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Abstract :

. A complete unification algorithm for idempotent functions is presented.This algon'thm is derivated from
_. the universal unification algorithm, which is based on the narrowing relation. First an improvement for

the universal algorithm is shown. Then these results are applied to the _Special caseof idempotence
.. resulting in an idempotent unification algorithm. Finally several refinements for this algorithm-are

proposed. ' . .
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1. Introduction -

Unificationtheory is concerned with problems of the following kind: given two terms built from
_ function symbols, const and variables, on there exist terms that can-be subStituted for the variables ,

_ such that the two. terms thusobtained become equal? Robinson [R0 65] was the first to give an _
j algOrithm to find such a substitution with the additional property that the returned funifierl is most
"general (or is an 'mgu‘for  short), i._.e all other substitutions 'unifying'I the two terms can be computed

from that. substitution. From an algebraic point of view unification rs solving equations and an mgu is a
'basis' of the whole set of unifiers. ‘

Equational unification extends the classical unification problem to solving equations in equationally '
defined theories. But  then there- may not exist one single mgu. Depending on the equations] theory

there are finite or infinite sets of mgu' s and in some cases even a set of mgu' s does not even exist. .
Equational theories can therefore be classified into unitary (a single mgu exists), finitary (there 1s a
finite set Of mgu's) and infinitary (the set of mgus is infinite) theories and the class of nullary theories '
(i.  e.. a set of most general unifiers does not exiSt). For a detailed bibliography we refer to the

state- of-the-art survey of  J .  Siekrnann [Si  86]

Since every equational theory T requires a special purpose T4unification algorithm, there are recent

attempts'to‘ combine these special'unification algorithms ([He 85'], [Ki 85], [Ti 8-6] and [Ye 85]). _But_

all these combination algorithms do not work for collapse theories. Collapse theories are those theories
which contaiman axiom t =_ x ,  (e.-g} idempotence f(x x) "= x. On the other hand there is a very



powerful tool for canonical theories: the universal unification algbrithm [Fy 79], [H180], [SS 81],

[Sz 82]. Given a canonical term rewriting system for an equational theory we at once have a -

unification algorithm for that theory. This algorithm is based on, narrowing using rewrite rules, which

is eSsentially oriented paramodulation [RW 69] and it can be extended to ectuational rewrite systems

([He 82], [H180] and [JK 33]). This extension is one possibility to avoid the resniction in the
combination algorithms for collapse free thebries. Theories which are only defined" by one collapse '

axiom mostly have a canonicalrewrite system and by a result of Hullot the universal unification

algorithm terminates for those theories [H180]. Moreover the universal unification algorithm can

trivially be combined with uninterpreted functiOn symbols since these symbols do not change the term

rewriting system. ' '

As a prototype we studied the theory of idemporence. Since one problem with the universal unification

algorithm is its inefficiency we tried to improve the obvioussolution given by the universal unification
algorithm by pruning the search space. After a introduction into the notions and notations of. unification

theory we present the universal unification algorithm. We then give- a method to improve this universal

algorithm. These results are applied to idempOtent functions resulting in a first version of an idempotent

unification algorithm. Exploiting the fact. that we only have idempotent and uninterpreted function

- - symbols we present special results improving this first version for an idempotent unification algorithm. I '
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2‘; flei‘i‘nifiibns' änd. 't‘a'tions

2".‘1‘ ”Tennis and substitutions _ '

unifiCation theory rests upon the usual algebraic notions (see e.  g.  [Gr '79]; [BS 81])  With the iatifilit‘tii

Luitcept of an algebra A:  (A, P) where A'13 the carrier and F 'is a family of operators igwbfi‘
with their arities.

Aääuming that there'IS: at leaSt one constant (operator (if arity 0)’m .F and aflenumerab'lä se‘t Warsaw
V, we define T, the set of first order terms, over IF and. V, as the leastr set with (i) V ; mlflii‘diiif‘fi

arftY(f)= 0 for f 6 IF then f e T and (ii) if t], ‚nt e T and arity(f)= n then the-1 istiiifig‘

f(_.-.t1 t I.) e T.  Let V(s) be the set of variables occurring in a term s; a term s is' grohii‘fiaii
V(8)=_Q.Ü

As usual the algebra with carrier T and with operators, namely the term constructors corresponding to
- each Operator of F, is the absblutely free (term) algebra,’1. e. it just gives an algebraic structure to T. If
. the carrier is the set of ground terms it is the initial algebra [GT 78], also known as Herbrand Universe

[Lo 7:8] '

Terms can be also viewed as labelled trees [JK 83]: A term is a partial application of N‘“ into F U V
such that'113 domain D(t) satisfies the following condition:

the empty w'ord 8 is in 13(1) and 1t.i is in D(t) iff It is in D(t) and i e [1, arity(t(1t))],

wheie. denates the concatenation of strings. D(t) is the set of occurrences and. 0(t) denotes the set
of non--variable occurrences, t/rt the subterm of t at the occurrence 1: of t and ID: (— t'] the term
obtained by replacing th! by t' in t. We say that two occurrences 1tl and 1:2 are independent iff one
selected term is nor a subterm of the other selected term (i. e .  there exists an occurrence 1.: Such that
n1=1t.i.'1t,,1t2=rt.j.'1t and nn)

A substitution 6 :  T —> T is an endomorphism on the term algebra which is identical almost
. everywhere on V and can be. represented as ja finite set of pairs: 6 = '[x1 <—'-— _t1 'xn (—— t }."I‘he

restriction 01,, of a substitution 0 to a semi variables V is defined as c lvx=  ox  if x e V and
olvxr- x else. 2 ts the set of substitutions and a the identity. The application of a substitution 0‘ to a

- . term te  1“ts written as c't. The composition of substitutions 15 defined as the usual composition of
mappings: ( o .ot ) t=  6(11) fort e T.



Let . DOMo= {its Vloxatx] _ ' '- ' (domainofo)
cone = {ox | x e DOMo} _ '(codomain of o)
vcooo = V(CODo.) ' (variables in codomain of a)

If VCODo == 6 then o is a groand substitution.

' A set of substitutions Es  2 ts said to be based on a set of variables W away from Z :: W iff the
following two conditions are satisfied

6)  DOMG = W for alloe E_
‘(Ii-i.) vcono 'n lz  = g - Wange):

In particular for substitutions based on some W we have DOMo n VCODo= ß which'15 equivalent
I to the idempotence of o, i e. 6 -0 :  a. We shall use this property in the proofs- later on.

2t2: Equational Logic and-"fl Unification

An cquatt‘On s = t is" a pair of terms. A- set of" equations T is called an. «Irrational theory. iff an-
equation' e is in T wheneyer e: is'true in every model of T i.e. e is a consequence of -T (or for'shtirt:
e e T whenever T “|: e). A set of'ax’ioms P(T) of an equational theory Tis a set of equationssuch that '
T is the least equational theory containing this set PCT). We sometimes say that the equational theory T
is presented by P(T). For simplicity we do not distinguish between the equational theory and its
presentation. - -

_ Thenequality<=r generated by 'a set .Iof equations T is the finest cungruence overT containing; all pairs '
0‘s = at for s = .t e Tand . 6  e' 2. (i.e‘. the 2-invariant congruence relation generated by D .  The

following is Birkhoffs‘ well-known completeness theorem of equational logic [Bi 35] — '

Theorem 2.1;" '_T „= - s = t . iff s =T t.

We extend T-equality in T tothe setcf substitutions. Shy: .

o=Tt  _ “_lff ' .Vxev .  ox=Ttx .

If T-equ'ality of substitutions is restricted to a set of variables W we write '



°.='1—TlWl lff VXEW Gaefiffltx

and say 0 and 1: are T-eaual ____W
A substitution 1: __is more general than _0' on W (or 0' is a T-instanc‘e of 1: on W) :

_-

cSÄrflW] iff Elle}: 0:31pm].
'

Two substitutioiis 0.1 are called T-equivalent on W . _ __ «—

‘d 5T" ?.[W] _ " iff " Syf‘äg-M md " S1‘ 0' “.?“

Given t'wo-terrns s,  t. and an equational theory T, a unification problem for T is denoted as

' . . ( s  3:33.132?- ‘ ' & * . ' _ . . _ . '

"We  say-  oé  ).“. is a solution of < s  =T t>  (b ro  1s aT—unifier o f s  and t) iff as =.1—Gt For the set

'of all T-unifiers of s and t we write U2r(s, t). W1thput loss ._..01: genegahty ‚wc tcan assume that WE.

. unifiers of s and t are idempotent (if net, one can find an equivalent- set of unifiers that '13 idempotent).

Fore. given 11n1ficauon problem < _s_.-T t -> it is not necessary.tq comgute the whole set of .unifiem «

IH,-&&, .933; which as :eivgexs 
.reeurswely ennmerable for „an eguatiohal ..theory Titwith; decidable. wand-_

Emblem, buminsmadca; mailer set usefgl _, ‚;gpxcsenung UZ.- Therefore .a define tangles @113

compieterset ‚offumfexsmof __s- and ._t_ on W:  s t). as; em.
‚d '

(i)_.. cU2}r(s t ) :  Hill—(S, !) :   I- - ' . fcmcmesa;

- (ü ) .  V86. UET(s, t) a ae  cuz'Tts, ;): ösTa [w] - '(éomplctcness)
"I

A jse-t bf- me...-gf‘;¢m,z tertifitrs uUzfis tiise;flagqmplctq-‚set with _

(iii) v o... ': e. 
“wigs, t): _c s3 1 [WJ _ implies .0 =_ 5:_ (nfinimality).

For technical reasons it turned out to be useful to have the following requirement. For a set of variables

Z with W ; Z '
v“ .

(iv) HUS-[(8. t) (reap. „wars, t)") isrbaISCd on W, away ”frqm Z . (ptoectiori of 2)

(resp. cU2T(s, t) is a complete set of umfiers away from Z) [PL 72].



The set nUEr does not always exist [FH 83][Ba 86][Sc 86]; if it does then it is unique Up to the

- equivalence ET [W] (see‘ [Hu 76][FI-_I 83]).- For that reason it is sufficient to generate just one uU)",r _

as some representative of the equivalence class “11121151"—

' Depending on the cardinality of the set of most general unifiers we classify the equational theories into

the following subclasses:

_ a theory is unitary unifying iff ltUZ’.r exists and luUEl-(s, t)|_= l for all s and l:

' - a.theory is finitory unifying iff „UI.T exists and lttUEfis, t)l < oo for all s and 't. .

- a theory is  infinitely unifying iff uUET exists and luUET(s,,t)l = op for some s and-t

- a. theory is nullaiy unifying iff uUEr does not exist for some 8 and t. '

' A unification algorithm'13 called complete (and minimal ) if 1t returns a correct and complete (and

minimal) set of unifiers for every pair of terms.

2.3 Reduction, Narrowingand Unification

, -A  term rewrit ing system R={11  => r1 ,.  . ,  1“ => r ““} is a Set of pairs of terms li, r; e T

with V(r.) gVOi) for 1 <'1 S n. We say that a term s ——»R-reduces to a term t at occurrence It with .

l i=>  r iand we write 3 "'R t or s __, t iff:[mil
J

3111:: rie a, Ge 23,“ O(s) such that smsli and t=s[1_t «(_—mi].

_ The indices of “’R are omitted if they are understood from the context. .A term t is said to be reducible '

if t ***R t for some t‘, else t is said to be irreducible or in ark—normal form. The reflexive and

transitive closure of "’R is denoted by ———>R .A  term rewriting system is said to be a complete set of

reductions or a canonical term rewriting system iff:

——>R- is noetherian, i. e; there does not exist an infinite derivation t1- “7’11 t,z an t3

R is confluent, i. e. for s, sl, $2 with s --+R s1 and s ——.—>R 52
there exists t such that sl—"‘—>Rt  and 52 '“  R t.



For an equational theory T there are techniques- to obtain a term rewriting system RT such that this

system has the Church-Rosser. property, i . .e s :1. t iff there exists r € T with s i »  1‘- and t _—'—‘—» r;

moreover it is sometimes possible to obtain a canonical term rewriting system [KB 70], [H0 84],

[Hl‘lßoä]; [1311385]. Canonical systems are an important basis for computattons in equationa] logics

siriée, theyryield a decision procedure for T-equality: s =Tt iff |l=sll _. lnil wherefllslmenmgasuuhm

unique normal fonn of s. A substitution 0' is called 1n normal form or nonnaiizetl iffi all tertnsain the »

codomain are in normal form

The following relation is the basis for a universal unification al.gorithm We say s is narrnwabtefitm

at occurrence 1: with the substitution 0' and the rule l .=:~ r and write 5 >—4—4

s ?—+—->t iff '

_.[n i o l t  or shortly

El [i=9 fie R‚'-_o' &. E,  n.e‘0(s) such that o is- mgu‘of S/‘Jt and _li and t—=‚G(S[1t 
1.131.)...

The substitution 0 is called'a narrower or narrowing substitution. Narrowing is the same as oriented

'pa'ramodulation {RW 69]. In [H180], [Hi 80b] the relationship between narrowing and reduction 13

' „established.

' ‚Theo nem 2 ,2 :  Let s be a term and n be a normalized substitution with DOMn c; V(s).

- - . Fer every ——» derivation'-1ssuing from ns

(D 11s = to "”[m,k1]t1""[1c2‚k'2] t2 "’ '--- "’[m] 1..

there 'exists a >—'+—-> —.derivation issuing'from'-.. A

.. ‘ _ - ' (2) 5 = So"“""[r t1 ,k1 .m]  .51 "***-’[mnGi] 52"-  """"[rm,kn,-on] S,.-

for each'1, 1 < i S. n, a normalized substitution n i  such that ni( s i - )'- t and

n:  9 . [V(s ) ]  where 9 i . = 6 . . 0 '1 .  ' . .

Conversely, to_ each way-_» - derivation (2) and every 13 such that

‘n 5 en [V(s)] we can associate a -—>- derivation ( l ) . -



This result can be depicted in the following diagram:

118 = _to "TEL-kl] t l  mama] _ tz "" fing-‚m tu

no, ° 111 ' l -  ' ‘ ‘ n.,
S=‘So>-4"*[m‚1q‚m] Sfl—mzm] . Sz ***-_" M">[n:‚.,1c„„cm] Sn

This relationship leads to the following universal unification algorithm which is essentially an

enumerating process of the narrowing tree: Let t be a term then. N.,-(t) is the narrowing tree with

- t  is the mat of  N.,—(t)

- if t '  is a node in Nit) and t' ”fink o} t" then t" is a successor node of- t' in N.,—(t)

Theorem 2.3': Let T be an equational theory that admits a canonical term rewritingsystem. Let

' . s ,  t be two terms and h a new function symbol not occurring in F. Let
U20(s ,  t) be the set of all substitutions ft such that there exists a

.r—Jh-v--derivation:

’ h(s_ oer—1'01] ms, tl) Mami .L. „m htsn t.)
where 6n  '='<1rIII „61  is  normalized, ' S" and tn are unifiable with the most

.; ' general unifier B and 1=  ßen. Then U20(s, t ) ’15 a complete set of unifiers of s
and t . ‘

The details o f  basing the unifiers on V(s, t) are omitted for clarity. Since for every Substitution

produced by a narrowing sequence there 18 a corresponding reduction sequence from which we can

‚_ show that the substitutiOn is indeed a unifier for the given two terms, correctness is obvious. On the

other end to every unifier 11' there exists a normalized unifier 1] such that ' n ' -“ r  11. Hence there exists a

derivation 11h(s t )  ———> h(r r) and by Theorem 2.2 a corresponding >—4——a —„_ der ivat ion
h(s t) ML h(sn tn) with n S 09“ [V(s, t)] where o is! a most general Robinson unifier of s,; and

' tn. This establishes the completeness of the narrOwing technique. So by enumeration Of the narrowing

' tree NT(h(s t)) and Ordinary unification at each node we can construct a complete unification algorithm.

Since this algorithm rs very inefficient it is important to find criteria for pruning subtrees out of the

narroWing tree



3. Pruning the "Narrowing Tree . -

‘ A first improvement of the above universal unification algorithm-{pas given by H'ullipt [H1 80].He

proposed to use only innermost-outermost >——4-v- derivations as a derivation strategy which he showed

to be complete (since completeness is based on the computation of Rynonnai fonns).eMo11e-.e11actly he .

defined a derivation based on a set of occurrences: For a term t, a prefix-closed set of Occurrences .

% g; O(t) (i. e. if 11:. i e. 00 '  then 11: e 00) and a normalized substitution 1] a ——.> -de_rivation‚-‚—1$‚sumgg

from nt - - '

nt '= so  —-’[‘ici,ki] Si ‘-"[11:2,k2] 52 “* “***[a'cmknl‘sn

ora >—'1f-=-> —— derivation issuing from t .

'. ts‘r‘p""’"[’111;ki,oi]t1r "Hln'zkifizl tz?“  Wlnnknpnltn

is based on 00 ifci e. Oi_with

;Oi -.—- O.i_1_\ {wi r  I urn" e OM} U {iti.1t".l,1t" e 0_(r_ki)_]

.-'fo‚.r.l'Si‚S‚n-. " '  . . _

Roughly spoken it is not allowed to narrow at the occurrences introduced by the substitutions. iA

derivation of t is said to his basic iff it is based on “00“: on)“, Moreover the method of basic
. derivations gives us a sufficient condition for the termination of the ‘narrowin g process [1-11 80] We

. shall illustrate the definitions by an example. Let {f(x x) = x} be the rewriting system then _

f(f(x_ y)  f ( a  z ) )  >—_-—4——+[£] f ( a  y )  >——_4——»[_8] a is net :1 basic derivation but

--f(f(x— y) f(a z)) >—+—‚[2] f(f(x y) a) ',....,,._,[1] f(x a) >—+‘-1[£] a is basic.

' Another well—known derivation strategy is to consider only leftmost derivations. For a term t .  a

' .prefixeclosed set of occurrences 0 .0  <: 0(t) and. a normalized substitution n a '—i- derivation issuing.

from n t :

116-t=«so —->[1c1;kl] Si  “"[mJQ] % ‘7’ “mhk—"TS“ .

or a 3—4—9 ‚- derivation issuing from t-

- ‘ = t1) "H [111,111.01] t1 H’—"[11:2,1'c1.<32] t2 "?” "Hlnmkmön] tn

*10



is from left-to-right iii ooirr tti e 0; with

oi = 0m \ {n e o“  It: = n'.'i'.1l:",11:i = at:—'..iaf'fland'i' .<. i}
u { n ix"  i n "  e i0( rk i )}

fo r  ' 1 .5  i S n .  I f  we  cons ide r  . t he  above example  t hen

f(_f(x y )  f ( a ,  '21)) >—+——>[1—] f(x f(a  z ) )  >—+—»[2] f(x a) is a left—to—right derivation whereas

‘f(f(x y )  f(a z))  >—4——»[2] f(f(x y) a) rate-in] f(x a) is not . . In other words if we have performed a

’narrowing step at an occurrence then We forbid to narrow on those occurrences that are left. and

independent of the current occurrence. ' ' _ _

. A derivation o f t  is said to be from left-to-right iff it is from 'left-to-right in 00 = 0(t). We will now

show that we do not loose completeness when we only use left-to-right derivations. :Moveov'er we

show that we keep completeness if left-to-right and innermost-outermost derivations are combined.

' 3.1 Lemma: 'Let s = nt with n normalized, then every leftmost ._._. - derivation issuing
' from s is a left-to-right derivation and every leftmost innermost-outermost

—-i - derivation issuing from s i s  a left-to-right basic derivation.

f

Proofs; obvious.

3.2. Lemma; _ Let“ s = n t  with n normalized, then there exists a leftmost --.i - derivation

" _issuing from i s  to its normal form. Moreover there exiSts a leftmost
innermost-outermost —-» - derivation issuing from s to its nonnal form.

Proofsgobvious.

Consider now a _ »»»—+ — derivation

t“—* to ’“HImJnml ti Winston '2 "“. ”“lmkmnl ""
which is linked to a leftmost innermost-outermost -—r — derivation to the normal form or: nt

Tit "; So ‘“’[1t1,kt]st “’[ttzJa] ‘32 "” “° " ""[m,k:.]'sit _

with normalized T]. This derivation is a left-to-right basic derivation and since-the rules are applied at

the same occurrences the '>—+—» _ derivation is also a left-to-right basic derivation. Moreover we can

restrict the enumeration process of the narrowing tree to regard only those nodes such that

_11 ' - .



narrowing unifier that belongs io a node is normalized. We 'summmarize these results in the following
_ proposition:

3.3 Proposition: Given two terms 5 and t and a normalized T-un'ifier‘h- then there exists a
' .. left-tonight basic >'—4»+ —-derivat’ion of h(s,-t)

' h(s t):-- h(sot_9) >-4-—__, ms, t )>-'-+_-> >.- +_.-.‚ m;"; „p)
' such that sn- and tn are unifiable with the most generai, Robinson uni-fie; ß and gg
. :15'

#"

ns 'ßßn  [V(s, t)]. 4 .
The nmrowerfln can always be assumed tobe normalized.

We finaiiy.=wahr to give a direct- :proof for _the completeness of the left-to—nght strategy whichygiees not;
use the correspondence. between >.—+—._—y_-— derivations and _»:— derivations-
Before stating the main technical lemma we need some definitions: we say two substitutions 0 and t are
unifiable ififi there: exists a substitution 2 such that 2.0.: 2.'.t. In the same way as for terms: we define: ‚'

the. most general unifier n x'if- 0_a11d .1: as the substitution with 110:1}? and 2. S 11 [V(0, T)] for all
unifiers 2 of 0 and 't. The. most general instance 6%1=-116=n_.1 of .0 and ‘: is sometimes called the
merge of 0 and 1. Note that the merge is commutative 0*' t= “cm.

3.4 Lemma: . . . Let s and t be terms with the most general Robinson unifier 0 and I be. an _
‘ sarbitrary; Substitution. Then '

fü.) . 0  and "c are unifiable iflf -.1:s and- It are .um-fiablc

..(i1) if 0 and 1; are unifiable (or 13 and Tt "are uni-fiable) then cm _ mt, where
11. is a most general unifier of IS and .It '

Proof: [He 83]

3.5 Lemma: . Given a- >—+-+'- deri_v:«.1-tior1-s0 "”'"[-rt1,k1.01]' s1" »»»—115232152] s2 with
' ' fr: 

‚=  1r. i.'-1t é 0(30), 1:2 _==_._1_ti.'1t" e O(so) and i s ?  then there exists a
I

“""" _ derivation So  ’ ””"” I ' [ 1 t2 ,  k2 ‚12151 ’.""""[rt1,k1 01]  s2  “'“.h
_ .rt21: ... (1‘20l — , 0  ‚m,... ..

Proof: _We define t1 = 30/1;1 and_t2 =solrt2 then 01 is an mgu 20?“. and :1k Since..0,t2 and lkz. are
unifiable with mgu-02 and 011122 = 11:2 we can apply the last lemma and“ conclude that L2 and lkz. are
unififibiemith mgu. “i randthat- --o_726:‚-=‚<5‚-*€c1.;. Moreover of-t2jat_1'd lm. Hence we can perform the first...

.'nanowing Stcpisoäfflffilnl', kl.-1:1] 52'. Since I 1k1= '1k '1  and 01c = 2.01:212 rt tl and l k l  are ‘
unifiable with mgu :t2 and by the hat lemma we get £21101 =I=rtI Summarizing we have shown the
existence of the reversed >—+—+-— derivation and {1:21:17— 0201-_ 01*11. |_

12--



We can summarize the situation of this lemma in the following diagram which constitutes.

_ . _ .‚ . . "2
$2  : . . .  61*Tlrk l  . . .  61,31e2

The last lemma can also be used in a negative direction. Given. a .—4——> — derivaticin
so H"?[m,k1‚m] s1 and an occurrence nl independent from 1:1. If soltt’2 is not unifiable with the left
side 1 of a rule then 31/11:2 is not nnifiable with the left side 1 of that rule. That means that the
non-_unifiability can be inherited. This 'fact can be used in an implementation of the universal unification

' algorithm. ' ’

ln the next Chapter we will apply these results to the equationaltheory of idempotence. _ ;
E
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„4. The' Theory of Idemp.otenmce

The, first paper on unification under idempotence was published by P. Raulefs and J.  Siekmann

[RS 78]. Before giving their own algorithm they .proposed to study the relation between unification

and rewriting referring to [La 77] .  Since the idempotence law I -— [f(x a t ) -*- x}  can be directed into

- a canonical term rewrrting system R1:  {f(x x) => x ] ,  we canapply the results on the universal '

unification procedure. ' Moreover using the termination criterion of Hullot [H180]  we have found a

complete unification algorithm for idempoten'ce. Since this algorithm is not minimal we tried to find a

minimal algorithm for idempotence. Of course we could use the results of {SS 81] [SZ 82], but testing

the minimality at each node‘of the narrowing tree Would Ibe 'more  expensive than minimizing the

returned Set of redundant unifiers. Before we will improve the universal‘algorithm for therapeeial

theory of idempotenCe we will discuss the algorithm presented by Raulefs and Siekmann smceithert

work was a starting point for our algorithm. ‘

The algorithm they suggested was designed for Only one idempotent function symbol f, constants. and '
' variables. III is split up into two iriterIIOCking parts: the collapsing phase and the R-unification phase.

The collapsing phase '1s the same as narrowing with the idempotence rule. on the original terms; The

Rennification process unifying the collapsed terms differs from standard Robinson unification in '

unifying compound terms ‚with constants and variables. In case of unifying terms with constants all '

variables m the. term are replaced by that constant if the term contains at most that constant, if not both

terms are not R-u'nifiable. In case of unifying a’ term t With a variable x they distinguish two cases: if

the variable x does not occur in the term t then the usual unifier Irs returned, in the other case a subtree q

is searched where the variable x does not occur but the brother of this s'ubtree 1s an Occurrence of the

variable x. If [ x  (— q}t =' q the returned unifier 1s {x <-.- q )  else both terms are not R— unifiable. As

the universal unification algorithm shows it is superfluous to consider these additional subcases and the '

returned unifiers are redundant. Siekmann and Raulefs then observed that their algorithm rs nIot

minimal. To come closer to minirnality they proposed to collapse Only on hot nodes, i.e. on those

nodes in the tree'representation of the original terms such-that the node of the opposite term is also not a

leaf node. ' But then the modified algorithm is ' no  longerI complete: Consider s = x. and.
t :  f(f(f(a b) x) f(f(a y) x)) then there are no hot nodes and s and t arc'not R-unifiable since neither

[)1 <— f(a b)} “_nor {x (— f(a_ y)} unify s and  t; but 3 and t are intact l -  unifiable with

{ .xe - f ( ab ) ,y<—b} .  '

14



5°  An algorithm for IdemPotent Unification

We now want to refine the universal unification algorithm for idempotent functions. We consider a

family of function symbols consiSting of denumerable many constants, of a finitelset of‘ binary

idempotent function symbols PI and a finite set of arbitrary free function symbollg, iLe. for those

function symbols no equational theory is defined. Then the equational theory I isdefin‘ed as

I = { f(x_x) =-x.l  f e  F1]

and the corresponding canonical term rewritingsystem is

RI ='{ {(x‘x) =>‘x | f e  JF, ].

We assume that there 'rs a binary function symbol h different from the symbols m F u F9. If m the

examples only one idempotent function symbol occurs we sometimes omit that function symbol and

' write ( s t )  for f(s t). Applying Theorem 2. 3 and the results of chapter 3 we get a first complete

’ unification algorithm for idempotence._ ' ‘

m 'Two arbitrary terms 3 and t in normal form

Enumerate the narrowing tree Nl'Ch(s t)) with'basic left-tonight strategy.

m _ The set. “21(5. t)'of unifiers of sand t away: from Z ; V(s, t) ’

m   Lumpur ' '

We will not show the details of basing the unifiers on the set of yariables of the original terms.

_ Moreover we always restrict the domain of the narrowers to the variables in the term to which the rule‘

is applied to, i.e. the new Variable xo f  K): x) is always omitted. Hence the narrower is the most

general unifier of the right and left Subtree of the corresponding subterrn '

We are now looking for special criteria to confine the narro'wing'tree in the case of idempotence. A

sufficient condition for stopping the enumeration process at a node h(s '  t') is the fact

UZl(s', t') = Q.  A quick test for non-unifiablitiy under idempotence is to Check Whether the two

15‘



terms start .01' end- with different constants, i.c. in the tree representation of s' the first or lest leaf is a

constant. and different from that of t'. _We will not show this condition but a more general one.

Towards this 38nd we need some definitions and notation. For a teams we define the- corresponding:

arghmtnt li'st- as the list whose toplevel elements" eke the subterms starting. with iron-idempotentfunction?

. symbols. 1e  we neglect the term structure and the idempotent function &ym-böls- The subterms starting

‘ ‚w i th  a non- idempotent  funct ion symbol remain unchanged._ For example let

5-_ f(a f(a f(f(a g(b x)) f(f(z a) c))))) where f_ and f are idempotent function symbols and g is an

uninterpreted function symbol then the corresponding argument list is (a, a, a, g(b x), _‚z _‚a c).

Given two normalized terms s and t and the corre‘Sponding'. argument list-s (sis.s12;t..-..gtstJ):1h1id ;

( t „  t2 ‚..., tJJJ) we define the normalized disagreement pa i r tof s and t dN(s, t ’)-'- (s ' ,  't') to be the

' first disagreement pair of s andtJ [Ro 65] such that sJ = J,and_sJ-,' tJ' e v for all 153 <i. 11
such a pair does not exist, i. e .  beth argument lists are equal or one argument list" IS a sublist of the

other we define dN(s ,  t ) -- (sn, 1JJ) if n=  m and dN(s,. t )=  . ( c  tJJJJ) ..(w l-. o. g .  we.  assume mean.)

where c is a’ conSt'ant that does not occur in s and L If one. of the. terms. sJ and. t is not nonnaltzedtwe»

have to add an additional condition to the above definition. We define the not norr'nalized disagreement.

pair of s and tsdNN(s,  t )=  (s' , t') to be the first disagreement pair of sJ and tt. such that Sr.—Jr.]

sJ. e [ s ] .,. j 4 ] , }  t es { t} .‚. J._}  and SJ, t5 V for all _1$j<_i-. For the exception cases

we take the above definition: The idea behind this last definition'1s that the idempotence rule 18 not

applicable 1n the conStant part of s and _t. We want to illustrate the above definitions by some examples

let as above .  s -_- f(a f(a f(f(a g(b x)) f(f(z a) c))))) and t , -— f(a f(a f(f(a g(a  x) )  f ( f (z  a)  c)))))

then d.N(s, t )—-_- (b ,  a) and dNN(s ,  t l ) :  (a, a); J for 3 and t2—=f(a f-(a f(x y'))) we; have

'dN(s, t 2 ) :  (a, x) and dNN-(s, t2) = ( a ,  a ) .  -

5.1 Lemma: _“ . ' _i(i) If s and t are normalized and dN(s, t )=  (s', t') such that beth s' and t' are

‘ „ ' ' ' non-variable terms that start with different uninterpretcd constants or function

‘ ' - symbols then UZJ(S, t ) -— @. .

' (ii) If  s, and t are not normalized and..dNN(-s-, t) = "(s', t') _suchethat both. s7. and.-

t' are different non-variable terms that start with different uninterpreted

" ,Lconstants or function symbols then U2,(s, t) := @.

Proof: We only show part (i), the proof of (ii)'1s analogous to the first part by the above remark

Suppose s and t are unifiable with unifier o.S1r-_1Ce s' andt‘ are different, beth argument lists can not bey

equal. Let (s‘ , t') bc_thé; disagreement pair of si and ti then as and 1ts ,norrnallform llosll start with the

same ‘ar‘gUment list. since there are no variables in ($1.,. ., 51-1) and the-I-idempptence rule is not--
applicable 1n this part of 5. But since llosll-— "or" we have (331 = Gtl which IS a contradiction to the fact:

that the disagreement pair of s and t is -a pair of different non-variable terms. . . .“ . .- _ I J .
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5.2 Corollary: ' Lemma 5.1 remains true if we replace the argument.1ists of s and t by the

reversed argument lists of s and t.

This lemma and its corollary can be regarded as an extended clash criterion for idempotence As point

of reference we define a first stopping criterion: "

(s,) h(s' t') & N‚<h(3't)) and Lemma 5.1 or the Corollary 5.2 are applicable.

As we have seen in Proposition. 3. 3 We can always restrict ourselves to normalized narrowers and

hence as soon as the collected narrower is no longer normalized we can stop the enumeration process at

that node: ' ‘

(sg) i h(s' f) «5 N‚(h_(s wand h(s_. 1-) MLB h(‘s' t') and 9 not nonnalized.

If a node h(s' t‘) e N l‚_(h(s t)) is reached where s is a variable and s '  e V(t') then the only most -

general unifier'rs {s' (- t } .  Hence we can formulate a third stopping criterion -

' ' (33) . h(‘x t‘) pr, -h(t' x) e N‚(h(s t)) and x ‚e vo')

Another methdd to diminish the costs of enumerating the tree is to find nodes h(s t') & N‚(h(s t))

where we must not perform Robinson unification for s '  and t', 1a. we are sure that the unifier

generated at that node 13 redundant. But we are nor allowed to stop the enumeration process at the node

h(s' t') since non-redundant unifiers may be generated'm the subtree starting at ms t-'). Consider the

following example <(x ” "1“  (v w))>

We show a pan of the narrowing tree which generates a complete set of unifiers.

h‚((x‘y_) (u (v w») *

- " ©» ' ne . )
@110 (u (V w')_)) _ WK 300!  W))) .  h( (x  y) (u  W))

- h((x y)_W) -

17.



Node narrower Robmsorf-unifier' ' _ I—unifiqn.

1: ‘httx mw w))) e - tx<—u.y<—(v w))  =tx<- uys— (v w)}

2=.-}„h(y (mr-‚(mm, _ l ike  y}! — , {y <-,-.r~.(u iv w)) . )  . 62 .  =. _{x <..— (ü.:{xSM—L y ss- 16114111391]

3: h((x y) (v w)) {u (— (v w)“) [x (- v, y (— w} 03  =- Eim— (-11.211199, :1 <— 1141m— t
4: h ( (xy ) (uw) )  [V+—w} [xe—u,y<~—w] O4=  [ve—w„xeuye—w}

IsI- h((xy) w) _ [New 1H— W] '[W—(UH ' 65=I111<.—-Qt‘1r)1V<-— ( ”were” )
We applied the secOnd StOp criterion (S3) to node _2. Remark that 0‘4_= {v (— w}0'1. Hence we have

nil-_ZIQS, t)_=_ {Gino 2 ,  0'3, 05}. We will now generalize the situation at- node 4. If we lookmt, she .
' subtle-rm in (u (v w)), which IS opposite to the subterm we have narrowed at, we see that thisssusbtems:

is .a van'able occurring _only once in both terms. Exactly if h(s' t ' ) ' e  N1(h(s t)) and therfi}g_pgififi'1;

occurrences 1.11, 2.11 e D(h(s' t')) with s'/11 = z (resp. t'/11 = 2), and ‚2- occurs only once in

h(s" 1'), and h(s' t ') >_—.—1»_—~§+[2I fl h(s" t_") _(respI. h(s' t') >"""’[..i 
“-.Ijsms" t-")), and 11'2’59'11'1"

i.  e we narrow in a subtree, which ls Opposite to a variable occurring only once in both terms, then the

unifier generated at the node h(s" t") is  an instance of the uniIfier generated at the node Me 33);

provided that s" and t" are Robinson unifiable‘. Hence we need not perform the Robinson unification-1

of s" and t“. We call such a criterion a noIn-evaluation condition.

' (NE-1) h(st). >—7“" mums t) (resp. h(st) >- +— —;„._„.lh(s t)) and 11 =1111" with 7
- l I,11 2.116 D(h(s' t')) and 3111—- Iz (re-‚sp. 1/11: 2), z- oceurs only once i n .  h(sng)

This condition is justified by the foilowing lemmawhich holds also for arbitrary term resuming...

systems; - , . . . . .

- 5.3 Lem'maé _ ' Lei h(s t) >——+—- “’n „ .01 h(s' t") (re-Sp. h_(s t) >. '”"”'I11F'.°1h(s't'» and
' ' . 1I1'=I1111"with1._,.11211€D(h(st)) and s/1_1=zI.(resp t / 11=z )andz .

occurs ‚only once in h(s t). If B 1s a most general Robinson unifier of s and t
and B‘ a most general Robinson unifier of s‘ and t' then B'G< I 'B  [V(s t)]
“If s and t are not Robinson Iunifiable then s' and t' are net Robinson-unifiable.

Proof: Let th: = r, 1711-_- r' and h(s" t " )=  Ioh(s t) where 0 is a most general Robinson unifier of

1111' and f(b n) where u is a new variable not occurring in s and t .  Then h(s" t") ”"12. ‚„ h(s '  t'.)

We now define B" by B"x—- B' x for x :  z and B"z—- B'o r  -I"1"B=B'I'z,_ hence B" =l B'.
Now B" 18 a u‘nifier of s" and t" since the rewrite rule 1s applied to a subtenn which is opposite to the

variable 2, which occurs only once in s and t, and hence we have B".0‘ S B ms, t)]. So  finally

BIG 5, B [V(s, t)], Suppose s' and t' are. Robinson unifiable and s and t are not. Then we construct

the Robinson unifier B" of s" and t" as above. Hence B" O’ is a unifier of S 'and t which is a
contradiction. - _ ' . . '
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'G iven f the  narrowing sequence h(s t) >—4—-—»[1_„‚] h(s1 t1) >4—1I2'fi] h(s2 tz) we will ‘show that the _

l-unifier generated at h(s2 t2) is an I-instance of the Robinson unifier of s and “L

5.4 Lemma: Let h(s t) ”+"—11mm] h(s1 t l )  "4""’[21:02] h(s2 tz), B the most general

Robinson unifier of s and t and B2 the most general Robinson unifier of s2 and

t2 then [32626151 B [V(s, t)]. If s/rt and t/‘lt start with the same function
. symbol and if s and t are not Robinson unifiable then 82 and t2 are not

Robinson unifiable. . .

Proof: Let s/rt ='f(p1 p2) and m: = rm." (h)—med 01 is :1 Robinson” unifier of p1 and p-2 and oz is a
RobinSon unifier of ql and olqz. ”Then 620'] is a unifier of p1 and p2 and of ‚ql and-qr Now B2
unifies s2 and t2 and since 32/11: = (7201131 26251172 and t2/1t = 020q =-o"zoiq2 We Obtain that
[320201 is a unifier of p], p2. ql and q2 and hence cf slrt—- f(p1 p2) and titt—- _f(q1 qz). Since
520‘s resp 020 t only differs from $2 resp. t2 at the occurrence rt: B26201 is a unifiei' of s and t and
therefore [32020151 B [V(s,  t ) ] .  '

SuppOse 32 and t2 are unifiable with unifer B2 then by the above B2626l 1s a unifier of s and t which IS

a contradiction. _ _ - - _ - _ _ -- l .

We can generalize this lemma to a non-evaluation criterion which we call the parallel path condition

. (N52) . Given a left-to-right derivation _ ‘ .
. h(s [) >—4—_-——)[nl] h(s] t l )  >-—’|-—9[n2] ..)-’-4-—-+[nn]'h(sn In)

where n=  2m‘and “1"?"- 1.1t'i and a - - 2.1c'i-for IS  i S m‘

The parallel path condition IS shown by an induction argument. By Lemma 3.5 we can reorder the

' above derivation to

_ h(s t) >-+-+[1n] h(s] t l ) .  >—H[mn +1]  h(sz' I2.) >——4f——»[n2] >-—-’v--9[mm] h(s“ lin).

Now Lemma 2.5 implies that the unifier generated at the 'node h(lsn'tn) is an instance of the most

general Robinson unifier of s and t. The idea'behind the proofs is to use the fact that a most general

Robinson unifier of a left side of a rule f(x x) and a given subterm t is a most general Robinson unifier _ *
“of the left and right subtree oft if- it is restricted to the variables of t.

To use both non-evalution criteria during theyenumeration process we need the following lemma:

1.9



5.5.‚.Lemn'1a;.‚..-‘ _ Let hcs. £) >—-+’."——391 h_(sl tl) »»»-49,2 M25222): “nich,—the RobinsQn unifiers:

B, B1 and B2. .If ,62B225 ,  B1 [V(sl,t1)] then B20291 _ , [31  9_..[V.(s „GL-‚=.

Proof: If the unifiers are properly renamed the proof is .sn'aight forward. _ I

Neombination of _both criteria is- possible...- Consider the problem

‚ <  ((x y) ' ( ( ( , a 'b ) ‘  C )  'Z‘)-=_| ‘(‘(u (_v W)) (r (a ‘b)').“>

and the. folloxfiingihasic left-to—right'derivation: . .

H1-‘>i‘“‘*’t1.11 H2 3'4”."11-1 H3 ”"T“" [2.1.51 “4 ?“”‘"" [z.-11;Hs.'sß"“‘f=‘*'*|21' H'éf

with _.

Node I-unifier _'

' . H,  ‚hcctx y) («a b) c) z» «u (v w» tr (a b»)

, _{x<-—xf. y t—(vw) , z<——(ab) .u (—x v t—v ' ,  wc—wfl re—( (ab )c ) . ]

H2 In“)! (‚((a b) c.) x ) )  ((n (v W))  (t (a b)) )

[ x  (— (n'- (v '  w_')),y<—- _‘(u (v '  w') ) ‚ ze— ( ab ) .u<— u', ve;- _‘v, w t -  w'. rt— ((ab)~c)[

'H3 ' man b) c) z) ttu (v mi (r ta b)»

' 116' M («a b) c) z) (r ta b»)  .
[x <— (((_a b)  c) (a b) ) .  y <- (((a b) e) (I b ) ) .  z +-. (a b) ;  u. .4—- ‚(((a b) <=.) (& b))

v (— (((a .P) <=) (& b) ) .  w +:— (((a b)  C) (a b_)) r +— ((a b)  C)!

The unifiers generated atH¢,H2, H4, H5 are most general and the"tenns s3 and t3 at H—"—.h(32  12). are .

not Robinson unifiable. The unifier Bees generated at node H6"IS an instance of [3262, generated at H2,-

' and of ß-l, generated at H :  ' '

Regard the following defilvation, which is‘ a reorder of the first:

. -  * .  - ‚__ '  _ __ l  __f._ ' .  ' .“ "

“H1 >-?’*[2.1.21?‘2 > ’" "’[LHH3 ) + "“1 H4 ???-"“l 2-4"*‘*121.H6

. then [3666.is an instance of B2'62'3 generated at node H2', by (NE2) and B2f92' is' in turn an instance; |-
of Bl by (NEI) since H2/1.1;2'= y occurs only once in H2. If we consider the derivation

H1 >-'°*-'*[1.11Hz >"-’-‘“""t2.1.21Ha" >-""'“"t_2;u H4" "1"”"t11Hs ?“"""’121H6'



then [3666 is an instance of [34"4' " ‚generated at node H4“ ‚ by  (NE2). By (NEI) [34“94" is an

instance of ß3"63"‚ which in turn by (NEI) is an instance of B292 since H2/1.1 = H3“/1.1 =y
occurs only once in H2resp H3. -

Before we give a final version of the idemootent unification algorithm' we will discuss the strategy

running through the derivation tree. Of course there are the two possiblities for a complete enumeration:

de-pth-first and breadth—first. We first consider anodier example: < ((x a) b ) ---l ((y b) (z w)) >.

'T' - Gum a) b) ((y h) (z w»)

6)—
' - . © ‘ } . v ‘ ' . _ '

h((a b) ((y bu: w),» _ '.h(((x a) b) (b (z w))) h(((x a) b) (y im “hat:; a) b) ((y b) w))

. .v . - , . v

mhaoga) b>_ (I:-w)) ' .. me 101).) (y a»

' . mot. a) b) b)."

@W, mo b) (z wm .

- -_® @,.h((a l3) (b (2 w») _ h((a b) (y b)) baa b) (-(y _b) W)) . .
V

‘ “((n b)  (Y b) ) .

Node j narrower . " -Robinson unifier ' I—unifier

4 mung-b» {Xe-a,2(-.y,‘W(—bi}l' - {'yk—A] [x_(—a,’z(-—a,w<—b‚y(—a]
6 h((ab)(yb)) {4xé—a,ze—‚(yb.),w<—'l(yb)] „ [ye—a] ' ' . t x t—a ,z '<4 (ab ) ,w<- (ab ) ,ye4a ' ]

_10h((x a) b) (W)) [2<-y.W+-bl - . {Ye—(m)}  [Zf—(x a) .W<—b.y -<- (x  h)]

- Izhaxawmb»; {www.m—(ybn {ye-(nu {z<—«xa>b).w<—--(txa)b>.y_<— (n)]
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_ To ease the notation we write h(sk tk) for the term at node k, for the narrower collected so far Bk, for

‘ the Robinson-unifier Bk and ok for the I-unifier generated at node k. At the nodes 1 ,2 ,3  5,7,  8 ,9

' and 11 we do not obtain unifiers caused by non-unifiability of sk and tr At node 3 we can apply the

f stop criterion (SI),  by which two unnecessary narrowing steps can be avoided.

' ' . I'f we choose adepth-first strategy we first generate the unifierscr4 and 66; But to get a minimal set of '

unifiers we have to reject them after generating 010 and 012 since 0‘4 is an instance of qm and 66 is an

instance of 612. Using a right-to-left strategy we would find the mstances without an instance test since -

I “for the derivations h(—Is10 tm), >-+— '_’[1.11 h'(s4 t4) and _ h(s12 tu) >“"'"*[1.1] h(s6 t6) .the non

evaluation criteridn (NE ) is applicable. But of onurse there are examples for which a right-to éleft

- strategy will not workII (take the above example reversed < ((y b) (z w)) =1(_(x a) b) >).  IIWe did

not find a criterion to decide which strategy works best for which terms.

- But if we look at the derivation length cf the unifiers 1n the above example. we see that the length of '

instances is larger than the length of more general unifiers. We did not find either a proof or a ,

counterexample for this phenomenon, so we state it as an open conjecture: '

1f oi SII'CISJ- then the derivation length of o3 is smaller than that ofoi..

_ Bu_t this is the key idea of- the minimal universal‘unification algorithm or Sieldnann and: Szabö [ss 81] _
' ‘ _ [Sz 82] .who give a decision algorithm to test at any point in_ the narrowing tree whether a more general

unifier than the just generated will be found later m the unification process. Hence a proof of the above '

- conjecture would make this decision procedure absolete 1n the case of idempotence and a minimal

unification algOrithmI were found. This observation and the possibility to find a reordering of the -

- narrowing steps such that we can apply the conditions (NE—l) and I(IlSIE-ZI) leads us to- use a breadth-first

search in the narrowing ..t1ee ' ' - - '
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We will state _an algorithm which is a not minimal but incorporates the results collected so far:

Elm QTIOE I—UNIFY

m Two arbitrary terms sand t in normal form _

.Emtme‘rate the nmrowmg tree Nl(h(s t)) with basic, left-to-right and breadth-first strategy.
At everyrtode try Ü ' _ ' ' ' '

' (i) to apply the stop criteria (S ! )  to (S3).
(ii) to find a reorder of the‘narrowin‘g steps such that

the non evaluation criteria (N El) and _(NEZ) are applicable

The set l'lZ,(s, t) of unifiers- of s and t away from Z ; V(s_., t ) .

m ' ' I.-U_NIF"Y.
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6. Conclusion.

We have presented a complete unification algorithm for'idempotent functions.- The algorithm is based

on the universal unificatidn algorithm as describedby _Hullpt .[Hk-8‚Ql:„aggixlgirchrger [Ki;__-8_53. This

' algorithm uses narrowing with rewrite rules as its central computation-rule. We have improved on

ordinary. narrowmggby using. special derrvatron ‚Strategies and by gixnngesenae conditions where the

enumeration of  the narrowing tree can be stopped. '

We did not succeed'm finding a nummal unification algorithm for. 1dempotentf1mcuon symbols. Using

the ieSults of Siekmann and Szabo [SS 81], [S2 82] :the: umversal‘pnificanonralgonthm can be

- extended to be minimal. This extension involves at each node of the narrowing tree computing a

complete set of solutions of a. matching problem which 1s a very expensrye operation But filficgrthc

. narrowing tree is always finite the theory of idempote‘nce rs f’mitary unifying and hence the redundant

unifiers can be eliminated by minimizing the returned set of unifiers. This minimizing steps‘entyt

involves a decision test for a matching problem which'13 less expensive."

' We have shown conditions which prevent the generation 0f redundant unifiers. We called them '

non—evaluation Conditions since we 'were able to show that on certain nodes of the narrowing tree only

‘ redundant unifiers were generated. These conditions only depend _on information that is known.

' ‚ Another possibility to reduce the minimizing costs after the enumeration of the narrowing tree is to

prevent the generation of T—equal unifiers, 1. e. not normalized unifiers. Since the narrowe'rs are always

normalized (confer stop condition (82)) there remain two possibilities. First th'e Robinson unifier b may

not be in normal form and hence the I-unifier B9 is not. But excluding Such unifie'rs results in an

uncompatibility with the non-evaluation condition (NE ) .  Consider the following example

< ((x- a )  b) = !  (((y b) a) y) > then the Robinson unifier B = {x  <—_-' (b  b) y <—_- b} is net .

_" no rma l i zed .  The  on ly  succes fu l  na r rowing  de r iva t i on

hue: a1 b1 «(y b1 a1 y)) > «new 1 1 „- _ „ .— „„ max a1 b1 ((11 a1 y)) '
' yields the I-unifier B' 0'—°- {x (— b,‘ y <— b].  But the non-evaluation condition can be applied to this

derivation eliminating the generation of HS. Hence combining both ideas results in incompleteness

_ since both terms from the example are I-unifiable but no unifier rs returned. With the elimination of not

normalized I-unifiers bit where both in and h are normalized we get analoguous difficulties

The original version of the universal unification algorithm was not based on ordinary narrowing but 011

- superreduction, 1 e after each narrowing step the newly generated terms are normalized as described'1n

[La 751,5[Fy 79], [RK 85] and [Ki 85]. But there are several compatibility problems with

superreduction. First superreduqtion does not fit into the concept bf non-evaluation conditions:

Consider the example ' < ((a x) (1(a)) =I (u a) > then the superre'duction derivation

h(((a x) (X a) (11:31)) >-+4é-1[1j-h(a, (um) _>-++->m Me a). is possible..'where ((a x) (x a))_ and-



(u a) are not Robinson unifiable angle and a are. This contradicts the parallel path condition. The same .

problem arises with the given Strategies: basic. and left—to-right derivations are not compatible with

superreduction because the reduction steps are performed at occurrences that are not in the subsets Ui
of occurrences defined by the strategies. So  we have to perform superfluous reductions using the

concept of .superreduction; Beside-that if the terms at the nodes of- the narrowing.tree are always

' normalized we loose the pnming effect of the given strategies:
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