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Clarification about personal contribution of the doctoral
dissertation of Stefano Fabbri

The work presented in the dissertation written by Stefano Fabbri and entitled “Sensorless
Position Estimation of PMSMs using State Observation and a Novel Iterative Algorithm” is
the result of a scientific activity conducted at the LAT department of the Saarland University
in the period from July 1st 2018 until June 30th 2021.
During this time, one of the main research focuses of the LAT department lied in the analysis
and development of the sensorless technique referred to as “Direct Flux Control (DFC)” for
application to Permanent Magnet Synchronous Machines, that was firstly proposed under
this label by Dr. R. Strothmann in [34]. This technique has been mathematically described
and investigated in different ways from different scientists. Mr. Fabbri has based his sci-
entific activity on the mathematical formulation of the DFC technique proposed by Dr-Ing.
E. Grasso and published through his research papers and habilitation thesis entitled “Direct
Flux Control – A sensorless technique for star-connected synchronous machines. An ana-
lytic approach”.
The significant and personal contribution of Mr. Fabbri focuses on the improvement of the
sensorless driving algorithm that can be developed based on the DFC measurements. In
particular, two main results have been achieved. The first is the introduction of the so-
called “Iterative Vector Decoupling (IVD)” technique, that allows the reduction of the remain-
ing harmonics on the reconstructed DFC position angle, a well-known problem of machine
anisotropy-based sensorless techniques. The second result, instead, regards the possibility
of combining the IVD technique to state observers to further improve the performance of the
DFC technique at middle and high speed ranges.
With the intent of providing a comprehensive and understandable text, the doctoral disser-
tation of Mr. Fabbri presents, in Chapter 2, a recall of the DFC technique that is the result
of the scientific activity of Dr.-Ing. E. Grasso. With his permission, some figures and part of
the text has been ported to the thesis of Mr. Fabbri. The presentation is, nevertheless, not
as thorough as the one presented by Dr.-Ing. Grasso since the scope is to provide to the
reader the fundamental concepts for the understanding of the further Chapters. Similarly,
Dr. E. Grasso has presented the IVD technique within his habilitation thesis in Chapter 3
without providing mathematical aspects, such as the parameter sensitivity analysis, that are,
instead, further investigated and discussed in the work of Mr. Fabbri. This also applies in
particular to the pictures, which are mostly taken from cited joint publications from Mr. S.
Fabbri and Dr. E. Grasso [54].
This has also resulted due to the strict scientific collaboration between Dr.-Ing. E. Grasso
and Mr. Fabbri during their work at the LAT department and the continuous exchanges that
allowed the scientific advancement and development of the DFC sensorless technique. This
joint activity results also in a discrete number of co-authored scientific publications on the
matter.
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Abstract

In the field of synchronous machines, Permanent Magnet Synchronous Machines, PMSMs,
are broadly used for many applications thanks to their higher power density and simpler
construction. For those motors, the knowledge of the rotor angular position is an important
information that is used in order to perform the control strategy. Moreover, the request of
miniaturized and higher power density solutions at relative low prices supports the concept
of self-sensing systems, in which no sensors are employed for the measurement of the angu-
lar position. In particular, for those motors with an accessible star-point, the so-called Direct
Flux Control (DFC) sensorless technique represents a valid choice thanks to its compact
hardware implementation and high Signal-to-Noise ratio. Nevertheless, the provided esti-
mated position is affected by systematic errors related to the machine phase inductances.
This work exactly addresses this issue. A static iterative algorithm is proposed in order to
reduce the systematic error of the DFC technique. This algorithm, called Iterative Vector
Decoupling (IVD), is based on the execution in real-time of an iteration sequence that con-
verges to the real position. Moreover, a state observation method, namely a Kalman filter, is
combined with the IVD algorithm in order to compensate the effect of potential disturbances
and, at the same time, to provide the estimation of the external load torque applied at the
motor shaft. This novel approach, after proper implementation and adjustments, leads to a
reasonable improvement compared to the form state of the technique.

Kurzzusammenfassung

Permanentmagneterregte Synchronmaschinen (PMSM) sind im Bereich der synchronen
Maschinen dank ihrer hohen Leistungsdichte und ihrer einfachen Konstruktion in vielen
Anwendungen weit verbreitet. Dabei ist die Kenntnis der Rotorlage eine wichtige Voraus-
setzung, um Regelungsstrategien an dieser Art von Motoren umzusetzen. Insbesondere
die Nachfrage nach miniaturisierten und leistungsstarken Antriebslösungen bei gleichzei-
tig niedrigen Kosten führt zur Konzeptionierung geberloser Systeme, die meist auch als
sensorlose oder selbstmessende Systeme bezeichnet werden. Solche Systeme erfordern
keine weiteren mechanischen Sensoren zur Rotorlageerfassung. Besonders für Motoren
mit zugänglichem Sternpunkt erlaubt die als Direct Flux Control (DFC) bekannte Technik
eine geeignete Realisierung einer geberlosen Regelung dank ihrer kompakten Hardware-
implementierung und ihrem hohen Signal-Rausch-Verhältnis. Dennoch wird die geschätzte
Winkelposition von einem systematischen Fehler, hervorgerufen durch die Phasenindukti-
vität der Maschine, beeinflusst. Um dieses Problem zu adressieren, schlägt die vorliegende
Arbeit ein statisch iteratives Verfahren vor. Der entworfene Algorithmus namens Iterative
Vector Decoupling (IVD) erfordert die Kenntnis eines in Theorieteil dieser Arbeit bestimmten
Parameters und basiert auf der Ausführung einer iterativen Abfolge, um zu der gewünschten
Rotorlage zu konvergieren. Im Anschluss wird ein Kalman Filter als Beobachter in Zusam-
menhang mit dem IVD-Algorithmus eingesetzt, um potenzielle Störgrößen zu kompensieren
und gleichzeitig das an der Motorwelle anliegende Lastmoment zu schätzen. Es wird ge-
zeigt, dass diese nueartige Ansatz bei korrekten Implementierung und Ausgleich zu einer
significant Verbesserung im Vergleich zum vorherigen Stand der Technik fuhrt.
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Introduction

1 Introduction

Nowadays, electrical machines are considered the most common solution for the drive and
control of dynamical systems within several application areas, including: industry, automo-
tive, public and domestic life, transportation, medical and healthcare equipment, power gen-
eration, ecc. [1]. The reason of the increasing popularity of electrical machines can be ad-
dressed to two main factors: the portability of the electric power and the new advancement
on material technology. Plainly, the example that well explains this trend is the e-mobility
revolution. Governments are pushing forward for more ecological and sustainable trans-
portation methods, such as electrical bikes, scooters, cars and public transports in order to
potentially increase the life quality of the citizens and decrease the carbon dioxide emission.

Indeed, the start of the technological evolution process that brought the electrical ma-
chines to be today so popular can be located at the beginning of the 17th century, i.e. during
the first industrial revolution, when various scientists in Europe and United States investi-
gated the relation between magnetic and electrical fields [2]. In 1828, the Hungarian physi-
cist Ányos Jedlik invented the first commutator and realized the first DC motor prototype,
introducing also the concept of stator and rotor as main machine components. Within the
following years numerous improvements had been made and the DC machines started to be
applied for a wider range of applications, also thanks to the discovery of the reversibility of
the electric machine in 1867 which stated that the DC motor could be used as generator [3].
Despite its increasing popularity, at the end of the 18th century the DC motors started to
be substituted for some applications by induction machines, firstly invented by the Italian
physicist Galileo Ferraris and then enhanced by Nikola Tesla between 1887 and 1891. The
main reasons of their success were the commutatorless technology that avoided the high
maintenance due to the constant service and replace of the mechanical brushes and the
increasing interest given to AC machines for the production and distribution of electricity
thanks to the invention of the transformer [4]. Nevertheless, the induction machines never
replaced completely the DC motors for various reasons, among them the notorious low start-
ing torque, the difficulty of the speed control and the power factor drop at low loads resulting
in higher copper losses. Thus, for many applications, the issues related to the commutator
remained for long time unresolved. After almost a century from the Ferraris-Tesla invention,
the availability of more efficient magnetic materials combined with the forward steps made
in the field of electronic power devices allowed the development of the Permanent Magnet
Synchronous Motor (PMSM) concept, whereas synchronous machines as generator were at
the time already employed for the production of electricity. Permanent magnets are applied
to the rotor instead of electromagnets and the commutation of the stator windings excitation
for the generation of the external magnetic field is performed by an external power electronic
device, generally an inverter. PMSMs combine the advantage of DC motors, such as effi-
ciency and miniaturization, to the advantages of the commutatorless induction motor. Thus,
the absence of the commutator and the continuous advancements in electronics miniatur-
ization and integration for more efficient embedded driving solutions allow the PMSMs to
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be considered as a valid choice for those applications that require lightweight, space-saving
and mechanically robust solutions as well as longer lifetime and less noise generation. Addi-
tionally, avoiding mechanical brushes enables higher peak currents with a positive impact on
the dynamic response and power density. The PMSMs are usually divided into bruschless
DC (BLDC) and bruschless AC (BLAC) depending on the winding distribution of the stator
coils and the driving strategies. The BLDC, as the name suggests, is similar to the DC motor
concept since the commutation of its stator windings is performed by means of a block ex-
citation strategy that simulates the classical mechanical commutation of the brushed motor.
Instead, the BLAC provides a sinusoidal external magnetic flux by a sinusoidal commutation
of the stator windings. In particular, driving BLAC motors require sensing the rotor position
with good accuracy for proper operation [5]. Thus, position sensors are typically installed for
operating a PMSM, such as resolvers or encoders, which lead to an increase in cost, space
requirements and system complexity, especially in case of small sized drives.

1.1 State of the art

Certainly, the need of overcoming those issues pushed the research to focus on new position
estimation solutions in order to substitute the mechatronic sensors. It is normal practice to
refer to these solutions with the term ”sensorless techniques”. Within the last few decades,
several scientific contributions concerning new sensorless techniques or improvements to
the already existing ones were proposed. A list of the principal techniques is given in Table
1.1. As shown, the proposed techniques are normally sorted depending on the technology
used and the exploited physical quantities. A first clear separation can be made between
model and anisotropy based techniques. The model based techniques make use of ob-
servers like Luenberger, Kalman Filter, Sliding Mode, etc. for the estimation of the angular
speed and position of the machine. There are two main possible implementations of the ob-
servers. The first approach uses them for the estimation of the Back-EMF or the magnetic
flux generated by the permanent magnets. The obtained estimated values are then fed into
an additional system, typically a PLL filter, for the tracking of the angular speed and posi-
tion. Alternatively, a unique observer provided with both electrical and mechanical dynamical
equations of the machine can be implemented. The possibilities given by the combination
of different observers with different tracking strategies make the model based sensorless
approach to have practically infinite solutions. A thorough review of those techniques have
been presented in [6] and [7].

The main drawback of the model based sensorless techniques is their inadequacy to es-
timate the position at standstill and at small speed range operation. In fact, a noticeable
movement of the rotor, i.e. its angular speed, is needed in order to generate appreciable
effects on the electrical quantities due to the Back-EMF. In order to allow the position esti-
mation at standstill operation, the anisotropy based sensorless techniques can be employed.
These methods are based on the exploitation of the modulated values of the machine phase
inductances through the varying angular position of the permanent magnets. It has been
proven that this modulation effect is directly dependent on the machine anisotropy charac-
teristic. Since this work introduces an algorithm for the improvement of an anisotropy based
technique, a detailed history of the major contributions within this field of research will be
provided.
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Pulsating
Signal

Injection

Rotating
Signal

Injection

INFORM
Sinusoidal
Injection

Negative
Sequence

Current Luenberger Observer

Zero Voltage
Vector Injection (ZVVI) Square-wave

Zero
Sequence

Voltage
Kalman Filter (EKF)

Zero Sequence
Current Derivative (ZSCD) Sliding Mode Observer

Arbitrary Injection
Phase Locked Loop (PLL)

Induced Voltage
caused by

Magnetic Saturation
(IVMS)

Model Reference
Adaptive System

(MRAS)

Direct Flux
Control (DFC) I&I Observer

Sensorless Techniques
Anisotropy Based Model Based

Fundamental
PWM Excitation

Based (FPE Based)

Injection Based BEMF/Flux
and/or

Position/Speed
Estimation Based

Table 1.1: List of the principal sensorless techniques for PMSMs. The methods (highlighted
in yellow) are sorted vertically depending on their technology.

1.1.1 Machine anisotropy based sensorless techniques

The first approach to estimate the rotor position by exploiting the presence of machine
anisotropies was proposed by Schrödel in 1988 [8] and 1992 [9]. He named this tech-
nique INFORM (INdirect Flux-detection by Online Reactance Measurement) and it was firstly
adopted for the angular position estimation of induction motors. The INFORM is based on
the application of test pulses generated by a modified PWM (Pulse Width Modulation) driv-
ing signal that, through the measurement of current derivatives, allows the online estimation
of the machine reactances and consequently the rotor angular position. INFORM tech-
nique has been then improved and extended over the years also to PMSMs [10–12]. Right
after the work of Schrödel, a scientific contribution about the sensorless position estima-
tion by means of a high-frequency excitation of the machine was published by Lorentz and
Jansen [13]. The authors showed that the phase current vector response due to the injec-
tion of an high-frequency rotational carrier takes the form of a rotating vector whose phase
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is related to the rotor position. The current signals are first demodulated and then fed to
an observer for the extraction of the position. The use of an observer let this technique to
be dependent on machine parameters. In [14], the same authors proved that the phase
inductance variations are not only dependent on the machine anisotropy but also on the
soft magnetic stator material. A modification of this technique was proposed by Corley [15].
Instead of the injection of a rotational carrier within the stator frame, a pulsating signal along
the q-axis of the estimated reference frame was applied. This method has the direct advan-
tage to require less computational effort than the rotational injection. Moreover, it proved to
provide more robustness and precision in terms of position estimation result. However, the
pulsating method also required an observer dependent on the machine parameters. Due
to the promising results, many contributions focused on the improvement of this technique.
Among them the works [16,17], where the authors introduced a modification to the injection
methodology. The high-frequency signal is injected along the d-axis allowing the elimination
of the observer and at the same time the reduction of the torque ripple (typical of rotating
carrier injection).

Within the following years, numerous contributions followed aiming at improving the sen-
sorless injection based technique. Remarkable is the work presented by Nussbaumer [18]
where the oversampling of the current first derivative was proposed in order to retrieve in-
formation about the machine phase inductances. In [19], an alternating high-frequency in-
jection method was applied were, instead of performing one measurement per period, 100
samples per PWM period where acquired and arithmetically averaged. The effects of eddy
currents and inverter dead-time were considered in [20]. In 2011, Yoon proposed the ap-
plication of a square-wave injection instead of a sinusoidal one [21]. The new technique
increases the injected frequency range, thus allowing a more precise estimation, and at the
same it is able of reducing the acoustic noise generated by the PWM pattern. This strategy
was also applied for motors with accessible star-point in [22] combining the advantages of
a zero-sequence method, thus increased accuracy and stability, with the square-wave in-
jection. Up to this point, except for the INFORM technique, only the HFI (high-frequency
injection) techniques had been presented. It is clear that from the injection of an external
pulsating or rotating carrier an acoustic noise signal is always generated. Moreover, the
injection frequency must be chosen higher than the rotational frequency of the rotor but
lower than the PWM frequency. This choice is not straightforward, for example, for small
low-power high speed PMSMs. For that reason, techniques based on the direct modification
of the PWM excitation pattern are sometimes preferable. Numerous contributions can be
mentioned within this field of research.

Chronologically, after the presentation of the INFORM technique, a new method was pro-
posed by Staines in [23]. Whereas the Schrödel technique is based on the injection of test
pulses on the PWM signal, Staines considered the six non-zero switching states of the volt-
age source inverter (VSI) for the application of test vectors. This method can be referred to
as Zero Sequence Current Derivative (ZSCD) technique. More precisely, the technique is
based on the application of a pair of test vectors with the same amplitude and opposite di-
rections for a short period between the normal PWM signal. The induced transient currents
are measured by a Rogowski coil and the rotor position information can be then derived. As
before, this technique has been developed for induction motors and then applied to generic
AC machines [24]. The ZSCD method is more efficient in terms of estimation performance
than the INFORM technique but it requires additional hardware in order to be implemented.
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Afterwards, a new sensorless technique based on the calculation of current derivatives dur-
ing the Zero Voltage Vector Injection (ZVVI) was proposed [25]. The presented method
relies on the effect of both back-EMF and saliency characteristic of AC machines. No ad-
ditional test signals are injected into the machine, thus no acoustic noise is generated, and
the difficulties in sensing the machine terminal voltage at low speed is eased. In 2011, the
Arbitrary Injection (AI) scheme for the sensorless field oriented control of PMSMs was pre-
sented [26]. This proposal for sensorless control method does not rely on a particular form
of injection, thus the name arbitrary. The supporting idea is that the saliency angle infor-
mation can be obtained by comparing the isotropic machine model with the real machine
behavior. The difference between the calculated model currents and the measured currents
provides the information about the angular position of the rotor. In [27], the same technique
is investigated taking into account multiple saliencies of the machine.

Excluding the HFI technique based on the zero sequence voltage measurement, no other
sensorless techniques presented to this point exploit the information carried by the measure-
ment of the star-point voltage of the machine. The main reason is that for most applications,
such as the torque control of the motor, current sensors cannot be avoided and it is practical
to utilize them also for sensorless purposes. On the other hand, for those applications which
do not require current sensors, their elimination would bring the drive system to diminish its
size and cost. This is particularly relevant in embedded drive systems applications, where
miniaturization of the electronics plays a very important role. Moreover, voltage measure-
ments are characterized by an higher signal-to-noise ratio and larger bandwidth compared to
current measurements. The first attempt to exploit the zero sequence voltage measurement
for sensorless operation was made by Consoli in [28]. The research was firstly conducted
on induction machines. The works presented by Holtz also introduced new strategies and
improvements in this direction still considering induction motors [29–31]. In the field of BLDC
motors, an interesting approach was proposed for sensorless operation by means of zero-
sequence voltage measurements [32]. This method utilizes the Induced Voltage caused
by Magnetic Saturation (IVMS) of the machine. The authors claim that this technique can
operate also with magnetically saturated machines. In 2000, the strategy of Consoli was
transposed to the PMSM operation [33].

Starting from the last contribution, another technique was proposed in [34], that led to
the so-called Direct Flux Control (DFC). Since this work is mainly based on the DFC tech-
nique, a more detailed description of its functioning and its evolution over the years will be
presented. The DFC method is based on the evaluation of the inductance variations of a
star-connected PMSM by measuring the transients of the neutral-point voltage when the
machine is excited by means of a proper PWM pattern. In this way, the technique was de-
scribed by Thiemann and Mantala in [35,36]. In particular, these works provided a practical
approach to the implementation of the technique togheter with first results about the electri-
cal position estimation. As shown in [37–39], the design of the machine has a direct effect
on the anisotropy information carried by the DFC signals. In particular, the scientific contri-
butions proved that different anisotropy signals are obtained by each PMSM referring to the
geometry and the position of the permanent magnets, the windings configuration and the
pole-slot set-up. Hence, the machine design influences directly the estimated sensorless
electrical position. Nevertheless, in [40–42], the aforementioned technique has been proven
to obtain high-performance performance in driving low power PMSMs. Issues and limitations
of applicability of the DFC techniques are also highligthed by the mentioned works. One of

15



Introduction

these issues is the presence of switching electronic noise in the measured voltages. There-
fore, low-noise electronics should be used for the measurement process of the anisotropy
information. In order to overcome this issue, a Fast Resettable Integrator Circuit (FRIC)
capable of providing better measurements for the implementation of the DFC technique by
means of an improved signal-to-noise ratio was proposed in [43–45]. The new proposed
circuitry extends the application of the technique to high-load conditions and reduces the
influence of the ringing generated by the three-phase inverter. A proper tuning of the FRIC
circuitry can lead to an augmented sensitivity of the measurements for those motors exhibit-
ing weak anisotropy. Another approach for the reduction of the measurement noise was
proposed in [45] where a Sliding Mode Differentiator has been applied. Over the years,
the analyses performed on the DFC technique have also shown that the technique works
better in the low speed range. Hence, in order to overcome this limitation, in [46] the tech-
nique has been combined with back-EMF information in order to extend the speed range
also to high speeds using an Extended Kalman Filter. Moreover, the DFC technique has
been successfully used in several practical applications such as the identification of electri-
cal and mechanical parameters of PMSMs [47] and the estimation of load torque using state
observation techniques [48].

1.2 Scientific motivation and focus of this work

The presented techniques for the sensorless control of electrical machines are so heteroge-
neous that they can fit almost every system requirement. As mentioned, sensorless tech-
niques based on the exploitation of the star-point voltage are suitable for low-power motors
whose embedded system is based on low cost electronics and do not require current sen-
sors. Although this category of techniques needs an accessible star-point, which is not
available for a large part of the motors present on the market, it can provide interesting ad-
vantages when applied to PMSMs and for some applications, such as the possibility of de-
veloping sensorless techniques relying on higher signal-to-noise ratio measurements, since
they do not require current but rather voltage sensors. For that reason, this work focuses
on the application of the DFC technique. Besides the advantages provided by the use of
this technique, it has been proven that the DFC method exhibits a systematic error on the
estimated position that is dependent on the magnetic characteristics of the machine. Obvi-
ously, this error does not only negatively affect the drive of the motor but also the estimation
of the speed and currents and, consequently, their control. Moreover, the presence of a sys-
tematic error deteriorates the performance of a potential state observer for the estimation
of the external load torque. This work addresses these issues by introducing a new static
iterative algorithm for the reduction of the position error. This algorithm, called IVD (Iterative
Vector Decoupling), is based on the multiple iteration of the position estimation process and
it requires the knowledge of only one parameter. The mathematical proof of the algorithm
convergence to the real position is provided and its sensitivity to parameter variations should
be analyzed. Moreover, the combination of the IVD technique with a state observer, namely
a Kalman filter, is proposed. The use of a state observer provides an additional tool for the
rejection of disturbances and, thanks to the IVD, the estimation of the external load torque
is enhanced.
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1.3 Work structure

The contents of each chapter of this work can be summarized as follows. In Chapter 2,
the mathematical model of the PMSM as well as its control strategy are presented in or-
der to introduce the DFC technique operations and the extraction of the DFC signals. The
machine star-point voltage dynamic is thoroughly presented within a detailed mathematical
description. Chapter 3 presents the relation between the DFC signals and the rotor angular
position. Considerations about the effects of position estimation error on the drive of the
machine are made and an iterative algorithm for the improvement of the estimated posi-
tion is proposed. The use of a state observer for the further improvement of the estimation
process is presented in Chapter 4. Moreover, the performances of the combination of the
iterative algorithm with an RLS estimation method are presented by means of simulation
results. Chapter 5 provides the experimantal validations of the theory presented within the
previous chapters. In particular, two PMSMs with different characteristic are tested. Eventu-
ally, conclusions are drawn in Chapter 5.3, summarizing and discussing the main results of
this work, and an outlook on further research works is provided.
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2 Mathematical Foundation

Within this chapter the mathematical derivation of the Direct Flux Control sensorless tech-
nique is presented.This chapter presents mathematical formulations and figures firstly intro-
duced in [49] by E. Grasso. It is a result of a strictly collaboration with him, since his work
provides a solid basis for the original scientific contributions that will be presented starting
from chapter 3. Hence, the text presents strong similarities with his thesis but it does not
claim to provide any innovative or original ideas.
Firstly, the mathematical model of a PMSM is revealed in order to provide a common notation
and a solid structure for the understanding of its operation. Afterwards, the Field Oriented
Control (FOC) is recalled as control strategy for the driving of the machine. The introduction
of the FOC is useful since it offers a tool for the simplification of the mathematics, thanks to a
transformation of the system coordinates, and at the same time provides the basic concept
of drive and control of a PMSM. The before mentioned section is completed by the intro-
duction of the PWM excitation method for the electrical machine, namely, the Space Vector
Modulation (SVM). Besides its importance for the actuation of the control strategy, the SVM
provides the mathematical foundation for the derivation of the DFC technique. In fact, start-
ing from the exploitation of the star point voltage dynamic due to the machine anisotropy, a
modification of the SVM pattern allows to extract the DFC signals using the measured star
point voltage, which will be used for the estimation of the electrical rotor position presented
in the next chapter.

2.1 Mathematical model of a PMSM

A PMSM is an electrical motor constituted of two mechanical parts, namely: the stator,
which is predisposed to generate a magnetic field through the exploitation of electromagnets,
and the rotor, which is the rotary part and it is constituted of permanent magnets. In case
of three-phase PMSMs, the stator electromagnets, which are constituted of coils wound
around magnets, are placed spatially at 120○ of phase shift from each other and they can
be represented, as shown in Figure (2.1), in a three axis reference system. The proper
excitation of these coils will generate a magnetic field that interacts with the field produced
by the rotor permanent magnets generating a mechanical torque.
In order to understand completely the functioning concepts of a PMSM, let us present the
mathematical equations in matricial form that model the motor starting from its electrical
part:

vabc = Riabc +
dλabc

dt
, (2.1)
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vabc =
⎡⎢⎢⎢⎢⎢⎣

vAN
vBN
vCN

⎤⎥⎥⎥⎥⎥⎦
voltage vector, (2.2)

iabc =
⎡⎢⎢⎢⎢⎢⎣

iA
iB
iC

⎤⎥⎥⎥⎥⎥⎦
current vector, (2.3)

λabc =
⎡⎢⎢⎢⎢⎢⎣

λA
λB
λC

⎤⎥⎥⎥⎥⎥⎦
flux linkage vector. (2.4)

The voltages vAN, vBN and vCN are the phase voltages. The matrix R is typically diagonal
and its entries are identical. The flux linkage vector λabc is the sum of the flux generated by
the stator and the flux provided by the rotor:

λabc = Labciabc +λPM, (2.5)

where Labc is the machine phase inductance matrix and λPM is the rotor flux.

N

A
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ib

Cc
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Figure 2.1: Schematic of a synchronous machine with accessible star-point.

20



Mathematical Foundation

In our case the rotor flux is considered constant since it is generated by the permanent
magnets. The electrical equation of the machine can now be expressed as:

vabc = Riabc +
d (Labciabc)

dt
+ dλPM

dt

= Riabc +
dLabc

dt
iabc + Labc

diabc

dt
+ dλPM

dt
.

(2.6)

The rotor flux direction as well as the phase inductance matrix are a function of the electrical
rotor position. For this reason, the derivatives of these quantities with respect to time in
equation (2.6) can be rearranged and written as:

vabc = Riabc +
dθe

dt
∂Labc

∂θe
iabc + Labc

diabc

dt
+ dθe

dt
∂λPM

∂θe

= Riabc + Labc
diabc

dt
+ωe

∂Labc

∂θe
iabc +ωe

∂λPM

∂θe
,

(2.7)

where θe and ωe are the electrical rotor position and speed, respectively. Without loss of
generalization, one can pose the following definition for the rotor flux:

λPM = ΨPM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos (θe)
cos(θe −

2
3

π)

cos(θe +
2
3

π)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

→ ∂λPM

∂θe
= eabc = −ΨPM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin (θe)
sin(θe −

2
3

π)

sin(θe +
2
3

π)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.8)

and, eventually, we come to the following form:

vabc = Riabc + Labc
diabc

dt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

RL circuit part

+ωe
∂Labc

∂θe
iabc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
anysothropy

dependent part

+ ωeeabc
´¹¹¹¹¹¸¹¹¹¹¹¶

BEMF part

. (2.9)

The inductance matrix Labc is typically a symmetric matrix, whose values are the self and
mutual inductances of the machine phases.
The mechanical differential equation of the PMSM can be now be presented. It is obtained
from the torque equilibrium on the shaft and can be expressed as:

Ξe −Ξl = J
dωm

dt
+ f (ωm) , (2.10)

where Ξe is the electromagnetic torque generated by the motor, Ξl the load torque applied
on the rotor shaft from the environment, J is the rotor inertia, ωm is the mechanical angular
speed of the rotor and f (ωm) is a term that models the viscous friction as well as other
friction components that are acting on the rotor shaft. Its most common and simple definition
is: f (ωm) = Bωm where B is the viscous friction coefficient. In order to derive the expression
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of the electromagnetic torque Ξe, the input power of the PMSM, Pe, is considered:

Pe =
3
2

nppiT
abcvabc

= 3
2

npp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

iT
abcRiabc
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

resistive
power loss

+ iT
abcLabc

diabc

dt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rate of change of
magnetic energy

+ωeiT
abc

∂Labc

∂θe
iabc +ωeiT

abceabc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
air-gap power

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Ploss + Pmag + Pair.

(2.11)

The input power Pe is the sum of three components: the resistive power losses, the rate of
change of magnetic energy and the air gap power. The latter term is related to the generated
electromagnetic torque, that can be derived as follows:

Pair = ωmΞe =
ωe

npp
Ξe, (2.12)

hence:

Ξe =
3
2

n2
pp (iT

abc
∂Labc

∂θe
iabc + iT

abceabc) , (2.13)

where npp is the number of pole pairs of the machine and ωe = nppωm.

2.2 Field Oriented Control

As shown in the previous section, the generation of torque at the shaft of the motor is strictly
dependent on the current vector and, consequently, on the excitation of the stator coils. Con-
sidering equation (2.13), we can state that, for PMSMs, the most efficient way to generate
torque is to let the current vector iabc and the vector eabc be orthogonal. This task is not
trivial if we consider the equations presented in the previous section. In order to generate
torque, the most simple approach is the scalar control method, also called V/f (Volt per Hertz)
control. This method is based on an injection of a rotating voltage vector at the machine ter-
minals which frequency increases up to the desired angular speed whereas its amplitude
is controlled in order to maintain the ratio V/f constant. Despite its simplicity, this approach
does not achieve the maximization of the torque since the currents are not directly controlled
and, in case of PMSMs, it could let the system be unstable. In order to reach the full torque
at any speed, the FOC can be used. This approach is based on the transformation of the
motor quantities from a three axis stationary reference frame to a two axis orthogonal rotary
frame. Consequently, the currents are also defined as a two component vector, respectively,
one for the generation of magnetic flux, the other for the torque. A control strategy can be
then applied to this new reference frame, for example by means of PI controllers. Let us now
present the form of the transformation matrices and how they modify the motor differential
equations.
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2.2.1 Stator reference frame: Clarke transformation

The stator reference frame is an orthogonal three axes system forming the triple (α, β, γ)
that is fixed to the stator and, by definition, aligns the axis α with the axis of the phase a. In
order to derive the mathematical model of the synchronous machine in the stator reference
system, the Clark transformation matrix TC can be used:

TC =
2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2

1
2

0
√

3
2
−
√

3
2

1
2

1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T−1
C =

2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1

−1
2

√
3

2
1

−1
2

√
3

2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.14)

and the following vectors can be defined:

iαβγ = TCiabc, iabc = T−1
C iαβγ,

vαβγ = TCvabc, vabc = T−1
C vαβγ,

eαβγ = TCeabc, eabc = T−1
C eαβγ.

(2.15)

Thus, the electrical equations can be derived as follows:

vαβγ = TCvabc = TCRiabc +TCLabc
d
dt

iabc +TC
∂Labc

∂θe
iabcωe +TCeabcωe

= TCRT−1
C iαβγ +TCLabc

d
dt

T−1
C iαβγ +TC

∂Labc

∂θe
T−1

C iαβγωe +TCeabcωe

= Riαβγ + Lαβγ
d
dt

iαβγ +
∂Lαβγ

∂θe
iαβγωe + eαβγωe,

(2.16)

where the machine phase inductance matrix in the stator reference frame has been defined
as:

Lαβγ = TCLabcT−1
C . (2.17)

As in the case of the three phase reference frame, the electromagnetic torque can be derived
and results to be:

Ξe =
3
2

npp (iT
αβγ

∂Lαβγ

∂θe
iαβγ + iT

αβγeαβγ) . (2.18)

Finally, it can be easily calculated that:

eαβγ = ΨPM

⎡⎢⎢⎢⎢⎢⎣

− sin (θe)
cos (θe)

0

⎤⎥⎥⎥⎥⎥⎦
. (2.19)

We can notice that the stator reference system reduces into a two phase system in case
of star connected motor. In fact, applying the Kirchhoff’s circuit law at the star-point N, the
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following equation holds:

ia + ib + ic = 0, (2.20)

hence:

iγ = 0. (2.21)

That condition holds if none , or at least very small, parasitic capacities are present between
the star-point N and ground O. Since this assumption is almost always satisfied, the γ
equation can be avoided. Thus, the system passes from a three phase to a two phase
reference frame.

2.2.2 Rotor reference frame: Park transformation

In order to derive the mathematical model of the machine in the rotor reference system, the
Park transformation matrix TP can be used:

TP =
⎡⎢⎢⎢⎢⎢⎣

cos (θe) sin (θe) 0
− sin (θe) cos (θe) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
, T−1

P =
⎡⎢⎢⎢⎢⎢⎣

cos (θe) − sin (θe) 0
sin (θe) cos (θe) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
, (2.22)

that, differently from the Clark transformation matrix, is an orthogonal matrix, i.e. (T−1
P = TT

P).
The following vectors can be then defined:

vdqo = TPvαβγ, vαβγ = T−1
P vdqo,

idqo = TPiαβγ, iαβγ = T−1
P idqo,

edqo = TPeαβγ, eαβγ = T−1
P edqo.

(2.23)

The electrical equations can be derived as follows:

vdqo = TPvαβγ = TPRiαβγ +TPLαβγ
d
dt

iαβγ +TP
∂Lαβγ

∂θe
iαβγωe +TPeαβγωe

= TPRT−1
P idqo +TPLαβγ

d
dt
(T−1

P idqo)+TP
∂Lαβγ

∂θe
T−1

P idqoωe +TPeαβγωe.
(2.24)

Let us define the phase inductance matrix in the rotor reference frame as:

Ldqo = TPLαβγT−1
P . (2.25)

Also, since the Park transformation matrix, differently from the Clark transformation matrix,
is a function of the angle θe, it is important to note that:

diαβγ

dt
= d

dt
(T−1

P idqo) = T−1
P

d
dt

idqo +
dT−1

P
dt

idqo = T−1
P

d
dt

idqo +
∂T−1

P
∂θe

idqoωe. (2.26)
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For the same reason, the expression TP
∂Lαβγ

∂θe
T−1

P is not equivalent to
∂Ldqo
∂θe

. Thus, the electri-
cal equation is expressed as:

vdqo = Ridqo +TPLαβγT−1
P

d
dt

idqo +TPLαβγ
∂T−1

P
∂θe

idqoωe +TP
∂Lαβγ

∂θe
T−1

P idqoωe + edqoωe

= Ridqo + Ldqo
d
dt

idqo +TP (Lαβγ
∂T−1

P
∂θe
+

∂Lαβγ

∂θe
T−1

P ) idqoωe + edqoωe.
(2.27)

The electromagnetic torque can be easily derived and is expressed as:

Ξe =
3
2

npp (iT
dqoTP (Lαβγ

∂T−1
P

∂θe
+

∂Lαβγ

∂θe
T−1

P ) idqo + iT
dqoedqo) . (2.28)

Finally, it is easy to verify that:

edqo = ΨPM

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
. (2.29)

Thus:

iT
dqoedqo = iqΨPM. (2.30)

As for the previous case, the o component of the system can be neglected since io = iγ.

2.2.3 Common definition of the inductance matrix

In commonly adopted models, the following machine inductance matrix is assumed:

Labc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L0 + L2 cos (2θe) −L0

2
+ L2 cos(2θe −

2π

3
) −L0

2
+ L2 cos(2θe +

2π

3
)

−L0

2
+ L2 cos(2θe −

2π

3
) L0 + L2 cos(2θe +

2π

3
) −L0

2
+ L2 cos (2θe)

−L0

2
+ L2 cos(2θe +

2π

3
) −L0

2
+ L2 cos (2θe) L0 + L2 cos(2θe +

4π

3
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.31)

where L0 is the mean value of the phase self inductances and L2 the amplitude of their mod-
ulation on twice the electrical rotor position. Also, the mean value of the mutual inductances
is assumed equal to − L0

2 and having equal modulation amplitude. This assumption holds
for the case where no stator magnetic saturation and slotting effects are considered. The
derivative of this matrix with respect to the rotor position is then obtained:

∂Labc

∂θe
= −2L2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin (2θe) sin (2θe − 2π
3 ) sin (2θe + 2π

3 )

sin (2θe − 2π
3 ) sin (2θe + 2π

3 ) sin (2θe)

sin (2θe + 2π
3 ) sin (2θe) sin (2θe + 4π

3 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.32)
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The machine phase inductance and its derivative with respect to the electrical rotor position
can then be expressed also in the stator and rotor reference frames:

Lαβγ =
3
2

⎡⎢⎢⎢⎢⎢⎣

L0 + L2 cos (2θe) L2 sin (2θe) 0
L2 sin (2θe) L0 − L2 cos (2θe) 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
, (2.33)

∂Lαβγ

∂θe
= 3

⎡⎢⎢⎢⎢⎢⎣

−L2 sin (2θe) L2 cos (2θe) 0
L2 cos (2θe) L2 sin (2θe) 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
, (2.34)

Ldqo =
3
2

⎡⎢⎢⎢⎢⎢⎣

L0 + L2 0 0
0 L0 − L2 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Ld 0 0
0 Lq 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
, (2.35)

TP (Lαβγ
∂T−1

P
∂θe
+

∂Lαβγ

∂θe
T−1

P ) =
3
2

⎡⎢⎢⎢⎢⎢⎣

0 −L0 + L2 0
L0 + L2 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 −Lq 0
Ld 0 0
0 0 0.

⎤⎥⎥⎥⎥⎥⎦
(2.36)

The electrical equations of the synchronous machine in the rotor reference frame and the
electromagnetic torque can be finally derived:

vd = Rid + Ld
did

dt
− Lqiqωe

vq = Riq + Lq
diq

dt
+ Ldidωe +ΨPMωe

Te =
3
2

nppΨPMiq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
stator-rotor torque

+ 3
2

npp (Ldd − Lqq) idiq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reluctance torque

.

(2.37)

The d− and q−axes are then coupled and the rotor speed has a contribution to this cou-
pling effect. Moreover, the electromagnetic torque can now be more clearly divided in two
components. The first one has been presented in the previous subsection. The second one,
instead, is generated through the reluctance of the machine, that is the inductance difference
between the d− and q−directions. In particular, reluctance can change its value considerably
depending on the permanent magnets alignment with the motor phases, since their perme-
ability is close to the permeability of air. For the purpose of this doctoral thesis, only motors
which present negligible reluctance torque, i.e. very low saliency, are considered. Hence,
the control strategy will focus on the control of the iq current as unique contribution to the
torque and the id current as unique contribution to the flux generation.
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2.2.4 Control strategy

Starting from the system presented in (2.37), the torque and consequently the rotation of
the motor can be achieved by the direct control of the current iq, the current id instead is
used in order to perform flux weakening of the machine, i.e. for high-speed control of the
motor. There are different control methods that can be considered for this purpose. The
most common way is to use PI controllers. The schematic shown in Figure (2.2) presents
clearly the FOC concept.

PI

PI

Park/Clarke
Transf.

Inverse
Park/Clarke

Transf.

Actuation Strategy
and

Power Electronics
Decoupling PMSM

A B C

encoder

i∗q

i∗d

θe

idq

ωe

iabc

-

-
vdq vabc

id

iq

Ud

Uq

Figure 2.2: Schematic of the FOC with PI controllers for the control of the motor currents.

The PI controllers process the error between the reference current vector i∗dq and the
measured current vector idq, that has been previously transformed applying the Park-Clarke
transformation to the measured current vector iabc. Accordingly to (2.37), the d− and q−equations
are coupled to each other and this dependency varies linearly to the rotor speed. This cou-
pling could lead the control to perform less efficiently and smoothly if the motor reaches
high speeds. Usually, decoupling is proposed thorough a feedforward loop. In this case, the
knowledge of the inductances Ld and Lq as well as the rotor speed ωe are needed. Thus,
the control output U∗d and U∗q are modified as follows:

vd = Ud + Lqiqωe,
vq = Uq − Ldidωe,

(2.38)

where vd and vq are the control output signals to be applied at the motor terminals. In order
to do that, these signals are reconverted using the inverse transformations and fed into the
actuator block, which modulates them and performs the actuation of the machine by means
of a power electronic stage (discussed more deeply within the next section).
In order to perform the speed control of the motor, a second control loop can be realized,
see Figure 2.3. Again, a PI controller can be used for this purpose.
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Figure 2.3: Schematic of the speed control of the PMSM.

There are different tuning methods that can be considered for the PI controllers. Com-
monly, the Amplitude Value Optimum (AVO) for the current loop and the Symmetrical Opti-
mum (SO) for the speed control loop are used. Both methods aim at the optimization of a
particular control aspect as described in [50]. The design objective of the AVO is to main-
tain the magnitude response of the control system as flat and as close to unity for a large
a bandwidth as possible. Thus, the control is designed to have a very low settling time with
low overshoots. On the other hand, the rejection of external disturbances is not optimized,
because the path between disturbances and system output is not considered. Instead, the
SO aims at optimize both control paths finding a trade-off between convergence rapidity to
the reference point and disturbance rejection. The description and analysis of these tuning
methods applied for PMSMs are presented [51].

2.2.5 Machine actuation strategy: Space Vector Modulation

The knowledge of the rotor angular position allows the control system to generate the de-
sired vector command direction independently of the rotor speed. A three-phase inverter
is typically used in order to apply the requested voltages at the machine terminals. This
solution is based on a switching power electronic which convert the common DC link volt-
age into three alternating voltages applied at the machine phases by means of Pulse Width
Modulation (PWM). Recalling the definitions of equation (2.2), the following phase voltages
have to be achieved:

vabc =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

vAN = VM sin (ωet)
vBN = VM sin (ωet − 2

3 π)
vCN = VM sin (ωet − 4

3 π)
, where ωet = θe. (2.39)

The voltage vector vabc can be written in a vectorial form in the stator reference frame as
vαβ = VMejωet, being VM the amplitude of the vector and ωe its angular speed. A three phase
inverter with a unipolar input bus voltage vDC is shown in Figure 2.4. Each leg of the inverter
is provided with one low side and one high side switch. The point in between low and high
sides is connected to the respective machine phase terminal. The switches are usually
power transistors such as IGBTs or MosFETs. The specific properties of these transistors
allow them to change its state from a short-circuit to an open-circuit and vice versa within a
relative short time (in the order of ns for the MosFETs and µs for the IGBTs). Please note
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that the voltages at the machine terminals are referred to GND and will be indicated as vXO
with x ∈ {A, B, C} while the phase voltages (between terminal and neutral point N) will be
indicated as vXN with x ∈ {A, B, C}. Thus, it is easy to see that vXO = vXN + vNO. Thus, the
following holds:

vAN = vAO − vNO,
vBN = vBO − vNO,
vCN = vCO − vNO.

(2.40)

Considering that the sum of the phase voltages equals zero, i.e. vAN + vBN + vCN = 0, it is
easy to verify that:

vNO =
1
3
(vAO + vBO + vCO) . (2.41)

Therefore, phase voltages can be expressed as function solely of the terminal voltages:

vAN = vAO −
1
3
(vAO + vBO + vCO) ,

vBN = vBO −
1
3
(vAO + vBO + vCO) ,

vCN = vCO −
1
3
(vAO + vBO + vCO) .

(2.42)

Considering Table 2.1, it is clear that only few discrete values of vabc can be applied to the
phase terminals. More precisely, a total of eight voltage configurations can be determined
to which a voltage vector in the stator reference frame coincides. In order to obtain a wider
range of applicable voltage, the Space Vector Modulation (SVM) is used.

vDC

2 C

vDC

O

A B

N

Figure 2.4: Schematic of a three-phase inverter with unipolar input voltage.
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Figure 2.5: The four states of excitation of a synchronous machine where X, Y, Z ∈ {A, B, C}.

The SVM is a useful technique that allows determining the required duty cycle value at
each PWM phase in order to obtain the desired phase voltage vXN. Moreover, no tristate
configuration of the inverter legs is allowed since the SVM considers only the possibility the
transistors to be alternately open and close for each leg at every time instant. Under this
assumption, one can identify the machine excitation states in Figure 2.5.

State vAO vBO vCO vαβ

I 0 0 0 v0

II vDC 0 0 v1
III vDC vDC 0 v2

II 0 vDC 0 v3

III 0 vDC vDC v4
II 0 0 vDC v5

III vDC 0 vDC v6

IV vDC vDC vDC v7

Table 2.1: Vector configurations for the SVM-PWM technique.

The vectors can be displayed on the stator reference frame as in Figure 2.6. It can be
noticed that the disposition of the vectors on the plane, excluding the vectors v0 and v7,
forms an hexagon. The vectors, which have amplitude of 2

3 vDC, define the distance between
the vertices and the center of the hexagon, instead, the vectors v0 and v7 have no length,
thus, they will be called zero-current vectors. The SVM-PWM technique combines multiple
vectors in order to apply a mean voltage value, obtained through a PWM period, which is the
desired voltage to be applied at the motor terminals. The circle inscribed within the hexagon
defines the maximal amplitude of the voltage vector applicable. The radius r of this circle is
defined as follows:

r = 2
3

cos(π

6
) vDC =

2
3

√
3

2
vDC =

√
3

3
vDC. (2.43)

In Figure 2.7 an example of a possible vector combination is presented.
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V 2(110)V 3(010)
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V 5(001) V 6(101)

V 0 ≡ V 7

Figure 2.6: Voltage vectors vi, i = 0, . . . , 7 on the α − β plane.

TPWM
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2
T2

2
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4
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4
T2

2
T1

2
T0

4

v0 v1 v2 v7 v7 v2 v1 v0

Figure 2.7: Center-aligned voltage vector succession in Space Vector Modulation.

The order of the applied vector within one PWM period does not change the amplitude of
the resulting vector but it can modify the harmonic component of the induced currents. The
presented schema in Figure 2.7 is based on the so-called center-aligned PWM due to its
symmetry with respect to the time instant at the center of the TPWM period. Another ap-
proach is the edge-aligned PWM which is usually more simple to be implemented. However,
it can be shown that the center-aligned PWMs introduces less harmonics then its counter-
part. Moreover, it also allows to perform one single switch at each transition. Assuming 0
when the low-side transistor is activated and 1 when the high-side transistor is activated, this
can be represented as follows:

v0 v1 v2 v7 v7 v2 v1 v0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 0 0
0 0 0 1 1 0 0 0
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Each switch will be activated for a precise time dcXTPWM with X ∈ {A, B, C}, where dcX is
the the duty cycle. Thus, the duty cycles of the three phases are:

dcA =
T1 + T2 + T0

2

TPWM
= TONA

TPWM
,

dcB =
T2 + T0

2

TPWM
= TONB

TPWM
,

dcC =
T0
2

TPWM
=

TONC

TPWM
.

(2.44)

Let us recall equation (2.42) for the determination of T0, T1 and T2. It is possible to rewrite
the equation as:

vANTPWM = vDCTONA −
1
3

vDC (TONA + TONB + TONC) ,

vBNTPWM = vDCTONB −
1
3

vDC (TONA + TONB + TONC) ,

vCNTPWM = vDCTONC −
1
3

vDC (TONA + TONB + TONC) .

(2.45)

By substituting the expression of TONX with X ∈ {A, B, C}, after some algebraic calculation it
is possible to find:

T1 =
TPWM

vDC
(2vAN + vCN) ,

T2 =
TPWM

vDC
(−2vCN − vAN) .

(2.46)

Hence, the following can be written:

vANTPWM = vDCTONA −
1
2

vDCTPWM +
1
2
(vAN + vCN) ,

vBNTPWM = vDCTONB −
1
2

vDCTPWM +
1
2
(vAN + vCN) ,

vCNTPWM = vDCTONC −
1
2

vDCTPWM +
1
2
(vAN + vCN) .

(2.47)

After the adjustment of these equations as:

vAN

vDC
= TONA

TPWM
− 1

2
+ 1

2
(vAN + vCN

vDC
) ,

vBN

vDC
= TONB

TPWM
− 1

2
+ 1

2
(vAN + vCN

vDC
) ,

vCN

vDC
=

TONC

TPWM
− 1

2
+ 1

2
(vAN + vCN

vDC
) ,

(2.48)
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the duty cycles can be directly expressed as follows:

dcA =
TONA

TPWM
= vAN

vDC
+ 1

2
− 1

2
(vAN + vCN

vDC
) ,

dcB =
TONB

TPWM
= vBN

vDC
+ 1

2
− 1

2
(vAN + vCN

vDC
) ,

dcC =
TONC

TPWM
= vCN

vDC
+ 1

2
− 1

2
(vAN + vCN

vDC
) .

(2.49)

The previous equations refers to the application of a voltage vector lying between v1 and v2
Nevertheless, the generic equation for the determination of the duty cycle of each phase is
expressed as follows:

dcX =
TONX

TPWM
= vXN

vDC
+ 1

2
− 1

2
(min (vAN , vBN , vCN)+max (vAN , vBN , vCN)

vDC
) , (2.50)

where X ∈ {A, B, C}. The last term of this equation, min(vAN ,vBN ,vCN)+max(vAN ,vBN ,vCN)

vDC
, is called

third harmonic component. This component represents an alternating signal with a fre-
quency three times the frequency of vXN. It is interesting to notice that vXO is contained in
± vDC

2 while the phase voltage vXN is contained in ± vDC√
3

, as shown in Figure 2.8.

Figure 2.8: vAN, vAO and third harmonic component for the case vDC = 12V

Finally, it is possible to observe that in the case of a star-connected synchronous machine,
a third harmonic component has to be injected at the phase terminals in order to apply
sinusoidal voltages on the machine phases.
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2.3 Direct Flux Control for PMSMs

The control strategy previously presented is strictly dependent on the information about the
angular rotor position since it is needed in order to perform the Park transformation neces-
sary for the actuation of the FOC. The most straightforward solution to this issue is to mount
a position sensor, for example an encoder, at the motor shaft. However, the introduction of
an additional mechanical moving part to the plant could lead the system to be less reliable
as well as more expensive in term of costs. Moreover, these issues could worsen if small
low-power motors are considered since smaller sensors are more expensive and fragile than
their bigger counterpart. In order to avoid the utilization of external mechanical sensors, the
implementation of a sensorless technique is considered. Among several techniques, the Di-
rect Flux Control (DFC) is a sensorless technique particularly suited for low-power PMSMs
with accessible star-point. In fact, the exploitation of the behavior of the star-point provides
information about the machine phase inductances and consequently about the rotor position
for those machines whose phase inductances are modulated by the rotor flux. Firstly, the
mathematical model of the star-point voltage dynamic will be presented in order to give a
better understanding of the DFC technique. Then, the extraction process of the DFC signals
will thoroughly described. The estimation of the rotor position will be presented within the
next chapter.

2.3.1 Mathematical model of the star-point voltage dynamic

Within the previous section, the assumption of a static behavior of the star-point voltage
has been considered in order to derive the SVM-PWM technique. For this purpose, the
proposed model can be considered accurate enough. Nevertheless, the star-point voltage
vNO has actually a dependency on the machine dynamics and its behavior in relation to the
applied terminal voltages is the foundation of the DFC technique. A more accurate modeling
of the vNO dynamic is essential in order to understand the functioning of this sensorless
method. Let us recall the electrical equation of the synchronous machine in the phase
reference frame, introduced previously in equation (2.51), with explicit time dependency:

vabc (t) = Riabc (t)+Labc (θe (t))
diabc (t)

dt
+ dLabc (θe (t))

dt
iabc (t)+ eabc (θe (t))ωe (t) , (2.51)

where Labc, eabc and ωe are time-dependent. Since the frequency component of the voltage
signals applied is much higher than the bandwidth of the mechanical part of the motor due
to the PWM technique, the quantities related to the mechanical variables, namely Labc and
eabc, will be treated as constants. Thus, the electrical equation can be rewritten as:

vabc (t) = Riabc (t)+ Labc
diabc (t)

dt
+ωeeabc. (2.52)

At this point, it is convenient to continue the analysis in the Laplace domain. Quantities are
represented with capital letters in the Laplace domain and small letters in the time domain.
Therefore, by applying the Laplace transformation, the machine electrical equation can be
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rewritten as:

Vabc(s) = RIabc(s)+ LabcsIabc(s)− Labciabc(0−)+
ωeeabc

s
. (2.53)

Then, isolating the term sIabc, one obtains:

sIabc (s) = L−1
abcVabc (s)−RL−1

abcIabc (s)+ L−1
abcLabciabc(0−)−

ωeL−1
abceabc

s
, (2.54)

where the term L−1
abcLabc has not been simplified at this stage for convenience. A generic

impedance z is connected between the machine star-point and ground, as shown in Figure
(2.9, in order to model the current iz that is potentially flowing through it. Also, this impedance
is considered to be constant. Therefore, defining Z(s) as the transfer function between Iz(s)
and VNO(s), the following equation holds:

VNO(s) = Z(s)Iz(s). (2.55)

N

O

vNO

iz

A

B

C

Ca

ia

Cb

ib

Cc

ic

N

S

z

Figure 2.9: Schematic drawing of a synchronous machine with star-point impedance z con-
nected to ground.
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Also, according to Kirchhoff laws, the following equations can be posed:

∑
k=a,b,c

ik = iz, ∑
k=a,b,c

d
dt

ik =
d
dt

iz, (2.56)

leading to:

∑
k=a,b,c

Ik(s) = Iz(s), ∑
k=a,b,c

sIk(s) = sIz(s). (2.57)

At this point, the following row vector is introduced:

T = [1 1 1] . (2.58)

Multiplying equation (2.54) on the left by the vector T leads to:

sTIabc (s) = TL−1
abcVabc (s)−RTL−1

abcIabc (s)+TL−1
abcLabciabc(0−)−ωeTL−1

abc
eabc

s
. (2.59)

Noting that equation (2.57) can be expressed also as:

sTIabc = sIz (s) , (2.60)

it is possible to rewrite the previous equation as:

sIz = s
VNO

Z (s) = TL−1
abcVabc (s)−RTL−1

abcIabc (s)+TL−1
abcLabciabc(0−)−ωeTL−1

abc
eabc

s
. (2.61)

Let us express the inverse of Labc in terms of its adjoint matrix L∗abc and its determinant, as:

L−1
abc =

L∗abc
∣Labc∣

. (2.62)

Thus, by substituting equation (2.62) in (2.61) and multiplying it by ∣Labc∣, one obtains:

s
∣Labc∣VNO

Z (s) = TL∗abcVabc (s)−RTL∗abcIabc (s)+TL∗abcLabciabc(0−)−ωeTL∗abc
eabc

s
. (2.63)

It is now possible to introduce the row vector LΣabc defined as:

LΣabc = TL∗abc = [LΣ1 LΣ2 LΣ3] , (2.64)

where each ith element represents the sum of the elements of the ith column of the adjoint
matrix associated to Labc. Thus, equation (2.63) can be written as:

s
∣Labc∣VNO (s)

Z (s) = LΣabc Vabc (s)−RLΣabc Iabc (s)+ LΣabc Labciabc(0−)−ωeLΣabc

eabc

s
. (2.65)

The phase voltages can be expressed as the difference between terminal voltages and star-
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point voltage:

vabc = vXO − vNOTT, (2.66)

where:

vXO =
⎡⎢⎢⎢⎢⎢⎣

vAO
vBO
vCO

⎤⎥⎥⎥⎥⎥⎦
. (2.67)

Thus:

Vabc (s) = VXO (s)−VNO (s)TT. (2.68)

Equation (2.65) can be then rearranged as:

s
∣Labc∣VNO (s)

Z (s) = LΣabc (VXO (s)−VNO (s)TT)−RLΣabc Iabc (s)+

+ LΣabc Labciabc(0−) −ωeLΣabc

eabc

s
, (2.69)

and again as:

VNO (s) [s
∣Labc∣
Z (s) + LΣabc T

T] = LΣabc VXO (s)−RLΣabc Iabc (s)+

+ LΣabc Labciabc(0−) −ωeLΣabc

eabc

s
. (2.70)

At this point, Iabc can be calculated from the machine equation 2.53 that can be easily ma-
nipulated in order to obtain:

(Labcs +R) Iabc (s) = VXO (s)−VNO (s)TT + Labciabc(0−)−ωe
eabc

s
. (2.71)

The following quantities can be now defined:

Zabc = Labcs +R. (2.72)

Equation 2.71 can then be rearranged as:

Iabc = Z−1
abcVXO −Z−1

abcVNOTT +Z−1
abcLabciabc(0−)−Z−1

abcωe
eabc

s
. (2.73)

The expression Iabc from (2.73) can be inserted into equation (2.70), leading to:

VNO [s
∣Labc∣
Z (s) + LΣabc (I −RZ−1

abc)TT] = LΣabc (I −RZ−1
abc)VXO+

+ LΣabc (I −RZ−1
abc)Labciabc(0−)−ωeLΣabc (I −RZ−1

abc)
eabc

s
. (2.74)
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by definition of:

M (s) = I −RZ−1
abc, (2.75)

we can rewrite the (2.74) in a compact form as:

VNO (s) [s
∣Zabc∣ ∣Labc∣

Z (s) + LΣabc M (s)TT] = LΣabc M (s) (VXO (s)−
ωeeabc

s
+ Labciabc(0−)) . (2.76)

Thus, defining:

s
∣Zabc∣ ∣Labc∣

Z (s) = Zstar (s) (2.77)

as the star point impedance dynamic contribution to the vNO, the following expressions can
be now defined:

D(s) = Zstar (s)+ LΣabc M (s)TT, (2.78)

N(s) = LΣabc M (s) = [N1(s) N2(s) N3(s)] . (2.79)

Considering:

G (s) = N (s)
D (s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

N1(s)
D(s)
N2(s)
D(s)
N3(s)
D(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

=
⎡⎢⎢⎢⎢⎢⎣

G1 (s)
G2 (s)
G3 (s)

⎤⎥⎥⎥⎥⎥⎦

T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
3
i=1 LΣi M1i(s)

Zstar(s)+∑3
i=1∑

3
j=1 LΣj Mij(s)

∑
3
i=1 LΣi M2i(s)

Zstar(s)+∑3
i=1∑

3
j=1 LΣj Mij(s)

∑
3
i=1 LΣi M3i(s)

Zstar(s)+∑3
i=1∑

3
j=1 LΣj Mij(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (2.80)

Finally, equation (2.76) can be rewritten as:

VNO (s) = G(s) (VXO (s)−
ωeeabc

s
+ Labciabc(0−)) . (2.81)

Eventually, it is clear that the star-point signal vNO is the result of a the multiplication in the
Laplace domain between a Multi-Input Single-Output (MISO) system with transfer functions
given by G (s) and the terminal voltages vector, the back electromotive force (back-EMF)
and the initial conditions. In the following section, the extraction process of the DFC signals
is provided.

2.3.2 Extraction of the DFC signals

The Direct Flux Control technique allows obtaining information about the inductances of the
machine phases by measuring the difference between the star-point of the machine, vNO
and the voltage of a virtual star-point vVO (see Figure 2.10) during the transition between
two excitation states.
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Figure 2.10: The four states of excitation of a synchronous machine where X, Y, Z ∈
{A, B, C}.

Let us recall the four machine excitation states in Figure 2.5, where X, Y, Z can be any
combination of the phases A, B, C. Obviously, we can state that:

for state I ∶

vXO (t) = 0, vYO (t) = 0, vZO (t) = 0 Ô⇒ VXO (s) =
⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦

(2.82)

for state II ∶

vXO (t) = vDC, vYO (t) = 0, vZO (t) = 0 Ô⇒ VXO (s) =
⎡⎢⎢⎢⎢⎢⎣

vDC
s
0
0

⎤⎥⎥⎥⎥⎥⎦

(2.83)

for state III ∶

vXO (t) = vDC, vYO (t) = vDC, vZO (t) = 0 Ô⇒ VXO (s) =
⎡⎢⎢⎢⎢⎢⎣

vDC
svDC
s
0

⎤⎥⎥⎥⎥⎥⎦

(2.84)
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for state IV ∶

vXO (t) = vDC, vYO (t) = vDC, vZO (t) = vDC Ô⇒ VXO (s) =
⎡⎢⎢⎢⎢⎢⎣

vDC
svDC
svDC
s

⎤⎥⎥⎥⎥⎥⎦

(2.85)

and the virtual star-point voltage vVO can be expressed as:

vVO =
1
3

TvXO. (2.86)

Let us now recall equation (2.81) where, for simplicity, the initial conditions are neglected and
the considerations made in equations (2.82),(2.83),(2.84) and (2.85) are taken into account:

VNO (s) = G(s) (VXO (s)−
ωeeabc

s
) . (2.87)

It can be proven, as shown in [52], that the transfer function G(s) is biproper, thus, the G(s)
can be divided into two term: a constant gain Gc and a strictly proper function R(s):

G(s) = Gc +R (s) . (2.88)

It has to be remarked that a strictly proper transfer function will approach zero as the fre-
quency approaches infinity: lims→j∞R(j∞) = 0. Hence:

lim
s→j∞

G(s) = lim
s→j∞

(Gc +R (s)) = Gc. (2.89)

The value of Gc can be found easily considering that M (j∞) = I:

Gc = lim
s→j∞

G(s) =
LΣabc M (j∞)

LΣabc M (j∞)TT =
LΣabc M (j∞)

LΣabc M (j∞)TT =
LΣabc

LΣabc TT , (2.90)

The value of the star-point voltage vNO can be found by applying the Laplace antitransform:

vNO (t) = L−1 [G(s) (VXO (s)−
ωeeabc

s
)] =

= L−1 [G(s)VXO (s)]− L−1 [G(s)ωeeabc

s
] = vv

NO (t)− ve
NO (t) . (2.91)

It is clear from the previous equation that the evolution of the ve
NO (t) is not dependent

on the switching of the state excitation. Hence, considering t1 as the time in which the
state excitation switching occurs, two measurements of the star-point voltage vNO are taken
respectively at t−1 and t+1 and subtracted in order to eliminate the ve

NO (t) term:

vNO (t+1 )− vNO (t−1 ) = vv
NO (t+1 )+ ve

NO (t+1 )− vv
NO (t−1 )− ve

NO (t−1 ) = vv
NO (t+1 )− vv

NO (t−1 ) , (2.92)
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since ve
NO (t+1 ) = ve

NO (t−1 ). If we consider the evolution of vv
NO(t) starting from t = t1 we can

state that:

vv
NO (t − t1) = L−1 [G(s)V+XO (s)] = L−1 [(Gc +R(s))V+XO (s)] =

= GcvXO (t+1 ) + L−1 [R(s)V+XO (s)] , (2.93)

and

vv
NO (−t − t1) = L−1 [G(s)V−XO (s)] = L−1 [(Gc +R(s))V−XO (s)] =

= GcvXO (t−1 ) + L−1 [R(s)V−XO (s)] , (2.94)

where V+XO (s) is the Laplace transform of vXO (t − t+1 ) and V−XO (s) is the Laplace transform
of vXO (−t − t−1 ). Considering that R(s) is strictly proper, the application of a step function
input to R(s) does not generate a discontinuity to the output, thus we can consider at t1 the
results of the antitransform L−1 [R(s)V+XO (s)] and L−1 [R(s)V−XO (s)] equal. We obtain:

vv
NO (t+1 )− vv

NO (t−1 ) =
= GcvXO (t+1 )+ L−1 [R(s)V+XO (s)]−GcvXO (t−1 )− L−1 [R(s)V−XO (s)] =

= Gc (vXO (t+1 )− vXO (t−1 )) =
LΣabc

LΣabc TT (vXO (t+1 )− vXO (t−1 )) . (2.95)

We can now define the virtual star-point voltage equation:

vNV (t) = vNO (t)− vVO (t) = vNO (t)−
1
3

TvXO (t) . (2.96)

The difference between two consecutive measurement of vNV at t+1 and t−1 when the states
are switching is considered:

vNV (t+1 )− vNV (t−1 ) = (
LΣabc

LΣabc TT −
1
3

T)(vXO (t+1 )− vXO (t−1 )) . (2.97)

Considering that:

between state I and II:

vXO (t+1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state II

−vXO (t−1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state I

=
⎡⎢⎢⎢⎢⎢⎣

vDC
0
0

⎤⎥⎥⎥⎥⎥⎦
, (2.98)

between state II and III:

vXO (t+1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state III

−vXO (t−1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state II

=
⎡⎢⎢⎢⎢⎢⎣

0
vDC

0

⎤⎥⎥⎥⎥⎥⎦
, (2.99)
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between state III and IV:

vXO (t+1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state IV

−vXO (t−1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state III

=
⎡⎢⎢⎢⎢⎢⎣

0
0

vDC

⎤⎥⎥⎥⎥⎥⎦
, (2.100)

we can define the DFC signal vector Γabc = [Γa Γb Γc]T as:

Γa = vNV (t+1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state II

− vNV (t−1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state I

= (
LΣabc

LΣabc TT −
1
3

T)
⎡⎢⎢⎢⎢⎢⎣

vDC
0
0

⎤⎥⎥⎥⎥⎥⎦
= ( LΣ1

LΣabc TT −
1
3
) vDC,

Γb = vNV (t+1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state III

− vNV (t−1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state II

= (
LΣabc

LΣabc TT −
1
3

T)
⎡⎢⎢⎢⎢⎢⎣

0
vDC

0

⎤⎥⎥⎥⎥⎥⎦
= ( LΣ2

LΣabc TT −
1
3
) vDC,

Γc = vNV (t+1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state IV

− vNV (t−1 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state III

= (
LΣabc

LΣabc TT −
1
3

T)
⎡⎢⎢⎢⎢⎢⎣

0
0

vDC

⎤⎥⎥⎥⎥⎥⎦
= ( LΣ3

LΣabc TT −
1
3
) vDC.

(2.101)

Considering these equations and the previously mentioned edge-aligned application of the
PWM signal it is clear that a modification of the PWM pattern is necessary in order to obtain
a meaningful measurement of the DFC signals. The idea is to modify directly the edge-
aligned pattern in order to exploit only the machine excitation states I and II. The edge-
aligned pattern application in case v1 and v2 are considered can be represented as follows:

v7 → v2 → v1 → v0

In order to introduce a modification to this PWM pattern suitable for DFC measurements in
excitation states I and II, two vectors are introduced for a very short time at the beginning of
the PWM period TPWM:

v0 → vX
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

DFC measurement

→ v7 → v2 → v1 → v0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

edge-aligned PWM pattern

,

where vX ∈ {v1, v3, v5}. Following, a short list relating the applied voltage vectors and the
retrieved quantity is shown:

v1 → (
LΣ1

LΣabc TT −
1
3
) vDC = (

LΣ2 + LΣ3

LΣ1 + LΣ2 + LΣ3

) vDC,

v3 → (
LΣ2

LΣabc TT −
1
3
) vDC = (

LΣ1 + LΣ3

LΣ1 + LΣ2 + LΣ3

) vDC,

v5 → (
LΣ3

LΣabc TT −
1
3
) vDC = (

LΣ1 + LΣ2

LΣ1 + LΣ2 + LΣ3

) vDC.

(2.102)
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VAO

VBO
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TPWM TPWM TPWMt0 t1 t2 t0 t1 t2 t0 t1 t2

Figure 2.11: Modified edge-aligned PWM pattern used for measurement of the vNV voltage.

Figure 2.11 shows the discussed modified edge-aligned PWM pattern. The first measure-
ment is taken at t−1 that it is located between t0 and t1, the second measurement at t1 +∆t
located between t1 and t2.
Within the next section, the relation between the DFC signals and the rotor angular position
will be presented considering a generic definition of the inductance matrix.
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3 Position Estimation with the Direct Flux
Control

As shown in the previous section, the application of a modified PWM pattern at the motor
voltage terminals and the measurement of the star-point voltage allow the extraction of the
DFC signals. The star-point voltage behavior is determined by a MISO type transfer function
dependent on the machine electrical parameters, potentially including the circuit elements
needed for the voltage measurement of the star-point. Since the numerator and the denom-
inator of the transfer function have the same degree, namely the same number of poles and
zeros, a static relation between star-point and phase voltages can be identified. This relation
is dependent on the values of the vector LΣabc which contains the information about the rotor
position. By the measurement of two consecutive star-point voltages and subtracting them,
the DFC signals are obtained in the form presented in equation (2.101). Taking into account
the previous considerations, this chapter aims at defining the main algorithms used for the
extraction of the angular position starting from the DFC signals as well as presenting the
potential limitations of this sensorless technique. The effect of position estimation error over
the machine equations and then over the FOC are considered and presented. Eventually, a
new algorithm for the improvement of the position estimation will be presented. This algo-
rithm, called Iterative Vector Decoupling (IVD), is based on an iteration process that aims at
eliminating the systematic error carried by the DFC signals.

3.1 DFC position estimation algorithms

Two main approaches can be considered in order to estimate the angular position from the
DFC signals: the standard and the inverse DFC method. Before their description, a relation
between angular position and inductance matrix Labc has to be given. Let us consider the
relation presented in equation (2.31). If the matrix LΣabc is calculated we obtain:

LΣabc = TL∗abc. (3.1)

Since the adjoint matrix L∗abc has every of its entries equal to zero, we get:

LΣabc = [0 0 0] . (3.2)

Hence, for this particular definition of the inductance matrix the DFC signal vector Γabc does
not carry any information. Although the matrix definition in equation (2.31) is commonly
considered for control purpose due to its simplicity, it is not suitable for the description of the
DFC signal model. Thus, let us introduce a more generic definition of the inductance matrix:
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Labc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

L0 + L2 cos (2θe) M0 +M2 cos (2θe − 2π
3 ) M0 +M2 cos (2θe + 2π

3 )

M0 +M2 cos (2θe − 2π
3 ) L0 + L2 cos (2θe + 2π

3 ) M0 +M2 cos (2θe)

M0 +M2 cos (2θe + 2π
3 ) M0 +M2 cos (2θe) L0 + L2 cos (2θe + 4π

3 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.3)

where the terms M0 and M2 model the mutual inductance between the phases considering
the effect on the magnetic field caused by the permanent magnet. After some algebraic
calculation, the LΣabc can be now defined as:

L∗Σabc
=
⎡⎢⎢⎢⎢⎢⎣

a1 cos (2θe)+ a3 cos (4θe)+ a5
b1 cos (2θe)+ b2 sin (2θe)+ b3 cos (4θe)+ b4 sin (4θe)+ b5
c1 cos (2θe)+ c2 sin (2θe)+ c3 cos (4θe)+ c4 sin (4θe)+ c5

⎤⎥⎥⎥⎥⎥⎦

T

, (3.4)

where:

a1 = L0M2 − L0L2 + L2M0 −M0M2,

a3 = −
L2

2

2
− L2M2

2
−M2

2,

a5 = L2
0 − 2L0M0 +M2

0 −
L2

2

4
− L2M2 − 3M2,

b1 = c1 =
a1

2
− L2M0 +M0M2,

b2 = −c2 =
√

3
2

b1,

b3 = c3 =
a3

2
+M2

2,

b4 = −c4 = −
√

3
2

b3,

b5 = c5 = a5 + 2M2
2.

(3.5)

The expression of the vector L∗Σabc
presented in equation (3.4) shows the relation between its

values and the rotor position θe. It is clear from equation (3.5) that by adding and subtracting
properly the vector elements the cosine and sine dependent terms can be isolated.

3.1.1 Standard DFC algorithm

Considering the relation between the L∗Σabc
and the DFC signals Γabc presented in equation

(2.101) and applying the Clarke transformation to the Γabc, one obtains:

Γαβγ = TCΓabc =
⎡⎢⎢⎢⎢⎢⎣

Γα

Γβ

Γγ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−a cos (2θe)+ b cos (4θe)
a sin (2θe)+ b sin (4θe)

0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−a cos (2ωet)+ b cos (4ωet)
a sin (2ωet)+ b sin (4ωet)

0

⎤⎥⎥⎥⎥⎥⎦
, (3.6)
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where:

a = (L0 −M0) ⋅
L2 −M2

3 [(L0 −M0)2 − ( L2
2 +M2)

2]
,

b = (L2

2
+M2) ⋅

L2 −M2

3 [(L0 −M0)2 − ( L2
2 +M2)

2]
,

ωet = θe.

(3.7)

Starting from the previous equation, we can define the conditions for which the DFC signals
carry information about the rotor position:

• first condition : L2 −M2 ≠ 0,

• second condition: L0 −M0 ≠ L2
2 +M2.

It is noticeable that if a ≫ b the angular position can be estimated simply using the full
quadrant arc tangent function:

χ = −atan2 (Γα, Γβ) ≈ −atan2 (−a cos (2θe) , a sin (2θe)) = 2θe, (3.8)

defining atan2 (⋅, ⋅) as:

atan2 (x, y) =

arctan ( y
x) if x and y ≥ 0,

arctan ( y
x)+ 90○ if x < 0 and y ≥ 0,

arctan ( y
x)+ 180○ if x and y < 0,

arctan ( y
x)+ 360○ if x ≥ 0 and y < 0.

(3.9)

From now on, for sake of readability, we will consider atan2 (x, y) = atan ( y
x). Then, we can

define the estimated rotor position θ̂e as:

θ̂e =
χ

2
. (3.10)

Let us now consider the vector Γ∗αβ (avoiding the third component Γγ) on a complex plane as
a vector with the following normalized components:

Γ∗αβ =
Γα

a
+ j

Γβ

a
= − cos (2θe)+ p cos (4θe)+ j (sin (2θe)+ p sin (4θe)) , (3.11)

where p is defined as the ratio between b and a. Then, the parameter p introduces a fourth
harmonic term on the DFC signals. It is clear that the presence of this additional harmonic
will result into a systematic error on the position estimation. Reminding that:

x + jy =
√

x2 + y2ejθ , θ =∠(y
x
) = atan(y

x
) , (3.12)
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the estimation error can be defined as follows:

χ = −atan(
Γβ

Γα
)

= −atan( a sin (2θe)+ b sin (4θe)
−a cos (2θe)+ b cos (4θe)

)

= atan( a sin (2θe)+ b sin (4θe)
a cos (2θe)− b cos (4θe)

)

=∠ (aej2θe − be−j4θe)

=∠(aej2θe (1− b
a

e−j6θe))

= 2θe +∠(1−
b
a

e−j6θe)

= 2θe + atan( p sin (6θe)
1− p cos (6θe)

) .

(3.13)

Re

Im

p

2θe

4θe

χ

∆

. .
1

Γ∗
αβ

Figure 3.1: The vector cos (2θe) + j sin (2θe) is depicted with a red line, the vector Γ∗αβ is de-
picted with a blue line. The estimation error is depicted with the green line.
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Eventually, we can write:

χ = 2θe +∆, (3.14)

where ∆ = atan( p sin (6θe)
1− p cos (6θe)

) is the estimation error. Its determination can be also proven

geometrically as shown in Figure 3.1. The standard DFC algorithm can be summarized
using the following Flowchart 3.2

− arctan
(
β
α

)
1
2

[
Γα = −a cos (2θe) + b cos (4θe)
Γβ = a sin (2θe) + b sin (4θe)

]
θ̂e

χ

Figure 3.2: Flowchart of the DFC position extraction operations

3.1.2 Inverse DFC algorithm

A different method for extracting the electrical rotor position, that can perform very well for a
broader range of machines has been firstly proposed in [53]. This method is based on the
direct measurement of the star-point voltage vNO instead of the vNV referenced to the virtual
star-point. This permits the definition of a new measurement vector κabc:

κabc =
⎡⎢⎢⎢⎢⎢⎣

κa
κb
κc

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LΣabc TT

LΣ1
LΣabc TT

LΣ2
LΣabc TT

LΣ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

LΣ1+LΣ2+LΣ3
LΣ1

LΣ1+LΣ2+LΣ3
LΣ2

LΣ1+LΣ2+LΣ3
LΣ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.15)

that is indeed the reciprocal value of the measurement vector obtained considering the volt-
age vNO. The κabc is also transformed using the Clarke matrix and the new vector can be
considered for the estimation of the position:

χinv = atan(
κβ

κα
) ≈ 2θe. (3.16)

It is more difficult to find an analytical expression for the position estimation error of χinv
respect to the standard approach. However, a comparison between these two methods can
be given using a numerical analysis, as shown in Figure 3.3. Although the inverse algorithm
is more simple to be implemented, the resulting estimated position could be worse than in
case of the standard algorithm depending on the motor parameters. An example in which
the inverse approach gives a perfect position estimation is when the machine has a diagonal
phase inductance matrix, hence, M0 = M2 = 0.
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Figure 3.3: Comparison of the position errors of the presented methods. The plot is referred
to a machine with the following inductance values: L0 = 442.2 mH, M0 = 20.7
mH, L2 = 103.3 mH. The parameter M2 is let vary between −L0+M0− L2 and L0−
M0 − L2 in order to get the p range between -0.5 and 0.5. Left-above: parameters
as declared. Right-above: the parameters L0 and M0 are doubled. Left-below:
the parameters L0 and M0 are halved. Right-below: the parameters L2 is halved.

3.1.3 Duality of the rotor position

As shown, both standard and inverse algorithms provide an estimation of 2θe since the flux
generated by the permanent magnet of the motor modulates the machine phase inductance
regardless of the north or south magnetic pole shown. For that reason, the magnetic flux
linked to a phase reaches its maximum every 180○. This effect causes the DFC technique
to present an uncertainty of 180○ on the estimated position which must be avoided in order
to not invert accidentally the rotation direction of the rotor. This is actually a common issue
that affects machine anisotropy based sensorless technique and many solutions have been
proposed for solving this ambiguity problem in literature. The most straightforward method is
to align the magnetic flux generated by the permanent magnet, i.e. the rotor direction, with
one phase of the machine before its operation. For example, by applying the vector v1, the
rotor aligns with phase a and, therefore, the rotor shows its north pole. However, for some
applications, this rotation is not always possible or attractive since the potential mechanical
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element attached to the motor shaft may not be allowed to move at every initialization. A
valid alternative is the usage of current injection along the d−axis of the machine. In fact,
considering the direct influence that such current has on the Ld inductance of the machine in
the rotor reference frame, one is able to determine what pole the rotor exhibits. A direct way
to obtain a direct influence of this inductance on the DFC measurements cannot be found.
For that reason, it is possible to resort to alignment or to high-frequency injection techniques
for the solution of the initial rotor position ambiguity.

3.2 Effect of the position error on the machine equations

The position estimation methods for the DFC technique have been presented within the
previous section. As shown, the estimated position accuracy depends on the motor param-
eters, i.e. on the definition of the inductance matrix. Since the estimated position will be
used for the FOC, it is understandable to ask ourselves how much the use of a possibly
inaccurate knowledge of the angular position affects the drive and control of the machine.
In order to investigate this aspect, a closer look to the effects of the application of Clarke
and Park transformations to the system equations is needed. Hence, some results already
provided in section 2.2.1 and 2.2.2 will be proposed again in a form suitable for this purpose.
Let us consider the symmetric inductance matrix for a three-phase PMSM as defined as in
equation (3.3).

3.2.1 Further considerations on the machine equations

Let us recall the electrical machine equation defined on the three phase stator reference
frame:

Vabc = Riabc +
d
dt
(Labciabc +Ψabc) . (3.17)

By developing the time derivative and applying the Clarke transformation to the previous
equation, we get the αβγ system equation as presented in equation (2.16). Considering the
current iγ = 0 and the parasitic effects on the star-point neglectable, we can eliminate the
third equation and write:

Vαβ = Rsiαβ +
dLαβ

dt
iαβ + Lαβ

diαβ

dt
+ωe

∂Ψαβ

∂θe
, (3.18)

where:

Lαβ = [
γ0 − γ2 cos (2θe) −γ2 sin (2θe)
−γ2 sin (2θe) γ0 + γ2 cos (2θe)

] , (3.19)

dLαβ

dt
= ωe

∂Lαβ

∂θe
= 2ωe [

γ2 sin (2θe) −γ2 cos (2θe)
−γ2 cos (2θe) −γ2 sin (2θe)

] , (3.20)
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γ0 = L0 −M0, (3.21)

γ2 =
L2

2
+M2. (3.22)

Bringing the derivative of the current with respect to time to the left-hand side of the equation,
one obtains:

d
dt

iαβ = L−1
αβ (−(Rs +ωe

∂Lαβ

∂θe
) iαβ −ωeeαβ +Vαβ) , (3.23)

with:

L−1
αβ =

1
γ2

0 − γ2
2
[γ0 + γ2 cos (2θe) γ2 sin (2θe)

γ2 sin (2θe) γ0 − γ2 cos (2θe)
] . (3.24)

Defining the following vector:

Fαβ = −(Rs +ωe
∂Lαβ

∂θe
) iαβ −ωeeαβ +Vαβ = [

Fα

Fβ
] =

= [−Rsiα −ωe (2γ2 (iα sin (2θe)− iβ cos (2θe))−ΨPM sin (θe))+Vα

−Rsiβ +ωe (2γ2 (iα cos (2θe)+ iβ sin (2θe))−ΨPM cos (θe))+Vβ
] , (3.25)

the equation (3.23) becomes:

d
dt

iαβ = L−1
αβFαβ = [

(K0 +K2 cos (2θe)) Fα +K2 sin (2θe) Fβ

(K0 −K2 cos (2θe)) Fβ +K2 sin (2θe) Fα
] , (3.26)

where:

K0 =
γ0

γ2
0 − γ2

2
,

K2 =
γ2

γ2
0 − γ2

2
.

(3.27)

If γ2 is small enough, we can simplify the electrical differential equation (3.26):

d
dt

iαβ = K0Fαβ. (3.28)

However, the assumption that γ2 is small can be considered only for a narrow class of
PMSMs. Equation (3.28) can be expressed simply as:

d
dt iα = 1

L0
(−Rsiα +ωeΨPM sin (θe)+Vα) ,

d
dt iβ = 1

L0
(−Rsiβ −ωeΨPM cos (θe)+Vβ) .

(3.29)

The previous equations are usually used for the implementation of back-EMF based sensor-
less technique since the extraction of the position information is straightforward. Let us now
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consider the Park transformation matrix:

TP (θe) =
⎡⎢⎢⎢⎢⎢⎣

cos (θe) sin (θe) 0
− sin (θe) cos (θe) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (3.30)

In our case, only equations α and β will be considered, hence, the third row and column of
TP are not considered. The result of this transformation is calculated as follows:

Vdq = TPVαβ = RsTPiαβ +TP
dLαβ

dt
iαβ +TPLαβ

diαβ

dt
+ωeTP

∂Ψαβ

∂θe
, (3.31)

thus:

Vdq = Rsidq +ωeTP
∂Lαβ

∂θe
T−1

P idq +TPLαβ

d (T−1
P idq)
dt

+ωe
∂ (TPΨαβ)

∂θe
, (3.32)

where:

TP
∂Lαβ

∂θe
T−1

P = [
0 −2γ2
−2γ2 0

] , (3.33)

d (T−1
P idq)
dt

= ωe
∂T−1

P
∂θe

idq +T−1
P

didq

dt
, (3.34)

hence:

Vdq = Rsidq +ωeLrelidq + Ldq
didq

dt
+ωeL∗dqidq +ωeedq, (3.35)

where:

Ldq = TPLαβT−1
P = [

Ld Ldq
Lqd Lq

] = [γ0 − γ2 0
0 γ0 + γ2

] , (3.36)

L∗dq = TPLαβ
∂T−1

P
∂θe

= [ 0 −γ0 + γ2
γ0 + γ2 0

] , (3.37)

Lrel = TP
∂Lαβ

∂θe
T−1

P = [
0 −2γ2
−2γ2 0

] , (3.38)

edq =
∂ (TPΨαβ)

∂θe
= [ 0

ΨPM
] . (3.39)
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If we regroup the terms in common, we obtain:

Vdq = (Rs +ωe (Lrot,dq)) idq + Ldq
didq

dt
+ωeedq, (3.40)

where:

Lrot,dq = Lrel + L∗dq = [
0 −γ0 − γ2

γ0 − γ2 0
] = [ 0 −Lq

Ld 0
] , (3.41)

Thus, in other terms:

[Vd
Vq
] =

⎡⎢⎢⎢⎢⎢⎢⎣

Rsid −ωeLqiq + Ld
did

dt
Rsiq +ωeLdid + Lq

diq

dt
+ωeΨPM

⎤⎥⎥⎥⎥⎥⎥⎦

. (3.42)

Thus, even considering the generalized expression of the inductance matrix presented in
equation (3.3) the stator reference frame can be simplified into equation (3.42) using the
Park transformation.

3.2.2 Position error reference frame: tn-axis

In order to appreciate the effect of a potential position error on the evaluation of the Park-
transformed equations, a new reference frame is defined, namely, the tn reference frame
or position error reference frame. The following transformation matrix based on the position
error θ̃e is defined:

TP (θ̃e) = [
cos (θ̃e) sin (θ̃e)
− sin (θ̃e) cos (θ̃e)

] . (3.43)

The new equation system based on the reference frame tn can be defined as:

Vtn = Tp (θ̃e)Vdq =

= Tp (Rs +ωeLrot,dq)T−1
p itn +TpLdq

d (T−1
P itn)
dt

+ωeetn,
(3.44)

where:

d (T−1
P itn)
dt

= ω̃e
∂T−1

P

∂θ̃e
itn +T−1

P
ditn

dt
, (3.45)

then:

Ltn = TPLdqT−1
P = [

γ0 − γ2 cos (2θ̃e) γ2 sin (2θ̃e)
γ2 sin (2θ̃e) γ0 + γ2 cos (2θ̃e)

] , (3.46)

L∗tn = TPLdq
∂T−1

P

∂θ̃e
= [ γ2 sin (2θ̃e) −γ0 + γ2 cos (2θ̃e)

γ0 + γ2 cos (2θ̃e) −γ2 sin (2θ̃e)
] , (3.47)
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Lrot,tn = TPLrot,dqT−1
P = [

−γ2 sin (2θ̃e) −γ0 − γ2 cos (2θ̃e)
γ0 − γ2 cos (2θ̃e) γ2 sin (2θ̃e)

] , (3.48)

leading to, eventually:

Vtn = (Rs +ωeLrot,tn + ω̃eL∗tn) itn + Ltn
ditn

dt
+ωeetn. (3.49)

Let us bring the current derivative term in equation (3.49) on the left side and the voltage on
the right side:

ditn

dt
= L−1

tn (− (Rs +ωeLrot,tn + ω̃eL∗tn) itn −ωeetn +Vtn) , (3.50)

where:

L−1
tn =

1
γ2

0 − γ2
2
[γ0 + γ2 cos (2θ̃e) −γ2 sin (2θ̃e)
−γ2 sin (2θ̃e) γ0 − γ2 cos (2θ̃e)

] . (3.51)

We can notice the similarity of equation (3.50) to the αβ reference frame equation (3.23).
The effect of the parameter γ2 cannot be neglected, therefore, the terms dependent on γ2
will be isolated and a deeper analysis of the effect of the position error on the machine
equation will be presented within the next subsection.

3.2.3 Equations description considering the position error

The previous equations will be now divided into two part: the first part will be similar to the
dq reference frame equation, while the second part will contain all the terms depending on
the position error θ̃e. In this way we could define the part depending on the rotor position as
a disturbance term. The equations can be readjusted as:

d
dt
[ it
in
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Rs

Ld
ωe

Lq

Ld
+ ω̃e

−ωe
Ld

Lq
− ω̃e −Rs

Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[ it
in
]+ωe

ΨPM

Lq
[ sin (θ̃e)
− cos (θ̃e)

]+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
Ld

0

0
1
Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[Vt
Vn
]+

+G (θ̃e)
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

χ1 (θ̃e) χ1 (θ̃e +
π

2
)

χ2 (θ̃e +
π

2
) χ2 (θ̃e)

⎤⎥⎥⎥⎥⎥⎥⎦

[ it
in
]−TP (θ̃e) [

Vn
Vt
]+ 2ωeΨPM [

K1 (θ̃e)
K2 (θ̃e)

]
⎞
⎟⎟
⎠

,

(3.52)
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χ1 (θ̃e) = Rs sin (θ̃e)+ωe (Lq + Ld) cos (θ̃e) ,

χ2 (θ̃e) = Rs cos (θ̃e)+ωe (Lq + Ld) sin (θ̃e) ,

K1 (θ̃e) = cos2 (θ̃e) sin (θ̃e) ,

K2 (θ̃e) = − sin2 (θ̃e) cos (θ̃e) ,

G (θ̃e) =
Lq − Ld

LdLq
sin (θ̃e) .

(3.53)

By applying the decoupling strategy:

Vt = −Lqinω̂e +V∗t ,
Vn = Lditω̂e +V∗n ,

(3.54)

we obtain:

d
dt
[ it
in
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Rs

Ld
(

Lq + Ld

Ld
) ω̃e

−(
Lq + Ld

Lq
) ω̃e −Rs

Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[ it
in
]+ωe

ΨPM

Lq
[ sin (θ̃e)
− cos (θ̃e)

]+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
Ld

0

0
1
Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[V
∗
t

V∗n
]+G (θ̃e)

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

χ1 (θ̃e) χ1 (θ̃e +
π

2
)

χ2 (θ̃e +
π

2
) χ2 (θ̃e)

⎤⎥⎥⎥⎥⎥⎥⎦

[ it
in
]−TP (θ̃e) [

Vn
Vt
]
⎞
⎟⎟
⎠

, (3.55)

or equivalently:

d
dt
[ it
in
] = A (ω̃e) [

it
in
]+ωe

ΨPM

Lq

⎡⎢⎢⎢⎢⎢⎣

sin (θ̃e)

−1+ 2 sin2 ( θ̃e

2
)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
Ld

0

0
1
Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[V
∗
t

V∗n
]+

+G (θ̃e)
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

χ1 (θ̃e) χ1 (θ̃e +
π

2
)

χ2 (θ̃e +
π

2
) χ2 (θ̃e)

⎤⎥⎥⎥⎥⎥⎥⎦

[ it
in
]−TP (θ̃e) [

Vn
Vt
]
⎞
⎟⎟
⎠

. (3.56)

Bringing the last term dependent on θ̃e to the right:

d
dt
[ it
in
] = A (ω̃e) [

it
in
]−
⎡⎢⎢⎢⎢⎢⎣

0

ωe
ΨPM

Lq

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
Ld

0

0
1
Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[V
∗
t

V∗n
]+ωe

ΨPM

Lq

⎡⎢⎢⎢⎢⎢⎣

sin (θ̃e)

2 sin2 ( θ̃e

2
)

⎤⎥⎥⎥⎥⎥⎦
+

+G (θ̃e)
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

χ1 (θ̃e) χ1 (θ̃e +
π

2
)

χ2 (θ̃e +
π

2
) χ2 (θ̃e)

⎤⎥⎥⎥⎥⎥⎥⎦

[ it
in
]−TP (θ̃e) [

Vn
Vt
]
⎞
⎟⎟
⎠

, (3.57)
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we get eventually the following form:

d
dt
[ it
in
] = A (ω̃e) [

it
in
]−
⎡⎢⎢⎢⎢⎢⎣

0

ωe
ΨPM

Lq

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
Ld

0

0
1
Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[V
∗
t

V∗n
]+

+G (θ̃e)
⎛
⎜⎜
⎝

aΨ

⎡⎢⎢⎢⎢⎣

1
tan( θ̃e

2 )

2

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

χ1 (θ̃e) χ1 (θ̃e +
π

2
)

χ2 (θ̃e +
π

2
) χ2 (θ̃e)

⎤⎥⎥⎥⎥⎥⎥⎦

[ it
in
]−TP (θ̃e) [

Vn
Vt
]
⎞
⎟⎟
⎠

, (3.58)

with:

aΨ = ωeLd
ΨPM

Lq − Ld
. (3.59)

We can simplify this equation considering that the term multiplied by G (θ̃e) is a disturbance
function dependent on the system state:

d
dt
[ it
in
] = A (ω̃e) [

it
in
]−
⎡⎢⎢⎢⎢⎢⎣

0

ωe
ΨPM

Lq

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
Ld

0

0
1
Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[V
∗
t

V∗n
]+D (θ̃e, it, in, ωe, Vt, Vn) , (3.60)

or:

d
dt
[ it
in
] = A (ω̃e) [

it
in
]+B [V

∗
t

V∗n
]+ωe

edq

Lq
+D (θ̃e, it, in, ωe, Vt, Vn) , (3.61)

where:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
Ld

0

0
1
Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, A (ω̃e) =
⎡⎢⎢⎢⎢⎣

−Rs
Ld

( Lq+Ld
Ld
) ω̃e

− ( Lq+Ld
Lq
) ω̃e −Rs

Lq

⎤⎥⎥⎥⎥⎦
. (3.62)

Let us call the current vector x (t), the voltage vector u (t) and the disturbance vector d (t).
We get:

ẋ (t) = A (ω̃e) x (t)+Bu (t)+ωe
edq

Lq
+ d (t) . (3.63)

It is clear from equation (3.63) that the current control strategy used must be developed
in order to contrast the effect of the disturbance vector d (t). Thus, considering the PI
controllers for the d− and q−axis, the application of a AVO tuning method could not lead
anymore to the desired control behavior (the AVO method does not optimize the disturbance
rejection capability of the controller). Moreover, even if a new control strategy able to perform
a complete rejection of d (t) were developed, the following resulting torque will be actually
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generated by the motor:

Te =
3
2

n2
pp (ΨPM (in cos (θ̃e)− it sin (θ̃e))− 2γ2 cos (2θ̃e) itin + γ2 sin (2θ̃e) (i2

n − i2
t )) . (3.64)

Thus, considering the current control with reference vector:

ire f
tn = [

0
Ire f
] , (3.65)

and considering a complete rejection of the disturbances, we obtain at steady state:

Te =
3
2

n2
ppΨPM Ire f (cos (θ̃e)+ γ2 Ire f sin (2θ̃e)) . (3.66)

3.2.4 Considerations about the standard DFC position error

Let us now consider, for example, the estimation error ∆ defined in equation (3.13) for the
standard DFC algorithm. We can then define:

θ̃e =
∆
2
= 1

2
atan( p sin (6θe)

1− p cos (6θe)
) . (3.67)

By substituting equation (3.67) in equation (3.66), we obtain the following:

Te =
3
2

n2
ppΨPM Ire f

⎛
⎝

cos(1
2

atan( p sin (6θe)
1− p cos (6θe)

))+ γ2 Ire f
p sin (6θe)√

p2 − 2p cos (6θe)+ 1

⎞
⎠

. (3.68)

Considering that: γ2 =
Lq − Ld

2
, we obtain:

Te =
3
2

n2
ppΨPM Ire f

⎛
⎝

cos (θ̃e)+
Lq − Ld

2
Ire f

p sin (6θe)√
p2 − 2p cos (6θe)+ 1

⎞
⎠

. (3.69)

Since an analytical analysis would be too complicated, a numerical approach can be consid-
ered in order to determine the values of Te. In Figure 3.4 the term Te is depicted considering
various values of p for a complete electrical rotor revolution. As shown, a ripple torque
caused by the exploitation of the DFC position is generated. Then, it is clear that the DFC
technique decreases the efficiency of the FOC. Beside that, we can consider this perfor-
mance deterioration acceptable for the majority of PMSMs (it has to be said that normally p
is smaller than 0.5). Further considerations can be made if also the speed estimation error
ω̃e is taken into account. In fact, the estimated speed ωe is used in case speed control is
required. The most straightforward way to obtain the estimated speed is through derivation
of the estimated position:

ω̂e =
dθ̂e

dt
. (3.70)
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Figure 3.4: Electrical torque generated considering values of p varying from 0 to 0.9 and
γ2 Ire f = 0
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Figure 3.5: Electrical torque generated considering values of p varying from 0 to 0.9 and
γ2 Ire f = 0.1
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Considering the DFC estimated position, we obtain:

ω̂e =
d (θe + ∆

2 )
dt

= ωe +
1
2

d∆
dt
= ωe +ωe

3p (p + cos(6θe))
p2 + 2p cos (6θe)+ 1

= ωe + ω̃e, (3.71)

with:

ω̃e = ωe
3p (p + cos(6θe))

p2 + 2p cos (6θe)+ 1
. (3.72)

From the previous equation we can state that:

ω̃e ∈ [ωe
1+ 2∣p∣
1− ∣p∣ , ωe

1− 2∣p∣
1+ ∣p∣ ] . (3.73)

The estimated speed error is a bounded periodic function and its boundaries are dependent
on the parameter p and they are linearly dependent on ωe. Obviously, that behavior could
deteriorate the speed control of the motor especially for high-speed operations. Normally,
a low-pass filter is applied to the speed measurement path in order to diminish undesired
effects. The tuning of the filter is normally done by reasonable assumptions on the nature of
the possible disturbances acting on the measured speed signal. In case DFC is used, these
assumptions may concern also the nominal speed of the motor as well as the value of the
parameter p. Indeed, the employment of a well tuned low-pass filter could solve this issue
but the control system performance may in some cases be drastically reduced.

3.3 Improvement of the position estimation: Iterative Vector
Decoupling

The following section is based on the scientific contributions published in [54]. As described
in the previous section, the DFC technique, as well as potentially other sensorless tech-
niques, introduces an error on the estimated position that may decrease the performance
of the FOC. By a deeper analysis of the position estimation error expression, as presented
in equation (3.13), one can state that a fourth harmonic is systematically introduced on the
DFC signal vector Γαβ if bDFC ≠ 0 holds. In fact:

2θ̂e = χ = atan( a sin (2ωet)+ b sin (4ωet)
a cos (2ωet)+ b cos (4ωet)

) = 2θe +∆ where ωet = θe. (3.74)

The effects of higher order harmonics on the estimated position using sensorless technique
has been already studied by Degner in [55] for an arbitrary injection based sensorless tech-
nique. In [27], on the base of the theory presented within the previous contribution, a PLL
filter was proposed in order to eliminate the fourth harmonic. This solution, beside the satis-
factory behavior proven through experiments, cannot assure a convergence of the estimated
position to the real one for the whole speed range, unless the PLL filter is perfectly tuned.
For that reason, a new technique for the elimination of the fourth harmonic, named Iterative
Vector Decoupling (IVD), is presented in this work. This method, differently from the one
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proposed by Paulus, is based on an iterative algorithm that aims at eliminating the fourth
harmonic statically. In other words, the IVD is able to reduce the forth harmonic effect with-
out the use of additional dynamical processes such as PLL filters or state observers.
In this section, the IVD method is presented and analyzed considering the DFC position esti-
mation in equation (3.74). From now on, we will refer to that combination using the acronym
IVD-DFC (Iterative Vector Decoupling - Direct Flux Control). Firstly, the new algorithm oper-
ations are introduced. The convergence of the IVD-DFC to the real position will be proven
using a rigorous mathematical analysis. Afterwards, a modification of the algorithm will be
presented when saturation effects are considered. Eventually, sensitivity analysis is given
when uncertainties on the parameters are taken into account.

3.3.1 IVD-DFC operations

As shown in equation (3.74), the variable χ carries the information about the angular position
2θe and the error ∆. We can consider this variable a good approximation of 2θe if the value of
b is not too large. If we suppose to know the parameter b, one may try to reduce the effect
of the fourth harmonic term of Γβ and Γα by algebraically subtracting the fourth harmonic
on Γβ and Γα. Let us suppose we are working at a certain time instant. First, we include in
our notation a numbered subscript as index for the iterations. Thus, the value of the initial
estimation is 2θ̂0 and it is exactly equal to χ. Then, the initial estimation obtained is used for
the first iteration:

2θ̂1 = −arctan
⎛
⎝

Γβ − b sin (4θ̂0)
Γα − b cos (4θ̂0)

⎞
⎠

. (3.75)

The idea is to reduce the effect of the second harmonic using the estimated θ̂ previously
calculated. As it will be shown, equation (3.75) introduces another deviation term ∆1. If we
can prove that ∥∆1∥ < ∥∆0∥, we may assume that the following algorithm:

2θ̂k = −arctan
⎛
⎝

Γβ − b sin (4θ̂k−1)
Γα − b cos (4θ̂k−1)

⎞
⎠

where k = 1, 2, ..., n, (3.76)

might bring the estimation error to zero. In other words, we want to prove that for equation
(3.76) the following limit holds:

lim
n→∞

2θ̂n = 2θe. (3.77)

The IVD-DFC algorithm consists actually in equation (3.76) and its schematic is shown in
Figure 3.6. The first operation is to extract the raw estimated position 2θ̂0 using equation
(3.74). Once the first information is obtained, the iterations presented in equation (3.76)
can be performed. A new estimation of the variable 2θe is given after n iterations. Thus,
a large number of iterations can be problematic for a low-cost microcontroller to be executed
in real time. Anyway, as shown in Figures 3.7 and 3.8, even a single iteration can already
considerably improve the position estimation.
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- − arctan
(
β
α

)
1
2

2θ̂k

secondary
saliency model

[
Γα = −a cos (2θe) + b cos (4θe)
Γβ = a sin (2θe) + b sin (4θe)

]

θ̂e


Γssα,k = b cos

(
4θ̂k−1

)

Γssβ,k = b sin
(

4θ̂k−1

)



repeated n times
at every time instant

Figure 3.6: Flowchart of the IVD-DFC algorithm. The highlighted part in blue is the iterative
part. It is assumed that the vector Γss

α,β is a zero vector for k = 0.

Let us now analyze the proposed algorithm by looking at the first iteration. Equation (3.75)
can be manipulated in the following manner:

2θ̂1 = arctan
⎛
⎝

a sin (2θe)+ b sin (4θe)− b sin (4θ̂0)
a cos (2θe)− b cos (4θe)+ b cos (4θ̂0)

⎞
⎠

=∠ (aej2θe − be−j4θe + be−j4θ̂0)

= 2θe +∠ (1− pe−j6θe + pe−j(4θ̂0+2θe))

= 2θe +∠ (1− pe−j6θe + pe−j(6θe+2∆0))

= 2θe +∠ (1+ p (e−j2∆0 − 1) e−j6θe) ,

(3.78)

where:

∆0 = ∆ = atan( p sin (6θe)
1− p cos (6θe)

) ,

p = b
a

.

(3.79)

Let us consider the following proposition:

Proposition 1. The sum of two unitary complex exponential numbers Φ = ejγ1 + ejγ2 can be

written as: Φ = 2 cos(γ2 − γ1

2
) e

j(
γ2 + γ1

2
)

.

From Equation (3.78) using the previous proposition and defining γ2 = −π and γ1 = −2∆0
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one gets:

2θ̂1 = 2θe +∠
⎛
⎜
⎝

1+ 2p cos(∆0 −
π

2
) e
−j(6θe+∆0+

π

2
)⎞
⎟
⎠

= 2θe +∠
⎛
⎜
⎝

1+ 2p sin (∆0) e
−j(6θe+∆0+

π

2
)⎞
⎟
⎠

= 2θe + arctan

⎛
⎜⎜⎜
⎝

−2p sin (∆0) sin(6θe +∆0 +
π

2
)

1+ 2p sin (∆0) cos(6θe +∆0 +
π

2
)

⎞
⎟⎟⎟
⎠

= 2θe + arctan( −2p sin (∆0) cos (6θe +∆0)
1− 2p sin (∆0) sin (6θe +∆0)

)

= 2θe +∆1.

(3.80)
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Standard Deviation of the Position Error in Degree
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Inverse DFC method
IVD-DFC method one-iteration
IVD-DFC method two-iterations
IVD-DFC method five-iterations

Figure 3.7: Comparison of the position standard deviation errors of the presented methods.
The plot is referred to a machine with the following inductance values: L0 =
442.2 µH, M0 = 20.7 µH, L2 = 103.3 µH. The parameter M2 is let vary between
L0 +M0 − L2 and L0 −M0 − L2 in order to get p range between −0.5 and 0.5.
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α

β

2θe
2θ̂0

2θ̂1
∆0

∆1

. .
1

Reference

DFC Signal

IVD-DFC Signal

DFC Deviation

IVD-DFC Deviation

Figure 3.8: Plain representation of the DFC signals: Γα
a and Γβ

a respectively on the α and β
axis (blue line). The red circle represents the signals for the case b = 0 and
is taken as reference. The green circle with radius p represents the second
harmonic. The light blue line represents the α and β signals obtained from the
IVD-DFC algorithm. The orange line is the path taken by the new estimation
error ∆1, its maximal amplitude is smaller than p (case with p = 0.3).

A relation between ∆k and its previous value ∆k−1 can be found from equation (3.80):

∆k = arctan( −2p sin (∆k−1) cos (3x +∆k−1)
1− 2p sin (∆k−1) sin (3x +∆k−1)

) . (3.81)

A graphical visualization of the iterations effect is shown in Figure 3.9. Next step is to prove
that the deviation ∣∆k∣ is convergent to zero, namely:

lim
k→∞
∣∆k∣ = 0. (3.82)
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3.3.2 IVD-DFC convergence analysis

The convergence of the iterative method to the real position has been shown graphically in
Figure 3.9. However, the algorithm has to be mathematically proven in order to determine
for which conditions the convergence holds. Therefore, since we are dealing with discrete
quantities, we will introduce the definition of a convergent sequence:

Definition 1. Let be given a real value sequence Xk. The sequence is said to be linearly
convergent (at least) to zero if exists a value σ ∈ [0, 1) such that ∣Xk∣ ≤ σ ∣Xk−1∣ ∀k ∈ [1, 2, ..., n].
Then, limk→∞ ∣Xk∣ = 0.

In order to prove equation (3.82) the following lemma is presented.

Lemma 1. Let us consider a real value sequence Xk defined on the interval [−π

2
,

π

2
]. If

tan (Xk) is at least linearly convergent to zero, then also the original sequence Xk is at least
linearly convergent to the same value.

The previous lemma will be useful for the proof of the following theorem.

Theorem 1. Let be the following initial function: ∆0 (θe, p) = −arctan( p sin (6θe)
1+ p cos (6θe)

) param-

eterized by p ∈ R and defined ∀x ∈ R. If the following sequence:

∆k (θe, p) = arctan( 2p sin (∆k−1 (θe, p)) cos (6θe +∆k−1 (θe, p))
1+ 2p sin (∆k−1 (θe, p)) sin (6θe +∆k−1 (θe, p))) is defined ∀k ∈ N0, then

the sequence ∆k is linearly convergent if and only if ∣p∣ < 1
2

.

Proof. Let us prove first the following statement:

∣tan (∆k (θe, p))∣ ≤ γ (p) ∣tan (∆k−1 (θe, p))∣ , (3.83)

where:

γ (p) = 2 ∣p∣ . (3.84)

It is trivial to see that the previous sequence is linearly convergent only if γ (p) < 1 or

∣p∣ < 1
2

(necessary condition). Let us elaborate the equations considering ∣p∣ < 1
2

(sufficient
condition). First, let us develop the left side of the inequality in equation (3.83). For simplicity
we put ∆k (θe, p) = ∆k:

∣tan (∆k)∣ = ∣tan(arctan( −2p sin (∆k−1) cos (6θe +∆k−1)
1− 2p sin (∆k−1) sin (6θe +∆k−1)

))∣

= ∣ −2p sin (∆k−1) cos (6θe +∆k−1)
1− 2p sin (∆k−1) sin (6θe +∆k−1)

∣

= ∣−2p sin (∆k−1) cos (6θe +∆k−1)∣
∣1− 2p sin (∆k−1) sin (6θe +∆k−1)∣

= 2 ∣p∣ ∣sin (∆k−1)∣ ∣cos (6θe +∆k−1)∣
∣1− 2p sin (∆k−1) sin (6θe +∆k−1)∣

.

(3.85)
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Then, substituting equation (3.85) in equation (3.83), we obtain:

2 ∣p∣ ∣sin (∆k−1)∣ ∣cos (6θe +∆k−1)∣
∣1− 2p sin (∆k−1) sin (6θe +∆k−1)∣

≤ 2 ∣p∣ ∣sin (∆k−1)∣
∣cos (∆k−1)∣

. (3.86)

The previous inequality will be used in order to find the values of p that satisfy the inequal-
ity. The terms can be elaborated as follows:

∣cos (∆k−1)∣
Z
ZZ2 ∣p∣XXXXXX∣sin (∆k−1)∣ ∣cos (6θe +∆k−1)∣

∣1− 2p sin (∆k−1) sin (6θe +∆k−1)∣
≤ZZZ2 ∣p∣XXXXXX∣sin (∆k−1)∣

∣cos (∆k−1)∣ ∣cos (6θe +∆k−1)∣
∣1− 2p sin (∆k−1) sin (6θe +∆k−1)∣

≤ 1

∣

χ1(θe,∆k−1)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
cos (∆k−1) cos (6θe +∆k−1) ∣ ≤ ∣

χ2(θe,∆k−1)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1− 2p sin (∆k−1) sin (6θe +∆k−1) ∣.

(3.87)

We can see that for ∣p∣ < 1
2

, the statement χ2 (θe, ∆k−1) > 0 is always true.

In the first case: χ1 (θe, ∆k−1) ≥ 0:

cos (∆k−1) cos (6θe +∆k−1) ≤ 1− 2p sin (∆k−1) sin (6θe +∆k−1)
cos (∆k−1) cos (6θe +∆k−1)+ 2p sin (∆k−1) sin (6θe +∆k−1) ≤ 1

(1+ 2p) cos (−6θe)+ (1− 2p) cos (6θe + 2∆k−1) ≤ 2.
(3.88)

We can rewrite the last inequality as follows:

c1 cos (y1)+ c2 cos (y2) ≤ 2, (3.89)

with c1 = 1+ 2p, c2 = 1− 2p, y2 = −6θe and y1 = 6θe + 2∆k−1.
One can state that:

c1 cos (y1)+ c2 cos (y2) ≤ ∣c1 cos (y1)+ c2 cos (y2)∣ . (3.90)

Then, applying the triangular inequality statement, we can write:

∣c1 cos (y1)+ c2 cos (y2)∣ ≤ ∣c1 cos (y1)∣+ ∣c2 cos (y2)∣ ≤ ∣c1∣+ ∣c2∣ . (3.91)

Thus, putting together equation (3.90) and equation (3.91):

c1 cos (y1)+ c2 cos (y2) ≤ ∣c1∣+ ∣c2∣ . (3.92)

Thus, if we find a range of values of p that satisfies ∣c1∣ + ∣c2∣ ≤ 2, equation (3.89) is also

satisfied. Let us define the range for the p values considering ∣p∣ ≤ 1
2

:

∣c1∣+ ∣c2∣ ≤ 2 (3.93)
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Since c1 and c2 are positive for ∣p∣ ≤ 1
2

, we can avoid the absolute value notation:

c1 + c2 ≤ 2,
1+ 2p + 1− 2p ≤ 2,

2 ≤ 2.
(3.94)

That is feasible. Then, ∣p∣ ≤ 1
2

is a possible range in order for equation (3.86) to be
satisfied.

α

β

. .
1

Reference Signal

DFC Signal

IVD-DFC Signal: one iteration

IVD-DFC Signal: two iterations

IVD-DFC Signal: three iterations

Figure 3.9: Plain representation of the DFC signals: Γα
a and Γβ

a respectively on the x and y
axis (blue line). The red circle represents the signals for the case b = 0 and is
taken as reference. The other lines are referring to certain numbers of iterations
for the IVD-DFC algorithm (case with p = 0.35).
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Thus, ∣p∣ ≤ 1
2

is a sufficient condition for equation (3.86). The case χ1 (x, ∆k−1) ≤ 0 can

be manipulated as before and the result is the same. Then, ∣p∣ ≤ 1
2

is a possible range for
equation (3.86) in order to be satisfied. Then, if we put together the necessary and sufficient
conditions found, one can assert that:

lim
k→∞
∣tan (∆k)∣ = 0, iff ∣p∣ < 1

2
. (3.95)

Thus, using the Lemma 1, we get:

lim
k→∞
∣∆k∣ = 0, iff ∣p∣ < 1

2
. (3.96)

The convergence of the algorithm has been proven for those machines whose p absolute
value is smaller than a half. We can state that this requirement is achieved by the most
part of the low power PMSMs. For values of p greater than 0.5 other approaches can be
applied but they are not topic of this analysis. Since the maximal absolute value of ∆k can
be determined, the number of iterations can be chosen considering the maximal acceptable
error for the position estimation.

3.3.3 Phase shift effect: Full IVD-DFC

Normally, the assumptions made about the inductance matrix and the rapidity of the DFC
operations with respect to the machine mechanical behavior are satisfied. However, for
some particular circumstances, for example the occurrence of magnetic field saturation due
to currents, these assumptions cannot be considered true anymore. The analysis of the
saturation effect on the estimation of the angular position has been presented by Grasso
in [56]. According to this work, the expression presented in equation (3.6) does not correctly
model the DFC signals behavior in case of magnetic field saturation or high speed operation.
Therefore, a modified inductance matrix that considers this effect is introduced and the DFC
signal vector Γαβ takes the following form:

Γα = −a (t) cos (2θe (t)+ φa (t))+ b (t) cos (4θe (t)+ φb (t)) ,
Γβ = a (t) sin (2θe (t)+ φa (t))+ b (t) sin (4θe (t)+ φb (t)) ,

(3.97)

where the phase shifts φa (t) and φb (t) as well as the amplitudes a (t) and b (t) depend on
the currents that are flowing through the windings and the rotor speed. Starting from this
point, the time dependency of these parameters will be avoided for sake of readability. An
estimation of the variable θe can be given by:

2θ̂0 = −arctan(
Γβ

Γα
)− φa. (3.98)
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The following mathematical elaboration can be done in order to find the deviation ∆0. The
process is similar to equation (3.13):

2θ̂0 = −arctan( a sin (2θe + φa)+ b sin (4θe + φb)
−a cos (2θe + φa)+ b cos (4θe + φb)

)− φa

= arctan( a sin (2θe + φa)+ b sin (4θe + φb)
a cos (2θe + φa)− b cos (4θe + φb)

)− φa

=∠ (aej(2θe+φa) − be−j(4θe+φb))− φa

= 2θe + φa +∠(1−
b
a

e−j(6θe+φa+φb))− φa

= 2θe + arctan( −p sin (6θe + φa + φb)
1− p cos (6θe + φa + φb)

)

= 2θe +∆0.

(3.99)

Let us suppose that we know the parameter b, φa and φb, as before one can build the al-
gorithm:

2θ̂k = −arctan
⎛
⎝

Γβ − b sin (4θ̂k−1 + φb)
Γα − b cos (4θ̂k−1 + φb)

⎞
⎠
− φa. (3.100)

That is, for the first iteration:

2θ̂1 = arctan
⎛
⎝

a sin (θe + φa)+ b sin (4θe + φb)− b sin (4θ̂0 + φb)
a cos (2θe + φa)− b cos (4θe + φb)+ b cos (4θ̂0 + φb)

⎞
⎠
− φa

=∠ (aej(2θe+φa) − be−j(4θe+φb) + be−j(4θ̂0+φb))− φa

= 2θe + φa +∠ (1− pe−j(6θe+φa+φb) + pe−j(4θ̂0+x+φa+φb))− φa

= 2θe +∠ (1− pe−j(6θe+φa+φb) + pe−j(6θe+2∆0+φa+φb))

= 2θe +∠ (1+ 2p sin (∆0) e−j(6θe+∆0+φa+φb+π/2))
= 2θe +∆1.

(3.101)

Thus:

∆k = arctan( −2p sin (∆k−1) cos (6θe +∆k−1 + φa + φb)
1− 2p sin (∆k−1) sin (6θe +∆k−1 + φa + φb)

) . (3.102)

The mathematics follows the same procedure as in the previous subsection. Using the
theorem 1 we can prove the following limit:

lim
k→∞
∣∆k∣ = 0, (3.103)
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and:

lim
k→∞

2θ̂k = 2θe. (3.104)

Figure 3.10 shows the flowchart related to the IVD-DFC operations in case of saturation
effect.

- − arctan
(
β
α

)
− ϕa

1
2

2θ̂k

secondary
saliency model

[
Γα = −a cos (2θe + ϕa) + b cos (4θe + ϕb)
Γβ = a sin (2θe + ϕa) + b sin (4θe + ϕb)

]

θ̂e


Γssα,k = b cos

(
4θ̂k−1 + ϕb

)

Γssβ,k = b sin
(

4θ̂k−1 + ϕb

)



repeated n times
at every time instant

Figure 3.10: Flowchart of the IVD-DFC algorithm. The highlighted part in blue is the iterative
part. It is assumed that the vector Γss

α,β is a zero vector for k = 0.

3.3.4 Sensitivity Analysis

If the parameters b, φa and φb are not precisely known, the following algorithm can be pro-
posed:

2θ̂k = −arctan
⎛
⎝

Γβ − b̂ sin (4θ̂k−1 + φ̂b)
Γα − b̂ cos (4θ̂k−1 + φ̂b)

⎞
⎠
− φ̂a. (3.105)

The previous equation can be easily related to equation (3.100). The position information
θe can be extracted from Equation (3.105) as presented in the previous subsections. After
some mathematical elaborations we obtain:

2x̂k = 2θe + φ̃a + arctan( −2p sin (∆k−1 + φ̃b) cos (6θe + κ1)+ p̃ sin (6θe + κ2)
1− 2p sin (∆k−1 + φ̃b) sin (6θe + κ1)+ p̃ cos (6θe + κ2)

) , (3.106)
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where:

κ1 = φa +
φb + φ̂b

2
+∆k−1,

κ2 = φa + φ̂b + 2∆k−1,

p̃ = b − b̂
a

,

φ̃a = φa − φ̂a,
φ̃b = φb − φ̂b,

(3.107)

where b̂, φ̂a and φ̂b are respectively the estimated value of b, φa and φb. From equation
(3.106), we cannot state that for increasing number of iterations the deviation term goes to
zero. In fact, considering the results of Figure 3.11, a greater number of iterations does not
imply a better convergence if the value p is too small. Figure 3.12 shows the deterioration
of the performance due to the phase estimation error.
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Figure 3.11: Comparison of the position standard deviation errors of the presented methods.
The plot is referred to a machine with the following inductance values: L0 =
442.2 µH, M0 = 20.7 µH, L2 = 103.3 µH. The parameter M2 is let vary between
L0 +M0 − L2 and L0 −M0 − L2 in order to get p range between −0.5 and 0.5. In
this case b̂ is 10% bigger than b.
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Figure 3.12: Comparison of the position standard deviation errors of the presented methods.
The plot is referred to a machine with the following inductance values: L0 =
442.2 µH, M0 = 20.7 µH, L2 = 103.3 µH. The parameter M2 is let vary between
L0 +M0 − L2 and L0 −M0 − L2 in order to get p range between −0.5 and 0.5. In
this case φ̂b differs from φb about 5 degrees.

For that reason, the parameter φa and φb should be estimated offline and their values
should be saved in a look-up table depending on the current and speeds of the motor. The
parameter p can be either estimated using an online or offline algorithm, as it will be shown
within the next chapter.

3.4 Conclusions

Within this chapter, the estimation process of the angular rotor position by means of the DFC
signals has been presented. As depicted in Figures 3.3 and 3.7, both standard and reverse
DFC approaches introduce a systematic error dependent on the machine anisotropy. In the
case of the standard approach, an analytical description of the DFC signals Γαβ can be given
and, as shown in equation (3.6), they are the result of the combination of two terms: a sec-
ond harmonic with magnitude a and a fourth harmonic with magnitude b. It has been proven
that the systematic error on the position estimation is directly related to the magnitude of the
fourth harmonic. The decrease in efficiency of the control algorithm due to the estimation
error has been determined first mathematically and, then, through simulations. In order to
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reduce the estimation error, the IVD-DFC algorithm has been proposed. This algorithm can
improve the position estimation using an iterative approach based on the knowledge of the
parameter b. Two additional parameters, namely φa and φb, are introduced to the IVD al-
gorithm in order to consider the machine saturation effect leading to the Full-IVD algorithm
depicted in Figure 3.10. The estimation results are satisfactory also in case of parameter
deviation as depicted in Figures 3.11 and 3.12.
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4 State Observation using the DFC

At this point, considering the results presented on the previous chapter, three issues arise:

• The possible deterioration of the DFC signals due to stochastic processes acting on
them has not been considered yet.

• The DFC estimation might not perform as expected if high-speed operation is consid-
ered.

• The parameter b has to be estimated previously or simultaneously to the control oper-
ation in order for the IVD-DFC algorithm to perform correctly.

These issues can be handled by the introduction of a state observer. Within this chapter,
the Kalman filter is presented as possible solution for the estimation of the machine me-
chanical state in presence of stochastic processes acting on the measurements. Moreover,
the Kalman filter will be used also for the position and speed reconstruction for high-speed
operations as well as for the estimation of the parameter b. Additionally, the observer can
be used for the estimation of the external load-torque acting on the motor shaft in order to
add more information about the system dynamic that could be possibly used for an improved
motor control strategy. The Kalman filter has been chosen among other observers due to
its optimal estimation capability for linear systems and its straightforward implementation on
a microcontroller. Firstly, the mathematical description of the Kalman filter will be presented
as well as its application to the machine equations. The observation process will be also
widen to the nonlinear case and the concept of observation for high-speed operation will
be presented. Afterwards, an additional observer, based on the Kalman filter structure, will
be introduced in order to estimate the b parameter. Eventually, the observed state will be
extended in order to include the external load torque.

4.1 Optimal state observation

A brief introduction to the Kalman filter concept and its application to the PMSM equations is
presented in this section. The derivation of the observer equations are obtained considering
a discrete time domain. Firstly, let us consider the following linear state space model in the
continuous time domain:

ẋ (t) = Ax (t)+Bu (t)+wc (t) , (4.1)

where x (t) ∈ Rn is the state vector containing the n time dependent variables of the system,
u (t) ∈ Rm is the vector including the m input signals acting on the state, A ∈ Rn×n, B ∈ Rm×n

are respectively the state and the input matrix of the system and wc (t) ∈ Rn is a vector
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containing the disturbances and the unmodelled dynamics acting on the system. Let us now
discretize equation (4.1) considering the forward Euler method approximation:

x ((k + 1)T)− x (kT)
T

= Ax (kT)+Bu (kT)+wc (kT) , (4.2)

which becomes:

x ((k + 1)T) = Fx (kT)+Gu (kT)+w (kT) , (4.3)

where:

F = I + TA,
G = TB,
w (kT) = Twc (kT) ,
k ∈N,

(4.4)

where T is the discretization step and kT is the time instant considered. Let us now introduce
the measurement vector y (kT) ∈ Rp:

y (kT) = Hx (kT)+ v (kT) , (4.5)

where H ∈ Rp×n and v (kT) represents the noise vector acting on the measurements. Finally,
the dynamic model can be defined in the following reduced form:

xk+1 = Fxk +Guk +wk,
yk = Hxk + vk.

(4.6)

The disturbance vectors wk and vk are generally considered stochastical processes and
their behavior can be described by their correlation matrix Q and R and their mean values
µw and µv:

µw(k) = E [wk] =
1
k

k
∑
i=0

wi,

Qk = E [(wk − µw) (wk − µw)
T] = 1

k

k
∑
i=0
(wi − µw) (wi − µw)

T
,

(4.7)

for the process wk and:

µv(k) = E [vk] =
1
k

k
∑
i=0

vi,

Rk = E [(vk − µv) (vk − µv)
T] = 1

k

k
∑
i=0
(vi − µv) (vi − µv)

T
.

(4.8)

Considering the system equations (4.6), the only information about its state xk comes from
the measurement vector yk. Thus, an observer can be implemented in order to extract the
information about the system state by the exploitation of the measurement vector. That
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is a feasible request, if the pair (F, H) fulfills the observability criterion. Indeed, several
observers structures and approaches could be used in order to perform an estimation of the
state x but only the Kalman filter and all its various derivations are based on an optimization
process that consider the stochastic processes acting on the model equations and on the
measurements.

4.1.1 Kalman filter for PMSMs

Let us recall the PMSM differential equation presented in (2.10) in the discretized form:

ωe(k + 1) = ωe(k)+
T
J
(−Bωe(k)+Ξe(k)−Ξl(k))+wω(k),

θe(k + 1) = θe(k)+ Tωe(k)+wθ(k),
(4.9)

where the differential equation relative to the angular position has been added. Momentarily,
the external load torque term Ξl(k) will be neglected. The system can be described in a
reduced form as in equation (4.6) by definition of the following quantities:

xk = [
ωe(k)
θe(k)

] , uk = Ξe(k), wk = [
wω(k)
wθ(k)

] ,

F =
⎡⎢⎢⎢⎢⎢⎣

1− TB
J

0

T 1

⎤⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎣

T
J
0

⎤⎥⎥⎥⎥⎥⎦
.

(4.10)

Temporarily, we suppose that the position is directly measurable:

yk = θe(k)+ vθ(k), (4.11)

thus:

H = [0 1] , vk = vθ(k). (4.12)

Let us now define the estimation state variable x̂k and its covariance matrix Pk:

Pk = E [(xk − x̂k) (xk − x̂k)T] =
1
k

k
∑
i=0
(xk − x̂k) (xk − x̂k)T =

1
k

k
∑
i=0

x̃kx̃T
k , (4.13)

where the term x̃k = xk − x̂k represents the estimation error. We can define the dynamic of
the estimated state x̂k in order to match the dynamic of the PMSM in (4.9), obviously the
process noise wk cannot be included:

x̂k+1 = Fx̂k +Guk. (4.14)

We can now introduce the Kalman filter estimation process. Its operations can be mainly
divided into two tasks: prediction and update. The prediction can be summarized in the
following steps:

• at time k the old estimated state x̂−k−1 evolves into the new predicted state x̂−k using the
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model equations in equation (4.14):

x̂−k = Fx̂−k−1 +Guk−1, (4.15)

• similarly the covariance matrix Pk is propagated through the matrix F:

P−k = FTP−k−1F +Qk. (4.16)

The update makes use of the measurement vector yk in order to correct the previous pre-
diction of the state. The update operations can be defined as follows:

• the Kalman filter gain matrix is calculated:

Kk = P−k HT (HP−k HT + Rk)
−1

, (4.17)

• the covariance matrix P−k is updated:

P+k = (I −KkH)P−k , (4.18)

• the estimated state x̂−k is updated:

x̂+k = x̂−k +Kkȳk, (4.19)

where:

ȳk = yk −Hx̂−k , (4.20)

is called the innovation term.

At this point the estimation process can move on the next step k + 1, the following relations
hold:

x̂−k+1 = x̂+k , P−k+1 = P+k . (4.21)

The calculation of the gain matrix Kk in equation (4.17) allows the observer to perform a
minimization of the the covariance matrix Pk. Accordingly to [57], the Kalman filter results to
be the best linear observer that minimize the matrix Pk if the stochastic processes wk and
vk are zero-mean, uncorrelated and white. These assumptions are not always applicable
to the considered dynamical system, however, some modifications to the observer structure
can be made in order to generalize its optimal behavior to a wider class of systems. In case
an encoder is used for the measurement of the angular position, the covariance value Rk of
the measurement is usually approximated to:

Rk =
1

2Nbit
, (4.22)

where Nbit is the number of bits available to the encoder that determine the resolution of
the measurement. Instead, considering a sensorless technique, the definition of a value for
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the measurement covariance might be more difficult. For example, if the DFC vector Γαβ is
considered, we can define the measurement signal yk as:

yk = −
1
2

atan(
Γβ(k)
Γα(k)

) = θe(k)+ vθ(k). (4.23)

Without loss of generality, the parameter b is temporarily taken equal to zero and the terms
Γα(k) and Γβ(k) are affected by white noise with the same covariance σ2

vΓ
. Let us recall the

propagation of uncertainties through the atan(⋅) function. If we consider a variable X with
associated variance σ2

X, we can assert, referring to INS REF, that the new variable Y defined
as:

Y = −1
2

atan(X) (4.24)

presents the following variance:

σ2
Y =

1
4
( 1

X2 + 1
)

2
σ2

X. (4.25)

Moreover, considering the variable X defined as:

X = B
A

, (4.26)

and considering the variable A and B uncorrelated, we can state that the variance σ2
X is

equal to:

σ2
X = (

B
A
)

2
[(σA

A
)

2
+ (σB

B
)

2
] . (4.27)

Substituting (4.27) in (4.25), we obtain:

σ2
Y =

1
4

⎛
⎜
⎝

1

( B
A)

2 + 1

⎞
⎟
⎠

2

( B
A
)

2
[(σA

A
)

2
+ (σB

B
)

2
] = 1

4
( AB

A2 + B2)
2
[

σ2
AB2 + σ2

B A2

A2B2 ] =

= 1
4
(

σ2
AB2 + σ2

B A2

(A2 + B2)2
) . (4.28)

Now, if we consider A = Γα(k), B = Γβ(k), σ2
A = σ2

B = RΓ, Y = yk and Rk the covariance of
vθ(k), we can write:

Rk =
1
4

σ2
vΓ

Γ2
α(k)+ Γ2

β(k)
. (4.29)
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Reminding the definition of the DFC signals in equation (3.6) and that by assumption b = 0,
we obtain:

Rk =
σ2

vΓ

4a2 . (4.30)

Instead, if we consider b ≠ 0, we obtain:

Rk =
σ2

vΓ

4
1

a2 + b2 + ab sin (2θe(k))
. (4.31)

As shown, the introduction of the term b let the estimation to be affected by a deterministic
error whose mathematical description has been already presented in equation (3.13). Thus,
we can rewrite the measurement variable yk as:

yk = θk +
∆(k)

2
+ vθ(k), (4.32)

where the covariance of vθ(k) is Rk and:

∆(k) = atan
⎛
⎝

b
a sin (6θe(k))

1− b
a cos (6θe(k))

⎞
⎠

. (4.33)

It is clear from the previous equations that the position measurement obtained using the
DFC technique is not only affected by a noise process with a determinable covariance but
it is also affected by a systematic error dependent on the parameter b. If b ≠ 0, the Kalman
filter cannot perform the optimal estimation as expected. In order to resolve this issue, we
might think of using directly the DFC signals vector Γαβ as measurement instead of using
the arctangent function:

yk = Γαβ(k). (4.34)

However, the nonlinearity relations between the vector Γαβ and the angular position θe cannot
be handled by the proposed linear observer. In the following subsection, the Kalman filter
will be extended for the nonlinear case.

4.1.2 Direct application to the DFC measurements: extended Kalman filter

As shown, the Kalman filter represents the best choice among linear observers capable
of minimizing the covariance matrix Pk. Nevertheless, there are various modifications that
can be done in order to extend its range of applicability to nonlinear systems. The most
straightforward one is to linearize the model and apply the same procedure shown before
to the linearized system. This approach is called the Extended Kalman Filter (EKF). In our
case, only the measurement vector yk becomes a nonlinear function of the state, instead,
the system model remains linear:

yk = [
Γα(k)
Γβ(k)

] = [−a cos (2θe(k))+ b cos (4θe(k))
a sin (2θe(k))+ b sin (4θe(k))

] . (4.35)
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Thus, only the linearization of yk is needed. The EKF procedure is similar to the linear case.
The prediction part follows the same steps of the previous case since the state dynamic
remains linear. The update part can be defined by the following steps:

• The matrix Hk is obtained by substituting the estimated state x̂−k into the first order
partial derivative of the measurement vector yk performed with respect to xk :

Hk =
∂yk

∂xk
∣
xk=x̂−k

= [2a sin (2θ̂−e (k))− 4b sin (4θ̂−e (k))
2a cos (2θ̂−e (k))+ 4b cos (4θ̂−e (k))

] , (4.36)

• the Kalman filter gain matrix is calculated:

Kk = P−k HT
k (HP−k HT

k +Rk)
−1

, (4.37)

where:

Rk = [
σ2

vΓ
0

0 σ2
vΓ

] , (4.38)

• the covariance matrix P−k is updated:

P+k = (I −KkHk)P−k , (4.39)

• the estimated state x̂−k is updated:

x̂+k = x̂−k +Kkȳk, (4.40)

where:

ȳk = yk − ŷk = [
Γα(k)
Γβ(k)

]− [−a cos (2θ̂e(k))+ b cos (4θ̂e(k))
a sin (2θ̂e(k))+ b sin (4θ̂e(k))

] . (4.41)

It has to be remarked that the EKF algorithm could give better estimation results with re-
spect to the linear case only if the DFC signals are correctly modeled and the parameters a
and b are exactly known. Moreover, this approach could potentially substitute the IVD-DFC
algorithm since the fourth anisotropy harmonics are already included into the model. Never-
theless, the ideal case is almost never satisfied and the a priori knowledge of the parameter
a and b is not a straightforward request to be fulfilled. In fact, a possibility, in order to estimate
the parameters, is to apply the Fast Fourier Transform (FFT) to the DFC signals Γα and Γβ

when the motor is rotating. However, this solution requests a great amount of computational
effort and requires ideally a constant angular speed. For that reason, within the next section,
a combination of the IDV-DFC algorithm with an online parameter estimation method will be
presented as alternative to the EKF.

4.1.3 Adaptive observer for sensorless high-speed operation

To this point, the DFC signals are still considered independent to the motor speed. In fact,
as described in Chapter 2, the extraction of the DFC measurement vector is performed at
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a PWM frequency whose bandwidth can be considered much higher than the mechanical
one. Although it is reasonable to avoid the deterioration of the position estimation due to the
speed effects for a more simple mathematical derivation of the DFC theory, these effects
cannot be avoided if we consider the motor operation at high-speed. Moreover, it is also to
be considered that a complete DFC signal vector is available every three PWM periods and
within these the motor position could change noticeably. This effect is called the sequentiality
effect and it is fully described in INS REF.
Clearly, if we suppose to have a good model of the system dynamics at high-speed, we can
apply the Kalman filter or the EKF with a modified value of σ2

vΓ
, for example:

σ2
vΓlin
(k) = {σ2

vΓ
for ∣ω̂e(k)∣ ≤ ω f

σ2
vΓ
+m (∣ω̂e(k)∣−ω f ) for ∣ω̂e(k)∣ > ω f

, (4.42)

or:

σ2
vΓquad
(k) = σ2

vΓ
+m2∣ω̂e(k)∣2, (4.43)

where ω f > 0, m > 0 and m2 > 0. The previous examples are only two of the theoretically
infinite possible combinations of polynomial functions with variable ω̂e(k). Even more exam-
ples can be implemented if we consider nonlinear functions. Obviously, the coefficients used
must be tuned accordingly to the desired performance. A greater value of m2, for example,
will increase the covariance term more rapidly as the estimated speed increases. That will
result into an estimation that relies more on the model prediction than on the measurements.
Thus, at least for high-speed operation, the dynamical behavior of the machine should be
accurately modeled.

4.1.4 Load torque estimation

As declared at the beginning of this section, the external load-torque Ξl has not been taken
into account for the development of the observer. However, its contribution to the system
dynamic is fundamental because every external mechanical interaction is accountable for
the evolution of the system state. Since the external load torque is mostly unpredictable, it is
almost impossible to provide a dynamical description of its behavior. Hence, the best model
for its dynamic is to put its derivative to zero:

dΞl(t)
dt

= 0, Ξl(0) = 0, (4.44)

that for the discretized system is equal to:

Ξl(k + 1) = Ξl(k), Ξl(0) = 0. (4.45)

Obviously, the previous relation does not bring any disposable information but, if embedded
into the Kalman filter equations, an estimation of the external load torque can be obtained.
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In fact, by means of an extended state definition:

xk =
⎡⎢⎢⎢⎢⎢⎣

ωe(k)
θe(k)
Ξl(k)

⎤⎥⎥⎥⎥⎥⎦
. (4.46)

The resulting model used for the state prediction is as before:

x̂−k = Fx̂−k−1 +Guk−1, (4.47)

and the matrices F and G are also extended:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1− TB
J

0 −T
J

T 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T
J
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (4.48)

Considering equation (4.45), the prediction still does not contribute to a rational estimation of
the Ξl(k). However, the covariance matrix Pk will be processed as well as in equation (4.16)
and its prediction will be used for the calculation of the observer gain Kk that, by means
of the innovation term ȳk, will generate a new estimation value of Ξl(k). Therefore, the
matrix Pk plays a decisive role on the determination of the new estimated state. Considering
equation (4.16), the evolution of the propagated matrix Pk through F is determined by the
choice of the new covariance matrix Qk, that for simplicity will be considered independent
on time and diagonal:

Qk =
⎡⎢⎢⎢⎢⎢⎣

σ2
wω

0 0
0 σ2

wθ
0

0 0 σ2
wΞ

⎤⎥⎥⎥⎥⎥⎦
. (4.49)

Hence, by a balanced choice of the matrix entries, one can determine the dynamic of the
estimation process. An ideal definition of the matrix Qk might be:

Qk =
⎡⎢⎢⎢⎢⎢⎣

qω 0 0
0 0 0
0 0 +∞

⎤⎥⎥⎥⎥⎥⎦
, (4.50)

since the position model can be considered perfect and the external load totally unknown.
The value qω can be chosen depending on the accuracy of the model proposed for the speed
evolution.
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Figure 4.1: Simulations of the load torque estimation using the linear Kalman filter by posing
σ2

wω
= 1 and σ2

wω
= 0. A sinusoidal external load torque with frequency 10 Hz and

amplitude 1 Nm is generated at the motor shaft. The DFC signals are simulated
with RΓ = 0.0001, a = 1 and b = 0.

Obviously, the previous matrix cannot feasibly be implemented on a digital system, there-
fore, a finite value of σ2

wΞ
has to be chosen. It can be proven experimentally that a greater

value of σ2
wΞ

increases the bandwidth of the estimation, thus, a faster and more jittery re-
sponse is generated. Theoretically, an infinite value as in equation (4.50) let the observer
behave like a derivator. Instead, a smaller value of σ2

wΞ
smooths the estimation acting as a

low-pass filter but the observer would become unresponsive at high frequencies. In Figure
4.1 the behavior of the load torque estimation is simulated for different values of σ2

wΞ
.

4.2 Online parameter estimation for the IVD-DFC algorithm

The introduction of the DFC signals Γα and Γβ as direct measurements within the EKF
equations allows theoretically the elimination of the systematic error ∆. Then, as said in
the previos section, the use of the EKF could potentially substitute the IVD-DFC algorithm.
However, it has to be remarked that the model presented in equation (3.6) is obtained con-
sidering ideal assumptions, thus, the estimation might be negatively influenced by potential
uncertainties and unmodeled dynamics. Furthermore, the parameter values a and b have
to be previously identified and the identification process is not a straightforward task for this
specific case. For that reason, this section presents a Recursive Least Square (RLS) estima-
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tion algorithm for the parameters a and b. Firstly, the algorithm will be presented considering
an ideal disposable angular position, for example, obtained using an encoder. Then, the
same identification process will be combined with the IVD-DFC algorithm. A performance
comparison of these two approaches will be presented by means of simulation results.

4.2.1 Recursive Least Square estimation for a and b

The RLS algorithm implemented for the estimation of the parameters a and b is basically
derived from the update section of the Kalman filter. Let us recall the discrete time model of
the DFC signals in (3.6):

Γαβ = [
Γα

Γβ
] = [−a cos (2θe(k))+ b cos (4θe(k))

a sin (2θe(k))+ b sin (4θe(k))
] . (4.51)

Starting from them, we can define the estimated DFC signals as follows:

Γ̂αβ = [
Γ̂α

Γ̂β
] = [−â(k) cos (2θe(k))+ b̂(k) cos (4θe(k))

â(k) sin (2θe(k))+ b̂(k) sin (4θe(k))
] . (4.52)

We assume that the position θe(k) is perfectly known. Then, we define:

Prls = [
p11 0
0 p22

] , Rrls = [
RΓ 0
0 RΓ

] , xk = [
a
b] , x̂k = [

â(k)
b̂(k)] , (4.53)

and

Hk =
∂Γαβ

∂xk
= [− cos (2θe) cos (4θe)

sin (2θe) sin (4θe)
] . (4.54)

The RLS takes the following steps:

• determination of the gain matrix:

Kk = PrlsH
T
k (HkPrlsH

T
k +Rrls)

−1
, (4.55)

• calculation of the innovation vector:

Γ̄αβ = Γαβ − Γ̂αβ, (4.56)

• correction of the estimation vector x̂−k :

x̂+k = x̂−k +KkΓ̄αβ. (4.57)

The values p11 and p22 are parameters that can be tuned accordingly to the desired perfor-
mance of the estimation. In Figure 4.2 the simulation results of the estimation are shown for
different value of p11 and p22. Clearly, the assumption of a perfect position knowledge is not
rational because we are interested in the estimation of a and b in order to get an improved
position estimation from the EKF. One possibility is to estimate the parameters using the
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position information from an encoder when the motor is not in service. However, that is not
a clever solution because it forces the use of a mechanical sensor. Thus, the implementa-
tion of the EKF with the direct employment of the DFC signals as measurements could be
impracticable for most applications. A possible solution to this issue is presented within the
next subsection.
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Figure 4.2: Simulation results of the estimation of the parameter a and b using the RLS
algorithm. In this case, the simulated DFC signals have a = 1 and b = 0.3.
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Figure 4.3: Simulation results of the estimation of the parameter a and b using the RLS
algorithm. In this case, the simulated DFC signals have a = 1 and b = 0.3.
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4.2.2 RLS / IVD-DFC combination

An idea for the improvement of the estimation process is to use the linear Kalman filter by
means of the IVD-DFC position as measurement instead of the standard DFC one. The
IVD-DFC needs only the knowledge of the parameter b in order to be properly performed.
For that reason, the RLS can be added to the estimation chain as shown in Figure 4.4. This
combination forms a closed loop path which could potentially lead the system to instability.
Although a complete stability analysis could not be given yet, the functioning principle of this
new algorithm can be proven through simulations and experimental results as shown in the
next figures.
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Figure 4.4: Schematic of the IVD-DFC/RLS combination. The estimated position θ̂e is
passed to the linear Kalman filter as measurement.
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Figure 4.5: Simulation results of the estimation of the parameter a and b using the IVD-
DFC/RLS combination. In this case, the simulated DFC signals have a = 1 and
b = 0.3.
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Figure 4.6: Simulation results of the estimation of the parameter a and b using the IVD-
DFC/RLS combination. In this case, the simulated DFC signals have a = 1 and
b = 0.3.

In Figures 4.5 and 4.6 the estimation of the parameters a and b are shown when con-
sidering the combination of the RLS and IVD-DFC algorithms. For both cases, the rotor is
rotating at 50 mechanical RPM. In Figure 4.7 the electrical angular position estimation using
the Kalman Filter and the IVD-DFC is shown and compared to the real position. The simu-
lation is performed considering a sinusoidal external load torque and the RLS algorithm for
the online parameter estimation.
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Figure 4.7: Simulation showing the estimated position using the linear Kalman filter and the
IVD-DFC/RLS combination.
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4.3 Conclusions

A Kalman filter has been applied to the machine equations in order to improve the sensor-
less estimation process based on the DFC technique. It has been shown that the external
load torque applied at the motor shaft can be estimated by increasing the order of the sys-
tem. Thus, more information about the motor variables is obtained that can be used for
control and monitoring purposes. The tuning of the covariance matrices Rk and Qk affects
the performance of the filter as depicted in Figure 4.1 through simulation results. The Qk
must be tuned accordingly to the accuracy of the mathematical model, whereas the value of
Rk must be chosen taking into account the amplitude of the fourth harmonic b as described
in equation (4.31). A higher value of b means higher values in the matrix Rk and this reduces
the performance of the observation. Thus, the IVD algorithm can be applied to the position
estimation process in order to reduce the effect of the fourth harmonic. Eventually, an RLS
type observer has been combined with the Kalman-DFC estimation system to allow the on-
line estimation of the parameter b necessary for the correct functioning of the IVD algorithm.
The performance of this innovative observation cluster has been shown through mathemat-
ical analysis and simulations, see Figure 4.5 and 4.6 for the estimation of the parameter b
and Figure 4.7 for the estimation of the angular position.
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5 Experimental Results

Two PMSMs with different specifications have been tested in order to provide experimental
results for the verification of the theoretical concepts presented within the previous chapters.
The results are divided into four thematic areas that cover the main issues regarding the
sensorless control and observation of PMSMs. Firstly, the extracted positions derived from
the standard DFC and the IVD-DFC techniques are compared in order to verify the esti-
mation improvement presented in Chapter 3. Secondly, both techniques are coupled to the
Kalman filter algorithm and the observation results for the speed and position are compared
considering also the EKF technique as possible alternative to the IVD-DFC algorithm. Then,
the online estimation of the DFC technique parameters a and b is implemented as presented
in Chapter 4, the results are compared for different settings of the estimation algorithm and
for different motor conditions. Eventually, the estimated external load torque signals, ob-
tained using both sensorless techniques, are compared considering different settings of the
Kalman filter.

5.1 First application: Low-power custom PMSM

For the first experimental set-up, a low-power custom PMSM is considered. The main motor
specifications are shown in Table 5.1. Besides the PMSM, the testbench is provided with
a servomotor for the application of load torques and for the external drive of the machine,
a torque sensor for the measurement of the external load torque applied at the motor shaft
and a Baumer GBA2H encoder with 18-bit resolution for the angular position measurement.
Every piece is connected to the same shaft as shown in Figure 5.1.

Figure 5.1: The testbench is composed of: the servomotor for the generation of the external
load torque (1); the torque sensor (2) and the encoder (3); the PMSM (4).
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Parameter Value

Phase Resistance 2.2 Ω
Ld inductance 394 µH
Lq inductance 475 µH

Back-EMF constant 118.6 mVs
Number of pole pairs 8

Nominal voltage 24 V

Table 5.1: Custom PMSM parameter list

The electronics used for the implementation of the DFC technique as well as the control
and the observation algorithms for the PMSM is shown in Figure 5.2. The board features a
32-bit microcontroller, a three-phase inverter bridge, a dedicated electronic for the star-point
measurement and a USB communication interface.

Figure 5.2: The electronic-board used for the tests is provided with a STM-32 microcontroller
(1), a board expansion where the DFC electronic is located (2), the power elec-
tronic for the supply of the PMSM (3) and a USB connection for the extraction of
the data (4).

The performed tests comprehend the current control of the machine under stress condi-
tions and the speed control with external load torque applied.
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5.1.1 Driving and control of the machine using standard DFC and IVD-DFC

As shown in Figure 3.1, the DFC signals can be represented into a two axis plane with Γα

along the x−axis and Γβ along the y−axis. In Figure 5.3, the measured DFC signals from the
machine are plotted when the motor speed is controlled at 500 mechanical RPM and they
are compared to the signals obtained from the IVD-DFC algorithm using one iteration (blue
line) and two iterations (red line). The result is shown for multiple electrical rotations of the
rotor and the DFC signals are normalized through the parameter a. We suppose that the
misalignment of the multiple rotations is due to the not ideal magnetic characteristic of the
motor. The reference circle in black represents the ideal signal without anisotropy, hence,
the more the signals are close to the reference the more the anisotropy harmonic is reduced.
The elimination of the anisotropy effect using one iteration is noticeable and an increment of
the iterations does not further improve the performance. Hence, a single iteration is enough
for the IVD-DFC in order to eliminate almost completely the anisotropy harmonic.
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Figure 5.3: α − β representation of the normalized DFC and IVD-DFC signals. The black
circle represents the ideal behavior of the signals, that is, without any multiple
harmonics. The signals are referred to a mechanical rotor angular speed of 500
RPM and are sampled at 5 KHz.

An additional proof of the anisotropy harmonic reduction can be given by means of an
FFT analysis of the DFC and IVD-DFC signals. In Figure 5.4, the FFT amplitude response
calculated for both DFC signals and IVD-DFC signals with one iteration is presented. As
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shown, two amplitude peaks are prevalent among the whole frequency spectrum. They
represent respectively the first and the second saliency harmonics. The peak of the second
harmonic is reduced using the IVD-DFC about more than 80% of the original value. The
FFT shows small amplitude harmonics before the first peaks.

Figure 5.4: Frequency amplitude response comparison between DFC and IVD-DFC signals
using one iteration.

The previous results have been obtained without considering the possible phase shift ef-
fect over the DFC signals. In order to appreciate this effect, the PMSM has been driven
externally by the servomotor at constant speed (300 mechanical RPM) and the PMSM cur-
rent along the q-axis is controlled using increasing current reference starting from 0 to 1.5
Ampere. As shown in Figure 5.5, the mean value module of the error between the encoder
and the DFC position increases accordingly to the current. Then, the relation between the
phase shift variables φa, φb and the current has been fitted offline using the MATLAB Identifi-
cation Toolbox and the Full IVD-DFC algorithm has been performed. The reduction of phase
shifts and harmonics over the position estimation is clearly depicted in Figure 5.5.
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Figure 5.5: Current steps with increasing amplitude are generated on the q-axis of the motor
when the external servo-motor drives the PMSM at 300 RPM. The angle error of
the DFC algorithm is compared with the IVD-DFC one.
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5.1.2 Kalman Filter for the speed and position

The position extracted by means of the standard DFC and IVD-DFC techniques are filtered
using a Kalman filter in order to reduce its deterioration due to noise acting on the DFC
signals. Reminding equation (4.29), we expect a better observation performance for the
IVD-DFC considering the same value of covariance value Rk for both techniques. That has
been experimentally proven by means of Kalman filter speed estimation comparison when
the motor is controlled at different speeds. Additionally to the Kalman filter, the estimation
results obtained by the EKF are presented as possible alternative to the IVD-DFC technique.
The estimation results are shown in Figure 5.6, with a speed reference of 100 RPM, and in
Figure 5.7 for 500 RPM. According to the matrix tuning argumentations provided within the
previous chapter, the covariance matrix Qk is defined as:

Qk =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 10−6

⎤⎥⎥⎥⎥⎥⎦
. (5.1)

The drive and control of the machine is performed using respectively the estimated quantities
of each experiment. Thus, for the DFC speed estimation experiment the DFC position is
used for the FOC and the DFC estimated speed is filtered using a low-pass filter and fed
to the speed control algorithm. The IVD-DFC and EKF experiments are performed using,
respectively, the observed speed and position of the Kalman filter for FOC and speed control.
As depicted in Figure 5.6, the Kalman filter is not able, given the values of Qk and Rk, to
reject the anisotropy component of the DFC measurements. This issue could be overcome
using a greater value of Rk but, as shown in Figure 5.8, the presence of uncertainties on
the mathematical model at low speed cancels the expected improvement. Differently, for
high-speed operation an increased value of Rk seems to be a good choice (see Figure 5.9)
since the anisotropy component is almost completely filtered. However, a greater value of
Rk causes the estimation to be less responsive and, consequently, the speed control should
be tuned to a lower bandwidth. However, if we consider the results obtained by the IVD-DFC
and the EKF, we can observe a clear improvement of the estimated signals.

Enc. DFC DFC + KF IVD IVD + KF EKF
Speed Rk m/sD

100
RPM

σv
m 6.5e−3 5.5e−3 −1.32e−2 1.02e−2 1.69e−2 −2.71e−2

sD 4.89 24.46 29.54 8.35 10.14 7.1877

5⋅σv
m −2.53e−2 −2.91e−2 −5.16e−2

sD 32.01 13.91 8.33

500
RPM

σv
m 4.3e−4 −1.32e−2 −8.94e−4 −0.48e−2 0.23e−2 −1.81
sD 7.1 102.11 31.45 35.39 16.25 29.05

5⋅σv
m 4.06e−4 2.9e−3 −1.26
sD 19.66 12.9 22.4

Table 5.2: Mean (m) and standard deviation (sD) values of the speed estimation error eval-
uated for different speed references and Rk values.

Table 5.2 summarizes the performance of every technique by means of standard deviation
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and mean values of the error between the reference speed and estimated speed obtained
using all the techniques calculated at operating speed.

Figure 5.6: Speed estimation comparison for different techniques. The motor is controlled at
100 RPM
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Figure 5.7: Speed estimation comparison for different techniques. The motor is controlled at
500 RPM
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Figure 5.8: Speed estimation comparison for different techniques. The motor is controlled at
100 RPM. The value of Rk is 5 ⋅ σ2

v .
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Figure 5.9: Speed estimation comparison for different techniques. The motor is controlled at
500 RPM. The value of Rk is 5 ⋅ σ2

v .
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According to the values listed in Table 5.2, the IVD-DFC technique combined to the
Kalman filter and the EKF are offering a better estimation in terms of the error standard devi-
ation as compared to the standard DFC technique. In some cases, the IVD-DFC alone could
achieve slightly better results compared to the standard DFC combined with the Kalman fil-
ter. In Figure 5.10, the estimated position and the position estimation error are compared
considering the standard DFC, the IVD-DFC and the EKF methods. Although the mean
value of the EKF estimation error converges to zero, the IVD-DFC algorithm provides the
position estimation with the smallest standard deviation of the error. Moreover, the use of
the EKF is not recommended since an offline estimation of the parameter a and b is required
and also because the results are not always better than the IVD-DFC technique. On the
contrary, the IVD-DFC shows in some cases improvement on the estimation results. More-
over, the IVD-DFC can be coupled to an online estimation technique for the determination of
the parameter b. The results obtained through this method will be presented within the next
subsection.

Figure 5.10: Speed estimation comparison for different values of the covariance Rk. The
speed control of the motor is performed using the encoder speed.
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5.1.3 IVD-DFC with online estimation of the parameter b

The implementation of the IVD-DFC or the EKF methods requires the knowledge of the pa-
rameter b or both a and b respectively, the results shown in the previous section have been
obtained by means of an offline estimation using the encoder as position measurement.
Since it is not possible to extract the position information using the EKF and simultaneously
using that for the estimation of the parameter because the system results to be not observ-
able, it is instead possible to use the position extracted using the IVD-DFC algorithm for that
purpose. In Figure 5.11 and 5.12, the results obtained using the combination of IVD-DFC
and a RLS estimation algorithm as proposed in Chapter 4 are shown. It has to be remarked
that the performance of the RLS algorithm is dependent on the angular speed of the ma-
chine. For higher speed values the convergence of the parameter estimation is more rapid
than for the case of lower speed. The RLS method has been tuned in order to operate sat-
isfactorily for every speed value. From Figure 5.11, it can be noticed that the tracking of the
parameter a and b is achieved as the motor speed reaches the reference value. Figure 5.12
presents the same type of experiment but with an increased bandwidth for the RLS algo-
rithm. Thus, the parameters reach their values more rapidly but the estimation is affected by
more noise. For both cases the IVD-DFC is able to reduce the effect of the fourth anisotropy
harmonic, the standard deviation of the speed with respect to the reference and the standard
deviation of the position error are halved compared to the values obtained using the DFC
techniques. It is interesting now to present the statistic about the mean value of the compu-
tational time for every algorithm used for the experiments. That information will provide an
idea of the microcontroller effort in order to perform the algorithms. The values are listed in
Table 5.3.

Algorithm Time [µs]
IVD-DFC with standard C library arctan function (one iteration) 1.8
IVD-DFC with CORDIC arctan function (one iteration) 0.55
Kalman Filter 2.15
Extended Kalman Filter 4.65
RLS Parameter Identification 1.3

Table 5.3: Mean values of the computational time taken by each algorithm.

Surely, the major drawback of the IVD algorithm is the iterative execution of the arctan
function. The implementation of this function using the C standard libraries algorithm is
usually cumbersome as shown in the previous table. Nevertheless, some microcotroller
MCUs provides a CORDIC (COordinate Rotation DIgital Computer) module to accelerate
computations. The CORDIC is a simple and efficient algorithm used for the calculation of
trigonometric functions, hyperbolic functions, square roots, multiplications, divisions, and ex-
ponentials and logarithms. In fact, the only operations it requires are additions, subtractions,
bitshift and look-up table. Thanks to its implementation, the time required for the calcula-
tion of a single IVD iteration using the CORDIC module is four times smaller than the same
operation implemented with the standard C library. The computational time taken by the
combination of IVD-DFC (with CORDIC disabled or at the most two iteration with CORDIC),
Kalman filter and RLS exceeds the time taken by the EKF. However, no online parameter
estimation is possible with the EKF.
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Figure 5.11: This figure presents the speed and position estimation performance of the com-
bined IVD-DFC and RLS algorithms. The estimation is compared to the online
parameter identification of a and b.
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Figure 5.12: This figure presents the speed and position estimation performance of the com-
bined IVD-DFC and RLS algorithms. The estimation is compared to the online
parameter identification of a and b. A greater value for the matrix P is consid-
ered.
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5.1.4 Estimation of the external load torque

As additional information, the external load torque can be estimated using Kalman filtering.
Since the EKF is not considered a practical choice for the sensorless control of the machine,
because it needs a previous identification of the parameter and it requires a great computa-
tional effort, its results are not considered in this subsection. Figure 5.13 shows the external
load torque estimated using respectively the Klaman filter with the DFC and IVD-DFC tech-
niques when an external torque of about 0.1 Nm is applied at the motor shaft using the
external servo-motor as brake. The external torque is applied for every time instant whereas
the motor speed is controlled at 500 RPM (similar to the previous subsection experiments).
During the first and final phase of the control, in conjunction to the speed reference ramps,
the estimation is not so accurate as in the central part. This is due to the inaccuracy of the
speed model for low speed values. Nevertheless, the IVD-DFC allows to obtain a better
estimation results than the DFC in terms of signal smoothness.

Figure 5.13: External load torque estimation comparison between DFC and IVD-DFC tech-
niques. An external torque of 0.1 Nm is applied at the motor shaft by means of
the servo-motor. The signals are compared to the measured torque.
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It has to be remarked that the estimated variable Ξl contains information about the external
load torque as well as the possible uncertainties on the mechanical model of the machine.
Thus, theoretically, the two contributions should be divided. Since no valid strategy exists
in order to separate them, the mathematical model of the mechanical part of the machine
should be well known. In Figure 5.14 the speed convergences of the estimation to the
reference value are compared for different σ2

wΞl
. The reduction of its value, as plotted on

the right side of the figure, causes the estimation to provide smoother results. However, the
estimation speed convergence is also reduced introducing a greater delay and that could
possibly affect negatively the estimation of the other variables (speed and position).

Figure 5.14: Comparison of load torque estimation convergence speed using two different
value of σ2

wΞl
. The plot on the right side is obtained using a value of σ2

wΞl
twenty

times smaller than that one used for the plot on the left side.
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The statement made previously about the speed convergence of the estimation is con-
firmed by the experiment shown in Figure 5.15. This time, a sinusoidal current is given as
current reference for the motor control. The frequency of the current is chosen high enough
in order to maintain the rotor position constant (in this case 4 Hz). Hence, the PMSM is now
used as external torque generator. A greater value of σwΞ corresponds to a greater band-
width of the estimation process. Thus, the observer is able to estimate correctly a wider
range of load torque harmonics compared to an observer with lower σwΞ . On the counter
part, the estimated signal is more noisy. Nevertheless the Kalman filter combined with the
IVD-DFC technique presents better results than the combination with the DFC in terms of
noise rejection.

Figure 5.15: Comparison of load torque estimation convergence speed using two different
value of σ2

wΞl
as a sinusoidal load torque is applied. The plot below is obtained

using a value of σ2
wΞl

twenty times smaller than that one used for the plot above.
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5.2 Second application: e-bike

As additional application of sensorless control for PMSMs, the results obtained using a
PMSM for e-bike are presented. Differently from the previous case, no measurement for
the position and external load-torque is available for a comparison. Thus, a thoroughly per-
formance report of the technique is not possible to be provided. Nevertheless, the e-bike
motor presents a clearly greater fourth harmonic effect on the DFC signals, as shown in
Figure 5.17. Hence, in this section we will focus more on the IVD-DFC technique ability of
rejecting the fourth harmonic effect on the position extraction than on the speed and torque
estimation through the Kalman filter. The motor parameters are listed in Table 5.4.

Figure 5.16: Set-up used for the experiments with the e-bike motor.

Parameter Value

Phase Resistance 0.069 Ω
Ld inductance 103 µH
Lq inductance 149 µH

Back-EMF constant 23.6 mVs
Number of pole pairs 23

Nominal voltage 24 V

Table 5.4: E-bike PMSM parameter list
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5.2.1 Driving and control of the machine using standard DFC and IVD-DFC

As first result, the comparison between the standard DFC signals and the IVD-DFC signals
for different number of iterations is shown in Figure 5.17. As for the previous motor, already
by the first iteration (blue line) the graph is closer to the reference circle. Differently from the
previous case, it is possible to notice a further improvement of the signals by the second
iteration (green line). Eventually, a magenta line is added in order to show the IVD-DFC
results after ten iterations. The obtained signals by ten iterations match the reference circle
almost perfectly. However, it will be shown that four iterations are enough in order to reject
almost completely the fourth harmonic.

Figure 5.17: α − β representation of the normalized DFC and IVD-DFC signals. The black
circle represents the ideal behavior of the signals, that is, without any multiple
harmonics. The signals are referred to a mechanical rotor angular speed of 50
mechanical RPM and are sampled at 5 KHz.
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A FFT analysis of the obtained signals is performed in order to provide an additional proof
of the improvement produced by the IVD-DFC algorithm. The FFT results are presented in
Figure 5.18. The IVD-DFC signals are referred to a four iteration process. As shown, the
peak presents at 76 Hz, namely the fourth harmonic, is reduced using the IVD-DFC by more
of the 90 % of the original value.

Figure 5.18: Frequency amplitude response comparison between DFC and IVD-DFC sig-
nals using four iteration.

5.2.2 Kalman Filter for the speed and position filtering

An interesting result is obtained considering the sensorless speed control of the motor using
the DFC and the IVD-DFC technique combined with a Kalman filter. As shown in Figure
5.19, the DFC speed signal is greatly affected by oscillations, clearly larger compared to
the previous application. In fact, accordingly to equation (3.73), a greater value of b, and
consequently of p, corresponds to a greater error on the speed estimation. That results

110



Experimental Results

also in an error on the mean value of the estimated speed as shown clearly by the IVD-
DFC estimation in Figure 5.19. Using the DFC combined with the Kalman filter provides a
deteriorated speed estimation whose mean value is 20% lower than the reference speed.
Instead, using the IVD-DFC combined with the observer, the speed estimation performance
is improved and its mean value is more accurate as depicted in Figure 5.20.

Figure 5.19: Speed estimation comparison using the DFC - Kalman filter estimated position
and speed respectively for the FOC speed control of the motor.
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Figure 5.20: Speed estimation comparison using the IVD-DFC - Kalman filter estimated po-
sition and speed respectively for the FOC speed control of the motor.

Hence, it is clear from the experiments the importance of the IVD-DFC algorithm in order
to obtain generally better results in terms of estimation accuracy and consequently for the
machine control.

112



Experimental Results

5.2.3 IVD-DFC with online estimation of the parameter b

As for the previous application, it is interesting to look at the estimation results as the IVD-
DFC algorithm is combined with the online estimation of the parameters a and b. In Figure
5.21, the parameter b is estimated performing the IVD-DFC algorithm with one iteration. As
for the previous case, the correct estimation of the parameter depends on the angular speed
of the rotor. A higher speed corresponds to a more rapid convergence of the estimated
variable to the real values. Moreover, the number of iterations plays a role on the perfor-
mance of the estimation process. It has been proven experimentally that the IVD-DFC with
a higher number of iterations needs contemporary a rapid and smooth estimation of b in
order to perform properly. In Figure 5.22, the estimation results are shown as four iterations
are considered for the IVD-DFC.

Figure 5.21: This figure presents the speed estimation performance of the combined IVD-
DFC and RLS algorithms. The estimation is compared to the online parameter
identification of a and b.
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Figure 5.22: This figure presents the speed estimation performance of the combined IVD-
DFC and RLS algorithms. The estimation is compared to the online parameter
identification of a and b. The value of the matrix P is increased.

5.2.4 Estimation of the external load torque

Eventually, the result of the external load torque estimation is provided in Figure 5.23 where
a constant torque is applied by the bike brake for a short time. Considering the same value
for σwΞ for both sensorless technique, the IVD-DFC algorithm is able to filter most of the
undesired harmonics. A third estimation is added considering a smaller value of σwΞ for
the DFC method (magenta line). The noise of the additional estimation signal is similar to
the IVD-DFC one but its response is not rapid as the IVD-DFC method. Hence, in order
to decrease the oscillation due to the fourth harmonic anisotropy effect the Kalman filter
should be tuned as for the magenta line, but the performance would be low. On the other
hand, the use of the IVD algorithm allows to reduce the oscillation by maintaining the desired
performance of the filter.
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Figure 5.23: Torque estimation comparison between DFC and IVD-DFC technique. An ex-
ternal load torque is applied to the wheel by means of a brake.

5.3 Conclusions

The IVD-DFC algorithm has been tested using two different set-ups in order to analyze
its performance. In particular, the iterative algorithm has been used in combination with a
Kalman filter to estimate the system state, i.e. position, speed and external load torque of
the motor. The results have been compared to the DFC technique and the EKF observation
method, which requires the knowledge of both parameters a and b. As shown, the IVD-DFC
and the EKF methods can suppress the deterioration due to the fourth harmonic generated
by the DFC technique. The EKF incorporates the filtering process of the system state in one
structure and the elimination of the fourth harmonic, whereas the IVD-DFC, which fulfills
only the fourth harmonic elimination task, has to be combined to a Kalman filter in order to
perform the system state estimation. Thus, the EKF seems to be a straightforward solution
to those issues. However, the parameters a and b needed for the EKF algorithm cannot
be estimated online, whereas the IVD-DFC can be combined with an RLS algorithm for
the estimation of the parameter b. The point is that for most applications, the value of the
parameters a and b is not given a priori. Hence, the IVD-DFC is the best choice for the
purpose.
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Conclusion and outlook

The DFC sensorless technique is a valid solution for state observation, drive and control of
PMSMs that rely on inaccurate current measurements if any at all. Thanks to the star-point
voltage measurements, the DFC signals have a large signal-to-noise ratio that represents
an advantage for those systems that require high accuracy measurements, like small ac-
tuators. Nevertheless, the DFC signals are characterized by higher harmonics which may
deteriorate the estimation process of the angular position and, consequently, the operations
performed on the machine. Starting from this consideration, this work focused on analyzing
the information deterioration introduced by the hiher order harmonics of the DFC signals
and it proposed a novelty solution for the improvement of the angular position estimation,
namely the IVD algorithm.

Firstly, the mathematical expression of the DFC signals has been derived considering
a generic definition of the machine inductance matrix. From the obtained expression, the
presence of two harmonics can be asserted, one with a frequency equal to the double of the
electrical angular speed of the machine (second or fundamental harmonic) and one with fre-
quency four times the angular speed (fourth harmonic). These harmonics have amplitudes
a and b, respectively. As shown, the deterioration of the position estimation is determined by
the parameter b, i.e. the amplitude of the fourth harmonic, which has to be zero in order to
allow a perfect extraction of the position information. If the parameters a and b are known,
the most straightforward way to estimate the angular position and, at the same time, to avoid
the deterioration due to the fourth harmonic is to implement the DFC signal expression us-
ing an EKF (Extended Kalman Filter). The EKF is not affected by the deterioration due to
the fourth harmonic and, at the same time, it performs the state estimation of the machine.
This solution has been considered in the experimental validation as a reference technique.
However, the knowledge of the parameters a and b is typically not available or difficult to
identify.

Instead, the IVD algorithm can improve the DFC position estimation by means of a static
recursive calculation of the angular position, which needs only the knowledge of the param-
eter b. That adds a practical advantage to the implementation of the IVD algorithm. In fact,
the parameter can be easily identified by combining the IVD-DFC technique with an RLS-
like estimation algorithm. This solution is an easier solution for implementation than the EKF.
Moreover, instead of other classical solutions for eliminating the fourth harmonic, the IVD is
a static algorithm. Hence, it is not based on a dynamical system that has to be tuned to
some optimum criteria.

Nevertheless, the IVD-DFC method is not able to perform the state estimation of the
machine itself. In order to allow the observation of the machine state, a Kalman filter has
been combined with the IVD-DFC technique. Thus, the overall system is composed of three
parts: the IVD-DFC technique, the RLS algorithm and the Kalman filter. It has been shown
that the computational effort taken by this combination can exceed the one taken by the
EKF method for a large number of iterations performed by the IVD algorithm. However, if
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Conclusion and outlook

the iteration number is small enough, the IVD-DFC based observation results to be the most
efficient method.

The presented experimental results confirm what was predicted by the theory. Two dif-
ferent set-ups have been considered to provide a solid comparison and confirm the re-
peatability of the tests. The motors have been chosen with different characteristics, but the
application of the IVD algorithm provided an improvement in the estimated state and control
for both machines.

Eventually, the methods have been used to estimate the external load torque applied at
the motor shaft. That is particularly interesting for the e-bike application since the estimated
load torque can be used to estimate the pedalling torque applied by the user. Also in this
case, the IVD-DFC provided convincing results.

Undoubtedly, the IVD is a simple and interesting algorithm that can be further analyzed
and optimized. The following subsection will cover the possible future development topics of
that method.

Outlook

The iterative algorithm has opened new possibilities for further research on the topic of
sensorless control. Among them we can identify three main topics to be further researched:

• The convergence of the IVD-DFC and RLS combination to the real position has been
experimentally proven but a theoretical analysis has not been provided yet.

• The iterative algorithm should be extended in case the absolute value of the ratio
between the parameters b and a, i.e. p, is greater than 0.5.

• The application of the IVD to other sensorless techniques is theoretically possible but
must be confirmed by experiments.

Those points represent the future topics for a further improvement and generalization of the
IVD method. Moreover, the possible combination of this algorithm to additional observation
structure is not limited to the Kalman filters or RLS methods. An interesting aspect to be
considered is the combination of the IVD to robust observers based on a sliding mode or
invariant manifold approach to test its robustness against the motor parameter variations or
even to increase the convergence speed of the estimation. Additionally, it would be possible
to implement a unique algorithm comprehensive of IVD, state observation and online param-
eter estimation if a nonlinear observer approach is considered. Eventually, the advantages
given by the estimation of the external load torque by means of a sensorless technique stim-
ulates the research to investigate about high-robustness control to load torque disturbances
as well as sensorless pedaling force estimation for e-bike, teeth surface identification for
high-speed dental drills and other load torque based applications.
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