o3 0000

AN

S

= —)| —)

))

Y]

Zs& .
W o
gl

September 1983

oo

Ch. Beierle, M. Gerlach, A. Voss

¢
8]
.m
[aW
kS|
2
0]
£
P
e
3
ol
(0]
]
i)
[
N
o
.M
M
fiod
fa¥

The History of a Hierarchy of Specifications
Memo SEKI-83-09

AuBwian) ‘M 'L uleinejsiasiey 06/9-a
A OWawW
ulaine|siasiey 1B1ISIaAIUN L
YBWIoU| yotasaquoe —U-un

Parameterization without Parameters
ins

The History of a Hierarchy of Specifications

Ch. BReierle
M. Gerlach

A. Voss

Universitdt Kaiserslautern
Fachbereich Informatik
Postfach 3049
ND-6750 Kaiserslautern

West Germany

Abstract

We are going to tell you the history of a hierarchy of
specifications dealing with the evolutions, revolutions and
conquests of the family of sorting methods. However, this
hierarchy and its history are so intricate that a special
language is used to describe them: ASPIK - a specification
language for hierarchies consisting of formal requirements and
particular models arbitrarily mixed or produced by applications

and abstractions.

This research was supported by the RBundesministerium fiir Forschung und
Technologie under contract IT.8302363.

Contents

l.

2.

2.1
2.2
2.3
2.4

5.

Prologque

A crash course in ASPIK

l.oose and fixed specifications

Parameterization-by-use

Canonical term functors

Applications

The hi-story of a hierarchy

A datatypist sorts lists of natural numbers

A chief datatypist sorts arbitrary lists

A chief abstract datatypist sorts systematically

A Master in ASPIK divides and conquers

The specifications

The specifications
The specifications
The specifications

The specifications

The moral

References

of the
of the
of the
of the

datatypist

chief datatypist

chief abstract datatypist
Master in ASPIK

[O2 B S L AR

12
15
22

24

24

28

31

38

39

40

1. Prologue

We are going to tell you the hi-story of a hierarchy. You will
hear about the evolutions and revolutions in the family of
sorting methods (as recorded by [Da 76]), and you will see how
they came up to divide and conquer.

However, this hierarchy and its history are highly intricate, so
intricate that a special language is required to describe them:
ASPIK - a specification language for hierarchies consisting of
formal requirements and particular models arbitrarily mixed or
produced by applications and abstractions. So, unless you are
already familiar with [BV 83a], [RV 83b], we shall offer you a

crash course in ASPIK.

2. A crash course in ASPIK

ASPIK is a specification language for abstract data types. A
specification as sketched in Fig. 2.0 may use others such that
arbitrary specification hierarchies can be constructed serving as

a type library.

2.1. Loose and fixed specifications

Every specification in a hierarchy is either loose or fixed. A
loose specification may introduce new sorts and operation names
(ops), and it may impose properties (props). It is interpreted
loosely in the way that every algebra which supplies carriers for
the sorts and functions for the operation names such that the
properties are satisfied is a model of the specification. In this
way, a loose specification expresses formal requirements. Other
approaches dealing with loose specifications are e.q. [Fh 81],
[HKR 80], [BG 80], [sa 81], [BDPPW 80], and [Ba 81].

A fixed specification consists of a header and a body. The header
is a loose specification. In the body, the new sorts and
operation names are constructively defined in a way consistent
with the properties. That means, the body supplies a particular
model of the header. Thus, fixed specifications support the
algorithmic definition of abstract data types. These models may
serve as prototypes, because their operations are executable
though abstractly defined algorithms. Other algorithmic
approaches are described in [K1 80] and [Lo 81].

Since loose and fixed specifications may be deliberately mixed in
a hierarchy, the notions "loose" and "fixed" are always relative
to the specifications being used: a stack may be fixed w.r.t. its
loose elements, an arbitrary ordering postulated for the
characters 1is loose w.r.t. the fixed characters. Due to this
mixture, ASPIK supports all stages of development from formal

requirements to executable prototypes in a uniform way.

spec <spec-name?

hierarchy of

UsSe ... }
specifications
sorts signature of | specification
OPS .4 } specification 7/ header
Props... | properties of |
i specification |
spec _body
constructors ... ‘i e
] definition
auxiliaries ... { of
L carriers |
define auxiliaries ... ! |
| e
define carriers... J i specification
i/ body
|
|
define constructor ops ... ;
. . . 1]
definition !
private ops ... of {
operations f
define ops ... J)
endspec

Figure 2.0: Syntactic structure of an ASPIK-specification

2.2, Parameterization-by-use

Orthogonal to the hierarchical use relation is the refinement
relation which expresses a selection of models. In more detail,
to refine a specification SP1 by another one SP2, a specification
morphism must be defined: the sorts and operation names of SPl
must be associated to those of SP2 such that the properties of
SPl are satisfied by the associated operations in SP2, and if SPl
is fixed SP2 must be fixed in the same way.

The refinement relation is exploited to generate new hierarchies
as applications or abstractions of old ones. An application is
obtained by viewing some specifications in a hierarchy as formal
parameters to be substituted by fitting actual parameters, where
an actual parameter fits if it refines the formal one. Vice
versa, if specifications in a hierarchy are replaced by more
general ones, an abstraction is obtained.

Abstractions and applications are inverse mechanisms allowing to
develop specifications by deliberately switching from the
concrete to the abstract and back to the concrete direction. The
flexibility of these two mechanisms depends on the fact that the
specifications to be substituted need not be declared as static
parameters of the hierarchy, but need to be identified no sooner
than the latest possible moment: when they are substituted by
other specifications. This feature of ASPIK is called parameter-
ization-by-use. A mechanism similar to our applications is
proposed in [ZUT 82]. Previous approaches dealing with explicit
parameterization can be found in [Eh 81] and [EKTWW 81].

Two novel features of ASPIK deserve further explanation:
canonical term functors as constraint mechanism and applications

as realization of the parameterization-by-use concept.

2.3. Canonical term functors

The particular model defined in a fixed specification is a
canonical term algebra [GTW 78]. Its carriers consist of terms

whose subterms all belong to the carriers as well. They are

defined by constructors generating sets of terms which may be cut

down by characteristic predicates (in define carriers). Sometimes

auxiliaries are needed to define the characteristic predicates.

Fvery constructor 1induces an operation that yields the
corresponding term if it belongs to the carrier. They are

separately defined (in define constructor ops) to stress this

condition. The remaining operations are defined in define ops and

may use some private operations (declared in private ops) and

auxiliaries.

The advantages of canonical term algebras are twofold. Since
their carriers consist of terms built from abstract operation
names, they provide an abstract way to define a particular model.
Moreover, the recursive definition of these carriers allows to do
structural induction. This is demonstrated in [Pa 79].

However, in ASPIK a fixed specification is fixed only w.r.t. to
the specifications used, which may be loose. Therefore, the
notion of "canonical term algebra" is generalized to "canonical
term functor". A canonical term functor is a functor mapping
every algebra which is a model of the specifications used to a
canonical algebra which is a model of the specification at hand.
Syntactically a canonical term functor can be defined by the
same scheme as a canonical term algebra, provided no reference is
made to the carriers of inherited sorts other than by inherited
operations - thus the structure of the carrier elements is hidden
to the outside.

Canonical term functors constitute the constraint mechanism of
ASPIK: they constrain or fix the 1loose models of the
specification header to the particular ones defined by the body.
Other constraint mechanisms are presented in [HKR 80], [BG 80],
[Ewr 82], [sw 82a], [sw 82b], and [zLT 82].

2.4. Applications

It is natural to think of a node in a hierarchy as a unit that is
neither to be confused with other nodes nor multiplied via

different uses: the same operation name op introduced in

different specifications SP1 and SP2 shall denote different
operations - namely SPl.op and SP2.op. On the other hand,
combining two specifications both using SP1 shall provide exactly
one operation - namely SPl.op.

This 1is desirable not only for an explicitly defined
specification SPl but also if SP1l is an application (or
abstraction). Therefore, every hierarchy in ASPIK is implicitly
extended to include a node for every conceivable application: the
hierarchy is closed under applications.

The closure construction is complicated by the following problem:
Applications are syntactically denoted by application terms. Two
application terms might differ just in the order of actualizing
independent specifications. Or one application term might perform
an actualization in a single step which is split into several
steps in another term. In both cases the application terms should
be semantically equivalent., This equivalence is realized in ASPIK
by determining normal forms such that two application terms
reducing to the same normal form are semantically equivalent.
Accordingly, in order to close a hierarchy under applications new

nodes are implicitly added for the normal forms only.

3. The hi-story of a hierarchy

3.1. A datatypist sorts lists of natural numbers

Once upon a time there was a little hierarchy for 1lists of

natural numbers. (The specifications are given in Section 4.)

NATLIST

NAT

BOOL

It was a very successful datatype and people used it heavily. So
the day was to come where they called for sorted lists.

A man educated in structured top down design was appointed
datatypist, and soon he extended the little hierarchy to:

NATSORT

SLOTS-FOR~NATSORT -
PRIMITIVES

NATLIST

NAT

BOOL

NATSORT provided a sorting algorithm based on primitive
operations which were declared but not yet defined in SLOTS-FOR-
NATSORT-PRIMITIVES. Trying to define them in a separate
specification NATSORT-PRIMITIVES, the datatypist discovered that
the ordering of the natural numbers was missing in NAT. So he
added the operation <= in an extra specification NATORD on top of
NAT. NATLIST and NATORD together supplied the base for the

algorithms of NATSORT-PRIMITIVES.

NATSORT

SLOTS-FOR-NATSORT -

PRIMITIVES
NATSORT -
PRIMITIVES
NATLIST
NATORD
NAT
/
BOOL

"To finish my task I need a mechanism to refine NATSORT by
inserting the primitives into their slots", the datatypist
explained to the aspikialist - that is a specialist in ASPIK.
"There are two replies", the aspikialist said, "a short practical
one and a long theoretical one.

Practically you are finished, because in the meantime your
hierarchy has considerably grown: Reside the nodes added
explicitly further nodes have been entered implicitly - among
them a node solving your problem:

NATSORT (SLOTS-FOR-NATSORT-PRIMITIVES -ml+ NATSORT-PRIMITIVES)

with ml: ops partl = min
part2 = allbutmin
combine = putmin
simple? = simple?

simple-sort simple-sort

assoclates the primitives with their slots." The perplexed face
of the datatypist made the aspikialist continue with the
theoretical explanation.

"Theoretically a closure construction is applied to your
hierarchy each time you add a node. As a result there is a node
for every application you may conceive. An application or
instantiation of a node like NATSORT is obtained by considering
some nodes below it as formal parameters and replace them by
suitable nodes as actual parameters. In your case SLOTS-FOR-
NATSORT-PRIMITIVES is the formal parameter which is actualised by
the NATSORT-PRIMITIVES."

"Let me see if I got it", the datatypist replied eagerly. "After
I had added NATORD I could have moved NATLIST thereupon and build
the NATSORT-PRIMITIVES on top. This could have been achieved by
simply using NATLIST (NAT -m2+ NATORD) in NATSORT-PRIMITIVES,
where m2 relates the sorts and operations of NAT identifically to
themselves." (Furtheron we will omit the maps because they are

rather evident.)

"Exactly. There even is an application node in your hierarchy

corresonding to this alternative:

NATSORT (SLOTS-FOR-NATSORT-PRIMITIVES + NATSORT-PRIMITIVES)
(NATLIST +NATLIST(NAT -m2+ NATORD))

Maybe I should tell you the closure construction in some more
detail:

As soon as you add a new node,

1. All other nodes are examined whether they might fit as actual
parameters for some nodes below the new one. For each such
application a node is created on top of the actual parameters

and the nodes which remain unsubstituted.

2. Vice versa all nodes explicitly entered by the user are

checked whether the new node might fit as actual parameter
for a node below themselves., Again for each such application

a new node is created.

3. Step 2 is repeated for all nodes introduced by the closure

construction.

It doesn”t matter that the last step produces an infinite number
of application nodes, since each node actually uses only a finite
number of other nodes.

Here is a relevant section of your hierarchy:

NATSORT NATSORT (NATLIST + NATLIST (NAT -+ NATORD),
SLOTS-FOR-NATSORT-PRIMITIVES -+
NATSORT-PRIMITIVES (NATLIST =
NATLIST (NAT+> NATORD)))

SLOTS-FOR- SLOTS-FOR-NATSORT-PRIMITIVES
NATSORT - (NATLIST + NATLIST (NAT -+ NATORD))
PRIMITIVES

NATSORT - NATSORT-PRIMITIVES

PRIMITIVES (NATLIST »+ NATLIST(NAT -+ NATORD)

NATLIST NATLIST (NAT + NATORD)
NATORD
//
NAT
BOOL

"Tremendous." The datatypist was overwhelmed. "Rut is there no

way to avoid these huge application terms?". "Surely, for example

both the application terms

NATSORT (NATLIST + NATLIST (NAT + NATORD),
SLOTS-FOR-NATSORT-PRIMITIVES
+ NATSORT~PRIMITIVES (NATLIST + NATLIST(NAT + NATORD)))
and
NATSORT (SLOTS-FOR-NATSORT-PRIMITIVES + NATSORT-PRIMITIVES)
(NATLIST » NATLIST (NAT + NATORD))

denote the same hierarchical specification. The first, longer
term is in normal form while the other one is more readable since
it is shorter, and better reveals its historical development. You
can transform the shorter term into the longer one by two
normalization rules. The first rule
S(F1 » Al) = S(F1 » Al, F2 » F2(F1l » Al))
if S uses F2 uses Fl1
makes implicit parameters explicit.

This rule repeatedly applied to the shorter term produces

NATSORT (SLOTS-FOR-NATSORT-PRIMITIVES + NATSORT-PRIMITIVES)
(NATLIST -+ NATLIST (NAT -+ NATORD),
NATSORT-PRIMITIVES + NATSORT-PRIMITIVES
(NATLIST + NATLIST (NAT -+ NATORD))).

To transform this term into its normal form, we need a rule that
allows to contract replacement sequences where an actual
parameter of the first replacement is considered as a formal

parameter in the second one:
S(F1 » Al) (F2 » A2,A1 » Al”) = S(F2 +A2,F1 » Al")
if S uses F2.

Here I have another pair:
NATSORT (NAT -+ NATORD,

NATLIST -+ NATLIST (NAT -+ NATORD),
SLOTS-FOR-NATSORT -PRIMITIVES

11

+ SLOTS-FOR-NATSORT-PRIMITIVES
(NAT + NATORD,
NATLIST -+ NATLIST (NAT -+ NATORD)))

is in normal form. According to the first rule, it can be
abbreviated to

NATSORT (NAT -+ NATORD).

This very short term is an indirect application term, since the
nodes between NAT and NATSORT do not occur (explicitly) as
parameters., So you see, usually every term in normal form can be
avoided by an equivalent one that is easier to read. However, the
normal forms are technically convenient in order to construct the
closure of a hierarchy since they neither contain any implicit

parameters nor replacement sequences."
"All right", resumed the datatypist, " as a practical man I shall
tell everybody who wants to sort lists of natural numbers that he
has to use:

NATSORT (SLOTS-FOR-NATSORT-PRIMITIVES + NATSORT-PRIMITIVES)."
Our people used this sorting facility happily ever after and,
grateful as they were, the datatypist was advanced to a chief

datatypist.

3.2 A chief datatypist sorts arbitrary lists

Our story would have ended here had not a new need arisen: "We
want to sort any lists.”

The chief datatypist had a close 1look at NATLIST and recognized
that its LIST-part depended on nothing more than some sort elem
with its equality-relation. These minimal requirements are
expressed in the specification ELEM on top of BOOL. Similarly,
the NATSORT-PRIMITIVES minimally required a linear ordering of

12

sort elem, which is expressed in the specification ORDELEM on top
of ELEM,. He presented these extensions of the hierarchy to the
aspikialist:

NATSORT

SLOTS-FOR-NATSORT -

PRIMITIVES
NATSORT -
PRIMITIVES
NATLIST
ORDELEM NATORD
ELF-M\ /NAT

BOOL

"LLast time we met you shocked me with all those implicit nodes.
Today our roles are reversed: I need even more nodes than your
application nodes! More precisely, I need a specification like
NATSORT but NAT shall be replaced by ELEM and NATORD by ORDELEM."
"I"m not shocked at all", replied the aspikialist, " nor can I
help you. Your problem has been recognized and its solution will
be forwarded to the next release of ASPIK. The new version will
support so called generalization or abstraction terms. The one
you need might look 1like

NATSORT (NAT <« FELEM, NATORD <« ORDELEM).

In some way, abstraction terms are inverse to application terms.

So you could re-—-apply your term

NATSORT (NAT <« FLEM, NATSORT <« ORDFELEM)
(ELEM + NAT, ORDELEM + NATORD)

13

and get back NATSORT. Thus generalization terms can be handled
symmetrically to application terms, except that mixed terms must
be coped with. Yet for the time being I must ask you to simulate

the generalization by handmade specifications."
Thus the chief datatypist created an abstraction LIST from

NATLIST, used it in an abstraction PRIMITIVES from NATSORT-
PRIMITIVES, which in turn was used by an abstraction OURSORT from

NATSORT .

OURSORT NAT SORT

SLOTS-FOR-NATSORT -

PRIMITIVFS
PRIMITIVES NATSORT -
PRIMIT IVFS
LIST NATLIST
yLEM NATORD
LEM NAT
mOIJ/

He returned the new hierarchy to his people and instructed them:
"All you do 1is specify your concrete elements with their

equality relation and a linear ordering. Then you can use
OURSORT (ELEM > your concrete elements,
ORDERELEM + the specification with your
concrete ordering)."
This worked out fine, and so the chief datatypist was appointed

chief abstract datatypist.

14

3.3 A chief abstract datatypist sorts systematically

Even now our story has not yet reached its end, since among the
increasing number of OURSORT applications some were criticized of
being too slow. Faster sorting algorithms were required.

To solve the sorting problem once and for ever, the chief
abstract datatypist started a fresh, systematic approach. The
least obliging way to express the problem was an axiomatic
characterization of any sorting operation in a new specification
SORT-AXIOM., This characterization relied upon some predicates
about lists and ordered elements also expressed axiomatically in
a specification SORT-PRFEDICATES.

SORT-AXIOM

SORT-PREDICATES

LIST

ORDELEM

FELEM
NAT

BOOL

The various sorting methods were supposed to be refinements of
SORT~-AXIOM. More precisely, SORT-AXIOM as a formal parameter
should be replaceable by such a specification providing some

sorting algorithm as actual parameter.
First, he wanted to arrive at a very general algorithmic

refinement of SORT-AXIOM. Reviewing his hierarchy he found that
the NATSORT-algorithm using the SLOTS-FOR-NATSORT-PRIMITIVFS was

15

just the right thing to start with. Both specifications could be
adapted to the current situation by generalizing them to use FLEM
instead of NAT and LIST instead of NATLIST. Simulating the
generalization by hand he obtained the specifications ALG with
SLOTS—-FOR-PRIMITIVES below it.

ATG NHTTORT

SLOTS-FOR- SLOTS-FOR-NATSORT -

PRIMITIVES PRIMITIVES

LI§T NATLIST

NATORD
> -
/
ELEM NAT
\ /—
BOOL

To get a refinement of SORT-AXIOM he added a specification
PRIMITIVES-FOR-SORT on top of SLOTS-FOR-PRIMITIVES and SORT-
PREDICATES. It contained axioms to admit only such primitives
that the algorithm became in fact a sorting algorithm. The
application ALG(SLOTS-FOR-PRIMITIVES + PRIMITIVFES-FOR-SORT)
constituted the first refinement of SORT-AXIOM.

16

SORT-AXIOM ALG(SLOTS-FOR-PRIMITIVES ALG
+ PRIMITIVES-FOR-SORT)

PRIMITIVES-FOR-SORT

/
) ,,».v—ﬂ»-—"/
SORT -_@M‘ RS
~.

T~ SLOTS-FOR-
\~«. o
PRIMITIVES
\ ORDELEM
/ ~__
FLEM NAT
,./
//
/
BOOL

Now he had to refine the primitive operations. He remembered that
it is possible to develop several sorting algorithms by answering

the following two questions:

1. Is the list split up into parts of similar size, or does the
first part contain just one element and the other part the

remainder of the list?

2. Is the comparison of the elements done when splitting up the
list, or is it done when combining the two sorted parts?

Accordingly, the chief abstract datatypist added two speci-
fications SPLIT-ONE and SPLIT-LOWER to his hierarchy on top of
PRIMITIVES-FOR-SORT. SPLIT-ONE was expressing the choice to split
up the list into one element and the rest, while SPLIT-LOWER was
an axiomatic characterization of all sorting algorithms doing the

comparison when splitting up the list. The two specifications

17

were combined in a third one expressing that the least element
was to be split off the 1list.

ALG (SLOTS-FOR-PRIMIT IVES
| » SPLIT-LOWER-ONE)

ALG(SLOTS-FOR-PRIMITIVES ALG(SLOTS-FOR-PRIMITIVES ALG
+ SPLIT-ONF) + SPLIT-LOWER) ////
I /////
SPLIT-ONE SPLIT-LOWFR
T —
.

PRIMITIVES-FOR-SORT

SORT - SILOTS-FOR-
PREDICATES PRIMITIVES
- \\
\»\.
LIS”" \\\\\\\

FLFM

e ——— —

e . -

il

ROOL

So he came up with four possibilities for sorting by using SPLIT-
ONE, SPLIT-LOWER, SPLIT-LOWER-ONE or none of them. He recognized
that the corresponding sorting algorithms were Insertionsort,

Quicksort, Selectionsort and Mergesort.

For Mergesort he wrote a specification MFERGE. It split the list
in the middle and therefore refined neither SPLIT-ONE nor SPLIT-
LOWER., He obtained the MERGE-SORT algorithm from the application
ALG(SLOTS~-FOR-PRIMITIVES + PRIMITIVES-FOR-SORT)(SLOTS-FOR-
PRIMITIVES -+ MERGF).

18

In the specification INSERTION the first element was split off
the list thus refining SPLIT-ONE, and the application ALG(SLOTS-
FOR-PRIMITIVES + SPLIT-ONE)(SLOTS-FOR-PRIMITVES -+ INSERTION)
vielded the INSERTION-SORT algorithm.

In the specification OUICK the list was divided up into two
halves containing the smaller resp. the greater elements, and was
so refining SPLIT-LOWER. The QUICK-SORT algorithm was obtained by
the application ALG(SLOTS-FOR-PRIMITIVES »+» SPLIT-LOWER)(SLOTS-
FOR-PRIMITIVES + QUICK).

The primitives of the Selectionsort algorithm turned out to be
identical to the PRIMITIVES of OURSORT. As they split the minimal
element off the 1list, they refined SPLIT-LOWER-ONE and the
application ALG(SLOTS-FOR-PRIMITIVES » SPLIT-LOWFR-ONE)(SLOTS-
FOR-PRIMITIVES + PRIMITIVES) yielded the same SELECTIONSORT
algorithm as the specification OURSORT.

"Can you tell me the difference?", the chief abstract datatypist
asked the aspikialist at their next meeting. The answer came
promptly: "Nothing easier than that. There is a hierarchical
specification morphism from OURSORT to the ALG application,
because everything provided by the former is also provided by the
latter. That means practically that OURSORT as formal parameter
may be actualized by the application. This is not true for the
other direction since the application additionally provides the
operations inherited from SORT-PREDICATES.”

19

qeu

/ wa|a

-p4o
Isti

3943NW
(393N

« S-4-5101S)
S-4-SIAILIWINYd

(3943w
« $-4-S101S)

(S=4-SIAILINIY

“ $-4-S101S)97V

LUN

W3 3p4o
st

SIATLIWIYd
l\\

(SIAILIWIYd
<« S-4-51079)
S-4-SIAILIWIYd

(SIAILIWINYd
« $-4-5101S)
¥3IMOT-L11dS

(SIATLIWIY

« $-4-S107S)
(¥3IMO1-111dS

+ $-4-S1015)91v

140SyNn0
L¥0SNOT LI373S

1009

IIII//I/IIIII//IIII

\\u\nl\‘\\a\.
W313040
Jeu
wa|a
-p40 wa|ap4o
ISt sty
NJ1INd NOTILY3SNI
(M21nd (NOILYISNI
« S=4-S101S) « S$-4-S101S)

S-4-S3ATLIWINd S-4-S3ATLIWIYd

(NOTLY3SNI
« $-4-S101S)
INO-L17dS
(A21Nd
« §-4-S101S)
INO-Y¥IMOT-LI1dS (NOILYISNI
« §-4-S101S)
(X21nd (INO-117dS
<« §-4-S101S) < $-4-51075)91Y

(INO-Y3MOT-LITdS
« 5-4-S107S)91v

130S-%21n0 140S-NOTL¥3SNI

W313

T

1517

1eu
wa|a
-pJ40

1511

SIATLIWINYd
-404-S1071S

S31vI310a3yd
~140S

1¥0S-3404
-S3ATLIWIYd

2N

43MOT-111dS INO-1171dS

N

INO-Y3MOT-1171dS

9Y WOIXY
-140S

20

"Very impressive, your old 1little hierarchy", the aspikialist
commented on the hierarchy of sorting methods. "And I"m happy to
see that you've become an expert in the laws of application
terms." "Have I ?", the chief abstract datatypist wondered. "At

least intuitively. Look, for instance you put

ALG(SLOTS-FOR-PRIMITIVES + SPLIT-ONE)
(SLOTS-FOR-PRIMITIVES + INSERTION)
on top of
SPLIT-ONE(SLOTS-FOR-PRIMITIVES + INSERTION)
on top of
PRIMITIVES-FOR-SORT (SLOTS-FOR-PRIMITIVES + INSERTION).

But without transforming the SPLIT-ONFE application into its
normal form you can hardly see that it uses the PRIMITIVES-FOR-
SORT application:

SPLIT-ONE (SOLTS-FOR-PRIMITIVES + INSERTION) =
SPLIT-ONFE(SLOTS-FOR-PRIMITIVES + INSERTION,
PRIMITIVES-FOR-SORT
+ PRIMITIVES-FOR-SORT (SLOTS-FOR-PRIMITIVES
+ INSERTION))

according to the rule:
S(F1 » A1) = S(F1 » Al, F2 » F2(Fl1 +» Al))
if S uses F2 uses Fl

which allows to make implicit parameters explicit, as you may
recollect.

In order to see that the ALG application uses the SPLIT
application, you have to contract the two replacements:

ALG(SLOTS-FOR-PRIMITIVES + SPLIT-ONE)
(SLOTS-FOR-PRIMITIVES + INSERTION) =
ALG(SLOTS-FOR-PRIMITIVES
+ SPLIT-ONF(SILOTS-FOR-PRIMITIVES

21

+ INSERTION))
according to a simpler version of the contraction rule:
S(F1 » Al)(F1 » A2) = S(F1 » Al1(Fl1l » A2))
if Al uses A2.
The hierarchy of sorting methods satisfied everybody and so the

chief abstract datatypist was appointed Master in ASPIK.

3.4. A Master in ASPIK divides and conquers

For some months this was the end of the story - though not of
the hierarchy which was continuously enlarged by ELEM and ORDELEM
refinements. So what happened? There was a masters meeting at
Passau attended by our Master in ASPIK. There, listening to the
talk of master Veloso, he recognized that ALG could be
generalized to the Divide-and-Conquer paradigm. He just had to
devise a signature for decomposable PROBLEMs on top of BOOL and a
signature for composable SOLUTIONs on top of PROBLEM. Then the
DIVIDE-AND-CONQUER approach could be abstracted as

ALG(SLOTS-FOR-PRIMITIVES < PROBLEM

sorts list = problem
ops partl = subprobleml
part2 = subproblem2

simple? = simple?,
SLOTS-FOR-PRIMITIVES <« SOLUTION

]

sorts list solution

ops simple-sort simple-sort

combine combine)

22

DIVIDE —AND-CONQUER

///// ALG
SOLUTION //////////
01 -

" SLOTS-FOR-PRIMITIVES
PROBLFEM
_
LIST

By this uttermost generalization the Master in ASPIK rose to the
rank of a Divisor and Conqueror in ASPIK and - finally - they all

lived happily ever after.

23

4., The specifications

4,1 The specifications of the datatypist

spec BOOL

/* standard definition of the booleans */
sorts bool;
ops true, false : =--> bool

and , or bool bool --> bool

not : --> bool:;

spec body

constructors true, false;

define ops
bl and b2 = case bl is *true: b2
*false: false

gsac
bl or b2 = case bl is *true: true
*false: b2
gsac
not(b) = case b is *true: false
*false: true
€84ac
endspec
spec NAT

/* standard definition of the natural numbers */
use BOOL;
sorts nat;
ops 0 : --> nat
succ, pred : nat --> nat
+ 4 =_: nat nat --> nat

eg-nat : nat nat --> bool;

24

spec body

constructors 0, succ:;

define ops
nl + n2 = case nl is *0: n2
*succ(n): n + succ(n2)
esac
pred(n) = case n is *0: error-nat
*succ(nl): nl
esac
nl - n2 = case n2 is *0: nl
*succ(n): pred(nl) - n
gsac
endspec

spec NATLIST
/* lists of natural numbers */
use NAT;
sorts list;
ops empty : --> list
put : nat list --> list
first : list =--> nat
rest : list --> list
append : l1list list --> list

empty?, simple? : list --> bool

in? : nat list --> bool;
spec body
constructors empty, put;
define ops
first(l) = case 1 is *empty: error-nat
*put(n,11): n
e8ac
rest(l) = case 1 is *empty: error-list
*put(n,11): .11
esac

25

append(1,12) = case 1 is *empty: 12
*put(n,11): put(n,append(11,12))

esap
empty?(1l) = case 1 is *empty: true
otherwise: false
esac
simple?(l) = case 1 is *empty: true
*put(n,11): empty?(1l)
esac
in?(n,1) = case 1 is *empty: false
*put(nl,11l): eg-nat(n,nl) or in?(n,11)
esac

endspec

spec SLOTS-FOR-NATSORT-PRIMITIVES
/* names for NATSORT s primitive operations */
use NATLIST;
ops partl, part2 : list --> 1list
combine : list list --> 1list

simple-sort : list -=> list;

endspec

spec NATSORT

/* sorts lists of natural numbers (by selection) */
use SLOTS-FOR-NATSORT-PRIMITIVES;
ops sort : list --> list;

spec body
define ops

sort(l) = if simple?(1)
then simple-sort(1l)

else combine(sort(partl(l)),part2(1l)))
endspec

26

spec NATORD

/* the standard ordering of the natural numbers */

use NAT ;
ops <= : nat nat --> bool;

spec body

define ops
nl <= n2 = if eq-nat(nl,0)

then true
elsif eg-nat(n2,0)

then false

else pred(nl) <= pred(n2)

endspec

spec NATSORT-PRIMITIVES
/* NATSORT s primitive operations */
use NATLIST, NATORD;
ops min, allbutmin : list list --> 1list
putmin ¢ list list --=-> 1list
simple-sort : list --> list;

spec body

private ops min-elem : list --> nat;
define ops
min(l) = put(min-elem(1l),empty)
allbutmin(l)

then rest(1l)

if eg-nat(first(l),min-elem(1))

else put(first(l),allbutmin(rest(1l)))

if simple?(1l)
then first(1l)

min-elem(1)

else let m = min-elem(rest(1)) in

if first(l) <=m
then first(1l)
else m

endspec

27

spec NATSORT (SLOTS-FOR-NATSORT-PRIMITIVES --> NATSORT-PRIMITIVES

ops partl = min
part2 = allbutmin
combine = putmin

simple-sort = simple-sort)
/* sorts lists of natural numbers (by selection) */
use NATSORT-PRIMITIVES ;
ops sort : list --> list;

spec body
define ops

sort(l) = if simple?(1)
then simple-sort(1l)

else putmin(sort(min(l)),sort(allbutmin(l)))

endspec

4,2 The specifications of the chief datatypist

spec ELEM
/* a sort with its equality */

use BOO1;
sorts elem;
ops eg-elem : elem elem --> bool;

endspec

spec ORDELEM
/* a reflexive, linear ordering on elem */
use ELEM;

ops _<=_ : elem elem --> bool;

props all x,y : x <= x = true
if x <=y = true, y <=z = true
then x <= 2z = true
if x <=y = true, y <= x = true

then x = y;

endspec

28

spec LIST
/* lists of anything.

It simulates the abstraction: NATLIST (NAT <~- ELEM). */
use ELEM;
sorts list;
ops empty : -=> list
put : elem list --> list
first : list --> elem
rest : list --> list

append : list list --> 1list

empty?, simple? : list --> bool
in? : elem list --> bool;
spec body
constructors empty, put;
define ops
first(l) = case 1 is *empty: error-elem
*put(n,11l): n
g=ac
rest(l) = case 1 is *empty: error-list
*put(n,11): 11
esac

append(1,12) = case 1 is *empty: 12
*put(n,11): put(n,append(11,12))
gsac
empty?(1l) = case 1 is *empty: true

otherwise: false

esact
simple?(1) = case 1 is *empty: true
*put(n,11): empty?(1l1)
gsac
in?(n,1) = case 1 is *empty: false
*put(nl,ll): eg-elem(n,nl) or in?(n,1l1)
gaac

endspec

29

spec PRIMITIVES
/* OURSORT "s primitive operations.
It simulates the abstraction: NATSORT (NAT <-- ELEM,
NATLIST <-- LIST,

NATORD <-=- ORDELEM). */

use LIST, ORDELEM;
ops min, allbutmin : list list --> 1list

putmin : list list --> list

simple-sort : list --> 1list;
spec body
private ops min-elem : list --> elem;
define ops
min(l) = put(min-elem(1l),empty) ‘
allbutmin(l) = if eg-elem(first(l),min-elem(1))
then rest(1)
else put(first(l),allbutmin(rest(1l)))
min-elem(l) = if simple?(1l)
then first(1l)
else let m = min-elem(rest(1l)) in
if first(l) <= m
then first(1)
else m
endspec

spec OURSORT
/* sorts lists of anything (by selection).
It simulates the abstration: NATSORT (NAT <-- ELEM,
NATLIST <-- LIST,

NATORD <-- ORDELEM,
NATSORT-PRIMITIVES <--
PRIMITIVES).

use PRIMITIVES;
ops sort : list --> list;

spec body
define ops

30

*/

sort(l) = if simple?(1)

endspec

then simple-sort(1l)
else combine(sort(partl(l)),sort(part2(1)))

4,3 The specifications of the chief abstract datatypist

spec SORT -PREDICATES
/* predicates needed in SORT-AXIOM */

use

ops

LIST, ORDELEM, NAT;

permutation? : list list =--> bool
sorted? : list --> bool
occurrences : elem list --> nat

length ¢ list -=> nat;

props all e, el, e2, 1,11, 12 :

endspec

occurrences(e,empty) = 0

occurrences(e,put(e,l)) = succ(occurrences(e,l))

if el =/= e?2

then occurrences(el,put(e2,1)) = occurrences(el,l)

permutation?(11,12) =

eg-nat(occurrences(e,l1l) ,occurrences(e,12))

if simple?(1l) = true then sorted?(l) = true
if simple?(1) = false,
first(l) <= first(rest(l)) = true,
sorted?(rest(l)) = true
then sorted?(1l) = true

length(empty) = 0
length(put(e,l)) = succ(length(l));

spec SORT-AXIOM

/* axiomatic definition of all sort operations */

use

ops

SORT-PREDICATES;

sort : list --> 1list;

31

props all 1 : permutation?(sort(l)) = true
sorted?(sort(1l)) = true;

endsgec

spec SLOTS-FOR-PRIMITIVES
/* names for SORT~s primitive operations
It simulates the abstraction:
SLOTS~-FOR-NATSORT~PRIMITIVES (NAT <-- ELFEM,
NATLIST <-- LIST). */

use LIST;
ops partl, part2 : list --> list
combine : list list --> list
simple-sort : list --> list;
endspec
spec ALG

/* sorts lists of anything algorithmically.
It simulates the abstraction:
NATSORT (NAT <-- ELEM,
NATLIST <-- LIST,
NATORD <-- ORDELEFEM,
SLOTS~-FOR-NATSORT-PRIMITIVES <~- SLOTS-FOR-PRIMITIVES)
r 4
use SIOTS-FOR-PRIMITIVES;
ops sort : list -=-> list;

spec body
define ops
sort(l) = if simple?(1)
then simple-sort(1l)
else combine(sort(partl(l)),sort(part2(1l)))
endspec

32

spec PRIMITIVES-

FOR-SORT

/* axiomatic characterization of ALG s primitive operations */
use SLOTS-FOR-PRIMITIVES, SORT-PREDICATES;

props all 1: if simple?(1l) = true

then sorted?(simple-sort(1l)) = true

if simple?(l) = false,

sorted?(partl(1l)) = true,
sorted?(part2(l)) = true,

then sorted?(combine(partl(l),part2(1l))) =

if simple?(1l) = false

then permutation?(combine(partl(l),part2(1)),1)

endspec

spec SPLIT-ONE
/* one element m
use PRIMITI

props all 1,

endspec

spec SPLIT-LOWER

/* the 1list must be split into a lower and an upper half */

use PRIMITI
props all 1,

= true
if simple?(1l) = true
then permutation?(simple-sort(l),1l) = true

if simple?(1) = false
then length(partl(l)) <= pred(length(1l))
if simple?(1) = false
then length(part2(l)) <= pred(length(1l))

ust be split off */
VES-FOR-SORT ;
11, 12 ¢ if simple?(l) = false
then simple?(partl(1l)) = true;

VES~-FOR-SORT ;
X, y + if simple?(1l) = false,
in?(x,partl(1))
in?(y,part2(1))

then x <= y = true;

true,

true,

33

true

true

true;

endspec

spec SPLIT-LOWER-ONE
/* the minimal element must be split off */
use SPLIT-ONFE, SPLIT-LOWER;

endspec

spec MERGE
/* primitive operations of the merge-sort algorithm */
use LIST, ORDELEM, NAT;
ops merge : list list --> list
firsthalf, secondhalf : list --> list
simple-merge : list —--> list;
spec body
private ops secondhalfl, difference : 1list list --> list
half-of : nat --> nat
length : list ==> nat;
define ops
merge(l,m) = if empty?(1)
then m
elsif empty?(m)
then 1
elsif first(l) <= first(m)
then put(first(1l),merge(rest(l),m))
else put(first(m),merge(l,rest(m))
secondhalf(l) = secondhalfl(1l,1)
secondhalfl(11,12) = if length(12) <= half-of(length(11l))
then 12
else secondhalfl(1ll,rest(12))
difference(11,12) = if length(1ll) <= length(12)
then empty
else put(first(1l),
difference(rest(11),12))

half-of(n) = if n <= succ(succ(0))

34

then succ(0)
else succ(half-of(n - succ(succ(0))))
length(l) = if empty?(1)
then 0
else succ(length(rest(1l)))

endspec

spec MERGE-SORT
/* the merge-sort algorithm */
use ALG(SLOTS-FOR-PRIMITIVES =--=> PRIMITIVES-FOR-SORT)
(SILOTS-FOR-PRIMITIVES --> MERGE
ops partl firsthalf
part2 secondhalf

combine = merge
simple-sort = simple-merge);

endspec

spec INSFERTION

/* primitive operations for the insertion-sort algorithm */
use LIST, ORDELEM;
ops list-of-first : list --> list

insert : list list --> 1list
simple-insert : list --> list;
spec body
define ops

]

list-of-first(1l) put(first(1l),empty)
insert(11,1) = if empty?(1ll)

then 1

elsif first(1ll) <= first(1l)

then put(first(11l),1)

else put(first(l),insert(ll,rest(1l)))
simple-insert(l) = 1

endspec

35

spec INSERTION-SORT
/* the insertion-sort algorithm */
use ALG(SLOTS-FOR-PRIMITIVES =-> PRIMITIVES—-FOR-SORT)
(SLOTS-FOR-PRIMITIVES —--> INSFERTION

ops partl = list-of-first
part2 = rest
combine = insert
simple-sort = simple-insert);

endsgec

spec QUICK
/* primitive operations of the quick-sort algorithm */

use LIST, ORDELEM, NAT;
ops lower-part, upper-part : list --> 1list
simple-quick : list --> list;
spec body
private ops half-of : nat --> nat
lower-partl, upper-partl : list elem --> list
middle-elem :list -=> elem
nth-elem : list nat --> elem
length : list -=-> nat;

define ops
lower-part(1)

lower-partl(l,middle-elem(1l))

upper-part(1l) upper-partl(l,middle-elem(1l))
simple-quick(l) = 1
middle-elem(l) = nth-elem(1l,half-of(length(1l)))
half-of(n) = if n <= succ(succ(0))
then succ(0)
else succ(half-of(n - succ(succ(0N))))
length(1l) = if empty?(1)
then 0
else succ(length(rest(1l)))
nth-elem(1l,n) = if n <= succ(0)
then first(1l)
else nth-elem(rest(l),pred(n))

36

1]

lower-partl(1l,m) if empty?(1l)

then empty

elsif first(l) <=m

then put(first(1),
lower-partl(rest(1l),m))

else lower-partl(rest(l),m)

upper-partl(1,m) if empty?(1)

then empty

elsif not(first(l)) <=m

then put(first(l),
upper-partl(rest(1),m))

else upper-partl(rest(l),m)

endspec

spec QUICK-SORT
/* the quick-sort algorithm */
use ALG(SLOTS-FOR-PRIMITIVES --> PRIMITIVES-FOR-SORT)
(SLOTS-FOR-PRIMITIVES --> QUICK
ops partl lower-part
part2

upper-part
combine = append

simple-sort = simple-quick);

endspec

spec SELECTION-SORT
/* the selection-sort algorithm */
use ALG(SLOTS-FOR-PRIMITIVES --> PRIMITIVES-FOR-SORT)
(SIOTS-FOR-PRIMITIVES --> PRIMITIVES

ops partl
part?2

min
allbutmin

combine = append

simple-sort = simple-sort);

endspec

37

4.4 The specifications of the Master in ASPIK

spec PROBLEM
/* decomposable problems */
use BOOL;
sorts problem;
ops subprobleml, subproblem2 : problem --> problem

simple-problem? : problem --> bool;

endsgec

spec SOLUTION
/* composable solutions */
use PRORLEM;

sorts solution;

ops simple-solution : problem --> solution
combine-solutions : solution solution --> solution;
endspec

spec DIVIDE-AND-CONQUER
/* the divide-and-conquer approach.
Apart from renaming sort to solve, it simulates the abstraction:
ALG(SLOTS-FOR-PRIMITIVES <-- PRORLEM
sorts list = problem

ops partl
part?2

subprobleml

subproblem?
simple? = simple-problem?
SLOTS-FOR-PRIMITIVES <-- SOLUTION
sorts list = solution
ops simple-sort = simple-solution
combine = combine-solutions). */
use SOLUTION;
ops solve;

spec body
define ops

38

solve(p) = if simple-problem?(p)
then simple-solution(p)
else combine-solutions(solve(subprobleml(p)),
solve(subproblem2(p)))
endspec

5. The moral

The moral of the story is:

In ASPIK you need not be afraid of software cycles.

¢ If you have a model in mind right from the beginning it”s ok

to write it down at once.

e If you recognize parts of your hierarchy as parameters later

on it”s not too late. ASPIK s parameterization-by-use allows

you to introcuce your parameters as late as you need them.

@ If you realize the general qualities of your specifications

later rather than sooner you needn”t start afresh. You can

generalize whenever you want.

39

References

[Ra 81]

[BDPPW 80]

[BV 83a]

[RV 83b]

Bauer, F.L. et al.: Report on a wide spectrum language
for program specification and development. TU Miinchen,
Inst.f.Informatik, Report TUM-I8104, May 1981.

Rroy, M., Dosch, W., Partsch, H., Pepper, P., Wirsing,
M.: On hierarchies of abstract data types, TU Miinchen,
Inst. fiir Informatik, TUM-I8007, May 1980.

Burstall, R.M., Goguen, J.A.: The semantics of Clear,
a specification language. Proc. of Advanced Course on
Abstract Software Specifications, Copenhagen. LNCS
Vol.86, pp. 292-332.

Beierle, Ch., VoB, A.: Parameterization-by-use for
hierarchically structured objects. SEKI-Projekt, Memo
SFEKI-83-08, Univ. Kaiserslautern, FB Informatik, May
1983.

Beierle, Ch., VoB, A.: Canonical Term Functors and
Parameterization-by-use for the Specification of
Abstract Data Types. SEKI-Projekt, Memo SEKI-83-07,
May 1983.

Darlington, J.: A Synthesis of Several Sorting
Algorithms, D.A.I. Research Report 23, University of
Fdinburgh, June 1976.

Fhrig, H.: Algebraic Theory of Parameterized
Specification with Requirements, Proc. 6th CAAP,
Genova, 1981.

Ehrig, H., Kreowski, H.-J., Thatcher, J., Wagner,E. ,
Wright, J.: Parameter Passing in Algebraic Speci-

40

[FwrT 82]

[crw 78]

[HKR 80 |

(Lo 81]

fication Languages, Workshop Program Specification,
Aarhus 81.

Fhrig, H., Wagner, FE., Thatcher, J.: Algebraic
Constraints for Specifications and Canonical Form
Results, TU Berlin, FB Informatik (20), Bericht Nr.
82-09, June 1982.

Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial
algebra approach to the specification, correctness,
and implementation of abstract data types, in: Current
Trends in Programming Methodology, Vol.4, Data
Structuring (ed. R. Yeh), Prentice-Hall, 1978, pp. 80-
144.

Hupbach, U.L., Kaphengst, H., Reichel, H.: Initial
algebraic specifications of data types, parameterized
data types, and algorithms. VEB Robotron, Zentrum fiir
Forschung und Technik, Dresden, 1980.

Klaeren, H.: A simple class of algorithmic specifica-
tions of abstract software modules., Proc. 9th MFCS
1980, LNCS vol. 88, pp 362 -374.

Loeckx, J.: Algorithmic specification of abstract data
types. Proc., 8th ICALP, LNCS 115, July 1981, pp. 129-
147.

Padawitz, P.: Proving the Correctness of
Implementations by Exclusive Use of Term Algebras, TU
Berlin, FB Informatik (20), Bericht Nr. 79-8, June 79.

Sannella, ND.T.: A new semantics for Clear. Report CSR

~-79-81, Dept. of Computer Science, Univ. of Fdinburgh,
1981.

41

[sw 82a]

[sw 82b]

[zLT 82]

Sannella, D.T., Wirsing, M.: Implementation of
parameterized specifications, Proc. 9th ICALP 1982,
LNCS Vol. 140, pp 473 - 488.

Sannella, D,T., Wirsing, M.: A Kernel Language for
Algebraic Specificiation and Implementation, Draft,
Dep. of Computer Science, University of Fdinburgh,
Institut £f. Informatik, TU Miinchen, 1982.

Zilles, S.N., Lucas, P., Thatcher, J.W.: A Look at
Algebraic Specifications, IBM Research Division,
Yorktown Heights, New York, San Jose, California,

Zurich, Switzerland, 1982.

42

