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Abstracy,

Unification in free idempotent semigroups is of unification type zero, i.e. there are unifiable terms s,t but there is no
minimal, complete set of unifiers for these two terms. Unification in [ree idempotent semigroups is strongly complete,
i.c. the unilication problem <x =y > is always solvable with unificr (x < 1}, even if x occurs in L.

We give a generalization of the usual unification hicrarchy and demonstrate that the number of independent unificrs
in A+l-unificr sets is not bounded.

It is known that there is a conditional, canonical term rewriting system for idempotent semigroups. To sirengthen
this result, we show that there can be no unconditioned and finite rewriting system.
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1. Introduction

Unification theory is concerned with the problem to find solutions for an equation <s = (>, where s and t arc terms.
Solutions of <s = t> are substitutions ¢ with ¢s = ot. The substitution o is called a unifier for s and t.

An extension of this problem is the following: Given a set of equations T we say two terms t1 and ty are equal w.r.L.
T, denoted as t] =g Ly, iff 1 = t logically follows from T. A T-unification problem <s = t> is the problem 1o find
solutions ¢ such that os =1 ot.

The set of all unifying substitutions (i.e. of all solutions) of <s = t>r is denoted as UZ(s,t). In many cases, the set
of all solutions UZy(s,1) can be generated from a minimal subsct of solutions, the sct of most general unifiers
RUZp(s,1), which is defined as follows:

We say the substitution o is more general than ton the set of variables W (T <, o |W 1) T there exists a substitution A
such that tx = Aox for all x ¢ W. Nolc that the set UZ(s,1) is ordered by the quasi ordering < | V(s.0].

‘The set WU p(s,1) is characterized by three conditions:

1) correeiness: WUZ p(s,0) &< UXq(s,1)
it) completeness: VO e UXp(s,L) Joe pUZ(s,l) 6<p0 (W] where W = V(s.1)
i) minimality: Vo,1e PUZp(s,) 0 <1 [W] = o=1. where W = V(s.t)

Unification theory classifies equational theories by the cardinality of the set pUZp(s,t)
i) A thcory T is unitary, iff pUX(s,t) always exists and has at most onc element.
iy A theory T is finitary, iff fUZ(s,t) always exists and is finite.

ili) A theory T is infinitary, iff nUX(s,t) always exists and there exists a pair of
terms 8.t such that pUZ(s,t) is infinite.
iv) A theory T is nullary, iff WUZ(s,t) docs not exist for some terms s and 1.

I 185782,Si84 | unification theories of type nullary are not subclassified.
In order 1o give a finer classification of equational theories (including theories ol type nallary) by the maxamal width of

the sets UXq(s,t) we introduce some notions 1o handle enumerable, quasi ordered sets.

Let U be a set ordered by the quasi ordering < . (we are interested in the case U = UZ(s,t) and < is Ihe quasi-ordering
< [V(s01)

Let ~ be the equivalence relation corresponding to <,i.e.a~ biffa<b and b < a. We say a subset V of U is
compldte , iff Yue U3ve V:u<v. Anelement u is maximal in U, iff Vve Viu<v=u~ v.The set of all
maximal clements of U is denoted as max(U). u(U) denotes a set of ~-representatives of max(U).

A subset V of U is minimal, iff Yu,ve Viusv=ou=v.

We have: If max(U) is complele, then p(U) 1s a complete and minimal subset of U.

We define 0(U) as the "nullary” part of U: n(U) := (ue Ul Vv e p(U) :u { v}. Le. n(U) is the set of all clements
of U (hat are not smaller than a maximal clement. Obviously the sct n(U) docs nol contain maximal clements.

A subset B of U is called independent, iff for all by,by € B with by # by there does not exist a common u ¢ U with
by <uand by <u. A subsct B is called maximal independent, if every set C with B ¢ C < U is dependent.

An casy application of the Zorm s Lemma shows that every independent set is contained in a maximal independent sct.
Note that for countable sets, Zorn’s Lemma can be proved from the other axioms of set theory.

Let Nog := N U {eo}.
We can measure quasi-ordered sets in the following way :



The width of U (width(U) ) is a pair (a,b) € N, x N, where:
1) a is the cardinality of a set p(U).
ii) b is the maximal cardinality of a (maximal) independent subset of n(U). m

In the appendix it is shown that it is not possible that every independent subset of U is finite but the maximal
cardinality of independent subsets has no upper bound.

In the following we usc the sct Nw‘m =N U {0} with ordering n < @ < e where @ denoles as usual the
supremum of all natural numbers. Pairs are ordered with respect to the product ordering: (a,b) < (c,d), iff a <c¢ and
b <d. The set Nw’oo is well-ordered. We define the supremum of a set M in Nm,<>o x Nm,oo as follows:

Construct the closure M* of M:

) M*2oM

ii) for every ascending chain (a;,b;) in M* add the element (sup(a;), sup(b;)) to M*

Now we define sup(M) := max(M*).

For example if M = {(4,2),(3,5),(2.5).(2,6),...,(2,i),...}, then sup(M) = ((4,2),(3,5),(2,w)}.
We extend the usual classilication of unification (o theorics of Lype nullary:

.1 Definition, Let T be an cquational theory. The ynjfication type of T is a sct of pairs delined as follows:

type(T) := sup{width(UXy(s,0)) I s,t € T}.

Le. type(T) is a set of pairs that describes the maximal possible widths of scts UZp(s,1).
The maximal unification type is a single pair (my,m5) , where
mj :=sup (al(a,b) e type(T)) andmy :=sup (bl (ab)e type( T)}.

For example if the set {width(UZp(s,1)) Is,t e T} =M = {(4,2),(3,5).(2,5),(2,6),...,(2,1),...}, then the type of T is
sup(M) = {(4,2),(3,5),(2,)} and the maximal unification type of T is (4,w).

This classification is a generalization of the usual one: A unitary theory has type {(1,0)} and maximal unification type
(1,0). Finitary theories have maximal unification type (n,0) or (®©,0) and infinitary theories have maximal unification
type (==,0). Theories of type nullary have a maximal unification type with nonzero second argument.

Invthe appendix it is shown that for a countable quasi-ordered set U with width(U) = (0,1). (i.e. the sct U has no
maximal elements and the maximal cardinality of an independent subset is 1) there exists one increasing chain C of
elements of U such that C is complete in U. Similarily, if the width is a finite number n, then n chains are sufficient to
construct a complete subset.

In the case width(UZ(s,t)) = (O,n) it is never necessary in a theorem prover to consider more than n unificrs for this
problem in parallel, since in this case for every set of unifiers of s,t with more than n elecments there exists a sct of
more general unifiers with at most n unifiers.

2 Idempotent Semigroups.

The equational theory A+I is generated by the two axioms:
Ar f(f(x, y), 2) = f(x, £(y, 2))
I f(x,x) = x



These two equations define free idempotent semigroups (bands). It is a known fact, that finitely generated bands only
have a finitc number of clements [Ho76]. An immediate consequence is that A+l is finitary matching, i.c. a correct,
complelc and minimal subset ol the set MZAj(s.) = {alos =p1t and DOM(0) m V(1) = @} s tinile for all terms
and 1, since there is only a finite number of substitutions with a lixed domain and with lixed symbols in the codomain,
Furthermore it is decidable, whether two terms are A+T-uniliable [Sz82]. A+l-unificalion is of type nullary
|Sch86,Ba86] in the usual sensc.

2.1 Basic Notions

We use the standard notation of unification-theory [Si84], the main notions are listed below. For convenience,
associative terms are denoted as strings.

s=1 the terms s and t are symbolwise equal.

S=ATt the terms are equal under the theory A+I, i.e. s and t are congruent
w.r.t. the congruence relation generated by A and L.

O=a1T[W] ox =71 T for all variables in the set W.

O SATTIW] There cxists a substitution A with 6 =1 At [W].

oW the restriction of 6 to the set W, i.c. opyx is ox for x & W and the identity otherwise.

V(0) the set of variables occurring in the object o.

DOM(o) the domain of o, i.e. the set {xl ox # x}

COD(o) the codomain of o, i.e. {ox | ox # x}

VCOD(o) V(COD(o))

Sy(0) the set of symbols occurring in the object o.

C(o) the set of constants occurring in the object o.

C#(0) the number of constant occurrences in the object o.

sl denotes the A+I-normalform of s, which exists (see below).

We assume that the reader is familiar with rewrite rules on terms (cf. [HO807).

The following two conditional rewrite rules form a terminating, confluent rewriting system for idempotent
semigroups (see [SS83,5z82]), hence a unique normal form sl exists for every term s.

Let x be a variable and let s,1,u be A+I-terms.

Rule 1) XX > X
Rule 2) stu > su , provided Sy(s) = Sy(u) and Sy(u) 2 Sy(L)

Note that it suffices to use the simpler rule 2" :

2') stu — su , provided Sy(s) = Sy(u) and t is a symbol with t € Sy(u).
The following lemmata that are either well-known (cf. [Ho76]) or obvious are helpful in later proofs:
2.1.1 Lemma [Ho76] Let a and b be symbols, let s,t be terms

) sa=sppth =

i) as=p;bt =
Proof, [Ho76] .



2121emma, Letst be terms withs=4yt. Then
) C() C (sl) iy Sy(s) =Sysl)
i) CH#(s) > C#(sd) ivy C(s) =C(
v) Sy(s) = Sy®

Proof. Obvious.

We say a substilution A is conslant-free on W, iff V x € W: CH#(Ax) =0

2.1.3 Lemma Let s,t be terms and let A be a substitution that is constant-free on V(s,t).
i) Then C#(s) > CH(As)L). '
i) If tisin normal form and C#(s) < C#(1) then As #Ag t.

Proof, Obvious.

2.1.4 Lemma, [Ho76] Let a be a symbol and let sjasy =ay tyaty . Then:
i)ae Sy(spand aeSy(t)) = sp=a1ly.

ii)ae Sy(sp)and a & Sy(ly) = sy =p1l.

Proof, [Ho76] . =

For a string t we say p is the {ul] prefix of t provided p is the shortest prefix of t with Sy(p) =Sy(1);'s is the full suffix
of til s is the shortest suffix of t with Sy(s) =Sy(1)

2 LS Ly, [Ho76] Let st be terms and pg.py.qg.g be the Tull prefixes and full suffixes of s and t, respectively.
Then:
S=AIl < Ps=A1Pp andqg = Ay q-®

We show that t can be reduced to its normalform t{ in the following way: First reduce t to its normalform t; with
respect to rule 2' by checking applicability of rule 2' from left to right and then reduce t; to its normalform ty with
respect to rule 1.

The next proposition shows that the deletion of symbols by rule 2' can be made in parallel. Furthermore it shows that
it is sufficient to check every symbol from left to right .

2.1.6 Proposition, The set of symbols in a string t that are deletable with rule 2' does not change after application of

rule 2'.

Proof, Let b and ¢ be symbols in the string s.

1) If b,c are deletable by rule 2', then ¢ remains deletable by rule 2' after deleting b:
Assume by contradiction that ¢ is not deletable by rule 2' after deletion of b.
Then we have the case s = s1bspcsy . syand s3 are not empty and b i$ not contained in $5. Since b and ¢ are
delctable by rule 2" there exist substrings of s of the following form: upbwy, with Sy(uy,) = Sy(wy,) and ucw,,
with Sy(u.) = Sy(w,). Since b is not contained in 85, wy, overlaps ¢ and we can split wy in the right and left
part wp, = W, 1CW . NOW we can construct new strings up and wy, that show that ¢ is deletable by rule 2"
Let uj, be the string that contains exactly Up Wh | and u;', where u;' is u after deleting the symbol b. Let wy,
be the string containing exactly wy,  and we.
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We show: Sy(up) U Sy(wb',]) U Sy(u.) = Sy(wb,r) USy(w,.):
"' Sy(wp ) < Sy(ug) = Sy(we).
Sy(uc) < Sy(ug) = Sy(we).
Sy(up) < Sy(wy, ) W(c}USy(wy 1) < Sy(ue) USy(we)USy(wy, )
< Sy(wp, ) USy(we).
"2 Sy(we) < Sy(uc) w{b} = Sy(uc) v Sy(uy)
Sy(wp ) < Sy(up). O
it)I1 b is deletable by rule 2' and c is not deletable then ¢ remains undeletable by rule 2' after deleting b:
Assume by contradiction that ¢ is deletable by rule 2' after deletion of b.
Then we have the case s = s bs)cs3 . sjand s3 are not empty and b is not contained in sy. Since b is deletable
by rule 2' there exists a substring of s of the form upbwy with Sy(u},) = Sy(wyp,). Since ¢ is deletable by
rule 2'in s' ;= s\b, there exist substrings of s' of the form u.cw, with Sy(u.) = Sy(w,.). Note that u, covers
$o. Since b is not contained in sy, wy, overlaps ¢ and we can split wy, in the right and left part
Wh = Wp [CWp - Now we can construct new strings u,, and wy, thal show that ¢ is deletablc by rule 2" in the
string s: Let u, be the string that contains cxactly up Wp 1, band ue. Let wy be the string containing exactly
Whr and w..
We show: Sy(up,) uSy(wb‘])uSy(uC)u[b} = S-V(Wb,r) WSY(w):
"<t Sy(wp ) ©Sy(ue) = Sy(we).
Sy(u.) = Sy(w).
Sy(up) < Sy(wy, ) W{chuSy(wy 1) < Sy(ug) USy(w)USy(wy )
< Sy(wp,r) WSy(w).

ce Sy(w.)
"2" Sy(wg) < Sy(ug)
. Sy(wp ) € Sy(up). =
2,1.7 Proposition. Let t be a term that is not reducible by rule 2. Let t' be obtained by a reduction using rulel.

Then t' is not reducable with rule 2.
Proofl, 1t suffices 1o show this for a one-step reduction.
Lett=1ylotpty beaterm, which is not reducible by rule 2.
Assumc there is an element ¢ in ' = 1}yl thatis reducible by rulc 2'.
Ifeisint, or Ly, then e is reducible by rule 2 in t. Hence e is int,.
Let w, be the word on the left side and w, be the word on the right side with e ew, , e e w, and Sy(w)) = Sy(w).
If one of them is a substring of t, then ¢ is reducible in t. Hence they are not substrings of t,. This means
t, & wiuw, = Sy(w,). So e is reducible withRule 2int. =

Using these observations the reduction algorithm based on rule 1 and rule 2 can be improved: First apply rule 2' to
every element in the string to be reduced. Then apply rule 1 in all possible ways until the term is not lurther reducible.



2.2. A+lisof Type Nullary

We assume that thiere is one free constant a in the signalture.
Consider the unilication problem <zaxaz =y zaz> , where X,z arc variables and a is 4 constant. [n the following we

fix the unifier © 1= {x ¢« zjazp; z « zyZy } of zaxaz and zaz, where the z; are variables.

22,1 Lemma For all 6 € UZ(zaxaz, zaz) with 6 Spy0 [x,z]:

i) oz consists only of variables.
i) C(ox) = (a}.
i) The last element of 6X is a variable

iv) V(ox) c V(oz).

Proof, Let o € UZpj(zaxaz, zaz) and let A € T with 0 =7 A0 [x,7].
07 = 7129 and oz is more general than hz, hence 1) holds. iv) holds since (o7)al(ax)a(07) = 5| (02)a(07).
The substitution A is constant-frec on V(ox) ¢ V(oz) and Aox = 7jaz9, hence C(ox) = {a} and it) holds.
The last element of ox is a variable since ox is more general than 72z, ®

222 Lemmg Forall 0 e UZpj(zaxaz, zaz) with 8 <510 [x,z] there exisls a 6" € UZ 5 [(zaxaz, zaz) with 0 <y
o' [x,z] and 0" 3706 [x,2].
Proof.; Without loss of generality we can assume that ox is in normalform.
Lemma 2.2.1 iv) shows that V(ox) < V(oz). We define a unifier ¢’ that is more general than ¢ as follows:
o'x := (ox)au, 0'z = (oz)u(oz), where u is a new variable. ¢'x is in normalform, since ox is in normalform.
1) o' is a unifier of zaxaz and zaz:
(oz)u(oz)a(ox)aua(oz)u(oz) =1 (0z)u(oz)a(oz)u(oz) since V(ox) < V(oz)
PAKe] SAIO" [x,z]:
Let ox = s)asy, where s; is a noncmpty siring of variables and sy is a nonempty string.
We have o =57 1o’ [x,z] for b= (u « sz}, since (07)s7(07) =51 07 by rule 2 and (ox) asy =A[ OX .
3)0 $A10 %21
Assume there cxists a substitution gt with 6" =,; Lo [x,z| . Then s constant-free on all variables in V(az).
By Lemima 2.1.3 we have Uox #41 g'x, since o'x is in normallorm and C#( o'x) = C#(ox)+ 1. m

Using Lemma 2.2.2 we can construct for every unifier ¢ of zaxaz and zaz that is more general than 0 another unifier
o' that is more general than ¢, hence we have shown:

2.2.3 Theorem, WUZ p1(zaxaz, zaz) does not exist.

This immediately implies:
2.2.4 Corollary: The equational theory A+l (idempotent semigroups) is of type nullary.

In [Ba86] it is shown that there arc unifiers in UZ 5 (zxz, zyz) that are not instances of a most general unilicr.



23, A+l _is stronely comple

The equational theory A+l is an example for strongly complele theories [Ki8S|, thar is theories in whicl the unilication
problem <x = t> with x € V(1) is either not solvable or solvable with a unilicr o with DOM(o) = (x}.

2,3.1 Proposition. The unification problem <x = > has the most general unifier o = {x ¢ t}.
Le. pUZA71(x,1) exists and is a singleton for all possibilities of x and t.
Proof, It is well-known that in the case x ¢ V(t) the most general unifier is {x < t}.
In the case x € V(t) the most general unifier is 0 = (x «t}:
1) ¢ is a unifier:
Let t = s1xspxs3 , where x does not occur in $y and s3.
Then ot=s;1(08y) 153
sjt(osp)tsy=p1UOsH)t since t starts with s and stops with $3
H(osp) =1L since Sy (1) 2 Sy (059 ).
ii) o is most general:
Let 0 be a unifier of x and t.
We show 8=210 0 [V(x,0)]: 00 x =8t =4;0x and 60y = Oy for variables y # x. m

As a nontrivial example for unification in idempotent semigroups we analyze the structure of the sct of unifiers of the
unification problem <xa = A1 ya> where a is a constant and show that this problem has 6 mgu's.

23.2Lemma, 0 ==(x ¢ 2,y <z} 1s a most gencral unifier of <xa =y ya>
Proof, Lel ¢ be a unifier of xa and ya that is more general than {x « z,y « z}. Then ox and oy are strings of
variables. Lemma 2.1.4 shows that 6x =y Cy. &

233 Lemma 09:= (X < za,y <z} and 03 := {X ¢z, y « za} are most general unifiers of <xa =ATYA>
Proof, It suffices to show that {x < za, y < z} is most general.
Let o be a unifier of xa and ya that is more general than {x ¢ za, y <-z}. Then oy is a string of variables and
the rightmost symbol of ox is the constant a. We have 6 =py {z < Oy}-(x ¢ za,y « z} [x,y]:
{z e 0y)e(x¢za,y z)x =p1(Oy)a=p1 (OX)a= A1 OX .
{7z ¢~0y)e(x¢za,ye zly=0y. =
The above lemmas show:
2.3.4 Lemma. Every unificr o of xa and ya that is not an instance of 61, 07, 63 has the following properties:
1) OX#A[OY.
ii) the last symbol of ox and oy is not the constant a.
iii) The constant a is either contained in ox or oy, m

2.3.5 Lemma, Lets,t beirreducible strings that start and stop with variables and let a be a symbol with a ¢ Sy(s) and
a € Sy(t). Furthermore let sa =4 ta.
Then t=tjat, with a € Sy(t)) and a & Sy(l,).
Proof, Assume for contradiction that the lemma is false. Then t = t;atya... at, with a ¢ Sy(t;) and n > 3.
We can assume that the sum of the lengths of s and t is minimal.
Obviously we have s =5 t; and Sy(s) 2 Sy(t;) . Let u; be the first variable of s and t. Let s=u;s"and t =u;t"
1) u; occurs in s' or "
Otherwise it is s'a =51 t'a. If the first element of s' is a variable, then §', t' is a smaller pair than s,t which is a
contradiction, The other case is s = u; and t = ujauy, which is a contradiction, t0o. ©



Let s;,4y be the full prefices of s and t, respectively and let s;,t; be the full suffices of s and t , respectively.

2) L covers La... at;:
Otherwise t is reducible by rule 2, since Sy(tya) = Sy(t) =Sy(t,).

3) L covers atya... at;;
Ift,=tya... at , then ta is a full suffix of ta. Since s a is a full suffix of sa, we have ta =,ysa.
Minimality of s,t implies t. = tyat;. Hence tyatya =51 8,4, hence t, =4y ;. Multiplying t;a from left we obtain:
tja =5y ljakatya =,  1yalya . But then t contains the reducible substring tat,a, a contradiction. O

4) Final contradiction:
We have proved that t. = t,'at,a...at,. Since ta is a full suffix of ta and s a is a full suffix of sa, we have
ta=,;s.a From 1) it follows that t #tors #s. Hencen=2. m

23.6 Lemma. Every unifier o of xa and ya that is not an instance of ¢, 09, 03 is an instance of
04 = (X & 2129,y ¢ Z129aZy) OF Og := (X ¢~ z)29az) , y ¢ 21Zp} OF
Og == {(x « 2129 1324 204 Z32) Z374 1) , Y €= 2129 I324 A 742) 1324 Z2}

Proof, Assume by contradiction that there exists a unificr o of xa and ya that is not an instance of a o
fori=1,...,6. We can assumc thal the sum of the lengths of the strings 6x and oy is minimal.
Furthecrmore we can assume that ox and oy arc in normallorm, We use as abbreviation ox = s and oy = 1,

1) s and t contain occurrences of a:
It follows from Lemmas 2.3.4 that one of them contains an occurrence of a.
Assume t contains an occurrence of a and s is a-free. Then by Lemma 2.3.5 t = t;at,.
Now g is an instance of 04: 0 =57 (2] =8, 2, ¢ )04 [x,y]. Note that {1, =51 t;. D

2) We can assume that the first symbol of s and t is a variable.
Otherwise we can replace the a at the start by a new variable and obtain a more general unifier with the same
number of symbols.
Let uy be the first variable of s and t. Let s =u;s' and t =u,t'
3) uy occurs in s' or ("
Assume 8" and ' do not contain uy. Then s'a =4 t'a. Let 6" = {x ¢=§', y «— t'} be the corresponding unificr
of xa and ya. Since g is minimal, ¢'is an instance of some @;. The structure ol the o; implics thal o is also an
instance ol the same ¢;. O
Let s, t; be the full prefices of s and 1, respectively and let s a, ta be the full sulfices of sa and ta, respectively.
o' = {x ¢ s,y ¢t} is a unifier of xa and ya that is an instance of some o;. Hence we have
o' =51 Aoj [x,y] for some A. Lets/':=s,s and 1" =t be the full suffices of s and t, respectively.
4) Either s  or t is a-free.
If both contain an occurrence of a, then ¢ =4 X'cj [x,y] with A'zy =5 Az,.
N'Gj X =818 =A1815115; = a1 S since Sy(s)) = Sy(s).
NOjy = sty =a1Ytt = ar L since Sy(t) = Sy(t). o
Assume that s, is a-free.
5) 1, is a-free:
If t, contains an a, then 0 =, X'cj [x.y] with A'zy := 5|5, Az;.
Aoy x = 88,18, =a1 8 and MGy =815l =4Syl =art L =a1
since Sy(1) = Sy(1). o
6) Final contradiction.
s, and t_ arc both a-free. Then itis s, =4 L.
Let s, = as; s, and ' = at 1. be the full suffices of s and t, respectively. Now o is an instance of oy



606 X =558 ‘Tlsr 4555 Lrlsr

=al 1 48715501 LS, since Sy(s;) = Sy(s,a) 2 Sy(s,s;; L)
=a1 S 8,18, since Sy(s;) 2 Sy( s,y t;).
=15

Analogously, we obtain 664 y =51 L.
The case where s or L, are empty can be treated in the same way by using the component
29 ¢= S, Or 24 < t_ instead of the components z3 ¢~ sy , 24 ¢ ;| . ®

2.3.7 Proposilion. pUZ(xa, ya) = [0,0;, 05,04, 05,0¢ }.
Now we analyze the example in §2.2 more thoroughly and show that UX(zaxaz, zaz) has width (1,1):

2.3.8 Lemma. <zaxaz = zaz>,; has the most general unifier T := {z < zxz} and the chain
W = (X € ujausa... auy, z ¢ upqupu,.uue g b The set {t,y, ) is a complete set of unifiers.
Proof,
1) If 6 is a unifier with a € Sy(0z) or a ¢ Sy(0x) then 0 < 1[x,z]:
We have 0 = 67 [x,z]: 6z 6x 6z =41 0z under the conditions above.
2) If @ is a unifier with a ¢ Sy(6z) and a € Sy(6x) then there exists an with 6 <p_ [x,z]:

We have 8x = sya ... as; witha ¢ Sy(s;). Choose n = m and X as follows:

m
Au; =8, Aug g =0z . Then 6 =47 Al [x,z].
The case were sy or s, is empty can be treated with Au; := a,

3) Obviously W, is an ascending chain of substitutions. Furthermore 1 and L; are independent. m

Theorem 2.2.3 and Lemma 2.3.8 show that the following holds:

2.3.9 Proposition. UX(zaxaz, zaz) has width (1,1):

Y4 AT Bl for the Misdial UiiBcasion Tyas af A+l

2.4.1 Theorem, If one constants a is available, then the maximal unification type of A+] is
at least (®,0).

Proof, We show that for every n there exist terms s,t such that UZ 4 y(s,t) has type = (n,n)
Lets;, t;,i=1,...,n-1 be variants of the problem <xa =1 ya> with most general unifiers
o} and 0y given as in Lemma 2.3.2 and 2.3.3. Let s; and L, be variants of the
problem <zxz =1 zyz>. This problem has a most general unifier {x ¢~ y) and a
nonempty N(UZ A 1( zxz , 7yz)) [Ba86].
Now let s =8189 ... 818y and t=1ly ...ty 1ty and let T; be unifiers of s; and (;,
such that the codomains are pairwise disjoint. Consider all possible combinations of these
unifiers. Every such combination unifics s and t.
Let p be a unifier of s and t with Ty= ...=T; < [V(s,1)]. Since all codomains of the T;'s
are disjoint, the variable sets V(uu(s;),1(t;)) are disjoint. Furthermore the first symbol
of ux is a variable, since every T;x starts with a variable.
Lemmas 2.1.1 and 2.1.4 show that ps; = pt; for all i, hence different combinations
Tq° ...»T, are independent. Hence there are at least 21-1 elements in p( U AI( D) and at least 20-1 independent
elements in N UZA1(s,0). o



s Rewrite S Free Id Semi

In [SS83] a conditional rewrite system for idempotent semigroups is presented. However as unconditional rewrite rule
systems are much more preferable in practice, there remain the open problem, if a construction as in [SS83] is really
necessary.

We now show that there exists no unconditional canonical rewriting system for idempotent semigroups.:

In the following we denote the A+I-normalform of a term t with t and the normalform with respect to a rewrite rule
system R with liR.
We can assume that there are no constants. Hence every string in the following is a string of variables.

2.5,1 Theorem, There does not exist a finite unconditional canonical string rewriting system for the equation xx — x,
Proof,
i) Supposc there exists a canonical rewrite rule system on strings R = {I; - r; li=1,...,n}.

1) We can assume that all rj are in R-normalform.

2)If s - ', then Isl > Is'l . Particularly, Il;| > Ir;| for all rewrite rules.

Assume by contradiction that s — s' and IsI < Is'l . We have x'8! - x| since x' is an instance of s. Then for

ISl is reduced to x 81 and x'*' is a substring of x 1. o

the term x'8! there exists an infinite reduction, since x
Let m be the maximal length of all ;. Consider the term t=7,,2125 ...Z 2 2.1 21 ZmZm-] -2 Z1-
3) Obviously the A+I-normalform of tistd = z,21 ... 2y 1ZmZm-1 -+ 21
4) All substrings of length > 2 of the string t are different and all substrings of length > 2 of t! arc different;
1t suffices to constder substrings of length 2. By construction thesc substrings arc all different.
5) All proper substrings of t and td arc in normalform:
Rule 1 is ncver applicable duc to 4). Obviously Rule 2 is not applicable (o proper substrings ol [, ~
6) There exists no rule | — r in R, which reduces t.
Assume | — rreduces t.
Then 1 must reduce the term t at toplevel, since all substrings are in normalform.
Let 1 =yy... y .where y; are variables. Let ¢ be a sbstitution with ol = t, then or = tl, since
Itl > 1 orl and the only possibility for or is tl. It follows from 4) that for all variables x that occur at least
twice in 1 we have ox is a variable.
There exists a variable y in t such that oy is not a variable, since Ill < ltl. It follows from 4) that y occurs
exactly once in . Since r =571, y € V(r) and y occurs exactly once in r due to 4). Hence we have the
representation | = Ig ylg , r =rqyrg and y € Sy(lg, Ig, rg, rp).
Lemma 2.1.4 yields g =p1 rg and 1g =a7 rg. Furthermore either ligl > Irgl or lIgl > Irgl. Repeating this
argument we obtain nonempty substrings s) of 1 and s; of r with the property: s; =1 s,
losyl = Is)t, los I = Is| and Isjl > Is,l.
This mcans os| and o5, arc proper substrings of t and t respectively that arc cqual under idempolence and
have a dilférent number of symbols. Such substring do not exist duc to 5) =

2.5.2 Thegrem
There does not cxist a finte unconditional canonical rewrite rule system for idempotent semigroups.
Proof,
i) Suppose there exists a canonical rewrite rule system R = {l; > r;li=1,...,n].
1) We can assume without loss of generality that f( f(x y) z) = f(x f(y z)) is in R and that normalforms are of
the form f(x f(x5 f( ... ))):



The terms x and f(x y) are in normalform, since otherwise R is nonterminating.

We have: f(x f(y z)) is equal to f( f(x y) z). Hence they can be reduced to the same normalform. If none of
them is in normalform, then reduction cannot terminate, since we always can move brackets around. Assumc
f( f(x y) z) is irreducible. Then there exists a reduction from f(x {(y z)) to f( f(x y) 2)

Hence we can add the rule {(x f(y z)) — f( f(x y) z) to R without changing canonicity or normalforms.

For convenience we call a term fully reduced by f( f(x y) z) — f(x f(y z)) and containing only variables in
standard-form and denote them as a string of their variables. The set of all terms in standardform is denoled as
Tg. We denote with (4 the A+l-normatform of 1 in standardlorm

2) For every term Lin standardform: 1 t-> ', t has more symbols than 1';

Assume (or contradiction ltl <11 Obviously we can reduce t' 1o a term " in standardform with 111 = 11", This
means hat a term t, obtained from t by making all variables equal reduces to a term (", Both 1, and (", are in
standardform, hence ty is a subterm of t"y. This is a contradiction to the termination of R. 0

3) We can assume that all r; are in standardform.

4) The subsystem Rg of rules with left side in standardform is a canonical rewrite rulc system
on the set Tg of terms in standardform:
Termination follows from 1).
If a rule | — r reduces a term in standardform, then 1 is in standardform. Assume Rg is not confluent. Then
there exists an Rg-irreducible term t in standardform such that t # tl. Since R is confluent, and It > tl], R
reduces t. But every rule that reduces t is in Rg. This contradiction shows that Rg is confluent.

S) Rg reduces every term t to its normalform tl.

6) Let Rg o be the associative version of Rg. Then Rg A is a canonical rewrite rule system for:
idempotency on strings:
Obviuosly Rg o reduces strings | to their normalform td. Furthermore Rg A satisfies 2), e, shortens every
string during reduction, since Rg does so. Hence Rg 5 is canonical.
This is a contradiction to the Theorem 2.5.1 above m
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Appendix

et U be a countable quasi-ordered sct. In the [ollowing we denote with [byee| the subset [alb < a) of U.

A.l Lemmg Let B be an independent subset of U.
Then the sets [b,e] are mutually disjoint, where b € B.
Furthermore if B is maximal independent then \U( [b,ee] I b € B} is complete in U.

Proof, The disjointness of [by,ee] and [by,e=] follows from the independence of B.
Let B be a maximal independent subset of U and let u € U be an arbitrary element in U. Then B U {u} is
dependent, hence there exists ve Uandbe B withu<vandb <v. Thus v € [b,ec] and we have shown that
U { [b,ee] 1 b e B} is complete in U.

A2 Lemma Let B, C be maximal independent subsets of U with IC! > IBI.
Then there cxists ab e B and ¢q # ¢y € C with [b,ee] M [cy,00] # @ and [b,ee] M [cy,00].
Proof, Assume by contradiction that the lemma is false.
Then for all b e B there exists at most one ¢ € C with [b,ee] N [¢,00] # D.
*Since ICI > IBI there exists a ¢y € C such that [b,ee] M [cp,00] = @ for all b e B.
This means the set B U{c) } is independent, a contradiction to the maximality of B.

A3 Lemma, Let B be an independent subset of U and let Cy, be independent subsel of U contained in [b,ee].

i) Then U (Cp, I b e B} is independent.

iy If B is maximal independent and the sets C}, are maximal independent, then U {Cp I b e B} is maximal
independent.

Proof, i) Obvious.

if) Assume U(Cy I b € B} is not maximal independent. Then therc exists a ¢ € U such that U({Cptb e B} w {c}

is independent. By Lemma A.1 there exists an element d € U{[b,e]lbe B} suchthatd >c. Letd € [b',e].
Application of Lemma A.l to Cy yields an element d' € U {[c',0]l ¢'e Cpr} withd' 2 d > c. Thatis a
contradiction to the independence of U {Cplbe B) U {c}. =

A.4 Theorem, Let U be a quasi-ordered sct without maximal elements.
Then cither the cardinality of independent subsets B is bounded by a natural number ngy or there exists an infinite,
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independent subset B of U.
Proof. (By contradicLion.
Assume the theorem is false.
Then there exists a sequence of finite, maximal independent subsets- B ol U with 1B, 1~ 1131
Our ain is 1o construet an infinite independent subscl B ol U:
1) For every chain B of maximal independent subsets of U and for every i there exists a b e Bj such that the set
[b,e=] contains a sequence of {inite, maximal independent subsets Cj with ICJ-HI > ICjI :

Assume the assertion is false.
Then for every b € B; the number of elements in a maximal independent subset of [b,e] is bound.
For every b € B let Dy, be an independent set in [b,eo] of maximal cardinality.
Then the set D := U Dy, is a maximal independent subset of U due to Lemma A.3
There exists a maximal independent set By with [By| > IDI, since the cardinality of maximal independent
subsets is not bound.
Lemma A.2 shows that there exist elements b1 kb2 k € Bk and an clement d € D such that there exist
clements bl.k‘ € [ by ’k,oo] M {d,e] and bz_k' e[ bz,k,oo] M [d,e] . The element d is in some Dy The
replacement of the element d in Dy, with the elements by ' b, ' yields an independent subset in [b',00] of
greater cardinality than Dyy. This is a contradiction.
ii1) There exists an infinite , independent subsct of U:
Lel by be the element of By thal salisfics it), i.c. there cxists a chain Cj of maximal independent subsels in
[bp,e°] with ICJ-I < ICJ-HI. We define D1:= By \ (bp}. Not that Dy # @.
The same construction yields a nonempty set Dy ¢ [by,=] and an element by such that [by,e] contains an
chain according to ii).
Repeating the construction we obtain an infinite sequence of independent subscts D; of U with the additional
property that their union is independent. The set \LW({D;li = 1,2,...} is an infinite independent subset of U.
We have reached a contradiction. m

A5 lemma . Let U be a countable quasi-ordered set with width(U) = (0,1). l.e. the set U
has no maximal elements and the maximal cardinality of an independent subset is 1.
Then there exists an increasing chain C of elements of U such that C is complete in U.

Proof, Let uy,up, ... be the elements of U. Let cy:= uj and define ¢; recursively such that
Ci41 Is an element greater than ¢; and u;.
Then obviously C := (c,Cy...} is an increasing chain and C is a complete subset of U. m

Nole that the lemma is false for noncountable quasi-ordered sets:
The sel of all finite subsets of a noncountable set S ordered by the subset ordering has width (0,1), but every
increasing chain C covers only a countable subset of the set S.

A6 lemma . Let U be a countable quasi-ordered set with width(U) = (O,n). I.e. the set U
has no maximal elements and the maximal cardinality of an independent subset is n.
Then there cxist n increasing chains C; of elements of U such that UC; is complete in U.

Proof follows fronmt A1 and A5 m

If width( UZ(s,t)) = e, then the number of increasing chains, that form a complete subsel may be not countable.

Consider for cxample an infinite binary tree .



