
\E
m

ctm
w

‚>
>

_F
593583m

336.
m

vom
523€

5339233!
„m

rm
özcs

xnm
rE

Q
S

52.8.3503

/
/
/
‚

Z

O
..

O
...

\ ” \H l \ l | r

‘o o o
0 9 0

w
g.—

99093
$

5
9

:mEO
E“?

‚H
g

am

SEKI Report SR-88— 1 5

nO
‚Uagapmtn..
.1aUSnOC

B. Gramlich & J . Denzinger

gn.1SUg
.mhmaM

.
CAtne

.1‚$m
mE

hm
m

m
m

m
gim

m

' [Efficient ACuMaaflelhfimég [Using
Constraint {Propagation ‘

Bernhard Gramlich, Jörg Denzinger
FB Informatik, Universität Kaiserslautern,

* Pf. 3049, D-6750 Kaiserslautern,
West Germany

Abstract:

We present a new approach to associative—commutative (AC-) pattern matching using a technique of
global constraint propagation which in many cases enables us to drastically cut down the search
space for solutions. ’

Given a conjunction'of simplified non-trivial AC-matching problems the main idea of our
method consists in deducing and propagating constraints for possible variable assignments from all
problems instead of choosing only one problem for processing next. Thus many failure branches

. of the search tree for solutions can be cut without expanding them. The control strategy for
branching is designed such that nodes with a small branching degree are preferred. Incorporating
some additional optimizations we get a new AC—matching algorithm which is especially well-suited

' for certain non-linear patterns and for a systematic early detection of.unsolvability.
Moreover we point out the advantages of using unique ordered normal forms for

AC-equivalent terms based on a special class of orderings on the function symbols and the
variables.

Finally we sketch how our constraint propagation approach for AC-matching can be
generalized to other kinds of E-matching and E—unification problems.

0. Introduction

Associative-commutative (AC—) matching and unification are fundamental problems within many
fields and applications of automated reasoning including automated theorem proving, term
rewriting theory, program verification and synthesis, specification analysis etc. From a practical
point of view it is very important to provide efficient algorithms for these problems, because
AC-unification and in particular AC-matching are in general very often performed operations, for
example in systems for equational completion modulo an underlying theory consisting of
AC-axioms for some operators. Of course one might use AC—unification algorithms to solve
AC4matching problems but this has turned out to be too expensive in practice.

In [BeKaNa85] it has been shown that the AC-matching problem is NP-complete but has a
polynomial upper bound for linear patterns. Moreover it is conjectured there that the problem
remains inpolynomial time as long as it is possible to put a bound on the number of times every
variable can occur in a pattern. This is a strong hint that it might be very well worth-while looking

for algorithms that are efficient in practical cases.
. The main approaches for AC—matching presented in the literature are given by Hullot

([Hu79], [I-Iu8o]) and Mzali ([Mz83]. Thus, when describing our algorithm and its implementation
we shall also point out the similarities and differences w.r.t. these former approaches.

The rest of this paper is organized as follows. In section 1 basic definitions and notations'are
given. The subproblem of AC-equivalence is dealt with in section 2. The central part of this paper
in section 3 presents our AC-matching approach and clarifies the connection with the approaches of
Hullot and Mzali. In section 4 we sketch how the idea of constraint propagation can be applied to
other kinds of equational problems whereas the last section consists of concluding remarks and
perspectives for future work in this and related fields.

1. Definitions-

Let F be a finite set of function symbols of fixed arity and X be a denumerable set of variables.

disjoint from F. By Fi we mean the subset of F containing all function symbols of F With arity i. ‘
The set of all terms constructed over F and X as usual 13 denoted by T(F,X) or T for short. By V(t)
we denote the set of all variables occurring in a term t. The size of t, denoted ltl, is the number of
occurrences of function and variable symbols in t and top(t) denotes the top—level symbol of t. A '
substitution 6 is. a mapping from X to'T that is the identity almost everywhere on X. Its unique

homomorphic extension to an endomorphism on T (regarding T as a F-algebra) is also denoted by

6 . The domain of a substitution 6 is D(6):={xeX|6(x)¢x}, the set of introduced variables of 6 is

I(6):=UXGD(°)V(6(X)). Given F and X, the equational theory =5 induced by a set E of equations

over T is defined to be the smallest congruence on T containing E and closed under substitution. .

Two terms s and t are said to be E—equivalent iff s=Et holds. This notion is extended to substitutions
"Ä by defining 6=Eo' iff VtET 6(t)=Ee ('t) which is easily shown to be equivalent to

_VxeD(_o)_UD(o') 6(x)-E6'(x) ‘A substitution 6 is an E-match from s to t iff 6(S)=Et. The set of all
' E-rnatehesfrom s to t , re:tricted to V(s),1s denoted by M(s,t). This notion isextended to sets of , -

3

term pairs 1" via M(l"): ={6N (s,t)el" :,6€M(s t)}.
. In the following we always assume F to be partitioned into F=FACUFNAC, where FAC is a

non-empty set of binary operators. The set E of equations consists exactly of the AC-axioms for the
' operators of F AC, i.e. E := AC := {f(x,y) =f(y,x), f(f(x,y),z)--‘f(x,f(y,z))l feFAC}.

2. AC-Equivalence

Since AC-equivalence testing is a basic operation frequently used in any AC—matching
. algorithm it is crucial to provide efficient solutions for that problem. Let us summarize therefore the

. main ideas and results concerning AC-equivalence in order to have a solid basis for presenting our
solution to the AC-matching problem and discussing implementation'issues (cf. [Hu79], [Hu80],

‘ [Mz83]). _
' A brute force method for deciding AC--equivalence of two terms 5 and t would consist in

generating the (finite) equivalence class [s] AC of s and testing whether te [S]],C or vice versa. Clearly
this 1s very inef?cient m general. The completion method for generating a canonical term rewriting '
system equiva ent to AC in order to get unique normal forms is not applicable since the
commutativity axioms in AC cannot be oriented into rewrite rules without loosing the finite
termination property. Nevertheless the form of the AC-axioms suggests another method for
deciding AC—equivalence by abstracting from these properties. This is described in the following.

Proposition 1
For any s, t e T, if s =AC t then Isl = Id and top(s) = top(t).

Proof: Follows obviously from the form of the axioms AC. . I

Definition 1 ; „
Let us denote the set of terms constructed from sl,. . .,sn e T using only the (binary) operator
f 6 F2 by Tf(s1,...,sn), i.e.

Tgsl) := {S,} and
Tf(s„...,s„) := Uk=L____„_‚f(T‚(sl‚...,sk),'r‚(sk+„...,s„)) for n z 2,

where f(T1,T2) := {f(tl,t2)ltleT,t2€T2} . Analogously we define the right and left .
associative form constructed from sv . . .‚sneT using only f by

Rf(s) := Lf(s) := s and

Rf(sl,...,sn) :=_ f(s1,Rt(s2,...,sn)), Lt(sl,...,sn) := f(Lf(sl,...,sn_l),sn) for n22.

Proposition 2
For any s G T with top(s) = f € F2 there exists a uniquely determined sequence (sp. . .,sn) of

terms si with top(si) at f for ISiSn such that s G Tf(sl,...,sn). _ ‘

Proof: By an easy induction on lsl using Def.1. l

Note that for a given s e T with top(s) = f € F2 the computation of the si, such that s € Tf(s1,...,sn)
and top(si) # f for lSiSn, may be performed by (partially) flattening s w.r.t. f. For example, if s =
f(f(x‚g(y,-f(z,u))),f(v,w)) then partial flattening w.r.t. f yields s e T,(x,g(y,f(z,u)),v,w).

0. Introduction

Associative-commutative (AC-) matching and unification are fundamental problems within many
fields and applications of automated reasoning including automated theorem proving, term
rewriting theory, program verification and synthesis, specification analysis etc. From a practical
point of view it is very important to provide efficient algorithms for these problems, because
AC—unification and in particular AC-matching are in general very often performed operations, for
example in systems for equational completion modulo an underlying theory consisting of
AC-axioms for some operators. Of course one might use AC—unification algorithms to solve
AC4matching problems but this has turned out to be too expensive inpractice.

In [BeKaNa85] it has been shown that the AC-matching problem is NP-complete but has a
polynomial upper bound for linear patterns. Moreover i t is conjectured there that the problem
remains inpolynomial time as long as it is possible to put a bound on the number of times every
variable can occur in a pattern. This is a strong hint that it might be very well worth-while looking
for algorithms that are efficient in practical cases.

. The main approaches for AC-matching presented in the literature are given by Hullot .
([Hu79]‚' [Hu8o]) and Mzali ([M283]. Thus, when describing our algorithm and its implementation
we shall also point out the similarities and differences w.r.t. these former approaches.

The rest of this paper is organized as follows. In section 1 basic definitions and notations are
given. The subproblem of AC-equivalence is dealt with in section 2. The central part of this paper
in section 3 presents our AC—matching approach and clarifies the connection with the approaches of
Hullot and Mzali. In section 4 we sketch how the idea of constraint propagation can be applied to
other kinds of equational problems whereas the last section consists of concluding remarks and
perspectives for future work in this and related fields.

1. Definitions

Let F be a finite set of function symbols of fixed arity and X be a denumerable set of variables.
disjoint from F. By Fi we mean the subset of F containing all function symbols of F with arity i. '
The set of all terms construcwd over F and X as usual is denoted by T(F,X) or T for short. By V(t)
we denote the set of all variables occurring in a term t. The size of t, denoted ltl, is the number of
occurrences of function and variable symbols in t and top(t) denotes the top-level symbol of t. A '
substitution 6 is. a mapping from X to'T that is the identity almost everywhere on X. Its unique '
homomorphic extension to an endomorphism on T (regarding T as a F-algebra) is also denoted by
6 . The domain of a substitution 6 is D(6):=(xeX|6(x)¢x}, the set of introduced variables of 6 la
I(6):=Ux€D(°)V(6(x)). Given F and X, the equational theory =E induced by a set E of equations
over T is defined to be the smallest congruence on T containing E and closed under substitution. 4
Two terms s and t are said to be E—equivalent iff s=Et holds. This notion is extended to substitutions
by defining 6 =56 ' iff V i n : 6 (t)=EG '(t) which i s easily shown to be equivalent to
_VxeD(6)_uD(6') 6:(x)=E6 '(x) A substitution 6 is an E—match from s to t iff 6(s)=Et. The set of all
E-matches from 5 to t , restricted to V(s), rs denoted by M(s,t). This notion isextended to sets of _ '

3

term pairs 1" via M(I'): ={6N(s,t)€I' :‚6€M(s t)}. _
' In the following we always assume F to be partitioned into F=FACUFNAO where FAC is a

non-empty set of binary operators. The set E of equations consists exactly of the AC-axioms for the
' operators of F AC’ i.e. E := AC := {f(x,y) =f(y,x)‚ f(f(x,y),z)=f(x,f(y,z))l feFAC}.

2. AC-Equivalence

Since AC-equivalence testing is a basic operation frequently used in any AC-matching
. algorithm it is crucial to provide efficient solutions for that problem. Let us summarize therefore the

I main ideas and results concerning AC-equivalence in order to have a solid basis for presenting our
solution _to the AC-matching problem and discussing implementation issues (cf. [Hu79], [Hu80],

' [M283]). ,
A brute force method for deciding AC--equiva1enee of two terms s and t would consist in

generating the (finite) equivalence class [s] AC of sand testing whether t€[s]AC or vice versa. Clearly
this rs very inefficient 1n general. The completion method for generating a canonical term rewriting '
system equivalent to AC in order to get unique normal forms is not applicable since the
commutativity axioms in AC cannot be oriented into rewrite rules without loosing the finite
termination property. Nevertheless the form of the AC-axioms suggests another method for
deciding AC-equivalence by abstracting from these properties. This is described in the following.

Proposition 1
For any s , t € T, if s =AC t then Isl = ltl and top(s) = top(t).

Proof: Follows obviously from the form of the axioms AC. . I

Definition 1 _ _
Let us denote the set of terms constructed from s1,...,sn € T using only the (binary) operator
f € F2 by Tf(s1,...,sn)", i.e.

Tf(s1) := {s1} and
Tf(s1,...,sn) := 'Uk=l_____n_lf(Tr(sl,...,sk),T‚(sk„‚...,sn)) for n 2 2,

where f(T1,T2) := {f(t1‚t2)lt1€T,t2€T2}. Analogously we define the right and left .
associative form constructed from sp. . .‚sneT using only f by

Rf(s) := Lf(s) := s and
Rf(s1,...,sn) :=: f(s1‚Rf(s2,...‚sn)), Lf(s1,...,sn) := f(Lt(s1,...,sn_1),sn) for n22.

Proposition 2
For any s € T with top(s) = f € F2 there exists a uniquely determined sequence (sp. . .,sn) of

terms si with top(si) == f for ISiSn such that s € Tf(sl‚...,sn). -
Proof: By an easy induction on Isl using Def.l. I

Note that for a given s € T with top(s) = f € F2 the computation of the s„ such that s € Tf(s1,. . .,sn)
and top(si) at f for ISiSn, may be performed by (partially) flattening s w.r.t. f. For example, if s =
f(f(x,g(y.f(z,u))),f(v,w)) then partial flattening w.r.t. f yields s € Tf(x,g(y,f(z,u)),v,w).

Proposition 3
Lets t € T with si =A t-for ISiSn and f€ FAC be given. Then for any s €. Tf(sl,.. . ,sn) , t€

Tf(t1,.. .,tn) we have s—=AC t.
Proof: By an easy induction 0n n we get for the right (or left) associative forms s =AC Rf(sl,. . .,sn)
and t =AC mal,...‚g, which, by the assumption si =AC 1, for lsisn implies s =AC t. I '

Proposition 4
Let s., t ie Twith s =AC tifor lfi'Sn, apermutation 11 of {1,..._‚n} and f€ FAC be given.
Then for any s € Tf(s1,...‚sn), t€ T,(t„(l),...,t„(n)) we have s =AC t.

Proof: Using Prop.3 it suffices to show that Rf(s„...,s„) =AC Rr(s„(‚),...‚s„(n)) for all
permutations 11 of {l , . . . ,n} . But this is obvious since by f(x,y) =AC f(y,xs),) f(x,f(y,z)) = AC

f(y,f(x,z)) we may exchange any two neighbour arguments s , 1+1 in Rf(sl‚... I

Proposition ' 5 4
Let f€ FA , si, tj € T with top(si) = fat top(tj) for ISiSm, ISa and s € Tf(sl,...,sm), t€

' Tf(t1,.. .,t) be given. Then s =AC t iff m=n and there exists a permutation 11 of {.1‚...,m}'
with t i -—AC sm) for all 1, ISiSm. '

Proof: The "if"-direction is provided by Prop. 4. For the "only--if"—direction assume that s €
Tf(s1,...,sm), t€ Tf(t1,...,tn) satisfy the assumptions of the proposition. The form of the axioms

AC implies that any s' that can be derived from s in one step using A_C has the following fonn:
s' € Tf(sl,.. ..,s _1,si',si+1,.. .m,s) with si =AC si' and top(si) = top(si') if the proof step is

applied inside some si, or ' '
s' € T,(s1,.. .m,s), if associativity for f 1s applied, but not inside one of the s.,
s' € Tf(s1,...,sp_1,sq,... s‚_'l,s , . . . sq_l,sr,...,sm) fo rs ' € Tf(s1,. . . ,sp, . . qs , . . . , s (: r , . . . , sm) and

some p, q, r with 15p<q$<_m, if commutativity for f is applied, but not inside one of
the s . ‘ .

By an inductive argument (for equational proofs using AC) we conclude for any s", that s =_Ac s"
implies s"€ Tgsflm"., . ..,sflm)") with sl "AC süß" for all 1 ,15 iSm and some permutation ‘n of

{1,...‚m}. In particular for s" := t.'we get, using Prop.2, m = n and t = s„11(1)" =AC si for all i,
ISiSn. . ‘ I

In the—following, if s € Tf(sl,_.' . "1319 with f € F AC and top(si) = f for ISiSn, we will write

R(s) := f[s1.. . .,sn] := Rf(s1,. . .,sn) to denote the right associative form of s (constructible by partial

, flattening w.r.t. f). The si will be referred to as (top-level) arguments of s..After these auxiliary
considerations we can give a first characterization of AC-equivalence.

Lemma l
' Let s,t€Tbegiven.Then s=ACt iffeither

(i) s = t € X, or ‘ . _

(ii) s'= g(sl,..'.,sm), t=_ g(tl,.. .,tm), g€ FNAC and s i -“Ac t for ISiSm, or '

(iii) R(s) = f[s„...,s‚-‚i], R(t)= f[t1,...,tm], f € FAC and there exists. a permutation

5

1! of { l , . . . ,m} with si:AC tm) for ISiSm.

Proof: The interesting "only-if"-direction is easily proved by induction on Isl using Prop.1‚
Prop.5 and the form of the axioms AC. ' I

This result now provides a recursive test for AC-equivalence. But due to the partial flattening
and the search for adequate permutations involved in (iii) it may still be expensive in general. It is
obvious from Lemma 1 that the AC—equivalence class [s] of any term s i s uniquely determined by

g and the sequence ([s1]‚...,[sm])‚ if s = g(sl,...,sm), g e FNAC, and
f and the multiSet {[s1]‚...‚[sm]}‚ if R(s) ': f[sl,.'..,sm],>fe FAC.

This fact may be used to define an ordering on ACE-equivalence classes as follows.

Definition 2 (orderings for AC-equivalence classes, cf. [Hu80])
Let (Fux be a partial ordering on FUX. The partial ordering < on T/=AC is given by
[s] < [t] iff either
(i) top(s) <]:Ux top(t), or

(ii) s = g(s1,...,sm), t = g(t1,...,tm)‚ g € FNAC and ([sl],.. .‚[sm]) <lex ([t l]""’ [tm]) ’ or

(iii) R(s) = f[s1,...,sm], R(t) = f[t1‚...,tn]‚ f e FAC and {[sl],...,[sm]} << {[t1]‚...‚[tn]},
where <lex denotes the lexicographic extension of < to sequences of AC-equivalence classes
and << denotes the usual multiset extension of <. '

Lemma 2 (cf. ' Lemma 3.7 in [Hu80])
If (FUX is a total ordering on FUX, then < is total on T/=Ac.

Proof: see [Hu80]. ' I

Let us assume from now on that <FUX is total. As described by Hullot one may use the above result
to get a unique normal form for any AC—equivalence Class by recursive regrouping of arguments. I
For any 5 with R(s) = f[sl,...,sn] we construct t with R(t) = f[t1,. . .,tn] such that s =AC t and-

(i) V i, ISiSn: ti =AC 5116) for some permutation 11 of {l, . . . ,n}, and
(ii) v i, lSiSn: [ti] < [tm] or ti =AC tm.

Let ORD((sl,...,sn)) = (t1....,tn) be any regrouping of ($1,...,sn) satisfying (i) and (ii). Then we
get an ordered normal form ONF(s) for any term s by recursively defining:
ONF(s) := if s e X then s else

if s = g(sl,. . . ,sn), f e FNAC then g(ONF(sl),...,ONF(sn)) else

if s = f[s1‚...‚sn]‚ f e FAC then f[ORD(ONF(s1),...,ONF(sn))]

Ordered normal forms now provide an efficient syntactic test forAC-equivalence.

Lemma 3 (cf. Lemma 3.8 in [Hu80])
For any terms s, twe have: s =AC t iff ONF(s) = ONF(t).

Proof: see [Hu80]. I

We conclude this section with an algorithm FONF that produces an explicit flattened

6

representation of ordered normal forms by combining flattening and regrouping of arguments
according to <. The auxiliary function FONF' needs an additional parameter op indicating that
flattening is performed w.r.t. op. £ is a dummy operator needed for initialization.

function FONF'(s:T, osACU {e }) :=
i f s€ FOUXthen i fope FACthen[s] e l s e s

else i f s = g(s1,...,sn), g € Fn\FA , n 21
then if op € FAC

then [g(FONF'(sl,e)‚...,FONF'(sn‚e))]
else g(FONF'(s,£), . . . ,FONF'(sn,£))

else (* s = f(s1,s2), f € FAC *)
if f = op
then MERGE(FONF'(sl‚f)‚ F0NF'(s2,f))
else if op € FAC

then [f MERGE(FONF'(s1,f), FONF'(s2,f))]
else f MERGE(FONF'(s1,f), FONF'(s2,f)).

For any term s the flattened ordered normal form FONF(s) is constructed now by FONF'(s,£). The

use of a MERGE algorithm is very natural in the above context since the two argument lists are
already sorted (increasingly w.r.t. <) by construction. In our implementation of AC-matching we
use flattened ordered normal forms based on a special class of orderings < which may be described
as follows: The underlying total ordering <a“ is chosen such that c I<Fux g <Fux f (FUX x for any
c € F0, g € FNAC\F0‚ f € FAC and x € X. The advantages of this class of orderings are discussed in
the next section. A ‚ '

In [Hu80] the usage of ordered normal forms as abbreviation for the corresponding right
associative normal form is suggested without giving implementation details whereas in [Mz83] it is
claimed that ordered normal forms are not really necessary. This is clearly true from a theoretical

. point of view, but from an implementation point of view it is not obvious at all how to get efficient
implementations of AC—equivalence and AC-matching using (unordered) multiset representations of
terms involving AC-operators.

3. AC-Matching

A general schemefor E—matching problems consists in transforming an initial problem 1' into an
equivalent disjunction (in a sense who made precise) of problems I'lv...VI'n where the I'i are in
"sclved form", i.‘e. the solutions are obvious. This is achieved by repeated application of so-callod
merging, decomposition and mutation rules. Details of such general approaches may be found for
example in [MaMo82], [Ki85], [M286], [C088], [8088]. Essentially merging means propagating
parts of possible solutions into the rest of the problem, whereas decomposition means to-

decompose the problem into a conjunction of some "smaller" problems or to deduce that a'problem
has no solution. These steps are in a sense of purely syntactical nature as soon'as it i s clear which

function symbols are "decomposable" w.r.t. a given (arbitrary) E and which pairs of function

7

‘ symbols are "exclusive" w.r.t. E (allowing clash-rules, cf. [Ki85]). In contrast to these rules

mutation deals with problems that cannot be simplified any more using decomposition and
merging. In fact adequate mutation steps heavily depend on the underlying equational theory
defined by E .

From an abstract point of view such a method for solving E-matching problems may be
represented by a tree whose nodes consist of problems (including a special symbol FAIL denoting
unsolvability) and whose arcs are labelled by (parts of) substitutions. Applying the rules
corresponds to constructing this "E-matching tree" starting from the tree that consists only of ' a root
node containing the initial problem If the method is correct all solutions of the initial problem are -
then given by the substitutions built along the paths leading from the root to all leaves consisting of
(trivially solved) empty problems (cf. [Hu79]).

We will now give an abstract description of the basic AC-matching algorithm common to the
approaches of Hullot ([Hu79], [Hu80]), Mzali ([Mz83]) and ours. Merging and decomposition are

grouped together into a simplification phase, whereas mutation is performed within a so-called
reduction phase. ' \

Note that w.1. o . g. we may assume V(s)nV(t)={ö for any given initial AC-problem s=t. If this
is not the case one may rename the variables of t accordingly or introduce new constants for them.
The solutions of s=t bijectively correspond to the solutions of the transformed problem in a
straightforward way. Moreover we assume in the following w.l.o. g. that terms with an AC
top-level operator are in right associative form. .

Simplification may be described by a function SIMPLIFY with two arguments 1“ and S, where
F 1s the non-trivial part and S the trivial or solved part of the AC—matching problem TUS. It returns
an equivalent problem I"US' which has been simplified as far as possible or 'FAIL' in the case of
unsolvability. The "environment" argument S is considered as a substitution with its domain
denoted by D(S).

function SIMPLIFY (I', S) :=
ifI' = (ö then(I ‘ ‚S)
else (* I" = {s=t} U l"1 *)

if s 6 X then if se D(S) then SIMPLIFY(I_'1‚ S U {s=t})
else if S(s) =AC t then SIMPLIFY(I' 1 , S) else 'FAIL'

else if top(s) :6 top(t) then 'FAIL'

else if s = g(s1,...,sm), t = g(tl,...,tm), g € PNAC
then SIMPLIFY (l '] u [si=ti I 1im=n}‚ s)
else (* s = f[s1,...,sm|, t = f[tl,...,tn], f e FAC *)

(1"‘U {s=t}, S‘) where (I", S') := SIMPLIFY (1'1, S)

Note that the test on AC—equivalence is needed whenever we encounter a pair s=t in 1" such
that s is a variable that has aheady got a value in the environment.

Lemma 4: ‘

SIMPLIFY is tenninating and solution preserving, i.e.

8

(a) SIMPLIFY (I ' ,S)= 'FAIL' => M(I ‘ uS)=¢ , and
(b) SIMPLIFY(1",S)=(I",S') => M(I ' US)=M(1 ' "US ')

Proof: Termination is guaranteed by decreasing problem sizes l (I‘ , S) l := ZS:t c r I s | in any
recursive call. Correctness, i.e. (a) and (b), easily follows from the correctness of the merging and
decomposition rules for the case E = AC. » I

For example, starting from l": g(g(x,x)‚f(y‚z)) = g(g(f(a,b)‚f(b,a))‚f(c,d)) with F AC = {f}

and an empty environment S simplification yields 1'": f[y,z] = f[c,d] and S ' : x = fla‚b].

IF FAC=¢ then SIMPLIFY provides an abstract version of the usual matching algorithm
without an underlying theory. If SIMPLIFY(I',S)=(1" ',S') with F'atfi then any problem of I" has
the firm f[s1,...‚sm]=f[t1,...,tn]‚ f e F AC‘ We assume now as black box a function REDUCE that
transforms such simplified problems (I' ',S') into a set of reduced problems such that the solutions
are preserved and the complexity of the problem has decreased, i.e. -
(1) M (I " U S') = U(1""‚S")e REDUCE (I“.S') M (F" u S"), and _
(2) V (1" ",S") e REDUCE (I",S') : I (I'",S") I <N I (I",S') l, where <N is the usual ordering
on natural numbers. Using such a function REDUCE we get an abstract version for AC-matching
as follows: ‘ '

function AC—MATCH—ALL' (I" ‚S) :=
if SIMPLIFY(1"‚ S) = (G, S ')

then S '

else if SIMPLIFY(I', S)= 'FAIL'

then @

function AC-MATCH—ALL(s = t) := AC-MATCH—ALL'((s = t },‘ Q).

Termination and correctness of this AC-matching algorithm are assured by

Lemma 5: - .
For any reduCtion function REDUCE satisfying (1) and (2) AC-MATCH-ALL is terminating
for any problem s=t and computes the set M(s,t) of all AC-matches from s to t.

Proof: Termination (of AC-MATCH-ALL and AC-MATCH—ALL') is again guaranteed by
decreasing problem sizes KT ‚S)l in any recursive call of AC—MATCH-ALL' using Lemma 4 and
property (2). Correctness follows from the correctness of SIMPLIFY, property (1) and the
following considerations. Any non-trivial problem part I‘ of a solvable problem eventually becomes ‘
empty and the corresponding trivial part S always remains in solved form, i.e. any s=t e S has the
form x=u‚ u is different from x_ and x does not occur anywhere else in S. Thus any "final S may
indeed be considered as a (solving) substitution representing all solutions 8 ' with S'=ACS. I

In close analogyto AC-MATCH-ALLmsing backtracking, one may specify an algorithm

AC-MATCH-ONE which, for a given AC-matching problem s=t, returns the first AC-m‘atch found

9 .

and indicams unsolvability otherwise. This '1s indeed sufficient' in many applications like completion
modulo AC. In both cases it is crucial for the efficieny of AC-matching how the reduction process
is performed and controlled. Let us now see how these problems are solved'in the traditional
approaches and what we suggest instead.

3.1 Reduction via Local Partitioning

Given a simplified matching problem l" Hullot ([Hu79], [Hu80]) and Mmli ([Mz63]) essentially
proceed as follows.
1.) Choose one problem s=t of I'.

. 2 .) Perform "partitioning" for s=t. . _
Partitioning means to take into account any possibility of associating a Couple of right hand side
arguments to any left hand side argument. More formally this may be specified by the following
mutation rule (for s --- f [s l , . . .,sIn], t= f[t1,..tn.,] and f e F AC)

. ‘ I 'u{ s=t }—-9I 'UI '" foranyF'ePARTITIONS(s,t),
where the function PARTITIONS(s, t) 'is defined as follows (cf. [Hu80]): ‘

Let [P]... .,P(l} with P.-— „„ . .‚P.un] be the set of all Ordered partitions of the multiset {tl,.. .,tn}
into m non-empty blocks. With IP j | denoting the length of the block Pij and tk(PiJ.) denoting the
k-th element of Pi. (for lSiSq, ISjSm, lSkSIPiJ-l) define

tj‘ :=1'1(Pij)JiforlPJ. I=1 , and
til :=tItl(Pij),.. .,1' ri(P)] forr :=IP j l>1 , and finally
PARTITIONS(s,t) :={ { s l= t l i ,. ..,sm=tml } I IS iSq }.

This partitioning process i s formally justified by Lemma 1. For the corresponding reduction
function defined by -

REDUCE(I' U { s = t }, S) := Ur .€ MR1111014564“ (I‘ UI", S) }
(for s = flsl,...,sm], t = fltl,...,tn] and f € FAG) the required properties of correctness (1) and
termination (2) are obviously satisfied. Let us give a simple example to make clear the definition
above.

Example 1
For F={a,b‚c,f } F Ac—{f } s=f(x,y), t=f(a,f(b,c)) the AC-matching problem {s=t}, transformed
into normal form, becomes {f[x,y]=f[a,b,c]} and by partitioning we get the disjunction of the
following reduced problems: {x=f[a,b], y=c}, {x=f[a,c], y=b}, {x=f[b,c], y=a}, {x=a,
y=f[b,c] }, {x=b, y=f[a,c]} and {x=c, y=fla‚b]}. Indeed, these six problems are already in solved
form and thus they constitute a complete set of AC—matches for the original problem.

Taking into account the multiplicity of left and right hand side arguments (sk denotes k times 5) the
partitioning process for the AC—matching problem s=t with s=f[s1“,... ,sm,‘““] t=f[t1",...,tn1'“]
(the s , tare assumed to be pairwise distinct w.r. t . -—AC) may be optimized avoiding the generation
of unsolvable problems: If for any i with 1_iSm si corresponds in a partition to f[t1‘”1,...,tn"m] the
whole partition is already determined since two different associations for the same si would lead to
a failure. This optimized partitioning with cardinality restrictions (cf. [Hu80]) obviously

10

corresponds to solving the following system of linear diophantine equations (cf. [M283])
11=k1*v11+ +km*vm1
12=k1*v12+ . . .+km*vm2

ln=k1‚*v1n+ +km* vmn
in the unknowns vij, ISiSm, lsn with the additional restriction that for any i not all vij- are 0.
This can be done separately for any diophantine equation since they are independent from each
other.

Example 2
Let F, FAC be as in example 1, s=f[x2,y4], t=f[a4,b6,c2]. To determine all possible partitions

x = f [aV11,b"12,c"13], y = f [av l l ’bv12’cv l3]

amounts to solving the following system of linear diophantine equations:
4=_2*v11+4*v21
6=2*v12+4*v22

_ 2=2*v13+4*v23
with the restriction Z jvij > 0 for i=l ,2. For the first equation we. get the solutions
(vll ,v21)=(0,1)‚(2,0), for the second (v12,v22)=(l ,1),(3,0) and for the last (v13,v23)=(1,0).

Taking care of the restrictions this leads to the three solutions of the matching problem
x=f [b , c] , y=f [a ,b]

x=f [b3 . c] , y=a

x=f [a2 .b , c] , y=b .

3.2 Reduction using Global Constraint Propagation

In our approach instead of local partitioning we shall use a kind of global reasoning to optimize the
branching in the search tree. Having a closer look to the partitioning process described above a first
important observation is that it can be split in a hierarchical way as follows. Given a simplified
matching problem I'=l'"u{s-—-t} with s=f[s1,...,sm], t=flt1,...,tn] any possible partition of s=t that ‘
associates f[tlk1‚...‚tnl?‘], OSkjSI, to some Si may be constructed from the reduced problem F": =
1'" U { si=f[tlk1‚...‚tnkn]‚ f[sl,...,_si_:1'‚si+1‚...,sm]=f[ul‚...,up] } with „ [u1‚...,up] := [tl‚...,tn] \
[t1k1,...,tnh‘] by partitionir_1g_f[s1_‚...‚si_1,si+1,sm]=f[u1,...,up] in all possible ways. The formal
justification of this connection. is provided by ‘ ‘ '

Lemma 6: a .. . ‚-

Let s=f[s„...;‚sm], t=fltl‚...,tn] with fe FAC and i, lSiSm. be given. Then s = AC t iff there.-
exists 31“,.. . ,tnkn] g [t1,...,tn], OSkjsl, such that si =AC f[t1“„..,tnk“] and
'f[sl‚...,si_1,si+l,...,sm] =AC f[u„.„,up], where [u1,...‚up] := [tl,...‚tn] \ [t1k1,...,tnk“] and the
operators s: and \denote multiset inclusion and difference.
Proof: Follows easily from Lemma 1. I

When using such a hierarchical strategy for branching in the search tree instead of ordinary

11'

partitioning, it is useful from a heuristic point of view to choose an si with a minimal number of
possible associations. Now the main idea of our approach is to collect as much restrictive
information as possible for the associations for any left hand side argument Si before branching.
This is achieved by the following two steps:

1.) Consider not only one problem s=t but all problems of 1" simultaneously.
2.) Propagate constraints for the possible associations of all left hand side arguments of I'.

Let us describe how this can be done. We assume that any problem s=t of 1“ has only variables as
left hand side arguments, i.e has the form f[xlk1 ,. ..,xm“]=f[t1“,. . .t,1'l]. We shall see later that it
is indwd sufficient to deal with this "variable-only" case in practice.

Constraint prOpagation: ' i n the case of equal top-level AC-operators

Obviously any possible substitution for xi must be of the general form
' xi=f[t1"‘1,.„‚ m]

and satisfy the conditions -
Vj , l Saz iUjd ivk i) .

Now, if there is another s'ä'eI' with s'=f[...,xiki',...] then any possible substitution for xi must
also satisfy the corresponding inequalities for s'=t'. Thus any further problem containing xi as a
left hand side argument provides more restrictive information.

Example 3: Assume we have given the simplified problem I'={(I),(II)} with
' (I) f[x,y]= f[a2,,]b2c2

(II) f[x2,z1=f[a‚b3,d2]
Then we know that any possible substitution for x must be of the general form

f [am, bmb, cm“, d"1d].
From (I) we deduce the restrictions

' . , masz,mbs'2,mcs2,md=o
and from (II)

ma=0 ,mb$1 ,mc=0 ,md$ l .
Combination of both sets of necessary conditions yields

& ma=mc=md=0‚mb$1 ,

which results in only one remaining possibility for x, namely x=b Propagating this assignment
into l" we imrmdiately get from (I) and (II) the only solution of the problem, namely

x=b
y=f[a2,b‚ c2]
2 : f[a,b,d2].

Choosing (I) for example for (optimized) local partitioning we would get 25 different'branches to
be investigated in the worst case since 24 of these branches will lead to a failure.

12

Constraint propagation in the case of different top-level AC-operators

Assume I' contains two problems of the form
(I) f [...‚xi,...] = f [s1k1,...,sm“m]
(11) g [.-..,x5,...] = g [tlu‚...‚tn'“]‚ .

where f, g e PAC, f at g and both (I) and (II) have at least two different left hand side arguments.
Then from (I) we can deduce that any possible assignment for x must be of the form

x=f [s1“‘‚...‚sm“"‘] with V p, 1 SpSm:upS(kpdivi)
and (II) implies

. x=g[t1"1,...,tn‘"‘] with Vq ,1 .<_a:q_(lqd iv j) .
If Elspsmup > 1 and lavq > 1 then this will obviously yield a clash of the form f[. . .]=g[. . .].
Thus we have only the following three possible cases left.
(a) ZISpSm

lsqstlvq =1 : This means that x = Sp = tq for some p, q with lSpSm and
ISa, 1.e. the assignment for x must be an argument of both the first and the second right
hand side.

(b) ZISPSmup = 1, ZlSavq 2 2 : In this case one has to choose for x any sp with top(sp)=g _
such that the arguments of sp are contained in [t1(u d" 5),. . .,tno“ “" 5)].

(c) ‘ZlSpSmup 2 2, lavq = 1 : This case is symmetric to (b).

up=Z

When there are common variables in two such problems with different top-level AC-operators, this
will lead in general to very strong restrictions for the possible assignments for these common
variables. Let us demonstrate the effect of this constraint propagation process with

Example 4: Assume we have given F AC={f ,g } and the simplified problem l"={(I)‚(II)} with

(I) f i x .y l= f [a2 . c . s [a .b2]]

(II) gb:2 z]=g[a3 b7 f [a ‚b]3]

Investigating the possible assignments for x we get the following cases according to the above
scheme. '
(a) The only argument common to both the first and second right hand side 1s a, thus yielding

one possibility, namely x= a. '
(b) The only right hand side argument of (I) with top-level operator g is g[a, b2], for which we

have to check whether one can combine the arguments a, b, b using (3 div 2) times a , (7 div

2) times b and (3 div 2) times f[a, b], which 1s indeed possible.

(c) . The argument of f[a, b] obviously cannot be combined using two a's, one c and one g[a,b2].
Thus we have only two possibilities left for x, namely x -— a or x -— g[a,b2]. Using (optimized) local
partitioning for (I) in the example, we would get 10 branches to be investigated with 8 failure
branches among them.

_In the case of more than two non-trivial problems the constraints for the left hand side
variables are incrementally sharpened in a straghtforward way according to the above two cases.

13
Control of Branching

Essentially the control of branching in our constraint propagation approach is determined by the
following two steps (for the "variable-only" case): ,
(1) Compute (a representation of) the list of all possible assignments for any variable occurring

in some left hand side argument list as described above.
(2) Choose a variable with a minimal number of possibilities for branching and backtrack'1n case

of failure.
How do we actually represent these possible assignments for left hand side variables?
Case (la): The top--level AC—operators of all subproblems 1n l" containing x as left hand side

argument are the same, say f. Then we compute an implicit representation of the form x
= fltl“,. .., ln] meaning that any ti can occur at most li times in the assignment. This
yields a total number of (TIi=1 ...n(1i+l)) - 1 possibilities. Thus in example 3 we get y =
-f[a2, b2, cz] resulting in 26 possibilities. _

Case (lb): There are at least two subproblems containing x on the left with different top-level
AC-operators. Then we get an explicit representation of the form x = t1,. . .,tp yielding p
possibilities. In example 4, as shown above, this leads to the two possibilities x = a,

gla.b2]. -
Note that these computations actually only give approximations of the exact number of possibilities
in the sense of upper bounds. This is due to the fact that the other variables occurring in the same
argument list as x are ignored in the constraint propagation process for x. The method could be
refined to compute exactly all possibilities in a way similar to the construction of ordered partitions
with cardinality restrictions as described in [Hu80]. But since this would be rather expensive we
renounce to do it in our current implementation.

If there are no variables occurring in more than one left hand side argument list the constraint
propagation process may cause an additional overhead since the constraints for each subproblem
are independent from each other. But we still have the advantage of choosing systematically a node
with a small branching degree.

3.3 Optimizations and Implementation Issues

In order to get an efficient algorithm for AC-matching using our approach of global constraint
propagation (as well as using local partitioning) it is crucial to incorporate additional optimizations
and to deal efficiently with the AC-equivalence problem as mentioned before. Before pointing out

. the advantages of using ordered normal forms we describe now possible optimizations and their
integration in our implementation. I

(I) Global size criterion
One global optimization consists in a simple failure criterion. If Isl > ltl then there cannot exist
an AC-match from s to t. This size criterion is applicable to any subproblem generated.
Although from a conceptional point of view this is indeed an optimization, we have not
integrated this size test in our current implementation, because computing term sizes is rather

(II)

14

expensive if performed very often.

Optimizations in the reduction phase
The main source of complexity of AC-matching comes in through the reduction process,
which i s responsible for the NP—completeness of the problem. Thus optimizations of the
reduction process are very important. Let us assume in the following that we have given a
simplified matching problem I 'US with non-empty I' . That means every s=t €
1“ has the form s=f[s1k1,...,sm"m], t=f[t1“,...‚tn"‘] .

(Ila) Length restrictions for argument lists
Similar to the global size criterion for s=t the number of top—level arguments of S(s) must not
be greater than the number of top-level arguments of t. Otherwise this clearly indicates a
failure.

(IIb) Deletion of common parts
Any argument siof s with V(si) s: D(S) cannot be modified any more by additional
substitution parts that might be generated later on in the actual branch
of the search tree. Thus S(si) must occur at least li times among the arguments of t. If this is
not the case the whole problem I'US is unsolvable and we can cut this branch of the search
tree. Otherwise we simplify the problem s=t by deleting si respectively S(si) li times in the
argument list of s respectivelyt . At least for constant arguments si where the condition
V(sl)§D(S) is vacuously satisfied this can be done efficiently. In our implementation deletion
of constants is perfo1med as early as possible within the simplification phase. Deletion of
substituted variables is delayed until the variable-only case is reached (except case (IIe)).

(lIc) Cardinality restrictions for reduction
As already mentioned the multiplicities ki, lj of left and right hand side arguments s-, tj can be
used to perform an optimized partitioning with cardinality restrictions (cf. [Hu80]) or

equivalently to solve the corresponding system of diophantine equations ([Mz83]). In our
approach the multiplicity information is used in the constraint propagation process to deduce
combined constraints.

(IId) Look ahead for top-level clashes
Considering a non-variable left hand side argument s (implying top(s1)¢f) the corresponding
right hand side after choosing a possible association of right hand side arguments for si must
not have the form f[ul,.'..‚up] withp22 or g(v1...vq) with g¢top(si). Otherwise this would
result in a failure by simplification when processing later that newly generated subproblem. In
other words reduction} should always generate for such a non-variable left hand side argument

si a subproblem of the form si=tk with top(si)=top(tk). In fact combining these conditions
we can deduce that for the problem s=t as above any geF\{ f} must occur as top-level symbol
in the tj at least as often as in the si, otherwise the problem has no solution. This consideration

motivajtes the heuristic to perform an intelligent kind of branching focussing on the

15

non-variableleft hand-side arguments si until the variable-only case is reached. Of course we
must keep track of the remaining possibilities of associating some tj with the same top-level
symbol to si when deciding to choose a specific one for branching. Again a plausible heuristic.
would consist in choosing such a non-variable si with a minimal number of possible
associations for branching. Reasoning globally w.r.t. 1" and using again the constraint ,

propagation techniques explained above this heuristic could still'be refined. But since the
restrictions for non-variable left hand side arguments are already relatively strong compared to
variable arguments we did not implement this heuristic. Thus intelligent branching is
performed according to the order of the left and right hand side arguments of the subproblem
considered.

(Ile) Trivial variable-only case . ‘ _
If there is a problem s=t in 1' with s=f[xk], t=f[t1.“,. .,tn1“], k22 and x¢D(S), then the only

I possibility to solve s=t consists in reducing it to. x=f[t1“',...t,n'“‘] .for lj' := (lj div k),
provided that (lj‘mod k) = 0 holds for all j, lSa. Otherwise'the problem is again
unsolvable. In our approach we discover such situations as early as possible. Using local
partitioning (with cardinality restrictions) this still depends on the choice of the subproblem to
be partitioned.

The usage of unique ordered normal forms for AC—equivalence classes as described in. section 1
strongly supports most operations in the AC-matching algorithm. The (potentially expensive)
construction of ordered normal forms essentailly has to be done only once for the initial terms.
Partial recomputations of ordered normal forms are only necessary when applying substitutions.
Tests on AC—equivalence are reduced to linear syntactic equality tests of ordered normal forms, _
deletion operations and intelligent branching may be performed efficiently and also the constraint
propagation computations profit of the fixed order of variable arguments. In particular the
multiplicity information for left and right hand side arguments which is crucial for an efficient
reduction process is a by-product of computing ordered normal forms.

Moreover the special class of orderings < we use (induced by <Fux with c <Fux g <FuX f
(FUX x for any c e F0, g e FNAC\F0, f e F AC and x 6 X, see section 1) reflects exactly our strategy
of reduction of simplified problems. First all constant left hand side arguments are eliminated by
delete operations. This corresponds to the fact that the constants are the smallest arguments w.r.t.
<. Then the non-variable left hand side arguments are handled by intelligent backtracking which is

. facilitated by the fact that non—variable arguments with the same top-level operator are neighbours in
ordered argument lists. Reduction using constraint propagation is delayed until the variable-only
case is reached. This is reflected by the fact that the variables are the greatest elements w.r.t. <.

3.4 An Extended Example

Instead of giving a detailed description of our implementation which would involve a rather
complicated control structure for backtracking using a kind of nested stack we will present an
extended example which demonstrates the main features of our algorithm.

16

Example 5 .
For F AC = {f,g}, FNAC—= {a,b,c, h,k} and <FUX given by the sequence a,b,c,h,k ,f,g,u,x,y,z we
consider the AC—matching problem"1n ordered normal form

h(f[gl k(u), k(V)], x, y], f[11,712, Z])= h(fI b3. <=,2 g[k(f[a. b]) k(f[2121)]] fl a6 b2])
Decomposition yields

(1) fl gl k(ü) , k(V)], x, y] = fl b3. 02. gl k(f[a . b l). k(f[82])]] and
(2) fl u, x2, 2] = f] a6, b2] .
Intelligent branching for (1) now results in the following reduced problem:
(2) fl u, x2, 2] = f[a“, b2].
(3) gl k(ü), k(V)] = g[k(f[& b]), l<(f['a2])] and
(4) fllx, y] = fl b33021-

By intelligent branching for (3) we get the two possibilities

(5) k(u) = k(f[& b])
(6) k(V) = k(f[&2])
or

(7) k(u) = k(fI a2])
(8) k(V) = k(f[&, b l) -

Choosing the first branch with (2), (4), (5) and (6) decomposition and deletion of substituted
variables (here: 11) leads to

(2') fl x2. 2] = f[as, b]

(4) l ,Y]=f [b3,cz]
(9) u = f[a, b]

(10) v = f[a2].
Now constraint prOpagation for (2') and (4) shows that there is no possible assignment left for x.
Thus we have to backtrack and consider (2), (4), (7) and (8). Again using decomposition and „
deletion of substituted variables we get ‘
(2") fl x2. 2] =f[34 ,52] '
<4) f lx y1=—f[b3‚c21
(11) u= f[a2] '
(12) v= f[a, b] .
Constraint p'ropagatiOn for (2") and (4) results '1n only one remaining possibility fOr x, namely
x=b. Thus by deletion of x respeCtively b in (2") and (4) we immediately get the only solution
(representant) of the original problem: '

u= f[a2],v= f[a,b],x= b, y= f[b2, c2],z= f[a4].

4. Constraint Propagation for other kinds of Equational Problems

Constraint propagation techniques may also be successfully applied to other kinds of equational

problems, for example E—matching and E-unification. We will sketchtwo cases, namely

ACI-matching and AC-unification. '

17

4.1 'ACI-Matching using Constraint Propagation

In'[Mz85] it has been shown how to construct an ACI-matching algorithm in the case where
E=ACI consists of the associativity, commutativity and idempotency axioms for some function
symbols from F, Similar to the AC-case one may define (ordered) flattened normal forms for .

ACI-equivalent terms. Argument lists of ACI-operators in such flattened normal forms are regarded
not as multisets but as sets due to the idempotency axioms. Reduction of simplified non-trivial
ACI-matching problems may be performed as follows (stated for the variable-only case):
Let s=f.{xl,...,xm}, t={t1,...,tn]‚ feFACl and an ACI-matching problem set I'=l'"U{sv=t}ll be
given.Then ACI-reduction means to apply in all possible ways the ACI-mutation rule ‘

* I'_'u {s=t} _» r'u [xi=f{t1‘d1,...,tn'_‘i“} | lSiSm}

n. Instead of choosing this mutation rule we may also work globally w.r.t. 1" and propagate
constraints for the possible assignments for all left hand side arguments. Thus we can cut many
failure branches in advance if there are mutual dependencies . ' '

Example 6
For FÄCI = [f] we consider the ACI-matchin g problem

' h(f(x‚y).h(f<x‚z)‚f(y‚z)))=h(f_(a‚b)‚h(f(a‚c>‚f(b‚c))).“
Transformed into (ordered) normal form decomposition yields

(I) f l x .y }=f {a .b} .

(II) f {x , z }= f {a , c }and

(III) f {y ‚z }=f {b ‚c} -

Mutation for (I) would give the 7 subproblems
1.1 {x= a ,y=b}
1.2 {x= a ,y=f {a ,b}]
1.3 {x= b ,y=a}
1.4 {x= b ,y=f { a ,b} }
I.5_ {x=_f{ a ,b} ‚y=a ' }
1.6 {x= f {a ,b} ,y=b}and
1.7 {x= f{ a,b },y=f"{ a,b] } .
Thus in the worst case we would have to investigate the 7 reduced problems I.i u {11,111},
i=1,. . .7. Using global constraint propagation we can deduce from the general form Of all possible

assignments for the left hand side variables
x=f{ a“,b"b,c"° } , y=f { a3"‘,b3"’,cyc } andz=f{ az‘,b"b,cz°}

with coefficients 0 or 1 the constraints „
xb=xc=0 ,xa= 1. ya=yc=0 ,yb= 1, za-—-_zb=0,zc= 1.

This immediately leads to the only solution (representant) of the original problem
{x=a ,y=b ,z=c} . '

18

4.2 AC-Unification using Constraint Propagation

It is well—known that there exists a close connection between solving AC—unification problems and
solvingcorresponding homogeneous linear diophantine equations over N\{0] (see [LiSi76],

[HeSi85], [St81], [Fa83] or [F085] for details). For the simplified non-trivial AC-unification

problem
_ (*) f[slk1,....,sm1<m] =f[1111,.. .,tnln] withfe FAC

the corresponding diophantine equation in the unknowns xi, yj is ‘

(**) z : i=1 , . . .,m xi k i= E:j=l, ,..n yj lj

From the solutions of (**) a complete set of AC-unifiers can be constructed. If we have to solve a
conjunction of simplified non-trivial AC-unification problems of the form (*), we can apply
constraint propagation roughly in the following way: Instead of choosing a single problem and
computing a (finite) solution basis for the corresponding diophantineequation we can also consider
some or all problems simultaneously. Solving the corresponding system of diophantine equations
as a whole may be much more efficient in cases where there are dependencies between these
diophantine equations in the sense of common unknowns. This effect is demonstrated by

Example 7
For PAC = {f } consider the AC-unification problem ,

_' h(f (f (x .X) . f (x .x)) . f (y , f (y .2))) = h(f (y .2) ‚ f (f (x ‚x) ‚x)) .

Transformation into normal form and decomposition yields the conjunction of the two subproblems
(I) f [x4]= f [y , z]and
(11) f[y2,z]=f[s3]. _,
The corresponding diophantine equations to be solved are
(1*) 4x'=y"+z'and
(I I*)2y '+z '=3x ' . .
Solving (l*) leads to 5 basic solutions for (x',y',z'), namely (1,0,4), (1,1,3), (1,2,2), (1,3,1) and
(1,4,0). Associating a new variable to each basic solution and considering any combination of these
basic solutions (satisfying certain restrictions) we get a complete set of AC-unifiers for (l) of
cardinality 29. But nOne of these solutions is compatible with (11). Thus the problem is unsolvable.
This can be detected much more efficiently by solving (1*) and (11*) sim’ultaneouslyflsing

‘, elimination techniques from linear algebra we get for example from (l*): z'=4x'-y-', which implies
together with (II*): x +'y‘=0. This equation obviously has no solution over N\{O} Therefore the
initial AC-unification problem is also unsolvablc.

‘ , Of course the construction of a correct and terminating AC-unification algorithm which
incorporates the censtraint propagation ideas described requires a much more detailed investigation
which is beyond the scope of this work. In particular one has to be able to handle systems of linear
diophantineequations in a systematic and efficient way. Moreover new results on AC-unification

should also be taken into account (cf. [Ki87], [Bü88], [LiCh88]).

19

5. Conclusion,

we have shown how to apply constraint propagation techniques for reducing the search space of
AC-matching problems. The resulting algorithm is well-suited for a certain class of non-linear
patterns and for a systematic early detection of unsolvability. It has also been sketched how to
apply such'techniques to other kinds of equationalproblems like E-matching and E-unification for
certain E. A promising perspective for future work might be to develop good criteria for deciding in
which cases global reasoning (using constraint propagation) or local reasoning (handling a single .
subproblem) will be better 1n terms of efficiency. This could lead to a new kind of efficient

‚ "hybrid" algorithms for the equational problems 1n mind

Acknowledgements. We would like to thank J .Avenhaus, H.-J.Bürckert, K.Madlener,
J.Müller and M. Schmidt-Schauss for their hints and criticisms on earlier drafts of this paper.

This work was supported by the the Deutsche Forschungsgemeinschaft, SFB 314: Künstliche
Intelligenz- Wissensbasierte Systeme

References

[BeKaNa85] Benanav, D., Kapur, D., Narendran, P.: Complexity of Matching Problems, Proc.
of lst Conf. on Rewriting Techniques and Applications, Dijon, France, May 1985,
Lecture Notes in Computer Science 202

[81188] Bürckert, H .] . : ‚AC—Uni f i ca t ion i s ACl—Disunification, 2nd Workshop on

' Unification, Val d'Ajol, France, 1988

' [C088] Comon, H.: Unification et Disunification. Theories et Applications, PHD Thesis,
University of Grenoble, France, 1988 .

[R84] Pages, F.: Associative—commutative unification, Proc. of 7th Conference on
Automated Deduction, Napa Valley, California, USA, 1984, Springer Verlag

[BOSS] Fonenbacher, A.: An Algebraic Approach to Unification under Associativity and
Commutativity, Proc. of 1st Conf. on Rewriting Techniques and Applications,

1 Dijon, France, May 1985, Lecture Notes in Computer Science 202 ‚
[HeSiSS] Herold, A., Siekmann, J.: Unification in Abelian Semigroups, Memo SEKI—85-Ill,

Universität Kaiserslautern, 1985
[81179] Hullot, J.M.: Associative-commutative Pattern Matching, Proc. of IJCAI-79,

Tokyo, Japan, August 1979
[31180] Hullot,].M.: Compilation de Formes Canoniques dans les Theories Equationnelles,

These de 3eme Cycle, Universite de Paris Sud, Orsay, France, 1980
[KISS] Kirchner, C. Methodes et outils de conception systematique d'algorithmes

d'unification dans les theories equationnelles, These d'Etat de l'Universite de Nancy
I, France, 1985

[1087] Kirchner, C.; Methods and Tools for Equational Unification, Proc. of the

[LiCh88]

[LiSi76]

[MaMo82]

[M283]

[M285] .

[M286]

[Sc88] ‘

[St8l]

20

Colloquium on the Resolution of Equations in Algebraicsuuctures, May 1987,
Austin, Texas

Lincoln, P., Christian, J . : Adventures in Associative-Commutative Unification (A

Summary), Proc. of 9th CADE, Argonne, USA, 1988
Livesey, M., Siekmann, J.: Unification of Bags and Sets, Technical Report, Institut
für Informatik I , Universität Karlsruhe, 1976

Martelli, A., Montanari, U.: An efficient unification algorithm, ACM Transactions
on Programming Languages and Systems, 4/2, 1982
Mzali, J.: Algorithme de Filtrage Associatif Commutatif, Internal Report 83 R 060,
Centre de Recherche en Informatique de Nancy, France, 1983
Mzali, J.: Filtrage Associatif, Commutatif ou Idempotent, Internal Report 85 R 25,
Centre de Recherche en Informatique de Nancy, France, 1985
Mzali, J . : Matching with Distributivity, Proc. of 7th Conference on
Automated Deduction, Oxford, England, July 1986, Lecture Notes in Computer
Science 230
Schmidt-Schauss, M.: Unification in a Combination of Arbitrary Disjoint Bquational
Theories, Proc. of 8th CADE, Argonne, USA, 1988 ‘
Stickel, M.E.: A unification algorithm for associative-commutative functions,
Journal of the Association for Computing Machinery, 28, 1981

