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Releasing survey microdata with exact cluster
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Till Koebe*™ Alejandra Arias-Salazar?* & Timo Schmid?

Household survey programs around the world publish fine-granular georeferenced microdata
to support research on the interdependence of human livelihoods and their surrounding
environment. To safeguard the respondents’ privacy, micro-level survey data is usually
(pseudo)-anonymized through deletion or perturbation procedures such as obfuscating the
true location of data collection. This, however, poses a challenge to emerging approaches that
augment survey data with auxiliary information on a local level. Here, we propose an alter-
native microdata dissemination strategy that leverages the utility of the original microdata
with additional privacy safeguards through synthetically generated data using generative
models. We back our proposal with experiments using data from the 2011 Costa Rican census
and satellite-derived auxiliary information. Our strategy reduces the respondents’
re-identification risk for any number of disclosed attributes by 60-80% even under
re-identification attempts.
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Introduction

tatistics play an essential role in the quantitative study of

phenomena that affect human societies. Official statistics

provide data as a public good, thus facilitating research in
the field of humanities as well as to define, monitor, and evaluate
public policies. However, data access is in many cases regulated
by privacy legislation. This leaves data producers in a difficult
situation: finding the balance between disclosing unit-level data
(i.e., containing individual- or household-specific information,
commonly described as ‘microdata’) to foster use and to support
knowledge generation and complying with relevant regulations.
How this privacy-utility nexus is handled by data producers
greatly affects the conditions under which quantitative research in
the humanities can be performed, starting from available sample
sizes over how measurement uncertainty needs to be addressed
down to the reliability of derived p-values.

Since almost 100 years, sample surveys are dominating
knowledge generation in empirical research. The advantages of
survey sampling are obvious: with an appropriate sampling
design representative results for a population can be collected
by surveying only a fraction of it. With computer assistance,
the time from collecting data to publishing results can be sped
up significantly (Granello and Wheaton, 2004). Two trends,
however, increasingly challenge the way data is collected via
surveys. On the one hand, the growing demand for fast and
granular information drives up sample size and thus costs. As a
response, recent years have seen a large amount of academic
research on augmenting surveys with secondary data from
non-traditional data sources such as social networks, mobile
phones or remote sensing in order to overcome shortcomings
in coverage, frequency and granularity with applications in
fields as diverse as population dynamics (Leasure et al., 2020;
Stevens et al., 2015), socio-demographic analysis (Chi et al.,
2022; Fatehkia et al, 2020; Pokhriyal and Jacques, 2017;
Schmid et al., 2017; Subash et al., 2018), policy targeting (Aiken
et al., 2022; Blumenstock, 2018), environmental mapping
(Grace et al., 2019) and health research (Arambepola et al,,
2020; Brown et al., 2014). This augmentation is usually done
via geographic matching, i.e., combining area-level averages
(Koebe, 2020). Since the number of matched areas corresponds
to the sample size for subsequent supervised learning tasks,
finding the smallest common geographical denominator is
essential to avoid running into small sample problems. How-
ever, this is not always trivial as sample surveys usually provide
data only for a fraction of small geographic areas. On the other
hand, digital transformations across various sectors such as
health care have led to an explosion of digital personal data. It
is the abundance of secondary data that amplifies re-
identification risks in published surveys as some of the infor-
mation could be used to link pseudoanonymized survey
responses back to the actual respondents (Armstrong et al.,
1999; Kroll and Schnell, 2016; West et al., 2017). Together with
new privacy regulations such as the European General Data
Protection Regulation (GDPR) this calls for additional pre-
cautionary measures to safeguard the individual’s privacy. For
aggregated data releases, the introduction of differential priv-
acy has provided a solid mathematical framework to manage
re-identification risks independent of a potential attacker’s
capabilities or prior knowledge (Dwork, 2008). With regard to
microdata  dissemination  strategies, a common de-
identification practice today is a combination of deletion and
perturbation procedures, which include removing (unique)
identifiers such as first and last name and replacing the indi-
vidual’s true location with aggregated (i.e., area-level) and
randomized information (see e.g., Andrés et al. (2013), de
Jonge and de Wolf (2019), Templ (2017)).
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For example, in the Demographic and Health Survey (DHS), a
major global household survey program, urban survey clusters are
re-located within a 2km-radius and rural clusters within a 5km-,
sometimes even 10km-radius (Burgert et al., 2013). This location
privacy procedure has two main advantages: it does not affect the
quality of the remaining (non-spatial) survey information and it
reduces the need for other privacy safeguards, e.g., deleting or
perturbing sensitive information. However, it does not provide a
similar rigorous measure for privacy protection as already small
sets of attributes can quickly increase the chances of re-identifi-
cation, even in incomplete, pseudonymous datasets (Rocher et al.,
2019). In addition, it obviously affects the utility of the published
data when it comes to matching with auxiliary data as this type of
analysis relies on the congruence of its geographic links (Blan-
kespoor et al, 2021; Elkies et al, 2015; Hunter et al., 2021;
Warren et al., 2016).

In that regard, advances in synthetic data generation have
introduced new ways to narrow the void between information
loss and privacy protection. These methods allow for the gen-
eration of synthetic records that resemble the real data by
reproducing relationships learned from the latter. While all
approaches have in common that they try to capture the joint
distribution in the original data, the ways to do so vastly differ.
For example, Drechsler et al. (2008) and Heldal and Iancu
(2019) use imputation processes to decompose the multi-
dimensional joint distribution into conditional univariate dis-
tributions. Alfons et al. (2011b) and Templ et al. (2017) use
parametric models in combination with conditional re-sampling
to synthesize hierarchical relationships. As an alternative to
these fully parametric approaches, Reiter (2005) and Wang and
Reiter (2012) make use of classification and regression trees
(CART), while more recently, Li et al. (2014), Rocher et al.
(2019), Sun et al. (2019), Torkzadehmahani et al. (2019), Xu
et al. (2019), Zhang et al. (2017), and others have used Bayesian
networks, Generative Adversarial Networks or copulas to cap-
ture the underlying linear and non-linear relationships between
the attributes.

Recently, also national statistical offices have started to experi-
ment with synthetic data to overcome this privacy-utility nexus.
For example, the US Census Bureau used the American Com-
munity Survey (ACS) (U.S. Census Bureau, 2022a)—a large socio-
economic household survey interviewing a quarter million US
households every month—to produce synthetic small-area esti-
mates for historically under-counted communities such as Amer-
ican Indians and Native Alaskans and to protect the respondents’
privacy. In addition, the US Census Bureau uses synthetic data
based on the Survey on Income and Program Participation (SIPP)
to create small-area estimates on poverty (U.S. Census Bureau,
2022b). Both surveys provide the quantitative baseline for
numerous studies in the humanities, especially in the fields of
cultural studies, demography, education studies, policy analysis,
sociology and urban studies (e.g. Bokanyi et al. (2016), Chan et al.
(2018), Mitra and Brucker (2017), Spjeldnes and Choi (2008) and
Topaz et al. (2022)). Furthermore, the Office for National Statistics
of the UK published a case study in 2021 in which they experi-
mented with a synthetic version of the Labor Force Survey—the
largest household survey in the UK—so users can test the feasibility
of their envisioned analysis before traveling to one of the Secure
Research Services sites for microdata access (Bates et al., 2019). In
2023, the United Nations Economic Commission of Europe
(UNECE)—with contributions from various national statistical
offices—published ‘Synthetic Data for Official Statistics—A Starter
Guide’ outlining implementation options and usage recommen-
dations for the official statistics community (United Nations Eco-
nomic Commission for Europe, 2022).
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Going further, the challenge for data producers is to define
adequate microdata dissemination strategies that allow users to
satisfy their needs, i.e., release survey microdata that can be used
for statistical analysis and that are compatible with other sources
of information allowing to answer new and more detailed
research questions and—at the same time—it must be ensured
that the identities of the respondents are protected. In that regard,
the Spatial Data Repository of the DHS program (ICF, 2022) is a
good example for facilitating new types of research by combining
survey microdata with geospatial covariates and gridded inter-
polation surfaces. However, also those products are based on
perturbed cluster locations, thus incurring a certain
information loss.

Hence, by complementing existing approaches and as our
main contribution of this paper, we propose an alternative
microdata dissemination strategy: instead of publishing original
microdata with perturbed cluster locations, we investigate the
option of publishing two datasets—(1) original microdata
stripped of geographic identifiers for which survey results are
not considered representative and (2) synthetic microdata with
the original cluster locations. The choice is motivated by
adopting a user-centric perspective: official household survey
publications predominantly report on results up to the strata-
level as results below are usually considered not representative.
Analysis that benefits from below strata-level data often inves-
tigates proximity-related questions such as distances to certain
locations and surrounding habitat. For the former, cluster
locations are of minor importance, for the latter, however, the
spatial perturbation procedure introduces significant levels of
uncertainty to the analysis (Warren et al., 2016). The alternative
microdata dissemination strategy obviously conserves data uti-
lity for analysis on the representative level via the first dataset,
while the second dataset allows for the accurate capture of
proximity-related information. However, two potential short-
comings need to be considered: first, can we use the synthetic
dataset to predict the ‘private’ attribute in the original dataset,
i.e,, the small-area identifier, thus bypassing the privacy pro-
tection measures? Second, is the uncertainty we introduce by
synthesizing the non-spatial attributes for spatial analysis
smaller than the uncertainty from perturbing the cluster
locations?

We show in an experiment using Costa Rican census data from
2011 and satellite-derived auxiliary information from WorldPop
(WorldPop, 2018) that we can reduce the re-identification risk
vis-a-vis common spatial perturbation procedures, while main-
taining data utility for non-spatial analysis and improving data
utility for spatial analysis.

From the plethora of options, we choose copulas as our synthetic
data generation approach. Copulas facilitate fine-tuning as they
allow us to model the marginal distributions separately from the
joint distribution. Dating back to 1959 (Sklar, 1959) with diverse
applications since, their theoretical properties are well understood.
In comparison with alternatives like GANSs, copula-based synthetic
data generation has lower computational cost (Sun et al., 2019) and
it is easier to interpret (Kamthe et al, 2021). Furthermore, the
procedure is in general less cumbersome, in comparison with the
steps followed by Alfons et al. (2011b) to generate the synthetic
population data AAT-SILC (Artificial Austrian Statistics on Income
and Living Conditions(Alfons et al.,, 2011a). Finally, copulas are
also attractive for data producers such as National Statistical
Offices as only new nationally representative margins are required
to update the synthetic microdata file (cf. Koebe et al,, 2022). In
addition, well-documented open-source tools such as the Synthetic
Data Vault (MIT Data To AI Lab, 2022) are available to users with
important features such as data transformation and constraints
specification.

Strata

Region Brunca Rural

Region Brunca Urbano
Region Huetar Atlantica Rural
Regién Huetar Atlantica Urbano
Regién Huetar Norte Rural
Regién Huetar Norte Urbano
Regiéon Pacifico Central Rural
Regién Pacifico Central Urbano
Region Central Rural

Regién Central Urbano
Regién Chorotega Rural
Regién Chorotega Urbano

Fig. 1 Administrative disaggregation of Costa Rica. Overlay of 473
districts (zip codes) and 12 strata from the Xth Population and VIth Housing
Census of Costa Rica, 2011.

Unsatisfied basic needs in Costa Rica

As our reference dataset in this project, we use data from Costa
Rica—notably the Xt Population and VIt Housing Census of
Costa Rica, 2011 (Censo Nacional de poblacion y Viviendas de
Costa Rica 2011)—to produce three different data file types: First,
we draw survey samples from a census population using a stra-
tified two-stage cluster sample design without applying any sta-
tistical disclosure control mechanisms. We use these survey
samples (called true surveys in the study) as starting point for
creating file types two and three: By re-assigning clusters to new
zip codes based on the displacement algorithm described in
Algorithm 1, we perturb the zip code identifier in the true sur-
veys, thereby creating the geomasked surveys. Again based on the
true surveys, we apply the copula-based synthetic data generation
algorithm described in Algorithm 2 to generate synthetic data for
each attribute except the zip code, which keeps it original struc-
ture. In addition, in order to test the robustness of our specifi-
cations, we create additional datasets with alternating data
generating process designs. The censuses are carried out every 10
years by the national statistic office of Costa Rica (INEC) and
collect information of people, households, and dwellings on
topics such as access to education, employment, social security,
technology necessary for the planning, execution, and evaluation
of public policies (Méndez and Bravo, 2011).

Administratively, Costa Rica had in 2011 four disaggregation
levels: two zones, six planning regions, 81 cantons and 473 dis-
tricts (municipalities). The sampling design used for the main
National Household Survey (Encuesta Nacional de Hogares,
ENAHO) specifies twelve strata—each planning region divided by
urban and rural areas. In this case, the strata coincide with the
study domains. Figure 1 shows the highest level of disaggregation
(districts) of Costa Rica together with the 12 strata used in this
paper.

For our experiment, we use a 10% random sample of the ori-
ginal 2011 census, which can be obtained from Instituto Nacional
de Estadistica y Censos (2022) as a pseudo-population (see Table 1).
The smallest geographical information available in this dataset are
the 473 districts. In the first stage, we select districts as our PSUs
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Table 1 Descriptive statistics on the census-derived data
across 100 simulation runs.

N n # of all # of PSUs in  # of attributes
PSUs D
427830 [7638; 767 123 106

11914]

for each stratum separately with a selection probability propor-
tional to population size. In the second stage, we select a mini-
mum of 10 households in each PSU by using simple random
sampling without replacement. PSUs with less than 10 house-
holds are discarded from this procedure, affecting roughly 4% of
all PSUs.

To exemplify the importance of an alternative microdata
dissemination strategy, we select the Unsatisfied Basic Needs
index (Necesidades Bdsicas Insatisfechas (NBI))—a composite
indicator similar to the multidimensional poverty index (MPI)
(Alkire et al., 2019, Méndez and Bravo, 2011) used as a key
statistical indicator in Costa Rica—as our target variable for
survey augmentation in section “Utility for survey
augmentation”.

The NBI is a composite indicator computed from approx. 20
underlying survey variables grouped into four dimensions (i.e.,
access to decent housing (Acceso albergue digno), access to a
healthy life (Acceso a vida saludable), access to knowledge (Acceso
al conocimiento) and access to other goods and services (Acceso a
otros bienes y servicios)) using 19 indicators in total. All indicators
and dimensions are binary (yes/no). An identified need in one of
the indicators leads to a positive needs status in higher dimen-
sions. The sensitivity for false positives is thus assumed to be high
for the NBI as a small change (e.g., 1 year age difference) in one of
the 19 underlying variables can turn a NBI-negative to a NBI-
positive survey respondent. In 2011, 24.6% of Costa Rican
households had one or more (out of four) unsatisfied basic needs,
ranging from 9% in San Vicente, Santo Domingo to 90% in
Cirripd, Turrialba (Méndez and Bravo, 2011). Since then, district-
level NBI estimates have been derived from household sample
surveys only, thus leaving out-of-sample districts without recent
data and therefore less suitable to inform targeted policy
interventions.

As auxiliary information, we use covariates derived from
satellite imagery. Specifically, we use features derived from
satellite imagery provided by WorldPop (2018) in our survey
augmentation setup. The advantages of using satellite imagery
here are five-fold: Data with virtually global coverage at high
spatial resolutions for frequent time intervals on human-made
impact provided in a structured format enables us to extract
covariates for all administrative areas in Costa Rica at the time
of the census. Therefore, we can use area-level survey aug-
mentation (for methodological details see Supplementary
Information section 1.2.) to provide estimates, especially for
areas not covered by the respective survey. WorldPop data are
provided in the tagged image file format (TIFF) with a pixel
representing roughly a 100m x 100m grid square in an open
data repository under CC4.0 licence (WorldPop (2018)). Pixel
values are aggregated to the administrative areas of Costa Rica
via their centroids. Specifically, we generate area-level averages
for the distances to different types of natural areas (e.g., culti-
vated, woody-tree, and shrub areas, coastlines etc.) and to
infrastructure such as roads and waterways, the intensity of
night-time lights, topographic information and information on
the presence of human settlements.

Results

We consider a survey Dy, as a random sample with sample size
n from a given population of size N. For sampling purposes,
enumeration areas (EAs) and strata are defined. Our units of
observation are individuals i living together in a household (.
Each individual is described by a set of attributes denoted as
x=Xj, ..., X;,. Obfuscated attributes are denoted as y=
Yy, ..., Y, in the following. The zip code attribute X,;, € x—
corresponding to the level of k=473 districts in Costa Rica—
represents the smallest geographic identifier in this experiment
as true locations for the identifier of the census enumeration
areas are not available. Consequently, the obfuscated zip code is
denoted by Y., € y. Following our proposed data dissemination
strategy, we further define the true survey without small-area
geographic identifier as ‘No Zip Code’ survey D,,, := (X, ..., Xin)
given that X; < X,;,. For notational simplicity, we use X,;, and
X, interchangeably. While different sampling designs are pos-
sible, we assume a commonly used complex design for larger
household surveys such as the DHS: a stratified two-stage cluster
design. In the first stage, the primary sampling units (PSUs)
denoted as j—usually enumeration areas from the latest census
—are selected for each stratum s with a probability proportional
to (population) size Q;. In the second stage, households within
each selected PSU are sampled with a fixed probability Q.
Consequently, the sampling weights defined as the inverses of
the household-level inclusion probabilities are given for each
stratum separately by:

1 n

J:(T(j

with n, and N; the sample and population size in stratum s,
respectively.

With enumeration area-specific population sizes in the
pseudo-population too small to act as survey clusters, we
choose the districts (i.e., the zip codes) for each stratum as our
PSUs, also called clusters in the following. As zip codes can
cover both rural and urban areas, there are 767 PSUs in total
available in our experiment using Costa Rican census data from
2011. In the following, we describe the original survey attributes
as our true survey. The true survey builds our starting point for
further anonymization approaches, notably the geomasking
approach and the copula-based synthetic data generation
approach. Figure 2 describes the complete experimental setup
used in this study.

In the first step, two-stage cluster sampling is used to create
household survey microdata (called thereafter the ‘True’ survey
Dirye)- Randomly sampled point locations within the respective
zip codes are assigned to the clusters before displacement.
Displaced clusters are allocated to their new zip codes. True
survey microdata with (partially) obfuscated zip codes is called
‘Geomasked’ survey Dg., thereafter and thus constitutes the
benchmark anonymization strategy in this experiment. In
contrast, the strategy proposed in this paper considers two
datasets for dissemination: (1) the ‘Synthetic’ survey Dy, with
original zip codes and remaining attributes being synthetically
generated using a copula-based approach, and (2) the true
original survey microdata stripped of geographic identifiers
below the strata-level -- the ‘No Zip Code’ survey D,,. In the
third step, an inference attack is designed to disclose the pri-
vate attribute—i.e., the true zip code—in the geomasked and
the ‘no zip code’ survey, respectively. Similar attacks to disclose
private attributes in the synthetic survey could be considered,
however, these can be assumed to be comparatively less
effective given the amount of true attributes available to stage
such an attack. In order to provide a comprehensive
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assessment of the risk-utility-trade-off of the two approaches,
the evaluation stage is composed of an information loss mea-
sure, two measures to assess the privacy risk and three metrics
for assessing the utility of the different strategies in a data
augmentation setting. Step 1 to 4 are repeated 100 times to get
a first understanding of the scale of uncertainty associated with
the two approaches.

Geomasking to obfuscate true survey locations. To implement
the benchmark strategy in the anonymization step, we follow the
geomasking methodology outlined in Burgert et al. (2013) by
perturbing the centroids denoted as r of the selected clusters within
a given larger administrative area [ using a rejection sampling
procedure described in Algorithm 1. Even though clusters in our
experiment correspond to the zip codes in each stratum, we use
available census information on enumeration areas v for the dis-
placement procedure. Since point locations for the corresponding
enumeration areas r, are not available, we randomly sample them
from the smallest available area—the zip codes. That way, we can
approximate the displacement effect expected when one would
sample from the full population using enumeration areas as PSUs.

Copula-based synthetic data generation. As an alternative to
geomasking in the anonymization step, we use synthetically
generated survey attributes for protecting the respondents’
privacy while keeping the true clusters. To do so, we fit a
Gaussian copula model on the transformed attributes denoted
with X,,...,X, of the original survey and sample from
the learned joint distribution for each cluster individually with
the original sample size n;. A copula allows to describe the
dependence structure—also called association structure—
independently from the marginal distributions (also called
allocation structure). Several copula families are available. We
focus on the Gaussian copula that allows us to represent the
association structure of random variables irrespective of their
true distribution through a multivariate standard normal dis-
tribution (Patki et al., 2016). Since we also assume the mar-
ginals to be normally distributed, which may certainly
constitute a mis-specification for some of the variables, we
regard the results rather as a lower bound in terms of
goodness-of-fit. Further, a copula is uniquely defined only for
continuous variables (Jeong et al., 2016), meaning that in
principle, copulas cannot model non-continuous variables.

Algorithm 1: Geomasked survey: DHS cluster displacement algorithm.

for v € D¢ypye do

while rmasked ¢ 1, do

angle < Uniformg 30] * 1357

if v is Urban then

dist «— Uniformg 2000] 5
clusters */

end

if v is Rural then

dist «— Uniformg 10000; 5
clusters */

else
| dist < Uniform(g 5000]

end

end
rmasked g, + dist * cos(angle) ;

mﬁ?kEd  1ry,0 + dist x sin(angle) ;

Ty

end

end

if v is selected as 1% of rural clusters then

/* Random displacement angle */

/* Random displacement distance (in meters) for urban

/* Random displacement distance for 17 of rural

/* Displace x-coordinate (r;,) */

/* Displace y-coordinate (ry,) */

We denote the masked point locations of the sampled EAs with
the superscript masked. Households with masked EAs now located
outside their original zip code, but inside their original larger
administrative area [, are assigned the respective new zip code. As

the overall inclusion probability for a household is not affected by
geomasking, direct estimates and corresponding variances for area-
level aggregates I (corresponding in case of our experiment to the
81 cantons in Costa Rica) and above remain the same. However,
this does not hold for area-level aggregates smaller than I We
describe the original survey attributes together with the masked
clusters as our geomasked survey Dy, := Yyip, X, ..oy X

Through the displacement procedure, roughly 30% of the
sampled EAs are assigned to a new zip code, representing approx.
30% of the sampled individuals in each simulation round.

Since socio-economic surveys are largely made up of catego-
rical variables, data transformation, e.g., via one-hot or fre-
quency encoding (Mansfield et al, 1977), is needed. In
addition, we impose constraints on the marginals to account
for censoring (e.g., to avoid negative synthetic age records) or
between-variable dependencies (e.g., female and male house-
hold members need to add up to the total household size) via
rejection sampling. ~

Thus, the process to generate synthetic data D, from a survey
dataset D, with transformed categorical attributes X, ... , X,,
(details on the data transformation using frequency encoding are
described in Algorithms 1 and 2 in section 1.1. of the
Supplementary Information) using a Gaussian copula model is
summarized in Algorithm 2.
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Algorithm 2: Geomasked survey: DHS cluster displacement algorithm.

Input Dirye = (X1,..., Xm)

Output Dsyn = (Y1, .., Yin), with Y1 = Xy

for s € Diyye do

Y <+ Estimated covariance matrix of ¥
U<+ F(V);

for j € Dire.s do
fori < 1ton; do
while )7{"} not meets constraints do
w~ N (i, 5);

end

end

end

end

VI P (go(wa), .., dm(wim))

W ¢+ Estimated marginal distributions of X with ¥,,, ~ N (1, 02)

/* Probability integral transforms */

/* m-dimensional Gaussian copula */

/* Conditional sampling */

/* Convert back to original space */

Bsyn_J — (Y1=kyy;) V jCk; /* Assign zip code k of the respective cluster j x/

¢ is the cumulative distribution function (cdf) of a multi-
variate normal distribution with N'(y,%) and ¢,, the cdf of a
standard normal distribution. By fitting our model to the true
survey, it learns the parameters of both the allocation and
association structure, i.e., of the marginal distributions ¥ and the
multivariate Gaussian copula C¢(uy, ... ,u,) built on the
probability integral transforms uy, ..., u,,. Based on these learned
relationships, new synthetic records y' are sampled from the
multivariate probability function c¢{(u) using the inverse prob-
ability integral transform for each component F,,~!(u,,) (cf.
Janke et al., 2021). Since we sample in our experiment for each
cluster individually to ensure a synthetic cluster-level sample size
of exactly n;, we use the parameters of a conditional multivariate
normal distribution. In case no conditions are applied, the
scenario is simplified to drawing from a multivariate standard
normal distribution. We call the synthetic attributes Y,,...,Y,,
together with the true cluster information X, our synthetic
survey Dgy = Xyip, Y2, ..., Yy, Further details about the copula-
based synthetic data generation procedure can be found in section
1 of the Supplementary Information and in Nelsen (2007).

Figure 3 provides a first impression on the overall goodness-of-
fit of the three different survey datasets (cf. with the evaluation
step in Fig. 2). Specifically, Fig. 3a-c show the normalized
Kullback-Leibler (KL) divergence Zy; for the survey attributes of
Diryes Dgeos and Dy, from the true census attributes defined in
this case for Dy, as

1
1+ 6KL(fm7k(Xm,k)| lfm,k(Ym,k)) ’
2

ZKL (fm,k(Xm,k)| [fm.k(Ym.k)) =

averaged across simulation runs for each attribute m and zip code
k, respectively. In general, the KL divergence dx; measures the
difference between two probability distributions, in this case
between the census distribution and one of the survey datasets for
a given attribute in a given zip code. The better one distribution
approximates the other, the smaller 8x;. Therefore, following
Equation (2), values of the normalized KL divergence Zg; close to
1 indicate a high goodness-of-fit.

6

Clearly visible is a gradient from the top left to the bottom right
indicating that the overall goodness-of-fit of the sample
distributions improve the larger the underlying sample sizes
and the lower the number of classes per categorical attribute. We
expect that high levels of sampling variance usually associated
with small samples may also lead to poor outcomes across
multiple simulation rounds irrespective the modeling approach.
In addition, as expected, attributes with high levels of non-
response (visible through the white spots across the horizontal
axis) are stronger affected by sampling and anonymization
compared to attributes with little or no non-response.

To approach the utility-risk trade-off in (pseudo)-anonymized
microdata, we define two risk-related measures: (a) the re-
identification risk of a sensitive attribute in the original data using
the perturbed data, and (b) the respondents’ re-identification risk,
i.e., the population uniqueness of the survey respondents.

Risk of re-identifying private geocodes. To investigate the first
shortcoming mentioned in section “Introduction”, we define our
first risk-related measure: the re-identification risk of a sensitive
attribute in the original data using the perturbed data. In our
experiment, we therefore train a random forest model on the
small-area identifier—the zip code—in the anonymised surveys
for each stratum separately. Across the generated sample surveys,
the sample sizes by zip code range from 24 to 715 units with
mean of 81 and median of 45. We use the trained models on the
original data to predict the zip code for each record. We call the
‘No Zip Code’ survey with the predicted zip codes X, as
‘Re-identified’ survey D,, := ()Afzip,X27 .
Finally, we evaluate our predicted label against the original label.
In addition, we compare the outcomes to randomly guessing the
correct label in order to account for the number of small areas
within each stratum. Figure 4 shows the median accuracy of the
approaches across 100 simulation runs. While we are able to
successfully re-construct the original zip code in most cases for
the geomasked survey, it does not work much better for the
synthetic data than for the random guess.

In our experiment, only one stratum consequently hosts more
than ten small areas across all simulation runs, with one stratum

., X,,) in the following.
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Risk of re-identification: Share of successfully re-identified zip code labels vis-a-vis

Utility for survey augmentation: Performance metrics for estimating the
v ‘NBl-indicator using auxiliary information vis-a-vis the census

Fig. 2 Workflow diagram of the experiment with census data from Costa Rica. Geographic identifiers are considered as part of the set of attributes. The
attribute “zip code' represents the smallest geographic identifier in this experiment as true locations of the census enumeration areas are not available.
Even though a privacy attack is also performed on the geomasked survey (see Fig. 4), the resulting dataset is not further analyzed in the remaining study

for the sake of readability.

hosting only two small areas in some simulation runs, giving the
random guess also a good chance to predict correctly. Recalling
that roughly 70% of the displaced clusters stay within the same
zip code in the geomasked survey, even predicting the sensitive
attribute for strata hosting as little as two small areas, average
population uniqueness in the synthetic data would not exceed
much the 50/50-chance of the random guess, thus providing
better privacy protection in the re-identified original survey than
the geomasked alternative.

Population uniqueness of survey respondents. Concerning the
respondents’ re-identification risk, we define population unique-
ness E; as the share of survey respondents being unique in the
population for a given (sub-)set of attributes in Diryes Dnos Dgeos
Dgyn, and D, respectively. We denote the subsets with D'(¢), t

with 1 <t<m being the number of attributes used for calculating

the population uniqueness.
L

0, otherwise.

1x if i(t) € D'(t) unique in population
B =3 L with 1y ={ (1) € D'(¢) uniquein pop

©)

Figure 5 shows how Z; changes with the increasing number of
attributes t across 100 simulation runs. We kept the order of
attributes constant across simulations to improve comparability.
Naturally, the share constantly increases for the true survey
with more attributes being available to distinguish between the
respondents. For example, there might be 100 women in a
country, but likely just one aged 45 with poor eyesight and four
children in a specific zip code. For the geomasked survey, the
population uniqueness increases to a level of roughly 70%.
Recalling that the only difference between the geomasked survey
and the true survey is the perturbed zip code, the remaining 30%

| (2023)10:220 | https://doi.org/10.1057/541599-023-01694-y 7



ARTICLE

T2 a1

3 "

Zx1.
1.00

0.75

0.50

0.25

Attributes, ordered by number of classes
Attributes, ordered by number of classes
Attributes, ordered by number of classes

0.00

AT Mmﬁﬁﬂi
le Codes, ordered by average sample size

Zip Codes, ordered by average sample size ' le Codes ordered by average sample size

(a) True survey (b) Geomasked survey (c) Synthetic survey

Fig. 3 Normalized Kullback-Leibler divergence (in bits) from the true census distribution for each attribute and zip code, averaged across

100 simulation rounds. The attributes on the y-axis for each panel (a)-(c) are ordered by their respective number of classes, the zip codes on the x-axis
are ordered by their average sample size across simulation rounds. Values of Zx,; close to one (yellow) represent little divergence from the true census
distribution and therefore indicate a high goodness-of-fit. The number of attribute classes range from 2 to 111. Across attributes and zip codes, the true
survey (a) scores best with Zx, = 0.76 in total, followed by the synthetic survey (¢) with Zx; = 0.74 and the geomasked survey (b) at Zx, = 0.73.
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Fig. 4 Re-identification of the zip code as private attribute in the true survey for each stratum across 100 simulation runs. Accuracy is measured by the
share of successfully re-identified zip code labels in the true survey. A random forest model is trained on perturbed data, i.e., the geomasked and the
synthetic survey, respectively. We evaluate the results against the true zip code labels in the true survey and compare them against random guesses of the
private attribute.

1.00

0.75 Survey types
— Geomasked

7 0.50 — No zip code

— Re-identified
— Synthetic

0.25 True

0.00

0 10 20 30 40 50

Number of Attributes (t)

Fig. 5 Population uniqueness across survey types. Share of population-unique survey respondents for 100 simulation runs with a given number of
attributes. Geographic identifiers are considered as part of the set of attributes. The thick lines represent the average population uniqueness across the
100 simulation runs, the thin lines individual simulation runs. In the true survey, no attribute is perturbed. In the geomasked survey—the benchmark
dissemination strategy in this study—the zip code identifier is perturbed. The "No Zip Code' survey corresponds to the true survey, but lacks the geographic
identifiers below the strata-level. Together with the synthetic survey, where all attributes but the zip code identifier are perturbed, it represents the
proposed microdata dissemination strategy. In the re-identified survey, the synthetic survey is used to predict the “private" attribute—i.e., the zip code—in
the "No Zip Code' dataset as part of a staged inference attack on the proposed microdata dissemination strategy. Both the re-identified and the synthetic
survey provide significant privacy gains vis-a-vis the other survey types.

corresponds to the average number of survey respondents
assigned to a new zip code due to the spatial anonymization
process. Thus, not considering the zip code (i.e., the ‘No Zip
Code’ setting) lets the population uniqueness of the geomasked
survey also converge towards 1 similar to the true survey, even

8

though at a slower rate, which means knowledge on additional
attributes is required to compensate for the lack of geographic
stratification via the zip code. For the synthetic survey, the curve
remains almost flat. The initial bump can largely be explained by
the probability of a random combination of attributes

| (2023)10:220 | https://doi.org/10.1057/s41599-023-01694-y



ARTICLE

038 0.6
0.6

05
0.4
- 0.4
0.0 03

(a) Adjusted R2 (b) Relative Bias

0.06

0.05

0.04 Survey type
0.03 B Geomasked
B3 Synthetic
0.02 B3 True
(c) MSE

Synthetic -
8 ‘.ﬂf\ Quartile
et <
5 Geomasked
5 B st
(g 2nd
)< 3rd
) True - 4th

0.00

0.50 0.75

NBI

(d) NBI densities

Fig. 6 Performance metrics of survey-based NBI estimates on the zip code-level. a Adjusted R? is based on the in-sample zip codes. b and c are based on
the full sample and predictions are evaluated against the census across 100 simulation runs. d Compares zip code-level NBI averages for a single

simulation run.

representing an actual population unique in a small (area) sample
size setting. Therefore, Fig. 5 gives a strong indication that
geomasking provides little additional safeguards for the respon-
dents’ privacy compared to the true survey in the presence of
third-party information on a subset of the contained attributes.
Besides this theoretical argument, synthetic data always
provides plausible deniability to the survey respondents. Similarly
to our definition, Rocher et al. (2019) use a Gaussian copula
model to estimate the empirical likelihood of population
uniqueness in incomplete datasets such as D by assuming Z, ~
Binomial (1), n) with Vi(t) € D'(t)i.i.d.. While this approach is
an excellent alternative to measure the re-identification risk in
micro-level survey data when no validation data (in our
experiment the 2011 Costa Rican census) is available, it assumes
that the individual records are independent and identically
distributed, which may be contestable in the presence of
hierarchical dependencies and complex sampling designs.

Utility for survey augmentation. To give an indication about the
utility of the different anonymization approaches for survey data
augmentation, we use a setup common in recent academic lit-
erature (cf. Leasure et al. (2020); Pokhriyal and Jacques (2017);
Schmid et al. (2017)): we augment the surveys with auxiliary
information from geospatial (big) data. Specifically, we construct
zip code-level aggregates from gridded satellite-derived features
available from the WorldPop repository (WorldPop, 2018) and
combine them with zip code-level survey aggregates to provide
predictions, especially for areas not sampled in the survey. As
described in section “Unsatisfied basic needs in Costa Rica”, we
select the NBI as our target variable. We evaluate our predictions
against the census in terms of adjusted R?, bias and the Mean
Squared Error (MSE). Figure 6a—c show the performance along
these three evaluation criteria across 100 simulation runs.

Surprisingly, the synthetic approach not only outperforms the
geomasked survey, it also provides predictions more in line with
the census results than the true survey. A possible explanation
could be that the copula approach reduces the impact of outliers
on the zip code-specific NBI sample averages. This explanation is
supported by Fig. 6d that shows the distribution of zip code-level
NBI averages grouped into quartiles for one simulation run as
both the synthetic survey and the census showcase smaller tails in
their distributions, respectively. We run additional experiments to
compare the directly synthesized NBI and its underlying
indicators with their counterparts computed from synthetic
survey variables.

Generally, two strategies for computed indicators exist to create
synthetic counterparts: (a) directly synthesize the computed
indicators (previously shown in Fig. 6) or (b) re-construct the
indicator based on synthetic survey variables. While the former is
more likely to reflect the original distribution, it may not be
consistently decomposable into its underlying indicators; vice-
versa holds for the latter. The strength of these effects are largely
determined by the complexity and sensitivity of the composite
indicator and the overall goodness-of-fit of the synthetic data.
Thus, if both approaches produce similar compositions, it can be
regarded as a strong indication that the underlying synthetic data
also successfully captures relationships across multiple variables
in the dataset, not only the composite index. Table 2 shows that
this not fully holds for the NBI.

Although the overall number of survey respondents with
unsatisfied needs are captured with a high accuracy as measured
by the normalized KL divergence Zy; for binary data, the NBI
status on the individual level strongly diverges following
Pearson’s p (cf. Table 2).

Figure 7 shows that the lack of linear correlation is mainly due
to improperly captured relationships in the underlying variables
than in the synthetic NBI as the former is outperformed by the
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latter for survey augmentation expressed in terms of adjusted R?,
bias and MSE. However, it remains on par with the geomasked
survey at lower privacy risks.

Discussion

In this paper, we proposed and evaluated an alternative data
dissemination strategy for micro-level survey data that improves
the trade-off between privacy risk and data utility. Specifically, we
showed that by publishing two datasets, namely the original
survey data with limited geographic identifiers and a synthetically
generated survey dataset with the true cluster locations, re-
identification risks can be reduced significantly vis-a-vis popular
geomasking approaches without incurring additional losses in
terms of data utility for survey augmentation. Besides enabling
data producers such as statistical offices and other survey pro-
grams (e.g., the Crime Victim Survey of the United Nations Office

Table 2 Relationship between synthetic and computed NBI
indicators across 100 simulation runs.

Indicators # of Pearson's p Z Incidence
indicators
1.x 5 0.42 0.99 100
Dimension 1 0.24 0.98 647
2.x 5 0.22 0.98 85
Dimension 2 0.19 0.98 455
3.x 2 0.02 0.89 507
Dimension 3 0.02 0.84 1845
4.x 7 0.02 0.99 60
Dimension 4 0.03 1.00 622
Composite NBI 19 0.07 0.97 3253

Indicator-level results (e.g., 1.x) are averaged across indicators. The incidence describes the
average number of respondents across 100 simulated surveys with unsatisfied needs in the
respective indicator/dimension.

0.8

0.6
0.6

0.4 05

0.2 é 0.4

0.0 %

0.3
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(b) Relative Bias

A\y\,\

on Drugs and Crime (United Nations Office on Drugs and Crime,
and United Nations Economic Commission for Europe, 2010),
The Living Standard Measurement Study of World Bank (The
World Bank Group, 2023), The Harmonized European Time Use
Surveys (Eurostat, 2023) or the Latin American Public Opinion
Project (Vanderbilt University, 2023) to expand the use cases of
their data products, this methodology could especially help
mapping initiatives such as WorldPop or GRID3 to improve their
products as more accurate spatial data is available. In addition, by
separating the marginals from the dependence structure, it pro-
vides data producers such as National Statistical Offices also with
a useful tool to update the respective synthetic microdata files for
the following years by updating the margins with nationally
representative new data as sub-nationally representative surveys
may only be conducted every few years. Looking at data use, the
proposed methodology supports applications using fine-granular
geolocated survey data in two ways: First, it helps to improve data
access for users as better privacy protection of the survey data
through synthetic data fosters regulatory compliance. Second, it
avoids uncertainties where geospatial accuracy is crucial, e.g.,
connecting mobile network antenna to survey cluster character-
istics or matching crop shares to satellite imagery on agricultural
fields. Therefore, we regard our proposed microdata dissemina-
tion strategy as a way forward to ensure data users we still be able
to access rich microdata without jeopardizing the respondents’
privacy even under increasingly strict privacy legislation.

In the Supplementary Information, we further investigate the
stability of our results by alternating the experiment design. First,
while we chose the strata for the main analysis as they provide
‘large-enough’ sample sizes at the same time explicitly accounting
for at least high-level regional variation, we study in further
experiments whether fitting on smaller or larger geographic levels
may better capture local variation at the expense of running into
the risk of small sample problems or vice-versa. Supplementary
Fig. 1 summarizes the results for our copula model being fitted on
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E3 Synthetic
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Fig. 7 Performance of the synthetic vs. computed composite NBI. a-c Show of the different survey types in our survey augmentation experiment across
100 simulation runs. d Shows the densities of the composite NBI by quartiles for one simulation run.
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the whole survey, the twelve strata and the zip code-level,
respectively. It shows that by selecting the strata as our fitting
level, we strike a balance between the underlying sample size
(usually the larger the better) and capturing regional variation
(usually the more disaggregated the better) both in terms of utility
and risk. In addition, by using subsets of the full microdata for
model fitting, the approach becomes computationally tractable
also for larger surveys.

Second, since generative models allow us to sample an arbitrary
number of synthetic observations, we look at the impact of the
synthetic sample size on the outcomes of the survey augmenta-
tion experiment, notably the adjusted R? and a measure of con-
fidence in the direct survey estimates of the Fay-Herriot model
(cf. Supplementary Information, section 1.2.)—the shrinkage
factor y. Supplementary Fig. 2 shows that with an increasing
sample size, y increases as well, thus shifting more weight to the
direct estimate. Even though intuitive as the sampling variance
naturally decreases in 7, at some point it may become misleading
with potentially negative effects on the model performance as the
synthetic data generating process still relies on the same infor-
mation conveyed in the true survey with sample size n. However,
in our experiment the adjusted R? does not exhibit a bump, but
increases monotonically, thus hinting at little additional expla-
natory power of our satellite-derived covariates vis-a-vis the area-
level direct survey estimate for the in-sample areas.

Third, we test alternative encoding schemes for the transfor-
mation of categorical data. Also, we relax our assumption of the
normally distributed margins by opening up to a wider group of
parametric copulas (such as beta, gamma or uniform distribu-
tions) selected for each margin individually based on the two-
sample Kolmogorov-Smirnov (KS) statistic to study the effect of
the specification choice on the normalized KL divergence. Sup-
plementary Fig. 3 shows that neither the encoding scheme nor the
specification of the marginal distributions have large effects on
the quality of the synthetically generated data.

Lastly, we show that our results are already stable after
50 simulation rounds (see Supplementary Fig. 4).

Nevertheless, our approach is not without limitations. As
synthetic data generation is in its essence a modeling task by
creating an abstract representation of the underlying data, similar
rules of thumb apply: (a) a model is as good as its underlying data
—if the sample is partially skewed due small (class-specific)
sample sizes or high levels of non-response, the model might
reproduce this skewedness and (b) composite indicators have to
be treated with care as decomposability of the predictions is not
necessarily guaranteed unless explicitly modeled that way. The
copula-based approach towards synthetic data generation largely
fails to correctly capture lower-level hierarchical relationships
such as individuals—line numbers—households—houses from the
original data. As said before, since we see our analysis using a
naive Gaussian copula model as providing somewhat a lower
bound for improving the utility-risk trade-off by adopting the
proposed microdata dissemination strategy vis-a-vis common
geomasking approaches, there is much room for improvement.
To name a few, latent copula designs can be considered to avoid
data transformations, marginal distributions can be modeled
non-parametrically, hierarchical structures can be accounted for
more rigorously by either modeling the hierarchies separately as
suggested by Templ (2017) or by modeling the relationships
explicitly. In addition, synthetic data may—under some circum-
stances—leak private information, e.g., through the generated
value ranges. As a response, differentially private implementa-
tions of existing generative models have been proposed such as
PrivBayes (Zhang et al., 2017), PrivSyn (Zhang et al., 2021), and
PATE-GAN (Jordon et al.,, 2019). That said, it is important to
point out that microdata irrespective of the selected

dissemination strategy, cannot be considered fully anonymous,
but rather pseudonymous, thus requiring the data publisher (e.g.,
the National Statistical Office) to conduct data protection impact
assessments before release—depending on the respective jur-
isdiction. Lastly, as with most empirical research, it would be
interesting to apply the proposed dissemination strategy to other
contexts/countries.

Data availability

o The 10% sample of the Costa Rican census dataset is available
from the microdata catalog of the national statistical office of
Costa Rica—INEC—under a licensing agreement at: http://
sistemas.inec.cr/pad5/index.php/catalog/113.

o The satellite-derived covariates are openly available from the
WorldPop  repository at:  https://doi.org/10.5258/SOTON/
WP00644.

o The shapefile of Costa Rica is available upon request from the
authors.

» Computations were done with the statistical software R and the
sdv package. The code to reproduce the study is available on
GitHub: https://github.com/tilluz/survey_releases.
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