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Abstract
We formulate two fairness principles and characterize the league competition sys-
tems that satisfy them. The first principle requires that all players should have the
same chance of being the final winner if all players are equally strong, while the
second states that the league competition should not favor weaker players. We apply
these requirements to a class of systems which includes round-robin tournaments as
a particular case.

Keywords Assignment · Fairness · League competition · OR in sports · Round-robin
tournaments · Tournament design

1 Introduction

One of the most popular problems when it comes to select an alternative from a set
of available options is probably that of selecting a winner in a sports competition. In
this paper we present an axiomatic approach to the fairness aspect of such selection
problems.

Any precise definition of a competition system entails answering the following
basic questions (cf. Haigh 2009): Who the players in a match are, at what stage of the
competition this match takes place, and how the final winner is decided. In general,
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competition rules may be set with many different objectives in mind, such as match
intensity, attracting the interest of the spectators (cf. Dagaev and Suzdaltsev 2018),
minimizing organizational costs, and so on. Fairness is, or should be, certainly one
the main goals of any competition designer. Moreover, as outlined in Bartsch et al.
(2006), in real world-sport leagues, fairness issues are quite important.

In a league competition, every player participates in a given number of matches
against other players. A certain number of points is assigned to the winner of each
match, and the final winner is the player with the most points.

The most widely used leagues are “single round-robin tournaments”, where each
player plays against every other player once, and “double round-robin tournaments”,
where each player plays against every other player twice (cf. Rasmussen and Trick
2008). Regular seasons in most sports have a league structure. However, there are
well-known examples of leagues that are not round-robin tournaments, e.g. the US
National Football League (NFL), where each team plays 16 matches in the regular
season but does not play the same number of times against every opponent and does
not play at all against some teams. In the US National Basketball Association (NBA)
each team plays 82 matches in the regular season and plays against every other team,
but does not play the same number of matches against every opponent.

Leagues where different players play different number ofmatches aremore difficult
to find. However we believe that this possibility should not be disregarded, at least
at the theoretical stage. The same principle that supports giving byes in knockout
tournaments (favoring more meritorious participants) could be applied to leagues, so
that certain players gain an advantage by playingmorematches. It should be noted that
such an advantage is given if points are assigned only for winning matches, though
there are exceptions to this rule. For instance, a bye can be awarded the same number
of points as for winning a match in Swiss-system tournaments with an odd number of
players.1

We nevertheless include the mentioned theoretical possibility of gaining by playing
more matches in our formal model, if only to investigate its implications. Recent
proposals to change standard round-robin domestic leagues in football also support
the pertinence of such a more general analysis (cf. Feehely 2021). We refer the reader
to Lasek and Gagolewski (2018) for an overview of tournament formats used in the
majority of European top-tier association football competitions as well as to Csató
(2020) for the relationship between the existence of ground-robin groups of different
strength in tournaments and the quality of matches in the corresponding competitions.

Many of the discussions about fairness in competition systems are based on rather
informal arguments. In this paper we offer a formal setup within which such discus-
sions can be framed and precisely define two fairness principles that are commonly
pursued in real practice. The first principle requires a competition system not to favor
weaker players (we refer to this as “monotonicity in strength”), and the second requires
that all players should have the same chance of being the final winner if all players
are equally strong (“equal treatment”). Our main purpose is thus to study the extent
to which league-type competition systems can be considered fair according to these
principles.

1 We thank an anonymous referee for drawing our attention to this issue.
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Literature overview

There are several papers on modeling and studying fairness in league-type competi-
tion systems. One possibility is to focus on the influence of scheduling in sequential
round-robin tournaments (cf. Durán et al. 2017, Krumer and Lechner 2017, Sahm
2019), including carry-over effects (cf. Russell 1980, Lambrechts et al. 2018) or on
the requirement that a team should not play against extremely weak or extremely
strong teams in consecutive periods (cf. Briskorn 2009, Briskorn and Knust 2010,
Nemhauser and Trick 1998). Moon and Pullman (1970) concentrate on “equalizing”
handicapping methods. Rubinstein (1980) shows axiomatically that the points system
used in round-robin competitions is the only one that satisfies three axioms inspired by
social choice theory. Levin and Nalebuff (1995) draw an analogy between round-robin
points systems and voting systems.

Fairness in sports has also been analyzed with respect to tie-breaking mechanisms
within the field of economics (cf. Apesteguía and Palacios-Huerta 2010and Che and
Hendershott 2008). Most studies that compare competition systems apply simula-
tion techniques to check that particular properties are satisfied (cf. Appleton 1995,
McGarry and Schutz 1997, Scarf et al. 2009, Ryvkin and Ortmann 2008 and Ryvkin
2010). There is also a sizeable number of papers in operations research related to
sports that focus on topics other than fairness and thus lie outside the scope of this
study. Readers are referred to Csató (2021), Kendall and Lenten (2017), Kendall et al.
(2010), Lenten and Kendall (2021),and Wright (2014) for surveys of this literature.

Our contribution

We start our analysis by formulating two basic fairness axioms. The first is an “equal
treatment” requirement which states that “if all players are equally strong then all
should have the same probability of being the final winner”. The second is a “mono-
tonicity in strength” condition requiring that “a weaker player should not have a higher
probability of being the final winner than a stronger player”.

Each of these axioms is presented in a strong form and in a weak form. The strong
versions impose that a league-type competition should fulfill the property for every
possible assignment of the players, while the weak forms only require that the property
be fulfilled for at least one such assignment. The effect of these weak versions of the
axiomswas also studied inArlegi andDimitrov (2020) andArlegi (2022).However, the
analysis in these works is set within the framework of elimination-type competitions
(knockout tournaments) which is completely different from the model of league-type
competitionswedevelop and study in the current paper. In particular, the corresponding
characterizations for the case of elimination-type competitions are heavily based on
both the tree structure of the knockout tournaments and on the specific way in which
the sequential structure of the competition determines players’ winning probabilities.

In contrast, we study in the current paper the other main class of competitions
(league-type competitions) and focus exclusively on the effect of the assignment of
the players, i.e. on who is playing against whom and how many times, seeking to
isolate this effect from others related to scheduling when the competition is struc-
tured sequentially. To that end, we investigate what type of league-type competitions
satisfies the said fairness properties. Generally speaking, equal treatment leads to
competitions where every player plays the same number of matches (Theorems 1 and
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2), while monotonicity in strength drastically restricts the number of participants to
two (Theorem 3). When weak monotonicity in strength is considered, the class of
competitions that fulfills the property increases (Theorem 4).

The rest of the work is organized as follows. Section2 presents the basic elements
of our framework and introduces the fairness axioms. Section3 sets out our results.
Section4 concludes and addresses possible extensions of the model. The proofs are
relegated to the Appendix.

2 Framework

Let N be a finite set of at least two players who compete with each other by playing a
total number s ofmatches.An assignmentA is a symmetricmatrixA = (

ai j
)

i, j∈N with
ai j being the number of matches played between players i and j . Thus, A determines
the participants in each of the s matches, with (�i, j∈N ai j )/2 = s. For example, for
N = {1, 2, 3, 4}, the assignment A defined by aii = 0 and ai j = 1 for all i, j ∈ N ,
i �= j , describes a single round-robin tournament between four players with the set
of s = 6 matches being played {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. As shown
below, our definition of a league allows (and the corresponding results account) for
the possibility of players playing different numbers of matches.

The rest of this section describes the main ingredients of our model. These include
the ordinal information about each player’s relative strengths represented by a binary
relation R over the player set N and the set of “winning probability matrices” that
are consistent with R (Subsection 2.1), plus the notion of an assignment and the
probability of each player being a final winner of a league competition (Subsection
2.2). Subsection 2.3 presents the fairness axioms,making use of all the previous formal
elements.

2.1 Players’ strength and winning probabilities

We follow Arlegi and Dimitrov (2020) and assume that the members of the player
set N are completely ordered according to a binary relation R of strength so that,
for all i, j ∈ N , i R j is interpreted as “player i is at least as strong as player j”.
The corresponding asymmetric and symmetric factors of R are denoted by P and I
respectively, so i P j reads “i is strictly stronger than j ” and i I j reads “i and j are
equally strong”.2

Now assume that information is available about the probabilities of one player
defeating another in amatch. For i, j ∈ N , denote by pi j the corresponding probability
and note the following natural connection between R and these probabilities: A player
i is at least as strong as another player j if and only if pi j ≥ 0.5. Since the binary
relation of strength is complete, i P j means pi j > 0.5 and i I j implies pi j = 0.5. For

2 In practice, the relation of strength is usually based on criteria such as previous performance, betting
odds, etc. Thus, the assumption of the existence of such a relation does not seem to be restrictive. See Prince
et al. (2013) for assuming that the probability of winning is proportional to the players’ powers.
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convenience, in what follows we order the players in N according to R; that is, if i P j
then i < j (if i I j then either i < j or j < i).

We denote byPR the set of all probability matrices such that, forP ∈ PR , pi j ≥ 0.5
if and only if i R j . Moreover, we assume that each probability matrix in PR satisfies
the following two conditions:

∀i, j ∈ N , pi j + p ji = 1. (1)

∀i, j ∈ N , pi j ≥ 0.5 implies pik ≥ p jk for each k ∈ N \ {i, j} . (2)

These conditions are commonly used in the literature (cf. David 1963, Hwang 1982,
Horen and Riezman 1985, Schwenk 2000) and taken together they are equivalent to
the “strong stochastic transitivity” of the corresponding probability matrix (cf. David
1963). The crucial condition here is Condition (2 ), which states that any player is
more likely to beat a weaker player than a stronger one. It is worth mentioning that,
for a fixed binary relation of strength R, our fairness properties are imposed to hold
for each P ∈ PR , so that no further details on these probability matrices are needed
for our results.

Finally, it is easy to see that the strong stochastic transitivity of the probability
matrices in PR implies that the binary relation of strength R is transitive. Moreover,
for i, j, k, � ∈ N the following useful interval property connecting the strength of
these players to their corresponding winning probabilities emerges:

i R j Rk R� implies pi� ≥ p jk . (3)

2.2 Assignments and final winners

Given a league competition (s, N ), an assignment of size s ∈ Z
+ is a symmetric

matrix A = (
ai j

)
i, j∈N with ai j ∈ Z

+ ∪ {0} for all i, j ∈ N being the number of
matches played between players i and j such that:

• aii = 0 for each i ∈ N (no player plays against herself);
• � j∈N ai j > 0 for each i ∈ N (each player plays at least one match);
• 2 ≤ |N | ≤ �i, j∈N ai j = 2s (the total number of matches is s).

The set of all assignments for N of size s satisfying the above conditions is denoted
by A(s,N ). We assume that player i ∈ N wins the competition (s, N ) at assignment
A ∈ A(s,N ) if no other player wins more matches than i from the matches induced
by A. Given a probability matrix P containing the probabilities of a player winning a
match, we denote by ϕi (A,P) the probability that player i ∈ N wins the competition.
The exact mathematical expression of ϕi (A,P) is provided in the Appendix and it
should be noted that it does not use tie-breaking criteria (cf. Berker 2014 and Csató
2021), i.e., multiple final winners are allowed.

2.3 Fairness axioms

We now formally introduce the two fairness principles (cf. Arlegi and Dimitrov 2020).
Each of these ideas is presented in a strong form and in a weak form. To state
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them, we assume that a binary relation R of strength is defined on the player set
N .

Equal Treatment (ET) A league competition (s, N ) satisfies ET if for all A ∈
A(s,N ) we have ϕi (A,P) = ϕ j (A,P) holding for all i, j ∈ N whenever P ∈ PR is
such that pi j = 0.5 for all i, j ∈ N .

Weak Equal Treatment (WET) A league competition (s, N ) satisfies WET if
there exists A ∈ A(s,N ) with ϕi (A,P) = ϕ j (A,P) holding for all i, j ∈ N whenever
P ∈ PR is such that pi j = 0.5 for all i, j ∈ N .

Monotonicity in Strength (MS) A league competition (s, N ) satisfies MS if for
all A ∈ A(s,N ), for all i, j ∈ N , and for all P ∈ PR such that pi j > 0.5, ϕi (A,P) ≥
ϕ j (A,P) holds.

Weak Monotonicity in Strength (WMS) A league competition (s, N ) satisfies
WMS if there exists A ∈ A(s,N ) such that, for all i, j ∈ N and for all P ∈ PR such
that pi j > 0.5, ϕi (A,P) ≥ ϕ j (A,P) holds.

ET and WET express the idea that in regard to the final probability of winning, the
competition system should not be biased towards any particular player if all of them
are equally skilled.

MS and WMS require the competition system not to reward weaker players under
any of the possible probability matrices compatible with the strength of the players.
In fact, many tournaments are precisely designed to minimize the role of luck in
winning the competition: For example, round-robin tournaments and even double
round-robin tournaments minimize that effect by staging a large number of matches,
and in knockout tournaments the strongest player is often matched with the weakest,
the second strongest with the second weakest, and so on.

Apart from the fact that WET is logically weaker than ET and WMS is logically
weaker than MS, the normative power of the weaker versions compared to the strong
versions may depend on the specific application intended, and in particular on the
conjectures as to the benevolence of the competition designer. On the one hand, ET
andMS prevent manipulation by a potentially corrupted competition designer because
they ensure that there exists no assignment rule benefiting a particular player in relation
to another one who is more or equally skilled. On the other hand, WET and WMS
rely on confidence in the benevolence of the competition designer, in the sense that
the focus is on competition systems where it is always possible to find an assignment
rule that is fair, independently of the values in the probability matrices supporting the
strength relation.

In formulating the monotonicity properties we were guided by the general view
that the information on the exact values of the probabilities of winning might be rather
imprecise. A consistent way of incorporating such a view into the corresponding
requirements is to require them to hold for all probability matrices. Clearly, MS
and WMS would then guarantee fairness for all possible probability values which
are compatible with the binary relation of strength R. This is also important from
a practical perspective as the rules used for assignment in most professional sports
playoffs are usually proxies of R obtained on the basis of end-of-season standings.
Hence, it is important to know whether the corresponding competition structure is fair
independently of the precise numerical scores that describe the strength of the teams
at the end of the regular season.
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3 Results

3.1 Leagues and equal treatment

Whether the two equal treatment axioms (ET and WET) are fulfilled by league com-
petitions is closely related to the fact that players should play the same number of
matches. The first result in this section shows that a league satisfies ET if and only if
either each player plays a single match or only two players play all matches. Clearly,
both cases imply that there must be an even number of players participating in the
competition.

Theorem 1 A league competition (s, N ) satisfies ET if and only if either 2s = |N | or
2s > |N | = 2

It is sometimes suggested that leagues are fair competition systems. However, this
is not true in our framework because our definition of league is much broader than
the sense in which the term is popularly used, which is usually identified with round-
robin tournaments. In fact, the theorem given above excludes leagues as fair structures
unless every player plays exactly one match or there are only two players. We now
show that weakening ET to WET extends the class of fair league competitions by
including those competitions where each player plays the same number of matches
against every other player.

Theorem 2 Any league competition (s, N ) with either 2 s = |N | or 2 s =
k (|N | − 1) |N | for some integer k ≥ 1 satisfies WET.

It should be noted that Theorem 2 is not superfluous in the sense that not every
league competition satisfies WET. For example, it can easily be checked that there is
no way to assign three players to a two-match competition so that WET is fulfilled.

3.2 Leagues andmonotonicity in strength

Our next result shows that MS restricts the number of players in a competition to only
two.

Theorem 3 A league competition (s, N ) satisfies MS if and only if |N | = 2

When MS is weakened to WMS, the class of fair competition systems is considerably
enlarged because any league competition turns out to satisfy this axiom provided that
either each player participates in exactly one match or the total number of matches is
at least (|N | − 1). In particular, this implies that any league competition covered by
Theorem 2 satisfies the weak versions of both the equal treatment and monotonicity
in strength properties.

Theorem 4 Any league competition (s, N ) with 2 s = |N | or s ≥ |N | − 1 satisfies
WMS.

It is not difficult to prove that the assignment used in the proof of Theorem 4 (see the
Appendix) when 2s = |N | is the only one for which (s, N ) satisfies WMS. However,
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there are assignments other than those used when s ≥ |N | − 1 holds for which (s, N )

satisfies WMS.
Finally, as in Theorem 2, it should be noted that Theorem 4 is not superfluous in

the sense that there exist league competitions that do not satisfy WMS. For example,
it can be proved that a league competition consisting of three matches and five players
does not satisfy WMS.

3.3 Round-robin tournaments

Let k ≥ 1 be an integer. A k-round-robin tournament is a league competition (s, N )

together with an assignmentA ∈ A(s,N ) satisfying the additional condition ai j = k for
all i, j ∈ N , i �= j . That is, according to A, each player in N plays exactly k matches
against every other player in N . Clearly then, a single round-robin tournament requires
k = 1, while a double round-robin competition implies k = 2. Notice finally that, by
A ∈ A(s,N ), 2 s = k (|N | − 1) |N | follows.

Given the waywe introduced our axioms and the fact that a round-robin tournament
is defined with respect to a specific assignment, it makes sense to check whether such
a competition system satisfies WET and WMS only i.e. the relevant results are to be
derived from Theorem 2 and Theorem 4.

It follows directly from Theorem 2 that the first condition in the above definition of
a k-round-robin tournament is satisfied. In the proof of Theorem 2, we show further
that a league competition (s, N ) with 2 s = k (|N | − 1) satisfies WET with respect
to A ∈ A(s,N ) letting each player participate in exactly k number of matches against
every other player. Thus, we conclude that every k-round-robin tournament satisfies
WET.

As for WMS, Theorem 4 first tells us that any single round-robin tournament
with two players playing exactly one match fulfills WMS. This follows from
2s = |N | which, in order to be satisfied for a k -round-robin tournament (with
2 s = k (|N | − 1) |N |), requires k = 1 and |N | = 2. Further recall that, accord-
ing to Theorem 4, any league competition where the total number of matches is at
least (|N | − 1) also satisfies WMS. Since the latter condition is necessary for a league
competition to be a round-robin tournament, one might be tempted to conclude that
round-robin tournaments also satisfyWMS. It should be noted though, that the assign-
ment used here to prove the fulfillment of WMS in this case does not match the one in
the definition of a round-robin tournament. It is highly likely that league competitions
(s, N ) with 2 s = k (|N | − 1) |N | for some integer k ≥ 1 do generally satisfy WMS
with respect to the round-robin tournament assignment as defined above. However,
providing a formal proof is muchmore complex than what it may appear at first sight.3

3 See Saarinen et al. (2015) for a brief impression of the computational complexity of calculating the
probability of a given player finally winning a round-robin tournament, even if all values in the probability
matrix belong to {0, 1/2, 1}. See alsoKulhanek andPonomarenko (2020) about the complexity of computing
the probability of winning in knockout tournaments and the possibility of counterintuitive outcomes.
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4 Conclusion

The results reported in this paper enable different league-type competition systems
to be compared in terms of their fairness. In particular, we have shown that there
are not many league-type competitions that are fair in the sense of simultaneously
satisfying both types of fairness in their corresponding strong or weak forms. MS
combined with either ET or WET produces a degenerate competition consisting of a
two-player league (Theorem 3).WeakeningMS toWMS and imposing it together with
ET slightly enlarges the class of admissible leagues to those where each participant
plays a single match. In contrast, the combination of WMS and WET results in an
expansion of the class of admissible leagues to include leagues that allow players to
play the same number of times in at least |N | − 1 matches (Theorems 2 and 4). An
interesting direction for future research in that respect could be the quantification of
the extent to which these properties are violated in certain competition formats. A first
attempt in that general research direction was made in Csató (2022), where simulation
techniques are used for an investigation of monotonicity and incentive compatibility
properties of sports tournaments.

Theorem2 proves that k-round-robin tournaments (which include single and double
round-robin tournaments as special cases) satisfy WET. It seems quite likely that also
other league-type competitions do satisfy WET; for instance, one could consider the
assignment recently adopted by theUEFAChampionsLeague from the 2024/25 season
(cf. UEFA 2022), where each player plays the same number of matches against the
same number of other players (not necessarily against every other player).4 Most likely
the mentioned assignments also satisfy WMS, although the formal proof remains an
open question even if one restricts probabilities to take two possible values; that is, if
pi j = α ∈ [0.5, 1] for all i, j ∈ N with i < j .

Our analysis in this paper does not cover Swiss-system tournaments as the assign-
ment in the later class of tournaments, in contrast to our definition of league-type
competitions, is not fixed a priori but it rather depends on the results of the matches
already played. The possibility for such assignment path-dependence leads to very
interesting operational research problems as how to pair the players (cf. Biró et al.
2017, Führlich et al. 2021, Kujansuu et al. 1999, Ólafsson 1990) or how to generate a
players’ ranking at the end of the tournament (cf. Csató (2013, 2017)).

Finally, it isworthmentioning that the strong stochastic transitivity of theprobability
matrices plays a crucial role in the results obtained. Any potential weakening of this
condition would clearly enlarge the set of matrices that satisfy it and thus leads to a
narrower class of fair competition systems.
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corresponding reference.
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Appendix: Proofs of the theorems

We start by introducing some additional notation and remarks. Given a competition
(s, N ) and an assignment A ∈ A(s,N ), M(A) stands for the set of matches induced
by A. No ties are allowed and the player who wins the match m ∈ M(A) is denoted
by wm(A). Player i ∈ N is a winner of the competition (s, N ) at A ∈ A(s,N ) if
|{m ∈ M(A) : wm(A) = i}| ≥ |{m ∈ M(A) : wm(A) = j}|holds for all j ∈ N . Thus,
given A ∈ A(s,N ), w(A) = (wm(A))m∈M(A) stands for the vector of match winners,
whose dimension is s. Given A ∈ A(s,N ) and a probability matrix P, the probability
pr(w(A)) of w(A) occurring is given by pr(w(A)) = �m∈M(A)ϕwm (A)(A,P). Thus,
for each i ∈ N , ϕi (A,P) can be expressed by ϕi (A,P) = ∑

w(A)∈Wi (A)

pr(w(A)) =
∑

w(A)∈Wi (A)

∏

m∈M(A)

ϕwm (A)(A,P), where Wi (A) stands for the set of all vectors of

winners in the matches induced by A for which i is a final winner of the competition.
Additionally, when the probability matrix P is such that pi j = 0.5 holds for all
i, j ∈ N , we have pr(w(A)) = (0.5)s for each vector of match winners and thus,
ϕi (A,P) = (0.5)s · |Wi (A)| holding for each i ∈ N .

Proof of Theorem 1 Let (s, N ) be a league competition with either 2s = |N | or 2 s >

|N | = 2. We show first that (s, N ) satisfies ET. Let A ∈ A(s,N ) be an assignment and
P the probability matrix with pi j = 0.5 for all i, j ∈ N . Notice then that either each
player in N plays exactly one match (when 2s = |N |) or there are only two players
who play all matches (when 2s > |N | = 2). Consider the following cases separately.
Case 1 (2s > |N | = 2 and s is odd). Let N = {1, 2} and notice that in this case we
have ϕ1(A,P) = (0.5)s · |W1(A)| and ϕ2(A,P) = (0.5)s · |W2(A)|. Because s is odd,
w(A) ∈ W1(A) implies w(A) /∈ W2(A), and w(A) ∈ W2(A) implies w(A) /∈ W1(A).
Thus, W1(A) ∩ W2(A) = ∅. Finally, given that N = {1, 2} and W1(A) ∩ W2(A) = ∅,
we can define a bijection f : W1(A) → W2(A) by just replacing 1 by 2 and 2
by 1 as match winners at each w(A) ∈ W1(A) as to get f (w(A)) ∈ W2(A). Thus
|W1(A)| = |W2(A)| and ϕ1(A,P) = ϕ2(A,P) holds. We conclude then that (s, N )

satisfies ET.
Case 2 (2s > |N | = 2 and s is even). Notice that in this case W1(A)∩W2(A) �= ∅. We
have then that w(A) ∈ W1(A) \ W2(A) implies w(A) /∈ W2(A)\W1(A), and w(A) ∈
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W2(A)\W1(A) implies w(A) /∈ W1(A)\W2(A). Finally, we can define a bijection
f : W1(A)\W2(A) → W2(A)\W1(A) in the same way as in Case 1 and conclude
that |W1(A)\W2(A)| = |W2(A)\W1(A)| should follow and thus, |W1(A)| = |W2(A)|
also holds. We conclude that ϕ1(A,P) = ϕ2(A,P) and thus (s, N ) satisfies ET also
in this case.
Case 3 (2s = |N |). Because each player plays exactly one match in this case, for any
vector w(A) of match winners, a player is the final winner of the competition only if
she is the winner of the match which she is assigned by A. Thus, |Wi (A)| = ∣∣W j (A)

∣∣
holds for all i, j ∈ N . By ϕi (A,P) = (0.5)s · |Wi (A)| holding for each i ∈ N , (s, N )

satisfies ET.
Assume now that (s, N ) is a league competition satisfying ET. To show that either

2s = |N | or 2 s > |N | = 2 holds, let P be the probability matrix with pi j = 0.5 for all
i, j ∈ N . It suffices to show that, for some assignment inA(s,N ), 2 s > |N | > 2 leads
to a contradiction (as |N | ≤ 2 s follows from (s, N ) satisfying ET and the definition
of an assignment). Consider then the following possible cases.
Case 1 (|N | is even and 2s = |N | + 2). Let the assignment A be such that a12 = 2
and � j∈N\{1,2}ai j = 1 for all i ∈ N\ {1, 2}, and notice that A ∈ A(s,N ).

Consider a competition system (s − 1, N ) and the assignment A′ ∈ A(s−1,N ) such
that a′

12 = 1 and a′
i j = ai j for all i, j ∈ N\ {1, 2}. Observe that, by 2(s − 1) = |N |

and as argued in Case 3 above,
∣∣W1(A′)

∣∣ = ∣∣W3(A′)
∣∣. Take w(A′) ∈ W1(A′) and note

that this implies that player 1 wins his single match in M(A′) against player 2. Thus,
for each w∗(A′) ∈ W1(A′) there are exactly two vectors w′(A), w′′(A) ∈ W1(A)

of match winners for (s, N ) where, all else being equal, either player 1 wins his
other match against player 2 or player 2 wins it. On the other hand, for w∗∗(A′) to
belong to W3(A′) player 3 must necessarily win her single match. Thus, for each
w∗∗(A′) ∈ W3(A′) there is a unique vector w′′′(A) ∈ W3(A) of match winners for
(s, N ) where, all else being equal, the winners of the two matches between players
1 and 2 are different. We conclude then that |W1(A)| > |W3(A)| holds and thus, by
ϕ1(A,P) = (0.5)s · |W1(A)| > (0.5)s · |W3(A)| = ϕ3(A,P), we reach a contradiction
to (s, N ) satisfying ET.
Case 2 (|N | is even and 2 s > |N | + 2). Let A be such that a12 = 2 s−|N |

2 + 1 and
� j∈N\{1,2}ai j = 1 for all i ∈ N\ {1, 2}, and notice that A ∈ A(s,N ). Fix a vector
w(A) of match winners and note that, given the definition of A, player 3 is a final
winner in w(A) only if, for each i ∈ N , player i wins at most one match. However, by
2 s−|N |

2 + 1 > 2, either player 1, or player 2 or both must win more than one match.
We conclude then that W3(A) = ∅ should hold. Meanwhile, W1(A) �= ∅ because
player 1 is a final winner of the competition if she wins all her matches. We have then
ϕ1(A,P) = (0.5)s · |W1(A)| > 0 = (0.5)s · |∅| = (0.5)s · |W3(A)| = ϕ3(A,P) in
contradiction to (s, N ) satisfying ET.
Case 3 (|N | is odd). Let N = {1, . . . , n} and takeAdefined as follows:a12 = 2s−|N |+1

2 ,
a1n = 1, and � j∈N\{1,2,n}ai j = 1 for all i ∈ N\ {1, 2, n}. Notice that A ∈ A(s,N ). We
proceed by considering the following three possible sub-cases.
Case 3.1 ( 2 s−|N |+1

2 = 1). In this case player 1 plays exactly one match against player
2 and exactly one match against player n. Denote these matches by m12 and m1n ,
correspondingly. There are four possible combinations of winners in m12 and m1n : (i)
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1 wins in both matches; (ii) 1 wins against 2 and loses against n; (iii) 1 loses against
2 and wins against n; and (iv) 1 loses in both matches. Notice that each player from
N \ {1, 2, n} can win at most one match. Therefore, for each of the vectors of match
winners in M(A)\ {m12, m1n}, three out of the four possible combinations of winners
in {m12, m1n} give as a result a vector ofmatchwinners inW1(A) and only two give as a
result a vector of match winners in Wn(A). We conclude then that |W1(A)| > |Wn(A)|
holds and thus, by ϕ1(A,P) = (0.5)s · |W1(A)| > (0.5)s · |Wn(A)| = ϕn(A,P), we
reach a contradiction to (s, N ) satisfying ET.
Case 3.2 ( 2 s−|N |+1

2 = 2). Denote by m′
12 and m′′

12 the two matches between players 1
and 2, and letm1n be the one match played by player n (against player 1). Analogously
to Case 3.1, it is easy to compute that, for each of the vectors of match winners in
M(A)\{m′

12, m′′
12, m1n}, three out of the eight possible combinations of winners in

{m′
12, m′′

12, m1n} give as a result a vector of match winners in W1(A) and only two
give as a result a vector of match winners in Wn(A). Therefore |W1(A)| > |Wn(A)|
and thus, by ϕ1(A,P) = (0.5)s · |W1(A)| > (0.5)s · |Wn(A)| = ϕn(A,P), we again
reach a contradiction to (s, N ) satisfying ET.
Case 3.3 ( 2 s−|N |+1

2 > 2). Fix w(A) and note that, given the definition of A, w(A) ∈
Wn(A) only if, for any i ∈ N , wm(A) = i holds for at most one match m ∈ M(A).
However, by 2 s−|N |+1

2 > 2, the latter condition is violated for either player 1, or player
2, or for both players. We conclude then that Wn(A) = ∅ should hold. Meanwhile,
W1(A) �= ∅ because player 1 is the winner of the competition if she wins all the
matches that she plays.We have then ϕ1(A,P) = (0.5)s ·|W1(A)| > 0 = (0.5)s ·|∅| =
(0.5)s · |Wn(A)| = ϕn(A,P) in contradiction to (s, N ) satisfying ET. 
�
Proof of Theorem 2 Let (s, N ) be a league competition with either 2s = |N | or 2 s =
k (|N | − 1) |N | for some integer k ≥ 1. Because ET is stronger than WET, it follows
from Theorem 1 that (s, N ) satisfies WET when 2s = |N |.

Consider now the case of 2 s = k (|N | − 1) |N | for some integer k ≥ 1 and let A
be the assignment where each player plays k matches against every other player from
N . By 2 s = k (|N | − 1) |N |, A ∈ A(s,N ) follows. We show now that (s, N ) satisfies
WET with respect to A. To that end, let P be the probability matrix with pi j = 0.5
for all i, j ∈ N , and recall that ϕq(A,P) = (0.5)s · ∣

∣Wq(A)
∣
∣ holds for each q ∈ N .

It suffices then to prove that the cardinality of Wq(A) is the same for all q ∈ N . We
proceed as follows.

Take i, j, � ∈ N and for x ∈ {1, . . . , k}, denote by mx
i� (mx

j�) the x-th match of
player i ( j) against player �. Denoting by W (A) the set of all vectors of winners in
the matches induced by A, define f : W j (A) → W (A) as follows:

(1) For � = i and each x ∈ {1, . . . , k}, set f (wmx
j�
(A)) �= wmx

j�
(A);

(2) For each � ∈ N \ {i, j} and each x ∈ {1, . . . , k}:
– if wmx

j�
(A) = j and wmx

i�
(A) = �, set f (wmx

j�
(A)) = � and f (wmx

i�
(A)) = i ;

– if wmx
j�
(A) = � and wmx

i�
(A) = i , set f (wmx

j�
(A)) = j and f (wmx

i�
(A)) = �;

– if wmx
j�
(A) = � and wmx

i�
(A) = �, set f (wmx

j�
(A)) = � and f (wmx

i�
(A)) = �;

– if wmx
j�
(A) = j and wmx

i�
(A) = i , set f (wmx

j�
(A)) = j and f (wmx

i�
(A)) = i ;

(3) For each q ∈ N \ {i, j}, each r ∈ N\ {q}, and each x ∈ {1, . . . , k}: set
f (wmx

qr
(A)) = wmx

qr
(A).
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Notice that, by construction, the number of matches won by i at f (w(A)) is the
same as the number of matches won by j at w(A) and vice versa. Moreover, also
by construction, for each q �= i, j , the number of matches won by q is the same
in both w(A) and f (w(A)). Hence, w(A) ∈ W j (A) \ Wi (A) implies f (w(A)) ∈
Wi (A)\W j (A), while w(A) ∈ W j (A) ∩ Wi (A) implies f (w(A)) ∈ Wi (A) ∩ W j (A)

and, thus, f (w(A)) ∈ Wi (A) holds.
We now show that w(A) �= w′(A) for w(A), w′(A) ∈ W j (A) implies f (w(A)) �=

f (w′(A)).
If wmx

i j
(A) �= w′

mx
i j
(A) or wmx

qr
(A) �= w′

mx
qr

(A) holds for some q ∈ N\ {i, j},
r ∈ N\ {q}, and x ∈ {1, . . . , k}, then f (wmx

i j
(A)) �= f (w′

mx
i j
(A)) and f (wmx

qr
(A)) �=

f (w′
mx

qr
(A)) clearly follows due to parts (1) and (3), respectively, of the above

construction.
If j = wmx

j�
(A) �= w′

mx
j�
(A) = � for some x ∈ {1, . . . , k} and � ∈ N \ {i, j}, then

the following four cases are possible:

(a) wmx
i�
(A) = w′

mx
i�
(A) = i . We have then f (wmx

j�
(A)) = j , f (wmx

i�
(A)) = i ,

f (w′
mx

j�
(A)) = j , f (w′

mx
i�
(A)) = �;

(b) wmx
i�
(A) = w′

mx
i�
(A) = �. We have then f (wmx

j�
(A)) = �, f (wmx

i�
(A)) = i ,

f (w′
mx

j�
(A)) = �, f (w′

mx
i�
(A)) = �;

(c) wmx
i�
(A) = i and w′

mx
i�
(A) = �. We have then f (wmx

j�
(A)) = j , f (wmx

i�
(A)) = i ,

f (w′
mx

j�
(A)) = �, f (w′

mx
i�
(A)) = �;

(d) wmx
i�
(A) = � and w′

mx
i�
(A) = i . We have then f (wmx

j�
(A)) = �, f (wmx

i�
(A)) = i ,

f (w′
mx

j�
(A)) = j , f (w′

mx
i�
(A)) = �.

Thus, f (w(A)) �= f (w′(A)) holds for each of the possible cases.
Finally, if i = wmx

i�
(A) �= w′

mx
i�
(A) = � for some x ∈ {1, . . . , k} and � ∈ N\ {i, j}

the situation is completely analogous to the previous one, so it can also be derived in
this last case that f (w(A)) �= f (w′(A)). We conclude then that f is a bijection, so
|Wi (A)| = ∣∣W j (A)

∣∣ holds. Hence, the league competition (s, N ) satisfies WET with
respect to A. 
�
Proof of Theorem 3 We first show that if N = {1, 2}, then (s, N ) satisfies MS. Let
P ∈ PR be an arbitrary but fixed probability matrix. Let A ∈ A(s,N ) and notice that,
by N = {1, 2}, a12 = s. Now assume that p12 > 0.5. It needs to be shown that
ϕ1(A,P) − ϕ2(A,P) ≥ 0 holds. If s = 1 then the inequality follows immediately.
Assume then that s ≥ 2 and consider the following two cases.
Case 1 (2s > |N | = 2 and s is odd). Note that in this case we have

ϕ1(A,P) = ps
12 + ps−1

12 · p21 + ps−2
12 · p221 + . . . + p(s+1)/2

12 · p(s+1)/2−1
21

and

ϕ2(A,P) = ps
21 + ps−1

21 · p12 + ps−2
21 · p212 + . . . + p(s+1)/2

21 · p(s+1)/2−1
12 .
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Thus, ϕ1(A,P) − ϕ2(A,P) = (
ps
12 − ps

21

) + p12 · p21 ·
(

ps−2
12 − ps−2

21

)
+ . . . +

p(s+1)/2−1
12 ·p(s+1)/2−1

21 ·(p12 − p21) > 0,where the inequality follows from p12 > 0.5.
We conclude that (s, N ) satisfies MS.

Case 2 (2s > |N | = 2 and s is even). When expressing ϕ1(A,P) and ϕ2(A,P) for this
case there are two differences compared to the corresponding expressions in Case 1.
First, (s +1)/2 must be replaced by s/2+1, and (s +1)/2−−1 by s/2−1. Second, in
both expressions the probabilities of the vectors of match winners where both players,
1 and 2, are winners must be considered; that is, the term ps/2

12 + ps/2
21 must be added

in both expressions. Since these vectors for player 1 and player 2 do coincide (due
to s being even), the added terms are the same for both players. Thus, they cancel
out when the difference between ϕ1(A,P) and ϕ2(A,P) is taken. By reproducing the
same reasoning as in Case 1, we can conclude that (s, N ) satisfies MS also in this
case.

Nowassume that (s, N ) satisfiesMS.We show that |N | > 2 leads to a contradiction.
Consider first the case where N = {1, 2, 3} and the probability matrix P ∈ PR is as
defined below:

P =
⎛

⎝
0.5 0.5 + ε 1 − ε

0.5 1 − 2ε
0.5

⎞

⎠

Take the assignmentA ∈ A(s,N ) defined by a12 = 1 and a23 = s −1. If s = 2, then
ϕ1(A,P) ≈ 0.5 and ϕ2(A,P) ≈ 1 in contradiction to p12 > 0.5 and (s, N ) satisfying
MS.

If s > 2, given A and P, we have that player 2 has a probability arbitrarily close
to 1 of winning all matches except one and therefore a probability close to one of
winning most of her matches. Thus, ϕ2(A,P) ≈ 1 and ϕ1(A,P) ≈ 0, again reaching
a contradiction to p12 > 0.5 and (s, N ) satisfying MS.

Next assume that |N | > 3 holds and consider a probability matrix P ∈ PR such
that p23 > 0.5 and p3k ≈ 1 for all k ∈ N\ {1, 2}. We distinguish the following two
cases.

Case 1 (2s = |N |). In this case each player participates in exactly onematch according
to every assignment. Take A ∈ A(s,N ) to be such that a12 = a34 = 1. Note that, for
any vector of match winners, a player is a final winner of the entire competition only
if she wins her single match according to A. Thus, ϕ3(A,P) ≈ 1 and ϕ2(A,P) ≤ 0.5
in contradiction to p23 > 0.5 and (s, N ) satisfying MS.
Case 2 (2s > |N |). Consider the assignment A ∈ A(s,N ) defined as follows: a12 = 1,
a1 j = a2 j = 0 for all j ∈ N\ {1, 2}, and a3 j = 1 for each j ∈ N\ {1, 2}. Note that,
according to A and P, player 3 has a probability arbitrarily close to one of winning
all her matches, so she has a probability close to one of winning every match in the
competition except one (the one played between players 1 and 2). Hence,ϕ3(A,P) ≈ 1
and ϕ2(A,P) ≈ 0 in contradiction to p23 > 0.5 and (s, N ) satisfying MS. 
�
Proof of Theorem 4 We start with the case 2 s = |N |. Let P ∈ PR be an arbitrary
but fixed probability matrix and, recalling that |N | is even, consider the assignment
A ∈ A(s,N ) defined for all i, j ∈ N as follows: ai j = 1 if and only if i + j = |N |+ 1.
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That is, Amatches the best player with the worst one, the second best with the second
worst, and so on. Clearly, given A, a player is a final winner in a vector of match
winners if and only if she is the winner of the single match that she plays. Thus, for
k ∈ N , we have ϕk(A,P) = pkk′ with k′ ∈ N being the player such that akk′ = 1.

Now assume that pi j > 0.5 holds for some i, j ∈ N . It needs to be shown that
ϕi (A,P) ≥ ϕ j (A,P) follows in such a case. To that end, let i ′, j ′ ∈ N be such that
aii ′ = a j j ′ = 1. If i ′ = j , then ϕi (A,P) = pi j > p ji = ϕ j (A,P) follows. If i ′ �= j ,
we have from pi j > 0.5 that i R j holds, while j ′ Ri ′ holds due to the construction of
A. Thus, pii ′ ≥ p j j ′ follows by (3). We then have ϕi (A,P) = pii ′ ≥ p j j ′ = ϕ j (A,P)

as required for showing that (s, N ) satisfies WMS with respect to A.
Now consider a league (s, N ) such that s ≥ |N |−1 holds. Fix a probability matrix

P ∈ PR and consider the assignment A defined as follows:

– a12 = s − |N | + 2,
– ai j = 1, if i = 1 and j �= 2,
– ai j = 0, if i �= 1.
According to the above assignment,

– player 1 plays all s matches (due to a12 + (|N | − 2) · 1 = s),
– each of the remaining players (except player 2) participates in exactly one match
(which is, of course, against player 1), and

– player 2 meets player 1 in each of the remaining (s − |N | + 2) matches of the
competition.

Clearly, A ∈ A(s,N ) follows. We show that (s, N ) satisfies WMS with respect to A
in three steps. Below, M12(A) stands for the set of (s − |N | + 2) matches played
between 1 and 2 according to A.

Step 1 If p12 > 0.5, then ϕ1(A,P) ≥ ϕ2(A,P).

Proof. Recall that ϕ1(A,P) = ∑

w(A)∈W1(A)

pr(w(A)) and ϕ2(A,P) =
∑

w(A)∈W2(A)

pr(w(A)). Given a vector w(A) of match winners, let M12
wm (A)=1(w(A))

be the set of matches in M12(A) which player 1 wins, and let M12
wm (A)=2(w(A)) be the

set of matches in M12(A) which player 2 wins.
Define the mapping f : W2(A) → W1(A) by just interchanging the match winners

for each match in M12(w(A)). Notice that for w(A), w′(A) ∈ W2(A) with w(A) �=
w′(A), f (w(A)) �= f (w′(A)) follows and thus, f is a bijection between W2(A) and
a subset of W1(A).

Note also that, for any vector w(A) of match winners, we have: pr(w(A)) =
∏

m∈M(A)\M12(A)

ϕwm (A)(A,P) · (p12)

∣
∣
∣M12

wm (A)=1(w(A))

∣
∣
∣ · (p21)

∣
∣
∣M12

wm (A)=2(w(A))

∣
∣
∣
.

Finally, note that, by w(A) ∈ W2(A), in w(A) player 2 wins at least as many

matches against player 1 as player 1 against player 2; that is,
∣∣∣M12

wm (A)=2(w(A))

∣∣∣ ≥
∣∣
∣M12

wm (A)=1(w(A))

∣∣
∣. Thus,

∣∣
∣M12

f (w(A))m=1(w(A))

∣∣
∣ ≥

∣∣
∣M12

f (w(A))m=2(w(A))

∣∣
∣. We

then have from p12 > p21 that (p12)

∣
∣
∣M12

wm (A)=1(w(A))

∣
∣
∣ · (p21)

∣
∣
∣M12

wm (A)=2(w(A))

∣
∣
∣ ≤
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(p12)

∣
∣
∣M12

f (w(A))m=1(w(A))

∣
∣
∣ · (p21)

∣
∣
∣M12

f (w(A))m=2(w(A))

∣
∣
∣
holds. Therefore, pr(w(A)) ≤

pr( f (w(A))) holds for each w(A) ∈ W2(A), which enables us to conclude that
ϕ1(A,P) ≥ ϕ2(A,P).
Step 2 If pi j > 0.5 for i ∈ {1, 2} and j ∈ N\ {1, 2}, then ϕi (A,P) ≥ ϕ j (A,P).

Proof Note first that if
∣∣M12(A)

∣∣ > 2 then W j (A) = ∅ and ϕi (A,P) ≥ 0 = ϕ j (A,P)

follow immediately.
If

∣∣M12(A)
∣∣ = 2, then w(A) ∈ W j (A) implies that every player wins exactly one

match, i.e., all players are winners of the entire competition. Thus, w(A) ∈ W j (A)

implies w(A) ∈ Wi (A); that is, W j (A) ⊆ Wi (A) holds and hence, ϕi (A,P) ≥
ϕ j (A,P) follows.

Now assume that
∣∣M12(A)

∣∣ = 1. Recall that only vectors of match winners in
Wi (A) \ W j (A) and in W j (A) \ Wi (A) do matter for the comparison of ϕi (A,P) and
ϕ j (A,P). If i = 1, then W j (A)\W1(A) = {w(A)} with w(A) consisting of player
1 losing all her matches and thus pr(w(A)) = p21 · p31 · . . . · pn1. Meanwhile,
the vector w′(A) of match winners where player 1 wins all her matches definitely
belongs to W1(A)\W j (A), with pr(w′(A)) = p12 · p13 · . . . · p1n . Thus, given that
p1k ≥ pk1 for each k ∈ N\ {1} (with strict inequality holding for k = j), we have
that ϕ1(A,P) > ϕ j (A,P).

In contrast, i = 2 implies W j (A)\W2(A) = {w(A)}withw(A) consisting of 1 only
winning hermatch against 2 and pr(w(A)) = p12 · p31 · p41 ·. . .· pn1. Consider now the
vector w′(A) of match winners which differs from w(A) only in that at w′(A) player
2 wins her single match against player 1 and player j loses her single match against
player 1. This involves that w′(A) ∈ W2(A)\W j (A) with pr(w′(A)) ≥ pr(w(A))

due to p21 ≥ p j1 following from p2 j > 0.5 and condition (2). We conclude then that
ϕ2(A,P) ≥ ϕ j (A,P).

Step 3 If pi j > 0.5 for some i, j ∈ N \ {1, 2}, then ϕi (A,P) ≥ ϕ j (A,P).

Proof Recall that in this situation each of the players i and j participates in exactly
one match against player 1. Consider the following three possible cases.
Case 1 (

∣∣M12(A)
∣∣ = 1). In this case, there is a unique vector of match winnersw(A) ∈

W j (A)\Wi (A) consisting of player j winning her match against player 1 and player 1
winning only hermatch against player i .We then have pr(w(A)) = p j1· p1i · ∏

k �=i, j
pk1.

Similarly, there is a unique vector of match winners w′(A) ∈ Wi (A)\W j (A) with
pr(w′(A)) = pi1 · p1 j · ∏

k �=i, j
pk1. By pi j > 0.5 and condition (2), p1 j · pi1 ≥ p j1 · p1i

follows. We then have pr(w′(A)) ≥ pr(w(A)) which implies ϕi (A,P) ≥ ϕ j (A,P).
Case 2 (

∣∣M12(A)
∣∣ = 2). In this case, each of the twovectors ofmatchwinners inW j (A)

has the following structure: each of the players in N \ {1, 2} (including i and j) wins
her match against player 1; player 1 wins only one of her matches against player 2,
and player 2 wins the other match between players 1 and 2. Clearly, W j (A) = Wi (A)

and thus, ϕi (A,P) = ϕ j (A,P) holds.
Case 3 (

∣∣M12(A)
∣∣ > 2). In this case, given that there are more than two matches

between players 1 and 2, Wi (A) = W j (A) = ∅. Thus ϕi (A,P) = ϕ j (A,P) = 0. 
�
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