
Un
ive

rs
itä

t 
Ka

is
er

sl
au

te
rn

0
—

6
7

5
0

K
ai

se
rs

la
u

te
rn

1
‚W
.

G
e

rm
a

n
y

F
a

ch
b

e
re

i c
h

In
fo

rm
a

t i
k

P
o

s t
f a

ch
“3

04
9

A
r t

i f
i c

i a
l

I n
t e

l l
i g

e
n

ce
L

a
b

o
ra

to
r i

e
s

S
E

H
| °

P
IE

P
IP

IT

flag
2:5ffafi "' 779

\ \ o ” \loh\'°'f

U=}

P: :

@
!«

I :

Opening the AC-Unification Race
Hans—Juergen Buerckert et al.

SEKI Report SR—88—11
July 1988



Opening the AC-Unification Race

HANS—JÜRGEN BÜRCKERT
Universität Kaiserslautern, FB Informtik, Postfach 3049, 0-6750 Kaiserslautern, F._R. Germany
net—:address buerckert@unido.uucp

- ALEXANDER HEROLD
European Computer-Industry Research Centre, Arabellastr. 17, D-8000 München, F.R. Germany
net-address. heroId@ecrcvax.uucp

DEEPAK KAPUR
Dept. of Computer Science, State University of New York at Albany, Albany, NY 12222 USA
netaddress. kapur@albanycs.albany.edu

JÖRG H. SIEKMANN
Universität Kaiserslautern, FB Informatik, Postfach 3049, D-6750 Kaiserslautern, F.R. Germany
net-address: sielonann@unido. uucp

MARK E. STICKEL
Artificial Intelligence Center, SR1 International, Menlo Park, CA 94025, U.S .A
net-address: stickel@aisri.com

MICHAEL TEPP _ '
Universität Kaiserslautern, FB Informatik (AG Siekmann), Postfach 3049, 0-6750 Kaiserslautern, F.R.
Germany '
net-address: tepp@unido.uucp

HANTAO ZHANG
Dept. of Computer Science. Rensselaer Polytechnic Institute, Troy, NY 12180 U.S.A.
net-.address zhang@albanycs.albany.edu

Abstract :  This note reports about the implementation of AC-unification algorithms, based on the
variable-abstraction method of Stickel and On the constant-abstraction method of Livesey, Siekmann, and
Herold. We give a set of 105 benchmark examples and compare execution times for implementations of the two
approaches. This documents for other researchers what we consider to be the state—of-the-art performance for
elementary AC-unification problems.

Key words: Theory unification. AC-unil‘ication, linear Diophantinc equation



l .  Introduction
‘ . the unification computation occurs at the very

heart of most deduction systems. It is the addition
and multiplication of deduction work. There is
accordingly a very strong incentive to design the
last possible ounce of efficiency into a unification
program. The incentive is very much the same as
that for seeking maximally efficient realisations of
the elementary arithmetic operations in numerical
computation - and the problem is every bit as
interesting.” J.A. Robinson, 197}

Theory unification [5, l l ,  26, 34, 44, 47, 48, 51],  an extension of J .A.  Robinson's standard unification [45],
has many applications in computer science (see J.H. Siekmann's survey on unification theory [48]). In
particular it is used in most current deduction systems:

- resolution based theorem proving systems [2, 8 ,  40, 42, .54]
- theorem proving systems based on algebraic completion [15,  22, 23, 2A, 30, 31 ,  3.2, 41]

term rewriting modulo a set of equations [29, 3 l ,  32,  37 ,  43, 53]
- narrowing modulo a set of equations [31,  32, 35,  41]
- logic programming [3, 16, 17, 28, 49]

Currently free Abelian semigroups, i.e., equationa] theories for associative and commutative (AC-) function
symbols, are among the most important theories [9, '10, 11, 12, 14, 19, 21,  27, .33, 38,  39,  50, 52, 55].

2.‘ AC-Un‘if icat ion

AC-unification, that is unification of terms containing AC—function symbols, is the problem of solving
equations in free Abelian semigroups. This can be done by a reduction to AC l-unification, the theory of
associative, commutative functions with a unit, known as free Abelian monoids. Solving ACI-unification
problems in turn is equivalent to solving some corresponding linear Diophantine equations that reflect the
number of occurrences of the constants and variables in an ACI-solution.

There are essentially two different approaches to solve elementary AC-unification problems that are built by
one AC-function symbol, free constants and variables. The first method (due to M.E. Stickel [50]) is  to replace
the constants by variables (variable—abstraction) and then to solve the corresponding homogeneous linear
Diophantine equation [9 ,10 ,12 ,13 ,14 ,27 ,  38,  50,  52 ,  55] .  Since there are too many solutions (different _
constants may be identified, when they are replaced by variables), the solutions have to be post-processed to
remove conflicting constants. It is also possible to solve the Diophant me equation under certain constraints on
the variables, such that the conflicting constants are not produced'in the first place. In the second approach (due

' to M.  Livesey and J. H. Siekmann [39]) these constraints are treated explicitly (constant— abstraction). This IS
achieved by a homogeneous equation for the variables and 1n addition by certain inhomogeneous equations for -
the constants [20, 21,  39]. '

In order to demonstrate the two approaches we assume a binary infix function “- ” as the AC- function
symbol. We use a more convenient representation; terms are flattened (parentheses and dots are omitted) to
strings, the remaining variables and constants are ordered, and multiple occurrences are represented by an _
exponent:

(fa-x)o(b-(c-((b-x)-x)))) is represented as abzcx’.

Now consider the ACl-unification problem ( ab2x3 = czyz3 ). Any solution of this problem has the
property that each variable and each constant has to occur the same number of times On both sides of the
equation. For a most general solution we can also assume that all problem variables are substituted and that the
solution introduces only new variables but no new constants. Hence the following equations holdfor the
occurrences Xv, Yv, Zv of a variable v and for the occurrences Xd' Yd' Z d of a constant d e {a, b ,  c} in the

2



solution: . .

' Yv + 321: for each new variable v- 3Xv =
- 3X: +1  == Y: +3211 fortheconstanta
- 3x:+2 _.- Yb“+32“ fortheconstantb
» .?Xc I- Y_ + 32c b+2  fortheconstantc

Solving these linear Diophantine equations in non-negative integers corresponds to solving the above
AC1 -unification problem. In order to obtain the corresponding AC-solutions we instantiate every subset of the
newly introduced variables of each ACl-solution by the unit.

The number of AC—solutions grows exponentially in _the number of introduced variables of the
AC1 -so'lutions. For example the problem (xyz = 114 ) has exactly one most general AC1 ~un_ifier, introducing
15 new variables, hence the minimal AC-solution set contains about 32  000 (2 s) independent AC-unifie'rs (see
the table below).

3 .  A Set of 1051 Benchmark Problems

During a visit at the University of Kaiserslautern, ME.  Stickel, together with A. Herold and LH. Siekmann,
designed some benchmark problems (105 examples, see table below) for elementary AC—unification. A test of
the Stickel implementation and the Herold/Siekmann implementation showed that Stickel’s was much faster.
This motivated H. J. Burckert and M. Tepp to improve the Herold/Siekmann implementation by speeding up
the computation of AC-unifiers from the solutions of the Diophantine equations. An extra stimulus for
improvement were the favorable timing figures for the Rewrite Rule Laboratory’s AC—unification algorithm of
D.. Kapur and H. Zhang, which'is essentially an implementation of Stickel's constrained variable-abstraction
method with same additional heuristics [31, 32]. Each of the implementations has now gone through a few
additional iterations of improvement in response to performance gains by the other.

This note reports the current performance of the Stickel, the improved HerOld/Siekmann, and the
. Kapur/Zhang implementation. We think the results demonstrate state- of-the—art performances for

implementations of AC—unification that are embedded in larger theorem proving systems. All three
implementations could be sped- up by adopting different data structures for representing the tmifiers that would
improve benchmark performance but are incompatible with their use in the larger systems. The
implementations are capable of handling the general case of AC—umfication that includes arguments that are not
variables or constants, which do not appear in this set of benchmark problems. Not all other known inefficiency .
or extraneous functionality has been removed.

The examples consist of all pairs of terms such that the first term has three variables or constaa and the
second term has four variables and constants and neither term has only constants (so that we are always testing
AC-unification rather than AC-matching). Among them is problem “acuni-025", which was used by M. E.
Stickel to illustrate AC-unification m the first paper on this topic [50] and has appeared 1n most papers on
AC—unification since. .

4.  Results

The following table shows the result of the comparison of Stickel's implementation, the improved
Herold/Siekmann implementation, and the implementation of Kapur and Zhang. The algorithms were
implemented in Common-Lisp (Stickel and Herold/Siekmann) and Zeta-Lisp (Kapur/Zhang) and run on
Syrnbolics 36xx with instruction fetch unit.

The second column in the table below lists the examples (x, y, z, u, v, w, tare variables, while a, b, c, d, e
are constants). The third column contains the number of AC—unifiers for the given problem (in parentheses the
number of AC1-unif1ers). Column four gives Stickel's CPU—time, column five the CPU-time of the improved
Herold/Siekmarm implementation (in parentheses the time for solving the Diophantine equations), and column
six that of the Kapur/Zhang implementation (all CPU-times are in seconds). Example “acuni-097” needed
unreasonable time and space (it has 1,044,569 AC-unifiers, as determined by Zhang and Kapur and verified by
Stickel).

In order to reduce machine effects like paging we measured several runs for each example and took the
CPU-time of the fastest one.



l
I
I example
I
l
I
I acuni-OOI
I acuni-002
I acuni-003
I acuni-004
I acuni-OOS
I
I acuni-006
I “uni—007
I acuni-008
I acuni—009
I acuni—OIO
I
I acuni-Ol 1
I acuni-Ol 2
I acuni-013
I acuni-014
l acuni-O 15
l

I 000111-016
I acuni-017
| acuni-018
I acuni-019
I acuni-OZO
I
I “uni-021
I acuni—022
I acuni -023
I acuni-02A
I acuni-OZS
I .
I acuni-026
I acuni—027
I 8011110028
I acuni—029
I acuni-O3O
I

I acuni-03 1
. I acuni—032

I acuni-O33
I acuni—034
I acuni-035
I
I acuni-036
I acuni-037
I acuni—038

‘ mum-039
' I acm1i-040

I
I acuni-041
l acuni-O42
I acuni-043
I “uni—044
I acuni-045
I

I
I
I problem
I
I
I
I xab = ucde
I xab = uccd
I xab = uccc
I xab = uvcd
l xab = uvcc
I
I xab = uvwc
I xab = uvwl
I xab = uucd
I xab = uucc
I xab = uuvc
I
I xab = uuvw
I xab = uuvv
I xab = uuuc
I xab = uuuv
I xab = uuuu
I
I xaa = ucde
1 X118 = uccd
I xaa = uccc
I xaa = uvcd
I xaa = uvcc
I
I xaa = uvwc
I xaa = ut
I xaa = uucd
I xaa = uucc
Ixaa = uuvc
I
I xaa = uuvw
I_ xaa = uuw
I xaa = uuuc
I xaa = uuuv
I xaa = uuuu
I
l xya = ucde
I xya = uccd
I xya = uccc
I xya = uvcd
I xya = uvcc
I
l xya = uvwc
I xya =0t
I xya = uucd
I xya = uucc
I xya = uuvc
| .

I xya = uuvw
I xya= uuvv‘
I xya = uuuc
I xya = uuuv
I x'ya = uuuu
| .

number 0f
_unifiers

AC (AC1)

2(1 )

2(1)
2(1 )

12 (4)
12(4)

30(9)
56 (16)

2(1 )
2 (1 )

12(4)

30(9)
12(4)

2(1 )

12(4)
2(1)
2(1 )
2 (1 )
2 (1 )
3 (3 )
3 (3 )

18(6)
32(10)

2(1 )
2 (1 )
4 (2 )

. 10(4 )
4 (2 )
2 (1 )
4 (2 )

2(1 ) '

28(8 )
20 (6 )

12(4)
88(8)
64(6)

204(6)
416(4)

60(8 )

. 44(6)
144(6)

300(4)
216(4)
.92 (6)
196(4)
124(4 )

@
—

—
—

‘-
—

—
_—

~
<

_—
—

m
d

_—
—

—
_—

_—
—

--
-—

—
—

—
_—

d
--

—
—

—
—

—
-—

-—
—

_-
—

—
d

E
—

Stickel

AC-time

0.018
0.01 1
0.008
0.047
0.032

0.096
0. 17 I
0.0 I 8
0.01 1
0.040

0.075
0.030
0.013
0.027
0.008

0.013
0.009
0.006
0.032
0.020

0.062
0. 1 14
0.009
0.006
0.0 I 2

' 0.025
0.008
0.007
0.010
0.005

0.094
0.050
0.026
0.247
0. 133

0.538 .
1.046
0.154
0.082
0.329

0.622
0.347
0. 166
0.323

- 0.163

I
I
I
I
I

j

I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
l
I
I
I
I
I
I
I

Herold &
Sielcmann

0.009 (0.005)
0.010 (0.006)
0.010 (0.005)
0.031 (0.005)
0.030 (0.006)

0.084 (0.007)
0.230 (0.007)
0.009 (0.005)
0.009 (0.004)
0.030 (0.006)

0.087 (0.007)
0.029 (0.005)
0.010 (0.005)
0.030 (0.005)
0.009 (0.004)

0.009 (0.003)
0.011 (0.006)
0.010 (0.005)
0.025 (0.006)
0.024 (0.008)

0.058 (0.009)
0.144 (0.011)
0.008 (0.005)
0.009 (0.005)
0.016 (0.007)

0.038 (0.008)
0.014 (0.006)
0.009 (0.004)
0.014 (0.005)
0.007 (0.005)

0.060 (0.006)
0.045 (0.008)
0.032 (0.010)
0.195 (0.007) '
0.148 (0.009)

0.546 (0.009)
1.365 (0.010)
0.120 (0.007)
0.093 (0.008)
0.322 (0.009)

0.766 (0.008)"
0.473 (0.008)
0.197 (0.008)
0.464 (0.010) _
0.291 (0.009)

I Kapur&
Zhang

AC—time (ACl-time) I AC-time

0.012
0.01 1
0.008
0.03 1
0.029

0.064
0. 127
0.01 2
0.008
0.032

0.068
0.022
0.009
0.022
0.007

0.01 1
0.009
0.009
0.023
0.016

0.052 -'
0. 102
01139
0.006
0.012

0.022
0.008
0.008
0.01 1
0.005

0.056
0.039
0.020
0.139
0.115

0.314
0.657
0.1 12.
0.065
0.246

0.507
0.314
0. 140
0.276
0.160



I
| .
I example
I
I
I

‘ I acuni—046
I acuni-047
I acuni-048
I acuni-049
I acuni-OSO
I
I acuni—OS 1
I a'cuni-052
I 800111-053
I acuni-054
I acuni-OSS
|
| acuni-056
I acuni-057
I 000111-058
I acuni—OS9
I acuni+060
I

I acuni ~06 1
I acunI-062
I acuni-063
I acuni-064
I acuni-065
I
I acuni-066
| acuni-067

. | acuni-068
I acuni-069
I acuni-070
l
I acuni-07 l
I acuni-O72
I acuni-073
I acuni-074
I acuni -075
l

I acuni -076
I acuni -077
I äcuni-078
I acuni-079
I acuni-OSO
I
I acuni-08 l
I acuni—082
I «uni-083
I scum-084
I acuni-OSS
I
I acuni-086
l acuni-087
I acuni-088
I acuni-089
I acuni-090
I

1

I
I problem
|
I]

I xyz = node
I xyz = need
I xyz = uccc
I xyz = uvcd '
I xyz = uvcc
I
I xy'z = uvwc
| xyz = ut

- I xyz = uucd
I xyz = uucc
I xyz = uuvc
I .

I xyz = uuvw
I xyz = uuvv
I xyz = uuuc
| xyz = uuuv
I xyz = uuuu

_g .
! xxa = ucde
I xxa = need
I xxa = uccc
I xxa = uvcd
I xxa == uvcc
I
l xxa = uvwc
I xxa = ut
I xxa = uucd
l xxa = uucc
I xxa = uuvc
I
I xxa = uuvw
I xxa = uuvv
I xxa = uuuc
I xxa = uuuv
I xxa = uuuu

J.

I xxy = ucde
I xxy = uccd
I xxy = uccc
l xxy = uvcd
I xxy = uvcc
I
I xxy = uvwc
I xxy = ut
I xxy = uucd
I xxy = uucc
I xxy = uuvc
I
I xxy = uuvw
I xxy = uuw
I xxy = uuuc
I xxy = uuuv
I xxy = uuuu
I

number of
unifiers

AC (AC1)

120 (27)
75 (18)
37 (10)

336 (9 )
216 ( 6)

2161(1)
486(9 )
318(6 )

1200(3)

2901 ( 1)
3825 ( 1)
2982 (3 )
7029 ( 1)

32677 ( l )

2(1 )

2(1)
2(1 )

60 (8 )

12(2)

486(9)
3416(4)

0(0 )
0 (0 )
2 (1 )

12(2)
0(0)
2(1 )

12(2)
0(0 )

28(8 )

11(4)
7(3 )

228(9)
44(2 )

1632(4)
13703 ( 1)

2( 1)
4 (2 )

18 (2 )

69 (1 )
7 (1 )

12(2)
47(1)

5(1 )

870(3 ) .

Stickel

AC-time

0.320
0. 168
0.073
0.840
0.431

2. 102
5.030
0.996
0.513
2.339

5.435
5.673
4.730
10.695
39.865

0.017 .
0.009 -
0.006
0.147
0.027

0.968
6.426
0.004
0.003
0.010

0.028
0.003
0.008
0.019
0.002

0.074
0.025
0.013
0.515
0.081

3.228
25.605

0.007
0.007
0.034

0.1 15
0.011
0.021
0.057
0.007

.L

Herold & . -
' Siekmänn

0.281 (0.006)
- 0.186 (0.011)
0.104 (0.016)
0.843 (0.008)
0.549 (0.012)

2.428 (0.010)
7.086 (0.008) _
1.082 (0.008)
0.714 (0.010)
2.929 (0.010)

7.936 (0.009)
8.913 (0.008)
7.103 (0.011)

19.321 (0.009) -- '
98.544 (0.010)

0.010 (0.005)
0.010 (0.005)
0.010 (0.005)
0.128 (0.007)
0.032 (0.006)

1.132 (0.010)
8.547 (0.011)
0.003 (0.003)
0.005 (0.004)
0.011 (0.005)

0.042 (0.007)
0.004 (0.003)
0.009 (0.005)
0.032 (0.006)
0.003 (0.003)

_ 0.061 (0.005)
0.028 (0.007)
0.021 (0.006)

, 0.508 (0.007)
0.101 (0.007)

3.871 (0.010)
36.690 (0.010)

0.010 (0.005)
0.014 (0.006)
0.047 (0.007)

0.220 (0.005)
' 0.023 (0.004)

0.031 (0.007)
0.110 (0.006)
0.015 (0.004)

I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
!
I
I
I
l
I
I
I
I
I
I
l
l
I
|
I
I
I
I

I ‘Kapm' &
Zhang

AC-time (ACl-time) I AC-time

0.209
0.100
0.049
0.517
0.293

' 1.316
3.308
0.453
0.264
1.014

(2.330
2.584 .
1.701 '
4.615

19.136

0.012
0.009
0.009
0.128
0.023,

1.165
12.306
0.006 -
0.004
0.009

0.026
0.004
0.008
0.018
0.004

0.043
0.017
0.014
0.225
0.043

1.368
13. 186

0.009
0.008
0.027

0.083
0.01 1
0.015
0.037
0.008



r I
Herold &

I I I I I I

I I I number of I Stickel I I Kapur & I
I example I problem I unifiers I I Siekmann I Zhang I
I I I AC (AC1) I AC-timc I AC-time(AC1-time) I AC-time I
I I I I I I l
I I . I I T I I
I scum-091 | xxx = ucde I 2 ( 1 )  | 0.013 I 0.009 (0.004) I 0.009 I
I acuni-092 I xxx = uccd I 2 ( 1) I 0.008 I 0.009 (0.005) I 0.008 I

. I acuni-093 I xxx = uccc I l ( 1) I 0.002 I 0.006 (0.004) I 0.003 I
I acuni-094 l xxx = uvcd I 140(9)  | 0.254 I 0.314 (0.007) I 0.092 I
| acuni-095 | xxx = uvcc I 28 ( 2) I 0.043 I 0.069 (0.007) | 0.025 I
l I I I I I I
I acuni-096 I xxx = uvwc I 6006 (6 )  I 9.499 I 14.671 (0.012) I 3.218 I
lacuni-097 Ixxx =ut  I 1044569 (1) I * l * (0.013) I 639.640 I
I acuni-098 I xxx = uucd I 2 ( 1) I 0.008 I 0.008 (0.004) I 0.008 I
I acuni—099 I xxx = uucc I 2 (. l )  I 0.004 I 0.009 (0.004) I 0.005 I
I acuni-IOO I xxx = uuvc I 12 ( 2) I 0.023 I 0.033 (0.007) I 0.016 I
I I I I I I I
I acuni-lOl I xxx = uuvw I 101 ( 1) I 0.130 I 0.287 (0.007) I 0.075 I
I acuni-102 I xxx = uuvv I 13 ( 1) I 0.013 I 0.033 (0.005) I 0.010 I
I acuni-103 I xxx = uuuc I 0 ( 0) I 0.002 I 0.003 (0.003) I 0.002 I
I acuni-104 I xxx = uuuv I 1 ( 1) _ I 0.003 I 0.007 (0.003) I 0.003 I
I acuni-IOS I xxx = uuuu I l ( l )  I 0.002 I 0.005 (0.002) I 0.003 I

I l I ' I I

5 .  Conclusion

Bürckert and Tepp measured 2-16 msec for their Diophantine equation solving algorithm, while the whole
computation ranged from 2 msec to 98 sec (or more than 10 min for example “suomi-097"). This shows the
exponential explosion in the number of AC-solutions and demonstrates that investigations of fast Diophantine
equation solving [6, 7 ,  11, 18, 25, 36, 59]  cannot really improve AC-unification -— at most they will hasten
ACl—unification.

_ Hence we propose to take the ACI—unifiers or the solutions of the Diophantine equations as a representation
for the AC-unifiers (see [4] for a more detailed discussion). A main problem with ACI-unification, however,
has been that there was no extension for ACl-unification with free function symbols or with other theory
unification algorithms, because of the collapse equation 1x = x specifying the unit (see [19,  20, 33,  56, 57 ,  58 ]
for the combination problem of unification algorithms for regular, collapse free theories). Recent research by
M. Schmidt-SchauB [46], however, gives a solution to the problem of combining arbitrary disjoint equational
theories, and for the extension of arbitrary theory unification algorithms to free function symbols (see also [1]).

We finally want to emphasize that the benchmarks are just for elementary AC-unification problems, but
mast applications have at least additional free function symbols. Moreover the difference between the two
approaches becomes particularily visible when such function symbols are involved. In this case Stickel
abstracts “alien” subterms temporarily by variables and computes the solutions for the abstraction. A
post—process generates the final solutions from the “pure” variable AC-problem and the abstraction (this can
again be supported by constraints on the Diophantine equations). Herold and Sielcmann on the other hand
abstract the alien subterms by distinct “new” free constants and thus obtain subproblems, where different alien
subterms have to be identified (see [55] for a more detailed discussion of these differences). Here both methods
strongly differ and we would like to see a comparison of both approaches that determines "which is better for
which class of problems. Hence we need some benchmarks for non-elementary AC-unil'tcation problems.

Acknowledgements: Kapur and Zhang would like to acknowledge Sivakumar, who did the first
implementation of Stickel/Fortenbacher's AC-unit'ication algorithm in RRL. Numberless hints and ideas of
H.]  . Ohlbach were very useful in improving the Lisp code of the Herold/Siekmann implementation. N.
Eisinger carefully read some former draft of this note.

This work was partially funded by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 314 .
(H.-J . Biirckert), by the Siemens AG (M. Tepp), by the National Science Foundation under grants OCR-811116
(M.E. Stickel) and CCR-8408461 (D. Kapur, H. Zhang).

6



References
qm

10.

l l .

12.
13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Boudet, A. ,  Jouannaud, J.-P., Schmidt-SchauB, M., ‘Unification in Boolean Rings and Abelian Groups’,
Proc. of Cary”. on Logic in Computer Science, Edinburgh, to appear (1988)

. Boy de la Tour, T., Caferra, R.,  Chaminade, G., ‘Some Tools for an Inference Laboratory (ATINFY, Proc.
of 9th Int. Con/. on Automated Deduction, Springer LNCS 310, p. 744-745 (1988)

. Bürckcrl, H. -J., ‘Lazy Theory Unification in PROLOG: An Extension of the Warren Abstract Machine',
Proc. of German Workshop on Artif c1al Intelligence, Springer Fachberichte 124, p. 277-288 (1986)

. Bürckert, H. -J., ‘Solving Disequations in Equational Theories’, Proc. of 9th Int. Conf. on Automated
Deduction, Springer LNCS 310, p. 517-526 (1988). See also: SEKl-Report SR- 87-15, Universität
Kaiserslautei'n (1987)

. Bürckert, H. -J., Herold, A., Schmidt- Schauß, M., ‘On Equational Theories, Unification, and Decidability’ ,
Proc. of Int. Conf. on Rewriting Techniques and Applications, Springer LNCS 256, p. 204-2-15 (1987).

' See also:! . of Symb. Comp., Kirchner, C. (ed.), Special Issue on Unification, to appear (1988)
. Büttner, W. ,  ‘Unification in the Datastructure Multisets’, J. of Automated Reasoning 2,  p.  75-88 (1986)
. Clausen, M. ,  Fortenbacher, A. ,  ‘Efficient Solution of Linear Diophantine Equations’, Internal Report

32/87, Universität Karlsruhe (1987)
. Eisinger, N . ,  Ohlbach, H.J.‚ ‘The Markgraf Karl Refutation Procedure’, in Proc. of 8th Int. Conf. on

Automated Deduction, Springer LNCS 230, p. 682-683 (1986)
. Fages, F. ,  ‘Formes Canoniques dans les Algébres Booléennes, et  Application a la  Demonstration

Automatique en Logique de Premier Ordre’, These de 3éme Cycle (in French), Université Paris VI (1983)
Fages, F . ,  ‘Associative-Commutative Unification’, Proc. of 7th Int. Conf. on Automated Deduction,
Springer LNCS 170, p. 194-208 (1984). See also: J. of Symb. Comp. 3, (1987)
Pages, F., Huet, G.,  ‘Complete Sets of Unificrs and Matchers in Equational Theories’, Proc. of CAAP'83,
Springer LNCS 159 ,  p.205-220 (1983). See also: J. of Theoret. Comp. Sci. 43 ,  p. 189-200 (1986)
Fortenbacher, A. ‘Algebraische Unifikation' ‚Diplomarbeit (in German), Universität Karlsruhe (1983)
Fortenbacher, A., ‘An Algebraic Approach to Unification under Associativity and Commutativity’, Proc. of
Int. Conf. on Rewriting Techniques and Applications, Springer LNCS 202, p. 381 -397 (1985). See also: J.
of Symb. Comp. 3, p. 217-229 (1987)
Franzen, M., Henschen, L.J., ‘A New Approach to Universal Unification and Its Application to
AC-UnificationT, Proc. of 9th Int. Conf. on Automated Deduction, Springer LNCS 310, p.643- 657 (1988)
Fribourg, L., ‘A Superposition Oriented Theorem Prover’, J. of Theoret. Comp. Sci. 35, p.124-164 (1985)
Gallier, J ., Raatz, S . ,  ‘SLD-Resolution Methods for Horn Clauses with Equality BaSed on E—Unification’,
Proc. of Symp. on Logic Programming, p. 168-179, (1986)
Goguen, J. A., Meseguer, J., ‘EQLOG- Equality, Types, and Generic Modules för Logic Programming, in:
DeGroot, D ,  Lindstrom, G. (eds.), Logic Programming. Functions, Relations, and Equations, Prentice
Hall, p. 295-363 (1986)
Guckenbiehl, Th., Herold, A., ‘Solving Linear Diophantine Equations’, MEMO-SEX! 85-IV-KL,
Universität Kaiserslautem (1985)
Herold, A., ‘Combination of Unification Algorithms’, Proc. of 8th Int. Conf. on Automated Deduction,
Springer LNCS 230, p.450-469 (1986).
Herold, A . ,  ‘Combination of Unification Algorithms in Equational Theories’, Dissertation, Universität
Kaiserslautern (1987) _
Herold, A . ,  Siekmann, J.H., ‘Unification in Abelian Semigroups’, J. of Automated Reasoning 3 ,  p.
247-284 (1987)
Hsiang, J ., ‘Topics in Automated Theorem ving and Program Generation’, Ph. D .  Thesis, University of
Illinois at Urbana-Champaign (1982)
Hsiang; J., ‘Two Results in Term Rewriting Theorem Proving', Proc. of Int. Conf. on Rewrite Techniques
and Applications, Springer LNCS 202, p. 301-324 (1985)
l-lsiang, J., Dershowitz, N . ,  ‘Rewrite Methods for Clausal and Non-Clausal Theorem Proving’, Proc. of
10th ETACS Int. Call. on Automata, Languages, and Programming (ICALP), (1983)
Huet, G., ‘An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine
Equations’, Information Processing Letters 7, p. 144-147 (1978)
Huet, G., Oppen, D.C., ‘Equations and Rewrite Rules. A Survey’, in: Book, R. (ed.), Formal Languages:
Perspectives and Open Problems, Academic Press (1980)
Hullot, J.M., ‘Compilation des Fonnes Canoniques dans des Théories Equationelles’, These du 3eme Cycle
(in French), Université de Paris-Sud (1980)
Jaffar, J. ,Lassez, J. -L., Maher, M., ‘Logic Programming Language Scheme, in: DeGroot, D., Lindstrom,
G. (eds), Logic Programming: Functions, Relations, Equations, Prentice Hall (1986)

7



29.

30.

31.
32.

33.

34.
35.

36.

37.

38.

39.

40.
41.

42.
43.

44.
45.

46.

47.
48.

49.

50.

Jouannaud, J.-P., Kirchner, H., ‘Completion of a Set of Rules Modulo a Set of Equations', Proc. of 11th
ACM Cory? on Principles of Programming Languages, (1984)
Kapur, D., Narendran, P., ‘An Equational Approach to Theorem Proving in First—Order Predicate Calculus’,
Proc. of 7th Int. Joint Conf. on Artificial Intelligence, Los Angeles, p. 1146-1153 (1985)
Kapur, D. ,  Zhang, H., ‘RRL: A Rewrite Rule Laboratory -- A User's Manual’, General Electric , (1987)
Kapur, D., Zhang, H., ‘RRL: A Rewrite Rule Laboratory’, Proc. of 9th Int. Conf. on Automated
Deduction, Springer LNCS 310,  p. 768-769 (1988)
Kirchner, C.,  ‘Methodes et Outils de Conception Systematiquc d'Algorithmes d‘Unification dans les
Theories Equationelle’, These de Doctoral d'Etat (in French), Université deNancy (1985)
Kirchner, C. (ed.), ‘Special Issue on Unification’, J. of Symb Comp., to appear (1988)
Kirchner, C., Kirchner, H. ‘Implementation of a General Completion Procedure Parametrized by Built——m
Theories and Strategies’ Proc. of EUROCAL Conf. (1985)
Lankford, D. ‘A  New Non-negative Integer Basis Algorithm for Linear Homogeneous Equations with
Integer Coefficients’ ,unpublished (1985)
Lankford, D. ,  Ballantyne, R.M., Decision Procedures for Simple Equational Theories with Commutative-
Associative Axioms: Complete Sets of Commutative-Associative Reductions’, Internal Report ATP-39,
University of Texas, Austin (1977)
Lincoln, P., Christian, J., ‘Adventures in Associative-Commutative Unification (A Summary)’, Proc. of
9th Int. Conf. on Automated Deduction, Springer LNCS 310, p. 358—367 (1988)
Livesey, M., Siekmann, J .H., Unification of AC-Terms (Bags) and ACI-Terms (Sets)’, Internal Report,
University of Essex (1975) and Universität Karlsruhe (1976)
MKRP, ‘The Markgraph Karl Refutation Procedure’, Internal Report, Universität Kaiserslautem (1984)
Müller, J., ‘THEOPOGLES - A Theorem Prover Based on First-Order Polynomials and a Special
Knuth-Bendix Procedure’, Proc. of German Workshop on Artificial Intelligence, Springer Fachberichte
152, p. 241-250 (1987)
Ohlbach, HJ  ., ‘Link Inheritance in Abstract Clause Graphs’, J. of Automated Reasoning 3 ,  p. 1-34 (1987)
Peterson, G.E.‚ Stickel, M.E., ‘Complete Sets of Reductions for Equational Theories with Complete
Unification Algorithms’, JACM 28, p. 322—364 (198l)
Plotkin, G., ‘Building in Equalional Theories’, Machine Intelligence 7, p. 73  —90 (1972)
Robinson, J.A., ‘A  Machine Oriented Logic Based on the Resolution Principle’, JACM 12, p. 23-41
(1965)
Schmidt-Schauß, M., ‘Combination of Arbitrary Disjoint Equational Theories, Proc. of 9th Int. Conf. on
Automated Deduction, Springer LNCS 310, p._ 378-396 (1988). See also: J. of Symb. Comp., Kirchner,
C. (ed) Special Issue on Unification, to appear (1988)
Siekmann, J.H., ‘Unification and Matching Problems’ Ph. D.  Thesis, Essex University (1978)
Siekmann, J.H ,  ‘Unification Theory. A Survey’, J. of Symb. Comp., Kirchner, C. (ed. ), Special Issue on
Unification, to appear (1988)
Smolka, G.,  Nutt, W,  Goguen, J‚A., Meseguer, J ., ‘Order-sorted Equational Computation’, Proc. of
CREAS Workshop, Austin, Texas, to appear (1987) '
Stickel, M.E. ‘A  Complete Unification Algorithm for Associative-Commutative Functions’, Proc. of 4th

' Int. Joint Conf. on Artificial Intelligence, Tblisi, p. 71  -82 (1975)
51.

52.

53.

_ 54.

55.

56.
'57.

58.

59.

Stickel, M. E., ‘Mechanical Theorem Proving and Artificial Intelligence Languages, Ph. D. Thesis,
Camegie—Mellon University (1977)
Stickel, ME. ‘A  Unification Algorithm for Associative-Commutative Functions’, JACM 28, p. 423-434
(1981)
Stickel, M.E., ‘A  Case Study of Theorem Proving by the Knuth-Bendix Method Discovering that X3=  X
implies Ring. Commutativity’, Proc. of 7th Int. Conf. on Automated Deduction, Springer LNCS 170, p.
248-258 (1984)
Stickel, M.E., ‘Automated Deduction by Theory Resolution’, J. of Automated Reasoning l ,  p. 333-357
(1985)
Stickel, M.E.,  ‘A  Comparison of the Variable-Abstraction and Constant-Abstraction Methods for
Associative- Commutative Unification’, J. of Automated Reasoning 3 ,  p. 285-289 (1987)
Tiden, E., ‘Unification in Combinations of Equational Theories’, Ph. D .  Thesis, Stockholm (1986)
Tidcn, E., ‘Unification in Combinations of Collapse-Free Theories With Disjoint Sets of Function
Symbols’, Proc. of 8th Int. Conf. on Automated Deduction, Springer LNCS 230, p.431—450 (1986)
Yellick, K., ‘Combining Unification Algorithms for Confined Regular Equational Theories’, Proc. of Int.
Conf. on Rewriting Techniques and Applications, Springer LNCS 202, p. 365-380 (1985)
Zhang, H. ‘An Efficient Algorithm for Simple Diophantine Equations’, Technical Report 87-26, Dept. of
Computer Science, RPI (1987)


