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.Ahsnzact.
The undecidability of finitely generated stable transitive relations on free terms is proved in an elementary way and

then used to show the undecidability of the implication A => B of two clauses A and B. The implication is  decidable in
the case A has at most two literals that are complementary unifiable after renaming. Application of the undecidability of
transitive relations yields more classes of clause sets that have an undecidable satisfiability problem: clause sets
consisting of two clauses with two literals each (2-c1auses) and in addition 2 ground units, clause sets. consisting of a
single 3-Clause and arbitrarily many (non-ground) units and clause sets consisting of a 4-clause and arbitrarily man-y
ground units. Finally we show the undecidability of the so~called D—cl'auSe sets, where a Declause is a Horn-clause of
the form Q1(X1)A . . . AQn(Xn) => Qn+1(t).

Ke 5. m gms— Undecidability. Clause sets, Implication of Clauses, '.Declarafions‚



We are interested in problems in Automated DeduCtion and Logic Ptogl‘atmning, where the following notation is
standard: A clause is a disjunction of literals (represented as a set of literals). A clause with n literals is called n—cl-ause,
A literal is an atom or its negation and an atom is of the form P(t1,. . .,tn), where P is. the predicate letter and t1,...,_tn
are first order terms constructed in the usual way out of variable, constants and n-ary function symbols. T is the set of
terms. A literal is ground , iff it contains no variables. A subtitution o is a finite endomorphism on the set of terms. that
can be represented as a set of variable term pairs {xl (— t1 , . . .  , xn <— tn}. ).“. is ”the set of all substitutions.
We say a class of clause sets is (un)decidable, if we mean the satisfiability of the clause set is (un)decidable, in other
words that there does (not) exist an algorithm for deciding the satisfiability.
Our notation is consistent with the conventions in auromated theorem proving-11.078] and unification theory '[S'i84].
We are particularily interested in the following problems:
ij) Dixon’s Z-resolution [DY/3, 0h8-3], which poses the problem of ' finding a unification procedure with

built-in 2-clauses.
ii) Removing implied clauses from clause sets or knowledge bases consisting of clause-s [Gt8 6], which

is a generalization of removing subsumed clauses from clause. sets [E.-iS 1] This requires to solve the
problem, whether a clause A implies a clause B.

iri) Unification in  a sorted signature, where. a finite number of sort—declarations is used to construct
the Sort of a term [Sch85].

iv) The explicit treatment of recursive clauses in PROLOG [CM81] or automated theorem_'prOVers for
Horn-clauses, Le. the problem of the compilation of special classes of recursive clauses tinte- a-
terminating, nonrecursive algorithm.

The undecidability of each of these problems is a consequence of the restrlt proved in the first seetion;
we show that in a. finitely generated transitive stable. relation on free terms, it is not decidable whether
two terms are in this relation. The proof is based on the halting problem for register machines with at, least two.
registers.
This result is related to the undecidability of fir-St order equational lOgic, but it  is more handy.
There are numerous results on pure first order formulas (i.e. first order formulas without conStants and functions)
with a fixed quantor-prefix (see for examPle [DG79,Le79, 6084] and [1073] for decision. procedures for such
classes). Unfortunately, not all of these results are directly translatable into results on classes of clause sets that obey
some syntactic restriction, since. the normal that order predicate. calculus allows arbitrary functions and constants. For
some of these translatable results we give alternative-,- shorter-proofs.

We consider transitive, stable and finitely generated relations <. on..- T, the set of smegma: is. we are interested. in
relations < for which the following three conditions are-satisfied:
:2 ___] D “fi ., .

1) < is transitive, i.e. s < r and r < t irnplies s -<_ t.
'2) < is generated by a finite set of relations si < ti, 1 s is  n.
.3) < is stable, i.e. V6 6 Z; Vs,t e T: s < t => 0's < Gt.

We call such a relation am

A standard definition-of a register machine [EF78] is:



2.2mm A-
following format:
'1) Z LET R; = R; + a; (Z. is the line number)

"the character a; is. pushed onto the register Stack R1"
2) Z LET R; = R; - a;

"If the last character in R; is a-, then delete it" -
3) Z. IF R; = e THEN Z’ ELSE Z; OR OR Zn.- :(e denotes the empty st-atk)’

"If R; is empty, go to Z’ else if the last charactermRi-is a; go to 2;.
4) Z PRINT
5) Z STOP .-

' " ' uses regiSters R1,...Rmand an. alphabet A = {a1,-....,-an_}..Program lines have. the

For the class of register machines with at least two registers it is well-known'that the halting problem is undecidable
[EF78], that means, there is no algorithm which accepts the program of a register machine and prints "-1" whenever the
register program stops starting with empty registers and prints "0" otherwise.
Furthermore, there exists a register program such. that there is no algorithm which answers correctly-the question
whether this program stops for a. given input:

i) The halting problem is. undeCid-able for register machines with. at Feast: 2 register—s starting
with the empty regiSter-s.

ii). "The halting problem is undecidable for some fixed-- register machines with at least 2- -:registers'
and arbitrary input.

We describe how a register program RM can be translated into a TS-irelation <RM- This tlation and the followrng
undead-ability results are a technical prerequisite for the the results in section 3.:
Let-a program for a register machine be given. We use a signature- that includes as constants the alphabet
A = {.a1,...,an} of the register machine and enough natural numbers to cover all the line numbers. REG ”is a bmary
function, which denotes the contents of one register (b1...bk) in the form REG(REG(...(REG(e,b1),..),bk,1),bk),
The empty register is represented as e. ST is a function with m+1 arguments, which corresponds to the status: of
execution. The first argument is the line number and the next m arguments are for the register contents.
Every program line corresponds to one or more relations of the form ST(Zl...) “"-RM ST(ZZ.„)‚ which are used as
generators for the relation. For technical reasons, we assume that the program has a unique START-relation with 2:1-
and that all other program lines are enumerated starting with Z=2. A program execution that stops corresponds to the
fact that the left term ofthe START line and the right term of the STOP line are in the relation (RM;

If a program statement is encodedinto several relations, then the partitioning must be unique to guarantee. a unique
program execution.

We go through the possibilities for program lines and describe-their coding:
The START—statement is encoded as ST(‘1, x1,....,'xm') <RM ST(2,x-1,...,xm).
We assume Z > 1 for all other statements.
.11) Z LET R; = R; + a; is encoded in one relation:

ST(Z, X.l-,....,.%) (RM ST(Z+1, X1‚_.-..‚REG(Xi‚ 39 ,331)  :-
3



(where Z+1 is acortstam, not aterm‘)
2) ZLETRi == Ri;- aj is encoded in n+1 relations, (in each case Ri corresponds to the: (i+ 1,)1‘1I

argument.
ST(Z, X1,....,e,.,‘...,%) <RM ST‘(Z+1, X1,...,-B,..._Xm)) .

For k at j:
ST(Z, x1,...,REG(xi,ak),...‚xm) (RM ST(Z+1, x1,...,~REG~(xi,ak),...,xm).

In case the last character of Ri is aj‘: I
ST(Z, x1‚...,REG(xi‚aj),...,xm) (RM ST(Z+1„ x1,..._,xi‚...xm)

-;-3) Z IF Ri = e THEN Z’ ELSE Zl  OR OR Zn. is encoded inn+1 relations;
For the empty register Ri:

ST(Z, x1 , . . . , e , . . . , xm)  (RM ST(Z’, X1, . . . . ,B- , . . . .Xm)

For j = l,...‚n:
ST(Z‚ x1,....REG(xi,aJ-),...,xm) <RM' ST(Zj__,.x-1;,...,REG(x1,aJ),..,xm)

4) Z PRINT. is not relevant for the halting problem.
'5): Z STOP. is  encoded in one relation:

ST(Z,X1,...,Xn) (RM ST(ZSTOPJ1‚.„‚yn)).
Z S T O P is a line number not corresponding to a program line“. We can assume that
there'is only one such STOP-line. Note that the registers are not transferred.

We. Assume we have reached the program status ST(Z,t1,...,ti_1,REG(ti,aj),ti+1,....tn). The only possibility
to find a greater status w.r.t. (RM is to look for the line with number Z. Assume line Z is of form 2). and the term is,
unifiable with the left term of the relation in. case iii). Then the next reachable status is ST(Z+1,,t1,....ti,...,tn). I

Now Theorem 23  implies the desired results-on TS-‘l’elations:

Lamm . Let < be a TS~relation.
i) For all ground terms s,t s < t is. undecidable for the class of all TS-relation-s...
ii) There exists a TS -relation <, such that s < t for arbitrary ground terms s and t is. undecidable.
iii) There exists a TS-relation < and a ground term t such that s < t for an arbitrary ground term.

s. is undecidable.

mint the TS -relation (RM be generatedfrom a register machineqas described above.
i) We choose s = ST(1,e,...,e) and t = ST(ZSTOP‚e,...‚e). Then the decidability of s (RM't ’

for all relations would imply the decidability of the halting problem for register machines.
ii) and iii): Fix (RM to be the TS-relation corresponding to the existing program in

Theorem 2.3 ii). Then choose s = ST(1,sg.‚1‚...,sg‚n) and t = ST(ZST0P,e,...‚e) where 3g,i

are arbitrary ground terms representing the register contents. Now Theorem 2.2  ii)  is
applicable.

um A W TS-relation is defined. as:
i) For all generating relations Si < ti : V(si) = V(ti).
ii) For all ground terms s,t with s < t: Ift is a direct successor of s, than t is unique. I

4



The commotion in the proof of the previous theorem yields the following lemma
We. The undecidability results in Theorem 2.4 are true even if .forregullar unique T-Serelations.
P_roi_oi: We can extend the program of a register machine after the STOP with a group of statements,

which empti es- all registers and then stops, which shows the result. I

Our main interest is the analysis of the implication. problem A :> B,. i.e.-.. whether or not the:
implication A :> B where A and B are clause-s is. decidable.
In automated theorom proving systems as well as in knowledge bases where clauses are used as facts and rules it is-

desirable to remove redundant clauses from clause sets (from the knowledge base). In automated theorem .provers the
(decidable) subsumption rule is  used as redundancy deletion rule. The deletion of intplied clauses is a generalization of
the deletion of subsumed clauses and may be more powerful.
However, in this section it is  shown that the implication of two clauses is in general undecidable. For knowledge
bases where all clauses are Horn—Clauses the problem remains open.
If-a clause A irnplies a clause B ,  then A and -—.B is contradictory (and vice verse) hence the; implication problem is
equivalent to the problem whether or not the class of clause sets consisting of one clause A and ground units Bi  is”
decidable.
In this section we consider clause sets consisting of one clause and ground units and” some related clause— sets.
Furthermore we vary the length of the clause A.

The fOI-Iowing result appears to be well—known [”6086], however, we give a p f  that provies an efficient: decision.
procedure for the clause sets in question.

im The class of clause sets consisting of a 2-clause and some ground clauses is. decidable.
'hL The nontrivial case is that L and M are complementary unifiable.

Let {L,M} be the 2-c1ause. An algorithm for deciding the unsatisfiability works asfollows:
--com-pute the n-fold self-resolvent Rn:= {LI-1, Mn} of {L, M}. Rn +1 can be computed in two
ways: i) Let 9 be the most general unifier of Mn and. L. Then Rn+1 := {9Ln , BM}

ii) Let it be the most general unifier of Ln and M. Then Rn+1 ' := {uL, uMn}.
Since up to renaming of variables Rn+1  i s  unique, there exist substitutions on  and In ,. such that
Ln +1 = onLn and Mn. +1 = TnMn-  Hence either the depth of terms in Rn grows indefinitely or the
process of  sel-f—resolving does not generate new resolventslf the depth-of terms in Rm exceeds
the maximum of the term depth in the ground; units, then for all m’ 2 In, one literal in Rm is not
"resolvable with a ground unit. I '

- The dccidability of the class of  clause sets consiSting of one 2-ciause and two arbltrary units is an open
problem. As W. Geldfarb mentioned [6086], H.R. Lewis has worked on this problem without success.

Thefollowing theorem followsfrom a'known result on formulas with a Krom-matrixwith at most 2 literals in enter}!
disjunct [DG7’9,Le739]. We give a proof as an application of Theorem'2.4

The class cf clause sets conSIStlng of --some 2-clausesand two ground umtclauses L and M is undecidable
5



21ml; Let < be a TS—r‘elation generated by Si < ti and let P be. a unary predicate. Let the clause set be
CS :'= {{—iP(s_i), P(ti)} | 1 S i S n}. Then we have:

s < t 4: (CS u {P(s), —.P(t)} iscontradictcry).
Now the result follows from Theorem 2.4 I

Goldfarb (of. [6074]) has shown that the class of clause sets. with two 2-clauses is. undecidable.
The corresponding clause set is of the form {{P, P}, {-P, --P}}
Lewis Le79] has proved the undecidability of formulas- with .at most 6 atomic formulas, Which form in feet a elauSe set
with two 2-c1auses and two (nonground) units.
We give an elementary proof for the undecidabilityv of a Horn-clause.- set with two 2-clauses and" two gr0und umts as an
application of the undecidability of TS-relations.

3-‚3 Illegmm, The class of Horn-Clauses consisting of two ':‘2~clauses and two ground units L and M is undecidable,

Ergo; We show that this problem is equivalent to the undecidability of TS-relations:
Let si < ti be generating relations for < and let s,'t be ground terms.We can assume that s we tend
that < is a regular unique TS-relation. Let P be a binary predicate, f. be a new ternary-
ftmction and Ci be new constants. Let the clause set CS be:
i) P(x 30 => P(x Rh 3’2 y))
ii) P(x f(sl t l  f(82 t2 f(... f(sn tn c l )  ...) => P(y1 f(x Y1 y2))

where V(si,ti) n V(S°‚tj) = @ for i ‚#: j and y1 and y2 are new Variables.
iii) P(s rg), where rg is a ground instance of f(s-1 t l  f(s2t2'f(... f(sn tn c l)  )
iv) —.P(cQ f(t cz c3))
Now we have to show that: CS unsatisfiable © s < t.
"<=": Let s < t. Then there exists a chain of terms qj such that s = qo < q1< < ‘!c =-t and the
relations m the chain are instances of the generating relations.

We show, that .there'is a refutation for CS:
I)  We resolve iii) with the first literal in ii) and obtain the unit 'P(y1 f(s yl y2)).
2)“ Let ‘10 < q l  be an instance of sj < tj. Then resolving the. unit obtained in l )  with i.) j - l

times we obtain a new unit of the form P(z-1 f(xl ‘yl f(X-Z Y2: f(... f(xj-_1_ yj-_1 f(s. z ]  22) ) .
3) resolving. this new unit with ii.) we obtain the unit P(y1 f(otj "y1 y2)) _, where o‘ is the-

most general unifier of s and sj.
4) We can go along the chain until we reach the unit 'P(y1_ f(t Y1 -y2._.)..), which is

complementary unifiable with the unit in iv)
":5": We show that a refutation can only be obtained in the same way as above:

Since the clause set consists of Horn-clauses, an input resolution proof is possible.
1) The unit in iii) is resolvable with i) and ii). It is easy to see, however, that resolution with

i )  cannot contribute to a contradiction, since the produced units are only resolvable with
i). Thus the only sensible unit is  P(y3 f(s y3 y4)).

2;) This unit is not resolvable with iv) since s at t. It is resolvable with i )  and possibly with
ii).Resolution with i) gives infinitely many units, from which at most One is resolvable
with the first literal in ii) due to Lemma 2.6. If none of these deduced units is resolvable
with i), the clause set is  satisfiableHence we obtain a unit P(y1 f(ql Y1 y2))

.3) Using the unit obtained from resolving against ii), we can construct: "step by step. a
5



<-Chain..Since CS is unsatisfia'ble, a proof ertijsts, hence "we reach the unit in iv) after a
finite number of steps. I

Now Theorem 2.4 implies the result.

4 ' rr ll - Let < be a TS-relation on terms.
i) If < is generated by one relation, then s < t is decidable for ground terms.
ii) There-is no algorithm that decides for all relations generated by 2 relations

the relations 3 < t for ground terms. I

Won, A clause set consisting of a '3-clause and some nonground units is undecidable:
Brent. Let the 3-clause be the transitivity clause: {—. P(x y) ,  -1P(y z) ,  PO; z) } and let the:

units be P(si ti) and —-.P(s t). Now theorem 2.4 i) implies the desired conclusion. I

Goldfarb [6086] mentioned that Lexvis-"has proved the stronger theorem that. a Clause set With a-s—clause and ': ee
units is undecidable. However, the proof is not published.

Now we are able to show that the problem whether a clause A implies a clause B is undecidable. This problem is
equivalent to the decidability of a clause set consisting of the clause A and some ground units. We show that: the
implication remains undecidable if A is an n-clau'se with n S 4.

i) The Class of clause Sets consisting of one clause and ”und-unit clauses Li isundecidable.
ii) The class of clause sets consisting: of one clause with '4 literals and ground unit clauses. Li is

undecidable.
mg; It suffices to show part ii).

We show that the problem of satisfiability of two 2-clauses and some ground units can be encoded (see
Theorem 3.3): Without loss of generality we can aSSume that the clause set CSI consists of the folloWing
clauses:
CSI:  {-IP(s1h(C)).P(t1h(C))}. {--P(82 11(0)). P02 h(c))l. HS 11(0)) , —\P(t 11(0))

c. is .a constant,'h is a may function not occurring elsewhere and sand t are ground terms
let” the clause set C52 be:
C52: A := {—.P(sl xl),  P(t1 xl), —.P(52 h(xl'), P(t2 h(xl )) }

and the following ground units:
P(og1s1 , c), —.P(og_1t1 ‚c), P(og2s2 _, h(h(c))), —.P(og2t2 , h(h-(c.);)‚; and P(s h(c).) , —»P(th(c))

We can assume, that V(sl , tl) n V(s2, tz) = Q’and xl does not occur elsewhere.
We. have to show that: CSI is satisfiable => CS2 is satisfiable.
"<=“: Obviously the 2 2-clauses are deducable from the 4—clause and the ground units.
"=>": Assume we have a model M. of CSI. M consists of a maximal set of ground literals. The

relevant part of M are the literals with h(c) as second argument. We can assume that M
contains the 4 additional ground units of CS2... We change M in the.
following Way to obtain a model of C82: We assume that all the ground units P(t2,g rg) are in
M, where ‘2.g is a ground. instance of tz and rg is a ground term, but not equal to c, h(c) or
h(h(c)). There are no conflicts with the relevant units which are in M. We show that the

7



changed M is a model of €82: Therefore. it suffices to show that all ground. instances of A are
valid in ‚M.
If a ground substitution replaces xlby c, then one of the third and fourth literal is true. If a
ground substitution replaces xlby h(c-), then the first or second literal is. true. "In all other
cases, the literal P02,g rg) is true. The changed M is a model of the .4-c1ause and all. ground units.

Now Theorem 3.3 is applicable. I

W LetA be a clause. Then
i) A => B is decidable provided Ais a 2-Clause;
ii) A => B is undecidable if A. is a clause with four or more...literalsz. I

The decidabili'ty of A => B where A a 3-clau-se is an open question. The next theorem gives a sufficient cri’terionifot‘
thedecidability- of the implication problem. More sufficient criterions for the decidability are given-in [GtSS].

We give a criterion for recognizing decidable subcases of the ‘ir'nplication problem:
3 ‚& Ihe orem, Let A be a clause, such that there are at most two literals in A that are complementary

unifiable after renaming. Then it is  decidable, whether A implies an arbitrary clause B.
Bro-of. The arguments are similar to those in the proof of 3.1: Let CS be a clause set satisfying the

preconditions of this theorem. Let CS consist of the clause A and some ground units.If the. clause
set is. unsatisfiable, a contradiction, i .e .  the empty clause, can be  fOund first producing-
self-resolvents of A and then resolving with the ground units. We argue that a sligthly modified.
procedure has the same property and recognizes the satisfiability of the clause set:
Let the clause A consist of the complementary unifiable literals K and L and the rest M.Let m be
the number of ground literals resolvable with literals in M. Every clause C deduced from A by:
resolving and instantiating has two parts: The KL—part. consisting of two instances of  K
and L and the M—part consisting of some instances of. literals in M. The following set of instances.
of deduced clauses is important:
I(C): = {II I i s  an instance of C, such that only the variables. occurring in the .M-part of C are

instantiated- The M-part of I has at most m literal-s, every literal, in M is resolvable
with some ground unit in CS}

The procedure works as. follows:
1)" Let ISO = HA).

”2) DO until IS 11 does not change any more:
ISn+1  := 1311

Resolve all clauses in ISn with ISO in all possible ways .
Add I(R) to ISn+1 for all such resolvents.
Remove clauses with literals in the KL-part that are not unifiable with a ground literal.
Remove equivalent clauses from ISn+1 .

11 := n+1.
3) Resolve the clauses in IS,1 with the ground units in all possible Ways.

If the empty clause is produced, then the clause set is unsatisfiable, otherwise satisfiable.

This procedure terminates, since the-clauses in IS—n are bounded in depth and length.
8



It remains. to show, that the empty clause can always be reached for unsatisfiable clause sets.
Let RSn be the set of n-fold self-resolvents of A. LetRSIn := u {I(R)| R & RSn}.
To complete the proof, it suffices to show, that RSIn = ISn for all 11. Obviously we have
RSIn ;_> ISn- We show RSIn (_; ISn by induction. .
Let R1 6 RS 11 consist of two literals K1, Lland of a rest M1 and let R2 6 ISO consist of ; t
literals KZ, 1.2 and of a rest M2. A resolvent of R1 and" R2 is R3z= {6L1 , 0K2, 0M1, 6M2}
where o is a most general unifier of K] and LZ .Let R4 := 9R3 be in RSIn and let (Bo)IM be
90 restricted to the variables in M1 and M2. Then we have (Bo)|MR2 e ISn by the induction
hypothesis  and (BO)IMR1 e ISO (up to renaming). The resolvent of (06 ) ]MR1 and (BONMR-Z
is equivalent to R4,. hence R4 6 IS11+ 1 . I

'k' The remaining open questions are:
i) Is the class of clause sets consisting of one 2-clause and arbitrary units decidable?
ii) Is the class of clause sets consisting of one 3~clause and ground units decidable?
iii) Is the class of clause sets consisting of one Horn-clause and ground units decidable?
The hard part of ii) is  a special case iii). In other words, it is  not clear whether or not; the
implication A => B is decidable, where A is a Hom—clause.

i ili
In this paragraph we consider the problem of decidability of unification of sorted terms, where the sort of a. terms is

determined by a finite set of declarations [GM85,Gg83,SS85] . Le. there is given afinite partially ordered set cf sorts
and a finite set of declarations t:S (the term t is  of sort S). The sort of a term t' is of sort less than S, if t:S is a
declaration and t‘ is an instance oft .  The corresponding (well-sorted) substitutions substitute for every variable x-a
term of lesser sort.

The problem. of the: decidability of unification of sorted terms in this case is equivalent to the decidability of a special
class ofHorn clauses. We give here a proof for the undecidability of this class of clause sets.

we define a special subclass of Sets of Horn clauses, which are called D-clauses » (D for declarationS):
Wm Let P1,..., Pm be unary predicates.

Let CS be a set of Horn-clauses, such that every axiom-clause C & CS is of type A z: B
1) A may be empty;

if A is not empty, then A is of the form Q11 (.x-l) A A Qnt(xn) , where Qi is one cf the
predicates Pi and the xi are disdnct variables.

'2) ‚B is of the form Qi(t) , where t is  a term Furthermore V(A) «; V(t).
The theorem clause CT is of the same form, except that B is negated. .CTxi's- the negated clause of
Els: Q1(x1) A A Q.n(xn) A Qn+-1(s) ‚where Xi are variables in s.

4,2' Theme-m. D-clause sets are undecidable.
Emi.
Let Si < ti , 1 S i S n be the generating relations of <, satisfying theorem 2.3 ii).
Let f be .a binary function symbol net contained in any term Si, ti.
Let the D—clause set DCS be:
DO: P(f(t, x))



Di:  {—.P(y) , P(f(s_-i f(ti y))} ; for; '1 S i  S n
Let the theorem clause be: -{—1P(z), —.P(f(s,z))}.
We show that s < t c) DCS is unsatisfiable:
"=>": s < t implies that there exist a chain qj with s = qo < q1< < qk= t and every relation in the

chain is an instance of a generating relation. Starting the refutation With the second literal of the
theorem clause, we obtain succesively the clauses {4(2), —‘P(f(qi,z))} and finally
{—.P(z), —-.P(f(t,z)) }.. resolution with DO yields the empty clause.

"€:": Assume DCS is unsatisfiable. Then a proof can be found by resolving DO and DI  until two
units P(r1) and P(f(sj r2) are deduced such that these units are compatibly unifiable with the:
theorem clause.That means rl and r2 are unifiable. All deduced units are of the form
P(‘f(si f(ti f(sj f(tj f(t x) . . . )  . The instances of two such clauses directly gives a. chain
s=q0<q1<  .-.. <~qk=t . l

Now Theorem 2.4 is applicable.
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