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1. Inlroduclion. 

Unification theory is concerned with the problem to find solutions for an equation <s = t>, where sand t are tem1S. 

Solutions of <s = l> are substitutions a with as = at. The substitution a is called a unifier for sand t. 

An extension of this problem is the following: Given a set of equations T we say two terms tl and t2 are equal W.r.t. 

T , denoted as t1 =T t2' iff t1 = t2 logically follows from T. A T-unification problem <s = l>T is the problem to find 

solutions a such that as =T at. 

The set of all unifying substitutions (i.e. of all solutions) of <s := t>T is denoted a~ U~(s,t). In many cases, the set 

of all solutions UL.r(s,t) can he generated from a minimal suhset of solutions, the set of most general unifiers 

~U~{~,I), which is derined as follows: 

Wc ,~ay Ihe ,~uhSlitlJlioll a is IlIore gencrallllan I Oil Ihe set of variahles W (, <'I' a IW I) ill (Ilcrc l'xisls a sllhslillllioll A 

sllcilthat LX ='1' A.ax lor all x ( W. NOle Il1atlhe set UL.I'(S,I) is ordered hy I ill' qllasi ordering '-TIVlS.l)j, 

Thl~ set ~UL-r(s,l) is characll~ri/.ed by Ihree colldilions: 

i) corrcclnc,~s: ~UL,.['(s,t) c;,;; U~.(S.I) 

ii) compleleness: V8.E U~,(s,t):3 <J E ~UL.r(s,t) e~ <J IWJ where W = V(sJ) 

iii) minimaJity: Va,'t E ~ULr(s,t) a ~ 't [WJ ~ <J:= 'to where W = V(s.t) 

Uni fication theory classifies equational theories by the cardinaJity of the set ~UL.r(s,t) 

i) A theory T is 1illi.Lill:Y, iff ~UL.r(s,t) always exists and has at most onc element. 

ii) A theory T is 1l!li.la.!:Y., iff ~ULrr(s,t) always exists and is finite. 

iii) A theory T is infinitary, iff ).lUL.r(s,t) always exists and there exists a pair of 

terms s,t such that ).lULrr(s,t) is infinite.
 

iv) A theory T is Ill!..1.lillY., iff ).lUL.r(s,t) does not exist for some terms sand l.
 

III IS/.X7,SiX4j unific;llionlhcorics llllype Illlllary arc. 1101 sulx;lassilil'd.
 

III ordcr ID givc Cl finl'l classifil';llion of l'\jllalillnallllcurics (including Ihl'mil's Ill' Iypl' Iltill;lry) by Illl' IlLI.'\IIII;iIlVi,lih \11'
 

11i~ ,~cts U~.(S.I) w~ inlrodllcc Slllll~ notions ID handle elllllnerable, quasi orcl~r~c1 sl'ls.
 

Let U be a set ordered by the quasi ordering:::;: . (we are interested in the case U:= Ul:(s,t) and:::;: is Ihe qllasi-ordering 

~[V(s,t)].)
 

Let ~ be lhe equivalence relation corresponding to :::;:, i.e. a '" b iff a:::;: band b :::;: a. We say a subset V of U is
 

complete. iff Vu E U:3v E V: U :::;: v. An element u is maximal in U, iff Vv E V: u :::;: v ~ u ~ v . The set of all
 

maximal elements of U is denoted as max(U). ).l(U) denotes a set of "'-representatives of max(U).
 

A subset V of U is minimal, iff Vu,v E V: u :::;: v ~ u =v .
 

Wc have: If max(U) is complete, Lhen Il(U) is a complete and minimal subset of U. 

Wc define 11(U) as the "nullary" part or U: T](U):= (u E UI '\jv E ).l(U) : u i v}. I.e. T](U) is the set of all elemcnts
 

of U lhat are not smaller than a maximal clement. Ohviously the set T](U) cloes nOl contain maximal elcmenls.
 

A suhset B of U is called independent, ill for all h\.b2 E B with hI :t:- b2 there does 1101 exist a common II ( lJ with
 

h I ~ 11 and h2 :::;: u, A subset B is called maxim<J1 independent, if every set C with H C Cc lJ is derelldenl.
 

An easy application of the Zom 's Lemma shows that every independent set is contained in a maximal independcnt sel.
 

Note Lhat for countable sets, Zom's Lemma can be proved from the other axioms of set theory.
 

Let Noo := N u {oo}.
 

We can measure quasi-ordered sets in the following way:
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l.. I n t roduc t ion .

Unification theory is  concerned with the problem to find solutions for" an equation <s = t:>, where s and t are terms.
Solutions of <5 = t> are substitutions o with as = at. The substitution 6 is  called a _un_if_ie_r for s and t.
An extension of this problem is the following: Given a set of equations T we say two terms t1 and t2 are equal w.r.t.
T , denoted as t1 ='-I‘ t2, iff t1 = tz logically follows from T. A T-unification problem «:3 = [>1— is the problem to find
Solutions 0 such that cs =T at.
The set of all unifying substitutions (Le. of all solutions) of <5 = t>T is  denOIed as U2r(s,t). In  many cases, the set

of all solutions Will—(3.1) can  be generated from a minimal subset o f  solutions, the set o f  most general unifiers

tLL_J)_',T(s,t). which is defined as follows:

We say the substitution .0 is more general than t on the set of variablcs “W (*t <1. 6' [W | ]  iff there exists a substitution l
such that. 'rx :1" lm; for all x r: W.  Note that the set  LJ£-|.-(s,-t) is ordered by the quasi ordering «‘n'—[Van].

The set ttULrLsJ) is characterized by three conditions:
i) correctness: n1_l.£[-(s,t) c__' U t sd )
ii) completeness: Vila-e UZ‘T(s,t) El 0 :e uU£r(s,t) 8 ST 0 [W] where W == V'(s.t)

iii) minimality: Von: e uUZT(s,t) 0.“ Sr T, [W] => o = T. where W = V-(s.t)

Unification theory classifies equational theories by the cardinality of the set ttUZfisd)
i) A theory T is unitary, iff nUZq-(s,t) always exists and has at most  one element.
ii) A theory T is  finitely, iff ttUZrl-(s,t) always exists and is finite.

iii) A theory T i s  infinitagg, iff uU£r(s,t) always exists and there exists a pair of

terms s,t such that uUZT(s,t) is infinite.
iv) A theory T is many, iff nU£r(s,t) does not exist for some terms 5 and t.

in ISZXRSEMJ unification theories of type 'nnllary are not sulmlassil'icd.
In order to give a finer classification of um:-nimm! Iltet-Ji‘ies (including 'll'lunrivs ul' type 't'ittlla-ry.) by the maximal wid-ll! ot‘
the sets [ALT-(s,!) we  introduce some notions to handle enumerable. quasi ordered sets...

Let U be a set ordered by” the quasi ordering S . (we are interested in the case. U = UE(s,t) and S is the quasi-ordering

fill/(8.01.)
Let "» be the equivalence relation corresponding to g ,  i.e. a ~ b iff a S b and b ‚<. a. We say- a subset V of U is
co mplete , iff Vu e U Elv e V :  n S v.  An element u is maxim. gl in. U,  iff VV e V :  u S v => u ~ v .. The sot of all
maximal elements of U is  denoted as max(U). MU) denotes a set of  ~-representatives of max(__U).

A subset V of U is minimal, iff Vu,v e V :  n S v => u = v .

We have: If max(U) is complete, then MU) is a complete and minimal subset of U.

We define n (U)  as the "nullary" part of U: n (U)  :=  [u  e UI Vv  e MU)  :“ u $ v}. Le. 11(U) is the set of all elements-

of U that are not smaller than a maximal element Obviously the setn(U)does not. contain maximal elements.

A subset B of U is. called independent, iff for all b l  .b2 e B with b] at b2 there does not exist a common it (I U with
M ‚<. u and b2 S u. A subset B is called maxima l independent, il'cvcry set (I with B (; C Q; U is dependent.

An easy application of the Zorn 's Lemma shows that every independent set is contained in a maximal independent set.
Note that for countable sets. Zom’s Lomma can be proved from the other axioms of set theory.

Let him := N U {w}.
We can measure qu asi—ordered sets in the following way :.



The width Qf U (width(U» is a pair (a,b) E Noo x Noo where: 

i) a is the cardinality Qf a set Jl(U). 

ii) b is the maximal cardinality Qf a (maximal) independent subset Qf l1(U).• 

In the appendix it is shQwn that it is nQt pQssible that every independent subset Qf U is finite but the maximal
 

cardinality of independent subsets has nQ upper bound.
 

Jn the following we use the set N00,00 := N u {w,oo} with Qrdering n < 00 < 00 where 00 denoles as usual the
 

supremum Qf all natural numbers. Pairs are Qrdered with respect tQ the product ordering: (a,b) ~ (c,d), jll a ~ c and
 

b ~ d. The set Nw,oo is well-Qrdered. We define the supremum Qf a set M in Nw,oo X Nw,oo as follQws:
 

CQnstruct the clQsure M* Qf M:
 

i) M*:2 M
 

ii) for every ascending chain (ai,bi) in M* add the element (sup(ai)' suP(bi») tQ M*
 

NQW we define sup(M) := max(M*).
 

FQr example if M = {(4,2),(3,5),(2,5),(2,6)'00' ,(2,i),00.), then sup(M) = (4,2),(3,5),(2,w)}. 

We extend the usual c1assiJ'ication of unification to theQries or type nullary: 

I, I Definitioll, Let T be an equational theory. The unjficalion Lype of T is a sel of pairs dcfincd as follows: 

lype(T) := sup (width(UL-r(s,t)) I S,l E T}. 

I.e. type(T) is a set of pairs that describes the maximal possible width.~ of sets Uq.(s,t).
 

The maximal unification type is a single pair (m1,m2) , where
 

ml := sup (a I (a,b) E type( T») and m2 := sup (b I (a,b) E type( T)}.
 

For example if the set (width(Uq,(s,t») I s,t E T} = M = (4,2),(3,5),(2,5),(2,6),. 00,(2,i),00.}, then the type of T is 

sup(M) = (4,2),(3,5),(2,w)} and the maximal unification type Qf T is (4,00). 

This classificatiQn is a generalizatiQn Qf the usual one: A tmitary theory has type ((l,O)} and maximal unification type 

(l,0). Finitary theories have maximal unification type (n,O) or (00,0) and infinitary theQries have maximal unification 

type (00,0). Theories of type nullary have a maximal unification type with nQllZero secQnd argument. 

In'the appendix it is shown that for a countable quasi-ordered set U with width(U) = (0,1). (i.e. the set U has no 

maximal elements and the maximal cardinality of an independent subset is 1) there exists Qne increasing chain C of 

elements Qf U such that C is cQmplete in U. Similarily, if the width is a finite number n, then n chains are sufficient to 

construct a complete subset. 

In the case width(U~(s,t»= (O,n) it is never necessary in a theorem prover tQ cQnsider mQre than n unifiers fQr this 

problem in parallel, since in this case fQr every set of unifiers of s,t with more than n elements there exists a set of 

mQre general unifiers with at most n unifiers. 

2 Idempotent Semi~roups. 

The equational theory A+I is generated by the two axiQms: 

A: f(f(x, y), z) = f(x, f(y, z» 

I: f(x, x) = x 
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The width of u (width(U) ) is a pair (a,b) e. Nm x Nm where:

i) a is the cardinality of a set MU).

ii) b is the maximal cardinality of a (maximal) independent subset of'n(U). I

In the appendix it is shown that it is not possible that every independent subset of U is finite but the maximal
cardinality of independent subsets has no upper bound.

in  the following we use the set Nm’m := N U {ws-o} with ordering n < w < m where 0.) denotes as usual the
supremum of all natural numbers. Pairs are ordered with respect to the product ordering: (a,b) s (e.d), ifI' a s c and
b s d. The set New» is well-ordered. We define the supremum of a set M in N03,“. x Na,“, as follows:
Construct the closure M“ of M:
i) M* ; M
ii) for every ascending chain (ai,bi) in M*  add the element (sup(ai), sup(bp) to M*

Now we define sup(M) :=  max(M*).

For example if M = {(4,2)‚(3‚S)‚(2,5)‚(_2‚6)‚...,-(2,i),.„}, then sup(M) = [(4,2),(3,5),(2,co)}.

We extend the usual classification of unification to theories of type nullary:

| ‚1  Definition.  Let T be an  cquational theory. The W is a set o f  pairs defined as follows:

typc(T) := sup[width(U}."/r(s,t)) I 5.1 e T ] .

I.e. type(T) i s  a set of pairs that describes the maximal possible widths of sets USS/fiat).
The maximal unification type is a single pair (m1,m2) , where

m1 := sup [a  I (ab) 6 type(T)] and mg := sup [b l  (a,b)e type(T)}.

For example if the set {width(UD-r(s,t)) l s, t  E T]  = M = {(4,2)‚(3,5),(2‚5),(2,6),...,(2‚i),.‚.}, then the type o fT  is
sup(M) = ((4,2),(3.5),(2,m)} and the maximal unification type of T is (4m).

This classification is a generalization of the usual one: A unitary theory has type [(l,0)] and maximal unification type
(1.0). Finitary theories have maximal unification type (n,0) or ((0,0) and infinitary theories have maximal unification
type (no.0). Theories of type nullary have a maximal unification type with nonzero second argument.
In» the appendix it is shown that for a countable quasi-ordered set U with wid th(U) = (0,1). (Le. the set U has no
maximal elements and the maximal cardinality of an independent subset is 1) there exists one increasing chain C of
elements of U such that C is complete in U. Similarily, if the width is a finite number n, then It chains are sufficient to
construct a complete subset.
In the case width(U£(s,t)) = (0.n) it is never necessary in a theorem prover to consider more than n unifiers for this

problem in parallel. since in this case for every set of unifiers of s,t with more than n elements there exists a set of
more general unifiers with at most It unifiers.

The cquational theory A+I is generated by the two axioms:
A: f(f(x'. y). 2)  = f(x.  f(y‚ Z))

I :  f(x, x)  = x



These two equations define free idempotenl semigroups (bands). It is a known fact, that finitely generated bands only 

have a finite number of elements IHo76). An immediate consequence is that A+I is fjnitary matching, i.e. a correcl, 

comrlele and minimal subset of the set Mr.AI(s,l) := (a I as =:. AI I and DOM(a) n V (I) == 0} is finile for alllcrms ,S 

and t, since there is only a finite number of substilulions with a l'ix~1 domain and wilh fixed symhols in Ihe cndl)main, 

Furthermore it is decidahle, whether IwO terms are A+l-unifiahlc IS:I.H2 I. A+I-unificalion is or IYrl~ Ilullary 

ISchH6,Ba86) in the usual sense. 

2.1 Basic Notions 

We use the standard notation of unification-theory (Si84], the main notions are listed below. For convenience, 

associative terms are denoted as strings. 

s == t the terms sand t are symbolwise equal. 

S =: AI t the terms are equal under the theory A+I, i.e. sand t are congruent 

W.r.t. the congruence relation generated by A and 1. 

cr==AI'[W] ax =AI 1:X for all variables in the set W. 

a::;AI,IWJ There exists a substitution A with cr =AI A, (WI. 

alW the restriction of cr to the set W, i.e. alwx is ax for x f: Wand the identity otJlCrwisc. 

Y(a) the set of variables occurring in the object n. 

DOM(a) the domain of a, i.e. the set (xl crx 'le x) 

COD(cr) the codoma in of cr, i.e. (crx I ax 'le x) 

VCOD(a) V(COD(cr» 

8y(0) the set of symbols occurring in the object o. 

C(o) the set of constants occurring in the object o. 

C#(o) the nwnber of constant occurrences in the object o. 

sl denotes the A+I-normalform of s, which exists (see below). 

We assume that the reader is familiar with rewrite rules on terms (cf. (H080]).
 

The following two conditional rewrite rules form a terminating, confluent rewriting system for idempotent
 

semigroups (see [SS83,Sz82]), hence a unique normal form sl exists for every term s.
 

Let x b~ a variable and let s,t,u be A+I-terms.
 

Rule I) xx ._) x
 

I<ulc 2) stu .. ) su , rrovidcd Sy(s) = Sy(u) and Sy(u) ;:;) Sy(t)
 

Note that it suffices to use the simpler rule 2' : 

2') stu ~ su , provided Sy(s) == Sy(u) and t is a symbol with t E Sy(u). 

The following lemmata that are either well-known (cL [H076]) or obvious are helpful in later proofs: 

2,1,1 Lemma (Ho76] Let a and b be symbols, let s,t be terms 

i) sa=AItb =) a=b. 

ii) as =Al bt =) a = b. 

E!:.Q.QL. [Ho76] . 
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These two equations define free idempotent semigroups‘ (bands). It is a known fact, that finitely generated bands only
have a finite number of elements [H076]. An immediate consequence i s  that A+] i s  finitary matching, i.e. a correct,
complete and minimal subset of the set M2M(s . l )  := {o  I os =A1 t and DOM(0) n W!)  = @} is finite for all terms s
and t, since there is only a finite number of  substitutions with a fixed domain and with fixed symbols in the codomain.
li'urthern'tore it is decidable, whether two terms are A+l-unil'iahle 182.821. Aid—unification is of type nullary
ISch8.6,Ba86l in the usual sense.

2.1  Bas i c  Notions.

We use the standard notation of unification—theory [Si84], the main netions are listed below. For convenience...

associative terrns are denoted as strings.

s = t the terms s and t are symbolwise equal.
3 =A1t  the terms are  equa l  unde r  the  theory A+I ,  i .e .  s- and  t a r e  congruent

w.r.t. the congruence relation generated by A and I.
o =A1"  [W] ox =A1'cx for all variables in the set W.
0 5A1  'c [W]  There exists a substitution % wiLh O’ =A17t't [W].
“W the restriction of o to the set W, i.e. olwx is Us for x es W and the identity otherwise.
We) the set of  variables occurring in the object o.

DOM(O‘) the domain of o ,  i.e. the set [xl ox ;t x}
COD(o) the codomain of 0‘, i.e. [ ox  I ox at x}

VCOD(0') V(COD(cr))

S y(o) the set of  symbols occurring in the object o .

C(o) the set of constants occurring in the object o.
C#(o) the number of constant occurrences in the object 0.
s i  denotes the A+I~normalforrn of 3, which exists (see below).

We assume that the reader is familiar with rewrite rules on terms (of. [H080]).

The following two conditional rewrite rules form a terminating, confluent rewriting system for idempotent
semigroups (see [SSSB,SzS2]), hence a unique normal form s i  exists for every term s .

Let x be a variable and let  s,t,u be A+I-terrns.

Rule 1)
Rule 2) stu > su , provided Sy(s)  = Sy-(u) and Sy(u)  :2 Sy(t)

Note that it suffices to use the simpler rule 2' :

2') Stu —> su , provided Sy(s)  = Sy(u) and t is  a symbol with t & Sy(u).

The following lemmata that are either well-known (of. [11076]) or obvious are helpful. in later proofs:

2.1.1 Lemma [H076] Let a and b be symbols, let s_,t be terms
i) sa “AI tb :=. a = b.
ii) as “AI bl a = b..

Erect. [H076] .



2.1.2 Lemma,	 Let s,t be tenns with s =AI 1. Then 

i) C (s) = C (s'!') ii) Sy (s) = Sy(s,!.) 

iii) C#(s) ~ C#(S'!') iv) C (s) =C (t) 

v) Sy (s) = Sy(t) 

I2oo.L Obvious. 

We say a substiLution A is conSLant-free on W , ifr \;j x E W: C#(AX) = 0 

2.1.3	 Lemma Let s,t be terms and let A be a substitution that is constant-free on V(s,t). 

i) Then C#(s) ~ C#«AS)J.). 

ii) If t is in nonnal form and C#(s) < C#(t) then As :;eAI 1. 

Proof. Obvious.
 

2.1.4 Lemma. [H076] Let a be a symbol and let SI aS2 =AI tl at2' Then:
 

i) a ~ Sy(sl) and a ~Sy(tl) => SI =AI tl'
 

ii) a ~ Sy(s2) and a", Sy(t2) => s2 = AI t2'
 

E.!:Q.QL [H076] .• 

For a string t we say p is u1e fu)) prefix of t provided p is the shortest prefix of t with Sy(p) =Sy(t);s is the full suffix 

or I ir s is the shortest suffix of t with Sy(s) =Sy(t) 

2,15 LeIDma, 11107(11 Lets,1 he IcrlllS and Ps,PI.(Is,'1t be the I'ull prcl'ixes und I'ull sulTixcsol's amI t. respectively. 

Tllcn: 

s =AI t ~ Ps =AI Pt and qs = AI qt·. 

We show thatt can be reduced to its nonnalfonn tJ. in the following way: First reduce tto its normalform tl with
 

respectLO rule 2' by checking applicability of rule 2' from left to right and then reduce t1 to its normalform t2 with
 

respect to rule 1.
 

The next proposition shows that the deletion of symbols by rule 2' can be made in parallel. Furthermore it shows that
 

it is sufficient to check every symbol from left to right.
 

2,1,6 Proposition, The set of symbols in a string t that are delctable with rule 2' does not change after application of
 

rule 2'.
 

E!:.QQ1 Let band c be symbols in the string s.
 

i) If b.c are deletable by rule 2', then cremains deletable by rule 2' after deleting b:
 

Assume by contradiction that c is not delctable by rule 2' after deletion of b. 

Then we have the case s = 81 bS2cs3 . SI and s3 are not empty and b is not contained in s2' Since b and care 

deletable by rule 2' there exist substrings of s of the following form: ubbwb wilh Sy(ub) = Sy(wb) and uccwc 
with Sy(uc) = Sy(wc)' Since b is not contained in 82, wb overlaps c and wc can split wb in the right and left 

part wb = wb,lcwb,r' Now we can construct new strings un and wn that show that c is deletablc by rule 2': 

Let un be the string that contains exacLly ub,wb,1 and uc', where uc' is Uc after deleting the symbol b. Let Wo 

be the string containing exactly wb,r and wc' 
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2 ‚1.2 Lemma. Lets,t be teens-withsr-Alt. Then
i) C(s) C ( s i )  ii) .85! (s) =Sy(s-J,)-
iii) C#(s) C#(s~L) iv) C (s) =( :  (t)
V) Sy (S) = SN)

MObvious .

IV

We say a substitution 1 is  oon-staot-fcoo on W , ifi' V x e W: C#(Äx) = 0

W Let s,t he terms and let it be a substitution that is constant-free on V(s,t).
i) Then C#(s) ?. cstosm. '
ii) If t is in normal form and C#(s) < C#(l) then ls ¢AI t.

m Obvious.

2,1,4 Lemma. [H076] Let a be a symbol and let slasz=m tlatg. Then:
i) a s  Sy(s1) and aeSyal) => s] =A1t1.
ii) a e Sytsz) and a e Sy(t2) =» 32 =AI ‘ 2 -

P_roo_f_. [H076] . I

For a string t we say p is  the Mom provided p is the shortest prefix of t with Sp)  =Sy(t);'s is the full sums
oh  if s is the shortest suffix o f  t with Sy(s) =Sy(t)

W | l l o7o |  Lel.s.l he terms and ps -P t r ‘ l sv ‘ l t  be the I'ull prefixes and full sul'l'ixes of s and t. respectively.
Then:

S=AII  @ Ps=AIP t  anq =A1 q t - I

We show that t can be reduced to its normalform ti. in the following way: First reduce t to its nonnalform t] with
respect to rule 2 '  by checking applicability of rule 2 '  from left to right and then reduce l l  to its normalfonn t2 with

respect to rule 1.
The next proposition shows that the deletion of symbols by rule 2' can be made in parallel. Furthermore it shows that
it is sufficient to check every symbol from left to right .

2.1.6 Proposition. The set of symbols in a string t that are deletable with rule 2' does not change after application of
rule 2'.
BrooL Let b and c be symbols in  the suing s .

i) If be are deletable by rule 2', then 0 remains deletable by rule 2' after deleting b:

Assume by contradiction that c is not deletable by rule 2 '  after deletion of h.

Then we have the case s = slbs2053 . 31  and S3 are not empty and b is not contained in s2. Since b and c are:
deletable by rule 2 '  there exist  substrings of s of the following form: ubbwb with Sy(ub) = Sy(wb) and uccwC
with Sy(uc) = Sy(wc). Since b is not contained in $2, wb overlaps c and we can split “’b in the right and left
part wb = Wb‚ lCWb, r -  Now we can construct new strings un and wn that show that c is deletable by rule 2':
Let un be the string that contains exactly “b,Wb,1 and uc', where 110' is “c after deleting the symbol b. Let wI1
be the string containing exactly wm and wc.



I I I I Wu Wb,1 b,rb 

s I I s I I 
b c S

1 2 3 

I I 
Wu 

c c 

We show: Sy(ub) u Sy(wb,l) u Sy(u ') =Sy(wb,r) uSy(wc):c

"c;:": Sy(wb,l) ~ Sy(uc) =Sy(wc)·
 

Sy(uc ') c Sy(uc) = Sy(wc)·
 

Sy(ub) c Sy(wb,r) u(cjuSy(wb,l) <;;;; Sy(uc) uSy(wc)uSy(wb,r)
 

c Sy(wb,r) uSy(wc)·
 

":;:>": Sy(w ) c Sy(u ') u(b) <;;;; Sy(u ') u Sy(ub)
c c c
Sy(wb.r) c Sy(ub). 0 

ii) H b is dcleLable by rule 2' and c is not deletable Lhen cremains undeletable by rule 2' after delcting b: 

Assume by contradiction that c is deletable by rule 2' after deletion of b. 

Then we have the case s = SI bS2cs3 . SI and s3 are not empty and b is not contained in s2. Since b is deletable 

by rule 2' there exists a substring of s of Lhe form ubbwb with Sy(ub) = Sy(wb). Since c is deletable by 

rule 2' in s' := s \ b, there exist substrings of s' of Lhe form uccw with Sy(u ) = Sy(w ). Note that U coversc c c c 
s2. Since b is not contained in s2' wb overlaps c and we can split wb in the right and left part 

wb = wb,lcwb,r· Now we can construct new strings un and wn that show that c is delctablc by rule 2' in the 

string s: Let un be Lhe string that contains exactly ub,wb,l' band uC. Let w be the string containing exactly n
 

wb,r and WC"
 

WC show: Sy(ub) uSy(wb,l)uSy(uc)u( b) = Sy(wb,r) uSy(w ):
c

"r.:": Sy(wb,l) c: Sy(uc) = Sy(wc)·
 

Sy(uc) = Sy(wc)·
 

Sy(ub) <;;;; Sy(wb,l) u( c juSy(wb,r) C Sy(uc) uSy(wc)uSy(wb,r)
 

c Sy(wb,r) uSy(wc)·
 

c E Sy(wc)
 

":;:>": Sy(wc) <;;;; Sy(uc)
 

Sy(wb.r) <;;;; Sy(ub)· • 

2,1,7 Proposition. Let t be a term that is not reducible by rule 2. Lett' be obtained by a reduction using rulc1. 

Then t' is not reducable with rule 2 . 

.rruuL It sufficcs 10 show Ihis for a ollc-step rcducliol1. 

I,cl t = tlti2t3 be a tcrm, which is not rc(1uciblc by rulc 2. 

Assumc Lhere is an element e in t' = tlt2t3 that is reducible by rulc 2'. 

If e is in t1 or ":3 ' then e is reducible by rule 2 in L Hence e is in ~. 

Let wl be the word on the left side and w be the word on Lhe right side with e E w) , e E w and Sy(w\) =Sy(w ).r r r
If one of them is a substring of t2 then e is reducible in 1. Hence they are not substrings of~. This means 

C w1uw =Sy(w ). So e is reducible with Rule 2 in l. •t2 r r

Using Lhese observations the reduction algorithm based on rule I and rule 2 can be improved: First apply rule 2' to 

every clement in Lhe string to be reduced. Then apply rule 1 in all possible ways until the term is not further reducible. 
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We show: Sy(ub) u Sy(wb',1) U Sy(uc') = Sy(wb,r) uSy(wC)-:

" Sy(wb‚ | )  ; Sy(uc )  == Sy(wc) .

Sy(uc ' )  f.: Sy (uc )  = Sy(wc) .

Snub)  ; Sy(wb‚r) U lc}usy (wb‚ l )  ; Sy(uc) Usy(wc)uSy(wb‚r)

; Sy(wb‚r)  Usy(wc).

".22": Sy(wc)  g Snug)  Mb} ; Sy(uc ‘ )  U Snub)

Sy(wb_‚) g Snub) .  n
ii)]f b is deletable by rule 2' and 0 is not deletable then 0 remains undeletable by rule 2' after deleting b:

Assume by contradiction that c is deletable by rule 2' after deletion of b.

g 2

Then we have the case 5 = 31  b32033 . s 1 and 53 are not empty and b is not contained in 32. Since b is deletable
by rule 2' there exists a substring of s of the form ubbwb with Sy(ub) == Sy(wb). Since c is deletable by
rule ’2' in s '  := s \ b, there exist substrings of s '  of the form uccwc with Sy(uc) = Sy(wc). Note that uC covers
32. Since b is not contained in $2, wb overlaps c and we can split Wb in the right and left part
Wb = Wb‚ l °Wb‚ r -  Now we can conStruct new strings tin and wn that show that c is deletable by rule 2' in the

String 3: Let un be the string that contains exactly ub’wb'], b and uc. Let wn be the string containing exactly
wb. r  and wc.
We show: Sy(ub) uSy(w)uSy(uC)u [  b]  = Sy(wb‘r) uSy(wC):
"g": Sy(wb'l) c Sw)  = Sy(wc).

Sy(uc )  = Sy(wc) .

Sy(ub)  c; Sy (wb‚1 )  u{c}wSy(wb‚ r )  c.: Sy(uc) vSY(wc)uSy(wb‚r)

g.. Sy (wb‚ r )  uSy(wc) .

c e Sy(wc)

";": Sy(wc) ; Sy(uc)

_ SYN/by)  C; SYCUb). .

2.1.12 Eropositign. Let the  a term that is not reducible by rule 2. Let t' be obtained by a reduction using rnlel.
Then 1' is not reducablc with rule 2 .

ELQQL l t  sul'i'ices to show th i s  for a one-step r educ t ion .

Let L= L| L21213 be a term, which is not reducible by rule'2.
Assume there is an element e in t' = l 1 ‘213  that is reducible by rule 2'.

If e is in t1 or L3 , then e i s  reducible by rule 2 in  t. Hence e is in t2.

Let wl be the word on the left side and wr be the word on the right side with e e w] , e e wr and Sy(wl) = Sy(wr).
If one of them is a substring of t2 then e is reducible in t. Hence they are not substrings of [2. This mean-s
t2 <; wluw1r = Sy(wr). So  e is reducible with Rule 2 in L l

Using these observations the reduction algorithm based on rule 1 and rule 2 can be improved: First apply rule 2' to
every element in the string to be reduced. Then apply rule l in all possible Ways until the term "is not Further reducible.



2,2. A±I is of Type NulJarv 

We assume that there is one free constant a in the signalure,
 

Consider the unification problem <zaxaz =AI zaD ,where X,Z are variables and a is a constant. [n the following we
 

fix the unifier e:= {x ~ zl aZ2; z ~ zl z2 } of zaxaz and zaz, where the zi are variables.
 

2.2.1 Lemma For all a E ULAI(zaxaz, zaz) with e :S;AI a [x,z]: 

i) <JZ consists only of variables. 

ii) C(ax) = {a}. 

iii) The last element ofax is a variable 

iv) V(ax) c V(az) . 

.er.ooL. Let a E UI:AI(zaxaz, zaz) and let A E L with e=AJ Aa ix,z]. 

01. = 1. I1.2 and 0'1. is more generallhan hz, hence i) holds. iv) holds since (al,)a( ax)a(<JI.) =;\ I (al.)a( 0'1,), 

The substitution A is constant-free on V(ax) C V(al.) and Aax =All.] a/'2' hence C(ax) = (a) and ii) holds, 

The last element of ax is a variable since ax is more general than 1.1 aZ2' _ 

2.2.2 Lemma For all a E UI:AI(zaxaz, I.az) with 8 :S;AI a Ix,z] there exisls a a' E UI:l\I(zaxaz, za/,) wilh a:S;AI
 

a' [x,z] and a' :$Al (5 [x,z] .
 

IJ:QQL Without loss of generality we can assume that ax is in normaLform.
 

Lemma 2.2.1 iv) shows that V(ax) ~ V(az). We define a unifier a' that is more general than a as follows: 

a'x := (ax)au, a'z := (az)u(az), where u is a new variable. a'x is in normalform, since ax is in norrnalform. 

1) a' is a unifier of zaxaz and zaz: 

(az)u(az)a(ax)aua(az)u(az) =AI (az)u(az)a(az)u(az) since V(ax) ~ V(az) 

2) a :S;Ala' [x,z]: 

Let ax = sI aS2. where s2 is a nonempty string of variables and s I is a nonempty string. 

We have a =AI Ila' rx,z! for Il:= [u ~ s2}, since (az)s2(al.) =AI 0'1. by rule 2 and (ox) aS2 =AI ox, 

1) a' :$AIa [x,zl: 
Assume there exists a substitution Il wilh a' =Allla rX,zl . Thcnll is constant-frce on all variables in V(az). 

By Lemma 2.1.3 we have Ilax :;eAI a'x, since a'x is in normalform and C#( a'x) = C#( ox) ± I.• 

U'sing Lemma 2.2.2 we can construct for every unifier a of zaxaz and zaz that is more general than e another unifier 

a' that is more general than a, hence we have shown: 

2,2,3 Theorem. IlULAI(zaxaz, zaz) does not exist. 

This immediately implies:
 

2,2.4 Corollary: The equational theory A+I (idempotent semigroups) is of type nullary.
 

In [Ba86] it is shown that there arc unifiers in ULAI(zxz, zyz) that are not instances of a most general unil'ier.
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We assume that there is one free constant a in the signature.
Consider the unification problem <zaxaz =AI  zaz> , where x,.‘z are variables and a is a constant. In the following we
fix the unifier 8 := {x <— z-lazz; z <— 2122 } of zaxaz and zaz, where the Zi are variables.

2,2,1 Emma For all 0 e UZAI(zaxaz, zaz) with 9 $ AI o [x,z]:

i) oz consists only of variables.
ii) C(ox) = {a}.

iii) The last element of ox is a variable

iv) V(ox)  (; V(0'Z).

Mi. Let 0 e UEAI(zaxaz, zaz) and let K e E with 6 =,“ X0“ [x,z].

0x = 7.17.2 and 07. is more general than hz. hence i) holds. iv) holds since (oz)a(ox)a(oz)  =“  (oz)u(oz).

The substitution l is constant-free on  Wax)  ;: V(o7.) and 2.0x = Al 21217.2. hence C(ox)  = {a} and ii) holds.

The last element of ox is a variable since ox is more general than 7.] azz. I

2.2.2 Lemma For all 0 e UEA1(zaxaz, zaz) with 8 SM c |x,z] there exists a 0' e USM-(wma, zaz) with GSA]
0 '  [x,z] and o" *AI  (5 [x,z] .

ML; Without loss of generality we can assume that ox is in normalforrn.

Lemma 2.2.1 iv) shows that V(ox) g; V(oz). We define a unifier o‘ that is more general than 6 as follows:

o'x :=  (ox)au,  o'z :=  (oz)u(oz),  where u is a new variable. o 'x is in normalform. since on is in normall'orm.

.1) cr' is a unifier of  zaxaz and zaz:

(oz)u(oz)a(ox)aua(oz)u(oz) =AI  (Oz)u(oz)a(oz)u(oz) since V(ox) _c; V(oz)

2)  O' SAIC'  [XJ] :

Let ox = s l a sz ,  where s2  is a nonempty string of variables and s ]  is a nonempty string.

We have 0 = A] no“ [x,7.] for it := [u +— s2}‚ since (oz)s2(oa) =AI  oz by rule 2 and (ox) asz = Al ox .
3)  6' 1A16  Ix‚7.]:

Assume there exists a substitution u with 0 '  =“ tto [x,'/.| . Then p. is constant-lice on all variables. in Wax).
By Lemma 2.1.3 we have ttox ‘tAI c 'x ,  since o'x is in normalform and C#( o 'x)  = C#( ox )  + l .  I

U‘sing Lemma 2.2.2 we can construct for every unifier 6 of zaxaz and zaz that is more general than 6 another unifier
0" that is more general than 6,  hence we have shown:

2.2.3 Theorem. uUZAI(zaxaz, zaz) does not  exist.

This immediately implies:

2,2,4 QQrQllary; The equational theory A+I (idempotent semigroups) is of type nullary.

In [8386] it is shown that there are unifiers in U2A1(zxz, zyz) that are not instances of a most general unil'ier.



2.3. At J is strnna:ly {'om plctc. 

Th~ (;(jllal iOllal Ih~ory Atl is all example for slrongly colllplele Ihcories IK iH51, IlIal is Ihenrics ill which the lI11iliclIllOIl 

problem <x =T l> with x E Vet) is eithcr not solvable or solvable with a u.nificr 0 with DOM(o) = (xl. 

2.3.1 Proposition. The unification problem <x =AI l> has the most general unifier 0 = (x (- t). 

Le. /-lULAI(x,t) exists and is a singleton for all possibilities of x and t. 

fiQQ[, It is well-known that in the case x ~ V(t) the most general unifier is {x (-t). 

In the case x E V(t) the most general unifier is 0 = (x (- t) : 

i) 0 is a unifier: 

Let t = SI xS2xs3 ' where x does not occur in sI and s3' 

Then at = sit (os2) t s3 

sIt (os2) t s3 =AI t(oS2) t since t starts with s I and stops with s3 

t(as2) t = AI t since Sy (t) ::1 Sy (as2 ). 

ii) a is most general: 

Let 8 be a unifier of x and l. 

Wcshow 8=AI8a[V(x,t)]:8ax=8t=AI8x and 8ay=8yforvariablcsy1:-x.• 

As a nontrivial example for unification in idcmpotent semigroups we analyze the structure of the set of uniEcrs of the 

unification problem <xa = AI ya> where a is a constant and show that this problem has 6 mgu's. 

2.3.2 Lemma. a1 := (x (- z, y (- z) is a most general unifier of <xa =AI ya> 

Proof. Let a be a unifier of xa and ya that is more general than (x (- z, y (- z). Then ax and ay are strings of 

variables. Lemma 2.1.4 shows that ax =AI ay.• 

2.3.3 Lemma a2:= (x (- za, y (- z) and a3 := (x (- z, y (- za) are most general unifiers of<xa =AI ya> 

Proof, It suffices to show that (x (- za, y (- z) is most general. 

Let a be a unifier of xa and ya that is more general than (x (- za, y (- z). Then ay is a string of variables and 

the rightrnost symbol ofax is the constant a. We have a =AI (z (- ay) 0 (x (- za, y (- z) [x,y]: 

(z ~ ay) 0 (x (- za, y (- z)x =AI (ay)a =AI (ax)a = AI ax 

(z (- ay)o (x (- za, y (--- z}y = ay.• 

The above lemmas show: 

2.3.4 Lemma. Every unifier a of xa and ya that is not an instance of aI' a2, a3 has the following properties: 

i) ax 1:-AI ay.
 

ii) the last symbol ofax and ay is not the constant a.
 

iii) The constant a is either contained in ax or ay.•
 

2.3.5 Lemma. Let s,t be irreducible strings that start and stop with variables and let a be a symbol with a ~ Sy(s) and 

a E Sy(t). Furthennore let sa =AI ta. 

Then t = tla~ with a ~ Sy(t l ) and a ~ Sy(tz)' 

hQQ.[. Assume for contradiction that the lemma is false. Then t = t l atza ... a~ with a ~ SY(4) and n ~ 3. 

We can assume that the sum of the lengths of s and t is minimal. 

Obviously we have s =AI t l and Sy(s);:2 Sy(ti)' Let uI be the first variable of sand t. Let s = UjS' and t =uJt'. 

1) uI occurs in s' or 1': 

Otherwise it is s'a =AI t'a. If the first element of s' is a variable, then s', t' is a smaller pair thans,t which is a 

contradiction. The other case is s = uI and t = ulaul' which is a contradiction, too. 0 
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The equational theory A+l is an example for strongly complete theories IKiBSI. that is theories in which the tit-til'ica-.ttmt
problem <x =T [> with x e VU) is either not solvable or solvable with a mi l le r  o with DOM(0) = [x ] .

2.3.1 Proposition. The unification problem <x = AI t> has the most general unifier o = [ x. <— t] .
Le. tiUEAI(x,t) exists and is a singleton for all possibilities of x and t.

33291. It is well-known that in the case x a V(t) the most general unifier is {x <— t}.
In the case x e V(t) the most general unifier is o = [x  <— t} :
i) o is a unifier:

Let t = s1x32x53 , where x does not occur in sl and S3.
Then ot  = 5118532) t 33
s1 t (o sz ) t  S3 =AI  t(os2) 1 since t starts with s ]  and stops with S3

«asp t =AI 1 since Sy (t) : Sy (osz ).
ii) o is most general:

Let 6 be a unifier of x and L.
We show 6 =AI 6 o [V(x,t)]: Bo x = 6t=A16x and Bo  y = fly for variables y at x. .

As a nontrivial example for unification in idempotent semigroups we analyze the structure of the set of unifiers of the
unification problem <xa =“  ya) where a is a constant and show that this problem has 6 mgu's.

2,3,2 Lemma. (:1 := [x  (— z,  y <— z} is a most general unifier of <xa =AI ya>

Proof. Let c be  a unifier of xa and ya  that i s  more general than {it <— z ,  y <— 2}. Then ox and cry are strings of
variables. Lemma 2.1.4 shows that ex =AI 0y. I

2.3.3 Lemma 0'21: [x  <— za,  y <— z}  and 0'3 := {x <— 2, y (~— za} are most general unifiers of _<xa =AI ya>

m It suffices to show that [ x e— za, y <— z} is most general.
Let c be a unifier of xa and ya  that is  more general than [x  <— za,  y <— 2}. Then oy i s  a string of variables and
the rightmost symbol of ex is the constant a. We have 6 =AI [2 <— oy} = [x  <— za, y <— z} [x,y]:
{z  4— 0y] = [x  <— za,  y <— z ]x  =AI  (O'y)a =A1(_0‘x)a = AI O'x .
l7. +~oy)~[x  <—za,y<—— v.}y= cry. .

The above lemmas show:

W.  Every unifier o of xa and ya that is not an instance of 01 ,  02, 63 has the following preperties:
i) OX iAI  cry.
ii) the lam symbol of ox and cry is  not the conSLant a.
iii) The constant a i s  either contained in  ex or  cry. I

W Let s.t be irreducible strings that start and stop with variables and let a be a symbol with a e Sy(s) and
a e Sy(t). Furthermore let sa  =AI ta.

Then t=t1at2 with a e Sy(tl) and a eSy(t2).
float; Assume for contradiction that the lemma is false. Then t== tlatza. . .  atn with a a Sy(ti) and n 2 3.

We can assume that the sum of the lengths of s and t is minimal.

Obviously we have s =A1 t1 and Sy(s) Q Sy(ti) . Let “1 be the first variable of s and t. Let s = uls' and t=u1t‘.
1) "1  occurs in  s '  or t':

Otherwise it is s“a ==A1 t‘a. If the first element of s' is a variable. then s', t" is a smaller pair than s,t which is a
comradiction. The other case is s “= “1  and t = u lau l ,  which is a contradiction, too. a.



Lel sl,11 be the full prefices of s and I ,respectively and let sr'Iy be the full suffices of sand t , respectively. 

2) Iy covers ~a ... aly,: 

Otherwise I is reducible by rule 2, since SY(11a) = Sy(t) =SY(Iy). 

3) Iy covers a~a ... aly,: 

If '-r = ~a ... al , then '-ra is a full suffix of la. Since sra is a full suffix of sa, we have '-ra =AI sra.n 

Minimality of s,t implies '-r = t2at3. Hence ~at3a =AI sra, hence t2 =AI sr' Multiplying t] a from left we oblain: 

11a =Ail] a~at3a =AI t] a~a . BUlthen t contains the reducible substring t] a~a, a contradiction. 0 

4) Final contradiction: 

We have proved that Iy = t] 'at2a... aly,. Since Iya is a full suffix of ta and Sy-a is a full suffix of sa, we have 

Iya =AI sra. From I) il follows thal '-r ~ tor sr ~ s. Hence n = 2.• 

2.3.6	 Lemma. Every unifier 0' of xa and ya that is not an instance of 0' I, 0'2,0'3 is an inslance of 

0'4 := {x ~ ZIZ2, Y(- ZlZ2az2] or 0'5:= {x ~ Zlz2az2, y ~ ZIZ2] or 

0'6:= (x ~ ZI Z2 Z3Z4 Z2a Z3Z2 Z3Z4 Z2' Y~ ZlZ2 Z3Z4 Z2a Z4Z2 Z3Z4 Z2) 
flQQL.	 Assume by contradiclion thal there exists a unifier 0' of xa and ya Ihat is not an inslance of a O'i 

for i = 1, ... ,6. Wc can assume that Ihe sum of the lengths of the strings O'x and O'y is minimal. 

Furthermore we call assume Ihal O'X alld O'y are in Ilormalform. We use liS abbrcvialioll crx = s alld ay,." I.. 

I) s and t contain occurrences of a:
 

It follows from Lemmas 2.3.4 thal one of them contains an occurrence of a.
 

Assume I contains an occurrence of a and s is a-free. Then by Lemma 2.3.5 I = I]a~.
 

Now 0' is an instance of 0'4: 0' =AI (z] ~ s, z2 ~ ~)0'4 [x,y]. NOle that 1]12 =AI 11.0
 

2) We can assume thalthe firsl symbol of s and t is a variable. 

Otherwise we can replace the a at the slart by a new variable and obtain a more general unifier with the same 

number of symbols. 

Lel u] be the firSI variable of sand l. Lel s = u]s' and I =u11' 

3)	 ul occurs in s' or I': 

Assume s' and I' do noL conlain 1I 1. Then s'a =AI I'a. Let 0" := {x ~ s', y (- I'] be the corresponding unifier 

of Xli and ya. Since 0' is minimal, cr' is an instance of some O'i' The slruCLure of the cri implies thal cr is also an 

inslance of the same O'i' 0 

Lel SI' I) be the full prefices of sand t ,respectively and lel sra, Iya be the full suffices of sa and La, respectively. 

0" := (x ~ sf' y ~ '-r] is a unifier of xa and ya that is an instance of some O'j' Hence we have
 

0" =AI A.crj [x,y] for some A.. Lel sr' := srIsr and Iy' := '-r1'-r be the full suffices of sand t, respeclively.
 

4) Either sr or '-r is a-free.
 

If both contain an occurrence of a, Ihen 0' =AI A.'O'j [x,y] with A.'ZI := SI Az I.
 

A.'O'j x = slsr =AI SI SrlSr = AI s, since SY(St) = Sy(sr)'
 

A.'O'j y = sl'-r =AI tl '-rl'-r = Al t, since SY(li) = Sy(Iy). 0
 

Assume that sr is a-free.
 

5) Iy is a-free:
 

If Ir contains an a, Ihen 0' =AI A.'O'j [x,y] with A.'ZI := s\ SrI All'
 

A.'O'j x = s\ sri Sr =AI sand A.'O'jY = s\ SrI Lr = t, sri '-r =AI t, Iy =AI t,
 

since Sy(tl) = SY('-r). 0
 

6) Final contradiclion. 

\ and Iy arc bOlh a-free. Then it is sr =Al Ir· 

Let sr' := aSrlsr and tr' := alrl '-r be Ihe full sulTices of s and I . respectively. Now 0' is an instance of 0'6: 
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Let sl,t1 be the full prefices of s and t , respectively and let s„tr be the full suffices of s and t , reSpectively:..
2) IT covers "za- . .  at“:

Otherwise t is reducible by rule 2, since Sy(t1a)= Sy(t) =Sy(tr).
. 3 )  tr covers atQa. . .  at“:

If t, = tQa. . .  at“, then tra is a full suffix of ta. Since sra is a full suffix of sa, we have tra = M sra.
Mini-mality of s,t implies t, = t_2at3._ Hence t2at3a =“ sra, hence t2 =AI sr. Multiplying tla from left we obtain:
tla ”A1 tlatzat3a =AI tlatQa .. But then t contains the reducible Substring tlatQa, a contradiction. El

4) Final contradiction:

We have proved that tr = t1'at2a. . .at“. Since tra is a full suffix of ta and sra is a full suffix of sa we have
tTa =“ sra. From ]) it follows that tr at t or sr # 3. Hence n = 2. l

2,-3.6 Lemma; Every unifier o of xa and ya that is not an instance of Gl., 0'2, 03  is an instance of
04 := {x <— z1z2 ‚y  e—zlzzazzl or 0'5 := {x (— zlzzazz , y <— .3132] or
06 := {x <— 2122 2324 22a 2322 Z3z4 22 , y +— zlzz  2324 22a 2.422 2324 22}

. Assume by contradict ion that there exists  a unifier o o f  xa  and ya  that is not an instance of a o i
for i = I , .  . .‚6. We can assume that the sum of the lengths of the strings as and cry is minimal.
Furthermore we can assume that as and cry are in normall'nrm. We use its abbreviation mt = s and try = t.

1) s and tcontain occurrences of  a :

It follows from Lemmas 2.3.4 that one of them contains an occurrence of a.

Assume t contains an occurrence of a and s is a-free. Then by Lemma 2.3.5 1 = tlatz.

Now a is an instance of 64: o =A1 {zl <— s, 22 <— [2]G4 [x,y]. Note that t1t2 =A1t1. El

2) We can assume that the first symbol of s and t is a variable.
Otherwise we can replace the a at the start by a new variable and obtain a more general unifier with the same.
number of symbols.

Let “1 be the first variable of s and t. Let s = uls’ and t==u1't'
3)  u] occurs in s '  or 1':

Assume s' and t' do not contain it]. Then s'a =“ t'a. Let. o" := {x <— s', y (-— t'} be the corresponding unil'ier
of sat and ya. Since 0 is minimal, 0 '  is an instance of some oi. The structure of the ori implies that (r is also an
instance of the same (If. El

Let sl, t] be the full pref ices of s and t , respectively and let sra, tra be the full suffices of  s a  and ta, respectively-
0’ :=. { x <— 3,, y .<—— tr] is a unifier of xa and ya that is an instance of some oj. Hence we have

0' =M M]. [x,y] for some it. Let sr' :=-s1,lsI and tr' :=:- tr-ltr be the full suffices of s and t , respectively.
4) Either s1r or tJr is a—free.

If both contain an. occurrence of a, then 0 =AI No)» [x,y] with N21 := sl ital...
Noj x = sls1r =A1515r13 r  = A1 3, since Sy(sl) = Sy(sr).
it'cj y = sltr =A1tltrltr = A1 t, since Sy(tl) = Sy(tr). El

Assume that s1r is a—free.
5) tr is a-free:

“It“ tr contains an a, then. G =“  Noj [x,y] with Ä'zl := sl sfl'kzl.
7901'“: Slsrfif =A1 5“ and WJ“? =‘StS-rtlr=t1.$r1‘r "AI L1 Lr=AI 1!

since Sy(tl) = Sy(tT). El

6) Final contradiction.
sr and IT are both a-frce. Then it is sr =“ [T.
Let sr' := asrlsr and tr' := attfltr be the full suffices of sand I . respectively... New 0 is an instanccofqfiz;



e00 x = SISr Sri ~l Sr a Sri Sr SrI ~1 Sr 

=Al	 SI a SrlSr srll,-lSr since Sy(sl) = Sy(sra);;] Sy( srsrl ~]). 

=AI	 SI a SrlSr since Sy(sr):2 Sy( sri ~1)' 

=AI s. 

Analogously, we obtain e06 y =AJ l. 

The case where SrI or ~I are empty can be treated in the same way by using the component 

z3 ~ sr or z4 ~ I,- instead of the components Z:3 ~ srl ' z4 ~ 1,-1 .• 

Now we analyze the example in ~2.2 more thoroughly and show that UI(zaxaz, zaz) has width (1,1): 

2.1,8 Lemma. <zaxaz = zaDAJ has the most general unifier 1: := (z ~ zxz) and t.he chain 

~i:= [x ~ ul au2a ... aUn' z f- lln+]uIU2"'Unun+I)' The set (1:'~i ) is a complete set of llnifiers. 

J:rQQL 

1) If e is a unifier with a E Sy(8z) or a ~ Sy(Gx) then e S 1:[x,z]: 

We have e = 81: [x,z]: 8z 8x 8z =AJ ez under the conditions above. 

2) If e is a unifier with a ~ Sy(8z) and a E Sy(8x) then there exists a n with 8 S ~n [x,zl: 

We have 8x = sI a ... aS with a ~ Sy(s). Choose n = m and A as follows: m
 
AUi := si' AU n+] := oz. Then ° =AJ A~n [x,z].
 

The case were sI or sm is empty can be treated with AU] := a,
 

3) Obviously ~i is an ascending chain of substitutions. Furthennore 1: and ~i are independent. _
 

Theorem 2.2.3 and Lemma 2.3.8 show that the following holds: 

2.3 9 P(oposililln. UI(zaxaz, zaz) has width (1,1): 

2.4 A Lower Bound for the Maximal Unification Type of Atl. 

2.4.1 Theorem,	 If one constants a is available, then the maximal unification type of Atl is 

at least (W,W). 

E..!:.Q.QL We show that for every n there exist terms s,t such that UIAI(s,t) has type ~ (n,n) 

Let Si ' ti ' i= 1, ... ,n-I be variants of the problem <xa =AI ya> with most general unifiers 

01 and 02 given as in Lemma 2.3.2 and 2.3.3. Let sn and tn be variants of the 

problem <zxz =AI zyz>. This problem has a most general unifier (x ~ y) and a 

nonemply TI(UIAI( ZXZ, zyz» [Ba86]. 

Now let s =sI 82 ... 8n-l sn and t:= tlt2 ." In-I In and let 'j be unifiers of Si and li' 

such Ihatlhe codomains are pairwise disjoinl. Gmsider all possible combinatiol1s of these 

unifiers. Every such combination unifies s and l. 

Let ~ be a unifier of sand t with 'I· ... ·'n S ~ [V(s,t)]. Since all codomains of the 'i's 

are disjoint, the variable sets V(~(si),I!(ti) are disjoint. Furthermore the first symbol 

of ~x is a variable, since every 'ix starts with a variable. 

Lemmas 2.1.1 and 2.1.4 show that ~i = ~ti for all i, hence different combinations 

1:1· ··1:n are independent. Hence there are at least 2n-1 elements in ~( UIAI( s,t) and atleast2n-1 independent 

elements in TI( UIAI( s,t» .• 

10 

905 " :SISr  5n  ‘Ttsr 3 grist-Sn Lr15:

=“ s ]  a Sus i  srl tfls1r since Sy(s‚) = Sy(sra) ;; Sy (  sts]rl tfl ) .

="AI Sl  a Sr l s r  Since SKS!) 2 SK s r l  ‘11)-

=AI 3-

Analogously, we obtain 606 y =AI t.
The case where srl or  [„ are empty can be treated in the same way by using the component.
23 6— ST or 24 (— tr instead of the components 23 <— 5:1 , 24 (— tn . I

g. ‚3,2 Proposition. uUE(xa. ya) = 161.02. 03 .04 .  05.06 1

Now we analyze the example in §2.2  more thoroughly and show that U£(zaxaz, zaz) has width (1.1):

2.3.8 Lemma. <zaxaz = zaz>A1 has Lhe most  general unifier 1: := {z  <— zxz]  and the chain

pi := [x <— ulauza. . .  au“, z (— Un+1U1U2- . .unun+1 }. The set [T,].Li } is a complete set of unifiers.
P_ro_QL

1) If 6 is a unifier with a e Sy(Bz) or a es Sy(0x) then 8 s r[x.z]:
We have 6 = er [x,z]: 62 6x 82 = A1 62 under the conditions above.

2) LF 8 is a unifier with a e Sy(92) and a e Sy(6x) then there exists a n with 8 $ tin [x,z]:.
We have ex  == 31a asm with a e Sy(si). Choose n = m and l as  follows:

lui := si, kun+1 := oz . Then 0' =A1 Min [x,z].
The case were 31  or sm is empty can be treated with kul := a,

3) Obviously pi is an ascending chain of substitutions. Furthermore I and ”i are independent. I

Theorem 2.2.3 and Lemma 2.3.8 show that the following holds:

2.3 ‚9 Proposition. U2(zaxaz. zaz) has width (1.1):

“„  B i t  l i I '  l I I 'fi I ' I  [31

2.4.1 Theorem. If one constants a is available, then the maximal unification type of A+I is
at least (03,03).

m We show that for every n there exist terms s,t such that UZAI(s,t) has  type 2 (nm)
Let Si , ti . i=l,. . .‚n-l be variants of the problem <xa = AI ya> with most general unifiers
01 and 02 given as in Lemma 2.3.2 and 2.3.3. Let sn and tn be variants of the
problem <zxz =“  zyz>. This problem has a most general unifier {x <— y ]  and a

nonempty 11(UZAI( 2x7. , zyz)) [Ba86].
Now lets =s1s2 e sn  and t :  1112 ‘n-ll-n and let Ti  be unifiers of Si  and ti.
Such that the oodomains are pairwise disjoint. Consider all possible combinations of these

.unil'iers. Every such combination unifies s and 1.
Let u be a unifier of s and t with t i e  morn ‚<. ll [V(s.t)]. Since all codomains of the 'ti's

are disjoint, the variable sets V(tt(Si),tt(li)) are disjoint. Furthermore the first symbol

of px is a variable, since every rix starts with a variable.
Lemmas 2.1.1 and 2.1.4 show that psi = lJ-li for all i, hence different combinations-

11° ...o‘rn are independent. Hence there are a t  least 2n-1  elements in p.( UEAI(_ 5,0) and at least. 2"“1 independent.
elements in  n (  UEAI( s.t)). I
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2,5 Rewrjte Systems OD Free Idempotent Semjgroups, 

In [SS83] a conditional rewrite system for idempotent semigroups is presented. However as unconditional rewrite rule
 

systems are much more preferable in practice, there remain the open problem, if a construction as in [SS83] is really
 

necessary.
 

We now show that there exists no unconditional canonical rewriting system for idempotent semigroups.:
 

In Ihe following we denote the A+I-normalform of a term t with t.1 and the normal form willl respect to a rewrite rule
 

system R with t.1R.
 

We can assume that there are no constants. Hence every string in the following is a string of variables.
 

2.5. I Theorem. There does not exist a finite unconditional canonical string rewriting system for the equation xx ---7 x.
 

ErQQf.
 

i) Suppose there exists a canonical rewrite rule system on strings R := (Ii ~ ri I i := 1. ... ,n).
 

I) We can assume that all ri are in R-normalform. 

2) If s ~ s', then Isl > Is'l . Particularly, lIil > Iril for all rewrite rules. 

Assume by contradiction that s ~ s' and Isl:=;; Is'l . We have xlsl ~ xls'l , since xlsl is an instance of s. Then for 

the term xlsl there exists an infinite reduction, since xis I is reduced to x Is'l and xlsl is a substring of x Is'l. 0 

Let m be the maximal length of all li' Consider the term t:= 7m ZJ z2 .. ,zm-2 zm_ I Z I ZmZn1- I .. ,z2 ZI.
 

3) Obviously the A+I-normalform oft is t.1 := Zmzl ... Zm-Izmzm-l ... zJ
 

4) All substrings of length ~ 2 of the string t are different and all substrings of length ~ 2 of t.1 are different:
 

It suffices to consider suhslrings of length 2. By construction these subslrings are all different. 

5) All proper substrings of t and t.1 are in normalfom1: 

Rule I is never applicable due lO 4). Obviously Rule 2 is nOl applicable to proper subsl1ings Oil .• 

6) There exists no rule I ~ r in R, which reduces t. 

Assume I ~ r reduces 1. 

Then I must reduce the term tat toplevel, since all substrings are in normalform. 

Let I := YI'" Yk ,where Yi are variables. Let a be a sbstitution with al := t, then ar := t.1, since 

ItI> I crrl and the only possibility for at is t.1. It follows from 4) that for all variables x that occur at least 

twice in I we have ax is a variable. 

There exists a variable y in t such that ay is not a variable, since III < ItI. It follows from 4) that y occurs 

exactly once in I. Since r :=AI I, y E V(r) and y occurs exactly once in r due to 4). Hence we have the 

representation I := IS ylE ' r:= rSyrE and y E Sy(lS, lE' rS' rE,).
 

Lemma 2.1.4 yields IS :=AI rS and IE:=AI rE' Furthermore either IISI> IrSI or II EI> IrEI. Repeating this
 

argument we obtain nonempty substrings SI of I and sr of r with the property: SI := AI sf'
 

lasll:= Is11 , lasrl := Isrl and ISII > Isrl.
 

This means aSI and aSr are proper substrings of t and t.1 rcspectively Il1al arc equal under icJcrnpolcnce and
 

have a dil'fe'rent number of symbols. Such substring do nol exist due to 5) •
 

2,5.2 Theorem 

There does not exist a finte unconditional canonical rewrite rule system for idempotent semigroups. 

.erooL 
i) Suppose there exists a canonical rewrite rule system R:= (Ii ~ ri I i := I, ... ,n J. 

1) We can asswne without loss of generality that f( f(x y) z) ~ f(x fey z)) is in R and that normal forms are of 

the form f(xI f(x2 f( ... ))): 
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In [3383] a conditional rewrite system for idempotent semigroups is presented. However as unconditional rewrite rule
systems are much more preferable in practice, there remain the open problem, if a construction as in [SS 8-3] is really
necessary.
We now show that there exists no unconditional canonical rewriting system for idempotent semigroups:

In. the following we denote the A+I-normalform of a term t with ti and the normalform with respect to a rewrite rule
system R with tiR.
We  can  assume that there are no constants. Hence every string in the following is a string of  variables.

2.5.1 Theorem. There does not exist a finite unconditional canonical string rewriting system for the equation xx «> x.

M
i) Supposc there exists a canonical rewrite rule system on strings R = “ i  ———> fi | i = 1. .  . . . n ) .

1 )We  can assume that all f i  are in R-normalfonn. .
2) If s —) s', then Isl > ls'l . Particularly, llil > Iril for all rewrite rules.

Assume by contradiction that s —> s' and Isl s ls‘l . We have x'S' —> x'S'l , since x'5' is an instance of 3-. Then for
the term xISI there exists an infinite reduction, since xISI is reduced to x IS" and x's‘ is a substring of x "5". El

Let m be the maximal length of all li. Consider the term t = amalzz ..-zm_-2-zm_1 7.1 ZmZm-l ...22 z].
3)  Obviously the A+I-normalform o f t i s  t i  = zmzl zm- lzmzm—l  z l

4) All substrings of length 2 2 of the string tare  different and all substrings of length 2 2 of LL are different:
l l  su ffices to consider substrings of  length 2 .  By  construction these substrings are all different.

5) All proper substrings of t and [J, are in normall'omt:
Rule 1 is never applicable due to 4). Obviously Rule 2 is not applicable to proper substrings of t. ‘

6)  There exists no rule I _) r in R,  which reduces t.

Assume l _) r reduces t.

Then I must reduce the term t a t  toplevel, since all substrings are in  nor-malform.
Let 1 = 3’1 yk ‚where Yi are: variables. Let 0‘ be a sbstitution with 01 = t, then or  = LL, since
It] :-> | orl and the only possibility for or is LL. It: follows from 4) that for all variables x that occur at least
twice in 1 we have ox is a variable.
There exists a variable y in t such that oy is not a variable, since Ill < Itl. It follows from 4) that y occurs
exactly once in 1. Since r = AI 1, y e V(r) and y occurs exactly once in  r due to 4).  Hence we have the
representation 1 = IS  ylE , r = rSyrE and y e Sy(lS, IE, rs ,  TE)—

Lemma 2.1.4 yields IS  = AI TS and 1E = AI rE. Furthermore either IIS-| > kg! or llEl > lrEl. Repeating this
argument we obtain nonempty substrings s] of l and s r  of r with the prepcrty: s] ”AI  Sr.,
Iosll = Isll , losrl = | e  and ls}! > lsrl.
This means dsl  and as,  are proper substrings of [ and  LL respectively that are  equal under idempotence and
have a different number of symbols. Such substring do not exist due to 5) I.

There does not exist a finte unconditional canonical rewrite rule system for idemporent semigroups.
m
i) Suppose there exists a canonical rewrite rule system R = “ i  ——> ri l i = l,.  . .,n].

l )We  can assume without loss of generality that. f( f:(x y) z) —> f(x f(y z)) is in R and that normalforms are of
the form f(xl f(x2 f( ))):



The terms x and f(x y) are in normalform, since otherwise R is nOnlerminating.
 

We have: f(x fey z» is equal to f( f(x y) z). Hence they can be reduced to the same normal form. If none of
 

them is in normalform, then reduction cannot terminate, since we always can move brackets around. Assume
 

f( f(x y) z) is irreducible. Then there exists a reduction from f(x fey z» to f( f(x y) z)
 

Hence we can add the rule [(x fey z» ~ f( f(x y) z) to R without changing canonicity or normalforms.
 

For convenience we call a term fully reduced by f( f(x y) z) ~ f(x fey z» and containijlg only variables in 

standard-form and denote them as a string of their variables. The set of all terms in standardform is denoted as 

TS ' We denote with 1..1- the A+I-normalform or t in slandardform 

2) For every term t in standardform: If t .~ t' • t has more symhols than I': 

Assume I'or contradiction ill:OS; It'l. Obviously we can reduce t' to a term \" in standanll'mlll wilhll'l =-It''l. This 

means that a term tx obtained from t by making all variables equal reduces to a term l"x' 1l01l11 and \"x arc inx 
standardJorm, hence tx is a subtcrm of t"x. This is a contradiction to the termination of R. 0 

3) We can assume that all fj are in standardform. 

4) The subsystem RS of rules with left side in standardform is a canonical rewrite rule system 

on the set TS of terms in standardform:
 

Termination follows from 1).
 

If a rule I ~ r reduces a term in standardform, then I is in standardform. Assume RS is not coniluent. Then
 

there exists an RS-irreducible term tin standardform such that t 1:' t1. Since R is confluent, and Ill> Id·, ,R
 

reduces t. But every rule that reduces t is in RS' This contradiction shows that RS is confluent.
 

5)	 RS reduces every term t to its normalform tt. 

6)	 Let RS.A he the associative version of RS' Then RS. A is a canonical rewrite rule system for 

idemrotency on .sl rings: 

Obviuosly RS.A reduces strings t to their nonnalform tt. FUrlhermore RS,A satisfies 2), i.t'. shortens every 

string during reduction, since Rs does so. Hence Rs,A is canonical. 

This is a contradiction to the Theorem 2.5.1 above _ 
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Appendix 

Let U be a countable quasi-ordered set. In the following we denote with [b,oo I the suhset [a I b:'O: a) of lJ. 

A. I Lemma Let B be an independent subset of U. 

Then the sets [b,oo] are mutually disjoint, where b E B. 

Furthermore if B is maximal independent then U [ [b,oo] I b E B} is complete in U. 

Proof.	 The disjointness of [bl'oo] and [b2'00] follows from the independence of B. 

Let B be a maximal independent subset of U and let u E U be an arbitrary element in U. Then B u {u 1 is 

dependent. hence there exists v E U and b E B with u ~ v and b:'O: v. Thus v E [b,oo] and we have shown that 

U { [b,oo] I b E B 1is complete in U. 

A.2 Lemma Let B, C be maximal independent subsets of U with ICI > IBI. 

Then there exists a h E B and Cl :I:- c2 E C with rb,DO] n ICI ,00]:1:- 0 and [b,ool n IC2,001. 

IJ:.Q.Q1 Assume by coIltradiction that the lemma is false. 

Then for all bE B there exists at most one c E C with [b,ooJ n [c,oo]:I:- 0. 
'Since	 ICI > IBI there exists a Co E C such that [b,oo] n [cO,oo] = 0 for all b E B. 

This means the set B u{ cO} is independent, a contradiction to the maximality of B. 

A,3 Lemma, Let B be an independent subset of U and let Cb be independent subset of U contained in [b,oo]. 

i) Then U [Cb 1b E B} is independent. 

ii) If B is maximal independent and the sets Cb are maximal independent, then U {Cb I b E B) is maximal 

independent. 

.!:J:.QQL i) Obvious. 

ii) Assume U [Cb Ib E B} is not maximal independent. Then there exists aCE U such that U (Cb I b E B) u (c) 

is independent. By Lemma A.l there exists an element dE u{[b.DO]1 b E B) such that d ~ c, Let dE [b'.co]. 

Application of Lemma A.I to Cb' yields an element d' E U ([c'.DO]1 c' E Cb') with d' ~ d ~ c. That is a 

contradiction to the independence of U (Cb Ib E B) u {c} .• 

AA Theorem. Let U be a quasi-ordered set without maximal elements. 

Then either the cardinality of independent subsets B is bounded by a natural number nO or there exists an infinite, 
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Appendix

Let U be a countable quasi-ordered set. In the following we denote with ['b,°o| the subset [ a  |' b s a} of  U.

A,] Lemma Let B be an independent subset of U.
Then the sets [b.oo] are mutually disjoint. where b e B .

Furthermore if B is maximal independent then U[  [b.oo] l b e B}  is complete in U.

_Pr_oQL The disjointness of [b1,oo] and [b2.oo] follows from the independence of B .

Let B be a maximal independent subset of U and let u e U be an arbitrary element in U. Then B U {u} is
dependent, hence there exists v e U and b e B with u s v and b S v.  Thus v e [b.oo] and we have shown that

U { [b,oo] ! b e B]  is complete in U .

A,2 Lemma Let B, C be maximal independent subsets of U with ICI > IBI.
Then there exists a b e B and Ct  at c2  6 C with [b.oo] t") [(11.00] == @ and [b.w] n |_c2,ool.

&QOL Assume by contradiction that the lemma is false.

Then for all b e B there exists at most  one c e C with [b,ooJ (\ [c,oo] # @.

‘Since ICI > IBI there exists a CO e C such that [b,oo] n [com] = @ for all b e B.
This means the set  B U{CO } is independent, a contradiction to the maximality of B.

w Let B be an independent subset of U and let Cb be independent subset of U contained in [b.oo].

i) Then U [Cb  | b e B}  is independent.

ii) If B is maximal independent and the sets Cb are maximal  independent, then U {Cb  | b e B]  is maximal

independent.
m i)  Obvious.

ii)Assume U[Cb  I b e B ]  is  not maximal independent. Then there exists ac  e U such that U[Cb  l b e B}  U {c}

is independent. By Lemma A.l there exists an element d e U{[b,oo]| b e B} such that d 2 e. Let d e [b',oo].
Application of Lemma A.1 to Cb‘  yields an element d '  e U[[c' ,oo]l  c '  e Cbn] with d '  2 d 2 c .  That is a

contradiction to the independence of U {Cb lb  e B] U {c}. I

A‚4 Theme m. Let U be a quasi-ordered set without maximal elements.
Then either the cardinality of independent subsets B is bounded by a natural number no or there exists an infinite,

l3



independent subset B of U. 

Erlli2f. tBy contradiction. 

!\SSllnlC rhe theorcm is ralsL'. 

'I'ill'lIlhl'/l·l:xi.sIS a sCqIlCIIC(' or I'illilc,lllllXjlllill illdq)clJ(!L:lll slIllsl·ls.llj 01 1I wilh lBi+11 '.llljl. 

()lIr uilll is III L:llnslrllct an inrillilC independclIl slIbscl 8 or lJ: 

I) For every chain Hi or maximal independent subsets of U and for every i there exists a bE Si sucilthal the set 

[b,co] L:Ontains a sequence of finite, maximal independent SUbSClS Cj with ICj+}1 > ICjl : 

Assume the assertion is false.
 

Then for every b E Si the number of elements in a maximal independent subset of [b,co] is bound.
 

For every b E Si let Db be an independent set in [b,co] of maximal cardinality.
 

Then the set D := U Db is a maximal independent subset of U due to Lemma A.3
 

There exisls a maximal independent set Sk with ISkl > IDI, since the cardinality of maximal independcm
 

subsets is not bound.
 

Lemma A.2 shows that there exist elements bl,k ,h2,k E Bk and an element dE D such that Ulcre exist
 

elements b 1.k' E [ h} ,k'co] (l [d,co] and b2,k' E [ b2,k'oo] (l [d,oo] . The clement d is in some Db" The
 

replacement of the element d in Db' wiLh the elements b1,k' ,b2,k' yields an independent subset in [b',co] of
 

greater cardinality than Db" This is a contradiction.
 

jii) 111ere exisL~ an infinite, independent subset or U: 

Let b2 be the element of B2 that satisfies ii), i.e. there exists a chain Cj of maximal independent subsets in 

[b2'co] with ICjl < ICj+} I. We define D(= B2 \ (b2)' Not that D I ;t: 0. 
The same construction yields a nonempty set D2 C [b2'co] and an element b3 such thal [by'o] contains an 

chain according to ii). 

Repeating the construclion we oblain an infinile sequence of independent subsets Di of U with the additional 

property that their union is independent. The set u{ Djl i = 1,2, ... ) is an infinite independent subset of U. 

We have reached a contradiction. _ 

A,5 Lemma . Let U be a countable quasi-ordered set with width(U) (0,1). I.e. the set U 

has no maximal elements and the maximal cardinality of an independent subset is 1. 

Then there exists an increasing chain C of elements of U such that C is complete in U. 

Proof. Let ul ,u2' ... be the elements of U. Let cl:= ul and define ci recursively such that 

ci+1IS an element greater than ci and ui· 

Then obviously C := [c I ,c2"') is an increasing chain and C is a complele subset of U. _ 

NOle that the lemma is false for noncountabJc quasi-ordered sets:
 

The set of all finite subsets of a noncountable set S ordered by the subset ordering has widul (0, I), but ewry
 

increasing chain C covers only a countable subset of the set S.
 

A.6	 Lemma . Let U be a countable quasi-ordered set with width(U) = (O,n). I.e. the set U 

has no maximal elements and the maximal cardinality of an independent subset is n. 

Then there exist n increasing chains Ci of elements of U such Lhat UCi is complete in U. 

ErQ.Qf follows from A.l and A.S _ 

U width( UI(s,t» := then the number of increasing chains, that form a complete subset may be not countable. 00 , 

Consider for example an infinite binary lree . 
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independent subset B of U.
P_-ro_Q£ fly contradiction.

Assume the theorem is false.

'l‘hcn thun- exisls a sequence of finite. maximal independent subsets-Iii of U with I l l iHI ‘. lH i l .
Our aim is to construct an infinite independent subset B of U:

I)For  every chain B i of maximal independent subsets of U and for every i there exists a b. e B i such that the set
[b,oo] contains a sequence of finite, maximal independentsubsets Cj with l+1 |  > |“l :

Assume the assertion is false.
Then for every b 6 Bi  the number of elements in a maximal independent subset of [b.oo] is bound.
For every b e B i let Db be an independent set in [b,oo] of maximal cardinality.
Then the set D := U Db is a maximal independent subset of U due to Lemma A.3
There exists a maximal independent set Bk with IBkI > IDI, since the cardinality of maximal independent
subsets is not bound.
Lemma A.2 shows that there exist elements b l ,k  i b2 ,k  e Bk and an element d e D such that there exist
elements b1_k' e [ b1 ,k ’ ° ° ]  n [d,oo] and b2_k' e [ b11000] n [d,oo] . The element d is  in some Dbn. The
replacement of the element d in Db '  with the elements bLk' ‚b2_k' yields an independent subset in [b'.,oo] of
greater cardinality than Dba. This is a contradiction.

iii) There exists an infinite , independent subset of U:

Let b2 be the element of 32  that satisfies ii), i.e. there exists a chain Cj of maximal independent subsets in
[b2,oo] with | l  < l+1|. We define D11: 82 \  {bg}. Not that DI  at (Ö.
The same construction yields a nonempty set DZ (; [b2,oo] and an element b3  such that [b3,oo] contains an
chain according to ii).

Repeating the construction we obtain an infinite sequence of independent subsets Di  of U with the additional
property that their union is independent. The set UlDil i = 1,2,. ..} is an infinite independent subset of U.

We have reached a contradiction. I

A,5  Lemma . Le t  U be  a countab le  quas i -ordered  se t  wi th  widthCU) = (0 ,1) .  I.e.. the set  U
has no maximal elements and the maximal cardinality of an independent subset is 1.
Then there exists an increasing chain C of elements of U such that C is complete in U.

Prooi, Let u1,u2,- be the elements of U. Let 01  := “1 and define Ci  recursively such that
Ci+l  is an element greater than Ci and “i-
Then obviously C :=-- [c ] ‚c2...} is an increasing chain and C is a complete subset of U. I

Note that the lemma is false for noncountable quasi-ordered sets:
The set of all finite subsets of a noncountable set S ordered by the subset ordering has width (0,1), but every
increasing chain C covers only a countable subset of the set S .

A .6  Lemma_. Le t  U be  a countable  quas i -ordered  s e t  wi th  wid th (U)  = (Om). Le .  the se t  U

has no maximal elements and the maximal cardinality of an independent subset is n.
Then there exist It increasing chains Ci  of elements of U such that UCi is complete in U.

M follows from A.] and A5  '

If width( U2(s,t)) = ao , then the number of increasing chains, that form a. complete subset may be not countable.

Consider for example an infinite binary tree .


