088 e e

J
]

1l
- Lt

Y () — J@

)22

\ &/ \IIJ\N;
'D 66
& & e

SEKI-REPORT SR-86-16

Alexander Herold

Q]
g
&
)
=
o)
:
&
>

APPLIED TO IDEMPOTENT UNIFICATION

August 1986

AUBWLIDE) ‘M ‘L UIBINE|SISSIEY 05/9-A S9110}B10QRT
6¥0€ yoejisod aouabij1u| o)
uidINe|siasiey| jelsianiun [BIo 11
NlBWIOU| Yyoiaiaqyoe

Narrowing Techniques
Applied to Idempotent Unification

Alexander Herold

Fachbereich Informatik
Universitdt Kaiserslautern
~ Postfach 3049
6750 Kaiserslautern

net-address: UUCP: ...)mcvax!unido!uklirbtherold

Abstract:

A complete unification algorithm for idempotent functions is presented.This algorithm is derivated from
. the universal unification algorithm, which is based on the n.irrowing relation. First an improvement for
the universal algorithm is shown. Then these results are applied to the special case of idempotence
resulting in an idempotent unification algorithm. Finally several refinements for this algorithm are

proposed.

Contents

1. Introduction

2. Definitions and Notation

2.1 Terms and Substitutions

22 - Equational Logic and Unifcation
Pruning the Narrowing Tree |

The Theory of Idempotent

An Algorithm for Idempotent Unifcation.
Conclusion

N v s

References

1. Introduction

Unification theory is concerned with problems of the following kind: given two terms built from
function symbols, constants and variables, do there exist terms that can be substituted for the variables
such that the two terms thus obtained become equal? Robinson ['Ro 65] was the first to givc an
algorithm to find such a substitution with the additional property that the returned 'unifier’ is most

" general (or'is an mgu for sho:rt), i.e. all other substitutions 'unifying' the two terms can be computed
from that substitution. From an algebraic point of view unification is solving equations and an mgﬁ 1$ 2
'basis’ of the whole set of unifiers. |

Equational unification extends the classical unification problem to solving equations in equaiion:illy
defined theories. But then there may not exist one single mgu. Depending on the equational theory
there are finite or infinite sets of mgu's and in some cases even a.set of mgu's does not even exist.
Equational theories can therefore be classified into unitary (a single mgu exist's), finitary (there is a
finite set of mgu's) and infinitary (the set of mgus is infinite) theories and the class of nullary theories '
(i.e. a set of most general unifiers does not exist). For a detailed bibliography we refer to the
state-of-the-art survey of J. Siekmann [Si 86].

Since every equational theory T requires a special purpose T-unification algorithm, there are recent
attempts to combine these special unification algorithms ([He 85], [Ki85], [Ti86] and [Ye 85]). But
all these combination aigorithms do not work for collapse theories. Collapse theories are those theories
which contain-an axiom t = x, e.g. idempotence f(x x) = x. On the other hand there is a very

powerful tool for canonical theories: the universal unification algorithrﬁ [Fy 79], [H180], [SS 81],
[Sz 82]. Given a canonical term rewriting systcm for an equational theory we at once have a .
unification algorithm for that theory. This algorithm is based on narrowing using rewrite rules, which
is essentially oriented paramodulation [RW 69] and it can be extended to equational rewrite systems
([He 82], [H180] and [JK 83]). This extension is one possibility to avoid the restriction in the
combination algorithms for collapse free theories. Theories which are only defined by one collapse
axiom mostly have a canonical rewrite system and by a result of Hullot the universal unification
algorithm terminates for those theories [H180]. Moreover the universal unification algorithm can
trivially be combined with uninterpreted function symbols since these symbols do not change the term
rewriting system. :

As a prototype we studied the theory of idempotence. Since one problem with the universal unification
algorithm is its inefficiency we tried to improve the obvious solution givén by the universal unification
algorithm by pruning the search space. After a introduction into the notions and notations of unification
theory we present the universal unification algorithm. We then give a method to impfovc this universal
algorithm. These results are applied to idempotent functions resulting in a first version of an idempotent
unification algorithm. Exploiting the fact that we only have idempotent and uninterpreted functioh
symbols we present special results improving this first version for an idempotent unification algorithm.

2. Definitions and Notations
2.1 Ternis and Substitutions

Uﬂiﬁcaﬁiqn theory rests upon the usual algebraic notions (see e.g. [Gr 79], [BS 81]) with the familiar’
cuiicept of an ‘algebra A = (A, F) where A is the carrier -and F is a family of operators igivefy
with their arities. | ' |

Assuming iha_t_ there is at least one constant (6perator of arity 0) in F and a-denumerable set 'o'ifr?@'-ﬁ'ﬁ%iblé’s"
V, we define T, the set of first order terms, over F and V, as the least'set with (i) V < TUdHaif5
a'r‘ity(ﬂ' 0 for fe F then fe T and (ii) if t;,...,t, € T and arity(f)=n then thé strifig
f('t1 . € T, Lex V(s) be the set of vanables occumng in a term s; a term s is groun‘&ﬂ’?
V(s)=@. i

As usual the algébm with carrier T and with operatdts namely the term constructors corresponding 1o’
each operator of F, is the absolutcly free (term) algebra, i.e. it just glvcs an algebraic structure to T. If

the carrier is the set of ground terms it 1s the initial algebra [GT 78], also known as Hcrbrand Umvcrsc
[Lo 78]. '

Terms can be also viewed as labelled trees [JK 83]: A term is a partial appiicati'on of N¥intoFuvy
such that its domain D(t) satisfies the following condition;

the empty word ¢ is in D(t) and 7. is in D(t) iff 7 is in D(t) and i € [1, arity(t(m))),
whe;e denotes the concatenation of strings. D(t) is the set of occurfences and O(t) denotes the set
of non-variable occurrences, t/r the subterm of t at the occurrence & of t and t[x « t'] the term
obtained by replacing t/n by t' in t. We say that two occurrences 7, and T, are mdcpcndcnt iff one
selected term is not a subterm of the other selected term (i.e. there exists an occurrence 1 such that
T, =nin, w, = ﬁ.j.n'z and i# i).

A substitution 6:T - Tis an endomorphism on the term algebra which is identical almost
everywhere on V and can bc represented as a finite set of pairs: 0 = {x; « ;. . X1} The
restriction oly, of a substitution G to a set of variables V is defined as clyx =oxif xe V and
clyx=xelse. is the set of substitutions and € the identity. The applicatilon of a substitution 6 10 a

_term te T is written as ot. The composition of substitutions is defined as the usual composition-of
mappings : (G- T)t=0c(w) forte T. '

Let DOMGOG = {x &€ V | ox # x) (domain of)
CODo = {ox|x e DOMg} (codomain of)
VCODo = V(CODg) ' (variables in codomain of ©)

If VCODG = then ¢ is a ground substitution.

A set of substitutions £ X is said to be based on a set of variables W away from Z D W iff the
following two conditions are satisfied

(i) DOMo =W forallce T
(i) VCOD6 NZ=@ foralloceX

In particular for substitutions based on some W we have DOMc m VCODo = J which is equivalent
to the idempotence of g, i.e. 6-0 = 6. We shall use this property in the proofs later on.

2.2 Equational Logic and Unification

An equation s = t is a pair of terms. A set of equations T is called an equational theory iff an
equation e is in T whenever e is true in every model of Tie.eisa consequence of T (or for short:
e € T whenever T =¢). A set of axioms P(T) of an equational theory T is a set of equations such that
T is the least equational theory containing this set P(T). We sometimes say that the equational thebry T

is presented by P(T). For simplicity we do not distinguish between the equational theory and its
presentation.

The equality' = generated by a set of equations T is the finest congruence over T containing all pairs
os=0ot fors=te T and 6 € X. (i.e. the Z-invariant congruence relation generated by T). The
following is Birkhoffs well-known completeness theorem of equational logic [Bi 35]

Theorem 2.1: ‘T = s=1t . iff s =g t.
We extend T-equality in T to the set of substitutions X by:

C =11 (iff VxeV OX =1 TX .

If T-equality of substitutions is restricted to a set of variables W we write

¢ =p T[W] 1ff ' VxeW OX =8

and say G and T are T-equal:on W . _
A substitution Tis more general thancon W (orGisa T-instance of Ton W):

c<pt(Wl iff Ihe I o=pAt[W]
Two substi'tutio_"ns o1 are called T-equivalent onW
¢ =,1 (W] iff o<yt [W]and 1<y [W]

Given two terms s, t-and an equational thcory T, a unification problem for T is denotéd as’

<.8 =p t.>

We say © e Zisa soluuon of <s=pt> (oro is a T—umﬁer of s and t) iff os =y Ot. For the set
of all T«-umflcrs of s and t we write UZT(S 1). Wlthout loss. .of . generahty We ican. assume. thrat me'
unifiers of s and t are idempotent (if not, one can find an equivalent set of unifiers that is idempotent).
For a.given unification problem <s=;t>, it is not necessary to compgute the whole set of. umﬁem ‘
UZ(s,) which+is always. recurswely enumerable for .an equational theory T.with; decidable word.
problem.. but, instead a;smaller-set. useful,in; Jepresentmg UZ‘.T Therefore we define- cl})?-r(s t), A
complete :set :of unifiers- of s and i on W:=Vis,1).as: - ==

¥ 5 11 cUZi(s, t)g UE (s, 1) . - (correctness),
) V8e UZy(s,t) 3oe cUL(s,1): 55,0 (Wl (completeness)

A set of most .-éénerq_l unifiers pUZ(s, t) is a.complete set with

(i) Vo 1€ pUL(s,):05yT [W] implies 6 =1 (minimality).

For tccl_mical reasons it turned out to be useful to have the following requirement: _Fof a set of variables
ZwithWgZ '

(v) PUS(s, t) (resp. cUS(s,) isbased on W away fromZ (protection of Z)

If conditions (i) - (iv) are rlfilled we say HU):'r.iS_,a set of most _g_enerdl‘unif_‘i"er.c.away_.fr:om 2
(resp. cUL (s, 1) is a complete set of unifiers away from Z) [PL 72].

The set pUZ; does not always exist [FH 83][Ba 86][Sc 86]; if it does then it is unique up to the
equivalence = [W] (see [Hu 76][FH 831]). For that reason it is sufficient to generate just one pUZ;
as some representative of the equivalence class [uUErL._T

Depending on the cardinality of the set of most general unifiers we classify the equational theories into
the following subclasses: ' ;

- a theory is unitary unifying iff pUZ; exists and IPUZ(s, pi=1forall s and t

- a.theory is finitary unifying iff !,LUE‘.r exists and |}.LUET(S, t)l < oo forallsandt '

- a theory is infinitary unifying iff pUZ, exists and ILUZ (s, t)l = o for some s and t
- a theory is nullary unifying iff WUZ; does not exist for some s and t.

A unification algorithm is called complgie (and minimal) if it returns a correct and complete (and
minimal) set of unifiers for every pair of terms. '

2.3 Reduction, Narrowihg‘and Unification

A term rewriting system R={l; =1 ,., |, =71 .} is a set of pairs of terms l,r,e T
with V(r) < V(1) for 1 £i<n. We say that a term s —p-reduces to a term t at occurrence T with
1 = r.and we write s —sgtors—- t iff:

1 1 [ﬂ.l]

3l=reR,0€ X, e O(s) suchtha s/m=6l and t=s[n 61

. The indices of —p are omitted if they are understood from thc context. A term t is said to be reducible
if t —p t' for some t', else t is said to be irreducible or in —g—normal form The reflexive and
transitive closure of —p is denoted by 0. A term rewriting system is said to be a complete set of
reductions or a canonical term rewriting system iff:

—p 18 noetherian ,i.e. there does not exist an infinite derivation t,—rbL 7RG
— is confluent i.e. fors, Sy, 8, with s Zsps,and s Zp S,
there exists t such that s, *-; tand s, Hoot.

For an equational theory T there are techniques to obtain a term rewriting systerﬁ R such that this
system has the Church-Rosser property, i.e. s =, t iff there exists r € Twiths*-srandt -%-r;
moreover it is sometimes possible to obtam a canonical term rewriting system [KB 70], [HO 84]
[H1*80a]; [Bu:85]). Canonical systems are an important basis.for computations in equational logics
sipée mhey yleld a decision procedure for T-equality: s =t iff lisH = litll.where, Alslizdenotes.the. ..
unique normal form of s. A_substimﬁon o is called in normal form or normalized iff all terms-in-the .
codomain are in normal form. '

The following relation is the basis for a universal unification algorithm. We say s is narrowahle:to:t
at occurrence T with the substitution ¢ and the rule I; = r;and write §>-4-—, ; 41 or shortly
s - tiff '

di=>r,eR,0€ X, e Q(s) such that o is mgh"of s/t and |, and t=0o(s[m & 1.

The substitution O is called a narrower or narrowing substitution. Narrowing is Lhe same as oriented

paramodulation [RW 69] In [H1 801, [Hl 80b] the rclatlonshlp between narrowing and reduction is
~ established:

" Theorem 2.2: Lets bc a term and 1 be a normalized subsnmuon w1th DOMn o V(s)
For every — - derivation issuing from ns

(D Ms =t5 =[xy k1] W [n2,k2] 277 - " [7n,ka]
there exists a s — derivation issuing from:
. ' (2) s =5 >-4'—’[1t1,k1,0'1]‘-31 = m2k2,62] 82 - 7V [1tn,kn,On] Sn

foreachi, 1<i<n,a normalized substitution hi such that ni(si) =t; and
n= n,9; [V(s)] where 8, =0; 01 ‘

-Convcrscly, to each >4 — derwanon (2) and every 1 such that
n<0, [V(s)] we can associate'a — dcnvatlon (1).

This result can be depicted in the following diagram:

= b mk] b Tmk) ™ v Tmnka]
Mo, oy T "
s =5, ko] STV neke,00] S Tt kn,On] Sa

This relationship leads to the following universal unification algorithm which is essentially an
enumerating process of the narrowing tree: Let t be a term then N.((t) is the narrowing tree with

- t is the root of N4(t)

- if t'is a node in N(t) and t' [k0] t" then t" is a successor node of t' m NT{t).

Theorem 2.3: Let T be an equational theory that admits a canonical term rewriting system. Let
' s, t be two terms and h a new function symbol not occurring in F. Let

UZ,(s,t) be the set of all substitutions T ‘such that there exists a
— —derivation:

h(§ 0 ——g1) his t) " o2] -+ 7o) h(s, t,)

where 6, =0 ... 0, is normalized, s and t_ are unifiable with the most

general unifier § and ©=[30_. Then UZ(s, t) is a complete set of unifiers of s
and t. ‘

The details of basing the unifiers on V(s, t) are omitted for clarity. Since for every substitution
produced by a narrowing sequence there is a corresponding reduction sequence from which we can
‘ show that the substitution is indeed a unifier for, the given two terms, corrcctn;:ss is obvious. On the
other end to every unifier 7' there exists a normalized unifier 1 such that ' = 1. Hence there exists a
derivation mh(st) -*- h(rr) and by Theorem 2.2 a corresponding >-4-— —derivation
h(s t) »4-%- h(s o b with 1 £00_ [V(s, t)] where G is a most generél Robinson unifier of s and
t,. This 'establiéhes the compieténcss of the narrowing technique. So by enumeration of the narrowing
tree Ni(h(s t)) and ordinary unification at each node we can construct a complete unification algorithm.

Since this algorithm is very inefficient it is important to find criteria for pruning subtrees out of the
narrowing tree. ' '

3. Pruning the Narrowing Tree

A first improvement of the above universal uﬁiﬁcation algorithm: was given by Hgllbt [HI 80]. He
proposed to use only innermost-outermost >—— - derivations as a derivation strategy whﬁich he showed
to be complete (since completeness is based on the computation of R-normal fonn's)'.,Mer-czgactly he
defined a derivation based on a set of occurrences: For a term t, a preﬁx—éloscd set of occurrences
Qp <O (ie. ifTie OQ then T € Op) and a normalized substitutionn a — - d'erivatiqn,‘;i_s,auizm:g":;'
from nt

Nt =Sy —>[11,k1] 51 " [w2,k2] 5277 ** “[%n,ka] Sa

or a - — derivation issuing fromt.

el ""’f’im,ki,m]-‘r k1,021 27+ " [mnka,0n] b
is based on O, iff 7, € O, with
0,= 0, \ (' In.m' € O,) U {ni.n"lﬁ"e Orgy)
for. 1<isSn.

Roughly spoken it is not allowed to narrow at the occurrences introduced by the substitutions. ‘A
derivation of t is said to be basic iff it is based on O, = O(1). Moreover the method of basic

_ derivations gives us a sufficient condition for the termination of the narrowing 'process_ [H1 80]. We
shall illustrate the definitions by an example. Let (f(x x) = x} be thé rewriting system .then
f(f(x y) f(a z)) =g f(a ¥} i]'a is not a basic derivation, but
£(5(x y) f(a 2)) —op2] FEGX) 8) =+-p1) f(x) =apg 2 is basic.

Another well-known derivation strategy is to consider only leftmost derivations. For a term t, a

prefix-closed set of occurrences Oj < O(t) and a normalized substitution 1 a — - derivation issuing,
fromnt - ' e,

nt='s, —r1kt] $1 7 [m2 k2] 52 7 - [7n kn] Sn

or a —— — derivation issuing from t

t=ty = ko1 T k62 T - T kn,0n) e

10

is from left-to-right in Oo,iff n, € O, with

0,=0,,\(ne O;,In= n'i'n', = n'.i.n'-" and i'< i}
v {r,.x"in" € O(rg,)}

for s 15 o If we consider the above example then
f(f(x y) f(a, z)) = f(x f(a z)) =4=2] f(x a) is a left-to-right derivation whereas
f(f(x y) f(a z)) =4=r21 f(f(x y) a) 1] f(x a) is not. In other words if we have performed a
‘narrowing step at an occurrence then we forbid to narrow on those occurrences that are left and
independent of the current océurrence.

A derivation of t is said to be from left-to-right iff it is from left-to-right in Oy = O(t). We will now
show that we do not loose completeness when we only use left-to-right derivations. Moveover we
show that we keep completeness if left-to-right and innermost-outermost derivations are combined.

3.1 Lemma: Let s = 1t with 1} normalized, then every leftmost - - derivation issuing
' from s is a left-to-right derivation and every leftmost innermost-outermost
—» - derivation issuing from s is a left-to-right basic derivation.

Proofs: obvious.

3.2. Lemma: Let s =nt with n normalized, then there exists a leftmost -- - derivation
issuing from s to its normal form. Moreover there exists a leftmost

innermost-outermost — - derivation issuing from s to its normal form.

Proofs: obvious.
Consider now a »+1— — derivation

=1 (g1 k1,011 1 ""’_’[m,ki;cz] L o 2 kn,On] b

which is linked to a leftmost innermost-outermost — — derivation to the normal form of nt

M= 8o [k1] $1 [rz,k2) 82 7 -+ 7 [1tn,kn] Sn

with normalized 7. This derivation is a left-to-right basic derivation and since the rules are applied at
the same occurrences the —4— — derivation is also a left-to-right basic derivation. Moreover we can
restrict the enumeration process of the narrowing tree to regard only those nodes such that

n

narrowing unifier that belongs to a node is normalized. We summmarize these results in the following
proposition:

3.3 Proposition: Given two terms s and t and a normalized T-unitier h then there exists a
_ left-to-right basic »—-- — derivation of h(s, t)
h(s t):= h(sg ty) == h(s, t;) == ;. -4 h(g, 2,) "
such that s and t_ are unifiable with the most general Robinson unifier B.and: it;
s . |
< B0, [V(s, 1.
The narrower 6 can always be assumed to be normalized.

We finally. waht to: givea direct proof for the completeness of the left-to-right strategy which;does.not.
use the correspondence between 11— —derivations and — — derivations.

Before stating the main techmcal lemma we need some definitions: we say two substltuuons o and T are
unifiable iff there exists a substitution A such that Ao = At. In.the same way as for termis we define:’.
the:most:general unifier n of ¢ and T as the substitution with N6 =1t and A <7 [V(o, 1)] for all
unifiers A of o and 7. The most general instance 6*T =no =17 of o and 71 is sometimes called the
merge of ¢ and 7. Note that the merge is commutative G*T = T*G. '

3.4 Lemma: Letsand t be terms with the most general Robinson unifier & and 1 be an _
.arbitrary substitution. Then LIS
@ c and T are unifiable iff ts and Tt are umﬁablc
(i) —lf © and 71 are unifiable (or s and Tt are unifiable) then o*1 = 11, where
'- 7 is a most general tmjﬁe: oftsand Tt - -)

Proof: [He 83]

3.5 Lemma: - Given a >-+— — derivation s, ’“””"[m,kl,o‘l] $1 =+~ [r2,k2,52] S2 With
- m o =min'e O(sg), M, = mi'n' €. O(so) and i <i' then there exists a

'
»—4-—» — derivation SO> 14— ’[m k2,72] S >[n1 ki,61] S2° with
L LR R Bt it

Proof: We define t, = sy/r; and t, = so/n2 then G, is an mgu of tl and 1y,,. Since.q t,z and 1y, are
unifiable with mgu 0, and G;1y, =1}, we can app]y the last lemma and conclude that t, and I, are
unifiable with mgu T, ‘and that -G,6,= G *T;: -Moreover of t, and I},. Hence we can pcrform the first.
~narrowing step S —*—[rq ki,11] 1 Since Tl =iy and 6,*1; = Ao, = AT, T;t; and Iy, are
unifiable with mgu 1, and by the last lemma we get T,T, = 6, *T,. Summarizing we have shown the
existence of the reversed »—— — derivation and 1,7, = 0,0, = G,*T,. n

12

We can summarize the situation of this lemma in the follbwing diagram which commutes.

52 = e Gl*‘tlrkl Gl*'t}rkz

The last lemma can also be used in a negative direction. Given a -4- —derivation
S0 1t1,k1,01] S1 and an occuncpce 7, independent from . If s()/‘rcz is not unifiable with the left
side 1 of a rule then s,/x, is not unifiable with the left side 1 of that rule. That means that the

non-unifiability can be inherited. This fact can be used in an implementation of the universal unification
algorithm.

In the next chapter we will apply -ﬁmsc results to the equational theory of idempotence.

13

4. The Theory of Idempotence

The first paper on uhificatiqn under idempotence was published by P. Raulefs and J. Siekmann
[RS 78]. Before giving their own algorithm they proposed to study the relation between unification
and rewriting referring to [La 77]. Since the idempotence law I = {f(xx) = x) can be directed into
a canonical term rewnting system R; = {f(x x) = x}, we can apply the results on the universal
unification procedure. Moreover using the termination criterion of Hullot [H1 80] we have found a
complete unification algorithm for 1demp0_tcnce Since this algorithm is not minimal we tried to find a
minimal algorithm for idcmpotcncc. Of course we could use the results of [SS 81] [Sz 82], but testing
the .mininiali;y at each node of the narrowing tree would be more expensive than minimizing the
returned set of redundant unifiers. Before we will improve the universal algorithm for the special
theory of idempotence we will discuss the algorithm presented by Raulefs and Siekmann since their
work was a starting point for our algorithm. '

The algorithm they suggested was designed for only one idempotent function symbol f, constants and
~ variables. It is split up into two interlocking parts" the collapsing phase and the R-unification phase.
'I'hc collapsing phase is the same as narrowing with the 1dcmpotcnce rule on the:original terms;:The

R-unification process unifying the collapsed terms differs from standard Robinson unification in -
umfymg compound terms with constants and variables. In case of unifying terms with constants all
variables in the term are replaced by that constant if the term contains at most that constant, if not both
terms are not R-unifiable. In case of umfymg atermt with a variable x they distinguish two cases: if
the variable x does not occur in the term t then the usual unifier is retumcd in the other case a subtree g
is searched where the variable x does not occur but the brother of this subtree is an occurrence of the
variable x. If {x «— q}t =, q the returned uniﬁer is {x « q} else both terms are not R-unifiable. As
the upiversal unification algonthm shows it is superﬂuous to consider thesc additional subcases and the
returned unifiers are redundant. Siekmann and Raulefs then observed that their algor{thm is not
minimal. To come closer to minimality they proposed to collapse only on hot nodes, i.e. on those
nodes in the tree reprcsentanon of the original terms such that the node of the opposite term is also not a
. leaf node. But then the modified ‘algorithm -is no longer complctc Consider s = x and
t = f(f(f(a b) x) f(f(a y) x)) then there are no hot nodes and s and t are not R- unifiable since neither
(x « f(ab)} nor {x ¢« f(ay)) unify s and ; but s and t are infact I-unifiable with
(x & f(ab),y <. b). ' | ' '

14

5. An algorithm for Idempotent Unific_atioln

We now want to refine the universal unification algorithm for idempotent functions. We consider a
family of function symbols consisting of denumerable many constants, of a finite set of binary
idempotent function symbols F, and a finite set of arbitrary free function symbols Fy, i.e. for those
function symbols no equational theory is defined. Then the equational theory I is defined as
I={f(xx)=x!lfe F;}
and the corresponding canonical term rewriting system is
R,=(f(xx)= xIfe F).
We assume that there is a binary function symbol h different from the symbols in F; U Fg, If in the
examples only one idempotent function symbol occurs we sometimes omit that function symbol and
write (s t) for f(st). Applying Theorem 2.3 and the results of chapter 3 we get a first complete
unification algorithm for idempotence. . '
FUNCTION = I-UNIFY -
INPUT: Two arbitrary terms s and t in normal form
Enumerate the narrowing tree Ny(h(s t)) with basic left-to-right strategy.
OUTPUT; The set TTE (s, t) of unifiers of s and t away from Z 2 V(s, 1)
~ ENDOF I-UNIFY
We will not show the details of basing the unifiers on the set of variables of the original terms.
" Moreover we always restrict the domain of the narrowers to the variables in the term to which the rule

is applied to, i.e. the new variable x of f(x x) is always omitted. Hence the narrower is the most
general unifier of the right and left subtree of the corresponding subterm.

We are now looking for special criteria to confine the narrowing tree in the case of idempotence. A

sufficient condition for stopping the enumeration process at a node h(s' t) is the fact
UZ(s',t) = @. A quick test for non-unifiablitiy under idempotence is to check whether the two

15

terms start or end with different constants, i.e. in the tree representation of s' the first or last leaf is a
constant and different from that of t'. We will not show this condition but a more general one.

Towards thi¢end we need some definitions and notation. For a terms we'define the:correspending.
argament listds the list whose toplevel elements are the subterms starting with rmn—ldempmem function: -
symbols, i.e. we neglect the term structure and the 1dempotcnt function symbols The subtermsg starting

© with a non-ldempotent function _symbol remain unchanged. For example let
s = f(a f(a f(f (a g(b x)) f(f(z a) c))))) where f and f' are idempotent function symbo!s and g is an
uninterpreted function symbol then the corresponding argument list is (a, a, a, g(b x), 2, a, C).
Given two normalized terms s and t and the corresponding argument lists- (S, $y:5...j8) Jaard
(hys g eeny b)) WE define the normahzcd disagreement pair of s and t dy(s, t) = (s', t') to be the
first disagreement pair of s; and t; [Ro 65] such that $; = t;, and NS V forall 1<j<i. If
such a pair does not exist, i.e. both argument lists are equal or one argumem list is a sublist of the
other, we dcfmc dy(s,) = (s, 1) if n=m and dy(s,t) =(c, t ;) (w.Lo.g. we. assume in:s: any
where ¢ is a constant that does not occur in s and t. If one. of the terms: s and t is not normalized:we:
have to add an additidnal-condition to the above definition. We define the not normalized &isagrcc_mch(w
pair of s and t dNN(s) = (s', t") to be the first disagreement pair of s, and t such t.hat\.‘sf;——:‘t;.?.-
b € [8q 5ees Si1)s t; € Ity 0 1} and S 1 € V for all 1 <j<i. For the exception cases
wc take the above def"mmon Thc idea bchmd th1s last definition is that the idempotence rule is not
applicable in the constant part of s and t. We want to illustrate the above definitions by some examples:
let as above s = f(a f(a f(f'(a g(b x)) f(f(z a) c))))) and t; = f(a f(a f'(f(a g(a x)) f(f(z a) c)))))
then d NS, t)= (b a) and dyyn(s, t) =(a, a); for S and t; = f(a f(a f(x y))) we have
dyn(s, t,) = (a, x) and d N(s t,) = (a, a).

5.1 Lemma: (i) If s and t are normalized and dy(s, t) = (s‘,.t") such that both s' and t' are
T ' non-_va.riable terms -that start with different uninterpreted constanis or function
' " symbols then UZ(s,t) = @. |
(ii) If s and t are not normalized and .dNN('s-, =('1) such that both s' and -
¢ are different non-variable terms that start with different uninterpreted
~constants or function symbols then UZ((s, 1) = @.

Proof: We only show part (i), the proof of (ii) is analogous to the ﬁrst part by the above remark. :
Suppose s and t are unifiable with unifier ¢. Since s’ and t' are different, ‘both argument lists can not be -
equal. Let (s', 1) bc thc dlsagrecmcnt pair of s; and t; then Gs and its normal form llosll start with the

same argument 1llst, since there are no variables in (8 ,..., $;.) and the idempotence rule is not-
applicable in this part of s. But since losll = liotll we have os; = ot which is a contradiction to the fact
that the disagreement pair of s and t is a pair of different non-variable terms. - S o,

16

5.2 Corollary: Lemma 5.1 remains true if we replace the argument lists of s and t by the
reversed argument lists of s and t.

This lemma and its corollary can be regarded as an extended clash criterion for idempotence. As point
of reference we define a first stopping criterion:

(S h(s't') € N(h(s t)) and Lemma 5.1 or the Corollary 5.2 are applicable.
As we have seen in Proposition 3.3 'we can always restrict ourselves to normalized narrowers and

hence as soon as the collected narrower is no longer normalized we can stop the enumeration process at
that node: '

(S,) | h(s' t) € Ny(h(s 1)) émd h(s t) >—4~’5——>9 h(s' t) and 8 not normalized.

If a node h(s't’) € Ny(h(s t)) is reached where s' is a variable and s' ¢ V(t') then the only most
general unifier is {s' ¢ t'}.Hence we can formulate a third stopping criterion

(S h(xt) or h(t'x) € Nyh(s) and x & V(t')
Another method to diminish the costs of enumerating the tree is to find nodes h(s't') € Ny(h(s 1))
where we must not perform Robinson unification for s’ and t', i.e. we are sure that the unifier
generated at that node is redundant. But we are not allowed to stop the enumeration process at the node
h(s' t') since non-redundant unifiers may be generated in the subtree starting at h(s't'). Consider the

following example <(x y) = (u (v w))>.

We show a part of the narrowing tree which generates a complete set of unifiers.

o) |
h((x y) (u (v w)))

@ ©) >
“hy (u (v w))) h((x y) (v w))) h((x y) (uw))

~

h((x y) w)

17

Node narrower Robinsonr-unifier - I-unifier

I: hi(xy) (u{vw))) € (xeu ye(vw)) op=(xeuy e (vw))

2:nb(y (w (W) (x <y} {y & (uvw)) Oy = (X & (W¥iw)), y & iln:(viw)))

3: h((x y) (vw)) (u & (vw)) [X &%, ¥ & wi 03 = (e (vewd, X & vyyse w)

4: h((x y) (uw)) (ve w) (x &< u,y & w) 04=[v<—w,x(—u,y<—w}

5: h((x y) w) (vewuew) (we k) 05 = (U XYV & (Y)W & dx)

‘We applied the second stop criterion (S,) to node 2. Remark that 6, = {v « w}o,. Hence we have
ulJX (s,) = {G}, Oy, Oy, 05}. We will now gencfalize the situation at node 4. If we look:at:the
subterm in (u (v w)), which is opposite to the subterm we have narrowed at, we see that this.subterny.
is a variable occurring only once in both terms. Exactly if h(s't") € Ny(h(s 1)) and there;exist .
occurrences 1.7, 2. € D(h(s't")) with s'/m =z (résp. t'/n = z), and z occurs only once in
h(s't"), and h(s't) >=4--, o h(s"t") (resp. h(s't) >-4---(ryh(s" "), and w2 ",
i.e. we narrow in a subtree, which is opposite to a variable occurring only once in both terms, then the
unifier generated at the node h(s"t") is an instance of the unifier generated at the. node-h{s'4');
provided that s" and t" are Robinson; unifiablé. Hence we need noi-Fpérfonn the Robinson unifications,
of §" and t". We call such a criterion a non-evaluation condition. ‘

(NE) h(s 1) >-+- o h(s't) (resp. h(st) >-a-- o h(s't)) and T’ = m.n" with
1.7, 2.t € D(h(s't')) and s/r =z (resp. /% = z), z; oceurs only once -in -h(s.t)

This condition is justified by the foilowing lemma which holds also for arbitrary term rewriting:
systems: : - : '

5.3 Lemma: © Let h(s t) >==op o oy h(') (resp. h(st) >-a-=1 1y h(s't")) .and
n' = n.n" with L., 2.t € D(h(s 1)) and s/t =z (resp. mr =z) and z
occurs only once'in h(s t). If B is.a most general Robinson unifier o? sandt
and B' a most general Robinson unifier of §' and t' then f'o Si BIV(s,)]
If s and t are not Robinson unifiablé then s’ and t' are not Robinsqn-uni_ﬁable.

Proof: lettm=r, t/m =1 and h(s" t") = ch(s t) where ¢ is a most general Robinson unifier of
tn' and f(u u) where u is a new variable not occurring in s and t. Then h(s" t") gy S D).
We now define B" by B"x = B'x for x# z and B"z = B'or = B'r’ = B'z, hence B" = B".
Now B" is a unifier of s" and t" since the rewrite rule is applied to a subterm which is opposite to the
variable z, which occurs only once in s and t, 'and hence we have B"c < [V(s, D). So finally
Bo g B [V(s, t)]. Suppose s' and t' are Robinson unifiable and s and t are not. Then we construct

the Robinson unifier B" of s" and t" as above. Hence B"c is a unifier of s and t which is a

contradiction. .’

18

Given the narrowing sequencé h(s t) = m h(s, t,) > —m h(s, t,) we will show that the
I-unifier generated at h(s, t,) is an I-instance of the Robinson unifier of s and t.

5.4 Lemma: Let h(s t) >~ 1 51 h(s; t) >+ 102) h(s, t,), B the most general
Robinson unifier of s and t and 3, the most general Robinson unifier of s, and
t, then B,0,0, <, B [V(s, O]. If s/n and t/m start with the same function
symbol and if s and t are not Robinson unifiable then s, and t, are not
Robinson unifiable. |

Proof: Let s/m = f(p, p,) and t/r = f(q; q,) then 0, is a Robinson’ unifier of p, and p, and G, is a

Robinson unifier of 6,q, and 6,q,: Then 6,0, is a unifier of p, and p, and of q; and g,. Now B,

unifies s, and t, and since s/t = 0,0,p, = 6,0,p, and 1,/ = G,0,q, = 0,0,q, we obtain that

B,0,0, is a unifier of Py» Py» q; and q, and hence of s/t = f(p, p,) and t/1 = f(q; q,). Since
0,0, resp. 6,0t only differs from s, Tesp. t, at the occurrence &t 3,0,0 is a unifier of s and t and
therefore B,0,0, <, B [V(s, 1)]. ' _ _

Suppose s, and t, are unifiable with unifer B, then by the above §,0,0, is a unifier of s and t which is
a contradiction. _ o W g L]

We can generalize this lemma to a non-evaluation criterion which we call the parallel path condition
(NE,) Given a left-to-right derivation _
' h(s t) >3] h‘(s1 t,) ——[rp] - >—-4——»[nn}-h(sn t.)

where n =2m and n; = '1.71."i and T = 2.11:'i-for 1€i€<m

The parallel path condition is shown by an induction argument. By Lemma 3.5 we can reorder the
‘above derivation to - '

h(s t) >) h(s; t)) > rtm] h(s,'t,) > —pa] -+ >~ [1t2m] h(s, t).
Now Lemma 2.5 implies that the unifier generated at the node h(s, t,) is an instance of the most
general Robinson unifier of s and t. The idea behind the proofs is to use the fact that a most general
Robinson unifier of a left side of a rule f(x x) and a given subterm t is a most general Robinson unifier

of the left and right subtree of t if it is restricted to the variables of t.

To use both non-evalution criteria during the enumeration process we need the following lemma:

19

5.5..Lemma: Let h(s.t) >-+*=g, h(s].‘ti) >=4-*og, DS, 13) _‘with.,.\ﬂi'e.Robinson unifiers-
B, B, and B,. If B0, <, By [V(sy, 1] then By8,8, <, B0, [V(s, D)

Proof: If the unifiers are properly renamed the proof is straight forward. _ =

A-combination of both criteria is possible.' Consider the problem

< ((x y) (((a b) ¢) 2). = ((u (v W)) (r (a b)) >

and the following basic left-to-right derivation:

H,.>=4-2g .4 Hy ===y Hy 2=) Hy 2= py Hse vy He.
with

Node Lunifier =
Hy LB y) (G b) &) 2)) (@ (v W) (5 (a)
; (R = 2y e (Vw)ze @b e X Ve Vo We W, re ((a b) ¢))
Hy h((y (((a bY€) 2)) ((u (v w)) (¢ (a b))
(x e @ Wy e (@O ze @b ue uhve v we wire (@b)o)

Hy (e b)) 2) ((u (v W) (r (a)

Hg h((((a b) c) z) (r (a b)))

(x « (((ab)ec) (a b)), y ¢ (((ab)yc)(ab)),ze (a b) u (((a b) ¢) (a'b)),

v & (((ab)c) (a b)), w « (((a b) c) (a b)), r « ((a b) C‘)}
The unifiers generated at H,,H,, H,, Hg are most general and _tht.:'_'tcr'mS sy and ty at H = h(s; 1) are
not Robinson unifiable. The unifier B8 gencra‘tcd at node H is an instance of B3,0,, generated at H,,
and of [31, generated at H,: ' ’
Regard the following denvanon which is a reordcr of the first:

M, i~ Uy #=5n0 Hs" ===y Hy 2T 2 Hs »=4-= 9 Hg

then B0, is an instance of B,'6,, generated at node H,', by (NE,) and [32'62 i$ in turn an instance. |
of B, by (NEl) since H,/1.1.2’=y occurs only once in H,. If we con51der the derivation

H, >-+--.q3 Hy =% 2019 R e T H4" >~) Hg 2-4-o 5 He

20

then B0 is an instance of $,"0,", generated at node H,", by (NE,). By (NE,) $,"6," is an

instance of B,"6;", which in turn by (NE,) is an instance of B,0, since H,/1.1 = H,"/1.1 =y
occurs only once in H, resp. H,.

Before we give a final version of the idempotent unification algorithm we will discuss the strategy
running through the derivation tree. Of course there are the two possiblities for a complete enumeration:
depth—first and breadth—first. We first consider another example: < ((x a) b) =; ((y b) (z w)) >.

®

h((a b) ((y b) (z w)))

e @'h(((x a) b) ((y b) (z w)))

~

®) ~
h(((x a) b) (b (z W))) h(((x a) b) (y b)) h(((x a) b) ((y b) w))

N

h(({x a) b) (b w)) h({(x a) b) (y b))

'

NO, v

h(((x a) b) b).

@

h((a b) ((y b) (z w))) .

h((a b) (b (z w))) h((a b) (y b)) h((a b) ((y b) w))
h((a b) (y b))
Node : narrower . Robinson unifier I-unifier
4 h((ab) (y b)) (X ¢azey, web) {y « a} [xea,z¢a,web,yea}

6 h(ab)(yb) (xeaze@b,we@bh)) (yea)
10h((xa)b) (yb)) (zé&y, weDb) {y « (xa)}
12h((x a) b) (y b)) {ze(yb),w e (yb)} {y « (x)}

(xea,ze(ab),we(ab),y ¢ a)
{ze (xa),w b,y & (x a)}

{z e ((x a)b), W & ((x Q) b), y & (x a))

21

To ease the notation we write h(sk t,) for the term at node k, for the narrower collected so far 8,, for
' the Robinson-unifier B, and o, for the I-unifier generated at node k. At the nodes 1,2, 3,5,7,8,9
" and 11 we do not obtain unifiers caused by non-unifiability of s, and t,. At node 3 we can apply the
_ stop criterion (S,), by which two unncoessary narrowing steps can be avoided.

_If we choose a depth-first straregy we first generate the unifiers o, and G4. But to get a minimal set of

unifiers we have to reject them after generating 0, and Gy, since G is an instance of 0,y and Gy is an

instance of O ,. Using a right-to-left strategy we would find the instances ‘without an instance test since -

~for the derivations h(s;g tyg) >—+- L1 h(s, t4) and h(s;; typ) >—*- Ity h(s¢ tg) the non
evaluation criterion (NE,) is applicable. But of course there are examples for which a right-to-left

~strategy will not work (take the above example reversed < ((y b) (z w)) = ((x a) b) >). We drd
not fmcl a criterion to decrde which strategy works best for which terms.

But if we look at the derivation length of the umﬁcrs in the above example we see that the length of
instances is larger than the length of more general unifiers. We did not find either a proof or a
countcrcxample for thrs phenomenon SO we state it as an open COﬂ_]CCU.lI'C '

If 0, 56 then the derivation lcngth of S; is smaller than that of G,

But this is the key idea of the minimal universal unification algorithm of Siekmann and Szabé [SS 81],
[Sz 82] who give a dccrsron algorithm to test at any point in the narrowing tree whether a more general
unifier than the just generated will be found later in the unification process Hence a proof of the above
conjecture would make this decision procedure absolete in the case of idempotence and a minimal
unification algorithm were found. This observation and the possrbrhty to find a reordering of the -
narrowing steps such that we can app]y the conditions (NE,) and (NEZ) leads us to-use a breadth-first
search in the narrowin g tree.

22

We will state an algorithm which is a not minimal but incorporates the results collected so far:
FUNCTION I-UNIFY
INPUT: Two arbitrary terms s and t in normal form
Enumerate the narrowing tree N,(h(s t)) with basic, left-to-right and breadth-first strategy.
Atevery node try -
(i) to apply the stop criteria (S,) to (S;)
(i1) to find a reorder of the narrowing steps such that
the non evaluation criteria (NE,) and (NE,) are applicable

QUTPUT: The set ITZ,(s, t) of unifiers of s and t away from Z 2 V(s, t).

ENDQF I-UNIFY.

23

6. Conclusion-

We have presented a complete unification algorithm for‘idempotcnt functions: The algorithm is based
on the universal unification algorithm as described by Hullot [H}80] and Kirchner [Ki 85j This
algorithm uses narrowing with rewrite rules as its central computation Tule. We have improvea on
ordinary. narrowing: by. using, special derivation strategies and by giving-some conditions where the
enumeration of the narrowing tree can be stopped. '

We did not succeed in finding a minimal unification algorithm for idempotent function.symbols. Using
the results of Siekmann -and Szabo [SS 81], [Sz 82) the: umvc;(salhpmﬁcatlonfalgomhm can be
extended to be minimal. This extension involves at each node of the narrowing tree computing a
complctc set of solutions of a matching prob!cm which is a very:expensive operation. But sincg:the
narrowing tree is always finite the theory of 1dcmpotcnce is finitary unifying and hence the redundant
unifiers can be eliminated by ‘mmmnzmg the returned set of unifiers. Th‘ls ‘minimizing step:os ty
involves a decision test for a matching problem which is less expensive. . '

- We have shown condmons ‘which prevent thc gencratmn of redundant umﬁcrs We called them

non-evaluation conditions since we were able to show that on certain nodes of the narrowing tree only

" redundant unifiers were gencrated T hese condmons only depcnd on information that is known.
Another possibility to reduce the minimizing costs after the enumeration of the na.rrowmg tree is to
prevent the generation of T-equal unifiers, i.e. not normalized unifiers. Since the narrowers are always

-‘ normalized (confer stop condition (S,)) there remain two possibilities. First the Robinson unifier b may
not be in normal form and hence the. I-unifier ﬁe is not. But excluding such umﬁcrs results in an
uncompanbllny with the non- evaluatlon condition (NE,).’ Consider the following example
< ((x a) b) = (((y b) a) y) > then the Robinson unifier B = {x « (b b) Yy « b} is not

_ normallzed - The onliy succesful narrowmg derivation
h(((x a) b) (((y b) 2) y)) >- +—>[21 1,6 = (y « b)) N(x 2) b) ((b2) y) :

* yields the I- umﬁer f'o= {x ¢ b,y < b}. But the non- -evaluation condition can be applied to this
derivation eliminating the generation of b's. chcg combmmg both_ldeas results in incompleteness
since both terms from the example are I-u[iiﬁablf: _buf no unifier is returned. With the climinatibn of not
normalized‘ I-uniﬁers bh wh,ére both b and h are normalized we get analoguous difficulties.

The original version of the. umvcrsal unification algorithm was not based on ordmary narrowing but on
- superreductmn i.e. after each na.n'owmg step t.hc newly generated terms are normahzcd as described in
[La 75],<[Fy 79] [RK 85] and [Ki 85]. But there are several compatibility prob!ems with
supcrreducuon. First superreduction does not fit into the concept_ of non-evaluation conditions:
Consider the example - < ((a x) (x a)) =; (ua)> then the é.uperre'duction derivation
h(((a x) (x a) (u @) >—+4--p; h(a, (a)) =44, h(aa) is possible, where ((ax) (x a)) and

© 24

(u a) are not Robinson unifiable and a and a are. This contradicts the parallel path condition. The same -
problem arises with the given strategies: basic and left-to-right derivations are not compatible with
superreduction because the reduction steps are performed at occurrences that are not in the subsets U,
of occurrences defined by the st.ra"cegies. So we have to perform superfluous reductions using the
concept of superreduction. Beside that if the terms at the nodes of the narrowing tree are always
normalized we loose the pruning effect of the given strategies.

25

T+ References:

[Ba86] -

[Bi35]
[BS 81]

[Bu 85]
[FH 83]

(Fy 791

[GT 78]

[Gr79)
[He 82]

[He 83)
[Hc;ﬁ]
[lll'80]

x[H1 80a]
[H1 80b)

[HO 80]

[Ho 76]

-Baader,F.; Thc ’I‘hoory Oof Idempotent Semigroups Is Of Unification Type Zero Joumal;
of Automated Reasoning, Vol. 2, No. 3, 283-286, (1986) -

Birkhoff, G., 'On The Structure Of Abstract Algebra’, Proc. Cambrigde Phil. Soc Vol.
31, 433-454, (1935) :

Burtis, S. and Sankappanavar, H.P., 'A Course In Universal Algcbra Spnngcr Vcrlag,
(1981) : . :
Buchberger, B., 'Basic Features And Developments Of The Critical- Pair]Complction
Procedure', Proc. of 'Rcwntmg Techiques and Appllcatxons (ed J.-P. Jouannaud)
Sprmger-Verlag, LNCS 202, 1-45, (1985) _

Fages, F. and Huet, G., 'Unification And Matching In Equatlonal Theoncs Proc of
CAAP'83 (ed. G. Auswllo and M. Protasi), Spnnger Verlag, LNCS 159,205-220,

- (1983)

Fay,M., 'First Order Umﬁcatwn In An Equational Thcory , Proc.of 4th WorkshOp on
Automated Deduction’, 161- 167 Texas,(1979) '

‘-Goguon J. A., Thatcher, J.W. and Wagner E. G, 'An lmual Algebra Approach To The
Specxﬁcatwn Correctness And Implcmentauon Of Abstract Data Types in 'Current
Trends in Programming Methodology, Vol4 Data Structurmg (cd R. T: Yeh),

~ Prentice Hall, (1978)
‘Gratzer G., 'Universal Algebra Spnnger—Verlag, (1979)

Herold, A., 'Universal Unification And A Class Of Equauonal Theoncs Proc. of

' GWAI-82 (ed. W.Wahlster),Springer-Verlag, IFB-82, 177-190; (1982)

Herold, A., 'Some Basic Notions Of First-Order Umfcanon Theory'. MEMO
SEKI- VII-KL, Universitit Karlsruhe, (1983)

Herold, A., ‘A Combination Of Umflcatlon Algonthms MEMO SEKI-85- VIII KL,
Universitit Kaiserslautern, (1985) i

Hullot,J. M., Canonical Forms And Unification', Proc. of sth CADE (eds. W.Bibel and
R Kowalski), Springer-Verlag, LNCS 87, 318-334, (1985)

~Hullot,J.M.,'A Catalogue Of Canonical Term Rewrmng Systcms Technical Repon

CSL-113, SRI International, (1980) -

~ Hullot,J. M., Compilation De Formes Canonlques Dans Des Théories Equationalles
These du 3¢™M€ Cycle, Université de Paris-Sud, (1980)-

Huet, G. and Oppen, D. C,, ‘Equatlons And Rewrite Rules A Survey in 'Formal
Languages: Perspectives and Open Problems (ed R. Book), Academic Press, (1980) .
Huet, G., '"Résolution d'équations dans des 1angages d'ordre 1,2 ...-®', These de
doctorat d'état, Université Paris VII, (1976) '

26

[JK 83]

[KB 70]

[Ki85]

-[La75]
[La77]
[Lo 78]

« [Pl 72]

|RK 85]
{Ro 65]

[RS 78]

[Sc 86]

[Si86]
(SS 81]

;Sz321

[Ta79]
[Ti86]

[RW 69]

[Ye 85]

Jouannaud,J.-P., Kirchner, C. and Kirchner, H., 'Incremental Construction Of
Unifcation Algorithms In Equational Theories', Proc. of 10th ICALP (ed J .Diaz),LNCS
154,361-373 (1983) '

Knuth, D.E. and Bendix, P.B., 'Simple Word Problems In Universal Algebras’, in

“'Computational Problems In Abstract Algebras' (ed. J. Leech), Pergamon Press,

263-297, (1970)
Klrchner,_C., 'Methodes_Et Outils De Conception Systematique D'Algorithmes
D'Unification Dans Les Théories Equationelles’, Thése de doctorat d'état, (in French)

~ Université de Nancy 1, (1985)

Lankford, D.S., 'Canonical Inference', Report ATP-32, Umversuy of Texas, Austm
(1975) : : : :

Lankford, D.S., 'Complete Sets Of Reductions', Report ATP-35, ATP-37, ATP-39,
University of Texas, Austin, (1977)

Loveland, D., 'Automated Theorem Proving', North-Holland, (1978)

Plotkin, G., 'Building-In Equational Theories', Machine Intelligence 7, 73-90, (-1972')
Réty,P., Kirchner, C., Kirchner, H. and Lescanne, P. 'Narrower: A New Algorithm For
Unifcation And Its Application To Logic Programming', Proc. of 'Rewriting Techiqués
and Applications' (éd J.-P. Jouannaud), Springer-Verlag, LNCS 202, 141-157, (1985)
Robinson, J. A, 'A Machine-Oriented Logic Based On The Resolution Principle', JACM

12, N2. 1, 23-41, (1965)

Raulefs,P. and Siekmann, J., 'Unifcation Of Idempotent Functions', MEMO
SEKI-78-II-KL, Universitit Karlsruhe, (1978) '

Schmidt-SchauB, M., 'Umﬁcatlon Under Associativity And Idempotence Is Of Type
Nullary', Journal of Automated Reasoning, Vol. 2, No. 3, 277-282, (1986)

Siekmann, J., 'Universal Unification', in Proc. of 8t ECAI'86, Brighton (1986)
Siekmann, J,. and Szabé, P.,'Universal Unification And Regulér ACFM Theories',
Proc.of IJCAI-81,Vancouver, (1981) :

‘ Szabd, P., Unifikationstheorie Erster Ordnung, Dissertation (in German), Universitiit

Karlsruhe, (1982)
Taylor, W., 'Equational Logic', Houston Joumnal of Mathematics 5, (1979)

~ Tidén, E., 'Unification In Combinatidns Of Equational T.heories', Thesis, Stockholm,

Sweden _ -

Robinson, G. and Wos, L.,'Paramodulation And Theorem-Proving In First-Order
Theories With Equality', Machine Intelligence 4 (eds.'B.Meltzer and D.Michie),135-151,
(1969)

' Yelick, K., ‘Combining Unification Algornhms for Confined Regular Equauonal 7

Theories', Proc. of 'Rewriting Techiques and Applications' (ed I.-P. Jouannaud),
Springer-Verlag, LNCS 202, 365-380, (1985)

27

