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Abstract

Explicit and declarative representation of control knowledge and well-strm'tured
knowledge bases are crucial requirements for efficient development and
maintenance of rule-based systems. The MTWZLE rule interpreter allows
knowledge engineers to meet these requirements by partitioning rule bases and
specifying meta-level architectures for control.

Among others the following problems arise when providing tools for speafying
meta-level architectures for control.-

]. What is a suitable language to specify meta-level architectures for
control?

2. How can a general and declarative language for meta—level
architectures be (deficientlv interpreted?

The thesis outlines solutions to bot/z research questions provided by the
CA TWEAZLE rule interpreter:

]. CA7 WEAZLE provides a small set of concepts based on a
separation of control knowledge in control strategies and control
tactics and a further categorization of control strategies.

2. For rule-based systems it is efficient to extend the RE TE algorithm
such that control knowledge can be processed, too. '

iii
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"It is very rare indeed that somebody has
built, or is going to build an AI  system
without contemplating the embedding of
meta knowledge into the system. But,
what seems very relevant to us to  make the
difference between a successfitl system
and one that is doomed to loose is the
way meta knowledge is embedded in it
and treated. "

[Aiello,Levi—84]

CHAPTEj 1: Introduction

1.1 Research Task

Most problems tackled with knowledge-based systems require complex systems. Thereforc, tools to

facilitate time—efficient design, implementation and testing of special-purpose problem solvers for

different domains are needed. And, these tools should allow developers to build well-structured

knowledge bases that are easy to  maintain. However, many developers of application systems complain

about currently available tools and techniques being useful only for simple applications [Martins-84].

Problem solving in knowledge-based systems is formulated as search for a sequence of knowledge unit

applications transforming a problem state into a state containing the problem solution. Typically, search

spaces for these problems are too large to be searched exhaustively or blindly. So, we need to control

search.This means to prune parts of the search space unlikely to contain the problem solution and to

guide the search in the remaining search space goal-directedly. The most promising approach to  satisl'y

this goal is to structure domain knowledge and to represent experts problem solving methods. That is, to

build an adequate problem-solving model [NH-80].

The goal of building knowledge-based systems being adequate problem-solving models has major

impacts on their structure, inference techniques, control strategies and on requirements for tool systems

supporting their efficient construction:



Thus .

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

Application systems require problem-dependent control strategies that  are often not: known in

the beginning of the system design:

Procedural programs are developed by completely specifying algorithms and implementing them

afterwards. During implementation large changes of the algorithms are exceptional cases. ( )n  the

other hand development scenarios for knowledge—based systems are characterized by explorative.

programming and rapid prototyping. This means, developers using these techniques try to get a

working system for a toy version of the problem as soon as possible. Then, they gradually improve

it until they get a system solving the task required and showing the right problem solving

behaviour. Thus, languages for developing knowledge-based systems must allow great flexibility

regarding modifications.

Formalisms are needed that allow us to easily describe, modify and incrementally refine control

strategies. Additionally, representations of control strategies should be explicit, because implicit

representations of control knowledge lead to difficulties when identifying causes of misbehaviour.

Application systems contain large amounts of knowledge:

ln order to be maintainable and explainable, knowledge-based systems should be well-structured

and modular, and control knowledge should be represented i nan  explicit and declarative way.

Badly structured systems reduce explainability and are hard to maintain and validate.

the research task for this thesis i s t o  design and implement

a too l  tha t  provides  a framework to  bu i ld  s t ructured knowledge bases and  to  describe

con t ro l  strategies i n  an  expl ic i t  and  dec lara t ive  way.

And, the following research questions arise immediately when trying to solve the research task:

1.

2.

What is a suitable language to structure knowledge bases and specify control strategies?

How can an interpreter for such a language be implemented?

1 .2  Outl ine Of the  Thesis

Restricted expressiveness of representation languages, unstructured knowledge bases and implicitly

represented control knowledge are major problems caused by current tools for building knowledge—

based systems. We argue in favourof one-particular software architecture — a meta-level architecture for

control - to cope with these problems and for a language to specify such architectures.

The research questions stated in section 1.1, their discussion and the solutions provided by the

CATWEAZLE interpreter constitute the main part of the thesis.



CHAPTER 1: INTRODUCTION

In chapter 3 the CATWEAZLE language for representing control knowledge in rule~based systems is

introduced by describing concepts to structure rule bases, to specify control strategies for these

structures and to specify control tactics. This language is discussed using criteria of knowledge

representation (expressiveness and cognitive adequacy) and aspects of knowledge engineering.

Chapter 4 discusses various techniques to increase the efficiency of meta—level architectures and

describes one particular compilation technique developed for the CATWEAZLE interpreter in detail.

This technique is an extension of the RETE algrn‘ithm. Control strategies, control tactics and object

rules are compiled into a unique discrimination network formalism that can be processed more

efficiently.

In chapter 5 we give a declarative semantics of phase sequences such that the search space expanded by

a phase sequence can be characterized by a regular language over rule names. We specify an operational

semantics by a set of PROLOG clauses and prove the operational semantics correct but incomplete with

respect to the declarative semantics.

In the last chapter the key ideas and principal contributions of the thesis are summarized and directions

of future research  a re  out l ined .

1.3 Problems with Current  Tool Systems

State-of—the-art tools can be divided into two major categories: expert system shells and hybrid tool

systems.

The first category contains expert system shells providing just one hardwired control strategy that cannot

be modified by the knowledge engineer. This restriction to one control strategy drastically reduces the

number of possible applications of the system. Examples of such systems are EMYCIN

[vanMelle,ShortliffeBuchanan-81], MEDJ/MEDZ [Puppe—83].

The second category contains toolkits for very high level programming languages like LOOPS

[Bobrow,Stefik-83] or ART [Williams-83] providing features for an efficient implementation of problem

dependent special purpose problem solvers. However, they mislead to ad hoc solutions, where

knowledge, control knowlege in particular, is hidden in program code. For instance, LOOPS or YAPS

[Allen-82] provide concepts to structure rule bases into rule sets, but the reasons for activating rule sets

must be encoded implicitly using various programming constructs: message passing, LISP functions or

side effects when storing or fetching values in objects. This often results in non-modular, ill-structured

knowledge bases that are hard to modify and hard to explain.



SPECIFYING META-LEVEL ARCHI ' I 'M  "l‘URliJS FOR“ RULE-BASED SYSTEMS

The most widespread approach for ec r t  systems arc production rule systems. 'I‘herefore, we have a

closer look at them. They provide a rather straightfmward but not ideal method to describe. control

knowledge. In order to explain why representing control knowledge in a simple, single—level production

rule system is inadequate, let us look at. the following rule (figure 1.1). It is expressed in a single-level

production rule. language like OPSS [Porgy—81.].

unlulnon
relevance of u.. rule
of the rulo _- - appl ica t ion

._ .  \ . . .

(phase INH'IALIZE)
I (not (under ?block2 ?block1 ?stata)) j

(on ?block1 ?block2 ?state)
_

(add (under ?blockz ?block1 ?state)))

lmp l l caflon

Figure I. }; Tvpical production ride in a Single—level rule language

From a conceptual point of View (see [BrachmanflS], [Newell—8211) we can identify three different kinds

of knowledge in this rule:

I. Knowledge about when the rule is relevant.

Most rules contain knowledge about the solution of subproblems. This implies that they should

be applied only if the problem solver tries to solve the corresponding subproblem. When

solving complex problems with single—level rule systems knowledge engineers specify "contexts"

which the application of rules is restricted to [McDermott-Sl], [Brownston,etal.-85|.

2. Knowledge about when a rule application is useful or not.

For example, the application of our example rule in figure 1.]. is not useful, if the result of the

application is already explicitly contained in the working memory.

3. The lmpllcution representing factual knowledge
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Mixing the knowledge types isolated above in one representation structure causes fundamental

problems. For instance, it leads to unstructured rule bases that are difficult to understand and maintain.

Also, different types of knowledge cannot be distinguished by a syntactically driven inference engine.

This is important for the purpose of explanations, for instance.

An analysis identifying other kinds of knowledge mixed in production rules can be found in [Clancey—

83b].

Gary Martins [Martins—84] summarizes some problems he had with existing tool systems:

"A vailable expert systems methodologies seem to be straightfonyard and effective only for
relatively simple applications. For applications of even modest complexity, most expert systems

code is generally hard to understand, debug and  maintain. "

”The virtues of suppressing explicit control statements in expert systems is certainly debatable.
In practice. they tend to be replaced by hidden control variables, or artificial database elements
that are created to secretly track program states. Invariably, these complicate both the database
and the rules themselves. "

"The lack of explicit control makes it painful to identify the causes of misbehaviour in mie-
based programs. As rule sets grow large, the collection as a whole takes on the character of a
mysterious black box. It has behaviours, but  we don 't know why. "

"In real life, expert system rules are not independent chunks of expertise; they quickly become
highly interdependent, often in subtle ways. For example, adding new rules to a large rule-based
program nearly always requires revision of control variables and (left-hand side) conditions of
earlier rules. "

1.4 Requirements

A knowledge representation language for control k110WlUdgC should satisfy the requirements listed

below: i

1. Express different kinds of control strategies, e.g. blackboard-based ones or control strategies with

a fixed order of abstract steps etc.

2. Explain current problem solving states in a "natural" way.

3. Support the formulation of control strategies that mirror the experts way of problem selving by

their syntactic structure. This means, steps in the problem-solving process should be represented

as syntactic units of the knowledge representation language.

4. Drive the same object-level rule base with different control strategies.

5. Identify different kinds of problem solving knowledge by their syntactic structure (see section 1.3).
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"! suggest that a meta—level architecture is
one which can reason about the control of
operations in a domain using declarative
representations. "

[BataZi—86]

1 .5  Meta-Level Architectures

Besides philosophical interests in meta—level architectures, the use of programs that are able t o  ' " r eason

about themselves" and therefore have some kind of "self-awareness", have some important technical

benefits [Batali-86]. Many researchers propose meta-level architectures to  overcome problems

occurring, for instance, when using currently available tool systems.

ln this section we first clarify the notion of meta~level architectures, present arguments t o  use meta-level

architectures as the underlying design principle for knowledge—based systems and finally, state some

problems when building tools for specifying meta—level architectures for control.

1.5.1 What  a re  Meta-Level Archi tec tures?

Recently, the notion of meta-level architectures has become very popular [Aiello,ci—84]. As a result of

this popularity many definitions have been given by different researchers having different motivations.

Therefore, this section does not want to give just one more definition but rather wants to characterize

meta-level architectures by their crucial architectural features. This characterization is strongly based on

work done by Pattie Macs [Macs-86b] and Frank van Harmelen [vanHarmelen-87].

Meta - Level

@nmtatlon l L Data

Domain of Discourse
s . . ?  _.. .  „..-_ _ „nr - . .  . .  . _ . v . . v °

Figure 1.2: Stmcture ofmeta-ievet architectures (see [Macs-8661])

„( , -
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The main characteristic of meta-level architectures is the existence of meta-level knowledge. ln

[Davis,Buchanan-77] Randall Davis and Bruce Buchanan emphasize:

”In the most general terms, meta-level knowledge is knowledge about knowledge. Its primary
use here is to enable a program to "know what it knows", and to make multiple uses of its
knowledge. That is, the program is not only able to use its knowledge directly, but may examine
it, or  direct its application. "

Meta-level a r ch i t ec tu re s  consis t  of  a t  least two  distinct hierarchical ly o rde red  modu les ,  ca l led  levels ( s ee

figure 1.2). Levels are programs that solve problems in the lower levels. The  object—level solves problems

in the application domain and the meta-level observes the object—level and executes operations to

manipulate the object—level. Note, the object-level can be again the meta-level of a lower level.

In the following we call the higher level mg meta-level and the lower level _t_l_1g object—level. In the case of

meta-level architectures for controlling reasoning processes in knowledge-based systems the problem

being solved is controlling inference at the lower levels.

To control a lower level a higher level must have three essential components ([Maes-b’ba], [Macs-8(a)],

|Maes-8()c | ).

The first component of the meta-level is the causal connection between the meta- and the object-level.

That means, actions at the meta—level cause changes in the problem—solving behaviour of the object-level.

There must be an architecture for introspection. 'l‘he knowledge—based system must have the possibility

to switch among activities on the different levels.

Most important, the meta-level must have an explicit model of the object-level computation. This

criterion differentiates our notion of meta-level architectures from some LISP or operating system

programs that have the first two criteria but not the last one.

We can always view a computational model as consisting of three components [vanHarmelen-87|:

1. the program code,

2. the computational strategy and

3. the state of computation.

To illustrate this we take PASCAL as an example. The  program code is a program to be executed by the

PASCAL run-time system. The computational strategy is determined. It specifies how statements in the

program are executed and affect the values of program variables or the control flow. Thirdly, the state of

computation is given by the values of all program variables and the part of the program that still has to

he executed. Figure 1.3 shows the architecture of such a meta—level architecture.
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CHAPTER 1: INTRODUCTION

Luigia Aiello and Georgio Levi [Aiello,Levi—84] discuss in an overview paper the use of meta knowledge

in AI systems:

meta knowledge is mainly used to improve the expressive power of the language and to
allow the definition of control knowledge (heuristics). "

As  they stress in their paper, not the existence of meta knowledge itself is the keypoint of powerful

systems but rather the way it is represented:

"It is very rare indeed that somebody has built, or is going to build an A] system without
contemplating the embedding of meta knowledge into the system. But, what seems very relevant
to us to make the diflerence between a successful system and one that is doomed to loose is the
way meta knowledge is embedded in it and treated. "

Michael (Eenesereth [Genesereth-83a] emphasizes the importance of declarative partial specifications of

behaviour that can be refined incrementally:

"... The key feature of the architecture is a declarative control language that allows one to write
partial specifications of program behaviours. "

ln this paper we focus on using meta knowledge to control problem solving processes. Reasons for

controlling search at the meta-level rather than at the object-level are pointed out by Alan Bundy and

Bob Welharn in [‘Bundy,Welham-81]:

the meta-level search space is usually much smaller than the object-level space it is
controlling and this helps to overcome the cwnbinatorieal explosion. "

Alan Bundy et al. [Bundy,etal.—79] stress following arguments in favour of an explicit representation of

control knowledge as meta knowledge:

"... Yhe argument is for systems to make explicit the full knowledge involved in their behaviour,
which in turn aids the modification of their data and strategies, thus improving their robustness
and generality. This leads the way to systems which could automatically modify their strategies
and explain their control decisions. "

\

William Clancey [Clancey-83a] discusses the impact of an explicit representation of control knowledge

on design and maintenance of large k110WlCdgC-l'HISt'd systems:

"A knowledge base is like a traditional program in that maintaining it requires having good
understanding of the underlying design. The! is, you need to know how the parts of the
knowledge base are expected to interact in problem solving. "

[Neches,Swartout,Moore-84] points out that it is important for a program that it can eXplain why certain

actions are chosen by the system rather than other ones.

That is, such systems cannot tell why what the system is doing is a reasonable thing to be
doing. The problem is the knowledge required to provide these justifications is needed only
when the program is written and does not appear in the code itself. "
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1.5.3 Prob lems with Meta-Level Archi tectures

()lwiously meta-level architectures are possible solutions for problems like those discussed in section 1.3:

Meta-level architectures allow to separate control and object knowledge and the meta-levels have

esplicit and declarative models of the computation in the corresponding object-level. Therefore, we

decided to implement a tool for building meta-level architectures for control. I n  the context of this

approach the research questions stated in section 1.] can be further refined.

Three problems arise immediately when one wants to provide tools for specifying meta-level

architectures for control :

1. What is a suitable language to specify meta-level architectures for control?

Several researchers argue to use a logical language for specifying control. For instance, Pat Hayes

||--laycs-77] takes this point of  view:

"In order to design the interpreter jo," such a .system*‚ one needs a framework in which these

behaviours can be adequately described. Logic — in the notion of proof» provides a richer such

framework than any of the usual procedurai ideas. "

Robert Kowalski and Kenneth Bowen [Bowen,Kowalski-82} implemented a PROLOG interpreter

i n  PROLOG that can be  used t o  control  search.

Of course, there is no doubt that other computational models can be simulated within logic

“Hayes-73], [Hayes-79]). But, the sparsimonity of predicate logic is paid for with more

computational efforts at run t ime“ .  Luc Steels [Steels-84] calls this and other phenomena that

arise when choosing only a logical language for knowledge representation the logic tarpit.

The following limitations of predicate logic particularly reduce its applicability for our purposes:

(i) No eXplicit structuring of the knowledge base is supported.

(ii) No built—in concepts are provided to describe the control flow in the system. The

usefulness of knowledge unit applications has to be checked by deductions and this

enlarges the overhead for meta-level computations. In particular, the search space for the

problem is enlarged.

* meant is a System which can describe its own inferential processes

‘ ' Built-in operations have to be simulated by deduction chains and cause larger search spaces

- 10 -
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2. How can a general and declarative language for meta-level architectures be interpreted

efficiently?

As we have seen in section 1.5.1 it is required for meta-level architectures to have declarative and

explicit representations of the object-level and the control knowledge. On the other hand, the

interpretation of eXplicit and declarative knowledge is very time—consuming. Thus, when providing

such languages it has to be guaranteed that they are interpreted in an efficient way.

3. What is the meaning of such a language?

A major advantage for using logic to control search is its well-defined semantics. When providing

another kind of language it has to be defined what it means to specify a control strategy over an

object-level knowledge base.

These three questions are addressed in the chapters 3, 4 and 5, that constitute the main part of the

thesis.

1.6 Production Rule Systems

The object-level in the CATWEAZLE inference engine is chosen to be a production rule. system

because production rules are widely used as basic knowledge representation technique in complex

knowledge-based systems. Frederick Hayes-Roth [Hayes-Roth-85a] stresses the following arguments in

favour of rule-based systems:

”Rule—based systems (RBSs) constitute the best currently available means for codifying the
problem—solving know-how of human experts. Experts tend to express most of their problem-
solving techniques in terms of a set of situation-action rates, and this suggests that RBSs should
be the method of choice for building kn0wledge-intehsiwe expert systems. “

In production rule systems knowledge about the domain of discourse is represented as a set of

production rules that are independent chunks of experts knowledge.

A production rule system (figure 1.4) consists of

— a working memory,

- a production rule base and

- a production rule interpreter.

The working memory contains declarative knowledge (facts), represented in a symbolic language ol'tcn

corresponding to a restricted propositional logic where the atomic formulae are implicitly connected

with an and-operator. All entries in the working memory represent statements that hold in the domain of
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discourse under consideration. The working memory is a partial model of the problem domain that can

be changed by adding or deleting working memory elements.

. . . . . .. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .

rub Interpreter

I | I I I n| | . I . | . . I . I  | . | . I . I . I . I . I . I .  . I  I .  . .

. . . . . . . . . . . . . . . . . .  ‘ .
. ' . ‘ I

' . . . . . . . .  . . . . . . . . . . .Lu:  u.“ ? mr.”.-  :...L: ‚14 . : 4M.L ; ' uü .um

production rule base

Figure 1.4: Basic architecture of production rule system

In the simplest case a production rule base is a set 01‘ production rules*. A production rule has the

format

< condition-part > -_ > «f action—part >

The condition part contains several patterns describing a set of working memory elements. The action

part contains operations to modify the working memory (see figure 1.6).

Rules are applicable (can fire) whenever their condition parts are satisfied by a set of working memory

elements. We say a condition part is satisfied by the current state of the working memory if there is an

instantiation for the variables in the condition part such that all instantiated condition part elements are

elements in the working memory. The process of finding all applicable production rule instantiations

with respect to one particular state of the working memory is called pattern matching.

The rule interpreter interprets the production rules in the production rule base on the working memory.

The essential components of a rule interpreter are:

- the pattern matcher

compares patterns occurring in the condition parts of rules with working memory elements and

determines the set of applicable rules

" Note. the (IA'l‘Wl*l/\7.l..l.i inference engine introduced in chapter 3 prov ides  concepts to structure production rulc bases in
s t ruc tu red  rn l c  s e t s ,

_12-
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- the conflict resolution component

Conflicts arise if more than one production rule instance is applicable in a given state. The

conflict resolution component then selects one applicable rule to apply.

~ the action part handler

executes the instantiated action part of the rule instance chosen by the conflict resolution

component on the working memory.

The rule interpreter executes the so-called recognize-and-act cycle until there is not any applicable rule

instance left or a step operation has been executed in the last cycle.

The recognize-act-cycle consists of the phases:

— pattern matching where the applicable rule instances are determined,

— conflict resolution-to select the rule to be applied and

- action handling where the selected rule is executed.

More detailed descriptions of production rule systems can be found, for instance in [Davis,King~X4|,

| Hayes,Roth-85a].

CONFLICT
RESOLUTION PHASE

Figure 1.5: recognize—and-act cycle
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CHAPTER 2 :  Relat ions to other  Work

2.1 Classifications of Control Strategies

Different problem categories like diagnosing and planning have different characteristics which require

different problem-solving methods to be solved efficiently. To support the construction of systems for a

large variety of problems we need an adequate set of control strategies as formal representations of

problem-solving methods.

Classifications of control strategies are useful to measure the expressive power of a language for

specifying control strategies. We use such a classification to prove the expressiveness of the control

language introduced in  this thesis.

Before designing knowledge-based systems the problem and domain of discourse have to be analyzed

(see for instance [Stefik et al.—83], [Reichgelt,vanHarmelen—85], [Chandrasekaran-84], [ Beam-851). Based

on this analysis a knowledge representation suitable to represent all relevant kinds of knowledge and an

appropriate problem solving method can be chosen. The performance of the developed application

system crucially depends on the contained knowledge, its formal structure and the control strategy

driving the problem solving process.
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SPECIFYING META-LEVEL ARCHITECTURES FOR  RULE-BASED SYSTEMS

The performance of formalisms and architectures for a given problem are determined by the complexity

of the problem and the characteristics of the available knowledge. Basic knowledge processing

techniques have to be augmented by concepts allowing to solve more complex problems. Search

techniques are a particularly important kind of these techniques.

2.1.1 The  C las s i f i ca t ion  of Chandrasekaran

Chandrasckaran ([Chandrasekaran-83], [Chandrasekaran-84], [Chandrasekaran-SSI,

[Bylander,Chandrasekaran—86]) stresses the following arguments: One uniform language is to weak to

represent all different types of knowledge and problem~solving methods required by different categories

of problems“. On the other side, hybrid systems do not provide any guidance how to build special

purpose problem solvers for a particular application.

As a solution to this dilemma Chandrasckaran [Cham!rasckaran-HSJ argues for a framework of generic

tasks, each containing particular kinds of knowledge and families of'control regimes.

(.‘handrasekaran specifies generic tasks by:

I. A task spea'fication in the form of generic types oft'nput and output information,

2. .S'pccifi'c forms containing the basic pieces of domain knowledge needed for the task, and
specific organizations of this knowledge particular to the task and

3. A family of control regimes that are appropriate: for the task.

In a development scenario for this approach problems are decomposed in subproblems corresponding

to generic tasks and the system to be designed is composed of modules having the characteristics of the

corresponding tasks.

This classification of expert systems tasks [Chandrasekaran—85] identifies six generic tasks:

— c lass i f ica t ion ,

— state abstraction,

- knowledge-directed retrieval,

— object synthesis by plan selection and refinement,

- hypothesis matching and

- assembly of compound hypotheses for abduction

' 'l'. Bylandcr and B. Chandrasekaran stress that different languages to control search are required. The language for control
depends on the object language (e.g. logic, rules o r  frames) that shOuId be controlled. Note, that this point of view is not taken in

this thesis. llcre. wc argue in favour of a single language that should be used to represent the different problem solving methods

required by different problems.
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Classification [Clancey-SSb] is the task to classify a (possibly complex) description and place it at the.

right place in a classificatory concept taxonomy. An appropriate control regime is a top-down search

technique like "Establish—and-Refine".

The second generic task is state abstraction. Here, a change in a state of the system is given and the goal

is to  predict the effects on the behaviour and functions of the system. Knowledge is organized in

system/subsystem or component relationships. For this task a bottom—up technique seems to be suitable.

Knowledge-directed information passing tries to infer attribute values for partially specified concepts by

looking at conceptually related concepts. Here, knowledge can be organized in frame-hierarchies and

reasoning can be done by first looking—up in the data base and if this is not successful inherit it from

more general concepts.

Another generic task is object synthesis by plan selection and refinement. Here, object structures are

represented as hierarchies and again problems are solved in a top-down manner.

The hypothesis matching task gets a hypothesis and a set of data as its input and decides whether or not

the hypothesis explains the input data and is coherent with it.

Abductive assembly of explanatory hypotheses tries to find the hypothesis explaining a given set of data

in the best way. An appropriate control regime alternates assembly and criticism.

Descriptions of control strategies in this classification are not detailed enough to serve as a measurement

for the expressive power of a formalism for control knowledge. However, the basic idea to configure a

knowledge representation and an adequate control strategy according to the corresponding problem-

solving type seems to be very promising. Such a framework can provide guidelines how to  structure a

task and and how to choose an adequate representation of it based on an analysis using the introduced

set of generic tasks.

2.1.2 The Classif icat ion of Reichgelt and  van  Harmelen

The classification of Han  Reichgelt and Frank van Harmelen [Reichgelt,vanHarmelen-85] gives criteria

for choosing a control regime and an adequate logic for the problem, for instance modal or time logic. In

this thesis we focus on task relevant criteria affecting control regimes. Knowledge-based systems are

classified in four task categories:
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- (-Ilassil'lcution

— Monitoring

_ Design

— S imula t ion

For classification a top-down refinement strategy, for instance, iteratively establishing and refining a

possible solution are suggested as subgoals in the problem solving task. Monitoring systems can be

implemented using bottom-up reasoning techniques. Design systems construct complex objects satisfying

given conditions and constraints. Simulation systems try to simulate how changes in a system state affect

fu tu re  behaviours .

Again, the point of this work is to give criteria for an appropriate knowledge representation language

and control strategy. Only four primitive tasks are suggested as a complete classification.

2 .1 .3  The  Class i f ica t ion of Stefik et a l .

In this section we describe the classification by M. Stefik ct al. [Stefik,etal.-82] based upon a

categorization of problem characteristics that coml‘flicatc problems. Then, a classification of problem

solving methods is given that allows to cope efficiently with problems having these characteristics.

Thc classification is based upon three main classes of problem characteristics:

— unreliable data and knowledge

— time-varying data

— large search spaces

Unreliable data and knowledge

In many domains problem solving involves unreliable data and knowledge. Uncertainties may be

caused by ignorance about data and knowledge or by indeterministically appearing events. Different

treatments are required for the two kinds of unreliable data and knowledge:

— Uncertain (vague) knowledge:

Formalizing uncertain knowledge can be done by associating statements with plausability values

given as numbers. The plausability of a statement corresponds to common sense notions like
" l l"certain , possible" and so on.

i s -
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- Incomplete knowledge

Non-monotonic reasoning based on the notion of assumptions allows reasoning with incomplete

knowledge. A system reasoning non~monotonically must be able to abandon assumptions when

contradictions occur.

Time-varying Data

Representing time models adequately is a presuppostion for modelling many real worlds.

Large Search Spaces

The most important characteristic for the purpose of this thesis are large search spaces. Control

knowledge is necessary to solve the control problem. Control knowledge decides which inference

step to do  in a given problem state. The adequacy of a control strategy depends mainly on the

characteristics of the search space of the problem.

ln small search spaces forward or backward chaining are sufficient.

- Forward Chaining

can be done, for instance, using the recognize-act-loop described in section 1.6

- Backward Chalning

When rule bases are interpreted with a backward chaining control strategy rules are applicable if

their execution satisfies the currently active goal. The problem is solved if all active goals are

satisfied by the current state of the working memory. Preconditions of applied rules that are not.

satisfied by the current state of the working memory become active goals.

The following control strategies can be applied to search spaces too large to be searched exhaustively.

If there is a fixed partition of the search space "generate-and-test" or “hypothesize-and-test" may be

appropriate.

- "generate-and-test" strategy

The strategy consists of a phase enumerating partial problem solutions in an efficient way and a

phase testing whether this partial solution may lead to a complete solution.
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"hypothesize-and-test" strategy

consists of the program states "hypothesize" and "test". In the "hypothesize" state solutions that

seem to be interesting to test are hypothesized ( ; q  not compeletely enumerated).
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Figure 2. ]: Classification of expert systems architecmres [Stefik et al.-82}
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A more complicated control strategy is one with specific domain-dependent subproblems that are solved

in  a fixed order.

In other domains orders for solving problems have to be adjusted to the particular problem. In this case

the least-commitment strategy seems to be apprOpriate. Here  decisions about when solving which

subproblems are delayed until the problem solver has enough information to resolve occurring ordering

confl icts .

Some problems cannot be  solved using only facts. Efficient guessing is needed. Non-monotonic

reasoning with dependency-directed backtracking is a search technique coping with these problems.

When problems are too complex it may be necessary to reason with different simplified views of the

problem. These different aspects of the problem can be solved by loosely coupled subsystems exchanging

only some important intermediate results like hypotheses or solutions for subproblems. This problem

solving paradigm can be modeled using blackboard-based control strategies (see section 2.2). By using

this basic architecture problems requiring multiple lines of reasoning can also be solved.

For the purpose of measuring the expressiveness of the control language this classification seems to be

the most appropriate one. This does not mean that it is better than the others but it includes more

detailed mappings between the structure of the search Space and the suitable problem solving method

and search techniques are enumerated more completely than in other classifications.

2 .2  Related Work

The work presented in this thesis is strongly related to other subfields in automated reasoning and

knowledge-based systems. Blackboard-based systems and the CATWEAZLE interpreter share of the

issues addressed. Therefore, their description and analysis is part of this section. Furthermore, some

work has been done to make production rule systems programmable. Advantages and drawbacks are

discussed. Most important is a lot of basic work done in the field of meta-level architectures.

2.2.1 Blackboard-Based Control Strategies

Blackboard-based systems [Nu-86a] and [Nii-86b] are an important class of inference engines that are

often used for eXpert system construction. They are an appropriate architecture when processing several

lines of reasoning or loosely coupling several independent subsystems.
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The main components of a blackboard system are:

- a b lackboard ,

- knowledge sources and

- a s chedu le r

The blackboard is a global data structure with a number-of abstraction levels. In the blackboard solution

elements, hypotheses and other informations should be globally available. The blackboard is the

component where different knowledge sources communicate. These informations are not just an

unordered set but organized in several dimensions like levels of abstraction or time.

Knowledge sources are small independent problem solvers in the form of pattern~directed modules.

They deal with particular subproblems like generating hypotheses, verifying a certain class of hypotheses

and so on. Knowledge sources read the current problem solving state from the blackboard and add own

parts of the problem solution to the blackboard.

The third component is the scheduler determining the order in which knowledge sources are applied

within a problem solving process. The scheduler maintains a list of applicable knowledge sources

ordered according to ratings. The rating estimates the usefulness of applications of knowledge sources to

a particular problem solving state. The ordered list of applicable knowledge sources is called agenda.

The problem solving process itself can be characterized as incremental and Opportunistic. Incremental

means that problem solutions are generated or refined stepwise. Opportunistic means that in the case of

multiple applicable knowledge sources one is chosen that is likely to contribute to the most important

solutions. Several hypotheses or problem solving methods can be examined simultaneously. And, several

reasoning techniques like bottom-up or [Op-down problem solving can be integrated in one architecture.
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Figure 2.2: Basic architecture of blackboard systems
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HEARSAY—III is a tool for blackboard—based systems which is abstracted from the HEARSAY and

HEARSAY-H speech-understanding systems (see e.g. [Nii-86b]).

The BB] [Hayes-Roth—SSb] system applies the blackboard approach to application problems as well as

to control problems. The control problem the problem to decide which knowledge source to apply in a

given problem solving state is just another problem solving task and solved by another blackboard

system. For both problem solving tasks different blackboards are available. Knowledge sources for the

control blackboard generate and modify hypotheses, decisions and solution elements for the control

problem. Levels of abstraction of the control blackboard are: problem, strategy, focus and policy.

Domain and control knowledge sources are triggered by creating decisions at the control level.

The basic problem solving tactic to choose in each problem solving state the most promising knowledge

source is useful for many applications, for instance when doing multiple lines of reasoning. But, it is at

least dubious to use ratings and scoring functions, dependent on a number of parameters. Parameter

values encode reasons for activating or suspending knowledge sources whereas evaluation procedures

encode ratings for reasons. Therefore, changing the problem solving behaviour by "tuning" parameters or

evaluation procedures often has unforeseeable, non-transparent and unwanted effects on other parts of

the system. A detailed discussion similar to this one about whether to state assumptions explicitly or to

encode them in pseudo-probabilities can be found in [Doyle-83].

2.2.2 P rogrammable  Product ion Rule  Systems

The lack of program control in production rule systems is widely acknowledged. As an answer to this

problem production rule languages are augmented with constructs to specify control. Thus, rule sets can

be activated by message passing or by commands of a control language.

GRAPES [Anderson,Farell,Sauers-84], a production rule interpreter with explicit control strategy, is

implemented by J .Anderson, R .  Farell and R .  Sauers. GRAPES allows rules to be partitioned according

to the goals they are intended to achieve. But only dividing goals into a sequence of subgoals is available

as control strategy. This is adequate for its application, learning LISP programs because functions are

composed of subfunctions returning results of subgoals of the goal. But, other strategies not based on

goal reduction cannot be modeled easily in this approach.

SOAR [Laird-83] solves problems by satisfying goals using heuristic search in problem spaces. Problem

spaces are sets of states together with a set of operators transforming one state into another one and

they are associated with subgoals. SOAR uses the universal subgoaling mechanism for problem solving:

if several operators are applicable in a given state and the information available is not sufficient to

decide which Operator to apply, a subgoal is created to get the necessary information. To satisfy the task
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some kind of meta reasoning is done (see [Macs-86c], [Rosenbloom,Laird,Newell-86]). If applicable

rules provide arguments to apply different operators (see figure 2.3) a subgoal

operator—to-apply(0p 1) OR operator-to—apply(op2 )

in the meta-level is created and solved [Macs-Soc].
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Figure 2.3: Problem in the meta-level

Solving a subgoal is done by selecting the corresponding problem space and searching for a state in the

problem space that satisfies the subgoal.

YAPS [Allen-82], another system in this category, provides facilities to partition rules into rule sets.

However, these rule sets can be activated by accessing or changing values in objects or  by an arbitrary

program that implements the control strategy. Therefore, interactions of rule sets in a problem solving

process are not described explicitly. Even worSc, rule sets can be activated as side effects when accessing

objects.

S.} [Erman,Scott,London-84] is a tool that provides a separate representation of control. But, control is

represented procedurally using control blocks containing control statements similar to those of ‘

conventional procedural programming languages.

2.2.3 NEOMYCIN

NEOMYCIN ([Clancey,Letsinger-81], [Clancey,Bock—82], [Clancey-83b], [Clancey-85a]) is a

reconstruction of the MYCIN diagnosing system [Shortliffe-76] for applications in teaching. By analyzing

MYCIN rules it was discovered that they mix both factual and reasoning knowledge* formalized as

rules. In NEOMYCIN both kinds of knowledge are separated by specifying the problem solving

behaviour using tasks and reasoning rules [Clancey-85a]. This technique makes reasoning knowledge

more independent from a particular application [Clancey-83a]. The rule in figure 2.5 is an example for a

reasoning rule:

' The notion of reasoning knowledge corresponds to  the notion of control knowledge used in this thesis.
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Figwe 2.4: The architecture of NE OMYCIN [vanHarmelen ~87]

IF there are two active hypotheses that differ in some disease process feature

THEN ask a question that diflerentiates between them

Figure 2.5: Reasoning rule in NE ()MYCIN [Ross-86]

NEOMYCIN works on an explicitly represented disease hierarchy and has different categories of factual

rules, like: '

- trigger rules creating new hypotheses,

data/hypothesis rules associating findings with given hypotheses, and

causal rules linking findings to diseases or categories of diseases in the taxonomy.

The problem-solving process is described by a hierarchy of tasks. Tasks are composed of a sequence of

subtasks. The decomposition of the problem-solving process is described by reasoning rules (see figure

2.6).
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make-diagnosis - :>
identify-problem,
establish—hyp0tlzesis—space,
process-hard—dara.

identify-problem - >
gel-initial—data,
find-c}:ief-complainr.

establish -h_ypothesis-space - >
review-hypothesisJist,
group—and—difi‘erentiate.

Figure 2. 6: Task hierarchy formalized as a set of reasoning rules [Ross-86 ]

The reasoning rules in figure 2.6 describe a task hierarchy for diagnosing. And, such a task hierarchy

specifies the line of reasoning within a problem-solving process. Reasoning rules like the one in figure

2.5 are associated with tasks in the task hierarchy.

[Clancey783a] discusses advantages of separating reasoning and factual knowledge like improved

maintainability, better explainability and the application of reasoning knowledge to  other problems.

2.2.4 SOCRATES

SOCRA TES ([Jackson,Reichgelt,vanHarrnelen—85], [Rcichgelt,vanHarmelen-87]) is a logic-based expert

system building tool developed by Han Reichgelt and Frank vanHarmelen. According to their logical

point of view the process of building expert systems consists of three steps:

1. Specifying a logical language (modal logic, time logic etc.) that depends on the domain of

discourse.

'2. Specifying a set of inference rules determining which formulas can be derived from a set of

axioms.

3. Specifying a control strategy for proofs deciding which proof steps to take.

The  basic architecture of SOCRATES is a meta-level architecture where control strategies can be

described eXplicitly. The object-level interpreter gets a formula as its input and returns a set of formulas

that can be derived using the specified inference rules. Starting from this set the meta-level component

chooses one inference step to do. Proofs are completely driven and executed by the meta-level

component. This technique is called meta-level inference. Figure 2.7 shows the specification of control in

SOCRATES.
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The main advantage of this system is the flexibility it allows. However, this flexibility is payed for with

efficiency. Many inference steps at the meta-level may be necessary before a proof step at the object—

level is executed. To make this technique more efficient is a current topic of research [vanHarmelen-86l.

Another problem identified in this project is that logical languages are not always appmpriate to specify

control. For instance, in the SOCRATES system the success depends on a procedural or sequential

interpretation of the theorems for control (see discussion section 1.5.3).
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Figure 2. 7.- Specification of control in „90a TES [vanHarmelen-87]

2.2.5 TEIRESIAS

The TEIRESIAS [Davis-82] system by Randall Davis can be successfully applied to production rule

systems only driven by simple control strategies like forward or backward chaining. When using simple

control strategies saturation often occurs as a problem. Saturation means that many production rule

instances are applicable in an interpretation cycle. Therefore, the conflict set, the set of applicable rules,

grows large.

Saturation leads to huge search spaces. Brute—force methods like randomly choosing the rule to be

applied or apply all rules yield inefficient systems. Other systems like OPSS use fixed tactics

(LEX/MEA) [McDermott,Forgy—78] to resolve conflicts. These strategies use information like specifity

of rules or data elements changed” in previous cycles (focussing of attention). A more promising

approach is to use problem-specific knowledge to resolve conflicts.
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Refining [Davis—80] consists of pruning useless applicable rule instances and ordering the rest of the

rules in the conflict set according t0 their estimated usefulness. Refining the conflict set can be viewed as

another problem-solving task. The inference engine reasoning at the object—level can reason about

controlling the reasoning process. Knowledge about refining conflict sets is represented explicitly as

meta  rules .

The syntactic structure of meta and object rules are very similar except meta'rules contain in addition to

statements about the working memory elements statements about rules in the rule base. Thus, the

difference lies in the predicates and actions used in the rules. Schemes of meta rules are showed in

figure 2.8.

under  conditions A and B

. rules which do (not) mention X In their premise
In their action

will definitely be  useless
probably be useless

probably be especially useful
definitely be  especially useful

. .a . . : .  «5 :43 :93 :  _‚‘:'.=i.._-._a
"". . avec-H.. .  «:.. _ . . . .... .3:22?! bite-Ree. - -. '

. . o . e'

Figure 2.8: Syntax of meta mies

When considering the recognize-act cycle only the conflict resolution phase is affected by meta rules.

The conflict set as outcome of the matching phase is input for the conflict resolution phase. Mela rules

fired by the current problem solving state reduce and order the conflict set. The sequence of object rules

after applying the meta rules is a representation of the usefulness of the single rules.

The conflict set refinement process consists of five steps:

I. L — > conflict set

2. L’  - > list of appiicabie meta lute instances

3. interpret meta rules in L ’

4. S on and reduce L according the criteria stated in 3

5. interpret rules in L.
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L is the list of applicable object rule instances and constitutes the initial conflict set. L’ is the list of

applicable meta rules. Their interpretation results in a reduced and ordered conflict set. Finally, the

rules in the refined conflict set are executed. While meta rules cover a wide range of control knowledge

they are not appropriate to model, for instance, sequences of actions.

The meta rules [Davis—80] are useful whenever problem dependent conflict resolution tactics are needed.

()n the other hand, the order in which subproblems should be tackled cannot be specified easily because

these meta rules are specific to  a problem-solving state.

2.2.6 The PRESS Family
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4 sin(x) oos(x)=

2 sin(2x)

ob]ect—- level rule: sin(u) oos(u) = 1/2  sin(2u)
meta— level rule: collectlon of x

The 2 oocurenoes of x are merged to 1 prior
to Isolatlng It.”
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Figure 2.9: Object- and meta-level inference in equation solving [Bundy—85]

The PRESS system ([Bundy,Welham-8]], [Buntly,Sterling-81], [Bundy,Sterling-85]) is a system for

equation solving performing algebraic manipulations on an equation. To control the manipulation

process equations are described by meta concepts like number of variables, distance of different

occurrences of variables, etc. Analyzing equations and guiding the transformation of an equation is done

by deductions at the meta-level. Manipulations are completely described at the meta-level by specifying

methods for achieving subgoals eXpressed in meta-level terms like reducing number of variables or

isolate them. The analysis of the structure of an equation is used to choose the right method to transform

it. Deductions at the meta-level control the search at the object-level.

At the object—level a method isirnplemeuted by a set of rewrite rules.

A method is a theorem at the meta-level and defines how to  solve equations. For instance, let us look at

the following example:
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singieocc(X,L = R) - >

[position (X, L‚P) &

isolate(P,L = RAM} < _ >

.s‘oive ( L = R,X,Ans)],

The axiom states when the formula L=R contains a unique occurrencc of the variable X the equation

can be solved if and only if it is solved by the isolation method. This can be described procedurally by
the following Horn clause that canbe  used to control search.

singieocc(XL = R) &
position (X,L,P) &
isoiate(P,L = R,Ans) - >

solve(L = R1214“)-

2.2.7 MRS

MRS (Multiple Representation System) ([Genesereth-Sl], [Genesereth-82], [Genesereth-83b],

[Genesercth,Greiner,Smith—80]) provides a representation language for the partial description of control
strategies. The system supports system construction by stepwise adding pieces of control knowledge until

the system satisfies the required behaviour.

MRS provides a set of commands that can be used to specify how asserting, deleting or proving a

predicate should be done. To do this, the knowledge engineer can use commands like (toachieve < p >
<:m >) ,  (rolookup <p>  <m>)  or (toassert <p>  <m>)  where <p>  is a pattern for propositions

and <27: > is a method. For instance, (toiookup (p fix ]) Zookup 1) means that the method iookup] should

be used to determine the propositions matching (p 3x ] ) .

While the M RS language allows much flexibility to specify control the control knowledge is implemented
procedurally using methods that may have side effects and are not declarative. Conrad Beck and
William Clanccy reimplemented the control strategy of NEOMYCIN in MRS [Clancey,Bock-82].

However, [Clancey-86] points out:

"Unfortunately, recoding the interpreter stowed down the interpreter by an order of magnitude
and made the procedure too obscure to read or maintain. "
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2.2.8 Meta-Level Architecture

Michael Genesereth [Genesereth-83a] extends the predicate logic with some built-in functions or

operations executed by the interpreter. It differs from the MRS system in allowing control knowledge

only to  be specified in an declarative way. Using these primitives, conflict resolution tactics, control

strategies o r  problem solving states can be described. The search behaviour of an application system is

then specified by a set of axioms.

Operations provided by the MRS system are:

IN(< i> ‚<k>)  <i>th  input o t task  <k>

OUT(< i> ,<k>)  < i> th  output of task <k>

0PR( <k  > ) operation specified by task < k >

BEG(<k >)  start of task < k >

END(<k> )  end of task <k>

T1ME( < t > ) interpreter time

EHCUTED( <k>)  task < k>  was executed

RECOMMENDED( <k>  ) task < k > is represented for execution

Using these primitive operations a variety of control strategies can be specified.

Example: Axioms for a simple consulting system [Genesereth-83a]

AI: PROVED(p) and INDB(p = >q) = T:- APPLIC,--'{BLE(ADD1NDB(q,p,p == >q))

lf p is already proved and there is" an axiom p== 2w. their [2 can be established with q and
p =- > (1 as justifications.

This axiom specifies forward chaining

A2: WANTPROVED{q) and INDB(p= >q)  = > APPLICL‘IBLE(ADDGOAL(p‚q‚p = >q) )

If the current goal is to prove q and p: >q  then p can be established as a goal with
justifications q and p=  >q.

This axiom specifies backward chaining.

‚43: WANTPROVEDM) andASKABLE(q) = > AJ’PLICAHLEtASKtcr»

If the current goal is to prove q and q is an askable property then ask(q) is an applicable
operation.
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A4: APPLICABLE/r) and NOT(EXECUTED{k)) = > RECOMMENDED(k)

If a task It is applicable and not yet executed, then recommend the execution of k.

In [Genesereth-83a] some other examples of control strategies are axiomized using the MRS language:

- rule orderings

- breadth—first search

— depth—first search

- macro operations

— object-oriented programming

— procedural attachment

Like MRS the system is very flexible but a severe drawback seems to  be  that the concepts provided are

too primitive. Even to determine applicable rule instances (axioms A2 and A3) inference steps at the

meta—level need to be done.‘These additional inference steps cause much overhead for the meta—level

and yield inefficient systems.

2.2.9 KRS

MEFA— OF-  FOO- OBJEC'ÖWW/ß/ ///////

type: defauIt— meta--wobject

referent foo
number - of - Instances: an Integer
make — an - instance: a function that makes an instance

' of the referent (=- object too) and
Increments the variable
number -— of - Instances wIth one

prlnt: a function to print the object
' .4 At t ‚

., fifl/i
meta—object: meta— of-—foo— object

‚WW/WW /////W///ÄÄ////// /fl/,Wfl IM”

Figure 2.10: An object and its meta object

KRS [Steels-84] is an example for an object-oriented system that allows to specify introspective systems,

a particular kind of meta-level architecture. An introspective system is a meta—level architecture with

itself as the object-level [Macs-86b]. A program in KRS consists of a set of objects communicating by

message passing. Every object has a meta-object representing the full local interpreter for their objects

(see figure 2.1.0). It is, meta-objects execute computations to create, manipulate and specify their

responses to received messages.
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For instance, if you send the object FOO the message (send foo print) the object sends the message

(send meta-of-foo-object (how-to-rcspond-to print».

The ME TA-OF—F00—OBJECT computes how to respond to the message.

ln [Macs-86c] it is argued that such a organization of application systems as introspective systems

improves the modularity and readability of programs.
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In this chapter the CATWEAZLE language is introduced. We claim that it fulfills the requirements

stated in section 1.4. However, in order to be easy to use and to provide special purpose tools, like

editors or debuggers, the language is kept simple and small.

From our point of View a problem solver consists of a control strategy and a set of structured rule

sets. We call such a system a controlled production rule system. A controlled production rule system

is a meta-level architecture consisting of a control component and a rule interpreter. The control

component interprets control knowledge. The different types of control knowledge expressible in this

formalism are discussed in section 3.3. The interpretation of control knowledge results in the

activation of and] subsets of rules. Only one subset is active at a time and is interpreted by the rule

interpreter.

am“... - E l l
nu. l l

won-mm

Figure 3.1: Guiding search by interpreting control knowledge
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It is useful to keep in mind this model of interpretation when various concepts of the extended

(.‘ATWEAZLE rule language are  introduced.

3.1 Structuring the  Rule Base  - Structured Rule Sets

Many models of problem solving behaviour are based on the assumption that humans tackle occuring

subproblems separately and in a rational order. Rational order means either that

1. there exists a predefined order, or

2. there exists a plan for tackling subproblems in which most of the problems of this type are

solved,  o r

3. in each situation there are reasons to tackle one. subproblem rather than other ones.

Also, they assume only a small subset of knowledge to be relevant during the solution of one

subproblem.

In the development of application systems, R1 [McDermott-81] for instance, partitioning the rule

base according to subproblems to be solved by the rules is often felt to be  necessary. If single-level

production rule languages like OPSS are  chosen as basic representation languages this is done

implicitly using the context mechanism described in section 1.2, i.e. adding condition part elements

indicating the relevance of the rule. However, several severe drawbacks are caused by such an

implicit partitioning. Firstly, working memory elements representing contexts cannot be distinguished

from others. Secondly, the structure of rule bases is not explicit. In addition, it is very difficult t o

drive a single set of rule sets with different control strategies and control tactics.

In the CATWEAZLE language control strategies and control tactics are distinguished. Control

strategies determine the order in which subproblems are  tackled within a problem-solving process.

They abstract from single inference steps and reason about problems and prerequisites to solve them.

Concepts for specifying control strategies are discussed in section 3.2 and are interpreted by the

control component. Control tactics specify which rule to apply if conflicts arise or how to backtrack

when contradictions occur. Control tactics are interpreted by the rule interpreter.

The approach taken in constructing the CATWEAZLE interpreter prefers an explicit structuring of

the rule base by grOUping rules together that are intended to solve the same subproblem.

The basic concept for this is the structured rule set. Using structured rule sets, knowledge engineers

structure the rule base with respect to different types of knowledge and the subproblems they are

i n t ended  to  solve.
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In order to guide search in a goal-directed way, a control component requires knowledge about

object-level knowledge. In the case of rule sets

a) knowledge about prerequisite of their successful application to a given problem and

b) knowledge about subproblems a rule-set is intended to solve

seems to be particularly important.

This knowledge is represented by pre- and postconditions of structured rule sets. The  syntactic

structure of a structured rule set (figure 3.2) is determined by two components: the abstract

description and the content. The abstract description consists of a pre- and postcondition and the

name of the structured rule set and specifies begin- and end—states for the interpretation of the rule

set. Pre- and postconditions are symbolic eXpressions formulated in the object-level language. They

are matched against the working memory. Preconditions are interpreted by the control component as

activation condition, postconditions as deactivation conditions. The content of a structured rule set is

interpreted by the rule interpreter and invisible to the control component. It consists of object-level

rules (like rules in OPSS) and rules about object-level rules (a kind of meta rules; see [Davis-80]) that

are  discussed in section 2.2.5.

. - . . . . - .  . . -_ - . .  - ' . ; . ; .. . . .

„. .. lpost— '1;
condition name condition ------

? 
fix

N|08 about ObIBCi rules

object rules

Figure 3. 2: Structure of a structured rule set

Thus, structured rule sets are interpreted in the following manner:

They are activated by the control component. If their precondition is satisfied, their content is

interpreted on the working memory by the rule interpreter until the postcondition is satisfied or

no rule is applicable.
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3.2 Concepts tor Specifying Control Strategies

The interactions of structured rule sets can he described by three basic concepts:

- phase sequences (section 3.2.1),

- rules about structured rule sets (conflict rules on the rule set level) (section 3.2.2) and

- rules for planning phase sequences (section 3.2.3).

3.2.1 Phase Sequences

A phase sequence simply is a sequence of names 01‘ structured rule sets. Preconditions of structured

rule sets are interpreted as activation conditions, their postconditions as deactivation conditions. A

structured rule set is activated when the previous rule set with respect to the phase sequence is

deactivated and its precondition satisfied by the current state of the working memory. Phase

sequences are interpreted stepwise. The activation of a structured rule set within a phase sequence is

deterministic. "Loop" and "if" constructs may be used (nested, if necessary) to formulate more

sophisticated phase sequences that are more flexible at run-time. As an example the well-known

“Hypolhcsize-and-Test" control strategy is expressed as a phase sequence (see figure 3.3). Names

written in capital letters denote structured rule sets. An abstraction of the rule set GENERATE—

HYPOTHESIS is also shown in figure 3.3.

%{P’H’ryfl II-..-: sewn-2133515333.“; mum-II; WWW mus. ygmflmmtmg‘m‘ „um; ‚"—"“ umm‘mxmawmy-  „ _
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|NIT|AL__QUESTION
loop

. GENERATE_HYPOTHESIS
. TEST_HYP0THES|3
. untll [hypolhosltfiname - of — disuse, ?, evident)

and - loop
. DIAGNOSIS_AND_THERAPY

. . . . . . . .

. . . . . . . . . . . .

hypothesis
. (?, Interacting)
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Figure 3.3: Phase sequence meddling the hypothesize-and—test control strategy
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This phase sequence describes the following problem solving method:

In the beginning of the session the system asks basic questions until it has got all necessary
information to hypothesize a possible disease. If the system has found a hypothesis which
seems to be interesting in the current problem solving state the system tests it. The last two
steps are repeated until a diagnosis is found or no  hypothesis seems to be interesting to test.
This is the case if the postcondition of the structured rule set GENERA TE—HW’O THESIS
is not satisfied and no rule in the rule set is applicable. Pre- and postconditions for the
structured rule set GENERA TE-HYPOTHESIS are also given in figure 3.3. The
precondition states that there exists no  hypothesis about the disease that seems worthy to be
tested in the current problem solving state. The postcondtion says that there exists such a
hypothesis. The rules contained in this rule set are rules of thumb which hypothesize
diseases.

3.2.2 Rules about Structured Rule Sets

When control strategies are specified using rules about structured rule sets, rule sets are applicable

whenever the current problem-solving state satisfies their precondition. Conflicts arise if more than

one structured rule set is applicable in a problem solving state. These conflicts may be resolved using

meta-rules, rules about rule sets. By using rules about structured rule sets the knowledge engineer

can specify situation dependent constraints for selecting a structured rule set to activate. A rule of

this kind is shown in figure 3.4.

. (anti-rule mr1*

. (appllcabla rulesot ?ruleset
(with —— postcondltiona

' (subgoal 7name — of --— subgoal satisfied»)
(subgoal ?namo -— of —— subgoal)

\ .- - /
(suspend ?rulesot))

I . . .
| “ . I . " l ‘&&?“

Figure 3. 4: Rule suspending a strucmred rule set from activation

The intended meaning of this rule about structured rule sets is:

Wren a structured rule set with postcondition (subgoal ?name-of-subgoal satisfied) is
applicable and this subgoal is already marked ”satisfied", the rule set probably cannot
contribute anything to a problem solution and therefore its application should be prevented.
We say the rule set is suspended.
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Another rule about rule sets is the activation rule inl'igure 3.5. This rule models the following conflict

reso lu t ion  tact ic:

If an applicable rule set is intended (has the postcondttion) to satisfy a goal and this goal is
marked ’has-to-be-sarisfied’ in the" working memory, then the rule set should be activated

(metarulo mr2"
(applicable —-- rulocot ?ruiocet

(With -— poctcondition
(aubgoal ’mamo - of — cubgoal satisfied»)

( subgoa t  ?nama ——- oi - subgoat has —to -— be satisfied)
~— - >

(man Walnut»

Figure 3.5: Rule activating a structured rule set

In the current version ’suspend’-rules have higher priority than ’activate’-rules. This seems to be

reasonable, for instance, to prevent the application of rules with postconditions already explicitly

contained in the current state of the working memory. But, other tactics for conflict resolution seem

to be possible and useful, too. Therefore, it is a goal of further research to allow for more flexible

interpretation of rules about object rules. One way to do this is to introduce rules about meta rules.

Clearly, the current way: of doing conflict resolution can be easily specified by such a rule about meta

rules (figure 3.6).

(motarulo rule about .meiarulas
(applicable - metarulc ?mr1

(with actions
(suspend *)))

(applicable motaruic ?mr2
(with actions

(activate *)) )
- -— >

(advaie 7mr1))

Figure 3. 6: Rule about meta mies

The flexibility of conflict resolution has to be paid for with more overhead for meta-level

computations.

-4 i l -



CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

Identifying structured rule sets with "knowledge sources" and the set of rules about structured rule sets

with a "heuristic scheduler” enables knowledge engineers to define simple blackboard-based control

strategies [NH—863]. This blackboard model is still very restricted because the blackboard is the whole

working memory and has no built-in structure. Providing concepts formodelling blackboards more

adequately is another topic of further research (see section 6.2).

3.2.3  Viewing Abstractions as  Operators in an  Abstract Search Space

Abstract descriptions of structured rule sets can also be viewed as operators in an abstract search

space transforming one problem solving state into another. Such an operator is applicable if its

precondition is satisfied in the current problem solving state. The effect of executing the operator is a

state satisfying the postcondition. Thus, control knowledge is represented by a knowledge base for a

planning system. Although the implementation of a planning system for phase sequences is beyond

the tepic of this research, the key idea is demonstrated by the following example:

Let A, B, C and D be structured rule sets having the following abstractions:

A: {PI} A{P2‚P4}
B: {P3‚P4} B {P5}
C: {P2} C{P3}
D: {PI} D{P6}

For sake of simplicity a monotonic object rule language is assumed in this example. We can view

abstract descriptions of structured rule sets as operators in the following way:

A: precondition: {PJ }
postcondition: {P2‚P4 }

B: precondition: {P3‚P4 }
postcondition: {P5}

C: precondition: {P2}
postcondition: {P3}

D: precondition: {PJ}
postcondition: {P6}

Let {PI,P8,P9} be an initial problem solving state and {P5} a pattern for a problem solution. Then

(A,C‚B) is a phase sequence transforming the initial state into one satisfying the pattern of the

problem solution. Phase sequences like these can be determined by a planning system.

{P1‚P8‚P9}
—A-> {P1,P2,P4,Ps,P9}
-C- > {PJ‚P2‚P3‚P4‚P8‚P9 }
-B— > {P1,P2,P3,P4,P5,P8,P9}

Figure 3. 7: Integrating abstract descriptions of stntctured rufe sets as Operators
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PS is contained in the problem solving state APPLY(B‚APPLY(C‚APPLY(A‚{PI‚P8‚P9}))) that is

created by applying (A, C‚B) to the initial problem solving state.

Problems arising in the planning of phase sequences are discussed in papers of the Mathematical

Reasoning Group at Edinburgh in the context of proof plans (see e.g. [Wallen—83D.

3 .3  Control  Tactlcs

The CATWEAZLE language provides two l'eatures to specify control tactics: rules about object rules

and non-monotonic reasoning.

3.3.1 Rules  about  Object Rules

Conflict resolution on the object rule level is done by rules about object rules (see section 2.2.5 and

[ Davis-80]). They contain patterns of object—level rules as conditions and their action is an activation

or suspension of an applicable rule instance of the object—level. They are interpreted by the conflict

resolution component of the rule interpreter. An e lmple  for such a rule is shown in figure 3.8.

rwmmm
" . ‘ ° "  „ _ l l pn  p . .  . _ . . . !  . ‚H . . . . . .  . . „

‚mi t :  :::;r5:2:;'-=:'-:£=E:_-:5:5:E:e:; "

J/
l 

__
; 

(mhrula mr3*
- (obleotrule ?oblectrule1

(wlth — actions
(add (under ?block1 ?block2 man»

- (under ?block‘l ?block2 mute)
.... .... >

(suspend ?ob|octrule1))

o
o
b
o
o
o
.

Figure 3.8: Rule suspending an object rule from activation

The rule describes the following conflict resolution lactic:

When the result of a rule application is explicitly contained in the current working memory it
is not useful to apply this rule and therefore it should be suspended.
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3.3.2 Non-Monotonic Reasoning

Another kind of control tactics allows efficient guessing by providing an underlying rule language in

which assumptions and contradictions can be specified eXplicitly. By denoting contradictions

dependency-directed backtracking [Doyle-78] is invoked automatically.

Dependency-directed backtracking is more efficient than chronological backtracking. in

chronological backtracking assumptions are retracted in the reverse order of their assertion.

Dependency-directed backtracking determines the the set of assumptions causing the contradiction

by analyzing dependencies between facts, assumptions and conclusions. Therefore, assumptions

certainly not causing the contradiction are filtered out without doing any inferences. Only elements of

the remaining set are retracted to resolve the contradiction.

A description of the basic features of the non—monotonic rule language can be found in [KAPRI-86].

3.4 Viewing CATWEAZLE as a Meta—Level Architecture for Control

In this section we analyze the CATWEAZLE interpreter using the characterization for meta—level

architectures for control given in section 1.5.1. We look whether and how components required for

meta-level architectures are incorporated in the CATWEAZLE interpreter.

Firstly, such an architecture is required to provide an architecture for introspection, its function is to

inspect the object—level. The CATWEAZLE interpreter incorporates these functions in pattern

matching. Patterns in pieces of meta-level knowledge may contain descriptions of the working

memory, rules and structured rule sets. Therefore, introspective functions are implemented into the

pattern matching procedure.

Secondly, the causal connection between the meta-level and the object-level is implemented by meta

rules doing conflict resolution and phase sequences determining the sequence of rule set

applications. Using these techniques the search at object-level is guided by the control component.

And thirdly, at the meta—level we have an explicit and declarative model of the object-level

computations. The state of computation is represented by the current state of the working memory,

the set of applicable rule instances and the sci oi? applicable rule sets. The computational strategy

contains the rule of inference, the control tactics and the control strategy. The rule of inference

determines when and how to apply an object rule is implemented in the rule interpreter. Control

tactics and control strategies are implemented explicitly. The representations of program code cover

abstractions of rule sets and representations of object rules.
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CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

architecture. In the SOCRATES system (see section 2.2.4)the same task is done by choosing a logical

language and specifying inference rules and a control regime.

An application system specified using the CATWEAZLE language is specified by choosing the

apprOpriate production rule language and type of control strategy. Using this specification an

interpreter is configured at compile time that only supports the specified language and control

strategy. At the moment, two production rule languages, an OPSS—like and a non—monotonic rule

language [KAPRI—86], are available. However, other features coping with uncertain or temporal-

reasoning have to be added. A current weakness of this type of configuration is that no guidelines

' have been elaborated to characterize when to choose which configuration. This will be a topic of

further research.

3.6 Aspects of Knowledge Representa t ion

To demonstrate that the CATWEAZLE language provides a suitable set of concepts for formalizing

control strategies we argue as follows:

1. Different syntactic structures distinguish conceptually different kinds of problem solving

methods .

2. Many control regimes important in ecrt systems construction can conveniently be modeled

in the CATWEAZLE language.

3.6.1 Usefulness of Different Kinds of Control Strategies

The following kinds of problem solving methods can be distinguished:

1. control strategies independent of individual problems,
2. problem-dependent control strategies and
3. control strategies dependent on the problem solving process or states in the problem solving

process.

1. Often the sequence for tackling subproblems within a problem solving process of a certain

Class, e.g. for models of consultations, is known. In this case, the problem solving method is

independent of individual problems. Such a sequence can be represented explicitly using

phase sequences which causes the application system to be deterministic at the strategic level.

This technique cuts down the search space drastically.

-45 -



SPECIFYING META-LEVEL ARC HITECTURES FOR RULE-BASED SYSTEMS

2. Sometimes the problem domain is too broad to be controlled by one single phase sequence.

For instance, let us look at proving theorems in a mathematical textbook. There is nophase

sequence strong enough to solve all problems in this domain. But knowing the problem one

can often determine a phase sequence which is likely to solve the problem. E.g. if we want to

. prove that there exists a homomorphism between two sets 3,5", we have to prove:

(S, ’") is a semigroup
(S’, ”") is a semigroup
exists h. fora” x,y in S. h(x*y) = h(x) *’/'1(y)

3. In the third class of problems even knowing the problem does not really help us to  determine a

suitable control strategy. The reason is that too many variations in data can occur when

applying the phase sequence. For these problems it seems to  be more adequate to determine

the subproblem to  tackle next-during the problem solving process based on the current

problem solving state. This can be done using rules about structured rule sets. In this case the

control component has less information about the strategy than in the other cases. It does not

contain knowledge about how results generated so  far are used in the following problem

solving steps.

Distinguishing the different kinds of control strategies is important for transparency, explainability

and efficiency of the system.

3.6.2 Expresslve Power

For the purpose of this thesis we define the expressive power of a control language as the range of

control strategies that can be modeled easily and conveniently. A problem can be modeled easily in a

language if we need not to simulate another computational model. For instance, if we want to  model

orders of executions in pure rule languages we need the context mechanism discussed in section 1.3.

This seems to  be a more relevant and discriminating criterion because most formalisms are turing-

equivalent.

The expressive power of the CATWEAZLE language is discussed using the well-known classification

in [Stefik etal.-82] (see section 2.1.3). In this section we examine how control regimes identified in

[Stefik,etal.-82] can be modeled using the CA'I‘WEAZI..E language.

The first kind of control strategies described in this classification which is applicable when the search

space is big but factorable is hierarchical generate and test. This is one particular phase sequence

consisting of a generation and a test phase which are applied iteratively until a solution is found.



CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE
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Figure 3:10: The expressive power of CA TWZLE

If no evaluator for partial solutions is available control strategies with a fixed order of abstracted

steps may be adequate. These correspond directly to the notion of phase sequences.

However, the problem domain may he too broad to be searched by a single phase sequence. ln this

case [Stefik Mal.—82] suggests planning to determine a sequence in which subproblems should be
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However, the problem domain may be too broad to be searched by a single phase sequence. In this

case [Stelik mal.-82] suggests planning to determine a sequence in which subproblems should be

solved. This can be expressed in the CATWEAZLE language when interpreting abstract

descriptions of rule sets as operators and specifying a problem—dependent planning system.

An appropriate concept for handling interacting subproblems is constraint propagation. This is not

yet supported by CATWEAZLE. It can be viewed as another object-level language. This means, to

cover constraint propagation we need a constraint language [Steele-80] and provide it as an object-

level language like the OPSS-like and non-monotonic rule language.

Sometimes we cannot produce solutions to problems by using only facts: Efficient guessing is needed.

Belief revision and plausible reasoning are concepts for doing efficient guessing. These are covered

in CATWEAZLE by configuring the system with a non—monotonic production rule interpreter with

an integrated reason maintenance component as rule interpreter.

Really complex problems sometimes require to consider several lines of reasoning. To cope with such

problems blackboard-based systems can be used. Simple blackboard-based systems can be modeled

in CATWEAZLE by using rules about structured rule sets. Also, problems that cannot be solved

using a single knowledge source can be tackled in the same way.

For large systems it often turns out that a representation method is too inefficient. How to interpret

CATWEAZLE rule bases efficiently is discussed in chapter 4.

‚$

.)
;

„.
..

..
.\

(metamle agenda —_- scheduler
(applicable - ruleset ?rule:et1)
(applicable - rulesel 7ruleset2)
(better 7mleset1 7ruleeet2)
_. .... > __

(M ?ruloserl ) )

Figure 3.1]: Meta-rule for simulating agenda—based control Strategies

There is another technique to control search often used in expert systems but not contained in the

classification of Stefik. The agenda-based control strategy. An  agenda is an ordered list of applicable

knowledge units where the usefulness of each knowledge unit is rated with numbers. These numbers

are accumulated in some way from the ratings given "for the reasons for activations and suspensions

of knowledge units. Thus, these numbers are implicit encodings for these reasons. But, imagine that
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during the system construction another relative importance among reasons for control is required.

Then changing the rating of one reason or the accumulation procedure may have unwanted and

unforeseeable effects and causes of misbehaviour are much more difficult to find than in the case

when reasons are represented explicitly.

However, such an agenda-based control strategy can be simulated by a meta rule as shown in figure

3.11.

Where better is implemented as a LISP function computing the ratings for two rules, comparing them

and returning true if the first object rule has a higher score than the second one.

3.7 Advantages of the CATWEAZLE Approach

. (rule start —— compute - under
(block ?block‘l)
- - >
(add (phase compute - under)»

(rule UNDER1
(phase compute — under)
(not (under ?block2 ?block1 man)
(on ?bloclfi ?blocla 73m.)
— _— >

(add (under 7block2 ?block1 7mm

(rule UNDEB2
(phase compute -- under)
(not (under 7bloclt1 7block3 7stats))
(under ?block1 ‘?bloclt2 ?stata)
(on 7block3 ?block2 7stata)
- -- >
(add (under ?block1 ?block3 ?statum

(rule DEACTNATE ~— INFI'IAUZE
(phase compute - under)
(under ?btock1 ?blockx flute)
- — >-
(delete (phase INMAUZE)»

sun. .»._2;.7 Rick-.5243“?:::“ .....
3:9."- &}? "$. “ \

Figure 3.12: Control knowledge in single—level rule systems
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Let us take a look at the set of production rules in figure 3.12. Rule UNDERl  is the one discussed in

section 1.3 The set of rules in figure 3.12 is intended to compute the UNDER relation in the  blocks

world :

all  x,ysBlock. on (x y) implies untiedy x)

all x,y‚z:Block. on (x y) and under(z y) implies mzder(z x )

To make the complete computation of the UNDER relation effective, we need to control the

application of rules. To do this, we allow the rules to fire only during the phase INITIALIZE. How

can this be done in a single-level production rule language?

A context (phase INITZALIZE) needs to be specified and added to the working memory before the

UNDER relation is computed and it must be deleted afterwards. The rules are extended by (phase

INITZALIZE) as an additional condition part element. So, the rules only fire when the context (phase

INITIALIZE) is contained in the working memory. However, this does not guarantee the rule set to

be effective. Suppose the rule interpreter does not recognize multiply applied rule instances. This

may cause computations to be  infinite. Even if not, in general useless rule instances are executed. For

instance in the following example (on a b }, (on 1) c), (on c d), (on d 6) the fact (under e a} can be

inferred using different inference chains. This can be prevented by adding an additional condition

part element containing the ”negated“ action part of the rule.

This solution has several severe drawbacks. One of the most important is the mixing of different

kinds of knowledge as pointed out in section 1.3 Adding and modifying the relevant control

knowledge to factual knowledge elements makes a system difficult to maintain. In case you want to

change a piece of control knowledge you have to change all rules it occurs in. One  way to specify

control knowledge more concisely is to use meta rules. Thus, the set of rules in figure 3.12 can be

represented using the CATWEAZLE language as demonstrated in figure 3.13.

Comparing both representations we can state some advantages for the one using the CATWEAZLE

language.

All different kinds of knowledge isolated in section 1.3 are represented by different representation

structures. Implications are expressed by object rules. Knowledge about the usefulness of rules are

represented as rules about object rules resolving conflicts when more than one object rule is

applicable. Knowledge about the relevance of rules is expressed by adding rules to structured rule

sets with postconditions specifying the goal the rule set is intended to solve. Rules activating and

deactivating a phase are represented as pre- and postconditions.
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We have less rules and less condition part elements. Modifying the control tactic can be done by

changing very few meta rules instead of many object rules. This facilitates the exploralive

programming of control regimes.

(under ?block1
COMPUTE UNDER ?b  lOCKX

?state)

W/////%W////
(metarule MFH

(oblectrule 7ob|ectrule
(with actions

(add (under  ?block2 ?block1 ’rstate))))
(under ?block2 ?bloek1 7state)
— - >
(suspend ?ob|ectrule))

V/

/%g
%%%
% (rule UNDER‘I%%
%%%

(block ?blocld)

M
Q

\\\
\\\

\\
(on ?block1 ?block2 ?state)
—- - >

(add (under ?block2 ?block‘l ?stalem
(rule UNDERQ

(under ?block1 ?blockz ?state)
(on ?block3 7b|oek2 7stato)
- — r.»
(add (under ?block1 ?block3 ?state))

«JW

sk
\\

\\
\\

\\
\\

\\
\\

\\

Figure 3.13: Representation of dtfierwzt kinds of knowledge using structured rule sets

Also, pieces of control knowledge lmve higher priority than object rules by means of interpretation.

Other aspects ol‘ knowledge engineering like modularity, eXplicity, explainability and tools for

knowledge engineering are discussed in the next section.

3.8 Aspects of Knowledge Engineer ing

One goal in knowledge engineering is the design of well-structured and transparent knowledge

bases. Its importance arises from the necessity to maintain particularly large knowledge bases.
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' William Clancey [Clancey-83a] discusses three reasons for the importance of easily maintainable

knowledge bases:

”Knowledge-based programs are built incrementally, based on trial and error; thus,
modification is continually required, including updates based on improved expertise; "

"A knowledge base is a repository that other researchers and users may wish to build upon
years later;"

"A client receiving a knowledge base constmctedjbr him may wish to correct and extend it
without the assistance of the original designers. "

Summarizing his arguments we can say: Encoding control knowledge in production rules leads to

knowledge bases that are as hard to maintain as unstructured programs. Thus, structuring rule bases

using rule sets and representing control knowledge explicitly by describing interactions between

structured rule  sets makes i t  easier to  build maintainable and understandable rule bases .

The CATWEAZLE language supports developers in representing control knowledge and structures

of rule bases explicitly. In the following section it is argued that this explicitness of control knowledge

drastically improves modularity and explainability of rule bases.

3.8.1 Modularlty

Our formalism supports modularizing knowledge bases by providing concepts for structuring the

knowledge.

Control strategies are simply descriptions of interactions of structured rule sets. Therefore, we are

able to  change control strategies without changing the underlying structured rule sets. Thus,

structured rule sets can be driven-by different control strategies. This enables knowledge engineers

to compare the performance of different control strategies. We define performance as the number of

inference steps required to get a solution or the "naturalness" with which a human problem solver is

modelled by the control strategy.

Object rules and rules about object rules only interact with rules of the same structured rule set.

Therefore, structured rule sets can be developed independently. By reducing interdependencies the ‘

development time for rule bases can be drastically reduced, because it is easier to validate small sets

of rules with respect to their pre- and postcondition than to validate a large, unstructured rule base.
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3.3.2 Explainablllty

As argued-in section 2, representing different kinds of knowledge in one representation structure

prevents from syntactically distinguishing these kinds of knowledge. Therefore, these knowledge

kinds cannot be used by a syntactically operating explanation component to produce better

explanations. Our  formalism enables an explanation component to answer a broader range of

questions including questions about why a problem solver tries to satisfy a subgoal, how a subgoal

may be satisfied by the rule base, and why a rule is applied at the current state.

Explicitly represented control knowledge is a kind of deep knowledge about the contained problem

solving knowledge. It is knowledge about the structure, function and possible interactions of the

problem solving knowledge.

3.8.4 CATWEAZLE Tools

Since LISP programs and production rule systems are completely different computational models, we

need different programming tools to aid writing and debugging controlled production rule systems.

For instance, let us look have a look at tracing LISP programs. In LISP programs function calls and

function values are traced. This does not make sense for production rule systems. Here the results of

the different phases of the "reCOgnize—act-cycle” need to  be traced: the matching rules, the rule

chosen to be applied and the results of the rule application. In the CATWEAZLE system interpreter

phases as well as knowledge units can be traced. When tracing an object rule or a meta rule all

partial instantiations of the rule affected by the changes in the working memory in the last cycle are

printed out.

3. 9 Example:  P lanning In the  Blocks  Wor ld -  A Rule Base  written In the
CATWEAZLE Rule Langua'ge

The concepts introduced so far have been integrated into the CATWEAZLE rule language and an

interpreter for the extended rule language has been implemented. In this section we demonstrate

how to build a rule base for the planning problem in the blocks world. The problem is stated as

follows:

Given: Initial and goal state describing Sets of block piles in a symbolic language
Wanted: An eflicient sequence of actions transforming the initial state into a goal state.
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We use the following predicates in our example:

(block ?block ?state)

(clear Yblock i’state)

( on ?bto-ck.1 ?btock2 ?state)

(ontabte ?block f/state)

(goat ?operation ?btock1 ?block2 )

(status ?block ?status)

The block with name ?block occurs in the
description of the state Pstate (can be actual or
goal).
The block ?block has a clear surface in state
.Vstate.
The block ?biock1 stands on ?btock2 in state
Jr’state.
The block ?btock stands on the table in the state
.Vstate.
The macro operation ?operation (can be put-on
or put-down) has to be executed with ?btockl
and ?btock2 as arguments.
If ?status is instantiated with satisfied the block
need not-to be moved any more.

""s occurring in term positions of fomtulae denote. ”don’t care " terms.

Commands for describing the initial state are given below:

(fact (ontabie a actual) )
(fact (on b a actual»
(fact (on c b actual»
(fact (clear c actual»
( fact (ont'able a goat»
(fact (on ca  goal»
(fact (on b c goal»
(fact (block a actual) )
I i t

Figure 3.14: A planning problem in the "blocks world"
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The best solution of the problem is:

UNSTACK CB
PUTDOWN C
UNSTACKBA
PUTDOWNB
PICKUP C
STACK CA
PICKUPB
STACKB C

We model” planning in the blocks world using a deliberation-action loop: The planner for the blocks-

world compares current and goal state and generates a subgoal that reduces the difference between

both. The current subgoal is satisfied by applying rules representing STRIPS—like operators

[Fikes,Nilsson—71] to the current state. Through repeatedly comparing current and goal states.

generating and satisfying subgoals the initial state is stepwise transformed into a goal state.

. The basic deliberation-action 100p is expressed as a phase sequence. The first phase within the loop

is the CHECK phase. The structured rule set CHECK determines the set of blocks that are not yet in

their goal state position by comparing current and goal state. The GENERATE-GOAL phase

establishes a macro operation that has to be executed in the current cycle. This macro operation is

simulated by a sequence of STRIPS-like operators in the SATISFY—GOAL phase. The  loop

terminates if the current state satisfies the goal condition, i.e. if no goal can be generated by the

s t ruc tured  ru l e  se t  GENERATE-GOAL.

(production—rulebase planner— “or—blocksworld

(kin d-of—strategy fixed)
(phase—sequence

(1N1TIALIZE
(loop

CHECK
GENERA TE -GOAL
(until ((no! (goal "‘ "‘ *)))_}
SA TISFY-GOAL)) )

(planning—system nil)
(scheduler ni!)

(knowledge-source [NITIALIZE
...)

(knowledge-source CHECK
)

-55 -



SPEC IFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

(knowledge—soutce GENERATE-GOAL
(precondition nil)
(postcoadz'tt'on ( (goal ?x ?y ?z)_))

(m-etarules
(metamle CREA TE-S TA CK—GOALSWIRST

(objectrule PM
(with «actions

(add (goalput -on  * *) ) ) )
__ >
(activate ?r1)) -

(metarule PREFER-IRRE VO CABLE-PU TD 0 WM GOALS
(objectmle ?rl

( with-actions
(add (goal put—down ?bloc.-k * )) )

(ontable Pblock goal)
__ >
(activate ? r l ) ) )

(object-rules
(rule GENERA TE]

(on ?block] ?block2 goal)
(clear ?bl0ck.l actual)
(clear ?block2 actual)
(status ?block2 satisfied)
(status ?block] unsatisfied)
-- >
(add (goal put—on Pblockl ?block2))_)

(rule GENERA T152
(ontable ?block1 goal)
(clear ?block] actual)
(status ?block1 unsatisfied)
__ :>
(add (goal put-down Pblockl m'l)))

(rule GENERA TE3
(on ?blockl ?bl0ck3 goal)
(outable ?biockZ goal)
(status .9block2 unsatisfied)
( under ?block2 ?bl0ckl actual)
(clear Pblockl actual)
(not (status ?block3 satisfied) )
__ >
(add (goal pin—down ?blocl<l m'l)))

.. . )
(knowledge—source SA T1SFY —GOA L...»

The syntax of the CATWEAZLE language is defined in appendix A,  the complete rule base for the

blocks-world planner is contained in appendix B.
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Chapter 4: Extending the RETE Algorithm to Process Meta-Level
Architectures for Control

4.1 Introduction

Meta-level architectures for control interpret declarative and explicit representations of control

strategies, control tactics, and of object—level computatidns. As we have seen in chapter 3 such

representations of control strategies result in explainable systems that are easy to modify and

maintain. To provide a general framework for specifying meta—level architectures we need a suitable

language, and a general interpreter for it. Since such interpreters are highly pattern-directed and

' pattern matching is the most time-consuming task within the interpretation of rule bases this would

yield inefficient systems. Efficiency, however, is crucial for interactive systems.

There seems to be a trade-off between supporting efficient knowledge-based systems and systems

providing facilities to describe knowledge declaratively and in an CXplicit way. While the first

property is important for users of application systems the second one is crucial in knowledge

engineering. Several ways to get out of this dilemma are suggested in literature and discussed in the

next section.

4.2 Techniques for Increasing the EffiCiency of Meta-Level Architectures
for Control

What is good for specifying control strategies is inefficient for its interpretation: The declarative

aspect of the control language.
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SPECIFYING META—LEVEL ARCHITECTURES FOR CONTROL

Straightforward implementations of pattern matchers test in each cycle for each production rule

whether there exist instances of the condition part in the working memory. This is very inefficient in

general. Charles Porgy and John McDermott pointed out in [McDermott,Forgy—78] that some

' production rule interpreters spend between 90 and 98 percent of run-time on pattern matching.

A classification of techniques for increasing the efficiency of meta—level architectures can be found in

[vanHarmelen—87]. The categories of techniques in this classification are:

Compilation of Control Specifications,
Localisations of strategies,
Specialization of domain-independent strategies,

. Storage of meta—level results and

. Avoidance of meta-level computation.

.

.

I

1
2
3
4
5

4.2.1 Compilat ion of Control Speci f ica t ions

Many systems often interpret the language they provide to Specify control knowledge. But

requirements for specification languages are different from those for a language to be interpreted.

Systems that compile control knowledge in a more efficient form are, for instance, MRS

[Genesereth-SZ] and NEOMYCIN [Clancey,Letsinger—81]. -

The basic idea of compilation is to translate a control strategy written in a. language suitable for

specification into a language that can be interpreted more efficiently.

This compilation can be done by using partial evaluation [Takeuchi,Furukawa-85], for example,

which is useful for logic-based programming languages in particular. A partial evaluator gets a

program and a partial specification of its input and computes a more specialized version of the

program. This specialized form is correct for the specified input only, but it is much more efficient

than the original one. Program steps using knowledge already known, are "executed" at compile time

and  need  no t  t o  be  execu ted  a t  run- t ime .

Let us consider the following example implemented in PROLOG:

MX, [X./J)-
in(X‚l_/Y})

in(X, Y).

and [1,2,3] is known as input for the second argument of in.
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A partial evaluator then determines a specialized and more efficient version of the program correct

for the specified input:

t'n(1,[1,2,3]).
in (2, [1, 2,3}) .

in(3‚ {1,2,31).

Another compilation technique is partial compilation where global strategies are hard-wired into the

interpreter of the target system.

However, some problems are  caused by the compilation techniques described in this section. First,

explanations and tracing informations need explicit representation of the source system. Secondly,

inference steps done by the target system are not necessarily the same as specified in the source

system. Therefore, the problem—solving behaviour of both systems may be slightly different.

4.2.2 Localization of Strategies

. „; knowledge - base — loompaormuia
um -— Intention - mlosttorrnuia)

or ask -- unrflonnuln
. , .

compound

toast—- llkoly- conluncufonnuia conlonct rest)
and proof(con|unci)

md proof(rest) ‘

Figure 4.1: Taxonomy of formulac and control strategies associated with classes of objects in the
taxonomy [ van Hamzelen-87]

Often we can observe particular pieces of control knowledge being applied only to small subsets of

the object knowledge. Thus, ordering the object knowledge taxonomically and adding control

strategies to the smallest subset or most special class is another technique for increasing efficiency.
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The idea is illustrated by the example of a taxonomy i'or formulae in figure 4.1. Using this technique

the most specialized control strategy in the taxonomy is used. If it fails a more general one is

attempted.

4.2.3 Special izat ion of Strategies

Domain-independent control strategies allow for concise representation of control knowledge.

However, we pay for this conciseness with more effort at run-time. We need additional inference

steps to check whether or not and how a domain-independent strategy applies to a domain

dependent situation at hand. Often, a more specialized version with these additional steps built-in

can be determined before running the system. The example in figure 4.2 shows a domain-

independent meta rule MR1 and a problem-dependent one (MR2). MR2 is an instance of MR]. for

t he  domain o f  infectious blood diseases .

'.-.-.. . . . . . . . . . . . . . l .i
IF: 1 )  rule 81 mentions 32 as e cause of disorder, md

2) rule 33 mentions S4 as a cause of disorder, and
3) $2 is a common cause of disorder, and
4 )  :4 Is not at common cause of disorder

THEN: there is e suggestive evidence (0.4) that the former
should be used before the letter.

%
: +. r

“ \— ___ / ‚ r

Meta Rule um»: .
IF: 1 )  the “action is pelvic - abscess,  and

2) there are rules which mention in their '
premise enterobectenecee. end .

3) there are rules which mention in their .
premise grampos — rods '  -

Then: there is suggestive Mdidence (0.4) that the former .
should be used before the letter. .

.

Figure 4.2: Specialization of strategies [vanHannelen—87]

Another example of specializations partial evaluation, where formulas are specialized by instantiating

variables.
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4.2.4 Storage of Meta-Level Results

Control strategies often contain computations with fixed results in each interpretation cycle. Se.

storing results of those computations yields considerable savings of run time. Examples for such

computations are rule orderings according to  the length of clauses or certainty factors that can be

computed completely at compile time.

4.2.5 Avoldance of Meta-Level Computat ion

Another method is to check whether the overhead for determining the best inference step in each

state is not higher than the advantages got through its application. T 0 do this we need good measures

and we have to  take care that  the decis ion whether  meta-level  inferences should  be  done  o r  no t  does

not yield too much overhead.

4.3 Why RETE?

Some characteristics of production rule systems can be used to considerably increase the efficiency of

the matching process through compilation [Porgy-79]. These characteristics are:

1. Patterns can be viewed procedurally as pattern matching procedures.

2. Different condition part elements often contain identical substructures (beside variable

names). Charles Forgy calls this structural similarity.

3. Empirical observations [McDermott,Forgy-78] prove that in average only very few entries are

added or deleted from the working memory. This is called temporal redundancy.

In section 4.4 we will discuss a pattern matcher for production rule interpreters exploiting these

characteristics to increase efficiency. In section 4.5 this algorithm is generalized to process the

concepts of our control language.

Compiling only patterns in the control language has several advantages over other compilation

techniques like partial evaluation which cause behaviour of problem solvers being different from the

one specified by the system designer (see section 4.2.1).

ln the RE'I‘E algorithm patterns occuring in object- or in meta-level knowledge are both compiled

into one single condition network. Because patterns and not knowledge units are compiled, problems

caused by compilation into an object representation language do not occur.
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There are several reasons to chOose the RETE algorithm for pattern matching rather than other

ones. Firstly, it is one of the most efficient pattern-matching algorithms. Secondly, it is used in many

state-of—the-art systems. Thirdly, there are some obvious ways to extend the formalism so that the

different kinds of control knowledge can be  handled, too.

This leads to an important advantage: rule» and control language can be processed by the same

efficient algorithm. Further, some extensions, for instance, for the integration of object-oriented

languages [Allen-82], of backward chaining l'Schor,etal.-86]) and more flexible rule languages [Allen-

82] are available for this algorithm.

ln the next sections it is described how different concepts of meta-level architectures for control

contained in the extended CATWEAZLE language

'1. rule partitions with pre- and postconditions,
2. rules about object rules,
3. rules  about  ru le  se ts  and
4. phase sequences

are compiled into condition networks and processed more efficiently by an RETE-like pattern

matching algorithm.

4.4 A Brief Overview on the  RETE Algorithm

A pattern matching algorithm is given a pattern and a set of instantiated elements in the working

memory as its input and determines whether the instantiated syntax element is an instance of the

pattern. This is very inefficient in general. In this section we discuss the RETE algorithm which avoid

much of this inefficiency.

Before introducing the main concepts of the RETE algorithm let us give a brief rational

reconstruction of its basic ideas exploiting characteristics of production rule systems to increase the

efficiency. To do this we consider the production rule R1 in figure 4.3.

(ml. fl
(on a 7!)
(on ?: c )
- -— >
(add (above a a )»

F figure 4. 3: Sample production rule R1
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CHAPTER 4: EXTEN DING THE RETE ALGORITHM

Instead of having a general pattern matching algorithm we can determine a specialized version of this

algorithm for the condition parts of each rule. For instance, we can specify a pattern matching

procedure for our example rule. Procedurally, we can consider patterns in condition parts of rules as

matching procedures consisting of sequences of primitive tests. The advantage of this view is that this

procedural representation can be interpreted by a computer more directly than a declarative

representation.
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procedure panem -- matching —- n (wm — olom‘l wm - elem2).
If Iongmwm — elom1) = 3 and
If flrst(wm -- olem1) == on and
If aocond(wm -— elom1) = a and
If length(wm — elem2) a and
If flrzuwm — elem2) = on and
If thlrd(wm —- olem2) = c and
If third(wm — olom1) = ”condom — elomz)

then add Instance of r1 to conflict set
andjrocadum

L
O

O
O

O
O

O
O

Figure 4. 4: Pattern matching procedure for R ]
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CHAPTER 4: EXTI‘IN DING THE RETE ALGORITHM

For instance, working memory elements pass the test path ( t l  t2 [4). When arriving at test node {5 it

has to be tested against all working memory elements satisfying the test path (rl t2 :3). Since in

general only very few changes occur during one interpretation cycle it is more efficient to extend the

node [5 with two memories. One storing the working memory elements satisfying the testpath ‚02 __?

(r1 (2 t3) and one for the test pa thpf  = (r l  t2 (4). Then changes in the working memory arriving on

the test path p1 have only to be tested with elements stored in the memory for the test path p2. To

keep the memories consistent with the working memory each change must maintain the affected

memor i e s .

Let us consider the following example: (on u b) and (on a. e) are contained in the left memory and

(on k c) is contained in the right memory of the test node [5. (on b c) is added to the working

memory. Then a token consisting of the content (on b c) and a mark + indicating that (on b {') is

added to the working memory. The token is propagated through the network. When arriving at a test

node the test is executed on the content of the token. If the token satisfies the test it is propagated to

t he  successor  nodes .  80 ,  the token  passes  H and  [2.  Because  the  tes t  of :3 fails t he  t oken  is not

propagated from [3  to [5. Thus, the token only arrives at the right side of £5. (on b c) has to be added

to the right memory since the right memory is intended to store all elements in the working memory

satisfying the test path (r l  t2 (4). Now, it has to be checked if there exists an element in the working

memory that satisfies the test path ( t !  t2 (.?) such that the variable ?‚r ol' the rule r l  is bound

consistently. To do  this we only have to check (on b c) with the token contents stored in the lel't

memory of [5. The  variable ?x is bound consistently by the pair (on a 19) (on b c). A new token ( +

((an a b) (on b (:))) that satisfies the test graph, from t ]  t o  :5 is constructed and propagated to all

successor nodes of [S. The action node receives the token (+  ((on a b) ((m b c)) constructs a rule

instance of R]  (+  ((on a b) (on b c) ~-> (add (above a c))) and sends it as a new applicable rule

ins tance  t o  t he  confl ic t  se t .

After we have seen that the efficiency of pattern matching algorithms can be ccmsiderably increased

- by interpreting patterns procedurally,

- using (partial) matches of previous cycles and

- exploiting structural similarities

we describe the RETE algorithm more abstractedly.
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RETE algorithm - a more abstract description

The RETE algorithm gets changes in the working memory as its input and computes the

modifications of the conflict set caused by these changes (see figure 4.8).

Changes in the working memory are represented as tokens. A token consists of a mark and a list of

working memory elements:

( + < list-of-wm-elements > ) means list of working memory elements with one element added to the

working memory in the previous cycle.

(- <:[i.s't-of-wm-alcmcmt.s'>) means list nl" working memory elements with one element deleted from

the working memory in the previous cycle.

iNPUTfor REl'E Algorithm
Change: in the Working Memory

Condition Network _
procoued by z" "—
85115

m,. \/\‚/7\ z><r .
\

OUWT at the BITE Algorithm
Chang" in the Comiict'sot

Figure 4.8: The RE TE algorithm from a bird’s eye view

The matching procedure for the RE'FE algorithm is represented as a directed graph, a condition

network. Subgraphs in the network are pattern matching procedures for the condition parts of the

rules. The nodes contain primitive tests that lists of working memory elements must satisfy if they are

part of a rule instance. Matching is done by prepagating changes in the working memory through this

network (this is a data—driven interpretationi). Test nodes are like guards that propagate changes if

the corresponding test is satisfied. With each rule a special terminal node is attached which changes

the conflict set if a new instance of the rule becomes applicable or an old one is not applicable any

more. Concepts of the algorithm that are important for this purpose are described in more detail

below.
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When considering efficient orderings of test nodes in the network it is useful to distinguish between

two types of nodes: firstly, intra-element test. nodes that test conditions on one single working

memory element and secondly, inter-element test nodes that test conditions on a list of working

memory elements. lntra-element nodes only have one entry and are placed in the first part of test

graphs of rules. Inter—element test nodes have bipartite entries and are placed in the second part of

t he  test  t rees.

Inter-element test nodes test whether the variables in the condition parts of rules are bound

consistently by tokens arriving left and tokens arriving from the right side. If so, both tokens are

appended and the resulting token is propagated to the successor nodes in the network. This is the

subtask that consumes most of the time because for each token arriving through one subtree it has to

be tested if this token can be joined consistently with any token satisfying the testprocedure of the

other subtrec. Efficiency can be increased by storing all lists of working memory elements that satisfy

the partial match encoded in the subtree in a corresponding memory of the inter-element test nodes.

Arriving +-tokens are added to , --Iokens deleted from these memories. The structure of an inter-

element test node is shown in figure 4.9.

. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .

Figure 4. 9: Example for an inter-element test node

In the RETE algorithm a condition part of a rule or  its representation as a graph is assumed to be a

matching procedure that has to be executed on tokens. The procedure is an partially ordered set of

primitive tests. The information about the order of tests is compiled into the structure of a condition

network. The nodes in the condition networks contain the primitive tests. The tests for one rule are

ordered in a directed graph.

Matching is realized by propagating tokens through the network. If tokens arrive at a test node and

satisfy the test they are  propagated to the successor nodes in the network.

When a token arrives at an inter-element test node it only has to be joined with all lists of working

memory elements in the other side of memory of the inter—element test node. The memories

implement the part of the working memory relevant for this node to do its tests.
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When tokens pass the tests or can be joined consistently they are propagated to the successor nodes

in the network. The end nodes in the condition networks add instantiated rule instances to or delete

them from the conflict set according to the token indicator (+  or —). A detailed description of the

RETE algorithm can be found in [Forgy-79].

4 .5  Extensions to  t he  RETE Algorithm

4.5.1 Using Partitioning to Inc rease  the  Efficiency of the  Matchlng Process

This section discusses how to extend the RETE algorithm to process control knowledge specified in

the CATWEAZLE language more efficiently.

The issue of this section is to elaborate how partitioning of rule bases can be used to speed up the

matching process. There are at least two characteristics of the interpretation of control knowledge

that can be exploited for this purpose:

I. Rule sets that cannot be activated anymore

ln  figure 3.3 we can see that after the rule set GENERATE—HYPOTHESIS has been activated

for the first time rules only contained in the rule set INITIAL-QUESTIONS will not be applied

anymore within the same problem solving process. Thus, any further matching against working

memory elements is a waste of time. The basic idea is to ignore subnets of phases when their

interpretation is completed.

'2. Blackboard-based Control Strategies

When interpreting rule sets such that they are applicable to a problem solving state whenever

their precondition is satisfied it cannot be foreseen whether a rule set is activated in a process or

not. What we want is something like "lazv evaluation": rules should only be matched when they are

relevant. This is, matching of rules is (lelayed'unlil the rules become active.

The solution to these problems is rather obvious. We have to match the active rule set against the

working memory. Test nodes of rules in rule sets that. are not active need to recognize only

modifications in the working memory in order to restore their memories when they are activated.

However, the RETE algorithm provides no facilities to implement this idea.

After we have seen that partitioning of rule bases provides some facilities to  increase the efficiency of

the matching process, the question arising at this point of discussion is: How can this be

implemented? The source of time complexity are inter—element test nodes because each arriving
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token must be tested with each element of the other side of memory. Therefore, it seems to be a good

solution to provide facilities for inter-element test nodes to be active and inactive.

4.5.1.1 Extending the Structure of the Inter-element Test Nodes

We need to extend the structure and behaviour of a basic node type of the RETE algorithm: the

in te r -e lement  test  node .

In the extended version the test nodes have two possible states: active or inactive. In order to

distinguish tokens arriving on the left from tokens arriving on the right two additional intermediate

memories are necessary. Intermediate memories are used to record all modifications in the working

memory affecting a test node while it is inactive. Arriving tokens are stored in intermediate memories

until the node is activated. The structure of an extended inter-element test node is shown by figure.

4.10.

. . . . . . . . . . . . . . . . . . . . .

test slot_ Ion right
"" Intermediate mw

ty “mm active/Inactive mm
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.10: Structure of an extended intervelement test node

4.5.1.2 Procedural Behaviour  of Nodes

Besides its structure the procedural behavioUr of nodes is modified. An active node behaves like

inter-element test nodes in the RETE algorithm._During their inactive state arriving tokens are

simply recorded in the intermediate memories. When a node is activated it sends all the tokens in its

intermediate memories to itself and treats them as in the active phase. This must be done to get

contents of the internal memories that are consistent with the current state of the working memory.

A deactivation changes simply the state of an inter-element test node to inactive. In the worst case

the complexity is equal to the RE'I‘E algorithm. However, in the average case improvements are

dras t ic .
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4.5.2 Rules about Object Rules

Not every rule description within a rule about rules needs to  be matched against every rule instance

in the rule set. Rules that have no instance satisfying a rule description can be determined at compile

t ime-

During compilation each rule description must be compared with each rule in the rule set. The first

step in the compilation process is to create a modified rule description. A rule description can match

a rule in different ways, perhaps by permutating the elements of the condition part. If there exists an

instance of the rule that matches the rule description, a rule description node is created and linked to

the action node of the rule as a successor. A rule description node is an intra-element test node. It

tests whether the instance of the rule is an instance of the rule description. This includes tests for

multiple occurences of variables and tests whether variables in the rule are instantiated with

constants satisfying the constraints of the rule description. A part of a test path created by such a

compilation is shown by figure 4.11 and 4.12 In the rule descriptions "“5 denote “don’t care’ terms.

WWW 9-1.!am 
%

i f“ . . .  ”91 . ” . # m!!- at 3i ‘Mafia un i
obloct rut.

(with - condlllom(mloEXAMPLE
(on 7x 7y) (on !! *))
(above 7y 7;) (will - Mom
_ _ > (add (above * (:)))

(above ?x 72))

modified obloct rulo {} " " '1’":
description ‘ ' ‘

(rue —— pmm
(on a *)
——->

(add (above " c”)

Figure 4. 1 1: Example for an object rule and its description

After creation of the modified rule descriptions it is tested whether exist instances of the rule

satisfying the modified rule description. Tests for identifying these instances are created.

Further optimizations can be done by the compiler. In the example, for instance, the identity of "on

in the rule and rule description is detected by the compiler and therefore does not have to be
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checked during pattern matching. Figure 4.1] shows a part of the test path containing the rule
.

description nodc for the example in figure 4.11.

’::;§;:

..
.

( " - |
" ‚b.

.
..::ä “,;ihmv'ia ...are;„% «@@ rule description
„ „_„ .w node
tires??? 2. element of 1. condition part element:
:‘ 53 3. element of 1. action part element:

Figure 4.12: Part of a test path created during the compilation of the rule description

The inter-element nodes used to join the condition part elements of rules about rules are described

i n  sect ion 4.5.1.1.

4.5.3 Phase Sequences

As described in section 3.2.1 phase sequences are  simply sequences of structured rule set names.

These sequences determine the order of rule set activation within a problem solving process. Rules

are only relevant if the corresponding rule set is active, its precondition is satisfied and

postcondition is not satisfied. Directed graphs with guards implementing the pre- and postconditions

are straightforward representations of phase sequences. The overall idea is shown in figure 4.13.

Figure 4.13: Representation of a phase sequence

Phase B in figure 4.13 becomes active, if phase A is currently active and the postcondition of A and

the precondition of B are satisfied. A then becomes inactive. Since the only function of phase nodes

A and B is to denote whether they are active, there is no need to implement them in the concrete

algorithm. To compile phase sequences two additional node types (pre- and postcondition nodes)

are in t roduced .
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4.5.3.1 The Structure of Pre- and  Pos tcond i t ion  Nodes

Pre— and postcondition nodes contain a switch, denoting whether the corresponding phase is active,

and a memory, recording all instances of the condition currently in the working memory. The

condition is compiled into a directed graph like condition parts of object rules. Pre- and

postcondition nodes are successors of the roots of these trees. Each precondition node has a pointer

to the postcondition node of its phase find each postcondition node-to the precondition node of the

next phase with respect to  the phase sequence. Finally, they contain a list of all inter-element nodes

while the  ru le  se t  i s  act ive.

Because the scope of variables occurring in pre- and postconditions includes both conditions,

variables bound by preconditions have to  be tested in postcondition nodes for'consistency. A test slot

for the consistency tests is needed.

4.5.3.2 The Procedural  Behaviour of Pre- and  Postcondltlon Nodes

All arriving tokens are stored in the working memory. If the precondition node is activated it has to

test whether the precondition of the structured rule set is satisfied or not. The precondition is

satisfied if the memory is not empty. If the precondition is not satisfied the problem solving process

aborts. Otherwise all inter-element nodes of the rule set and the postcondition node are activated. If

the postcondition node receives a + -token while it is active or its memory is not empty, it deactivates

all active nodes Of the rule set and activates the precondition Of the next phase.

control-strategy
A
B
C

gnd strategy

Precondition of B:
(on ?x b )

Postcondirion of B:
(above ?x c)

Figure 4. 14: Example for a compilédphase sequence

If the precondition node of phase B in figure 4.14 is! activated and instantiated with (on a b) the test

slot for consistency of the postcondition node is set to "a element of the working memory element

is " a " .
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IF and UNTIL nodes contain a memory and a switch denoting whether the node is active or not.

The memory is empty, if and only if there is no set of working memory elements satisfying the IF or

UNTIL condition. If an IF» or UNTIL node is activated and its memory is not empty it activates the

first phase of the THEN branch or the first phase after the LOOP construct. Otherwise it activates

the first phase in the ELSE branch or the next phase inside the LOOP construct.

4.5.3.3 Effects of Compiling Phase Sequences on  Efficiency

The effect of compiling phase sequences into condition networks on efficiency is rather obvious.

Subnets in the discrimination net implementing rule sets are successively deleted after the

interpretation of a rule set is completed. In the worst case the performance of the extended RETE

algorithm is about the performance of the basic RETE algorithm. However, these cases rarely occur

in applications.

4 .6  Rules  about  Structured Ru le  Sets

In order to  implement rules about structured rule sets we need rule set description nodes. They

differ from object rule description nodes only in the contained tests. The procedural behaviour needs

to  be slightly changed. Whenever a new instance of the precondition is added to the working

memory, the precondition node sends a token containing the instance of precondition and the

partially instantiated postcondition to the descripton nodes. Only variables that are bound by the

precondition are instantiated.

The advantage of this approach with respect to efficiency is that rules are only considered when they

become relevant. In the general case, not each rule set is used within each problem solving process.

4.7  Some Remarks on  Implementa t ion

The first prototype of the compiler for the control knowledge is written in ZETALISP on a

Symbolics LISP-machine. Test nodes in the network are implemented as objects propagating tokens

through message passing. Each test node can send token-propagating messages to all its successor

nodes. Objects are chosen as basic data structures for sake of simplicity and because they are

supported by powerful debugging tools. However, a topic of further research is to implement test

nodes in a more efficient way.
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Main characteristics of the CATWEAZLE control language are the partitioning of rule bases,

and that control strategies describe how partitions of the rule base are applied in a problem

solving process. In this chapter a declarative semantics for phase sequences is given. When

defining the declarative semantics we distinguish between factual knowledge and control

strategies. Control strategies define the shape of the search space searched by a problem

solving process. We characterize this shape by a regular language over rule names that

depends on the defined phase sequence and the structured rule sets. An operational semantics

is defined by a set of PROLOG clauses. Finally, the  operational semantics is proved correct

but incomplete with respect to  the declarative semantics.

5.1 Declarative Semantics

The formal treatment of the control language for production rule systems is introduced step

by step.  Firstly, a formalism for simple production rules is defined. This basic formalism is

then extended to  capture partitions and to  handle phase sequences. Finally, i t  is shown how

pre— and postconditions of rule sets can be handled, too.
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5.1.1 Formallzing Production Rule Systems

' In this section the basic ideas of production rule systems are introduced by defining an

underlying formal language, formalizing production rule systems and how to solve problems

using them. The language used to formulate working memory elements and conditions of

rules is a restricted version of the first order predicate logic with

. individual constants a,b,c,...

. individual variables ?x,?y‚?z,...

. predicate symbols p,q,r,...

without

. functions,

. (explicit) quantifiersand

o (explicit) connectives.

Atomic formulae are formulated in  prefix notation (p  t1...tn) with n 2 0 where p is a predicate

symbol t l ,  . . . ,  tn ei ther  individual constants or variables. Variables occuring in  atomic formu-

lae are implicitly universally quantified. Lists of atomic formulae are implicitly connected by

AND-operators. .7“ denotes the set of all atomic formulae. The function var  takes atomic

formulae as arguments and returns all variables occuring in  them. A formula p of f is  a

ground instance if var(p) = {} and 9 the set of ground instances. LIT denotes the set of
negated and non-negated atomic formulae.

Defini t ion  1 PRODUCTION RULES
A production rule r := (name,precond,postcond) is a triple ofRNAME XII?“ XFLCIT‘ :
Un>0£IT") where name represents the name, precond the condition part and postcond
the—action part of the production rule. When r is a rule then precond(r), postcond(r)
and  name(r )  denote the corresponding projections. rule(name) returns the rule with name
“name”. ”R is the set of all rules.

Definition 2 SINGLE LEVEL PRODUCTION RULE SYSTEM _
A production rule system is a pair (RB,WM)  where R8 {the rule base) is a subset of’R. and
WM {the working memory) a subset o fg .
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Definition 3 PROBLEM
A problem is a pair ( INITIALGOAL)  where INITIAL is a subset of 9 and GOAL an
element of f .

After having introduced the  notions of rules, rule systems and problems we discuss how rule

systems can be  used to solve problems by defining what the correct arguments for propositions

with respect to a set  of rules are.

An inference chain is a sequence of facts where the initial facts is given as premises. All other

facts are derived from facts in the  earlier part  of the sequence using a rule of the  given set of

rules. In order t o  give a formal definition the  standard notion of proof is slightly modified.

Definition 4 INFERENCE CHAIN
An inference chain for a ground instance 9 E g from a set of premises
'P'REM C (.7 using RB is a sequence ((1,1,...,a.n = g)(n  2 0)  where:

Vi E {1 , . . . , n} .
[a,- E 73725.)” V

37° E 723 and  a subst i tu t ion 0
such that 0(1') : (name‚{ajl, . . . ‚a,-l},a‚-)/\ j1 , . . . , j1<’i]

We need the  notion of sequence of inference steps that will be  introduced in definition 5 in

order to define lateron what is meant by an inference chain being correct with respect to  a

phase sequence. We can consider a search space for a problem as a tree where nodes contain

an inference chain and arcs are labeled with the names of rules deriving the  last fact from

the other facts i n  the inference chain. An example is given in figure 5.1.

A sequence of inference steps is an ordered list of rule names that are applied to produce an

inference chain. We can assign to each inference chain ic a sequence of rule names denoting

the path from the set of premises to ic. We describe in definition 5 how a sequence ofinference

steps is computed from each inference chain.

In figure 5.1 is (r1,r3,r2) a sequence of inference steps of the  inference chain (a,b,c,d,e).
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Figure 5. ]: Rule system, problem and the corresponding search space
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Definit ion 5 SEQUENCE OF INFERENCE STEPS
In order to get the number of rule applications in the letter part of the inference chain we
introduce the function nop. nop denotes the number  of premises in the  first part ( a l ,  . . . , a j )

of an  inference chain (a1 , . . . , ak ) :  Vj g k.[nop(j,(a1, . . . ,ak))  : card({a‚-|a‚- € PWM A i g
j)})]

A sequence of inference steps for a ground instance g E g from ’P’RSM : {0.1, . . . ,ak} C Q using 726 is
a sequence (name1 , . .  . , namen)  with name.- € RNA/V18 for all i E {1 ,  . . . , n }
such that ic = (a1,  . . . ‚am = g) is an  inference chain for f from 'PREM using 723

and Vi. [ a.- E PR€M _
v ( ruie(name‚-_„OP(‚-‚ic)) : r/\

30 '0“ . )  : (namei—nop(i‚ic)v {ah  a ' ‘ ' i a t ' a i )
with j1 ‚ . . .  ‚ j :  < i)] .

Let sois be a relation mapping each inference chain to a corresponding sequence of inference
steps.

Definit ion 6 SOLUTION
A solution sol(p) with respect to 728 C 'R, where p : (INITIA£‚GOAL) is a problem, is
an inference chain for s E (} from INITIAL? using RB if there exists a substitution or for
GOAL so that 0(GOAL) = s .

5.1.2 Structuring Rule Babes

In this section production rule systems are extended to allow partitioning of a. rule base into

a set of rule sets. This is done by introducing a set Of names for rule sets and a, function that

maps rules in to  the  name Of the  rule set they  occur in .

Definition 7 PARTITIONED PRODUCTION RULE SYSTEM
A partitioned production rule system is a pair (P’RB,W‘M} where

73723 : (SO'R,S'RS,f)
and 8072 a se t  of rules

SR8 a set of names with 8728 ("| RNAMS : { }
f a function fn‘S‘O’R _» S’RS denoting the name
of the structured rule set a rule occurs in.

WMCQ
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5.1 .3  Adding Pre- and Postoonditions

In order to  capture the full expressive power of structured rule sets with our declarative

semantics we have to formalize pre- and postconditions. A necessary condition for the appli-

cability of a rule in  structured rule sets is that  all of the preconditions of a structured rule set

are satisfied and at least one of the postcondition is not satisfied. To describe the semantics

we add pre— and postconditions to the condition part of object rules.

Defini t ion  8 RULE SYSTEMS CONTAINING RULE SETS WITH PRE- AND POSTCONDITIONS
A partitioned production rule system containing rule sets with pre- and postconditions is a
pair (RB‚WM} where

RB : (SOR,S'R‚S,f,pre -— s rs ,pos t  —— s r s )
and pre-srs, post-srs: S728 —-> L'IT"

functions denoting the pre— and postconditions of a structured rule set.
8072 a set of rules.
8728 the set of structured rule set names.

. f : 728 ——-> 8728 the function denoting for each rule the rule set
it  is contained in.  '

WMCQ

Remark: we use a modified version of this definition that is more convenient for our  discus-
sion. Let RB = (80R, SR8, f, pre — srs,post -— srs).  128’ :  (SOR’ ,SRS, f )  where

SO’R’ : {rl r’ = (name,(cond1,.. . ,condn),conc) E SORIA
f ( r )  = srsA
pre —— s r s ( s r s )  = {mm,  . . . ‚prem}/\
post -— srs(srs) = {posth . . . ,post„}/\
r = (name,  {cond1, . . . , condn, pre1, .  . . ,prem,  npostg},conc)

(i€{1,.--,n})}

5.1.4 t Sequences

As we have seen in chapter 3 phase sequences induce a partial order within a. inference chain.

Only branches of the search space satisfying this partial order are expanded by the control

regime. When considering sequences of inference steps the search space searched by a phase

sequence can be  specified by a regular language that is a function of the rule sets and the

phase sequence. A similar approach is taken in [Georgefl-82].
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Figure 5. 2. Search space expanded by a phase sequence

We illustrate the basic idea. of this formalization in  an example. The rules from figure 5.1 are

partitioned in two rule sets A and B such that  A contains 7‘1 and 7‘2 and B contains 7'3 and

r4 .  (/1, B )  is given as the  phase sequence of the  controlled production system. The sequence

of inference steps of a solution correct with respect to  the  phase sequence is a word in the

regular language (see definition 10) ( r l  + r2)*('r3 + T4)“. This is visualized in  figure 5.2.

Definition 9 PHASE SEQUENCE
A phase sequence ps : (31‘31, . . . ‚srs„)  is a sequence of names of rule sets from 572.85.

Definition 10 REGULAR EXPRESSIONS (see 6.9. [Manna-74])
Let E be an  alphabet. The set of regular expressions R8X’P(E) 2's recursively defined:

1. <> and < 6 >6 “RE/VHS)

2. Va € Ea  € REX’P(E)

3. VR1 , . . . ,R , .  e R8XP(E) :
R1 o ...o Bn 6 R8XP(E) ,
R1 + . . .+  R1n & R8X‘P(E),
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VR E REX’P(E) Ä’ is a set of words over 2 {R <; 2*).

1. i fR=<e> thenR={e}

2. ifR=<> Menü:-{}

s. i fREE thenR={R}

‚;. R1,...,R„ @ Rsxmx) _
i fR lo . . . oRn  thenR=R10 . . . 0Rn={w10 . . . own |w1  ERI , . . .wnERn}

5 .  R1 , . . . 3Rn  E REXP(E)  .

i fRZR1+. . .+Rn  thenR=R1+. . .+R„=R1U.„UR„

6. R1 6 RSXPOD)
i fR-z  Rf t henR={w|w=eV3w1 , . . . ,wk61210621)Aw=wlo . . . owk}

Defin i t i on  11  A CONTROLLED PRODUCTION RULE SYSTEM
A controlled production rule system is a triple (RB ,WM,ps )  where RB : (80R‚S 'RS‚ f )
is a rule base containing rule sets with pre- and postconditions and ps is a phase sequence
over 8728 .

Defin i t i on  12  REGULAR LANGUAGES DEFINED BY CONTROLLED PRUDUCTION RULE SYS-
TEM .
Let CPS  = (RB,  WM,ps )  be a controlled production rule system with ps = (srs1,  . . . , s rsn)
and 'RB : (SOR,SRS, f ) .  CPS defines a regular language RL(CPS)  on RNA/V18

RL(C'PS) = (r11 + . . .+  'rlm)-"'(r21 + + T20)* . . . (rn1 + . . .  + rnp)*
where {r11,.. . ,r1m} = {rlrute(r) E SOR  A f(rule(r)) = srsl}

‘ { r ;11 , . . . , rnp}  :: { r I ru l e ( r )  E SOR A f ( ru l e ( r ) )  = s r sn}

Defini t ion  13  CORRECTNESS OF INFERENCE CHAINS WITH RESPECT To
CONTROLLED PRODUCTION RULE SYSTEMS

Let CPS :: (728, WM,ps )  be a controlledpmduction rule system with RB : (SOR,  SR5, f ) .
An  inference chain ic for some ground instance 9 from a set 73R£M using SDR is correct
with respect to a controlled production rule system CPS  if the corresponding sequence of
inference steps is a word in the regular language defined by CPS .
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Definition 14 CORRECTNESS OF SOLUTIONS WITH RESPECT TO CONTROLLED
PRODUCTION RULE SYSTEMS
A solution so! is correct with respect to a controlled production rule system if so! is a solution
and the corresponding sequence of inference steps is correct with respect to the controlled
production rule systems.

5.2. Operational Semantics

In this section an abstract interpreter for structured rule bases which are interpreted us~

ing phase sequences is defined by a set of PROLOG clauses. INTERPRET is an abstract

specification of the concrete implementation of the  CATWEAZLE interpreter. For sake Of

simplicity we assume that no variables occur in the  rules. This does not affect the  results

of the next section because we are only interested in how phase sequences are interpreted.

Bu t ,  this restriction allows us to  keep the PROLOG clauses defining INTERPRET rather

simple. Therefore, INTERPRET has the  same characteristics with respect completeness and

soundness as the  CATWEAZLE interpreter. Definition 15 defines the  abstract interpreter by

firstly specifying how rule bases are represented using PROLOG facts secondly, giving a set

of PROLOG clauses describing the behaviour of the interpreter and finally describing how

the interpreter is activated to interpret a rule base in order to solve a given problem.

Definition 15  PROLOG CLAUSES FOR THE OPERATIONAL SEMANTICS OF”
CATWEAZLE

A)  Predicates for representing t he  rule base
Let ( ’RB,WM,ps)  be a controlled production rule system with RB :: (507€, S'RSJ).

phase-sequence([a1‚..,anj} ifps : (a1,...‚an}
precond(a,[p1,..,pn]) i fa E 5728 A precond(d) = {p1, ..,pn}
postcond(a,[p1,..,pn]) ifa E 8728 A postcond(a) : {p1, ..,pn}
rule(rn,[c1‚„‚cn]‚conc} r : (rn,{c1, . . . ,c„},conc) € SO72
ruleset-of-rule(r,rs) Brute E 80R.rule  = (r ,c ,conc)  A rs  E 8728 A f ( r )  : r s

B)  PROLOG program for t he  Operational semantics of  CATWEAZLE

interpretl (Prem,Goal) :-
phase -—— sequence(PhaseSequence),
interpret(PhaseSequence, Prem,  Goal, []).-
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A rguments of interpret:

The first argument of interpret is a sequence of rule set names that still have to be activated
in  the current problem solving process. The inference chain is represented by the second
argument. The third argument is the goal "condition and the last one contains the names of
the rules that have been applied in the current problem solving process.

/*  the interpretation of the phase sequence is completed */
interpret ([], InfChain,Goal,SOIS).

/ *  the current inference chain satisfies the goal condition */
in terpret(PhasesToBeEa:ecuted, InfChain,Goal ,  SOIS )  : —

subset(Goal, In fChain) .

/”‘ a rule of the currently active rule set is applied */
interpret([ActivePhaseIRestOfPhases], InfChain,Goal,SOIS) : --

/”r rule set ActivePhase active? '* /
precondition(ActivePhase, Precond), subset(Precond, InfChain) ,
postcondition(ActivePhase, Pastcond), not(subset(Postcond, InfChain)) ,
/* enumerates rules of the rule base */
rule(Name, LeftSide,  RightSide),
/*  is the rule in the active rule set? */
ru le se tOfRu le (Name ,  Act ivePhase) ,
/* is the rule applicable? */
subse t (Le f tS ide ,  In fChain) ,
/* the rule has not been applied in the current problem-solving process */
not(member(Name, 5015)) ,
/* adds conclusion of the rule to the inference chain */
interpret([ActivePhase|RestOfPhases],  [RightSideIInfChain],  Goal,  [Na.me|SOIS]).

/ *  the next phase of the phase sequence is interpreted */
interpret([ActivePhaselRestO  fPhases] ,  In fC'hain ,  Goal ,  SOIS’) : ~—

/"r postcondition of the active phase is satisfied */ _
precondition(ActivePhase,  Precond),  subset(Precond, InfChain)‘,
postcondition(ActivePhase, Postcond), subset(Postcond, InfChain) ,  !,
interpret(RestO  fPhases ,  In fChain,  Goal ,  50 IS ) .

interpret(PhasesToBeE:tecuted,InfC'hain,Goal,SOIS) : —
fa i l .

C ) .Prob1em (PREM,GOAL)  s ta ted  as a query

?— interpret1(Prem,Goal).

The  complete PROLOG program and an example rule base is listed in  appendix C .  A trace
for an example problem can be  found in  appendix D.
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5 .3  Soundness and  Incompleteness

Having formalized our intuition of the notion of correct solutions with respect to a given phase

sequence and specified the Operational behaviour of the concrete CATWEAZLE interpreter

by a set of PROLOG clauses we are able to  prove some theoretical propositions about the im—

plementation. In this section soundness and incompleteness of the CATWEAZLE interpreter

i s  shown.

5.3.1 Soundmu

The first and most important result is that the CATWEAZLE interpreter infers only solutions

that are correct with respect to  the declarative semantics of the formulated phase sequence.

Lemma 1 SOUNDNESS
INTERPRET is sound with respect to the declarative semantics.
Let CPS =: (723, WM,(ps-1, . . . ‚p3„)) be a controlled production rule system and
((prem1,. .  . ,premm),conc) be a problem.
R3 = (SOR,S'RS,f ) .

We e N.[
interpretflpsl, . . . ,psn], [prem1, . . . ,premm],Goal, [])

|- tnterpret([ps,-, . . . ,psn], [ok, . . . , c1,prem1 , . . . ,premm], Goal, [ism . . . , iSd)

=> (prem1,„ . ,premm‚c1, . . . , ck)
is an inference chain for ck from {prem1‚ . . . ,premm} using 8072. which is
correct with respect to (p31, . . . ,psn)].
(Correct means that 2'31 0 . . .  o is;c € RL(CPS)}
where o denotes concatenation].
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Proof:

We prove this result by induction on the  length of [ i sh  . . . ,z'81].

EM
We denote :
SORNI : (1°11 + . . . + ‘rl
SOFA/'2 : (r;1 + . . .+  r20)*

8072fn =( r „1+ . . . +  mp)"
where {r11,...,r1m} : {rlr E RNA/V16 A f(r)  :: 31'31}

in” ,  . .  . ,rnp} : {rl'r E 'RNAME A f ( r )  : srsn}
o((w1, . . . ‚w„ ) )  denotes wl o ...o w,n

Induc t ionBase  k = 0

0(0) = € e 3072M;_—_> o(()) e 507M“; o .. . o son/\,”;

Inductionflypothesis

Vj 5 k.[ interpretflpsl, . .  . ,psn],[prem1, . . . ,premm],Goal, [])
I- intermetqpsi ,  . .  . , pan], {c}, . . . , c1, prem1, .“ . . ,premm], Goal,  [is,-, _. . . , 2'31

=> (prem1,.. . ,p'remm,c1,. . . ,Cj)
is an inference chain for cj from {prem1,. . . ,premm}
using 807?, which is correct with respect to (pal ,  . . . ,ps„)].

Inductz'onStep R: —> R: + 1

The only way to  infer new propositions is t o  apply the fourth clause of interpret
l-times (with Z _>_ 0) and then the third one.
interpretflpsg, . . . ,psn],[ck‚ . . . ,c1,prem1,. . . ,premm]‚Goal,[isk, . . . i sfl )

=> interpret([ps‚-+1, . . . ,psn],  [ok, . . . , c1, prem1,. .  . ,premm],  Goal, [ish . . . i31])

=> interpret([ps‚-+‚_1 , . . . ,psn], [ch . . . ‚cl  , prem1, . . . , p r emm] ,  Goal, Disk, . . . ‚ i31])
=> interpretflpsi“, . .  . ‚ps„],[ck+1, ck, . . . ,c1,prem1, . . . ,premm],Goal,  [isk+1, . . . ,  i‚31])

The  induction step consists of two parts:
' firstly, proving that the rule application is correct and _

secondly, proving that  the sequence of inference steps is still in  the  regular language
defined by the  phase sequence.

1) Correctness of the Rule Application _
It  has to be  shown that (premh.  . .  ,premn,c1,. .  . ,ck,ck+1) is a inference chain
for ck“ from {prem1,  . . . ,premn} using 5072.

Let {preb . . . ,preo} be  the pre— and {p03t1,. . . ,postp}
the postconditions of the rule set pain“.
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Let ra le ( rn ,  {cond1, . . . ,condh}, Ck+1} be  the rule applied in INTERPRET.

From the definition of the predicate rule we can conclude that
( rn ,  {cond1, . . . ,condh,pre1, . . . ,preo,-1post.-},ck+1) E 8072(i E { l ,  . . . ,o})

We know from the induction hypothesis that (cl ,  . . . ,Ck) is an inference chain
for ck from {premh . . . ,premm} using 8072.
In order to prove that ( c l ,  . . . , ck“)  is an inference chain
for ck“ from {prem1,. . . , premm} using 8072 we have to show:
1)  cond1, . .  . ,cond;l E (p rem1 ,  . . . ,premm,c1,  . . . ck)

This is true because subset([cond1, . . . , condh],[prem1,. . . , premm, c1, . . . Ckl )

2)  p re l ,  . .  . ,preo E (p rem1, . .  . , p r emm,c1 , ; . . ck )
This is true because subset([pre1 , . . . ,preo],[prem1, . . . , premm, c1 , . . . (%])

3) fl[post1and . . . andpostjD E (prem1,.. . , p r emm,c1 , . . . ck ) ]

This is true because not(subset([post1, . . . ,postp],[prem1, . . . ,premm,c1, . . . ckD)

2)  The sequence of inference steps is an element of the regular language defined by the
phase sequence isl o . . .  o is;c o c o . . . o eoisk+1 E 8073M; o . .  . o SORNE‘“

l t imes

513.2 Incommo

Lemma 2 INCOMPLETENESS

IN TERPRE‘ T is not complete with respect t o  the declarative semantics. This means, if there

is a correct solution with respect to the phase sequence it is not necessarily found by IN TER-
FYLETi

Counterexample:

Given two rule se t s :

ru le  s e t  A with

precondition {}
postcondit ion {(hypothes is  rx  ?Y)}

and following rules

( r1 ,{ (1eve r  ?pat ient)
(red-nose ?pa t i en t )} ,

(hypothesis ?patient  co ld ) )
( r2 .{ ( f eve r  ?petient)

(red-nose ?pat ient )} ,
(hypothes is  ?patient hay - f eve r ) )

ru l e  s e t  B wi th

precondi t ion { (hypo thes i s  ?X ?Y)}
postcondition {(probably ?X ?Y)}

and the  fo l lowing  ru l e s :

( r3 , { ( season  win te r )
(hypothesis  ?pat ient  co ld )} ,

(probably ?pat ient  co ld ) )
( r4 , { ( season  summer)

(hypothesis ?patient  hay-fever}
(probably ?pa t ien t  hayufever ) )
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and the control strategy (A,B). Let
({( fever tom), (red -— nose tom), (season winter)}, (probably tom cold))
be the problem to  be  solved. We can see:

1. There exists a solution for the problem.
(( f ever tom)(red-—nose tom)(season winter)(hypoihesis tom cold)(probably tom cold))
is a solution for the above problem which is correct with respect to the control strategy
(A.» B)-

2. The  solution is not necessarily found by INTERPRET.

INTERPRET( [A, B],
[[ fever tom], [red —- nose tom], [season winterfl,
[probably tomcold], []) ===>

IN TERPRET([A, B], ‘
[ [hypothesis tom hay ——— fever], [fever tom], [red -- nose tom],

[season winter“, ' '
[probably tom cold], [r2]) =>

INTERPRET([B],
[[hypothesis tom hay -- fever], [fever tom], [red —— nose tom],

[season winter]], '
[probably tom cold], [r2]) =>

fail

This  interpretation of the controlled production rule system fails to establish the prob—
lem stated above. The second possible interpretation is as follows:

INTERPRET( [A, B],[ [fever tom], [red -— nose tom], [season winter]],
[probably tom cold], []) ==>

INTERPRET([A,B], [[hypothesis tom cold], [fever tom], [red - nose tom],
[season winter“,

[probably tom cold], [r1]) =>
INTERPRET([B],  [[hypothesis tom cold], [fever tom], [red -— nose tom],

[season winterfl,
[probably tom cold], [r1]) =>

I N TERPRET([B], [[probably tom cold], [hypothesis tom cold], [fever tom],
[red — nose tom], [season winter”, '

[probably tom cold], [r3, r1]) ==>
true  ‘

Whether the first or second interpretation is chosen is a non-deterministic choice. There-
fore, we can conclude from this example that I N TERPRET is not complete with
respect to the declarative semantics defined in section 4.
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However, this result sounds worse than i t  is. What we tried to model is another problem
solving strategy. A natural way for solving problems like these is to  generate hypotheses
iteratively until one is found that can be established. Therefore,

control-strategy

loop

A

B

until (probably ?X ?Y)

end-loop

end-strategy

would be a more adequate control strategy for the kinds of problems considered above. In
particular, the above rule base with the modified control strategy is complete for this kind
of problems.
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QHAPIEE 6: Discussion

6.1  Contributions

Explicit and declarative representation of control knowledge and well-structured knowledge bases arc

crucial requirements for efficiently deveIOping and maintaining complex knowledge-based systems

These requirements become particularly important for rule-based systems because they are widely user:

to implement expert systems that are in general complex. On the other hand todays rule-based systems

do not satisfy these requirements.

The CATWEAZLE rule interpreter described in this thesis allows knowledge engineers to partition rule

bases and Specify meta-level architectures for control to cope with these problems. However, a let nl

research problems in the area of meta-level architectures have to be solved to use them successfully

This research is mainly concerned with problems occuring when specifying meta-level architectures for

rule-based systems.

In this particular domain the thesis'is supposed to contribute results to the following research questions:

1. What is a suitable language to specify meta-level architectures?

2. How can such a language be interpreted efficiently?

3. What does it mean to specify control knowledge for a rule-based system?

The answer to the first question given in this thesis is the set of control concepts provided by the

CATWEAZLE language. It is a small set of concepts (section 3.1) allowing to model a wide range oi

control strategies commonly used in expert systems design (section 3.6.2). The reason for keeping the

language as simple as possible is twofold: Firstly, the language is easy to learn and to use and secondly, il

can be processed more efficiently when having only very few concepts. Another aspect of the
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CATWEAZLE language is that it allows an adequate representation of different kinds of reasoning

knowledge (section 3.7) that are intermixed in other formalisms, for instance in simple production rule

systems (section 1.3).

Applying the concepts of meta-level architectures to knowledge—based systems often causes inefficiency.

A lot of inferencing needs to be done in order to reason about controlling a problem-solving process

(see section 4.2). Here, we tried to overcome the efficiency problems by using the RETE pattern

matching algorithm. The RETE algorithm has been extended and modified to process the

CATWEAZLE control language (see section 4.5). This approach drastically reduces the pattern

matching efforts at run time. Several Optimizations that can be done before run time and that are

incorporated in the compiler for the CATWEAZLE language. These Optimizations are described in

section 4.5.

Partial results are provided for the third research question. A declarative and procedural semantics for

phase sequences is given. Again, emphasizes is given to separate object-level knowledge and control

knowledge in the declarative semantics. It is formalized how phase sequences affect the shape of the

search space. The procedural semantics, an abstract. description of the implemented interpreter, is

proved correct but incomplete with respect to the declarative semantics. The semantics for other

concepts to control search like rules about object rules and rules about structured rule sets are not yet

defined. These results are described in chapter 5.

6.2  Future Work

The thesis describes the prototype version so far. A lot of work remains to be done in order to get a

practical tool for building knowledge-based systems. Important issues are discussed in this section.

CATWEAZLB provides a very simple language and needs only very few concepts to describe control

strategies. On  the other hand, the language is argued to be  powerful enough to model nearly all

architectures for search listed in the classification of Stefik et al. [Stefik etal.-82]. However, the

expressive power of the system should be validated by demonstrating that applications can be

implemented more easily rather than proving it powerful with respect to classifications. Thus, one task

will be to  analyze the eXpressive power of the control language by implementing applications. New

concepts are added if necessary. But, the addition of new control concepts will be paid for with a more

complicated language and reduced clarity. Therefore, we have to be very careful that the costs of an

additional concept are higher than its benefits.

The analysis of the concept of structured rule sets indicates some important and very useful extensions.

Thus, in the next version of CATWEAZLE their notion will be generalized. We will allow the content of
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a structured rule set itself to be a controlled production rule system. This induces two important

advantages:

1. We can model recursive reduction of problems in subproblems (see, for instance, the GRAPES

system [Anderson,Farrcll,Saucrs—84D. Decomposition of tasks into subtasks (see section 2.1.1) is

an important technique for developing complex knowledge-based systems.

2. When criticizing the current version one can argue that problems like mixing different kinds of

knowledge can still occur at the control level. No concepts are provided to decompose the meta

knowledge and represent its different types by different representation structures. When

extending the notion of structured rule sets as outlined above the techniques for structuring

knowledge can be applied as well to the meta levels as to the object-level. Then problems

discussed in  section 1.3 do  not occur  a t  the  control  level.

When extending the concept of structured rule sets as proposed we can decompose tasks successively

until we have primitive tasks. In a more SOphisticated version CATWEAZLE can serve as a

implementational basis of the generic task approach of Chandrasekaran (see section 2.1.1) which

provides guidelines to organize application systems.

Also, we will allow contents of structured rule sets to be an arbitrary program. Then necessary input

information and effects of algorithms can be formalized using pre— and postconditions. This enables a

controlled production rule system to reason about when an algorithm should be executed in a problem

solving process and provides a uniform framework for integrating algorithms in A1 architectures.

Another extension will be to augment abstractions of structured rule sets with a specification of import

and export knowledge. These are sets of patterns of working memory elements that are imported when

the rule set is activated and stored in the global working memory when the rule set is activated. All

others constitute the local working memory of the rule set. This increases the efficiency of the

matchching process as well as reduces the complexity of the search space.

The language for expressing conditions has to be augmented by the usual logical connectives.

In the current version the programming environment is too primitive. First prototypes of a tracer and

debugger have been implemented. But more sophisticated tools are needed. To support knowledge

engineering we need a stepper capable to step back, edit rules and restart the modified rulebase on the

prior state of the working memory.

The semantics for rules about object rules and rules about structured rule sets has to be defined.
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6.3 Implementation Issues

Without any doubt CATWEAiLE is not yet a practical tool for building rule-based systems. This is

caused by reasons discussed in the following paragraphs.

CATWEAZLE is a first prototype, it has been implemented exploratively. In the beginning of the system

development it was not clear at all that control knowledge can be compiled and processed by a RETE-

like pattern matching algorithm. Therefore, the compiler and the basic data structures were modified

and extended stepwise. Now, knowing that it can be done and more important, how it can be done we

can do it in a much better way since we have the final architecture in mind.

In order to facilitate the experiments for compiling control knowledge, Objects including inheritance,

were chosen as the basic data structures in the condition network. This choice caused our

implementation to be easy to modify. And, objects are supported by a sophisticated programming

environment, a tracer and a debugger. Now, we know how to implement the data structures and the

basic methods of matching and we can-Change our basic data structures to simpler ones. It has to be

tested how much the efficiency can be increased by changing data structures.

Of course sophisticated programming tools are not yet implemented but it seems to be clear what

information these tools require and how data structures have to look like to provide these informations.
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APP_ENDICES

Appendix A: Syntax of the CATWEAZLE Language

<rulebase>

: =  (production-rule—base <identifier>

<control strategy spec>
<list of structured rule sets>

<control strategy spec>
::— (kind-of—strategv fixed)

<phase sequence spec> |
(kigg-of—sggategv scheduled)
<rulebase about structured rule sets>

<phase sequence spec>
°:= (phase-sequence

(<list of phase sequence elements>)

)

<list of phase sequence elements>
::- <phase sequence element> <list of phase sequence elements> |

<empty>

<phase sequence element>
=== <identifier> |

(<list of phase sequence elements>)- |
(;; <list of patterns>

<phase sequence element>
<phase sequence element>

) |
< em

<list of phase sequence elements>
(until <list of patterns>)
<list of phase sequence elements>

)

<rulebase about structured rule sets>

-:- (meta-rules

<list o f  meta rules rasrs>

)

<list of meta rules rasrs> , .
: : -  <rule about structured rule sets> <list o f  meta rules rasrs>

<empty>
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<rule about structured rule sets>

-:= (metarule <identifier>

<condition part rasrs>
-->

<action part rasrs>

<list of structured rule sets>

=== <structured rule set> <list of structured rule sets>

<empty>

<atructured rule aet>

-:= (knowledge source <identifier>
<abstract description>
<content of rule set>

<abstract description>
:= (precondition <list of patterns>)

(postcondition <list of patterns>)

<content of rule set>
-:== <rules about object rules>

<object rules>

<rulea about object rules>
°:- (metarules

<list o f  meta rules raor>

<list of meta rules raor>
-:= <rule about object rules> <list of meta ruleé raor>

<empty>

<rule about object rules>
::= (metarule <identifier>

<condition part raor>
-_>
<action part raor>

<object rules>
=== (obiect-rules

<list of object rules>

<list of object rules>
°:= <object rule> <list of object rules>

<empty>
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<object rule> .
-:= (objectrule <identifier>

<condition part or>
_ _ >

<action part or>

<condition part rasrs>
-:= <list of rasrs conditions>

<list of rasrs conditions>
::- <rule set description> <list of rasrs conditions>

<pattern> <list of rasrs conditions>
<empty>

(rule set description>
-:= (knowledge-source <variable>

{(with-preconditions <list of patterns>)}
{(with—postconditions <list o f  patterns>)}

<action part rasrs>
::- <list of rasrs actions>

<list o f  rasrs actions>

=== (activate <number>) <list of rasrs actions> |
( suspend  <number>)  <list o f  rasrs actions> l
<empty>

<action part raor>
-:= <list o f  raor actions>

<list of raor actions>
':- (activate <number>) <list of raor actions> |

(susgend <number>) <list of raor actions> |
<empty>

.<condition part raor>
-:= <list of raor conditions>

<list of raor conditions>
=== <rule description> <list of raor conditions> l

<pattern> <list of raor conditions> I
<empty>

<rule description>
-:= (objectrule <variable>

{(with—conditions <patterns>)}

{(with—actions <patterns>)}

<condition part or>
::: <list of patterns>

-109-
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<list of patterns>
-:= <pattern> <list of patterns>

<empty>

<action part or>
::~ <list of or actions>

<list of or actions>
-:= (Egg <non-nega ted  pattern>) <list of or actions> |

(delete <non-nega t ed  pattern>) <list of or actions> ]
< e m p t y >  fi

<pattern>

::= (<constant> <list-of—var-and—constants>) |
( n o t  (<constant> <list-of—var-and-constants>))

<n0nnnega t ed  pattern>
-:= (<constant> <list-of—var-and~constants>)

<list-of—var-and-constants>
=== <constant> <list—of—var-and-constants> |

<variable> <list—of—var—and—constants> |
<empty>

<constant>
°:- LISP symbol not beginning with a questionmark

<variable>
::= ?<identifier>

<identifier>

::= LISP symbol

<empty>
:= e

—110—



Appendix B: Example Rule Base

(product ion—ruIebaso p1nnncr—for-blockswor1d

( k1nd -o f - s t r a tegy  f1xed)

(phase-sequence ( INITIALIZE

( 100p  CHECK

GENERATE-GOAL

SATISFY-GOAL)

)

(planning—system n11)

( schedu1e r  n11 )
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(knowledge-source INITIALIZE

(precond1t1on n11)

(postcond1t1on a11—ru1es - f1 red )

(metarules

(motaruIe MR-FOR-INITIALIEE

(ob jec t ru le  ? r

(with-actions (add (under ?x ?y ?state))) )
(under  ?x ?y ?s t a t e )

—->

(suspend 1 ) )

(ob jec t—ru Ies

(rule UNDER1

(on ?x ?y ?state)

-->
(add (under ?y ?x ?s ta te ) ) )

( ru1e  UNDER2

(on  ?x ?y ?s t a t e )
(under ? :  ?y ?state)

- ->

(add (under ?z ?x ?s ta te ) ) ) ) )
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(knowledge-source CHECK

(precondltlon n11)

(postcondltlon a l l - ru les—f i red)

(meta ru les

(metarule MR-CHECKl

(object ru le  ?r1
(with-act ions (add (s ta tus  ?block ?s ta tus ) ) ) )

(s tatus ?block ?status)

- ->

(suspend 1 ) )

(meta ru ls  MR-CHECKZ

(objectru le  ?r1
(with-act ions (add (s tatus 7block sa t is f l ed ) ) ) )

(ob ject ru le  ?r2
(w i t h -ac t1ons  ( add  (s ta tus  ?b10ck  unsa t i s f i ed ) ) ) )

- ->

(suspend 2 ) ) )

(ob ject - ru les

( ru le  CHECKl

(b lock  ?b lock  ac tua l )
(unless (block ?block goa l ) )

——>

(add (status ?block sa t is f1ed ) ) )

( ru le  CHECK2

(on tab le  ?b lock  ac tua l )
(on tab le  ?b lock  goa l )

- ->

( add  (s ta tus  7b lock  sa t is f i ed ) ) )

(rule CHECK3
(on 7block1 ?block2 goal)
(s ta tus  7block2 sa t ls f l ed )
(on 7block1 ?b1ock2 actua l )

- ->

(add (s ta tus  7block1 sa t is f1ed ) ) )
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( ru le  CHECKS

(on ?b1ock ?blockZ sctua1)
(status ?blockz sat1sf1ed)
(on ?b10ck 7block2 goa1)

- ->

_ (add (s tatus ?b1ock sa t is f i ed ) ) )

( ru le  CHECKS

(b1ock 7b10ck ac tua l )
(unless (status ?b1ock sat15f1edJ)

-->
(add (status 7b1ock unsa t is f i ed ) ) )

( ru le  CHECK?

(s ta tus  ?b1ock  sa t1s f1ed )
(s tatus ?block unsat isf ied)

- ->

(de le te  2 ) ) ) )
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(knowledge-court. fiEflEIATE-anit

(precond1t1on n11)

(postcond1t1on ( (goal  ?x Ty ?z ) ) )

(mata ru las

(meta-rule CREATE—FIRST—STACK—GOALS
(objectru le  ?r1

(w1 th -ac t lons
( add  (goa l  pu t -on  I : ) ) ) )

- - )
( ac t1va te  1 ) )

(meta—rule  PREFER-IMMEDIATE-SATISFIABLE-PUT-DOWNiGOALS
(objectru le  ?r1

(w i th -ac t1ons
(add (goal put—down ?b1ock I ) ) ) )

(on tab le  ?b lock  goa l )
- - )
( ac t i va te  1 ) ) )

(ob ject - ru les

( ru le  GENERATE1

(on ?b1ock1 7block2 goal)
(c lea r  ?block1 actua l )
( c lea r  ?b lock2  ac tua l )
(s tatus ?block2 sat1sf1ed)
(status ?block1 unsat15f1ed)

- - )

( add  (goa l  put—on ?block1  ?b lock2 ) ) )

( ru le  GENERATEZ

(ontable 7block1 goal)
(c lea r  ?block1 actua l )
( s ta tus  7b lock1  unsa t ls f l ed )

—->

(add (goal put-down ?block1 n1 l ) ) )

( ru le  GENERATE3

(on  ?b lock1  ?b lock3  goa l )
(ontable ?block2 goal)
( s ta tus  ?b lock2  unsa t1g f jed )
(under  ?b lock2  7b lock1  ac tua l )
( c lea r  ?block1 actua l )
(un less  (s ta tus  ?b lock3  sa t ls f l ed ) )

. . - )  _

( add  (goa l  put -down ?block1  n1 l ) ) )

( ru le  GENERATE4

(on  ?b1ock2  ?b lock3  goa l )
(s ta tus  ?b lock3  sa t15 f1ed )
(s ta tus  ?block2 unsa t ls f1ed )
(under  ?block2  ?block1  ac tua l )

- ->

(add (goal put—down ?b1ock1 n1 l ) ) )
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(ru1s GENERATES

(status  ?block unsa t i s f1ed )
(c1ear  ?block actua1)
(unless (b1ock ?block 9031))

-->
(add (goaI put-down 7b10ck n11 ) ) )

( ru1e  GENERATEG

( s ta tus  ?b lock  unsa t1s f1ed )
(c1ear 7b1ock actua1)
(un1oss (ontable ?b10ck actua1))

- ->

(add (goal put—down ?b1ock n11 ) ) ) ) )
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(know1tdgo-lourco SATISFY-GOIL

(precondition ( (goal  ?x Ty 7z ) ) )

(postcond1t1on a l I - ru1es- f1 red)

(meta ru les )

( ob jec t - r u l es

( ru le  PICK-UP

(goa1 put-on ?b10ck1 ?b1ock2)
(on tab Ie  ?b10ck1 ac tua I )
(c1ear  ?b1ock1 actua1)

-—>
(do1e te  2 )
(do1ete 3 )
( add  (ho1d1ng hand ?b10ck1  ac tua1 ) )
(wr1te (p1ck-up ?b1ock1)))

(ru1o PUT-DOWN

(goa1 put-down ?b1ock n11)
(ho1d1ng hand ?block ac tua l )

-->
(de l e t e  1 )
( de1e te  2 )  ...
( add  (on tab le  ?b1ock  ac tua1 ) )
(add (c1ear  ?b1ock ac tua1) )
(wr1 ta  (put -down ?b1ock ) ) )

(ru1e STACK

(goa1 pu t -on  ?b1ock1 ?b1ock2)
(c1ear ?block2_actu31)
(ho1d1ng hand Tblock1 ac tua I )

-->
(de Ie ta  1 )
(de1ete 2 )
(doTe te  3 )
(wr1 te  ( s t ack  ?b1ock1  ?b10ck2 ) )
( add  ( c1ea r  ?b1ock1  ac tua l ) )
(add (on ?b1ock1 ?b1ock2 ac tua1 ) ) )

( ru le  UNSTACK1

(90:1  put—on ?b1ock1 ?b1ock2)
(c1ear ?b1ock1 actua1)
(on  ?b1ock1  ?b1ock3  ac tua1 )
(un1ess (ho1d1ng hand ?any—b1ock actua] ) )

-->
(de1ete 2 )
(do1e te  3 )
(add (ho1d1ng hand ?b10ck1 ac tua1) )
(add (de1ete-under ?b1ock1))
(odd (Cloer ?b1ock3 ac tua1) )
(wr i te  (unstack ?b1ock1 7b10ck3)))
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(ru1e

( ru le

UNSTACKZ

(goa l  put-down ?b10ck  n11 )
(c1ear  Tblock actua1) .
(on ?b1ock ?b1ock2 actua1)
(un1ess (holding hand ?any—b1ock actua1))

-->
(dototo 2 )
(6.1.10 3 )
(add (h01d1ng hand Tblock actua1))
(add (deIete-under ?block))
(366 (c lear  7block2 l c tua1 ) )
(ur1to (unstack 7b10ck ?b10ck2)))

DELETE-UNDER
(dilute-U116» Tb‘locu)
(under ?blockz ?block1 actual)

——>

(doloto 2))))
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Apgendlx C: Set of PROLOG Clauses Speclfying the Procedural Semantics
of hase Sequences

/"' Operational semantics of CATWEAZLE specified by a set of
/"' PROLOG clauses. Each interpret clause specifies one
I“ type of inference step. '“/

interpretl :-
problem(Problem,Goal),
phase-sequence(Phasesequence),
interpret(Phasesequence,Problem,Goal,[]).

interpret([],_,_,J.

interpret(PhasesToBeExecuted,Hyps,G0al,SOIS) :-
subset(Goal,Hyps).

interprct([ActivePhase | RestOfPhases],Hyps,Goal,SOIS) :—
precondition(ActivePhasc,Precond),subset(Precond,Hyps),
postcondition(ActivePhase,Postcond),not(subset(Postcond,Hyps)),!,
rule(Name,LeftSidc‚RightSidc),
rulcsct-0f-rulc(Name,Actichase),
subset(LeftSide,Hyps),
not(member(Name,SOIS)),!,

interpret([ActivePhase | RestOfPhases]‚[RightSide | Hyps],Goal,[N ame | SOIS]).

interpret([ActivePhase | RestOfPhases],Hyps,Goal,SOIS) :—
precondition(ActivePhase,Precond),subset(Precond,Hyps),
postcondition(Actichase,Poslcond),subset(Postcond,Hyps),!,
interpret( RestOfPhases,Hyps,G0211,8018).

interpret(_,__,_‚_) :-
fail.

subset([],_) :- !.

subset([H |T],Set) :-
!,member(H,Set),
subset(T,Set).

member(H‚[I—I|T]) :— !.

member(H,[_ | T]) :-
!,mcmbcr(H,T),!.
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/”' Example Rule Base */

phase-sequence([a,b]).

ruleset-of—rule(r1,a).
ruleset—of—rule(r2,a).
ruleset-of—rule(r3,b).
ruleset—of—rule(r4,b).

prccondition(a,[]).
postcondi1i0n(a,[c‚c]).

precondition(b,[e‚<;]).
postcondition(b,[a,b,c,d,e]).

rulc(r1,[a,b]‚c).
rule(r2,[b],e).
rule(r_3,[c]‚d).
rule(r4‚[e,a]‚d).
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Appendix D: Example Run of the PROLOG Program Specifylng the
Procedural Semantics of Phase Sequences

Trace of the interpretation of the example rulebase. The fact problem([a,b]‚[a‚b‚c‚d‚e]) is asserted
before starting the interpretation process.

1.1 CALL interpretl
2.1 CALL problem(_828,__832)
2.1 EXIT problcm([a,b],[a,b,c,d,e])
2.2 CALL phase_scquence(_852)
2.2 EXIT phase_sequence([a,b])
2.3 CALL interpret([a,b],[a,b]‚[a,b‚c,d,e]‚[])
3.1 CALL subset([a,b,c,d,e],[a,b])

3.1 FAIL subset([a,b,c,d,e],[a,b])
3.1 CALL precondition(a,_1864)
3.1 EXIT precondition(a,[])
3.2 CALL subset([],[a,b])
3.2 EXIT subset([],[a,b])
3.3 CALL postcondition(a,_ 1912)
3.3 EXIT postcondition(a,[e,c])
3.4 CALL not subset([e,c],[a,b])
3.4 EXIT not subsct([e,c],[a,b])
3.6 CALL rule(_1976,_198(),__ 1984)
3.6 EXIT ru1e(r1,[a,b],c)
3.7 CALL ruleset_of___rule(r1,a)
3.7 EXIT mleset_of_rule(r1,a)
3.8 CALL subset([a,b],[a,b])

3.8 EXIT subset([a,b],[a,b])
3.9 CALL not member(r1,[])
3.9 EXIT not member(r1,[])
3.11 CALL interprct([a,b],[c,a,b],[a,b,c,d,e],[r1])
4.] CALL subset([a,b,c,d,e],[c,a,b])

4.1 FAIL subset([a,b,c,d,e],[c,a,b])
4.1 CALL precondition(a,_h6192)
4.1 EXIT preconditi0n(a,[])
4.2 CALL subset([],[c,a,b])
4.2 EXIT subsct([],[c,a,b])
4.3 CALL postcondition(a,__6240)
4.3 EXIT postcondition(a,[e,c])
4.4 CALL not subset([e,c],[c,a,b])
4.4 EXIT not subset([e,c],[c,a,b])
4.6 CALL ruleL6304,_6308,_6312)
4.6 EXIT rule(r1,[a,b],c)
4.7 CALL ruleset_0f_rule(r1.,a)
4.7 EXIT rulesct_of__rule(r1,a)
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4.8 CALL subset([a,b],[c‚a,b])

4.8 EXIT subset([a,b],[c,a‚b])
4.9 CALL not membcr(r1,[r_1])
4.9 FAIL not member(r1‚[r1])

4.6 REDO rule(r1‚[a,b],c)
4.6 EXIT rule(r2,[b],c)
4.7 CALL ruleset__of_rule(r2‚a)
4.7 EXIT ruleset_of_rule(r2,a)
4.8 CALL subset([b]‚[c,a,b])

4.8 EXIT subSet([b],[c,a,b])
4.9 CALL not member(r2‚[r1])
4.9 EXIT not membcr(r2.[r1])
4.11 CALL interpret([a,b],[e,c,a,b],[a,b,c,d,e],[r2,r1]_)
5.] CALL subset([a,b,c,d,e],[c,c,a,b])

5.1 FAIL subset([a,b,c‚d,e],[e‚c‚a,b])
5.1 CALL precondition(a,_9960)
5.1 EXIT preconditi0n(a,[])
5.2 CALL subset([],[c,c,a,b])
5 .2 EXIT subset([],[e,c,a,b])
5.3 CALL postcondition(a,_10008)
5.3 EXIT poslcondition‘(a,[e,c])
5.4 CALL not subset([e,c],[e,c,a,b])
5.4 FAIL not subsct([c,c],[c,c,a,b])
5.3 REDO postcondition(a‚[e,c])
5.3 FAIL postconditi0n(a,_10008)
5.2 REDO subset([],[e,c,a,b])
5.2 FAIL subset([_]‚[e,c,a,b])
5.1 REDO precondition(a,[])
5.1 FAIL precondition(a,_9960)
5.] CALL precondition(a‚_9960)
5.1 EXIT precondition(a‚[])
5.2 CALL subset([],[e,c,a,b])
5.2 EXIT subset([],[c,c,a,b])
5.3 CALL postcondition(a,_10008)
5.3 EXIT postcondition(a,[e‚c])
5.4 CALL subset([e,c],[e,c,a‚b])

5.4 EXIT subset([e,c],[e,c,a,b])
5.6 CALL interpret([b],[e‚c‚a‚b]‚[a,b‚c‚d,e],[r2,r1])
6.1 CALL subset([a,b,c,d,e],[e,c,a,b])

6.1 FAIL subset([a,b,c,d,e],[e,c,a,b])
6.1 CALL precondition(b,_12892)
6.1 EXIT precondition(b‚[e,c])
6.2 CALL subset([e‚c]‚[e,c‚a,b])

6.2 EXIT subset([e,c],[c,c,a,b])
6.3 CALL postcondition(b,_12940)
6.3 EXIT postcondition(b,[a,b,c‚d,e])
6.4 CALL not subset([a‚b,c,d,e],[e,c,a‚b])
6.4 EXIT not subset([a,b,c,d,e],[6,C,a,bD

—122-



6.6
6.6
6.7
6.7_
6.6
6.6
6.7
6.7
6.6
6.6
6.7
6.7
6.8

6.8
6.9
6.9
6.11
7.1

7.1
6.11
5.6
4.11
3.11
2.3
1.1

APPENDICES

CALL ruIcL13004,_13008,__13012)
EXIT rulc(r1,[a,b],c)
CALL rulcsct__of_rulc(r1,b)
FAIL rulesct__of_rule(r1,b)
REDO rulc(r1,[a,b],c)
EXIT rule(r2,[b],c)
CALL ruleset_of_rulc(r2,b)
FAIL rulcset__of_rule(r2,b)
REDO rulc(r2,[b],c)
EXIT ruIc(r3,[c],d)
CALL ruleset__of__rule(r3,b)
EXIT ruleset_of__rule(r3‚b)
CALL subset([c]‚[e‚c,a‚b])

EXIT subsct([c],[e,c,a,b])
CALL not mmber(r3,[r2,r1])
EXIT not member(r3‚[r2‚r1]) '
CALL interpret([b],[d,e,c,a,b],[a,b,c‚d,e],[r3‚r2,r1])
CALL subset([a,b‚c‚d,e],[d,e‚c,a,b])

EXIT subsct([a,b,c,d,e]‚[d,e,c,a‚b])
EXIT interpret([b],[d,e,c,a,b],[a,b,c,d,c],[r3,r2,r1])
EXIT intcrprct([b],[c,c,a,b],[a,b,c,d,c],l_r2,r1])
EXIT interpret([a,b],[e,c,a,b],[a,b,c,d,e],[r2,r1])
EXIT interpret([a,b],[c,a,b],[a,b,c,d,e],[r1])
EXIT interprct([a,b],[a,b]‚[a,b,c‚d,e],[_])
EXIT interpretl
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