Universitat Kaiserslautern
D-6750 Kaiserslautern 1, W. Germany

Fachbereich Informatik
Postfach 3049

Artificial
Intelligence
Laboratories

acki-REPORT

7
6702

o~

&
%f?(= 77@
6 8's

J
A

Specilying Meta-Level Architectures
for Rule-Based Systems

Michael Beetz

SEKI-Report SR-87-06 Juli 1987

Specifying Meta-Level Architectures
for Rule-Based Systems

DIPLOMA THESIS
University of Kaiserslautern

Michael Beetz
Department of Computer Science
University of Kaiserslautern
P.O. Box 3049
D-6750 Kaiserslautern
West-Germany

Thesis Supervisor:

Thesis Advisor:

Specifying Meta-Level Architectures
for Rule-Based Systems

by
Michael Beetz

Submitted to the Department of Computer Science,
University of Kaiserslautern,
in June, 1987 in partial fulfillment of the
requirements for the Diploma Degree

in Computer Science

Prof. Dr. Jorg Stekmann,

Research Group for Artificial Intelligence and Deduction
Systems,

Department of Computer Science,

University of Kaiserslautern,

Federal Republic of Germany

Dipl.-Math. Manfred Kerber

Research Group for Artificial Intelligence and Deduction
Systems,.

Department of Computer Science,

University of Kaiscrslautern,

Federal Republic of Germany

Abstract

Explicit and declarative representation of control knowledge and well-structured
knowledge bases are crucial requircments for efficient development and
maintenance of rule-based systems. The CATWEAZLE rule interpreter allows
knowledge engineers to meet these requirements by partitioning rule bases and
specifying meta-level architectures for control.

Among others the following problems arise when providing tools for specifying
meta-level architectures for control:

L What is a suitable language to -specify meta-level architectures for
control?
2. How can a general and declarative language for meta-level

architectures be cfficiently interpreted?
The thesis outlines solutions (o botit research questions provided by the
CATWEAZLE rule interpreter:

I CATWEAZLE provides « small set of concepts based on a
separation of control knowledge in control strategies and control
tactics and a further categorization of control strategies.

2. For rule-based systems it is efficient to extend the RETE algorithm
such that control knowledge can be processed, too.

il

Acknowledgements
I thank Prof. Dr. Jérg Siekmann and Manfred Kerber for supervising and advising my thesis.

| thank Frank van Harmelen and Gerhard Kritzschmar for serving as the most important readers for
this thesis, for their comments and valuable discussions on various topics. Many explanations in this

thesis resulted from these discussions and their comments.

| thank Lincoln Wallen, Dr. Alan Smaill and Dr. Peter Ross for their helpful comments on carlier

papers that became part of this thesis.

I thank Prof. Dr. Jorg Siekmann, Dr. Alan Bundy and Dr. Rainer Lutze for providing me the possibility

to visit the Department of Artificial Intelligence at the University of Edinburgh.

! thank all fricnds and colleagues and the DReaMers at the University of Edinburgh for their continual

support.

Table of Contents

PREFACE ii

Abstract
Table of Contents i
List of Figures

CHAPTER 1: Introduction

1.1 Research Task 1
1.2 Outline of the Thesis 2
1.3 Problems with Current Tool Systems 3
1.4 Requirements 5
1.5 Meta-Level Architectures
1.5.1 What are Meta-Level Architcctures? 6
1.5.2 Why Meta-Level Architectures? &8
1.5.3 Problems with Meta-Level Architectures 10
1.6 Production Rule Systems

CHAPTER 2: Relations to other Work 15
2.1 Classifications of Control Strategies 15
2.1.1 The Classification of Chandrasekaran 16
2.1.2 The Classification of Reichgelt and van Harmelen 17
2.1.3 The Classification of Stefik et al. 18
2.2 Related Work 21
2.2.1 Blackboard-Based Control Strategies 21
2.2.2 Programmable Production Rule Systems 23
223 NEOMYCIN 24
2.2.4 SOCRATES 26
2.2.5 TEIRESIAS 27
2.2.6 The PRESS Family 24
2.2.7 MRS 30
2.2.8 Meta-Level Architecture 31
229 KRS 32
CHAPTER 3: A Language for Representing Control Knowledge 38
3.1 Structuring the Rule Base - Structured Rule Sets 36
3.2 Concepts for Specifying Control Strategies 38
3.2.1 Phase Sequences 38
3.2.2 Rules about Structured Rule Sets 39
3.2.3 Viewing Abstractions as Opcrators in an Abstract Search Space 41
3.3 Control Tactics 42
3.3.1 Rules about Object Rules 42
3.3.2 Non-Monotonic Reasoning 43
3.4 Viewing CATWEAZLE as a Meta-Level Architecture for Control 43
3.5 Configuring an Architecture for an Application System 44
3.6 Aspects of Knowledge Representation 45
3.6.1 Usefulness of Different Kinds of Control Strategies 45
3.6.2 Expressive Power 46
3.7 Advantages of the CATWEAZLE Approach 49
Sl

3.8 Aspects of Knowledge Engineering

3.8.1 Modularity 52

3.8.2 Explainability 53

3.8.4 CATWEAZLE Tools 53

3.9 Example: Planning in the Blocks World 53

Chapter 4: Extending the RETE Algorithm to Process Meta-Level Architectures for Control 57

4,1 Introduction 57

4.2 Techniques for Increasing the Efficiency of Meta-Level Architectures for Control 57

4.2.1 Compilation of Control Specifications 58

4.2.2 Localization of Strategies 59

4.2.3 Specialization of Strategies 60

4.2.4 Storage of Meta-Level Results 61

4.2.5 Avoidance of Meta-Level Computation 61

43 Why RETE? ol

4.4 A Brief Overview on the RETE Algorithm 062

4.5 Extensions to the RETE Algorithm 70

4.5.1 Using Partitioning to Increase the Efficiency of the Matching Process 70

4.5.1.1 Extending the Structure of the Intcr-element Test Nodes 71

4.5.1.2 Procedural Behaviour of Nodes 71

4.5.2 Rules about Object Rules 72

4.5.3 Phase Sequences 73

4.5.3.1 The Structure of Pre- and Postcondition Nodes 74

4.5.3.2 The Procedural Behaviour of Pre- and Postcondition Nodes 74

4.5.3.3 Effects of Compiling Phase Sequences on Efficiency 75

4.6 Rules about Structured Rule Sets 75

4.7 Some Remarks on Implementation 75

CHAPTER 5: On the Semantics of Controlled Rule-Based Systems 77

5.1 Declarative Semantics 77

5.1.1 Formalizing Production Rulc Systems 78

5.1.2 Structuring Rule Bases 81

5.1.3 Adding Pre- and Postconditions 82

5.2 Operational Semantics 85

5.3 Soundness and Incompleteness 87

5.3.1 Soundness 87

5.3.2 Incompleteness 89

CHAPTER 6: Discussion 93

0.1 Contributions 93

6.2 Future Work 04

6.3 Implementation Issues 96

References 97

Appendices 107

Appendix A: Syntax of the CATWEAZLE Language 17

Appendix B: Example Rule Base 111

Appendix C: Set of PROLOG Clauses Specifying the Procedural Semantics of Phase Sequences 119
Appendix D: Example Run of the PROLOG Program Specifying the Procedural Semantics of Phase

Sequences 121

-

List of Figures

Figure 1.1: Typical production rule in a single-levcl rule language

Figure 1.2: Structure of meta-level architcetures (sec [Maes-86a]))

Figure 1.3: Components of a meta-level architecturce for PASCAL systems

Figure 1.4: Basic architecture of production rule system

Figure 1.5: recognize-and-act cycle

Figure 1.6: Interpretation of a production rule base on the working memory

Figure 2.1: Classification of expert systems architcctures [Stefik et al.-82]

Figure 2.2: Basic architecture of blackboard systems

Figure 2.3: Problem in the meta-level

Figure 2.4: The architecture of NEOMYCIN [vanHarmelen-87]

Figure 2.5: Reasoning rule in NEOMYCIN [Ross-86]

Figure 2.6: Task hierarchy formalized as a set of reasoning rules [Ross-86]

Figure 2.7: Specification of control in Socrates [vanHarmelen-87]

Figure 2.8: Syntax of meta rules

Figure 2.9: Object- and meta-level inference in equation solving [Bundy-85]

Figure 2.10: An object and its mela object

Figurc 3.1: Guiding search by interpreting control knowledge

Figure 3.2: Structure of a structured rule set

Figure 3.3: Phase sequence modelling the hypothesize-and-test control strategy

Figure 3.4: Rule suspending a structured rule set [rom activation

Figurc 3.5: Rule activating a structured rule set

Figure 3.7: Interpreting abstract descriptions of structured rule sets as operators

Figure 3.8: Rule suspending an object rule from activation

Figure 3.9: CATWEAZLE viewed as a meta-Level architecture for control

Figure 3.11: Meta-rule for simulating agenda-based control strategies

Figure 3.12: Control knowledge in single-level rule systems

Figure 3.13: Representation of different kinds of knowledge using structured rule sets

Figure 4.1: Taxonomy of formulae and control stratcgies associated with classes of objects in the
taxonomy

Figure 4.2: Specialization of strategies

Figure 4.3: Sample production rule R1

Figure 4.4: Pattern matching procedure for R1

Figure 4.5: Pattcrn matching procedure for R1 represented as a tree

Figure 4.6: Pattern matching procedure lor R1 represented as a graph

Figurc 4.7: Test graph for the test procedure with memorics

Figurc 4.8: The RETE algorithm from a bird’s eyc view

Figure 4.9: Example for an inter-¢clement test node

Figure 4.10: Structure of an extended inter-element test node

Figure 4.11: Example for an object rule and its description

Figure 4.12: Part of a test path created during the compilation of the rule description

Figure 4.13: Representation of a phase scquence

Figure 4.14: Example for a compiled phase sequence

Figure 5.1: Rule system, problem and the corresponding search space

Figure 5.2: Search space expanded by a phase sequence

- Vil -

26

28
29
32
35
37
kY]
39
40
41
42

48
49
51

59
60
62
63
04
65
60
68
69
71
)
73
73
74
80
83

"It is very rare indeed that somebody has
built, or is going to build an Al system
without contemplating the embedding of
meta knowledge into the system. Bul,
what seems very relevant to us to make the
difference between a successful system
and one that is doomed (o loose is the
way meta knowledge is embedded in it
and treated."

[Aiello, Levi-84]

CHAPTER 1: Introduction

1.1 Research Task

Most problems tackled with knowledge-based systems require complex systems. Therefore, tools to
facilitate time-cfficient design, implementation and testing of special-purpose problem solvers lor
different domains are needed. And, these tools should allow developers to build well-structured
knowledge bascs that are easy to maintain, However, many developers of application systems complain

about currently available tools and techniques being useful only for simple applications [Martins-84].

Problem solving in knowledge-based systems is formulated as search for a sequence of knowledge unit
applications transforming a problem state into a state containing the problem solution. Typically, scarch
spaces for these problems are too large to be searched exhaustively or blindly. So, we need to control
search.This means to prune parts of the search space unlikely to contain the problem solution and to
guide the search in the remaining search space goal-directedly. The most promising approach to satisly
this goal is to structure domain knowledge and to represent experts problem solving methods. That is, to

build an adequate problem-solving model [Nii-80].

The goal of building knowledge-based systems being adequate problem-solving models has major
impacts on their structure, inference techniques, control strategies and on requirements for tool systems

supporting their efficient construction:

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

I. Application systems require problem-dependent control strategies that are often not known in
the beginning of the system design:
Procedural programs are developed by completely specifying algorithms and implementing them
afterwards. During implementation large changes of the algorithms are exceptional cases. On the
other hand development scenarios for knowledge-based systems are characterized by explorative
programming and rapid prototyping. This means, developers using these techniques try to get a
working system for a toy version of the problem as soon as possible. Then, they gradually improve
it until they get a system solving the task required and showing the right problem solving
behaviour. Thus, languages for developing knowledge-based systems must allow great flexibility
regarding modifications.
Formalisms are needed that allow us to easily describe, modify and incrementally refine control
strategies. Additionally, representations of control strategics should be explicit, becanse implhict:

representations of control knowledge lead to difficulties when identifying causes of misbehaviour.

2. Application systems contain large amounts of knowledge:
In order to be maintainable and explainable, knowledge-based systems should be well-structured
and modular, and control knowledge should be represented in an explicit and declarative way.

Badly structured systems reduce explainability and are hard to maintain and validate.

Thus, the rescarch task for this thests is to design and implement

a tool that provides a framework to build structured knowledge bases and to describe

control strategies in an explicit and declarative way.

And, the following research questions arise immediately when trying to solve the research task:

1. What is a suitable language to structure knowledge bases and specify control strategies?

2. How can an interpreter for such a language be implemented?

1.2 Outline of the Thesis

Restricted expressivencss of representation languages, unstructured knowledge bases and implicitly
represented control knowledge are major problems caused by current tools for building knowledge-
bascd systems. We argue in favour of one particular software architecture - a meta-level architecture tor

control - 1o cope with these problems and for a language 1o specify such architectures.

The research questions stated in section 1.1, their discussion and the solutions provided by the

CATWEAZLE interpreter constitute the main part of the thesis.

CHAPTER 1: INTRODUCTION

In chapter 3 the CATWEAZLE language for representing control knowledge in rule-based systems s
introduced by describing concepts to structurc rule bases, to specify control strategies for these
structures and to specify control tactics. This language is discussed using criteria of knowledge

representation (expressiveness and cognitive adequacy) and aspects of knowledge engineering.

Chapter 4 discusses various techniques to increase the efficiency of meta-level architectures and
describes one particular compilation technique developed for the CATWEAZLE interpreter in detail.
This technique is an extension of the RETE algorithm. Control strategies, control tactics and object

rules are compiled into a unique discrimination network formalism that can be processed more

cfficiently.

In chapter S we give a declarative semantics of phasc sequences such that the search space expanded by
a phase sequence can be characterized by a regular language over rule names. We specily an operational
semantics by a sct of PROLOG clauses and prove the operational semantics correct but incomplete with

respect (o the declarative semantics.

In the last chapter the key ideas and principal contributions of the thesis are summarized and dircctions

ol future research are outlined.

1.3 Problems with Current Tool Systems

State-of-the-art tools can be divided into two major categories: expert system shells and hybrid tool

systems.

The first category contains expert system shells providing just one hardwired control strategy that cannot
be modified by the knowledge engineer. This restriction to one control strategy drastically reduces the
number of possible applications of the system. Examples of such systems arc EMYCIN

[vanMelle,Shortliffe,Buchanan-81], MED1/MED?2 |Puppe-83].

The second category contains toolkits for very high level programming languages like LOOPS
[Bobrow,Stefik-83] or ART [Williams-83] providing features for an efficient implementation ol problem
dependent special purpose problem solvers. However, they mislead to ad hoc solutions, where
knowledge, control kndwlcge in particular, is hidden in program code. For instance, LOOPS or YAPS
(Allen-82] provide concepts to structure rule bascs into rule sets, but the reasons for activating rule scts
must be encoded implicitly using various programming constructs: message passing, LISP functions or
side effects when storing or fetching values in objects. This often results in non-modular, ill-structurcd

knowledge bascs that are hard to modify and hard (o explain,

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

The most widespread approach for expert systems arce production rule systems. Therefore, we have a
closer look at them. They provide a rather straightforward but not ideal method to deseribe control
knowledge. In order to explain why representing control knowledge in a simple, single-level production
rule system is inadequate, let us look at the following rule (figure 1.1). It is expressed in a single-level

production rule language like OPSS5 [Forgy-81].

usefuiness
of the rule
application

relevance
of the rule

(rule UNDERT I
(phese INITIALIZE)

| (not (under ?block2 ?block1 ?state)) |

{on ?block1 ?block2 ?state)
e
(add (under ?block2 ?block1 ?state)))

implication

Figure 1.1: Typical production rule in a single-level rule language

From a conceptual point of view (see [Brachmun-78), [Newell-82]) we can identify three different kinds
ol knowledge in this rule:
Knowledge about when the rule is relevant.

Moslt rules contain knowledge about the solution of subproblems. This implies that they should
be applied only if the problem solver tries to solve the corresponding subproblem. When
solving complex problems with single-level rule systems knowledge engineers specily "contexts”

which the application of rules is restricted to [McDermott-81], [Brownston,etal.-85].

2. Knowledge about when a rule application is usetul or not.

For example, the application of our example rule in figure 1.1 is not useful, if the result of the

application is already explicitly contained in the working memory.,

3 The implication representing factual knowledye.

CHAPTER 1: INTRODUCTION

Mixing the knowledge types isolated above in one representation structure causes fundamental
problems. For instance, it leads to unstructured rule bases that are difficult to understand and maintain,
Also, different types of knowledge cannot be distinguished by a syntactically driven inference enging,

This is important for the purpose of explanations, for instance.

An analysis identifying other kinds of knowledge mixed in production rules can be found in [Clancey-

83b).

Gary Martins [Martins-84] summarizes some problems he had with existing tool systems:

"Available expert systems methodologies seem to be straightforward and effective only for
relatively simple applications. For applications of even modest complexity, most expert systems
code is generally hard to understand, debug and maintain."

"The virtues of suppressing explicit control statements in expert systems is certainly debatablc.
In practice, they tend to be replaced by hidden control variables, or artificial database elements
that are created to secretly track program states. Invariably, these complicate both the database
and the rules themselves.”

"The lack of explicit control makes it painful to identify the causes of misbehaviour in rule-
based programs. As rule sets grow large, the collection as a whole takes on the character of a
mysterious black box. It has behaviours, but we don’t know why."

"In real life, expert system rules are not independent chunks of expertise; they quickly become
highly interdependent, often in subtle ways. For example, adding new rules to a large rule-based

program nearly always requires revision of control variables and (left-hand side) conditions of
earlier rules."

1.4 Requirements
A knowledge representation language for control knowledge should satisly the requirements listed
below:

1. Express different kinds of control strategics, e.g. blackboard-based ones or control strategics with

a fixed order of abstract steps etc.
2. Explain current problem solving states in a "natural" way.

3. Support the formulation of control strategics that mirror the experts way of problem solving by
their syntactic structure. This means, steps in the problem-solving process should be represented

as syntactic units of the knowledge representation language.
4. Drive the same object-level rule base with different control strategies.

5. Identify different kinds of problem solving knowledge by their syntactic structure (sec scction 1.3).

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

"I suggest that a meta-level architecture is
one which can reason about the control of
operations in a domain using declarative
representations."

[Batali-56/

1.5 Meta-Level Architectures

Besides philosophical interests in meta-level architectures, the use of programs that are able to "reason
about themselves' and therefore have some kind of “self-awareness”, have some important technical
benefits |Batali-86]. Many researchers propose mecta-level architectures (o overcome problems

oceurring, for instance, when using currently available tool systems.

In this scction we first clarify the notion of meta-level architectures, present arguments (o usc meta-level
architecturcs as the underlying design principle for knowledge-based systems and finally, state somc

problems when building tools for specifying meta-level architectures for control.

1.5.1 What are Meta-Level Architectures?

Recently, the notion of meta-level architectures has become very popular [Aiello,Levi-84]. As a result of
this popularity many definitions have been given by different rescarchers having different motivations.
Therefore, this section does not want to give just one more definition but rather wants to characterize
meta-level architectures by their crucial architectural features. This characterization is strongly based on

work done by Pattic Maes [Maes-86b] and Frank van Harmelen [vanHarmelen-87].

Meta - Level

[Computation] | Data

Domain of Discourse

Figure 1.2: Structure of meta-level architectures (see {Maes-86a])

s

CHAPTER 1: INTRODUCTION

The main characteristic of meta-level architectures is the existence of meta-level knowledge. In
[Davis,Buchanan-77] Randall Davis and Bruce Buchanan emphasize:

"In the most general terms, meta-level knowledge is knowledge about knowledge. Its primary

use here is to enable a program (o "know what it knows', and to make multiple uses of is

knowledge. That is, the program is not only able to usc its knowledge directly, but may examine

it, or direct its application.”
Meta-level architectures consist of al least two distinet hicrarchically ordercd modules, called levels (see
figure 1.2). Levels are programs that solve problems in the lower levels. The object-level solves problems
in the application domain and the mcta-level observes the object-level and executes operations Lo

manipulate the object-level. Note, the object-level can be again the meta-level of a lower level.

In the following we call the higher level (he meta-level and the lower level the object-level. In the case of
meta-level architectures for controlling reasoning processcs in knowledge-based systems the problem

being solved is controlling inference at the lower levels.

To control a lower level a higher level must have three essential components ([Macs-86al, [Macs-8ah|,

[Macs-86c¢]).

The first component of the meta-level is the causal connection between the meta- and the object-level.

That means, actions at the meta-level cause changes in the problem-solving behaviour of the object-level.

There must be an architecture for introspection. The knowledge-based system must have the possibility

to switch among activities on the different levels.

Mosl important, the mela-level must have an explicit model of the object-level computation. This
criterion differentiates our notion of meta-level architectures from some LISP or operating system

programs that have the first two criteria but not the fast onc.
We can always view a computational model as consisting of three components [vanHarmelen-87:

1. the program code,
2. the computational strategy and

3. the state of computation.

Toillustrate this we take PASCAL as an example, The program code is a program to be executed by the
PASCAL run-time system. The computational strategy is determined. It specifics how statements in the
program are executed and affect the values of program variables or the control flow. Thirdly, the state of
computation is given by the values of all program variables and the part of the program that still has to

be executed. Figure 1.3 shows the architecture of such a meta-level architecture.

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

architecture
n O‘
i introspection

meta - level

archlitecture

state
of
computation

values of the '

program
variables
ogram counte

model
of
computation

sralegy
of
computation

PASCAL
run time
system

causal
connection

Figure 1.3: Components of a meta-level architecture for PASCAL systems

However, this view of computational models is so general, that other computational models like
TURING machines, PROLOG theorem provers or production rule systems can be viewed this way. For
the purpose ol this thesis we take a closer look at meta-level architectures for controlling inlerences mn

production rule systems.

1.5.2 Why Meta-Level Architectures?

Meta-level architectures are suggested by many researchers and for several reasons to be the basic

software architecture for knowledge-based systems.

CHAPTER 1: INTRODUCTION

Luigia Aicllo and Georgio Levi {Aiello,Levi-84] discuss in an overview paper the use of meta knowledge

in Al systems:

"... meta knowledge is mainly used to improve the expressive power of the language and (o
allow the definition of control knowledge (heuristics)."

As they stress in their paper, not the cxistence of meta knowledge itself is the keypoint of powcrful

systems but rather the way it is represented:

"It is very rare indeed that somebody has built, or is going to build an Al system without
contemplating the embedding of meta knowledge into the system. But, what seems very relevant
to us to make the difference between a successful system and one that is doomed (o loose is the
way meta knowledge is embedded in it and treated."

Michael Genesereth [Genesereth-83a] emphasizes the importance of declarative partial specifications of

behaviour that can be refined incrementally:

"... The key feature of the architecture is a declarative controf language that allows one to write
partial specifications of program behaviowrs."

In this paper we focus on using meta knowledge to control problem solving processes. Reasons for
controlling scarch al the meta-level rather than at the object-level are pointed out by Alan Bundy and

Bob Welham in [Bundy,Weltham-81]:

".. the meta-level search space is usually much smaller than the object-level space it is
controlling and this helps to overcome the combinatorical explosion."

Alan Bundy et al. [Bundy,etal.-79] stress following arguments in favour of an explicit representation of
control knowledge as meta knowledge:

"... The argument is for systems to make explicit the full knowledge involved in their behaviour,

which in turn aids the modification of their data and strategies, thus improving their robustness

and generality. This leads the way (0 systems which could automatically modify their strategies
and explain their control decisions."

N

William Clancey [Clancey-83a] discusses the impact of an explicit representation of control knowledge

on design and maintenance of large knowledge-based systems:

"4 knowledge base is like a traditional program in that maintaining it requires having good
understanding of the underlying design. That is, you need (0 know how the parts of the
knowledge base are expected to interact in problem solving.”

[Neches,Swartout,Moore-84] points out that it is important for a program that it can explain why ccrain
actions are chosen by the system rather than other ones.
"... That is, such systems cannot tell why what the system is doing is a reasonable thing to be

doing. The problem is the knowledge required to provide these justifications is needed only
when the program is written and does not appear in the code itself."

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

1.5.3 Problems with Meta-Level Architectures

Obviously mcta-level architectures are possible solutions for problems like those discussed in section 1.3:

Meta-level architectures allow o separate control and object knowledge and the meta-levels have

explicit and declarative models of the computation in the corresponding object-level. Therefore, we

decided to implement a tool for building mcta-level architectures for control. In the context of this

approach the rescarch questions stated in section 1.1 can be further refined.

Three problems arise immediately when one wants to provide tools for specifying meta-level

architectures for control:

1.

What is a suitable language to specify meta-level architectures for control?

Scveral rescarchers argue to use a logical language for specifying control. For instance, Pat Hayes

|Hayes-77] takes this point of view:

"In order to design the interpreter for such a system™, one needs a framework in which these
behaviours can be adequately described. Logic - in the notion of proof - provides a richer such

framework than any of the usual procedural ideas."

Robert Kowalski and Kenneth Bowen |Bowen, Kowalski-82} implemented a PROLOG interpreter

in PROLOG that can be used to control scarch.

Of course, there is no doubt that other computational models can be simulated within logic
(|Hayes-73|, [Hayes-79]). But, the sparsimonity of predicate logic is paid for with morc
computational efforts at run time**, Luc Steels [Steels-84] calls this and other phenomena that

arise when choosing only a logical language for knowledge representation the logic tarpit.
The following limitations of predicate logic particularly reduce its applicability for our purposes:
(1) No explicit structuring of the knowledge basc is supported.

(ii) No built-in concepts are provided to describe the control flow in the system. The
usefulness of knowledge unit applications has to be checked by deductions and this
enlarges the overhead for meta-level computations. In particular, the search space for the

problem is enlarged.

* meant is a system which can describe its own inferential processes

** Built-in operations have to be simulated by deduction chains and cause larger scarch spaces

10 -

CHAPTER 1: INTRODUCTION

2. How can a general and declarative language for meta-level architectures be interpreted

efficiently?

As we have seen in section 1.5.1 it is required for meta-level architectures to have declarative and
explicit representations of the object-level and the control knowledge. On the other hand, the
interpretation of explicit and declarative knowledge is very time-consuming. Thus, when providing

such languages it has to be guarantced that they are interpreted in an efficient way.
3. What is the meaning of such a language?

A major advantage for using logic to control search is its well-defined semantics. When providing
another kind of language it has to be defined what it means to specify a control strategy over an

object-level knowledge base.

These three questions are addressed in the chapters 3, 4 and 5, that constitute the main part of the

thests.

1.6 Production Rule Systems

The object-level in the CATWEAZLE inference engine is chosen to be a production rule system
because production rules are widely used as basic knowledge representation technique in complex
knowledge-based systems. Frederick Hayes-Roth [Hayes-Roth-85a] stresses the following arguments in
favour of rule-based systems:
"Rule-based systems (RBSs) constitute the best currently available means for codifying the
problem-solving know-how of human experts. Experts tend (o express most of their problen-

solving techniques in terms of a set of situation-action rules, and this suggests that RBSs should
be the method of choice for building knowledge-intensive expert systems.”

In production rule systems knowledge about the domain of discourse is represented as a scl of

production rules that are independent chunks of experts knowledge.

A production rule system (figure 1.4) consists of
- a working memory,
- a production rule base and

- a production rule interpreter.

The working memory contains declarative knowledge (facts), represented in a symbolic language often
corresponding to a restricted propositional logic where the atomic formulac are implicitly connected

with an and-operator. All entries in the working memory represent statements that hold in the domain of

211 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

discourse under consideration. The working memory is a partial model of the problem domain that can

be changed by adding or deleting working memory elements.

rule interpreter

production rule basge working memory

Figure 1.4: Basic architecture of production rule system

In the simplest case a production rule base is a set ol production rules*. A production rule has the

format
< condition-part > --> -7 action-part >

The condition part contains several patterns describing a set of working memory elements. The action

parl contains operations to modify the working memory (sce figure 1.6).

Rules arc applicable (can tire) whenever their condition parts arc satisfied by a set of working memory
clements. We say a condition part is satisfied by the current state of the working memory if there is an
instantiation for the variables in the condition part such that all instantiated condition part clements arc
clements in the working memory. The process of finding all applicable production rule instantiations

with respect Lo one particular state of the working memaory is called pattern matching,

The rule interpreter interprets the production rules in the production rule base on the working memory.

The essential components of a rule interpreter are:

the pattern matcher

compares patterns occurring in the condition parts of rules with working memory elements and

determines the set of applicable rules

* Note, the CATWEAZLE inference engine introduced in chapter 3 provides concepts to structure production rule bases in

structured rule scts.

S12-

CHAPTER 1: INTRODUCTION

- the contlict resolution component
Conflicts arise if more than onc production rule instance is applicable in a given state. The

conflict resolution component then sclects one applicable rule to apply.

the action part handler

exccutes the instantiated action part of (he rule instance chosen by the conflict resolution

component on the working memory.

The rule interpreter executes the so-called recognize-and-act cycle until there is not any applicable rule

instance left or a stop operation has been executed in the last cycle.

The recognize-act-cycle consists of the phascs:
- pattern matching where the applicable rule instances are determined,
- conflict resolution (o select the rule o be applied and

- action handling where the sclecred rule is exeeuted.

More detailed descriptions of production rule systems can be found, for instance in [Davis,King-84],

|Haycs,Roth-854a].

MATCH — PHASE

CONFLICT
RESOLUTION PHASE

Figure 1.5: recognize-and-act cycle

-13 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

on(a b)

on{a b) on(b c)

on(a b) | on(a b)
on(b <)

g::: ;; :::::) ;; on(c d) ::g‘i,e (?a o

above(a c) above(a c) above(b &)

above(b d) bounind

PRODUCTION RULE BASE

1 on(?x ?y), R2: on(7x ?y)
on(?y ?z) above(?y ?2)
- >

above(?x ?2) ;bove(?x ?2)

Figure 1.6: Interpretation of a production nile base on the working memory

14 -

CHAPTER 2: Relations to other Work

2.1 Classifications of Control Strategies

Different problem categories like diagnosing and planning have different characteristics which require
different problem-solving methods to be solved cfliciently. To support the construction of systems for a
large variety of problems we need an adequatc sct of control strategies as formal representations of

problem-solving methods.

Classifications of control strategies arc useful to measure the expressive power of a language for
specifying control strategies. We use such a classification to prove the expressiveness of the control

language introduced in this thesis.

Before designing knowledge-based systems the problem und domain of discourse have to be analyzed
(sce for instance [Stefik et al.-83], [Reichgelt,vanHarmelen-85], [Chandrasekaran-84], [Beetz-85]). Based
on this analysis a knowledge representation suitablc to represent all relevant kinds of knowledge and an
appropriate problem solving method can be chosen. The performance of the developed application
system crucially depends on the contained knowledge, its formal structure and the control strategy

driving the problem solving process.

w I8 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

The performance of formalisms and architectures for a given problem are determined by the complexity
of the problem and the characteristics of the available knowledge. Basic knowledge processing
techniques have to be augmented by concepts allowing to solve more complex problems. Search

techniques are a particularly important kind of these techniques.

2.1.1 The Classification of Chandrasekaran

Chandrasekaran ([Chandrasekaran-83], [Chandrasekaran-84}, [Chandrasckaran-85},
[Bylander,Chandrasckaran-86]) stresses the following arguments: One uniform language is to weak to
represent all different types of knowledge and problem-solving methods required by different categories
of problems*. On the other side, hybrid systems do not provide any guidance how to build special

purposc problem solvers for a particular application.

As a solution (o this dilemma Chandrasckaran |Chandrasckaran-85) argues for a framework of generic

tasks, cach containing particular kinds of knowledge and families of control regimes.

Chandrasckaran specifies generic tasks by:
1. A task specification in the form of generic types of input and output information,

2. Specific forms containing the basic picces of domain knowledge needed for the task, and
specific organizations of this knowledge particular to the task and

3. A family of control regimes that are appropriate for the task.

In a development scenario for this approach problems are decomposed in subproblems corresponding
to generic tasks and the system to be designed is composcd of modules having the characteristics of the

corresponding tasks.

This classification of expert systems tasks [Chandrasckaran-85] identifies six generic tasks:

- classification,

- state abstraction,

- knowledge-directed retrieval,

- object synthesis by plan selection and refinement,
- hypothesis matching and

- assembly of compound hypotheses for abduction

* I Bylander and B. Chandrasekaran stress that different languages 10 control search are required. The language for control
depends on the object language (e.g. logic, rules or frames) that should be controlled. Note, that this point of view is not taken n
this thesis. Here, we argue in favour of a single language that should be used 1o represent the different problem solving methods

required by different problems.

-16 -

CHAPTER 2: REL.ATIONS TO OTHER WORK

Classification [Clancey-85b] is the task to classily a (possibly complex) description and place il at the
right place in a classificatory concept taxonomy. An appropriate control regime is a top-down search

technique like "Establish-and-Refine".

The second generic task is state abstraction. Here, a change in a state of the system is given and the goal
is to predict the effects on the behaviour and [unctions of the system. Knowledge is organized in

system/subsystem or component relationships. For this task a bottom-up technique seems to be suitable.

Knowledge-directed information passing tries to inler attribute values for partially specified concepts by
looking at conceptually related concepts. Here, knowledge can be organized in frame-hierarchics and
reasoning can be done by first looking-up in the data base and if this is not successful inherit it from

morge general concepts.

Another generic task is object synthesis by plan selection and refinement. Here, object structures are

represented as hicrarchies and again problems are solved in a top-down manner.

The hypothesis matching task gets a hypothesis and a set of data as its input and decides whether or not

the hypothesis explains the input data and is cohcrent with it

Abductive assembly of explanatory hypotheses trics to find the hypothesis explaining a given sct of data

in the best way. An appropriate control regime alternates assembly and criticism.

Descriptions of control strategies in this classification are not detailed enough to serve as a measurement
for the expressive power of a formalism for con(rol knowledge. However, the basic idea (o configure a
knowlcdge representation and an adequate control strategy according to the corresponding problem-
solving type seems to be very promising. Such o framework can provide guidelines how to structure a
task and and how to choose an adequalc representation of it based on an analysis using the introduced

sct of generic tasks.

2.1.2 The Classification of Reichgelt and van Harmelen

The classification of Han Reichgelt and Frank van Harmelen [Reichgelt,vanHarmelen-85] gives crileria
for choosing a control regime and an adcquate logic for the problem, for instance modal or time logic. In
this thesis we focus on task relevant criteria affecting control regimes. Knowledge-based systems arc

classified in four task categories:

-17 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

- Classification
- Monitoring
- Design

- Simulation

For classification a top-down refinement stratcgy, for instance, iteratively establishing and refining a
possible solution are suggested as subgoals in the problem solving task. Monitoring systems can be
implemented using bottom-up reasoning techniques. Design systems construct complex objects satisfying
given conditions and constraints. Simulation systems try to simulate how changes in a system state affect

future behaviours.

Again, the point of this work is to give criteria for an appropriate knowledge representation language

and control strategy. Only four primitive tasks are suggested as a complete classification.

2.1.3 The Classification of Stefik et al.

In this section we describe the classification by M. Stefik ct al. [Stefik,etal.-82] based upon a
categorization of problem characteristics that complicate problems. Then, a classification of problem

solving methods is given that allows to cope efficiently with problems having these characteristics.

The classification is based upon three main classes of problem characteristics:

- unreliable data and knowledge
- time-varying data

- large search spaces
Unreliable data and knowledge

In many domains problem solving involves unreliable data and knowledge. Uncertainties may be
caused by ignorance about data and knowledge or by indeterministically appearing events. Different

treatments are required for the two kinds of unreliable data and knowledge:
Uncertain (vague) knowledge:

Formalizing uncertain knowledge can be done by associating statements with plausability values
given as numbers. The plausability of a statement corresponds to common sense notions like

"certain”, "possible” and so on.

18-

CHAPTER 2: RELATIONS TO OTHER WORK

- Incomplete knowledge

Non-monotonic reasoning based on the notion of assumptions allows reasoning with incomplete
knowledge. A system reasoning non-monotonically must be able to abandon assumptions when

contradictions occur.
Time-varying Data
Representing time models adequately is a presuppostion for modelling many real worlds.
Large Search Spaces

The most important characteristic for the purpose of this thesis are large search spaces. Control
knowledge is necessary to solve the control problem. Control knowledge decides which inference
step to do in a given problem statc. The adequacy of a control strategy depends mainly on the

characteristics of the search space of the problem.
In small scarch spaces forward or backward chaining are sufficient.
- Forward Chaining
can be done, for instance, using the recognize-act-loop described in section 1.6
- Backward Chaining

When rule bases are interpreted with a backward chaining control strategy rules are applicable il
their execution satisfies the currently active goal. The problem is solved if all active goals arc
satisfied by the current state of the working memory. Preconditions of applied rules that are not.

satisfied by the current state of the working memory become active goals.
The following control strategies can be applied to scarch spaces too large to be searched cxhaustively.

If there is a fixed partition of the search spacc "generate-and-test” or "hypothesize-and-test” may be

appropriate.
- "generate-and-test" strategy

The strategy consists of a phase cnumerating partial problem solutions in an clficient way and a

phase tesling whether this partial solution may lead (o a complete solution.

-19 -

SPECI\FYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

"hypothesize-and-test" strategy

consists of the program states "hypothesize” and "test”. In the "hypothesize" state solutions that

seem Lo be interesting to test are hypothesized (and not compeletely enumerated).

Small Solution Space
Data Rellable & Fixed
Rellable Knowledge

Exhaustive Saarch
Manotonic Reasoning
18ingle Line of Reasoning

Big Factorable
Solution Space

Unrsiable Data
or Knowledge

Hierarchical
Generate — and — Test

Combining Evidence
Probability Modeies

Fuzzy Modals
Exact Modeis

Representation Method
Too Ineflicient

No Evaluator for
Partial Solutions

Single Line of Reasoning
Too Weak

Tuned Data Structures
Knowiedge Compliation

Fixed Order of Multiple Lines of

Reasoning

Single Knowiedge Source
Too Weak

No Fixed Sequence
of Subproblems

Heterogenous Models
Opportunistic Scheduling
Variable — Width Search

Abstract Search Spacs

Subproblems Interact

Constraint Propagalion
Least Commitment

Explanation of the symbois and
relationships:

Probiem type PT2 originates from
the problem type PT1 by loosening
the requirement Afor PT110 8. C
are appropriate techniques to sove
PT2.

Efficient Guessing
Is Needed

Beilef Revision for
Plausibie Reasoning

J

Figure 2.1: Classification of expert systems architectures [Stefik et al.-82]

-20 -

CHAPTER 2: REI ATIONS TO OTHER WORK

A more complicated control strategy is one with specific domain-dependent subproblems that are solved

n a fixed order.

In other domains orders for solving problems have to be adjusted to the particular problem. In this case
the least-commitment strategy seems to be appropriate. Here decisions about when solving which
subproblems are delayed until the problem solver has enough information to resolve occurring ordering

conflicts.

Some problems cannot be solved using only facts. Efficient guessing is needed. Non-monotonic

reasoning with dependency-directed backtracking is a search technique coping with these problems.

When problems are too complex it may be necessary to reason with different simplified views of the
problem. These different aspects of the problem can be solved by loosely coupled subsystems exchanging
only some important intermediate results like hypotheses or solutions for subproblems. This problem
solving paradigm can be modeled using blackboard-based control strategies (see section 2.2). By using

this basic architecture problems requiring multiple lines of reasoning can also be solved.

For the purpose of measuring the expressiveness of the control language this classification scems Lo be
the most appropriate one, This does not mean that it is better than the others but it includes morc
detailed mappings between the structure of the scarch space and the suitable problem solving method

and search techniques are enumerated more completely than in other classifications.

2.2 Related Work

The work presented in this thesis is strongly related to other subfields in automated reasoning and
knowledge-based systems, Blackboard-based systems and the CATWEAZLE interpreter share of the
issues addressed. Therefore, their description and analysis is part of this section. Furthermore, some
work has been done to make production rule systems programmable. Advantages and drawbacks arc

discussed. Most important is a lot of basic work done in the field of meta-level architectures.

2.2.1 Blackboard-Based Control Strategies

Blackboard-based systems [Nii-86a] and [Nii-86b] are an important class of inference engines that arc
often used for expert system construction. They arc an appropriate architecture when processing several

lines of reasoning or loosely coupling several independent subsystems.

220

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

The main components of a blackboard system are:

- a blackbonrd,
- knowledge sources and

- a scheduler

The blackboard is a global data structure with a number of abstraction levels. In the blackboard solution
clements, hypotheses and other informations should be globally available. The blackboard is the
component where different knowledge sources communicate. These informations are not just an

unordered set but organized in several dimensions like levels of abstraction or time.

Knowledge sources are small independent problem solvers in the form of pattern-directed modules.
They deal with particular subproblems like gencrating hypotheses, verifying a certain class of hypotheses
and so on. Knowledge sources read the current problem solving state from the blackboard and add own

parts of the problem solution to the blackboard.

The third component is the scheduler determining the order in which knowledge sources are applied
within a problem solving process. The scheduler maintains a list of applicable knowledge sources
ordered according to ratings. The rating estimates the usefulness of applications of knowledge sources to

a particular problem solving state. The ordered list of applicable knowledge sources is called agenda.

The problem solving process itself can be characterized as incremental and opportunistic. Incremental
means that problem solutions are generated or refined stepwise. Opporiunistic means that in the case of
multiple applicable knowledge sources one is chosen that is likely to contribute to the most important
solutions. Several hypotheses or problem solving methods can be cxamined simultaneously. And, several

rcasoning techniques like bottom-up or top-down problem solving can be integrated in one architecture.

Figure 2.2: Basic architecture of blackboard systems

537 &

CHAPTER 2: RELATIONS TO OTHER WORK

HEARSAY-III is a tool for blackboard-based systems which is abstracted from the HEARSAY and
HEARSAY-1I speech-understanding systems (sec e.g. | Nii-86b]).

The BBI [Hayes-Roth-85b] system applies the blackboard approach to application problems as well as
to control problems. The control problem the problem to decide which knowledge source to apply in a
given problem solving state is just another problem solving task and solved by another blackboard
system. For both problem solving tasks different blackboards are available. Knowledge sources for the
control blackboard generate and modify hypotheses, decisions and solution elements for the control
problem. Levels of abstraction of the control blackboard are: problem, strategy, focus and policy.

Domain and control knowledge sources are triggered by creating decisions at the control level.

The basic problem solving tactic to choose in each problem solving state the most promising knowledge
source is useful for many applications, for instance when doing multiple lines of reasoning. But, it is al
least dubious to use ratings and scoring functions, dependent on a number of parameters. Parameter
values encode reasons for activating or suspending knowledge sources whereas evaluation procedures
encode ratings for reasons. Therefore, changing the problem solving behaviour by "tuning" parameters or
evaluation procedures often has unforeseeable, non-transparent and unwanted effects on other parts of
the system. A detailed discussion similar to this one about whether to state assumptions explicitly or to

encode them in pscudo-probabilities can be found in [Doyle-83).

2.2.2 Programmable Production Rule Systems

The lack of program control in production rule systems is widely acknowledged. As an answer to this
problem production rule languages are augmented with constructs to specify control. Thus, rule sets can

be activated by message passing or by commands of a control language.

GRAPES [Anderson,Farell,Sauers-84], a production rule interpreter with explicit control strategy, is
implemented by J.Andc;son, R. Farell and R. Sauers. GRAPES allows rules to be partitioned according
to the goals they are intended to achieve. But only dividing goals into a sequence of subgoals is available
as control stratcgy. This is adequate for its application, learning LISP programs because functions are
composed of subfunctions returning results of subgoals of the goal. But, other strategics not based on

goal reduction cannot be modeled easily in this approach.

SOAR [Laird-83] solves problems by salisfying goals using heuristic search in problem spaces. Problem
spaces are sets of states together with a set of vpcrators transforming one statc into another onc and
they are associated with subgoals. SOAR uses the universal subgoaling mechanism for problem solving:
if several operators are applicable in « given state and the information available is not sufficient to

decide which operator to apply, a subgoal is created to get the necessary information. To satisfy the task

-23-

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

some kind of meta reasoning is done (see [Maes-86¢|, [Rosenbloom,Laird,Newell-86]). If applicable

rules provide arguments to apply different operators (sce ligure 2.3) a subgoal
operator-to-apply(op 1) OR operator-to-upply(op2)

in the meta-level is created and solved [Maes-8oc].

for current — state: r1 = true
12 = frue

(1) F current — stats — fuifits - requirement(rt)

THEN best-- opsrator —to — appiy(op1)
(D) FF current - state - fulfils — requirement(r2)
THEN best - operator - to — apply(op2)

Figure 2.3: Problem in the meta-level

Solving a subgoal is done by selecting the corresponding problem space and searching for a state in the

problem space that satisfies the subgoal.

YAPS |Allen-82), another system in this category, provides [acilities to partition rules into rule sets.
However, these rule sets can be activated by accessing or changing values in objects or by an arbitrary
program that implements the control strategy. Therefore, interactions of rule sets in a problem solving
process are not described explicitly. Even worse, rule sets can be activated as side effects when accessing

objects.

S.1 [Erman,Scott,LLondon-84] is a tool that provides a scparate representation of control. But, control is
represented procedurally using control blocks containing control statements similar (o those of

conventional procedural programming languages.

2.2.3 NEOMYCIN

NEOMYCIN ([Clancey,Letsinger-81], [Clancey,Bock-82], ([Clancey-83b], [Clancey-85a]) is a
reconstruction of the MYCIN diagnosing system [Shortliffe-76] for applications in teaching. By analyzing
MYCIN rules it was discovered that they mix both factual and reasoning knowledge* formalized as
rules. In NEOMYCIN both kinds of knowledge arc separated by specifying the problem solving
behaviour using tasks and reasoning rules [Clancey-85a). This technique makes reasoning knowledge
more independent from a particular application [Clanccy-83a). The rule in figure 2.5 is an example for a

reasoning rule:

* The notion of reasoning knowledge corresponds to the notion of control knowledge used in this thesis.

24 .

CHAPTER 2: RELATIONS TO OTHER WORK

interrogate task history

previously
deduced domain conciusions

imMerrogsts domain rules
and refations

MYCIN DOMAIN INFERENCE

Figure 2.4: The architecture of NEOMYCIN [vanHarmelen-87]

IF there are two active hypotheses that differ in some disease process feature

THEN ask a question that differentiates between them

Figure 2.5: Reasoning nule in NEOMYCIN [Ross-86]

NEOMYCIN works on an explicitly represented disease hicrarchy and has different categorics of factual
rules, like: '

- trigger rules creating new hypotheses,

data/hypothesis rules associating findings with given hypotheses, and

causal rules linking findings to diseases or categories of diseases in the taxonomy.
The problem-solving process is described by a hierarchy of tasks. Tasks are composed of a sequence of

subtasks. The decomposition of the problem-solving process is described by reasoning rules (see figure
2.6).

W25 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

make-diagnosis - >-
identify-problem,
establish-hypothesis-space,
process-hard-data.

identify-problem - >
get-initial-data,
find-chief-complaint.

establish-hypothesis-space - >
review-hypothesis-list,
group-and-differentiate.

Figure 2.6: Tusk hierarchy formalized as a set of reasoning rules {Ross-86]

The reasoning rules in figure 2.6 describe a task hierarchy for diagnosing. And, such a task hierarchy
specilies the line of reasoning within a problem-solving process. Reasoning rules like the one in figure

2.5 are associated with tasks in the task hicrarchy.

[Clancey-83a] discusses advantages of separating reasoning and factual knowledge like improved

maintainability, better explainability and the application of reasoning knowledge to other problems.

2.2.4 SOCRATES

SOCRATES (|Jackson,Reichgelt,vanHarmelen-85), [Reichgelt,vanHarmelen-87]) is a logic-based expert
system building tool developed by Han Reichgelt and Frank vanHarmelen. According to their logical

point of view the process of building expert systems consists of three steps:
I. Specifying a logical language (modal logic, time logic ete.) that depends on the domain of
discourse,
2. Specifying a set of inference rules determining which formulas can be derived from a set of

axioms.

3. Specifying a control strategy for proofs deciding which proof steps to take.

The basic architecture of SOCRATES is a meta-level architecture where control strategies can be
described explicitly. The object-level interpreter gets a formula as its input and returns a set of formulas
that can be derived using the specified inference rules. Starting from this set the meta-level component
chooses one inference step to do. Proofs are completely driven and executed by the mela-level
component. This technique is called meta-level inference. Figure 2.7 shows the specification of control in

SOCRATES.

- 26 -

CHAPTER 2: RELATIONS TO OTHER WORK

The main advantage of this system is the flexibility it allows. However, this flexibility is payed for with
cfficiency. Many inference steps at the meta-levcl may be necessary before a proof step at the object-
level is executed. To make this technique more eflicient is a current topic of research [vanHarmelen-86].
Another problem identified in this project is that logical languages are not always appropriate Lo specify
control. For instance, in the SOCRATES system the success depends on a procedural or scquential

interpretation of the theorems for control (see discussion section 1.5.3).

M, ->79 |- q
7 - &27q
w!-7pvq

@ A1 (all formula)

) [not compound - expression(formula) and
(knowledge — base — lookup(fommula)
or infer(formula)

®
L4 or ask-— ussr(formula)]}
® - > proof(formula)}

® A2 (alt formula, formulat, formuta2)
[compound - expression(formuia) and
wpiit - compound — expression{formula,formylal, formula2)
and proof(formulal)
and proof(formuia2)
-

proof(formula)]

Figure 2.7: Specification of control in SOCRATES [vanHarmelen-87]

2.2.5 TEIRESIAS

The TEIRESIAS [Davis-82] system by Randall Davis can be successfully applied to production rule
systems only driven by simple control strategies likc forward or backward chaining. When using simple
control strategies saturation often occurs as a problem. Saturation means that many production rule
instances are applicable in an interpretation cycle. Therefore, the conflict set, the set of applicable rules,

grows large.

Saturation leads to huge search spaces. Brute-force methods like randomly choosing the rule to be
applied or apply all rules yield inefficient systems. Other systems like OPSS use fixed tactics
(LEX/MEA) [McDermott,Forgy-78] to resolve conflicts. These strategies use information like specility
of rules or data elements changed in previous cycles (focussing of attention). A more promising

approach is to use problem-specific knowledge to resolve conflicts.

227

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

Refining [Davis-80] consists of pruning uscless applicable rule instances and ordering the rest of the
rules in the conflict set according to their estimated usclulness. Refining the conflict set can be viewed as
another problem-solving task. The inference cngine reasoning at the object-level can reason about
controlling the reasoning process. Knowledge about reflining conflict sets is represented explicitly as

meta rules.

The syntactic structure of meta and object rules are very similar except meta rules contain in addition to
statements about the working memory elements statements about rules in the rule base. Thus, the
difference lies in the predicates and actions used in the rules. Schemes of meta rules are showed in

figure 2.8.

e T~

___q_,__q________,_._/""
o under ¢onditions A and B

at all
@ rules which do (not) mention X 4 In their premise
In_their action
will { definitely be useless

probably be useless

.p”robably be aspecially useful
definitely be especially useful

e}
®
&
[
&
¢
®
]

Figure 2.8: Syntax of meta rules

When considering the recognize-act cycle only the conflict resolution phase is affected by meta rules.
The conflict set as outcome of the matching phase is input for the conflict resolution phase. Meta rules
fired by the current problem solving state reduce and order the conflict set. The sequence of object rules

aftcr applying the meta rules is a representation of the uscfulness of the single rules.
The conflict set refinement process consists of five steps:

L L -> conflict set

2. L'-> list of applicable meta rule instances

3. interpret meta rules in L’

4. Sort and reduce L according the criteria stated in 3

S. interpret rules in L.

28 -

CHAPTER 2: RELATIONS TO OTHER WORK

L is the list of applicable object rule instances and constitutes the initial conflict set. L’ is the hist of
applicable meta rules. Their interpretation results in a reduced and ordered conflict set. Finally, the
rules in the refined conflict set are executed. While meta rules cover a wide range of control knowledge

they are not appropriate to model, for instance, scquences of actions.

The meta rules [Davis-80] are useful whenever problem dependent conflict resolution tactics are nceded.
On the other hand, the order in which subproblems should be tackled cannot be specified casily because

these meta rules are specific to a problem-solving state.

2.2.6 The PRESS Family

4 sin(x) 6os(x) = 1

2 sin(2x) = 1

object — level rule: sin(u) cos(u) = 1/2 sin(2u)
meta — level rule: collection of x

The 2 occurences of x are merged to 1 prior
to isolating It.

Figure 2.9: Object- and meta-level inference in equation solving [Bundy-85]

The PRESS system ([Bundy,Welham-81], [Bundy,Sterling-81], [Bundy,Sterling-85]) is a system for
equation solving performing algebraic manipulations on an equation. To control the manipulation
process equations are described by meta concepts like number of variables, distance of different
occurrences of variables, etc. Analyzing cquations and guiding the transformation of an equation is donc
by deductions at the meta-level. Manipulations are completely described at the meta-level by specifying
methods for achieving subgoals expressed in meta-level terms like reducing number of variables or
isolate them. The analysis of the structure of an equation is used to choose the right method to transform

it. Deductions at the meta-level control the search at the object-level.
At the object-level a method is implemented by a sct of rewrite rules.

A method is a theorem at the meta-level and defines how (o solve equations. For instance, let us look at

the following example:

229 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

singleocc(X,L=R) ->
[position(X,L,P) &
isolate(P,L = R,Ans) <->
solve(L =R, X,Ans)].

The axiom states when the formula L =R contains a unique occurrence of the variable X the equation
can be solved if and only if it is solved by the isolation method. This can be described procedurally by

the following Horn clause that can be used to control search.

singleocc(X,L=R) &
position(X,L,P) &
isolate(P,L.=R,Ans) - >
solve(L =R X,Ans).

2.2.7 MRS

MRS (Multiple Representation System) (|Genescreth-81), [Genesereth-82], [Genesereth-83b],
[Genesercth,Greiner,Smith-80]) provides a representation language for the partial description of control
strategies. The system supports system construction by stepwise adding pieces of control knowledge until

the system satisfies the required behaviour.

MRS provides a set of commands that can be used to specify how asserting, deleting or proving a
predicate should be done. To do this, the knowledge engineer can use commands like (toachieve <p >
<m>), (tolookup <p> <m>) or (toassert <p> <m=>) where <p> is a pattern for propositions
and <m > is a method. For instance, (tolookup (p 8x 1) lookup1) means that the method lookup ! should

be used to determine the propositions matching (p $x 7).

While the MRS language allows much flexibility to specify control the control knowledge is implemented
procedurally using methods that may have side effects and are not declarative, Conrad Bock and
William Clancey reimplemented the control strategy of NEOMYCIN in MRS [Clancey,Bock-82).
However, [Clancey-86] points out:

"Unfortunately, recoding the interpreter slowed down the interpreter by an order of magnitude
and made the procedure too obscure to read or maintain.”

-30 -

CHAPTER 2;: RELATIONS TO OTHER WORK

2.2.8 Meta-Level Architecture

Michael Genesereth [Genesereth-83a] extends the predicate logic with some built-in functions or
operations executed by the interpreter. It differs from the MRS system in allowing control knowledge
only to be specified in an declarative way. Using these primitives, conflict resolution tactics, control
strategies or problem solving states can be described. The search behaviour of an application system is

then specified by a set of axioms.
Operations provided by the MRS system are:

IN(<i>, <k>) <i>th input of task <k>

oUT(<i>,<k>) <i>th output of task <k>

OPR(<k>) operation specified by task <k >
BEG(<k>) start of task <k >

END(<k>) end of task <k >

TIME(<t>) interpreter time

EXECUTED(<k>) task <k> was executed
RECOMMENDED(<k>) task <k> isrcpresented for execution

Using these primitive operations a variety of control strategies can be specified.
Example: Axioms for a simple consulting system |Genesereth-83a]

Al: PROVED(p) and INDB(p= >q) = > APPLICABLE(ADDINDB(q,p,p= >4))

If p is already proved and there is an axiom p:=>q. then p can be established with g and
p= >gq as justifications.

This axiom specifies forward chaining

A2: WANTPROVED(q) and INDB(p= >gq) = > APPLICABLE(ADDGOAL(p,q,p= >q))

If the current goal is to prove g and p= >q then p can be established as a goal with
Justifications q and p= >q.

This axiom specifies backward chaining.

A43: WANTPROVED(q) and ASKABLE(q) = > APPLICABLE(ASK(q))

If the current goal is to prove q and g is an askablc property then ask(q) is un applicable
operation.

231 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

A4: APPLICABLE (k) and NOT(EXECUTED(k)) = > RECOMMENDED(k)

If a task k is applicable and not yet executed, then recommend the execution of k.

In [Genesereth-83a] some other examples of control strategies are axiomized using the MRS language:

- rule orderings

- breadth-first search

- depth-first search

- macro operations

- object-oriented programming

- procedural attachment

Like MRS the system is very flexible but a severe drawback seems to be that the concepts provided are
too primitive. Even to determine applicable rule instances (axioms A2 and A3) inference steps at the
meta-level need to be done. These additional inference steps cause much overhead for the meta-level

and yield inefficient systems.

2.2.9 KRS

(MeTa—oF—roo-oBiEcT) 777 i,

2 type: default - meta — object

% referent: foo

% number — of - Instances: an integer

% make — an — instance: a function that makes an instance
% of the referent (= object foo) and
% Increments the variable

/ number — of - instances with one
% print: a function to print the object

meta — object: meta — of — foo — object
7 s b e,

Figure 2.10: An object and its meta object

KRS [Steels-84) is an example for an object-oriented system that allows to specify introspective systems,
a particular kind of meta-level architecture. An introspective system is a meta-level architecture with
itself as the object-level [Maes-86b]. A program in KRS consists of a set of objects communicating by
message passing. Every object has a meta-object representing the full local interpreter for their objects
(see figure 2.10). It is, meta-objects execute computations to create, manipulate and specify their

responses Lo received messages.

S32-

CHAPTER 2: RELATIONS TO OTHER WORK

For instance, if you send the object FOO the message (send foo print) the object sends the message
(send meta-of-foo-object (how-to-respond-to print)).

The META-OF-FOO-OBJECT computes how to respond Lo the message.

In [Maes-86¢] it is argued that such a organization of application systems as introspeclive systems

improves the modularity and readability of programs.

-33.

CHAPTER 3: A Language for Representing Control Knowiedge

In this chapter the CATWEAZLE language is introduced. We claim that it fulfills the requirements
stated in section 1.4, However, in order to be casy to use and to provide special purpose tools, like

editors or debuggers, the language is kept simple and small.

From our point of view a problem solver consists of a control strategy and a set of structured rule
sets. We call such a system a controlled production rule system. A controlled production rule system
is a meta-level architecture consisting of a control component and a rule interpreter. The control
component interprets control knowledge. The different types of control knowledge expressible in this
formalism are discussed in section 3.3. The interpretation of control knowledge results in the
activation of small subsets of rules. Only one subset is active at a time and is interpreted by the rule

interpreter.

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

It is useful to keep in mind this model of interprctation when various concepts of the extended

CATWEAZLE rule language are introduced.

3.1 Structuring the Rule Base - Structured Rule Sets

Many models of problem solving behaviour are based on the assumption that humans tackle occuring

subproblems separately and in a rational order. Rational order means either that
1. there exists a predefined order, or

2. there exists a plan for tackling subproblems in which most of the problems of this type are

solved, or
3. in cach situation there are reasons to tackle once subproblem rather than other ones.

Also, they assume only a small subset of knowledge to be relevant during the solution of one

subproblem.

In the development of application systems, R1 [McDermott-81] for instance, partitioning the rule
basc according 1o subproblems to be solved by the rules is ofien felt to be necessary. If single-level
production rule languages like OPS5 are chosen as basic representation languages this is donc
implicitly using the context mechanism described in section 1.2, i.e. adding condition part elements
indicating the relevance of the rule. However, several severe drawbacks are caused by such an
implicit partitioning. Firstly, working memory elements representing contexts cannot be distinguished
from others. Secondly, the structure of rule bases is not explicit. In addition, it is very difficult to

drive a single set of rule sets with different control strategies and control tactics.

In the CATWEAZLE language control strategies and control tactics are distinguished. Control
strategies detcrmine the order in which subproblems are tackled within a problem-solving process.
They abstract from single inference steps and reason about problems and prerequisites to solve them.
Concepts for specifying control strategies are discussed in section 3.2 and are interpreted by the
control component. Control tactics specify which rule to apply if conflicts arise or how to backtrack

when contradictions occur. Control tactics are interpreted by the rule interpreter.

The approach taken in constructing the CATWEAZLE interpreter prefers an explicit structuring of

the rule base by grouping rules together that are intcnded to solve the same subproblem.

The basic concept for this is the structured rule set. Using structured rule sets, knowledge engineers
structure the rule base with respect to different types of knowledge and the subproblems they are

intended to solve.

236 -

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

In order to guide search in a goal-directed way, a control component requires knowledge about

object-level knowledge. In the case of rule sets
a) knowledge about prerequisite of their successful application to a given problem and
b) knowledge about subproblems a rule sct is intended to solve

secems to be particularly important.

This knowledge is represented by pre- and postconditions of structured rule sets. The syntactic
structure of a structured rule set (figure 3.2) is determined by two components: the abstract
description and the content. The abstract description consists of a pre- and postcondition and the
name of the structured rule set and specifies begin- and end-states for the interpretation of the rule
set. Pre- and postconditions are symbolic expressions formulated in the object-level language. They
are matched against the working memory. Prcconditions are interpreted by the control component as
activation condition, postconditions as deactivation conditions. The content of a structured rulc sct is
interpreted by the rule interpreter and invisible to the control component. It consists of object-level
rules (like rules in OPSS) and rules about object-level rules (a kind of meta rules; see [Davis-80]) that

are discussed in section 2.2.5.

pre post—
condition conditon

" I
ruies about object rules

object rules

Figure 3.2: Structure of a structured rule set

Thus, structured rule sets are interpreted in the following manner:

They are activated by the control component. If their precondition 1s satisfied, their content is
interpreted on the working memory by the rule interpreter until the postcondition is satisfied or

no rule is applicable.

-37.-

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

3.2 Concepts for Specifying Control Strategies

The interactions of structured rule sets can be described by three basic concepts:

- phase sequences (section 3.2.1),
- rules about structured rule sets (conflict rules on the rule set level) (section 3.2.2) and

- rules for planning phase sequences (section 3.2.3).

3.2.1 Phase Sequences

A phase sequence simply is a sequence of names of structured rule sets. Preconditions of structured
rule sets are interpreted as activation conditions, their postconditions as deactivation conditions. A
structured rule set is activated when the previous rule set with respect to the phase sequence is
deactivated and its precondition satisfied by the current state of the working memory. Phasc
sequences are interpreted stepwise. The activation of a structured rule set within a phase sequence is
deterministic. "Loop" and "if" constructs may be used (nested, if necessary) to formulate more
sophisticated phase sequences that are more flexible at run-time. As an example the well-known
"Hypothesize-and-Test" control strategy is expressed as a phase sequence (see figure 3.3). Names
wrilten in capital letters denote structured rule sets. An abstraction of the rule set GENERATE-

HYPQOTHESIS is also shown in figure 3.3.

control — strategy HYPOTHESIZE_AND _TEST

INITIAL_QUESTION
loop
GENERATE_HYPOTHESIS
TEST_HYPOTHESIS
until (hypothesis(?name — of - disease, ?, evident)
end - loop
DIAGNOSIS AND_THERAPY
end — strategy

hypothesis GENERATE -
(2, interesting) HYPOTHESIS

Figure 3.3: Phase sequence modelling the hypothesize-and-test control strategy

- 38 -

CHAPTER 3: ALANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

This phase sequence describes the following problem solving method:

In the beginning of the session the system usks basic questions unfil it has got all necessary
information to hypothesize a possible discase. If the system has found a hypothesis which
seems to be interesting in the current problem solving state the system tests it. The last two
steps are repeated until a diagnosis is found or no hypothesis seems to be interesting to test.
This is the case if the postcondition of the structured rule set GENERATE-HYPOTHESIS
is not satisfied and no rule in the rule set is applicable. Pre- and postconditions for the
structured rule set GENERATE-HYPOTHESIS are also given in figure 3.3. The
precondition states that there exists no hypothesis about the disease that seems worthy (o be
tested in the current problem solving state. The postcondtion says that there exists such a
hypothesis. The rules contained in this rule set are rules of thumb which hypothesize
diseases. :

3.2.2 Rules about Structured Rule Sets

When control strategies are specified using rules about structured rule sets, rule sets are applicable
whenever the current problem-solving state satisfies their precondition. Conflicts arise if more than
one structured rule set is applicable in a problem solving state. These conflicts may be resolved using
meta-rules, rules about rule sets. By using rules about structured rule sets the knowledge cngineer
can specify situation dependent constraints for selecting a structured rule set to activate. A rule of

this kind is shown in figure 3.4.

(metarule mri*
(applicable -- ruleset ?rulesst
(with - postconditions
(subgoal ?name - of - subgoal satisfied)))
(subgoal ?7name — of — subgoal)

-

Sk

(suspend ?ruleset))

Figure 3.4: Rule suspending a structured rule set from activation

The intended meaning of this rule about structured rule sets is:

When a structured rule set with postcondition (subgoal ’name-of-subgoal satisfied) is
applicable and this subgoal is already marked 'satisfied", the rule set probably cannot
contribute anything to a problem solution and therefore its application should be prevented.
We say the rule set is suspended.

-39 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

Another rule about rule sets is the activation rule in ligure 3.5. This rule models the following conflict

resolution tactic:

If an applicable rule set is intended (has the postcondition) to salisfy a goal and this goal is
marked ’has-to-be-satisfied’ in the working meniory, then the rule set should be activated.

o

{metarule mr2*
(applicable -- ruleset ?ruleset
(with — postcondition
(subgoal ?name - of - subgoal satisfled)))
(subgoal 2name - of - subgoal has —-to - be - satisfled)
——

(activate ?ruleset))

Figure 3.5: Rule activating a structured rule set

In the current version ’suspend’-rules have higher priority than ’activate’-rules. This seems to be
rcasonable, for instance, to prevent the application of rules with postconditions already explicitly
contained in the current state of the working memory. But, other tactics for conflict resolution secem
to be possible and useful, too. Therefore, it is a goal of further research to allow for more flexible
interpretation of rules about object rules. One way (o do this is to introduce rules about meta rules.
Clearly, the current way. of doing contflict resolution can be easily specified by such a rule about meta

rules (figure 3.6).

(
\

?......O\)

(metarule rule -- about - metarulies
(applicable — metarule ?mr1
{with -- acions
(suspend *)))
(applicable -- metarule 2mr2
(with -- actions
(activate *)))
—— 2>

(aclvate 2mri))

Figure 3.6: Rule about meta rules

The flexibility of conflict resolution has to be paid for with more overhead for meta-level

computations.

4() -

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

Identifying structured rule sets with "knowledg: sources” and the set of rules about structured rule sets
with a "heuristic scheduler' enables knowledge cngineers to define simple blackboard-based control
strategies [Nii-86a). This blackboard model is still very restricted because the blackboard is the wholc
working memory and has no built-in structure. Providing concepts for modelling blackboards morc

adequately is another topic of further research (see section 6.2).

3.2.3 Viewing Abstractions as Operators in an Abstract Search Space

Abstract descriptions of structured rule sets can also be viewed as operators in an abstract search
space transforming one problem solving state into another. Such an operator is applicable i its
precondition is satisfied in the current problem solving state. The effect of executing the operator 15 a
state satisfying the postcondition. Thus, control knowledge is represented by a knowledge basc for a
planning system, Although the implcmentation of a planning system for phase sequences is beyond

the topic of this research, the key idea is demonstrated by the following example:

Let A, B, C and D be structured rule sets having the following abstractions:

A: {P1} A{P2,P4}
B: {P3,P4} B {P5}
C: {P2} C{P3}
D: {P1} D {P6)

For sake of simplicity a monotonic object rule language is assumed in this example. We can view

ahstract descriptions of structured rule scts as operators in the following way:

A: precondition: {P1}
postcondition: {P2,P4}

B: precondition: {P3,P4}
postcondition: {P5}

C: precondition: {P2}
postcondition: {P3}

D: precondition: {P1}
postcondition: {P6}

Let {P1,P8P9} be an initial problem solving state and {P5} a pattern for a problem solution. Then
(A,C,B) is a phase sequence transforming the initial state into one satisfying the pattern of the
problem solution. Phase sequences like these can be determined by a planning system.

{P1,P8 P9}

-A-> {P1,P2,P4,P§ P9}

-C-> {PLP2,P3,P4P8 P9}
-B-> {P1,P2,P3,P4,P5P8 P9}

Figure 3.7 Interpreting abstract descriptions of structured rule sets as operalors

- 4] -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

PS is contained in the problem solving state APPLY(BAPPLY(C,APPLY(A,{P1,P8P9}))) that is
created by applying (4, C,B) to the initial problem solving state.

Problems arising in the planning of phase sequences are discussed in papers of the Mathematical

Reasoning Group at Edinburgh in the context of proof plans (see e.g. [Wallen-83]).

3.3 Control Tactics

The CATWEAZLE language provides two [catures (o specify control tactics: rules about object rules

and non-monolonic reasoning.

3.3.1 Rules about Object Rules

Conflict resolution on the object rule level is done by rules about object rules (see section 2.2.5 and
[Davis-80]). They contain patterns of object-level rules as conditions and their action is an activation
or suspension of an applicable rule instance of the object-level. They are interpreted by the conflict

resolution component of the rule interpreter. An example for such a rule is shown in figure 3.8,

(metaruls mr3*
(objectrule ?objsctrule
(with — actions
{add (under ?block1 ?block2 ?state)))

(under ?block1 ?block2 ?state)
i — >
(suspend ?objectrulet))

Figure 3.8: Rule suspending an object rule from activation

The rule describes the following conflict resolution tactic:

When the result of a rule application is explicitly contained in the current working memory it
is not useful to apply this rule and therefore it should be suspended.

.42 -

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

3.3.2 Non-Monotonic Reasoning

Another kind of control tactics allows efficient guessing by providing an underlying rule language in
which assumptions and contradictions can be specified explicitly. By denoting contradictions

dependency-directed backtracking [Doyle-78] is invoked automatically.

Dependency-directed backtracking is more cfficient than chronological backtracking. In
chronological backtracking assumplions arc retracted in the reverse order of their assertion,
Dependency-directed backtracking determines the the set of assumptions causing the contradiction
by analyzing dependencies between facts, assumptions and conclusions. Therefore, assumptions
certainly not causing the contradiction are filtered out without doing any inferences. Only elements of

the remaining set are retracted to resolve the contradiction.

A description of the basic features of the non-monotonic rule language can be found in [KAPRI-86).

3.4 Viewing CATWEAZLE as a Meta-Level Architecture for Control

In this section we analyze the CATWEAZLE interpreter using the characterization for meta-level
architectures for control given in section 1.5.1. We look whether and how components required for

meta-level architectures are incorporated in the CATWEAZLE interpreter.

Firstly, such an architecture is required to provide an architecture for introspection, its function is to
inspect the object-level. The CATWEAZLE interpreter incorporates these functions in pattern
matching. Patterns in pieces of mcta-level knowledge may contain descriptions of the working
memory, rules and structured rule scts. Thercfore, introspective functions are implemented into the

pattern matching procedure.

Secondly, the causal connection between the meta-level and the object-level is implemented by meta
rules doing conflict resolution and phase sequences determining the sequence of rule sct

applications. Using these techniques the search at object-level is guided by the control component.

And thirdly, at the meta-level we have an explicit and declarative model of the object-level
computations. The state of computation is rcpresented by the current state of the working memory,
the set of applicable rule instances and the set of applicable rule sets. The computational strategy
contains the rule of inference, the control tactics and the control strategy. The rule of inference
determines when and how to apply an object rule is implemented in the rule interpreter. Control
tactics and control strategies are implemented cxplicitly. The representations of program code cover

abstractions of rule sets and representations of object rules.

.43 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

meta - level

architecture

uchlt;cturo p—
Introspesction : ; connection

of
computation

inference . 1 production
rule base

Figure 3.9: CATWEAZLE viewed as « meta-Leve! architecture for control

Now, we can apply this characterization of mecta-level architectures in section 1.5.1 to the
CATWEAZLE interpreter and get a framework the components of the CATWEAZLE system fit in.
This framework can be used to describe and explain interactions between components of application

systems implemented in CATWEAZLE in a better way.

3.5 Configuring an Architecture for an Application System

In order to be useful and efficient a knowledge representation language for a given task should be as
expressive as necessary and as simple as possible. ‘Therefore, configuring a system for cach task
seems to be a good idea |Reichgelt,vanHarmelen-87], Chandrasekaran [Chandrasckaran-85)

proposes the concept of generic lasks (see section 2.1.1) to specify an appropriate system

- 44 .

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

architecture. In the SOCRATES system (see section 2.2.4)the same task is done by choosing a logical

language and specifying inference rules and a control regime.

An application system specified using the CATWEAZLE language is specified by choosing the
appropriate production rule language and type of control strategy. Using this specification an
interpreter is configured at compile time that oaly supports the specified language and control
strategy. Al the moment, two production rule languages, an OPSS-like and a non-monotonic rule
language |[KAPRI-86], are available. However, other features coping with uncertain or temporal
reasoning have to be added. A current weakness of this type of configuration is that no guidelines
have been elaborated to characterize when to choose which configuration. This will be a topic of

further research.

3.6 Aspects of Knowledge Representation

To demonstrate that the CATWEAZLE language provides a suitable set of concepts for formalizing

control strategies we argue as follows:

1. Different syntactic structures distinguish conceptually different kinds of problem solving

methods.

2. Many control regimes important in expert systems construction can conveniently be modcled

in the CATWEAZLE language.

3.6.1 Usefulness of Different Kinds of Control Strategies

The following kinds of problem solving methods can be distinguished:

1. control strategies independent of individual problems,

2. problem-dependent control strategies and

3. control strategies dependent on the problem solving process or states in the problem solving
process.

1. Often the sequence for tackling subproblems within a problem solving process of a certain
class, e.g. for models of consultations, is known. In this case, the problem solving method is
independent of individual problems. Such a sequence can be represented explicitly using
phase sequences which causes the application system to be deterministic at the strategic level.

This technique cuts down the search space drastically.

= 45 .

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

2. Sometimes the problem domain is too broad to be controlied by one single phase sequence.
For instance, let us look at proving theorems in a mathematical textbook. There is no phase
sequence strong enough to solve all problems in this domain. But knowing the problem one
can often determine a phase sequence which is likely Lo solve the problem. E.g. if we want to
prove that there exists a homomorphism between two sets S,5°, we have (o prove:

(S,*) is a semigroup
(S, *) is a semigroup
exists h. forall x,y in S. h(x*y) = hix) * i(y)

3. In the third class of problems even knowing the problem does not really help us to determinc a
suitable control strategy. The reason is that too many variations in data can occur when
applying the phase sequence. For these problems it seems to be more adequate to determine
the subproblem to tackle next during the problem solving process based on the current
problem solving state. This can be done using rules about structured rule sets. In this case the
control component has less information about the strategy than in the other cases. It does not
contain knowledge about how results generated so far are used in the following problem

solving steps.

Distinguishing the different kinds of control strategies is important for transparency, explainability

and efficiency of the system,

3.6.2 Expressive Power

For the purpose of this thesis we define the expressive power of a control language as the range of
control strategies that can be modeled casily and conveniently. A problem can be modeled easily in a
language if we need not to simulate another computational model. For instance, if we want (o model
orders of executions in pure rule languages we need Lhe context mechanism discussed in section 1.3.
This seems (o be a more relevant and discriminating criterion because most formalisms are turing-

cquivalent.

The expressive power of the CATWEAZLE language is discussed using the well-known classification
in [Stefik etal.-82] (see section 2.1.3). In this section we examine how control regimes identified in

[Stefik,ctal -82] can be modeled using the CATWEAZLE language.

The first kind of control strategies described in this classification which is applicable when the search
space is big but factorable is hierarchical generate and test. This is one particular phase sequence

consisting of a generation and a test phase which arc applied itcratively until a solution is found.

- 46 -

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

Small Soiution Spacs
Data Reilable & Fixed
Reliable Knowtedge

No Particular
Control Strategy Necessa

Big Factorable
Solution Spacs

Parfcular
Phase Sequence

Representation Method

Singie Line of Reasoning . Too Inefficient
0 |

Too Weak

No Evaluator for
Partial Solutions

Rules about
Structured Ruie Seots

Phase Sequencs Knowledgs Compliation

Single Knowledge Source
Too Weak

No Fixed Sequencs
of Subproblems

Planning
Phase Sequences

Rules about
Structured Rule Sets

Efficiemt Guessing
is Nesded

Problem types descrbed in
fon — monotonic grey boxes are not supported
rule language by the CATWEAZLE controt

i language.

~

Figure 3.10: The expressive power of CATWEAZLE

If no evaluator for partial solutions is available control strategies with a fixed order of abstracted

steps may be adequate. These correspond dircetly to the notion of phase sequences.

However, the problem domain may be too broad to be scarched by a single phase sequence. In this

case |Stefik ctal.-82] suggests planning o determine a sequence in which subproblems should be

_47 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

However, the problem domain may be too broad to be searched by a single phase sequence. In this
casc [Stefik ctal.-82| suggests planning to determine a sequence in which subproblems should be
solved. This can be expressed in the CATWEAZLE language when interpreting abstract

descriptions of rule sets as operators and specifying a problem-dependent planning system.

An appropriate concept for handling interacting subproblems is constraint propagation. This is not
yet supported by CATWEAZLE. It can be viewed as another object-level language. This means, to
cover constraint propagation we need a constraint language [Steele-80] and provide it as an object-

level language like the OPSS-like and non-monotonic rule language.

Somctimes we cannot produce solutions to problems by using only facts: Efficient guessing is needed.
Belief revision and plausible reasoning are concepts (or doing efficient guessing. These are covered
in CATWEAZLE by configuring the system with a non-monotonic production rule interpreter with

an integrated reason maintenance component as rulc interpreter.

Really complex problems sometimes require to consider several lines of reasoning. To cope with such
problems blackboard-based systems can be used. Simple blackboard-based systems can be modeled
in CATWEAZLE by using rules about structured rule sets. Also, problems that cannot be solved

using a single knowledge source can be tackled in the same way.

For large systems it often turns out that a representation method is too inefficient. How to interpret

CATWEAZLE rule bases efficiently is discussed 1n chapter 4.

f//_*/

(metarule agenda — scheduler
(applicable — ruisset ?ruiesstl)

(applicable - ruleset ?ruleset2)
(better ?rulasstl 7ruleset2)

- ->

(activate ?rulssetl))

Figure 3.11: Meta-rule for simulating agenda-based control strategies

There is another technique to control search often used in expert systems but not contained in the
classification of Stefik. The agenda-based control strategy. An agenda is an ordered list of applicable
knowledge units where the usefulness of each knowledge unit is rated with numbers. These numbers
arc accumulated in some way from the ratings given Tor the reasons for activations and suspensions

of knowledge units. Thus, these numbers arc implicit encodings for these reasons. But, imagine thal

48 -

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

during the system construction another relative importance among reasons for control is required.
Then changing the rating of one reason or the accumulation procedure may have unwanted and
unforeseeable effects and causes of misbehaviour are much more difficult to find than in the casc

when reasons are represented explicitly.

However, such an agenda-based control strategy can be simulated by a meta rule as shown in figure

3.11.

Where better is implemented as a LISP function computing the ratings for two rules, comparing them

and returning true if the first object rule has a higher score than the second one.

3.7 Advantages of the CATWEAZLE Approach

. (rule start — compute — under
(block ?block1)
-—>
(add (phase- computs — under)))

{rule UNDER1
(phass computs — under)
(not (under ?block2 ?blockl ?state))
(on 7blockl ?block2 7stats)
-
(add (under ?biock2 7blockl ?state)))

(rule UNDER2
{phase compute — under)
(not (under ?block1 ?blockd 7stats))
(under ?block1 ?block2 ?siate)
(on ?blockd ?block2 ?stats)
-2
(add (under ?blockl ?block3 ?state)))

(ruis DEACTIVATE - INITIALIZE
(phase compute ~ under)
(under ?blockl ?blockx 7stats)
-

(dslete (phase INITIALIZE)))

Figure 3.12: Control knowledge in single-level rule systems

- 49 .

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

Let us take a look at the set of production rules in figure 3.12, Rule UNDERT1 is the one discussed in
section 1.3 The set of rules in figure 3.12 is intended to compute the UNDER relation in the blocks

world:

all x,y:Block. on(x y) implies under(y x)
all x,y,z:Block. on(x y) and under(z y) implies under(z x)

To make the complete computation of the UNDER relation effective, we need to control the
application of rules. To do this, we allow the rules (o fire only during the phase INITIALIZE. How

can this be done in a single-level production rule language?

A context (phase INITIALIZE) needs o be specified and added to the working memory before the
UNDER relation is computed and it must be deleted afterwards. The rules are extended by (phase
INITIALIZE) as an additional condition part element. So, the rules only fire when the context (phase
INITIALIZE) is contained in the working memory. However, this does not guarantee the rule set to
be effective. Suppose the rule interpreter does not recognize multiply applied rule instances. This
may cause computations to be infinite. Even if not, in general useless rule instances are executed. For
instance iﬁ the following example (on a b), (on b ¢), (on ¢ d), (on d e) the fact (under e a) can be
inferred using different inference chains. This can be prevented by adding an additional condition

part element containing the "negated” action part of the rule.

This solution has several severe drawbacks. One of the most important is the mixing of different
kinds of knowledge as pointed out in scction 1.3 Adding and modifying the relevant control
knowledge to factual knowledge elements makes a system difficult to maintain. In case YOU want (o
change a piece of control knowledge you have to change all rules it occurs in. One way to specily
control knowledge more concisely is to usc meta rules. Thus, the set of rules in figure 3.12 can be

represented using the CATWEAZLE language as demonstrated in figure 3.13.

Comparing both representations we can state some advantages for the one using the CATWEAZLE

language.

All different kinds of knowledge isolated in section 1.3 are represented by different representation
structures. Implications are expresscd by object rules. Knowledge about the usefulness of rules are
represented as rules about object rules resolving conflicts when more than onc object rule is
applicable. Knowledge about the relevance of rules is expressed by adding rules to structured rule
sets with postconditions specifying the goal the rule set is intended to solve. Rules activating and

deactivating a phase are represented as pre- and postconditions.

- 50 -

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

Wc have less rules and less condition part clements. Modifying the control tactic can be done by
changing very few meta rules instcad of many object rules. This facilitates the explorative

programming of control regimes.

{under ?blockl
thlock 7hinekr) | FOMPUTE- UNDER Z;S:;x
7
(metarule MR1
(objectrule ?objsectrule

(with -- actions
(add (under 7block2 ?block1 7state))))
(under ?block2 ?blockl 7state)
- = >
(suspend ?objectrule))

DTt

Y

(rule UNDER1

{on ?blocki ?block2 ?state)

- = >

(add (under ?block2 ?blockl 7stale)))
(rule UNDER2

(under ?blockl ?block2 7state)

(on 7?block3 ?block2 7state)

- -

(add (under ?blockl ?block3 ?state))

I

A T Y

I

Figure 3.13: Representation of different kinds of knowledge using structured rule sets

Also, pieces of control knowledge lrave higher priority than object rules by means of interpretation.
Other aspects of knowledge enginccering like modularity, explicity, explainability and tools for

knowledge engineering are discussed in the next section.

3.8 Aspects of Knowledge Engineering

One goal in knowledge criginccring 1s the design of well-structured and transparent knowledge

bases. Its importance arises from the necessity to maintain particularly large knowledge bases.

- 8] -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

William Clancey [Clancey-83a] discusses three reasons for the importance of easily maintainable

knowledge bases:

"Knowledge-based programs are built incrementally, based on trial and error; thus,
modification is continually required, including updates based on improved expertise;”

"4 knowledge base is a repository that other researchers and users may wish to build upon
years later;"

"4 client receiving a knowledge base constructed for him may wish to correct and extend it
without the assistance of the original designers.”

Summarizing his arguments we can say: Encoding control knowledge in production rules leads to
knowledge bases that are as hard to maintain as unstructured programs. Thus, structuring rule bases
using rule sets and representing control knowledge explicitly by describing interactions between

structured rule sets makes it easier to build maintainable and understandable rule bases.

The CATWEAZLE language supports developers in representing control knowledge and structures
of rule bases explicitly. In the following section it is argued that this explicitness of control knowledge

drastically improves modularity and explainability of rule bases.

3.8.1 Modularity

Our formalism supports modularizing knowledge bases by providing concepts for structuring the

knowledge.

Control strategies are simply descriptions of interactions of structured rule sets. Therefore, we are
able to change control strategies without changing the underlying structured rule sets. Thus,
structured rule sets can be driven by different control strategies. This enables knowledge engineers
to compare the performance of different control strategies. We define performance as the number of
inference steps required to get a solution or the "naturalness” with which a human problem solver is

modelled by the control strategy.

Object rules and rules about object rules only interact with rules of the same structured rule set.
Therefore, structured rule sets can be developed independently. By reducing interdependencies the
development time for rule bases can be drastically reduced, because it is easier to validate small sets

of rules with respect to their pre- and postcondition than to validate a large, unstructured rule base.

=50

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

3.8.2 Explainability

As argued in section 2, representing different kinds of knowledge in one representation structure
prevents from syntactically distinguishing these kinds of knowledge. Therefore, these knowledge
kinds cannot be used by a syntactically opcrating explanation component to produce better
explanations. Our formalism enables an explanation component to answer a broader range of
questions including questions about why a problem solver tries to satisfy a subgoal, how a subgoal

may be satisfied by the rule base, and why a rule is applied at the current state.

Explicitly represented control knowledge is a kind of deep knowledge about the contained problem
solving knowledge. It is knowledge about the structure, function and possible interactions of the

problem solving knowledge.

3.8.4 CATWEAZLE Tools

Since LISP programs and production rule systenis are completely different computational modcls, we
need different programming tools to aid writing and debugging controlled production rule systems.
For instance, let us look have a look at tracing LISP programs. In LISP programs function calls and
function values are traced. This does not make sense for production rule systems. Here the results of
the different phases of the "recognize-act-cycle" need to be traced: the matching rules, the rule
chosen to be applied and the results of the rule application. In the CATWEAZLE system interpreter
phases as well as knowledge units can be traced. When tracing an object rule or a meta rule all
partial instantiations of the rule affected by the changes in the working memory in the last cycle arc

printed out.

3.9 Example: Planning in the Blocks World - A Rule Base written In the
CATWEAZLE Rule Language

The concepts introduced so far have been integrated into the CATWEAZLE rule language and an
interpreter for the extended rule language has been implemented. In this section we demonstrate
how to build a rule base for the planning problem in the blocks world. The problem is stated as

follows:

Given: Initial and goal state describing sets of block piles in a symbolic language
Wanted: An efficient sequence of actions transforming the initial state into a goal state.

_53.

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

We use the following predicates in our example:

(block ?block ?state)

(clear ?block ?state)
(on ?blockl ?block2 ?state)
(ontable ?block ’state)

(goal ?operation ?blockl ?block2)

(status ?block ?status)

The block with name ?block occurs in the
description of the state ?state (can be actual or
goal).

The block ?block has a clear surface in state
’state.

The block ?blockl stands on ?block2 in state
’state.

The block ?block stands on the table in the state
state.

The macro operation ?operation (can be put-on
or put-down) has to be executed with ?block!
and ?block2 as arguments.

If ?status is instantiated with satisfied the block
need not to be moved any more.

*’s occurring in term positions of formulae denote "don’t care” terms.

Commands for describing the initial state are given below:

(fact (ontable a actual))
(fact (on b a actual))
(fact (on ¢ b actual))
(fact (clear c actual))
(fact (ontable a goal))
(fact (on ¢ a goal))
(fact (on b c goal))
(fact (block a actual))

Figure 3.14: A planning problem in the "blocks world"

CHAPTER 3: A LANGUAGE FOR REPRESENTING CONTROL KNOWLEDGE

The best solution of the problem is:

UNSTACKCB
PUTDOWN C
UNSTACK B A
PUTDOWN B
PICKUP C
STACKCA
PICKUP B
STACKBC

We model planning in the blocks world using a deliberation-action loop: The planner for the blocks-
world compares current and goal state and generates a subgoal that reduces the difference between
both. The current subgoal is satisfied by applying rules representing STRIPS-like operators
[Fikes Nilsson-71] to the current state. Through repcatedly comparing current and goal states,

generating and satisfying subgoals the initial state is stepwise transformed into a goal statc.

The basic deliberation-action loop is expressed as a phase sequence. The first phase within the loop
is the CHECK phase. The structured rule set CHECK determines the set of blocks that are not yet in
their goal state position by comparing current and goal state. The GENERATE-GOAL phasc
establishes a macro operation that has to be exccuted in the current cycle. This macro operation ig
simulated by a sequence of STRIPS-like opcrators in the SATISFY-GOAL phasc. The loop
terminates if the current state satislies the goal condition, 1.e. if no goal can be generated by the

structured rule set GENERATE-GOAL.

(production-rulebase planner-for-blocksworld

(kind-of-strategy fixed)
(phase-sequence
(INITIALIZE
(loop
CHECK
GENERATE-GOAL
(until ((not (goal ***))))
SATISFY-GOALY)))
(planning-system nil)
(scheduler nil)

(knowledge-source INITIALIZE
1)

(knowledge-source CHECK
)

.55 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

(knowledge—sou;ce GENERATE-GOAL
(precondition nil)
(postcondition ((goal ?x 7y ?z)))

(metarules
(metarule CREATE-STACK-GOALS-FIRST
{objectrule ?r]
(with-actions
(add (goal put-on **))))
_—
(activate ?rl))
(metarule PREFER-IRREVOCABLE-PUTDOWN-GOALS
(objectrule 7rl
(with-actions
(add (goal put-down ?block *)})
(ontable ?block goal)
=5
(activate rl)))

(object-rules
(nile GENERATE]
(on ?block] ?block2 goal)
(clear ?block 1 actual)
(clear ?block2 actual)
(status ?block?2 satisfied)
(status ?block ! unsatisfied)
—->
(add (goal put-on ?block! ?block2)))
(rule GENERATE?2
(ontable ?block I goal)
(clear ?block] actual)
(status ?block] unsatisfied)
—->
(add (goal put-down ?block1 nil)})
(rule GENERATE3
(on ?blockl ?block3 goal)
(ontable ?block2 goal)
(status ?block2 unsatisfied)
(under ?block2 ?block I actual)
(clear ?block 1 actual)
(not (status ?block3 satisfied))
—->
(add (goal put-down ?block 1 nil)))
)
(knowledge-source SATISFY-GOAL
-

The syntax of the CATWEAZLE language is defincd in appendix A, the complete rule base for the

blocks-world planner is contained in appendix B.

- 56 -

Chapter 4: Extending the RETE Algorithm to Process Meta-Level
Architectures for Control

4.1 Introduction

Meta-level architectures for control interpret declarative and explicit representations ol control
strategies, control tactics, and of object-levcl compututio'ns. As we have seen in chapter 3 such
representations of control strategics result in explainable systems that arc easy to modify and
maintain. To provide a general framework for specifying meta-level architectures we need a suitable
language, and a general interpreter for it. Since such interpreters are highly pattern-directed and
pattern matching is the most time-consuming task within the interpretation of rule bases this would

yield inefficient systems. Efficiency, however, is crucial for interactive systems.

There seems to be a trade-off between supporting efficient knowledge-based systems and systems
providing facilities to describe knowledge declaratively and in an explicit way. While the first
property is important for users of application systems the second one is crucial in knowledge
engineering. Several ways to get out of this dilemma arc suggested in literature and discussed in the

next section.

4.2 Techniques for Increasing the Efficiency of Meta-Level Architectures
for Control

What is good for specifying control strategics is inefficient for its interpretation: The declarative

aspect of the control language.

-57-

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

Straightforward implementations of pattern matchers test in each cycle for each production rule
whether there exist instances of the condition part in the working memory. This is very inefficient in
general. Charles Forgy and John McDermott pointed out in [McDermott,Forgy-78] that some

- production rule interpreters spend between 90 and 98 percent of run-time on pattern matching.

A classification of techniques for increasing the efficiency of meta-level architectures can be found in

|[vanHarmelen-87]. The categories of techniques in this classification are:

1. Compilation of Control Specifications,

2. Localisations of strategies,

3. Specialization of domain-independent strategies,
4. Storage of meta-level results and

S. Avoidance of meta-level computation.

4.2.1 Compliation of Control Specitications

Many systems often interpret the language they provide to specify control knowledge. But
requirements for specification langnages are differcnt from those for a language to be interpreted.
Systems that compile control knowledge in a more cfficient form are, for instance, MRS

[Genesereth-82] and NEOMYCIN [Clancey,Letsinger-81].

The basic idea of compilation is to translate a control strategy written in a language suitable for

specification into a language that can be interpreted more efficiently.

This compilation can be done by using partial evaluation [Takeuchi,Furukawa-85], for example,
which is useful for logic-based programming languages in particular. A partial evaluator gets a
program and a partial specification of its input and computes a more specialized version of the
program. This specialized form is correct for the specified input only, but it is much more efficient
than the original one. Program steps using knowledge already known, are "executed" at compile time

and need not to be executed at run-time.

Let us consider the following example implemented in PROLOG:

in(X,[X/_)).
in(X.[Y]) -
n(X,Y).

and [1,2,3] is known as input for the second argument of in.

S 58 -

CHAPTER 4: EXTENDING THE RETE ALGORITHM

A partial evaluator then determines a specialized and more efficient version of the program correct

for the specified 'input:

in(1,[1,2,3]).
in(2,(1,23]).
in(3,(1,2,3]).

Another compilation technique is partial compilation where global strategies are hard-wired into the

interpreter of the target system.

However, some problems are caused by the compilation techniques described in this section. First,
explanations and tracing informations need cxplicit representation of the source system. Secondly,
inference steps done by the target system are not necessarily the same as specified 1n the source

system. Therefore, the problem-solving behaviour of both systems may be slightly different.
4.2.2 Localization of Strategies
nowledge — base — lookup(formula

or apply — Inferencs — rules(formuia)
or ask ~ user(formula

compound

Implication

least — likely — conjunct(formuia conjunct rest)
and proof(conjunct)
and proof(rest)

Figure 4.1: Taxonomy of formulac and control strategies associated with classes of objects in the
taxonomy [vanHarmelen-87]

Often we can observe particular pieces of control knowledge being applied only Lo small subsets of
the object knowledge. Thus, ordering the object knowledge taxonomically and adding control

strategies to the smallest subset or most special class is another technique for increasing efficiency.

-59 .

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

The idea is itlustrated by the example of a taxonomy lor formulae in figure 4.1. Using this technique
the most specialized control strategy in the taxonomy is used. If it fails a more general one is

attempted.

4.2.3 Specialization of Strategies

Domain-independent control strategies allow for concise representation of control knowledge.
However, we pay for this conciseness with more cffort at run-time. We need additional inference
steps to check whether or not and how a domain-independent strategy applies to a domain
dependent situation at hand. Often, a more specialized version with these additional steps built-in
can be determined before running the system. The example in figure 4.2 shows a domain-
independent meta rule MR1 and a problem-dependent one (MR2). MR2 is an instance of MR1 for

the domain of infectious blood diseases.

>
|

Meta Rule MR1:

IF: 1) rule $1 mentions $2 as a causse of disorder, and
2) rule $3 mentions $4 as a cause of disorder, and
3) $2 I3 a common cause of disorder, and
4) 34 is not a common cause of disorder

THEN: there Is a suggestive evidence (0,4) that the former
should be used before the latter. -

_h____—_/‘

L

Meta Rule MR2: ®
IF: 1) the Infection s peivic - abscess, and

2) thers are rules which mention in their L4

premise snterobacteriacae, and ®

3) there are rules which mention in their Y

premise grampos —rods’

Then: there Is suggestive evididencs (0,4) that the formsr L

should be used befors the latter. L

[

Figure 4.2: Specialization of sirategies [vanHarmelen-87]

Another example of specializations partial evaluation, where formulas are specialized by instantiating

variables.

- 60 -

CHAPTER 4;: EXTENDING THE RETE ALGORITHM

4.2.4 Storage of Meta-Level Results

Control strategies often contain computations with fixed results in each interpretation cycle. So.
storing results of those computations yields considerable savings of run time. Examples for such
computations are rule orderings according to the length of clauses or certainty factors that can be

computed completely at compile time.

4.2.5 Avoidance of Meta-Level Computation

Another method is to check whether the overhead for determining the best inference step in cach
state is not higher than the advantages got through its application. To do this we need good measurcs
and we have to take care that the decision whether meta-level inferences should be done or not does

not yield too much overhead.

4.3 Why RETE?

Some characteristics of production rule systems can be used to considerably increase the efficiency of

the matching process through compilation {Forgy-79]. These characteristics are:
1. Patterns can be viewed procedurally as pattern matching procedures.

2. Different condition part elements often contain identical substructures (beside variable

names). Charles Forgy calls this structural similarity.

3. Empirical observations [McDermott,Forgy-78] prove that in average only very fcw entrics are

added or deleted from the working memory. This is called temporal redundancy.

In section 4.4 we will discuss a pattern matcher for production rule interpreters exploiting these
characteristics to increase efficiency. In section 4.5 this algorithm is generalized to process the

concepts of our control language.

Compiling only patterns in the control language has several advantages over other compilation
techniques like partial evaluation which cause behaviour of problem solvers being different from the

one specified by the system designer (see section 4.2.1).

In the RETE algorithm patterns occuring in object- or in meta-level knowledge are both compiled
into one single condition network. Because patierns and not knowledge units are compiled, problems

caused by compilation into an object representation language do not occur.

=61 =

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

There are several reasons to choose the RETE algorithm for pattern matching rather than other
ones. Firstly, it is one of the most efficient pattern-matching algorithms. Secondly, it is used in many
state-of-the-art systems. Thirdly, therc are some obvious ways to extend the formalism so that the

different kinds of control knowledge can be handled, too.

This leads to an important advantage: rule- and control language can be processed by the same
cfficient algorithm. Further, some extensions, for instance, for the integration of object-oriented
languages [Allen-82], of backward chaining [Schor,ctal.-86]) and more flexible rule languages [Allen-

82| are available for this algorithm.

In the next sections it is described how different concepts of meta-level architectures for control
contained in the extended CATWEAZLE language

1. rule partitions with pre- and postconditions,

2. rules about object rules,

3. rules about rule sets and
4. phase sequences

are compiled into condition networks and processed more efficiently by an RETE-like pattern

matching algorithm.

4.4 A Brief Overview on the RETE Algorithm

A pattern matching algorithm is given a pattern and a set of instantiated elements in the working
memory as its input and determines whether the instantiated syntax element is an instance of the
pattern. This is very inefficient in general. In this section we discuss the RETE algorithm which avoid

much of this inefficiency.

Before introducing the main concepts of the RETE algorithm let us give a brief rational
reconstruction of its basic ideas exploiting characteristics of production rule systems to increase the

efficiency. To do this we consider the production rule R in figure 4.3.

(rule 11
(on a 7x)

(on 7x ¢)
- =>
(add (above a 0)))

20000000

Figure 4.3: Sample production rule R1

- 62 -

Instead of having a general pattern matching algorithm we can determine a specialized version of this
algorithm for the condition parts of cach rule. For instance, we can specify a pattern matching
procedure for our example rule. Procedurally, we can consider patterns in condition parts of rules as
matching procedures consisting of sequences ol primitive tests. The advantage of this view is that this

procedural representation can be interpreted by a computer more directly than a declarative

representation.

CHAPTER 4: EXTENDING THE RETE ALGORITHM

]

I length(wm — slem1) =3 and
if first(wm — elem1) = on and
 second(wm —elemi) = a and
ff length(wm — elem2) 3 and
if first(wm — slem2) = on and
if third(wm — elem2) =¢ and

if third(wm - elem1) = second(wm - slem2)
then add Instance of r1 to conflict set
end_procedure

procedurs pattern — matching — ri{wm — elem1 wm — elem2)®

Figure 4.4: Pattern matching procedure for R1

= 68 &

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

For the purpose of our discussion it is more useful to view this pattern matching procedure as a
graph. We parallelize primitive tests on different working memory elements in this procedure and

represent it as a tree where the nodes in the tree arc marked with the primitive tests and the arcs

determine the order in which the tests are executed.

3.element from left side

_siement from right side

add rule instance
to conflict set

Figure 4.5: Pattern matching procedure for R1 represented as a tree

64 -

CHAPTER 4: EXTENDING THE RETE ALGORITHM

When comparing both paths of the test procedures we can see that they share common parts. We can
comprise identical initial paths by identifying the test nodes and converting the tree representation
into a graph representation. This technique prevents multiple and redundant computations of sharcd

parts of test procedures, it is exploiting the structural similarity of rules.

wm - elem2

2.eloment
= a

3.element from left side

=
\a.element from right side

add ruils instance
to conflict set

Figure 4.6: Pattern matching procedure for R1 represented as a graph

<65 -

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

The third characteristic of production rule systems is the temporal redundancy. What we want to

have is that changes in the working memory only trigger the relevant matching procedures.

1.element
= on

3.slement from [sft side ~

.element from right side
wm siements : Rl wm elements
safistying the ; P satisfying the
left tost path 2 right test path

add ruls instance
to conflict set

Figure 4.7: Test graph for the test procedure with memories

- 606 -

CHAPTER 4: EXTENDING THE RETE ALGORITHM

For instance, working memory elements pass the test path (¢7 £2 (4). When arriving at test node 15 it
has to be tested against all working memory clements satisfying the test path (¢1 (2 (3). Since n
general only very few changes occur during one interpretation cycle it is more cfficient (o extend the
node t5 with two memories. One storing the working memory elements satisfying the testpath p2 =
(t1t2t3) and one for the test path p/ = (t1¢2(4). Then changes in the working memory arriving on
the test path p1 have only to be tested with clements stored in the memory for the test path p2. To
keep the memories consistent with the working memory cach change must maintain the affected

memories.

Let us consider the following example: (on @ b) and (on a e) are contained in the left memory and
(on k ¢) is contained in the right memory of the test node (5. (on b ¢) 1s added to the working,
memory. Then a token consisting of the content (on b ¢) and a mark + indicating that (on b ¢) 15
added to the working memory. The token is propagated through the network. When arriving at a test
node the test is executed on the content of the token. If the token satisfies the test it is propagated to
the successor nodes. So, the token passes (/ and (2. Because the test of ¢3 fails the token is not
propagated from (3 to ¢5. Thus, the token only arrives at the right side of t5. (on b ¢) has to be added
to the right memory since the right memory is intended to store all elements in the working memory
satisfying the test path (17 ¢2 t4). Now, it has to be checked if there exists an element in the working,
memory that satisfies the test path ¢/ 2 ¢3) such that the variable v of the rule 77 1s bound
consistently. To do this we only have to check (on b ¢) with the token contents stored in the Ielt
memory of 5. The variable ?x is bound consistently by the pair (on a b) (on b ¢). A new token (
((on a b) (on b ¢))) that satisfies the test graph from (I to t5 is constructed and propagated to all
successor nodes of (5. The action node reccives the token (+ ((on a b) (on b ¢)) constructs a rule
instance of R1 (+ ((onab) (on b c¢) --> (add (above a ¢))) and sends it as a new applicable rule

instance to the conflict set.

After we have scen that the cfficiency of pattern matching algorithms can be considerably increased

- by mnterpreting patterns procedurally,
- using (partial) matches of previous cycles and

- exploiting structural similaritics

we describe the RETE algorithm more abstractedly.

-07 -

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

RETE algorithm - a more abstract description

The RETE algorithm gets changes in the working memory as its input and computes the

modifications of the conflict set caused by these changes (see figure 4.8).

Changes in the working memory are represented as tokens. A token consists of a mark and a list of

working memory elements:

(+ <list-of-wm-elements>) means list of working memory elements with one element added to the

working memory in the previous cycle.

(- <list-of-wm-¢lements >) means list ol working memory clements with one element deleted from

the working memory in the previous cycle.

INPUT for RETE Algorithm
Changes In the Working Memory

Condition Network
processed by th

OUTPUT of the RETE Algortthny.
Changes in the Conflict-Set

Figure 4.8: The RETE algonithim from a bird’s eye view

The matching procedure for the RETE algorithm is represented as a directed graph, a condition
network. Subgraphs in the network arc pattern matching procedures for the condition parts of the
rules. The nodes contain primitive tests that lists of working memory elements must satisfy if they are
part of a rule instance. Matching is done by propagating changes in the working memory through this
network (this is a data-driven interpretation!). Test nodes are like guards that propagate changes if
the corresponding test is satisfied. With cach rule a special terminal node is attached which changes
the conflict sct if a new instance of the rule becomes applicable or an old one is not applicable any
more. Concepts of the algorithm that are important for this purpose are described in more detail

below.,

- 68 -

CHAPTER 4: EXTENDING THE RETE ALGORITHM

When considering efficient orderings of test nodes in the network it is useful to distinguish between
two types of nodes: firstly, intra-element test nodes that test conditions on one single working
memory clement and secondly, inter-element test nodes that test conditions on a list of working
memory elements, Intra-element nodes only have one cntry and are placed in the first part of test
graphs of rules. Inter-element test nodes have bipartite entries and are placed in the sccond part ol

the test trees.

Inter-element test nodes test whether the variables in the condition parts of rules are bound
consistently by tokens arriving left and tokens arriving from the right side. If so, both tokens arc
appended and the resulting token is propagated to the successor nodes in the network. This is the
subtask that consumes most of the time because for each token arriving through one subtree it has (o
be tested if this token can be joined consistently with any token satisfying the testprocedure of the
other subtree. Efficiency can be increased by storing all lists of working memory clements that satisly
the partial match encoded in the subtree in a corresponding memory of the inter-element test nodes.
Arriving +-tokens are added to , --tokens deleted from these memories. The structure of an inter-

element test node is shown in figure 4.9.

Figure 4.9: Example for an inter-element test node

In the RETE algorithm a condition part of a rule or its representation as a graph is assumed (o be a
matching procedure that has to be executed on tokens. The procedure is an partially ordered set of
primitive tests. The information about the order of tests is compiled into the structure of a condition
network. The nodes in the condition networks contain the primitive tests. The tests for one rule are

ordered in a directed graph.

Matching is realized by propagating tokens through the network. If tokens arrive at a test node and

satisfy the test they are propagated to the successor nodes in the network.

When a token arrives at an inter-clement test node it only has to be joined with all lists of working
memory elements in the other sidc of memory of the inter-element test node. The memorics

implement the part of the working memory relevant for this node to do its tests.

- 69 -

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

When tokens pass the (ests or can be joined consistently they are propagated to the successor nodes
in the network. The end nodes in the condition networks add instantiated rule instances to or delete
them from the conflict set according to the token indicator (+ or -). A detailed description of the

RETE algorithm can be found in [Forgy-79].

4.5 Extensions to the RETE Algorithm

4.5.1 Using Partitioning to Increase the Efticiency of the Matching Process

This section discusses how to extend the RETE algorithm to process control knowledge specified in

the CATWEAZLE language more efficiently.

The issue of this section is to elaborate how partitioning of rule bases can be used to speed up the
malching process. There are at least two characteristics of the interpretation of control knowledge

that can be exploited for this purpose:

L. Rule sets that cannot be activated anymore
In figure 3.3 we can see that after the rule set GENERATE-HYPOTHESIS has been activated
for the first time rules only contained in the rule set INITIAL-QUESTIONS will not be applied
anymore within the same problem solving process. Thus, any further matching against working
memory elements is a waste of time. The basic idea is to ignore subnets of phases when their

interpretation is completed.

2. Blackboard-based Control Strategies
When interpreting rule sets such that they are applicable to a problem solving state whenever
their precondition is satisfied it cannot be forescen whether a rule set is activated in a process or
not. What we want is something like "azy evaluation": rules should only be matched when they are

relevant. This is, matching of rules is delayed until the rules become active.

The solution to these problems is rather obvious. We have to match the active rule set against the
working memory. Test nodes of rules in rule scts that are not active need to recognize only
modifications in the working memory in order to restore their memories when they are activated.

However, the RETE algorithm provides no facilities to implement this idea.

After we have secn that partitioning of rule bases provides some facilities to increasc the cificiency of
the malching process, the question arising at this point of discussion is: How can this be

implemented? The source of time complexity are inter-element test nodes because each arriving

- -

CHAPTER 4;: EXTENDING THE RETE ALGORITHM

token must be tested with each element of the other side of memory. Therefore, it seems to be a good

solution to provide facilities for inter-clement test nodes to be active and inactive.

4.5.1;1 Extending the Structure of the Inter-element Test Nodes

We need to extend the structure and behaviour of a basic node type of the RETE algorithm: the

inter-element test node.

In the extended version the test nodes have (wo possible states: active or inactive. In order to
distinguish tokens arriving on the left from tokens arriving on the right two additional intermediate
memories are necessary. Intermediate memories are used to record all modifications in the working
memory affecting a test node while it is inactive. Arriving tokens are stored in intermediate memorics
until the node is activated. The structure of an extended inter-element test node is shown by figure

4.10.

right .
intermediatejg

memory

Figure 4.10: Structure of an extended inter-clement test node

4.5.1.2 Procedural Behaviour of Nodes

Besides its structure the procedural behaviour of nodes is modified. An active node behaves like
inter-element test nodes in the RETE algorithm. During their inactive state arriving tokens arc
simply recorded in the intermediate memorics. When a node is activated it sends all the tokens in its
intermediate memories to itself and treats them as in the active phase. This must be done to get
contents of the internal memories that are consistent with the current state of the working memory.
A deactivation changes simply the state of an inter-element test node to inactive. In the worst casc
the complexity is equal to the RETE algorithin. However, in the average case improvements arc

drastic.

=71 =

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

4.5.2 Rules about Object Rules

Nol every rule description within a rule about rules nceds to be matched against every rule instance
in the rule set. Rules that have no instance satisfying a rule description can be determined at compile

time.

During compilation cach rule description must be compared with each rule in the rule set. The first
step in the compilation process is to create a modificd rule description. A rule description can match
a rule in different ways, perhaps by permutating the clements of the condition part. If there exists an
instance of the rule that matches the rule description, a rule description node is created and linked to
the action node of the rule as a successor. A rule description node is an intra-clement test node. It
tests whether the instance of the rule is an instance of the rule description. This includes tests for
multiple occurences of variables and tests whether variables in the rule arc instantiated with
constants satisfying the constraints of the rule description. A part of a test path created by such a

compilation is shown by figure 4.11 and 4.12 In the rule descriptions **’s denote 'don’t care’ terms.

object rule object rute description

(rule EXAMPLE (with - conditions
(on 7 ?y) (ona™))
(above 7y 72) (with — actions
e 2 By (add (above * ¢)))

(above 7% 72))

FER 2% b

modifled object rule
description

(rule ~ pattern
(on a*)

-=->

(add (above * ¢)))

Figure 4.11: Example for an object rule and its description

After creation of the modified rule descriptions it is tested whether exist instances of the rule

satisfying the modified rule description. Tests for identifying these instances are created.

Further optimizations can be done by the compiler. In the example, for instance, the identity of "on"

in the rule and rule description is detected by the compiler and therefore does not have to be

-T2 -

CHAPTER 4: EXTENDING THE RETE ALGORITHM

checked during pattern matching. Figure 4.11 shows a part of the test path containing the rule

description node for the example in figure 4.11.

] rule EXAMPLE
action node of

{add (above ?x ?2))
rule description
node

2.slement of 1. condiion part element = "a*
3.element of 1.action part element = ‘¢’

Figure 4.12: Pant of a test path created during the compilation of the rule description

The inter-element nodes used to join the condition part elements of rules about rules are described

in section 4.5.1.1.

4.5.3 Phase Sequences

As described in section 3.2.1 phase sequences are simply sequences of structured rule sct names,
These sequences determine the order of rule sct activation within a problem solving process. Rules
are only relevant if the corresponding rule set is active, its precondition is satisfied and its
postcondition is not satisfied. Directcd graphs with guards implementing the pre- and postconditions

are straightforward representations of phase sequences. The overall idea is shown in figure 4.13.

nostcond(A brecond(B

Figure 4.13: Representation of a phase sequence

Phase B in figure 4.13 becomes active, if phase A is currently active and the postcondition of A and
the precondition of B are satisfied. A then becomes inactive. Since the only function of phase nodes
A and B is to denote whether they are active, there is no need to implement them in the concrete
algorithm. To compile phase sequences two additional node types (pre- and postcondition nodes)

are introduced.

-73 -

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

4.5.3.1 The Structure of Pre- and Postcondition Nodes

Pre- and postcondition nodes contain a switch, denoting whether the corresponding phase is aclive,
and a memory, recording all instances of the condition currently in the working mcmory. The
condition is compiled into a directed graph like condition parts of object rules. Pre- and
postcondition nodes are successors of the roots of these trees. Each precondition node has a pointer
1o the postcondition node of its phase and each postcondition node to the precondition node of the
next phase with respect to the phase sequence. Finally, they contain a list of all inter-element nodes

while the rule set is active.

Because the scope of variables occurring in pre- and postconditions includes both conditions,
variables bound by preconditions have to be tested in postcondition nodes for consistency. A test slot

for the consistency tests is needed.

4.5.3.2 The Procedural Behaviour of Pre- and Postcondition Nodes

All arriving tokens are stored in the working memory. If the precondition node is activated it has to
test whether the precondition of the structured rule set is satisfied or not. The precondition is
satisfied if the memory is not empty. If the precondition is not satisfied the problem solving process
aborts. Otherwise all inter-element nodes of the rule set and the postcondition node are activated. If
the postcondition node receives a +-token while it is active or its memory is not empty, it deactivales
all active nodes of the rule set and activates the precondition of the next phase.

control-strategy
A

B
C

end strategy

Precondition of B:
(on ?xb)

Postcondition of B:
(above ?x c)

Figure 4.14: Example for a compiled phase sequence

If the precondition node of phase B in figure 4.14 is activated and instantiated with (on a b) the test
slot for consistency of the postcondition node is set 10 "2nd element of the working memory clement

nonn

s "a™.

-74 -

CHAPTER 4; EXTENDING THE RETE ALGORITHM

IF and UNTIL nodes contain a memory and a switch denoting whether the node is active or not.
The memory is empty, if and only if there is no set of working memory elements satistying the 1IF or
UNTIL condition. If an IF- or UNTIL node is activated and its memory is not emply it activates the
first phase of the THEN branch or the first phase after the LOOP construct. Otherwise it activates

the first phase in the ELSE branch or the next phase inside the LOOP construct.

4.5.3.3 Eftects of Compiling Phase Sequences on Efficiency

The effect of compiling phase sequences into condition networks on cfficiency is rather obvious.
Subnets in the discrimination net implementing rule sets are successively deleted alter the
interpretation of a rule set is complcted. In the worst case the performance of the extended RETE
algorithm is about the performance of the basic RETE algorithm. However, these cases rarcly occur

in applications.

4.6 Rules about Structured Rule Sets

In order to implement rules about structured rule sets we need rule set description nodes. They
differ from object rule description nodes only in the contained tests. The procedural behaviour needs

to be slightly changed. Whenever a new instance of the precondition is added to the working
memory, the precondition node sends a token containing the instance of precondition and the
partially instantiated postcondition (o the descripton nodes. Only variables that are bound by the

precondition are instantiated.

The advantage of this approach with respect to efficiency is that rules are only considered when they

become relevant. In the general case, not each rule set is used within each problem solving process.

4.7 Some Remarks on Implementation

The first prototype of the compiler for the control knowledge is written in ZETALISP on a
Symbolics LISP-machine. Test nodes in the network arc implemented as objects propagating tokens
through message passing. Each test node can send token-propagating messages to all its successor
nodes. Objects are chosen as basic data structures for sake of simplicity and because they are
supported by powerful debugging tools. However, a topic of further research is to implement test

nodes in a more efficient way.

-75 -

CHAPTER 5: On the Semantics of Controlled Rule-Based Systems

Main characteristics of the CATWEAZLE control language are the partitioning of rule bases,
and that control strategies describe how partitions of the rule base are applied in a problem
solving process. In this chapter a declarative semantics for phase sequences is given. When
defining the declarative semantics we distinguish between factual knowledge and control
strategies. Control strategies define the shape of the search space searched by a problem
solving process. We characterize this shape by a regular language over rule names that
depends on the defined phase sequence and the structured rule sets. An operational semantics
is defined by a set of PROLOG clauses. Finally, the operational semantics is proved correct

but incomplete with respect to the declarative semantics.

5.1 Declarative Semantics

The formal treatment of the control language for production rule systems is introduced step
by step. Firstly, a formalism for simple production rules is defined. This basic formalism is
then extended to capture partitions and to handle phase sequences. Finally, it is shown how

pre- and postconditions of rule sets can be handled, too.

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

5.1.1 Formalizing Production Rule Systems

" In this section the basic ideas of production rule systems are introduced by defining an
underlying formal language, formalizing production rule systems and how to solve problems
using them. The language used to formulate working memory elements and conditions of

rules is a restricted version of the first order predicate logic with

¢ individual constants a,b,c,...
e individual variables 7x,%y,7z,...

e predicate symbols p,q,r,...
without

¢ functions,
o (explicit) quantifiers and

o (explicit) connectives.

Atomic formulae are formulated in prefix notation (p ¢...t,) with n > 0 where p is a predicate
symbol ty,...,1, either individual constants or variables. Variables occuring in atomic formu-
lae are implicitly universally quantified. Lists of atomic formulae are implicitly connected by
AND-operators. F denotes the set of all atomic formulae. The function var takes atomic
formulae as arguments and returns all variables occuring in them. A formula p of F is a
ground instance if var(p) = {} and G the set of ground instances. £IT denotes the set of

negated and non-negated atomic formulae.

Definition 1 PrODUCTION RULES

A production rule r = (name, precond, postcond) is a triple of RN AMEX LIT* X F(LIT* =
Un>o LIT™) where name represents the name, precond the condition part and postcond
the action part of the production rule. When r is a rule then precond(r), postcond(r)
and name(r) denote the corresponding projections. rule(name) returns the rule with name
“‘name”. R is the set of all rules.

Definition 2 SINGLE LEVEL PRODUCTION RULE SYSTEM
A production rule system is a pair (RB,WM) where RB (the rule base) is a subset of R and
WM (the working memory) a subset of G.

-78 -

CHAPTER §: ON THE SEMANTICS OF CONTROLLED RULE-BASED SYSTEMS

Definition 3 PROBLEM
A problem is a pair (INITIAL,GOAL) where INITIAL is a subset of G and GOAL an
element of F.

After having introduced the notions of rules, rule systems and problems we discuss how rule
systems can be used to solve problems by defining what the correct arguments for propositions

with respect to a set of rules are.

An inference chain is a sequence of facts where the initial facts is given as premises. All other
facts are derived from facts in the earlier part of the sequence using a rule of the given set of

rules. In order to give a formal definition the standard notion of proof is slightly modified.

Definition 4 INFERENCE CHAIN
An inference chain for a ground instance g € G from a set of premises
PREM C G using RB is a sequence (ay,...,a, = g)(n > 0) where:

Vie {1,...,n}.
[a; € PREM \
dr € RB and a substitution o
such that o(r) = (name, {a;,,...,a;},a)A j1,..., 51 < 1]

We need the notion of sequence of inference steps that will be introduced in definition 5 in
order to define lateron what is meant by an inference chain being correct with respect to a
phase sequence. We can consider a search space for a problem as a tree where nodes contain
an inference chain and arcs are labeled with the names of rules deriving the last fact from

the other facts in the inference chain. An example is given in figure 5.1.

A sequence of inference steps is an ordered list of rule names that are applied to produce an
inference chain. We can assign to each inference chain ic a sequence of rule names denoting
the path from the set of premises to ic. We describe in definition 5 how a sequence of inference

steps is computed from each inference chain.

In figure 5.1 is (r1,r3,r2) a sequence of inference steps of the inference chain (a,b,c,d,e).

=79 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

P = ({a,b},{d}) RB = { (r1,{a,b},¢),
(r2,{b},e)
(r3,{c},d)
(T47 {e’ a’}’ d)}

(ab,c)

/\
(a,b,c,d) (a,b,c,0) (a,b,e,¢)
? A &) "

(abecde) (abged) (ab,c,ed)

Figure 5.1: Rule system, problem and the corresponding search space

- 80 -

L]

(a,b,e,d)

n

CHAPTER §: ON THE SEMANTICS OF CONTROLLED RULE-BASED SYSTEMS

Definition 5 SEQUENCE OF INFERENCE STEPS

In order to get the number of rule applications in the lefter part of the inference chain we
introduce the function nop. nop denotes the number of premises in the first part (ay,...,a;)
of an inference chain (ay,...,ax): Vj < k.[nop(j,(ai,...,ax)) = card({a;|la; € PREM A1 <

D))

A sequence of inference steps for a ground instance g € G from PREM = {a1,...,ax} C G using RB is
a sequence (name,...,name,) with name; € RNAME for allic {1,...,n}
such that ic = (ay,...,am = g) is an inference chain for f from PREM using RB
and Vi.[a; € PREM
V (rule(name;_ynop(i ic)) = TA
do.o(r) = (namei—nop(i,ic)’ {ajy,---ya }ai)
with j1,...,5 < 1)}

Let sois be a relation mapping each inference chain to a corresponding sequence of inference
steps.

Definition 86 SOLUTION

A solution sol(p) with respect to RB C R, where p = (INITIAL,GOAL) is a problem, is
an inference chain for s € G from INTTITAL using RB if there ezxists a substitution o for
GOAL so that 0(GOAL) = s.

5.1.2 Structuring Rule Bases

In this section production rule systems are extended to allow partitioning of a rule base into
a set of rule sets. This is done by introducing a set of names for rule sets and a function that

maps rules into the name of the rule set they occur in.

Deflnition 7 PARTITIONED PRODUCTION RULE SYSTEM
A partitioned production rule system is a pair (PRB,WM) where

PRB = (SOR,SRS, f)
and SOR a set of rules
SRS a set of names with SRS N RN AME = {}
f a function fSOR — SRS denoting the name
of the structured rule set a rule occurs in.

WMcCG

-81-

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

5.1.3 Adding Pre- and Postconditions

In order to capture the full expressive power of structured rule sets with our declarative
semantics we have to formalize pre- and postconditions. A necessary condition for the appli-
cability of a rule in structured rule sets is that all of the preconditions of a structured rule set
are satisfied and at least one of the postcondition is not satisfied. To describe the semantics

we add pre- and postconditions to the condition part of object rules.

Definition 8 RULE SYSTEMS CONTAINING RULE SETS WITH PRE- AND POSTCONDITIONS
A partitioned production rule system containing rule sets with pre- and postconditions is a

pair (RB,WM) where

RB = (SOR,SRS, f,pre — srs, post — srs)
and pre-srs, post-srs: SRS — LIT*
functions denoting the pre- and postconditions of a structured rule set.
SOR a set of rules.
SRS the set of structured rule set names.
, f:RB — SRS the function denoting for each rule the rule set
it is contained in. '

WMCG

Remark: we use a modified version of this definition that is more convenient for our discus-
sion. Let RB = (SOR, SRS, f,pre — srs, post — srs). RB' = (SOR',SRS, f) where

SOR' = {r| r' = (name, (cond,, ... ,cond,),conc) € SOR;A
f(r) = srsA
pre — srs(srs) = {prey,...,prem}A
post — srs(srs) = {posty,...,post,}A
r = (name, {cond,,...,cond,,prei,...,prem, post;},conc)

(te{1,...,n})}

5.1.4 Phase Sequences

As we have seen in chapter 3 phase sequences induce a partial order within a inference chain.
Only branches of the search space satisfying this partial order are expanded by the control
tegime. When considering sequences of inference steps the search space searched by a phase
sequence can be specified by a regular language that is a function of the rule sets and the

phase sequence. A similar approach is taken in [Georgeff-82].

-82-

~ CHAPTER §: ON THE SEMANTICS OF CONTROLLED RULE-BASED SYSTEMS

(a.b,c) (ab,c)

2N 7N

(a,b,c,d) (a,b,c,8) (a,b,e,c)

i /\ 'i/\'
(ab,c,d®) (abcced) (ab,.ced (ab,c,e,d) (ab,ecd) (ab,ed.c)

rlqgr3or2 rlor2ond rlor20r4 r20rlor3 ﬂo(rlo rd r2or4orl
s (71 +72)°(r3 + r4)* (r1 + G’)‘("*‘ rd)* (rl + r2) (r3+rd4)*(r1 4 r2)'(r3 + 74y (r1 4 r2)°(r3 + 74)" (r1 + F2)° (r3 4 rd)”

Figure 5.2: Search space expanded by a phase sequence

We illustrate the basic idea of this formalization in an example. The rules from figure 5.1 are
partitioned in two rule sets .4 and B such that A contains 71 and r2 and B contains r3 and
r4. (A, B) is given as the phase sequence of the controlled production system. The sequence
of inference steps of a solution correct with respect to the phase sequence is a word in the

regular language (see definition 10) (r1 + 72)*(r3 + r4)*. This is visualized in figure 5.2.

Definition 9 PHASE SEQUENCE
A phase sequence ps = (87181,...,878,) is a sequence of names of rule sets from SRS.

Definition 10 REGULAR EXPRESSIONS (see e.g. [Manna-74])
Let ¥ be an alphabet. The set of regqular expressions REXP(L) is recursively defined:

1. <> and < € >€ REXP(X)
2. Va € X.a € REXP(Y)

3. VRy,...,R, € REXP(Y):
Ryo...0R, € REXP(E),
Ri+...+ R, € REXP(),

=83«

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS
VR € REXP(Z) R is a set of words over & (R C L*).

1. if R =< €> then R = {¢}
2. if R =<> then R = {}
3. if R € T then R = {R}

4. Ri,...,Rn € REXP(S))))
ifR=Ryo...oR, then R=Ryo0...0R, ={wy0...0wy|w; € Ry,... w, € R,}

5. Ry,...,Rn € REXP(S)) o
ifR=Ri+...+ R, then R=R1+...+ R, =R1U...UR,

6. Ry € REXP(Z)
if R=R; thenR:{w|w=eV3w],...,wkeRl(kZ DAw=wy0...0wg}

Definition 11 A CONTROLLED PRODUCTION RULE SYSTEM

A controlled production rule system is a triple (RB, WM, ps) where RB = (SOR,SRS, f)
is a rule base containing rule sets with pre- and postconditions and ps is a phase sequence
over SRS.

Definition 12 REGULAR LANGUAGES DEFINED BY CONTROLLED PRUDUCTION RULE SYys-
TEM

Let CPS = (RB,WM,ps) be a controlled production rule system with ps = (srs1,...,878y)
and RB = (SOR, SRS, f). CPS defines a regular language RL(CPS) on RN AME

RL(CPS)=(ri; + ..o 11,) (ry + oo 12,)" oo (T + oo+ 70)
where {ry,,...,r1,,} = {r|rule(r) € SOR A f(rule(r)) = srs;}

.{:r.nl, coosTry} = {rlrule(r) € SOR A f(rule(r)) = srs,}

Definition 13 CORRECTNESS OF INFERENCE CHAINS WITH RESPECT TO
CONTROLLED PRODUCTION RULE SYSTEMS

Let CPS = (RB,WM,ps) be a controlled production rule system with RB = (SOR,SRS, f).
An inference chain ic for some ground instance ¢ from a set PREM using SOR s correct
with respect to a controlled production rule system C'PS if the corresponding sequence of
inference steps is a word in the regular language defined by CPS.

-84 -

CHAPTER §: ON THE SEMANTICS OF CONTROLLED RULE-BASED SYSTEMS

Definition 14 CORRECTNESS OF SOLUTIONS WITH RESPECT TO CONTROLLED
PropucTiON RULE SYSTEMS

A solution sol is correct with respect to a controlled production rule system if sol is a solution
and the corresponding sequence of inference steps is correct with respect to the controlled
production rule systems.

5.2 Operastional Semantics

In this section an abstract interpreter for structured rule bases which are interpreted us-
ing phase sequences is defined by a set of PROLOG clauses. INTERPRET is an abstract
specification of the concrete implementation of the CATWEAZLE interpreter. For sake of
simplicity we assume that no variables occur in the rules. This does not affect the results
of the next section because we are only interested in how phase sequences are interpreted.
But, this restriction allows us to keep the PROLOG clauses defining INTERPRET rather
simple. Therefore, INTERPRET has the same characteristics with respect completeness and
soundness as the CATWEAZLE interpreter. Definition 15 defines the abstract interpreter by
firstly specifying how rule bases are represented using PROLOG facts secondly, giving a set
of PROLOG clauses describing the behaviour of the interpreter and finally describing how

the interpreter is activated to interpret a rule base in order to solve a given problem.

Definition 15 PROLOG CLAUSES FOR THE OPERATIONAL SEMANTICS OF
CATWEAZLE

A) Predicates for representing the rule base
Let (RB,WM, ps) be a controlled production rule system with RB = (SOR,SRS, f).

phase-sequence(fal,..,an]) if ps = (al,...,an)

precond(a,[p1,..,pn]) if a € SRS A precond(a) = {pl,..,pn}
postcond(a,[pl,..,pn]) if a € SRS A postcond(a) = {p1,..,pn}
rule(rn,[c1,..,en],conc) r = (rn,{c1,...,¢n},conc) € SOR

ruleset-of-rule(r,rs) Jrule € SOR.rule = (r,c,conc)Ars € SRSA f(r)=rs

B) PROLOG program for the operational semantics of CATWEAZLE

interpretl (Prem,Goal) :-
phase — sequence(PhaseSequence),
interpret(PhaseSequence, Prem, Goal,[]).

-85 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

Arguments of interpret:

The first argument of interpret is a sequence of rule set names that still have to be activated
in the current problem solving process. The inference chain is represented by the second
argument. The third argument is the goal condition and the last one contains the names of
the rules that have been applied in the current problem solving process.

/* the interpretation of the phase sequence is completed */
interpret ([}, InfChain,Goal,SOIS).

/* the current inference chain satisfies the goal condition */

interpret(PhasesToBeEzecuted, In fChain,Goal, SOIS) : —
subset(Goal, In fChain).

/* a rule of the currently active rule set is applied */
interpret([Active Phase|RestO fPhases), InfChain,Goal,SOIS) : -
/¥ rule set ActivePhase active? */
precondition(Active Phase, Precond), subset(Precond, InfChain),
postcondition(Active Phase, Postcond), not(subset(Postcond, In f Chain)),
/* enumerates rules of the rule base */
rule(Name, Le ftSide, RightSide),
/* is the rule in the active rule set? */
rulesetO f Rule(N ame, Active Phase),
/* is the rule applicable? */
subset(LeftSide, InfChain),
/* the rule has not been applied in the current problem-solving process */
not(member(Name, SOIS)),
/* adds conclusion of the rule to the inference chain */
interpret([Active Phase|RestO f Phases),[RightSide|InfChain], Goal,[Name|SOIS]).

/* the next phase of the phase sequence is interpreted */

interpret([Active Phase|RestO fPhases), InfChain,Goal , SOIS) : —
/* postcondition of the active phase is satisfied */
precondition(Active Phase, Precond), subset(Precond, In fChain),
postcondition(Active Phase, Postcond), subset(Postcond, In fChain),!,
interpret(RestO f Phases, In fChain,Goal, SOIS).

interpret(PhasesToBeFEzecuted, In fChain,Goal,SOIS) : —
fail.

C).Problem (PREM,GOAL) stated as a query

?— interpretl(Prem, Goal).

The complete PROLOG program and an example rule base is listed in appendix C. A trace
for an example problem can be found in appendix D.

. 86 -

CHAPTER §: ON THE SEMANTICS OF CONTROLLED RULE-BASED SYSTEMS

5.3 Soundness and incompleteness

Having formalized our intuition of the notion of correct solutions with respect to a given phase
sequence and specified the operational behaviour of the concrete CATWEAZLE interpreter
by a set of PROLOG clauses we are able to prove some theoretical propositions about the im-

plementation. In this section soundness and incompleteness of the CATWEAZLE interpreter

is shown.

5.3.1 Soundness

The first and most important result is that the CATWEAZLE interpreter infers only solutions

that are correct with respect to the declarative semantics of the formulated phase sequence.

Lemma 1 SOUNDNESS
INTERPRET is sound with respect to the declarative semantics.

Let CPS = (RB,WM,(ps1,...,psn)) be a controlled production rule system and
((premy,...,premp),conc) be a problem.
RB = (SOR,SRS, f).

VEk € N[

interpret([psi, ..., psa),[prems, ..., premy,],Goal,[])
F interpret([psi,...,psn),[cks...,C1,premy, ..., premy], Goal, [is, .. .,181])

== (premy,...,premmp,cy,...,Ck)
is an inference chain for ci from {premi,...,premy,} using SOR which is
correct with respect to (ps1,...,pss)].
(Correct means that isy o...01isx € RL(CPS))
where o denotes concatenation].

-87-

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

Proof:

We prove this result by induction on the length of [isg,...,is1].
Notation

We denote:
SORN] = (7‘11 + ...+ Tlm)*
SORN’Q = (7‘21 +...4+ 7‘20)*

SORN = (o + ...+ 10,)
where {ry,,...,r1,.} = {r|[r € RNAME A f(r) = sr3,}

{rngseoos iy} = {rlr € RNAME A f(r) = s73,}
o((wi,...,wy)) denotes wy o...0ow,
InductionBase k=0

o(()) = € € SORN?
=5 o(()) € SORN? o...0 SORA,

Induction Hypothesis

Vj < k.[interpret([psy,...,psn],[prems,.. ., premm),Goal,[])
F interpret([ps;,...,psn),[cj, ..., c1,premy, ..., premy],Goal,[is;, ... 18

= (premy,...,premy,c1,...,¢;)
is an inference chain for ¢; from {prem,,...,prem,,}
using SOR which is correct with respect to (psy,...,psy)].

InductionStep k —k+1

The only way to infer new propositions is to apply the fourth clause of interpret
I-times (with { > 0) and then the third one.

interpret([psi,...,psn],(Cky. .. C1,Premy,. .., prem,,],Goal,[isg, .. .151])
== interpret([psiy1,...,P8nl,[Ck,.. . C1, premy, ..., premp]),Goal,[isg .. .131])

=> interpret([psiti—1,..-,P8n),[Chy---,C1,premy,. .. ,prempyl,Goal,[is,. .. ,i31])

= interpret([psiti,-..,P3n),[Cht1,Cky- - - ,C1, PTEMY, ..., premy,],Goal, [i8k 4y, . . ., 131])

The induction step consists of two parts:

firstly, proving that the rule application is correct and

secondly, proving that the sequence of inference steps is still in the regular language
defined by the phase sequence.

1) Correctness of the Rule Application »
It has to be shown that (prem,,...,prem,,cy,...,ck,ck+1) is a inference chain
for cx41 from {prem,,...,prem,} using SOR.

Let {pre;,...,pre,} be the pre- and {posty,...,post,}
the postconditions of the rule set ps,y,.

-88-

CHAPTER §: ON THE SEMANTICS OF CONTROLLED RULE-BASED SYSTEMS

Let rz\de(rn, {condi,...,condr},ck+1} be the rule applied in INTERPRET.
From the definition of the predicate rule we can conclude that

(rn, {condy,...,condy, prei, ..., pre,, ~post;},cky1) € SOR(i € {1,... ,0})
We know from the induction hypothesis that (¢cy,...,¢x) is an inference chain
for ¢y from {prem,,...,prem,} using SOR.

In order to prove that (¢j,...,¢k41) is an inference chain
for cj41 from {prem,,...,prem,,} using SOR we have to show:
1) condy,...,condy € (premy,...,premm,cy,- .. Ck)
This is true because subset([cond,,...,cond,],[premy, ..., premmpm,cy, ... ck])

2) prei,...,pre, € (premy,...,premm,ci,. .. Ck)

This is true because subset([pre;, ..
3) ~[postiand . ..andpost, € (prem., ..

.,Preo), [premu, ..., prempy, c1, ... ck))
., PT€Myn, €1,y . - - Ck)]

This is true because not(subset([post,, ..., posty),[premy,...,premm,ci, ... ck}))

2) The sequence of inference steps is an element of the regular language defined by the
phase sequence 181 0...088;0€0...0¢€0is;41 € SORN}0... 0 SORNY,

| times

5.3.2 incompleteness

Lemma 2 INCOMPLETENESS

INTERPRET is not complete with respect to the declarative semantics. This means, if there
is a correct solution with respect to the phase sequence it is not necessarily found by INTER-

PRET.

Counterexample:

Given two rule sets:

rule set A with

precondition {}
postcondition {(hypothesis 7X ?7Y)}

and following rules

(r1,{(fever ?patient)
(red-nose ?patient)},
(hypothesis ?patient cold))
(r2,{(fever 7patient)
(red-nose 7patient)},
(hypothesis 7patient hay-fever))

rule set B with

precondition {(hypothesis ?X ?Y)}
postcondition {(probably ?X 7Y)}

and the following rules:

(r3,{(season winter)
(hypothesis ?patient cold)},
(probably ?patient cold))
(r4,{(season summer)
(hypothesis ?patient hay-fever)
(probably ?patient hay-fever))

-89 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

and the control strategy (A, B). Let
({(fever tom),(red — nose tom), (season winter)}, (probably tom cold))
be the problem to be solved. We can see:

1. There exists a solution for the problem.
((fever tom)(red—nose tom)(season winter)(hypothesis tom cold)(probably tom cold))
is a solution for the above problem which is correct with respect to the control strategy
(A, B).

2. The solution is not necessarily found by INTERPRET.

INTERPRET([A, B],
[[fever tom],[red — nose tom], [season winter]],
[probably tomcold),[]) ==
INTERPRET([A, B), |
[[hypothesis tom hay — fever),[fever tom],[red — nose tom],
[season winter]], '
[probably tom cold),[r2]) =
INTERPRET([B),
([hypothesis tom hay — fever),[fever tom],[red — nose tom),
[season winter]],
[probably tom cold],[r2]) =
fail

This interpretation of the controlled production rule system fails to establish the prob-
lem stated above. The second possible interpretation is as follows:

INTERPRET([A, B),[[fever tom],[red — nose tom], [season winter]],
[probably tom cold),[]) ==
INTERPRET([A, B), [[hypothesis tom cold],[fever tom],[red — nose tom],
[season winter]],
[probably tom cold),[r1]) =
INTERPRET([B],[[hypothesis tom cold),| fever tom], [red — nose tom],
[season winter]],
[probably tom cold],[r1]) =
INTERPRET([B],[[probably tom cold], [hypothesis tom cold),[fever tom),
[red — nose tom],[season winter]),
[probably tom cold),[r3,r1]) =
true ‘

Whether the first or second interpretation is chosen is a non-deterministic choice. There-
fore, we can conclude from this example that INTERPRET is not complete with
respect to the declarative semantics defined in section 4.

290 -

CHAPTER §: ON THE SEMANTICS OF CONTROLLED RULE-BASED SYSTEMS

However, this result sounds worse than it is. What we tried to model is another problem
solving strategy. A natural way for solving problems like these is to generate hypotheses

iteratively until one is found that can be established. Therefore,

control-strategy
loop
A
B
until (probably ?X ?Y)
end-loop

end-strategy

would be a more adequate control strategy for the kinds of problems considered above. In
particular, the above rule base with the modified control strategy is complete for this kind

of problems.

-91.

CHAPTER 6: Discussion

6.1 Contributions

Explicit and declarative representation of control knowledge and well-structured knowledge bases arc
crucial requirements for efficiently developing and maintaining complex knowledge-based systems
These requirements become particularly important for rule-based systems because they are widely uscc
to implement expert systems that are in general complex. On the other hand todays rule-based systems

do not satisfy these requirements.

The CATWEAZLE rule interpreter described in this thesis allows knowledge engineers to partition rule
bases and specify meta-level architectures for control to cope with these problems. However, a lot ol
research problems in the area of meta-level architectures have to be solved to use them successfully
This research is mainly concerned with problems occuring when specifying meta-level architectures for

rule-based systems.
In this particular domain the thesis is supposed to contribute results to the following research questions:

1. What is a suitable language to specify meta-level architectures?
2. How can such a language be interpreted efficiently?

3. What does it mean to specify control knowledge for a rule-based system?

The answer to the first question given in this thesis is the set of control concepts provided by the
CATWEAZLE language. It is a small set of concepts (section 3.1) allowing to model a wide range ol
control strategies commonly used in expert systems design (section 3.6.2). The reason for keeping the
languagc as simplc as possible is twofold: Firstly, the language is easy to learn and to usc and sccondly, il

can be processed more efficiently when having only very few concepts. Another aspect of the

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL

CATWEAZLE language is that it allows an adequate representation of different kinds of reasoning
knowledge (section 3.7) that are intermixed in other formalisms, for instance in simple production rule

systems (section 1.3).

Applying the concepts of meta-level architectures to knowledge-based systems often causes inefficiency.
A lot of inferencing needs to be done in order to reason about controlling a problem-solving process
(see section 4.2). Here, we tried to overcome the cfficiency problems by using the RETE pattern
matching algorithm. The RETE algorithm has been extended and modified to process the
CATWEAZLE control language (sec section 4.5). This approach drastically reduces the pattern
matching efforts at run time. Several optimivations that can be done before run time and that are
incorporated in the compiler for the CATWEAZLE language. These optimizations are described in

section 4.5.

Partial results are provided for the third research question. A declarative and procedural semantics for
phase sequences is given. Again, emphasizes is given to separate object-level knowledge and control
knowledge in the declarative semantics. It is formalized how phase sequences affect the shape of the
search space. The procedural semantics, an abstract description of the implemented interpreter, is
proved correct but incomplete with respect to the declarative semantics. The semantics for other
concepts Lo control search like rules about object rules and rules about structured rule sets are not yet

defined. These results are described in chapter 5.
6.2 Future Work

The thesis describes the prototype version so far. A lot of work remains to be done in order to get a

practical tool for building knowledge-based systems. Important issues are discussed in this section.

CATWEAZLE provides a very simple language and needs only very few concepts to describe control
strategies. On the other hand, the language is argued to be powerful enough to model nearly all
architectures for scarch listed in the classification of Stefik ct al. [Stefik etal.-82]. However, the
expressive power of the system should be validated by demonstrating that applications can be
implemented more easily rather than proving it powerful with respect to classifications. Thus, one task
will be to analyze the expressive power of the control language by implementing applications. New
concepts are added if necessary. But, the addition of new control concepts will be paid for with a more
complicated language and reduced clarity. Therefore, we have to be very careful that the costs of an

additional concept are higher than its benefits.

The analysis of the concept of structured rule sets indicates some important and very useful extensions.

Thus, in the next version of CATWEAZLE their notion will be generalized. We will allow the content of

- 94 -

DISCUSSION

a structured rule set itself to be a controlled production rule system. This induces (wo important

advantages:

1. We can model recursive reduction of problems in subproblems (see, for instance, the GRAPES
system [Anderson,Farrell,Sauers-84]). Decomposition of tasks into subtasks (see section 2.1.1) is

an important technique for developing complex knowledge-based systems.

2. When criticizing the current version one can argue that problems like mixing diffcrent kinds of
knowledge can still occur at the control level. No concepts are provided to decompose the mela
knowledge and represent its different types by different representation structures. When
extending the notion of structured rule sets as outlined above the techniques for structuring
knowledge can be applied as well to the meta levels as to the object-level. Then problems

discussed in section 1.3 do not occur at the control level.

When extending the concept of structured rule scts as proposed we can decompose tasks successively
until we have primitive tasks. In a more sophisticated version CATWEAZLE can serve as a
implementational basis of the generic task approach of Chandrasekaran (see section 2.1.1) which

provides guidelines to organize application systems.

Also, we will allow contents of structured rule sets to be an arbitrary program. Then necessary input
information and effects of algorithms can be formalized using pre- and postconditions. This cnables a
controlled production rule system to reason about when an algorithm should be executed in a problem

solving process and provides a uniform framework for integrating algorithms in Al architectures.

Another extension will be to augment abstractions of structured rule sets with a specification of import
and export knowledge. These are sets of patterns of working memory elements that are imported when
the rule set is activated and stored in the global working memory when the rule set is activated. All
others constitute the local working memory of the rule set. This increases the efficiency of the

matchching process as well as reduces the complexity of the search space.
The language for expressing conditions has to be augmented by the usual logical connectives.

In the current version the programming environment is too primitive. First prototypes of a tracer and
debugger have been implemented. But more sophisticated tools are needed. To support knowledge
engineering we need a stepper capable (o step back, edit rules and restart the modified rulebase on the

prior state of the working memory.

The semantics for rules about object rules and rules about structured rule sets has to be defined.

- 95 .

SPECIFYING META-LEVEL ARCHITECTURES FOR CONTROL
6.3 Implementation Issues

Without any doubt CATWEAZLE is not yet a practical tool for building rule-based systems. This is

caused by reasons discussed in the following paragraphs.

CATWEAZLE is a first prototype, it has been implemented exploratively. In the beginning of the system
development it was not clear at all that control knowledge can be compiled and processed by a RETE-
like pattern matching algorithm. Therefore, the compiler and the basic data structures were modified
and extended stepwise. Now, knowing that it can be done and more important, how it can be done we

can do it in a much better way since we have the final architecture in mind.

In order to facilitate the experiments for compiling control knowledge, objects including inheritance,
were chosen as the basic data structures in the condition network. This choice caused our
implementation to be easy to modify. And, objects are supported by a sophisticated programming
environment, a tracer and a debugger. Now, we know how to implement the data structures and the
basic methods of matching and we can change our basic data structures to simpler ones. It has to be

tested how much the efficiency can be increased by changing data structures.

Of course sophisticated programming tools are not yet implemented but it seems to be clear what

information these tools require and how data structures have to look like to provide these informations.

S 96 -

References

[Aiello,Levi-84]
L. Aiello and G. Levi:
The Uses of Metaknowledge in Al Systems,
Proc. of Sixth European Conference on Artificial Intelligence, ECAI-84,
Pisa, September 1984, pp. 707-717.

[Allen-82]
L.Allen:
YAPS - Yet Another Production System,
Technical Report TR-1146,
Department of Computer Science, University of Maryland, 1982.

[Anderson,Farrell,Sauers-84]
J. Anderson, R. Farrell, R. Sauers:
Learning to Program in LISP,
Cognitive Science 8(2), April-June 1984.

[Batali-86]
J. Batali:
Reasoning about Control in Software Meta-Level Architectures,
Preprints of the Workshop on Meta-Level Architectures and Reflexion,
Alghero, October 1986.

|Beetz-85]
M. Beetz:
Wissensrepraesentationstechniken und Inferenzmethoden -
ein klassifizierender Ueberblick,
Forschungsbericht FB-TA-85-14,
TA Triumph-Adler AG, Basisentwicklung.

[Beetz-87]
M. Beetz:
Eine Wissensrepraesentationssprache fuer Kontrollwissen in regelbasierten Systemen,
Proc. of Expertensysteme '87, Konzepte und Werkzeuge,
Nuernberg, April 1987.

|Bobrow,Stefik-83]
D. Bobrow, M. Stefik:
The LOOPS Manual,
Technical Report,
XEROX PARC, 1983.

[Bowen,Kowalski-82]
K. Bowen and R. Kowalski:
Amalgamating Language and Metalanguage in Logic Programming,
in: Logic Programming, K. Clark and S. Tarnlund (eds.)
Academic Press, 1982, pp.153-172.

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

|Breuker,Wielinga-86]
J. Breuker, B. Wielinga:
Models of Expertise
Proc. of Seventh European Conference on Artificial Intelligence, ECAI-86,
Brighton, July 1986, pp. 306-318.

[Brachman-78]
R. Brachman:
On the Epistemological Status of Semanlic Networks,
Bolt Beranek and Newman Inc., Report No. 3807,
April 1978.

[|Brownston,ctal-85]
L. Brownston, R. Farrell, E, Kant, N, Martin:
Programming Expert Systems in OPSS5: An Introduction to Rule -Based Programming,
Addison-Wesley, 1985.

[Bundy-85]
A. Bundy:
Discovery and Reasoning in Mathematics,
Proc. of the Nineth International Conference on Artificial Intelligence, LICAI-85,
Los Angeles, Cal,, 1985, pp. 1221-1230.

[Bundy,etal-79]
A. Bundy, L. Byrd, G. Luger, C. Mellish, R. Milne, M. Palmer:
Solving Mechanics Problems Using Meta-Level Inference,
Proc. of the Sixth International Joint Conference on Artificial Intelligence, IJCAI-79,
Tokyo, August 1979,

[Bundy,Sterling-81]
A. Bundy, L. Sterling:
Meta-Level Inference in Algebra,
DAI Research Paper No. 164,
Department of Artificial Intelligence, University of Edinburgh, 1981.

[Bundy,Sterling-85]
A. Bundy, L. Sterling:
Meta-Level Inference in Algebra,
DAI Research Paper No. 273,
Department of Artificial Intelligence, University of Edinburgh, 1985.

[Bundy, Welham-81)
A. Bundy, B. Welham:
Using Meta-Level Inference for Selective Application of Multiple Rewrite Rules in Algebraic
Manipulation,
Artificial Intelligence 16 (1981), pp. 189-212.

[Bylander,Chandrasekaran-86]
T: Bylander, B. Chandrasekaran:
Generic Tasks in Knowledge-Based Reasoning: The "Right” Level of Abstraction for Knowledge
Acquisition,
Proc. of the Knowledge Acquisition for Knowledge-Based Systems Workshop, pp. 294-299,
Banff, Alberta, November 1986.

-08 -

REFERENCES

[Chandrasekaran-83]
B. Chandrasekaran:
Towards a Taxonomy of Problem Solving Types,
Al Magazine, Winter 1983, pp. 9-17.

|Chandrasekaran-84]
B. Chandrasekaran:
Expert Systems: Matching Techniques to Tasks,
W. Reitman (ed): Artificial Intelligence Applications for Business,
Ablex, Norwood, New Jersey, 1984, pp. 116-132,

[Chandrasekaran-85]
B. Chandrasekaran:
Generic Tasks in Knowledge-Based Reasoning: Characterizing and Designing Expert Systems at
the "Right" Level of Abstraction.,
Second Conference on Al Applications,
IEEE Computer Society,
Miami Beach, Florida, 1985.

[Clancey-83a]
W. Clancey:
The Advantages of Abstract Control Knowledge in Expert System Design,
Proc. of the National Conference on Artificial Intelligence, AAAI-83,
pp. 74-78.

|Clancey-83bj
W. Clancey:
The Epistemology of a Rule-Based Expert System: A Framework for Explanation,
Artificial Intelligence 20 (1983), pp. 215-251, 1983.

[Clancey-85a]
W. Clancey:
Representing Control Knowledge as Abstract Tasks and Metarules,
Stanford Knowledge Systems Laboratory, Working Paper No. KSL-85-16,
April 1985.

[Clancey-85b]:
W. Clancey:
Heuristic Classification,
Artificial Intelligence 27 (1985), pp. 289-350.

[Clancey-86}
W. Clancey:
From GUIDON to NEOMYCIN and HERACLES in Twenty Short Lessons: ORN Final Report
1979-1985,
Al Magazine, Summer 1986, pp. 40-58.

[Clancey,Bock-82]
W. Clancey, C. Bock:
MRS/NEOMYCIN: Representing Metacontrol in Predicate Calculus,
Stanford Heuristic Programming Project, Report No. HPP-82-31, 1982.

S99 .

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

[Clancey,Letsinger-81]
W. Clancey, R. Letsinger:
NEOMYCIN: Reconfiguring a Rule-Based Expert System for Application to Teaching,
Proc. of Seventh International Joint Conference on Artificial Intelligence, IJCAI-81,
Vancouver, pp. 829-836.

[Clocksin,Mellish-84]
W. Clocksin, C. Mellish:
Programming in PROLOG,
Springer Verlag Heidelberg New York Tokyo, 1984.

[Davis-80]
R. Davis:
Meta-Rules: Reasoning about Control,
Artificial Intelligence 15 (1980), pp. 179-222.

[Davis-82)
R. Davis:
TEIRESIAS: Applications of Meta-Level Knowledge,
in: Knowledge-Based Systems in Artificial Intelligence,
R. Dawvis, D. Lenat (eds.),
McGraw-Hill, New York, 1982, pp. 920-927.

{Davis,Buchanan-77]
R. Davis, B. Buchanan:
Meta-Level Knowledge: Overview and Applications,
Proc. of the Fifth International Joint Conference on Artificial Intelligence, IICAI-77,
Cambridge, Mass., pp. 920-927.

[Davis,King-84]
R. Davis, J. King:
The Origin of Rule-Based Systems in Al
in: B.Buchanan, E. Shortliffe:
Rule-Based Expert Systems - The MYCIN Experiments of the Stanford Heuristic Programmi
Project, 1984.

[Doyle-78)
J. Doyle:
Truth Maintenance Systems for Problem Solving,
AL-TR-419,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
January 1978.

[Doyle-83]
Methodological Simplicity in Expert System Construction:
the Case of Judgements and Reasoned Assumptions,
Al Magazine, Fall 1983.

|Fikes,Nilsson-71]
R. Fikes, N. Nilsson:
STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving,
Artificial Intelligence 2 (1971), pp. 189-208.

- 100 -

REFERENCES

[Forgy-79]
C. Forgy:
On the Efficient Implementation of Production Systems,
Ph.D. Dissertation,
Computer Science Department, Carnegie Mellon University,
Pittsburgh, 1979.

|Forgy-81]
C. Forgy:
OPSS5 User Manual,
CMU-CS-81-135,
Computer Science Department, Carnegic Mcllon University,
Pittsburgh, 1981.

[Forgy,McDermott-77)
C. Forgy, J. McDermott:
OPS, a Domain-Independent Production System Language,
Proc. of the Fifth International Joint Conference on Artificial Intelligence,
Cambridge, Mass., 1977, pp. 933-939.

[Genesereth-81)
M. Genesereth:
The Architecture of a Multiple Representation System,
Memo HPP-81-6,
Stanford Heuristic Programming Project,
Stanford University, 1981.

|Genesereth-82]
M. Genesereth:
An Qverview of MRS for Al Experts,
Memo HPP-82-27,
Stanford Heuristic Programming Project,
Stanford University, 1982.

[Genesereth-83a]
M. Genesereth:
An Overview of Meta-Level Architecture,
Proc. of the National Conference on Artificial Intelligence, AAAI-83, pp. 119-124.

[Genesereth-83b]
M. Genesereth:
The MRS Case Book,
Memo HPP-83-26,
Stanford Heuristic Programming Project,
Stanford University, 1983.

[Genesereth,Greiner,Smith-80]
M. Genesereth, R. Greiner, D. Smith:
MRS Manual,
Memo HPP-80-24,
Stanford Heuristic Programming Project,
Stanford University, 1980.

- 101 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

|Georgeff-82]
M. Georgeff:
Procedural Control in Production Systems,
Artificial Intelligence 18 (1982), pp. 175-201.

[Ghallab-81]
M. Ghallab:
Decision Trees for Optimizing Pattern-Matching Algorithms in Production Systems,
Proc. of the Seventh International Joint Conference on Artificial Intelligence, IJCAI-81,
Vancouver, August 1981.

{Hayes-73]
P. Hayes:
Computation and Deduction,
Proc. of Mathematical Foundations of Computer Science (MFCS) Symposium,
Czechoslovakian Academy of Sciences, 1973.

|Hayes-77)
P. Hayes:
In Defence of Logic,
Proc. of the Fifth International Joint Conference on Artificial Intelligence, IJCAI-77,
Cambridge, Mass., 1977, pp. 559-565.

[Hayes-79]
P. Hayes:
The Logic of Frames,
in: Frame Conceptions and Text Understanding,
Walter de Gruyter and Co., pp. 46-61.

|Hayes-Roth-85a]
F. Hayes-Roth:
Rule-Based Systems,
Communications of ACM,
Vol. 28(85) No. 9, pp 921-932.

[Hayes-Roth-85b]
B. Hayes-Roth:
A Blackboard Architecture for Control,
Artificial Intelligence 26 (1985), pp. 251-321.

[Jackson,Reichgelt,vanHarmelen-85]
P. Jackson, H. Reichgelt, F. van Harmelen:
A Flexible Toolkit for Expert Systems,
Technical Report EQU-2,
Department of Artificial Intelligence,
University of Edinburgh, 1985.

[KAPRI-86] _
M. Reinfrank, M.Beetz, J. Klug, H. Freitag:
KAPRI - A Rule-Based Non-Monotonic Inference Engine with an Integrated Reason
Maintenance System,
SEKI-REPORT SR-86-03,
University of Kaiserslautern, March 1986.

-102 -

REFERENCES

|Laird-83]
J. Laird:
Universal Subgoaling,
Ph.D. Thesis,
Computer Science Department,
Carnegie Mellon University, 1983.

[Laird,Rosenbloom,Newell-84]
J. Laird, P. Rosenbloom, A. Newell:
Towards Chunking as a General Learning Mechanism,
Proc. of the National Conference on Artificial Intelligence, AAAI-84,
Austin, Texas, 1984, pp. 373-377.

[Maes-86a]
P. Maes:
Reflection in an Object-Oriented Language,
Al-Laboratory Memo 86-6, Vrije Universileit Brussel.

[Maes-86b)
P. Maes:
Introspection in Knowledge Representation,
Proc. of the Seventh European Conference on Artificial Intelligence, ECAI-86,
Brighton, July 1986, pp. 256-269.

{Maes-86c¢]
P. Maes:
Reflection in an Object-Oriented Language,
Preprints of the Workshop on Meta-Level Architectures and Reflexion,
Alghero, October 1986.

{Manna-74]
Z. Manna:
Mathematical Theory of Computation,
McGraw Hill Book Company, 1974,

[Martins-84]
G. Martins:
The Overselling of Expert Systems,
DATAMATION, Vol. 30, No. 18, 1984, pp. 76-80.

[McDermott-81]
J. McDermott:
R1: The Formative Years,
Al Magazine 2 (1981), pp. 21-29.

[McDermott,Forgy-78]
J. McDermott, C. Forgy:
Production System Conflict Resolution Strategies,
in: Pattern-Directed Inference Systems, D. Waterman, F. Hayes-Roth (eds.),
Academic Press, New York, 1978, pp. 177-199.

- 103 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

[Neches,Swartout,Moore-84)
R. Neches, W, Swartout, W. Swartout:
Enhanced Maintenance and Explanation of Expert Systems through Explicit Models of their
Development,
Proc. of IEEE Workshop on Principles of Knowledge-Based Systcms
Denver, Colorado, 1984, pp. 173-183.

[Newell-82]
A. Newell:
The Knowledge Level,
Artificial Intelligence 18 (1982), pp. 87-127.

[Nii-86a]
P. Nii:
Blackboard Systems: The Blackboard Model of Problem Solving and the Evolution of Blackboard
Architectures,
Al Magazine, Summer 1986, pp. 38-53.

[Nii-86b]
P. Nui:
Blackboard Systems: Blackboard Application Systems, Blackboard Systems from a Knowledge
Engineering Perspective,
Al Magazine, Autumn 1986, pp. 82-106.

[Puppe-83]
F. Puppe:
MED1 - Ein heuristisches Diagnosesystem mit effizienter Kontrollstruktur,
MEMO SEKI-83-04,
University of Kaiserslautern, 1983.

[Reichgelt,vanHarmelen-85]
H. Reichgelt, F. vanHarmelen:
Relevant Criteria for Choosing an Inference Engine in Expert Systems,
Proc. of the Fifth Technical Conference of the British Computer Society Specialist Group on
Expert Systems,
Expert Systems "85, Warwick, December 1985,
pp. 21-31.

[Reichgelt,vanHarmelen-87)
H. Reichgelt, F. van Harmelen:
Building Logic-Based Expert Systems,
submitted for publication in Proc. of the Tenth International Joint Conference on Artificial
Intelligence

|Rosenbloom,Laird,Newell-86]
P. Rosenbloom, J. Laird, A. Newell:
Meta-Levels in Soar,
Preprints of the Workshop on Meta-Level Architectures and Reflexion,
Alghero, October 1986.

[Ross-86]
P. Ross:
Expert Systems (Lecture Notes),
Department of Articial Intelligence,
University of Edinburgh, 1986.

-104 -

REFERENCES

[Schor,etal.-86]
M. Schor, T. Daly, H. Soo, B. Tibbits:
Advances in RETE Pattern Matching,
Proc. of the National Conference on Artificial Intelligence, AAAI-86.

[Shortliffe-76]
E. Shortliffe:
Computer-Based Medical Consultations: MYCIN,
Elsevier North Holland, New York, 1976.

[Steele-80)
G. Steele:
The Definition and Implementation of a Computer Language Based on Constraints,
Artificial Intelligence Laboratory Memo AI-TR-595,
Massachusetts Institute of Technology, 1980.

[Steels-84]
L. Steels:
Knowledge Representation for Expert Systems,
Proc. of Eigth German Workshop on Artificial Intclligence,
Wingst/Stade, 1984, pp. 1-19.

[Stefik etal.-82]
M. Stefik, J. Aikins, J. Benoit, L. Birnbaum, R. Hayes-Roth, E. Sacerdoti:
The Organization of Expert Systems - A Tutorial,
Artificial Intelligence 18 (1982), pp. 135-173.

|Sterling-84]
L. Sterling:
Implementing Problem-Solving Strategies Using the Meta-Level,
Research Paper DAI-209,
Department of Artificial Intelligence, University of Edinburgh.

{Sterling,Bundy,Byrd,O’Keefe,Silver-82]
L. Sterling, A. Bundy, L. Byrd, R. O’Keefe, B. Silver:
Solving Symbolic Equations with PRESS,
Research Paper DAI-171,
Department of Artificial Intelligence, University of Edinburgh, 1982.

[Takeuchi,Furukawa-85]
A. Takeuchi, K. Furukawa:
Partial Evaluation of PROLOG Programs and its Application to Meta Programming,
Proc. of IFIPS ’86, Dublin, 1986.

[vanHarmelen-86]
F. van Harmelen:
Improving the Efficiency of Meta-Level Reasoning,
Proposal for a Ph.D. thesis,
Department of Artificial Intelligence,
University of Edinburgh.

- 105 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

[vanHarmelen-87)
F. van Harmelen:
A Categorisation of Meta-Level Architectures,
Research Paper DAI-297,
Department of Artificial Intelligence,
University of Edinburgh.

[vanHarmelen,Reichgelt-86}
F. van Harmelen, H. Reichgelt:
Demonstration Pamphlet for the Prototype of the Flexible Toolkit for Expert Systems,
Technical Report No. EAU-10, Expert Systems Toolkit Project,
University of Edinburgh.

[vanMelle,Shortliffe, Buchanan-81]
W. van Melle, E. Shortliffe, B. Buchanan:
A Domain-Independent System that Aids in Constructing Knowledge-Based Consultation
Programs,
Pergamon-Infotech, New York, 1981.

[Wallen-83]
L. Wallen:
Using Proof Plans to Control Deduction,
Research Paper DAI-18S,
Dcpartment of Artificial Intellegence, University of Edinburgh.

|Williams-83)
C. Williams:
ART, the Advanced Reasoning Tool, Conceptual Overview,
Inference Corporation, 1983.

- 106 -

APPENDICES

Appendix A: Syntax of the CATWEAZLE Language

<rulebase>
::= (production-rule-base <identifier>
<control strategy spec>
<list of structured rule sets>

<control strategy spec>
::= (kind-of-strategy fixed)
<phase sequence spec> |
(kind-of-strategy scheduled)
<rulebase about structured rule sets>

<phase sequence spec>
::= (phase-sequence
(<list of phase sequence elements>)

)

<list of phase sequence elements>
:= <phase sequence element> <list of phase sequence elements>

<empty>

<phase sequence element>
::= <identifier> |
(<list of phase sequence elements>) |
(if <list of patterns>
<phase sequence element>
<phase sequence element>

) |
(loop

<list of phase sequence elements>
(until <list of patterns>)
<list of phase sequence elements>

)

<rulebase about structured rule sets>

:= (metg-rules
<list of meta rules rasrs>

)

<list of meta rules rasrs>
::= <rule about structured rule sets> <list of meta rules rasrs>

<empty>

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

<rule about structured rule sets>
:= (metarule <identifier>
<condition part rasrs>
-=>
<action part rasrs>

<list of structured rule sets>
::= <structured rule set> <list of structured rule sets> |
<empty>

<structured rule set>
:= (knowledge source <identifier>
<abstract description>
<content of rule set>

<abstract description>
:= (precondition <list of patterns>)
(postcondition <list of patterns>)

<content of rule set>
::= <rules about object rules>
<object rules>

<rules about object rules>
::= (metarules
<list of meta rules raor>

<list of meta rules raor>
::= <rule about object rules> <list of meta rule$ raor>

<empty>

<rule about object rules>
::= (metarule <identifier>
<condition part raor>
S
<action part raor>

<object rules>

::= (object-rules
<list of object rules>

)

<list of object rules>
::= <object rule> <list of object rules>
<empty>

- 108 -

APPENDIX

<object rule> ,
::= (objectrule <identifier>
<condition part or>
-=>
<action part or>

<condition part rasrs>
:= <list of rasrs conditions>

<list of rasrs conditions>
::= <rule set description> <list of rasrs conditions>
<pattern> <list of rasrs conditions>
<empty>

<rule set description>
::= (knowledge-source <variable>
{(with-preconditions <list of patterns>)}
{(with-postconditions <list of patterns>)}

<action part rasrs>
:= <list of rasrs actions>

<list of rasrs actions>
::= (activate <number>) <list of rasrs actions> |
(suspend <number>) <list of rasrs actions> |
<empty>

<action part raor>
::= <list of raor actions>

<list of raor actions>
::= (activate <number>) <list of raor actions> |
(suspend <number>) <list of raor actions> |
<empty>

<condition part raor>
:= <list of raor conditions>

<list of raor conditions>
1= <rule description> <list of raor conditions> |
<pattern> <list of raor conditions> |
<empty>

<rule description>
::= (objectrule <variable>
{(with-conditions <patterns>)}
{(with-actions <patterns>)}

<condition part or>
::= <list of patterns>

<109 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

<list of patterns>
::= <pattern> <list of patterns>
<empty>

<action part or>
::= <list of or actions>

<list of or actions>
::= (add <non-negated pattern>) <list of or actions> |
(delete <non-negated pattern>) <list of or actions> |
<empty> X

<pattern>
::= (<constant> <list-of-var-and-constants>) |
(not (<constant> <list-of-var-and-constants>))

<non-negated pattern>
;1= (<constant> <list-of-var-and-constants>)

<list-of-var-and-constants>
::= <constant> <list-of-var-and-constants> |
<variable> <list-of-var-and-constants> |
<empty>

<constant>
::= LISP symbol not beginning with a questionmark

<variable>
::= ?<identifier>

<identifier>
::= LISP symbol

<empty>
1= €

-110 -

Appendix B: Example Rule Base

(production-rulebase pilanner-for-blocksworld
(kind-of-strategy fixed)
(phase-sequence (INITIALIZE
{1oop CHECK
GENERATE-GOAL
SATISFY-GOAL)
)
)

(planning-system nil)

(scheduler nil)

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

(knowledge-source INITIALIZE

(precondition nil)
(postcondition all-rules-fired)
(metarules

(metaruie MR-FOR-INITIALIZE
(objectrule 7r
(with-actions (add (under ?x ?y ?state))))
(under 7x ?y 7state)
-->

(suspend 1))

(object-rules
(rule UNDER1
(on 7x 7y ?state)
==

(add (under 7y ?x ?state)))

(rule UNDER2

(on 7x ?y ?state)
(under 7z ?y ?state)

-->

(add (under 7z ?x ?state)))))

- 112 -

APPENDIX

(knowledge-source CHECK
(precondition nil)

(postcondition all-rules-fired)

(metarules
(metarule MR-CHECK1

(objectrule 7ri
(with-actions (add (status ?block ?status))))

(status ?block ?status)
-=>
(suspend 1))

(metarule MR-CHECK2

(objectrule 7r1
(with-actions (add (status ?block satisfied))))

(objectrule ?r2
(with-actions (add (status 7block unsatisfied))))

-->
(suspend 2)))
(object-rules
(rule CHECK1

(block ?block actual)
(unless (block ?block goal))

-~
(add (status ?block satisfied)))
(rule CHECK2

(ontable ?block actual)
(ontable ?block goal)

-->

(add (status ?block satisfied)))
(rule CHECK3

(on 7blockt ?block2 goal)

(status ?block2 satisfied)

(on ?blockl ?block2 actual)

-->

(add (status ?blockl satisfied)))

- 113«

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

(rule CHECKS
(on ?block ?block2 actual)
(status 7block2 satisfied)
(on ?7block 7block2 goal)
-->
(add (status ?block satisfied)))
(rule CHECK6

(block ?block actual)
(unless (status ?block satisfied))

-->
(add (status ?block unsatisfied)))
(rule CHECK?7

(status 7block satisfied)
(status 7block unsatisfied)

-->
(delete 2))))

114 -

APPENDIX

(knowledge-source GENERATE-GOAL
(precondition nil)

(postcondition ((goal ?x ?y ?7z)))

(metarules

(meta-rule CREATE-FIRST-STACK-GOALS
(objectrule 7r1
(with-actions
(add (goal put-on % %))))
-=>
(activate 1))

(meta-rule PREFER-IMMEDIATE-SATISFIABLE-PUT-DOWN-GOALS
(objectrule 7r1
(with-actions
(add (goal put-down ?block %))))
(ontable ?block goal)
-->
(activate 1)))

(object-rules
(rule GENERATE1
(on ?blockl ?block2 goal)
(clear ?blockl actual)
(clear ?block2 actual)
(status ?block2 satisfied)
(status ?block1 unsatisfied)
-->
(add (goal put-on ?blockt ?block2)))
(rule GENERATE?2
(ontable ?blocki goal)
(clear ?block1! actual)
(status ?blockt unsatisfied)
-->
(add (goal put-down ?blockl1 nil)))
(rule GENERATE3
(on ?blockt ?block3 goal)
(ontable ?block2 goal)
(status ?block2 unsatisfied)
(under ?block2 ?block1 actual)
(clear ?block1 actual)
(unless (status ?block3 satisfied))
-=) -
(add (goal put-down ?blocki nil)))
(rule GENERATE4
(on ?block2 ?block3 goal)
(status ?block3d satisfied)
(status ?block2 unsatisfied)
(under ?block2 ?blockl actual)
-->

(add (goal put-down ?block? nil)))

- 115 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

(rule GENERATES
(status ?block unsatisfied)
(clear ?block actual)
(unless (block 7block goal))
-->
(add (goal put-down ?block nil)))
(rule GENERATES
(status ?block unsatisfied)
(clear 7?block actual)
(unless (ontable ?block actual))
-=>

(add (goal put-down ?block nil)))))

-116-

APPENDIX

(knowledge-source SATISFY-GOAL
{(precondition ((goal ?x ?y 7z)))
(postcondition all-rules-fired)
(metarules)
(object-rules
(rule PICK-UP

(goal put-on 7blockl ?block?2)
(ontable ?blockl1 actual)
(clear ?block1 actual)

-->

(delete 2)

(delete 3)

(add (holding hand 7blocki actual))
(write (pick-up ?block1}))

(rule PUT-DOWN

(goal put-down ?block nil)
(holding hand ?block actual)

-->

(delete 1)

(delete 2) e
(add (ontable ?block actual))
(add (clear ?block actual))
(write (put-down ?block)))

(rule STACK

(goal put-on ?blockl ?block?)
(clear ?block2 actual)
(holding hand ?block1 actual)

-->

(delete 1)

(delete 2)

(delete 3)

(write (stack ?blockl ?block2))
(add (clear ?blockt actual))

(add (on ?blockt ?block2 actual)))

(rule UNSTACK1

(goal put-on ?blockl ?block2)

(clear ?block! actual)

(on 7blockt ?block3d actual)

(unless (holding hand 7any-block actual))

-->

(delete 2)

(delete 3)

(add (holding hand 7blockt actual))
(add (delete-under ?block1))

(add (clear ?block3 actual))

{(write (unstack ?block! ?block3d)))

- 117 -

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

(rule

(rule

UNSTACK2

(goal put-down ?block nil)

(clear ?block actual)

(on ?block 7?block2 actuatl)

(unless (holding hand ?any-block actual))

-->

(delete 2)

(dalete 3)

(add (holding hand ?block actual))
(add (delete-under ?block))

(add (clear ?block2 actual))
(write (unstack ?block ?block2)))

DELETE-UNDER

(delete-under ?blockl)

(under ?block2 ?block! actual)
-->

(delete 2))))

- 118 -

Apgendlx C: Set of PROLOG Clauses Specifying the Procedural Semantics
of Phase Sequences

/* Operational semantics of CATWEAZLE specified by a set of
/* PROLOG clauses. Each interpret clause specifies one
/* type of inference step. */

interpretl :-
problem(Problem,Goal),
phase-sequence(Phasesequence),
interpret(Phasesequence,Problem,Goal,[]).

interpret({],_,_,).

interpret(PhasesToBeExecuted,Hyps,Goal,SOIS) :-
subset(Goal, Hyps).

interpret([ActivePhase | RestOfPhases],Hyps,Goal,SOIS) :-
precondition(ActivePhase,Precond),subset(Precond,Hyps),
postcondition(ActivePhase,Postcond),not(subset(Postcond, Hyps)),!,
rule(Name,LeftSide,RightSide),
ruleset-of-rule(Name,A ctivePhasc),
subset(LeftSide,Hyps),
not(member(Name,SOIS)),!,

interpret([ActivePhase | RestOfPhases),[RightSide | Hyps],Goal,[Name | SOIS]).

interpret(| ActivePhase | RestOfPhases),Hyps,Goal,SOIS) :-
precondition(ActivePhase,Precond),subset(Precond, Hyps),
postcondition{ActivePhase,Postcond),subset(Postcond,Hyps),!,
interpret(RestOfPhases,Hyps,Goal,SOIS).

interpret(_, , ,):-
fail.

subset([],_) :- I

subset([H|T],Set) :-
!,member(H,Set),
subset(T,Set).

member(H,[H|T]) :- L.

member(H,[_|T]) :-
,member(H,T),!.

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

/* Example Rule Base */
phase-sequence([a,b]).

ruleset-of-rule(rl,a).
ruleset-of-rule(r2,a).
ruleset-of-rule(r3,b).
ruleset-of-rule(r4,b).

precondition(a,[]).
postcondition(a,[e,c]).

precondition(b,[e,c]).
postcondition(b,[a,b,c,d,e]).

rule(r1,[a,b],c).
rule(r2,[b],e).
rule(r3,[c|,d).
rule(r4,[e,a],d).

- 120 -

Appendix D: Example Run of the PROLOG Program Specifying the
Procedural Semantics of Phase Sequences

Trace of the interpretation of the example rulebase. The fact problem([a,b],[a,b,c,d.e/) is asserted
before starting the interpretation process.

1.1 CALL interpretl

2.1 CALL problem(_828, 832)

21 EXIT problem([a,b],[a,b,c,d,e])
22 CALL phase_sequence(_852)
2.2 EXIT phase_sequence([a,b])
2.3 CALL interpret([a,b],[a,b],[a,b,c.d,e],[])
3.1 CALL subset([a,b,c,d,e],[a,b])
3.1 FAIL subset({a,b,c,d,e},[a,b])
31 CALL precondition(a, 1864)
31 EXIT precondition(a,[])

3.2 CALL subset([],[a,b])

32 EXIT subset({],[a,b])

33 CALL postcondition(a, 1912)
33 EXIT postcondition(a,{e,c])
34 CALL not subset([e,c],[a,b])
34 EXIT not subset([e,c],[a,b})

3.6 CALL rule(_1976, 1980, 1984)
3.6 EXIT rule(rl,[a,b],c)

3.7 CALL ruleset_of rule(rl,a)

37 EXIT ruleset_of rule(rl,a)

38 CALL subset([a,b],[a,b])

38 EXIT subset([a,b],[a,b])

39 CALL not member(rl,[})

3.9 EXIT not member(rl,[])

31 CALL interpret([a,b},[¢,a,b],[a,b,c,d,e],[r1])
4.1 CALL subset({a,b,c,d,e},[c,a,b])
4.1 FAIL subset([a,b,c,d,e},[c,a,b])
4.1 CALL precondition(a, 6192)
4.1 EXIT precondition(a,{])

4.2 CALL subset([],[c,a,b])

42 EXIT subset([],[c,a,b])

43 CALL postcondition(a, 6240)
43 EXIT postcondition(a,|e,c])
44 CALL not subset([e,c],[c,a,b])
4.4 EXIT not subset([e,c],[c,a,b])
46 CALL rule(_6304, 6308, 6312)
4.6 EXIT rule(rl,[a,b],c)

4.7 CALL ruleset_of_rule(rl,a)

4.7 EXIT ruleset_of_rule(rl,a)

SPECIFYING META-LEVEL ARCHITECTURES FOR RULE-BASED SYSTEMS

4.8 CALL subset([a,b],[c,a,b])

4.8 EXIT subset({a,b],[c,a,b])

49 CALL not member(rl,[rl1])

4.9 FAIL not member(rl,[r1})

4.6 REDO rule(rl,[a,b},c)

4.6 EXIT rule(r2,[b],e)

4.7 CALL ruleset_of rule(r2,a)

4.7 EXIT ruleset_of rule(r2,a)

4.8 CALL subset([b},[c,a,b])

4.8 EXIT subset([b],[c,a,b])

49 CALL not member(r2,[r1])

49 EXIT not member(r2,[r1])

4.1 CALL interpret([a,b],[e,c,a,bl,[a,b,c,d,e],[r2,r1])
5.1 CALL subset(la,b,c,d,e|[e,c,a,b])
5.1 FAIL subset([a,b,c,d,el,[¢,c,a,b])
5.1 CALL precondition(a,_9960)

5.1 EXIT precondition(a,[])

5.2 CALL subset([],[e,c,a,b])

5.2 EXIT subset({],[e,c,a,b])

5.3 CALL postcondition(a, 10008)
5:3 EXIT postcondition(a,[e,c])

54 CALL not subset([e,c],[e,c,a,b])
5.4 FAIL not subset([¢e,c],[e,c,a,b])
53 REDO postcondition(a,[e,c])

53 FAIL postcondition(a, 10008)
5.2 REDO subset({],[e,c,a,b])

5.2 FAIL subset([],[e,c,a,b])

5.1 REDO precondition(a,[])

5.1 FAIL precondition(a,_9960)

5.1 CALL precondition(a, 9960)

51 EXIT precondition(a,[])

5.2 CALL subset([],[e,c,a,b])

5.2 EXIT subset({],[¢,c,a,b])

53 CALL postcondition(a,_10008)
53 EXIT postcondition(a,[e,c})

5.4 CALL subset(|e,c],[e,c,a,b])

5.4 EXIT subset([e,c],[e,c,a,b])

5.6 CALL interpret([b],e,c,a,b],[a,b,c,d,e],[r2,r1])
6.1 CALL subset([a,b,c,d,e],[e,c,a,b])
6.1 FAIL subset([a,b,c,d,e],[e,c,a,b])
6.1 CALL precondition(b, 12892)
6.1 EXIT precondition(b,|e,c])

6.2 CALL subset({e,c],[e,c,a,b])

6.2 EXIT subset({e,c],{e,c,a,b])

6.3 CALL postcondition(b,_12940)
63 EXIT postcondition(b,[a,b,c,d,e])
6.4 CALL not subset([a,b,c,d,e],[e,c,a,b])
6.4 EXIT not subset([a,b,c,d,e],[e,c,a,b])

-122 -

6.6
6.6
6.7
6.7
6.6
6.6
6.7
6.7
6.6
6.6
6.7
6.7
6.8

6.8
6.9
6.9
6.11
71

7.1
6.11
5.6
4.11
3.11
2.3
1.1

APPENDICES

CALL rule(_13004, 13008, 13012)
EXIT rule(rl,[a,b],c)
CALL ruleset_of_rule(r1,b)
FAIL ruleset_of_rule(rl,b)
REDO rule(r1,[a,b],c)
EXIT rule(r2,[b],e)

CALL ruleset_of _rule(r2,b)
FAIL ruleset_of_rule(r2,b)
REDO rule(r2,[b],e)

EXIT rule(r3,{c],d)

CALL ruleset_of rule(r3,b)
EXIT ruleset_of_rule(r3,b)
CALL subset([c],{e,c,a,b])

EXIT subset([c],[e,c,a,b])

CALL not member(r3,{r2,r1])

EXIT not member(r3,[r2,r1])

CALL interpret([b],[d,e,c,a,b},[a,b,c,d,e],[r3,r2,r1])
CALL subset([a,b,c,d,e],[d,e,c,a,b])

EXIT subset([a,b,c,d,e},[d,e,c,a,b])

EXIT interpret([b],{d,e,c,a,b],{a,b,c,d,e],[r3,r2,r1])
EXIT interpret([b],[e,c,a,b),[a,b,c,d,e},[r2,rl])
EXIT interpret([a,b,[e,c,a,b},|a,b,c,de],[r2,r1])
EXIT interpret([a,b),[c,a,b],[a,b,c.d,e},[r1])

EXIT interpret([a,b],{a,b],{a,b,c,d,e],[])

EXIT interpretl

-123 -

