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Abstract.

In this thesis I investigate the logical foundations of a very general order-sorted logic. This
sorted logic extends usual first order logic by a partially ordered set of sorts, such that every
term is of a particular sort or type, in addition there is a mechanism to define the sort of terms
using term declarations. Syntax and semantics of this order-sorted logic with declarations are
defined in a natural way.

Unification in order-sorted logics with term declarations is undecidable and infinitary, i.e.,
minimal complete sets of unifiers may be infinite. However, under the restriction that
declarations are only of the form f:S;x...xS_ —S§ and that the signature is regular, unification
is decidable and minimal complete sets of unifiers exist and are always finite. Furthermore
there exists a signature of this form such that unification is NP-complete.

If there is no equality predicate in the logic we use resolution and factoring as inference
rules, where the unification algorithm is adapted to the sort-structure. The corresponding
calculus is refutation complete.

If there is an equality predicate and all equational literals are in unit clauses, we use a
special E-unification algorithm and show that under some restrictions such an algorithm can be
constructed from an unsorted unification algorithm by postprocessing the set of unifiers.

If arbitrary equations are admissible, we use paramodulation as additional inference rule or
replace resolution by the E-resolution rule.

An algorithm for transforming unary predicates into sorts is presented. It is shown that this
algorithm is correct and complete under sensible restrictions. Usually, the algorithm may
require exponential time, however, in the special case of Horn clauses the algorithm can be
performed in polynomial time.

We also investigate term rewriting systems in an order-sorted logic and extend the
confluence criterion that is based on critical pairs by critical sort relations.



Zusammenfassung.

In dieser Arbeit untersuche ich die logischen Grundlagen einer sehr allgemeinen
ordnungssortierten Logik. Diese sortierte LLogik erweitert die tibliche Logik erster Stufe um
eine partiell geordnete Menge von Sorten, so daB jeder Term eine bestimmte Sorte (Typ) hat.
Zusidtzlich gibt es einen Mechanismus zum Definieren von Termsorten mittels
Termdeklarationen. Syntax und Semantik dieser sortierten Logik werden auf natiirliche Weise
definiert. |

Unifikation in ordnungssortierten Logiken mit Termdeklarationen ist unentscheidbar und
infinitdr, d.h., minimale und vollstindige Mengen von Unifikatoren konnen unendlich sein.
Unter der Einschrinkung, daB Deklarationen nur von der Form f:S;X...xS —S sein diirfen
und die Signatur reguldr ist, erhidlt man daB3 Unifikation entscheidbar ist und da minimale
Mengen von Unifikatoren immer endlich sind. Weiterhin gibt es eine solche Signatur, in der
Unifikation NP-vollstindig ist.

Wenn kein Gleichheitsprédikat in der Logik ist, kann man Resolution und Faktorisierung
als Ableitungsregeln benutzen, wobei der Unifikationsalgorithmus an die Sortenstruktur
angepasst ist. Der zugehorige Kalkiil ist widerspruchsvollstdndig.

Wenn ein Gleichheitspriddikat vorhanden ist und alle Gleichungen in Unitklauseln
vorkommen, kan man einen speziellen E-Unifikationsalgorithmus benutzen. Wir zeigen, da3
man unter gewissen Bedingungen einen Algorithmus aus einem unsortierten
Unifikationsalgorithmus und einer Nachbearbeitung der Menge der Unifikatoren konstruieren
kann. _

Wenn beliebige Gleichungen erlaubt sind, benutzt man Paramodulation als zusétzliche
Ableitungsregel oder man ersetzt Resolution durch die E-Resolution.

Es wird ein Algorithmus zum Transformieren einstelliger Priadikate in Sorten vorgestellt.
Von diesem Algorithmus wird gezeigt daf er unter gewissen sinnvollen Einschrinkungen
korrekt und vollstéindig ist. Der Algorithmus hat normalerweise exponentielle Zeitkomplexitit,
aber im Spezailfall von Hornklauseln kann der Algorithmus in polynomialer Zeit ausgefiihrt
werden.

Wir untersuchen auch Termersetzungssysteme in einer ordnungssortierten Logik und
erweitern das auf kritischen Paaren beruhende Konfluenzkriterium um kritische
Sortenrelationen.
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Introduction.

Motivation.

The investigation of logical calculi suitable for an implementation on the computer and the
development of methods for the reduction of search spaces are essential tasks in the field of
Automated Deduction. The distinction of objects into different classes, called sorts, for
example points, lines and planes in geometry, and the exploitation of this information in the
search for a proof is a very promising technique for many problems (such as Schubert’s
steamroller [Wa83, Wa85, St86]). The proposed techniques of using sort information have the
additional advantage that they can be combined with most other known methods in use for the
reduction of search spaces, such as the standard search strategies [Lo78, CL73], the building
in of equational theories [P172] or techniques for the building in of arbitrary theories [St86].

First order logic is often used to describe facts or relations that hold in some domain D.
Given some facts that hold in D the deduction methods of first order logic can be used to
deduce new facts that are true for the domain D. In the standard first order predicate calculus
the knowledge that some objects in D are of a certain type or belong to a particular subset is
expressible only using a unary predicate and also there are no restricted quantifiers. For
example, the variable x in the formula: Vx Nat(x) = x > 0 ranges over all possible objects.
This has the undesired effect that formulae like Nat(c) = ¢ 20 can be deduced for all
objects c, even if ¢ 2 0 does not make sense, for example if c is a list. The essential idea in a
many-sorted logic is to distinguish different sorts of objects and to restrict the scope of
variables to a particular sort. For example, after introducing the sort (or type) NAT, the
formula above reads (Vx:NAT x 2 0). In this formula the variable x ranges only over objects
of sort NAT.

Using this idea as a starting point for a modification of the syntax and deduction in first
order logic, several other concepts and extensions arise naturally:

One may need a set S of sorts that is partially ordered.

If we consider a term t as a function with input from our object domain D and a value in D,
where the inputs have to obey the sort of variables, then in general the value produced by t
does not range over the whole set D, but over a smaller subset. This range of values should be
syntactically reflected and hence to every term t a sort should be assigned. Since we have
functions in our logic and hence there are compound terms, there is the need for a method to



compute the sort of terms. Usually, this is done by specifying functions with declarations like
f:S;X...x§,— S, where §, are sort names. Hence the sort of terms is usually computed from
the range sort S of the top level function symbol. An equivalent method to specify the sort of
terms is to use term declarations of the form f(xg,...,Xg): S. As a generalization we allow
term declarations of the form t:S, where t is an arbitrary term. This is a very general method to
specify the sort of terms.

In addition we need the concept of a well-sorted substitution that substitutes only
admissable terms for sorted variables. For example, we may have the sort-structure INT 2
NAT, the variable x5 7 With sort NAT as above and now the substitutions are to replace xyz
only by terms of sort equal or less than NAT.

A further concept is that of the sorted domain of a predicate, i.e., a predicate accepts only
certain combinations of sorted arguments, otherwise the expression is ill-sorted.

We shall call a logic with these ingredients an order-sorted logic in order to emphasize
that subsorts are permitted and we shall reserve the word many-sorted for logics that use

unrelated sorts. Note that some authors use many-sorted logic also for logics with subsorts.

The following specification of even numbers is an example for term declarations:

EVEN e NAT, O0:EVEN, s:NAT—NAT,

s(s(xgygN)): EVEN.

This gives recursively the terms of type EVEN: 0, s(s(0)), s(s(s(s(0))),... , which
correspond to the even numbers 0,2,4,... .

Using the above specification of even numbers we can exemplify the use of well-sorted
substitutions and sorted unification:

Consider the two statements Vxgygy Pxgypn)  and Vygyen —P(S(s(YgygNn)))- These
two formulae are contradictory, since the well-sorted substitution {xgygN ¢ S(S(YEyEN))}
gives an obvious contradiction. However, the two formulae Vxgven PXgyen) and
Vygven —P(s(ygvgn)) are not contradictory. The necessary substitution
{xgvEN € S(YEVEN)] is not well-sorted, since the term s(ygygy) is not of sort EVEN but of
sort NAT.

If we again slightly change the above example, we see how unification has to be extended:
Consider the two formulae Vxgygn P(xpygn) and Vynat —P(S(s(ynaT)))- The substitution
{XgvEN < S(S(YNAT))} is not the right one, since it is not well-sorted. So unification has to
try to make it well-sorted. A substitution which makes the two formulae contradictory is
{xgvEN € S(ZEyvEN))> YNAT € ZEVEN), that is the variable yy 5t is weakened to sort
EVEN by substituting zgygy. This example shows that usual unification has to be extended
by a weakening step.

Sorts also provide a means for combining many inferences into one formula. Consider for



example the following Horn-clause variant of the above problem:

EVEN(0),

Vx EVEN(x) = EVEN(s(s(x))),

Vx EVEN(x) = P(x)
The query Jy EVEN(y) A P(y) would produce an infinite number of answers y = 0,
y = 5(s(0)), ... , s2*M0),... .

A sorted formulation of this problem is

0:EVEN,

s(s(xgyen)): EVEN

Vxgven POgvEN)
The corresponding sorted query ?P(ygygyn) would produce only one answer, namely
YEVEN = XEVEN » Which has the meaning that all terms of sort EVEN are allowed as answers.

The next step in order to obtain a more powerful deduction calculus for a wider range of
well-sorted formulae is to have equality as a distinct predicate. The semantic aspect of such a
logic with equality and sorts is relatively straightforward, but is not'as intuitive as it is without
equations. For example there may be a gap between the syntactic sort and the semantic sort of
objects: if there is a sort structure and an equational theory, which for some reasons allows the
deduction of s =t for every two terms (i.e., it is inconsistent), then every model has exactly
one element and all semantical sort domains are equal, whereas the syntactical sorts are all
different.

The computational aspects of a logic with equality and sorts causes even more difficulties.
If paramodulation is extended in the natural way, then it may be possible to infer ill-sorted
formulae. If for example the unrelated sorts A and B are in the signature, and also there are
constants a:A and b:B, a predicate P, which accepts only terms of sort A, then let the formulas
be a = b and P(a). A replacement of a by b (i.e. by paramodulation) gives the ill-sorted formula
P(b). There are more complex and more natural sets of formulae with no obvious way of how
to avoid the deduction of such ill-sorted formulae. For example if there is an injectivity clause
of the form Vx,y: x =y v f(x) # f(y), then paramodulating with the equation x =y is a
potential source for plenty of such ill-sorted paramodulants. In this thesis we will present
several approaches to solve this problem.

Of course sorts can be encoded using unary predicates and the sorted part of the signature
can then be interpreted as a set of (Horn-) clauses, that allows to deduce the sort of a term.
This translation process yields for every sorted clause set an equivalent unsorted one, which is
called the relativized clause set [Ob62, Sch 38]. The converse problem whether a unary
predicate can be interpreted as a sort, or how to encode a certain problem with a sorted
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specification, is more difficult and is the subject of chapter V1. In particular it would be useful
to have a translation process, such that an Automated Deduction System can find equivalent
representations by itself and decides which of these representations is more appropriate for the

search process.

Related Work.

The use of sorts or types in logic dates back to J. Herbrand [Her30, Her71]. His
completeness proof of the sorted calculus was not correct, however, as pointed out by A.
Schmidt [Sch38]. The completeness of a calculus for a many-sorted logic with function
symbols is proved correctly in [Sch38, Sch51]. All these logics are somehow restricted: the
many-sorted logic considered by H. Wang and P. Gilmore [Wan52, Gi58] has no function
symbols and all the many-sorted logics in [Her30, Sch38, Wan52, Gi58] do not make use of
subsorts. The extension investigated by T. Hailperin [Hai57] allows the restriction of the
quantification of a variable by arbitrary formulae. This seems to be too general an extension for
deduction systems, since in this calculus one needs the full power of first order calculus to
infer if a formula is well-sorted.

The most interesting formulation of many-sorted logics for our purposes is that of A.
Oberschelp [Ob62]. He describes several different many-sorted logics. In his S-logic function
symbols, multiple assignments for functions and subsorts are allowed. He gives a clear
Tarski-type semantics, which is the same as ours. To our knowledge he was the first to
introduce a notion of order-sorted algebra. His Z-logic uses a relation on variables and terms
to specify the sort of a term, which is similar to the R-systems in this thesis. However, term
declarations are not allowed in the Z-logic. All these classical sorted logics had no notion of
unification or of a most general inference.

Sorts were recognized as an important tool for Artificial Intelligence and Automated
Deduction by P. Hayes [Hay71], who allows unrelated sorts and multiple sort range
assignments per function symbol.

More recently, sorted logics were investigated as useful tools for Automated Deduction by Ch.
Walther and A. Cohn [Wa83, Co83]. Ch. Walther [Wa83] developed a calculus based on
resolution and paramodulation, which allows subsorts and equations, but only one declaration
per function symbol. His paper was the first to combine resolution and sorts using a sorted
unification algorithm. The completeness proofs in [Wa83] are obtained by a transformation of
the classical completeness proofs and the semantics given there are defined via relativizations.
Ch. Walther demonstrated with many examples, including the now well-known Steamroller
example [Wa85], that his logic is a powerful technique for avoiding redundancies in the search

11



for a proof.

A. Cohn [Co83] considers a more general calculus which allows multiple function
declarations per function. His logic is more expressive than Walthers, since some unit clauses
may be built into the logic (polymorphic predicates), however, there are no equations in his
logic. His evaluation rule competes with unit deductions as in PROLOG [CM81] or with the
terminator algorithm described by G. Antoniou and H.J. Ohlbach [AO83]. Cohn’s logic has
the advantage of small initial clause sets, but the drawback of more deduction rules.

The many-sorted logic of K.Irani and D. Shin [IS85] has a dynamic sort-structure, but it
may be too heavy a machinery for most practical purposes, since one can think of the sort
structure as virtually fixed and hence use some standard many-sorted logic, and let the
program generate the sorts only if needed.

Our approach to a many-sorted logic follows the lines of [Ob62] and [Wa83]. A
characteristic of this approach is that once the signature is given, all terms have a fixed sort.
For some applications this may be a disadvantage, for example the situation where one knows
that A is a person, but one does not know whether A is male or female, is not expressible in
this logic. In other words the sort-of a term is computable given the signature, but not
deducible from some given statements. This is clearly a restriction, but it allows for fast
algorithms to compute the sort of a term.

An approach that is very close to ours is that of G. Smolka [Sm86], who employs
order-sorted algebra in the devclopment of an order-sorted Horn-logic. Further work with
similar semantics is carried out by W.W. Wadge [Wad82], who gives in fact a semantics for
specifications that allow declarations. Our semantics is also similar to the semantics in JLA.
Goguen and J. Meseguer [GM85a], but their notion of homomorphisms as a family of
mappings is based on the many-sorted approach and seems to be not the optimal one.

In the field of algebraic specifications [EM85] the use of sorts is a common technique,
however, usually no subsorts are admitted and just one declaration per function is allowed.
This was extended to subsorts and term declarations by J.A. Goguen [Gg78, GM85a], who
introduced the notion ‘order-sorted algebra’ to indicate that subsorts are permitted. Sorts are
mainly used in this field in order to give the semantics of specifications in the form of initial
algebras and to support an appropriate handling of errors [GM85a, Go83].

Most Programming Languages use type systems for different purposes, such as type
checking at compile time, error detection, modularization of programs and for efficient
programming (cf. [HLS72, M178, Mi184, BB86, Go83, Go86, Sn86, SHS85, Tu85] These
languages are designed such that there is either no or at least only a small amount of type
handling at run time. Many-sorted unification is used in a type-checking system described by
G. Snelting [Sn86, SH85, BS86]. In the specification languages OBJ2 [FGIM85] and
EQLOG [GMS85b] the handling of sorts is done at run time and there is also the need for sorted
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equational unification in order to have an appropriate operational semantics.

The combination of equational deduction and sorts for term rewriting systems was
investigated by R.J. Cunningham and A.J.J. Dick [CD83], G. Huet and D. Oppen [HO80]
and by J.A. Goguen, J.-P. Jouannaud and J. Meseguer [GJIM85]. The system in [CD83] is
unfortunately inconsistent without additional restrictions. A translation of order-sorted term
rewriting to many-sorted term-rewriting is described in [GIM85].

Order-sorted deduction and narrowing are considered by G. Smolka, W. Nutt, J.A.
Goguen and J. Meseguer [SNMGS87] and order-sorted unification also in [MGS87]. A notion
of ‘meta’-variables and domains which converge to a sorted logic is given by H. Kirchner
[HKi87] in order to handle term rewriting systems with an infinite number of rules.

Unification under sorts originated with the papers of Ch. Walther [Wa83, Wa84]. The
handling of sort-arrays [Co83a, Co83b] is also a type of sorted unification. In [CD83] a sorted
unification algorithm is used and it is recognized that a complete and minimal set of unifiers
may be finite for elementary signatures, but a proof for the correctness of this algorithm is not
given. Unification for polymorphic signatures is proved to be of unification type finitary by the
author in [Sch85].

The extension of many-sorted logic by term declarations was proposed by J.A. Goguen
[Gg78] and term declarations were later called sort-constraints [GM85a]. These
sort-constraints are more general than term declarations, but this generality necessitates the use
of deductions to obtain the sort of a term. In fact the sort of a term may be undecidable. Our
term-declarations correspond to unconditioned sort-constraints. Other work using term
declarations is described in [Go83, Wad82].

Overview.

In this thesis we investigate order-sorted logic and its computational part. The logic allows
subsorts, term declarations and equations but provides only a fixed sort of a term. The general
aim of this work that motivated the design of our logic is to identify those computations with
sorts that can be done efficiently. A further guideline was that the resulting logic should be
intuitive and simple. In general we concentrate on finite sets of sorts, although most of the
results hold also for an infinite set of sorts. All computability and efficieny considerations are
made only for finitely many sorts, we do not consider deductions with empty sorts (cf.
[GM81, GM85]). The logic is constructed such that all connnectives and quantifiers of first
order logic can be used and a formula in this logic has the familiar shape, besides the fact that
instantiation into variables is now restricted.

Although we prefer to use resolution and paramodulation-based calculi, most classical
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calculi and all types of refutation calculi (for example [Ro65, RW69, And81, Bib81b, Ri78]
can be adapted to this sorted logic. Also equational logic and term rewriting systems [HOS80,
Hu80, Bu87] can be adapted.

In part I we give an account of the foundations of this logic, its algebraic treatment and a
semantics based on a type of order-sorted algebra, called Z-algebra, which is conceptually
closer to [Wad82] than to [GM85a]. We extend the equational logic and Birkhoff's Theorem to
sorted term algebras. Note that the straightforward solution is impossible, since it would mean
the deduction of ill-sorted terms, whereas our solution allows only well-sorted terms in the
deduction process. The same problem arises for term rewriting systems and in order to solve
this problem, some new concepts are needed, which are described in 1.12 and I1.3. In
paragraph 1.13 we work out the rule-based approach to unification which first appeared in A.
Martelli and U. Montanari's paper [MM82] and was used for an equational unification
procedure in [CKi84, CKi85, Cki87, MGS87]. This approach has advantages over the usual
extensions of the Robinson approach [Ro65], since the basic unification operations and the
control strategy are separated. The last paragraph gives a comparison between different views
of unification as a process of solving equations.

In part I we show that the distinction between well-sorted and ill-sorted formulae is not an
essential one. The satisfiability of a formula does not change, if we modify the signature and
consider all ill-sorted expressions as well-sorted. This justifies our assumption in the
following that we can ignore the problem of the deduction of ill-sorted formulae and can
always assume that all formulae are well-sorted. However, the restriction remains that only
well-sorted substitutions and instantiations are to be used. Paragraph 3 gives a general
condition for a term rewriting system to be compatible and canonical. It also contains a
completion procedure for ground term rewriting systems. In paragraphs 4 and 8 we give
several equivalent formulations for a sorted signature with term declarations, including an
infinite set of term declarations. In §6 we investigate the properties of deduction-closedness,
congruence-closedness and sort-preservation, which arise in combining sorts and equations
and we shall give criteria to check these conditions, given the signature and the axioms of an
equational theory. In §7 we investigate conservative transformations of the signature. This is a
preparatory work for the sort generation process in Part VI. In paragraphs 10 and 11 we
consider different encodings of sorted logic into first order logic and show the important
Herbrand Theorem also in the context of sorts and equations.

Part IIT and IV of this thesis are devoted to unification algorithms, where part III gives
results on unification of sorted terms without equational theories. We show that unification in
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elementary regular signatures is decidable and finitary and that in general unification is
undecidable and may be infinitary, but minimal sets of unifiers do always exist and are
recursively enumerable. Furthermore we investigate the complexity of unification for different
types of signatures.

In the case of an equational theory, we give a rule-based complete sorted unification
procedure. Here the problem of functionally reflexive axioms arises and we give an example
that in general they are needed for sorted equational unification. In the unsorted case they are
not needed: the paramodulation-based algorithm of P. Padawitz [Pa86] works without them
and the algorithm of J.H.Gallier and W.Snyder [GS87] needs functional reflexive axioms only
for the special case to eliminate occur-check failures.

If more restrictions are given like sort-preservation and congruence-closedness, then a
unification algorithm can be generated from an unsorted one and a weakening procedure as
postprocessor. We show in IV.3 that this is a complete unification procedure and that in the
case of elementary signatures the algorithm is well-behaved. We demonstrate how to use this
combination algorithm for AC and ACI function symbols.

In part V we show that a resolution-based calculus with a sorted unification algorithm is a
complete refutation procedure. We demonstrate that resolution together with paramodulation
provides a refutation-complete calculus for equality if the functionally reflexive axioms are in
the clause set. The proof method uses Herbrand's Theorem and the usual lifting-arguments.
We give an example that the functionally reflexive axioms are necessary in general, even in the
case of elementary signatures. An alternative to paramodulation is J. Morris® E-resolution
[Mo069]. We propose to use it in combination with rigid E-unification as defined by
J.H.Gallier, S. Raatz and W.Snyder [GRS87] for deductions of equational matings [And81].
In paragraph 6 we extend M. Stickel's theory-resolution [St85] to a sorted signature.

Part VI is a description of an algorithm that manipulates clause sets and signatures in order
to obtain a clause set with respect to a more sorted signature. The idea is to have a relatively
fast transformation algorithm and to make the deduction on the transformed clause set, where
more sort-information is given and hence the search space is smaller than in the original clause
set. We prove that this procedure is correct and give conditions for it to be complete. We adapt
the algorithm to sets of Horn clauses, such that it can be used to transform logic programs into
more sorted versions. For the case of Horn clauses this algorithm is shown to be of

polynomial time complexity.
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Part I

Foundations

Overview:  In this part we develop the frame-work for an order-sorted logic with equality,
its syntax, semantics and its computational aspects. We define order-sorted signatures and
show that the term algebras provide free and initial algebras with respect to our notion of a
signature. A notion of Z-model for arbitrary clause sets is presented.

The rest of this part is devoted to the consequences of the combination of sorts with
equational theories for unification problems and for term rewriting systems.

1. Preliminaries.

We use the usual set theoretical symbols €, <, N, U for the membership relation, subset
relation, intersection and union of setS and abbreviate A; U ... U A, by U{Ajli=1,...,n}.
The set difference is denoted by A-B and the powerset of a set A is denoted as P(A). The
n-fold direct product of a set A is denoted by A™ and the empty set is denoted by @. For partial
funciions f: A —B we denote the domain of f, i.e. the subset of A where f is defined, by 2X(f).
A function f: A =B with IX(f) = A is called a total function. By N we denote the set of natural
numbers, including zero.

A reflexive and transitive relation < on a set A is called a quasi-ordering. A
quasi-ordering < naturally generates an equivalence relation =, such thata=b < (a<b and
b < a). The equivalence-class in A with respect to = is denoted as [a]_. We use a <bto
denote that a < b, but not a =b. The notations > and > have their obvious meaning. A subset
B of A is called a lower segment if it is downward closed, i.e., forae Aandb e B:a<b
implies a € B. Accordingly we define an upper segment. Note that unions and intersections
of upper segments (lower segments) are again upper segments (lower segments).

An element ‘a’ is minimal (maximal) in A, iff for all be A:b <a implies a < b (iff for all
be A: b2 aimplies a > b). With [-e0,a] we denote the lower segment of all elements that are
less than or equal to a; similarily we define [a,eo]. A quasi-ordering is linear (or a chain), iff a
< b or b < a for all elements. It is well-founded, iff every chain has a minimal element. An
antisymmetric quasi-ordering is called a partial ordering.
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Let U be an upper segment of the quasi-ordered set A. A complete subset cU (or a
generating subset) of U with respect to A has the property: Vu e U 3 v € cU: v < u. The set
of all complete subsets of U is sometimes denoted by C(U). A base B for an upper segment
U of A is a complete set of representatives of minimal elements of U. A base is also called a
minimal, complete subset. As notation we have pU for a special base B and M(U) for the set
of all bases. Not every upper segment U has a base, but if it has one the base is unique, that is
two bases B, and B, of U are equivalent, in the sense that there exists a bijection y: B, — B,
such that y(b) = b for all b € B,. This is almost trivial for quasi-orderings and was first
proved for minimal sets of unifiers by Fages and Huet [FH83]. The cardinality of a base of an
upper segment U is an invariant of U.

In a partially ordered set A a greatest lower bound (g.1.b.) for two elements a,b is a
unique element g€ A with g <a,b, such that for every c < a,b we have ¢ < g. Dually we can
define a least upper bound (l.u.b) for two elements in A. This definition can be lifted to
finite subsets of A. A partially ordered set A in which for all elements a,b their g.1.b. and
Lu.b. exists is a lattice with operators glb(a,b) and lub(a,b). We say a partially ordered set A
is a semilattice, iff for all elements a,b € A, a least upper bound lub(a,b) exists. For a finite
set A an equivalent property is that i) for all elements a,b € A -that have a common lower
bound ¢ (c < a,b), a greatest lower bound exists for a,b and ii) that A has a maximal element.

Multisets are like sets, but allow multiple occurrences of identical elements. The
operations on sets are adapted to multisets, for example M - {a} means to delete one
occurrence of a in M. If we have a well-founded partial ordering on the elements of a multiset
M, then we can construct recursively a well-founded multiset-ordering [DM79, De87] on
multisets as follows: - M > N, if forsomeae€ Mandb;e N,i=1,....,n :a>b;,i=1,...,n
and M - {a} > N- {b;,....,b,}.

2. Symbols, Terms and Substitutions.

In the following we will use the bar  to indicate that objects are unsorted, in particular for
unsorted signatures, since we later define sorted signatures as composed of unsorted ones plus
additional symbols and properties.

An unsorted signature £ consists of the three pairwise disjoint sets of symbols.

® Fy the set of function symbols. Elements are denoted by f,g,h.

@ V5 the countably infinite set of variable symbols. Elements are denoted by x,y,z.
® P5 the set of predicate symbols. Elements are denoted by P,Q.
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Every function symbol f has a nonnegative arity and every predicate symbol P has a
positive arity denoted by arity(f) and arity(P), repectively. In the following the suffix 5 is
often omitted, but we always assume that such an unsorted signature is explicitly given.

The set of function (predicate) symbols of arity n is denoted by F, (P,). Function symbols
of arity O are called constant symbols, the set of constants is C. The equality symbol ‘=’
is a distinguished binary predicate, usually written infix. This is the only predicate symbol we
assume to have a fixed arity. Note that we do not textually distinguish between the use of ‘=’
as a symbol and its use as a meta-symbol, but ‘=" will be used only if the meaning is clear
from the context.

A term is either a variable or a string f(s,,...,s,), n = arity(f) , where f is a function

symbol and s;, i = 1,...,n are terms. The set of all terms is denoted by T. (in the notation of
[HO82] the set of terms is denoted by T(F g3, V 5)). Terms can also be seen as finite labelled
trees as in [Hu76]. We shall use the letters p,q,r,s,t,u,v,w for terms. Let V(t) denote the
variables occurring in term t, i.e., V(t) := {t}, if t is a variable and V(1) := UV(t,}, if
t = f(ty,...,t;). The top-symbol of a term t = f(t;,....t,) is the symbol f, denoted as f = hd(t).
The terms t; are called the immediate subterms of t. A term t in which every variable occurs
at most once is called linear. An atom is a string of the form P(sy,...,s,), n = arity(P),
where s;, i = 1,...,n are terms and P is a predicate symbol. we shall use the symbol A for the
set of all atoms. A literal is a signed atom, i.e., a string of the form +A or -A, where A is an
atom. The minus sign has the meaning of logical negation. We use the convention, that if L
denotes a literal, then -L denotes the literal with opposite sign, i.e. if L = -A, the -L denotes the
literal +A. The set of all literals is denoted by L. A clause is a finite set of literals, including
the empty clause. A clause is interpreted as the disjunction of its literals, where the whole
clause is universally quantified over all variables occurring in it. A clause set denoted as CS is
a set of clauses. A clause set stands for the conjunction of its clauses. A Horn clause is a
clause with at most one positive literal (also called a definite clause), a logic program is a
set of Horn clause, where every clause has exactly one positive literal, a fact is a clause with
exactly one positive literal and no negative literals and a query is a clause without positive
literals.
We use the operator V(.) also for literals, atoms and clauses and moreover for sets of objects
with its obvious meaning. An object t with V(t) = @ is called ground. The set of all ground
terms is denoted as Tgr and is called the Herbrand-universe in the field of Automated
Deduction [Lo78, CL73]. The set of all ground atoms is accordingly called the
Herbrand-base.

In order to select subterms of a given term t (or atom, or literal) we use occurrences
[Hu80]. An occurrence (or a position) is a word over N. Let A denote the empty word.
Then we define the set of occurrences D(t) of ta term as follows: i) the empty word A is in
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D(t) ii) iwisin D(t) iff t = f(t,...,t)) and wisin D(ti); We say two occurrences T and v
are independent, if they neither 7 is a prefix of v nor v a prefix of n. The depth of a term t
(or atom, or literal) denoted by depth(t) is defined as the maximal length of an occurrence in
D(t). The size of a term is the number of symbols in it, or equivalently the number of
occurrences in D(t). The set of nonvariable occurrences of a term t is denoted as O(t). The
subterm at occurrence 7 is denoted as t\t and the term constructed from t by replacing the
subterm at occurrence Tt by s is denoted by t[r « s]. The set of subterms of a term t, denoted
as subterms(t) is the set {se€ T |s = t\r for some T e D(t)}. A set T' of terms is called
subterm-closed, iff for every t € T' we have also subterms(t) ¢ T'.

The set of terms T can be turned into an algebra [Gr79] by defining for every symbol f €
F an operator fy , such that fy(ty,....t,) = f(t,...,t;). A homomorphism ¢:T - T is a
mapping such that Q(fp(ty,....t))) = f1(@ty,...,0t,)), which is equivalent to @(f(ty,...,t,)) =
f(pty,...,0t,)). A homomorphims ¢:T — T is also called endomorphism. The set T is in
fact the free term algebra (over V) and the set of ground terms Tgr is the initial algebra.

A substitution o is an endomorphism 6: T — T, such that the set {x € V | 6(x) #x} is
finite. The set of all substitutions is denoted as SUB. The empty or identical substitution is
denoted by ‘Id’. Since every substitution is uniquely determined by its action on variables, it
can be represented as a finite set of variable-term pairs {x;¢ s;,....x ;¢ s..}. The single
pairs x; < s are called components or bindings.

Let DOM(0) denote the set {x | 6(x) # x}, COD(0) := cDOM(0) and I(c) := V(COD(0)).
Two substitutions ©,T are equal, if ox = Tx for all variables. If ox = tx for all variables x €
W, we say T and © are equal modulo W and denote this by 6 =1 [W].

The effect of applying a substitution O to a term t can also be obtained as the result of
simultaneously replacing all variables x € V(t) by the term 6x. The composition -1 of two
substitutions ¢ and 7 is again a substitution and is usually abbreviated as ot. The composition
can be computed for substitutions with given representations: If 0 = {x; « sq,....x ¢ s, }
and T = {y;¢ ty,..,yp ¢ ty,} then ot = {y;« ot),...,y & ot} U
{x; & s; 1 x; € DOM(0) — DOM(T)}.

A substitution G is called ground, iff I(c) = @. With o We denote the restriction of the
substitution © to the set of variables W, i.e., Opyx =0x forx e Wand o)yx = x otherwise.
For a set of substitutions U and a set of variables W we denote with Uy, the set
{owloe W}

We extend the application of substitutions to atoms by o(P(sy,...,s,)) := P(0s,,...,0s)
and similarly for literals and clauses.

A substitution ¢ is called idempotent, iff 6o = ¢. It is a well-known fact that a
substitution © is idempotent iff DOM(c) N I(c) = @ [He83, Ed85]. An idempotent
substitution © = {x;¢ sq,....x ¢ s,} can be decomposed into its components:
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O = (X6 Sp,enXpe 8y} = (X & 51}{xy & 55} {x 65,

A renaming is a substitution p € SUB that is injective on DOM(p) and whose COD(p)
consists of variables. If p = {x; « y;,...,x,¢ y,} is a renaming , then let p~ :=
(Y] € X{,.¥p€ X, } denote the converse of p. As a technical lemma we have:

2.1 Lemma. Let p be a renaming. Then:

i) p~isa renaming ii) DOM(p) = COD(p™)
i) pTp=p~ iv)pp =p
v) DOM(p™) = COD(p) vi) () =p

vii) pep=1d [DOM(p)] M

A more detailed account on substitutions is given in chapter 10.

3. Sorted Signatures.

In this paragraph we define sorted signatures, for which we need an additional set of
symbols:
® Sy is the nonempty set of sort symbols. Elements are denoted by R.,S.

A term declaration is a pair (t,S) usually denoted as t:S, where t € T—V and S is a sort
symbol. If t is of the form f(xl,. ...Xp) » where the x; are different variables, then we say t:S is
a function declaration, if it is of the form c:S we call it a constant declaration and
otherwise it is a proper term declaration. A subsort declaration has the form R E §,
where R and S are sorts. A predicate declaration is of the form P: Sy X ... xS, where the
S, are sorts.

3.1 Definition. A sorted signature X consist of
i) an unsorted sigriature z.
ii) a set Sy of sorts
iii) a function S: V§ — S, such that for every sort S € Sy, there exist countably
infinitely many variables x € V5 with S(x) =S,
iv) a set of term declarations, subsort declarations and predicate declarations. l

We assume that the equality predicate =y is in Py and that for all sorts R,S the predicate
declaration =5: R x S is also in X.
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The effect of the function S: V§ — S is to partition the set of variables V into the sets Vg
of variables of sort S. We abbreviate function declarations f(x;,...,x;): S as
f:$;x...x§, - S, where S, is the sort of the variable x;.

Generally, it is sufficient for the presentation of a signature to write down only the term
declarations, subsort declarations and predicate declarations together with some information
concernin g the sort of the variables occurring in term declarations.

For algebraic specifications term-declarations appear in [Gg78,Wad82, Go83].

We use Fy for the set of function symbols, Py for the set of predicate symbols and V, for
the set of variable symbols in Z. The set of term-declarations and of subsort-declarations is
denoted as TDy and SDy, respectively.

Let £y be the quasi-ordering on Sy defined by the reflexive and transitive closure of the
subsort declarations. We say the sorts R,S are equivalent, iff Rey S and R 25 S. To
emphasize that some objects belong to the signature X, we prefix it by X—. The symbols =y,
Ey, 3y, Iy are used with their usual meaning.

In the description of a signature or in examples we indicate that a variable x or a constant ¢
has sort S by x:S, c:S or xg, Cg.

We say a signature is finite, if its description is finite, i.e., the set of sorts, function
symbols, predicate symbols, subsort declarations and term declarations is finite.

The definition of well-sorted terms and substitutions requires some preparation and we will
carry out these definitions and corresponding lemmas in the next paragraph.

Remarks.

i) If all term declarations are function'dcclarations, then the signature as defined in this
paper corresponds to the standard definition described in the literature, (cf. [Ob62,
HOB80, CD83, Co83, Wa84, Sch85a, Sm86].

ii) If all sorts are equivalent, then a sorted signature is equivalent to an unsorted one.

A signature is one-sorted , iff it has just one sort. A signature is many-sorted, if it has
more than one sort symbol and there are no subsort declarations. A signature is
order-sorted, if it has more than one sort symbol and there are subsort declarations. A
signature is linear, iff all terms in term declarations are linear. A signature, where all
term-declarations are function-declarations is called an elementary signature. We call a
signature simple, iff it is elementary and has exactly one function declaration for every
function symbol.

With this terminology, the signatures in [HO80, Wa84] are simple ones, whereas the
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signatures in [Ob62, CD83, Co83, Sch85a, Sm86] are nonsimple, but elementary.

Remark. The notions of a one-sorted signature and an unsorted signatures are not equivalent,
since in the unsorted case all terms are well-sorted, whereas in the one-sorted case there
may be a difference between ill- and well-sorted terms.

In the following we use the bar ~ also as an operator that assigns to every signature  its
unsorted subsignature, that is given a sorted signature X, we use the signature I to provide
us with all unsorted objects of X. For example we denote with T 5 the set of all unsorted
terms of X. The set of ill-sorted terms is the difference Ty — T . The set of all substitutions
0:Ty — Ty isdenotedas SUB¥.

4. Well-sorted Terms and Substitutions.

First we shall give some introductory examples in order to provide the reader with some
intuition on term declarations.

4.1 Example. We give a specification of the even numbers as a subset of the natural
numbers:

EVEN = NAT ; 0:EVEN; s:NAT — NAT

s(s(xgygn)): EVEN. W

This definition works as a specification of even numbers, if we have only the set of ground
terms. In the corresponding term algebra (with term declarations) we consider terms of the
form s(s(t)) to be of sort EVEN if t is a term of sort EVEN. Hence the set of ground terms of
sort EVEN is exactly {0, s(s(0)), s(s(s(s(0)))), ...,s21(0),...}. In order to obtain the same
semantical result with usual many-sorted specifications there are two options: 1) The sort ODD
has to be specified and the corresponding function declarations s:ODD — EVEN and
s:EVEN — ODD must be in the signature. 2) A new function times2: NAT — EVEN has to
be added together with the equations times2(0) = 0 and times2(s(x)) = s(s(times2(x)).

As a further (more complex) example we specify addition on natural numbers with the sorts
EVEN and NAT.

4.2 Example.
EVEN = NAT; 0:EVEN
s: NAT — NAT,; +: NAT x NAT —» NAT, EVEN x EVEN — EVEN
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s(s(xgygN)): EVEN.
YNAT * YNAT: EVEN;
YNAT +* 0= YNAT YNAT * SNnAT) = SOUNAT +ZNAT)- B

This example is an (initial algebra) specification of the addition of natural numbers together
with even numbers. However, the initial algebra and the full term algebra (modulo equations)
do not exhibit the same behaviour: the term (x +y) + (y + x) 1is of sort NAT in the term
algebra, but represents always an even number in the initial algebra (the set of ground terms).

The definition of the sort of a term is straightforward. The problem is that it is not possible
to define well-sorted terms without well-sorted substitutions. As we shall see later in
paragraph 5, the following construction is appropriate for free and initial term algebras.

The set of Z-terms of sort S, Ty g is defined as follows:

4.3 Definition: Ty g is (recursively) constructed by the following three rules:
) xeTgg If S(x) € S.
i1) tGT):,S If tRe X andRE S.
i) {x «rjte T}:,S Ifte T}:,S , TE T):,R and x € Vysuch that R S(x). M

That is, we start with the information given in the signature and the sort of the terms. A new
term t' of sort S is constructed from a term t of sort S by replacing one of t's variables
simultaneously by a term of sort less than or equal to the sort of this variable.

In order to illustrate this definition we consider Example 4.2 (without equations). Rule ii)
implies that yyar + ynaT € Tx gven, hence by rule iii) s(0) + s(0) € Ty gygn; but the term
s(0) + 0 is not a member of Ty gygN; as expected. However, all three terms are in Ty na-

A first trivial consequence of the above construction is :
4.4 Lemma.

i) ForallsortsR,S € Sy: RES implies TZ,R c TZ,S'

i) For variables we have: x € TZ,S < Sx)eES. A

We define Ty , the set of all Z-terms (or well-sorted terms) as the union U{TE,S IS e Sy}
We denote the set of well-sorted ground terms of sort S by TZ,S,gr and the set of all
well-sorted ground terms by Ty .. The sort of a term t is defined as the set Sy(t)
={SeS;slte T):,S}° For X-variables x we have Sy(x) = {S € S5 I1S(x) £ S}. Obviously
for every term t € Ty the set Sy(t) is a nonempty upper segment in Sy and for every variable x
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€ V5 the set Sy(x) has a unique least element, namely S(x). We show in paragraph 5 that the
function Sy(t) is computable for finite signatures. The set of well-sorted atoms Ay is defined
as the set of expressions P(t;,...,t;), such that there exists a predicate declaration
P:S;x...x§ and ;€ Ty g;. The set of ground X-atoms is denoted by A}:,gr-

We say a term declaration t:S is redundant, iff t is of sort S with respect to the remaining
term declarations. If we add in example 4.1 the term declaration s(s(0)): EVEN to the
signature, then the sort of terms is not changed. In the new signature, this is a redundant
term-declaration, since s(s(0)) is of sort EVEN with respect to the old signature. In general we
assume that there are no redundant term-declarations. We may change the definition of an
elementary signature to be a signature, where all proper term declarations are redundant.

We say I (or Ty ) is subterm-closed, iff each subterm s; of every well-sorted term
f(sy,....8p) isalsoa well-sorted term.

4.5 Example. An example for a non subterm-closed signature is X:= {f(a):S}. We have Fy
= {f,a}, Sy = (S} and Ty = {f(a)} U Vg. This means a ¢ Ty, hence X is not subterm-closed.
[ ]

A computationally desirable property of a signature is regularity: A signature is regular,
iff &5 is a partial ordering and for every term t the set S(t) has a unique least sort. The same
notion is called preregular in [GM85a]. In [Sm86] regular is used with the same meaning and a
characterization is given for elementary signatures.

In this case of regular signatures we denote this unique sort by LSy (t) and call it the
(unique) ‘sort of a term’. Note that the relation Sy(t) < Sy(s) is equivalent to LSy(t) 25
LSy(s). By abuse of notation we sometimes write LSy(x) for the sort of a variable x, even if
the signature is not regular; obviously LSy(x) =S(x). If £ is a well-founded, linear partial
ordering, then the signature is trivially regular. Furthermore simple signatures are always
regular. '

We call a signature polymorphic, if it is regular, elementary and the signature has a top-sort
TOP.

4.6 Definition. The set of well-sorted substitutions (or Z-substitutions) SUBy is
defined as follows:

SUBy := {0 € SUB§|Sg(ox) 2Sg(x)}. W

The intuitive meaning is that substitutions weaken the sorts, i.e. 6x has a smaller or equal
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sort than x for all variables x. For regular signatures we can reformulate this definition as
SUBy := {0 € SUB 5| LSg(0x) & LS5(x)}. Obviously we have SUBy  SUB 5 and the
identity substitution Idy is in SUBj5.

An immediate consequence of the definition of well-sorted substitutions is that the set of
codomain terms is well-sorted.

The (injective) operator ‘bar’ ~ (considered as a mapping on terms and substitutions) behaves
like a forgetful functor,ie. ~ :Z— X, :Ty—> Ty and  :SUBy— SUBg is
injective. We have 6T = G- T for two well-sorted substitutions 6,tand 6t =6 (1)
for a well-sorted substitution ¢ and a well-sorted term t. This observation is helpful and
justifies the lifting of various lemmas from the unsorted to the sorted case.

A Z-renaming is a sort-preserving renaming p € SUBy, i.e., it satisfies in addition
Sy (px) = Sx(x).

Well-sorted substitutions are compatible with the sort-structure on Tx, i.e., well-sorted
substitutions map Ty, g into Ty, g for all sorts S:

4.7 Proposition: For all well-sorted terms t € T}:,S and all well-sorted sustitutions ¢ €

SUBy we have ote Ty .

Proof:
Let t=f(t;,....t)) € Ty gandlet o= {x;¢ 50X Sy} € SUBy. If 6 is an
idempotent Z-substitution, then 6 = {x¢ s;}¢...c {x, ¢ s, }. Repeated application of
Definition 4.3 implies 6t € Ty . _
To prove the general case let p € SUBy be an idempotent Z-renaming with DOM(p) = I(5)
such that COD(p) consists of variables not occurring in t or some s;. Let p~ denote the
converse of p. Then ot = p"pot by Lemma 2.1. The substitution po is idempotent, hence
we can decompose the substitution po into a product as follows:
(X1 PSpseX e PSS} = (X3¢ psytece{xp ¢ psy, ). Every component {(Xp€&PSpy}
is in SUBy , since s € Ty g implies psp€ Ty g for every sort R. Hence pot e Ty g by
repeated application of Definition 4.3 iii). Now we conclude from ot = p~pot that
ote Tys. W

4.8 Corollary. The composition ot of two well-sorted substitutions is again well-sorted,
i.e., SUBg is a monoid.

Proof. Let T = {x;¢ 8j,....,x ¢ Sp) € SUBgand let 0 € SUBy. Consider the
composition o7t. In order to show that the composition o7 is well-sorted we have to show
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OTX € T):,S(x) for all Z-variables x. By Proposition 4.7 we have o1x; =0s; € Ty S(x) for
all x; e DOM(0). For all other variables x we have either 0Tx = x or 0Tx = OX. Hence o1
is well-sorted. H

The next proposition shows that the set of all well-sorted terms can be generated by
applying well-sorted substitutions to terms in term-declarations.

4.9 Proposition. For every sort S € Sy and every nonvariable term s € Ty ¢ there exists a
term declaration t:R € X with R € S and a substitution ce SUBy such that ot =s.
Proof. Follows by structural induction using Definition 4.3 and Corollary 4.8. W

In elementary signatures the replacement of subterms behaves similar to the application of

substitutions:

4.10 Lemma. Let X be an elementary signature. Then
i) Sg(f(t;,....t))) depends only on f and the sorts of subterms t;.
ii) Forallste Tyandall®we D(t):
S5(s) < Sy () = t[n & s]e Tyand Sy(t[r « s]) < Sg(v).
Proof. Shown by induction. W

We show in part II. Example 6.14 that the condtion 4.10 i) is in general not sufficient to
characterize elementary signatures.

Most signatures considered in the Automated Deduction literature are regular and elementary
(cf. [GM85, Wa83, CD85, Co83, Sch85a]. Algebraic specifications based on a many-sorted
signature always use elementary signatures. The signatures in [Wad82, Sch85b, Go83, Gg78,
(GM85a] are not elementary. An example for a non elementary signature is example 4.1 above.

In our terminology A. Oberschelp [Ob62] investigated elementary signatures, which may
be regular or not. G. Huet and D.C. Oppen [HO80] have as basis many-sorted and simple
signatures. A. Cohn [Co83] considers elementary signatures, but has no equations and a
different definition of clauses and deductions. Our approach is in fact an extension of Ch.
Walther’s [Wa83], who considered simple signatures.

We always assume the following conditions:
4.11 Assumptions:
i)  Signatures are subterm-closed.
ii) Forevery S € Sy, there exists a ground term tyr € TZ,gr with S € Sy(t). ®
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The first assumption appears to be natural, since it does not make sense to allow ill-formed
subexpressions in well-formed expressions. Furthermore non subterm-closed signatures
would cause technical problems, for example structural induction would not be possible.

The second assumption is necessary to ensure that sorts are not empty. It is possible to
make deductions with empty sorts, for example J.A. Goguen and J. Meseguer [GM81] permit
empty sorts. Their idea is to do as if sorts are nonempty and to collect all these nonemptyness
assumptions during a deduction. The deduced sentences are then of the form: If the sorts
S{,...,S, are not empty, then F holds.

However, from our point of view, this is more a problem at a meta-level and should not be
confused with the pure sorted calculus. For example the proof of the nonemptyness of sorts
could be carried out in a preprocessing step and afterwards the deduction system would have a
solid basis.

Automated deduction systems based on resolution usually work with the tacit assumption
that sorts are nonempty, since otherwise the combination of resolution and order-sorted
unification becomes unsound. For example if S is an empty sort, the two statements P(x:S)
and —P(x:S) are not unsatisfiable.

Note that Assumptions 4.11 ii) implies that every well-sorted term t and every well-sorted
atom A has a well-sorted ground instance, i.e. there exists a Z-substitution ©, such that Gt is a
ground term (CA is a ground atom). For every X—algebra A the assumption 4.11 ii) implies
that for every sort S € Sy, the set S, is not empty (Corollary 6.5).

Further assumptions like finiteness of the set of sort Sy are made explicit when they are
needed. For finite signatures the above assumptions are decidable properties: ( (i) is proved in
Proposition 4.9).

4.12 Lemma. For a finite signature it is decidable if 4.11 ii) is satisfied.
Proof. We can compute the nonempty sorts by a simple fixed-point iteration (using
Definition 4.3). B

5. Order-sorted Matching
5.1 Definition. Let s,t € Ty. Then
i) s>yt iff there exists 0 € SUBjy such that s = ot.

In this case we call ¢ an instantiating substitution of t to s and s a Z-instance of t.
i) s=xt iff s<gt ands2>yt. W
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Sometim;s o is called a matcher of t to s, however, this should be reserved for the case
DOM(o) N V(s) = @.

The relation <y is a quasi-ordering on well-sorted terms and =y is an equivalence relation.

We extend the instance relation of terms to well-sorted substitutions.
5.2 Definition. Let W ¢ V and 0,7 € SUBj5.
1) o=1 [W] ,iffox=1x forallxe W.
i) o2yt [W] ,iff there existsa A e SUBgwith 6= AT [W].
In this case we call A an instantiating substitution of T to ¢ and ¢ a Z-instance of
T modulo W.
iii) o=5T[W] ,iff 0<zt [W] and o251 [W].

Obviously the relation <g[W] is a quasi-ordering on well-sorted substitutions and the relation
=5[W] is an equivalence relation. If W is the set of all Z-variables, then we write <y instead
of <5[Vy].

The computation of instantiating substitutions for unsorted first order terms (often called the
Robinson case) is well-known [Ro65, Hu76, FH83]. In particular the following holds: If
there exists a substitution ¢ with s = ot, then there exists a unique (effectively computable)
substitution T, such that s = Tt and DOM(t) = V(t). We have T = ¢ [V(1)]. If tis not a
variable, then depth(s) > depth(tx) for every variable x € V(t). The same holds for the
instance problem of substitutions.

The proof of the following lemma gives a recursive algorithm for the computation of the sort

of a term.

5.3 Proposition. For a finite signature I the sort S5(t) is effectively computable for all
terms t.

Proof.The proof is by induction on the term depth:
Letse Ty.
As a basis for induction we have to compute the sort of s if depth(s) = 0. But this is a
trivial computation: either s is a variable or s is a constant and then we have to examine at
most finitiely many term declarations.
If depth(s) > 0, then for every declaration t;:S; we can compute the (unsorted) Robinson
matcher o; with o;t; = s. For every termr € COD(o;) we have depth(r) < depth(s), since
variables are forbidden as terms in term declarations. To check the well-sortedness of o;
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requires to compute the sort of all terms in the codomain of o;. The condition to check is:
oxe Ty S(x) for every x € V(s). This is decidable by induction hypothesis.

5.4 Corollary. Let X be a finite signature. Then
i) For two well-sorted terms s,t, s <y t is decidable. Furthermore an instantiating
substitution i with ps =t and DOM(u) < V(s) is unique, if it exists.
ii) For two well-sorted substitutions o, it is decidable whether o <y T [W] (for a set of
variables W). Furthermore an instantiating substitution p with DOM(it) ¢ V(oW) and
uo =t [W] is unique, if it exists. H

A consequence of Proposition 5.3 is that for finite signatures the subterm-closedness is
decidable:

5.5 Lemma. For a finite signature Z, it is decidable if it is subterm-closed.

Proof. Assume there is a well-sorted term s = f(s,,...,s,) with an ill-sorted subterm Sj-
Proposition 4.9 yields that there exist a declaration t:S and a substitution G, such that ot =s.
This means that t has an ill-sorted subterm. Hence the procedure for testing
subterm-closedness may work as follows: Compute the sort of all subterms of terms in
declarations. If all subterms are well-sorted, then Z is subterm-closed, otherwise it is not
subterm-closed. This check is finite, since the signature is finite and the sort of a term is

computable in finite signatures by Proposition 5.3. B

5.6 Corollary. In finite signatures it is decidable, whether a term-declaration t:S is
redundant. l

5.7 Proposition. In finite, elementary signatures it is decidable whether a set of sorts is the
sort Sy(t) of some term t.

Proof. A fixed-point iteration using Proposition 4.9 and Lemma 4.10 gives a terminating
algorithm to determine all sets possible as the sort of a term. l

5.8 Corollary. For finite, elementary signatures it is decidable, whether they are regular. Bl
In II1.6.5 ff. we give a method to check regularity of signatures.

For every function symbol f we collect the term declarations with terms starting with f and
choose the maximal ones with respect to <y. We define mgterms(f,S) (most general terms)

to be a set of representatives of <g-minimal terms in {t| t:S' € X with §'& S}. By Corollary
5.4 this set is effectively computable. The terms in mgterms(f, S) are said to be basic, iff
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they are of the form f(x,,...,x,) where all x; are different variables.

Let us have a look at the time complexity of sort-computation. In the trivial case of simple
signatures, we can compute the sort of a term by inspecting its toplevel function symbol.

In signatures with multiple function declarations, a recursive algorithm which does not
store the result of computing may behave exponentially:

Consider the term (s; * (s * (... * s,) ---) and assume there are two function declarations
for *. Then the sort-computation of s, is performed 2 times, the sort computation of s is
performed 4 times and the sort computation of s, is performed 2" times.

However, if the results of computing sorts is stored then sort-computation is quasi-linear, i.e.
of time complexitiy less than O(n1*€) for all € > 0:

5.9 Proposition. Sort-computation in finite signatures has quasi-linear time complexity.

Proof. Let t be a Z-term. We can assume that we proceed by first computing the sort of
subterms of t, i.e., we first compute the sort of subterms of depth 1, then the sort of
subterms of depth 2 and so on. Obviously the number of subterms of t is linear in the size
of t. Since the signature is finite, all operations connected with the sorts and term
declarations require constant time, for example subsort-checking or matching a
term-declaration against an arbitrary term. Due to PropoSition 4.9 the operation to be
performed is matching a term declaration and subsort checking. Hence sort-computation is

quasi-linear. W

6. Algebras and Homomorphisms.

As a prerequisite for the definition of a X-algebra we introduce the more general technical
notion of Z-quasi-algebras, which is an extension of the notion of partial algebras [Gr79,
BR87] by denotations for sort symbols:

Let I be a signature. A Z-quasi-algebra 2 consists of a carrier set A, a partial function
fq aarity() 5 A (with domain 2Xf5) ) for every function symbol finX, aset S qGC A for
every sort S, such that the carrier A is the union of denotations for sort symbols in X, i.e.,
A=U(S,41Se Sg}.

Let 4 be a L-quasi-algebra. We say a partial mapping ¢: Vg — A is a partial
T-assignment, iff ¢(x) € S(x) 4 for every Z-variable x € (). If @ is a total funtion, we

30



call it a Z-assignment. The homomorphic extension ¢, of a (partial) Z-assignment
¢: Vy — A on Ty is defined as a (partial) function ¢y,: Ty — A as follows:
i) @ (x) := @(x) for all X-variables x € 7X¢) and
ii) for every f(s;,...,s;) € Ty:
if s;e D(@y) fori=1,...,n and (Qys},-.-,PyS,) € D
then f(s),...,s;) € D(Pp) and Py (f(sys...,8,)) := £ q(@PLSqs-- - PpSp)-

This definition makes sense, since we assume that signatures are subterm-closed.

The reason for introducing partial X-assignments is that sorts may be empty in X-algebras and
if one denotation for a sort is empty in a Z-algebra 4, then there exists no total Z-assignment.
However, as it will turn out below, Assumption 4.11 implies that in X-algebras denotations

for sorts are always nonempty.

6.1 Definition. Let X be a signature. Then a Z-algebra 4 is defined as a Z-quasi-algebra
Athat satisfies the following additional conditions:
i) IfRe= Sisin X, then Rﬂgsz
ii) For all term-declarations t:S € X and for every partial Z-assignment ¢: V5 — A with
Vi) @) te D@y and ()€ S, W

Note that the second condition has strong implications for the domain of functions f 4 on 4
In the following we do not distinguish between an algebra A4 and its carrier A and we denote
both with A.

6.2 Definition. Let Z be a signature and let A and B be Z-algebras. A Z-homomorphism
is a mapping @: A — B such that:

i) ¢S,) Sy forallS € Sy.

i) @(Dfy)) < Nfg) forallfe Fy.

ii) If (a;,...,a,) € D(fy) then @(f(ay,....a,) = fg(@ay,...,Qa,).

Obviously, the composition of two X-homomorphisms is again a Z-homomorphism. A
2-homomorphism ¢: A — Ais called a 2-endomorphism. A bijective Z-homomorphism
¢: A - Biscalled a Z-isomorphism, if the inverse mapping is again a £-homomorphism.
In this case we say A and B are isomorphic as X-algebras.

Note that for every Z-algebra the identity Id 5 is a Z-endomorphism of A.

We also need the notion of a partial -homomorphism. This is defined as a partial
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mapping @:A — B, such that Definition 6.2 i) and ii) are satisfied on 2(¢) and instead of iii)

we have :

i) If (ay,...,a,) € Ify) and a; € D(@) then f,(ay,...,a,) € D(P) and @(f5(ay,....a,) =
fg(oa,,....0a,).

The term algebra of well-sorted terms is a X-algebra with carrier set Ty if we define:
) Sypi=Tgg for every sort S € S;.
i) Dfpy) = {(sq,....8p) | {(sq,....8) € Tg}).
i) fpy (S15...58,) = £ (89555585

Since we have assumed that X is subterm-closed, this is a X-algebra,by Proposition 4.7 and
by Lemma 4.4. The set of Z-endomorphism of Ty, that move only finitely many variables is
exactly the set of well-sorted substitutions, i.e., SUBy = {¢: Ty —» Tyl@ isa
¥-homomorphism and DOM(¢) is finite}. Note that the set T}:,,gr is also a Z-algebra according

to these definitions.

Now we show that the Z-algebra Ty is the free algebra of type £ and that the ground term
algebra Tz‘gr is the initial algebra of type X:

6.3 Proposition. Let A be a Z-algebra. Then the homomorphic extension @y, of every partial
T-assignment ¢: Vy — A is a partial Z-homomorphism with domain D(¢y) = {te Tyl
V(t) < D()}. Furthermore ¢y, is a Z-homomorphism for a total X-assignment ¢.
Proof. We show by structural induction according to Definition 4.3. that ¢y, is a partial
2-homomorphism. Definition 6.1 serves as an induction basis for our proof.
First we show that Definition 6.2 i) holds for @y,:
Lette Tyg,r€ Typ and let x be a variable in t such that R £ S(x). By Definition
4.3 iii) we have {x «rjte TZ,S- Let ¢ : V5 — A be a Z-assignment.
We have to show that V({x « r)}t) € D(¢) implies {x « r}jt € D(¢;) and
op{x = 1)te S,
If V(r) ¢ (), there is nothing to show, since then V({x « r}t) ¢ D(@).
Hence we can assume that V(r) ¢ 2X@) and V(t)-{x} < D(9).
By induction hypothesis we have r € D(¢;) and @;r € Ry, hence we can define the
Z-assignment y : Vy — A as follows: yy := ¢y for all variables y € V(t)-{x} and
yx := @yr. This is a Z-assignment, since R £ S(x). Again by induction hypothesis we
have Wyt € Sy, since D(Y) = V(t). Now ypt = @ {x ¢ r}timplies {x «rjte D(Py,) and
Pp{x «rljte Sy a
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Parts ii) and iii)' of the definition of a partial Z-homomorphism are easy to see:

(ii) is equivalent to the claim that for f(s;,...,s,) € D(@;) the function fy is defined for the

arguments (QpSy,..., PpSp)-
(iii)' follows from the above and from the definition of homomorphic extensions. l

6.4 Corollary. The X-algebra T):’gr is the initial algebra of type X:
Proof. Application of Proposition 6.3 to the empty X-assignment yields for every X-algebra
A a unique X-homomorphism @: T}:’gr —->A B

6.5 Corollary. For every Z—algebra A and for every sort S € Sy, the set S, is nonempty.
Proof. Follows from Assumption 4.11 ii) together with the initiality of the ground term

algebra as proved in Corollary 6.4.

In the following we do not distinguish between a Z-assignment ¢ and its extension ¢;, and
denote both by ¢.

Remark. It may be possible to extend this machinery to non subterm-closed signatures, but
there we have the problem that Ty gr is not the initial algebra, since operations have to be
defined on ill-sorted terms.

7. Z-congruences.

In this chapter we define and develop some properties of Z-congruences for later use in the
context of equational theories as well as for semantic issues. Most definitions are
straightforward generalizations of the unsorted and order-sorted case, nevertheless, they
should be made precise. '

We define SUBy-invariant Z-congruences in the usual way as follows:

7.1 Definition. Let A be a X-algebra. Then the binary relation = on A is a
Z-congruence, iff the following conditions hold:
i) The relation = is an equivalence relation on A.
ii) Foreveryfe F}:,n’ and for all element a;, b; € A:
if a;, = b; for i =1,...,n, and (ay,...,ay), (by,...,b;) € D(f,) then f5(ay,....a ) =
£ 4 (Dyseensby)e
Furthermore, we call a congruence strong [Gr79], iff a,=b; for i =1,...,n, and
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(ay,...,a,) € D(f,) implies that also (by,...,b,) € D, (f). W

7.2 Definition. Let A be a X-algebra. Then the Z-congruence = on A is called
fully invariant [BS81] iff for every Z-endomorphism ¢ of A we have:
a=b = ¢@)=¢®b). B

Fully invariant congruences on the free term-algebra Ty are also called SUBy-invariant, since
in this case it is sufficient to use X-substitutions instead of all 2-endomorphisms.

An important example for fully invariant congruences are equational theories. In this thesis we
are mainly interested in fully invariant Z-congruences.

An example for a strong congruence is syntactical equality of terms.

An instructive example for a congruence that is not strong is:

7.3 Example. Let X be a signature with X := {B = A, b:B, f:BxB — A, h:B — B}.
Assume that f is idempotent, i.e. we have the defining equation f(x, x) = x. Let =be a
fully invariant Z-congruence on Ty, generated by this equations. (In paragraph 9 equational
theories are treated in more detail)

The two terms b and f(b b) are congruent, but have a different sort. The constant b is of
sort B and the term f(b, b) is of sort A. Hence h(b) is a well-sorted term, whereas
h(f(b, b)) is not. This means the congruence is not strong in the sense of Definition 7.1. M

7.4. Definition. Let A be a Z-algebra and let
the quotient Z-algebra as the the factor A /
) Spp = {a/=]lae S,) forall S € Sy.
i) Dfpp) :=DAfy) /=
iii) Forall (aj/s,...,a /=) e Dfy,) wehave fy. (a)/5, ..., ay/=) i=1,(ay,....a5) / =.

be a Z-congruence on A. Then we define

(the quotient of A modulo =) as follows:

It is not difficult to see that A /= is a X-algebra:

7.5 Proposition. Let A be a X-algebra and let = be a Z-congruence. Then A / = isa
Y-algebra and the (canonical) mapping y: A - A /= with y(a) := a/=is a
2-homomorphism.

Proof. The well-definedness of f, . follows from Definition 7.1 ii), hence A/ = isa
X-quasi-algebra. We prove the requirements of Definition 6.1:

i) LetR,S € Sy withRE S. Then R, € S4 ., since A is a Z-algebra. Hence the relation
{a/=]ae Ry Jc {a/=|a€ §,) holds, which means Ry .. < Sp/e.
ii) Let t:S be a term declaration and let ¢_: Vy — A/= be a (partial) Z-assignment with
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(¢_) < V(1). By Definition 7.4 there exists a partial Z-assignment. ¢: Vg — A with
o(x)/= = ¢_(x) and D(¢) = D(¢.). By an easy induction argument we see that
¢ (t)/= = @ _(t). Definition 6.1 ii) implies that ¢(t) € S, , hence
O)/==@g(t) € Sy U
In order to show that y is a -homomorphism, we have to check the three conditions of
Definition 6.2. The first two, namely Y(S,) < S Al= forall S € Sy and (D(f,)) © If A/-)
for all f € Fy, are trivially satisfied. The third condition follows directly from Definition
7.4 iii). W

There is as usual a strong connection between Z-congruences and X-homomorphisms:
For two Z-algebras A, B and a Z-homomorphism ¢ : A — B let the relation =p (the kernel
of @) on A be defined as a; = a) iff @(a;) = @(ay) for all a;, ay € A.

7.6 Proposition. Let ¢ : A — B be a Z-homomorphism of two Z-algebras A, B.

i) The kernel of a Z-homomorphism is a X-congruence.

ii) ¢ is a Z-isomorphism, iff ¢ is bijective, p(S) = Sg for every Z-sort S and @(DXf,)) =
Nfg) for every X-function symbol £

iii) If ¢ is surjective, ¢(S,) = Sg for every X-sort S and @(D(fy)) = D(fg) for every
X-function symbol f, then A/E(p is X-isomorphic with B.

Proof. The proof is straightforward .l

Note that part iii) of the above proposition may be false for a surjective homomorphism ¢ in
case the other conditions are not satisfied.

For a SUBg-invariant Z-congruence = on the free term-algebra all endomorphisms of a

factor Ty/= can be computed from endomorphisms of Ty:

7.7 Proposition. Let A be a Z-algebra and let = be a fully invariant Z-congruence on A.
Then
i) For every endomorphism @:A — A the mapping ¢_: A/= — A/= defined as @_(a/=) :=
¢(a)/= is a X-endomorphism on A/=. Furthermore ¢(a) =/(a) for alla € A implies
P== V-
ii) For every endomorphism y: Ty/= — Ty/= there exists an endomorphism ¢: Ty — Ty
such that ¢_ = y.
Proof. i) Let :A — A be an endomorphism. Let ¢_: A/= — A/= be defined as
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¢_(a/=) := ¢(a)/=. Then the full invariance implies well-definedness of ¢_. It is an
easy task to verify the remaining conditions for a Z-homomorphism.

ii) Let A :=Ty and let y: A/= — A/= be an endomorphism of A/=. Then we obtain a
2-homomorphism @:A — A as follows:
Let v: A — A/= be the canonical Z-homomorphism. Then yy: A - A/=is a
2-homomorphism.
Let x € Vy be a variable and let S := LSy(x). We have yyxe S Al= and there exists a
termt, € S, with t,/==yyx. Now ¢ defined as ¢x :=t, forall x € Vy is a (total)
X-assignment. Obviously we have ¢_=y. l

8. Specifications, Structures and Models.

This paragraph on specifications and models is restricted to clause sets.
In part II.12 we consider an extension to full first order predicate logic, i.e., including the
quantifiers V and 3.

Usually, the notion specification is only used if some fixed model is to be specified. We
use this term also in the general case of arbitrary clause sets.

8.1 Definition. A Z-specification is a pair § = (£,CS), where Z is a signature and CS is
a well-sorted clause set. We assume that every clause set CS contains the reflexive axioms

xg=xg for every sort S. W

8.2 Definition. A Z-quasi-structure 4 is a X-quasi-algebra which has additional
denotations P, for every predicate symbol P € Py, such that
i) P, isarelation with P, < AY(®)
ii) =, istheidentity on A, ie., =5, = {(a,a)lae A}.
We say a X-quasi-structure 4 is a X-structure, iff the underlying X-quasi-algebra is a
2-algebra . W
Note that Definition 8.2 ii) enforces a particular interpretation of the equality symbol. The only
possible interpretation of ‘=" in structures will be to denote identity.

The notion of a Z—-quasi-structure is later needed for conservative transformations in IL.7.
We do not introduce the notion of the ‘domain of a predicate’, since it obscures the intuition

and complicates proofs. Instead we always assume that the domain is the whole set Aanity(®)
A drawback of this omission is the lack of a semantical correspondence of the predicate
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declarations.

We can extend all notions for algebras to structures: We state those extensions explicitely that
deal with atoms and predicates: '
A Z-homomorphism (of Z-structures) ¢: 4 — B is a Z-homomorphism of the underlying
Z-algebras satisfying in addition (a;,...,a;) € Po = (¢a;,...,pa;) € Pg.

We can turn Ty, into a Z-structure by adding the definitions Py :=@ (if P is not the equality
symbol). This is in fact the free Z-structure.

A Z-congruence = (of X-structures) on A is a Z-congruence (of Z-algebras)
satisfying in addition: if a; = bi for i =1,...,n, then (ay,...,a;) € P, implies
(D by) © Py

In a similar way as for Z-algebras we have quotients modulo a congruence and all properties

are as usual.

Now we can define X-interpretations and X-models for a Z-specification S .
Let s = (Z,CS) be a specification:
A Z-interpretation I = (M,P) for CS is a Z-structure M together with a
Z-homomorphism @: Ty — M.
Since Ty is the free Z-strcuture, it suffices to specify a Z-assignment ®: Vg — M.
We say an interpretation I = (M,®) satisfies a Z-atom P(t;,...,t;) € Ay, iff (®t;,..., Dt )€
P, Alternativiely, we may say P(t;,....t;) is valid in I. As an extension, we say I satisfies a
positive literal +A iff it satisfies the atom A. Furthermore we say I satisfies a negative literal
-A iff it does not satisfy the atom A. An interpretation I satisfies a clause C iff some literal in C
is valid in I. Note that no interpretation satisfies the empty clause. An interpretation I satisfies
a clause set CS, iff it satisfies every clause C € CS.

8.3 Definition. A X-model M for a clause set CS is structure M, such that for every
Z-assignment @: Vs — M, the interpretation (M,®) satisfies the clause set CS.
We say a clause set CS is satisfiable (unsatisfiable), iff there exists sdmc (no) model
M for CS.
Furthermore we say a clause C is a consequence of the clause set CS, iff for every model
Mof CS, M is also a model for C. W

We give an example for Z-models, which shows in particular that equations in specficiations
can have strong implications on the sort-structure of the models.
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8.4 Example.

i)

i1)

LetX:={Bc= A,Ce A,bB,cC, gg:A—>B, g-:A— C } and let
CS:={{x;g#xyc) {gg(x38) =x38), (8c(x30) = X3¢}

(x4 =88(X4 A) X4 A =8C(X4 A)) ).
These equations in CS, enforce that in every model M the set A, is the disjoint union of
By and Cy, i.e., we have Ay =By, U Cyrand By n Cy; = @. The clause set CS has a
Z-model M = {b,c} with Ay, = {b,c}, By; = {b} and Cy; = {c} together with the
operations gB,M(b) = gB,M(C) =b and gC,M(b) = gC,M(C) = c. Note that X, is regular and
satisfies conditions 4.4 . QO
Without equations it is only possible to enforce disjointness of sorts. A clause set that
enforces the disjointness of two sorts A and B is CS := { {P(x,)}, {-P(xg)} }

For technical reasons one can view an interpretation also as a set of true literals. The

8.5

corresponding Herbrand interpretations (H-interpretations) or Herbrand models

(H-models) are defined as sets of well-sorted ground literals.

Definition. An HZ-interpretation is a set M of literals (with meaning: set of true or
valid literals) satisfying the following conditions:
i) For every well-sorted ground literal L either L or -L is in M.
i) t=te M for every well-sorted ground X—term t (reflexivity).
iii) If s=tisin M, then t=s is in M (symmetry).
iv) Ifs; =s,,s, =s3€ M, thens; =s3 € M (transitivity).
v) Ifs;=t;€ Mand f(s,,...,s,), f(ty,....t;) € Ty, then £(sy,...,s))=f(t;,....t;) € M.
vi) If s;=t,€e M and the literal £P(sy,...,s;) € M then 2P(t,....t)) € M, provided
1P(ty,....t,) is well-sorted. U
An HZXZ-interpretation M satisfies a clause C iff for every ground instance cC the
intersection of M with ¢C is not empty.
An H-interpretation M is called a HZ-model of a clause set CS, iff it satisfies every clause
CeCS. R

We show that the notion of satisfiability defined by models and H-models is equivalent. This

justifies to use the appropriate definition for completeness proofs for deduction systems.

Furthermore the next theorem is a sorted version of the Lowenheim-Skolem theorem, that

every satisfiable set of formulae has a model over a countable carrier.

8.6 Theorem. Let § = (Z,CS) be a specification. Then S has a £-model iff it has a

HX-model.
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Proof. "=":

Let M be a Z-model of .S. We define M to be the set of all well-sorted ground literals that

are satisfied by M. This makes sense, since Tz,gr is the initial algebra. Let y: Tz,gr — Mbe

the canonical X-homomorphism. We show that M is a HX-model:

i) follows from the definition of M '

ii)-vi) are trivial consequences of the initiality of Tz,gr and the interpretation of the equality
symbol in M.

It remains to show that all clauses are satisfied by the HE-model M. Let C be a clause and

let o be a well-sorted ground substitution. Then yo: T}:,gr — M is a Z-homomorphism.

Hence there exists a literal L in C, such that L is satisfied by the Z-interpretation (#,Y0).

Hence oL is satisfied and by definition in M. O

"«=": Let M be a HE-model of S. We define a Z-model % as a quotient algebra of Tz,gr :

Let = be the following relation on TZ,gr: s=t:< s=te M. Conditions 8.5 ii)-v) imply

that = is a X-congruence on T):,gr- It is even SUBg-invariant, since all terms in T):,gr are

ground. We define M := Tz,grls. We define the relations P, := {P(t;/=,..., t,/=)I

Pty &) € M,

Condition 8.5 vi) implies that the definition of P,,is well-defined. Obviously M is a

structure according to Definition 8.2.

To show that every clause C is satisfied by A s trivial, since Z-assignments correspond to

ground substitutions. M

8.7 Corollary. For every clause set CS that has a Z-model, there exists a Y-model with
carrier TZ,gr/E where = is a SUBg-invariant X-congruence on Tz,gr- Furthermore if no
equational literals are in the clause set then there exists a Z-model with carrier Ty ... B

9. Equational Theories, Birkhoff’s Theorem.

A X-equation is a pair of X-terms, written as s = t. An axiomatization (or a
specification) of an equational theory is a pair £ = (Z, E) where E is a set of equations
(or the set of axioms, or the presentation). We say a Z-algebra A satisfies an equation s = t,
written A £ s = t, iff ¢s = @t for every Z-assignment ¢:Ty — A. A Z-algebra A satisfies a set
E of equations (or A is a Z-model for E), if it satisfies every equation in E. We denote this by
AE=E. An equation s=t is a consequence of a set of identies E, iff s=t is satisfied by every
¥-model of E. We define the equational theory T(Z) to be the set of all consequences of E.
Two axiomatizations E, and %, are equivalent, iff their sets of consequences are the same,
ie., if T(E;) = T(%,). Note that there may exist different axiomatizations of the same
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equational theory. We say an equational theory T(E) is finitely presented, iff its set of
axioms E is finite.

From now on we will use the notation £ instead of T(E) for an equational theory.

9.1 Definition. We give a derivation system for order-sorted equational theories. We denote
the deduction relation by - :
1) + t=tforeveryte Ty.
i) {s=t} + t=s
i) {r=s, s=t} +~ r=t.
iv) If f(sy,...,s,) and f(t,...,t,) are well-sorted, then
{sp =t sy =1t} F £(s1,...,8,)= f(tq,....tp).
v) {s=t} + os=ot for every well-sorted substitution c. l

We write E+ s=t if there exists a finite proof of s=t starting with equations from E using the
rules (1) - (v).

The following completeness theorem is the well-known Birkhoff-Theorem extended to the
order-sorted case.

9.2 Theorem. EEs=t iff Er s=t for all well-sorted terms s,t and all sets of axioms E.
Proof. i) E+ s=t = EE s=t: ,
The proof is by induction on the length of a deduction. We show that if A is a model of the
equations on the left hand side of the rules then A is also a model of the derived equation.
For rules (i)-(iv) this can easily be verified. To prove the soundness of rule (v), let A be a
model of s=t, let G be a Z-substitution and let ¢: V5 — A be a X-assignment. Then @0 is
also a Z-assignment, hence (¢0)s = (¢o)t and consequently @(0s) = @(ot).
i) Ees=t = I s=t:
The relation = on Ty defined as s =t, iff £+ s=t, is a X-congruence on Ty. It is also
SUBg-invariant, since the restriction of a X-endomorphism of Ty on a finite set of
variables is a X-substitution.
We show that Ty / = is a model of L
Let o_: V5 — Ty /= be a Z-assignment and let s=t be an identity from Z. Then there
exists a X-assignment @: Vy — Ty with ¢(x)/= = ¢_(x) for all X-variables x. Since s =t
and = is SUBy-invariant, we get ¢s = @t. This means ¢s/= = @t/= , hence by
Proposition 7.7 we obtain @_(s) = @_(t).
Now we are ready, since an identity s, = t; that is not derivable from E yields different
elements sp/= and ty/=, hence Ty /=1is not a model for sy =1t;,. W

40



As usual we abbreviate £+ s=t as s = tors =g g t for Z-terms s and t. We have the

following fact:

9.3 Propopsition. The relation =y g is the least SUBy-invariant Z-congruence on Ty, such
that for all s=t € E the relation s =g 1 t holds. B

The quotient algebra Tz’gr/ =y g is the standard model for the equational theory E. It is the
initial model in the variety of all models of E. The quotient algebra Ty, /=y ¢ is the free algebra
in the variety of all models of E. If E= (@, then =g Is the syntactical equality of terms.

An equational theory € is consistent iff it has a model consisting of more than one
element, i.e., there are two terms that are not =y E -equal, otherwise we call £ inconsistent.
Note that a theory is inconsistent, iff the equations x = y are derivable for all Z-variables X,y.
Nevertheless, for a consistent theory an equation x = y may be derivable for some sorted
variables x,y (even with different sorts). This is an appropriate way to encode sorts that
consist exactly of one element, such- as the sort ZERO in the integers, which has 0 as its
unique element.

We extend E-equality to well-sorted substitutions by deﬁningﬁ
O=ypT, iff ox =y g T for all variables x.

If we are only interested in the behaviour on a set V of variables, we write
O=5gT [V], iff ox =5 g X for all variables x € V.

If the set of axioms is empty, i.e., there are no defining equations, then we may abbreviate

=Z,¢ as =5

Since =5 g is a SUBg-invariant congruence we have by Proposition 3.10 that 6 =5 ¢ T and s
=y g t implies that 6s =g i Tt. This can be strengthened to

9.4 Lemma. If s =5 gt and 0 =g ET [V(s) " V(1)], then os =y g Ot.
Proof. see [He87]. B

An equational theory £ is called deduction-closed, iff s; =y gt ,..., 5, =y g tp and
f(sy,...,s,) € Ty imply that f(t;,...,t,) is also well-sorted (i.e., iff the congruence =y E isa
strong congruence). Obviously an equational theory E is deduction-closed, iff the replacement
of equals for equals does not produce ill-sorted terms from well-sorted ones.

An equational theory E is called sort-preserving, iff for all relations s =g gt we have also
S5(s) = Sg(t). This implies that sort-preserving theories are also deduction-closed.
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In general it is undecidable whether an equational theory is deduction-closed or sort-preserving
(see paragraph I1.6). However, for elementary signatures the deduction-closedness is
decidable (cf. Proposition I1.6.7).

We distinguish different classes of equational theories: A theory Z is regular, iff s =y p t
implies V(s) = V(t). Obviously a theory is regular, iff every equation in its axiomatization has
this property. A theory is collapse-free, iff t =5 ;; x implies that t is the variable x itself.
Again it can be decided by looking at the axioms whether a theory is collapse-free or not. A
theory is finite, iff every equivalence class w.r.t =y is finite. A theory is simple, iff s
=yt implies that s is not a proper subterm of t [BHS86]. A theory is Q-free, iff for every
function symbol f the equations f(s,...,8;) =z g f(ty,...,ty) imply s; =5 g t; for alli. It is
undecidable whether equational theories are finite, simple or Q-free [BHS86].

The word problem of an equational theory is the problem to decide whether s =y ¢ t holds for
given Z-terms s,t . In general the word-problem is undecidable [Ta79, Mc76]

However in (unsorted) finite equational theories the word problem is always decidable. In
order-sorted, finite equational theories the word problem is decidable, if they are
deduction-closed. In paragraph IV.3 we take a closer look at finite theories.

10. Substitutions.

We introduce some notation and technicalities that are needed in later proofs. Almost all
notions, lemmas and proofs are straightforward extensions of the unsorted case by using the
operator _ for lifting results of the unsorted case to the order-sorted case, as e.g. in [He83,
Ed85, Hu76] . .

Idempotent substitutions (i.e., ¢ satisfies 66 = ©) are an important subset of all
substitutions. The crucial property of idempotent substitutions is that their domain and
codomain have disjoint sets of variables, i.e., DOM(c) N 1(0) = @. Since these two properties
are equivalent, we often say a substitution is idempotent and mean DOM(o) N I(c) =@. A
disadvantage is that the composition of idempotent substitutions may not be idempotent, hence
the subset of idempotent substitutions is insufficient as a theoretical basis.

There is a sufficient criterion for a product of idempotent substitutions to be idempotent:

10.1 Lemma. [He83]: Let 6,T be idempotent Z-substitutions with DOM(t) N I(0) = Q.
Then o1 is idempotent. I
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Two Z-substitutions 6,T with (DOM(o) UI(c)) N (DOM(t) UI(T)) = @ are permutable, i.e.,
0T = 1°0.

For two X-substitutions ¢ and T with 6 =t [DOM(c) U DOM(1)] , we can define their
union, denoted by ¢ U 1, as the substitution with DOM(c L 1) = DOM(0) U DOM(1),
out = 0 [DOM(0)] and 6 LU T =1 [DOM(T)].

Let us recall the definition of a Z-renaming: A substitution p € SUBy is called a
Z-renaming, iff p maps variables into variables, p is injective on DOM(p), and S(x) =
S(ox) for all x € Vy. Note that Z-renamings may be not idempotent. For every Z-renaming
p={X; & ¥q»...r X, € Yy} @ converse p is defined as p~ = {y; « Xppees Yp & X} A
substitution p € SUBYy is called a Z-permutation, iff p is a bijective Z-renaming. It follows
from this definition that a Z-permutation p has an inverse p~ with pp~=p7p = Idy. Hence the
set of all permutations is a group together with Idy and the composition of substitutions (¢).
Obviously restrictions of Z-permutations are X-renamings. Furthermore every Z-renaming is a
restriction of some Z-permutation.

There are enough (idempotent) renamings to rename every finite set V of variables, since

we have assumed that for every sort there are infinitely many variables.
We summarize the properties of p~ in a Lemma (cf. 2.1):

10.2 Lemma. Let p be a Z -renaming. Then:

i) p~isa X -renaming ii) DOM(p) = COD(p™)
iif) DOM(p™) = COD(p) - v) (p7) =p

v) pep =Idy [DOM(p)]

vi) If p is idempotent, then p U p~ is a X-permutation.
vii) If p is a permuation, then pp~ =p p=Idy W

10.3 Proposition.

i) Letsite Ty. Thens=gt > there exists a X-permutation E with &s =t.

ii) Leto,t € SUBy. Then 6 =5 T[W] < there exists a Z-permutation E with £o =1 [W].

Proof. For the unsorted case, see for example [Hu76], we have that ch= T [W] and
A,6 =1 [W] implies that A1 = A, [V(ocW)]. Furthermore there exists an unsorted
renaming p with po= 1 [W]. Hence pysw) is well-sorted and a Z-renaming. M

Let U < SUBy be a set of substitutions and let W ¢ Z < V. Then we say U is based on W
away from Z, iff for all substitutions ¢ in U we have DOM(c) =W and I(c) N Z = @.
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10.4 Lemma. Let W ¢ V and let T € SUBjy. Then for every idempotent X-renaming p with
DOM(P) 2 VOoW) : 1 =5 peT[W].
Proof. Follows from Lemma 10.2. B

The next proposition is trivial for the unsorted case and in the order-sorted case it is a

consequence of the finiteness of the set of sorts Sy.

10.5 Proposition. Let £ be a finite signature. Let W be a finite set of variables and let n be
a natural number.

i) Theset {te Ty ldepth(t) <n } contains a finite number of =y, - congruence classes

ii) The set {o € X |depth(c) <n } contains a finite number of =5 [W]- congruence
classes.

Proof. i) In the unsorted case we have: {t € Ty | depth(t) <n } contains a finite number of
=5 - congruence classes. Furthermore if s =5 t, then s =5 t. Terms s,t with s =5 t have
the same occurrences. The =y - congruence class of a term s is determined by its =5 -
congruence class and by the sort of its variables. There are only a finite number of
possibilities for different sorts of variables, hence a =5 - congruence class is partitioned
into a finite number of =g - congruence classes.

ii) The proof is trivially extended to vectors of finite length and hence to substitutions. l

We note some observations on noncyclic substitutions that are needed later on.

10.6 Definition. A variable x, is strongly cyclic for a substitution o, iff there are
variables x;, i = 2,...,n such that x; € V(Gxi_l), i=2,.,n,x;€ V(ox,) and
O'"'lx] # Xy
It is weakly cyclic, iff there are variables x;, i = 2,...,n such that x; € V(0x; ),
1=2,...,n and x; € V(0x,)

10.7 Lemma. i) If x is strongly cyclic in ¢ then x is also weakly cyclic in ©.
ii) If there is no weakly cyclic variable in ¢, then 6™x = x for some m > 0 implies ox = x,
i.e. DOM(o") = DOM(0) for all n

10.8 Example.
i) Idempotent substitutions have no cyclic variables
ii) The substitution ¢ := {x « f(x)} has the strongly cyclic variable x and
oM = {x « fM(x)}.
iii) The substitution ¢ := {x « f(y), y « =z} has no cyclic variable and
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oM = (x « f(z), y « z}forallm > 2

iii) The substitution © = {x « f(y),y « z,z «y }has no strongly cyclic
variable, but y and z are weakly cyclic. If we compute the powers of G, we obtain
02 = {x « f(z)} and 03 :={x « f(y),y < z,z <y} =0.

10.9 Lemma. Let o be a substitution without strongly cyclic variables. Then there exist
natural numbers m,k > 0 such that o™ =gMm+k

Proof. We have DOM(c") ¢ DOM(o) and I(c™) < I(0).
If the depth of terms in COD(o™) is bounded, then not all 6" can be different, since there
are at most finitely many terms of bounded depth and with a fixed set of symbols.
Hence in this case there exist natural numbers m,k > 0 such that o™ = g™*k |
If the depth is unbounded, then there exists a variable x, such that depth (onxo) is not
bounded.
This means depth (on(cxo)) is not bbounded, hence there exists some variable x; € V(ox),
such that depth (onxl) is not bounded. In this manner we can construct an infinite chain
Xg-X1»---» Such that x; € V(0x;_;). Since there are only finitely many variables, there
exists a variable that occurs twice in the chain. Without loss of generality we can assume
that x, occurs twice and x( = X,
If all terms oOX; are variables fori=1,...,n, then the depth of 0x) is bounded, hence there
exists a variable X such that OX; is not a variable. Hence Xj is a strongly cyclic variable in
c .l

10.10 Lemma. Let o be a substitution without strongly cyclic variables. Then there exists a
number n, such that o" is idempotent. Furthermore if o™ and ™ are idempotent powers of
o, then o™ = ™.

Proof. Using the last lemma we see that there exist k,m > 0 such that 6™ = 6™k | With
n = km we obtain 6X™ gkM = kM by applying o™ = 6™+ repeatedly.
If o™ and o™ are idempotent we compute ™" in two ways: If we use the idempotency of
o™, then we obtain c™® = 6™, From the idempotency of 6™ we obtain ¢™" = ¢", hence
cl=c™ N

The converse of Lemma 10.10 holds:

10.11 Lemma. Let G be a substitution such that ¢™ is idempotent for some m > (. Then ¢
contains no strongly cyclic variables.

Proof. Obviously the depths of terms in COD(c") are bounded. Suppose G contains a
strongly cyclic variable, then there is a power oK of o such that there is a variable x with
oKx is a nonvariable term and x € V(okx), hence the depth of oXlx for 1> 1 is unbounded,
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which is a contradiction.

10.12 Definition. For a substitution ¢ without strongly cyclic variables we define the
idempotent closure o* as the least power o™ that is idempotent. W

The above lemmas show that the idempotent closure of a substitution can be defined as any

idempotent power of ©.

10.13 Lemma. Let ¢ be a substitution that has no weakly cyclic variables. Then there exists
a natural number m > 0 such that o™ = g™*1, ,

Proof. By Lemma 10.10 we have that there exists a number m > 0 such that ™ is
idempotent. Furthermore Lemma 10.7 shows that DOM(c™) = DOM(o). Since
DOM(c™) N I(0) = @, we have co™ = c™. Wl

11. Theory-Unification and Theory-Matching.

Let £= (Z, E) be an axiomatization of an equational theory.
The subsumption relation for two terms s,t € Ty is defined as follows:

S ZZ,E t:e 3 )., € SUBZ with s =2,E M.

In this case we say t is more general than s or s is an E-instance of t. Obviously the relation
25 isa quasi-ordgring on Ty.

Note that sometimes the reversed ordering is used, (cf. [Si84, Si86, Sz82, Sch85]).

The corresponding equivalence relation is denoted as =g g i.e.,

S EE,E t iff s ZZ,E tand t ZE,E S
We extend the subsumption relation to substitutions:
Leto,te SUByandlet V ¢ Vy. Then

o2ypT[V] & dX e SUBg witho =sE At [V].

In this case we say T subsumes 6 modulo V or T is more general than ¢ wrt V. Obviously the
relation 2y p[V] is a quasi-ordering. The corresponding equivalence relation is denoted by

EZ E i.e.,
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c=ppT [V] iff o2yp7 [V]'and'czz,Eo[V].

Note that =50 [V] and Sz,g [V] may be abbreviated as =5 [V] and <g [V], respectively
(cf. paragraph 5). If V is the set of all Z-variables, then we will omit the set of variables in the
notation of the subsumption of terms and substitutions.

Given an equational theory £ = (£,E), an E-unification problem is a finite set of
equations denoted as I' =(s; =t;1i=1,...,n), . Instead of an E-unification problem we
sometimes speak of a system of equations to be solved. We say a well-sorted substitution o is
an E-unifier of I' (or an E-solution of I) iff os; =5 E O forall s; =t; € I'g . The set of all
E-unifiers of the system I"is denoted by Uy g(I'). Obviously the set Uy g(I) is a left ideal in
the set of all well-sorted substitutions, i.e. SUBy Uy E(l") = U):,E(F) or equivalently every
instance of an E-unifier is also an E-unifier. The set Uy ,E(F) is recursively enumerable (even
for an infinitely presented equational theory) by a simple dovetailing argument.

However, for most purposes it is not necessary to compute the whole set of E-unifiers, but a

smaller subset from which we can obtain every solution by instantiation.

We say a set cU ¢ SUBy is a complete set of E-unifiers for I‘E, iff the following conditions
hold:

i) cUg UE’E(I’) (correctness)
i) VOe Uz,E(I‘) doe cU: 6 25g O [vai. (completeness)

The set of all complete sets is denoted by CUy ,E(I‘). We may use the notation cUy E(F) for a
special complete set of E-unifiers. '

Furthermore a complete set cU of E-unifiers is called minimal or a set of most general
E-unifiers (or set of ‘mgus’), iff in addition

ii) Vo,te cU: o 2y T [VID)] = o=1. (minimality)

All minimal sets of E-unifers are collected in the set MUy g(I'). We may denote a special set of
mgus as LUy g(I), if it is clear from the context, which particular set we mean. In general
there are infinitely many different sets of mgus for some system of equations I', but they are all
equivalent, in the sense: if uU;, WU, € MUg (') then there is a bijection a: pU;— uU, with
o(o) =sgO [V(D)] for all 6 € pU,. This was proved by [Hu76, FH86], and is a trivial result
for the equivalence for bases of upper segments in a quasi-ordering.

Unfortunately, a minimal set of mgu’s does not always exist, the first example for such a
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theory was given in [FH86]. Recently it was shown that the theory of associativity and
idempotence is also an example for a theory where in some cases a set of mgu’s does not exist
[Ba86, Sch86].

Depending on the cardinality of the sets of most general unifiers we can classify equational
theories according to the following hierarchy [Si75, Sz82, Si86, Si87]:

A theory £ is unitary unifying (or is of unification type 1 or £ U,)
iff WUy E(I‘) exists and IpUy ,E(D I <1 for all equation systems I'.
A theory £ is finitary unifying (of unification type w or €€ U )
iff pUy g(T') exists and InUy ,E(F) | < oo for all equation systems I".
A theory £ is infinitary unifying (of unification type <or £ € U,)
iff pUy g(I') exists for all equation systems I" and IuUz,E(I’) | = oo for some
equation system I'.
A theory £ is nullary unifying ( of unification type 0 or £ € U)
iff WUy E(l") does not exist for some equation system I'.

We use as abbreviation U := U; U U, U U, and also say that theories £€ U are
unification based. The unification type of a theory is undecidable (cf. [BHS86]). The
subclass of unitary or finitary theories where the sets of unifiers are always effectively
computable is denoted as Uj ¢ O U, o
Usually the unification type is defined using a single equation. But in general the problem is to
unify lists of terms. The crucial point is that the definition of the unification type via a single
equation and via a system of equations is not equivalent. An example is given in the appendix
showing that there exists a theory of (single-equation) unification type e, that is nullary
unifying with respect to equation systems. Hence our definition here is more adequate for
describing the unification behaviour of theories. Furthermore, the result of [BS86] that there
does not exist a finitary theory with an upper bound on the cardinality of minimal unifier sets,
provided there is at least one free function symbol with more than one argument in the
signature, is true without any restrictions, if our definition of unification type is used.

However, for the case of unitary and finitary theories, the two definitions are equivalent
(cf. [He86] for a proof in the unsorted case). The same is true if the signature contains at least

one free function symbol of arity greater than 1.
By Lemma 10.3, we can always find a minimal (or a complete) set of idempotent E-unifiers by

renaming their codomain, hence it is not a restriction to assume that all unifiers in a minimal set

of E-unifiers are idempotent.
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We will also consider one-sided unification problems or matching problems. We denote

an equation system as a matching problem as follows:
A=(s;«tjli=1,...,mg

To solve the matching problem A means to find well-sorted substitutions ¢ with DOM(c)
N V(ty,....t;) = @ and os; =g ¢ t; for all i = 1,...,n. In this case we call ¢ an E-matcher. The
set of all E-matchers is denoted as My ;(A). Note that the set of all E-matchers is a left ideal in
the monoid of all substitutions ¢ with DOM(0) N V(t;,....t,) = @. Similar as for unification
we define minimal and complete sets of matchers. We use the relation SZ,E[V(A)] for
comparing matchers. This is equivalent instantiate only with substitutions ¢ with DOM(c) N
V(ty,....t) = 3.
This definition of matching is not less general than the problem of one-sided unification, since
the sets {oe SUBy | 0s; =g g t;foralli=1,...,n} and (M):,E<Psi «tli=1,...,n)) p (where
p is an appropriate X-renaming) are equivalent with respect to =5 plV(A)].
Analogous to the unification hierarchy we classify the equational theories into unitary
matching (Ee M), finitary matching (£ € ), infinitary matching (£ € M), and
nullary matching (Z € %) theories.
It is undecidable where a theory resides in the matching hierarchy [BHS86].
This definition implies that in regular theories every matcher is minimal [Sz82] . Hence we
have that regular equational theories are not in 9. In [Sz82] it is shown that in the unsorted
case the Q-free theories are exactly the regular and unitary matching theories. In paragraph
IV.2 we consider the connection between unitary matching and €2-free theories for the sorted

case .

A further problem tackled in this thesis is the problem of weakening [Wa83], that is, given a
(non well-sorted) substitution 7, find a well-sorted substitutions ¢ € SUBy such that o7 is
well-sorted. We denote such problems simply as:

(te SUBy).

We denote the set of solutions as Wy(t € SUBjy) or simply as W(t).

We will consider also weakening problems for terms t, either denoted Wy(t € Ty) or
Ws(te T}:,S> or Wx(te S). The problem is to find the well-sorted substitutions ¢ with
ote Tyor ote Ty g for some sort S.

Again we consider minimal and complete subsets of weakenings, denoted as cWy and
HUWy. If not stated otherwise, we use the quasi-ordering <y[I()] (<y[V(1)]) for comparing the
weakenings.

Note that we do not consider weakening problems with respect to an equational theory.
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We say a theory is simple, iff s =5 g t implies that s is not a proper subterm of t. In [BHS86] it
is shown that in simple theories an occurs-check is possible during unification, i.e. the
equation <x = t >, is unsolvable, if x € V(t). Furthermore it is shown there that simplicity is
an undecidable property of an equational theory.

A theory is Noetherian, iff there are no infinite properly descending chains of substitutions
with respect to <y i [W] for a finite set of variables W. In part IV we show that every finite
equational theory is Noetherian.

12. Computational Logic.

There is another important derivation system, called (undirected) demodulation in the field
of Automated Deduction [WR67], which allows to replace equals by equals. In the following
we assume that a fixed equational theory E = (X,E) is given. We shall define demodulation

for a sorted logic.

12.1 Definition. Let s,t be X-terms.
Then we can deduce t from s, denoted as
S _)E,C,O' t
iff there exists an equation e of the formr=1or1=r inE, a substitution ¢ € SUBy and
an occurrence T € D(s) such that s\t =cland t=s[n < or]. W

This definition includes the definition of s — t for ill-sorted terms. If it is necessary to

neo

distinguish between s — t for well-sorted terms andfor ill-sorted terms, we shall say so

n,e,0
explicitly. The default assumption is that the relation is restricted to well-sorted terms.

A derivation is a finite sequence of such derivation steps. If a term s can be derived from a
term t by a finite sequence of such steps, we denote this by s —*— t. Obviously —*— is
symmetric. It is not difficult to see that for the unsorted case this derivation system is
equivalent to the one defined in 9.1.

We call an equational theory £ demodulation-complete, iff s =5 ,Ef & s—*— tforall
well-sorted terms.

In part 11 2 we show that for the extended relation —*— on all unsorted terms, we have
always s=gpt < s —*_ t, but the examples below demonstrate that there are equational

theories that are not demodulation-complete.

We give two examples for theories that are not demodulation-complete. Note that the
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corresponding equational theories are not deduction-closed:

12.2 Example. a) Let Sy := {A,B,C,D} and let a,b,c,d be constants of sort A,B,C,D,
respectively.
Let f be a binary function with f:AxB3 -» A and f:CxD — A. Let E := {a=c, b=d} be the set
of axioms. We have f(a,b) =5 E f(c,d), but not f(a,b) —*—y f(c,d), since the intermediate
terms f(a,d) and f(c,b) are not well-sorted.

b) Let Sy := {A,B,C,D} and let a,b,c be constants of sort A,B,C, respectively.
Let f be a unary function with f:A — D, f:C — D, Let E := {a=b, b=c} be the set of
axioms. We have f(a) =5 E f(c), but not f(a) —*
f(b) is not well-sorted. H

- f(c), since the intermediate term

Example b) shows that even a deductive calculus that allows parallel substitution of equals for
equals is not sufficient to compute the whole congruence relation =y .

We give a criterion for an equational theory to be demodulation-complete:

12.3 Proposition. If all terms are well-sorted, i.e., Tz =Ts,
Then s =¢ gt & —* t, i.e., Eis demodulation-complete.
Proof. Using Birkhoffs Theorem, it is sufficient to show that every step of the deductions

system in 9.1 can be simulated by steps s —. t . The only nontrivial part is to show

w.e,0
that s —*— t implies ts —*— 1t for every Z-substitution T. But obviously s — .t
implies Ts —— . 5 Tt, since s\t = 6l and t = s[n « or] imply that T s\t = tol and

Ts[w « tor] =1(s[x « or] =1t . A
We give more sufficient conditions for demodulation-completeness:

12.4 Lemma.
i) Let Ebe an equational theory. If for every well-sorted term s and for every term t with
s -*—» t, the term t is well-sorted, where —*-- is the extended relation on all
un-sorted terms, then £ is demodulation-complete.
il) If £is deduction-closed, then £ is also demodulation-complete
Proof.i) is trivial, since the assumption implies that it is not possible to deduce ill-sorted
terms from well-sorted ones by replacement of equals by equals.
ii) trivial. B

An important way of computing with equations is to direct the equations and to use them as
X

‘simplification’ rules. Then » is usually called rewriting or reduction.
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R = (Z,{s; = t,..., s, = t,}) with V(s;) D V(1)) is called a term rewriting system
(TRS).

We say a term s is R-reducible to a Z-term t (s —g Diff s —reo.E t for some indices

n,e,0, where e is an oriented equation from R. Note that the default assumption for term
rewriting systems is that R-reduction is allowed to produce ill-sorted terms. That means the
applicability of a simplification rule does not depend on the well-sortedness of superterms of a
term. '

We say a term rewriting system is compatible, iff for all well-sorted Z-terms s : s —p t
implies that t is well-sorted. This means compatible rewriting systems never reduce a
well-sorted term to an ill-sorted one. In the following we assume that a term rewriting system
is compatible, if not stated otherwise.

We denote the transitive and reflexive closure of —yg by -y and the symmetric closure
of ‘L’R on well-sorted terms by <-"‘—>R. A term is R-irreducible or in R-normalform, iff it
is not further reducible.

12.5 Lemma. Let R be a (compatible) term rewriting system.
Then «*>p is a SUBy-invariant Z-congruence and it is the same relation as =g gonTy.
Proof. We prove only that «*-p is a Z-congruence. Obviously it is an equivalence relation.
since -*-p is SUBg-invariant we can use induction to prove that «*-p is also

SUBj-invariant. The congruence property follows from the compatibility of R. W

An important property of term rewriting systems is confluence: The relation - (or R) is
confluent, iff for all well-sorted terms s, s;, s, :
s *opsyands *opsy =>3te Ty:sy Xogt and s, Fopt.

In a confluent term rewriting system a term t has a unique normalform, if the process of
reducing t terminates. In this case the R-normalform of a term s is denoted by || s [. If every
reduction sequence for every term is terminating, then we say R is terminating (or
Noetherian). A term rewriting system is called canonical, iff it is confluent and
terminating. A canonical term rewriting system R for an equational theory E provides a
decision procedure for equality: To decide s =g t, reduce s and t to their R-normalforms || slig
and | t|lr and then compare these normalforms for syntactic equality.

For a term rewriting system R, confluence of R is equivaient to the Church-Rosser
property, i.e., s =y  t iff there exists anr € Ty with s —p and t —pg r . The proof is
straightforward by induction on the number of «*-, -deriviation steps.using «*-p = =y .

For noncompatible term rewriting systems confluence and the Church-Rosser property may be
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not the same:

12.6 Example.
Let Sy := {A,B} with A = B and let a;,a, be constants of sort A and b be a
constant of sort B. Let f: A — A be a function symbol. Now consider the rewrite system
R := {a; = b, ay — b}. This term rewriting system is confluent, since the rewriting
relation is deterministic. The terms f(a,) and f(a,) are equal, i.e., fa)) =g g f(a,), but
their reduct f(b) is not well-sorted, hence the relation is not Church-Rosser. l

A term rewriting system R is called sort-decreasing, iff for all Z-terms s,t : s ——p t
implies that Sy(s) < Sg(t) (or LSs(s) 2 LSx(t) for regular signatures). This implies that the
property holds also for the relation *-p.

For sort-decreasing and canonical term rewriting systems we can lift the relation —~-p to
substitutions and we can use normalized substitutions, that means every term in the
codomain is in R-normalform.

For term rewriting systems R that are not sort-decreasing it is not possible to lift the
reduction to substitutions or to define the normal form of a substitution: Let s —p t and let
S e Sy(s) —Sz(t) . Then the substitution {xg ¢ s} is well-sorted, but its reduct {xg &t}
is not. For example, a theory axiomatized by the single equation {a = b}, where a and b have
an uncomparable sort, has no sort-peserving term rewriting system.

The completion procedure of Knuth and Bendix [KB70] is a tool for computing a canonical
term rewriting system for a given set of axioms. Since the existence of a canonical term
rewriting system implies the decidability of the word problem, there are theories that do not
admit a canonical TRS.

We show in II.3 that the confluence test for terminating term rewriting systems using
critical pairs and critical sort-relations is a criterion for a sort-decreasing term rewriting system
to be canonical. Furthermore if unifier sets w.r.t. the empty theory (together with sorts) are
effectively computable (i.e., (£,9) is of type finitary) then this test is a decision procedure.
For a survey on TRS’s see [HO80, Bu85].
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13. Manipulating and Solving Equational Systems.

The methods in this paragraph go back to J. Herbrand [Her30], A. Martelli & U. Montanari
[MM82] and C. Kirchner [CKi85]. We want to employ these ideas to describe unification as a
process that manipulates the original equational system I" by a set of rules. In [MM82, CKi85]
a set of multiequations is used instead of an equations system. They consider multiequations of
the form x =y = r =s =t, denoted by {x,y,1,s,t}. However, this can be seen as a different
representation of the unification problem (x=y, y= r,r=s,s =t) and the structure of
multiequations can be seen as an equivalence relation on the set of equations in an equation
system I". For the sake of simplicity we consider equation systems in this paragraph, but all

results are also valid for multiequations.

We assume throughout this paragraph that a signature X and an equational theory E are given.
Recall that the set of E-unifiers of an equational system I' = (s;= t;)g is defined as
UZ,E(F) :={oe SUBgl Os; =5 O foralli} .

In the following we consider transformations of an equational system I'; to a system I')
denoted by I'y = I';. We also consider chains C of such transformations. It is technically
important to trace the variables that are used in such a chain C. We assume that all variables
introduced by new terms do not occur elsewhere in the chain. As an abbreviation we
sometimes call them ‘new variables’. In order to make this precise, we assume that every
system I is assigned the set of already used variables with respect to the chain C denoted as
UV (). Generally we omit the suffix C and assume it is implicitely given. For the starting
equation system we assume that UV(I") = V(I'). Furthermore for every transformation step
[} = T, we assume that (V(I'y) - V(@) nUV(T)) = @. That means used variables should
not be reintroduced. This is a natural restriction and it allows to compute solutions of an
original system I" as the restriction of solutions of a final system to the set of variables in V(I').
As a consequence we always have V(I') c UV(I) and UV(T'}) c UV([,) forT'; = I,.

13.1 Definition. A transformation I'y = I'; is correct ,
iff U):,E(rl) 2 Ug().
We say a correct transformation I'; = I') is complete,
iff additionally UE,E(FI)|UV(F1) o UE,E(r2)|Uv(r‘1, i.C., UZ,E(FI)|UV(FI) =

U e@iuv(ry
We say a set of correct transformations I' = I';,..., [ = I’ isa complete set of

alternatives, iff UE,E(F)IUV(F) = Uz’E(Fl)Iuv(r) U...uV UZ’E(rn)luv(r‘) &
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13.2 Lemma.
i) If ', = I, and I’y = I'; are correct, then T'; = I'5is correct.
iiy IfI'; =T, and I'y = I'; are complete, then Iy = Iz is complete.
iii) If UV(;) =UV(,) then:
I'; = T, is complete, iff Uy ,E(Fl) =Usg ,E(r2)-
iv) I') = I, is complete, iff for every substitution 6 € Uy ,E(Fl) with DOM(o) ¢
UV(T',) there exists a A with DOM(A) UV([,) - UV(I), such that
ol e Uy ).
Proof. i) is obvious
ii) From UZ,E(rz)IUV(I‘z) = U):,E(F3)IUV(f2) and UV([}) < UV(T'y) it follows that
Uz eM)iuvery = Uze@T3uv(ry hence Ug @iy = Vg T3y
iii) is a consequence of i) and ii).
iv) Follows from the definition. Il

Note that 13.2 iii) does not hold in general if UV(I"}) # UV(I',):

13.3 Example. Let X be a signature with one sort, let E be an equational theory and let a,b
be two constants that are not E-equal.
Let Tpi=(x=y)gand [i=(x=zy= z)g. Then U}:,E(rl) ={o e SUBg| ox =g Oy}
and Uy ,E(r2) ={ce SUB): | oX =3Oy =g g oz}. Obviously I'y = I', is complete and
correct, but UE,E(F 1) # UZYE(Fz), since {x « a, y « a, z & b} is in
Ug M) -Ugpdy). W

13.4 Lemma.
i) Forall 0 € Ugg(), 7€ SUBgand 6<y5 T [UV(I')] = 1€ UggpM).
ii) For all o€ Uy E(I‘), Te SUBgand =57 [UV(ID)] = 1€ U}:,E(r)'
iii) e Ugg(), 7€ SUBgando =g 1 [UVI)] = te Uggd).
iv) For every o € U):,E(r)’ there exists an idempotent substitution T e SUBjy with
o=y T[UVT)] and t€ Ug E(I’).
Proof.
i) Holds, since Ao =5 g TI[UV(@)] and 05 =g Ot implies Aos =y g Aot.
ii) Follows from i) '
iii) Trivial
iv) By Lemma 10.4 there exists an idempotent substitution T € SUBy with
6 =5 T [UV(D)], hence by ii) we have also T € Uy g(I). B |

This lemma shows that we can improve the completeness-criterion in Lemma 13.2 iv) to

idempotent substitutions:

55



Lemma 13.5 T’y = I, is complete, iff for every idempotent substitution o € Uy () with
DOM(o) c UV(I';) there exists a A with DOM(L) UV(I',) — UV(T)), such that
oUL € Uy (). M

The conjunction (or the union) of two equational systems I'; and I, is denoted as I'y &I7,.
Obviously we have Uy ,E(Fl&rz) = UZ,E(FI) N UZ,E(FZ)‘ In Lemma 13.8 we show that local
completeness can be lifted to a conjunction.

The following set of rules is applicable to every equation system and every equational theory.

Demodulation Rule.
s=t&I =2s'=t&T
If s =5 E s'and (V(s)-V(s") n UV =@.

Trivial Equation Rule.
s=t&I' = T

Ifs:):,E t

Binding Rule.
x=t&I = x=t& {x «t}I
If {x « t} is a well-sorted substitution.

Internal Demodulation.
s=t&I'=2s=t&I"
where I" is obtained from I by replacing some subterm s by t.

These rules can be used to simplify equational systems I'. For example, it is possible to delete
equations that have the solution Id. Internal demodulation has a nice application as a general
simplification rule for unification problems. Consider for example the AC-unification problem
(xx = ya, xxc = yb) . This problem can be transformed into (xx = ya, yac = yb), - and then
by cancellation rules into (xx = ya, ac = b} , , which is unsolvable.

13.6 Proposition.
i) The demodulation rule is complete.
i) 'The trivial-equation rule is complete
iii) The binding rule is complete.
iv) The internal demodulation rule is complete.
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Proof. i) and ii) are obviously true.

iii) Leto e Ug E(x =t & I'). Then ox =g g o, hence o{x «—t} =3g 0. This means
Ce UZ,E(x—t& {x e t}T7).
To prove the converse, let ¢ € UZ,E(X =t & {x « t}I'), then again Ox =y g Ot, hence
o{x «t} =y E candoc e UZ,E( x=t&I).

iv) Leto e UZE(s=t&Dmdassumethatu=ve F'umk=s,u'=u[retlandI"is
obtained from I" by this replacement. Then cu =g g OV and Os =g g Ot implies
ou' =5 E OV hence 6 € Uy ,E(S =t & I'"). The converse is a symmetric case. WM

In order to design transformation rules it may be helpful to know for some special cases of
terms how to obtain their complete set of unifiers. The same type of problem arises in
combining known unification procedures with a set of transformation rules. The idea is to
replace the unified equation by the pairs x = ox for a unifier 6. We denote the equation system
obtained from G in this way by (O) or as (o) for short. This result is also known as the
inheritance theorem in [Oh87]. This propositidn can be applied to minimal sets of unifiers and
shows then that we can sequentialize the computation of minimal sets of unifiers: In order to
solve I';& I’ we first compute a minimal set of unifiers for I';, apply the obtained
substitutions to I'; , and solve the obtained system. The conditions on variables means that the
variables in I, that are not in I'; should not be used in the codomain of minimal unifiers of I';.

13.7 Proposition. Let I'; and I, be two unification problems and let U be a complete set of
idempotent E-unifiers for I'; (modulo the set of variables V (I'y) ), such that
DOM(c) c V(I'}) and I(6) nUV(T & ) c V(') foralloe U.

Then the rule:
r&r, ={()&l, foroceU
- provides a correct and complete set of alternatives.
Proof. i) Correctness: Let T € Uz,E((()') & I'). Then we have Tx =5 g T0X [V(T'))]. Hence
O<ypT [V(T')], which implies T € Uz,E(Fl), hence 7 is a solution of I'y& I's.
ii) Completeness: Let te Uy ,E(rl& I';) with DOM(t) < UV(T'1& I'). Then there exists
ao e U, such that ¢ <yET [V(T'{)] and hence there exists a A with DOM(A) <
I(c) L V(")) such that Ao =5 g TIVIP]
We have to show that there exists t' with T’ =sET [UV(I';& TI'y)] such that
T'X =5 E t'ox forall x e V(I')).
Let W :=1(c) — V(I')) and let T' := T U A}y Note that DOM(1) "W = Q.
We have Ao =5g T "[I(o) U V(T ]: For x € V(I'y) this is true by assumption.
Fory e I(c) - V(I';), we have Aoy = Ay, since O is idempotent and T'y =Ay.
Now consider t'ox for all x e V(I')). Obviously V(ox) (o) U V(T')). Hence
TOX =y g Aoo=Ac=1t=7[VI)]. A
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The idempotency of unifiers is necessary:
Consider the equation system {x = f(y)}. Then {x « f(x), y «~x} is a most general unifier for
[", but the system {x = f(x), y =x} is unsolvable.

We can localize the test for correctness and completeness of I'y = I', on the parts that are
different.

13.8 Proposition. Let I" be an equational system. Then
1) If I'; = I, is correct, then I'&I"; = F&F2 is correct.
ii) If I'y = T, is complete, then &I’ = I'&l, is complete.
Proof.
i) From Uz,E(I"]) ) U}:,E(Fz) we conclude UZ,E(F) N UZ,E(FI) -) U):,E(r) N U}:,E(rz)-
ii) Let Ug g Mgy = Vg eTDwvery. Then Uz g N Uz e')) jyv(r
= (Ug g N Uz @) jyvr)- W

In parts III and IV we investigate unification procedures defined by rules in a set RS that
transform equational systems . The transformations specified by such rules are in general
nondeterministic. We denote the corresponding transitive, reflexive relation on equational
systems by é"Rs- We denote the unsolvable system with the sign %, i.e, we have always
U p(%k) = a.

13.9 Definition. We say a system I’ is solved, iff I' = {x; =t; | i = 1,...,n}, all x; are
distinct, {xg,....xp} N V(1) = @ and LSy(x;) € Sy(ty for all i = 1,...,n. The
corresponding solution O is the substitution (x; - t;1i= 1,...n}. W

Note that the substitution o is always idempotent for solved systems.

13.10 Definition. We say a rule-system RS is a complete unification procedure, iff
for every system I" and every substitution 6 € Uy g(I') there exists a system A with
[=*fapgAand o 2y g Op [UVD)] |

Note that a set of rules that allows only complete transformation steps is not necessarily a

complete unification procedure: For example if there are no rules at all, then every

transformation is complete, but not every equation system is in solved form.

We have as a first trivial lemma that solved equation systems have the right solution and are
unitary solvable.
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13.11 Lemma. Let I be a solved equational system. Then
i) ope UggD).
ii) forall oce Uy E(F): 25 OF [uval.
Proof. i) is trivial.
i) LetT' = (x;=t;li=1,....,n} and let o€ U):,E(F)- Then we have ox; =g E Of; for all i.
We show G =y E OOr [UV(D)]: For all i we have 00x; = Ot; =g  OX;. Forye V(1)
we have ooy = oy. B

13.12 Lemma. Let I" be an equational system and let A be a solved equation system
obtained by correct transformation steps .
Then we have o, € UZ,E(F)- |

If all transformation steps in a rule system are complete, then all solutions are equivalent, that

means it is sufficient to compute just one solution:

13.13 Lemma. Let I" be an equational system and let A be a solved equation system
obtained by complete transformation steps .
Then forevery o€ Uy ,E(F) we have 62 ¢ E OA v

Proof. From completeness we obtain U):,E(F)IUV(F) = U}:,E(A)IUV(F)° Foro e Uz,E(I‘) with
DOM(o) < UV(I) there exists a substitution A with GUA € Ug ,E(A) by Lemma 13.2 iv).
Lemma 13.11 shows that GUA 2y g Op [UV(A)] . Since UV(A) 2 UV(T) and
o = 6UA [UV(D)] we conclude 6 25 i 0, [UV(I)]. &

If we start with an equation system I" and use only complete transformation steps, then all

obtained solutions are equivalent.

13.14 Lemma. Let I" be an equational sysfem and let I'; and I") be two solved equation
systems obtained by complete transformation steps .
Then or,; =5 E O [Uval: ‘

Proof. From Lemma 13.12 we obtain O, Op, € Uz,E(F). Lemma 13.13 shows
Or; 255 Oz [UV(ID] and Oy 2 5 OFy [UV(D)], hence o, =5 EOR [UVI)]. B

Every equation system can be partitioned into the parts: I'=I'g U I'y;, where
1) FS is the solved part, that is the set of equations of the form x = t, such that
x ¢ I'—{x=t} and LSg(x) € Sx(1).
ii) I'y = I' = Ig is the unsolved part.

We can further partition I7;into FQS v FQU’ where
i) FQS is the quasi-solved part, that is the set of equations of the form x = t, such that
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x € I'-{x=t} and LSg(t) § LS5 (x).
i) FQU =1 - FQS is the quasi-unsolved part.

In order to obtain a deterministic procedure from a nondeterministic rule system, we take sets
of equational systems that represent all solutions. The set of solutions of such a set {I'y,...,
I',} is the set Uy E(I‘ pu...uUy ,E(F - The tranformation rules lift to these sets as follows:

i) IfI'y =T, is acomplete step, then we transform {I';,..., [} into {I'}',..., T }.

i) If the transformations I'y = I'y4,..., I'y = I',, are a complete set of alternatives, i.e.

U):,E(F D= UZ,E(FII) U...UUsg E(Flm), then we transform
{1, Ty, T} into {Tyq,.en, Ty Topoenn T )
iii) Arule I'; = % translates into {I'y, T'y,..., I} = ({T5,..., T, }.

14. Comparison of Different Appraoches to Unification.

In a deduction system equations have to be unified (or solved) in order to compute the most
general unifiers for the resolution steps.. Without built-in equations, this is just ordinary
unification [Her30, Ro65] and with built-in equations this is called E-unification [Plo72,
Si86].

In all these approaches, unification can be seen as solving equations over the free algebra of
terms modulo an equational theory, the solutions are substitutions and subsumption is defined
in terms of a composition of substitutions. The Herbrand-Theorem [CL73] states that for every
unsatisfiable clause set there exists a finite and unsatisfiable set of ground instances of clauses.
Hence a resolution-based automated deduction system (cf. Part V) remains a complete proof
procedure, if instead of all unifiers only ground unifiers are used for the resolution steps. This
obversation could have an impact on the unification algorithm since now only ground solutions
have to be represented (instead of all solutions) and perhaps the notion of a most general
unifier could be modified. _

In this paragraph we compare these two methods of unification. Comparison also shows
more explicitly the connection between E-unification and solving polynomial equations over
integers or rationals.

In effect, this paragraph is more a justification of the usual unification definitions than their
refusal. The advantages of the usual definition are that most general unifier sets remain
invariant if the theory is disjointly combined with another theory. This means unification
behaves context independent. This property does not hold for the definitions with respect to
ground terms as we shall see. However, in the case where a model or an algebra is fixed (for
example solving polynomials over rationals), the ground solution approach may be more

natural.
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Solving equations containing unknowns (or variables ) requires an exact specification of the
signature since this determines what can be substituted for the unknowns, i.e., an exact
declaration of the algebra is required. We consider three different possibilities:

i) Free algebras

ii) Initial algebras

iii) Some fixed algebra (or model of the equational theory)

A second problem is the representation of the solutions as well as the definition of

subsumption, of the most general solutions and of complete sets of solutions.

An example for the free algebra solution method is Robinson's unification approach for the

empty theory (cf part III).

We give some introductory examples for solving equations in the initial algebra :
14.1 Example.

a) Let the natural numbers be specified with constructors 0 and succ and let the problem
to be solved be (succ(x) = succ(y)). In the initial algebra there are infinitely many
solutions: {x « 0,y « 0}, {x « succ(0), y « succ(0)}, ...

As a most general solution we would take {x ¢« z,y « z }, since every
instantiation of a ground term for z results in a solution for the original equation.

b) If we specify the addition on natural numbers by the equations
x+0=x
X + succ(y) = succ(x +Yy)

Then addition is commutative on the initial algebra, but not on the free algebra, since
the terms x+y and y+x are not equal modulo this theory.
Hence the equation (x + y =y + x) has Id as most general solution in the initial algebra,

but not in the free algebra.

14.2 Example. An example for solving equations in an explicitely given algebra are the
following linear equations over the algebra of rational numbers without division:
The solution of (3x + 4y = 0) is {x « 4z, y « 3z}, where z ranges over all real
numbers.
The solution of (3x=4) is { x « 4/3}. R

The solution process for free algebras is exactly that defined in paragraph I.11. We will call

this method of free solving, F-solving, and refer to these unifiers as F-solutions. Furthermore

we denote E-equality and subsumption by the symbols =ggg and <pyg, respectively.
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Now we define more precisely what we mean by initial equality and initial solving of
equations, where we assume a specification S = (Z,E) given and an equation system I" that has
to be solved.

14.3 Definition.

i) Two terms s,t are I-equal (s = 5 ¢ 1) iff for every ground substitution A with DOM(}) =
V(s,t), we have As =y E At.

ii) An I-solution o is a substitution ¢ that I-solves I', i.e. Os =1 1.E Ot for all equations
s=t inT.

iii) We compare two I-solutions ¢ and T with a strong subsumption ordering as follows:
0 <qyg TV iff there exists a substitution A such that Ac = 5pT[VID].
We say o strongly I-subsumes T
In the same way as in .11 we can define the strong I-unification type of an equational
theory.

iv) We compare two I-solutions ¢ and T with a weak subsumption ordering as follows:

O SyIzET [V(I)] (o weakly I-subsumes T )

iff every ground instance T of T is also a ground instance of ¢ (modulo the set V(I)).

er
In the same way as in I.11 we can define the weak I-unification type of an equational

theory.ll

Solving equation systems with respect to a predefined algebra can be simulated by I-solving,
if the signature contains the usual function symbols and additionally all elements of the algebra
as constants and the (initial) equational theory contains all the equations in the multiplication
table of the algebra. The equational theory may also be chosen as the theory generated from the
initial algebra, i.e. that = y g is the same relation as =g y g. The problem then is that in
general induction is necessary to prove the validity of equations (cf. Example 14.1) and that
the generated theory has no finite axiomatization.

An obvious fact is:
144 Lemma. © SF,Z,E T[VI)] = ¢ SSI,E ET [VID]= o SWI,E,E T[VI)] W

14.5 Example. The theory of free bands, (associativity and idempotency) is an example
where the F-unification type differs from the weak I-unification type. We assume that the
signature contains only the associative and idempotent function symbol and finitely many
free constants. F-unification is of type zero [Ba86, Sch86], whereas weak
I-unification is of type finitary, since finitely generated bands are finite [Ho76] and hence
there are only finitely many ground I-unifiers. This means every properly (weak)
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descending chain of I-solutions is finite.
In the case where only one constant is present, the unification type switches from F-zero to
weak I-unitary and to strong I-unitary. W

We prove that all subsumption relations are identical if infinitely many free constants are

available:

14.6 Theorem. If the specification contains infinitely many free constants then for all
substitutions ©,T:

O<psgT W] 0 SWIZET W]l o SizET [W] where W = V().

Proof. Due to Lemma 14.4 it is sufficient to prove © sz,Z,Et W] =2 ¢ SF,Z ET [W]:

Without loss of generality we can assume that DOM(c) = DOM(t) < V(I') and that
I(c) N I(1) = D. '
Let x,,...,Xx, be the variables in V(TW) and let a,,...,a, be constants not occurring as
subterms in the terms of COD(c) LU COD(t). Then Tgr = {x; « a;}tis a ground instance
of T. Let yy,...,y, be the variables in V(6W). There exist constants bj, j=1,...,m such
that {yj “— bj lj=1,....m}o =3 E {x; «a;li=1,...,n}T [W]. Since a; are free constants,
the above equation remains valid, if the a; ’s in {yj e bj} and {x; « a;} replaced by new
variables z;. Hence Ac =Z,E{xi « z;}T [W], where A is the substitution obtained from
replacing a; by z; in the codomain of {yj « bj}. Applying the converse substitution
{z; « x;} gives (z; « x;) Ao =3 E {z; « x;} {x; & z;)t =re T [W] This immediately
implies 6 <pypT[(W]. W

14.7 Proposition. If the specification contains infinitely many free constants then for all
equation systems ' : G € Urs ,E(F) & O€ UF,Z E(F).

Proof. The proof argues similar to the proof of the above theorem: replace variables in 1(0)
by new constants.

In a special case we can generalize Theorem 14.6:

14.8 Theorem. If the specification contains a free constant ¢ and a nonconstant free function
symbol g, then for all substitutions ¢, that do not have g or ¢ in their codomain terms,
the following holds:

o) SF,E,ET W] @0 Swl,):,E" W] o SSI,E,E’I: [W] where W = V().

Proof. The proof proceeds like the proof of Theoprem 14.7 except that instead of new
constants we use ground terms built from g and c . These terms behave like infinitely many
free constants, since g and c are not used in COD(c) and COD(t). B

In Theorem 14.8 it is not possible to drop the condition on ¢ and T:
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14.9 Example. Let f be a binary function symbol that is idempotent in the initial algebra,
but not in the free algebra, i.e. f(t t) =t for all gound terms t, but f(t t) # t for all nonground
terms t. Assume that a is the only free constant. Furthermore let g be a unary free function
symbol.

Then we have f(g(x) y) SsI,E,E g(z) [W1], since on the ground terms we have
(x 2z, ¥y« g(z)}f(g(x) y) =1IE g(z) [W], but obviously not
f(g(x),y) Spz g &(z) [W]. B

14.10 Proposition. If the specification contains a free constant ¢ and a nonconstant free
function symbol g then for all equation systems I", which do not contain g or ¢ as symbols:
(oS UI,Z,E(F) ~ O€ UF,Z,E(F)'

Proof. The proof argues similar to the proof of the Theorem 14.6.

Together we have the theorems:

14.11 Theorem: If the specification contains infinitely many free constants, then the weak
I-unification type, strong I-unification type and the F-unification type of an equational
theory ‘E are the same. Il

14.12 Theorem: If the specification contains a free constant ¢ and a nonconstant free
function symbol g then the unification types of U | 5y g(I), UsI,):,E(F) and UF,):,E(F) are
the same for all equation systems I" that do not contain g orc. l

These two theorems justify the use of free unification in Automated Deduction systems:
If [-unification and I-minimization is used, then the results (the set of unifiers) depend on the
context. For example if it is possible to invent new constants or to have Skolem-functions,

then I-unification has no advantage over F-unification.

In the following we investigate properties of equational theories with a generic [Gr79] initial
algebra.

14.13 Definition.: An equational theory E is initial-generic, iff for all terms s,t :

S =I,£,E t & S =F,Z,E t. W

That means that equality of two terms can be tested on their ground instances.
S :z'E t & VKE SUBE,gl’ )\,S =Z,E }\.t.



Examples for theories that are always initial-generic are those that are generated by their initial
algebras. Note, however, that in general initial-generic does not imply that a theory is

generated by the initial algebra.

There are two ways to modify an equational theory in order to make it initial-generic:

i) add free constants

ii) define a new equational theory ' with s =gt iff s =1 5Et (consider the theory
generated by the initial algebra)

14.14 Lemma. In initial-generic theories, I-solutions and F-solutions are the same.

Proof. Obvious.

14.15 Example. There are theories, where infinitely many free constants have to be added
to make them initial-generic:
Consider the theory with one binary function symbol f, a constant 0 and let f be
associative, commutative and assume the following additional equations hold:
f(x 0) =0, f(x x) = 0.
If we write terms as strings, it is easy to see, that either a string is E-equal to 0, or
it is of the form X1Xj...X,, where all x; are different.
Furthermore two nonzero strings Xx;X,...x, and y;y,...y, are E-equal, iff
X{s--+Xpy 18 @ permutation of yq,...,y,.
The addition of a finite number k of free constants is not sufficient to make the theory
initial-generic, since a ground instance of a nonzero string that has more than k variables

is E-equal to zero. H
14.16 Example. The empty theory is initial-generic, if there are at least two ground terms.

14.17 Lemma. In initial-generic theories, the notion of sI-subsumption and F-subsumption
is the same, furthermore the sI-type and the F-type are the same.
Proof. The first statement is obvious. The second follows with Lemma 14.14 . l

The next example demonstrates that sI-subsumption and wl-subsumption are different.
14.18 Example.
1) The theory INT of integers (as ring) is initial-generic:
Polynomials over the integers are equal, if all their ground instances (under the same
ground substitution) are equal.
i) wl-subsumption and F-subsumption in INT are different:

The polynomial p := xl2 +x22 +x32 +x42 —x52 —x62 —x72 —x82 has all integers as
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ground instances, since it is well-known that every integer is the sum of four squares
of integers, hence it is wl-equivalent to a variable. However, the polynomial p is not
F-equivalent to a variable, since there is no instantiation of p, such that the value is a

variable.

A related problem to Example 14.18 is the open problem of the unification type of Hiberts 10t
problem, i.e. of the F-unification type of integer equation solving. For this problem it would
be equally interesting to determine its wl-unification type.

We should also mention a Theorem in [Ti86], that most general F-unifiers sets are invariant if

a disjoint theory is added:

14.19 Theorem [Ti86]. Let E = E; U E, be a disjoint combination of two equational
theories. Furthermore let I" be an equation system that does not contain symbols from E,.
Then a complete set cUg, (I') of F-unifiers is also a complete set cUg(I') of F-unifiers with

respect to the combination.

Example 14.5 shows that this is not true for sets of I-unifiers, since the addition of constants

can be seen as a disjoint combination of theories.
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Part 11.

Various Extensions

Overview: This part extends the first part on foundations in several aspects:

The extension of semantics and deduction to ill-sorted terms is investigated and it is shown,
that a deduction system remains correct, if it is allowed to deduce ill-sorted terms.

The combination of sorts and term rewriting systems is studied and a criterion is given for
canonical term rewriting systems, which is an extension of the usual critical pair criterion by a
critical sort relation criterion. A completion procedure for ground TRS is given.

We have a closer look on the properties deduction-closedness, congruence-closedness and
sort-presefvation and give criteria for checking them as well as results about the decidability of
these properties.

Conservative transformations of signatures and specifications are studied in detail in
paragraph 7.

We give different methods to construct unsorted (relativized) specifications from sorted
ones.

The logic is extended to full first order predicate calculus and a method for skolemization in
a sorted signature is given.

1. Extension to Ill-Sorted Terms.

The aim of this paragraph is to investigate extensions of sorted calculi to ill-sorted terms
and atoms. If equations are absent, then the usual deduction methods do not derive ill-sorted
formulae from well-sorted ones, whereas in the presence of equations a deductive system may
produce ill-sorted terms by replacing equals for equals. In general such deduction steps are
forbidden, since all terms have to be well-sorted. We show by semantical means that every
model for some specification can be extended to a model, where ill-sorted terms have a
denotation in the model. This has as consequence, that deduction with intermediate ill-sorted
terms or atoms, but with the same set of well-sorted substitutions, is sound. In the next
paragraph it is demonstrated that clause sets consisting only of sorted equations behave very
similar to the unsorted case, if one allows unsorted terms during the deduction.

The consequence of Theorem 1.1 is that for equational deduction we can assume that all
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terms are well-sorted by adding a sort IT (ill-sorted terms) and leaving all other sorts of terms
invariant. Furthermore the set of (well-sorted) theorems derived by equational deductions with
intermediate ill-sorted terms is exactly the same as that derived by deduction with intermediate
well-sorted terms.

A similar situation arises in lifting congruences in a partial algebra [Gr79] to all elements
of the algebra. In the Rewrite Theorem in [Wa83] it is proved for simple signatures that
well-sorted equations obtained by non well-sorted equational deductions can always be
obtained by a well-sorted deduction.

Let §:= (Z,CS) be a specification. We construct the ill-sorted extension as follows:
Let © be the signature with the same function and sort symbols as Z, but with an additional
top-sort IT (ill-sorted terms). Le., Sg =Sy U {IT}, Fg =Fy, Tg =Tg, and the sort
of Z-terms in © is the same as in X, the sort of ill-sorted X-terms is IT, all atoms are
well-sorted, and CS is unchanged.
This can be performed by adding the following things to a signature: a top-sort IT, the function
declarations f: IT x...x IT — IT for every nonconstant function symbol, and by replacing all
sorts in predicate declarations by IT. The definiton of signature requires that there are also
infinitely many variables of sort IT. It is easy to see that every ©-term t that has sort less IT is
also a Z-term. Furthermore every substitution component of a well-sorted substitution in © is
either also well-sorted in X or it is of the form {x « t}, where x is of sort IT.

1.1 Theorem. Let S := (£,CS) be a specification and let © be the ill-sorted extension of Z.
Then CS has a Z-model iff it has a ©-model.
Proof. If CS has a ®-model then it obviously has a Z-model.
Let CS have a £-model 4 Then we recursively construct a ®-model B from A4 as follows:
i) AgB.
ii) If (a,...,a,) € DAf,), then we add the expression f(al,_...,an) to B.
This construction gives a B, such that IXfg) = B"forallfe F, .
As denotation for sorts we choose Sg :=§,, if S e Sy and ITB‘ := B. As denotation for
a function f we define fg(by,....,by) = fo (by,....by), if (a;,...,a,) € D(f,), and
fg(by,....by) := f(by,...,b,) otherwise. For predicates P we define Pp = P, if P is not
the equality and =g := {(b,b) Ibe B}.
Now let ®@: Tg —B be a ©-assignment. Then the mapping @5: Ty — A defined by <sz =
®x for all Z-variables x is a Z-assignment. Furthermore @ is the same mapping as @y on
the Z-terms and Z-atoms. Since 4 is a £-model, every clause from CS is satisfied by @y
and hence also by @ . This means Bis a ©-model of CS. W
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2. Extending Congruences to Ill-Sorted Terms.

Let Ty < Ty and let ~ be a binary relation on Ty and let ¥ ¢ SUB y be a monoid such that
¥(T,) = T,. Extending Definition 1.7.2 we say ~ is a ¥-invariant congruence on T, iff
the following conditions are satisfied:

i) ~ is an equivalence relation.
ii) For all function symbols f and all s;,t; € T
adl i=1,...,n and {(s;,...,8,))e T, = f(tl,...,tn)e Ty and £(sy,...,8,) ~ (tgs..otp).
iil) Vo e ¥:V s,te Tp: s~ t = 0s~ ot.

We say ~ is a W-invariant weak congruence on T, iff instead of ii) the following
condition ii)' holds:
ii)' For all function symbols f and all s;,t; € Tj:

ifs; ~ for all i and f(sy,...,sp) , f(ty,....t;) € Ty, then TP T LR (| TN, 8 §

In the following we assume that the equational theory £ = (Z,E) is given.

Note that the relation =5 g is a SUBg-invariant weak congruence on Ty.

The relation =5  is the equational theory generated by E, if all sort information is ignored.
This relation is a SUB 5 -invariant congruence on T'5 .

We say the congruence =y g is congruence-closed , iff Vste Ty: s=gp t &

S=3:"Et. B

We give some examples of equational theories that are not congruence-closed or not
deduction-closed

2.1 Example.

a) Let £ := {A 2 B, f: AxA - A}. Let =y E be generated by E :=
{f(xg, xg) = xg}. Then =5 E is neither congruence-closed nor sort-preserving: We have
f(xp» Xp) =3E XA but not f(x 4, x4) =5 E XA - Furthermore LSy (f(xg, xg)) = A, whereas
LSs(xg) =B.

b) Let X := {A =2 B, f: AXA - A, f: BxB— B}. Let =y E be generated by E :
{f(xg,xg) = xg}.

Then =g g, is sort-preserving and deduction-closed, but not congruence-closed.

c) Let X:={A2 B, a;:A, ay:A, f: BxB— B, f(a;):A}. Let =5 E be generated by E :=

{a; = ay}. Then =y H is sort-preserving on the well-sorted terms, but not

sort-preserving and not deduction-closed, since f(a;) =5 B f(a,) and f(a,) is not well-sorted.
|
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2.2 Proposition. Let E be an equational theory. Let ~5 g be the SUBy-invariant congruence
on Ty generated by =5 ¢.

Thens~ypt & s =pp t for all well-sorted terms s,t.

Proof. The nontrivial direction is to show that s~y gt = s =5 t for all well-sorted terms
s,t. Let CS be a set of unit clauses consisting of the axioms E. Assume there are
well-sorted terms st with sy~ g ty. Let © be the ill-sorted extension of Z. Since
the relation =g ¢ and ~y g are equal, the clause set CS U {sy# t;} has no ©-model,
hence by Theorem 1.1 it has no Z-model. Hence s; = t;, is valid in every Z-model. Now
Birkhoff’s Theorem 1.9.2 shows that s =g t is derivable. |

Due to the above proposition we can extend the relation =5 to all (including ill-sorted) terms,
ie. tothesetTs.

The set of terms that are related to some well-sorted term via =y E is denoted by QT(E),
ie, QT(E) :={te Tgl3se Ty s=5gt}, the setof quasi-terms with respect to ‘E.
Note that the relation =y is a SUBg-invariant congruence on QT(Z).

2.3 Lemma. QT(E)/ =¢ E is Z-isomorphic to Ty / =y g asa X-algebra.

Proof. Let v: Ty/ =5 = QT(E) =3 be the mapping with Y(t/=gg) = U=y .
Proposition 2.2 shows that this is well-defined. Obviously Y is a bijection. We have to
show that y and y'! are Z-homomorphisms, but this is again obvious since ¥ is

well-defined and works in some sense as identity on Ty / =g . |

The following proposition shows that =y . is demodulation-complete on the set QT(E).

2.4 Proposition. Let E = (X,E) be the axiomatization of an equational theory. Let s,t be
¥-terms. Assume that the (undirected) demodulation relation —*— is meant on ill-sorted
terms as defined in 1.12
Thens=gpt & s—*—t.

Proof. Use Theorem 1.9.2 and the ill-sorted extension ® of X as constructed in paragraph 1.
|

2.5 Proposition. The set QT(E) is subterm-closed.

Proof. Let s = f(s},...,s,) € QT(Z). Choose a shortest deduction s — 1y ... I, —t,
where t is well-sorted an the terms r; are ill-sorted. The term t is not a vbariable or constant,
since then r, must be well-sorted, hence t = f(t;,...,t,). Since the terms r; are not
well-sorted, there is no reduction at toplevel. This means that for every s; we have a
deduction tot;, hence s, € QT(E). This proves the proposition. H
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3. Order-Sorted Term Rewriting Systems.

In order to extend term rewriting systems to an order-sorted signature, we use [Hu80] and
[HO80] as a guideline. Related work on sorted term rewriting systems is presented in [CD85,
GIM85, SNMGRT7].

We assume that term rewriting systems are compatible, if not stated otherwise. This
assumption is not critical, as shown in paragraphs 1 and 2, where it is shown that this
assumption can easily be satisfied by adding a greatest sort for ill-sorted terms. |

A term rewriting system R is called weakly sort-decreasing, iff for all Z-terms s,t with
s -——pg t, there exists a Z-term r such that t -*-p r and Sg(s) € Sg(r). Obviously
sort-decreasing (cf. paragraph 1.12) implies weakly sort-decreasing.
A term rewriting system R is locally confluent, iff for all Z-terms r,s,,s,:

r—pgs; and r—g s = Jte Ty:s;*op t ands, *op t.

In [Hu80] it is shown that
3.1 Lemma. A Noetherian relation is confluent iff it is locally confluent. M

Now let us define critical pairs: We can assume without loss of generality that all rules in R
are variable disjoint. Let 1; - 1,1, > 1€ R and let © € O(l;). Further let
ce uUs(y\r,1,), then consider the term pair (o(l;[® & or,]), ory). Note that
li[t & orylisa well-sorted term, since R is well-sorted and that in part III it will be shown
that minimal sets of unifiers always exist.

The pair (6(l;[r « or,]), ory) is called a critical pair.

We say a critical pair (s,t) is confluent, iff there exists a Z-term r with s -*-p 1 and
t-X-p T.

3.2 Proposition. Let R be weakly sort-decreasing .
Then the relation -y is locally confluent if every critical pair is confluent.
Proof. We proceed as in the proof of [Hu80]:
Assume that every critical pair is confluent. Let s,t;,t, be Z-terms with s —p t; and
s —pg ty. There exist ;, my € O(s),1y = r1y,1 = 1) € Rand 6, 05 € SUBg such that
o;l; = s\r; and t; = s[x; < o;r;] fori=1,2.
We have two cases, according to the relative position of U and 7.
Case 1: Disjoint redeces: Then the two reductions commute.
Case 2: One redex is a prefix of the other. W.l.o.g.we can assume that &, is a prefix of m,.
Let v be an occurrence such that T,v = 7,.
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Case 2.1: v = v, v, such that I,\v; =x is a variable.
Then we can further reduce t, in such a way that all (appropriate) subterms ©;x
below T, are reduced in the same way as s\1t;.v, and the sorts are decreased (i.e.,
that the sort of the reduct r, of ¢ x is smaller than the sort of x,
since R is weakly sort-decreasing. Let o' be a substitution such that
o,'x :=1, and ©,'y := 0.y, otherwise. Now we can apply the rewrite rule
1, = r, at occurrence 7; (with well-sorted substitution o,"). We get the same
result as a reduction of t;, if we reduce appropriately subterms o;x in t; tor,.

Case 2.2. v € O(l;) and l;\v is not a variable. l;\v and 1, are 2-unifiable. Hence
there exists some most general Z-unifier ¢ with ¢ <5 0,[V(1,)] and
6 <y 0, [V (ly)]. This unifier corresponds to the critical pair
(o(l4[v « ory)), ory), which is confluent by assumption.
Hence also the terms s,\rt;[v ¢~ O,r,] and o1 are confluent. ]

Lemma 3.1 and Proposition 3.2 imply the following:
3.3 Theorem. Let R be a weakly sort-decreasing term rewriting system such that Xy, is
Noetherian.
Then —*-p is confluent, iff every critical pair is confluent. W

If R is a weakly sort-decreasing term rewriting system such that —*-p is Noetherian and
confluent, then we will call R canonical.

Note that for a canonical term rewriting system every term t has a unique normalform ||t]ig,
such that S¢(t) € Sy([Itllr) and in regular signatures LSy(litllr) € LSg(1).

The following example from [SNMG87] shows that Theorem 3.3 does not hold if the TRS is
not weakly sort-decreasing:
Let 2:={A=B,aA,bB,f:B - B}.
The term rewriting system R := {f(x,) = X, ,a — b} has no critical pairs and is
terminating. But it is not confluent, since f(a) —g aand f(a) og f(b), buta and f(b) are

not reducible.

In the following we give a criterion for sort-decreasingness of a term rewriting system in a
linear signature. Without linearity of the signature one needs very strong restrictions on the
term rewriting system and the signature: For example if f(x x): S is a (nonlinear) term
declaration and f(t t) is a term such that t is reducible to t', then f(t t) —p f(t t), but f(tt') is
not a Z-instance of f(x x). Hence there must be another declaration that shows that f(t t') is of

sort S. This example shows that a term rewriting system in a nonlinear signature is in general
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not sort-decreasing, and if it is, the nonlinear declarations are either redundant or the nonlinear

declarations and the reduction are in some sense separated.

In the following we give a criterion for compatibility and sort-decreasingness, which is more
general than the condition in [SNGM&87], who give a criterion for elementary, regular
signatures in terms of all weakenings of all rewrite rules.

Let t:S be a term declaration, T € O(t), 1; — r; be a rewrite rule and let ¢ be a most general
Z-unifer of t\r and I;. Then we call the pair (ot[% « or;], S5(1)) a critical sort relation.
We say a critical sort relation (s, Sy(t)) is satisfied, if Sy(s) 2 S(1).

3.4 Proposition. Let £ be a linear signature and let R be a (not necessarily compatible) term
rewriting system. If all critical sort relations are satisfied, then R is compatible and
sort-decreasing.

Proof. Assume by contradiction that the proposition is false. Then there exist terms s, and s,
with s; —reu

we can assume that s, is a smallest term with this property.

Let t:S be a term declaration in X such that S € Sy(s;) —Sy(s,) and s, is a Z-instance of t,

s, such that Sy(s;) ¢ Sy5(s,), where e =1, — r;. Without loss of generality

ie., ot=s;. Since S ¢ S5(s,), we have that s, is not a Z-instance of t. The occurrence ©
must be an occurrence in t, since otherwise due to linearity of X there exists a variable
x € V(1) at occurrence V in t, such that 6x — s,\v and Sy(0x) ¢ S5(sy\), as X is

linear. This contradicts the minimality of s;.

Since po(t\rr) = pl,, there exists a most general Z-unifier T of t\t and I; with T < p [V(t,];].
Since the corresponding critical sort relation is satisfied, we have S € Sg(tt[n « 1r;]).
Hence S e Sy(s,), since s, is a X-instance of Tt[n « 1tr;]. This is the final
contradiction. W

This proposition gives for linear signatures a nice and useful criterion for a term rewriting
system to be canonical:
3.5 Corollary. Let X be a linear signature and let R be a term rewriting system.
If 1) all critical pairs are confluent and
ii) all critical sort relations are satisfied and
iii) -y is Noetherian,
then R is a canonical term-rewriting system. Bl

This specializes to elementary signatures in the following way:

The critical sort relations in elementary signatures can be obtained by weakening the left hand
side of every rewrite rule in all possible ways (with most general weakening substitutions) and
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then check the sort of the right hand side after substituting. Hence the following is the essential
step in the test for critical sort relations:

Take a sort S and a rewrite rule 1 — r, compute the set of most general weakenings
UWy(1= S) and check Sy(ol) € Sy(or) for all 6 € pWy(1£ S).

In part III it is shown, that unification and weakening in elementary signatures is decidable and
effectively finitary, hence we have:

3.6 Corollary. In elementary signatures it is decidable, whether a terminating term

rewriting system is canonical or not. ll

Note that termination of a TRS is in general undecidable (a proof and further references can be
found in [De87]. '

Proposition 3.4 can also be used to give criteria for a regular equational theory to be

sort-preserving.

3.7 Corollary. Let X be a linear signature and let £ = (2,E) be a regular equational theory.
Furthermore let Rg be the term rewriting system consisting of all rules s - tand t — s for
s=te E.

Then £ is sort-preserving, iff R, is sort-decreasing. W

In order to handle the general case of term rewriting systems in nonlinear signatures, we

extend the definitions above.

We define a parallel reduction rule for the TSR R, written s = t:

Let T e O(s), let lj T be a rewrite rule and let ¢ be a X-substitution with clj = s\it. Now let

[T = {my,...,m }be the set of all occurrences of s with s\rt; = s\t. We say s reduces to t (in
parallel), denoted as s ==p t, if t = s[n) « orj] sy & O‘rj]. We may also denote this
reduction by s =; ;t Let g denote the transitive, reflexive closure of =>.

We define weak critical sort relations:

Let t:S be a declaration, let IT' = {vy,...,v,} < O(t) be a set of independent occurrences,
lj =T be a rewrite rule and let T be a most general XZ-unifer of the set {t\t |t e I1'} U (lj}.

Let t, be defined as the corresponding ==-reduct: Tt =1l

Then (t;, Sx(t) ) is a weak critical sort relation. We say a weak critical sort relation
(tp, Sx(1) is satisfied, if Sy(t;) 2 Sx(t). For tt =1l let IT = {mq,...,m }2 IT' be the set
of occurrences involved in this reduction.

We give a criterion for weak sort-decreasingness:
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3.8 Proposition. Let X be a signature and let R be a term rewriting system.
 If all weak critical sort relations are satisfied, then ~—*~>R is sort-decreasing.

Furthermore R is weakly sort-decreasing.
Proof. It suffices to prove that ==y, is sort-decreasing.

Assume by contradiction that the proposition is false. Then there exist X-terms s; and s,
i S2 such that Sy(s;) § Sg(sy), with the rewrite rule lj =T and the
substitution p. Without loss of generality we can assume that s, is a smallest term with this

with 5, ==

property.

Let t:S be a term declaration in X such that S € Sg(s;) — Sy(s;) and s; is a Z-instance of t,
i.e., ot=s5;.Since S ¢ Sz(sz), we have that s, is not a 2-instance of t.

By the minimality of s, the reduction on the subterms ox == 11 Sx is sort-decreasing for

J

all variables x € V(t). If the reduction = took place only below variable occurrences

of t, then s, would be a X-instance of t, whi’lclh is not true.

Let I1:= {m,,...,m;} be the occurrences in t, where the reduction of s; ==, , s, actually
changes the term t.

Now there exists a weak critical sort relation constructed from t:S and lj =T and the set of
occurrences IT with most general 2-unifier T such thatt<ocup [V(t,lj]. We argue that the
corresponding set of occurrences for the critical sort relation is exactly I1. Otherwise, the

reduction ==,

{m changes more occurrences in sy, since T is more general than 0. Let

Tt ==>j,’t tr

Since the weak critical sort condition is satisfied, we have S € Sg(t;). The occurrences of
reductions in s, are independent: Either these occurrences are in IT or the reductions are
below variable occurrences of t. :

Let o' be the X-substitution defined by o'x := s, (where ox == 11 Sx ). We have s, =G' t;

Hence S € Sg(s,). This is a contradiction.

The second part of the proposition holds, since === can be simulated by some steps

-_—)R . .

Now we have a general criterion for canonicity:
3.9 Theorem. Let R be a term rewriting system.
If i) allcritical pairs are confluent and
ii) all weak critical sort-relations are satisfied and
iii) - is Noetherian,
then R is a canonical term rewriting system. Wl

Remark: These criteria turn into a decision algorithm for local confluence of R, if

unification in X is decidable, finitary and the finite unifier sets are effectively computable.

Furthermore with some luck, the check for weak sort-decreasingness and for local
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confluence may terminate and then we know definitively whether R is or is not locally

confluent.

A completion algorithm [KB70, Bu87] can be adapted to our kind of signatures, however, it is
not clear which restrictions a term ordering should obey. In the case of sort-decreasing TRS, it
seems to be appropriate to use a term-ordering that respects sorts, but in the general case the

term ordering may be such that it does not respect the sort ordering.

We give an application of term rewriting systems in a sorted signature, which shows that in
some cases it is possible to describe an infinite term rewriting system in a finite way using
sorts and declarations. This example is from [HKi87, HKi85], where a concept of domains,

meta-variables and meta-rules is used, which seems to converge to sorted signatures.

3.10 Example. Given the rule f(g(f(x))) — g(f(x)), the usual completion procedure
generates an infinite family of rules, all of the form f(g"(f(x))) — g"(f(x)). The following
sort-structure shows how to describe this infinite rule system in a finite way and how to
prove that it is canonical:

Let L := {TOP 3 A, f:TOP — TOP, g:TOP — TOP g:A — A, g(f(xop)):A}.

The rule is f(x ) — x4.

Obviously this system is terminating.

In order to show that this system is canonical, we have to check the conditions in 3.4.
There are two critical sort relations: one is that the sort of f(x,) is greater than or
equal to A, which is true. The other, nontrivial one comes from overlapping
g(f(xtop)):A by the rule f(x5) — x 5. The critical sort relation is that g(x ) should be
of sort A, which is also true.

Now Proposition 3.4 states that the TRS is compatible and canonical.

It remains to show that the transformation into the sorted case is correct. The set of all
terms of sort A is the following: {x,, g(f(t)), where t is an arbitrary term and g(s),
where s is a term of sort A}. This means the set corresponds to the set of terms
defined by the term scheme g"(f(x)) forn>1. W

The rest of this paragraph deals with ground equations and ground term rewriting systems and
is used in part V.

Related work on ground equations can be found in [NO80, Ga86] where
congruence-closure methods are used to give decision algorithms for systems of ground
equations.

In order to simplify arguments we assume in the rest of this paragraph that there are no
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ill-sorted terms and that the signature is finite.
We define some notions for term orderings for proving termination of term rewriting systems

which are consistent with [De87].

3.11 Definition. An ordering < on ground terms is a simplification ordering, iff the
following conditions are satisfied:
) < is monotonic, i.e. §; S t; = f(S15..,85) S  {{ (TSR 4
ii) < has the subterm property t<¢ I(....t,...).

In the following we will use the ordering defined as follows:
3.12 Definition. Let T be a finite signature. Let the ordering <, on ground terms T}:,gr
be defined as follows:

i) constants and functions are ordered by a linear ordering.

ii) If size(s) <size(t) then s<gt.

iii) Terms of equal size are ordered lexicographically (as strings). l

We use <, >, 2 with the obvious meaning.
The next lemma shows that < is a well-founded simplification ordering on ground terms.
3.13 Lemma. Let <, be the ordering of Definition 3.12.
i) s< t implies size(s) < size(t).
ii) <,is a well-ordering on Tz,gr-
iii) < is monotonic.
iv) < has the subterm property.
Proof.
i) Follows from the definition.
ii) Dueto 1.10.5 there is only a finite number of terms that are smaller than a given one
Furthermore all ground terms are comparable and < is antisymmetric.
iii) Let s; < t; and let f be a function symbol. We have to prove that
(T T ¢ —
If size(s;) < size(t;) for some i, then £(sq,....8p) < f(ty,..t,) by definition.
In the case size(s;) = size(t;) for all i, we have also size(f(sy,...,s,)) =
size(f(ty,....tp))-
Now we can use the lexicographic ordering on f(s,...,s,) and f(ty,...,t,) and obtain
£(Sqsens8p) Sg Bltgss05t5)-
iv) We have f(...,t,...) >t , since size(f(....t,...) ) > size(t). W
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The ordering < can be lifted to all terms as follows: For a term t let mgrt(t) be the multi-set of
maximal ground terms of t and let the multisets be ordered by the multiset-ordering induced by
<. Note that this ordering is well-founded, but not total.

3.14 Proposition. Let R = {I; > r; | i = 1,...,n} be a ground term rewriting system with

l; > 1;. Then:
1) R is Noetherian.
1) If there are no critical pairs, then R is also confluent and hence canonical.

Proof. Let t be a term and mgrt (t) be the multi-set of maximal ground terms of t. Then every
reduction step makes mgrt(t) smaller in the multiset-ordering, hence reduction terminates
and so R is Noetherian.

If there are no critical pairs, then the normalform of a term t can be computed by reducing
the maximal ground terms of some term t. The result is obviously independent of the

sequence of reductions. W

We want to give an nondeterministic completion procedure of Knuth-Bendix type [KB70] for
constructing a canonical term rewriting system in order to solve the word-problem with respect

to a set of ground equations.

3.15 Definition. Let R = {I, - r; I i = 1,...,n} be a ground term rewriting system with
li >S ri.
We use a deduction system that consists of the following rules:
Rule 1. (critical pairs)
Let lj -7, Iy =1 be different rules in R such that lj /m=1,. Lets; = T and let
$y = lj[ﬂ: «— rk].
Delete lj- T fromR and if s; >¢ s, thenadd s;— sy toR,if s; < s, then add
$,— sy toR and if s; = s, then do not add s; =s,.
Rule 2. (application of rules to other rules)
Let lj =T, I, — 1, be different rules in R such that I m=1.
Replace lj T by lj - rj[n 1] W

3.16 Proposition. The completion procedure in Definition 3.15 terminates, leaves the
generated equational theory on Ty invariant and the resulting term rewriting system is
canonical on Ty.

Proof.

i) First we prove that the equational theory is not changed:

Rule 1: there are two cases.

78



Case 1. s; #5s, . Then we can prove [ =g lj[n —nl=g lj[n —1]= lj
Case 2. s, =s; . Then we can prove lj = lj[n L ]=g lj[1t «—rnl= T

Rule 2: We have to prove lj =T} From lj =g rj[n «nl=¢ rj[n L] = I; we conclude

L =4 1.

i) The Jcomplétion terminates: If we order rewrite rules by the lexicographical ordering
induced by <, then we obtain a well-founded ordering on rules. Every rule replaces a rule
by a smaller rule or deletes a rule. Hence the procedure terminates.

iii) There are no critical pairs, since otherwise Rule 1 is applicable.

iv) Now Proposition 3.14 shows that R is canonical. H

Note that the above results hold also for non sort-decreasing ground term rewriting systems.

A trivial (well-known) corollary is:
3.17 Corollary. The word-problem in an equational theory defined by ground axioms is
decidable.

4. Sort-assignments.

Usually, the syntactical sort of a term is defined by specifying the sort of variables, constants
and the behaviour of functions in the form f: §;x...xS, — S or even with term declarations.
In this paragraph we abstract from this syntactical specification of sorts and view the sort of a
term as a function on terms having the right properties. We show that the notion of a
sort-assignment as defined here corresponds to the notion of a signature with (infinitely many)
declarations. The notion of a sort-assignment enables us to use different descriptions of the

sort of a term.

4.1 Definition. Let T be an unsorted signature, let S(p be a set of sorts quasi-ordered by
S let T(p be a subterm-closed set of terms and let ¢: T(p - 1’(S(p) be a mapping from
terms into sets of sorts, such that @(t) is an upper segment. Let Vq) denote the set of all
variables in T(p
Define SUB(p to be the set of all substitutions o satisfying (Vx € V(p ¢(0Xx) 2 Px).
Furthermore let the following conditions be satisfied:

i) Forevery sort S € S(p : Vg T(p‘

ii) For every variable x € T(p: @(x) = Syg(x).

iii) for every sort S, there exists a ground term ts g such that S € ¢( ts,gr).
iv) Vo e SUB(p Vte T(p : Ote T(p and @(ot) D ¢t.

In this case we say ¢ is a sort-assignment.ll
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The next proposition shows that sort-assignments are describable by (possibly infinitely

many) term declarations.

4.2 Proposition. Let T be an unsorted signature and let ¢ be a sort-assignment.
Then there exists a signature £ such that S(p =Sy, S¢=Fx> T(p =Ty and @(t) = Sg(V).
Proof. To satisfy the conditions S(p =Sy and By =Sy is trivial.
We define ¥ as the set consisting of all subsort declarations R S S and of all term
declarations {t:S1S € @(t)} forte T(p - V(p. Let T(pS = {te T(p |Se o).
We show T(p,S =Ty g for all Se S(p:
The relation T(p,S cTyg is obvious by definition of X.
In order to show the converse TZ,S C T(p,S it is sufficient to show that the sets T(p,S are
closed with respect to Definition 1.4.3. We check condition iii) of Definition 4.3:
Lette T(p,S R
hence by condition iii) above we have {x «rjte T(p s- An immediate consequence is
SUBg = SUB(p.
The assumptions 1.4.11 on signatures are satisfied due to the preconditions of this

re Tq),R and x a variable with R = S(x).Then {x ¢« r } isin SUB(p,

proposition.

We can characterize regular signatures in a similar way, if we let S(p be a set of sorts partially
ordered by =g and replace the function ¢: T, — T(S(p) by a function ¢: T, — S(p and
the conditions ii) and iii) by

i) For every variable x € T(p: o(x) = S(x).

i)z Vo e SUB,, Vte Ty: ¢(ot) o OL.
In this case we also speak of a least-sort-assignment.

5. Another Equational Deduction System.

We now give another derivation system for equational theories. It is similar to the
Birkhoff-like derivation system in 1.9.1, but to derive instances of equations is only allowed
for the axioms in E and not for derived equations. We use this derivation system later in part
IV to prove that certain unification algorithms are complete.

Let E = {1, =r; } be the set of axioms of E.

5.1 Definition.
i) k4 t=t foreverytermte Ty.
i) {s=t} k4 t=s.
i) {r=s,s=t}rH;r=t
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iv) If f(s,...,s,) and f(ty,...,t;) are well-sorted, then
{s;=t1,...osp=t }hy f(sq,..008,) = f(tg,...0t)
V) k4 os=ot foreveryce SUByandeverys=t € E. B

Let the relation =4; be defined by : s FH;t iff g s=t.
The above deduction system computes every valid equation:

5.2 Proposition. Let st e Ty. Then (F; s=t) & s =y gL

Proof. "=": trivial.

"<": We show that all steps of the Birkhoff deduction system in 1.9.1 can be simulated, the
only missing step is rule 1.9.1.v), where all well-sorted instances of equations can be
deduced.

We show by induction on the length of a deduction that for all terms s, t with +; s =t
and all substitutions 6 € SUBy we also have 3 os =ot.

The base case is rule 5.1 v) for the axioms of E.

The induction step is trivial for the rules i) -iii).

Let k4 s; =1t &.. . &s =t,,let f(5150+-48p) and f(tl,...,tn) be well-sorted, let
f(sy,....8,) = f(ty,....t;) be the newly deduced equation and let o be a well-sorted
substitution. Then by induction hypothesis we have +; Os; = ot} & ... & Os = Ot
Furthermore of(sy,...,s;) and of(t,....t,) are well-sorted terms, hence by rule 5.1 iv) we
can deduce of(sy,...,sy) = of(ty,....t). W

This deduction system is more appropriate for induction proofs involved in proving
completeness of unification procedures. The next lemma shows that for every equation

there exists a deduction that can be arranged in a somewhat standard way:

5.3 Lemma. Lets,t e Ty and s =gt Then there exists a chain s =1y, 1q,...,1=t such that

i) Forallieither r; =r;,, is deduced by rule 5.1 v) or by rule 5.1 iv)

ii) For all appropriate i: either r;=r;,; orr;,; =1;,, is deduced by rule 5.1 v).

Proof. i) We obtain such a chain by unfolding in a deduction the most recent steps 5.1 ii)
and 5.1 iii).

ii) Assume by contradiction that r;=r;,; and r;,, =T1;,, are both deduced by
step 5.11iv) and the chain corresponds to a dedcution with a minimal number of
applications of rule 5.1 iv) Then we can already deduce r; =r;,, by step 5.1 iv). The
new deduction thus obtained may have more applications of symmetry and transitivity,
but the number of applications of rule 5.1 iv) is decreased, hence we have reached a
contradiction. H
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6. Characterizations of Deduction-Closedness, Congruence-Closedness and
Sort-Preservation.

In Part IV.3 we give a unification procedure for a class of congruence-closed and
sort-preserving equational theories. In order to use this procedure it is necessary to have
criteria to recognize these properties given an axiomatization of the equational theory. In this
paragraph we give some characterizations of deduction-closed, congruence-closed and
sort-preserving congruences by properties of the generating set of equations. We also
investigate the decidability of these properties.

In this paragraph we assume that £ = (Z,E) is given, that E is symmetric and finite and that the

signature is finite.
First we give a criterion for checking the congruence-closedness of an equational theory:

6.1 Lemma. Let Z be a regular, elementary signature.

If forall s =t € E and for all Z-renamings p: pse Ty = (pte Ty and ps =5 g PV
Then foralls=t € Eandforalloce SUB¥:
ose Ty = (ote Ty and os =g ot).

Proof. Let s=t € E andletce SUBs with DOM(0) = {x{,...,xp}, such that s € Ty.
There exist new variables y; of sort LS(0x;), since the terms oxi are well-sorted. Let
T:= {y; € ox;li=1,...,n} and let p := {x; « y; | i =1,...,n }. Then p is an idempotent
F-renaming and T € SUBj. Furthermore ps € Ty, since Z is elementary and os € Ty.
The precondition now yields pt € Ty and ps =5 g pt.

Since =g g is SUBy -invariant we have tpt€ Ty and tps =g g Tpt which in turn implies
ote Ty and os =5 g O, since 6 =1p [X1,...x,]. W

Now we can give some criteria for congruence-closedness. The third criterion for regular,

elementary signatures is decidable and easy to test.

6.2 Proposition.
i) If for all generating equations s =t € E:
Voe SUBs: ose Ty = ote Ty and os=gg ot,
Then =g is congruence-closed.
ii) If X is regular and elementary and for all generating equations s =t € E:
For all £-renamings p: pse Ty = (pte Tyand ps=gg pt).
Then =g g is congruence-closed.
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iii) If T is regular and elementary and for all generating equations s =t € E:
For all £renamings p: pse Ty = pe SUBg
Then =g i is congruence-closed.

Proof. We prove only i), since Lemma 6.1 and part i) immediately imply the second part.

The third part follows from part ii), since =5 a2 is X-invariant.

i) The following assertion is proved by induction on the length of a deduction (1.9.1)

of an equation:

Forall s=gpt:

(t)Voe SUB5: ose Ty = ote Ty and os =g Ot.

Base case. Fors=t € E, which is the precondition of this proposition, here is
nothing to prove.

Induction step. v

i) New equations introduced by reflexivity or symmetry have the property (f).

ii) Let t) =5 gty , t =3  t3 be the old equations and let t; =5  t3 be the new one,
introduced by transitivity.
Letco e SUB5 such that ot; € Ty. Then by induction hypothesis, ot, € Ty and
Oty =5 g Oty . Now again by induction hypothesis we have oty3 e Ty and
Oty =y g Ot3.
Transitivity yields ot) =5 g Ot3.

iii) Lets; =3EY4 be given and let f(sy,...,s,) =%p f(ty,....ty) be the new equation.
Let o e SUB5 such that 6f(sq,....sy) € Ty
Then for all i we have os; € Ty, since Ty is subterm-closed. The induction hypothesis
implies ot; € Ty and osj =5 g Otj . Since =y g is a congruence and since
f(osy,...,08,) € Ty, we conclude f(osq,...,08,) =g E f(oty,...,0t,)

iv) Lets=3gt ,T€ SUB3 andletTs =5 Tt be the new equation.
Let 6 € SUB5 such that ots € Ty.
Then by induction hypothesis, we have otte Ty and 6Ts =y OTt, since
ote SUBs. &

In general it is undecidable whether a congruence is congruence-closed:

6.3 Proposition. It is undecidable (even for regular and elementary signatures) whether a
congruence is congruence-closed.

Proof. We show that decidability of congruence-closedness would imply the decidability of
the word-problem (for ground terms) in finitely presented semi-groups:
Let X be a signature which has only one sort A. Let E be a finitely presented semi-group
and let s,t be two T—ground terms. We add the new sort B = A and the new ternary
function symbol f: BxBxA—A. Let ' be the new signature. Note that all nonvariable
Y —terms have sort A and that X' is regular and elementary. Let E' := E U
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{f(xg,yp-$) = xp, f(xg,yg, ) =yg}-

Itis easy to see Xg =y g Yp iff s and t are E-equal: If s and t are E-equal, then obviously
Xg =3 EYB - If s and t are not E-equal, then for every variable xg of sort B its
E-equivalence-class is exactly {xg} U {f(xg, 23, s) I's' =5 ES and zg a variable of sort B}
U {f(z'g, xg, 1) I ' =g g t and z'g a variable of sort B}.

=y p' 18 congruence-closed ¢> s =y g t:

If s and t are not E-equal, then =y . is congruence-closed, since the application of a new
equation is a dead end: the unsorted equivalence class of a term r not containing f of sort A
does not contain well-sorted term with an occurrence of f. If s and t are E-equal, then we
have xg =y g yp and all terms are in the relation =3. . Hence =g g is not
congruence-closed.

Hence congruence-closedness is undecidable, since the word-problem for ground terms in
finitely presented semi-groups is also undecidable [Ta79]. B

Now we investigate the property deduction-closedness.

Note that sort-preservation implies deduction-closedness.

6.4 Lemma. Let the following condition be satisfied:

Vsti€ Ty s =5 E b and f(sq,....sy) € Ty = f(ty,...,ty) € Ts.
Then =y g is a deduction-closed congruence.

Proof. We have to show thatfors € Ty,te Ty ands=y gt we have te Ty.

Assume there is an equation s =g Et withse Ty, te T3 -Ty.

We can assume that s =y p t is the equation with a shortest deduction starting wit
equations from E and s € Tg,te Ty —Ty. This means all terms occurring in the
deduction are well-sorted. Since t is not well-sorted, the equation s =5 gt must have bee
generated in the following way: s = f(sq,...,s,) and t = f(ty,...,t)) and s; =z g j for all -
But then the precondition of this lemma shows t = f(ty,...,t;)) € T):- L]

6.5 Proposition. Let L be an elementary signature and let =5 g be a sort-preservin
congruence.
Then =g g is deduction-closed.

Proof. The requirements of Lemma 6.4 are satisfied. B

6.6 Proposition. Let =5 be a sort-preserving congruence and for every function symbx
f let the most general terms be basic terms (cf. 1.5.7 ff.).

Then =y g is deduction-closed.

Proof. We show the preconditions of Lemma 6.4: Let s;,t; € Ty and lets; =5 g t; . Then
Sy(s)) = Sg(t;) since =y g is sort-preserving. By assumption there exists a term declaratio
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f(xq,....x,):S with f(xy,....xp) 25 f(s1,...,8,). Obviously we have also
f(xq,....%y) 25 f(ty,....t,), hence f(ty,....t,) is well-sorted. H

6.7 Proposition. For a regular, elementary signature X it is decidable whether =y is
deduction-closed.

Proof. Let the relation = on Sz be defined as follows: A = B, iff there exist terms t, t' with
LSs;(t)= A, LSy(t) =B and t =5 E t'. We use the deduction-system in 5.1 to make a
fixed-point iteration to determine =. For the generating relations s; = t; in E we can comput
the relation = by checking all sorts for variables in these equations. We generate the
transitive closure and then use the steps 5.1.iv). This iteration terminates and either
has produced a relation A = IL or not. Hence deduction-closedness is decidable. H

However, decidability is endangered if the preconditions are dropped.

6.8 Proposition. In general it is undecidable whether a congruence is deduction-closed.

Proof. We show that decidability of deduction-closedness would imply the decidability of the
Y-unification problem in arbitrary signatures: .
Let £ be the empty theory and let s,t be two terms. We add the new unary function symbol
f defined on all sorts in SZ’ the new sort A, the constants a and b of sort A, and the
declaration f(a):A. Let E' := {f(s) = a, f(t) = b}and let ' be the new signature.
It is easy to see a =y g b iff s and t are X-unifiable. The only possibility to deduce an
ill-sorted term is to deduce f(b) from f(a). Hence we have that s and t are unifiable iff X' is
deduction-closed. Theorem II1.6.1 shows now that deduction-closedness is undecidable.
|

Now we turn to the sort-preserving property of equational theories.

6.9 Proposition. Let Z be a regular, elementary signature. Let the following condition be
satisfied:
For all well-sorted Z-renamings p and all s=te E: LSy(ps) = LSz(pt).
Then for all 6 € SUBy and all s=t € E: LS(0s) = LSg(ot). |
Proof. Let s=t € E, let 6 € SUBg with DOM(0) = {X,....x,}. There exist new variables y;
of sort LSy(ox;). Let T:= {y; « ox;li=1,...,n} and let p := {x; & y;1i=1,...n}
Obviously p is a Z-renaming and p,t are well-sorted substitutions. Hence LSy (ps) =
LS5(pt). Application of T to the terms ps and pt does not change their sorts, since Z is
elementary. From 6 = 1p [X,,...,x,] we conclude LSy (0s) = LSy (ot). &
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+6.10 Proposition. Let X be an elementary signature. Then the following two properties
are equivalent:
i) Forall o e SUBy and all s=t € E: Sg(0s) = Sg(ot).
i) =g E is sort-preserving.
Proof. ii) = 1) is trivial.
i) = ii): We show by induction on the length of a deduction that
s=ypt = Vo € SUBy : Sy (0s) = Sy (ot).
Condition 1) is the base case.
Induction step:
i) Let t; =5 g t3 be deduced from t; =y gty and t; =z pt3 and let c € SUBjy. By
induction hypothesis we have Sy(ot;) = Sg(oty) =Sg(0t3).
ii) Letts =5 Tt be deduced from s =y gt for e SUBy. For a well-sorted substitution
o we have 6t € SUBy, hence Sy(07s) = Sy(07t) by induction hypothesis.
iii) Let f(sy,...,8p) =5 E f(ty,....t;) be deduced from s; =5 E Y- Let 6 € SUBy . The
induction hypothesis implies Sy(0s;) = Sy(ot;) and since X is elementary we have
S5(0f(s1,...,8p)) = Sg(of(ty,....t,)). W

6.11 Corollary. Let I be a regular, elementary signature. Then it is decidable, whether
=yE 18 sort-preserving.

Proof. Follows from Lemma 6.9 and from Proposition 6.10. The precondition of Lemma
6.9 is decidable by Proposition 1.5.3, since we have to check only a finite number of

L-renamings. W

The above arguments can be generalized to show that for every elementary (nonregular)
signature, the sort-preservation of congruences is decidable.

For nonelementary signatures it is in general undecidable whether a congruence is

sort-preserving:

6.12 Proposition. It is undecidable whether =y g I8 sort-preserving.

Proof. We show that decidability of sort-preservation would imply the decidability of the
word-problem in equational theories:
Let E be an equational theory, where only the sort A is available. Let s,t be two terms. We
add two new sorts B and C, two new constants b,c of sort A , the new function symbol f
and the term declarations f(b):B, f(c):C to the signature. Furthermore we add the axioms
b=sand c=ttoE, giving E' Let =g g be the new congruence. Obviously we have that
=y g 18 sort-preserving, iff s =g g t. Since s =g t is undecidable, the son-prcservétion is
undecidable. Il
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A signature is called sort-stable, iff Sy(s;) =Sy (tj) fori = 1,...,n implies Sy(f(sy,...,s,)) =
S5 (f(ty,....th)).

This means that Sy is a function of f and Sg(t;) alone and that Sy(f(t;,...,t,)) does not depend
on the structure of the subterms t; of t. By Lemma 1.4.10 we have that elementary signatures
are sort-stable.

We have that regular, sort-stable signatures characterize elementary signatures:

6.13 Proposition.
i) In a regular, sort-stable signature X all term-declarations, which are not of the form

f: §1 X..x 8, = S, 1, are redundant. That means the signature is elementary.

Proof. i) Consider an arbitrary nonredundant term declaration f(t,...,t,):S, that is not a
function declaration. That means LSy (f(ty,...,t;)) = S. We can replace the terms t; by
variables x; with S(x;) = LSg(t;). Since £ is sort-stable and regular, we have
S € Sy(f(xy,...,x,)). By Proposition 1.4.9 there must exist a function declaration
f:S,x..x§, > S . 1

6.14 Example. If the signature is not regular, then Proposition 6.13 may be false:

Let X:={AB,f:A - A, f:A — B, g(f(x4)): A} . Then X is not regular, since Sy( f(x4))
= {A,B}. However, the signature is sort-stable: Every well-sorted term t starting with f
has as sort Sy(t) = {A,B}. Every well-sorted term starting with g has sort A and has the
form g(f(t)). The only possibility to replace f(t) is by a term of sort {A,B}. Every such
term has toplevel symbol f, hence a replacement of f(t) by f(t') gives a term of the form
g(f(t)) and this term is of sort A. Now X is sort-stable, but the term declaration g(f(x A A
is not redundant. l

In the following we note some properties of substitutions that hold if restrictions are imposed
on the signature or on the equational theory.

6.15 Lemma. Let =y g be a sort-preserving congruence. Then:
i) Voe SUByVte SUBs: 0=yp T[V] = te SUBj;.
ii) If =g is congruence-closed, then:
Voe SUByVte SUB3: 6 =55 t[V]= 1€ SUBy.
Proof.
i) Letoe SUBgand te SUB5. Forallxe Vy we have {x « ox} € SUBj . Hence:
Sy(0x) 2 S5(x) = (since =y E is sort-preserving)
Ss(tx) 2 Sy(x) =
{x ¢ 1x} € SUBg forall xe Vy. Thus te SUBg.
i) o =% ET [V] =0 =g T [V], since =y E is congruence-closed. Then apply i).H
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6.16 Lemma Let =5 g be a sort-preserving and congruence-closed congruence.
Then: Voe SUBy Vte SUBs: tZEEc[V] = 1€ SUB;.

Proof. There exists a A € SUBy such that < =5 E Ao [V] . Lemma 6.15 implies
T € SUBy, since Ao € SUBy. B

6.17 Example. Let Let =g g be a sort-preserving and congruence-closed congruence. Then
for 0,7 € SUBy the implication ¢ <g ET [Vl > 055 ET [V] may be false:
It suffices to consider the empty theory £ and £ :={B = A, Ce A}. Let ¢ :
{xp ¢« yg) and T :={x, « zp,yg & zc ). Then we have 6*2,13 T [V], but

{yg & 2zp}Jo=1 hence 6 <5 7.0

6.18 Lemma. Let =5 be a sort-preserving congruence.
Let py, pp € SUBy be idempotent £-renamings with DOM(p;) = DOM(p,) = W.
Then p, <y E P2 W] = p;<sgpy [W].
Proof. There exists a A € SUBg such that Ap; =5 p, [W].
The substitution A" := {p;x & p,x | x € W} is well defined and satisfies:
A'py = po [W] and L' € SUBy since S(p,x) =S(Ap;x)E S(p;x) and px and pyx
are variables. Hence p; <y p, [W] holds. ®

In the following we give an interesting consequence of the sort-preservation in a regular,
elementary signature. In this case the equational theory can be lifted to the set of sorts. That
means the set of sorts provides an algebra that satisfies the equational theory:

6.19 Definition. If the congruence =y g is sort-preserving and the signature is regular and
elementary, then we define the following theory S-TH, on the set Sy.
Every declaration f:S x ... x S, = S is translated into £(S,,...,S,) = S. W

6.20 Proposition. If the congruence =y g 18 sort-preserving, congruence-closed and the
signature is regular and elementary, then the theory S-TH, on Sy has the following
properties:

1) Sorts are not identified
i) For every equation s =y g t there holds a corresponding equation s* = t* over S5,
where s* and t* are obtained from s,t by replacing variables and constants by their
respective sorts. (Note that s* is exactly LSy (s) in this theory.)
iii) This theory on Sy is compatible with the subsort-ordering:
S;€ R;,i=1,...,n implies f(S;,....S ))& f(R;,....R})
Proof. i) follows from the definition, ii) follows from sort-preservation and iii) follows from

regularity of Z. l
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7. Conservative Transformations.

Given two specifications it is a natural question to ask if they specify the same problem or if
they are in some sense equivalent. For example, the specification {A & B, a:A, b:B, a=b} is
semantically equivalent to {A = B, a:A, b:A, a=b}. That means they specify the same standard
model although their signatures and their free term algebras are different.
In order to be able to compare such specifications, we introduce the notion of transformations,
where each transformation H should be conservative, that is H transforms (un)satisfiable
specifications into (un)satisfiable ones. The notion of conservative transformations will play a
crucial role in proving that the sort-generation algorithm in part VI is correct. Conservative
extensions of theories in the sense of [Sh67] have the embedding mapping of theories as
conervative transformation. Our notion of conservative transformation of signatures
corresponds to those conservative extensions.

We emphasize that in this paragraph the assumption 1.4.11 i), that sorts are not empty, 1is

important, since most of the theorems are no longer valid without it.

7.1 Definition. Let $;:=(Z;,CS;) and S, :=(Z,,CS,) be specifications and let H: 5125
be a total mapping. i.e., H:Sy,— S5y, H: P; - P,, H:F; - F, . The mapping H
extends in an obvious way to term declarations, subsort declarations, atoms, literals,
clauses and clause sets.

We say His a well-sorted transformation, iff the following is satisfied:
i) H:F; - F, and H: P; - P, is an injection.

ii) H: TDy; = TDy, and H: SDyg; — SDy, are total mappings.

iii) H(CS,)=CS, &

We may use the notion of well-sorted transformations for signatures (without specifications)

as well as for specifications.

7.2 Lemma. For a well-sorted transformations H: $;— S, we have
i) VRSe S;5;: RE; S = H(R) £, H(S).
11) te TZI,S = H(t) € T22,H(S)
Proof. Follows from the fact that H is defined for every sort, every subsort declaration and

every term declarationin Z,;. B
Note that Lemma 7.2 implies that the image H(A) of every well-sorted atom A is well-sorted.

7.3 Definition. We say a well-sorted transformation H: §;— S, is a conservative

transformation, iff the following holds:
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S has a X;-model iff S, has a Z,-model.
Furthermore we say a well-sorted transformation of signatures is conservative, iff for
every clause set CS,, the transformation H:(Z;,CS;) — (£,,CS,) is conservative. l

Now given a X-structure 4, we investigate how to construct the X,-quasi-structure H(A).
Note that (in general) H(A) need not be a X,-structure.

Let A be a Z;-structure and let H: F; — F, be bijective. Then we define the X,-quasi-structure
‘B =H(A) as follows:

1) B:=A, (i.e., the carriers are the same)

) (H(S))g :=Sy.

iii) (H()g = fa,

iii) (H(P))g := Py for Z;-predicate symbols P and (H(P))g := @ otherwise.

iv) IfS € Syy —H(Sygy), then Sg:=U {RgIRE, S and R € H(Sg;)}.
The case where H: F; — F, is not bijective is handled separately in a proposition.

We say that the sort structure <S):’1, £,> is embedded into <Sz,2, £,> with embedding H
iff,

1) H:Sy;— Sy, isinjective

ii) Forall R,S € S5;; we have Rg; S < H(R) £, H(S).

iii) For every sort S € Sy, there exists a sort R € Sy; with HR) &, S

We give a criterion for H(A) to be a X,-algebra.

7.4 Proposition. Let H: £,— X, be a transformation:
Let H: F; — F5 and H: TD; — TD, be bijective and let <Sy ;, £;> be embedded into
<S 7.2 1>
Then 1) His a well-sorted transformation.

ii) For every X;-algebra A its image H(A) is a X,-algebra.

Proof. The transformation H is well-sorted, since all conditions of Definition 7.1 are
satisfied.
Note that H(TZI,S) = T}:Z,H(S) N H(Tg,), since H is injective on sorts and term
declarations. Furthermore the above embedding condition enforces that the nonempty sort
assumption for %, is satisfied.
Let A be a X,-algebra A and let H(A) be its image. First of all H(A) is a Z,-quasi-algebra.
Furthermore it follows trivially from the above definition of H(A), that R £, S implies
Ryy(a) < SH(a)- In order to prove condition 1.6.1 i) let H(t):H(S) be a term-dcclaration in
Z, and let ¢,: V5, — H(A) be a partial X,-assignment with V(H(1)) < D(¢,). Let
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@;: Vy; = H(A)  be the partial X,-assignment defined by ¢;x := ¢,(H(x)). Since Aisa
X,-algebra, we have that @, is defined on t and ¢(t) € S A.'Since @1(t) = @,(H(1)) and
Sp = H(A)H( A) the condition 1.6.1 ii) is satisfied. We conclude that H(A) is a
Z,-algebra. B

In the following we give some useful sufficient criteria for a transformation to be conservative.
The method described here will be used extensively to show that the transformations of the
sort generating process in part VI are conservative transformations.

7.5 Lemma. Let H:X; — X, be a well-sorted transformation and let A be a Z,-algebra such
that H(A) is a Z,-algbera. Then the following holds:
i) For every X,-homomorphism ¢ : Ty; — A there exists a Z,-homomorphism
¢, : Tgp = H(A) with @;(t) = @, (H(D)).
ii) For every Z,-homomorphism ¢, : Ty, — H(A) there exists a £;-homomorphism
@ : Ty = A with @,(t) = @(H(p) forall te Ty;.
Proof.
i) Let @; : Ty; = A be a Z;-homomorphism. Let ¢,: Vy,— Ty, be a mapping with
@ (H(x)) := ¢(x). This is a partial X,-assignment, since the denotations for sorts in Sy -
and H(Sy,) are the same. Since sorts are not empty by Corollary 1.6.5 and assumption
1.4.11, we can extend the partial X,-assignment @, to a total X,-assignment. We can
further extend @, to a total £,-homomorphism @,: Ty, — A, since Ty, is a free
Z,-algebra. The interpretation of functions over A and H(A) is the same, hence
@y (H(1)) = ¢¢(t) forallte Ty;,.
ii) Let ¢, : Tyy — A be a £,-homomorphism. Define ¢: Tg; = Aby @,(x) := ¢p(H(x))
for all x € Ty;. Similar as in the proof of part i) this is a £,-assignment and can be
extended to a Z;-homomorphism, since Ty is a free X;-algebra. Furthermore P (H(Y) =
@(t) for all t € Ty, since the interpretation of functions over A and H(A) is the same. |

7.6 Theorem. Let H:X,— X, be a well-sorted transformation.
i) Let A be a X;-model for CS; and let H(A) be a Z,-algebra.
Then H(A) is a X,-model of CS,.
ii) Let B be a £,-model for CS, and let A be a X;-algebra, such that H(A) =B.
Then A is a ,-model of CS,.
Proof. i) Let A be a £,-model for CS; and let H(A) be a X,-structure.
We show that H(A) is a X,-model for CS,. We have to show that all clauses are satisfiedin
H(A). Let @, be a X,-assignment and let H(C) € CS, be a clause. Then by Lemma 7.5 1)
there exists a £,-homomorphism @, : T5; — A such that ¢(t) = @,(H(1)) forall t € Ty;.
Since C is valid under the interpretation @;, and @(C) = ¢,(H(C)) we have that H(C) is
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valid under the interpretation @,.
ii) the proof is similar using part ii) of Lemma 7.5.

As a first application we prove a corollary that we can extend the signature by adding

supersorts of given sorts:

7.7 Corollary. Let $;:= (£,,CS;) and S, :=(£,,CS,) be specifications and let H: §;— 5,
be a well-sorted transformation satisfying the conditions of Proposition 7.4.

Then H is a conservative transformation of signatures.
Proof. Follows from Proposition 7.4 and 7.6. B

We formulate the special case that we can add a greatest sort to the signature as a corollary:

7.8 Corollary. Let S:= (X,E) be an equational specification. Then we can always add
a greatest sort TOP satisfying the conditions of Proposition 7.4, such that the the instance
relation for X-substitutions does not change.

Proof. Follows from Corollary 7.7. The new term algebra is the old one plus variables of
sort TOP. The only possible new components are of the form {xpqp ¢—t}. Hence the new

substitutions do not influence the instance relation on old ones. B

7.9 Proposition. Let $; = (£,,CS;) and 5, = (£,,CS,) be specifications, where Z,and X,
are regular signatures and CS, does not contain an equality-literal. Let H: £, — Z, be a
well-sorted transformation which only increases the set of functions, i.e.,

H: F; — F, ,H: TD; - TD, are injective and H:Sg;— Sy, and H:SDy,— SDy, are
bijective. Furthermore assume that all new term declarations have a toplevel function
symbol from Fy,.

Then H is conservative (as transformation of specifications).

Proof. One direction is trivial: If A, is'a Z,-model of CS, = H(CS,), then we obtain a
%,-model of CS; by simply forgetting the superfluous function symbols.

For the other direction we show that if CS, is X,-unsatisfiable, then CS, is also
X, -unsatisfiable.

Due to the Herbrand-theorem 11.2 there exists an unsatisfiable, finite set CSz,gr of
Z,-ground instances of CS,. If there is no occurrence of a new function symbol in CSz,gr ,
then CS, ., serves also as an unsatisfiable, finite set CS; g of Z;-ground instances of
CS,.

Assume by contradiction that CS2,gr contains a minimal number of occurrences of new
function symbols. Let t be a term occurring in CSZ’gr with a new toplevel function symbol
and with a maximal term depth. Since t has maximal term depth, for every occurrence of t
in CS2,gl. the function symbols above it are old ones. (Here the precondition on the toplevel
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function symbols of new declarations is used.) Since X, is regular, we can choose a
Z,-term t' with LS(t) & LS(t). Replacing every occurrence of t in CSz,gr by t' gives a
new set of ground clauses CS', gr The set CS'y gr is well-sorted, since we have assumed
that there are no new term declarations with an old toplevel function symbol. Furthermore
CS'2,gr
This is a contradiction to the minimal choice of CS, gr |

is contradictory, since it represents the same propositional clause set as CS, gr-

It is not possible to drop the requirements of Proposition 7.9:

7.10 Counterexamples.

D)

If we add declarations in Z, with old toplevel function symbols, then Proposition 7.9 may
be false:

Let Z;:= {Bc A, b:B, g:A — A} and let CS := {{P(xg)}, {-P(g(ya)}} . This clause set
has a X,-model, since xg and g(y) are not Z;-unifiable.

LetZ,:=%; U {g(f(z A)):B}. However, this term declaration allows to unify the terms xg
and g(y,) with the unifier {y, « f(zp), xg « g(f(z5))}, hence the clause set CS is
contradictory with respect to Z,. O

If the signature Z, is not regular, then Proposition 7.9 may be false:

LetX;:= {Be= A,C= A, b:B,c:C} and let CS; := {{P(xg)}, {-P(yc)}}. This clause set
has a Z,-model. If we add the term declaration g:B—B, g:B—C, ie., Zy:= v
{g:B—B, g:B—C}, then xg and y- are unifiable with unifier {xg¢ g(zp), yo¢ 8(zp)),
hence the clause set CS is contradictory with respect to Z,. U

iii) If there are equations in the clause set, then Proposition 7.9 may be false:

LetZ;:={B=A,C=A,DEA,EEA, b:B, c:C,d:D, e: E} and let CS; :=

{{xp#zyg}, {b=c}}. This clause set has a £;-model. If we add the term declarations
gBoD, g:C—E ,ie., I, := £, U {g:B-D, g:C—E ), then we have g(b) = g(c).
However, g(b) is of sort D and g(c) is of sort E, hence xp#yg implies g(b) #g(c), which
is a contradiction. M

7.11 Proposition. Let £ be a signature. Then factoring out the equivalence of sorts is a

conservative transformation of signatures.

Proof. Note that in all Z-models M the denotation of equivalent sorts is the same, i.e. AS B

and B £ A implies Ay, = By;. The proof is straightforward and uses the same ideas as the
proof of 7.6. W

This proposition means that we can assume that the order on sorts is a partial ordering. Our
next aim is to show that we can also assume that the sort-structure is a semilattice. We show

how to embed an arbitrary finite partial ordering into a semilattice:
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7.12 Lemma. Let <S,, £,> be a partial ordering on the finite set S;. Then there exists a

semilattice <Sy,&> such that <S,, £,> is embedded into <Sy,5p>.
Proof. We define the set Sy as follows:
Sp = (M#2@IM=[-8]1N..N[-=8] forS;,....S € S,}. We allow also the
empty intersection , i.e,. we assume that the whole set S, is an element of Sy. We define
the embedding function H: §, — Sy as H(S) := [-,S] . Furthermore we define the
ordering £y, to be the subset ordering on Sy. |
Obviously H is injective, since [-oo,R] = [-°0,S] implies R = S as £, is antisymmetric.
i) Rg,S e HR)Eg, H(S) forallR,S € S,;:
Obviously Rg, S is equivalent to [-o,R] < [-=,S], by the definition of Sy,
ii) For every sort S € S there exists a sort R € S, with HR) g, S:
This holds, since all elements of Sb are lower segments and hence for every M € S,
and every S € M we have [-o0,S]5, M.
Obviously, for every M;, M, € Sb we either have M; N M, = @ or M, "M, € §,.
This means that <S, £, > is a semilattice. B

Note that the construction in Lemma 7.12 is optimal in the sense that a minimal number of new
sorts is generated. The argument is that in an arbitrary lattice in which <S,=> is embedded, the
intersection construction of Lemma 7.12 is also possible and shows that the semilattice

constructed in Lemma 7.12 is a subsemilattice.

7.13 Corollary. For every finite signature  the embedding of the sort structure <Sy,=>
into the finite semilattice as constructed in Proposition 7.12 is a conservative

transformation.

In general this result increases the efficiency of a unification procedure, since the number of
unifiers can be reduced. However, in the worst case it may be possible that the number of

sorts to be generated is exponential:

7.14 Proposition. The embedding of a sort structure <Sy,£> into a finite semilattice
may require an exponential number of new sorts.

Proof. Consider the following sort structure: Let A;, i = 1,...,n and B;, i = 1,...,n be sorts
such that the relations are A;= BJ- iff i # j. The construction of Lemma 7.12 yields that
every nonempty subset of (B,...,B,} corresponds to a sort in the completion lattice.
These are 2" -1 sorts. On the other hand, the above construction gives an exponential upper
bound, since AS) is sufficient for a completion. Bl
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Corollary 7.13 justifies the assumption that sort-structures are semilattices. It has as a
consequence (see part III) that the number of unifiers can be reduced by a preprocessing step,
which transforms the sort-structure into a semilattice. In the case where this transformation is
exponential, there are two remedies to the situation: the first is to use a logic in which sorts
change dynamically [IS85] or else we assume that the sort-strucure is completed, but perform
a lazy computation of the completion, i.e. we compute the needed sorts at unification time.

8. R-systems.

The definitions of this paragraph are only used here, only the final result will be used outside
of this paragraph.
Consider the situtation, where the sets Ty, and SUBy are given, or where we only have an
algorithm for distinguishing well-sorted terms and substitutions from ill-sorted ones, but no
term declarations are given. We show, that some sensible restrictions enforce that the notion of
well-sortedness is generated by an order-sorted signature with term-declarations.

A similar way to define sorts starting with a relation on variables is used in the X-logic of
A. Oberschelp [Ob62].

Throughout this paragraph we assume that an unsorted signature Z and restricted sets of terms
Tgr < T5 and substitutions SUBg < SUB 5 are given.

The following conditions should hold for the (restricted)'R-system (TR, SUBg):
R-i) Ty is subterm-closed and C5, Vs c Ty .

R-ii) SUBg, is a monoid with SUBg+(Tg) = Tg.

R-iii) VWcVsVoe SUBg: oye SUBg.

R-iv) Vte T dxe Vs {x«t} e SUBg.

R-v) For every variable x there exists a ground term t__ with {x ¢« tgr} € SUBg.

er
We define subsumption with respect to Ty and SUBg:

8.1 Definition. Let s,t € T5. Then

i) s<spt &= JAe SUBgj:As=t.

ii) s=gt ¢ s<ptand t<gs. M

8.2 Lemma. < is a quasi-ordering .

Proof. We have t<g tforall te Ty, since Id e SUBg.
Let r 25 s 25 t. Then there exist A,6 € SUBR withr = As and s = ot.We have
A-c € SUBy since SUBg, is a monoid, hence r=A.ct and r2; t. M
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8.3 Lemma. Forxe Vyandte T5: t 2 x < {x «t} € SUBg.
Proof.
"=": Let A € SUBg with Ax =t. Then {x « t}= Q‘I{x} € SUBR by Ruiii.
"«=": trivial. W

The last condition for an R-system (Tg, SUBg) is :
R-vi) Vx € Vs5: the equivalence class [x]_g is an (countably) infinite set.

8.4 Definition. An R-system consists of an unsorted signature X , a set of terms Tg and a
set of substitutions SUB such that condition R-i) - R-vi) are satisfied. &

Obviously [x]=g € V 5 for all variables.

The notion of R-systems is sensible:
8.5 Proposition. Signatures with term declarations generate R-systems.
Proof. The verification of every condition is straightforward.m

We define the notion of sorts in R-systems. Here sorts are defined as sets, but we could just
as well have a sort-symbol for every sort. We use the symbol X to indicate the signature to be
defined.

8.6 Definition. The set of sorts with a partial ordering and the sort of a term is defined as
follows:
i) Sy:={[xlzglxe Vg}
ii) The ordering on Sy is: §; Eg S, & x; 2 x, , where S§; =[x;]=g and
Sy = [X7l=.
iii) Forte Ts: Sg(t):={[xlzg! {x <t} € SUBR}. m

8.7 Proposition.

i) &R is a partial ordering on S.

i) Vite Tg: Sy()#0 & te Ty

iii) Forallxe Vg and allte Tg: Sy (x) €Sy (1) & {x «t} € SUBg.

Proof. :

i) g is well-defined, since x| =g X, , ¥ =g ¥, and x; <g y, imply x, <g y, by the
transitivity of <p. That £ is a partial ordering on Sy follows from the fact that <g isa
quasi-ordering on V5

ii) "=":If Sy(t) # @ then {x « t} € SUBy for some variable x.

Hence by R-ii: te Tg.
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"«=": Follows from R-iv.
iii) Sy(x) €Sy (1) & [x]=R € Sy (1) & (x«t}e SUBy. W

8.8 Definition. p € SUBy is called a SUBg-renaming, iff p is a renaming and
Vx e V px =g x.

The existence of sufficiently many SUBg-renamings is not obvious and has to be proved:

8.9 Lemma. Let W, ¢ W, C V5 be finite sets of variables.
Then there exists a SUBg-renaming pe SUBp such that DOM(p) = W, and
I(p) "W, = @.

Proof. Let W, := {x,,....x,}. Since [x;jzg contains infinitely many variables (R-vi), we
can choose variables y, € [x;l=g — W, , such that all y; are different.
Lemma 8.3 implies p; := {x; ¢ y;} € SUBR. We have p;-p; = pjep; for i # j and define
p:=pq° ... °pp € SUBg. The result p is the desired SUBg-renaming. m

8.10 Lemma. Let x; be different variables and let {x; « t;} € SUBg for i=1,...,n
Then {x;&ty,..,x, <t} € SUBg.

Proof. There exist SUBg-renamings p; i=1,...,n , such that DOM(p;) = V(t;) and I(p;)
consists of variables (see Lemma 8.9).
The following reasoning relies on the trick that a substitution can be made idempotent by
renamings and that idempotent substitutions are equal to the composition of their
components.
We have p;-{x; «t;} € SUBg. Let 0, :=p; < {x; ti}l{xi} . Then o; € SUBR , hence
Gj° ... °0, € SUByg . Furthermore p;™> ... :p, 7 O;¢ ... .0, € SUBg, where p;~ is the
converse renaming of p;.

We compute:
P17 . Py © Op° «e °OpX; =
= pl_" e °pn_° Glxl DOM(GI) F\{Xl,...,xn} = {Xl} and

I(c;)) N DOM(O'j) =@ fori#j.
= pl_o e epn_o pltl
=Pi™ PiY DOM(p;) N I(p;) = B for i # j and
DOM( pi?) N 1(p;7) =D for i#].
Hence p;7e ... epp™ Op° . *Op (x1, . xn) = (X1 1 oo Xy 3} € SUBg W

8.11 Theorem: Sy is a sort-assignment, T y = T and SUBy = SUBg.
Proof. We check the conditions of Definition 4.1.
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i) Obviously Sy maps terms onto upper segments in Sy.
ii) Proposition 8.7 implies that T y = Tg.

o e SUBg
< Vxe Vs {x « ox} € SUBg Lemma 8.10 and R-iii)
< Vxe Vs [x]og € S5 (0%) Proposition 8.7 iii)
& Vxe Vs Sy (x) =Sy (ox)
< o€ SUBjg.

iv) The other conditions follow directly from R-i) - R-vi).ll

9. Sort-Preserving Congruences.

We are interested in congruences, which are sort-preserving and deduction-closed. In this
paragraph we show that every sort-assignment and a congruence on terms can be
conservatively transformed into a sort-assignment and sort-preserving congruence.

However, the new sort-assignment may not be effectively computable. For practical
applications, the equational theory should be decidable. If the equational theory has
normalforms, then the new sort for terms can be defined as the sort of their normalform,
provided the normalform has a minimal sort in its equivalence class. This is particularly useful
if the term rewriting system is weakly sort-decreasing and canonical.

Due to paragraph 2 we can assume that the congruence is deduction-closed.

The following theorem introduces a new sort of a term t that corresponds to the union of the
sets Sg(t) :=U{Sx(s) |'s =Y E t}. We will refer to this notion also as anE-semantical sort
or for short as a semantical sort of t. This sort can be seen as the sort of a term in the quotient
algebra of Ty modulo the equational theory. However, there is the problem that with this
definition a variable may not have a unique least sort. The construction in the proof is by
using the abstract notion of R-systems introduced in the last paragraph.

9.1 Theorem. Let =g g be a deduction-closed congruence. Let CS be a clause set with
E ¢ CS.
Then there exists a mapping Sg: Ty — Sy, such that
a) Sg isa sort-assignment. -
b) Tg=Tyand SUBy < SUBg. _
c¢) The generated SUBg -invariant congruence =g g is the same relation as =y g on Ts.
d) =gg(=gg) is sort-preserving and deduction-closed with respect to Sg,
e) CS hasa X-model < CS hasa ®-model.
Furthermore there is a well-sorted transformation H:Z — © that is bijective on functions
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and predicates and terms and Sg(t) = H({Sg(s) | s =g E t}).

Proof. We define a new notion of the sort of a term using Theorem 8.11. To
distinguish between old and new objects we use the suffix © for new ones. We define
SUBg :={ce SUB3|Vxe DOM(c)3Ise Ty: s =y g OX and Ss(s) 2 Sy(x) }

a) Voge SUBgdoe SUBy © =5E 0@ °

Let 0g e SUBg and letx € V. There exists a term s, € Ty with sy =y g OgX and
S5(s,) 2 Sy(x). Define ox :=s,. Then 6 € SUByand © =y £ Og- Q
(T, SUBg) is an R-system:
We have by assumption that Ty is subterm-closed.
We show only R-ii), since the other conditions are trivially satisfied.
SUBg (Ty) =Tyt
Let 6ge SUBg andte Ty. Then there exists 0 € SUBy with 0 =5 0g. We
have ot =g Ogt, hence ot € Ty.
SUBg is a monoid: _
Let 6g,tg € SUBg and let x € Vy. Let 6 € SUBy be a substitution with
O =y Og-
For tgx there exists a term t, with Tgx =rE and Sy(ty) 2 S5(x).
We have 0gTgx =5 g Ogty =y g Oty. Hence by Proposition [.4.7:
Sy(oty) 2 Sy(ty) 2 Sy(x). We have shown ogtg € SUBg,
Now by Theorem 8.11 there exists a sort-assignment Sg.

b) is trivial.

¢) Let =g g be the SUBg -invariant congruence on T 5 generated by =y . We show by
induction that =g E is identical with =5 E:

It suffices to verify that every newly generated =g E -relation is also a =sH -relation.
The nontrivial part is to show that for s =5 Et and og € SUBg we have os =5 g ot.
Let 6 € SUBy, be the corresponding well-sorted substitution with 0 =g Gg.

Then Ggs =5 E OS =3 Ot =g Ogt.

d) We show that =g  is sort-preserving:

Let s;t € Ty with s =g g t. To show that Sg(s) = Sg(t) it suffices to show that
{xe Vgl {x &« s} e SUBg} = {xe€ Vgl {x « t} € SUBg} by the definition of SUBg
and by Definition 8.6. If {x « s} € S UBe, there exists a term s, such that
s =y g Sx =g g U, hence also {x «<— t} € SUBg.

e) Let the transformation H :X — © be defined as follows:

H is bijective on F, P and Ty. H:Sy— Sg with H(S) = LSg(x) for some variable x with
LSy(x) =S.
1) His well-sorted:
i) ReS=H(R)cg H(S):
Is obvious, since {xg ¢~ yg} € SUBy = {x5 ¢« yg} € SUBg.
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ii) LetS e Sg(t). Then H(S) € Sg(1):

This holds, since {xg -t} € SUBy implies {xg <t} € SUBg.
2) Let M be a Z-model of CS. Then H(M) is a ®-model of CS:

It suffices to show that H(M) is a @-algebra by Theorem 7.6.

1) H(R) gg H(S) implies H(R); < H(S)y:
Let H(R) £g H(S) and let XH(R)* YH(S) be variables of ®-sort H(R) and H(S),
respectively. Then either (YH(S) (—xH(R)} € SUBg or there exists a term t, such
that x =5 E Ix and {y « t,} € SUB5.
Let m € H(R)y,. By definition of H(M) (cf. paragraph 7) there exists a variable x
with LSg(x) = H(R) and {x ¢ m} is a Z-assignment. Let y be a variable with
LSg(y) = H(S). If {y ¢-x} € SUBg;, then ¢ :={y ¢« m} is a Z-assignment and
hence m € H(S)p,. In the case {y <—x} € SUBj there exists a term t, =5 E X
such that {y « t,} € SUBjy. Since M is a Z-model we have @t, = m, for every
total X-assignment extending {x - m}, hence {y « m} is a Z-assignment and
m e (LSz(y))m € HS)ym-

ii) H(S)y; = Sy and every ©@-assignment is also a X-assignment:
We show H(S)y; = Sy - The second claim then follows immediately.
Let {x « m} be a X-assignment and let y be a variable with y =g x. If
{y ¢x} € SUBg, then {y ¢~m]} is a Z-assignment. If {y «x} & SUBy, then
there exists a term t, =y g X, such that {y « t,} € SUBjy. Since M is a Z-model
we have @t, = m for every total X-assignment extending {x « m}, hence
{y ¢ m} is a X-assignment and me (LSy(y))p & H(S)y. Hence
H(S)p = Sy. Q@ '

iii) For H(S) € Sg(t) and all ®-assignments Qg we have gt € H(S)p:
Let ¢g be a ©®-assignment. By ii) @g is also a X-assignment. A similar
argument as above shows that for every variable x with {x «t} € SUBg we
have @gt € (LSy(x))\-

3) Let Mg be a ©®-model of CS. We have to construct an M, such that HM) = Mg and M
is a X-algebra. We let the denotation of functions and predicates unchanged and define
Syvi= H(S)pe- It is a trivial task to verify all necessary conditions. l

The semantical sort-assignment may be not regular:
9.2 Example. Let Z:= {BeA, C= A, b:B, c:C} and let E := {b = c}. Then Sg = Sy and the
sort of b with respect to © is Sg(B) = {A,B,C}. Since this set has no unique minimal

element, the new sort-assignment is not regular. l

Unfortunately, the construction in Theorem 9.1 may not be effective in general. A
consequence is that the new sort-assignment may not be computable. It may nevertheless be of

100



practical use to consider a term t of sort S, if there is a term s of sort S with s =5 t.
Theorem 9.1 shows that this is a correct method and that in Example 9.2 we can consider ¢ to
be also of sort B.

A case, where the above construction behaves well is that Z is regular and £ is defined by a
weakly sort-decreasing and canonical term rewriting system. Then © is regular, the set of sorts
does not change, i.e., Sy = Sg, and the new sort of a term is the sort of its normalform.

10. Relativizations.

In this paragraph we consider two different methods to transform sorted clause sets into
unsorted ones in a conservative way. The first is the standard method [Ob62, Wa83] to
provide a unary predicate for every sort, to add conditional literals to clauses and to add
clauses that express the signature of the clause set.

The second method transforms sorts into unary functions and the sort-information into
suitable equations for these unary functions.

For the special case where no equations are in the clause set and the sort-structure is a tree,
there is a third method to relativize a clause set (cf. [St86]), namely to embrace every term with
unary function symbols that represent the sort of the term. For example if there are the sorts
A 2 B 2 C and the term t has sort C, then we relativize (recursively) t as f, (fg(fc(1))). It can
be shown, that unsorted resolution for the thus relativized clauses simulates sorted resolution.
We do not further consider the third case.

10.1 Definition. Let S = (X£,CS) be a specification. The we define the relativized
specification Sgg; = (Zgrgr, CSreL Y AxggL) as follows:
1) XppLi= oL ¥ Prgr, where P is a set of new unary predicate symbols Pg for every
sort S. '
ii) Axggp is the set of clauses
a) ({-Pr(x),Pg(x)} forevery relationRE S.
b) {-Pgi(xp), ..., -Pgp(xy), P (1)} for every term declaration t:S € X, where
V(t) = {xq,....x,} and §; = S(x)).
iii) CSgg; is the set of clauses:
Crgp for every C € CS, where Cggy = {-Pg(x}), ..., -Pg(xp)} L C,
V(C) =(xy,....x,} and S; = S(x;). W

The "Sortensatz" in [Ob62, Wa83] states that a sorted clause set and its relativization have the
same semantics. The same is true in signatures with term-declarations:
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10.2 Theorem. S has a Z-model, iff Sgg; has a X1 -model.

Proof. "=": Let M be a Z-model of S. In order to obtain a Xpp; -model of Spi;  we add the
relations Pgppi= Sy, ie., we define the predicate Pg s to be valid exactly on the set
Sy In order to be precise we have to forget about the denotation of sorts and have to
define the functions f), on the whole set M. This definition can be done arbitrarily.

ii.a): The clauses {-Pg(x), Pg(x)} are valid, since Ry; < Sy

ii.b): Let ¢: Vg — M be an assignment. If ¢(x;) & Pg; s for some S; then the clause is
valid. If @(x;) € Pg; y for all i, then ¢ corresponds to a X-assignment, hence
Q(t) € PS,M’ and hence the literal Pg(t) is valid.

iil): Similar to the proof of ii) a). 1

"e=": Let M be a Zgg; -model of Sgg; . In order to obtain a X-model of S we define the

denotations of a sort S as Sy := Pg zp.

The clauses ii.a) enforce that R € S implies Ry; € Sy;. The clauses ii.b) enforce that for

term declarations t:S and Z-assignments ¢ the application of @ to t is defined and that

@t € Syy. The clauses C are valid in M, since a Z-assignment ¢ corresponds to a usual

ZrEL-assignment, which makes all literals -Pg(x) false and hence the remainder of the

clause Crgy , that is the clause C itself, valid. H

We prove that the sort of a term is reflected in the relativization of clauses related to the sort of

a term:

10.3 Lemma. Let I be a signature and let Zpg; be its relativization.
Then for every well-sorted Z-term t:
te Tyg & AxgpLF {-Pg1(xp)s-...,-Pgp(xy), Ps(D)},
where V(t) = {xy,...,x,} and §; = S(x;).
Proof. The proof is similar to the proof of Proposition 1.6.3.

=": We prove this by structural induction according to Definition 1.4.3.
As induction basis, we have that the axiom 10.1.ii.b) is deducable for term declaration t:S
and for variables x we have the tautology {-Pg(x), Pg(x)}.

In order to prove the induction step, let t € T}:,S’ re TE,R and x; € V(t), such that
R & S(x;). Let V() := {xy,....x,} and let V(1) := {¥1>-+-s¥m}- Furthermore let S; be the
sort of x; and R, be the sort of y;. The term {x¢r}tis in TZ,S by Definition 1.4.3. We
have to show that {-Pg;(xy),...,-Pgp(xp), -PR1Y s PR (Ym)» Ps({x61}t))} holds.
By the induction hypothesis we have that {-Pg;(x;),...,-Pgn(x,),Pg()} and
{-PRl(xl),. . PRm(Ym)> PR(M} hold in all models of Axgg; . Let M be a model and let ¢
be an assignment such that the prefix {-PSl(xz),...,-PSn(xn), -PRl(yl),...,-PRm(ym)} is
not valid in this model. Then the literal Pg(r) is valid under . Let be the assignment that
differs from @ only at the variable x, and assigns x; the element @x,. Then the literal
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Pg(t) is valid under y. We have  @{x;<r}t =t hence Pg({x;¢r]t) is valid under ¢.
We have proved the induction step. Hence the conclusion is true U

"«=": The other direction follows from model-theoretic considerations.

We construct a Zpp; -model for the axioms Axgy; as follows. Let M := T, furthermore
define the denotations for predicates Pg \y =Ty g. Then Mis a Xp g -model.

Now for all terms t € T 5 — T):,S the clause {-PS 1(X1)s...»-Pgn(x,), Pg(t)}, where
V() = {x},....x,} and S; = S(x,), is not valid using the ‘identical’ assignment, since M is

a model. B

10.4 Corollary. Let X be a signature and let Xpp; be its relativization.
Then for every well-sorted ground Z-term t:
te Tyg © AxggF {Pg(H)}
where V(t) = {x,...,x,} and S; = S(x;).

Another method to relativize a sorted clause set is to introduce unary function symbols fg for
every sort S and to add equations to ensure the right behaviour. The transformation of a sorted
term t into its unsorted version is done by embracing every variable x in t of sort S, by the sort
function fg, and "t has sort S" is translated into fg(t) =t.

10.5 Definition. Let 5= (X£,CS) be a specification. The equationally relativized
specification is defined as follows: SpoR .= (EZgQr, CSgQrY AXggr ) of CS.

) Zgori=ZUF EQR» Where Fgqr is a new set of unary function symbols fg for every
sort S.

ii) The relativization of terms in Ty is a function 6: Ty — TZEQR’ where Ot is the term
obtained by replacing every variable x of sort S, in t by the term fg, (x). We can
extend 0 in the usual way to atoms, literals, clauses and clause sets.

i) AXEQR is the set of clauses
a) {fg(fr(x)) =fr(x)} forevery relation R S.

b) {fg(dt) =dt} for every term declaration t:S € X.

iv) CSEQR is the clause set 5(CS). W

We denote equality defined by the above axioms as =EQR-
The next lemma shows one direction of the sortal behaviour of the relativization, the other

direction is shown in Lemma 10.8.
10.6 Lemma. We have forallte Ty: te Tyg=> fg(8t) =gqp Ot:

Proof. We prove this by structural induction on the generation of terms according to
Definition 1.4.3. The induction base is that for term declarations t:S we have the axiom
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f(3t) = &t and for variables x € Ty, g we have S(x) £ S, hence f5(8x) = 8x by the axiom
5 (Fg ) (X)) = fg () ().

In order to prove the induction step, lett € T):,S’ re Ty R and x € Vg, such that R £ S(x).
The term {x ¢-r}tisin T}:,S' We have to show that fs(8 ({x &r1}t)) “EQR S ({x &r}t).
Application of the substitution {x ¢« dr} to the equation fg(8t) = 8t yields that the
equation fg({x ¢ 8r}dt) =g {x « or}dt holds. However, by induction hypothesis, we
have & ({x «r}t) =EQR {x « Or}dt, since fs(x)(Br) =EQR or. H

10.7 Theorem. S has a X-model, iff 5EQR has a EEQR-model.

Proof. "=": Let M be a Z-model of S. In order to obtain a EEQR-model of SEQr We define
the new unary functions fS,M to be the identity on Sy, and for an element a € M-S, we
define fg(a) to be an arbitrary element in Sy;. This definition is possible since Sy is
nonempty. (In the following we refer to Definition 10.5)

1) The axioms iii.a) are valid in the new model:
fg(fr(x)) = fg(x) holds in the model, since fR,M(a) € Sy, and fS,M is the identity on
Sm-

i) The clauses 10.5 iii.b) are valid in the new model:
It suffices to show that for every term declaration t:S and for every EEQR-assignment
@, the (3t) € Sy. This is true, since every variable x of sort S, is embraced by the
function symbol fg,. Hence @ corresponds to the Z-assignment ¢' with @'(t) = o(dt),
hence @(8t) € Sp;.

iii) The clauses CSEQR are valid:
Every variable x of sort S, is embraced by the function symbol fg,. Hence ¢
corresponds to X-assignment @' with ¢'(C) = ¢(8C ) for every clause C, hence
CSEQR.

"¢=": Let M be a Zgggp-model of Spog. In order to obtain a X-model of S we define the
denotation Sy, for every sort S as Syp:={ae M| fS,M(a) =a}. By Lemma 10.6 we have
for every termt € Ty; g that fg(8t) = Ot, hence Sy, is nonempty by assumption 1.4.11.
From the axioms in iii.a) it follows that R £ S implies Ry, C Sp- In order to show
condition 1.6.1.ii, let ¢ be a partial X-assignment and let t:S be a term-declaration.
Obviously we have ¢(dt) = ¢t and since fg(8t) =EQR ot, we have also fS,M(p(St) =@(ot),
hence @t € Sy
For every X-assignment ¢ and every clause C we have ¢ 8(C) = ¢ (C) , hence every
clause is valid. W

Now we can prove that also the converse of Lemma 10.6 holds:

10.8 Lemma. We have forallte Ty: te Tyg& f5(3t) =EQR ot:
Proof. Lemma 10.6 shows "=".
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The other direction follows from semantical considerations.

We construct a ZEQR-model for the empty clause-set as follows. Let M := Ty, furthermore
define fg ) as the identity for terms t € Ty, g and for terms t ¢ Ty g let fg )4(t) be an
arbitrary term in Ty ¢. The axioms in 10.5 iii) are satisfied due to the definition of M and
Definition 1.4.3. Assume by contradiction that there exists a ttrm t € Ty — Ty g with fg(t)
=EQR Ot. We have t # fS’M(t). Let ¢ be the ‘identical’ assignment . Then (p(fs(6t)) =
¢(dt), since M is a model.

It follows that fg 3 (1) = (p(fS(St)) = @(8t) = t. We have reached the contradiction
te Ty o.M

11. Herbrand-Theorem.

Herbrand's theorem [He30] states that every unsatisfiable clause set has a finite set of
ground instances that is unsatisfiable. We show that this result also applies to the sorted case.
As a prerequisite we first have to relativize the equations, since the original Herbrand-Theorem
is proved for the case without built-in equality and without sorts.

It is well-known [Lo78, CL73] that an unsorted clause set CS with equational literals can be
transformed into a clause set CS' U EQ-AX, where the equality predicate ‘=" is replaced by a
new binary predicate EQ which is interpreted as any other binary predicate and EQ-AX is the
set of equality axioms. We make the same process for sorted clause sets. We add the predicate
declarations EQ (S, S) for every sort S to the signature. Let EQ-AX be the axioms:
i) EQ(xg, Xg) for every sort S and some variable xg of sort S.
ii) For every function symbol f and for all term declarations f(r;,...,r;):S, f(tl,._. ot):Sy
the clause: '
EQ(, t)) A ... AEQ(ry, tp) = EQ(f(ry,....1p), f(ty,....tp)
iii) For every predlcate (including the new precicate EQ) and two predicate declaratlon
PLS g s s0y) and P(Rq,...,R)) let x;, y; be different variables of sort S;,R;,
respectively. Let the clause be: :

EQ(x{, ¥ A ...A EQ(xp, yp) A P(Xy,....xp) = P(yy,....¥p)- (W

Note that i) and iii) have as a consequence that the symmetry and transitivity of EQ holds in
every model. Furthermore note that this is a finite set of equations.
In an unsorted signature the clauses ii) and iii) correspond to the clauses

EQ(xq, yp A -..A EQ(x, yp) = EQ(f(xy,...,xy), f(yps---»¥yp) and

EQ(xy, yp) A -..A EQ(xp, Yp) A P(Xyq,..05%p) = P(yp,..0yy)
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These two clause sets are semantically equivalent:
11.1 Proposition. Let X be a signature and X' be the signature with the additional binary
predicate EQ. Then CS hasa X-model iff CS' U EQ-AX has a X'-model.
Proof. "=": Let CS have a Z-model M. Then the X'-model M' constructed by interpreting
EQ in the same way as the original equality is indeed a X'-model, since the above clauses
1) -1ii) are  satisfied.
"«=": Let M' be a X'-model of CS. We can assume by 1.8.7 that M' is the ground term
algebra. We define the relation =on M'by a, = a,, iff EQ(a,, a,) is valid.
= is a fully invariant congruence relation on M'":
From i) and iii) it follows that = is an equivalence relation. Furthermore it is
fully invariant.
To show that = is a Z-congruence let s; =t; for i = 1,...,n and let f be a function
symbol such that f(sy,...,s,) and f(t;,...,t;) are well-sorted. By Lemma 1.4.9 there are
term declarations that are more general than these terms. Hence there exists an axiom
among the axioms under ii) that enforces EQ(f(sy,...,s,), f(ty,....t,)) to be valid, hence
B84 yenuyBSi) = Mg pmansl o
The relation = is fully invariant, since the only endomorphism on M'is the identity.
Furthermore for every predicate P we have a; =b;A ...A a, =b, A Pyp(ay,....a ) =
P(b,,...,b,) for elements a;,b;.e M'. Hence we can factor out the equivalence relation
= and obtain a ¥-model of CS. W

Now we can prove the sorted version of Herbrand's Theorem:

11.2 Theorem. Let X be a signature.

A clause set CS is Z-unsatisfiable iff there exists a finite set of ground Z-instances

that is unsatisfiable.

Proof. The proof is done in two steps. First we prove (using Theorem 10.2 ‘Sortensatz’)
that Herbrand's theorem holds for a clause set without equations. Second we use
Proposition 11.1 to lift the Theorem to clauses with equations. We prove only the
nontrivial direction.

i) Let CS be a Z-unsatisfiable clause set without equations. We have to show that there
exists a finite, unsatisfiable set of ground Z-instances of CS. Theorem 10.2 implies
that CSgg; U AXgEg( is Zpg -unsatisfiable. The Herbrand-Theorem for the unsorted
case [CL73, Lo78] gives a finite, Zppy -unsatisfiable set of ground Xy, -instances
CSREL,gr Y AXREL,gr of CSrgL V AXggy. This implies that also CSpgy o
U AXRgL is a Zggp -unsatisfiable clause set. It may be possible that some clauses in
CSREL,gr do not correspond to ground Z-instances of a clause in CS. We argue that
we can delete these clauses: Let CSgpy ¢ be the subset of clauses in CSggy o that

106



correspond to ground Z-instances of clauses in CS.
Assume by contradiction that CSgpy .o U AXggy has a Zpp -model M. Let S, be
the set of well-sorted clauses in CSgpgy ¢, Which are obtained by deleting
the literals Pg(t) from the clauses in CSREL,ws- Then by Theorem 10.2 CS ¢ has a
Y-model. The proof of Theorem 10.2 and Corollary 1.8.7 show that we can assume
that this Xp; -model has T %.gr 35 the underlying Xp g -algebra. Furthermore we can
assume that the interpretation of the predicates Py, g is exactly TE,S,gr' Consider a
clause C in CSREL,gr, which cannot be obtained as relativization of a well-sorted
instance of a clause in CS. Such a clause C has a literal -Pg (1), such that t is
a ground term and t ¢ Tz,s. Hence such clauses are valid in M. This means that we
have reached the contradiction that CSgg; o W AXggy has a Zpgy -model.
We conclude that the set CSyy is a finite Z-unsatisfiable set of ground Z-instances of
clauses in CS. U

ii) Let CS be a Z-unsatisfiable clause set with equations. Proposition 11.1 implies that set
CS is Z-unsatisfiable, iff CS' U EQ-AX is X'-unsatisfiable. Part i) of this proof gives
a finite, Z'-unsatisfiable set of ground instances CS'gr v EQ-AXgr of CS' U EQ-AX.
This implies that also CS'gr U EQ-AX is X'-unsatisfiable. Now Proposition 11.1
yields a finite Z-unsatisfiable set of ground instances, namely CS gr |

12. First-Order Formulas and Skolemization.

The notion ‘signature with term-declarations’ can be extended to first order predicate logic.
That means that we can use logical connectives such as A, v, =, <, -, and the quantifiers V
and 3. The formulas and the semantics of closed formulas (no free variables) are recursively
defined as usual.

In the following definition we use the notation @{x «—a} for the assignment that is equal to ¢
on all variables but x and @{x «a} (x) :=a.

We give the usual recursive definition of validity (denoted by k) for formulae [EF78, Sh67].:

Let M be a Z-structure and let @:Ty — M be a partial Z-assignment. Let F and G be

formula.

M, ¢) & Plty,....tp), iff (@t},....0t,) € Py

M,p) F ty=1,, iff ot; =@ty
M,9) E FAG, iff M,9) E Fand M, ) = G
M, @) = AF, iff not (M, ¢) £ F.
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M, 9) £ FvG, iff M,9)  For M, ¢) = G.

M, 9) E F=G, iff (M, @) = Fimplies M, @) £ G.-

M,9)  F& G, iff M, @) = Fisequivalentto (M, ) £ G.
M, ¢) F Ixg: F, iff there existsan ae€ Sy;: (M, o{x«a}) F F
M, ¢) F Vxg: F, iff forallae Sy;: (M, ¢{x «a}) = F.

A Z-structure M is a £-model of a closed formula F (F has no free variables), iff
(M,9) = F, also denoted as M & F. Note that this definition depends only on the structure
M. This definition is consistent with the definition of validity of clauses and clause sets if

each clause is interpreted as universally quantified over all variables occurring in it and as
disjunction of its literals, wheras clause sets are conjunctions of their clauses.

The above definition works also if the same variable occurs under different quantifiers.
Without loss of generality we can assume that in closed formulas every variable occurs exactly
under one quantifier. If F' is the approriately renamed version of a formula F, then M & F'iff
Mk F.

We have the same skolemization as described in [Wa83]:
A prenex formula F containing a subformula 3xg: G can be tranformed by skolemization
steps as follows:
Let {x,,...,x,) be the set of variables occurring under a universal quantifier above dxg: G.
Introduce a new n-ary function f: S(kl)x...x S(x,) = S.
Let G' be the formula G, where every occurrence of xg is replaced by f(x,...,xp).
The new formula F' is then the formula F, where 3xg: G is replaced by G'.
The skolemized formula Fgy of a formula F can be obtained by applying skolemization

steps until all 3-quantifiers have disappeared.

The skolemization is conservative:

12.1 Proposition. Let F be a prenex formula with respect to X and let F' be the skolemized
formula with respect to X'. Then F has a X-model iff F' has a £'-model.

Proof. Let M be a Z-model of F. We can assume that there is only one skolemization step.
We use the notation of the above definition. To construct a £'-model M' of F we have to
define the function fy; on M". Let a; be elements in S(x;),. If there exists an element
a € Sy, such that (M, {x;¢aq,..., x, ¢a,, xg¢—a} ) = dxg: G, then we define
fu(ag,....ay) :=a, otherwise we define fy,(a;,...,a,) to be an arbitrary element of Spy.
Note that Sy, is nonvoid.

If we have a partial Z-assignment @ = {x;¢=a,,..., X, ¢-a,}, then (M, ¢) = 3Ixg: Gis
equivalentto (M, ¢) £ G.Hence M k FimpliesM'  F'.
The reverse direction uses the same techniques and is omitted.
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Now we can use the same techniques as in the unsorted case to normalize a formula F, i.e. to

transform it in a conservative way into a clause set. However, the method described here is

straightforward and not very efficient in practice. There exist more efficient methods (cf.
[EW83]).
The steps of such an algorithm are:

1)
2)
3)
4)
5)

6)

Eliminate = and <.

Move the negation sign inside.

Skolemize

Move V-quantifiers outside

Use the associativity, commutativity and distributivity of A and v to transform the
formula into a conjunction of disjunctions. '

Make clauses variable disjoint and eliminate all V-quantifiers.

Note that this algorithm has to rename variables appropriately, for instance in step 1) if copies

of formulas are introduced and in step 6) where clauses have to be renamed.
In chapter VI.5 we give a method to combine this normalization algorithm with a

sort-generating algorithm.
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Part I11.
Unification of Sorted Terms without
Equational Theories

Overview. In this part the properties of unification of free order-sorted terms are
investigated and rule-based unification algorithms are presented. We show that for elementary,
regular signatures Z-unification is decidable and finitary. In the general case when we have
signatures with term declarations, unification is undecidable and infinitary. We also determine

the unification behaviour under certain restrictions such as linearity.
Throughout this part we assume that the given signature X is finite.
1. Minimal Unifier Sets and Minimal Weakening Sets.

1.1 Proposition. For every finite set W of variables, the quasi-ordering <y[W] is
well-founded:

Proof. Obviously the set Sy is finite. Assume there is a possibly infinite descending chain of
substitutions 6; >y Gy >y 63 >y ...[W]. Without loss of generality we can assume that
DOM(o) < W. Obviously, the depths of terms in COD(0;) decrease. Due to Proposition
1.10.5 the quasi-ordering <[W] is well-founded, hence there exists an index n,
such that o, =5 0, [W] for all m > n. This means there exist f-rcnamings pm With
DOM(p,,) = V(6,,W), such that 6, = pp, 0y [W]. Due to Corollary 1.5.4 the substitution
P, is unique and hence it is well-sorted. Application of p,, weakens the sorts of
variables in VCOD(0,,). Since the number of sorts is finite and the number of variables in
VCOD(o,) is fixed for m 2 n, there exist different numbers i,j 2 n such that

;=3 0;j [W], hence the chain is finite. W

An immediate consequence is: ,
1.2 Corollary. For every finite set I" of equations, there exists a minimal, complete set of
Z-unifiers pUx(I"). W

Furthermore a minimal set pUg(I) is recursively enumerable by the following algorithm:

Using Proposition 1.1 and the decidability of syntactical equality of terms we can enumerate

the set Uy(I") in a sequence T; such that
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i) forevery =g5[V(I')]-equivalence class only one representative is considered.

ii) the maximal depth of terms in t; (V(I)) is increasing.
Using this enumeration we can collect a minimal set of Z-unifiers in a set LU by adding the
next T; if and only if it is not an instance of a unifier already in pU. This procedure gives a
minimal, complete set of unifiers, since the instance test is decidable (Corollary 1.5.4)

Hence we have:
1.3 Theorem. For every set I' of equations, a minimal, complete set of Z-unifiers for I'

exists and is recursively enumerable. ll

1.4 Corollary. Minimal and complete weakening sets uW(t), uW(t) and pW(t £S) exist and

are recursively enumerable. ll

1.5 Proposition. Let T be elementary and regular and let t be an ill-sorted substitution such
that there exists a well-sorted substitution 8 with 8t € SUBj.

Then there exists a finite, minimal setl UWW (t) of weakenings, such that pW(7) is
effectively computable and consists of Z-renamings.

Proof. Let 6 be a substitution, such that 8t is well-sorted. Let A be a substitution with
DOM(L) = I(t), such that COD(A) consists of new variables and LSy(Ax) = LSy(0x). By
Lemma 1.4.10 we have LSy(Aty) = LSy(Oty) for all y € I(t). Hence A e W(T).
Furthermore we have obviously A <y 6 [I(t)]. This means there exists a complete subset of
W(7) that consists of f—rcnamings. Since the number of variables in I(t) is finite and the
signature is finite, it is sufficient for completeness to take a finite number of such
fl—renamings. Since finite sets can be minimized, there exists a minimal complete subset of
W(t) consisting only of Z-renamings. Such a set is furthermore effectively computable,
since the number of sorts is finite and matching and sort-computation are effective
(cf.81.5). W

2. A General Unification Procedure for Sorted Terms without Equational
Theories.

In this paragraph we give a complete (nonterminating) unification procedure for the empty
equational theory. First we give a procedure for the general case, which includes nonregular
signatures. Second we give a more efficient procedure for regular signatures having a
semilattice as sort-structure. Both algorithms use the ill-sorted binding-rule, which is in fact
the internal paramodulation rule (cf. 1.13) x =t & I’ = x =t & {x « t}I" where {x « t} may
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be ill-sorted. We demonstrate that this is more efficient than the same rule using well-sorted
replacements.

There are many well-known efficient unification algorithms for the unsorted case [Ba76,
Hu76, PW78, MM82, KKN82]. The usual Robinson-algorithm [Ro65] with instantiation is
of exponential time complexity, an improvement of [BC83] is quadratic, but it is not known
whether there exists a quasi-linear algorithm with instantiation, hence the rule-based,
quasi-linear unification algorithm of Martelli-Montanari type [MM82] avoids the instantiation
rule,

For sorted unification, however, it is crucial to have a term fully instantiated, since otherwise
the solution of problems like x = t would blow up the search space. Those equations may have
a lot of solutions in the sorted case in contrast to the unsorted case, where at most one most

general solution exists.

The following is an nondeterministic rule system for sorted unification without any restrictions
on the sort structure. For unusual notations and conventions the reader should refer paragraph
1.13,

2.1 Definition. The set of rules GSOUP (general sorted unification procedure) is defined as

follows:
VVD) x=x&I' = T

VV2) x=y = y=X
if LSy(x)= LSx(y).

VV3) x=y = x=z& y=z
if LSy(x) % LSg(y) and LSy(y) ¥ LSy(x) and S is a maximal sort with
S £ LSs(x), and S £ LS5(y) and z is a new variable of sort S.

VV4) x=y = x=1(s),....sp) &y=1(t;,....t)) &s;=t; & ... &s, =t
if LSy(x) ¢ LSy(y) and LSg(y) $ LSy(x) and f(sy,...,s,):S is a term
declaration with S & LS(x) and f(t;,...,t,):R is a term declaration with
R £ LS(y).

VV5) x=y = %

if LSy(x) ¢ LSy(y) and LSy(y) ¥ LSy(x) and LSy(x) and LSy(y) have no
common subsort and there are no term declarations f(s;,...,s,):S with
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S £ LS(x) and f(t;,...,t,):R with R = LS(y).

VT x=t&T = x=t&{x«t}jI
if xeV(t)andxe V(I).

VT2) t=x = x=t
if tis not a variable.

VT3) x=f(t1,...,tn) = x=f(Sl,...,Sn)&Sl=tl&... &Snztn
if x e V(f(ty,....t))) , LSy(x) € Sy (f(ty,....t,)) and f(sy,...,8,):S is a term
declaration with S £ LSy(x).

VT4) x=1(t},....t,) = X
if x e V(f(ty,....,t))) , LSg(x) € Sy(f(ty,....ty)) and there is no term
declaration f(s},...,s;):S with S& LSg(x)

VTS5) x=t = X
If xeV(t).

TT1) f(sl,.“,sn) = f(tl,...,tn) = $ = tl & ... & Sh = tn 5

TI2) s=t = %
If hd(s) # hd(t). B

Every declaration t:S taken from X must be completly renamed with new variables before it is
used in a unification step.

The above procedure could be enriched by the elimination rule x =t & =T, if xisan
auxiliary variable not occurring in I' and {x « t)' is well-sorted, where we say a variable is

auxiliary if it does not appear in the original equation system to be solved.

The following lemma is easily albeit tediously shown:
2.2 Lemma. All steps of the above procedure are correct. W

2.3 Proposition. All steps of the above procedure except the steps VV3), VV4), VT3) are
complete.

Proof. We prove the nontrivial parts.

VV5) Let 6 € SUBy with ox = Oy. Since 0 is well-sorted, we have LSy(x) € Sg(ox) and
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LSs(y) € Ss(ox) hence by Lemma 1.4.9 there exist term declarations  f(sy,...,8,):S
with § € LS(x) and f(ry,...,r,):R with R £ LS(y).
VT4) Let 6 € SUBy with ox = of(ty,...,t;)). Then LSy(x) € Sg(of(ty,....t;)). From
Proposition 1.4.9 it follows that there is a term declaration s:S with S £ LSy(x).
VT5) If x € V(1), then (x = t) has no solution.

2.4 Proposition. The procedure GSOUP is a complete unification procedure.

Proof. Let o be an idempotent unifier in U(I') with DOM(c) = V(I'). We slightly change the
definition of solved part and instead of the set of solved equations, that is the subset of I" of
equations x = t, where {x « t} is well-sorted, we use the set I'y, of worked-off equations
as follows:

i) Solved equations are in I'y,q.

ii) descendants of worked-off equations remain in I'yq, if VT1) is applied, even if the

substitution component connected with this equation becomes ill-sorted.

Let FU be the unsolved part of ', i.e., the complement of I'yy in T.
As well-founded complexity measure u(c, ') we use the multiset of all term depths in
o(I'y). The idea of this proof is to show that there exists a pair (¢', I""), such that I' = ["
by one step of GSOUP where G' is a unifier of I"' that is equal to ¢ on old variables and
extends © to new variables, furthermore p(c’, I'") < (o, I).
If u(o', I'") is minimal, i.e., if the multiset is empty, then the set of equations is solved and
we are ready. It is easy to verify that in this case all worked-off equations are indeed
solved. The argument is that we can postpone the application of {x « t} to worked-off
equations and make the application after all non-solved equations have disappeared. Then
we can use VT1) only on well-sorted substitutions in an appropriate order to obtain the
same solved system.
Now we show that there is always a GSOUP-step on I that reduces the measure p(o,l").
First we argue that the rule VT1) does not increase the measure. This rule does not change
the depths of terms in oT, since from ox = Gt we obtain 6{x « t} = o, since O is
idempotent. By definition of 'y, equations remain in the set of worked-off equations
after application of this rule.

We go through the cases for equations s = tin I';:

1) Case s =t, where neither s nor t is a variable.
Then by step TT1 we reduce p(c,I’), without changing the set of solutions.

2) Case x = f(ty,....t,).
Then x & V(f(t,,...,t;)) and LSy(x) € Sy (f(ty,....t,)), since ox = of(ty,....t;). By
Lemma 1.4.9 there exists a term declaration f(s;,...,s,):S with S LSy(x) and a
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substitution T with tf(s,,...,s;) = of(t;,....t,). We use step VT3 and VT1) to obtain a

new equation system I''. Since the equation x = f(sy,...,s,) is solved, we have

p(out,I™) < u(o,D), since the depth of o(f(t,,. .’.,tn)) is larger than all term depths of

ot, and ts;. Furthermore 6 U T is a solution of I" withc U T= o [V(I')].

3) Casex=y.

Then LSy(x) $ LSy(y) and LSy(y) $ LSy(x), since otherwise step VV2) reduces the

complexity by shifting x = y into the set of solved equations. We have ox = Gy, hence

LSy(x) € Sy(ox) and LSs(y) € Sy(0x).

i) If ox is a variable, then LSy(ox) & LSy(x) and LSy(0x) £ LSy(y), hence there
exists a sort S with LSg(0x) = S £ LS5(x) and S £ LS4(y). We use step VV3)
to obtain a new equation system I''. With T = {z « ox} have p(our,I”) <
p(o,I'). Furthermore ¢ U 7T is a solution of I withc u t=c [V(I')].

i) If ox is not a variable, then there exist term declarations f(s;,...,s,):S with
S £ LSy(x) and f(ry,...,r,):R with R £ LSs(y) and a substitution T with ox =
tf(sy,...,8,) and oy = Tf(tq,...,t,). With rule VV4) and VT1) we obtain an
equation system I''. The substitution © U T is a solution of I'' with
o U Tt =0 [V(I)]. Furthermore we have p(out,I™) < u(o,I). B

Note that the above procedure is also complete if we allow only well-sorted substitutions in
rule VT1) .

3. Unification in Finite, Regular Signatures

We give unification rules for a complete unification procedure for a regular signature, where
the sort-structure is a semi-lattice. This allows for a more efficient unification algorithm, since
for example rule VV4, which requires declarations for the unification of two variables, is not
necessary.

The assumption that the sort-structure is a semi-lattice is only for simplicity of rules and
proofs. If the sort-structure is a partial ordering, then the new rule VV3 has to be adapted to
handle a set of glb’s instead of a unique glb.

The rules given here are as in GSOUP, however the rules VV3, VV4,VVS5, VT3, VT4 of
GSOUP are improved.

3.1 Definition. The set of rules SOUP (sorted unification procedure) is defined as follows:

VVl) x=x&I' = T
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VV2)

VV3)

VV5)

VT1)

VT2)

VT13)

VT4)

VTS)

TT1)

TT2)

X=Yy = y=X
if LS5(x)= LSg(y).

Xx=y = x=z& y=z
if LSy(x) % LSy(y) and LSs(y) % LSg(x) and S = glb(LSy(x), LSx(y)) and
z is a new variable of sort S.

x=y = %
if LSy(x) % LSy(y) and LSy(y) & LSy(x) and glb(LSy(x), LS5(y)) does not

exist.

x=t&I = x=t&{xet}[
if xeV(@)andxe V().

t=Xx = Xx=t
if tis not a variable.
x = f(ty,....t,) = x=1f(s),....sp) &s1=t; & ... &s,=t,
if x e V(f(t,....t;))) , LSg((f(ty,....t))) § LSy(x) and f(sy,...,s):S is a term
declaration with S £ glb( LSy((f(ty,...,t,)), LS5(x)).
x = 1(ty,....tp) = X
if x e V(f(ty,...,t,)) , LSg((f(ty,....,t))) & LSy(x) and there is no term
declaration s:S with S eglb( LSy ((f(t,...,t;)), LS5(x)).
X=t = ¥
If xeV(1).
f(s),..08p) = f(tg,. . tp) = s;=t; & ... & s =t

s=t = ¥
If hd(s) # hd(t). H

We assume that declarations are completely renamed with new variables before used in a

unification step.
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3.2 Proposition. All steps of the above algorithm but the step VT3) are complete.

Proof. We prove only the nontrivial parts.
VV3) Let 0 € SUBy with 6x = oy. Since ¢ is well-sorted, we have LSy(0x) &

glb(LSz(x), LSs(y)), hence 6 U {z «0x]} is a solution of the new equations.

VVS5) See the proof of VV3).
VT4) Let 6 € SUBjy with ox = of(ty,...,t;). Then glb(LSy(x),LSyg(f(ty,...,t))) 2

LSs(of(ty,...,t;)). From Proposition 1.4.9 it follows that there is a term
declaration f(s,,...,s,): S with S & glb(LSy(x),LS5(f(t,,...,t,)) ). M

3.3 Proposition. The procedure SOUP is a complete unification procedure:

Proof. The proof of this proposition is similar to the proof of Proposition 2.4 and uses the

same techniques. We mention only the differences in the induction arguments.
2) Case x = f(ty,...,t,).

Then x & V(f(ty,....,t))) , LSg((f(ty,...,t))) & LS5(x), since ox =of(ty,....,t;). By
Lemma 1.4.9 there exists a term declaration f(sy,...,s;):S with Sg
glb(LS5(f(ty,...,t,)), LSy(x)) and a substitution T with t(sy,.+.,8,) = Of(ty,...,tp).
We use step VT3 and VT1) to obtain a new equation system I"'. Since the equation
x = f(ty,...,t,) is solved, we have u(cut,I") < p(o,I'). Furthermore c LU T is a
solution withcu t=0c [V(I)].

3) Case x =y. Then

Then LSy(x) & LS5(y) and LSyx(y) & LSy(x), since otherwise step VV2 reduces the
complexity.

We have ox = oy, hence LSy(0x) £ glb(LSy(x), LS5(y)). We use step VV3) and
VT1) to obtain a new equation system I"". With T = {z «o0x} have p(out,I”) <
p(o,I'). Furthermore ¢ U T is a solution withcut=c [V(I)]. B

We demonstrate the advantages of rule VT1) over the instantiation rule with well-sorted solved

equations:
3.4 Example. Let X := {B= A, f(g(x,)) :B, f(h(xp)): B, g.A > A, gB -5 B, hA—- A,
h:B = B}. LetI':'= {xg =f(yg), yg =h(zp)}.

1)

2)

We use the usual rule VT1):

Then VT is applicable and we get {xg = f(h(z4)), yg = h(z4)}. The first equation is
solved, hence we proceed on the second. This gives {xg = f(h(z,)), yg = h(x'g),
xg' =z} and then the final solution is {xg = f(h(xg"), yg = h(x'p), z = xg'}

We use a rule VT1 that allows instantiation of I only if {x «t} is well-sorted:

Then rule VT1  is not applicable, since yg = h(z,) is not in solved form. For every
equation there are two possibilities to proceed. If we proceed on the first equation with
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rule VT4), we obtain the two possibilities {xg = f(g(x'y)), yg = &(x's), yg =h(zy)}
and{xg = f(h(x'y)), yg =h(x'y), yg =h(z,)}. The first equation system requires
two further steps until it is recognized, that this system is unsolvable. The second
requires one more step VT4) an application of VT1, ¢ and then a decomposition step to
obtain the solution.
A comparison of the behaviour shows that in the first approach the search space is smaller,
unsolvability is earlier recognized and the path leading to a solution is shorter. It should be
noted that this is also true for elementary signatures.

This behaviour is not accidental. We have experimented with another unification algorithm,
that extends the Robinson algorithm by replacing the unification of a variable x and a term t
with a procedure that first computes a complete set of weakenings of t (i.e., substitutions ¢
with LS(ot) € LSy(x) } and then returns a minimal, complete set for the unification problem
<x =t>, However, a practical comparison of these two algorithms shows that this Robinson
extension is less efficient, the main reason is that computing the set of weakenings may
produce many instances that are incompatible with the usual (ill-sorted) Robinson unifier of a
set T

Using the above rule-based procedure we can derive a deterministic Robinson-type algorithm
for regular signatures, which obeys the above observation:
1) Compute a (generally ill-sorted) Robinson unifier ¢ for I'.
2) Compute a set of well-sorted instances of ¢ by applying the following step repeatedly
starting with PU := {c}:
Let PU be a set of substitutions.
Take a substitution T = (x; «t, ..., x, <t} from PU, a component {x; « t;}
with LSy(t;) & LSy(x;) and a declaration t:S € X with S £ LSy(x;).
Let pt be the Robinson unifier of t and t;.
Replace PU by PU U {ut}

Remark (for an implementation:)

i) The declaration t:S taken from Z must be completly renamed before every unification
step.

ii) If o; descends from G by taking the i-th component {x; < t;}, then this component is
"locked" for o; and descendants of o; .

iii) Since the procedure is in general nonterminating, there is the need for some bounds,
for example depth of the search tree.

iv) Efficiency can be increased if the sort-ignoring unification refuses to unify terms s,t
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which have sorts with no common subsort. This test is only correct for regular

signatures.

Now we consider the case of polymorphic signatures with a semilattice as sort-structure.
Polymorphic signatures, a special case of finite, regular signatures, have some nice properties,
for example unification is decidable and minimal unifier sets are finite. They allow a more
efficient unification algorithm and are a base for the systems and calculi in [Wa84, GM85a,
CD85, Sm86, Sch85a].

In [CD85] it is recognized that X-unification is not unitary, but a proof for finiteness is not

given.

The following rules are slightly changed for polymorphic signatures and are marked with (*):
VV2¥) x=y &I’ =2 y=x &{y «x]}I
if LSy(x) = LSx(y).

VV3¥) x=y&TI = x=z& y=z & (x«z yz)l
if LSy(x) % LS5(y) and LS5(y) & LSy(x) and S = glb(LSy(x), LSy(y)) and
z is a new variable of sort S.

VT3*) x =1(t,....t,) = x=f(t},...t) &y; =t & ... &y, =1,
if x e V(f(ty,...,t;)) , LS ((f(tq,...,t,)) & LSy(x) and f(y,...,y,):S is a
function declaration with S £ glb( LS5 ((f(t,,...,t,)), LSg(x)).

3.5 Proposition. If the signature X is polymorphic and the sort-structure is a semi-lattice,
then for every equation system I, the procedure terminates with an equation system in
solved form.

Proof. The proof of completeness is almost the same as in the proof of Proposition 3.3.

We show that every application sequence of rules terminates:

We use the same concept of worked-off equations and unsolved equations as in
Proposition 2.4. Solved equations are moved to 'y, i.€. equations x = t, such that x
does not occur elsewhere in I" and {x « t} is well-sorted. However, equations remain in
I'wo even after applying the rule VT1), which can make the corresponding substitution
ill-sorted. We assume that the rule VT3*) shifts the equation x = f(t;,....t;) into I'y,q.

The difference I' — I'yy is the set I;.

If no rule is applicable, then the system is in solved form: This is true, since in the case
I'yy is empty, all equations in I'yq correspond to well-sorted substitutions.
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For termination we use a complexity measure L = (lq,H,, H3), Where
I, is the number of ‘nonisolated’ variables, i.e., variables in I" that occur not only as a
left hand side of exactly one equation x =tin I,
I, is the multiset of term depths of toplevel terms in I'yy,
K3 is the number of equations of the form t = x in Iy, where tis not a variable.

Rule VT1) reduces the measure W, since only equations x = t in I'yyq can be used and after
application, x is isolated on a left hand side.

Rule VV2*) reduces . Either x was not isolated before, then p, is reduced, or x was
isolated before, then p, is not changed, but 1, is reduced, since an equation is
removed from I'y;.

Rule VV3*) reduces W since either p, is reduced or W,, since an equation is removed from
I'y-

Rule VT2) reduces the number of equations of the form t = x

Rule VT3*) shifts x = f(tq,...,t;) into I'wo, leaves | invariant, since y; are
new variables and reduces the measure 1,, since depth(f(ty,...,t,)) is replaced by the
depths of t; and n times depth(y;).

Rule TT1) either reduces W, or leaves | invariant and reduces [,. B

3.6 Corollary. Z—unification is of type finitary for every finite, regular and elementary

signature Z. W

The regularity condition is necessary, since in the following nonregular example with X :=
{a:A, a:B, f:A—A, f: BB} the unification problem <x, = yp> has the infinite minimal and
complete set of unifiers {{x, ¢« fi(a), YB € fia)) | i=1,2,...}, (where fi(a) means a term
of the form f(...(f(a)...) with i occurrences of f).

For simple, finite order-sorted signatures in which the sort structure is a semi-lattice
T-unification is of unification type unitary [Wa84] . In the case of a nonfinite, simple
order-sorted signature Ch. Walther [Wa86] shows that the unification type is completely
determined by properties of the subsort ordering.

4, Complexity of Unification in Elementary Signatures.

We consider in this paragraph the complexity of unification in different types of signatures.
We assume that the signatures are always finite, elementary and regular.
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4.1 Proposition. Let the sort-structure be a semi-lattice. Then
i) The number of unifiers may grow exponentially with the size of terms to be unified.
ii) The number of unifiers is at most exponential in the size of the terms.
Proof. i) Consider the signature with sorts {INT, POS} with INT 2 POS and the functions +

and * with the assignments:
+: NAT x NAT — NAT, NAT x POS — POS, POS x NAT — POS,
*: NAT x NAT — NAT, POS x POS — POS,

The unification problem (...(xqq + X19)*(Xp; + X99))* ... *(Xy; + X10)) = Ypoys

where all variables X;; are of sort NAT requires all subterms x;; + x;, to have sort POS

after instantiating. There are two independent solutions for every subterm x;; + x;,, namely

{x;, « zi,POS} or {x;y < Zi,POS}’ hence there are 2" most general unifiers, but the term

has size 2n.

ii) This can be proved by induction:
Assume as induction hypothesis that the number of unifiers is less than exp(c-size(I™))
for some constant ¢ and for all I'"" with a smaller size than I'. For an equation system I"
it is possible to compute an unsorted most general unifier in quasi-linear time. Let the
result be a set of multi-equations M. Note that the unification process as described in
[MMS82] ensures that the size of the original problem is greater than the sum of the
sizes of the nonvariable terms in M. The critical part is the decomposition step that does
not copy nonvariable terms.
Weakening this unifier to a well-sorted one yields for a variable-pure multi-equation
one unifier and for a multi-equation M; with a nonvariable term t; less than
exp(c-size(t;)) unifiers. We weaken the multi-equations in the following way: we take
the first multi-equation, compute the set of unifiers, apply the unifer to the whole
multi-equation and afterwards add the corresponding unifier to the front of the
multi-equation. As proved in Proposition 1.5, the weakenings are L-renamings,
hence do not increase the size of nonvariable terms. The total number of unifers in this
process has as upper bound the product exp(c-size(t;))- ... -exp(c-size(t,)) =
exp(-(size(ty) + ... +size(t,)) which is smaller than exp(c-size(I')). Hence the
number of unifiers produced is at most exponential. ll

This proves also that the computation of unifiers can be performed in exponential time, since
all operations in the proof are neglectible in comparison with the exponentiality.
Now we consider the question ‘is a set I unifiable?’ and show that Z-unification is

NP-complete.
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4.2 Lemma. Z-unification and 2-weakening is in NP.

Proof. Given an equation system I' and we can guess, verify and print a unifier 6 in
polynomial time
The same holds for weakening (cf. §1.5) W

4.3 Proposition. Z-unification is NP-complete.

Proof. We show that there exists a signature X, such that the Z-unification is NP-hard and
show this by reducing the satisfiability problem to the 2-unification problem. It suffices to
use a X-weakening problem, since every X-weakening problem has an equivalent
Z-unification problem if we use a new variable.

Let the regular signature be given as follows:
2:={ BOOLaT,BOOL=F,
AND: BOOL x BOOL - BOOL, TxT—> T, TxF—> F, FxT - F,
F x F - F,
OR: BOOLxBOOL - BOOL, TxT—->T, TxF->T, FxT—>T, FxF-F
NOT: BOOL - BOOL, T—>F, F->T}.
We use the characterization given for example [HoUI79 ].
Let Eg be a boolean expression built from variables, and the connectives A, v and —. Then
satisfiability of this expression is equivalent to the problem of finding a substitution ¢ for a
term tg such that LSy(otg) = T. The term tg corresponding to Ep is constructed by first
translating Eg into a boolean expression where A and v are used as binary operators and
then translating A into AND, v into OR, — into NOT and the variables into variables of so
BOOL. ®

The interpretation of the above results is that sorted unification in polymorphic signatures is
NP-complete and the explicit computation of all unifiers needs at most exponential time.

In the case of simple signatures the complexity can be improved considerably, since the
computation is straightforward and the sort of compound terms is fixed and independent of the
subterms. In fact unification is quasi-linear (see also [MGS87]):

4.4 Proposition. Unification in simple signatures is at most quasi-linear.
Proof. It is possible to compute in quasi-linear time an unsorted, (i.e. ignoring
sort-information) solved set of multi-equations of a given I"' [MM&82].
Furthermore this unification process does not introduce new variables.
Given this solved set we do the following for every multi-equation:
1) If the multiequation M consists only of variables, we compute the set of greatest
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common subsorts of all sorts of variables in M. This can be done in linear time, since
the sort-structure is fixed.

2) If the multi-equation M consists of variables and a term t, we compute as in 1) the set
of greatest common subsorts of all sorts of variables in M. Then we check, whether for
some of these greatest common subsorts S, we have S 2 LSg(t)

This is also possible in linear time.
These two actions are sufficient to give a representation of the unifiers.

4.5 Example. We give an example that the number of unifiers in a sort-structure that is not a
semi-lattice may grow exponential.
Let the signature be {A,B 3 C,D}.
Then the unification problem I' := { X1 A=Y1B - » Xp A = Yn g} has 2" unifiers.
Hence we have the curious situation that the number of unifiers grows exponential, but it
can be solved in quasi-linear time, i.e. a representation for all unifiers can be computed in

quasi-linear time. W

From the viewpoint of efficiency, the class of signatures, where always at most one unifier is
necessary, is an interesting one. We have introduced this class as unification-unique in
[Sch85a, Sch85b]. Unification-unique signatures are defined by two conditions: i) the
sort-structure is a semi-lattice, ii) for every function symbol f and every range-sort S: the set
{f(t},...t)):R IR £ S} has a unique greatest term declaration provided it is nonempty.

The same class is also investigated in [MGS87], where this class is called unitary and where it
is shown that unification in this class can be performed in quasi-linear time.

5. Unification in Finite Signatures with Term Declarations is of Type
Infinitary.

5.1 Theorem. There exists a finite signature in which unification is of type infinitary:
Proof. Let X := {Bc A, b:B, f(b):B, f(f(xg)):B}.
The weakening problem <f(xp) :B> has infinitely many most general weakenings:
We prove by induction that all instances of f(xg) that have sort B are of the form b, f(b),
fE# (b))
first of all f(xg) is of sort A and f(b) is of sort B.
To prove the induction step, let t be a term of sort B with depth > 0 such that f(t) is of sort
B. The term declarations show that t is of the form f(t'), where t' is of sort B. Hence by
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induction t' = f(b) for some n 2 0, hence t = f"*1(b). W

The proof shows a bit more than the theorem states, since in fact we constructed a linear and
regular signature with unary function symbols having this property.

5.2 Corollary.
i) Let Z be a finite, linear and regular signature. Then the set pU(s,t) may be infinite.
ii) Let T be a finite, regular signature with only constants and unary function symbols.
Then the set pU(s,t) may be infinite.
6. Z-Unification is Undecidable.

We reduce the decision problem for Z-unification to the problem, whether a Turing machine
(TM) accepts blank tape, a problem that is known to be undecidable (cf. [HoU179)).

6.1 Theorem. X-unification is undecidable.
Proof. Given a TM M, we construct a signature I and terms s, t, such that s, and t; are

unifiable, iff M accepts blank tape.
We represent a configuration ogp of a TM, in which o is the string to the left of the head,
q is the current state and P is the string to the right of the head including the currently
scanned symbol, by a term h(r; q 1, ...) where r; is a term encoding the reverse of o and 1,
is a term encoding B. A string 11010... is represented as a term
g,(g1(go(g1(8p- - -(85(0))-..)))) where gp(...) represents an infinite string of blanks that is to
say g, is an end-marker. There are two sorts TOP and OK with TOP = OK in the
signature. The moves of M are represented as term declarations, for example if
M is in state q;, scanning a 1, prints 0, enters state q,, and moves right, then the
corresponding term declaration is h(x q; g;(y) h(gg(X) 4, ¥y Zog)) : OK, where z is of sort
OK and x,y of sort TOP.
To give a further example, if the head moves left, we may need the following three term
declarations:

h(gy(x) q g1(y) h(x g 8o(8p(¥)) zok)) : OK

h(g,(x) q; g1(y) h(x  q; g;(8(¥)) zog)) : OK

h(gy() q; £1(y) h(gp(®) a3 8p(80(Y)) Zog)) : OK
Let qg be the start state and g5 be the accepting state. We add a term declaration for the
accepting state:

h(x g y w): OK, where x,y,w are variables of sort TOP.
The term h(gy(0) qg g,,(0) o) represents the initial configuration of the Turing machine.
Then the following holds:
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M accepts blank tape iff the term h(g,(0) qg g,(0) zgk) has an instance of sort OK
(equivalently h(g,(0) qg gp(0) zpg) is unifiable with a variable w of sort OK):
Proof: The equivalence follows, since such an instance has the form
h(g,(0) g5 g,(0) h(l; q; 1y h(l,q, 1, ...))) and t represents the sequence
gp(0)a5g,(0), 1;q1y , hqyry , ...of moves of M reaching the accpeting state.
a

Since it is undecidable whether a TM accepts blank tape, so is Z-unification. ll

Using the concept of a universal Turing machine, a slight change in the above proof shows

that there exists a signature X with an undecidable unification:

6.2 Proposition. There exists a signature X for which Z—unifiability of terms is
undecidable.

For nonregular signatures, we have the following undecidability results:
6.3 Corollary. 1) Itisundecidable whether two sorts have a common ground term.
i) Itis undecidable, whether two variables are unifiable.

Proof. Let X be a signature and let s and t be two Z-terms. Then we construct a new
signature ©: Let A, B be new sorts without any subsort relation and let h be a new
function symbol.

We add the declarations h(s): A and h(t): B to Z resulting in ©.
Were it decidable whether A and B have a common ground term, then unifiability of s and t
would be decidable. This proves i). Now ii) is obvious, since unification of two

variables x of sort A and y of sort B is an equivalent problem. W

6.4 Corollary. The regularity of a signature is undecidable.

Proof. In the proof of Corollary 6.3 choose X as a regular signature.
Then the regularity of the newly constructed © is equivalent to the unifiability of the terms s
andt. W

We say a unification problem I' is linear, if every variable occurs at most once in I".
There are decidable cases of the unification problem for finite signatures.
6.5 Proposition. Let X be a finite signature.

i) If the signature is elementary, then Z-unification is decidable.
ii) If the signature is regular, then Z-unifiability of two different variables is decidable
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iii) If the signature is linear, then linear Z-unification problems are decidable.

iv) If all function symbols are either constants or unary functions, then Z-unification is

decidable.

Proof. i) LetT be a set of equations. Then an unsorted most general unifier o of I is

111)

effectively computable. To check decidability, it is sufficient due to Lemma 1.4.10 and
Proposition 1.5.7) to check the finitely many possibilites of replacing variables in
COD(o) by terms of an equal or smaller sort.
In a regular signature, two variables are unifiable, if and only if their sorts have a
common subsort.
Let I be a set of equations. Then an unsorted most general unifier o of I is effectively
computable. All terms in COD(0) are linear, variable disjoint and their depths are
smaller than the maximal term depth in T, since I is linear. Hence the check for well-
sorted instances of 0 = {x; ¢ ty,...,X, <t} can be done by searching independently
instances for the components {x; « t;} of 6. Looking for instances is done by
unifying the term t; with appropriate term declarations t:S. This process again
produces independent subgoals. This gives a search tree for the problem of finding an
instantiation and the nodes are marked with problems {y « s}. Since the problems are
independent in different branches, we can cut a branch, if a goal has itself (in a
renamed version) as a subgoal. Due to the linearity of I and X, the depth of the terms
s in the marks {y ¢ s} is bounded. Hence the search tree is finite. O
Obviously, the signature is linear, since all terms are linear. Let ng, be the maximal term
depth of declarations. Let I be a set of equations. Similar as in iii) we can compute an
unsorted idempotent most general unifier ¢ = {x; « S1»-+-»Xp € 8,} of I'. The next
step is a search for well-sorted instances of o. This creates lI(c)! independent search
trees with subproblems (or goals) of the form {{t;, {Sy,,....,S 1)}, ... ,
{tn,{Sn’l,...,Sn,kn} } }, for every variable in I((c) one subproblem, where all t; contain
the same variable. Such a subproblem means to find a substitution 6 with
S; i€ S5(0t,) for all i,j. We argue that these search trees are finite, the main argument
is that we can cut branches of this tree, if a goal has itself (in a renamed version) as a
subgoal. There are two steps to expand a node in the tree:
1) If there is a term t; with depth(t;) > n,), then we take appropriate term declarations
t:S and (Robinson-) unify t and t;.
The effect of this operation is that one sort in a component
{(t, {SU,...,S 1.kl }} is removed and a problem {t,, S} is inserted,
where depth(t;') < depth(t;) and V(t;) = V(t,).
ii) The same step without any conditions on the term depth of t;. In this case it may be
that V(t,') # V(t,) and then we have to apply the substitution {x « t,'} to the goal.
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First we apply steps of type i) until it is no longer possible. This process terminates,
hence we can reduce the goal to subgoals, where depth(t;) < n for all t;. However,
there is only a finite number (up to renaming) of such goals, since the number of sorts
is finite and the number of terms t, with the same variable and with depth(t;) < n is
finite. Hence the search for a well-sorted instance of ¢ terminates. l

We say a regular signature is almost elementary, iff the signature is linear and for every
term declaration t:S and every variable x € V(t) the variable x is a direct subterm of t, i.e., in
every term declaration f(t,,...,t ):S the terms t; are either ground or variables and no variable

occurs twice.

In the next Proposition we show that a terminating unification algorithm for a regular, almost
elementary signature is the procedure SOUP with the following modification:
Use a matching algorithm for equations t = s__ where Sgr is ground, with highest priority.

er
The operation is to replace the equation t = Sgr by the solved system (a matcher) of t=s

gr
6.6 Proposition. If the signature X is regular and almost elementary, then X-unification is
finitary and decidable.
Proof. We show that the algorithm SOUP terminates:
The argument is similar to the proof of Proposition 3.5.
The measure is [ = (1q,1,), where
K, is the number of variables in I'{;, which occur not only as a left hand side of exactly
one equation x = tin I',
W, is the multiset of term depths of terms in I'y;.
The difference is that the combination of rule VT3 with the matching rule has the following
effect: either we have y = t;, in which case y is a new variable, or we have the case that
s; = t; is newly introduced with a ground term s;. Then matching either yields a failure or
replaces this equation by solved equations.
Hence either W, is reduced, or |, is invariant , but 1, is reduced, since x = f(t;,...,t;) is
moved into the set of worked-off equations. ll

The following procedure can be used to check the regularity of finite signatures:
i) Take two term declarations s:S and r:R, such that R and S are incomparable.
i) Compute a set pU(r,s) under the assumption that X is regular.
iii) Compute Sy(or) for all o € pU(r,s).
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6.7 Lemma. The above procedure computes a most general term that violates regularity,
i.e., without least sort.

Proof. Let t be a minimal term that violates regularity.
Then due to Proposition 1.4.9 there exist at least two incomparable maximal sorts R,S in
Sy(ot) and two term declarations R, s:S, such that t is a X-instance of both r and s. This
means that there exists a most general X-unifier ¢ of r and s, such that t is a Z-instance of
or. By minimality of t, we have that or is a X-renaimng of t and that all terms in the
codomain of ¢ have a least sort, hence we can assume during unification, that regularity
holds. The effect is that the unification of variables can be done as in 3.1 VV3), (see also
6.5.ii)). We have Sy(or) = S5(t), since or and t are equivalent.
The last step iii) is needed, since it may happen that R and S are not minimal in the set
Sy(or). &

6.8 Proposition. For almost elementary signatures regularity is decidable.

Proof. We use the above procedure to decide regularity. It is sufficient to show that under
the regularity assumption, a minimal set of unifiers of terms in term declarations is
effectively computable. This is shown in Proposition 6.6. l

We want to mention the following open problem for finite, linear signatures:

Open Problems: i) Is Z-unification decidable for linear signatures?
ii) Is regularity of linear signatures decidable?
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Part IV
Unification of Sorted Terms under Equational
Theories.

Overview:

We give different methods for the unification of sorted terms provided some axioms for an
equational theory are given. First we describe unification algorithms as a set of transformation
rules for equational systems. Second we give an algorithm' that solves unification problems by
first ignoring the sort information using an unsorted algorithm and as a second step computes
well-sorted instantiations.

We discuss narrowing as a universal unification algorithm for canonical term rewriting
system.

General remarks and related work.

Research in unification problems with respect to an equational theory is an active field
[P1072,Si86, CKi85, GS87]. The problem to build equational reasoning into automated
deduction procedures [WRC67, RW69, Mo69, Plo72, Di79, BI87] is also well investigated.
Our aim is to give a general unification method that works for arbitrary signatures and arbitrary
equational theories. We give a rule-based procedure in the style of [CKi85, GS87].

1. A General Unification Algorithm For‘SOrted Terms under an Equational
Theory.

In this chapter we give a general unification procedure for arbitrary equational theories and
sort-structures.
Let Z be a signature and let E be a symmetric axiomatization of an equational theory .
Given an equation system I', we may consider I" as a graph with the terms in I" as nodes and
the equations in I as edges. We will sometimes use the word edge as a synonym for equation
in: T

A path t; — ...—t, in I is a chain of equations where no t; occurs twice. A circular
pathis a patht; — ...—t, —t;. A connected component is a set {t},....t,} of terms such
that all terms t;, tj are connected by a path. There is a straightforward correspondence between
equation graphs and multi-equation systems: A connected component corresponds to a

multi-equation, however the structure in equation graphs is richer than in multi-equations.
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The following is the graph of the equation system {(x =¢,x=d,x=y,y=a,y =b}
c / a
\ X sy \
d / b

Let x;,t;, i=1,...,n be variable-term pairs such that x; and t; are connected and x; € V()
for i=2,...,n and X, € V(t;) and at least one t; is not a variable. Then we say every x; is
cyclic for I'. Furthermore we say the chain of pairs (x,,t;) is a cycle and (x;,t;) belongs to a
cycle.

A connected component is in solved form, iff it is of the form {xl,...,xn,t} and
{xq & t,...,x, « t} is a well-sorted idempotent substitution. This substitution is called a
partial solution for {x,,...,x ,t}. An equation system I is in sequentially solved form,
iff there are no cyclic variables for I" and every connected component is in solved form. The
corresponding solution o* is defined as the idempotent closure of the union of all partial
solutions for all connected components. In Lemma 1.6 we show that such a solution is a
unifier of I" (cf. 1.10.6 ff.)

A variable x € T is isolated, iff x has only one occurrence in I'.

In the following we use sometimes the expression ‘new version’ for an axiom or a term
declaration and mean a renamed version of an axiom or a term declaration such that they

contain only new variables.

We use the following rules to transform equation systems:
1.1 Definition. The unification procedure GENSEQUP is defined by the following rules:

Tautology
Tau)  If Pis a circular path, then delete some edge in P.

Decomposition:
De) Lets—nq = .o—Up—t be a path P, where t = f(t;,....t,), and
s = f(sy,...,8,) and u; = f(u;y,..,u;,) ory;is a variable, where 1<i<m.

i)  For all variables u; on the path we instantiate P with {u; « f(u,...5u;,) ), where
f(u;y,...,u;p):S; 1s a new version of a term declaration and S, £ LSy(u;), and
we add the equation u; — f(u;q,.. ..y,

ii) For every 1<j<n we add the path 8§ — Upj—-—Up;j— 1 10 the equation graph.

iii) All the edges of the instantiated original path are deleted.
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Declaration introduction
Di) Let O be a connected component with x € O. :
Let f(rl,...,rn):S be a new version of a term declaration, such that S LSz(x), and
hd(t) = f for all nonvariable terms t € O.
We instantiate O with {x « f(r],...,rn)}, and add the edge x — f(ry,....r).
Conditions for application:
Either
1) There is at most one nonvariable term t € O and (x,t) belongs to a cycle
or 2) There is at most one nonvariable term t € O and LSy(x) & Sg(1).
or 3) There are only variables in O and there exists a variable y € O with
LSy(x) & LSy(y) and LSy(x) LSs(y).

Mutation:
Mu) We replace the edge s — tby s —1 and r—t, where | =1 is a new version of an
axiom. "
As condition for application we have:
1 =ris a collapse axiom or a decomposition step with I or r becomes possible.
Furthermore one of the following should hold:
s =t is on a path between nonvariable terms
s =t is on a path connecting a variable x and t and (x,t) belongs to a cycle.
s =t is on a path connecting a variable x and a nonvariable term t, with
LSy(x) & Sx(1).
s = t is on a path connecting two variables x,y with LSys(x) & LSy(y) and
LSy(x) & LSy(y), the connected component of x consists only of variables
and I =r is a collapse axiom.

Variable introduction:

Vi) Let O = {xy,...,x,} be a connected component consisting only of variables. Let
x,y € O be variables such that LSy(x) ¢ LS5(y) and LSy(x) % LSy(y).
Let z be a new variable, such that LSy(z) £ LSy(x) and LSy(z) £ LS5(y).
We instantiate I” with {x « z,y < z}, and afterwards we add the equations x =z and
y=z. W1

We following rules might also be used, but are not necessary (cf. 1.13.6).
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1.2 Definition.

Instantiation;
In) Let x and t be connected and let {x « t} be a well-sorted substitution.
Then we apply {x <t} toI" and add the edge x — tto {x « t}I.

Extended Instantiation rule:

Ex-In) Let x; and t; be connected foralli=1,...,n and let T := {x; < t;1i=1,...,n} be a
well-sorted substitution.
Then we apply T to I" and add all the edges x; —t; to 1. W

The instantiation of a variable x in the equation system with a term declaration f(r;,...,r;)) can
be illustrated by the following picture:

~|
>f(r onty) <

X

In order to give a more comprehensive account of the above algorithm, we describe the
essential steps in the already known notation. The steps are:
i) =& . &t =t &t,=t; = (=p&.. &t =t,
ii) x=t &I = x=1(,...,1) & {x & f(r,...r} x=t & {x & (¢ g—." 1 1
For a new version of a term declaration f(ry,...,r):S, such that S = LSs(x).
1ii) s=t = s=r&l=t where | = r is a new version of an axiom.
1v) f(sl,...,sn) = f(tl,...,tn) = 8= &...&s, =t
V) X=X, &X; =% & ... &xp 1 =x,&x,=y &' =
x=z&y=2z&z=%x &%, =% & ... &x,; =x, &x =2z &
{(x & z,y « z}T
where {x ¢« z,y ¢« z} is well-sorted.

The conditions under which the steps are applied are controlled by the descriptions of the steps
in 1.1, For example a decomposition step consists of some applications of ii) and some
applications of iv).
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1.3 Example.
Let E={c=a,c=Db} and letI' = (x = a, x = b) and consider the solution 6 with 0x = c.
The procedure gives the chain (x =a,x=b) = (x=a,x=c¢c,b=b)= (x=a,x=c) =
(a =a, x =c) = (x =c). The last system of equations is solved and gives {x « c} as
solution. The last but one system of equations does not contain x = ¢ twice, since we

consider I as a set.
1.4 Lemma. The above rule system is correct.

1.5 Lemma. The instantiation rule and the extended instantiation rule are complete.
Proof. Follows from 1.13.6.iii). W

1.6 Lemma. Let 0 be a unifier of a sequentially solved equation system I" with solution o.

Then we have: o<y E 0 [VIM)]

Proof. Follows from the completeness of the instantiation rule and from the considerations in
paragraph 1.10 and from Lemma 1.13.11. H

Now we address the problem of unification completeness of the procedure defined in 1.1.

Let O be a unifier of I'. Then according to I1.5.1 there exists a proof that 6s =y E 6t for all

s=tinI. The triple (I',P,0) consists of an equation system I', a unifier 6 of I, and a proof
P that 0 is a unifier of I'. We assume that every equation s =t is labelled with the proof of
Os =y E Ot. Such a proof corresponds to a chain I(s--+»Tp » Such that 0s =r;,, 6t =, and the
proof of r; =r1;, is a step I1.5.1 iv) or I1.5.1 v), corresponding to a congruence step or an
axiom step. We say s and t are connected by a congruence proof, if Os = 6t is proved by a
congruence step. This means that the chain has at most length one and includes the case that
the proof is empty, i.e. 8s = 6t. Otherwise at least one axiom step is necessary (at toplevel) to
prove 6s =y i Bt. We assume that there is no sharing among proofs.

Now we prove that this procedure is a complete unification procedure. The idea of the
following proof is, given a unifier 0 for I', we use the information in (I",P,0) to select the next
step and show how to construct the resulting (I"',P',0") after application of the rules. We
show that this procedure strictly decreases a well-founded complexity measure of (I",P',0").
During this procedure we extend 6 to new variables but do not change it on old variables.

The second part of the proof is to show that either we can reduce the given complexity measure
by some steps or the resulting equation system is in sequentially solved form.
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1.7 Theorem. The unification procedure GENSEQUP is a complete unification procedure.

Proof.
We
We

Let 0 be a unifier of I" and let the triple (I',P,0) be as described above.
say how to construct (I",P',0") from (I',P,0) for every step of the above procedure.
denote these steps by the name of the original step and a star (*). Furthermore in order

to show completeness of the procedure, we demonstrate that 8' is an extension of 6 and a

solution of I'"". Additional restrictions for the applicability of these steps in terms of the

proof P are given.

Tau

*) Delete the proof corresponding to the deleted equation.

Di*) This step is made only in the case that Ox is not a variable, and either x and the

De*

nonvariable term t are connected via congruence proofs or we have case 3) of Di).

According to Lemma 1.4.9 there exists a term declaration f(ry,...,r,) and a substitution
n such that nf(r,,...,r,) = 6x. We choose this term declaration in the step Di). We
define 8' := 6 U M. To show 8'{x « f(ry,...,r))} = 6 [V(I)], it suffices to consider
the variable x: 0'{x « f(ry,...,r))}x = 0'f(ry,....,r,) =nf(ry,....,r,) = 6x. Hence there
is no change in the proofs of the old equations. The new equation x = f(ry,...,r;))
has an empty proof, since 0'x = O'f(rl,. ..,I,). Hence 0' is a unifier of the resulting I'".

): We decompose the connected terms f(s;,...,s;) and f(t;,...,t,) only in the case that a
path exists such that all terms are connected via congruence proofs (with respect to 6).
Let the path be: s —u; —...—up,—t.

If there is an instantiation step before decomposition, let u; be the instantiated variable.
The same arguments as for Di*) apply to u; and f(u;;,...,u;,), hence we do not repeat
them.

Now we can assume that all u; are nonvariable terms.

We remove all proofs of the equations in the path. The proofs of the new equations
§; — Up; —...— Up; — t; are extracted from the proofs of the original equations.

We can choose 0' := 0 in this case.

Mu*) This step is made only in the case where the proof of 8s =y g 6t has an axiom step at

toplevel and the step Mu is applicable.

Let s = t be the equation and rg, ...,Iy,T,15---5T be the terms in the proof of
Bs =y g 0t and let1 =r be a new version of an axiom and M be a substitution such that
Nl=rn andNr=r, ;.

We define 6' := 6 U m and the proofs for the new equations we have the chain ry,....1

and 1y, q,....T, , Tespectively.
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Vi*) This step is made in the case where 0x, is a variable for all x; in a connected
component O, for all X;X; € O we have 6x,; = Oxj and O is not in solved form.
Since for all X;»X; € O we have Ox; = Byj € V, there exists a variable z, such that
LSy(z) £ LSy(x;) for all x; € O and LSy(0x;) & LSy(2). Similar as in step Di*) we

define 6' := 6 UM, where 1| = {x; < z} and the same arguments as for Di*) apply. O

We define a complexity measure on (I',P,8) as W(I',P,0) = (L1, Ky, K3, Hy), Where L is
the number of axiom-steps in the proof P, L, is the multiset of all term depths 8x, where x
ranges over all nonisolated variables in T, li5 is the multiset of all the maximal term depths
for all equations in I, and L4 is the number of equations in I. We assume a lexicographical
ordering on the 4-tuples (L, Ky, L3, Hy4). Obviously this measure is well-founded.

We show that the measure is strictly reduced in every step:

First it is clear that the steps De*) Vi*) Di)* Tau*) do not increase the number of
axiom-steps in the proof. The step Mu*) strictly decreases the number of axiom
steps in (I,P,0).

The instantiation part of De*), the rule Di*)and Vi*) strictly decrease L, .

The decomposition part of step De*) does not change W, but strictly decreases 5.

The rule Tau*) strictly decreases p.4. This means that the above process terminates. O

We have to show that starting with an equation system and proceeding in the above
described way, we can apply steps until we reach a sequentially solved system.
Assume by contradiction we have reached an equation system I that is not in sequentially
solved form such that it is not possible to make any of the above *-steps.
The proof proceeds in threee steps:
i) Every connected component has at most one nonvariable term:
Otherwise we can either apply De*) or Mu*).
ii) There is no cyclic variable for I':
Assume there is a pair (x,t) that is connected, belongs to a cycle and t is a nonvariable
term. In the case 8x and Ot are connected in (I",P,08) by a congruence proof then Di¥*)
is applicable. Otherwise Mu¥*) is applicable.
iii) Every connected component O is in solved form:
Let O be a component that is not in solved form. We have the two cases that O
contains a nonvariable term or not:
a) O contains a nonvariable term t. Then O contains also a variable x, since otherwise
we can apply Tau*). Furthermore there is a variable x, such that LSy(x) & Sg(t).
But then we can either apply Di*) or Mu*) depending on whether x and t are

connected via a congruence proof or not.
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b) O contains only variables. There are different variables x,y € O such that
LSy (x) & LSy(y) and LSy(x) § LS5(y), since otherwise there exists a variable in
O with minimal sort in O.
If either Ox or Oy is a nonvariable term, then we can apply step Di*).
Hence 6x and Oy are variables. Since 0x =y g 8y we either have 8x =8y in
which case Vi*) is applicable or there exists a collapse axiom r =1 at toplevel in the
proof of 6x =5E Oy , in which case 3) of Mu applies.

From the above it follows that the final I" is sequentially solved and that the solution is
more general than 6. W

The extension of the unification methods as described in [GS87] and also in [B187] is roughly
equivalent to supplement the procedure in III.2 by application of axioms, i.e., to replace s =t
by s =1 & r =t, where | = r is variant of an axiom and by a cycle-elimination rule. In other
words, if the equation x =t has to be solved and x € V(t) , then x can be replaced by a term
of the form f(yl,...,yn).

This unification methods cannot be extended to sorted signatures without adding rules,
which either introduce steps similar to paramodulation into variables or else make use of

functionally reflexive axioms:

1.8 Example.

i) Simple signature:
Let := {A,B= TOP, a:A, b:B} , let E := {a=b} and let I := (x, = yp).
I" is E-unifiable, but it is necessary to use the equation a = b though neither the topsymbol
of x, norygisaorb.

il) Nonsimple signature:
Let X:= {A,B,C,D = TOP, a:A, b:B, c:C, d:D, g:TOP — TOP, g:A — C, g:B — D} and
let E := {a=b} and let I" := (xc = yp). The solution is {x¢ ¢ g(a), yp < g(b)}.
This solution can only be found, if Xc O yp is instantiated with a term of the form g(z). W

There are equational theories for which the above procedure can be improved by adding some
nonunifiability checks. In equational theories that have a regular E-semantical sort-assignment
(cf. I1.9) terms s,t are unifiable only if the sorts of these terms have a common subsort.
Sometimes this information can be used to cut branches of the search tree. Furthermore if in
addition the sort-structure is a semilattice, then the most general unifier of two variables x,y
can be chosen of the form {x « z, y « z}, where the sort of z is the greatest common subsort

of the sorts of x and y.
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2. Finite and Q-free Equational Theories.

Recall that an equational theory E s finite if the equivalence classes of =y g are finite, and that
Eis Q-free, iff £(s;,...,8,) =5E f(ty,...,t,) implies that s; =gl

First we deal with finite equational theories.

For unsorted finite equational theories, it is known that the word-problem is decidable, that
matching is finitary, minimal unifier sets exist and are recursively enumerable (cf. [Sz82]).
We show in this paragraph that these result can be lifted to the sorted case.

2.1 Lemma. Let £ be a finite equational theory and assume ---g to be
demodulation-complete. Then the word-problem for Eis decidable.
Proof. Given a term s, the computation of its equivalence class is possible and terminates,

hence equality of two terms is decidable. M
It is an open problem, whether the requirement of demodulation-completeness can be omitted.

The connection between the unsorted theory and a sorted theory is as follows:
2.2 Lemma. i) If =T E is finite, then =5 R is finite.
ii) The converse is false.
Proof. 1) is trivial
ii) The following is an example for this claim: Let Z := {A , B, a:A, f:A —B} and let
E := {f(xp) = x5 ). Then =5 is finite, but =5 g is not finite, since there exists an

infinite equivalence class: {a, f(a), 2(a),...}. W

The above lemma provides an example also for the statement that =y g is finite on Ty, but not
onTs.

The proofs of the next lemmas and propositions in this paragraph are the proofs in [Sz82]

adapted to the order-sorted case.

2.3 Lemma. Finite theories are regular.

Proof. There exist terms s,t such that s =y gt and V(s) # V(t). Substituting arbitrary
variables we get an infinite equivalence class. ll

This proof differs slightly from the proof in [Sz82], which showed a little more: there exists an

infinite equivalence classe of =y in the Herbrand-universe, if the theory is nonregular.
This is not true in general for sorted equational theories:
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Let Z:= {A, B, a:A, f:A — B} and let E := {f(x,) = f(y,) }. Then E is not finite, but all
equivalence classes in the Herbrand universe are finite, since the set of well-sorted ground
terms is exactly {a, f(a)}, which is finite.

This observation suggests a different definition of finiteness in terms of the initial term algebra.
This definiton in conjunction with an appropriate notion of subsumption may lead to similar

results. However, we do not follow up these lines.

2.4 Proposition. For every finite theory £ with demodulation-complete axiomatizations we
have:
1) Matching is decidable.
il) Most general matching sets are finite and effectively computable.
Proof. LetI"=(s; «ty,...,s, « t;)g be a matching problem and let U be the set of solutions,
i.e. the set {ol Os; =3 E s i=1,...,n and DOM(0) € V(sy,...,8;) — V(ty,....tp) }.
Since the number of equivalence classes modulo =y g is finite, there is at most a

(computable) finite number of substitutions in U. Il

2.5 Proposition. For every finite theory £ with demodulation-complete axiomatization and
for all equation systems I', there exists a set of most general unifiers which is
recursively enumerable.

Proof.

i)  In order to show that minimal unifier sets exist, we show that Eis Noetherian.

Let oy >y EOC2>5E - [W] be a descending chain of substitutions for a finite set of
variables W.

Then we can assume by Lemma 1.10.5 that the maximal depth of terms in the
codomain of o; is increasing. There exist well-sorted substitutions A; , i = 1,2,... with
0i.1 %E A;o; [W]. This is a contradiction to the finiteness of the theory .

i) Since E-subsumption of substitutions is decidable and a set of all unifiers is recursively
enumerable with nondecreasing maximal term depth in their codomain, it is sufficient
to show that there is an algorithm that decides whether a unifier is a minimal one. The
number of nonequivalent (=5 [W]) substitutions that are more general than a given
substitution o is finite and effectively computable, hence minimality of unifiers is
decidable. W

Our interest in Q2-free theories comes from the fact that in the unsorted case the Q-free theories

are exactly the regular, unitary matching theories.
In the sorted case, this relation is true, provided some additional conditions hold:
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2.6 Example. There are Q-free, nonregular theories:
Let = {AB,f: A — B} andletE := {x, =y,}. Then Eis consistent, Q-free, but not
regular.

2.7 Proposition. i) If £ is Q-free, then £ is unitary matching.

ii) If £ is regular, unitary matching and for every function there is a maximal function

declaration, then Eis Q-free.
Proof.

i) Assume E is not unitary matching, then there exists a term t and two different
idempotent substitution ,T such that ot =g ¢ 1t. We can assume that t is such a term
with minimal term depth. Obviously t is not a variable or constant. Hence Q-freeness
implies that with t = f(t,,...,t;) we have ot; =g g Tt;. Repeatedly applied, this gives
O=5pT [Vl

ii) Assume there is a counterexample E, that is not Q-free with the above
properties. Then there exists terms f(sy,...,s;) and f(ty,...,t,), such that
B84 5+ 985) =5 E f(t;,....ty), but for some i, we have not s; i =L U Now consider the
matching problem {f(x;,...,x)) « f(ty,.. .,ty)), where x; are new variables and the term
6 T corresponds to the maximal function declaration for f. Then there are two
different matchers {x; ¢ t;} and {x; « s;} and since in regular theories every matcher
is minimal (cf .11 ), we have reached a contradiction. Il

3. Unification in Sort-Preserving and Congruence-Closed Theories.

An important property of congruence-closed equational theories is that unifiers of an equation
system can be computed in a particularily simple way. It is done by first computing unifiers
ignoring the sort information and as a second step the sort handling is done without reference
to the equational theory.

3.1 Proposition. Let E be a congruence-closed equational theory. Then
Ug() N SUBy =Ug ()

Proof. We prove the nontrivial direction:
Let 6 € Ug(I') n SUBy. Then os; =5 g OY for all s;=t; € I. Since E is
congruence-closed, we have also os; =5 E O foralls;=t;e I', hence o € U):,E(I‘). |

Unfortunately, this nice property is not true for not congruence-closed theories and
furthermore there are in fact interesting noncongruence-closed theories. For example feature
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unification [SA87] is unification in a theory that is not congruence-closed. In a sense the above
property characterizes congruence-closed equational theories: Let ‘£ be a noncongruence-closed
theory and let s,t be terms such that s =3gt but not s =5t Then Id € UE,E«S =t)) N
SUBgy, but Id ¢ U}:,E((S = t)).

Theories with collapse axioms are likely to be noncongruence-closed. For example if there are
sorts A3 B, f:A — A and E contains the axiom f(xg) = xg, then for £ to be
congruence-closed it is necessary that f(x ,) =y g x4 holds.

Without additional requirements there is little hope to obtain general results for
congruence-closed equational theories. One requirement is that the equational theory should be
sort-preserving. We will also take the requirement into account that the equational theory has a
sort-decreasing term rewriting system.

In this paragraph we concentrate on the sort-preservation of equational theories.

3.2 Assumption. Throughout this paragraph we assume that equational theories are
sort-preserving, congruence-closed and the sort-structure has one maximal sort.

Note that there is some preliminary work in paragraph II.6 that investigates criteria for
sort-preservation and congruence-closedness. Furthermore some properties of substitutions in
sort-preserving and congruence-closed theories are stated in I1.6.15 - 11.6.18.

In paragraph 4.4 there are also some examples that demonstrate the consequences of these
assumptions, for example a group as a sort-preserving congruence with an underlying regular
and elementary signature can only have a many-sorted sort-structure.

An advantage of sort-preserving equational theories is that equality preserves well-sortedness
of substitutions, i.e. 6 =y g T and 6 € SUBy implies te€ SUBjy, which may be false in
general.

We assume in the following that complete and minimal sets with respect to X are chosen such
that all variables in the codomain of substitutions are of maximal sort (cf. Corollary I1.7.8)

3.3 Main Theorem.
Let =g g be an equational theory. Let W be a finite set of variables and let U ¢ SUB§ be
an upper segment with respect to <g[W]. Then
{wtlte cg(U), we pWy(t) } is a complete subset'of U N SUBy.
Proof. We show that this set is a correct, complete subset of U N SUBy.
i) Correctness: Trivial, since U is an upper segment.
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ii) Completeness: Let @ € U N SUBy. Then there exists a substitution A € SUB§ with
DOM(A) = V(TW) and a substitution T € cg(U) with At =5 E 0 [W]. The assumption
congruence-closedness implies that AT =5 ¢ 6 [W] and hence by sort-preservation ATx
is well-sorted for all x € W. The signature is subterm-closed, hence all terms in
COD(L) are well-sorted. Since we have assumed that all variables in I(t) are of
maximal sort, we have A € SUBy.

II1. 1.3 implies that there exists some set WWy(T).
There exists an ® € PWy(t) and anm € SUBj such that A=no[V@W)].
From 6 =y g NOT [W] it follows © 25 g O (W].H

3.4 Theorem. Let the conditions of Theorem 3.3 be satisfied. If in addition Z is elementary
and a minimal subset i 5 g(U) exists, then we obtain a minimal subset of U N SUBy as the
union of the minimal subsets of {wt | ® € pWy(T )} where T ranges over the set uiE(U).

Proof. For a fixed substitution T € PE,E(U) the set uW 5 () is finite, hence the set

{otlwe puWy(7) } is finite, thus there exists a minimal subset of {®wT | ® € HW(T)}.
We show that it is sufficient to minimize the finite subsets in order to obtain a minimal
subset of U N SUB5.
Lett, 7€ Ug .E(U) and let ®;,0, € pWy(T) such that @T; <y 0,7, [W]. Then there
exists a well-sorted substitution A with Aw; Ty =5 g @,T, [W]. Proposition IIL.1.5 implies
that w, is a renaming, hence by applying ,~ we obtain ;™ ATy =5 ) Ty =F g
T, [W]. The minimality of i 5 g(U) implies that T, =7,. B

In order to apply these theorems to unification problems note that the set U 5 g(I) is always an
upper segment with respect to the ordering <g E[W] (cf. 11.6)

3.5 Corollary. The set {wt !t e cU E,E(F), ®we WWy(t)} is a complete subset of
U}:,E(F) N SUBy with respect to <y p[W] . B

In the case of elementary signatures, we have:
3.6 Corollary. For an elementary signature a minimal, complete subset of Uy g(I') N SUBgy
with respect to S):,E[W] can be obtained as the union of minimal, complete subsets of

the finite sets {wt | w e uWy(1)} for t1e cU )‘:,E(F) .

An interesting application of these theorems to matching problems in regular theories is the
following: compute the matchers with an unsorted algorithm and delete the ill-sorted matchers:
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3.7 Corollary. If £ is regular, then a minimal and complete set of matchers can be obtained
as: uMz'E(I‘) =SUBy N uM E,E(r)'
That means that a regular theory ‘E that has effectively finitary X-matching problems, has
also effectively finitary X-matching problems.

3.8 Corollary. Let X be elementary, let £ be regular and effectively finitary matching.
i) If E is of effective ¥ -unification type 1 or ®, then minimal set of X-unifiers are
finite and effectively computable.
ii) If £ is of Z-unification type oo and minimal set of Z-unifers are recursively

enumerable , then minimal sets of Z-unifers are recursively enumerable.
From Paragraph 2 it follows that Corollary 3.8 is applicable to all finite equational theories.

3.9 Example. The minimizing step for elementary signatures (Theorem 3.4) may be
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