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Abstract: The presence of mechanoreceptors in glabrous skin allows humans to discriminate textures
by touch. The amount and distribution of these receptors defines our tactile sensitivity and can
be affected by diseases such as diabetes, HIV-related pathologies, and hereditary neuropathies.
The quantification of mechanoreceptors as clinical markers by biopsy is an invasive method of
diagnosis. We report the localization and quantification of Meissner corpuscles in glabrous skin using
in vivo, non-invasive optical microscopy techniques. Our approach is supported by the discovery of
epidermal protrusions which are co-localized with Meissner corpuscles. Index fingers, small fingers,
and tenar palm regions of ten participants were imaged by optical coherence tomography (OCT) and
laser scan microscopy (LSM) to determine the thickness of the stratum corneum and epidermis and
to count the Meissner corpuscles. We discovered that regions containing Meissner corpuscles could
be easily identified by LSM with an enhanced optical reflectance above the corpuscles, caused by a
protrusion of the strongly reflecting epidermis into the stratum corneum with its weak reflectance.
We suggest that this local morphology above Meissner corpuscles has a function in tactile perception.

Keywords: Meissner corpuscles; glabrous skin; laser scan microscopy; optical coherence tomography;
tactile perception

1. Introduction

Touch and tactile perception are central in our communication and well-being.
Throughout our entire life, we explore the world with our senses [1]. Löken and Olausson
(2010) [2] have described the skin as a social organ, an interface between the external world
and our own body. This interface is crucial for how we feel and interact with one another.
The skin of our hands plays an important role in the haptic perception, since our hands are
specialized to touch and explore surfaces and objects [3–6]. Nevertheless, physiological
studies focusing on the hand’s skin are scarce compared to those on hairy skin. This im-
balance is a barrier to developing a better comprehension of possible correlations between
tactile perception and skin pathophysiology.

The skin of our hands is also known as glabrous skin, without hairs, with a thick
stratum corneum (SC) compared to hairy skin, and with a high density of sweat glands.
Glabrous skin is also found on the lips and soles of humans. Its innervation by specialized
nerves makes glabrous skin an important link between touch and perception [7–10]. These
nerves lead to the perception of subtle tactile details and are localized in the basal layer of
the epidermis (Merkel cells), the dermal–epidermal junction (DEJ) (Merkel cells, Meissner
corpuscles) or the dermis (Pacinian corpuscles and Ruffini organs) [10,11].

Meissner corpuscles (MCs) are prominent among the above-mentioned mechanorecep-
tors. Their position in the DEJ and their neural response makes them sensitive to movement
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across the skin, and provides them with a key role in the active tactile exploration of sur-
faces and the perception of textures [8]. The basic anatomy of the MCs has been revealed by
biopsies and animal models [11]. The connections between MC physiology, touch-related
behavior, and tactile perception are the subjects of ongoing research [12].

It is also important to remember the clinical implications of MCs, such as the distribu-
tion reduction in diabetes mellitus patients [13], hereditary neurological disorders [14] or
HIV neuropathy [15]. Most clinical studies focused on intraepithelial nerve fibers, while few
investigated how the number or quality of corpuscles in human skin changes with patholo-
gies of the peripheral or central nervous system [14,15]. Variations in the amount, physiol-
ogy, and distribution of MCs can potentially serve as markers for disorders or patients with
healing problems from diabetic neuropathy, as described by Garcia-Mesa et al. [16]. How-
ever, biopsies are an invasive and uncomfortable method to quantify mechanoreceptors in
healthy participants in fundamental physiology studies.

Non-invasive optical techniques allow for a more suitable implementation of human
skin physiology studies, by avoiding biopsies [17]. Only few studies have looked at the
skin physiology of glabrous skin using non-invasive techniques, despite the necessity to
understand the role of healthy skin physiology in tactile perception and how some diseases
may affect the skin innervation [15,18]. Established in vivo microscopy techniques, such as
optical coherence tomography (OCT) and laser scan microscopy (LSM) share the problem
of the thick SC of glabrous skin limiting the optical access to the viable epidermis and
the dermis, reducing the spatial resolution and affecting the quantification of MCs. An
improved understanding of the skin morphology associated with MCs and its imaging by
these noninvasive techniques is essential to introduce them as alternatives to biopsies in
the quantification of MCs in glabrous skin.

In this study, we introduce protrusions of the epidermis into the stratum corneum
above MCs as a feature of high salience in LSM images, which helps to localize these
mechanoreceptors in image analysis. We compare OCT and LSM as in vivo, non-invasive,
skin imaging techniques to choose the best method for counting MCs in the glabrous skin
of the fingers and palm. The protrusions do not only guide the medical practitioner in
the localization of MCs, but are also a phenomenon with impact on tactile perception
and potential physiological importance in the future comprehension and management of
skin diseases.

2. Results
2.1. Comparing OCT and LSM as Non-Invasive In Vivo Techniques on Glabrous Skin

In the present study, two techniques were used with different spatial resolutions and
possible applications (Figure 1). OCT provides the SC thickness (Figure 1A,B, blue arrow),
the sweat gland morphology (Figure 1A,B, orange arrow), and allows for the visualization
of the papillae, depending on the SC thickness (Figure 1B, gray arrows). The resolution
of OCT is limited (axial resolution between 5 and 15 µm), and details such as the position
and shape of MCs are missed. A very useful feature of this method is the imaging of
longitudinal cross-sections and the fast quantification of SC thickness.

LSM provides images of the MCs with a satisfactory resolution (axial resolution
between 1 and 10 µm), despite the thickness of the SC in glabrous skin (Figure 1D, blue
circles). The method also provides good images of sweat glands (Figure 1C orange arrows)
and corneocytes (Figure 1C yellow contour).

In LSM, the laser wavelength can be chosen to improve the resolution of the different
layers. The 488 nm laser provides better resolution in images of the upper layers if compared
with the 756 nm wavelength (Figure 1E,G). The larger penetration depth of the 756 nm
laser results in more details in images of deeper layers, which is particularly important for
the study of MCs (Figure 1F,H).
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Figure 1. Comparison of imaging techniques for the glabrous skin. Longitudinal cross-sections
recorded by OCT allow for the quantification of the SC thickness (blue arrows) for the index finger
(A) and the small finger (B) of one participant, green scale bar 200 µm. Sweat glands (orange arrow)
appear as helicoidal structures. Papillary structures are observed only in the small finger (B, gray
arrows) due to the thinner SC. LSM images of the small finger recorded at 70 µm (C) and 240 µm
(D) depth exhibit corneocytes (C, yellow contour) and the sweat glands (C, orange arrows), MCs at
the DEJ (D, blue circles) as ellipses with high reflectance, and the papillae (D, gray arrows). LSM
images recorded with the 488 nm laser have a better resolution for the SC at a depth of 20 to 70 µm (E)
than the 756 nm laser (G), while the larger penetration depth of the 756 nm laser provides more detail
in the epidermis and at the DEJ at a depth of 150 to 250 µm (H) compared to the 488 nm laser (F).
Orange arrow indicate sweat glands, blue scale bar: 100 µm.

2.2. LSM of Meissner Corpuscles

We observed the MCs in the dermal–epidermal junction (DEJ) of glabrous skin by
LSM, presenting an ellipsoidal or spherical shape (Figure 2A). The appearance of MCs and
their distinction from sweat glands is further demonstrated in Supplementary Figure S1 in
the Supplementary Material. They occur as singles, pairs, or triplets in the same papilla.
The MCs have an interesting proximity to blood capillaries in the dermis (Figure 2B, blue
arrow). The Supplementary Material provides additional images of MC morphologies and
blood capillaries in the dermis (Supplementary Figure S2). For a better representation of the
blood capillaries in the dermal–epidermal junction, VivaStack images should be recorded
with a 1.5 µm height increment. Overview imaging confirms that the MCs are most often
situated next to the ridges (Figure 2C–E).

2.3. Individual Results for Participants

The thickness of the SC and of the epidermis for each participant are presented in
Table 1. The SC thickness was measured by OCT, the other features were determined by
analysis of LSM images. No significant correlations of these quantities were found with the
age or sex of participants.
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Figure 2. LSM observations of Meissner corpuscles. (A) The MCs can be single, in pairs or triplets in
the same papilla occupying variable volume. (B) Proximity of MCs (center of the figure) and blood
capillaries (marked with blue arrows) is often observed. (C) The VivaBlock® image of a 9 mm2 area
demonstrates that MCs are most often found close to the ridges (D,E).

Table 1. Morphological information regarding the participants in this study. Above MCs, the
thickness of the epidermis was reduced, and the epidermis protruded into the stratum corneum.

Participant/Age/Sex Anatomic Position SC Thickness (µm) Epidermis Thickness (µm) MC/No MC Protrusions (µm)

001/32/F
Index finger 180 72/86.5 23
Small finger 126 55/55 33

Palm 107 59/67 23

002/26/F

Index finger 134 74/85 13.5
Index finger 128 70/81 10
Small finger 102 66/72 19
Small finger 102 60/69 31

003/30/M
Index finger 190 95/103 32
Small finger 157 112/138 14

Palm 89 45/76 14

004/29/F

Index finger 184 93/105 37
Index finger 180 76/96 22
Small finger 164 59/67 10

Palm 112 63/102 0

005/29/F
Index finger 139 70/103 25
Index finger 136 60/89 24

Palm 88 54/66 5

006/55/F
Small finger 170 75/83 22

Palm 125 59/66 12

007/52/F
Small finger 127 65/59 26

Palm 100 65/92 0

008/44/M
Index finger 190 72/88 35

Palm 110 64/81 10
Palm 92 64/77 5

009/32/F

Index finger 168 75/85 31
Small finger 121 65/63 22
Small finger 113 62/55 31

Palm 104 59/58 22
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Table 1. Cont.

Participant/Age/Sex Anatomic Position SC Thickness (µm) Epidermis Thickness (µm) MC/No MC Protrusions (µm)

010/23/M
Small finger 202 132/115 28

Palm 158 85/65 25
Palm 156 88/71 21

2.4. Meissner Corpuscles Locally Alter the Morphology of the Epidermis and Stratum Corneum

In LSM VivaStack® images recorded at an increasing depth, the transition from stratum
corneum to the epidermis is indicated by a strong increase in reflectance, which is caused
by the higher water content and other molecules of the epidermis. We discovered that
this transition is locally shifted upward, above the location of the MCs. An example for a
small finger is given in Figure 3. It is also possible to observe that the presence of MCs can
increase the reflectance even more, which can be related to the aggregation of cells in the
same portion.
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Figure 3. Meissner corpuscles create protrusions of the epidermis into the stratum corneum of
glabrous skin. (A) Three anatomic positions were analyzed in this study (stars). (B) LSM images of a
small finger recorded at a depth of 150, 159, and 210 µm. Regions containing an MC are marked by
purple ellipses, equivalent regions with MC by gray ellipses.

At a depth of between 100 and 300 µm, according to the anatomic position and/or the
participant, some regions show a much higher reflectance, which indicates the transition
from the SC to the epidermis (Figure 3B and Figure S3). Images recorded between the
SC and the epidermis reveal that MCs are found only in the regions which exhibited
higher reflectance.

The upward shift of high reflectance was always found above MCs in comparison to
adjacent regions without MCs. We interpret this upward shift of reflectance as a protrusion
of the epidermis into the stratum corneum above MCs. The extent of this protrusion can
be quantified by plotting the brightness of the LSM images (gray level index between
0 and 255) in the respective regions as a function of depth. One example is given in
Figure 4A, where the average intensity level is plotted as a function of the depth for the
small finger of all participants. Note that the depth is taken as a percentage of the thickness
of each participant’s stratum corneum. Above MCs, the reflectance increases at the top
of the protrusion at a depth which corresponds to 100% of the SC. In adjacent regions
without MCs, the reflectance increases only at the dermal–epidermal junction, at a depth
corresponding to 118% of the stratum corneum. The protrusions were more prominent
with an average of 25 µm in the finger skin compared to an average of 12 µm in the palmar
area (Figure 4B; p = 0.003).
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Figure 4. (A) Gray level index as a function of the depth as the percent of the stratum corneum
thickness. Average data for the small finger of all participants are compared for regions with MCs
and adjacent region without MCs. The onset of reflectance at a lower depth above the MC indicates a
protrusion of the epidermis into the stratum corneum. The decay of GIL at a greater depth is due to
the limited penetration depth of the light. The respective data points are represented by the dashed
line. (B) Distribution of the protrusion height for index finger (IF), small finger (SF), and tenar palmar
region (PL). Protrusions are higher in the finger skin compared to the palm (** p = 0.003). (C) The
epidermis without MCs is thinner for the regions with MCs (*** p < 0.001).

We also extracted the thickness of the epidermis from the LSM VivaStack® results
as the distance between the onset of epidermis and the DEJ. The epidermis was found to
be thinner in the regions with MCs (71 ± 14 µm) if compared with regions without MCs
(85 ± 17 µm) (Figure 4C; p < 0.001).

The height of the protrusions is positively correlated (R2 = 0.49; p < 0.001) with the SC
thickness (Figure 5).
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Figure 5. Positive correlation between SC thickness and the height of protrusions (R2 = 0.49; p < 0.001).

Our LSM results for glabrous skin show that the MCs are co-localized with protrusions
of the epidermis into the stratum corneum and with a local reduction of the epidermal
thickness. These findings are summarized in the sketch in Figure 6.
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Figure 6. Schematic representation of results. In glabrous skin, Meissner corpuscles (MCs) are
co-localized with protrusions of the epidermis into the stratum corneum and with a local reduction
in the epidermis thickness.

3. Discussion

So far, few studies have applied in vivo non-invasive skin imaging techniques to
the study of Meisner corpuscles (MCs) in humans [13,15,18]. Furthermore, only selected
anatomical regions have been investigated, with the small finger most explored because
the optical access is better through its thinner stratum corneum (SC) and the small finger
has been found to exhibit a similar density of MCs as the index finger [15,18]. We suggest
that more application of non-invasive optical methods to the study of MCs is desirable,
since variations in their number and distribution can be related to different diseases.

A review of available literature indicates that the LSM is the in vivo technique most
often applied to the study of MCs [13,15,18,19]. The application of OCT was reported
only for studies where the resolution of this technique was either improved, where a high
axial resolution was not required. Libe et al. (2017) [20] introduced speckle-modulating
OCT (SM-OCT), whereby the elimination of speckle noise originating from the sample
provides clear images of MCs in the human finger pad skin. In the study reported here,
standard OCT did not provide us with images of MCs (Figure 1A,B), but was very efficient
in the quantification of other features, such as the SC thickness, in agreement with previous
reports [21–24]. At present, the availability of LSM is limited, but indispensable for such
studies, if biopsies are avoided.

Multiphoton tomography (MPT) allows for the non-invasive microscopy of the skin
physiology, with a high spatial resolution [23,25]. In vivo studies of the human glabrous
skin were not reported yet for MPT. One challenge may be the relatively thick SC in
glabrous skin, which does not foreclose the high-resolution imaging of details in upper
skin layers, such as sweat glands and corneocytes.

In our LSM experiments, we successfully acquired images of glabrous skin up to
300 µm from its surface. For many participants, we could thus image MCs even in the index
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finger with its thickest stratum corneum. This resolution of LSM allowed us to describe
the localization and morphology of MCs and some differences between the fingertips and
the palm (Figure 2). The observation of proximity between MCs and blood capillaries in
Figure 2D,E deserves further investigation in future studies of MC functionality.

The concentration of MCs next to skin ridges suggests an enhancement of their function
by the structure. Gerling and Thomas (2007) [26] hypothesized that the receptors for
detecting shear stresses (MCs) reside at the tips of ridges, indicating a functional importance
in the detection of stress. Ridges increase the surface area and, consequently, amplify slip
pulses or vibrations that are to be detected by MCs (Figure 3B). Skedung et al. (2018) [19]
acquired LSM images of the index finger and correlated the density of MCs with tactile
perception, observing a reduction in elderly participants. This is the only study available
which applies in vivo LSM to relate skin physiology to tactile perception.

The most important observation in this study is the protrusion formed above MCs,
which increases the surface area between the epidermis and the SC. Knowing this feature
can guide the identification of MCs by the LSM technique, even if a thick SC interferes
with a clear imaging of MCs. Local enhancement of the reflectance at the junction between
the SC and epidermis may serve as proxy for the direct imaging of MCs, and indicate the
distribution of MCs for participants with a thicker SC. The main limitation of applying such
a proxy is the uncertainty of the number of MCs per papillae that may vary from one to
three (Figure 2A–D). In some images, even a lateral protrusion in the ridges is possible to be
observed (Figure 3B, second image). This local deformation of the ridges can also increase
the contact area, and this should be addressed in further studies with a larger number of
participants. One important limitation of the present study is the age range of participants
from 26 to 55 years. For older individuals (>65 years), an increased keratinization and a
breakdown of both the dermal–epidermal junction and the sensory corpuscles, such as
MCs, has been reported [16,27]. Future investigations will address the morphology of the
protrusions in individuals of high age.

The correlation between SC thickness and protrusion height, and the co-localization
of protrusions with MCs suggests that the morphology of the glabrous skin is highly
specialized for stimulus transmission. The SC, as a viscoelastic structure [28], is capable of
deforming to reflect surface textures, where ridges offer an increase in surface contact. The
micrometer-scale increase in the surface area at the protrusions may enhance the coupling
of SC deformation to the receptor during tactile exploration. This idea could be tested
by extending recent simulations of friction-induced strain at the top of papillae which
contain MCs [24]. This peculiar local morphology of the epidermis and SC above MCs may
thus have a function in the transmission of mechanical stimuli towards tactile perception,
reminiscent of a remote control where the SC is the button with an increased area of contact
and the MCs are the underlying electric switches (Figure 6). The local reduction in the
epidermis thickness in the areas above MCs (Figure 4C) also indicates that MCs can project
themselves into the SC, increasing their sensitivity. The observation of protrusion and
thickness variation may be difficult in traditional histology with cross-sectional biopsies,
since the tissue tends to stretch during material preparation and the protrusion scale is in
the micrometer scale. Nevertheless, a careful look at classical skin histology results seems
to also indicate the protrusion of the epidermis at the site of MCs, which were referred to
by Cauna [29] as “elevations superficial to Meissner ‘s corpuscles” (Figures 10 and 11 in
Ref. [29]).

In summary, our LSM and OCT data clarify conditions for the application of these
in vivo non-invasive skin imaging techniques in studies of the morphology of the glabrous
skin. We report the discovery of protrusions of the epidermis into the stratum corneum
above the sites of Meissner corpuscles. The outstanding reflectance signal of these protru-
sions can guide LSM users to identify the location of Meissner corpuscles in the examination
of glabrous skin with a stratum corneum, of which the thickness limits the depth range
of the LSM. Taking the reflectance of the protrusion as proxy for the detection of a Meiss-
ner corpuscle may boost the efficiency of LSM as a method to determine the density of
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Meissner corpuscles in the study of diseases which affect tactile sensitivity. We suggest
that a possible function of the reported protrusion lies in the morphological amplification
of mechanical stimuli during tactile exploration of surface textures. This function needs
further investigation by modeling skin mechanics and in situ imaging of stress-induced
deformation of the stratum corneum.

4. Materials and Methods
4.1. Study Design

Ten volunteers (3 males, 7 females) were enrolled in this study, with an age range
from 23 to 55 years (average 34.7 years). The volunteers were instructed not to apply any
cosmetic formulations, such as moisturizer lotions, to their hands for at least 24 h prior
to the study. High-resolution images were obtained of the skin of the index and small
fingers, as well as the tenar palm area. Optical coherence tomography (OCT) and laser
scan microscopy (LSM) images were first acquired for one participant to understand the
applications and limitations of each technique. After establishing the most suitable method
to study MCs, OCT and LSM high-resolution images of all participants were recorded and
analyzed with respect to the MC localization in glabrous skin.

4.2. Optical Coherence Tomography

The OCT system (VivoSight Michelson Diagnostics Ltd., Maidstone, UK) was used in
this study for in vivo evaluation of glabrous skin of the index fingers, small fingers, and
the palm. This method detects the optical path length of light, which is backscattered from
different biological tissues by low-coherence interferometry [30,31]. The reflected light
interferes with a reference beam that stems from the same light source [32]. The VivoSight®

operates with a pulsed 1305 nm laser and a maximum repetition rate of 20 kHz, resulting
in a lateral resolution of 7.5 µm and a penetration into the skin of up to 6 mm [30,33,34].

4.3. Laser Scan Microscopy

The morphological characteristics of the different skin layers were evaluated by laser
scan microscopy (VivaScope 1500 Multilaser, MAVIG GmbH, Munich, Germany), which
uses a laser source with a wavelength of 488 nm or 785 nm, an immersion objective, and a
camera for 20 images per second. The choice of 488 nm or 785 nm wavelengths depended
on the preference for penetration depth or lateral resolution. The Vivastack imaging system
provides multiple confocal images recorded at successive depths, typically with a size of
4.5-by-4.5 µm [35]. To acquire more detail, it is possible to change the image size in this
device to 1.5-by-1.5 µm. The Vivascope is also capable of automatically recording and
stitching images of a defined region of the skin in a horizontal plane [36]. The so-called
VivaBlock® images were acquired in an area of 3 mm × 3 mm, to study the distribution
of receptors in the glabrous skin [15,18]. We measured all ten participants’ index fingers,
small fingers, and tenar palm anatomic regions.

4.4. Statistics

Statistical analysis was performed using the software Graph Pad Prism 8.0. The data
were tested for normality by the Shapiro–Wilk test and correlated using the ANOVA test to
compare the three tested anatomic regions. For a comparison of two groups, the t-test was
applied. Differences with p < 0.05 were denoted as significant.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24087121/s1.
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