substitutions and equations.
In section3 we define V-restricted unification and matching problems and we
show the relationships between the solution sets of these problems. Almost
collapse free theories and their kinship to collapse free theories are
investigated in section4. The main theorem of this paper, which relates the
minimal solution sets in the case of almost collapse free theories, is presented
in sectionS. In the last section we classify the unification problems by the
unification hierarchy and we show the relationships between the hierarchy
classes. Finally we give an algorithm to compute the restricted unifiers from
unresiricted unifiers and point out some applications of this algorithm in
automatic theorem proving. In an appendix we demonstrate by an example
that in some theories restricted unification is undecidable, while unrestricted
unification is decidable.

2 stitutions. Equations

In this section we summarize the common aigebraic terminology [Gritzer79,
Burris&Sankappanavar83] used in unification theory [Siekmann84].

Given a signature l'-Ul'n of finite sets P of »-ary function symbols (n 2 0),

and a countable set V of varsable symbols, we define the Zerm algebra
T:=T(R.V) to be the least set with

(i) V. P,sT and (ii) feP_and 1.t €T = f(1,....1 )T,
together with the usual operations induced by the function symbols.
For any object O consisting of or containing terms, we use the following
abbreviations to denote the symbols occurring in this object: V(0) is the set of
its variable symbols, PF(0) is the set of its function symbols.

The substitution monoid XT:=E(RV) of a term algebra is the set of finitely
representable endomorphisms on the term algebra being a monoid by the
composition operation and the identity:

4



(i) ce® (identity)

(i) 6.1e¥® = e1e® (composition)
(iii) ce Py, £(1,,...t JeT = ec=c, of(t,,..t )=flet,,..pt))  (homomorphism)
(iv)ee® = card({veV: 6vv})<on, (finite domain)

The set Dome:=(veV: 6vaVv) is the domain the set Code:={oveT: veDome) is the

codomain of the substitution ¢, and VCode~Y(Code) is the set of variables
introduced by &. Every substitution 6 can be finitely represented by the set
{(ve6v:veDome). For VeV the F-resiriction ol, of oeX is defined by el v:=6v

(veV) and 6lyv:=v (v4V), that is Domeslvs:v. Z'v denotes the set of all

V-restrictions with fixed VeV. A substitution QeZ is called a F-renaming, iff
Domg=V, CodgeV\V and gvegqw = v=w (Vv,weV). The converse q° of a
V-renaming g is defined by: g°v=w, if v=gw and weDomg, and g°v=v otherwise.
The set of all V-renamings is written Ren(V).

2.Proposition1: (see [Herold83])
(i) oeRen(V) = g°€Ren(gV)
(ii) geRen(V) = go®0 and gfg=Q®.

A finite set T:={(s , t): s,teT) of term pairs is called an ariomatization of an
(equational) theory, the elements are called arroms The equational theory is
the least E-invariant congruence relation =; on T containing the set T:

(i) = is an equivalence relation with: (s, t)eT = s=1t

(ii) s;=;t, ..., S =i, . [P = f(s,,...8,)=f(1,, .1 ) (congruence)
(iii)s =1t , 6€E = 65=/61 (Z-invariance)

We only consider cvnsisten! theories, that are theories that do not collapse
into a single equivalence class: Vv,weV: V=W = v=w. We frequently call the

ayiomatization T itself a theory, and we write 38 = t instead of (s , t) for the
axioms, if no confusion is possible.

This algebraic notion of equational theories is equivalent to the common
logical one: the fact that s=.1 holds is known in first order (equational) logics

as s=t is deducib/e from T and abbreviated by T + s=t.

It is wellknown that the relation =, can be constructed from T by a closure

operator. For arbitrary sets of term pairs P we define the following operators:
REFL(P):=Pu{(p , p): peT)
SYM(P):={(q , p):(p , qQ)eP}
TRANS(P):=((p , q): (p, r),(r , q)eP for some reT)
[!0N(P)=={(f(p,....,pn) , f(q,,...,qn))= (pi , qi)eP (1<i<n) and fel'n (n21))
SUBST(P):={(ep ,6q): (p, q)eP and 6€&}



C(P):=REFL(P)uSYM(P JUTRANS(P JLCON(P JUSUBST(P).
With CO%(P):=P and e**'(P):=C(C"(P)) for each nz0, we obtain a representation of
the equational theory =, being useful for induction proofs: The relation = is
just the union set L{C™T): n20).
2.Proposition2: (see [Burris&Sankappanavar83])

Vs,teT: s=t = In20: (s, tle C(T).

Proaf: 1t is easy to see, that U:=\UEAT): n20} is a E-invariant congruence
relation = on T containing the set T. Hence =p is a subset of U. Conversely, by

induction one can easily see, that for each (s, t)e C™T), the relation s=;L holds.

An equation s=\ is regular, iff V(s)=V(1). Equations t=,v with veV, 4V are

called col/lapse equations. A theory is called regu/ar, iff all equations are
regular. A theory without collapse equations is called co//apse free . Both
properties are inherited from the axiomatization to the whole equational
theory [Plonka69, Yelick85, Tiden85, Herold86 ]:

2. Proposition3:

(i) A theory is regular, iff all axioms are regular.

(ii) A theory is collapse free, iff no axiom is a collapse axiom.

For any s.teT, 6,1e& and VeV we define the following relations on terms and
substitutions:

(i) eis T-equalon V to1 (6=1 [V]), iff 6v=,1v VVeV.

(ii) sisaT-instance of 1 (s<,1), iff IAeE with s=/AL.

(iii) sis T-eguivalent tot (s=q1), iff ss.t and s>t

(iv) e is a T-instance of T on V (e<,1 [V]), iff 3AeE with B=fAT [V]

(v) eis T-equivalent 1o 1 on V (e=yt [V]), iff 65,7 [V] and 62,7 [V].

It V=V, we drop the suffix [V] The 'instance relations are reflexive and

transitive, and the ‘equivalent’ relations are in addition symmetric (that is
they are equivalences).

Let T be a theory.

(i) Let teT and &,1eX with &=.1 [V(1)], then 6L=_TL.

(ii) Let &,1c® and VeWeV with DomecV and VCodenW=0.
Then 1.6 [V] implies 1<.6 [wl (Fortsetzungslemma)

Proaf (i) can easily be seen by induction on the term structure. A proof of (ii)
is given in [Herold86].



3 Unification. Restricted Unification. Matchi

Unification theory is the general theory of solving equations [Huet76, Szabo82,
Siekmann84] and as usual we are interested in computing a base of the

solution space. Therefore we introduce the notion of the base of a substitution
set as the set of its most general elements, that is, we admit only the
sT-maximal elements.

Let Zc¥ be any set of substitutions and WeV. Then ¥ is a set of mast genera

substitutions on W of T (abbreviated to base or u-set onW), iff the following
conditions hold:

(B1)pZe® (correciness)
(B2) V8L JoeuT with 8<.5 [W] (completeness)
(B3) Ve 1euZ: 65,1 [W]1= 8=t (minimality)

The set u may not exist and if it exists, it is not unique. However, it is unique
modulo the equivalence relation =T[W] [Huet76, Fages&Huet83].

The solution set of a given term equation is represented by the set of
substitutions equalizing both terms.

3.Definitioni: (Unification) |

For a pair of terms steT and a theory T, the set UX[s=(t]={ee®: 6s=6)} is
called the set of T-undirers of s and t or the solution set of the unresiricted
unification problem <s =:1>. The set of most general/ T-unifiers pUZ[s=,1] is
defined as a base on W:=V(s,t) of UZ[s=1]

We always choose a base pU}..‘[s=Tt] with the additional property:

(%) VesepU’i.‘[s:TL]: Doms=V(s,t) and VCodanV(s,t)=0. .

This property is only technical and it is always fulfilled by an appropriate
pu-set [Huet76, Fage&Huet83]. Some applications require, that the variable
disjointness holds for some superset Z of V(s,t), the set of protected variables,
this property is known as ‘away from Z' in unification theory.

Sometimes one is interested in substituting only into the variables of one side
of an equation in order to solve it; for example, to find out, whether a term is
an instance of another one. This is called matching.

3.Definition2: (Matching)

For s,teT and a theory T let MX[s< t]:={se¥: s=\61} be the set of T- maichers of
the maiching problem <s <. 1>. Its base on W:=V(t), the set of most general
T-matchers, is denoted by pMZ[s<.t]

The technical restriction will be (protected variables should not contain V(s)):
(x) VpepME[s<.t]: DompeV(t) and VCodpn(V()\V(s))=0.



Remark:
A matcher is not a special unifier in general. For example, the substitution
p=(x<f(x)} is a matcher of the problem (x)<;X>, but not a unifier of the

corresponding unification problem (x) =, x>: peMZ[f(x)s,x] but pgUZ[f(x)=;x].
Here @ denotes the empty theory.

Matching is closely related to semi-unification [Huet76], where the domain of
a unifier is not allowed to contain the variables of one of the two terms. This
kinship is particularly close for equations, where both sides have disjoint
variable sets - especially if one side contains no variables (see
3.Proposition4(iii)). In several applications it is necessary to generalize this
concept by restricting the domain of the unifiers to arbitrary subsets V of the
variables of the unification problem [Szabo82]. We call this V-restricted
unification. This is somewhat similar as if we regard the blocked variables of
the problem as constants, a view often proposed in applications. However, this
amounts to changes of the signature, which is not convenient and - as our
definition shows - not necessary from a theoretical point of view. Moreover,
such an extension of the signature might destroy the decidability of the
solution problem of T-unification (see appendix).

3.Definition3: (Restricted unification)

For a V-restricted unification problem <s =, 1 , V> with VeV(s1) the set

UZly[s=t]li={oe&]: o5-1o1}-{6ck: 6s-8t, DomecV) is the V-resiricted solution
sel, also called the set of V-restricted T- unifiers of steT. The corresponding
base on W:=V(s,t) is denoted by pUZIv[s=Tt], its elements are the most genera/
V-restricted T-unifiers of s and 1. As a special case of V-restriction the
problem <s =_1, V(U\V(s)> is called a sem/s-unification problem.

Again we require some Lechnical property of the chosen p-sets:

(x) Voe PUZ| [s=;t]: Dome=V and VCodenV=-g@.

As for unification problems this property might be ‘away from Z, but for
restricted unification Z must not contain any of the blocked variables.

Remarks:
1. UZ|\[s=;1]+0 is the sofvability problem of V-restricted T-unification and
UZl (s 1190 is just the ward problem of the equational theory T.

2. Every semi-unifier is a matcher, but not conversely (see the above
example).

3. Sometimes semi-unification is called matching and the more general
definition of matching is not used. This seems to be allright for practical
applications, because usually the instance problem will arise only for variable
disjoint terms.



4. Certain theoretical aspects require the use of another instance relation on
the set UZ|,[s=;t] of restricted unifiers, namely

8¢, T[V] = & with DomAnV®=@:e=At[V], where V-V (st).

Notice, that there are two differences to the above relation: the first is, that
only certain substitutivns, not substituting into the blocked variables, are
allowed; and the second is, that instantiation is retricted onto the set V.
However, it is easy to see that both relations are the same on the set of
restricted unifiers: Ve,teUZl[s=;t) 6<,1[V] & et V(st)]

5. Szabo uses still another instance relation in his matching definition, which is
in fact semi-unification: For instantiation only substitutions AeE with
DomAnVCodA=@ are allowed. This differs on the set U'Elv[s-.rt] from our

instance relation, but it will generate the same bases with the technical
requirement (x) of 3.Definition3.

The following proposition shows some relationships between these three
kinds of solving equations, especially that V(st)-restricted unification and
unrestricted unification are essentially the same and that semi-unification and
matching (for variable disjoint terms) are closely related.

J.Proposition4:

(i) For VeWeV(s,t) we have UZ| [s=tlEUZly [s=;t}cUZ[s=1t]

(ii) UZI'(M)[sﬁt] is a complete subset of UZ[s=(l], thus uUZI“s'[)[sﬁt] is a
base of the unrestricted unification problem.

(iii) If V(s)nV(1)=0, then pUZlv(l)\“s)[sﬁ.l] is a complete subset of MEZ[s<,t].

(iv) If V(s)=9, then pUE[s=1] is a base of MZ[s<t] on V(1)=V(s,t).

Note, that (iii) is less trivial than (ii), because of the different variable sets, the
instance relations for the ji-sets are based on.

4 Almoat Collapse Free Theories

We introduce the notion of projection equations and of almost collapse free
theories, where projection equations are essentially the only collapse
equations. We give some useful technical characterization of these theories,
and we show that projections are superfluous in unification theory.

4. Definition]: (prq'ections, almost collapse free)
(1) Equations p(‘ (v,,,...vi....,vn)=Tvi (for some i with 1<isn) with pairwise

different v,,..v cV are called projection equations; in this case p“’cl’n 18

called a propection symbol, projectmng 10 the i-th argument. The set of
projection symbols induced by T is denoted P..

g



(ii) A theory is called a/most collapse free. iff the leading function symbol of
every collapse equation is a projection symbol.

Remarks:

1. The consistency requirement for theories enforces that a projection symbol
can project only to one of its arguments.

2. Every collapse free theory is almost collapse free.

We give an example for an axiomatization of an almost collapse free theory.

4 Example2:
Let T:={f(g(x)) = g(x) , g(x) = x , h(f(x)) = x}. Then all function symbols are
projection symbols, since the equations f(x)=yx, g(x)=x and h(x)=;x can be

deduced. Obviously the theory is almost collapse free.

Almost collapse free theories can be characterized by some useful properties
of terms and substitutions: Every term that is T-equivalent to a variable is
T-equal to a variable, and every substitution that is T-equivalent to a
renaming is T-equal to a renaming (note, that on their domain renamings are
always T-equivalent to the identity).

4lLemma3j:
Let T be a theory. The following three statements are equivalent:
(1) T is almost collapse free.

(ii) VteT: t=pv for some veV = t=,v' for some veV
(iii) VeeE with DomenVCode=@ and VVeV:

e=£ [V] = 6=, [W] for some geRen(W), W:=VnDome.
Proaf: (i) = (ii): Let T be an almost collapse [ree theory. Let t=_v and veV,
then there is some 6eX with'6t=.rv. Either t is a variable, or t has the form
f(t,,...t,) and hence 8f(t,, ...t )=f(6t,,.. bt )=;v. Since T is almost collapse free, f
must be a projection symbol: f(vl,...,vi,...,vn)=.rvi. We can deduce
[(6t,.... Bt,,... Bt )=;Bt,=;v, that is L=, v. By induction on the nesting depth of the
terms we obtain t=_v' for some veV.
(ii) » (iii): Let T have property (ii). Let 6€E, DomenVCode=0 and e=.¢ [V],
then e<.8 [V] and there is a 3¢¥ with: VxeV 6ox=1.x and hence o&x=v_with
some v_eV\V, by property (ii). Thus VyeW:=VaDome: 6Y =V, We define geZ
by Qy:=V, for yeW and gy:=y otherwise. Then geRen(W):

1. CodgeV\V by definition.
II. Dome-W: By the definition of ¢ holds DomeeW. Now let yeW. Assume gy=y.
Then ¥y and hence oy-;y. The consistency of the theory enforces

yeV(esykVCoda or ey=y. Both is impossible, since yeWeDome and

10



DomenVCode=J. Therefore the assumption was wrong and hence yeDomg.

I11. Let gx=qy for x,yeW = V=V, = 6X=8Y = 00X =, D6y = X=1y = X=Y.

By definition &= [W] holds.

(iii) = (i): Let T have property (iii). Let [(t,,... }=;v be any collapse equation.
Let ViV be pairwise different variables, not occurring in the collapse
equation. Then f(v,,.v 2 £(t,,..t )=V (take A=(v et .. v «1 }) Letee £ be
represented by 6:=(vef(v,,..v )}. Then DomenVCode=@ and e=¢ [{v}], since
Aev=v with the above AeZ. Property (iii) implies =9 [{v}], thatis f (v,,...,vn)
is T-equal to a variable. Therefore f is a projection symbol.

We want to show, that these theories are also in some unification theoretical
sense ‘almost’ collapse free: Every almost collapse free theory can be
transformed (by a computable mapping on the terms) into a collapse free
theory, such that the transformed unification problems have essentially the
same bases as the original problems.

Given a theory T with the set P, of its projection symbols. We define a
mapping : T >T, ti> t' recursively by
(i) WveV:v':-vand VoeP c=c
(i) VieR NP, Vi, . teT:(f(t,, . 1))=f(t 1" and

VpeF nPr, Vi ... LeT: (pt,,..t ))i=t) (n21)
and we extend this mapping to substitutions by
(iii) VeeE, xeDome: &'x:<(63).
The images of T and & are denoted T' and E'. Now we apply this mapping to
the axiomatization T and we obtain the axiomatization

T:=((I', r'): (1, r)eT).
Thus this mapping removes all projection symbols and we may regard the
image T' of the term algebra T under this mapping as a term algebra with the
reduced signature F\P,. T" is then an axiomatization of an equational theory
on this reduced term algebra.
The following technical lemma shows more about the relationship between
the axiomatizations T and T', especially that they are equivalent on the
reduced term algebra T', that is, they induce the same equational theory on T".
4.Lemma4:
(1) VieT:1=7t.
(i) VeeE VieT: (6t)=6't.
(iii) V(I', r')eT": I'=pr" (ie. T+ T'), and more general:

Vs e st s 8=t (ie. Th- s+t o Trg'=t).
(iv) VsteT:s-ql > §=pl (ie. Trs=t = T+ =)

B



Proof : (i) and (ii) can easily be derived from the above definition by
structural induction on the terms.
(iii) The first part is an immediale consequence of the definition of T'. The

second parl follows by the closure propertly of the equational theories: =. is

the least £-invariant congruence containing T'. The assertion holds also, if we
consider =;. as £'-invariant congruence on the reduced term algebra T'.

(iv) We use induction on the closure construction of an equational theory.
Let s=.1. Then (s, 1)e€™(T) for some nx1 (by 2 Proposition2).

n=0: (s, 1)eCT)-T = (', )eT" = $=pt.

n-n+1: (s, t)eC™ U(T)=LC(T)).
In order to prove that s'=1..t' holds, we distinguish between the different cases

of generating the pair (s, t) from term pairs in CT) by the five suboperators
defining the operator C.
REFL: obvious
SYM: (t, S)eL™T) = t'=1.8' = g'= .t
TRANS: J3reT with (s, r),(r, 1)eCLNT) = s'xT.r', r':T.t' = s‘=T.t
CON: 3fel | with s=f(s,,...8 ), t=f(t, ..t ), (8,1,)eCNT) (1sicm) » 8;~pt, (1<ism)
Casel: fQPT» s=f(s,’,...8,) and U=f(t,', .t ) =» g'=ot
Case2: [-pWeP_for some j (1<jsm) = $-5 and U=t = §'=p.t
SUBST: JoeE with $-63,, =61, (87, t,)eCHT) > 8)=1.1)= 8=t
Hence by induction s'=_.t.
Note, that this proof aiso holds, il we regard -, as an equational theory on the
term algebra T' over the reduced signature F\P,.

Now wc can show that dciction of all projection symbols in this way will not
affect the bases of the unifier sets of the unification problcms, in other words,
projection symbols are superfiuous in a unification theoretical sense.

With the above notations we obtain:

(i) UZ(s=pt]=le€ek" 6's=.6'1} is a complete subset of UZ[s=1].

(ii) The base pUZ[s'-.t'] of UZ[s'~.t'] is also a base of UZ[s=t].

Proof: (i) Correctness: 6'eUZ'[s'=T.L'] = 6's'=T.6'1' = 6‘s‘=.,15'1‘ (4.Lemma4(ii)+(iii)) =
§'s=,8'1 (4 Lemmad4(i)) > 8'€Ux[s=1].

Completeness: BeUZ[s=,1] > 8=/l > §'s'=(6s)'=.(61) Bt (4. Lemmad(ii)}+(iv)) =
§eUZ[s'=. '] By 4Lemma4(i)}+(ii) we obtain 8x-6x=(Ex)~3x VxeV(st) and
hence 8<.8 [V(s,1)].



(ii) Correctness: pUE|s'=3 1 eUZs'= U leUZ[s=t].

Completeness: We must show that V8eUZ[s=] JeepUz s~ L] 8sTV(st)]
Let BeUZ[s-t] = BeUZ]s-. 1] and 85, 8LV (s.] (by part (i)) = BepUZ =, ]:
8<,61V(s't)] By the definition of p sets Dome™-V(s't) and VCodenV(st)-0
and by 2 Proposition4(ii) we obtain that 6'5.[.6'|.V(_3,t)]. 4 Lemmad(iii) then
implics 8'<,s'LV(s,t)]. Hence 6,61 V(s,t)] by the transitivity of <, [V(s,t)]
Minimality: Let &' U'epUZ]s'-.t] and let 6'< 0LV (s,t)] Then 6'<'[V(s't)], and
with 4Lemma4(iv) 6'< TIV(s't)] By minimality of pUZ(s'=;.t'1 with respect
to <. LV(s't)], we obtain 6'-t". Thus we have shown also minimality with

respect to <, IV(st)].

This theorem is a generalization of a result of [Szabo82]. A collapse equation
of the form f (v)=Tv with reF, is called monadic . Szabo shows that monadic

collapse equations are superfluous in a model theoretic sense: For every
theory T there is a theory T' without monadic collapse equations, but with
essentially the same models as T, that is they are 'definition-equivalent’ (see
also [Taylor79] for a more detailed definition of and some literature about
these notions). It is easy to see that 4Theorem5S holds for
definition-equivalent theories T and T".

Applying 4.Theorem5S to almost collapse free theories we obtain that
unification in almost collapse free theories is the same as unification in
collapse free theories.

4 Corollary6:

For each almost collapse free theory T there is a collapse free Lheory T, such
that T-unification and T -unification are relaled as above, that is (i) and (ii) of
4.Theorem5 hold.

The theory of 4 Example2 is a regular Lheory with monadic collapse equations
and it is definition-equivalent to the Lheory induced by the emply
axiomalization. Thus unification in this theory is Lhe same as synlaclic
unification.

These resulls can be prescribed with the notions of lerm rewriting systems:
The sel of projection equations of a theory can be regarded as a canonical
term rewriling syslem. Then (' denoles just Lhe normal form of a term ( with
respect to this term rewriting system (see [Huet&Oppen80]).



5 Relationhips Between u-Sets

In this section we show the main result: In almost collapse free theories the
most general V-restricted unifiers are most general unrestricted unifiers.
Throughout this section we denote the blocked variables of a V-restricted
unification problem by V&= V(s,t)\V.

First we show, that a solvable unification problem has V-restricted T-unifiers,
iff there are some most general unrestricted unifiers being T-equivalent on
the blocked variables to the identity, in other words, the substitution of the
blocked variables is not essential to solve the problem. We collect these
unifiers in the set

Uy:=leepUZls=(t]: 6=, [V°D),
for s,teT with existing pUZ[s=;t] and for VeV(s ).
Slemmal:
Let s,t e T with existing pUZ[s=Tt] and let V;V(s,t]. Then:

Uv*ﬂ = UZ|V[S=T1]$g.
Proaf:"=" Let 6eUy = e=.£ [V'] = 3Nek: Ao=¢ [V], that is Aew=w VweV°
= (A8)l,v=hev VveV and (Ae)l,w=wsAew VweV® = (As)l,=A6 [V(s1)]. By
eepUZ[s=;1] and with 2.Propositiond we get (Ae)l,s=Aes-Aat-(As)l,t. Hence
(A6l €UZl, [s=;1]
"«" Let peUZl [s=;t] 5 peUZ[s~;t] = JeepUZ[s=;t}: u<.6 [V(st)]. Hence JAeE
with p=2e [V(st)]. Since pw=w VweV® (remember that DompeVj, hence
Aew=pw=w VYweV® and hence e=.& [V°]. This is eeU. '

In almost collapse free theories the elements of U, are T-equal to renamings

(4Lemma3), hence
U, ={oepUz[s=t]: 6=r0, [V€], g €eRen(VC)).
In this case we obtain a base of V-restricted unifiers by composing the
converses of these renamings with the corresponding unifiers, hence the set
U=((g°s)l,: eeU,, 0:q, )
is a base. This means that in almost collapse free theories the most general

unrestricted unifiers differ from the restricted ones by a renaming of the
blocked variables.

5.Theorem2:
Let T be almost collapse free. Let s,teT with existing RUZ[s=t]

Then Uy «@ for V&V(s,t) implies U is a base of UZ| [s=t].



Proof: First we have to show the correctness: U°sUZ| [s=1].

Let (g‘s)lveU". Since & is a T-unifier, hence also 9°6$=1.9°61. Let weVS®, then
Q°sw=9°w=g°w=w (the first equation holds with e=,9 [V°], the second one by
2 Proposition1, and the last one by the definition of 9% Domg°nV*® = &). This
implies (9%)l, =% [V(s,1)], and with 2 Proposition4 we get (g6l s=;(¢°)lyL.
Hence (g6 ), €UZl, [s=;t].

Nex} we show the completeness: VpeUZl [s=;t] veU% p<v [V(st)]

Let peUZ| [s=;t]. As in the second proof part of 5.Lemmal there is some €Uy,
that is e~ [V°], with p<.s [V(s,t)].

With VCodsnDomg=@ and with 2 Proposition] we get e=06=0g“s. Obviously
%<0 [V(s,t)] and as in the correctness part (9°)l,=0°¢ [V(s,t)] Thus
with transitivity of the T-instance relation ps.(¢%)l, [V(s,t)] holds.

Finally we show the minimality of U _
Given (9%lly . (%)l  €U®  with (9%}l <. (96l [V(s,t)]. This implies
Q%<9 [V(st)], ie. Nex: e~ Ag% [V(st)], and hence we obtain
29°s=00 s [V(s,1)]. By e-ge-g0°e: 6~0Ag%6 [V(st)], ie. e<s [V(st)] The
minimality of pUZ[s=;t] implies 6=", and hence (¢%)l,=(0"%')l,.

With the same techniques we can prove that most general V-restricted
unifiers are most general W-restricted unifiers, if VeWeV(s,t): In the above
lemma and theorem we can replace pUZ[s~,t] by pUZ|, [s=t].

The nexi corollary is an immediate consequence of 3.Proposition4(iii). It
shows that the results of the above lemma and the theorem also hold for
matching problems with variable disjoint terms.

Let s,teT with existing pUZ[s=;t]. If V(s)nV(1)=0, then we obtain (with V=V(t)
and V°=V¥(s))

(i) Uys0 & MZ[s<t]+0.

If T is in addition almost collapse free, then:

(ii) Uy+@ = Ut:=((g%)| Yo eeU, ) is a complete subset of M}:[ssTt].

Remarks:
1. In the correctness part of the theorem, we prove (¢°s)l, =9 [V(s)]; this
implies (Q°)l,m.5 [V(s)]. Hence every most general restricted unifier is a

most general unifier and we can abbreviate the above results by the following

notation ( 'cT' means 'subset modulo ET');
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(i) VeWeV(st) = pUZl [s=;tle pUZ), [s=tkepUZ[s=t] (5.Theorem2)

(ii) V(s)nV(t)=0 = pME[s< tle pUZ[s= ] (5.Corollary3(ii)).

2. If T is collapse free, then U, ~{eepUZ[s=;t]: 6=9, [V], g €Ren(V®)}, since being
T-equal to a renaming enforces being identical to a renaming.

Let us demonstrate these results by an example:
ample):

Let T:={fgx - fx)} with f.geF,; the theory is almost collapse free (for ease of
notation we drop the parantheses for unary function symbols and abbreviate

multiple nestings of the same function symbol by exponents: O3:-x,
o+ 1y:=f(f*x) for feP, ). Then consider the terms s:={x and t:=fy.

1. The unification problem <s =; 1> has a base pUZ[s=[t]={6 ,}u{6 - n,m>0n+m}
'with 6nm=={x<—g"vnm , y«-g"‘vnm}, where vnmeV\{x,y} are pairwise different

variables (n,m20 and n+m for n,m>0).
2. For the semi-unification problem <s =41, {y)> we obtain U[y]={60m: m20},

and a base is U=(t: m20} with 1 -(g ‘6o )l ,=(y~g"x), where g_=(xev, )
(m20).

3. The matching problem «<s <¢ L has the same sets U[y} and US, but it has a
base with a single matcher: pME[s<t]={p} with p=r ={y<x)eU’. Every other
element of U is a T-instance of p on V(1)={y} 1 _=pAp [{y}] with A= (3-g"x}
(m21).

This also demonstrates that we cannot get minimality for U® in S.Corollary3.

¥

We give some counterexamples for the above results, if the preconditions are
weakened.

Exampleé6:
If we drop the 'almost collapse free' requirement, the examples (i)-(iii) are
semi-unification problems contradicting both 5.Corollary3 and 5.Theorem2;
that is the most general unrestricted unifiers differ (in general) from the
restricted ones not only by a renaming of the blocked variables.
Note, that the axiomatizalions of Lhese examples jusl represent the three main
possibilities of violating the almost collapse free property with regular
theories.
(i) Te={f(x,x)=1) (idempotence)
Consider the following terms s=x and t=f(y,z) and the substitutions
g:=(xf(uv), yeu , zev) and pi={y«<x , z3). Then eepUZ[s=;t], and pepMZ[s< ],

but pse [V(s1)] with A={uex , vex} and p#.6 [V(st)], ie. the most general

matcher (semi-unifier) is a proper instance of the most general unifier. Note,
that S.Lemma1l holds, since eeU[y 2} However, & i3 not T-equal to a renaming
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on the bolcked variables V©:=(x}.

(ii) T:=(f(1,x) = x} (unit element)

Let s:=x and t:=f(y,z), let o={x4-f(u,v) yeu , z«v} and p=(y«1 , z«x}. Then 6 is a
most general unifier and p a most general matcher. With the substitution
A={ue1 , vex} we have again pss [V(s,t)], but ps.s.

(iii) T:={f(g(x)) = x}.

Let s:=x and t:=f(y). Let &:={xf(u) , y~u} and p:={y<g(x)). Analogous to the
former examples ps.s [V(st)] with A-{u-g(x)) and pw.s. Again & is a most
general unifier and y a most general matcher.

3.Example7:

This example shows, that 5.Corollary3 does not hold for arbitrary matching
problems, that is, if we drop the variable disjointness requirement. There may
exist more most general matchers than most general unifiers and in addition
the latter may be proper instances of the former, if the terms have common
variables. Note that the theory is collapse free.

T:={f(x.y) = f(y.x)} (commutativity)
With the terms s:=f(g(x).y) and u:=f(x.z) and with the substitutions
6:=(xe-U , yeu , zeg(u)), p,=={1g(X) , 20y} and p,=(xey , z+g(1)} we obiain:
oepUE[s~.t] and p, pepME[ss 1] and o3, [V(s,t)] with A=(x~u , y+u), but not
conversely. On the other hand 6 and p, are not comparable in <, and & is the
only most general unifier. Note, that the corresponding semi-unification
problem s = 1, V(t1)\V(s)> has no solution.

6 Consequences and Applications

Depending on the cardinality of the p-sets we classify the unification
problems .and the theories. This is known as wnification hierarchy
[Siekmann84].

6.Definjtion1:

(i) A solvable unification problem is called nu//ary, iff the p-set does not
exist (the cardinality is null). It is called wastary/finiary/infinitary , if the
p-set exists and its cardinalily is one/finite/infinite.

(ii) A theory is wnitary/finitary unifying, ifl every solvable unification
problem is unitary/finitary. Il is called nullary/infinitary unifying, iff at least
one solvable unification problem is nullary/infinitary.

Analogously we define this for matching and restricted unification.

The following theorem describes the relationship between the hierarchy
classes of restricted and unrestricted unification problems.
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S.Iheorem2:

Let T be an almost collapse free theory.

(i) If T is nullary restricted unifying, then T is nullary unifying.

If in addition the p-set exists for each problem (that is T is not nullary), then
we have the following hierarchy results:

(ii) If T is unitary/finitary unifying, then T is unitary/finitary restrlcted
unifying.

(i) If T is infinitary restricted unifying, then T is infinitary unifying.

Proaf: (i) If T is not nullary unifying, every base exists and by 5.Theorem?2
the bases of the restricted unification problems exist also.

(ii)+(iii) The bases of the restricted unification problems are subsets of the
bases of the unrestricted unification problems modulo T-equivalence

(5.Theorem?2 and remarks in sectionS) and hence they have less or equal
cardinalities.

Since semi-unification is a special case of restricted unification, we at once
have the corresponding hierarchy results for semi-unification:

6.Corollary3:

Let T be an almost collapse free theory.

(i) If T is nullary semi-unifying, then T is nullary unifying.

If in addition all p-sets exist, then:

(ii) If T is unitary/finitary unifying, then T is unitary/finitary semi-unifying.
(iii) If T is infinitary semi-unifying, then T is infinitary unifying.

Remacks:
1. The converses of the implications in 6.Corollary3 do not hold in general.
Szabo gives an infinitary unifying, but unitary semi-unifying theory
[Szabo82].
2. In 6. Theorem2 we of course have equivalence, since by 3. Proposntxoml(u)
unification is a special form of restricted unification.
3. The results for semi-unification are covered by some results in [Szabo82].

- Every unitary unifying theory is unitary semi-unifying.

- Every nullary semi-unifying theory is nullary unifying.
Here the theories need not to be almost collapse free! However, Szabo's proof
of the nullary case is incomplete, and moreover it i3 based upon the idea of
replacing the blocked variables by ground terms, which is not possible in
general (see S. below and the appendix example).
4. We cannot get the nullary hierarchy result for matching, since we obtain
only completeness of the matcher sets constructed by our method. But of
course we have the other results provided all the bases exist:

- If T is unitary/finitary unifying, then every T-matching problem for

variable disjoint terms is unitary/finitary.
- If there is an infinitary T-matching problem with variable disjoint terms,
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then T is infinitary unifying.
Remember, that semi-unification is needed in applications instead of the
general matching definition, so the results of 6.Corollary3 are sufficient.
S. Occasionally there has been the suggestion in the literature to simply
replace the blocked variables by some ground terms in order to prove such
hierarchy results. That this does not work in general is demonstrated by the
following example (which was an important motivation for this paper):
Let ¢ be the only constant, let f,g,h be unary functions, and let us assume,
that there are no further functions at all. We again drop the parantheses.
Let the theory be defined by
T:=(gfx =gx ,fc=c,gc=c, hc=c}
and consider the following variable disjoint terms:
s:=ghy and t:=gx.
Then the semi-unification problem <« =, 1, {x}> has an infinite base
RUZ] [s=;t)={6 : 120} with & =(x<f"hy) (n20),
that is, it is an infinitary problem, and hence the theory will be infinitary
semi-unifying.
In order to show with the above idea that T is also infinitary unifying, we
have to replace the variable of s by a ground term to get an infinitary
unification problem. But with the only existing ground substitution y={yec}
(all ground terms are T-equal to c) we get:
RUZ[ys=1t]spUZ[ghc=;gx]={{xec}).
Hence the corresponding unification problem is unitary. However, the
theory is of course infinitary unifying by 6.Theorem?2(iii) (T is collapse

free). An infinitary unification problem will be given by original terms s
and t.

From the main theorem of the last section we can infer an algorithm to
compute most general restricted unifiers from most general unifiers. This
implies, that for every almost collapse free theory with an existing minimal
unification algorithm (that is an algorithm computing a base for every
solvable unification problem) there is also a minimal restricted unification
algorithm.

Unifier_to_Restricted_Unifier

lnpyt: - a(finite) base of unifiers of a unification problem <s =15

- a subset V of the variables of s and t
Qutput: - a base of V-restricted unifiers of the problem <s =_t, V>, if this

problem is solvable
- FAILURE, if the problem is not solvable
- If there is no most general unifier with a V-renaming part,
then return FAILURE.



- Else for each most general unifier with a V-renaming part do:

remove the V-renaming part

apply the converse of the V-renaming to the codomain of the rest.
- Return all changed unifiers.

This algorithm is particularily useful for clause graph theorem proving
procedures [Kowalski75] like the MKRP-system [Raph84] at Kaiserslautern:
In clause graph procedures the clause sets are transformed into graphs with
- nodes labelled with the literals of the clauses
- arcs between nodes labelled by unifiable literals (with opposite sign) of
different clauses ( resofution links)
- arcs between unifiable literals (with same sign) of different clauses
(subsumption links)
The resolution links are labelled by pUZ-sets and characterize resolution
possibilities. The subsumption links support the application of the
subsumption rule [Loveland78]: If there are two clauses CD and a substitution
p with uCs D, then the clause D can be removed. This can be extended to
clause graphs using the above subsumption links [Eisinger81]. Therefore these
links should be labelled by semi-unification bases, but since the direction of
the semi-unification problem is not known in advance, the links are also
labelled by pUZ-sets and the semi-unification bases are computed
dynamically by the above algorithm.

7 Conclusjons

We have seen that for almost collapse free theories the most general
restricted unifiers can be computed from a set of most general unrestricted
unifiers. An open question is, whether this can be done in the general case. By
5.Lemmal we can decide the restricted unification problem, if the minimal
solution set of the unrestricted unification problem exists and is finite (if the
unificalion problem is inlinitary, we oblain al least a semi-decision procedure
for the restricted problem). The prool of this lemma gives some hints for
compuling restricted unifiers [rom those most general unifiers that are
equivalent to the identily on the blocked variables: we have to instantiate
them and restrict the instances on Lhe unblocked variables. Finding out the
appropriale instantiations - for almost collapse [ree Lheories, these are the
renamings - might also lead o a mimimal solution set. Solving this problem
then would also yield Lhe slill missing hierarchy resuils for theories with
arbitrary collapse equations.

Our result on the unification theoretical relationship between almost collapse
free and collapse free theories (4.Corollary6) affects also the problem of
combining unification algorithms of theories with disjoint function sets
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[Yelick8S, Tiden85, Herold86]. This is still only solved for collapse free
theories and our result yields, that the collapse free requirement can be
weakened by admitting projection equations.
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Appendix

We want to consider unification under distributivity and associativity and
some extension to obtain an interesting undecidability result.

Let + and x be binary function symbols written in infix notation: F,={+x}. Let
us assume that there also is at least one constant symbol: I =(c}. Then our

signature is I'-F' UF",  We define the distributivity laws and the associativity
law to be:

DI :={ xx(y+z) = (xxy)+(xxZ) } (left distributivity)
Dr:={ (x+y)xz = (xxz)+(yxz) } (right distributivity)
A =(x+(y+z) = (x+y)+2 )} (associativity)

The solvability problem of unification of F'-terms in the theory DA:=DluDruA
of distributivity and associativity is known to be undecidable [Szabo82].

Now given another signature F-F uF, with P -(a) and F,-({[g}), i.e. we have

one constant and two ternary function symbols, we define some
generalizations of the left and right distributivity and of the associativity
axioms for binary function symbols to ternary function symbols:

D13 := { f(g(x.y.,v).zv) = g(f(x,zv)I(y,2v) V) }

Dr3:= {f(x.8(y.zv)v) = g(f(x,y v)f(x,2V) V) }

A3 = {g(g(xyVv)zv) = g(xgly.zv)v) )
Then we consider the collapse free theory T := D13uDr3uvA3uTa with

Ta:={f(xy.a)=a, f(xyfluvw)) =a, f(zygluvw)) -a,

g(xya)=a,glxyfluvw)) =a glxygluvw))=a}

In this theory every term starting with a ternary function symbol (a compler
term) is T-equal to the constant a, if its third top argument is a non-variable.
Every T-unification problem constructed with the signature F is solvable: We
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substitute all variables of the probiem by the constant a. Then both terms
will become T-equal to the constant a by the subtheory Ta. Hence unification
under this theory is decidable within the given signature.

But, if we introduce a new free constant b, unification in this theory will
become undecidable. We can reduce a subset of the unification problems to
the unfication under distributivity and associativity of binary function
symbols introduced above. Therefore we consider a subset Tb of the term

algebra T( Fu{b) V) with the extended signature Fu(b}):

(i) abeT,and VeT,

(ii)  t,teT, =01t b)g(t, t,blT,.
That is, T, is the subset of Fu{b})-terms, where the third argument of every
complex term is only allowed to be the constant b. Every T-unification
problem «<s b built up by those terms is solvable, iff the DA-unification
problem <8 =, 1> is solvable. Here we obtain s’ and ' from s and t by the
following mapping:

(i) amcbrcandvevVveV

(i) f(t,1,b) b txt,, gL 1, 0) bt +t, Vi, €T,
Thus in this theory unification will become undecidable, if we introduce new
constants.

An analogous reduction will demonstrate that restricted unification is not
necessarily decidable, when unrestricted unification is. Take again the above
theory T and the signature F. As we have seen, unification is decidable.
However considering restricted unification problems < =,t, V(st)\{x),

where the variable x occurs at the third argument of each complex term, we
get an undecidable set of problems.
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