
U
n

iv
e

rs
it

ä
t

K
a

is
e

rs
la

u
te

rn
D

-6
7

5
0

K
a

is
e

rs
la

u
te

rn
1

, W
.

G
e

rm
a

n
y

F
a

ch
b

e
re

ic
h

In
fo

rm
a

ti
k

P
o

s t
f a

ch
30

49
A

r t
i f

i c
i a

l
I n

t e
l l

i g
e

n
ce

L
a

b
o

ra
to

r i
e

s
S

E
H

F
H

E
P

IH
T

fl?e .;
gti—:(? €???

\\ u «hm,
06°
000

J
@!

\i
._

__
__

\1
(i.

i“
(L

..
..

D
‘

Computational Aspects of an
Order—Sorted Logic with

Term Declarations
Manfred Schmidt-Schauss

July 1988 SEKI Report SR—88-10

Computational Aspects of an Order—Sorted
Logic with Term Declarations

Vom Fachbereich Informatik

der Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

' Dipl.-Math. Manfred Schmidt-Schauß

Berichterstatter: Prof. Dr. Jörg H. Siekmann

Prof. Dr. Jean-Pierre J ouannaud

_ Dekan: Prof. Dr. Theo Härder

Tag der wissenschaftlichen Aussprache: 26.4.1988 .

D 386

Abstract.

In this thesis I investigate the logical foundations of a very general order-sorted logic. This
sorted logic extends usual first order logic by a partially ordered set of sorts, such that every
term is of a particular sort or type, in addition there is a mechanism to define the sort of terms
using term declarations. Syntax and semantics of this order—sorted logic with declarations are
defined in a natural way.

Unification in order-sorted logics with term declarations is undecidable and infinitary, i.e.,
minimal complete sets of unifiers may be infinite. However, under the restriction that

declarations are only of the form f:Slx. . .xSn—>S and that the signature is regular, unification
is decidable and minimal complete sets “of unifiers exist and are always finite. Furthermore
there exists a signature of this form such that unification is NP-complete.

If there is no equality predicate in the logic we use resolution and factoring as inference
rules, where the unification algorithm is adapted to the sort—structure. The corresponding
calculus is refutation complete.

If there is an equality predicate and all equational literals are in unit clauses, we use a
special E-unification al gorithm and show that under some restrictions such an algorithm can be
constructed from an unsorted unification algorithm by postprocessing the set of unifiers.

If arbitrary equations are admissible, we use paramodulation as additional inference rule or
replace resolution by the E—resolution rule. I

An algorithm for transforming unary predicates into sorts is presented. It is shown that this
algorithm is correct and complete under sensible restrictions. Usually, the algorithm may
require exponential time, however, in the special case of Horn clauses the algorithm can be
performed in polynomial time.

We also investigate term rewriting systems in an order—sorted logic and extend the
confluence criterion that is based on critical pairs by critical sort relations.

Zusammenfassung.

In dieser Arbeit untersuche ich die logischen Grundlagen einer sehr allgemeinen

ordnungssortierten Logik. Diese sortierte Logik erweitert die übliche Logik erster Stufe um
eine partiell geordnete Menge von Sorten, so daß jeder Term eine bestimmte Sorte (Typ) hat.
Zusätzlich gibt es einen ' Mechanismus zum Definieren von Termsorten mittels
Termdeklarationen. Syntax und Semantik dieser sortierten Logik Werden auf natürliche Weise
definiert. ' . ' '

Unifikation in ordnungssortierten Logiken mit Termdeklarationen ist uhentScheidbar und
infinitär, d .h . , minimale und vollständige Mengen von Unifikatoren können unendlich sein.

Unter der Einschränkung, daß Deklarationen nur von der Form fzslx. . .xSn—>S sein dürfen
und die Signatur regulär ist, erhält man daß Unifikation entscheidbar ist und daß minimale
Mengen von Unifikatoren immer endlich sind. Weiterhin gibt es eine solche Signatur, in der
Unifikation NP-vollständig ist. . _
, Wenn kein Gleichheitsprädikat in der Logik ist, kann man Resolution und Faktorisierung
als Ableitungsregeln benutzen, wobei der Unifikationsalgorithmus an die Sortenstruktur
angepasst ist. Der zugehörige Kalkül ist widerspruchsvollständig.

Wenn ein Gleichheitsprädikat vorhanden ist und alle Gleichungen in Unitklauseln
vorkommen, kan man einen speziellen E-Unifikationsalgorithmus benutzen. Wir zeigen, daß
man unter gewissen Bedingungen e inen . Algorithmus aus einem unsortierten
Unifikationsalgorithmus und einer Nachbearbeimng der Menge der Unifikatoren konstruieren
kann. ' ' ‚_ ‘ _

Wenn beliebige Gleichungen erlaubt sind, benutzt man Paramodulation als zusätzliche

Ableitungsregel oder man ersetzt Resolution durch die E-Resolution.
Es wird ein Algorithmus zum TranSformieren einstelliger Prädikate in Sorten vorgestellt.

Von diesem Algorithmus wird gezeigt daß er unter gewissen sinnvollen Einschränkungen .
korrekt und vollständig ist. Der Algorithmus hat normalerweise exponentielle Zeitkomplexität,
aber im Spezailfall von Homklau seln kann der Algorithmus in polynomialer Zeit ausgeführt
werden.

Wir untersuchen auch _Termersetzungssysteme in einer ordnungssortierten Logik und
erweitern das auf kritischen Paaren beruhende Konfluenzkriterium um kritische
Sortenrelationen.

Acknowledgements.

I would like to thank my supervisor Jörg Siekmann. He introduced me into the field of
Artificial Intelligence and Automated Deduction. His enthusiasm, guidance and critics were

indispensible for writing down this thesis. I thank him for his final revision of this thesis.

Hans Jürgen Ohlbach's contributions are manifold. He poses the 'sort-generation'-problem

and thus caused me to investigate sorted logics. His experience helped in many cases to

recognize foolish ideas and to avoid dead ends and black holes.

Alexander Herold introduced me into the field of Unification and we had a lot of fruitful
discussions concerning unification and subsumption.

I acknowledge discussions with Gert Smolka concerning sorted algebras and semantics and
for explaining me the ideas of the order-sorted algebra approach of Go guen and Meseguer.

Jcan-Pierre Jouannaud carefully read a preliminary version of the part on unification with

term declarations.His hints and ideas contributed to the present form of this thesis.

I am particularily grateful to Hans—Jürgen Bürckert for his thorough reading of a draft of
this thesis and for the time he spent in many discussions.

I am grateful to Norbert Eisinger for reading a draft of this thesis.

Finally, I thank my wife Marlies for her patience during finishing this thesis.

Statement:
This thesis evolves from the previous papers on sorted calculi [Sch85a, Sch85b] and

unification of sorted terms under term declarations [Sch85d]. The results of paragraph IV.3 are

published in a modified form in [Sch86a]. Part VI is a revision of the report on mechanical sort
generation [Sch85c]. The appendix will be published in [BHS 87].

Contents:

Introduction.

Part

Part

I :

h
—

IH
H

to
t—

O
v—

tr
—

n
Ji

b)

99
19

00
» :

—

Motivation

Related-work

Overview

Foundations.

Preliminaries
Symbols, Terms and Substitutions.

Sorted Signatures
Well- sorted Terms and Substitutions
Order-Sorted Matching
Algebras and Homomorphisms
Z—Congruences
Specifications, Structures and Models
Equational Theories, Birkhoff’s Theorem

._ Substitutions _ _
. Theory—UnificatiOn and Theory-Matchin g
. Computational Logic '
. Manipulating and Solving Equational Systems
. Comparison of Different Approaches to Unification

. Various Extensions

Extension to Ill—sorted Terms
Extending Con gruences to Ill-sorted Terms
Order—Sorted Term Rewriting Systems
Sort-Assignments
Another Equafional Deduction System
Characterizations of Dcduction—closedness, Con gruence-

11
13

16 ‘
17
20
22
28
30
33
36
39
42
46
50
54

67
69
7 1
79
80

-Closedness andSort—Preservation. - 82

7 . Conservative Transformations 89
8. R-systems 95

Sort—Prescrving Congruences 98
10. Relativizations 101
11. Herbrand-‘I‘heorem 105
12 . First-Order Formulae and Skolemization 107

Part III: Unification of Sorted Terms without Equational Theories.

1. Minimal Unifier Sets and Minimal Weakening Sets' 110
2. A General Unification Algorithm for Sorted Terms

wihout Equational Theories ' 111
3 Unification in Finite, Regular Signatures 115
4 Complexity of Unification in Elementary Signatures 120
5 Unification in Finite Signatures with Term Declarations ,

is of Type Infinitary _ . 123
6 E—unification is Undecidable 124

Part IV: Unification of Sorted Terms under Equätional Theories.

1 . A General Unification Algorithm For Sorted Terms ' 129
under an Equational Theory

2. Finite and Q—free Equational Theories . 137
3. Unification in Sort-Preservin g and Congruence-Closed

Theories 139
4 . Examples: Unification in Sets, Multisets, Semigroups and

Groups ‘ 146
5 . Narrowing 151

Part V : - Sorted Resolution-Based Calculi .

1 . ReSolution, Paramodulation and Factoring ' 153

2 . Deductions on Ground Clauses ' ' 155

M

Completeness of Sorted .Calculi Based on Resolution,
Paramodulation and Factoring '
Resolution with Equational Theories
Morris" E-resolution
Theory Resolution

. Part VI:. A Sort-Generating Algorithm.

G
U

I -
P

L
_U

JN
: -

‘

The Algorithm SOGEN
Sort Generation in Logic Programs
The Rules of SOGEN are Conservative
Examples . _ .
EXtension of SOGEN to Well-Formed Formulae
Conclusion of ‚Part VI

References

Appendix

Index

Special Symbols

157
158
159
162

166
' 176
178
191
197 '
200

201

211

218

223

Introduction.

Mot iva t ion .

The investigation of logical calculi suitable for an implementation on the computer and the
development of methods for the reduction of search spaces are essential tasks in the field of
Automated Deduction. The distinction of objects into different classes, called sorts, for
example points, lines and planes in geometry, and the exploitation of this information in the
search for a proof is a very promising technique for many problems (such as Schubert's
steamroller [Wa83, Wa85, St86]). The proposed techniques of using sort information have the
additional advantage that they can be combined with most other known methods in use for the
reduction of search Spaces, such as the standard search Strategies [Lo78‚ CL73], the building
in of equational theories [Pl72] or techniques for the building in of arbitrary theories [St86].

First order logie is often used to describe facts or relations that hold in some domain D.
Given some facts that hold in D the deduction methods of first order logic can be used to
deduce new facts that are true for the domain D . In the standard first order predicate calculus
the knowledge that some objects in D are of a certain type or belongto a particular subset is
expressible only using a unary predicate" and also there are no restricted quantifiers. For
example, the variable x in the formula: Vx Nat(x) => x 2 O ranges over all possible objects.
This has the undesired effect that formulae like Nat(c) => c 2 0 can be deduced for all
objects c , even if c 2 O does not make sense, for example if e is a list. The essential idea in a
many-sorted logie i s to distinguish different sorts of objects and to restrict the scope of
variables to a particular sort. For example, after introducing the sort (or type) NAT, the
formula above reads (Vx:NAT x 2 0). In this formula the variable x ranges only over objects
of sort NAT.

Using this idea as a starting point for a modification of the syntax and deduction in first
order logie, several other “concepts and extensions an'se naturally:

One may need a set S of sorts that is partially ordered.
If we consider a term t as a function with input from our object domain D and a value in D,

where the inputs have to obey the sort of variables, then in general the value produced by t
does not range over the whole set D, but over a smaller subset. This range of values should be
syntactically reflected and hence to every term t a sort should be assigned. Since we have
functions in our logie and hence there are compound terms, there is the need for a method to

compute the sort of terms. Usually, this is done byspecifying functions with declarations like
f:S 1x . . . xSn—> S , where Si are sort names. Hence the sort of terms is usually computed from
the range sort S of the top level function symbol. An equivalent method to specify the sort of
terms is to use term declarations of the form f(xsl,. . .,xsn): S. As a generalization we allow

term declarations of the form t:S, where t is an arbitraty term. This is a very general method to
specify the sort of terms. '

In addition we need the concept of a well-sorted substitution that substitutes only
admissable terms for sorted variables. For example, we may have the sort-structure INT =
NAT, the variable xNAT with sort NAT as above and now the substitutions are to replace "NAT

only by terms of sort equal or less than NAT. ’ .
A further concept is that of the sorted domain of a predicate, i.e., a predicate accepts only

certain combinations of sorted arguments, otherwise the expression is ill-sorted.
We Shall call a logic with these ingredients an order-sorted logic in order to emphasize

that subsorts are permitted and we shall reserve the word many-sorted for logics that use
unrelated sorts. Note that some authors use many—sorted logie also for logics with subsorts.

The following specification of even numbers is an example for term declarations:
EVEN = NAT, O'EVEN, s:NAT-)NAT,
s(s(xEVEN)): EVEN.

This gives recursively the terms of type EVEN: 0, s(s(0)), s(s(s(s(0)))‚... , which.

correspond to the even numbers 0,2 4,
Using the above specification of even numbers we can exemplit‘y the use of well— sorted
substitutions and sorted unification.
Consider the two statements VXEVEN PÜ‘EVEN) and VYEVEN -1P(s(s(yEVEN))). .These

two formulae are contradictory, since the well- sorted substitution {XEVEN (— 5(S(YEVEN»}

_ gives an obvious contradiction. However, the two formulae VXEVEN PG‘EVEN) and
V yEVEN fiP(s (yEVEN)) are not contradictory. The necessary substitution
{XEVEN (— s(yEVEN)} is not well-sorted, since the term s(yEVEN)’1s not of sort EVEN but of
sort NAT.

If we again slightly change the above example, we see how unification has to be extended:
Consider the two formulae VXEVEN PÜ‘EVEN) and VyNAT -1P(s(s(yNAT))). The substitution
{XEVEN <— s(s(yNAT))] is not the right one, since it is not well—sorted. So unification has to
try to make it well-sorted. A substitution which makes the two formulae contradictory is
{xEVEN (— s(s(zEVEN))‚ yNAT <— ZEVENL that is the variable yNAT is weakened to sort
EVEN by substituting ZEVEN' This example shows that usual unification has to be extended
by a weakenin g step.

Sorts also provide a means for combining many inferences into one formula. Consider for

example the following Hom-clause variant of the above problem:
EVEN(O),
Vx EVEN(x) => EVEN(s(s(x))),
Vx EVEN(x) = P(x)

The query Ely EVEN(y) A P(y) would produce an infinite number of answers y = 0,
y = s(s(0)), , s2*n(0),... .

A sorted formulation of this problem is
OzEVEN,
s(s(xEVEN)): EVEN
VXEVEN P(xEVEN)

The corresponding sorted query ?P(yEVEN') would produce only one answer, namely
'YEVEN = XEVEN , which has the meaning that all terms Of sort EVEN are allowed as answers.

The next step in order to obtain a more powerful deduction calculus for a wider range of
well—sorted formulae is to have equality as a distinct predicate. The semantic aspect of such a
logic with equality and sorts is relatively straightforward, but is not'as intuitive as it is without
equations. For example there may be a gap between the syntactic sort and the semantic sort of
objects: if there is a sort structure and an equational theory, which for some reasons allows the
deduction of s = t for every two terms (i.e.‚ it is inconsistent), then every model has exactly
one element and all semantical sort domains are equal, whereas the syntactical sorts are all
different. ' '

The computational aspects of a logic with equality and sorts causes even more difficulties.
If paramodulation is extended in the natural way, then it may be possible to infer ill-sorted
formulae. If for example the unrelated sorts A'and B are in the Signature, and also there are
constants a:A and s , a predicate P, which accepts only terms of sort A, then let the formulas

be a = b and P(a). A replacement of a by b (i.e. by paramodulation) gives the ill-Sorted formula
P(b). There are more complex and more natural sets of formulae with no obvious way of how
to avoid the deduction of such ill-sorted formulae. For example if there is an injectivity clause
of the form _Vx,y: x = y v f(x) at f(y), then paramodulating with the equation x = y is a
potential source for plenty of such ill-sorted paramodulants. In this thesis we will present
several approaches to solve this problem.

Of course sorts can be encoded using unary predicates and the sorted part of the signature
can then be interpreted as a set 'of (Hom-) clauses, that allows to deduce the sort of a term.
This translation process yields for every sorted clause set an equivalent unsorted one, which is
called the relativized clause set [Ob62, Sch 38]. The converse problem whether a unary
predicate“ can be interpreted as a sort, or how to encode a certain problem with a Sorted

'10

specification, is more difficult and is the subject of Chapter VI. In particular it would be useful

to have a translation process, such that an Automated Deduction System can find-equivalent

representations by itself and decides which of these representations is more appropriate for the
search process. ‘

Related Work.

The use cf sorts or types in logic dates back to J. Herbrand [Her30, Her7l] . His

completeness proof of the sorted calculus was not correct, however, as pointed out by A.

Schmidt [Sch38]. The completeness of a calculus for a many-sorted logic with function

symbols is proved correctly in [Sch38, Sch51]. All “these logics are somehow restricted: the
many-sorted logic considered by H. Wang and P. Gilmore [Wan52, Gi58] has no function

symbols and all the many-sorted logics in [Her30, Sch38, Wan52, Gi58] do not make use of

subsorts. The extension investigated by T. Hailperin [Ha1'57] allows the restriction of the

quantification of a variable by arbitrary formulae. This seems to be too general an extension for

deduction systems, since in this calculus one needs the full power of first order calculus to

infer if a formula is well-sorted. '

The most interesting formulation of many-sorted logics for our purposes is that of A.

Oberschelp [Ob62]. He describes several different many-sorted logics. In his S-logic function

symbols, multiple assignments for functions and subsorts are allowed. He gives a clear

Tarski-type semantics, which is the same as ours. To our knowledge he was the first to

introduce a notion of order-sorted algebra. His)}logic uses a relation on variables and terms

to specify the sort of a term, which is similar to the R-systems in this thesis. However, term

declarations are not allowed in the E—logic. All these classical sorted logics had no notion of
_ unification or of a most general inference.

Sorts were recognized as an important tool for Artificial Intelligence and Automated

Deduction by P. Hayes [Hay71], who allows unrelated sorts and multiple sort range

assignments per function symbol.
More recently, sorted logics were investigated as useful tools for Automated Deduction by Ch.

Walther and A. Cohn [Wa83, C083]. Ch. Walther [Wa83] developed a calculus based on

resolution and paramodulation, which allows subsorts and equations, but only one declaration

per function symbol. His paper was the first to combine resolution and sorts using a sorted

unification algorithm. The completeness proofs in [Wa83] are obtained by a transformation of

the classical completeness proofs and the semantics given there are defined via relativizations.

Ch. Walther demonstrated with many examples, including the now well-known Steamroller

example [Wa85], that his logic is a powerful technique for avoiding redundancies in the search

11

for a proof.
A. Cohn [C083] considers a more general calculus which allows multiple function

declarations per function. His logic is more expressive than Walther’s, since some unit clauses

may be built into the logic (polymorphic predicates), however, there are no equations in his

logic. His evaluation rule competes with unit deductions as in PROLOG [CM81] or with the

terminator algorithm described by G. A‘ntoniou and H.] . Ohlbach [A083]. Cohn’s logic has

the advantage of small initial clause sets, but the drawback of more deduction rules.

The many-sorted logic of K.Irani and D . Shin [1885] has a dynamic sort-structure, but it

may be too heavy a machinery for most practical purposes, since one can think of the sort

structure as virtually fixed and hence use some standard many—sorted logie, and let the

program generate the sorts only if needed. ‘

Our approach to a many-sorted logic follows the lines of [Ob62] and [Wa83]. A

characteristic of this approach is that once the signature is given, all terms have a fixed sort.

For some applications this may be a disadvantage, for example the situation where one knows

that A is a person, but one does not know whether A is male or female, is not expressible in

this logic. In other words the sort-of a term is computable given the signature, but not

deducible from some given Statements. This is clearly a restriction, but it allows for fast

algorithms to compute the sort of a term. I

An approach that is very close to ours is that of G. Smolka [Sm86], who employs

order-sorted al gebra in the development of an order-sorted Horn-logie. Further work with

similar semantics is carried out by W.W. Wadge [Wad82], who ‚gives in fact a semantics for

specifications that allow declarations. Our semantics is also similar to the semantics in LA.

Goguen and J. Meseguer [GM85a], but their notion of homomorphisms as a family of

mappin gs is based on the many-sorted approach and seems to be not the optimal one.

In the field of algebraic specifications [EMSS] the use of sorts is a common technique,

however, usually no subsorts are admitted and just one declaration per function is allowed.

This was extended to subsorts and term declarations by J.A. Goguen [Gg78, GM85a], who

introduced the notion ‘order—sorted algebra’ to indicate that subsorts are permitted. Sorts are

mainly used in this field in order to give the semantics of specifications in the form of initial

algebras and to support an appropriate handling of errors [GM85a, 00%].

Most Programming Languages use type systems for different purposes-, such as type

checking at compile time, error detection, modularization of programs and for efficient

programming (cf. [I-ILS72, Ml78, Ml84, BB86, 6083, 6086, *Sn86, SH85, Tu85] These

languages are designed such that there is either no or at least only a small amount of type

handling at run time. Many-sorted unification is used in a type-checking system described by

G. Snelting [Sn86, SH85, B886]. In the specification languages OBl2 [FGJM85] and

EQLOG [GM85b] the handling of sorts is done at run time and there is also the need for sorted

12

equational unification in order to have an appropriate operational semantics.
The combination of cquational deduction and sorts for term rewriting systems was

investigated by R.]. Cunningham and All Dick [CD83], G. Huct and D. Oppen [H080]
and by J.A. Goguen, J.-P. Jouannaud and J. Mesegucr [GJMBS]. The system in [CD83] is
unfortunately inconsistent without additional restrictions. A translation of order—sorted term
rewriting to many—sorted term-rewriting is described in [GJM85]. '

Order-sorted deduction and narrowing are considered by G. Smolka, W. Nutt, J ‚A.
Goguen'and J. Meseguer [SNMG87] and order-sorted unification also in [M6887]. A notion
of ‘mcta’-variables and domains which converge to a sorted logic is given by H. Kirchner
[HKi87] in order to handle term rewriting systems with an infinite number of rules.

Unification under sorts originated with the papers of .Ch. Walther [Wa83, Wa84]. The
handling of sort-arrays [C083a‚ C083b] is also a type of sorted unification. In [CD83] a sorted
unification algorithm is used and it is recognized that a complete and minimal set of unificrs

' may be finite for elementary signatures, but a proof for the correctness of this algorithm is not
given. Unification for polymorphic signatures is proved to be of unification type finitary by the
author in [Sch85]. ‘

The extension of many—sorted logic by term declarations was proposed by J.A. Goguen
[Gg78] and term declarations were later called sort-co'nstraints [GM85a]. These
sort-constraints are more general than term declarations, but this generality necessitates the use
of deductions to obtain the sort of a term. In fact the sort Of a term may be undecidable. Our
term-declarations correspond to unconditioned sort-constraints. Other work using term
declarations is described in [G083, Wad82]. -

Overview.

_ In this thesis we investigate order-sorted logic and its computational part. The logic allows
subsorts, term declarations and equations but provides only a fixed sort of a term. The general
aim of this work that motivated the design of our logic is to identify those computations with
sorts that can be done efficiently. A further guideline was that the resulting logic should be
intuitive and simple. In general we concentrate on finite sets of sorts, although most of the
results hold also for an infinite set of sorts. All computability and efficieny considerations are
made only for finitely many sorts, we do not consider deductions with empty sorts (cf.
[GM81, GM85]). The logic is constructed such that all connnectives and quantifiers of first

order logic can be used and a formula in this logic has the familiar shape, besides the fact that
instantiation into variables is now restricted.

Although we prefer to use resolution and paramodulation-based calculi, most classical

13

calculi and all types of refutation calculi (for example [R065, RW69, And8l, Bib81b, Ri78]

can be adapted to this sorted logic. Also equational logic and term rewriting systems [H080,
H1180, Bu87] can be adapted. '

In part I we give an account of the foundations of this logic, its algebraic treatment and a

semantics based on a type of order-sorted algebra, called Z-algebra, which is conceptually

closer to [Wad82] than to [GM85a]. We extend the equational logic and Birkhoffs Theorem to

sorted term algebras. Note that the straightforward solution is impossible, since it would mean

the deduction of ill-sorted terms, whereas our solution allows only well-sorted terms in the

deduction process. The same problem arises for term rewriting systems and in order to solve

this problem, some new concepts are needed, which are described in 1.12 and 11.3. In

paragraph I. 13 we work out the rule-based approach to unification which first appeared in A.

Martelli and U. Montanari's paper [MM82] and was used for an equational unification

procedure in [CKi84, CKi85, Cki87, MG887]. This approach has advantages over the usual

extensions of the Robinson approach [R065], since the basic unification operations and the

control strategy are separated. The last paragraph gives a comparison between different views

of unification as a process of solving equations.

In part II we show that the distinction between well-sorted and ill-sorted formulae is not an

essential one. The satisfiability of a formula _does not change, if we modify the signature and
consider all ill-sorted expressions as well-sorted. This justifies our assumption in the

following that we can ignore the problem of the deduction of ill-sorted formulae and can

always assume that all formulae are well-sorted. However, the restriction remains that only

well—sorted substitutions and instantiations are to be used. Paragraph 3 gives a general
condition for a term rewriting system to be compatible and canonical. It also contains a
completion procedure for ground term rewriting systems- In paragraphs 4 and 8 we give

several equivalent formulations for a sorted signature with term declarations, including an

infinite set of term declarations. In §6 we investigate the properties of _deduction-closedness,

congruence-closedness and sort-preservation, which arise in combining sorts and equations

and we shall give criteria to check these conditions, given the signature and the axioms of an

equational theory. In §7 we investigate conservative transformations of the signature. This is a

preparatory work for the sort generation process in Part VI. In paragraphs 10 and 11 we

consider different encodingsof sorted logic into first order logie and shOw the important

Herbrand Theorem also in the context of sorts and equations.

Part III and IV of this thesis are devoted to unification algorithms, where part III gives

results on unification of sorted terms without equational theories. We show that unification in

14

elementary regular signatures is decidable and finitary and that in general unification is

undecida‘ble and may be infinitary, but minimal sets of unifiers do always exist and are

recursively enumerable. Furthermore we investigate the complexity of unification for different

types of signatures.
In the case of an equational theory, we give a rule-based complete sorted unification

procedure. Here the problem of functionally reflexive axioms arises and we give an example

that in general they are needed for sorted equational unification. In the unsorted case they are

not needed: the paramodulation—based algorithm of P. Padawitz [Pa86] works without them

and the algorithm of J .H.Gallier and W.Snyder [0887] needs functional reflexive axioms only

for the special case to eliminate occur-check failures.

If more restrictions are given like sort-preservation and congruence-closedness, then a

unification algorithm can be generated from an unsorted one and a weakening procedure as

postprocessor. We show in IV.3 that this is a complete unification procedure and that in the

case of elementary signatures the algorithm is _well—behaved. We demonstrate how to use this

combination algorithm for AC and ACI function symbols. .

In part V we show that a resolution—based calculus with a sorted unification algorithm is a .

complete refutation procedure. We demonstrate that resolution together with paramodulation

provides a refutation-complete calculus for equality if the functionally reflexive axioms are in

the clause set. The proof method uses Herbrand‘s Theorem and the usual lifting-arguments.

- We give an example that the functionally reflexive axioms are necessary in general, even in the

case of elementary signatures. An alternative to paramodulation i s J. Morris‘ E-resolution

[M069]. We propose to' use it in combination with rigid E-unification as defined by.

J .H.Gallier‚ S. Raatz and W.Snyder [GRS 87] for deductions of equational matings [And81].

In paragraph 6 we extend'M. Stickel’s theory-resolution [St85] to a sorted signature.

Part VI is a description of an algorithm that manipulates clause sets and signatures in order-
to obtain a clause set with respect to a more sorted signature. The idea is to have a relatively

. fast transformation algorithm and to make the deduction on the transformed clause set, where

more sort—information is given and hence the search space is smaller than in the original clause

set. We prove that this procedure is correct and give conditions for it to be complete. We adapt

the algorithm to sets of Horn clauses, such that it can be used to transform logic programs into

' more sorted versions. For the case of Horn clauses this algorithm is shown to be of

polynomial time complexity.

15

Par t I '

. Foundations

Overview: In this part we develop the frame-work for an order-sorted logic with equality,

its syntax, semantics and its computational aspects. We define order-sorted signatures and

show that the term algebras provide free and initial algebras with respect to our notion of a

signature. A notion of Z-model for arbitrary clause sets is presented.
The rest of this part is devoted to the consequences of the combination of sorts with

equational theories for unification problems and for term rewritin g systems.

1. Preliminaries.

We use the usual set theoretical symbols e , c; , n, U for the membership relation, subset

relation, intersection and union of sets and abbreviate A1 U U A“ by U{Ai | i = 1,...,n‘].

The set difference is denoted by A—B and the powerset of a set A is denoted as f(A). The

n-fold direct product of a set A is denoted by A“ and the empty set is denoted by 0. For partial

functions f: A —)B we dcnOtc the domain of f , i.e. the subset of A where f is defined, by at).

A function f: A —-)B with 12(1) = A is called a total function. By N we denote the set of natural

numbers, including zero. ,
A reflexive and transitive relation 5 on a set A is called a quas i -o rde r ing . A

quasi-ordering S naturally generates an equivalence relation 5, such that a “=- b =» (a S b and

b S a). The equivalence-class in A with respect to E is denoted as [a]! We use a < b to

denote that a S b, but not a Eb. The notations ?. and > have their obvious meaning. A 'subset

B of A is called a lower segment if it is downward closed, i.c., for a e A and b e B: a s b

implies a e B. Accordingly we define an upper segment. Note that unions and intersections

of upper segments (lower segments) are again upper segments (lower segments).

An element ‘a’ is minimal (maximal) in A, iff for all b e A: b S a implies a S b (iff for all

b e A: b 2 a implies a 2 b). With [—oo,a] we denote the lower segment of all elements that are

' less than or equal to a; similarily we define [a,oo]. A quasi-ordering is linear (or a chain), iff a

s b or b S a for all elements. It is well-founded, iff every chain has a minimal element. An

antisymmetric quasi-ordering is called a partial ordering. ' ‘ '

16

Let U be an upper segment of the quasi-ordered set A. A complete subset cU (or a
generating subset) of U with respect to A has the property: Vu e U 51 v 6 CU: v Su. The set

_ of all complete subsets of U is sometimes denoted by C(U). A base B for an upper segment

U of A is a complete set of representatives of minimal elements of U. A base is also called a

minimal, complete subset. As notation we have uU'for a special base B and M(U) for the set

of all bases. Not every upper segment U has a base, but if it has one the base is unique, that is

two bases B1 and B2 of U are equivalent, in the sense that there exists a bijection w: B1 —> B2
such that \Mb) a b for all b 6 B1. This is almost trivial for quasi—orderings and was first

proved for minimal sets of unifiers by Fages and Huet [FH83]. The cardinality of a base of an
upper segment U is an invariant of U. _

In a partially ordered set A a greatest lower bound (g.l.b.) for two elements a,b is a

unique element g e A with g S a,b , such. that for every c S a,b we have 0 s g. Dually we can

' define a least upper bound (l.u.b) for two elements in A. This definition can be lifted to
finite subsets of A. A partially ordered set A in which for all elements a,b their g.l.b. and
l.u.b. exists is a lattice with Operators glb(a,b) and 1ub(a,b). We say a partially ordered set A

is a semilattice, iff for all elements a,b e A, a least upper bound lub(a,b) exists. For a finite ‘
set A an equivalent property is that i) for all elements a,b e A that have a common lower

bound c (c S a,b), a greatest lower bound exists for a,b and ii) that A has a maximal element.
Multisets are like sets, but allow multiple occurrences of identical elements. The

Operations on sets are adapted to multisets, for example M — {a} means to delete one
occurrence of a in M. If we have a well—founded partial ordering on the elements of a multiset
M, then we can construct recursively a well-founded multisct—ordcring [DM79, De87] on
multisets as follows: - M > N, if for some a e M and bi e N,‘i =_1,...,n : a > bi , i = 1,...,n
and M - [a] > N— {b1,...,bn}.

2. Symbols, Terms and Substitutions.

In the following we will use the bar " to indicate that objects are unsorted, in particular for
unsorted signatures, since we later define sorted signatures as composed of unsorted ones plus
additional symbols and properties.

An unsorted signature f consists of the three pairwise disjoint sets of symbols.
. F i” the set of function symbols. Elements are denoted by f,g,h.
. V33 the countably infinite set of variable symbols. Elements are denoted by x,y,z.
. PE the set of predicate symbols. Elements are denoted by P,Q.

17

Every function symbol f has a nonnegative arity and every predicate symbol P has a
positive arity denoted by arity(f) and arity(P), repectively. In the following the suffix i is
often omitted, but we always assume that such an unsorted signature is explicitly given.

The set of function (predicate) symbols of arity n is denoted by Frl (P“). Function symbols
of arity 0 are called constant symbols, the set of constants i s C . The equality symbol ‘=’
is a disting‘llished binary predicate, usually written infix. This is the only predicate symbol we
assume to have a fixed arity. Note that we do not textually distinguish between the use of ‘=’
as a symbol and its use as a meta—symbol, but ‘=’ will be used only if the meaning is clear
from the context. .

A term is either a variable or a string f(sl,...‚sn), n = arity(fl , where f is a function
symbol and si, i = 1,. . .,n are terms. The set of all terms is denoted by T . (in the notation of
[H082] the set of terms is denoted by T(F g, V @). Terms can also be seen as finite labelled
trees as in [Hu76]. We shall use the letters p,q,r,s,t,u,v,w for terms. Let V(t) denote the
variables occurring in term t, i.e., V(t) := {t}, if t is a variable and V(t) := UV(t i } ‚ if
t = f(t1,. . .,tn). The top-symbol of a term t = f(t1‚. . .,tn) is the symbol f , denoted as f = hd(t).

_ The terms ti are called the immediate subterms of t. A term t in which every variable occurs
at most once i s called linear. An atom is a string of the form P(s1‚...,sn), n = arity(P)‚
where Si= i = l , . . .,n are terms and P is a predicate symbol. we shall use the symbol A for the
set of all atoms. A literal is a signed atom, i.e., a string of the form +A or -A, where A is an
atom. The minus sign has the meaning of logical negation. We use the convention, that if L
denotes a literal, then -L denotes the literal with opposite sign, i.e. if L = -A, the -L denotes the
literal +A. The set of all literals is denoted by L. A clause is a finite set of literals, including
the empty clause. A clause is interpreted as the disjunction of its literals, where the whole
clause is universally quantified over all variables occurring in it. A clause set denoted as CS is
a set of clauses. A clause set stands for the conjunction of its clauses. A Horn clause is a
clause with at most one positive literal (also called a definite clause), a logic program is a
set of Horn clause, where every clause has exactly one positive literal, a fact is a clause with
exactly one positive literal and no negative literals and a query is a clause without positive
literals.
We use the Operator V(.) also for literals, atoms and clausesand moreover for sets of objects
with its obvious meaning. An object t with V(t) = @ is called ground. The set of all ground
terms is denoted as Tgr and is called the Herbrand-universe in the field of Automated
Deduction [Lo78, CL73]. The set of all ground atoms is accordingly called the
Herbrand-base.

In order to select subterms of a given term t (or atom, or literal) we use occurrences
[Hu80]. An occurrence (or a position) is a word over N. Let A denote the empty word.

Then we define the set of occurrences D(t) of ta term as follows: i) the empty word A is in

18

D(t) ii) i.1t_ is in D(t) ifft = f(t1,...,t„) _ and as is in D(ti); We say two occurrences n and v
are independent, if they neither n is a prefix of v nor v a prefix of 1:. The depth of a term t

_ (or atom, or literal) denoted by depth(t) is defined as the maximal length of an occurrence in
D(t). The size of a term is the number of symbols in it, or equivalently the number of
occurrences in D(t). The set of nonvariable occurrences of a term t is denoted as O(t). The
subterm at occurrence tt is denoted as t\1t and the term constructed from t by replacing the
subterm at occurrence tt by s i s denoted by t[1t: <— s]. The set of subterms of a term 't, denoted
as subterms(t) is the set { s e T I s = t\1t for some 11: & D(t)]. A set T' of terms is called
subterm-closed, iff for every t e T' we have also subterms(t) ; T'.

_ The set of terms T can be turned into an algebra [Gr79] by defining for every symbol f e
F an operator fT , such that fT(t1,...,tn) := f(tl,...,tn). A homomorphism (pzT -> T is a
mapping such that'<p(fT(t1‚„.‚tn)) = fT((pt1,...,(ptn)), which is equivalent to <p(f(t1,...,tn)) =
f((pt1,.'..‚(ptn)). A homomorphims (p:T —) T i s also called endomorphism. The set T is in

- fact the free term algebra-(over V) and the set of ground terms TE}r is the initial algebra.
A substitution 0' is an endomorphism 6: T —> T, such that the set [x e V I O(x) #: x} is

finite. The set of all substitutions is denoted as SUB. The empty or identical substitution is
denoted by ‘Id’. Since every substitution is uniquely determined by its action on variables, it
can be represented as a finite set of variable-term pairs [xlt— 31...“m— sm}. The single
pairs "i <— s are called components or bindings. _

Let DOM(O) denote the set {x |0(x) at x } , COD(0') := O’DOM(O‘) and 1(0) := V(COD(o)).
Two substitutions 0,1: are equal, if Ox = Ix for all variables. If ox = u for all variables x e

W, we say 1: and 6 are equal modulo W and denote this by 0' = 1: [W].
The effect of applying a substitution 6 to a “term t can also be obtained as the result of

simultaneously replacing all variables x e V(t) by the term 0x. The composition Got of tWo
substitutions _0' and 1: is again a substitution and is usually abbreviated as 01:. The composition
can be computed for substitutions with given representations: If o = {xl {— 51,“ . .a sn}
and 1: = {y1<—__ t1‚...,ynrl <— tm } then m: = {y1<— ml,...‚ym <— cttn'1 } U
{xi (— Si l xi e DOM(0) —-—— DOM(1'.)].
_ A substitution 6 is called ground, iff I(o) = @. With GIW we denote the restriction of the
substitution 6 to the set of variables W, i.e., olwx =? 0x for x e W and alwx = x otherwise.
For a set of substitutions U and a set of variables W we denote with Ulw the set
{o lw | o e W} .

We extend the application of substitutions to atoms by o(P(sl,...,sn)) := P(Osl,....‚6sn)
and similarly for literals and clauses.

A substitution 6 i s called idempotent , iff 60 = o . It is a well-known fact that a
substitution 0' is idempotent iff DOM(0‘) (\ I(0') = (2! [He83, Ed85]. An idempotent
substitution o = {x1(— s1,...‚xn<— sn] can be decomposed into its components:

19

={x1<—- s1....,xn+— Sn} = [x1<— s l l l xze— 32}... {xn(—sn}.
A renaming is a substitution p & SUB that is injective on DOM(p) and whose COD(p)

consists of variables. If p = {x1<— y1,...,xne— yn} is a renaming , then let p" =
{y1 (— x 1,.. . ,yn<—- xn} denote the converse of p. As a technical lemma we have:

2.1 Lemma. Let p be a renaming. Then:
i) p- is a renaming ii) DOM(p) = COD(p‘)
iii) p-p = p‘ iv) p p‘ = P
v) DOM(p‘) = COD(p) vi) (9T = p
vii) p"~p = Id [DOM(p)] I

A more detailed account on substitutions is given in Chapter 10.

3. Sorted Signatures.

In this paragraph We define sorted signatures, for which we need an additional set of

symbols: '
. S): i s the nonempty set of sort symbols. Elements are denoted by R,S.

A term declaration is a pair (t,S) usually denoted as t:S, where t & T—V and S is a sort

symbol. If t is of the form f(x1,. . .,xn) , where the xi are different variables, then we say" t:S is
a function declaration, if it is of the form c:S we call it a constant declaration and

otherwise it is a proper term declaration. A subsort declaration has the form R E S,
where R and S are sorts. A predicate declaration 18 of the form P: S] x . . x S“, where the

S are sorts.

3.1 Definition. A Sorted signature)3 consist of
i) an unsorted signature f ,
ii) a set SE of sorts
iii) a function S . V-).“. —-> S , such that for every sort S 6 SZ, there exist countably

infinitely many variables x e V5;- with S (x)= S,

iv) a set of term declarations, subsort declarations and predicate declarations. I

We assume that the equality predicate ‘2 is in PZ and that for all sorts R,S the predicate

declaration =z: R x S is also in 2.

20

The effect of the function S: V f —-> S is to partition the set of variables V into the sets Vs
of variables of sort S . We abbreviate function declarations f(xl , ,xn): S as

f: S l ><.. . x S“ —) S , where Si is the sort of the variable xi.

Generally, it is sufficient for the presentation of a signature to write down only the term

declarations, subsort declarations and predicate declarations together with some information

concerning the sort of the variables occurring in term declarations.

For'algebraic specifications term-declarations appear in [Gg78,Wad82, 0083].

We use F2 for the set of function symbols, P}; for the set of predicate symbols and V; for

the set of variablesymbols in 2. The set of term-declarations and of subsort-declarations is

denoted as TD: and SDS, respectively.
Let 5}: be the quasi-ordering on SZ defined by the reflexive and transitive closure of the

subsort declarations. We say the sorts R,S are equivalent, iff R E,; S and R a; S. To
emphasize that some objects belong to the signature 2, we prefix it by in The symbols =2
Ex, =D 22 are used with their usual meaning.

In the description of a signature or in examples we indicate that a variable x or a constant c

has sort S by x:S, c:S or xs, cs.
We say a signature is finite, if its description is finite, i .e . , the set of sorts, function

symbols, predicate symbols, subsort declarations and term declarations is finite.

The definition of well—sorted terms and substitutions requires some preparation and we will

carry out these definitions and corresponding lemmas in the next paragraph.

Remarks.
i) If all term declarations are function'declarations, then the signature as defined in this

paper-corresponds to the standard definition described in the literature, (cf. [Ob62,
H080, CD83, C083, Wa84, Sch85a, Sm86].

ii) If all sorts are equivalent, then a sorted signature is equivalent to an unsorted one.

A signature is one-sorted , iff it has just one sort. A signature is many-sorted, if it has

more than one sort symbol and there are no subsort declarations. A signature is
order-sorted, if it has more than one sort symbol and there are subsort declarations. A

signature is l inear, iff all terms in term declarations are linear. A signature, where all

term-declarations are function-declarations is called an elementary signature. We call a

signature simple,'iff it is elementary and has exactly one function declaration for every
function symbol.

With this terminology, the signatures in [H080, Wa84] are simple ones, whereas the

21

signatures in [0b62, CD83, C083, Sch85a, Sm86] are nonsimple, but elementary.

Remark. The notions of a one—sorted signature and an unsorted signatures are not equivalent,
since in the unsorted case all terms are well-sorted, whereas in the one-sorted case there
may be a difference between ill- and well—sorted terms.

In the following we use the bar __ also as an Operator that assigns to every signature)3 its

unsorted subsignature, that is given a sorted signature Z, we use the signature f to provide
us with all unsorted objects of 2. For example we denote with T f: the set of all unsorted

terms of 2. The set of ill-sorted terms is the difference T): — T5 . The set of all substitutions

o: T 33 —> Ti is denoted as SUB-g .

4 . Well-sorted Terms and Substitutions.

First we shall give some introductory examples in order to provide the reader with Some
intuition on term declarations.

4.1 Example. We give a specification of the even numbers as a subset of the natural
numbers:

EVEN = NAT ; 0:EVEN; s: NAT—>NAT
s(s(xEVEND: EVEN._ l ' -

This definition works as a specification of even numbers, if we have only the set of ground
terms. In the corresponding term algebra (with term declarations) we consider terms of the
form s(s(t)) to be of sort EVEN if t is a term of sort EVEN . Hence the set of ground terms of

sort EVEN is exactly {0 , s(s(0)), s(s(s(s(0)))), ...,s2i(0),...}. In order to obtain' the same
_ semantical result with usual many—sorted Specifications there are two options: 1) The sort ODD

has to be specified and the corresponding function declarations s:ODD —-> EVEN and

s:EVEN -—> ODD must be in the signature. 2) A new function timesZ: NAT —> EVEN has to
be added together with the equations time52(0) = 0 and times2(s(x)) = s(s(times2(x)).

As a further (more complex) example we specify addition on natural numbers with the sorts

EVEN and NAT. '

4.2 Example.
EVEN : NAT; 0:13s .
s: NAT -> NAT ; +: NAT x NAT —> NAT , EVEN x EVEN —> EVEN

22

s(s(xEVEN)): EVEN.
yNAT + YNAT‘ EVEN;
yNAT + 0 = YNAT; VNA-r + S(ZNAT) = s(yNA-T + ZNAT)' I

This example is an (initial algebra) specification of the addition of natural numbers together
with even numbers. However, the initial algebra and the full term algebra (modulo equations)
do not exhibit the same behaviour: the term (x + y) + (y + x) is of sort NAT in the term
algebra, but represents always an even number in the initial algebra (the set of ground terms).

The definition of the sort of a term is straightforward. The problem is that it is not possible
to define well—sorted terms without well-sorted substitutions. As we shall see later in

paragraph 5, the following construction is appropriate for free and initial term algebras.
The set of E—terms of sort S, TE,S is defined as follows; ..

4.3 Definition: T}:‚S is (recursively) constructed by the following three rules:
i) x e TE,S If S(x) .; s. ' '
ii) tETas" If t zReZandRES.
iii) [x (— r]t e TLS I f t e TELS , r e TE,R andx e V}: such that RE S(x). I

That is, we start with the information given in the signature and the sort of the terms. A new
term t' of sort S i s constructed from a term t of sort S by replacing one of t‘s variables
simultaneously by a term of sort less than or equal to the sort of this variable.

In order to illustrate this definition we consider Example 4.2 (without equations). Rule ii) _
implies that yNAT + yNAT e TEEVEN’ hence by rule iii) s(0) + s(0) e TEEVEN’ but the term

s(0) + 0 is not a member of TEEVEN' as expected. However, all three terms are in TENAT-

A first trivial consequence of the above construction is :
4.4 Lemma. ;

i) For all sorts R,S e S}: : R = S implies TZ‚R ; Tns.
ii) For variables we have; x e T£,S @ S(x) E S. I

We define TE , the set of all Z-terms (or well-sorted terms) as the union U{Tz,s I S e SE}.
We denote the set of well—sorted ground terms of sort S by T£‚S ,gr and the set of all
well-sorted ground terms by Tag:" The sort of a term t i s defined as the set S,;(t)
:={S e SZ | t e TE,S} ' For Z-variablcs x we have Sz(x) = {S e S}: I S(x) E S}. Obviously

for every term t e T2: the set SEG) is a nonempty upper segment in S}: and for every variable x

23

e V: the set Sz(x) has a unique least element, namely S(x). We show in paragraph 5 that the

function S,;(t) is computable for finite signatures. The set of well-sorted atoms A: i s defined

as the set of expressions P(t1,... ,tn), such that there exists a predicate declaration

s lx 3 Sn and ti e Tasr The set of ground Z—atoms is denoted by A£,gr'

We say a term declaration t:S is redundant, iff t is of sort S with respect to the remaining

term declarations. If we add in example 4 .1 the term declaration s(s(0)): EVEN to the

signature, then the sort of terms is not changed. In the new signature, this is a redundant

term—declaration, since s(s(0)) is of sort EVEN with respect to the old signature. In general we

assume that there are no redundant term-declarations. We may change the definition of an

elementary signature to be a signature, where all proper term declarations are redundant.

We say 2 (or T2) is subterm-closed, iff each subterm si of every well-sorted term
f (s l , . . .,sn) is also a well-sorted term. ‘

4.5 Example. An example for a non subterm—closed signature is 2:=-_- {f(a):S}. We have F:

= {f,a], Sz = [S] and T2 = {f(a)} U VS. This means a 2 T2, hence 2 is not subterm-closed.
'

A computationally desirable property of a signature is regularity: A signature is regular,

iff E: is a partial ordering and for every term t the set SEO) has a unique least sort. The same

notion is called preregular in [GM85a]. In [Sm86] regular is used with the same meaning and a

c-h aracterization is given for elementary signatures.

In this case of regular signatures we denote this unique sort by LSz(t) and call it the
(unique) ‘sort of a term’. Note that the relation SEG) (; Sz(s) is equivalent to LSz(t) a:

LSz(s). By abuse of notation we sometimes write L.S£(x) for the sort of a variable x, even if

' the signature is not regular; obviously LSZ(x) = S(x). If E); is a well-founded, linear partial
ordering, then the signature is trivially regular. Furthermore simple signatures are always

regular. . '

We call a signature polymorphic, if it is regular, elementary and the signature has a top-sort

TOP. ' ‘

4.6 Definition. The set of well-sorted substitutions (or Z-substitutions) SUB}: is
defined as follows:

SUBz := [oe SUB: | s,;(ox) ; $200}. I

The intuitive meaning is that substitutions weaken the sorts, i.e. ox has a smaller or equal

24

sort than x for all variables xt For regular signatures we can reformulate this definition as

SUB}; := {o e SUB "El LSE(O‘x) 5 1,5300}. Obviously we have SUBS; SUB g and the
identity substitution Id: is in SUBS.

An immediate consequence of the definition of well-sorted substitutions is that the set of

codomain terms is well-sorted.

The (injective) operator ‘bar’ _ (considered as a mapping on terms and substitutions) behaves
like a forgetful functor, i.e. _ :E -—9 f , _ :T) : -) T : and _ :SUB2—> SUB: is
injective. We have 6? = 6 '. 1? for two well-sorted substitutions 0,1: and 6"? = '6(t“) .

for a well—sorted substitution O' and a well—sorted term t. This observation is helpful and

justifies the lifting of various lemmas from the unsorted to the sorted ease.

A E-renaming is a sort-preserving renaming p e SUBE, i.c., it satisfies in addition
Sz(pX) = Sz(X).

Well-sorted substitutions are compatible with the sort-structure on TZ, i.e., well—sorted

substitutions map TE,S into TZS for all _sorts S:

4.7 Proposition: For all well-sorted terms t e TLS and all well-sorted sustitutions 0' e

SUB: we have 01 & TZ,S° '
Proof:

Let t = f(t1',...,tn) e T,;S and let 0' = [xlt— sl,._..,xm(— sm} e SUBZ. If 6 is an
idempotent E—substitution, then o = {xl<— s1}o...° {xmi—é sm}. Repeated application of
Definition‘43 implies ot ; Tz’S. ' _
To prove the general case let p & SUBz-be an idempotent Z-renaming with DOM(p) = 1(0')

such that COD(p) consists of variables not occurring in t or some Si- Let p' denote the
converse of p. Then at = p'pcn by Lemma 2.1. The substitution po is idempotent, hence
we can decompose the substitution p 6 into a product as follows:

[x1e - ps1,...,xm<— psm] = {xle— psl}o...o{xm<— psm}. Every component {xm_<——psm}

is in SUB: , since sme TLR implies psme TE,R for every sort R. Hence pot e T28 by
repeated application of Definition 4.3 iii). Now we conclude from at = p'pot that
O't e T£‚S° I

4.8 Corollary. The composition 01: of two well-sorted substitutions is again well-sorted,

i.e., SUB: is a monoid.
Proof . Let 1: = {xl<— sl,...,xm(— sm] e SUB}: and let 0' e SUBE. Consider the

composition 01:. In order to show that the composition 01: is well-sorted we have to show

/

25

orx e TE,S(x) for all Z-variables x. By Proposition 4.7 we have mi = O'Si e TS,S(x) for

all xi & DOM(o). For all other variables x we have either mx = x or orx = OX. Hence c1:

is well—sorted. I

The next proposition shows that the set of all well-sorted terms can be generated by

applying well-sorted substitutions to terms in terrn—declarations.

4.9 Proposition. For every sort S e S}: and every nonvariable term s e T): 8 there exists a
term declaration t:R e Z with R E S and a substitution OE SUB: such that ot = s.

Proof. Follows by structural induction using Definition 4.3 and Corollary 4.8. I

In elementary signatures the replacement of subterms behaves similar to the application of

substitutions:

4.10 Lemma. Let Z be an elementary signature. Then
i) Sz(f(tl,. . .,tn)) depends only on f and the sorts of subterms ti.

ii) For all s,t e T): and all it 5 D(t):

Sz(s) ; S): (t\1t) => t[1l; (-— s] 5 TE and Sz(t[1t (— s]) <;_Sz(t).

Proof. Shown by induction. I '!

We show in part H. Example 6.14 that the condtion 4.10 i) is in general not sufficient to

characterize elementary signatures.

Most signatures considered in the Automated Deduction literature are regular and elementary

(cf. [GM85, Wa83, CD85, C083, Sch85a]. Algebraic specifications based on a many-sorted

signature always use elementary signatures. The signatures in [Wad82, Sch85b, G083, Gg78,

GM85a] are not elementary. An example for a non elementary signature is example 4.1 above.

In our terminology A. Oberschelp [Ob62] investigated elementary signatures, which may

be regular or_not. G. Huet and D.C. Oppen [H080] have as basis many-sorted and simple

signatures. A. Cohn [Co83] considers elementary signatures, but has no equations and a

different definition of clauses and deductions. Our approach is in fact an extension of Ch.

Walther’s [Wa83], who considered simple signatures.

We always assume the following conditions:
4.11 Assumptions: _

i) Signatures are subterm—closed.
ii) For every S 5 SD there exists a ground term tg re T&gr with S e SEO). I

26

The first assumption appears to be natural, since it does not make sense to allow ill-fonned

subexpressions in well-formed expressions. Furthermore non subterm-closed signatures

would cause technical problems, for example structural induction would not be possible.
The second assumption is necessary to ensure that sorts are not empty. It is possible to

make deductions with empty sorts, for example J .A. Goguen and J . Meseguer [GM81] permit

empty sorts. Their idea is to do as if sorts are nonempty and to collect all these nonemptyness

assumptions during a deduction. The deduced sentences are then of the form: If the sorts
, Sl,...,Sn are not empty, then F holds. _

However, from our point of view, this is more a problem at a meta—level and should not be

confused with the pure sorted calculus. For example the proof of the nonemptyness of sorts

could be carried out in a pmprocessing step and afterwards the" deduction system would have a
solid basis. .

Automated deduction systems based on resolutionusually work with the tacit assumption
that ‘sorts are nonempty, since otherwise the combination of resolution and order-sorted

unificationbecomes unsound. For example if S is an empty sort, the two statements P(x:S)

and -.P(x:S) are not unsatisfiable.
Note that Assumptions 4.11 ii) implies that every well-sorted term t and every well—sorted

atom A has a well-sorted ground instance, i.e. there exists a Z-substitution o, such that ot is a

ground term (oA is a ground atom). For every Z—algebra A the assumption 4.11 ii) implies
that for every sort S 5 SE, the set S A is not empty (Corollary 6.5).

Further assumptions like finiteness of the set of sort SE are made explicit when they are
needed. For finite signatures the above assumptions are decidable properties: ((i) is proved in

Proposition 4.9).

4.12 Lemma. For a finite signature it is decidable if 4.11 ii) is satisfied.
Proof. We can compute the nonempty sorts by a simple fixed-point iteration (using

Definition 4.3). I

5. Order-sorted Matching

5.1 Definition. Let s,t 6 TE. Then
i) s z z t iff there exists 0' e SUB: such thats = Gt.

In this case we call 0 an instantiating substitution of t to s and s a Z-instance of t.
ii) sag t iff s s z t andszzt. I

27

Sometimes 0' is called a matcher of t to s, however, this should be reserved for the case
DOM(O‘) n V(s) = @.

The relation S}: is a quasi-ordering on well—sorted terms and =; is an equivalence relation.

We extend the instance relation of terms to well—sorted substitutions.

5.2 Definition. Let W g: V and 6,1: 6 SUBS.
i) 0:1: [W] ,iffox=1:x fo ra l lxe W.
ii) 0 22 1: [W] , iff there exists a }. e SUB}: with o = M [W].

In this case we call 7L an instantiating substitution of 1: to 0 and o a 2-instance of
1: modulo W.

iii) aflW] ‚iff o sz t [W] and 0221: [W] .

Obviously the relation SEW] is a quasi-ordering on well-sorted substitutions and the relation

=};[W] is an equivalence relation. If W is the set of all E—variables, then we write S}: instead

of SZWZ] .

The computation of instantiating substitutions for unsorted first order terms (often called the

Robinson case) is well—known [R065‚ Hu76, FH83]. In particular the following holds: If

there exists a substitution 6 with s = ot, then there exists a unique (effectively computable)

substitution t, such that s = tt and DOM(t) = V(t). We have 1: = o [V(t)]. If t is not a

variable, then depth(s) > depth(tx) for every variable x e V(t). The same holds for the

instance problem of substitutions.

The proof of the following lemma gives a recursive al gorithm for the computation of the sort

of a term.

5.3 Proposition. For a finite signature 2. the Sort SEO) is effectively computable. for all

terms t. '

Proof.The proof is by induction _on the term depth:
Le t s e Tin ' ' _

As a basis for induction we have to compute the sort of s if dcpth(s) = 0. But this is a
tn'vial computation: either s is a variable or s is a constant and then .we have to examine at

most finin'ely many term declarations. .

If depth(s) > 0, then for every declaration tizsi we can compute the (unsorted) Robinson

matcher ci with oiti = s. For every term r e COD(oi) we have depth(r) < depth(s), since
variables are forbidden as terms in term declarations. To check the well-sortedness of di

28

requires to compute the sort of all terms in the codomain of ai. The condition to check is:

(Six e TE.S(X) for every x e V(s). This is decidable by induction hypothesis. I

5.4 Corollary. Let 2‘. be a finite signature. Then
i) For two well-sorted. terms s,t, s 5): t is decidable. Furthermore an instantiating

substitution p. with us = t and DOM(|.L) ; V(s) is unique, if it exists.

ii) For two well-sorted substitutions 0,1: it is decidable whether o 52 1: [W] (for a set of

variables W). Furthermore an instantiating substitution ll with DOM(u) ; V(oW) and

no: 1: [W] 'IS unique, if it exists. I

A consequence of Proposition 5. 3 is that for finite signatures the subterm—closedness is

decidable:
5.5 Lemma. For a finite signature 2, it is decidable if it is subterm-closed.
Proof. Assume there i sa well—sorted term s == f(s1,...,sn) with an ill-sorted subterm sj.

Proposition 4.9 yields that there exist a' declaration t:S and a substitution o, such that ot =s.

This, means that t_ has an ill-sorted subterm. Hence the procedure for testing

subterm-cldsedness may work as follows: Compute the sort of all subterms of terms in
declarations. If all subterms are well-sorted, then 2“. is subterm—closed, otherwise it is not

subterm-closed. This check is finite, since the signature is finite and the sort of a term is

computable in finite signatures by Proposition 5.3. I

5.6 Corollary. In finite signatures it i s decidable, whether a term-declaration t:S is

redundant. I '

5.7 Proposition. In finite, elementary signatures it is decidable whether a set of sorts is the

sort Sz(t) of some term t.

Proof. A fixed-point iteration using Proposition 4.9 and Lemma 4.10 gives a terminating
algorithm to determine all sets possible as the sort of a term. I

5.8 Corollary. For finite, elementary signatures it is decidable, whether they are regular. I

In III.6.5 ff. we give a method to check regularity of signatures.

For every function symbol f we collect the term declarations with terms starting with f and

choose the maximal ones with respect to 52° We define mgterms(f,S) (most general terms)

to be a set of representatives of SZ,-minimal terms in {t I t:S' e 2‘. with S' E S}. By Corollary

5.4 this set is effectively computable. The terms in mgtemis(f, S) are said to be basic, iff

29

they are of the form f(x1,. . .,xn) where all xi are different variables.

Let us have a look at the time complexity of sort-computation. In the trivial case of simple

signatures, we can compute the sort of a term by inspecting its toplevel function symbol.

In signatures with multiple function declaraüons, a recursive algorithm which does not

store the result of computing may behave exponentially:

Consider the term (s l * (s2 * (. . . * su) . . .) and assume there are two function declarations

for *. Then the sort—computation of s l is performed 2 times, the sort computation of $2 is

performed 4 times and the sort computation of sn is performed 2“ times.
However, if the results of computing sorts is stored then sort—computation is quasi-linear, i.e.

of time complexitiy less than O(nl+e) for alle > 0:

5.9 Proposition. Sort-computation in finite signatures has quasi-linear time complexity.

Proof. Let t be a E—term. We can assume that we proceed by first computing the sort of

subterms of t, i.e., we first compute the sort of subterms of depth 1, then the sort of

subterms of depth 2 and so on. Obviously the number of subterms of t is linear in the size

of t. Since the signature i s finite, all operations connected with the sorts and term

declarations require constant time, for example subsort-checking or matching a

term-declaration against an arbitrary term. Due to Proposition 4.9 the operation to be

performed is matchin g a term declaration and subsort checking. Hence sort-computation is

quasi-linear. I '

6. Algebras and Homomorphisms.

As a prerequisite for the definition of a Z—algebra we introduce the more general technical

notion of Z-quasi-algebras, which is an extension of the notion of partial algebras [Gr79,

BR87] by denotations for sort symbols:

Let Z be a signature. A E-quasiealgebra fl! consists of a carrier set A, a partial function

f„: Aarity(f) -) A (with domain 1)(f„)) for every function symbol f i n Z, a set S „ g; A for

every sort S , such that the carrier A is the union of denotations for sort symbols in 2‘. , i.e.,

A= U{S„ IS 6 SZ} .

Let Fl be a E-quasi-algebra. We say a partial mapping (9: VZ —-) A is a part ia l

Z-assignment, iff <p(x) e S(x)fl for every Z-variable x e map). If (p is a total funtion, we

30

call it a I‘m-assignment, The homomorphic extension % of a (partial) E-assignmcnt
cp: VE ->' A on T2 is defined as a (partial) function (ph: T2: _) A as follows:

i) (ph(x) := (p(x) for all Z-variables x @ mp) and
_ii) for every f(sl,...,sn) 5 T2: .

if Si e D((ph) for i = 1,... ,n and ((phsl,...,q>hsn) e fifa)

then f(sl,...,sn) e Daph) and <ph(f(s1,...,sn)) := f2(‘Ph51v"-"Phsn)-

This definition makes sense, since we assume that signatures are subterm—closed.
The reason for introducing partial Z—assignments is that sorts may be empty in Afr-algebras and
if one denotation for a sort is empty in a Z-algebra fll, then there exists no total Z-assignmcnt.
However, as it will tum out below, Assumption 4.11 implies that in E-algebras denotations

for sorts are always nonempty.

6.1 Definition. Let Z be a signature. Then a II,-algebra fll is defined as a E—quasi—algebra
fl that satisfies the following additional conditions:

i). IfR= 3 is in 2:, then R,„<;s,„l
ii) For all tenn—declarations t:S e 2 and for every partial E—assignment (p: V}: —> A with

V(t) ; 2)((p): _ t e D((ph) and (ph(t) e S „. I

Note that the second condition has strong implications for the domain of functions f„ On 2.
In the following we do not distinguish between an algebra fland its carrier A and we denote
both with A.

6.2 Definition. Let E be a signature and let A and B be E—algebras. A Z-homomorphism
is a mapping (p: A —> B such that:

i) (p(SA) <; SB for all S e S):-

ii) (p(QJ(fA)) ; flfB) for all“ f e F}:—

iii) If (a l , . . . , a „) ' e mA) then <p(fA(a1,...,a‚'‚) = fB((pal,...,<pan).

Obviously, the composition of two E—homomorphisms is again a Z-homomorphism. A
E—homomorphism (p: A —> A is called a Z-endomorphism. A bijective E—homomorphism
(p: A -—> B is called a Lisomorphism, if the inverse mapping is again a E-homomorphism.
In this case we say A and B are isomorphic as Z—algebras.
Note that for every Z-algebra the identity IdA is a E—endomorphism of A.

We also need the notion of a partial 2-homomorphism. This is defined as a partial
/

31

mapping (p:A _» B, such that Definition 6.2 i) and ii) are satisfied hon map) and instead of iii)
we have : .

iii)‘ If (a l , . . .,an) e @(fA) and ai e dtp) then f A(a1 , .,an) e ®(tp) and (p(fA(a1,...,an) =

fB((pa1,,(pan)

The term algebra of well-sorted terms is a Z-algebra with carrier set T}: if we define:
i) ST: := T218 for every sort S e S};-

ii) @(fu) := {(s1‚...,sn) | f(sl , . . . ,sn) 5 T2] .

iii) f“ (s1,...,sn) := f (sl‚...,sn).

Since we have assumed that 21 is subterm-closed, this is a 2-algebra,by Proposition 4.7 and
by Lemma 4.4. The set of Z-endomorphism of TE that move only finitely many variables is

exactly the set of well-sorted substitutions, i.e., SUB: = {(p: T}: —> T): | (p is a
Zrhomomorphism and DOM(cp) is finite}. Note that the set TE? is also a Z-algebra according

to these definitions. —

Now we show that the Z-algcbra T2- is the free algebra of type 2 and that the ground term
algebra Tngr is the initial algebra of type E:

6.3 Proposition. Let A be a E—algebra. Then the homomorphic extension (Ph of every partial

E-assignment (p: V): -—> A is a partial Z-homomorphism with domain ®(tph) = {t e Tz l
V(t) ; Q)((p)}. Furthermore (Ph is a E—homomorphism for a total Z-assignment (p.
Proof. We show by structural induction according to Definition 4.3. that (ph is a partial

2—homomorphism. Definition 6.1 serves as an induction basis for our proof.
First we show that Definition 6. 2 i) holds for (ph:
Let t 6 T2 S , r e T,; R and let x be a variable'm t such that R E S(x). By Definition

4 3 iii) we have [x (— r}t e T25. Let (p: VE _) A be a Z-assignment.
We have to show that V({x (— r}t) <; 1)(q>) implies {x (— r}t e D(tph) and

cph[x (—r} te SA. . '
If V(r) $ 03((p), there is nothing to show, since then V([x (— r}t) «.; dtp).

Hence we can assume that V(r) g; Qt) and V(t)-[x] ; dtp).

By induction hypothesis we have r e @(cph) and (phr e R A, hence we can define the

E—assignment w : V; —> A as follows: \|!y := (py for all variables y e V(t)—{x} and

wx := (phr. This is a Z-assignment, since R E S(x). Again by induction hypothesis we
have wht e S A! since my): V(t). Now ‘l’ht _- <ph{x (— r}t implies {x (— r] t e ®(tph) and

<ph[x (— rlt e SA. EI

32‘

Parts ii) and iii)‘ of the definition of a partial E-homomorphism are easy to see:
(ii) is equivalent to the claim that for f(sl ,. . .,sn) e Qth) the function fB is defined for the

arguments ((phsl,. . ., tph'sn). _
(iii)' follows from the above and from the definition 'of homomorphic extensions. I

6.4 Corollary. The E—algebra T231. is the initial algebra of type 2:
Proof. Application of Proposition 6.3 to the empty Z—assignment yields for every Z-algebra

A a unique Z-homomorphism (p: Tz,gr —> A. I

6.5 Corollary. For every E—algebra A and for every sort S e 5;, the set S A is nonempty.
Proof. Follows from Assumption 4.11 ii) together with the initiality of the ground term

algebra as proved in Corollary 6.4.

In the following we do not distinguish between a Z—assignment (p and its extension (Ph and
denote both by (p. '

Remark. It may be possible to extend this machinery to non subterm-closed signatures, but

there we have the problem thata is not the initial algebra, since Operations have to be
defined on ill-sorted terms.

7. Z-congruences .

In this chapter we define and develop some properties of E—congruences for later use in the

context of equational theories , as well as for semantic issues. Most definitions are

straightforward generalizations of the unsorted and order-sorted case, nevertheless, they

should be made precise. '

We define SUEZ-invariant E-congruences in the usualway as follows:

7.1 Definition. Let A be a Z-algebra. Then the binary relation E on A is a
E—congruence, iff the following conditions hold:

i) The relation E is an equivalence relation on A.
ii) For every f 6 Fan, and for all element 31-, bi e A:

if ai E bi for i =1,...,n‚ and (a1,...,an), (bl, . . . ,bn) e Q)(fA) then fA(a1‚...,an) E

fA(b1‚...,bn).
Furthermore, we call a congruence s trong [Gr79],'iff ai % bi for i =1‚...,n, and

33

(a1....,an) e a:»(fA) implies that also (b1....,bn)e am. I

7.2 Definition. Let A be a Z-algeb'ra. Then the Z-congruencc : on A i s called

fully invariant [BS81] iff for every E—endomorphism (p of A we have:
aa b = (p(a) E (p(b). I

Fully invariant congruences on the free term-algebra T): are also called SUBS-invariant, since

in this case it is sufficient to use E—substitutions instead of all Z-endomorphisms.

An important example for fully invariant congruences are equational theories. In this thesi§ we

are mainly interested in fully invariant E—congruences.

An example for a strong congruence is syntactical equality of terms.
An instructive example for a congruence that is not strong is:

7.3 Example. Let 2 be a signature with 2 := [B = A, h:B, f:BxB —> A , h:B —-) B}.

Assume that f is idempotent, i.e. we have the defining equation f(x, x) = x . Let E be a

fully invariant E—congrucnce on T2“. generated by this equations. (In paragraph 9 cquational

theories are treated in more detail)
The two terms b and f(b b) are congruent, but have a different sort. The constant b is of

' sort B and the term f(b, b) is of sort A. Hence h(b) is a well-sorted term, whereas

h(f(b, b)) is not. This means the congruence is not strong in the sense of Definition 7.1. I

7.4. Definition. Let A be a E—algebra and let "“ be a II.-congruence on A. Then we define
the quotient E—algebra as the the factor A / "=“ (the quotient of A modulo f...-) as follows:
i) SA,! := [a /E lae SA} for all S e S):-

ii) mw Faxe.) / a. ‘
iii) For all (al/E. . . . , 311/506 Q&A/E) we have fA/E (al/E, . . . , an!—“=) := fA(_a1,.. .,an) [a .

It is not difficult to see that A [E is a Z—algebra:

7.5 Proposition. Let A be a E—algebra and let 5 be a Z-congruence. Then A / E is a
' E—algebra and the (canonical) mapping 7: A -> A / a with 7(a) := ala is a

Z—homomorphism.
Proof. The well—definedness of fA]: follows from Definition 7.1 ii), hence A / E is a

E—quasi-algcbra. We prove the requirements of Definition 6.1:

i) Let R,S e S}: with R E S. Then RA ; S A , since A is a Z—algcbra. Hence the relation
[ala | a e RA] ; [ala | a 6 SA] holds, which means RNE ; SHE.

ii) Let t:S be a term declaration and let (p5: V,; —> Ala be a (partial) Eassignment with

34

@((p§) ; V(t). By Definition 7.4 there exists a partial Z-assignment. cp: V}: -> A with

(p(x)/a = q>§(x) and map) = ®(cp5). By an easy induction argument we see that

(p (t) /= = (p, (t). Definition 6.1 ii) implies that (p (t) e S A , hence
(pm/z: (p_(t) e S Al! Cl

In order to show that y is a E—homnmorphism, we have to check the three conditions of

Definition 6.2. The first two, namely “SA) ; S Ala for all S e SE and um.» (; DHH.)

for all f 5 F2, are trivially satisfied. The third condition follows directly from Definition

' 7.4 iii). I

There is as usual a strong connection between Z—congruences and Z-homomorphisms:

For two E-algcbras A, B and a E-hornomorphism (p, : A —) B let the relation a? (the kernel
of (p) on A be defined as al. Eq) a2 iff (p(a1) = <p(a2) for all al, a2 6 A.

7.6 Proposition. Let (p : A —-) B be a Z—homomorphism of two Z—algebras A, B.

i) The kernel of a E—homomorphism is a Z-congruence.

ii) (p is a Z-isomorphism, iff (p is bijective, @(sA) ': 33 for every Z—sort s and «q» =
DGB) for every E—function symbol f.

iii) If (p i s surjective, (p(SA) = SB for every E-sort S and (p(1)(fA)) = 1363) for every

F.;-function symbol f, then A/Eq, is Z-isomorphic with B.

Proof. The proof is straightforward . .

Note that part iii) of the above proposition may be false for a surjective homomorphism (p in

case the Other conditions are not satisfied.

For a SUEZ-invariant Z—congruence 55 on the free terrn—algebra all endomorphisms of a
factor TZ];- can be computed from endomorphisms of T2:

7. 7 Proposition. Let A be a Z-algebra and l e t= be a fully invariant Z-congruence on A.

Then
i) For every endomorphism <p:A —> A the mapping (p_: A/= --> A/= defined as (pam/=).':

(p(a)/= is a Z—endomorphism on A/=. Furthermore <p(a)= Ma) for a l la e A implies

‘P=== “!=.
ii) For every endomorphism \lt: Tz/s —-> Tz/E there exists an endomorphism (p: TX -> T}:

such that (p55 = w.
' Proof. i) Let tpzA —) A be an endomorphism." Let (pa: A/E -> NE be defined as

35

(PEGVE) := (“a)/5. Then the full invariance implies well-dcfinedness of (pa. It is an
_ easy task to verify the remaining conditions for a Z-homomorphism.

ii) Let A := T): and let w: NE —> Ala be an endomorphism of A/E. Then we obtain a
E—homomorphism (pzA _) A as follows:
Let “y: A —> Ala be the canonical E-homomorphism. Then W7 : A _) A/E is a
Z-homomorphism.
Let x e V}: be a variable and let S := LSz(x). We have \Wx e S Als and there exists a
term [x e S A with tx/E = w. Now (p defined as (px := tx for all x e V): is a (total)
E—assignment. Obviously we have (p5 = w. I

8. Specifications, Structures and Models.

This paragraph on specifications and models is restricted to clause sets.
In part 11.12 we consider an extension to full first order predicate logic, i.e., including the
quantifiers V and El. .

Usually, the notion specification is only used if some fixed model is to be specified. We
use this term also in the general case of arbitrary clause sets.

8.1 Definition. A E-specification i s a pair 5 = (E,CS)‚ where E is a signature and CS i s
a well-sorted clause set. We assume that every clause set CS contains the reflexive axioms
xszxs for every sort S. I

8.2 Definition. A Z-quasi-s tructu re fl! is ‚ a E-quasi-algebra which has additional
denotations PA for every predicate symbol P 5 PZ, such that '
i) PA is a relation with PA g AafityCP)
ii) =A is the identity on A, i.e., =A = {(a,a) I a e A} .
We say a Z—quasi—structure ‚9! is a E—structure, iff the underlying Z—quasi—algebra _is a
Z—algebra . I A

Note that Definition 8.2 ii) enforces a particular interpretation of the equality symbol. The only
possible interpretation o ‘=’ in structures will be to denote identity.

The notion of a E—quasi-structure i s later needed for conservative transformations in 11.7.

We do not introduce the notion of the ‘domain of a predicate’, since it obscures the intuition
and complicates proofs. Instead we always assume that the domain is the whole set Aafitya’) .
A drawback of this omission i s the lack of a semantical correspondence of the predicate

36

declarations.

"We can extend all notions for algebras to structures: We state those extensions cxplicitcly that
deal with atoms and predicates: '
A E—homomorphism (of S.)-structures) (p: 2 —> CB is a Z—homomorphism of the underlying

Z—algcbras satisfying in addition (a1,...,an) e PA => (<pa1,...,(pan) & PB.
We can turn T): into a Z—structure by adding the definitions PT}; := 0 (if P is not the equality
symbol). This is in fact the free 2—structure.
A Z-congruence E (of E-structures) on A is a E-congruence. (of Z-a lgebras)

satisfying in addition: if ai E bi for i =1,.. . ,n, then (a1 , . . . , an) e PA implies

(b1.,. . , b n) e P A ' >
In a similar way as for Z—algebras we have quotients modulo a congruence and all properties
are as usual.

Now we oan define Z-interpretations and Z-models for a Z-specification 5 .
Let 5—'- (2, CS) be a specification:

A E-- in te rpre ta t ion I = (M, (I)) for CS i s a E-stru'cture M together with a

E—homomorphism (1)s —) M. ‘

Since T2: is the free 2-strcuture, it suffices to specify a Z—assignmcnt (I): V}: —-> M .

We say an interpretation I_= (M,<I>) satisfies a Z-atom P(t1,...,tn) e AE, iff (¢t1, . . . , (Dtn) &

PM. Altemativiely, we may say P(t1,. . .,tn) is valid in I. As an extension, we say I satisfies a
positive literal +A iff it satisfies the atom A. Furthermore we say I satisfies a negative literal

-A iff it does not 'satisfy the atom A. An interpretation I satisfies a clause C iff some literal in C

is valid m I. Note that no interpretation satisfies the empty clause. An interpretation I satisfies

a clause set CS, iff 1t satisfies every clause C 5 CS.

8.3 Definition. A E-model M for a clause set CS is structure M, such that for every
Z-assignment (I): V): —-) M , the interpretation (M,<I>) satisfies the clause set CS.

We say a clause set CS is satisfiable (unsatisfiable), iff there exists some. (no) model

Mfor cs.
Furthermore we say a clause C is a consequence of the clause set CS, iff for every model

Mof CS, Mis also a model for C. I

We give an example for II,-models, which shows in particular that equations in specficiations

can have strong implications on the sort-structure of the models.

37

8.4 Example.
i) Let E := {B = A, C = A , b:B, c:C, gB:A—>B, gczA—-> C } and let

C3 := { {XLB $ X213} : {gB(x3‚B) = ‚':33% {gC(x3 ,C) = X33} .

{MA = EMMA), "4,A '" gc("4,A)} }—

These equations in CSI enforce that in every model M the set AM is the disjoint union of

BMI and CM, i.e., we have AM = BM U CM and BM n CM = @. The clause set CS has a
2-model M = {b,c} with AM = {b,c], BM = {b} and CM = {0] together with the

operations gB’M(b) == gB‚M(°) = b and gC,M(b) = gC,M(°) = 0. Note that 21 is regular and

satisfies conditions 4.4 . CI
ii) Without equations it is only possible to enforce disjointness of sorts. A clause set that

enforces the disjointness of two sorts A and B is CS := { {P(xA)}, {—P(xB)]]

For technical reasons one can view an interpretation also as a set of true literals. The

corresponding Herbrand interpretations (H-interpretations) or Herbrand models

(H-models) are defined as sets of well-sorted ground literals.

8.5 Definition. An Hr.-interpretation is a set M of literals (with meaning: set of true or
valid literals) satisfying the following conditions:

i) For every well— sorted ground literal L either L or -L is in M.
ii) t=t e M for every well-sorted ground Z—terrn t (reflexivity).
iii) If s=t is in M, then t=s is in M (symmetry). '
iv) If s1 = 52 , 52 = 53 e M, then s l = S3 e M (transitivity).

v) If si = ti e M and f(sl,...,sn), f(t1,...,tn) e TE, then f(s1,...,sn)=f(t1,...,tn)e M.
vi) If Si = ti e M and the literal :tP(s1,...,sn) e M then iP(t1,...,tn) e M, provided

iP(t1, . . .,tn) is well-sorted. El
An Hi.-interpretation M satisfies a clause C iff for every ground instance oC the

intersection of M with O'C is not empty.
An H—interpretation M is called a HE-model of a clause set CS, iff it satisfies every clause

C 5 CS. I

We show that the ‚notion of satisfiability defined by models and H-models is Equivalent This

justifies to use the appropriate definition for completeness proofs ‚for deduction systems.

Furthermore the next theorem i s a sorted version of the Löwenheim—Skolem theorem, that

every satisfiable set of formulae has a model over a countable carrier. '

8.6 Theorem. Let 5 = (2,CS) be a specification. Then 5 has e E-model iff it has a
HE-model.

38

Proof. "=>": - ' ' .» . '
Let M be a Z—model of 5. We define M to be the set of all well-sorted ground literals that

are satisfied by M This makes sense, since T2.gr is the initial algebra. Let “y: T}:‚gr _) M be

_ the canonical Z—homomorphism. We show that M is a Hi.—model:

i) follows from the definition of M '

ii)-vi) are trivial consequences of the initiality of T2,gr and the interpretation of the equality

symbol in M.

It remains to show that all clauses are satisfied by the HE-model M. Let C be a clause and

let 6 be a well—sorted ground substitution. Then yo: Tz,gr —) M is a E-homomorphism.

Hence there exists a literal L in C, such that L is satisfied by the E-interpretation (M70).

Hence‘oL is satisfied and by definition in M. Cl

"¢=": Let M be a Hr.-model of 5. We define a Z-model M as a quotient algebra of TEST .

Let a be the following relation on T£,gr‘ s E t :c: s = t e M. Conditions 8.5 ii)-v) imply

that 5 is a E—congruence on Tz,gr- It is even SUEZ-invariant, since all terms in T2.gr are

ground. We define M := Tag!/5° We define the relations PM:= {P(t1/-E,..., tn/E)l
P(t1,..., tn) e M. '
Condition 8.5 vi) implies that the definition of PM is well-defined. Obviously M is a

structure according to Definition 8.2. .

To show that every clause C is satisfied by M is trivial, since E—assignments correspOnd to

ground substitutions. I '

8.7 Corollary. For every clause-set CS that has a E-model, there exists a. Z-model with

carrier Ting/E where E is a SUBS-invariant Z-congrucnce on Tz,gr- Furthermore if no '

equational literals are in the clause set then there exists a Z-model with carrier Tngr I

9. Equational Theor ies , Birkhoff’s Theorem.

A Z-equat ion is a pair of E-terms, written as s = t. An ax ioma t i za t i on (or a

specification) of an equational theory is a pair ‘E = (E, E) where E is a set of equations

(or the set of axioms, or the presentation). We say a Z-algebra A satisfies an equation s = t,

written A != s = t, iff (ps = (pt for every Dassignment (ps —-> A. A Z—algcbra A satisfies a Set

E of equations (or A is a E-model for E), if i t satisfies every equation in E. We denote this by

A t: E. An equation s=t is a consequence of a set of identies E, iff s=t is satisfied by every

Z—model of E. We define the equational theory T(£) to be the set of all consequences of E.

Two axiomatizations £1 and £2 are equivalent, iff their sets of consequences are the same,

i.e., if T(£l) = T052). Note that there may exist different axiomatizations of the same

39

equational theory. We say an equational theory T(£) is finitely presented, iff its set of
axioms E is finite.
From now on we will use the notation £ instead of T(£) for an equational theory.

9.1 Definition. We give a derivation system for order- sorted equational theories. We denote
the deduction relation by |— -:
i) +— t=t for every t e TD

ii) {s=t} &- t=s
iii) { r=s, s=t} |— r=t.
iv) If f(sl,. . .,sn) and f(t1,. . .‚tn) are well-sorted, then

{SI = t1‚..., s“ = tn] I- f(s1,...,sn)= f(t1‚...,tn).
v) { s=t} t— os=ot for every well-sorted substitution o. I

We write TEI— s=t if there exists a finite proof of s=t starting with equations from E using the
rules (i) - (v).

The following Completeness theorem is the well-known Birkhoff—Theorem extended to the
order-sorted case.

9 . 2 Theorem. Zr: s=t iff Elt- s=t for all well-sorted terms s‚t and all sets of axioms E .

Proof. i) £}- s=t => Til: s= t :
The proof 1s by induction on the length of a deduction. We show that if A 1s a model of the
equations on the left hand side of the rules then A IS also a model of the derived equation.
For rules (i)-(iv) this can easily be verified. To prove the soundness of rule (v), let A be a
model of s=t, let o be a Z—substitution and let (p: V2: _) A be a Z-assignment. Then (po is

also a E—assignment, hence ((po)s = ((po)t and consequently (p(os) = (p(ot).
i i) Ill: s=t = £!— s=t:

The relation== 011 T): defined as s -= t, iff £!— s=t‚ is a Z—congruence on TE. It is also
SUB E—mvanant, since the restriction of a Z-endomorphism of T: on a finite set of
variables is a E-substitution.
We show that T}: /== is a model of £:

Let (p__: V}: —> Tz l= be a E—assignment and let s=t be an identity from £. Then. there

exists a E—assignment (p: VE _) TZ with q)(x)/= :: (pE(x) for all III-variables x. Since s—= t
and E is SUBS-invariant, we get (ps E (pt. This means (ps/E = (pt/5 ,— hence by
Proposition 7.7 we obtain (pE(s) = (950)— ' '
Now we are ready, since an identity so = to that is not derivable from £ yields different
elements solä and tO/E , hence T}: / = is not a model for 50 = to . I

40

As usual we abbreviate € |— s=t as s =‚L. t or s =££ t for E-terms s and t. We have the
following fact: .
9.3 Propopsition. The relation——z£ is the least SUEZ-invariant E—congruence on TD such .

that for all s=t e E the relation s -_}; E t holds. I

The quotient algebra Tz’gr/ =z£ is the standard model for the equational theory E. It is the _
initial model 111 the variety of all models of 23. The quotient algebra T2 /=E,E is the free _algebra
in the variety of all models of 95. If 12 :9 , then =0 is the syntactical equality of terms.

An equational theory £ i s consistent iff it has a model consisting of more than one
element,‘1.e., there are two terms that are not =):‚E -equal, otherwise we call £ inconsistent.
Note that a theory is' inconsistent, iff the equations x = y are derivable for all E—variablcs x,’y.

' Nevertheless, for a consistent theory an equation x = y may be derivable for some sorted
variables x,y (even with different sorts). This is an appropriate way to encode sorts that
consist exactly of one element, such- as the sort ZERO in the integers, which has 0 as its
unique element. ‘

We extend E-equality to well-sorted substitutions by definingf
0' =££ 1: , iff 6x =E‚E t‘x for all variables x.

If we are only interested in the behaviour on a set V of variables, we write
o=z£ t [V], iff (Ix-15 tx for all variables x e V.

If the set of axioms is empty, i.e., there are no defining. equations, then we may abbreviate
=z,0 as =2.

I Since }; £ is a SUBz-invan'ant congruence we have by Proposition 3.10 that O=E£ 1: and s
}; £ t implies that os—; £ It. This can be strengthened to

9.4 Lemma. If s =};£ t and 0 =}:£ 1: [V(s) n V(t)], then os =E,E ot.
Proof. see [He87]. I

An cquational theory £ i s called deduct ion-c losed , iff s1 =):‚E t1 , . . . , sn =E,E tn and
f(sl,...,sn) e T): imply that f(tl,...,tn) is also well—sorted (i.e., iff the congruence =Z,E is a
strong congruence). Obviously an equational theory 95 is deduction—closed, iff the replacement
of equals for equals does not produce ill—sorted terms from well-sorted ones.
An equational theory 2: is called sort-preserving, iff for all relations s =2 ,E t we have also
Sz(s) = S,;(t). This implies that sort-preserving theories are also deduction-closed.

41

In general it is undecidable whether an equational theory is deduction-closed or sort-preservin g

(see paragraph 11.6). However, for elementary signatures the deduction-closedness is

decidable (cf. Proposition H.6.7).

We distinguish different classes of equational theories: A theory 1: is regular, iff s =E,E t

implies V(s) = V(t). Obviouslya theory is regular, iff every equation in its axiomatization has

this property. A theory is collapse-free, iff t =£,E x implies that t is the variable x itself.

Again it can be decided by looking at the axioms whether a theory is collapse-free or not. A

theory is finite, iff every equivalence class w.r.t =E,E is finite. A theory is simple, iff s
=):‚E t implies that 3 is not a proper subterm of t [BHSSG]. A theory is Q-free, iff for every

function symbol f the equations f(s1,...,sn) =23 f(t],...,tn) imply Si =}:‚E ti for all i. It is

undecidable whether equational theories are finite, simple or Q—free [BHS86].

The word problem of an equational theory is the problem to decide whether s =2,E t holds for

given E—terms s,t . In general the word-problem is undecidable [Ta79, Mc76]

However in (unsorted) finite equational theories the word problem is always decidable. In

order-sorted, „finite equational theories the word problem is decidable, if they are

deduction-closed. In paragraph IV.3 we take a Closer look at finite theories.

10. Subs t i tu t ions .

We introduce some notation and technicalities that are needed in later proofs. Almost all

notions, lemmas and proofs are straightforward extensions of the unsorted case by using the

operator _ for lifting results of the unsorted case to the order-sorted case, as e. g. in [He83,

Ed85, Hu76] . _
Idempotent substitutions (i.e.‚ o satisfies 66 = 0) are an important subset of all

substitutions. The crucial property of idempotent substitutions is that their domain and

codomain have disjoint sets of variables, i.e., DOM(O') 0 KG) = @. Since these two properties

are equivalent, we often say a substitution i s idempotent and mean DOM(o) n I(o) = Q. A

disadvantage is that the composition of idempotent Substitutions may not be idempotent, hence

the subset of idempotent substitutions is insufficient as a theoretical basis.

There is a sufficient criterion for a product of idempotent substitutions to be idempotent:

10.1 Lemma. [H683]: Let 0,1: be idempotent E—substitutions with DOM“) "0 1(0) = @.

Then der is idempotent. I '

42

Two Z-substitutions 6,1: with (DOM(O') UI(O')) (\ (DOM(t) UI('c)) = Q are pennutable, i.e.,

Got = too. - ' '
For two Z-substitutions 0' and t with O’ = 1: [DOM(O‘) U DOM(1:)] , we can define their

union, denoted by 0 U 1, as the substitution with DOM(o u 1:) = DOM(o) U DOM(t),

our = o [DOM(o)] and 0 u 1: = 1: [DOM(t)].

Let us recall the definition of a E-renaming: A substitution p e SUB E is called a

Z-renaming, iff p maps variables into variables, p is injectivc on DOM(p), and S(x) =

S(O'x)-for all x 6 V2; Note that E—renamin gs may be not idempotent. For every Z—renaming

p = {x1(—— y1,...‚ xn (— yn} a converse p“ is defined as p‘ :={y1<— x1,..., _yn (- x'n}. A
substitution p e SUB}; is called a Z—permutation, iff p is a bijective Z-renaming. It follows

from this definition that a E—permu'tation -p has an inverse p- with pp“ = p'p = Idz. Hence the

set of all permutations is a group together with Id; and the composition of substitutions (o).

Obviously restrictions of Z—permutations are E—renamings. Furthermore every E—rcnaming is a

restliction of some E—permutation.

There are enough (idempotent) rénamings to rename every finite set V of variables, since

we have assumed that for every sort there are infinitely many variables.

We summarize the properties of p“ in a Lemma (cf. 2.1):

10.2 Lemma. Let p be a Z -renaming. Then:
i) p‘ is a Z -renaming ii) DOM(p) = COD(p"')

iii) D0M(p-) = comp) iv) (p-r = p
v) p-«p = 1d,; [DOM(p)]
vi) If p is idempotent, then p U p“ is a E—permutation.

vii) If p is a permuation, then pp‘ = p‘p = Id: I

10.3 Proposit ion.
i) Let s,t 6 T2. Then s a: t <=» there exists a E-petmutation & with Es = t.
ii) Let 0,1: 6 SUBZ. Then o E: t [W] <=> there exists a E—pcrmutation & with 56 = 1: [W].
Proof. For the unsorted case, see for example [Hu76], we have that Ä16= '! [W] and

126 = ‘: [W] implies that 2.1 = 2.2 [V(oW)]. Furthermore there exists an unsorted
renaming p with po: 1:‚[W]. Hence p(oW) is well—sorted and a E—renaming. . -

Lct U c; SUB; be a set of substitutions and let W (; Z ; V. Then we say U is based on W

away from Z, iff for all substitutions o in U we have DOM(o) = W and I(0') (\ Z = Q5.

43

10.4 Lemma. Let W ; V and let 1: e SUBE. Then for every idempotent E-renaming p with
DOM(P) 2 V(1:W) : 1: 5}: put [W].

Proof. Follows from Lemma 10.2. I

The next proposition is trivial for the unsorted case and in the order-sorted case it is a
consequence of the finiteness of the set of sorts SI:-

10.5 Proposition. Let 2 be a finite signature. Let W be a finite set of variables and let n be
a natural number. _

i) The set {t e T}: I depth(t) S n } contains a finite number of E}; - congruence classes
ii) The set {6 e E I depth(o) S n } contains a finite number of 52: [W]- congruence

classes.
Proof. i) In the unsorted case we have: { t e T}: I depth(t) s n } contains a finite number of

a 3: - congruence classes. Furthermore if s 52 t, then s a : t. Terms s,t with s a : t have
the same occurrences. The E): - congruence class of a term s is determined by its a : -
congruence class and by the sort of i ts variables. There are only a finite number of
possibilities for different sorts of variables, hence a E33 — congruence class is partitioned
into a finite number of =“); - congruence classes.
ii) The proof is trivially extended to vectors of finite length and hence to substitutions. I

We note some observations on noncyclic substitutions that are needed later on.

10.6 Definition. A variable x1 is strongly cyclic for a substitution 0 , iff there are
variables xi, i = 2,...,n such that xie V(6xi_1), i = 2,...,n , x1 6 V(oxn) and
on‘lxl $ x1_
It is weakly cyclic, iff there are variables xi, 1 = 2,...,n such that xi 6 V(Gxi_1),
ib= 2,...,n and x] e V(Gxn) '

10.7 Lemma. i) If x is strongly cyclic in 0 then x is also weakly cyclic in 0'.
- ii) If there is no weakly cyclic variable in a, then 6’“): = x for some m > 0 implies O'x # x,

i.e. DOM(0“) = DOM(0) for all n '

10,8 Example.
i) Idempotent substitutions have no cyclic variables
ii) The substitution o := {x <— f(x)} has the strongly cyclic variable x and

Gm={x<—tm(x)]. .
iii) The substitution o := {x (— f(y), y <—_ z] has no cyclic variable and

44

cm = {x (- f(z), y (— zlfor all m 2 2
iii) The substitution o :=' {x (- f(y), y (- z, z <-— y }has no strongly cyclic

variable, but y and z are weakly cyclic. If we compute the powers of 0, we obtain

0'2 = [x (— f(z)] and 0'3 := [x (— f(y), y (— z, z (—y} = 0.

10.9 Lemma. Let 0' be a substitution without strongly cyclic variables. Then there exist

natural numbers m,k > 0 such that cm = am“.

Proof. We have DOM(o“) ; DOM(0) and I(o“) ; 1(0).
If the depth of terms in COD(o") is bounded, then not all 0“ can be different, since there
are at most finitely many terms of bounded depth and with a fixed set of symbols.
Hence in this case there exist natural numbers m,k > 0 Stich that cm = 6m+k .
If the depth is unbounded, then there exists a variable x0, such that depth (onxo) i s not

bounded. . ‘

This means depth (0“(6x0)) is not bounded, hence there exists some variable x l e V(ox0),

such that depth (o“xl) is not bounded. In this manner we can construct an infinite chain

x0,x1 , . . . , such that xi e V(0'xi_1). Since there are only finitely many variables, there

exists a variable that occurs twice in the chain. Without loss of generality we can assume

that x0 occurs twice and x0 = xn. ' .
If all terms O'xi are variables for i = l , . . . ,n, then the depth of 0x0 is bounded, hence there

exists a variable xj such that oxj is not a variable. Hence xi is a stronglycyclic variable in

o . I '

10.10 Lemma. Let 6 'be a substitution without strongly cyclic variables. Then there exists a

number n, such that 0“ is idempotent. Furthermore if 6“ and 0m are idempotent powers of

0, then 6“ = am.
Proof. Using the last lemma we see that there exist km > 0 such that 0'“ = cs'“+k . With

n = km we obtain 01"" 61““ = 01"“ by applying Gm = om+k repeatedly.
If 0“ and om are idempotent we compute cm" in two ways: If we use the idempotency of
am, then we obtain cm“ = am. From the idempotency of on we obtain om“ = o“, hence
o“ = am. I

The converse of Lemma 10.10 holds:
10.11 Lemma. Le to be a substitution such that am is idempotent for some rn > 0. Then 0

contains no strongly cyclic variables.
Proof. Obviously the depths of terms in COD(d“) are bounded. Suppose 0 contains a

strongly cyclic variable, then there is a power ok'of 0' such that there is a variable x with

okx is a nonvariable term and x e V(okx), hence the depth of 6k for 1 2 1 is unbounded,

45

which is a contradiction. I

10.12 Definition. For a substitution 6 without strongly cyclic variables we define the
idempotent closure 0* as the least power on that is idempotent. I

The above lemmas show that the idempotent closure of a substitution can be defined as any

idempotent power of 0.

10.13 Lemma. Leto be a substitution that has no weakly cyclic variables. Then there exists

a natural number m > 0 such that cm = am“. I ,

Proof. By Lemma 10.10 we have that there exists a number. m > 0 such that om is

idempotent. Furthermore Lemma ' 10.7 shows that DOM_(om) = DOM(o). Since
DOM'(o'“) n I(o) = 0, we have com = om. .

l l . Theory-Unification and Theory-Matching.

Let € = ()3, E) be an axiomatization of an equational theory.

The subsumption relation for two terms s,t e T): is defined as follows:

s 2£,E t :=» El 7L e SUB}: with s =E,E M.

In this case we say t is more general than s or s is an E—instance of t. Obviously the relation

22 is a quasi-ordering on T)"; '
Note that sometimes the reversed ordering is used, (cf. [Si84, Si86, Sz82, Sch85]).
The corresponding equivalence relation is denoted as 52,13 i.e., '

S E£,E '; iff S 22E t and t 22,E S-

We extend the subsumption relation to substitutions:
Let 0,1: 6 SUBE and let v ; VE. Then '

c 22,1% 1: [V] :=» 3 7L e SUB,3 with o =z,E m [V]. '

In this case we say 1: subsumes O' modulo V or I is more general than o wrt V. Obviously the
relation ZaEW] is a quasi-ordering. The corresponding equivalence relation is denoted by
53.13 51°“

46

0 52,151 [V] iff 02251: [V]‘and1:22’Eo[V].

Note that 52,9 [V] and 52,9 [V] may be abbreviated as E}; [V] and 5): [V] , respectively

(cf. paragraph 5). If V is the set of all Z-variables, then we will omit the set of variables in the

notation of the subsumption of terms and substitutions.

Given. an cquational theory € = OLE), an E-unification problem is a finite set of

equations denoted as F = (Si = ti I i = 1,.n..,).‚E Instead of an E-unification problem we
sometimes speak Of a system of equations to be solved. We say a well- sorted substitution 6 is

an E- unifier of F (or an E-solution of F) iff os-:]“ ; ati for all Si =t i 6 FE. The set of all

E-unifiers of the system I‘ 1s denoted by U2£(I‘). Obviously the set Unia") is a left ideal 1n
the set of all well-sorted substitutions, i.e. SUB: . UE’EG‘) = U£,E(r) or equivalently every
instance of an E—unifier is also an E-unifier. The set U£,E(I') is recursively enumerable (even

for an infinitely presented cquational theory) by a simple dovetailing argument.

‘ However, for most purposes it is not necessary to compute the whole set of E—unifiers, but a

smaller subset from which we can obtain every solution by instantiation. .

We say a set cU ; SUBZ '1s a complete set of E— unifiers for I‘E, iff the following conditions

hold:

i) cU c; U}: E(I‘) ' (correcmess)
ii) ve e Ur. Eu“) ac e cU. e>.“ o [V_(I‘)). ' (completeness)

The set of all complete sets is denoted by CUE‚E(T'). We may use the notation CUZ,E(F) for a

, special complete set of E-unifiers. ' .

Furthermore a complete set cU of E-unifiers 1s called minimal or a set of most general
E-unifiers (or set of ‘mgus’), iff in addition

iii) Von: e cU: o 22,13 1: [V(I‘)] => 0 = t. (minimality)

All minimal sets of E—unifers are collected in the set MULEm- We may denote a special set of

mgus as uUz,E(I‘), if it is clear from the context, which particular set we mean. In general

there are infinitely many different sets of mgus for some system of equations I‘, but they are all

equivalent, in the sense: if uUl, “U2 e MU}:‚E(F) then there is a bijection et: “UI—> uUz with

Ot(o) ELE o [V(I‘)] for all 6 e ttUl. This was proved by [Hu76, FH86], and is atrivial result
for the equivalence for bases of upper segments in a quasi-ordering.

Unfortunately, a minimal . se t of mgu's does not always exist, the first example for such a

47

theory was given in [FH86]. Recently it was shown that the theory of associativity and

idempotence is also an example for a theory where in some cases a set of mgu’s does not exist

[Ba86, Sch86].

Depending on the cardinality of the sets of most general unifiers we can classify cquational‘

theories according to the following hierarchy [Si75, 8.282, Si86, Si87]:

A theory 1: is unitary unifying (or is of unification type 1 or £ e 711)

iff uUzEa') exists and luUZEG‘) I ‚<. 1 for all equation systems F.

A theory 9}: is finitary unifying (of unification type 0) or £ 6 Um)
iff uUz£(D exists and luUEEO") | < oo for all equation systems I‘.

A theory 95 is infinitary unifying (of unification type oo or 75 e ‘U'm)

iff ”Us EU") exists for all equation systems F and luUz E(I‘) | = oo for some

equation system F.

A theory ‘2 is nullary unifying (of unification type 0 or 95: e ’UO)

iff ”Uz’Ed‘) does not exist for some equation system I‘.

We use as abbreviation ‘U := ‘l U ‘l U ‘Zloo and also say that theories £ e ‘u \ are
unification based. The unification type of a theory is undecidable (cf. [BHS86]). The

subclass of unitary or finitary theories where the sets of unifiers are always effectively

computable is denoted as ‘l ‚eff or ‘Um’cfi
Usually the unification type is defined using a single equation. But in general the problem is to

unify lists of terms. The crucial point is that the definition of the unification type via a single

equation and via a system of equations is not equivalent. An example is given in the appendix

showing that there exists a theory of (single-equation) unification type oo, that is nullary

unifying with respect to equation systems. Hence our definition here is more adequate for

describing the unification behaviour of theories. Furthermore, the result of [3886] that there

does not exist a finitary theory with an upper bound on the cardinality of minirnal unifier sets,

provided there i s at least one free function symbol with more thangone argument in the

signature, is true without any restrictions, if our definition of unification type is used. '
However, for the case of unitary and finitary theories, the two definitions are equivalent

(cf. [He86] for a proof in the unsorted case). The same is true if the signature contains at least

one free function symbol of arity greater than 1.

By Lemma 10.3, we can always find a minimal (or a complete) set of idempotent E—unifiers by

renaming their codomain, hence it is not a restriction to assume that all unifiers in a minimal set
of E-unifiers are idempotent.

4.8

We will also consider one-sided unification problems or matching problems. We denote

an equation system as a matching problem as follows:

A:=(si«tili=1,...,n)E '
To solve the matching problem A means to find well-sorted substitutions 6 with DOM(o)

n V(t1,. . .,tn) = @ and esi =};E ti for all i = l,. . .,n. In this case we can 6 an E-matcher. The
set of all E—matchers is denoted as M£E(A). Note that the set of all E-matchcrs is a left ideal in

the monoid of all substitutions 6 with DOM(o) n V(tl,. . .,tn) = 0. Similar as for unification

we define minimal and complete sets of matchers. We use the relation smw (A)] for

comparing matchers. This is equivalent instantiate only with substitutions 6 with DOM(o) n '

V(t1,. . .,tn) = (25. '
This definition'of matching is not less general than the problem of-one—sided unification, since

the sets {oe SUB}: I osi =Z,E ti for all i =‘ l , . . . ,n} and (Mz£(psi « ti l i = 1,...,n))« p (where

p is an appropriate Z—renaming) are equivalent with respect to =Z,E[V(A)]°

Analogous to the unification hierarchy we classify the equational theories into unitary

matching (fe Ml), finitary matching (I: e . Mm), infinitary matching (€ e M”), and

nullary matching (£ 5 M0) theories.

It is undecidable where a theory resides in the _matching hierarchy [BHS 86].
This definition implies that in regular theories every matcher is minimal [Sz82] . Hence we

have that regular equational theories are not in %. In [Sz82] it is shown that in the unsorted

case the Q-free theories are exactly the regular and unitary matching theories. In paragraph

IV.2 we consider the connection between unitary matching and Q-free theories for the sorted

case .

A further problem tackled in this thesis is the problem of weakening [Wa83], that is, given a

(non well-sorted) substitution t, find a well-sorted substitutions 0 e SUB: such that 01: i s

well-sorted. We denote such problems simply as: .

(1: e SUBE).

We denote the set of solutions as W26: 6 SUB!) or simply as W,;(t).

We will consider also weakening problems for terms t, either denoted Wz(t e T2) or
Wz(t e T228) or W20 E S). The problem is to find the well-sorted substitutions 6 with
O't e T}: or ot e T218 forsome sort S .

Again we consider minimal and complete subsets of weakenings, denoted as CW); and

“WE. If not stated otherwise, we use the quasi-ordering SZ[I(1:)] (SZ[V(t)]) for comparing the

weakenings.
Note that we do not consider weakening problems with respect to an equational theory.

49

We say a theory is simple, iff s =23 t implies that 3 is not a proper subterm of t. In [BHS 86] it

is shown that in simple theories an occurs-check i s possible during unification, i.e. the

equation <x = t >E is unsolvable, if x e V(t). Furthermore it is shown there that simplicity is

an undecidable property of an equational theory.

A theory is Noetherian, iff there are no infinite properly descending chains of substitutions

with respect to 52.3 [W] for a finite set of variables W. In part IV we show that every finite

equational theory is Noetherian.

12 . Computational Logic.

There is another important derivation system, called (undirected) demodulation in the field

of Automated Deduction [WR67], which allows to replace equals by equals. In the following

we assume that a fixed equational theory 75 = (SE) is given. We shall define demodulation

for a sorted logic. ‘

12.1 Definition. Let s,t be Z—terms.
Then we can deduce t from 5, denoted as

5 __"1t,e,o t
iff there exists an equation e of the form r = 1 or 1 = r in E, a substitution 0 e SUBE and

an occurrence 1: e D(s) such that s\1t = 01 and t = s[1t <— or]. I

This definition includes the definition of s ""1: e a
t for well-sorted terms andfor ill-sorted terms, we shall say so

t for ill-sorted terms. If it- is necessary to
distinguish between s. __)“,eß

explicitly. The default assumption is that the relation is restn'cted to well-sorted terms.

A derivation is a finite sequence of such derivation steps. If a term s can be derived from a

term t by a finite sequence of such steps, we denote this by 3 ——i"--—> t. Obviously —-—-"5-—+ is

symmetric. It is not difficult to see that for the unsorted case this derivation system is
equivalent to the one defined in 9.1. '
We call an equational theory 'E demodulation-complete, iff S 35,15 t. =» s J—e t for all
well—sorted terms. '
In part II 2 we show that for the extended relation 4—) on all unsorted terms, we have '

always s =“; t =» s —i—-> t , but the eXamples below demonstrate that there are equational

theories that are not demodulation—complete.

We give two examples for theories that are not demodulation—complete. Note that the

50

oorresponding equational theories are not deduction-closed: '
- 12.2 Example. a) Let S): := {A,B,C,D} and let a,b‚c,d be constants of sort A,B,C,D,

respectively.
Let f be a binary function with sxB —> A and f:CxD —) A. Let E := {a=c, b=dl be the set _
of axioms. We have f(a,b) =£,E f(c,d), but not f(a,b) —*-—>£ f(c,d), since the intennediate
terms f(a,d) and f(c,b) are not well-sorted.

b) Let S2: := {A,B,C,D} and let a,b,c be constants of sort A,B,C, respectively. _
Let f be a unary function with f:A —+ D , f :C _) D, Let E := [a=b, b=c} be the set of

axioms. We have f(a) =Z,E f(c), but not f(a) * -> f(c), since the intermediate term

f(b) is not well—sorted. I '

Example b) shows that even a deductive calculus that allows parallel substitution of equals for
equals is not sufficient to compute the whole congruence relation =);‚E°

We give a criterion for an equational theory to be demodulation—complete:

12.3 Proposition. If all terms are well-sorted, i.e., T}: = T "f: ,

Then s =2,E t © s ——*——> t, i.e., £ is demodulation-complete.

Proof. Using Birkhoffs Theorem, it is sufficient to show that every step of the deductions
system in 9.1 can be simulated by steps s _'"’u,e,o t . The only nontrivial part is to show

that s —-1‘—-> t implies 1:3 —*—-——> tt for every Z-substitution 1:. But obviously s a“: ‚o t
implies t s “"mep 1:t, since s\1t = 61 and t = s[1t (— OT] imply that 1: s\rt = 1:01 and
rs[1t (— mr] = ‘t(s[1t (— 07] = tt . I

We give more sufficient conditions for demodulation-completeness:

12.4 Lemma.
i) Let £ be an equational theory. If for every well-sorted term s and for every term t with

s —-—’5—> t , the term, t is well—sorted, where -§——> is' the extended relation on all

un? sorted tenns, then £ is demodulation-complete.
ii) If £ is deduction—closed, then £ is also demodulation-complete

Proof.i) is trivial, since the assumption implies that it is not possible to deduce ill-sorted
terms from well-sorted ones by replacement of equals by equals.

ii) trivial. I

An important way of computing with equations is to direct the equations and to use them as

‘simplification’ rules. Then —*—-> is usually called rewriting or reduction. '

51

R = (£ ,{s1 —> t1,..., srl -—) tn}) with V(si) 2 V(ti) is called a term rewriting system

(TRS) .
We say a term s is R—reducible to a iii-term t (s ——>R t) iff s _"1c‚e‚o,f t for some indices

7t‚e,o, where e is an oriented equation from R. Note that the default assumption for term
rewriting systems is that R-reduction is allowed to produce ill-sorted terms. That means the

applicability of a simplification rule does not depend on the well-sortedness of superterms of a

term. . '
We say a term rewriting system is compatible, iff for all well-sorted Z-terms s : s ———>R t

implies that t i s well—sorted. This means compatible rewriting systems never reduce a

well-sorted term to an ill—sorted one. In the following we assume that a term rewritin g system

is compatible, if not stated otherwise.
We denote the transitive and reflexive closure of _’R by —*—>R and the symmetric closure

of "L’R on well—sorted terms by <iaR. A term is R-irreducible or in R-normalform, iff it
is not further reducible.

12.5 Lemma. Let R be a (compatible) term rewriting system.
Then <—*—>R is a SUEZ-invariant Z-congruence and it is the „same relation as =Z,E on T}:

Proof. We prove only that ‘“‘L’R is a E—congruence. Obviously it is an equivalence relation.

since ”L’R i s SUEZ—invariant we can use induction to prove that "'L’R i s also

SUB E-invariant. The con gruence property follows from the compatibility of R. I

An important property of term rewriting systems is confluence: The relation LR (or R) is

confluent, iff for all well—sorted terms s, s l , s2 :
simslands—i—mszäfl te Tzzsli—aRt ands2—*—>Rt.

In a confluent term rewriting system a term t has a unique normalform, if the process of

reducing t terminates. In this case the R-normalform of a term s is denoted by || s "R— If every

reduction sequence for every term is terminating, then we say R is terminating (or
Noe the r i an) . A term rewriting system is Called canon ica l , iff i t i s confluent and

terminating. A canonical term rewriting system R for an equational theory £ provides a

decision procedure for equality: To decide s =}:‚E t , reduce s and t to their R—normalforms || sllR
and || t ”R and then compare these normalforms for syntactic equality. ‘ '

For a term rewriting system R, confluence of R i s equivalent to the Church-Rosser

property, i.e., 5 =23 t iff thereexists an r e T; with s -——-—>R r and t ——>R r . The proof is

straightforward by induction on the number of <—*->R —deriviation steps.using <L>R = =Z,E°

For noncompatible term rewriting systems confluence and the Church-Rosser property may be

52

not the same:

12.6 Example. _
Let S ; := {A,B}. With A = B and let a1,a2 be constants of sort A and b be a
constant of sort B. Let f : A —-> A be a function symbol. Now consider the rewrite system
R := {a1 —> b, a2 _) b}. This term rewriting system is confluent, since the rewriting '

relation is deterministic. The terms f(al) and f(a2) are equal, i.c., f(al) =}:‚E f(az), bat

their reduct f(b) is not well-sorted, hence the relation is not Church-Rosser. I

A term rewriting system R i s called sor t -decreasing, iff for all Z-tcrms s,t : s --->Rt

implies that Sz(s) (; SEO) (or LSz(s) a LSE(t) for regular signatures). This implies that the

property holds also for the relation LR,
For sort-decreasing and canonical term rewriting systems we can lift the relation —"—‘—>R to

substitutions and we can use normalized substitutions, that means every term in the

codomain is in R-normalform. '
For term reWriting systems R that are not sort-decreasing it is not possible to lift the

reduction to substitutions or to define the normal form of a substitution: Let s ""R t and let
S e Sz(s') — 530) .— Then the substitution [x s <— s} is well-sorted, but its reduct {xs <— t}

is not. For example, a theory axiomatized by the single equation [a = b}, where a and b have

an uncomparable sort, has no sort-peservin g term rewritin g system. .

The completion procedure of Knuth and Bendix [KB70] is a tool for computing a canonical

term rewriting system for a given set of axioms. Since the existence of a canonical term

rewriting system implies the decidability of the word problem, there are theories that do not

admit a canonical TRS. '
We show in 113 that the confluence test for terminating term rewriting systems using

critical pairs and critical sort-relations is a criterion for a sort-decreasin g term revvriting system

to be canonical. Furthermore if unificr sets w.r.t. the empty theory (together with sorts) are

effectively computable (i.e., (2,9) is of type finitary) then this test is a decision procedure.

For a survey on TRS ’s see [H080, Bu85].

53

13. Manipulating and Solving Equational Systems.

The methods in this paragraph go back to J. Herbrand [Her30], A. Martelli & U. Montanari
[MM 82] and C. Kirchner [CKi85]. We want to employ these ideas to describe unification as a

process that manipulates the original equational system F by a set of rules. In [MM82, CKiSS]
a set of multiequations is used instead of an equations system. They'consider multiequations of
the form x = y = r = s = t , denoted by {x,y,r‚s,t]. However, this can be seen as a different

representation of the unification problem (x = y, y = r , r = s , s = t) and the structure of

multiequations can be seen as an equivalence relation on the set of equations in an equation

system F. For the sake of simplicity we consider equation systems in this paragraph, but all

results are also valid for multiequations.

We assume throughout this paragraph that a signature 2 and an equational theory 1: are given.

Recall that the set of E—unifiers of an equational system I‘ = (Si: ti)E is defined as
U,;‚E(F) := {o e SUBEI O'Si =):‚E ati for all i} .

In the following we consider transformations of an equational ‚system I‘l to a system F2
denoted by I‘l => F2. We also consider. chains C of such transformations. It is technically

important to trace the variables that are used in such a chain C. We assume that all variables

introduced by new terms do not occur elsewhere in the chain. As an abbreviation we

sometimes call them ‘new variables’. In order to make this precise, we assume that every

system I‘ is assigned the set of already used variables with respect to the chain C denoted as

UVC(I‘). Generally we omit the suffix C and assume it is implicitely given. For the starting

equation system we assume that UV(l") = V(F). Furthermore for every transformation step

l"l => [‘2 we assume that (V(I‘2) — V(F1)) (\ UV(I‘1) = @. That means used variables should
not be reintroduced. This is a natural restriction and it allows to compute solutions of an

original system I‘ as the restriction of solutions of a final system to the set of variables in V(I‘).

. As a consequence we always have V(F) ; UV(I‘) and UV(l"1) ;; UV(I‘2) for F1 => F2.

13.1 Definition. A transformation I‘l => 1‘2 ‚is correct ,
iff (12,501): UE(F2). ‘

We say a correct transformation. F1 => F2 is complete,
iff addi t ional ly UZ,E(I ‘1) I -UV(F1) (; U2,E(F2) |UV(r—l , i . e . , UE ,E(FI) IUV(FI) =

UE,E(F2)IUV(1"1)'

We say a set of correct transformations I‘ => I‘l,..'., 1" => I‘n is a complete set of

alternatives, iff UE,E(F)IUV(F) = U2,E(FI) IUV(F) U . . . U U2,E(rn)lUV(I‘)° '

S4

13.2 Lemma.

i) If I‘l = F2 and F2 = F3 are correct , then I‘1 = F3 is correct.

ii) If I‘l = F2 and F2 = F3 are“ complete, then F1 = F3 is complete.

iii) If UV(F1) = UV(I‘2) then:

1‘1 = F2 is complete, iff UZ,E(r1) = Uz‚E(Fz)-

iv) F1 = F2 is complete, iff for every substitution o e UE,E(F1) with DOM(o) <;

UV(F1) there exists a Ä with DOMOL) <; UV(F2) — UV(l"l)‚ such that

wk 6 023(5). '
Proof. i) is obvious

ii) From UE E(r2)IUV(I‘2)_— U}: E(F3)IUV(I‘2) and UV(F1) ; UV(1"2) it follows that
UZ‚E(r2_)AIUV(l‘1) - UZ,E(F3)IUV(1"1)’ hence U2,E(F1)IUV(1“1)"- UE,E(F3)IUV(1‘1)

iii) is a consequence of i) and ii).

iv) ‚Follows from the definition. I

Note that 13.2 iii) does not hold in general if UV(l"1) = UV(I‘2):

13.3 Example. Let 2 be a signature with one sort, let £ be an equational theory and let a,b'

be two constants that are not E-equal.

Let P l z : (x = y)£ and F2:= (x = z, y = 2)? Then 112,501) = {o e SUB: I Ox =“; O'y}

and Uz£(F2) = {o e 81]l O‘x =Z.E O'y =}:‚E oz}. Obviously F1 = F2 is complete and

correct, bu t UE,E(F
1) = UZ,E(I‘2), since {x (— a , y <— a, z (- b} i s in

USE- (r1) 4- UE’E(I‘2)., I '

13. 4 Lemma.
i) For all 0' e Unia“), 1: e SUB}; and 0 SEE 1[UV(_I')] = 1: e U£E(r) -

ii) For all 6 e Unia“), 1 e SUB); and o ' -=“; 1: [UV(I‘)] = 1: e U2 E(I‘).

iii) 0' e U}; E(F)‚ 1: e SUB: and 0 '-"RE 1: [UV(F)] = 1: & UZ‚E(F)°

iv) For every o e U); EO“), there exists an idempotent substitution 1: e SUB: with

(5 :21 ; [UV(1")] and 1: e UEEG‘).

Proof . ‘

i) Holds, since 10:23 1: [UV(F)] and os—_“; O't implies los-1,15 lat.

ii) Follows from i)

1ii) Trivial

iv) By Lemma 10.4 there exists an idempotent substitution 1 e S UB }: with

6 a: 1: [UV(I‘)], hence by ii) we have also t & UZ,E(r). I .

This lemma shows that we can improve the completeness-criterion in Lemma 13.2 iv) to

idempotent substitutions:

55

Lemma 13.5 l"l ==> F2 is complete, iff for every idempotent substitution o e U£,E(r1) with
DOM(o) c; UV(I‘1}there exists a 1 with DOMOL) g UV(I‘2) — UV(I‘1), such that

The conjunction (or the union)_of two equational systems I‘ 1 and F2 is denoted as F1&F2.
Obviously we have UE£(F1&F2) = Ufia‘l) n UZ‚E(F2). In Lemma 13.8 we show that local
completeness can be lifted to a conjunction.
The following set of rules is applicable to every equation system and every equational theory.

Demodulat ion Rule .

s= t&F =>s '= t&F

If s =Z,E s ' and (V(s) — V(s')) n UV(1") = Q.

Trivial Equation Rule.
s = t & I‘ => 1"

I f S :=e t .

9

Binding Rule.
x= t&l" => x= t& [x(—t]l"

If {x (— t} is a well-sorted substitution.

Internal Demodulation.
s = t & I‘ =» s = t & I“

where I" is obtained from I‘ by replacing some subterm s by t.

These rules can be used to simplify equational systems I‘. For example, it is possible to delete
equations that have the solution Id. Internal demodulation has a nice application as a general
simplification rule for unification problems. Consider for example the AC—unification problem
(xx = ya, xxc = Yb>Ac- This problem can be transformed into (xx = ya, yac = yb)AC and then
by cancellation rules into (xx = ya, ac = b) AC, which is unsolvable.

13.6 Proposi t ion .
i) The demodulation rule is complete.
ii) The trivial—equation rule is complete
iii) The binding rule is complete. '
iv) The internal demodulation rule is complete.

56

Proof. i) and ii) are obviously true. .

iii) Le to e Ux£(x—— t & P). Then ox =“; at, hence o{x (—— t} =££ 0 . This means

ez£ (x= t&{xe—t}r) . '

To prove the converse, let o e UZ
E(x - — t & {x (— tlI‘), then again ox-_; E ot, hence

6{x<— t} :maoandce UZE(x=t&F) .

iv) Le toe Uz£(s= t&I ') andas sume tha tu=ve I‘,u/_1t=s‚u'=u[1l:<-—t]andl"'is

obtained from F by this replacement. Then ou =2,E ov and a s =£,E ot implies

ou' =2,E ov, hence o e U£E(s = t & I“). The converse is a symmetric case. ..

In order to design transformation rules it may be helpful to know for some special cases of

terms how to obtain their complete ' set of unifiers. The same type of problem arises in

combining known unification procedures with a set of transformation rules. The idea is 'to

replace the unified equation by the pairs x = ox for a nnifier 6. We denote the equation system

, obtained from 0' in this way by (0),}; or as (a) for short. This result is also known as the

inheritance theorem in [Oh87]. This proposition can be applied to minimal sets of unifiers and

shows then "that we can sequentialize the computation of minimal sets of unifiers: In order to

solve I‘1& 1‘2 we first compute a minimal set of unifiers for I ‘ l , apply the obtained

substitutions to F2 , and solve the obtained system. The conditions on variables means that the

variables in r2 that are not in I"] should not be used in the codomain of minimal unifiers of 1‘].

13.7 Proposition. Let I] and F2 be two unification problems and let U be a complete set of

idempotent E-unifiers for F1 (modulo the set of variables V(l"1)) , such that

DOM(o) ; V(I‘1) and I(0') n UV(I‘l& P2) <; V(l"l) for all 0 e U.

Then the rule: _

F1&I‘2 = (0') & F2 for 0' e U
_ provides a correct and complete set of alternatives.
Proof. i) Correctness: Let 'c & UZ,E(<°> & F2). Then we have tx =£,E tox [V(F1)]. Hence

6 52.15 1: [V(l"1)] , which implies 1: 6 Uaa), hence 1: is _a solution of r1& 13.
ii) Completeness: Let it e UZ,E(F

1& 1‘2) with DOM(1:) ; UV(I‘ 1& 1‘2)..Then there exists

a o e U, such that 0' gm 1: [V(F1)] and hence there exists a 7» with DOMOL) ;
I(0‘) U V(I"1) such that 10 =}:‚E t [V(1"1)].

We have to show. that there exists 1:' with 1:' =2,E 1: [UV(I‘ 18a F2)] such that

't'x =Z,E ‘t'O‘x for all x & V(F1).

Let W := I(0') — V(I‘ 1) and let 1:' := 1: U Älw. Note that DOM(1:) mW = 0.
We have 2.0" =“; 1: ' [I(o) U V(I‘1)] : For x e V(l"1) this is true by assumption.

For y 6 1(0) — V(F1), we have).oy = Äy, since 0' is idempotent and t 'y = Äy.

Now consider ’c'O'x for all x & V(I‘1). Obviously V('ox) ; I'(o) u V(I‘l). Hence
r'ox =“; 2.66 = lo = 1: = 'c' [V(I‘1)] . l

57

The idempotency of unifiers rs necessary:
Consider the equation system {x—- f(y)}. Then {x (— f(x), y <—x} is a most general unifier for

F, but the system {x= f(x), y =x} is unsolvable.

We can localize the test for correctness and completeness of F1 => F2 on the parts that are

different.

13.8 Proposition. Let I‘ be an equational system. Then
i) If F 1 => F2 is correct, then F&I‘l => I‘&l"2 i s correct.

ii) If I‘] => F2 is complete, then F&I‘l => F&I‘2 is complete.

Proof .
i) From 11mm) ; UE,E(I‘2) we conclude Uma‘) m 02,503) ; U250“) n 023(5).
ii) Let Um (Pfl luvm) = Uz,E(r2)IUV(rr)- The" (U£,E(r) n UZ,E(FI)) |UV(I‘1)

= (U£,E(r) “ UE‚E(F2)) IUV(r1)- . ' >

In pans III and IV we investigate unification" procedures defined by rules in a set RS that

transform equational systems . The transformations specified by such rules are in general
nondeterrninistic. We denote the corresponding transitive, reflexive relation on equational

systems. by £“. We denote the unsolvable system with the sign *, i.e, we have always
UZ,E_(*) = 0.

13.9 Definition. We say a system I“ is solved, iff [‘ = [xi = ti ! i = 1,...,n}, all xi are
distinct, (x l , xn} (\ V(ti) = 0 and LSZ(xi) e Sz(_ti) for all i = 1,...,n. The

corresponding solution or is the substitution [xi (— ti | i = 1,...,n]. I

Note that the substitution or is always idempotent for solved. systems.

13.10 Definition. We say a rule-system RS is a complete unification procedure, iff
for every system F and every substitution 0 e U230") there exists a system A with

r J:.“ A and G zu oA [UV(I“)]. l ’ ‘

Note that a set of rules that allows only complete transformation steps is not necessarily a

complete unification procedure: For example if there are no rules at all, then every

transformation is complete, but not every equation system is in solved form.

We have as a first tn'vial lemma that solved equation systems have the right solution and are

unitary solvable.

58

13.11 Lemma. Let I‘ be a solved equationalsystem. Then
i) or- e UZ‚E(F)°

ii) for all 0“ e Unia”): o 223 GI— [UV(I‘)].

Proof. i) is trivial.
ii) Let F = {xi = ti I i = 1,...,n} and let o & U}:‚E(r)° Then we have oxi =“; ati for all i.

We show o =“; cor [UV(I‘)]: For all i we have oorxi = ati =23 oxi. For y e V(ti)
we have O'O'r—y = 0y. I

13.12 Lemma. Let F be an equational system and let A _be a solved equation system
obtained by correct-uansfonnation steps .

. Then we have GA e UZ,E(F)° I

If all transformation steps in a rule System are complete, then all solutions are equivalent, that

means it is sufficient to compute just one solution:

13.13 Lemma. Let I‘ be an cquational system and let A be a solved equation system

obtained by complete transformation steps .
Then for every O' e UZ,E(F) we have (5 2):‚E GA [V(I')]:

Proof. From completeness we obtain U£;E(F)IUV(I') = U£,E(A)IUV(I‘)' For o e U}:‚E(r) with

DOM(O‘) ; UV(I‘) there exists a substitution Ä with cu?» e UE,E(A) by Lemma 13.2 iv).
Lemma 13.11 shows that OU?» 22 ,5 o A [UV(A)] . Since UV(A) 2 UV(I") and

o = O‘UÄ [UV(F)] we conclude 0' 2):,E oA [UV(I‘)]. I
If we start with an equation system F and use only complete transformation steps, then all -

obtained solutions are equivalent.

13.14 Lemma. Let F be an equational system and let I‘l and I‘2 be two solved equation
systems obtained by complete transformation steps .

. Then an 525 am [UV(1")]: . .
Proof. From Lemma 13.12 we obtain on , am e UZ,E(1"). Lemma 13.13 shows

“1‘1 2 1:.E Om [UV(I‘)] and an 2 LE on [UV(I‘)], hence on 52.13 am [UV(F)]. I

Every equation system can be partitioned into the parts: I‘ = FS U I‘U, where
i) I‘S is the solved part, that is the set of equations of the form x = t, such that

x e F—{x=t} and LSE(x) e Sz(t).

ii) 1"U = I‘— FS is the unsolved part.

We can further partition FU into rQS U I‘QU, where
i) FQS is the quasi-solved part, that is the set of equations of the form x = t, such that

59

x es F—{x=t} and LSE(t) El; LSE(x).
ii) rQU = F — FQS is the quasi-unsolved part.

In order to obtain a deterministic procedure from a nondeterministic mle system, we take sets
of equational systems that represent all solutions. The set of solutions of such a set {I‘l,.. . ,
F“) is the set UE£(F1) U. . . U Uz£(l“n). The tranformation rules lift to these sets as follows:

i) If F1 => I‘l' is a complete step, then we transform {1"1,..., I‘n} into {1"1',..., rn} .
ii) If the transformations I‘l => F1 l , . . ., I‘l => I‘lm are a complete set of alternatives, i.c.

U£,E(r l) = U2,E(r11) U. . . U U£,E(1'1m), then we transform
{I}, F2,..., I‘n} into {Fll, . . . , I‘lm, F2,..., I‘n}.

iii) A rule F1 => * translates into (Fl, F2,..., I‘n} => {I‘2,..., E,}.

14. Comparison of Different Appraoches to Unification.

In a deduction system equations have to be unified (or solved) in _‘order to compute the most
general unifiers for the resolution steps.. Without built-in equations, this is just ordinary
unification [Her30, R065] and with built-in equations this is called E-unific'ation [Plo72,
Si86]. _

In all these approaches, unification can be seen as solving equations over the free algebra of
terms modulo an equational theory, the solutions are substitutions and subsumption is defined
in terms of a composition of Substitutions. The Herbrand-Theorem [CL73] states that for every
unsatisfiable clause set there exists a finite and unsatisfiable set of ground instances of clauses.
Hence a resolution-based automated deduction system (cf. Part V) remains a complete proof

. procedure, if instead of all unifiers only ground unifiers are used for the resolution steps. This
obversation could have an impact on the unification algorithm since now only ground solutions
have to be represented (instead of all solutions) and perhaps the notion of a most general
unifier could be modified.

In this paragraph we compare these two methods of unification. Comparison also shows
more explicitly the connection between E—unification and solving polynomial equations over
integers or rationals.

In effect, this paragraph is more a justification of the usual unification definitions than their
refusal. The advantages of the usual definition are that most general unifier sets remain
invariant if the theory 1s disjointly combined with another theory. This means unification
behaves context independent. This property does not hold for the definitions with respect to
ground terms as we shall see. However, m the case where a model or an algebra 1s fixed (for

example solving polynomials over rationals), the ground solution approach may be more '
natural.

Solving equations containing unknowns (or variables) requires an exact specification of the
signature since this determines what can be substituted for the unknowns, i.c., an exact
declaration of the algebra is. required. We consider three different possibilities: _

i) Free algebras
ii) Initial algebras
iii) Some fixed algebra (or model of the equational theory)

A second problem i s the representation of the solutions as well as the definition of
subsumption, of the most general solutions and of complete sets of solutions.

An example for the free algebra solution method is Robinson's unification approach for the
empty theory (cf part III).

We give some introductory examples for solving equations in the initial algebra :
14.1 Example.

a) Let the natural numbers be specified with constructors 0 and succ and let the problem
to be solved be (succ(x) = succ(y)). In the initial algebra there are infinitely many
solutions: {x <— 0, y <— 0} , {x (— succ(0), y (— succ(0)},
As a most general solution we would take {x (— z, y (— z] , since every
instantiation of a ground term for z results in a solution for the original equation.

b) If we specify the addition on natural numbers by the equations
x+0=x .
x + succ(y) = succ(x +ly)
Then addition is commutative on the initial algebra, but not on the free algebra, since
the terms Ix+y and y+x are not equal modulo this theory.
Hence the equation (x + y = y + x) has Id as most general solution in the initial algebra, '

' but not in the free algebra.

14.2 Example. An example for solving equations in an explicitely given algebra are the
following linear equations over the al gebra of rational numbers without division:
The solution of (3x + 4y = 0) is {x <— 42, y (— 3z}, where z ranges over all real
numbers.
The solution of (3x = 4) is { x <— 4/3}. I

The solution process for free algebras is exactly that defined in paragraph I.11. We will call
this method of free solving, F-solving, and refer to these unifiers as F—solutions. Furthermore

we denote E—equality and subsumption by the symbols =F,£‚E and SEEP respectively.

61

Now we define more precisely what we mean by initial equality and initial solving of

equations, where we assume a specification 5 = (2,2) given and an equation system I‘ that has

to be solved.

14.3 Definition.
i) Two terms s‚t are I-equal (s = I,):‚E t) iff for every ground substitution 7L with DOMOL) =

V(s,t), we have 7Ls =2,E M.
ii) An I—solution o is a substitution 0' that I-solves F, i.e. os =I,Z‚E ot for all equations

= t in I‘.
iii) We compare two I-solutions 0' and 1: with a strong subsumption ordering as follows:

0' Süß ': [V(l")] iff there exists a substitution % such that 7&0 =15}; “c [V(l")] .
We say o strongly I-subsumes 1:
In the same way as in 1.11 we can define the strong I-unification type of an equational

' theory.
iv) We compare two I-solutions 6 and 1: with a weak subsumption ordering as follows:

o sw},2 E 1: [V(I‘)] (o weakly I-subsumes T)

iff every ground instance tgr of 1: is also a ground instance of 0 (modulo the set V(l")).

In the same way as in I. 11 we can define the weak I-unification type of an equational

theory. I '

Solving equation systems with respect to a predefined algebra can be simulated by I-solving,

if the signature contains the usual function 'symbols and additionally all elements of the algebra
as constants and the (initial) equational theory contains all the equations in the multiplication

table of the algebra; The equational theory may also be chosen as the theory generated from the

initial algebra, i.e. that =I,Z,E is the same relation as =F,2,E- The problem then is that in
general induction is necessary to prove the validity of equations (cf. Example 14.1) and that

the generated theory has no finite axiomatization.

An obvious fact is:
14.4 Lemma. o SF.,EET [V(I‘)] => o< 81,251: [V(F)] => 6 Swl" [V(I‘)] I

14.5 Example. The theory of free bands, (associativity and idempotency) is an example

where the F-unification type differs from the weak I—unification type. We assume that the
Signature contains only the associative and idempotent function symbol and finitely many

_ free constants. F-unification is of type zero [Ba86, Sch86], whereas weak
I-unification is of type finitary, since finitely generated bands are finite [Ho76] and hence

there are only finitely many ground I-unifiers. This means every properly (weak)

62

descending chain of I-solutions is finite.
In the case where only one constant is present, the unification type switches from F—zero to

weak I-unitary and to strong I--unita1y. I

We prove that all subsumption relations are identical if infinitely many free constants are

& available:
14.6 Theorem. If the specification contains infinitely many free constants then for all

substitutions 0,13:

0%‚251: [W] <= “Swag" [W] 4:: 0581.231: [W] whereW=V(I) .
Proof. Due to Lemma 14. 4 it is sufficient to prove 0' SwI 2:,E 1: [W] => 6 SF }:‚E 1: [W] :

Without loss of generality we can assume that DOM(o) = DOM(t) ; V(I‘) and that

I (o) n I('c)—— @.
Let x1,...,xn be the variables in V(1:W) and let a1,...,an be constants not occurring as
subterms in the terms of COD(o) U COD(t). Then .t := {xi (— ailt is a ground instance
of 1. Let y1 , . . . ,ym be the variables in V(oW). There exist constants bj, j=1‚ . . . ,m such

that {yj (- bj I j ; 1 , . . . ,m]o =z£ {xi (— ai I i = 1, . . . ,n}t [W] . Since ai are free constants,

the above equation remains valid, if the ai ’s in [yj <— bj} and [xi <— ai] replaced by new

variables zi. Hence 7m =Z‚E{xi <— z i l t [W] , where 7L is the substitution obtained from
replacing ai by Zi in the codomain of [yj (— bj}. Applying the converse substitution
[Z i <— xi} gives [Z i (— xi) lo =):‚E [Z i <— xi} [xi (— zil'l: =):‚E 1: [W]. This immediately '
implies o 513,23 1: [W] . I

14.7 Proposition. If the specification contains infinitely many free constants then for all

equation systems I ‘ .' o e UI 2:EO") © 0 e UF E,E(r)°

Proof. The proof argues similar to the proof of the above theorem: replace variables'1n I(o)

by new constants.

In a special case we can generalize Theorem 14.6:
14.8 Theorem. If the specification contains a free constant c and a nonconstant free function

symbol g, then for all substitutions 6,1: that do not have g or c in their codomain terms,

the following holds: '
55325" [W] =» o<-wI‚):‚E" [W] <= 0—3125" [W] whe reW= V(I‘).

Proof. The proof proceeds like the proof of Theoprem 14.7 except that instead of new
constants we use ground terms built from g and c . These terms behave like infinitely many

. free constants, since g and 0 are not used in COD(0') and COD(1:). I

In Theorem 14.8 it is not possible to drop the condition on 6 and “C:

63

14.9 Example. Let f be a binary function symbol that is idempotent in the initial algebra,

but not in the free algebra, i.c. f(t t) = t for all gound terms t, but f(t t) at t for all nonground

terms t. Assume that a is the only free constant. Furthermore let g be a unary free function

symbol.
Then we have f(g(x) y) S'sI,E,E g(z) [W], since on the ground terms we have
[x <— z, y <— g(z)}f(g(x) y) =I,Z‚E g(z) [W], but obviously not

f(g(x), Y) 511,25 g(z) [WI .

14.10 Proposition. If the specification contains a free constant c and a nonconstant free

function symbol g then for all equation systems F, which do not contain g or c as symbols:

0' E ULE,E(F) (=> 0 € UF,£,E(D'

Proof. The proof argues similar to the proof of the Theorem 14.6. I

Together we have the theorems:

14.11 Theorem: If the specification contains infinitely many free constants, then the weak
I—unification type, strong I—unification type and the F—unification type of an equational
theory 1: are the same. I

14.12 Theorem: If the specification contains a free constant c and a nonconstant free

function symbol g then the unification types of UwI,2,E(r)’ U31):
‚EG) and UF‚2.E(D are

the same for all equation systems F that do not contain g or c. I *

These two theorems justify the use of free unification in Automated Deduction systems:

If I-unification and I-minimization is used, then the results (the set of unifiers) depend on the

context. For example if it is possible to invent new constants or to have Skolem—functions,
' then I-unification has no advantage over F—unification.

In the following we investigate properties of equational theories with a generic [Gr79] initial

algebra.

14.13 Definition: An equational theory £ is initial-generic, iff for all terms s-‚t :

5 =I,E,Et © S =F,z,E t- _

That means that equality of two terms can be tested on their ground instances.
‘ S ___—ZB t €:) VÄE SUB2,g l ' KS =E,E At.

Examples for theories that are always initial- generic are those that are generated by their initial
algebras. Note, however, that in general initial-generic does not imply that a theory is
generated by the initial algebra.

There are two ways to modify an equational theory in order to make it 'initial- generic:
i) add free constants ,
ii) define a new equational theory 12' with s =}:‚E' t iff s =I‚):,E t (consider the theory

generated by the initial algebra)

14.14 Lemma. In initial-generic theories, I-solutions and F—solutions are the same.
Proof. Obvious.

14.15 Example. There are theories, where infinitely many free constants have to be added
to make them initial—generic: _ _
Consider the theory with one binary function symbol f, a constant 0 and let f be
associative, commutative and assume the following additional equations hold:
f(x 0) = 0, f(x x) = 0.
If we write terms as strings, it is easy to see, that either a strin g is E-equal to 0, or
it i s of the form xlxz . . .xn, where all xi are different.

Furthermore two nonzero strings x lxz . . . xn and y lyz . . . yn are E-equal, iff
x1,...,xm is a permutation of y1,...,yn.
The addition of a finite number k of free constants i s not sufficient to make the theory
initial-generic, since a ground instance of a nonzero string that has more than k variables
is E-equal to zero. I ' .

14.16 Example. The empty theory is initial—generic, if there are at least two ground terms.

14.17 Lemma. In initial-generic theories, the notion of sI—subsumption and F-subsumption
is the same, furthermore the sI-type and the F-type are the same.

Proof. The first statement is obvious. The second follows with Lemma 14.14 . I

The next example demonstrates that sI-subsumption and wI—subsumption are different.
14.18 Example.

i) The theory INT of integers (as ring) i s initial-generic:
Polynomials over the integers are equal, if all their ground instances (under the same
ground substitution) are equal.

ii) wI—subsumption and F-subsumption in INT are different:
2The polynomial p := xl2 +x22 +x32 +x42 —x52 ——x62 —-x7 “"82 has all integers as

65

_ ground instances, since it is well-known that every integer is the sum of four squares
of integers, hence it is wI-cquivalcnt to a variable. However, the polynomial p is not
F-equivalent to a variable, since there is no instantiation of p, such that the value is a
variable. I

A related problem to Example 14.18 is the open problem of the unification type of Hiberts 10th
problem, i.e. of the F-unification type of integer equation solving. For this problem it would
be equally interesting to determine its wI—unification type.

We should also mention a Theorem in [Ti86], that most general F—unifiers sets are invariant if
a disjoint theory is added:
14.19 Theorem [Ti86]. Let E = El U E2 be a disjoint combination of two equational

theories. Furthermore let I‘ be an equation system that does not contain symbols from E2.
Then a complete set cUE1(1") of F-unifiers is also a complete set cUE(F) of F-unifiers with
respect to the combination. I

Example 14 .5 shows that this is not true for sets of I-unifiers, since the addition of constants

can be seen as a disjoint combination of theories.

PartII.
Various Extensions

Overview: This part extends the first part on foundations in several aspects:

The extension of semantics and deduction to ill-sorted terms is investigated and it is shown,

that a deduction system remains correct, if i t is allowed to deduce ill-sorted terms. '

The combination of sorts and term rewn'ting systems is studied and a criterion is given for

canonical term rewriting systems, which is an extension of the usual critical pair criterion by a

critical sort relation criterion. A completion procedure for ground TRS is given.

We have a cloSer look on the properties deduction-closedness, con gruence-closedness and

sort-preservation and give criteria for checking them as wellzas results abOut the decidability of
these properties. ‘

Conservative transformations of signatures and specifications are studied in detail in

paragraph 7. '
We. give different methods to construct unsorted (relativized) specifications from sorted

ones.
The logic is extended to full first order predicate calculus and a method for skolemization in

a sorted signature is given.

1. Extension to Ill-Sorted Terms.

The aim of this paragraph is to investigate extensions of sorted calculi to ill-sorted terms
and atoms. If equations are absent, then the usual deduction methods do not derive ill-sorted

formulae from well—sorted ones, whereas in the presence of equations a deductive system may

produce ill-sorted terms by replacing equals for equals. In general such deduction steps are

forbidden, since all terms have to be well—sorted. We show by semantical means that every

model for some specification can be extended to a model, Where ill-sorted terms have a

_denotation in the model. This has as consequence, that deduction with intermediate ill—sorted

terms or atoms, but with the same set of well—sorted substitutions, i s sound. In the next

paragraph it is demonstrated that clause sets consisting only of sorted equations behave very

similar to the unsorted case, if one allows unsorted terms during the deduction.

The consequence of Theorem 1.1 is that for equational deduction we can assume that all

67

terms are well-sorted by adding a sort IT (ill-sorted terms) and leaving all other sorts of terms

invariant. Furthermore the set of (well—sorted) theorems derived by equational deductions with

intermediate ill-sorted terms is exactly the same as that derived by deduction with intermediate

well- sorted terms.

A similar situation arises in lifting congruences in a partial algebra [Gr79] to all elements
of the algebra. In the Rewrite Theorem in [Wa83] it is proved for simple signatures that

well— sorted equations obtained by non well-sorted equational deductions can always be

obtained by a well-sorted deduction.

Let 5 := (Z,CS) be a specification. We construct the ill-sorted extension as follows:
Let @ be the signature with the same function and sort symbols as 2, but with an additional

top-sort IT (ill-sorted terms). I.e., Se = S): U [IT], Fe = F2, T8 = Tä , and the sort

of E-terms in @ i s the same as in 2, the sort of ill-sorted E-terms is IT, all atoms are

well-sorted, and CS is unchanged.
This can be performed by adding the following things to a signature: a top-sort IT, the function

declarations f: IT x . . . x IT ——> IT for every nonconstant function symbol, and by replacing all

sorts in predicate declarations by IT. The definiton of signature requires that there are also

infinitely many variables of sort IT. It is easy to see that every (')-term t that has sort less IT is

also a Z-term. Furthermore every substitution component of a well-sorted substitution in ® is

either also well—sorted in 2 or it is of the form {x <— t}, where x is of sort IT.

1.1 Theorem. Let 5 := (2‚CS) be a specification and let @ be the ill-sorted extension of Z.
Then CS has a Z-model iff it has a G-model.

Proof. If CS has a €*)—model then it obviously has a Z-model.
Let CS have a E-model fl. Then we recursively construct a G-model % from J! as follows:

D AcR
ii) ' If (a1,...,an) e QXfA), then we add the expression f(a1,_. . .,an) to. B .

This construction gives a B, such» that DGB) = Bn for all f e Fn .
As denotation for sorts we “choose SB := S A, if S e SE and ITB. := B. As denotationfor
a function f We define fB(bl,'...,bn) := fA (b1,...,bn), "if (a1‚...,an) e af), and
fB(b l , . . . , b„) := f(b1, . . . ‚bn) otherwise. For predicates P we define PB :'= P A, if P is not

the equality and =B := {(b,b) I b e B}. _
Now let (I): T6 —>B be a G-assignment. Then the mapping (Dz: T}: —> A defined by (DEX :=

(bx for all E—variables x is a Z—assignment. Furthermore (Dis the same mapping as (DZ on

the E-terms and Z—atoms. Since ‚q is a Z—modcl, every clause from CS is satisfied by (D):

and hence also by (D . This means 9 is a (')-model of CS. I

68.

2. Extending Congruences to-Ill-Sorted Terms.

- Let To c; T2 and let ~ be a binary relation on To and let ‘I’ ; SUB 2 be a monoid such that
‘I’(T0) = T0. Extending Definition 1.7.2 we Say «. is a ‘P-invariant congruence on To, iff

the following conditions are satisfied:
i) ~ is an equivalence relation.
ii) For all function symbols f and all Si’ti e To: _

Si ~ ti , i=1, . . . ,n and f(sl‚... ,sn)e TO => f(t1,...,tn)e T0 and f(sl,... ,sn) ~ f(t1-,...,tn).

i i i)Voe ‘I‘:V s , t e To: s~ t =>os~ 0t.

We say ~ is a ‘Il-invariant weak congruence on To, iff instead of ii) the following
condition ii)’ holds:
ii)‘ For all function symbols f and all Si’t i e To:

if Si ~ ti for all‘i and f(sl,...,sn) , f(t1,...,tn) e To then f(sl‚...,sn) ~ f(t1,...,tn).

In the following we assume that the equational theory ‘E = (2E) is given.

Note that the relation =23 is a SUEZ-invariant weak congruence on T}:-

The relation =iE is the equational theory generated by E, if all sort information is ignored.

This relation is a SUB 35 -invariant congruence on T i: .

We say the congruence =”: is congruence-c losed , _iff Vs , t e T2 : s =£,E t =»

S = 3:,E t . .

We give some examples. of equational theories that are not congruence-closed or not

deduction-closed

. 2.1 Example.
a) Let Z := {A a B. f: AxA —-> A}. Let =2 ,E be generated by. E :=

{f(xB, x3) = xB}. Then =2‚E is neither congruence-closed nor sort-preserving: We have

f(xA‚ xA) =YL‚E XA, but not f(xA‚ XA) =25 xA . Furthermore LSz(f(xB, x3» = A, whereas
LSZ(XB) = B.

b) Let Z := {A a B, f: ‘AxA —> A, f: BxB——> B}. Let =2 ,E be generated by E :

{f(xB‚xB) =XB}— _ . _ .
Then =E‚E is sort-preServing and deduction—closed, but not congruence-closed.

c) Let 2 := [A a B, a1:A, a2:A‚ f: BxB—a B, f(a1):A}. Let =Z,E be generated by E :=

{a l = a2] . Then =Z,E i s sort-preserving on the well-sorted terms, but not

sort—preserving andnot deduction-closed, since f(a1) =Z,E f(az) and f(az) is not well-sorted.

I

69

2.2 Proposition. Let £ be an equational theory. Let N23 be the SUEZ-invariant congruence

on T f generated by =23.
Then s "£ ,Et <= s =2‚E t for all well-sorted terms s,t.

Proof. The nontrivial direction is to show that s ~23,E t => s =E,E t for all well—sorted terms

s,t. Let CS be a set of unit clauses consisting of the axioms E. Assume there are

well—sorted terms s0,t0 with’ so ~2,E to. Let @ be the ill-sorted extension of 2. Since
the relation =6,E and ~£,E are equal, the clause set CS U {so $ to} has no 9-model,
hence by Theorem 1.1‚it has no S.:-model. Hence so = to is valid in every Z-model. Now

Birkhoff’s Theorem 1.9.2 shows that s =Z,E t is derivable. I

Due to the above proposition we can extend the relation :::‚E to all (including ill-sorted) terms,

i. e. to the set T -2—
The set of terms that are related to some well—sorted term via-1m is denoted by QT(£),

i.e., QT('E)=.— {t e T: I El s e T; s =}:‚E t], the set of quasi--tel_'ms with respect to £.
Note that the relation =Z,E is a SUEZ-invariant congruence on QT(£).

2.3 Lemma. QT(£)/ =“; is Z-isomorphic to Tz / =):‚E as a E—algebra.
Proof. Let 7: T2 / =):‚E —9 QT(‘E)/ =£,E be the mapping with Y(t/=Z,E) = 53,5. .

Proposition 2.2 shows that this is well—defined. Obviously y is a bijection. We have to

show that 7 and Y1 are E-homomorphisms, but this i s again obvious since y i s

well—defined and works in some sense as identity on TZ/ =>:‚E' I

The following proposition shows that—-25 is demodulation——complete on the set QT(£).
_ 2. 4 Proposition. Let £ : (2, E) be the axiomatization of an equational theory. Let s, t be

X—terms. Assume that the (undirected) demodulation relation ——-—> is meant on ill-sorted

terms as defined in I. 12 '
Thens=££t <= s——"‘—-—>t.

Proof. Use Theorem I. 9. 2 and the ill-sorted extension @ of E as constructed' 1n paragraph 1.

I

2.5 Proposition. The set QT(‘£) is subterm-closed.

Proof. Let s = f(sl, . . . ,sn) e QT(£).. Choose a shortest deduction s —-> r1 r“ ——-> t,

where t is well-sorted an the terms ri are ill-sorted.'The term t is not a vbariable or constant,

since then rn must be well-sorted, hence t = f(t1,...,tn). Since the terms riare not
well—sorted, there is no reduction at toplevel. This means that for every si we have a

deductiOn to ti, hence Si e QT(£). This proves the proposition. I

70

S.Order-Sorted Term Rewriting Systems.

In order to extend term rewriting systems to an order-sorted signature, we use [Hu80] and

[H080] as a guideline. Related work on sorted term rewritin g systems is presented in [CD85,

GJM85, SNMGS7]. '

We assume that term rewriting systems are compatible, if not stated otherwise. This

assumption is not critical, as shown in paragraphs 1 and 2, where it is shown that this

assumption can easily be satisfied by adding a greatest sort for ill-sorted terms. .

A term rewriting system R i s called weakly sort-decreasing, iff for all E-terms s,t with

3 """R t, there exists a Z—term r such that t ’L’R r and 82(3) c; S ;(r) . Obviously

sort-decreasing (cf. paragraph 1.12) implies weakly sort-decreasing.

A term rewriting system R is locally confluent, iff'for'all Z-terms r,s 1,s2 :

r—>Rs1 and r——>R s2 => S teTzzs l l—m t andszi>R t.

In [Hu80] it is shown that '
3.1 Lemma. A Nocthcrian relation is confluent iff it is locally confluent. I

Now let us define critical pairs: We can assume without loss of generality that all rules in R

are variable. disjoint. Let 1l —-> r l , 12 -—> r2 6 R and let n: 6 0(11). Further let
o e „UI—‚(Ilm , 12), then consider the term pair (0(11[1t_<—- or2]), o r l) . Note that

ll[1t (—- 01'2] is a well-sorted term, since R is well-sorted and that in part III it will be shown

that minimal sets of unifiers always exist.
The pair (O(llbt (— 01'2]), orl) is called a critical pair.

We say a critical pair (s,t) is confluent, iff there exists a Z-term r with s ‘LR r and

t "L’R r .

3.2 Proposition. Let R be weakly sort—decreasing .
Then the relation L’R is locally confluent if every critical pair is confluent.

Proof. We proceed as in the proof of [Hu80]:

Assume that every critical pair is confluent. Let s,tl,t2 be Z—terms with s ""R tl and
s —>R t2. There exist n l , 11:2 e O(s), 11 _) rl , 12 —+ r2 e R and 61, 62 e SUB}: such that
°i1i= s\1ti and ti = s[1ti (— Giri] for i = 1,2.
We have two cases, according to the relative position of 11:1 and 1t2.

Case 1: Disjoint redeces: Then the two reductions commute.

Case 2: One redex is a prefix of the other. W.l.o.g.we can assume that 11:] is a prefix of 1:2.
Let v be an occurrence such that n lv = 1:2.

71

Case 2.1: v = vlvz such that 11\V1 = x is a variable.

Then we can further reduce t2 in such a way that all (appropriate) subterms 01x

below 1:1 are reduced in the same way as s\1tl.vl and the sorts are decreased (i.e.,

that the sort of the reduct rx of (51 x is smaller than the sort of x,
since R i s weakly sort-decreasing. Let 61 ' be a substitution such that

Gl 'x := rx and o l ’y := 01y, otherwise. Now we can apply the rewrite rule

12 —> r2 at occurrence 1:1 (with well-sorted substitution o l ') . We get the same

result as a reduction of t1, if we reduce appropriately subterms 01x in t l to rx.

Case 2.2. v e C(11) and ll\v is not a variable. ll\v and 12 are Z-unifiablc. Hence

there exists some most general Z-unifier 0' with 0‘ 52 01[V(11)] and

o S}; 02 [V (12)]. This unificr corresponds to the crit ical pair

(o(l l[v <— or2]), Url), which is confluent by assumption.

Hence also the terms sl\:|t1[v (— 021‘2] and olrl are confluent. I

Lemma 3.1 and Proposition 3.2 imply the following:

3.3 Theorem. Let R be a weakly sort-decreasing term rewriting system such that im is

Noetherian.

Then —"‘—->R is confluent, iff every critical pair is confluent. I

If R is a weakly sort-decreasing term rewriting system such that Ä—>R is Noetherian and

confluent, then we will call R canonical. '

Note that for a canonical term rewriting system every term t has a unique normalform lltllR,

such that 520) (; S,;(II Ink) and in regular signatures LSz(IItIIR) E LSz(t).

The following example from [SNMGS7] shows that Theorem 3.3 does not hold if the TRS is

not weakly sort-decreasing: - .
Let 2:={A=B‚a:A,b:B,‘f:B —)B } ._
The term rewriting system R := {f(xA) —-> xA , a —-> b} has no critical pairs and is

terminating. But it is not confluent, since f(a) "’R a and f(a) ‚"R f(b), but a and f(b) are

not reducible. ' *

In the following we give a criterion for sort-decreasingness 'of a term rewriting system in a

linear signature. Without linearity of the signature one needs very strong restrictions on the

term rewriting system and the signature: For example if f(x x): S is a (nonlinear) term

declaration and f(t t) is a term such that t is reducible to t', then f(t t) —>R f(t t'), but f(t t') is

not a E—instance of f(x x). Hence there must be another declaration that shows that f(t t') is of

sort S. This example shows that a term rewriting system in a nonlinear signature is in general

72‘

not sort-decreasing, and if it is, the nonlinear declarations are either redundant or the nonlinear

declarations and the reduction are in some sense separated. '

In the following we give a criterion for compatibility and sort—decreasingness, which is more

general than the condition in [SNGM87], who give a criterion for elementary, regular

signatures in terms of all weakenings of all rewrite rules.

Let t:S be a term declaration, n: e 0(t), li —> ri be a rewrite rule and- let 0 be a most general

E—unifer of t\Jt and l i° Then we call the pair (ot[1t <.—_6ri], Sz(t)) a critical sort relation.
'We say a critical sort relation (s , Sz(t)) is satisfied, if 82(5) 2 SEG).

3.4 Proposition. Let E be a linear signature and let R be a (not necessarily compatible) term

rewriting system. If all critical sort relations are satisfied, then R is compatible and-
sort-decreasing.

Proof. Assume by contradiction that the proposition is false. Then there exist terms 51 and 52
with 51 _"’1c.e,u 52 such that Sz(sl) $ 82(52), where e = 1i —_-> ri. Without loss of generality
we can assume that s1 is a smallest term with this property. *
Let t:S be a term declaration in 2 such that S 6 82(51) '— 82(52) and s l is a Z-instance of t,

i.e.‚ O't = sl. Since S @ "SE-‚(52% we have that 32 is not a E—instance of t. The occurrence It
must be an Occurrence .in t, since otherwise due to linearity of 2 there exists a variable
x e V(t) at Occurrence v in t, such that 6x --> s2\v and 82(0):) $_Sz(sz\v), as Z i s
linear. This contradicts the rninimality of 51°

Since uo(t\1c) = „li, there exists a most general E—unifier 1: of m and 1i with 1: s „ [va-li].
Since the corresponding critical sort relation i s satisfied, we have S e S,;(ttht <— tril).

Hence S e SE(s2) , since 52 i s a Z-instance of 1:t[1t <— tri]. This i s the final
contradiction. I

This proposition gives for linear signatures a nice and useful criterion for a term rewriting
.. system to be canonical:

3.5 Corollary. Let E be alinear signature and let R be a term rewriting system.
If i) all critical pairs are confluent and

ii) all critical sort relations are satisfied and '
iii) im is Noetherian,

then R is a canonical term-rewriting system. I

' This specializes to elementary signatures in the following way:
The critical sort relations in elementary signatures can be obtained by weakening the left hand

side of every rewrite rule in all possible ways (with most general weakening substitutions) and

73

then check the sort of the right hand side after substituting. Hence the following is the essential
step in the test for critical sort relations:

Take a sort S and a rewrite rule 1 —> r, compute the set of most general weakenings
uWEO E S) and check 52(61) ; SE(Gr) for all 0' e uWZfl E S).

In part III it is shown, that unification and weakening in elementary signatures is decidable and
effectively finitary, hence we have:

3.6 Corollary. In elementary signatures it i s decidable, whether a terminating term
rewriting system is canonical or not. I

Note that termination of a TRS is in general undecidable (a proof and further references can be
found in [De87]. '

Proposition 3.4 can also be used .to give criteria for a regular equational theory to be
sort—preserving. _ '
3.7 Corollary. Let 2 be a linear signature and let 95 = (2,E) be a regular equational theory.

Furthermore let RE be the term rewriting system consisting of all rules s —) t and t —) 3 for

3 = t e E.
Then £ is sort—preserving, iff RE is sort-decreasing. I

In order to handle the general case of term rewriting systems in nonlinear signatures, we
extend the definitions above. ' '

We define a parallel reduction rule for the TSR R, written s =R t:
Let n 6 0(8), let 1j —> rj be a rewrite rule and let a be a E-substitution with olj =. s\1t. Now let
II = {rt l‚ . . . ,1tk}be the set of all occurrences of 5 with s\1ti = s\1t. We say s reduces to t (in

parallel), denoted as s :R t, if t = S[1t1 (— orj] ...[1tk (— orj]. We may also denote this
reduction by s =’j,o t Let £1; denote the transitive, reflexive closure of =R.
We define weak critical sort relations:
Let t iS be a declaration, let l'I' = {v1 , . „ , vm} c; 0(t) be a set of independent occurrences,

lj —> rj be a rewrite rule and let 1: be a most general E-unifer of the set {t\1t I n: e 11'} U {lj}.

Let t.t be defined as the corresponding ==-reduct: tt ==}; t,: .
Then (tv Sz(t)) is a weak critical sort relation. We say a weak critical sort relation

(tt, 82(0) is satisfied, if 8201) ;; SEG). For 1:t =>“ tT let II = {1t1,...,1tk}; 1T be the set

of occurrences involved in this reduction.

We give a criterion for weak sort-decreasingness:

74

3. 8 Proposition. Let 2_ be a signature and let R be a term rewriting system.

If all weak critical sort relations are satisfied, then =*=R is sort-decreasing.

Furthermore R 15 weakly sort-decreasm g.
Proof. It suffices to prove that =>R is sort—decreasing.

Assume by contradiction that the proposition is false. Then there exist Z-terms s l and. 32

with 51 ====>j’Ll 52 such that S 2(51) $ S 2(52) , with the rewrite rule lj -) rj and the

substitution u. Without loss of generality we can assume that 51 is a smallest term with this

property.
Let t:S be a term declaration in Z‘. such that S & S,;(sl) — 82(82) and s1 is a 2-instance of t,
i.c., (St = s l . Since S e S,;(sz), we have that $2 is not a Z—instance of t.

By the minimality of s l the reduction on the subterms 0x ==>]. Ll sx is sort-decreasing for

all variables x e V(t). If the reduction==>=’ ju took place only below variable occurrences

of t, then 52 would be a E—instance of t, which 'Is not true.

Let H :='-- {1t1,.. .,1tk] be the occurrences in t, where the reduction of 31 --—-.-äj_„ 82 actually
changes the term t '
Now there exists a weak critical sort relation constructed from t: S and l —) rj and the set of

occurrences I'I with most general E—unifier 1: such that 1: S G U u [V(t‚lj]. We argue that the

corresponding set of occurrences for the critical sort relation is exactly l'I. Otherwise, the
reduction =’j‚u changes more occurrences in s l , since 1: is more general than 6. Let

"tt ==>- JT t,t

Since the weak critical sort condition is satisfied, we have S 5 SA,—‚(%). The occurrences of

reductions in 31 are independent: Either these occurrences are in H or the reductions are

below variable occurrences of t.
Let 6' be the Z—substitution defined by 0' x : = sx (Where ox==> ju sx). We have 52 : o' t.I
Hence S 6 82(82) This is a contradiction.
The second part of the proposition holds, since “"—'"R can be Simulated by some steps
—-—>R. .

Now we have a general criterion for canonicity:
3.9 Theorem. Let R be a term reWriting system.

If i) all critical pairs are confluent and
ii) all weak critical sort-relations are satisfied and
iii) -*—>R is Noetherian,

then R is a canonical term rewriting system. I

Remark: These criteria turn into a decision algorithm for local confluence of R, if

unification in Z is decidable, finitary and the finite unifier sets are effectively computable.

Furthermore with some luck, the check for weak sort-decreasingness and for local

75

confluence may terminate and then we know definitively whether R is or i s not locally

confluent.

A completion algorithm [KB70, Bu87] can be adapted to our kind cf signatures, however, it is
not clear which restrictions a term ordering should obey. In the case of sort-decreasing TRS, it

seems to be appropriate to use a" term—ordering that respects sorts, but in the general case the

term ordering may be such that it does not respect the sort ordering.

We give an application of term rewriting systems in a sorted signature, which shows that in

some cases it is possible to describe an infinite term rewriting system in a finite way using

sorts and declarations. This example is from [I—IKi87, I-IKi85], where a concept of domains,

meta—variables and meta-rules is used, which seems to converge to sorted signatures.

3.10 Example. Given the rule f(g(f(x))) -—> g(f(x)), the usual completion procedure

generates an infinite family of rules, all of the form f(g“(f(x))) —> g"(f(x)). The following

sort-structure shows how to describe this infinite rule system in a finite way and how to

prove that it is canonical:

Let E : = {TOP = A, sOP —-> TOP, g. TOP _) TOP g: A -> A, g(f(xTOP»: A}.

The rule1s f(xA) -—) xA.
Obviously this system is terminating. _
In order to show that this system is canonical, we have to check the conditions in 3.4.

There are two critical sort relations: one i s that the sort of f(xA) i s greater than or

equal to A, which i s true. The other, nontrivial one comes from overlapping

g(f(xTOP)):A by the rule f(xA) —> xA. The critical sort relation is that g(xA) should be

of sort A , which is also true.

Now Proposition 3.4 states that the TRS is compatible and canonical.
It remains to show that the transformation into the sorted case is correct. The set of all

terms of sort A is the following: {KA, g(f(t)), where t is an arbitrary term and g(s),

where. 3 i s a term of sort A}. This meansthe set corresponds to the set of terms

defined by the term scheme g"(f(x)) for n 2 1. I

The rest of this paragraph deals with ground equations and ground term rewntm g systems and

is used m part V. '
Related work on ground equations can be found in [NÖSO, Ga86] where

congruence-closure methods are used to give decision algorithms for systems of ground
equations.

In order to simplify arguments we assume in the rest of this paragraph that there are no

76

ill-sorted terms and that the signature is finite.
We define some notions for term orderings for proving termination of term rewriting systems

which are consistent with [De87].

3.11 Definition. An ordering <s on ground terms is a simplification ordering, iff the

' following conditions are satisfied:

i) <s is monotonic, i.e. si 5i =¢f(sl, . . . ,sn) SS f(t1,...,tn).

ii) <S has the subterm property t<s f(...,t‚...). '

In'the following we will use the ordering defined as follows:

3.12 Definition. Let)3 be a finite signature. Let the ordering <s on ground terms T2,gr

be defined as follows: „ _
i) constants and functions are ordered by a linear ordering.
ii) If size(s) < size(t) then s <s t.

iii) Terms of equal size are ordered lexicographically (as strings). I

We use Ss , >s, as with the obvious meaning.

The next lemma shows that <5 is a well-founded simplification ordering on ground terms.

3.13 Lemma. Let <s bethe ordering of Definition. 3.12.
i) s S s t implies size(s) S size(t). '
ii) <S is a well-ordering on Tag-

iii) <S is monotonic.

iv) <S has the subterm property.

Proof .
i) Follows from the definition.

ii) Due to I.10.5 there is only a finite number of terms that are smaller than a given one

Furthermore all ground terms are comparable and <s is antisymmetric. „

iii) Let Si SS ti and let f be a function symbol. We have to“ prove that

f(s1,...‚sn) Ss f(t1,...,tn).
If size(si) < size(ti) for some i, then f(s1,...,sn) <S f(t1,. . .,tn) by definition.

In the case size(si) = size(ti) for all i , we have also size(f(s1,... , sn)) =

size(f(t1,. . .,tn)).
Now we can use the lexicographic ordering on f(sl , . ..‚s„) and f(tl, . . .,tn) and obtain

. f (s l , . . . , sn) SS f(t1‚...,tn).
iv) We have f(...,t‚...) >S t , since size(f(...,t‚...)) > size(t). I

77

The ordering <s can be lifted to all terms as follows: For a tenn t let mgrt(t) be the multi—set of
maximal ground terms of t and let the multisets be ordered by the multiset—ordefin g induced by
<S. Note that this ordering is well—founded, but not total.

3.14 Proposition. Let R = [1i —> ri ! i = 1,...,n} be a ground term rewriting system with
li >S ri. Then:
i) R is Noetherian.
ii) If there are no critical pairs, then R is also confluent and hence canonical.

Proof. Let t be a term and mgrt (t) be the multi-set of maximal ground terms of t. Then every
reduction step makes mgrt(t) smaller in the multiset-ordering, hence reduction terrninates
and so R is Noctherian.
If there are no critical pairs, then the normalform of a term t can be computed by reducing
the maximal ground terms of some term t. The result is obviously independent of the
sequence of reductions. I

We want to give an nondeterministic completion procedure of Knuth—Bendix type [KB70] for
constructing a canonical term rewriting system in order to solve the word—problem with respect

to a set of ground equations.

3.15 Definition. Let R = { l i —> ri l i = 1,...,n} be a ground term rewriting system with
1 i >s r i .

We use a deduction system that consists of the following rules:
Rule] . (critical pairs)

Let lj -> rj ,lk _) rk be different rules 1n R such that 1 In:—== lk. Let 51 := rj and let
s2 : = lhl: J<—— rk]. '
Delete 1 —-> rj from R and if sl >S s2 then add Sl—) s2 to R , if 51 <$52 then add
s2——> 51 to R Jand if s l -— S2 then do not add 51 : S2.

Rule 2. (application of rules to other rules)
Let lj —-> rj ,lk —> rk be different rules m R such that rj /1t=
Replace lj -—> rj by lj -—) rj[1t (— rk] I

3.16 Proposition. The completion procedure in Definition 3.15 terminates, leaves the

generated equational theory on TZ invariant and the resulting term rewriting system is

canonical on T)?

Proof.
i) First we prove that the equational theory is not changed:

Rule 1: there are two cases.

78

Case 1 . s] 1.52 . Then we can prove rj =.Blj[1t (-— rk] =€ lj[1t (— 1k] =1]-

Case 2. s2 = s l . Then we can prove lj = lj[1l: (— lk] =1. lJ-[n (— rk] = rJ

Rule 2: We have to prove lj. =£ rj: From lj =as rj[1t (— rk] =£ rj[1t (— lk] = rj we conclude

lj =1: rj.
ii) The completion terminates: If we order rewrite rules by the lexicographical ordering

induced by <8, then we obtain a well-founded ordering on rules. Every rule replaces a rule

by a smaller rule or deletes a rule. Hence the procedure terminates.

iii) There are no critical pairs, since otherwise Rule 1 is applicable.

. iv) Now Proposition 3.14 shows that R. is canonical. I _

' Note that the above results hold also for non sort-decreasing ground term rewriting systems.

A tn'vial (well-known) corollary is:

3.17 Corollary. The word-problem in an equational theory defined by ground axioms is
' decidable. '

4. Sort-assignments.

Usually, the syntactical sort of a term is defined by specifying the sort of variables, constants

and the behaviour of functions in the form f: Slx. . .xSn —> S or even with term declarations.
In this paragraph we abstract from this syntactical specification of sorts and view the sort of a

term as a function on terms. having the right properties. We show that the notion of a

sort-assignment as defined here corresponds to the notion of a signature with (infinitely many)

declarations. The notion of a sort-assignment enables us touse different descriptions of the

son of a term.

4.1 Definition. Let 2 be an unsorted signature, let S<P be a set of sorts quasi-ordered by
:cp’ let T‘p be a subterm—closed set of terms and let (p: T(p —-> flsw) be a mapping from

terms into sets of sorts, such that (p(t) is an upper segment. Let V<p denote the set of all

variables in T(p
Define SUB<p to be the set of all substitutions o satisfying (Vx e Vq, (p(ox) 2 (px).

Furthermore let the following conditions be satisfied:

i) For every sort S e Sq, ‘‚VS c; Tqr

ii) For every variable x e T(p: (p(x) -— Sz(x).

iii) for every sort S , there exists a ground term ts gr, such that S e (p(ts gr).

iv) Voe SUBq, Vte Ttp :O ' tE T q)and(p(<5t) ; ,_) (p t .

In this case we say (p is‘‘)a sort-assignment]

79

The next proposition shows that sort-assignments are describable by (possibly infinitely

many) term declarations.

4.2 Proposition. Let 2 be an unsorted signature and let (p be a sort-assignment.
Then there exists a signature 2 such that Sq, = SZ , =(? = =2 , Tq, = T}: and q)(t) = S,;(t).

Proof. To satisfy the conditions Sq, = S): and =(p = =!) is trivial.
We define 2 as the set consisting of all subsort declarations R = cp S and of all term

declarations {t:S I S & <p(t)} f o r t e Tcp — q Let Ttp,S := { t e T¢ | S & (p(t) }.

We show Tcp,S = T23 for all S 6 Sq;

The relation Tcp‚S (; TZ,S is obvious by definition of Z.

In order to show the converse T2,S <; T‘PS it is sufficient to show that the sets T<p‚S are

closed with respect to Definition 1.4.3. We check condition iii) of Definition 4.3:
Let t & T<p‚S , r e T<p,R and x a variable with R sq, S(x).Then {x (— r } i s in SUB‘P ,

hence by condition iii) above we have {x (— r} t e T<p‚S° An immediate consequence is

SUBE=SUBW
The assumptions 1.4.11 on signatures are satisfied due to the preconditions of this

proposition. I

We can characterize regular signatures in a similar way, if we let so be a set of sorts partially

ordered by :(p and replace the function q): T(" -—> a'(S(p) by a function (p: Tq, -—> Sq, and
the conditions ii) and iii) by

ii)R For every variable x e TQ: (p(x) = 500.

iii)R Vo e SUBw'Vt e T‘p : (p(ot) E‘P (pt.
In this case we also speak of a least-sort-assignment.

5. Another Equational Deduction System.

We now give another derivation system for equational theories. It i s similar to the

Birkhoff-like derivation system in 1.9.1, but to derive instances of equations is only allowed

for the axioms in E and“ not for derived equations. We use this derivation system later in pan

IV to prove that certain unification algorithms are complete.

LetE= {li=ri } bethe set ofaxiomsof £ . '

5.1 Definit ion.
i) t—d t= tr for every term t 6 TE.
ii) { s= t}+—dt=s . ‘
iii)‘ [r=s , s== t] |—d r= t .

80

iv) I f f (s l , . . . ‚ sn) and f_(t1‚...‚tn) are well-sorted, then

{SI = t l , . . . , Sn = t n} l—d f (s l , . . . , sn) = f (t l , . . . , tn)

v) "d Os=0 t for every oe SUB): and every s= t e E. I

Let the relation F'itd be defined by : s I-°—°-Id t iff I—d s = t .

The above deduction system computes every valid equation:

5.2 Proposition. Let s,t e TZ. Then (l—d s = t) =» s =“; t .

Emi "=>" : trivial. '
"<=": We show that all steps of the Birkhoff deduction system in 1.9.1 can be simulated, the '

only missing step is rule I.9.1.v), where all well-sorted instances of equations can be _

deduced.

We show by induction on the length of a deduction that for all terms s, twith l-d s = t
and all substitutions o e SUB: we also have "d os = O't .

The base case is rule 5.1 v) for the axioms of E.

The induction step is triVial for the rules i) —iii).

Let *‘d 51 = t1 & & s“ = t n , let f(sl,...,sn) and f(tl,...,tn) be well-sorted, let

f(s1,. . . ,sn) = f(t1‚...,t„) be the newly deduced equation and let 6 be a well-sorted

substitution. Then by' induction hypothesis we have I—‘d O'Sl = 0t] & & O’Sn = at“.

Furtherrnore of(s1,. . .,sn) _and of(tl,. . .,tn) are well—sorted terms, hence by rule 5.1 iv) we
can deduce of(s1,...,sn_) = Gf(t1‚...,tn). I

_ This deduction system is more appropriate for induction proofs involved in proving

completeness of unification procedures. The next lemma shows that for every equation
there exists a deduction that can be arranged in a somewhat standard way:

5.3 Lemma. Let s,t e T): and s =£,E t. Then there exists a chain s = r0, 1-1,. . .,rm= t such that
i) For all i either ri = f i+1 is deduced by rule 5.1 v) or by rule 5.1 iv)

ii) For all appropriate i: either ri = ri„ or fi+1 = ri+2 is deduced by rule 5.1 v).
Proof. i) We obtain such a chain by unfolding in a deduction the most recent steps 5.1 ii)

and 5.1 iii).
ii) Assume by. contradiction that ri = r i+1 and ri „ = rm are both deduced by

step 5.1 iv) and the chain corresponds to a dedcution with a minimal number of

applications of rule 5.1 iv) Then we can already deduce ri = ri+2 by step 5.1 iv). The

new deduction thus'obtained may have more applications of symmetry and transitivity,

but the number of applications of rule 5 .1 iv) is decreased, hence we have reached a

contradiction. I

81

i
6 . . Characterizations of Deduction-Closedness, Congruence-Closedness and?

Sort-Preservation.

In Part IV.3 we give a unification procedure for a class of congruence-closed and

sort-preserving equational theories. In order to use this procedure it is necessary to have

criteria to recognize these properties given an axiomatization of the equational theory. In this

paragraph we give some characterizations of deduction-closed, congruence-closed and

sort—preserving congruences by properties of the generating set of equations. We also

investigate the dccidability of these properties.

In this paragraph we assume that € = (E,E) is given, that E is symmetric and finite and that the

signature is finite. '

First we give a criterion for checking the congruence-closedness of an equational theory:

6.1 Lemma. Let E be a regular, elementary signature.

If for all s = t e E and for all f—renamings p: ps 6 TE => (pt e T: and ps =“; pt)
Then forall s = t e Eandfo ra l l oe SUB-2:

056 T); => (016 TE and os =25 ot).
Proof. Let s=t e E and let o e SUB '2 with DOM(O') = {x1,...,xn}, such that os e T2.

There exist new variables Yi of sort LS(oxi), since the terms oki are well—sorted. Let
? := {yi (— oxi I i =l , . . . ,n] and let p := {xi (— yi I i =1,.. . ,n }. Then p is an idempotent

f—renaming and 12 e SUBZ. Furthermore ps e TE, since E is elementary and as 5 T}:-

The precondition now yields pt 6 TE and ps =£,E pt. ' '
Since =“; is SUBE -invariant we have Im E T2 and 1:ps =23 tpt which in turn implies
at e T}: and 65 =E,E Gt, since 6 = 1:p [x1,.. . ,xn]. I

Now we can give some criteria for congruence—closedness. The third criterion for regular,

elementtuy signatures is decidable and easy to test.

6 .2 ' Propos i t ion .
- i) If for all generating equations s = t e E:

V06 SUB-E. GSE T2 = 016 TE and GS=E‚EGI’

Then =£‚E is congruence-closed.

ii) If 2‘. is regular and elementary and for all generating et1uations s = t e E:

For all f-renamings p: ps 6 T}: => (pt e T): and ps =):‚E pt).
Then =25 is congruence-closed. '

82

' iii) If)] is regular and elementary and for all generating equations s = t e E:

For all E—renamings p: ps 5 T}; :> p e SUB:
Then—13,15 is congruence- -closed. ,

Proof. We prove only i), since Lemma 6.1 and part i) immediately imply the second part.

The third part follows from part ii), since-1:.E is E-invariant.
i) The following assertion is proved by induction on the length of a deduction (1.9.1)

of an equation: .

For all s =?‚E t :
(T)Voe SUB—2: ose TE=> O'tE T}: and OS=E’EO’t.

Base case, For s =t e E , which i s the precondition of this proposition, here is

nothing to prove. '

Indugtion step.

i) New equations introduced by reflexivity or symmetry have the property (T).

ii) Let t 1= }: E t z , t 2 : 3; E t3 be the old equations and let t l = z E t3 be the new one,

introduced by transitivity.

_- Leto e SUB-2 such that (It1 6 T2. Then by induction hypothesis, otz e T2 and
. c t l =2 ,E 012 . Now again by induction hypothesis we have (”3 6 T2: and

otz =2,E m3. \
Transitivity yields Otl =25 013.

iii) Let Si : 2E ti be given and let f(s1,. . . = , sn)“EB f(t1,. . . ,tn) be the new equation.

Let 0' e SUB—2 such that 6f(s1,.. .,sn) 6 T2.

Then for all 1 we have osi & TE, since Tz '13 subterm—closed. The induction hypothesis

implies a t i e T z and os i =£ ,E ati . Since =£ ,E is a congruence and since

f(osl , . . . ,osn) e TE, we conclude f(0'sl,...,0'sn) =):‚E f(ot1,...,otn)

iv) Let s = 33,13 t , ”c e“ SUB ;; and let ts = 2,13 1:t be the new equation.
Leto & SUB ;; such that 61:5 6 T2. ,
Then by induction hypothesis, we have O'ct e T : and o'cs =2 ,E Ott , since

61: e SUB '2— I '

In general it is undecidable whether a congmence is congruence-closed:

6.3 Proposition. It is undecidable (even for regular and elementary signatures) whether a

congruence is congruence-closed.

Proof. We show that decidability of congruence—closedness would imply the decidability of

the word-problem (for ground terms) in finitely presented semi— groups:

Let 2 be a signature which has only one sort A. Let 1: be a finitely presented semi-group

and let s,t be two Z—ground terms. We add the new sort B = A and the new ternary

function symbol f: BxBxA-aA. Let 2' be the new signature. Note that all nonvariable

Z—terms have sort A and that 2 ' is regular and elementary. Let E' := E U

83

{f(xB,yB,s) = XB’ f (XBsYBs t) = YBlof .
It is easy to see KB =}2',E' YB iff s and t are E-equal: If s and t are E-equal, then obviously

x B = E',E' YB . If s and t are not E-equal, then for every variable xB of sort B itä
E-equivalence—class is exactly [xB] U {f(xB, zB, s') I s ' =“; s and ZB a variable of sort B}.

U {f(z'B, xB, t’) I t' =E‚E t and z'B a variable of sort B}. '
=25. is congruence-closed «» s =}:‚E t :
If s and t are not E-equal, then 53,13. is congruence-closed, since the application of a newi
equation is a dead end: the unsorted equivalence class of a term r not containing f of sort A.!

does not contain well-sorted term with an occurrence of f. If s and t are E-equal, then we

have xB =E ' ,E ' yB and all terms are in the relation =i ' ,E ' ° Hence =E ' ,E ' i s not

con gruence—closed.
Hence congruence-closedness is undecidable, since the word-problem for ground terms in
finitely presented semi- groups is also undecidable [Ta79]. I

Now we investigate the property deduction-closedness.
Note that sort-preservation implies deduction-closedness.

6.4 Lemma. Let the following condition be satisfied:
Vsifi i 6 TE: Si =E,E ti _and f(Sl,...,Sn) E TE => f(t1‚...,tn) E TE“

Then =):‚E is a deduction—closed congruence.
Proof. We have to show that for s e TE, t € TT. and s =“; t we have t e T):-

Assume there is an equation s =z ‚E t with s 5 T2, t e TE —— T}:-

We can assume that s =2,E t is the equation with a shortest deduction starting wit

equations from E and s e TE, t e T i — T2“: This means all terms occurring in thc

deduction are well-sorted. Since t is not well-sorted, the equation s =);‚E t must have bee
generated in the following way: s = f(-s1,...,sn) and t = f(t1,...,tn) and Si ”LE ti for all i
But then the precondition of this lemma shows t = f(t1,...,tn) & TZ; I

6.5 Proposition. Let 2 be an elementary signature and let =“; be a sort-preservin
congruence.
Then =2.E is deduction-closed.

Proof. The requirements of Lemma 6.4 are satisfied. I

6.6 Proposition. Let =):‚E be a sort-preserving congruence and for every function symbc

f let the moSt general terms be basic terms (cf. 1.5.7 ff.). '
Then =£,E is deduction—closed.

Proof. We show the preconditions of Lemma 6.4: Let si,t1- e T2 and let Si =}:‚E ti . Then
St.“.(si) = S,;(ti) since =E,E is sort—preserving. By assumption there exists a term declaratio

84

f(x1,. . .,xn):S with f(x1,...,xn) z,; f(sl ‚...,sn). Obviously we have also
f(x1,...,xn) 22 f(t1,...,tn), hence f(t],...,tn) is well—sorted. I

6. 7 Proposition. For a regular, elementary signature): it is decidable whether 52,5 is
deduction-closed.

Proof. Let the relation = on S}: be defined as follows: As : B, iff there exist terms t, t' with

LSE(t) -— A, LSz(t ' -)- B and t =z,E t'. We use the deduction--system in 5.1 to make a

fixed-point iteration to determine =. For the generatin g relations Si = [i in E we can comput

the relation = by checking all sorts for variables in these equations. We generate the

transitive closure and then use the steps 5.1.iv). This iteration terminates and either

has produced a relation A = IL or not. Hence deduction-closedness i s decidable. I

However, dccidability is endangered if the preconditions are dropped.

6.8 Proposition. In general it is undecidablc whether a congruence is deduction—closed.
Proof. We show that decidability of deduction-closedness would imply the decidability of the

Z-unification problem 1n arbitrary signatures.
Let £ be the empty theory and let s , t be two terms. We add the new unary function symbol

f defined on all sorts in SE, the new sort A, the constants a and b of sort A, and the

declaration f(a):A. Let E' := {f(s) = a, f(t) = b}and let 2' be the new signature.

It is easy'to see a =23. b iff s and t are Z-unifiable. The only possibility to deduce an
ill-sorted term is to deduce f(b) from f(a). Hence we have that s and t are unifiable iff 23' is

deduction-closed. Theorem III.6.1 shows now that deduction-closedness is undecidable.

I

Now we turn to the sort-preserving property of equational theories.

6.9 Proposition. Let): be a regular, elementary signature. Let the following condition be

satisfied:
For all well—sorted f—renamings p and all s=t & E: LSz(ps) = LSz(pt).
Then for all 6 e SUB: and all s=t e E: Lsz(os)'= LSZ(Ot). _

Proof. Let s=t e E, let o e SUB: with DOM(0) = '[xi,...,xn]. There exist new variables yi
of sort LSz(oxi). Let 1: := {yi <— ox i l i =1,...‚n} and let p := {Xi <— Yi I i =1,...,n}.

Obviously p is a SIT-renaming and p,1: are well-sorted substitutions. Hence LSz(ps) =
LSZ(pt). Application of 1: to the terms ps and p t does not change their sorts, since Z is

elementary. From O' = tp [x1,. . .‚xn] we conclude. LS}; (cs) = LS: (O't). I

85

+6.10 Proposition. Let 2 be an elementary signature. Then the following two properties

are equivalent:
i) For all G & SUB}; and all s=t e E : Sz(os) = Sz(ot).

ii) =25 is sort-preserving.
Proof. ii) => i) is trivial. ‘

i) => ii): We show by induction on the length of a deduction that '
s =2 ,E t => Vo e SUB); : SZ (as) = S}: (ct).

Condition i) is the base case.
Indugtn step: _

i) Let t l =£,E t3 be deduced from t l =):‚E t2 and tz =E,E t3 and let 0' e SUBZ. By

induction hypothesis we have Sz(otl) = Sz(ot2) = Sz(ot3).

ii) Let ts =25 tt be deduced from s =2 ‚E t for 1: e SUBZ. For a well-sorted substitution

0 we have 01: e SUBE, hence 82(015) = 82(011) by induction hypothesis.

iii) Let ‘f(sl,...,sn) =Z,E f(t1,...,tn) be deduced from si =E‚E ti. Let 0' e SUB: . The
induction hypothesis implies Sz(osi) = 52(0t i) and since 2.. i s elementary we have

_Sz(0f(s1,...,sn)) = Sz(cf(t1,...,tn)). I '

6.11 Corollary. Let E be a regular, elementary signature. Then it i s decidable, whether
=2,E is sort-preserving. '

Proof. Follows from Lemma 6.9 and from Proposition 6.10. The precondition of Lemma
6.9 is decidable by Proposition 1.5.3, since we have to check only a finite number of
f—renamings. I

The above arguments can be generalized to show that for every elementary (nonregular)

signature, the sort-preservation of congruences is decidable.

For nonelcmentary signatures i t is in general undecidable whether a. congruence is

sort—preserving: _ '
6.12 Proposition. It is undecidable whether =z£ is sort—preserving.

Proof. We show that decidability of sort-preservation would imply the dccidability of the

word-problem in equational theories: '
Let E be an cquational theory, where only the sort A is available. Let s,t be two terms. We

add two'new Sorts B and C, two new constants b‚c of sort A , the new function symbol f
and the term declarations f(b):B‚ f(c):C to the signature. Furthermore we add the axioms

b = s and c = I to E, giving E'. Let =2,E' be the new congruence. Obviously we have that
.=z,E' is sort-preserving, iff s =“; t. Since s =E‚E t is undecidable, the sort4preservation is
undecidable. I

86

A Signature i s called sort-stable, iff Sz(si) = Sz(ti) fori = l , . . .,n implies Sz(f(s1,...,sn)) =

sz(f(t1....,tn».
This means that Sr. is a function of f and Sz(ti) alone and that Sz(f(t1.,. .,tn)) does not depend
on the structure of the subterms ti of t. By Lemma 1.4.10 we have that elementary signatures
are sort—stable.

We have that regular, sort—stable signatures characterize elementary signatures:
6 .13 Proposition.

i) In a regular, sort—stable signature Z all term-declarations, which are not of the form

f: 31 x...>< S“ —> Sn+11 are redundant. That means the signature is elementary.
Proof. i) Consider an arbitrary nonredundant term declaration f(t1,...,tn):S, that is not a

function declaration. That means LS£(f(t1,„.,tn)) = S. We can- replace the termS ti by
variables xi with S (x i) = LSz(t i) . Since 2 is sort-stable and regular, we have
S e Sz(f(x1, . . . ,xn)) . By Proposition 1.4.9 there must exist a function declaration
fzslx...xSn _) s .' I

6.14 Example. If the signature is not regular, then Proposition 6.13 may be false:
Let 2“. := {A,B, f:A —> A, f:A _) B, g(f(xA)): A] . Then E is not regular, since SE< f(xA))
= [A,B] . However, the signature is sort—stable: Every well—sorted term t starting with f
has as sort Sz(t) = [A,B]. Every well—sorted term starting with g has sort A and has the
form g(f(t)). The only possibility to replace f(t) is by a term of sort [A,B}. Every such
term has toplevel symbol f, hence a replacement of f(t) by f(t') gives a term of the form
g(f(t')) and this term is of sort A. Now 2 IS sort-stable, but the term declaration g(f(xA)): A
is not redundant. I

In the following we note some properties of substitutions that hold if restrictions are imposed
on the signature or on the equational theory.

6.15 Lemma. Let =2‚E be a sort—preserving congruence. Then:
i) Voe SUB: V1: 6 SUB-5:: 0:231: [V] => 1: e SUBE.
ii) If =“; is congruence-closed, then:

Va 6 SUB,J V1: e SUB 72: 0 =15 t [V] = 1: e SUBz.
Proof.
i) Leto e SUB: and 1: & SUB 3:. For all x e V}; we have {x (- ox} e SUB; . Hence:

‘ Sz(ox) 2 Sz(x) => (since =“; is sort-preserving)

Sz(tx) ; Sz(x) =>
{x (— tx} e SUB: for all x 6 V2. Thus 1: & SUBZ.

ii) 0 : ‚ET [V] => 0 -“LE 1: [V] , since—_}:‚E is congruence-closed. Then apply i). I

87

6.16 Lemma Let =Z.E be a sort—preserving and congruence-closed congruence.
Then: Voe SUB}; VIE SUBE: 1:225 0‘[V] => 1:6 SUBS.

Proof . There exists a 7L e SUBE such that 1: =£ ,E l o [V] . Lemma 6 .15 implics

': e SUBE, since 2.0 e SUBE. I '

6.17 Example. Let Let =“; befa sort-preserving and congruence-closed congruence. Then
for 0,1 (-3 SUB}: the implication o SEE 1: [V] => 0 SEE t [V] may be false:
It suffices to consider the empty theory 2: and E :={B = A, C = A}. Let o :=
{xA <— yB} and 1: :={xA (— zC ,yB (— zC }. Then we have 012 ,13 1: [V] , but
{yB (— zC}o = 1:, hence o SEE 1: . I

6.18 Lemma. Let =E,E be a sort-preserving congruence.
Let pl, p2 e SUB: be idempotent f—renamings with DOM(p1) = DOM(p2) = W
Then 9152,15 p2 [W] => 915): p2 [W]. '

Proof. There exists a 2L e SUB: such that ?Lpl =“; p2 [W].
The substitution N := {plx (- 92" I x e W] is well defined and satisfies:
Ä'pl =- 92 [W] and ?L' e SUB): since S(p2x) = S(Äp1x)E S(plx) and p lx and p2x

are variables. Hence p1 SE p2 [W] holds. I

In the following we give an interesting consequence of the sort—preservation in a regular,
elementary signature. In this case the equational theory can be lifted to the set of sorts. That
means the set of sorts provides an algebra that satisfies the equational theory:

6.19 Definition. If the congruence 13.5 is sort—preserving and the signature is regular and
elementary, then we define the following theory S-TH£ on the set S):-

Every declaration f z s lx x S“ —) S 1s translated into f(Sl‚. . . , Sn) -_— S. I

6.20 Proposition. If the congruence =E,E i s sort-preserving, congruence-closed and the
signature is regular and elementary, then the theory Sl-TH'£ on SZ has the following
properties:
i)“ Sorts-are not identified
ii) FOr every equation s =E,E t there holds a corresponding equation s* = t* over 8:,

where s"—‘ and t* are obtained from s,t by replacing variables and constants by their
' respective sorts. (Note that s* is exactly LSz(s) in this theory.)]

iii) This theory on S}; is compatible with the subsort-ordering: .
Si 5 R- , i=1‚. .,n implics f(Sl‚. . . Sn) ; f(R1‚... R)

Proof. i) follows from the definition, ii) follows from sort-preservation and iii) follows from
regularity of E. I

88

7. Conservative Transformations.

Given two specifications it is a natural question to ask if they specify the same problem or if

they are in some sense equivalent. For example,the specification [A = B, a:A‚ b:B, a=b] is

semantically equivalent to {A = B, azA, b:A‚ a=b}. That means they Specify the same standard

model although their signatures and their free term algebras are different.

In order to be able to compare such specifications, we introduce the notion of transformations,

where each transformation H should be conservative, that is H transforms (un)satisfiable

specifications into (un)satisfiablc ones. The notion of conservative transformations will play a

crucial role in proving that the sort-generation algorithm in part VI is correct. Conservative

extensions of theories in the sense of [Sh67] have the embedding mapping of theories as

conervative transformation. Our notion of conservative transformation of signatures

corresponds to those conservative exten sions.

We emphasize that in this paragraph the assumption 1.4.11 i), that sorts are not empty, is

important, since most of the theorems are no longer valid without it.

7.1 Definition. _ Let 51:: (21,CSI) and 52 := (SZ,-(332) be specifications and let H: 51—952
be a total mapping. i.e., H:Sm—> 52:2, - H: P l —> PZ , H: F1“ —) F2 . The mapping H

extends in an obvious way to term declarations, subsort declarations, atoms, literals,

clauses and Clause sets. .
We say H is a well-sorted transformation, iff the following is satisfied:
i) H: F1 —> F2 and H: Pl —> P2 is an injection.
ii) H: TDZI _) TDm and H: SD21 ——> SDm are total mappings.
iii) H(CSI) = C82 I

We may use the notion of well—sorted transformations for signatures (without specifications)
as well as for specifications. '

7.2 Lemma. For a well-sorted transformations H: 51—) 52 we have
i) VR,S e Sm: R E l S => H(R) 52 H(S).
ii) t e TELS => H(t) @ T22.H(S)'

Proof. Follows from the fact that H is defined for every sort, every subsort declaration and

every term declaration in 21. I

Note that Lemma 7.2 implies that the image H(A) of every well-sorted atom A is well-sorted.—

7.3 Definition. We say a well-sorted transformation H: 51—> 52 is a conservative
transformation, iff the following holds:

90

51 has a Ill-model iff 52 has a 22-model.
Furthermore we say a well-sorted transformation of signatures is conservative, iff for
every clause set CSI, the transformation H:(}31,CS]) —> (2.2,CSZ) is conservative. I

Now given a Ill—structure 2, we investigate how to construct the 22-quasi-structure HM).
Note that (in general) HM) need not be a ZZZ-structure.

Let fl be a ill-structure and let H: F1 -—> F2 be bijective. Then we define the EZ-quasi-structure
rB = HM) as follows:

i) B := A, (i.e., the carriers are the same)
ii) (H(S))B := S
iii) (H(f))B := fA‚

iii) (H(P))B := PA for Ill-predicate symbols P and (H(P))B := @ otherwise.
iv) If s 6 s22 — H(Sm), then sB := u {RB |“ R 52 s and R e H(sz'1)}.

The case where H: F1 -9 F2 is not bijective is handled separately in a proposition.

We say that the sort structure <SE‚1’ El> is embedded into <Sz’2‘, 52> with embedding H
iff, - ' '
' i) H:Sm—> 522 is injective

ii) For all R,S & Sm we have R 51 S c.: H(R) 552 H(S).
iii) For every sort S e 522 there exists a sort R e Sm with H(R) E2 S

We give a criterion for HM) to be a ZQ-algebra.

7. 4 Proposition. Let H : 21—) 22 be a transformation:
Let H: Fl -—-) F2 and H: TDI —-> TD2 be bijective and let <S}: l» __1> be embedded into
<S}:

2 , E1>. .
Then _ i) H '1s a well-sorted transformation.

ii) For every Ill—algebra A its image H(A) is a Ez-algebra.
Proof. The transformation H i s well—sorted, since all conditions of Definition 7.1 are

satisfied. .
Note that H(T) :1 ,S) = T22 ,H(S) (\ H(Tm), since H is injective on sorts and term
declarations. Furthermore the above embedding condition enforces that the nonempty sort
assumption for 22 1s satisfied.
Let A be a El— algebra A and let H(A) be its image. First of all H(A)‘1s a Biz-quasi» algebra.
Furthermore it fol—loWs trivially from the above definition of H(A), that R El S implies
RH(A) ; SH(A)‘ In order to prove condition 1.6.1 ii) let H(t):H(S) be a term—declaration in

22 and let (p2: V22 —> H(A) be a partial ZZZ—assignment with V(H(t)) ; Q)((p2). Let

__90

(pl: Vm _) H(A) be the partial EZ-assignmcnt defined by (plx := (p2(H(x)). Since A is a

Zl-algebra, we have that (pl is defined on t and tpl(t) e S AÄSince (p1(t) = (p2(H(t)) and

S A = H(A)H(A) the condition 1.6.1 ii) i s satisfied._ We conclude that H(A) i s a

Zz-al‘gebra. I , .-

In the following we give some useful sufficient cn'teria for a transformation to be conservative.
The method described here will be used extensively to show that the transformations of the
sort generating process in part VI are conservative n'ansformatiOns.

7.5 Lemma. Let Hill—9 22 be a well-sorted transformation and let A be a Ell-algebra such ‘
that H(A) is a XQ—algbera. Then the following holds:

i) For every Ill-homomorphism (pl : Tzl ——> A there exists a Zz-homomOrphism
(p2 : T22 —-> H(A) with (p1(t) = ¢2(H(t)).

ii) For every Zz-homomorphism (p2 : Tm —> H(A) there exists a Ill-homomorphism
(pl : Tm —-) A with (p1(t) = (p2(H(t)) for all t e Tm' ‘

Proofi . . _
i) Let (pl : TZI —> A be a Zl-homomorphism. Let (p2: V2.29 T22 be a mapping with

(p2(H(x)) := <p_1(x). This is a partial ZZZ-assignment; since the denotations for sorts in S221 .

and H(Sm') are the same. Since sorts are not empty by. Corollary 1.6.5 and assumption
1.4.11, we can extend the partial ZZZ—assignment (p2 to a total ZZZ-assignment. We can
further extend (p2 to a total Zz—homomorphism (p2: T22 —+ A, since T22 is a free
ZZZ-algebra. The interpretation of functions over A and H(A) i s the same, hence

(p2(H(t)) = (p1(t) for all t e Tm. _
ii) Let (p2 : T22 —) A be a ESQ-homomorphism. Define (pl: T2] —-> A by q>1(x) := (p2(H(x))

for all x e T£1° Similar as in the proof of part i) this is a Ill-assignment and can be

extended to a Ell-homomorphism, since Tm is a free Ell-algebra. Furthermore (p2(H(t)) =
(p1(t) for all t 6 TU, since the interpretation of functions over A and H(A) is the same. I

7.6 Theorem. Let Hill—> £2 be a well—sorted transformation.
i) Let A be a Ill-model for cs1 and let H(A) be a Zz-algebra. '

Then H(A) is a ZZZ-model of C82.
ii) Let B be a EZ-model for C82 and let A be a Zl-algebra, such that H(A) = B.

Then A is a Zz-model of csz. ,
Proof. i) Let A be a Ill-model for CSI and let H(A) be a ESQ-structure.

We show that H(A) is a ZZZ-model for C32. We have to show that all clauses are satisfiedin—

H(A). Let (p2 be a ZZZ-assignment and let H(C) e C82 be a clause. Then by Lemma 7.5 i)

there exists a Zl—homomorphism (pl : T>31 —+ A such that (p1(t) = (p2(H(t)) for all I 6 TE].
Since C is valid under the interpretation (p1, and (p1(C) = tp2(H(C)) we have that H(C) is

91

valid under the interpretation (p2.
ii) the proof is similar using part ii) of Lemma 7.5.

As a first application we prove a corollary that we can extend the signature by adding

supersorts of given sorts:

7.7 Corollary. Let 51:: (ZPCSI) and 52 := (EPCSZ) be specifications and let H: 51—) 52

be a well—sorted transformation satisfying the conditions of Proposition 7.4.

Then H is a conservative transformation of signatures.

Proof. Follows from Proposition 7.4 and 7.6. I

We formulate the special case that we can. add a greatest sort to the signature as a corollary:
7.8 Corollary. Let 5 := (Z,E) be an equational specification. Then we can always add

a greatest sort TOP satisfying the conditions of Proposition 7.4, such that the the instance

relation for Z-substitutions does not change.

Proof. Follows from Corollary 7.7. The new term algebra is the old one plus variables of

sort TOP. The only possible new components are of the form {XTOP <— t}. Hence the new

substitutions do not influence the instance relation on old ones. .

7.9 Proposition. Let 51 = (ZPCSI) and 52 = (22,C82) be specifications, where 21 and 2.2
are regular signatures and CSI does not contain an equality-literal._ Let H: 21—9 22 be a

well—sorted transformation which only increases the set of functions, i.e.,

H: F1 --> F2 , H: TDI _) TD2 are injective and HSH—> 522 and H:SDzl—> SDZZ are

bijective. Furthermore assume that all new term declarations have a toplevel fünction

symbol from Fm. '
Then Hi s conservative (as transformation of specifications).

Proof. One direction is trivial: If A2 IS a Ez-model of C82 = H(CSl),_then we obtain a
El-model of CSI by simply forgetting the superfluous function symbols.

For the other direction we show that if C82 is Zz-unsatisfiablc, then CSI is also
Zl—unsatisfiable.
Due to the Herbrand-theorem 11 .2 there exists an unsatisfiable, finite set C32‚gr of

22- ground instances of C32. If there is no occurrence of a new function symbol in C82,gr ,
then C32,gr serves also as an unsatisfiable, finite set CSI,gr of El-ground instances of

.C82 . '
Assume by contradiction that C82 gr contains a minimal number of occurrences of new

function symbols. Let t be a term occumn g in C82 gr with a new toplevel function symbol

and with a maximal term depth. Since t has maximal term depth, for every occurrence of t

in C82.gr the function symbols above 1t are old ones. (Here the precondition on the t0plevel

92

function symbols 'of new declarations is used.) Since 22 is regular, we can choose a

Zl-term t' with LSQ') 5 LS(t). Replacing every occurrence of t in CSZ,gr by t' gives a
new set of ground clauses' CS'2 nhe set CS'2 gr i s well-sorted, since we have assumed

that there are no new term declarations with an old toplevel function symbol. Furthermore

CS'19 is contradictory, since it represents the same propositional clause set as C52,gr-

This is a contradiction to the minimal choice of C82 . I.gr

It is not possible to drop the requirements of Pr0position 7.9:

7.10 Counterexamples.
i) If we add declarations 1n £2 with old toplevel function symbols, then Proposition 7. 9 may

be false:
Let 211:: {B = A, b: B , g: A —> A} and let CSI : = [[P(xB)], [--l’(g(yA)}}. This clause set

has a Zl—model, since xB and g(yA) are not Zl-unifiable. '
Let 22 .= 21 U {g(f(zA)):B}. However, this term declaration allows to unify the terms KB

and g(yA) with the unifier {yA <— f(zA), "B <- g(f(zA))], hence the clause set CSI is .

contradictory with respect to 22. D
If the signature 212 is not regular, then Proposition 7.9 may be false:
Let l= [B = A, C = A , b:B, c:C} and let CSI := [[P(xB)}, {-P(yc)] }. This clause set

has a Ill-model. If we add the term declaration g:B—>B‚ g:B—>C , i.e., 22 := 21 U

{ g:B—->B, g:B—>C], then xB and yC are unifiable with unifier {x36— g(zB), yC<-— g(zB)},

hence the claüse set CSI is contradictory with respect to EZ. El

iii) If there are equations in the clause set, then Proposition 7.9 may be false:
. Let l= {B = A, C= A , D = A, E = A, b:B, czC, d:D, e: E} and let CSI :=

{{xDi} , {b=c} }. This clause set has a Ill—model. If we add the term declarations

'g:B—>D, g:C—>E , i.e.,Ez := 21 U [g:B—>D, g:C—>E }, then we have g(b) = g(c).

However, g(b) is of Sort D and g(c) i s of sort E, hence xDatyE implies g(b) ¢g(c), which

is a contradiction. I - ' '

7.11 Proposition. Let Z be a signature. Then facton'ng out the equivalence of sorts is a
conservative transformation of signatures.

Proof. Note that in all Z-models M the denotation of equivalent sorts is the same, i e A-= B
and B-= A implies AM-— BM. The proof IS straightforward and uses the same ideas as the

proof of 7. 6. I

This proposition means that we can assume that the order on sorts i s a partial ordering. Our

next aim is to show that we can also assume that the sort-structure is a semilattice. We show

how to embed an arbitrmy finite partial ordering into a semilattice:

93

7.12 Lemma. Let <Sa, Ea> be a partial ordering on the finite set SI . Then there exists a
semilattice <Sb,Eb> such that <Sa, Ea> is embedded into <Sb,r_=.'b>.
Proof. We define the set Sb as follows:

Sb := {M at Q I M = [-°°,Sl] (\ n [-oo,Sk] for S l , . . . ,Sk e Sa}. We allow also the

empty intersection , i.e,. we assume that the whole set Sa is an element of Sb. We define
the embedding function H: Sa —-> Sb as H(S) := [-oo,S] . Furthermore we define the

ordering Eb to be the subset ordering on Sb- ' .
Obviously H is injective, since [-oo,R] = [-oo,S] implies R = S as E is antisymmetric.

i) R Ea S <=> H(R) Eb H(S) for all R,S e Sa:
Obviously R Ea S is equivalent to [-oo,R] (; [—oo,S] , by the definition of Sb-

3

ii) For every sort S 6 Sb there exists a sort R 6 Sa with H(R) Eb S:

This holds, since all elements of Sb are lower segments and hence for every M 6 Sb

and every S e M we have [-oo,S] sb M.

Obviously, for every M1, M2 6 Sb we either have M1 n M2 = @ or M1 n M2 6 Sb.
This means that <Sb5b> is a semilatticc. I .

Note that the construction in Lemma 7.12 is optimal in the sense that a minimal number of new

sorts is generated. The argument is that in an arbitrary lattice in which <S,E> is embedded, the

intersection construction of Lemma 7.12 i s also possible and shows that the semilattice

constructed in Lemma 7.12 is a subsemilattice.

7.13 Corollary. For every finite signature)] the embedding of the sort structure <SE,E>
into the finite semilattice as constructed in Proposition 7 .12 is a conservative

transformation. I '

In general this result increases the efficiency of a unification procedure, since the number of

unifiers can be reduced. However, in the worst case it may be possible that the number of

sorts to be generated, is exponential:

7.14 Proposition. The embedding of a sort structure <SE°E> into a'finite semilattice
may require an exponential number of new sorts. ' _ _

Proof. Consider the following sort structure: Let Ai , ' i = 1 , . . . , n and Bi , i = l , . . . ‚ n be sorts

such that the relations are Ai = Bj iff i := j. The construction of Lemma 7.12 yields that
every nonempty subset of {Bl,.„,B„] corresponds to a sort in the completion lattice.

These are 2rl —1 sorts. On the other hand, the above construction gives an exponential upper

bound, since :P(S) is sufficient for a completion. I

94

Corollary 7.13 justifies the assumption that sort-Structures are semilattices. It has as a

consequence (see part III) that the number of unifiers can be reduced by a preprocessing step,

which transforms the sort—structure into a semilattice. In the case where this transformation is

exponential, there are two remedies to the situation: the first is to use a logic in which _sorts
change dynamically [1885] or else we assume that the sort-strucure is completed, but perform

a lazy computation of the completion, i.e. we compute the needed sorts at unification time.

8. R-systems.

The definitions of this paragraph are only used here, only the final result will be used outside

of this paragraph. *
Consider the. situtation, where the sets T2: and SUEZ-are given, or where we only have an

algorithm for distinguishing well—sorted terms and substitutions from ill-sorted ones, but no

term declarations are given. We show, that some sensible restrictions enforce that the notion of

well-sortedness is generated by an order-sorted signature with term-declarations.

A similar _way to define sorts starting with a relation on variables is used in the 2-1c of

A. Oberschelp [Ob62].

' Throughout this paragraph we assume that an unsorted signature 2 and restricted sets of terms

TR g T—z and substitutions SUBR ; SUB-}: are given.

The following conditions should hold for the (restricted) R-System (TR, SUBR):
'R- i) ' . TR 15 subterm—CIosed and C-2 , V—): ; TR.

, R-ii) SUBR“IS a monoid with SUBR (TR)—-— TR.
R-iii) vw ; v Ev o & SUBR : cm, 6 SUB-R;

. R-iv) Vt e TR 3x e V2 : [x (— t} & SUBR. ‘
R—v) For every variable x there exists a ground term tgr with [x (— tgr} e SUBR.

We define subsumption with respect to TR and SUBR:
8.1 Definition. Let s, t e T—2‘,- Then
i) s t : coE lÄeSUBRzl s= t .
i i) s t :=» s t and tSRs . l

' 8.2 Lemma. SR is a quasi-ordering .
Proof. We have t SR t for all t e T i , since Id e SUBR.

Let r ZR 3 ZR t. Then there exist 1,6 e S U B R with r = l s and s = ot.We have

7Lo o e SUBR since SUBR is a monoid, hence r = loot and r 2R t. I

95

8.3 Lemma. Forxe Vfand te Ti : t 2Rx => {x <— t} e SUBR.

Proof .
"=" : Let %. e SUBR with 2.x = t. Then {x (— t}= MIX} 6 SUBR by R-iii.
"<=": trivial. I

The last condition for an R-systcm (TR, SUBR) is :
R—vi) Vx e V 2: the equivalence class We]; is an (countably) infinite set.

8.4 Definition. An R-system consists of an unsorted signature 5—3 , a set of terms TR and a

set of substitutions SUBR such that condition R-i) - R—vi) are satisfied. I

Obviously [KER ; V y; for all variables.

The notion of R-systems is sensible:

8.5 Proposition. Signatures with term declarations generate R—systems.

Proof. The verification of every condition is straightforward.-

We define the notion of sorts in R-systems. Here sorts are defined as sets, but we could just

as well have a'sort-symbol for every sort. We use the symbol 2 to indicate the signature to be

defined.

8.6 Definition. The set of sorts with a partial ordering and the sort of a term is defined as

follows: „
i) Szz={[x]ERle§} .
ii) The ordering on S): is: Sl ER 82 :=» xl 2R x2 , where SI = [X11511 and

82 = [X21511-
iii) Fo r t e TE: S}: (t) := { [x]ERl [x (— t} e SUBR]. l

8.7 Proposition.

i) ER is a partial ordering on S.
ii) Vt-e Ti : S£(t)#@ <=> t e TR-

iii) For all x e V: and all t e TR: S): (x) ; S): (t) <= [x (— t} & SUBR.

Proof . —' ' - ' .

i) ER is well-defined, since "1 ER X2 , Y] ER y'2 and xl SR yl imply x2 SR y2 by the
transitivity of SR. That ER is a partial ordering on S): follows from the fact that SR is a

quasi-ordering on V f _
ii) "==>": If Sz(t) # @ then {x <—t} e SUBR for some variable x.

Hence by R-ii : t e TR.

96

"€:": Follows from R—iv.

iii) S,;(x) ; S,; (t) <= [x]ERe S:: (t) @ {x <— t} e SUBR. I

8.8 Definition. p e SUBR is called a SUBR-renaming‚ iff p is a renaming and
Vx & V px ER x.

The existence of sufficiently many SUBR-renamin gs is not obvious and has to be proved:

8. 9 Lemma. Let W1 ; W2 ; V-2 be finite sets of variables.
Then there exists a SUBR-renaming p e SUBR such that DOM(p) = W1 and

I(p) 0W2 = 0 .
Proof. Let WI := [x1,...,xn]. Since [xflER contains infinitely many-variables (R-vi), we

can choose variables yi & [xJER — WZ , such that all Yi are different.
Lemma 8.3 implies Pi := {xi (— yi] e SUBR. We have piopj = pjopi for i = j and define

p := plc up“ e SUBR. The result p is the desired SUBR-renaming. I

8.10 Lemma. Let xi be different variables and let [xi <— t i] 6 SUBR for i=1,...,n

Then {x1<— t1 ‚..., xn<— tn} 6 SUBR.

Proof. There exist SUBR-renamings pi i=1,...,n , such that DOM(pi) = V(ti) and I(pi)

consists of variables (see Lemma 8.9). _ .

The following reasoning relies on the trick that a Substitution can be made idempotent by

renamings and that idempotent substitutions. are equal to the composition of their

components. .
We have Pi o i{x <——t } e SUBR. Letoi :=pio [xi <— t1]|[xi]‘ Thenoi e SUBR ,hcnce
01°. .oon & SUBR. Furthermore pfo «up o 01°. «an 6 SUBR, where Pi Is the
converse renaming of pi.
We compute:

pl‘o «pn—o 01° ..."oonxi=
= pfo «pn—o oixi DOM(oi) n{x1,...,xn} = {x i} and

I(O'i) n DOM(oj) = 0 for i at j.

= p l " °p„“° piti

= pica piti DOM(pj'“) n I(pi) = 0 for iatj and
DOM(pj") (\ I(pi') = @ for i at j.

: ti

Hence p fo cpu—o 61° con |{x1,...‚xn] = ['xlt— t l ‚..., xnt— tn} 6 SUBR I

8.11 Theorem: SE is a sort-assignment, T 2: = TR and SUB: = SUBR.
Proof. We check the conditions of Definition 4.1.

97

i) Obviously S}: maps terms onto upper segments in Sr.-

ii) Proposition 8.7 implies that T 2 = TR-

iii) SUB; = SUBR:
o e SUBR

¢=> Vx e Vi : {x (-— ox} e SUBR Lemma 8.10 and R-iii)

=> Vx 6. V2 : [x]ER e SE (0x) Proposition 8.7 iii)

© Vxe V-z -zSz (x) ;Sz (ox)
<=> (! e SUBE.

iv) The other conditions follow directly from R-i) — R—vi).l

9. Sort-Preserving Congruences.‘

We are interested in congruences, which are sort-preserving and deduction-closed. In this

paragraph we show that every sort-assignment and a congruence on terms can be

conservatively transformed into a sort-assignment and sort-preservin g congruence.

However, the new sort-assignment may not be effectively computable. For practical '

applications, the equational theory should be decidable. If the. equational theory has

normalforms, then the new sort for terms can be defined as the sort of their normalform,

provided the nonnalform has a minimal sort in its equivalence class.‘This is particularly useful

if the term rewriting system is weakly sort—decreasin g and canonical. '
Due to paragraph 2 we can assunie that the congruence is deduction-closed. _
The following theorem introduces a new sort of a term t that corresponds to the union of the

sets Sea) := U{Sz(s) I s =“; t] . We will refer to this notion also as anE-semanti'cal sort

or for short as a semantical sort of t. This sort can be seen as the sort of a term in the quotient
algebra of T}: modulo the equational theory. However, there is the problem that with this

definition a variable may not have a unique least sort. The construction in the proof is by
‘u s ing the abstract notion of R-systems introduced in the last paragraph.

9.1 Theorem. Let =}:‚E be a deduction-closed congruence. Let CS be a clause set with
. E (; CS .

Then there exists a mapping Se: T}: —> 5;, such that
a) Se is asort—assignment. ' '

b) T9 = T2 and SUB}: C SUBe . _ __ ,
c) The generated SUBS -invariant congruence =®‚E is the same relation as =“; on T g.

d) =93 (=“,) is sort-preserving and deduction-closed with respect to S 9.

e) CS has a Ermodel © CS has a G-model.

F urtherrnore there is a well-sorted transformation s —) @ that is bijective on functions

98

and predicates “and terms and Se(t) = U H({Sz(s) | s =E,E t l) .
Proof . We define a new notion of the sort of a term using Theorem 8.11. To

distinguish between old and new objects we use the suffix 8 for new ones. We define
SUBS := {o e SUB-i l Vx e DOM(o) Es e TE: 8 =):‚E ox and 82(3) 2 8:00 }

a) Voß e SUBS Ho 6 SUB}; o =25 oe :
Let oe e SUBS and let x e V. There exists a term 5x e T2 with 5x =“; (Sex and
Sz(sx) ; Sz(x). Define dx := sx. Then o e SUB: and o =2,E oe. El

(TE, SUBe) is an R-systcm:
- We'havc by assumption that T}: is subtenn—closed.
We show only R4ii), since the other conditions are. trivially satisfied. '
SUBS (TE) TE:

Let 696 SUBe and te TE. Then there exists oe SUB); with G=z£ 0‘9. We
have ot =E,E Get, hence c't e T)}

SUBe is a monoid:
Let 09,16 €- SUBS and let x 6 V2. Let o e SUB: be a substitution with
0:2 , } ; “e
For tax there exists a term txwith 1:6" =2,E tx and S,;(tx) 2 S£(x).
We have Ge tex =}:‚E Getx =}:‚E o tx . Hence by Proposition 1.4.7:
Sz(0tx) 2 530x) ;) Sz(x). We have shown 091:9 e SUBS.

Now by Theorem 8.11 there exists a sort-assignment Se.
b) is trivial.
c) Let =9 E be the SUBS —invariant congruence on T : generated by “SE We show by

induction that-1,5 is identical with-_}:
E . .

It suffices to verify that every newly generated—“GE -re1ation IS also a—'2: E —relation.
The nontrivial part is to show that for s -"EE t and oe & SUBG we have os—_; E ot.
Le to e SUBE be the corresponding well— sorted substitution with 0 -"2.13 09.
Then ces-“LE 03 =25 ot _; ‚E 06L

d) We show that—_6‚E is sort-preserving:
Let s , t e T}: with s .=E E t. To show that 89(3) = Sea) it suffices to show that
[x e VZ! {x <— s] e SUBS] : {x e VE I {x (— t} e SUBQ} by the definition of SUBQ
and by Definition 8.6. If {x <— s} e S UB9, there exists a term sx such that
s =25 sx =“; t , hence also {x <— t} e SUBS.

e) Let the transformation H :2 —> @ be defined as follows:
H is bijective on F , P and T2? H:SE-—> Se with H(S) = LSe(x) for some variable x with
LSz(x) = S.
1) H is well-sorted:

i) R E S => H(R) Ee H(S):
Is obvious, since {xs (— yR} e SUB}: => [xs (— yR] e SUBS.

99

ii) Let S e Sz(t). Then H(S) 5 Sea):
This holds, since {xs <— t} e SUB: implies {xs (— t} e SUBe .

2) Let M be a E-model of CS. Then H(M) is a G—model of CS:
It suffices to show that H(M) is a G-algcbra by Theorem 7.6.
i) H(R) E6 H(S) implies H(R)M ; H(S)M:

ii)

iii)

Let H(R) 59 H(S) and let xH(R)‚ YH(S) be variables Of 8-sort H(R) and H(S),
respectively. Then either ”H(S) (—xH(R)} e SUB}: or there exists a term tx such
that x =2,E IX and {y (— tx} e SUBS. '
Let m e H(R)M. By definition of H(M) (cf. paragraph 7) there exists a variable x
with LSe(x) = H(R) and {x <— m} is a E-assignment. Let y be a variable with
LSe(y) = H(S). If {y (—x} e SUBE, then (p :={y <— m} is a Z-assignment and
hence m e H(S)M. In the case {y (—x} e SUB; there exists a term tx 22,13 x,
such that {y <— tx} e SUBZ. Since M is a Z-model we have <t = m, for every
total E—assignment extending {x (— m}, hence {y (—m} is a E—assignment and

m e (LSE(y))M ; H(S)-M.

H(S)M = SM and every G-assignment is also a Z—assignment:
We show H(S)M = SM . The second claim then follows immediately.
Let {x (— m} be a Z-assignment and let y be a 'variable with “y EG x . If

{y (—x} e SUBE, then {y <—m} i s a Z—assignment. If {y <——x} eSUBE, then
there exists a term t‚“ =“; x, such that {y e— tx} e SUBE. Since M is a Z-model
we have <t = rn for every total E—assignment extending {x <— m}, hence
{y <— m} i s a E-ass ignment and m e (LSE(y))M ; H(S)M. Hence
H(S)M = SM. Cl '
For H(S) 6 59(0 and all G-assignments (pe we have (per e H(S)M:
Let (pe be a G-assignment. By ii) (PO is also a E-assignment. A similar
argument as above shows that for every variable x with {x <—t} e SUBe we
have (Pet E (LS£(X))M.

3) Let Me be a €*)—model of CS. We have to construct an M, such that H(M) = M9 and M
is a Z-algebra. We let the denotation of functions and predicates unchanged and define
SM:= H(S)M9. It is a trivial task to verify all necessary conditions. I

The semantical sort-assignment may be not regular:
9.2 Example. Let 2:: {B CA, C = A; s , c:C} and let E := {b = c}; Then Se = SE and the

sort of b with respect to @ is Se(B) = { A‚B,C}. Since this set" has no “unique minimal

element, the new sort-assignment is not regular. I

Unfortunately, the construction in Theorem 9.1 may not be effective in general. A
consequence is that the new sort-assignment may not be computable. It may nevertheless be of

100

practical use to consider a term t of sort S , if ‚there is a term s of sort S with s =E,E t .

Theorem 9.1 shows that this is a correct method and that .in Example 9.2 we can consider c to

be also of sort B. '
A case, where the above construction behaves well 1s that 2 IS regular and £ is defined by a
weakly sort-decreasing and canonical term rewntm g system. Then 813 regular, the set of sorts

does not change, i.e., S; = Se, and the new sort of a term is the sort of its normalform.

10. Relativizations.

In this paragraph we. consider two different methods. to transform sorted clause sets into

unsorted ones in a conservative way. The first is the standard method [Ob62‚ Wa83] to

provide a unary predicate for every sort, to add cbnditional literals to clauses and to add

clauses that express the signature of the clause set. . , . _
The second method transforms sorts into unary functions and thesort-information into

suitable equations for these unary functions. _
For the special case where no equations are in the clause setand the sort—structure is a tree,

there is' a third method to relativize a clause set (cf. [St86]), namely to embrace every term with

unary function symbols that represent the sort of the term. For example if there are the sorts

A -:-I. B a C and the term t has sort C, then we rclativize (recursively) t— as fA(fB(fC(t))). It can

be shown, that unsorted resolution for the thus relativized clauses simulates sorted resolution.

We do not further consider the third case.

10.1 Definition. Let 5= (2 , CS) be a specification. The we define the r e l a t iv i zed

specification .SREL: = (ZREL’ CSRELU AxREL) as follows:
i) ERR:-—)3 U PREL' where PRELis a set of new unary predicate symbols PS for every

sort S. .
ii) AXREL is the set of clauses

a) {-PR(x), Ps(x)] 'for every relation R E S.
b) [-PSl(x1)‚ -Psn(xn), Ps(t)} for every term declaration t:S e 2, where

V(t) = {xl , . . . ,xn] and Si = S(xi).

iii) CSREL is the set of clauses:
CREL for every C e CS, where CREL := {-Psl(xl), . . . , —P5n(xn)} U C,

V(C) ={x1,...,xn] and Si = S(xi). I

The "Sortensatz" in [Ob62‚ Wa83] states that a sorted clause set and its relativization have the

same semantics. The same is true in signatures with term-declarations:

101

10.2 Theorem. 5 has a S.)-model, iff SREL has a ZREL-model.

Proof. "=>": Let M be a Z—model of .S. In order to obtain a ZREL-modcl of 5REL we add the

relations PS,M := SM , i.e., we define the predicate PS‚M to be valid exactly on the set

SM. In order to be precise we have to forget about the denotation of sorts and have to

define the functions fM on the whole set M. This definition can be done arbitrarily.
ii.a): The clauses [-PR(x), Ps(x)] are valid, since RM ; SM.

ii.b): Let (p: V:- —> M be an assignment. If (p(xi) & PSi ,M for some Si then the clause is

valid. If <p(xi) e PSi ,M for all i , then (p corresponds to a Z-assignmcnt, hence

(p(t) & PS ,M' and hence the literal Ps(t) is valid.

iii): Similar to the proof of ii) a). Cl

"<=": Let M be a ZREL—model of 5REL° In order to obtain a E-modcl of 5 we define the
denotations of a sort S as SM := PS,M .
The clauses ii.a) enforce that R E S implies RM ; SM. The clauses ii.b) enforce that for

term declarations t:S and E-assignments (|) the application of (p to t is defined and that '
(pt 5 SM. The clauses C are valid in M, since a Z-assignment (p corresponds to a usual

ZREL-assignment, which makes all literals —Ps(x) false and hence the remainder of the

clause CREL’ that is the clause C itself. valid. I . '

We prove that the sort of a term is reflected in the relativization of clauses related to the sort- of
a term:

10.3 Lemma. Let 2 be a signature and let ZREL be its relativization.

Then for every well-sorted E—term t:

t e TBS @ AXREL‘ : {—PSl(x1),...‚—Psn(xn), PS(t)}‚
where V(t) = {x1,...,xn} and Si = S(xi).

Proof. The proof is similar to the proof of Proposition 1.6.3.
"=> " : We prove this by structural induction according to Definition 1.4.3.

As induction basis, we have that the axiom 10.1.ii.b)lis deducable for term declaration t :S

and for variables x_we have the tautology {-Ps(x), Ps(x)}.

In order to prove the induction step, lett e T25, r e T2,R and xl ; V(t), such that

R s S(x1). Let V(t) := {x1,...,x„} and let V(r) := {y1,...,ym}. Furthermore let si be the
sort of xi and Ri be the sort of Yi- The term {xlt—rh is in TE,S by Definition 1.4.3. We

have to show that {-PSl(x2),...,-PSn(xn), —PR1(y1),...,-PRm(ym)‚ Psaxlt—nt)} holds.
By the induction hypothesis we have that {-PS1('x1),.-..,—PSn(xn)‚Ps(t)] and

{-PRl(x1),. . .,-PRm(ym), PR(r)] hold in all models of AxREL. Let M be a model and let (p

be an assignment such that the prefix {-P51(x2),...,-Psn(xn), -PR1(yl),...‚-PRm(ym)} is

not valid in this model. Then the literal PR(r) is valid under (p. Let W be the assignment that

differs from (p only at the variable)(1 and assigns x1 the element (pxl. Then the literal

102

Ps(t) is valid under \|!. We have (p{x1<—r}t = wt, hence Ps([xl<—r]t) is valid under (9.
We have proved the induction step. Hence the conclusion is true El
=" : The other direction follows from model-theoretic considerations. .

We construct a ZREL-model for the axioms AXREL as follows. Let M := TSI} furthermore
define the denotations for predicates PS,M := TZ,S° Then M is a ZREL-model.
Now for all terms t e T ~2— "T235 the clause {—PSl(x1),...,—P5n(xn), Ps(t)], where
V(t) = {x1,. ..,xn} and Si = S(xi), is not valid using the ‘identical’ assignment, since M is

- a model. I „ '

10.4 Corollary. Let 2. be a signature and let ZREL be its relativization.
Then for every well-sorted ground Z-term t: A
t e T£.S e: AxREL |= { Ps(t)]

where V(t) = {x1,... ,xn] and Si = S(xi).

Another method to relativize a sorted clause set is to introduce unary function symbols fs for
_ every sort S and to add equations to ensure the right behaviour. The transformation of a sorted
term t into its unsorted verSion is done by embracing every variable x in t of sort S‚(by the sort
function f and "t has sort S" is translated into fs(t) = t. | .

10.5 Definition. Let 5 = (Z,CS) be a specification. The equationally relativized
specification i s defined as follows: SEQR

:= (EEQR, CSEQRU AxEQR) of CS.
i) ZEQR:= 2 U FEQRé where FEQR is a new set of unary function symbols fs for every

sort S . '
ii) The relativization of terms in T): is a function 8: T}: —> TZEQR’ where öt is the term '

obtained by replacing every variable x of sort S‚{ in t by the term f(x). We can
extend 5 in the usual way to atoms, literals, clauses and clause sets.

iii) AXEQR i s the set of clauses
a) {fS(fR(x)) = fR(x)} for every relation R E S.
b) {fs (öt) = öt} for every term declaration t:S e 2‘...

iv) CSEQR is the clause set ö(CS). I

We denote equality defined by the above axioms as =_EQR°
The next lemma shows one direction of the sortal behaviour of the relativization, the other

direction is shown 1n Lemma 10.8.

“10.6 Lemma. We have for all t 6 TE : t e TE,S => fs(öt) "“EQR öt:
Proof. We prove this by structural induction on the generation of terms according to

Definition 1.4.3. The induction base is that for term declarations t:S we have the axiom

103

fS(öt) = öt and for variables x e T218 we have S(x) E S, hence fs (5x) = 5x by the axiom
f s (f s (x) (x)) = f s (x) (x) -

In order to prove the induction step, let t e TE‚S’ r e T2‚R and x e VZ, such that R E S(x).

The term {x <—r}t is in TZ,S° We have to show that fs(ö ({x <—-r]t)) =EQR ö ([x e—rlt).

Application of the substitution {x <— ör} to the equation fs(öt) = öt yields that the

equation fs({x (— ör}öt) =EQR {x <— ör}öt holds. However, by induction hypothesis, we

have 8 ([x (——r}t) =EQR {x (— ör}öt, since fs(x)(8r) =EQR Sr. I

10.7 Theorem. 5 has a Z-model, iff 5EQR has a ZEQR—model.

Proof. "=>": Let M be a E—model of 5. In order to obtain a EEQR-model of SEQR we define

the new unary functions fS,M to be the identity on SM, and for an element a e M—SM we

define fs(a) to be an arbitrary element in SM. This definition is possible since SM is
nonempty. (In the following we refer to Definition 10.5)

i) The axioms iii.a) are valid in the new model:

fS(fR(x)) = fR(x) holds in the model, since fR,M(a) 6 SM and fSM is the identity on

- SM. '
ii) The clauses 10.5 iii.b) are valid in the new model:

It suffices to show that for every term declaration t:S and for every ZEQR-assignment

(p, the (p(öt) & SM. This is true, since every variable x of sort Sx is embraced by the
function symbol f - Hencc (p corresponds to the Z—assignmcnt (p' with (p'(t) = (p(öt),

hence (p(öt) 6 SM.
iii) The clauses CSEQR are valid:

Every variable x of sort Sx is embraced by the function symbol f - Hence (p
corresponds to 2--assignmcnt (p' with (p '(C) = (p(öC) for every clause C, hence
CSEQR ‘

':Let M be a ZEQR-model of 5EQR- In order to obtain a Z-model of 5 we define the
denotation SM for every sort S as SMz—— {a e M | fS ,M(a)= a}. By Lemma 10. 6 we have

for every term t e TLS that fs(öt) = öt, hence SM is nonempty by assumption 1.4.11.
From the axioms in iii.a) it follows that R E S implies RM <; SM. In order to show
condition I.6.1.ii, let (p be a partial Z—assignme‘nt and let t:S be a term-declaration.
Obviously we have (p(öt) = (pt and since fS(öt) =EQR öt, we have also fS,Mtp(8t) =tp(öt),
hence (pt 6 SM.
For every Z-assignment cp and every clause C we have (p ö(C) = (p (C) , hence every
clause is valid. I

Now we can prove that also the converse of Lemma 10.6 holds:
10.8 Lemma. We have for all t e T2 : t e T25 @ fs(öt) =EQR öt:
Proof. Lemma 10.6 shows "=>". '

104

The other direction follows from semantical considerations.

We construct a EEQR-modcl for the empty clauSe-set as follows. Let M :=_ T2, furthennore

define fS ,M as the identity for terms t & TE‚S and for terms t e TZ,S let fS,M(t) be an

arbitrary term in Tz’s. The axioms in 10.5 iii) are satisfied due to the definition of M and

Definition 1.4.3. Assume by contradiction that there exists a term t e TZ -— T2‚S with fs(öt)
=EQR öt. We have ta t fS‚M(t)° Let (p be the ‘identical’ assignment . Then (p(fs(öt)) =

(p(öt), since M is a model.
It follows that fS .M (t) = (p(fs(öt)) == tp(öt) = ‚t. We have reached the contradiction

t € ‚112 ,3 . . .

l l . Herbrand-Theorem.

'Herbrand's theorem [He30] states that every unsatisfiable clause set has a finite set of

ground instances that is unSatisfiablc. We show that this result also applies to the sorted case.

As a prerequisite we first have to relativize the equations, since the Original -'Herbrand-Thcorem

is proved for the case 'without built—in equality and without sorts.

It is well-known [Lo78‚ CL73] that an unsorted clause set CS with equational literals can be

transformed into a clause set CS' U EQ— AX, where the equality predicate‘= ’ i s replaced by a

new binary predicate EQ which 'lS interpreted as any other binary predicate and EQ-AX Is the

set of equality axioms. We make the same process for sorted clause sets. We add the predicate _

declarations EQ (S, S) for every sort S to the signature. Let EQ—AX be the axioms: .

i) EQ(xS‚ xs) for every sort S and Some variable XS of sort S..- .

ii) For every function symbol f and for all term declarations f(r1,. . .‚rn):Sl‚ f(t1,.. .‚tn):82
the clause: ' -
EQ(r1. tl) A A Ecxrn .tn) => EQ(f(r1.... .r.„) f(t1‚..t„..))

iii) For every predicate (including the new precicate EQ) and two predicate declaration

P(S 1‚ . . ‚ „S) and P(R1‚. . . R) l e txXi, Yi be different variables of sort Si‚Ri‚

respectively. Let the clause be: '
EQ(x1, y1)A . . . / \ EQ(xn‚ yn) A P(x1‚...‚xn) => P(y1‚...‚yn). Ü

- Note that i) and iii) have as a consequence that the symmetry and transitivity of EQ holds in

every model. Furthermore note that this is a finite set of equations.

In an unsorted signature the clauses ii) and iii) correspond to the clauses

' EQ(x1‚ yl) A .../\ EQ(xn, yn) => EQ(f(x1‚...,xn)‚ f(yl,...,yn)) and
EQ(xl‚ y1)A . . . / \ EQ(xn‚ yn) A P(x1,...‚xn) => P(y1‚...'‚yn) .

105

These two clause sets are semantically equivalent:
11.1 Proposition. Let 2 be a signature and 2' be the signature with the additional binary

predicate EQ. Then CS has a Z-model iff CS' U EQ—AX has a E-model.
Proof. "=>": Let CS have a E—model M. Then the E—model M‘ constructed by interpreting

EQ in the same way as the original equality is indeed a E-model, since the above clauses
i) —iii) are satisfied.
"<=": Let M' be a E'-model of CS. We can assume by 1.8.7 that M' is the ground term
algebra. We define the relation E on M' by a1 5 a2, iff EQ(a1, a?) is valid.
a is a fully invariant congruence relation on M': '

From i) and iii) it follows that "=- i s an equivalence relation. Furthermore it is
fully invariant.
To show that ..=.. is a E-congruence let Si E ti for i = 1,...,n and let f be a function
symbol such that f(sl,. . .,sn) and f(tl,. ..‚tn) are well-sorted. By Lemma 1.4.9 there are
term declarations that are more general than these terms. Hence there exists an axiom

among the axioms under ii) that enforces EQ(f(sl , . . .,sn), f(t1‚. . .,tn)) to be valid, hence

f(sl,...,sn) a f(t1,...,tn). '
The relation 5 is fully invariant, since the only endomorphism on M' is the identity.
Furthermore for every predicate P we have a l 5 blA ...A an 5 b“ A PM.(a1,. .,an) =>
P(b1,. . .‚bn) for elements ai,bi.e M'. Hence we can factor out the equivalence relation
E and obtain a Z—model of ' CS. I ' ‘

Now we can prove the sorted version of Herbrand's Theorem:

11.2 Theorem. Let E be a-signature.
A clause set CS is Z-unsatisfiable iff there exists a finite set of ground E-instances
that is unsatisfiable.

Proof. The proof is done in two steps. First we prove (using Theorem 10.2 ‘Sortensatz’)
' that Herbrand's theorem holds for a clause set without equations. Second we use

Proposition 11.1 to lift the Theorem to clauses with equations. We prove only the
nontrivial direction. _ '
i) Let CS be a E—unsatisfiable clause set without equations. We have to show that there

exists a finite, unsatisfiable set of ground E—instances of CS. Theorem 10.2 implies

that CSREL U AXREL is ‘ZREL-unsatisfiable. The Herbrand—Theorem for the unsOrted .
case [CL73‚ L078] gives a finite, ZREL-unsatisfiable set of ground ZREL-instances
csmflfgr u AXREL,gr of csREL u AXREL. This implies that also csREL,gr
U AXREL is a ZREL-unsatisfiablc clause set. It may be possible that some clauses in
CSREL,gr do not correspond to ground E—instances of a clause in CS. We argue that

we can delete these clauses: Let CSREL,ws be the subset of clauses in CSREL,gr that

106

correspond to ground E-instances of clauses in CS. .
Assume bycontradiction that CSREL,ws U AXREL has a {REL-model M. Let CSws be

_ the set of well-sorted clauses in CSREL’WS, which are obtained by deleting
the literals PS(t) from the clauses in CSRELMS. Then by Theorem 10.2 CSws has a
E—model. The proof of Theorem 10.2 and Corollary 1.8.7 show that we can assume
that this ZREL-model has T Zgr as the underlying ZREL-algebra. Furthermore we can
assume that the interpretation of the predicates PM‚S is exactly TE,S ,gr ' Consider a

' clause C in CSREL‚gr’ which cannot be obtained as relativization of a well-sorted
instance of a clause in CS. Such a clause C has a literal -Ps(t), such that t is
a ground term ant TZ.S' Hence such clauses are valid in M. This means that we
have reached the contradiction that CSREL,gr U AXREL has a ZREL—model.
We conclude that the set CSWS is a finite Z—unsatisfiable set of ground E—instances of

. clauses in CS. Cl
ii) Let CS be a E—unsatisfiable clause set with equations. Proposition 11.1 implies that set

CS is E-unsatisfiable, iff CS' U EQ-AX is E-unsatisfiable. Part i) of this proof gives
a finite, Z'-unsatisfiable set of ground instances CS'gr U EQ—AXgr of CS' U EQ-AX. _
This implies that also CS'gr U EQ-AX is E'-unsatisfiable. Now Proposition 11.1
yields a finite E—unsatisfiable set of ground instances, namely CS gr' I

12. First-Order Formulas and Skolemization.

The notion ‘signature With term-declarations’ can be extended to first order predicate logie. '
That means that we can use logical connectives such as A, v, =>, =>, “1 , and the quantifiers' V

and El. The formulas and the semantics of closed formulas (no free variables) are recursively
defined as usual.
In the following definition we use the notation (p[x <-—a} for the assignment that is equal to (p
on all variables but x and (p[x (—a] (x) := a.

We give the usual recursive definition of validity (denoted by !=) for formulae [EF78‚ Sh67].:

Let M be a S.)—structure and let (ps _) M be a partial E—assignment. Let F and G be
formula.

(M, (P) ‚= P(t l " ” . ’ t n) , iff ((P t1 , . . . , (p tn) 6 PM.

(M, (p) |: FAG, iff(M,(p) |= Fand(M,(p) != G
(M, (p) |= -|F, . iff not (M, (p) |: F .

107

(M, (p) != FvG, iff (M, (p) != Fo r (M, (p) != G .
(M, (p) != F=>G, iff (M, (p) I: Fimplies (M, (p) != G.‘
(M, (p) != F<=>G, iff (M, (p) != F i s equivalent to (M, (p) != G.
(M, (p) != El: F , iff there existsan ae SM: (M, (p„{x <—a}) != F
(M, (p) != s : F , iff for a l l ae SM: (M,<p{x <—a}) != F.

A E—structure M i s a Z-mode l of a closed formula F (F has no free variables), iff

(ME) != F, also denoted as M !=' F. Note that this definition depends only on the structure
M. This definition is consistent with the definition of validity of clauses and clause sets if
each clause i s interpreted as universally quantified over all variables occurring in it and as
disjunction of its literals, wheras clause sets are conjunctions of their clauses.
The above definition works also if the same variable occurs under different quantifiers.
Without loss of generality we can assume that in closed formulas every variable occurs exactly
under one quantifier. If F' is the approriately renamed version of a formula F, then M != F' iff
M != F.

We have the same skolemization as described in [Wa83]:
A prenex formula F containing a subformula Exs: G can be tranformed by skolemization
steps as follows: .

Let [x1,. . .,xn} be the set of variables occurring under a universal quantifier above Bxsz G.
Introduce a new n—ary function f: S(i<1)x. . ‚x S(xn) —> S . _
Let G' be the formula G, where every occurrence of "S is replaced by f(x1,. . .,xn).
The new formula F' is then the formula F, where 3x5: G is replaced by G'.

The skolemized formula FSK of a formula F can be obtained by applying skolemization
steps until all 3—quantifiers have disappeared.

The skolemization is conservative:
12.1 Proposition. Let F be a prenex formula with respect to E and let F‘ be the skolemized

formula with respect to E‘. Then F has a Z—model iff F' has a E-model.
Proof. Let M be a Z-model of F. We can assume that there is only one skolemization step.

We use the notation of the above definition. To construct a E-model M' of F we have to

define the function fM on M'. Let ai be elements in S(xi)M. If there exists an element

a 6 SM, such that (M, {x1<—a1,..., xn (—an, xS<—a})!= Hx-S: G, then we define
fM(a1,. . .,a„) := a, otherwise we define fM(a1,...,an) to be an arbitrary element of SM.

Note that S M is nonvoid. _ -
If we have a partial E—assignment (p = [xvi—31,. . ., xn (—an}, then (M, (p) != EIxS: G is
equivalent to (M', (p) != G ' . Hence _M != F implies M' != F ' .

The reverse direction uses the same techniques and is omitted. I

108

Now We can use the same techniques as. in the unsorted case to normalize a formula F, i.c. to

transform it in a conservative way into a clause set. However, the method described here is

straightforward and not very efficient in practice. There exist more efficient methods (cf. '

[EW83]) . ° '
The steps of such an algorithm are:
1)

2)

3)

4)

5)'

6)

Eliminate => and @.
Move the negation sign inside.

Skolemize
“Move V-quantifiers outside
Use the associativity, commutativity and distributivity of A and v to transform the

formula'into a conjunction of disjunctions.
Make clauses variable disjoint and eliminate all V—quantifiers.

Note that this algorithm has to rename variables appropriately, for instance in step 1) if_copies
of formulas are introduced and in step 6) where clauses have to be renamed.

In chapter V1.5 we give a method to combine this normalization algorithm with a

sort— generatin g algorithm.

109

Part III.
Unification of Sorted Terms without

Equational Theories

Overview. In this part the properties of unification of free order-sorted terms are

investigated and rule-based unification algorithms are presented. We show that for elementary,

regular signatures Z-unification is decidable and finitary. In the general case when we have

signatures with term declarations, unification is undecidablc and infinitary. We also determine

the unification behaviour under certain restrictions such as linearity.

Throughout this part we assume that the given signature 2‘. i s finite.

1 . Minimal Unifier Sets and Minimal Weakening Sets.

1.1 Proposition. For every finite set W of variables, the quasi-ordering s,;[W] is

well—founded: '
Proof. Obviously the set S}: is finite. Assume there is a possibly infinite descending chain of

substitutions 01 >): 62 >); c3 >; ...[W]. Without loss of generality _we can assume that

‘DOM(Gi) g; W. Obviously, the depths of terms in COD(oi) decrease. Due to Proposition

I.]O.5 the quasi-ordering $[W] is well-founded, hence there exists an index n,

such that om a : on [W] for all m 2 n. This means there exist i-renamings pm with
DOM(pm) = V(omW), such that on = pmom [W]. Due to Corollary 1.5.4 the substitution

pm is unique and hence it i s well-sorted. Application of pm weakens the sorts of

variables in VCOD(om). Since the number of sorts is finite and the number of variables in

VCOD(om)A is fixed for m 2 n, there exist different numbers i‚j 2 n such that

oi 5): oj [W], hence the chain is finite. I

An immediate consequence is: . _
1.2 Corollary. For every-finite set F of equations, there exists a minimal, complete set of

Z-unifiers uUEG‘). I

Furthermore a minimal set uUza‘) is recursively en umerable by the following algorithm:

Using Proposition 1.1 and the decidability of syntactical equality of terms we can enumerate

the set U£(I') in a sequence Ti such that

110

i) for every EZ[V(1")]—equivalence class only one representative is considered.

ii) the maximal depth of terms in Ti (V(l")) is increasing.

Using this enumeration we can collect a minimal set of E—unifiers in a set }‚lU by adding the

next Ti if and only if it is not an instance of a unifier already in uU. This procedure gives a

minimal, complete set of unifiers, since the instance test is decidable (Corollary 1.5.4)

Hence we have:
1. 3 Theorem. For every set F of equations, a minimal, complete set of Z-unifiers for P

exists and 'is recursively enumerable. I

1.4 Corollary. Minimal and complete weakening sets |.lW(‘t), ttW(t) and ttW(t ES) exist and

are recursively enumerable. I

1.5' Proposition. Let 2 be elementary and regular and let 1: be an ill-sorted substitution such
' that there exists a well-sorted substitution 6 with 91: e SUBZ.

Then there exists a finite, minimal set, uW(t) of weakenings, such that |.tW(1:) ' is

effectively computable and consists of Z-renamings.

Proof. Let 6 be a substitution, such that 61: is Well-sorted. Let 7L be a substitution with
DOMOt) = I('c)‚ such that CODOL) consists of new variables and LSZ(?\.x) = LS£(9x). By
Lemma 1.4.10 we have LSzOL'ty) = LSE(91:y) for all y 6 1(1). Hence X G W(t).

Furthermore we have obviously 7t 5): 0 [1(1)]. This means there exists a complete subset of

W(1:) that consists of irenamings. Since the number of variables in I(1:) is finite and the

signature i s finite, it i s Sufficient for completeness to take a finite number of such

f—renamings. Since finite sets can be minimized, there exists a minimal complete subset of ‚
W(1:) consisting only of f—renamings. Such a set is furthermore effectively computable,
since the number of sorts is finite and matching and sort-Computation are effective
(cf.§I.5). I

2. A General Unification Procedure for Sorted Terms without Equational

Theor ies .

In this paragraph we give a complete (nonterminating) unification procedure for the empty

equational theory. First we give a procedure for the general case, which includes nonregular

signatures. Second we give a more efficient procedure for regular signatures having a

semilattice as sort-structure. Both algorithms use the ill-sorted binding-rule, which is in fact

the internal paramodulation rule (cf. 1.13) x = t & I‘ => x = t & [x <— t}I‘ where [x e— t} may

111

be ill-sOrted. We demonstrate that this is more efficient than the same rule using well—sorted
replacements.

There are many well-known efficient unification algorithms for the unsorted case [Ba76‚
Hu76, PW78, MM82, KKN82]. The usual Robinson-algorithm [R065] with instantiation is
of exponential time complexity, an improvement of [B C83] is quadratic, but it i s not known
whether there exists a quasi-linear algorithm with instantiation, hence the rule-based,
quasi-linear unification algorithm of Martelli-Montanari type [MM82] avoids the instantiation
rule,

For sorted unification, however, it is crucial to have a term fully instantiated, since otherwise
the solution of problems like x = t would blow up the search space. Those equations may have
a lot of solutions in the sorted case in contrast to the unsorted case, where at most one most
general solution exists.

The following is an nondetenninistic rule system for sorted unification without any restrictions
on the sort structure. For unusual notations and conventions the reader should refer paragraph
I. 13. '

2.1 Definition-Th6 set of rules GSOUP (general sorted unification procedure) is defined as
follows:

VVl) x=x&I‘* => 1"

VVZ) X = y -=> y = X

if LSZ(x)I= L8,“;(y). ' _

VV3) x=y => x=z&y=z
if LSz(x) $ LSz(y) and LSz(y) $ LSz(x) and S is a maximal sort with

S E LS£(x), and S E LSz(y) and z is a new variable of sort S .

VV4) x = y = x = f(sl,...,sn) & y = f(t1,...,tn) & sl = tl & & s“ = t“
if LS£(x) $ LSE(y) and LSz(y) $ LSz(x) and f(sl, . . . ,sn):S is a term

declaration with S E LS(x) and f(tl,...,tn):R is a term declaration with.
R !; LS(y) . '

VVS) x=y => *
if LS£(x) $ LSE(y) and LSE(y) $ LSE(x) and LSz(x) and LSz(y) have no
common subsort and there are no term declarations f (s l , . . . , sn) :S with

112

s 5 L800 and f(t1,...,t‚.‚):R_with R E LS(y).

VTl) x= t&I ‘ :; x'=t&{xe—t}_I‘
- if e(t) andxe V(I‘).

VT2) t=x => x= t
if t i s notavariable.

VT3) x=f (t l , . . . , t n) => X=f(S l , . . . , Sn)&Sl=t l&. . . &Sn=[n

if x @ V(f(tl‚...‚tn)) , LSZ(x) e Sz(f(t1,...,tn)) and f(sl‚...,sn)':S is a term
declaration with S E LSE(x). '

VT4) x = f(t1,...,tn) => *
if x E.V(f(t1, . . . , tn)) , LSz(x) e S£(f(t1,...,tn))' and there i s no term

declaration f(sl,...,sn):S with S E LS£(x)

VTS) x = t . => *
If x eV(t) .

'ITl) f(s1‚...,sn) =f(t1‚...,tn) = s1 =t1 & & sn = tn .

'I'I‘2) s = t => *
If hd(s) == hd(t). I

. Every declaration t:S taken from 2 must be completly renamed with new variables before it is ‘

used in a unification step. ‘

The above procedure could be enriched by the eliminationrule x = t _& 1" => 1", if x is an
auxiliary variable not occurring in 1" and {x <-—. t}. is well-sorted, where we say a variable is

auxiliary if it does not appear in the original equation system to be solved.

The following lemma is easily albeit tediously shown:

2.2 Lemma. All steps of the above procedure are correct. I

2.3 Pr0position. All steps of the above procedure except the steps VV3), VV4), VT3) are

complete.
Proof. We prove the nontrivial parts.

VVS) Let 0' e SUB; with 0x = 0y. Since 6 is well-sorted, we- have LSz(x) s 52(6):) and

113

LSZ(y) e Szwx) hence by Lemma 1.4.9 there exist term declarations f(s1-,...,sn):S
with S E LS(x) and f(r1,...,rn):R with R E LS(y).

VT4) Let o e SUBS with 6x = of(t1,. . .‚tn). Then LSz(x) & Sz(6f(t l ‚ . . . , tn)) . From

Proposition 1.4.9 it follows that there is a term declaration s:S with 3 s LS£(x).
VTS) If x e V(t), then (x = t) has no solution. I

2.4 Proposition. The procedure GSOUP is a complete unification procedure.

Proof. Le to be an idempotent unifier in U(l") with DOM(O‘) = V(F). We slightly change the

definition of solved part and instead of the set of solved equations, that is the subset of F of

equations x = t, where {x <— t} is well-sorted, we use the set TWO of worked—off equations

as follows:

i) Solved equations are in I‘wo.

ii) descendants of worked-off equations remain in TWO, if W1) is applied, even if the

substitution component connected with this equation becomes ill—sorted.

Let FU be the unsolved part of F , i.e., the complement of TWO in F.

As well-founded complexity measure ”(6, P) we use the multiset of all term depths in

C(I‘U). The idea of this proof is to show that there exists a pair (o', I“), such that F => F‘

by one step of GSOUP where 6' is a unifier of I“ that is equal to 6 on old variables and

extends 0' to new variables, furthermore tt(0', I“) < MG, F).

If „(d, 1'“) is minimal, i.e., if the multiset is empty, then the set of equations is solved and

we are ready. It is easy to verify that in this case all worked-off equations are indeed

solved. The argument is that we can postpone the application of {x <— t} to worked-off

equations and make the application after all non—solved equations have disappeared. Then

we can use VTl) only on well-sorted substitutions in an appropriate order to obtain the

same solved system. ‘
Now we show that there is always a GSOUP-step on F that reduces the measure MOI).
First we argue that the rule VTI) does nOt increase the measure. This rule does not change
the depths of terms in 61", since from ox = ot we obtain 0'{x (— t} = o , since 0' i s

idempotent. By definition of I‘WO, equations remain in the set of worked-off equations

after application of this rule. '

We go through the cases for equations s = t in I‘U:

1) Case s = t, where neither s nor t is a variable.

Then by step TTl we reduce u(o,I‘)‚ without changing the set of solutions.

2) Case x = f(t1,...,tn).

Then x E V(f(t1,...,tn)) and LSE(x) e Sz(f(t1‚...‚tn)), since Ox = 6f(t1,...,tn). By

Lemma l.4.9 there exists a term declaration f(s1,...‚sn):S with S E LSZ(x) and a

114

substitution 1: with tf(s1,. . .,sn) = of(t1‚. . .,tn). We use step VT3- and VTl) to obtain a
new equation system I". Since the equation x = f (s l ‚ . . . , sn) i s solved, we have

_ tt(0‘U‘t,I") < MOI), since the depth of o(f(tl‚. .'.,_tn)) is larger than all term depths of

ati and ’csi. Furthermore 6 U 1 is a solution of I" with 6 U 1: = o [V(I")]. .
3) Case x = y. ‘

Then LSz(x) $ LSz(y) and LSz(y) $ LSE(x), since otherwise step VV2) reduces the
complexity by shifting x = y into the set of solved equations. We have 6x = oy, hence
LSZ(x) e Sz(0‘x) and LSE(y) e S£(ox).
i) If 6x is a variable, then LS£(0‘x) E LS£(x) and LSZ(Ox) E LSE(y), hence there

exists a sort S with LSz(ox) E S E LSz(x) and S E LSz(y). We use step VV3)
to obtain a new equation system I". With ‘: = [z (— 0'x} have p.(ou1:,I") <
MOI). Furthermore 0' U 1: is a solution of 1'“ with o U 1: = 0' [V(I‘)]. }

ii) If ox is not a variable, then there exist term declarations f(sl,...,sn):S with
s E Lszoo and f(r1,...,rn):R with R E LSE('y) and a substitution 1: with 6x =
'tf(sl,...,sn) and O’y = 'cf(t1,...‚tn). With rule VV.4) and vT1) we obtain an
equation system I“. The substitution 6 U 1: . i s a solution of I" with
0 u 1: = o [V(I‘)]. Furthermore we have u(oU1:‚I") < Mol”). I

Note that the above procedure is also complete if we allow only well—sorted substitutions in
rule VTl) .

3. Unification in Finite, Regular Signatures

' We give unification rules for a complete unification procedure for a regular si gnature, where
the sort-structure is a semi-lattice. This allows for a more efficient unification algorithm, since
for example rule VV4, which requires declarations for the unification of two variables, is not
necessary. .

The assumption that the sort-structure is a semi-lattice is only for simplicity of rules and
proofs. If the sort-structure is a partial ordering, then the new rule VV3 has to be adapted to
handle a set of glb's instead of a unique glb.
' The rules given here are as in GSOUP, however the rules vv3, VV4,VV5, VT3, VT4 of

GSOUP are improved. '

3.1 Definition. The set of rules SOUP (sorted unification procedure) is defined as follows:

VVl) x=x&l" => F

115

VV2) x = y = y = x

VV3) x=y = x=z&y=z
if LS£(x) $ LSz(y) and LSZ(y) $ LSz(x) and S = glb(LSz(x), LSz(y)) and

z is a new variable of sort S .

VVS) x = y = *
if LSz(x) $ LSz(y) and LSz(y) $ LSZ(x) and glb(LSz(x), LSz(y)) does not

exist.

VTl) x=t&I‘ => x=t&{x- (—t] l"
if e(t) andxe V(I‘).

VT2) t=x = x= t
if t i s notavariable. .

V'l‘3) x = f(t1,...,tn) = x = f(s1,...,sn)& 51 = t1 & & sn = tn
if x e V(f(t1,...‚tn)) , LSz((f(t1,...,tn)) $ LSz(x) and f(sl,...,sn):S is a term

declaration with S E glb(LSZ((f(t1,...,tn)), LSz(x)).

VT4) x = f(t1,...,tn) => *
' if x e V(f(t1,...,tn)) , LSZ((f(t1‚...,tn)) $ LSZ-(x) and there i s no term

declaration 8:8 with s Eglb(Lsz((f(t1,...,t„)),f LSz(x)).

VTS) x= t , = *

If e(t).

1T1) f (S l , . . . , Sn) = f (t l , . . . , tn) => 31 = t 1 & . . . & Sn = t" .

TT2) s =t = *

If hd(s) at hd(t). I

We assume that declarations are completely renamed with new variables before used in a

unification step.

116

3.2 Pr0position. All steps of the above algorithm but the step VT3) are complete.
Proof. We prove only the nontrivial parts.

W3). - Let o e SUBE with 6x = 0y. Since a is well-sorted, we have LSz(ox) E
g1b(LSz(x), LS£(y)), hence 6 U {2 (-6X} is a solution of the new equations.

W5) .See the proof of VV3). . - -
VT4) Let c e SUB,3 with ax = Cf(tl,...,tn). Then glb(LS£(x),LS£(f(t1,...,tn)))a

LS z (o f (t l , . . . , tn)) . From Proposition 1.4.9 it follows that there i s a term

declaration f(sl,...,sn): S with S E glb(LSE(x),LSZ(f(tl,...,tn))). I

3.3 Proposition. The procedure SOUP is a complete unification procedure:
Proof. The proof of this proposition is similar to the proof of Proposition 2.4 and uses the .

same techniques. We mention only the differences in the induction arguments.
2) Case x = f(t'1,. . .,tn).' -

Then)(@ V(f(tl,...,tn)) , LSE((f(tl,...‚tn)) tt LSz(x), “since ox = Of(tl,...,tn). By
Lemma 1 .4 .9 there exis t s a term declaration f(s'1 , . . . , s „) : s with ' S E

glb(LSz(f(t1,.„‚tn)), Lszoo) and a substitution ”I:-with tf(sl‚...,sn) = 6f(tl,...‚tn).
We use step VT3 and VTl) to obtain a new' equation system I". Since the equation
x = f (t l , . . . , tn) is solved, we have tt(ou1:‚I") < |.L(O‚F). Furthermore 0' U 1: is a

solution with o u t = o [V(l")]. ' '
3) Case x= y. Then

Then LSE(x) q; LSz(y) and LSZ(y) $ LSz(x)‚ since otherwise step VV2 reduces the
complexity.
We have ox—- 0y, hence LSZ(ox) E g1b(LSz(x), LSE(y)). We use step VV3) and

_ VTl) to obtain a new equation system 1“. With t—— {z (—ox} have tt(0‘U1:,I") <

' MOI). Furthermore 0' U 1: is a solution with 6 U 1: = G [V(I")]. I

We demonstrate the advantages of rule VTl) over the instantiation rule with well-sorted solved
ecjuations:
3.4 Example. Let E := {B = A, f(g(xA)) :B, f(h(xA)): B , g:A —) A , g:B —> B, t —> A ,

h:B —> B}. Let F:: {xB = f(yB)‚ yB = h(zA)}.
1) We use the usual rule VTl): '

Then VTl is applicable and we get {xB = f(h(zA)), YB = h(zA)}. The first equation is
solved, hence we proceed on the second. This gives {xB = f(h(zA)), YB = h(x'B),
xB' = zA} and then the final solution is {xB = f(h(xB'))‚ YB = h(x'B), zA = xB'}

2) We use a rule Vlsthat allows instantiation of I" only if {x t—t} is well-sorted:
Then rule Vls is not applicable, since YB = h(zA) is not in solved form. For every
equation there are two possibilities to proceed. If we proceed on the first equation with

117

rule VT4), we obtain the two possibilities {xB = f(g(x'A)), YB = g(x'A), YB = h(zA)}
and{xB = f(h(x'A)), yB = h(x'A), yB = h(zA)}. The first equation system requires
two further steps until i t is recognized, that this system is unsolvable. The second
requires one more step VT4) an application of Vls and then a decomposition step to
obtain the solution. _

A comparison of the behaviour shows that in the first approach the search space is smaller,
unsolvability is earlier recognized and the path leading to a solution is shorter. It should be
noted that this is also true for elementary signatures. I

This behaviour is not accidental. We have experimented with another unification algorithm,

that extends the Robinson algorithm by replacing the unification of a variable x and a term t
with a procedure that first computes a complete set of weakenings of t (i.e.‚ substitutions 0
with LS(0t) E LS£(x) } and then retums a minimal, complete set for the unification problem

= t>.. However, a practical comparison of these two algorithms shows that this Robinson

extension is less efficient, the main reason is that computing the set of weakenings may

produce many instances that are incompatible with the usual (ill-sorted) Robinson unifier of a

set F .

Using the above rule—based procedure we can derive a deterministic Robinson—type algorithm

for regular signatures, which obeys the above observation: '
-l)_ Compute a (generally ill-sorted) Robinson unifier 0' for I‘.
2) Compute a set of well—sorted instances of 0 by applying the following step repeatedly

starting with PU := [o]: '
Let PU be a set of substitutions.
Take a substitution t = [x] (— t1, , xn (— tn} from PU, a component {xi (- ti]
with LS£(_ti) sl; LSz(xi) and a declaration t:S e E with S E LSz(xi).
Let pt be the Robinson unifier of t and ti.
Replace PU by PU u {ut}

Remark (for an implementationz) _
i) The declaration t:S taken from 2 must be completly renamed before every unification

step ‘ '
ii) If Ci descends from 0' by taking the 1——th component {xi (— ti}, then this component is

"locked" for O'i and descendants of c i .
iii) Since the procedure IS in general nontcrminating, there'IS the need for some bounds,

for example depth of the search tree. .
iv) Efficiency can be increased if the sort—ignoring unification refuses to unify terms s,t

118

which have sorts with no common subsort. This test i s only correct for regular

signatures.—

Now we consider the case of polymorphic signatures with a semilattice as sort-structure.

Polymorphic signatures, a special case of finite, regular signatures, have some nice properties,

for example unification is decidable and minimal unifier sets are finite. They allow a more

efficient unification algorithm and are a base for the systems and calculi in [Wa84, GM85a,

CD85, Sm86, Sch85a].
In [CD85] it is recognized that E-unification is not unitary, but a proof for finiteness is not
given.

The following rules are slightly changed for polymorphic signatures and are marked with (*):

VV2*) x=y&l" ==> y=x&{y<—x]l" -
' if LSZ(x) = LSz(y).

VV3*) x=y&l" => Hx=z& y==z & {xt—z,y‘(—z}l"

if LSE(x) $ LSE(y) and LSz(y) $ LSz(x.) ‘and S = glb(LSz(x), LS£(y)) and
z is a new variable of sort S. '

VT3*) x = f(t1,...,tn) => x = f(t1,...,tn) & yl =.— t1 & & yn =tn
if x eV(f(t1,...,tn)) , LS£((f(t1,...,tn)) sl; LSz(x) and f(y1,...,yn):S is a

function declaration with S E glb(LSE((f(t1,. . .,tn)), LSz(x)).

3.5 Proposition. If the signature 2‘. is polymorphic and the sort—structure is a semi-lattice,

then for every equation system F, the procedure terminates With an equation system in
solved form. . ' ‘

Proof. The proof of completeness is almost the same as in the proof of Proposition 3.3.

We show that every application sequence of rules terminates:
We use the same concept of worked—off equations and unsolved equations as in

Proposition 2.4. Solved equations are moved to I‘wo, i.e. equations x = t, such that x
does not occür elsewhere in I‘ and {x <— t} is well-sorted. However, equations remain in

I‘wo even after applying the rule VTl), which can make the corresponding substitution
ill—sorted. We assume that the rule VT3*) shifts the equation x = f(t1,. . .,tn) into TWO.

The difference F — FWO is the set FU. '
If no rule is applicable, then the system is in solved form: This is true, since in the case
FU is empty, all equations in TWO correspond to well-sorted substitutions.

119

For termination we use a complexity measure ll = 0.114,12, u3), where

u] is the number of ‘nonisolated’ variables, i.e., variables in I‘ that occur not only as a

left hand side of exactly one equation x = t in I‘,

1.12 is the multiset of term depths of toplevel terms in I‘U,

p.3 is the number of equations of the form t = x in FU, where t is not a variable.

Rule VTl) reduces the measure pl , since only equations x = t in FWO can be used and after

application, x is isolated on a left hand side.

Rule VV2*) reduces tt. Either x was not isolated before, then |.t1 is reduced, or x was

isolated before, then ”1 is not changed, but p.2 is reduced, since an equation is

removed from I‘U.

Rule VV3"‘) reduces tt since either “1 is reduced or I12: since an equation is removed from

I‘U. '
Rule V'I‘2) reduces the number of equations of the form t = x“

Rule VT3*) shifts 'x = f(t1,...,tn) into rwo, leaves u 1- invariant, since yi are
new variables and reduces the measure “2, since depth(f(t1,. . .,tn))' is replaced by the '

depths of ti and n times dep.th(yi). '
Rule 'ITl) either reduces u] or leaves “1 invariant and reduces “2° I

3.6 Corollary. E-unification is of type finitary for every finite, regular and elementary
signature E. I

The regularity condition is necessary, since in the following nonregular example with 2 :=

{a :A, a :B, f:A—>A, f: B-)B} the unification problem <xA = yB> has the infinite minimal and

' complete set of unifiers { [xA (— fi(a), yB (— fi(a)} l i = 1,2,....}, (where fi(a) means a term

of the form f(. . .(f(a). . .) with i occurrences of f).

For simple, finite order-sorted. signatures in which the sort structure i s a semi-lattice

E-unification is of unificationtype unitary [Wa84] . In the case of a nonfinite, simple
order-sorted signature Ch. Walther [Wa86]‘ shows that the unification type is completely

determined by properties of the subsort ordering. '

4. Complexity of Unification in Elementary Signatures.

We consider in this paragraph the complexity of unification in different types of signatures.

We assume that the signatures are always finite, elementary and regular.

120

4.1 Proposition. Let the sort-structure be' a semi-lattice. Then
i) The number of unifiers may grow exponentially with the size of terms to be unified.

_ ii) The number of unifiers is at most exponential in the size of the terms.
Proof. i) Consider the signature with sorts {INT, POS] with INT =I POS and the functions +

and * with the assignments:
+: NAT x NAT —> NAT, NAT x POS —> POS, POS x NAT —> POS,
*: NAT x NAT —9 NAT, POS x POS —> POS,

The unification problem (. . . (xl l + x12)*(x21 + x22))* "‘(xnl + xn2)) = yPOS ,

where all variables x-- are of sort NAT requires all subterms xi] + xiz to have sort POS]

after instantiating. The-‚re are two independent solutions for every subterm x“ + xn, namely

[i <— Zi POS} or {xi2 (— Zi POS], hence there are 2“ most general unifiers, but the term
has size 2n.
ii) This can be proved by induction:

Assume as induction hypothesis that the number of unifiers'1s less than exp(c-31ze(I"))
' for some constant c and for all I“ with a smaller size than F. For an equation system l‘

it is possible to compute an unsorted most general unifier in Quasi—linear time. Let the
result be a set of multi-equations M. Note that the unification process as described in

.- [MM82] ensures that the size of the original problem is greater than the sum of the

sizes of the nonvariable terms in M. The critical part is the decomposition step that does
not copy nonvariable terms. '
Weakening this unifier to a well—sorted one yields for a variable—pure multi-equation
one unifier and for a multi-equation Mi with a nonvariable term ti less than
exp(c-size(ti)) unifiers. We weaken the multi—equations in the following way: we take
the first multi-equation, compute the set of unifiers, apply the unifer to the whole
multi-equation and afterwards add the corresponding unifier to the front of the
multi-equation. As proved in Proposition 1.5, the weakenings are f—renamings,
hence do not increase the size of nonvariable terms. The total number of unifers in this
process has as upper bound the product exp(c—size(t1))- -exp(c-size(t„)) =
exp(-(size(tl) + +-size(tn)) which is smaller than exp(c°Size(l")). Hence the
number of unifiers produced is at most exponential. I

This proves also that the computation of unifiers can be performed in exponential time, since
all operations in the proof are neglectible in comparison with the exponentiality.
Now we consider the question ‘is a set F unifiablc?’ and show that E—unification is
NP-complete.

121

4.2 Lemma. E-unification and E—weakening is in NP.
Proof. Given an equation system F and we can guess, verify and print a unifier 6 in

polynomial time
The same holds for weakening (cf. §I.5) I

4. 3 Proposition. 2- unification is NP-complete.
Proof. We show that there exists a signature E, such that the E-unification is NP- hard and

show this by reduc1n g the satisfiability problem to the Z-unification problem. It suffices to
use a Z-weakening problem, since every Z-weakening problem has an equivalent
E-unification problem if we use a new variable.
Let the regular signature be given as follows:

E := { BOOL = T, BOOL =! F,
AND: BOOL x BOOL _) BOOL, Tx T —) T, TxF—> F, FxT—) F,

F x F —> F ,
OR: BOOLxBOOL—>BOOL,TxT—>T, TxF—>T‚ FxT—+T‚ FxF—aF
NOT: BOOL—>BOOL, T—)F, F—>T}

We use the characterization given for example [HoUl79]
Let EB be a boolean expression built from variables, and the connectives A, v and —:. Then '
satisfiability of this expression is equivalent to the problem of finding a substitution 6 for a
term tB such that LSz(0tB) = T. The term tB corresponding to EB is constructed by first
translating EB into a boolean expression where A and v are used as binary operators and
then translating A into AND, v into OR, -—1 into NOT and the variables into variables of so
BOOL. I

The interpretation of the above results is that sorted unification in polymorphic signatures is
NP—complete and the explicit computation of all unifiers needs at most exponential time.

In the case of simple signatures the complexity can be improved considerably, since the
computation is straightforward and the sort of _ compound terms is fixed and independent of the
subterms. In fact unification is quasi-linear (see also [MGSS7]): '

4. 4 Proposition. Unification in simple signatures is at most quasi—linear.
Proof . It is possible to compute in quasi——1inear time an unsorted, (i. e . ignoring

sort-information) solved set of multi-equations of a given I‘ [MM82].
Furthermore this unification process does not introduce new variables.
Given this solved set we do the following for every multi-equation:
1) If the multicquation M consists only of variables, we compute the set of greatest

122

common subsorts of all sorts of variables in M. This can be done in linear“ time, since
the sort—structure is fixed.

2) If the multi-equation M consists of variables and a term t, we compute as in 1) the set
of greatest common subsorts of all sorts of variables in M. Then we check, whether fer
some of these greatest common subsorts S , we have S 2 L820)

A This is also possible in linear time. _
These two actions are sufficient to give a representation of the unifiers. I

4.5 Example. We give an example that the number of unifiers in a sort-structure that is not a
semi—lattice may grow exponential.
Let the signature be [A,B = C,D}.
Then the unification problem l" := (xl,A = y l ,B’ , X“,A = ymB] has 2“ unifiers.
Hence we have the curious situation that the number of unifiers grows exponential, but it _
can be solved in quasi-linear time, i.e. a representation for all unifiers can be computed in
quasi-linear time. I

From _the viewpoint of efficiency, the class of signatures, where always at most one unifier is
necessary,'is an interesting one. We have introduced this class as unification-unique in
[Sch85a, Sch85b] . Unification-unique signatures are defined by two conditions: i) the

sort-structure is' a semi-lattice, ii) for every function symbol f and every range—sort S : the set
[f(t1,.-. .,tn):R I R E 3] has a unique greatest term declaration provided it is nonempty.
The same class is also investigated in [MGS87], where this class is called unitary and where it
is shown that unification in this class can be performed in quasi-linear time. _ '

5 .Uni f i ca t ion in Finite Signatures with Term Declarations is of Type
Infinitary.

5.1 Theorem. There exists a finite signature in which unification is of type infinitary:
Proof. Let Z := {B = A, b:B, f(b):B, f(f(xB)):B]. _

The weakening problem <f(xB) :B> has infinitely many most general weakenings:
We prove by induction that all instances of f(xB) that have sort B are of the form b, f(b),
f(f(b))‚. . . :
first of all f(xB) is of sort A and f(b) is of sort B.
To prove the induction step, let t be a term of sort B with depth > 0 such that f(t) is of sort
B . The term declarations show that t ' is of the form f(t'), where t' is of sort B . Hence by

123

induction t' = f"(b) for some n 2 0, hence t = f“+1(b). I

The proof shows a bit more than the theorem states, since in fact we constructed a linear and

regular signature with unary function symbols having this property.

5.2 Corollary.

i) Let Z be a finite, linear and regular signature. Then the set uU(s‚t) may be infinite.

ii) Let E be a finite, regular signature with only constants and unary function symbols.

Then the set uU(s,t) may be infinite.

6. Z-Unification is Undecidable.

We reduce the decision problem for E—unification to the problem, whether a Turing machine

(TM) accepts blank tape, a problem that is known to be undecidable (cf. [HoUl79]).

6.1 Theorem. Z-unification is undecidable.
Proof. Given a TM M, we construct a signature Z and terms so, to such that 50 and t0 are

unifiable, iff M accepts blank tape. .

We represent a configuration 0q of a TM, in which ct is the string to the left of the head,

q is the current state and B is the string to the right of the head including the currently

scanned symbol, by a term h(rl q r2 . . .) where r1 is a term encoding the reverse of 0L and r2

is a term encoding ß . A string 11010... i s represented as a term

g1(g1(go(g1(g0. . .(gb(0)). . .)))) where gb(. . .) represents an infinite string of blanks that is to

say gb is an end—marker. There are two sorts TOP and OK with TOP = OK in the

signature. The moves of M are represented as term declarations, for example if

M i s i n state q l , scanning ‘a 1 , prints O, enters state q2, and moves right, then the

corresponding term declaration is h(x ql g1(y) h(g0(x) q2 y 2.0K» : OK, where z is'of sort

OK and x,y of sort TOP.

To give a further example, if the head moves left, we may need the following three term

declarations:
h(g0 (x)q1 g1(y) h(x <12 go(go(y)) 20K» : OK
h(g1 (x)q1 g1(y) h(x q; g1(go(y)) 20K» : OK
h(gb(x) C11 810’) h(gb(x) ‘12 313(800’» 20K» 3 OK

Let qs be the start state and q A be the accepting state. We add a term declaration for the

accepting state:
h(_x q A y w) : OK, where x,y,w are variables of sort TOP.

The term h(gb(0) qs gb(0) ZOK) represents the initial configuration of the Turing machine.

Then the following holds: '

124

M accepts blank tape 'iff the term h(gb(0) qs gb(0) zOK) has an instance of sort OK

(equivalently h(gb(0) qS gb(0) zOK) is unifiable with a variable w of sort OK):
Proof: The equivalence follows, since such an instance has the form

h(gb(0) qs gb(0) h(l1 ql rl ha2 q2 r2 . . .») and t represents the sequence
gb(0)qsgb(0) , l lqlrl , 12q2r2 , . . .of moves of M reaching the accpcting 'state.

El

Since it is undecidable whether a TM accepts blank tape, so is Z—unification. I

Using the concept of a universal Turing machine, a slight change 1n the above proof shows

that there exists a signature E with an undecidable unification:

6.2 Proposition. There exists a signature 2 for which Z—unifiability of terms is
undecidable. '

For nonregular signatures, we have the following undecidability results:

6 .3 Corollary. i) It is undecidable whether two sorts have a common ground term.

ii) It is undecidable, whether two variables are unifiable.

Proof. Let 2 be a signature and let s and t be two E-terms. Then we construct a new

signature @: Let A, B be new sorts without any subsort relation and let h be a new

function symbol. '
We add the declarations h(s): A and h(t): B to 2‘. resulting in @.

Were it decidable whether A and B have a common ground term, then unifiability of 3 and t
would be decidable. This proves i). Now ii) i s obvious, since unification of two

variables x of sort A and y of sort B 1s an equivalent problem. I

6.4 Corollary. The regularity of a signature is undeCidable.
Proof . In the proof of Corollary 6 .3 choose E as a regular signature.

Then the regularity of the newly constructed @ is equivalent to the unifiability of the terms s
and t. I '

We say a unification problem I‘ is linear, if every variable occurs at most once in F .

There are decidable cases of the unification problem for finite signatures.

6.5 Proposition. Let 2 be a finite signature.

i) If the signature is elementary, then Z-unification is decidable.

ii) If the signature is regular, then E—unifiability of two different variables is decidable

125

iii) If the signature is linear, then linear Z—unification problems are decidable.
iv) If all function symbols are either constants or unary functions, then Z—unification is

decidable.

Proof. i) Let F be a set of equations. Then an unsorted most general unificr 6 of I‘ is

iv)

effectively computable. To check decidability, it i s sufficient due to Lemma 1.4.10 and
Proposition 1.5.7) to check the finitely many possibilites of replacing variables in
COD(o) by terms of an equal or smaller sort.
In a regular signature, two variables are unifiable, if and only if their sorts have a
common subsort.
Let I‘ be a set of equations. Then an unsortcd most general unifier 0“ of F is effectively
computable. All terms in COD(o) are linear, variable disjoint and their depths are
smaller than the maximal term depth in 1", since I‘ is linear. Hence the check for well-
sorted instances of 0 = [x1 (— t1,. . .,xn (— tn} can be done by searching independently
instances for the components {xi (— t i } of o . Looking for instances i s done by
unifying the term ti with appropriate term declarations t:S. This process again
produces independent subgoals. This gives a search tree for the problem of finding an
instantiation and the nodes are-marked with problems [y (— s}. Since the problems are
independent in different branches, we can cut" a branch, if a goal has. itself (in a '
renamed version) as a subgoal. Due to the linearity of F and 2, the depth of the terms
sin the marks [y <— 5} is bounded. Hence the search tree is finite. Cl A
Obviously, the signature is linear, since al] terms are linear. Let no be the maximal term
depth of declarations. Let I‘ be a set of equations. Similar as in iii) we can compute an
unsortcd idempotent most general unifier o = {xl (— s1,...,xn (— 5“) of F. The next
step is a search for well—sorted instances of 6. This creates II(0‘)| independent search
trees with subproblems (or goals) of the form [{tl, [S ly - "431 , “] }, ,
{tn,{Sn,1,...,Sn‚kn}] }, for every variable in I((o‘) one subproblem, where all ti contain
the same variable. Such a subproblem means to find a substitution 9 with
Si J e S£(9ti)‘ for all i,j. We argue that these search trees are finite, the main argument
is that we can cut branches of this tree, if a goal has itself (in a renamed version) as a
subgoal. There are two steps to expand a node in the tree: . ‘
i) , If there is a term ti with depth(ti) > no, then we take appropriate term declarations

t:S and (Robinson-) unify t and ti.

The effect of this operation i s that one sort i n a COmponent
(t l , [Sl , '1‚ . . . ,S 1,k1 l] i s removed and a problem {ti', 8) i s inserted,
where depth(ti') < depth(ti) and V(ti') = V(ti).

ii) The same step without any conditions on the term depth of ti. In this case it may be
that V(ti') at V(ti) and then we have to apply the substitution {x (— ti'} to the goal.

126

First we apply steps of type i) until it is no longer possible. This process terminates,
hence we can reduce the goal to subgoals, where depth(ti) $ n0 for all ti. However,
there is only a finite number (up to renaming) of such goals, since the number of sorts
is finite and the number of terms ti with the same variable and with depth(t) S no is
finite. Hence the search for a well- sorted instance of o terminates. I

We say a regular signature is almost elementary, iff the signature is linear and for every

term declaration t:S and every variable x e V(t) the variable x is a direct subterm of t , i.e., in

every term declaration f(t1,. . .,tn):S the terms ti, are either ground or variables and no variable
occurs twice. .

In the next Proposition we show that a terminating unification algorithm ‚for a regular, almost
elementary signature is the procedure SOUP with the following modification:

Use a matching algorithm for equations t = sgr where sgr is ground, with highest priority.
The operation is to replace the equation t = sgr by the solved system (a matcher) of t = Sgt.

6.6 Proposition. If the signature 2 is regular and almost elementary, then E-unification is
finitary and decidable.

Proof. We show that the algorithm SOUP terminates:
The argument is similar to the proof of Proposition 3.5.
The measure is p. = (1.114,12), where '

“1 is the number of variables in FU, which occur not only as a left hand side of exactly
one equation x --' t in FU,

1.12 is the multisct of term depths of terms in I‘U.
The difference is that the combination of rule VT3 with the matching rulehas the following
effect: either we have y = ti, in which case y is a new variable, or we have the case that

si = ti is newly introduced with a ground term Si- Then matchin g either yields a failure or
replaces this equation by solved equations.
Hence either “1 is reduced, or l-ll is invariant, but #2 is reduced, since x = f (t1 ,„ tn.,) i s

moved into the set of worked-off equations. I

The following procedure can be used to check the regularity of finite signatures:
i) Take two term declarations s:S and r:R, such that R and S are incomparable.
ii) ‘ Compute a set uU(r,s) under the assumption that)3 is regular.
iii) Compute Sz(or) for all 6 e uU(r,s).

127

6.7 Lemma. The above procedure computes a most general term that violates regularity,

i.e., without least sort.

Proof. Let t be a minimal term that violates regularity.
Then due to Proposition 1.4.9 there exist at least two incomparable maximal sorts R,S in

Sz(ot) and two term declarations rzR, s:S‚ such that t is a Z—instance of both r and s. This

means that there exists a most general E—unifier 0' of r and s, such that t is a E—instance of

or. By minimality of t, we have that or is a E—renaimng of t and that all terms in the

codomain of 6 have a least sort, hence we can assume during unification, that regularity
holds. The effect is that the unification of variables can be done as in 3.1 VV3), (see also

6.5.ii)). We have Sz(or) = Sz(t), since or and t are equivalent.

The last step iii) is needed, since it may happen that R and S are not minimal in the set

S 2(or) . I

6.8 Proposition. For almost elementary signatures regularity i s decidable.

Proof. We use the above procedure to decide regularity. It i s sufficient to show that under

the regularity assumption, a minimal set of unifiers of terms in term declarations is

effectively computable. This is shown in Proposition 6.6. I

We Want to mention the following open problem for finite, linear signatures:

Open Problems: i) Is E—unification decidable for linear signatures? '
ii) Is regularity of linear signatures decidable?

128

Part IV
Unification of Sorted Terms under Equational

Theories.

Overview:
We give different methods for the unification of sorted terms provided some axioms for an

equational theory are given. First we dcscribeunification algorithms as a set of transformation,

rules for equational systems. Second we give an algorithm that solves unification problems by

first ignoring the sort information using an unsorted algorithm and as a second step computes

well—sorted instantiations. ‘

We discuss narrowing as a universalunification algorithm for canonical term rewriting
system. . '

General remarks and related work.

Research m unification problems with respect to an equational theory is an active field

[Plo72,Si86, CKi85, GS87]. The problem to build equational reasoning into automated

deduction procedures [WRC67, RW69, M069, Plo72, Di79, B187] is also well investigated.

Our aim is to give a general unification method that works for arbitrary signatures and arbitrary
equational theories. We give a role—based procedure in the style of [CKi85, 6387].

l . A General Unification Algorithm For_Sorted Terms unde ran Equational
Theory. ' '

In this chapter we give a general unification procedure for arbitrary equational theories and
sort—structures.

v Let 2‘. be a signature and let E be a symmetric axiomatization of an equational theory . ‘

Given an equation system F, we may consider 1" as a graph with the terms in 1" as nodes and
the equations in F as edges. We will sometimes use the word edge as a synonym for equation
in l". '

A path t1 — ...— tn in I‘ is a chain of equations where no ti occurs twice. A circular
path is a path t l — ...— tn —-— tl. A connected component is a set { t1,. . .,tn} of terms such
that all terms ti, tj are connected by a path. There is a straightforward correspondence between

equation graphs and multi-equation systems: A connected component corresponds to a

multi-equation, however the structure in equation graphs is richer than in multi-cquations.

129

The following is the graph of the equation system {x = c, x = d, x = y, y = a, y = b}

__ / a

/ x y \
d . b

Let xi,ti, i = l , . . .,n be variable-term pairs such that xi and ti are connected and xi e V(ti_1)

for i= 2 ‚ . . . ,n and xn e V(t1) and at least one ti i s not a variable. Then we say every xi i s

cyclic for I I“ . Furthermore we say the chain of pairs (xi,ti) is a cycle and (xi,ti) belongs to a

cycle. _
A connected component is in solved form, iff i t is of the form {x1, . . . ,xn‚t} and

{x1 (— t, . . . , xn “<— t} is a well-sorted idempotent substitution. This substitution is called a

partial solution for {xl,...,xn,t}. An equation system F is in sequentially solved form,

iff there are no cyclic variables forI‘ and every connected component is in solved form. The

corresponding solution 0* is defined as the idempotent closure of the union of all partial

solütions for all connected components. In Lemma 1.6 we show that such a solution is a

unifier of 1" (cf. 1.10.6 ff.)

A variable x e I‘ is isolated, iff x has only one occurrence in 1".

In the following we use sometimes the expression ‘new version’ for an axiom or _a term

declaration and mean a renamed version of an axiom or a term declaration such that they
contain only new variables. '

We use the following rules to transform equation systems: _
1.1 Definition. The unification procedure GENSEQUP is defined by the following rules:

Imam
Tau) If P is a circular path, then delete some edge in P.

Deggmpgsiti gn ; _
De) Let s _— u1—...—- um——-—- I be a path P, where t = f(t1,...,tn), and

s = f(sl,...,sn) and “i = f(ui1,...,uin) or “i is a variable, where ISi_<_m.

i) For all variables “i on the path we instantiate P with {.“i <— f(ui1,...‚uin)}. where

f(ui1,...,uin):Si is a new version of a term declaration and. Si E LSz(ui), and

we add the equation “i — f(ui1,. . .,uin). _
ii) For every ISa we add the path sj —— “lj —-——. . .—umj —— tj to the equation graph. -
iii) All the edges of the instantiated original path are deleted.

130

Dec” glau'on inggd’ggtign

Di) Let 0 be a connected component with x e 0. .
Let f(rl,...‚rn):S be a new version of a term declaration, such that S E LSz(x), and

hd(t) == f for all nonvariable terms t e 0.

We instantiate O with [x (— f(r1,. . .,rn)}, and add the edge x —— f(rl,. . urn).

Conditions for application:
Either

1) There is at most one nonvariable term t e O and (x,t) belongs to a cycle

or 2) There is at most one nonvariable term t e O and LSz(x) e 530)-

or 3) There are only variables in O and there exists a variable y e O with

LSz(x) $ LSZ(y) and LSE(x) $ LSz(y).

Mutatm'n;
Mu) We replace the edge s — t by s ——l and r -- t , where 1 = r is a new version of an '

axiom. ' '
As condition for application we have: _

l = r is a collapse axiom or a decomposition Step with 1 or r becomes possible.

Furthermore one of the following should hold:

s = t is on a path between nonvariable terms
s = t is on a path connecting a variable x and t and (x,t) belongs to a cycle.

s = t i s on a path connecting a variable x and a nonvariable term t, with

LS£(x) e Sz(t).
s = t is on a path connecting two variables x,y with LS 2;(x) ;; LSz(y) and

LSz(x) $ LSZ(y), the connected component of x consists only of variables
and 1 = r is a collapse axiom.

Vi) Let 0 = [x1,. . . ,xn] be a connected component consisting only of variables. Let

x,y e 0 be variables such that LSz(x) ; LSz(y) and LSZ(X) q; LSz(y). '
Let z be a new variable, such that LSz(z) E LSz(x) and LSz(z) E LSz(y).

We instantiate I‘ with {x (— z,y <— z} , and afterwards we add the equations x = z and

y = z. I

We following rules might also be used, but are not necessary (cf. I. 13.6).

131

1.2 Definition.

In) Let x and t be connected and let {x <— t} be a well-sorted substitution.
, Then we apply {x <— t} to I‘ and add the edge x— t to {x <— t}F.

Ex-In) Let xi and ti be connected for all i = 1,...,n and let 1: := [xi (— ti I i = 1,...,n} be a
well- sorted substitution.
Then we apply 't to F and add all the edges Xi —— ti to II‘. I

The instantiation of a variable x in the equation system with a term declaration f(rl,. . .,rn) can
be illustrated by the following picture:

_ > l <
>flM>

X

In order to give a more comprehensive account of the above algorithm, we describc the

essential steps in the already known notation. The steps are:

i) tl=t2&...&tn_1=tn&tn=tl => t1==t2&...&tn_1=tn.
ii) x =t & F = x = f(rl,...,rn) & [x (— f(rl,...,rn)} x = t & {x <-—- f(rl,...,rn)]l"

For a new version of a term declaration f(r1,. . . ,rn):S, such that S E LSz(x).

iii) s= t => s= r&l= t where l=r i sanewvers ionofanax iom.

iv) f(s1,...,sn) = f(t1,...,tn) => s1 =t1 & & sn = tn '
v) x=x l&x1=x2&. . .&xn_ l=xn&xn=y&F=> '

x=z&y=z&z= 'x l &x l =x2 &. . . &xn_ l =__xn&xn=z&
{x (9—- z,‘y <— z}F '

where [x (— z, y (—— z} is well-sorted.

The conditions under which the steps are applied are controlled by the descriptions of the steps

in 1.1. For example a decomposition step consists of some applications of ii) and some
applications of iv).

132

1.3 Example.
Let E = {c = a, c = b] and let I‘ = (x = a, x = b) and consider the solution 9 with 9x = c .
Theprocedure givesthechain (x=a ,x=b) => (x=a ,x=c ,b=b)= (x=a ,x=c) =>
(a = a, x = 0) => (x = c). The last system of equations is solved and gives {x'c— c} as
solution. The last but one system of equations does-not contain x = c twice, since we
consider I‘ as a set. ‘

1.4 Lemma. The above rule system is correct. I

1.5 Lemma. The instantiation rule and the extended instantiation rule are complete.
Proof. Follows from I.13.6.iii). I

1.6 Lemma. Let 6 be a unifier of a sequentially solved equation system F with solution 0.
Then we have: 6 SEE 9 [V(M)]
Proof. Follows from the completeness of the instantiation rule and from the considerations in

paragraph 1.10 and from Lemma 1.13.11. I . '

Now we address the problem of unification completeness of the procedure defined in 1.1.

Let 9 be a unifier of 1". Then according to 11.5.1 there exists a proof that Os =2,E Gt for all
s = t in I‘. The triple (I‘‚P_,9) consists of an equation syStem I‘, a unifier @ of I‘, and a proof
P that 9 is a unifier of 1". We assume that every equation s = t is labelled with the proof of
Gs =22]; Gt. Such a proof corresponds to a chain r0,. . .,rn , such that Os = r0, Gt = r“ and the
proof of ri = ri„ is a Step II.5.1 iv) or 11.5.1 v), corresponding to a congruence step or an
axiom step. We say s and t are connected by a congruence proof, if e s = St is proved by a
congruence step. This means that the chain has at mOSt length one and includes the case that
the proof is empty, i.e. Gs = Gt. Otherwise at least one axiom step is necessary (at toplevel) to
prove Gs =“; 9t. We assume that there is no sharing among proofs.

Now we prove that this procedure i s a complete unification procedure. The idea of the
following proof is, given a unifier 6 for I‘, we use the information in (I‘,P,6) to select the next
step and show how to construct the resulting (F‘,P',6') after application of the rules. We
show that this procedure strictly decreases a well-founded complexity measure of (F',P'‚6').
During this procedure we extend 0 to new variables but do not change it on old variables.
The second part of the proof is to show that either we can reduce the given complexity measure
by some steps or the resulting equation system is in sequentially solved form.

133

1.7 Theorem. The unification procedure GENSEQUP is a complete unification procedure.

Proof . Let 9 be a unifier of I‘ and let the triple (I‘,P,9) be as described above.

We say how to construct (F',P',9') from (I‘,P,9) for every step of the above procedure.

We denote these steps by the name of the original step and a star (*). Furthermore in order

to show completeness of the procedure, we demonstrate that 6 ' is an extension of 6 and a

solution of 1". Additional restrictions for the applicability of these steps in terms of the

proof P are given.

Tau*) Delete the proof corresponding to the deleted equation.

Di*) This step is made only in the case that 6x i s not a variable, and either x and the

nonvariable term t are connected via congruence proofs or we have case 3) of Di).

According to Lemma 1.4.9 there exists a term declaration f(rl,. . .,rn) and a substitution
’11 such that ‘nf(r1,...,rn) = 6x. We choose this term declaration in the step Di). We

define 6 ' := 9 U 11. To show 0'[x <— f(r1,...,rn)} = 6 [V(F)], it suffices to consider

the variable x: 6' [x <— f(r1,...,rn)}x = 6'f(r1,...,rn) = nf(r1,...,rn) = 6x. Hence there

is no change in the proofs of the old equations. The new equation x = f(r1,...,rn)

has an empty proof, since O'x = 9'f(r1,. . .‚rn). Hence 6 ' is a unifier of the resulting 1“.

De*): We decompose the connected terms f(s l , . . .,sn) and f(t1‚. . .,tn) only in the case that a

path exists such that all terms are connected via congruence proofs (with respect to 6).

Let the path be: 3 — “1 —.. .— um— t. ‘

If there is an instantiation step before decomposition, let “i be'the instantiated variable.

The same arguments as for Di*) apply to “i and f(ui1‚. . „nm), hence we do not repeat
them. '
Now we can assume that all “i are nonvariable terms.
We remove all proofs of the equations in the path. The proofs of the new equations

s— -—— “1° -—. . .— umi — ti are extracted from the proofs of the original equations.
l 1

We can choose 9 ' := 6 in this case.-

Mu“) This step is made only in the case where the proof of Os =E‚E 6t has an axiom step at
toplevel and the step Mu is applicable. .

Let s = t be the equation and ro, ...,rk,rk+l‚. . . ,1'n be the terms in the proof of
Os =E‚E 9t and let l = r be a new version of an axiom and n be a substitution such that

711: rk and nr = rk+1°

We define 6' := 9 U n and the proofs for the new equations we have the chain to,; . ""k

and 1 'k+1 ' ° ° ° ’ rn , respectively.

134

Vi*) This step is made in the case where Oxi is a variable for all "i in a connected
component 0, for all xi,xj e 0 we have 9x, = ex]. and O is not in solved form.

Since for all xi,xj e O we have Bxi = Gyj e V , there exists a variable z, such that

LSz(z) E LSz(xi) for all xi 6 0 and LSz(6xi) E LSE(z). Similar as in step Di") we

define 9' := 6 U 11, where 11 = {xi (- z] and the same arguments as for Di“) apply. D

We define a complexity measure on (I‘,P,6) as p.(F,P,9) = (111, 112, [13, 114), where 111 is
the number of axiom-steps in the proof P, p2 is the multiset of all term depths 6x, where x
ranges over all nonisolated variables in I‘, 1.13 is the multiset of allthe maximal term depths
for all equations in 1", and 114 is the number of equations in I‘. We assume a lexicographical
ordering on the 4-tuples (111, 112, p.3, 1,14). Obviously this measure is well-founded.
We show that the measure is strictly reduced in every step:

.First i t i s clear that the steps De*) Vi*) Di)* Tau*)"do not increase the number of

axiom-steps in the proof. The step Mu“) strictly decreases the number of axiom

steps in (I‘, P ,.6)
The instantiation part of De“), the rule Di*)and Vi*) strictly decrease “2°

The decomposition part of step De*) does not change 112, but strictly decreases p3.
The rule Tau*) strictly decreases 1.14. This means that the above process terminates. CI

We have to show that starting with an equation system and proceedin g in the above
described way, we can apply steps until we reach a sequentially solved system.
Assume by contradiction we have reached an equation system 1" that is not in sequentially
solved form such that it is not possible to make any of the above *-steps.
The proof proceeds m threee steps:
i) Every connected component has at most one nonvariable term:

Otherwise we can either apply Dc*) or Mu*).
ii) There is no cyclic variable for I‘:

Assume there is a pair (x, t) that is connected, belongs to a cycle and t is a ndnvariable
term. In the case 6): and 6t are connected'm (I‘,P6,) by a congruence proof then Di*)
is applicable. Otherwise Mu*) IS applicable.

iii) Every connected component 0 ' IS in solved form:
Let O be a component that is not in solved form. We have the two cases that 0
contains a nonvariable term or not:
a) 0 contains a nonvariable term t. Then 0 contains also a variable x, since otherwise

we can apply Tau*). Furthermore there is a variable x, such that LSz(x) @ SEG).
But then we can either apply Di*) or Mu*) depending on whether x and t are
connected via a congruence proof or not. ' '

135

b) 0 contains only variables. , There are different variables x,y e 0 such that

LS£(x) $ LSz(y) and LSz(x) $ LSz(y), since otherwise there exists a variable in

0 with minimal sort in 0.

If either 9x or ey is a nonvariable term, then we can apply step Di*).

Hence 6x and 9y are variables. Since 6x =Z,E 6y we either have 6x = By in
which case Vi*) is applicable or there exists a collapse axiom r = 1 at toplevel in the

proof of 6x =E,E By , in which case 3) of Mu applies.

From the above i t follows that the final I‘ is sequentially solved and that the solution is

more general than 6. I

The extension of the unification methods as described in [G887] and also in [Bl87] is roughly

equivalent to supplement the procedure in 1112 by application of axioms, i.e.‚ to replace s = t

by s = l & r = t, where 1 = r is variant of an axiom and by a cycle-elimination rule. In other

words, if the equation x = t has to be solved and x e V(t) , then x can be replaced by a term

of the form f(y1,...,yn).
This unification methods cannot be extended to sorted signatures without adding rules,

which either introduce steps similar to paramodulation into variables or else make use of

functionally reflexiVe axioms: ‘

1.8 Example.
i) Simple signature:

Let 2:: {A,B = TOP, a:A‚ s] , let E := {a=b} and let F := (xA = yB). .
I‘ is E-unifiablc, but it is necessary to use the equation a = b though neither the topsymbol
of noryB is ao r b.

ii) Nonsimple signature:

Let 2:: {A,B,C,D = TOP, azA, b:B, c:C, dzD, nOP —-) TOP, g:A -—> C, g:B —> D} and
let E := {a=b} and let l" := (xc = yD). The solution is [xc <— g(a), yD <— g(b)}.

This solution can only be found, if XC or yD is instantiated with a term of the form g(z). I

There are equation'al theories for which the above procedure can be improved by adding some
nonunifiability checks. In equational theories that have a regular E—semantical sort-assignment

(cf. II.9) terms s , t are unifiable only if the sorts of these terms have a common subsort.

"Sometimes this information can beused to cut branches of the search tree. Furthermore if in

addition the sort-structure is a semilattice, then the most general unifier of two variables x,y

can be chosen of the form [x <— z, y (-— z} , Where the sort ofz is the greatest common subsort
of the sorts of x and y.

136

2. Finite and Q-free Equational Theories.

Recall that an equational theory £ is finite if the equivalence classes of -“2.13 are finite, and that

95: i s Q—free, iff f(s1,. . .‚sn) =z£ f(t1,. . . ,tn) implies that si—13,5 t i .

First we deal with finite equational theories.
Fofunsortcd finite equational theories, it is known that the word—problem is decidable, that

matching is finitary, minimal unifier sets exist and are recursively enumerable (cf. [Sz82]).
We show in this paragraph that these result can be lifted to the sorted case.

2 .1 Lemma. Let 2: be a finite equational theory and assume ""5 to , be

demodulation—complete. Then the word-problem for 1: is decidable.

Proof. Given a term 3, the computation of its equivalence class is possible and terminates,

hence equality of two terms is decidable. I

It is an open problem, whether the requirement of demodulation-completeness can be ornitted.

The connection between the unsorted theory and a sorted theory 1s as follows:

2. 2 Lemma. i) I f -- z E is finite, then =}: B is finite.

ii) The converse is false.
Proof. i) is trivial _

ii) The following is an example for this claim: Let): := {A ‚B, aiA, f:A —>B] and let
E = {f(xA) = xA}. Then =E.E is finite, but =ZE is not finite, since there exists an

infinite equivalence class: . {a, f(a), f2(a)‚. . . }. I

The above lemma provides an example also for the statement that =);‚E is finite on T2, but not

on T “2.

The proofs of thenext lemmas and propositions in this paragraph are the proofs in [8282]

adapted to the order- sorted case.

2.3 Lemma. Finite theories are regular. .
Proof. There exist terms s,t such that s =Z,E t and V(s) at V(t). Substituting arbitrary

variables we get an infinite equivalence class. I

This proof differs slightly from the proof in [8282], which showed a little more: there exists an
infinite equivalence classe of =25 in the Herbrand-universe, if the theory is nonregular.

This is not true in general for sorted equational theories:

137

Let Z := [A , B, azA, f:A ——>B} and let E := {f(xA) = f(yA) } . Then E is not finite, but all

equivalence classes in the Herbrand universe are finite, since the set of well-sorted ground
terms is exactly [a , f(a)}, which is finite. _

This observation suggests a different definition of finiteness in terms of the initial term algebra.
This definiton in conjunction with an appr0priate notion of subsumption may lead to similar
results. However, we do not follow up these lines.

2.4 Proposition. For every finite theory £with demodulation-complete axiomatizations we
have:

i) Matching is decidable.
ii) Most general matching sets are finite and effectively computable.

Proof. Let I‘ = (sl « t1,. . "Sn.“ tn>E be a_ matching problem and let uU be the set of solutions,

i.e. the set [ol osi =}:‚E ti, i = 1,... ,n and DOM(o) ; V(sl,...,sn) — V(t1,...‚tn) }.
Since the number of equivalence classes. modulo =£ ,E is finite, there is at most a

(computable) finite number of substitutions in-U. I

2.5 Proposition. For every finite theory 95 with demodulation-complete axiomatization and
for all equation systems I", there exists a set of most general unifiers which is
recursively enumerable.

Proof .
i). In order to show that minimal unifier sets exist, we show that £ i s Noetherian.

Let 61 >23 62 >2,E [W] be a descending chain of substitutions for a finite set of

variables W. _
Then we can" assume 'by Lemma 1.10.5 that the maximal depth of. terms in the
codomain of o i ' i s increasing. There'exist well—sorted substitutions li , i = 1,2, . with

CH =):‚E Mai [W]. This is a contradiction to the finiteness 'of the theory £
ii) Since E—subsumption of substitutions is decidable and a set-of all unifiers is recursively

enumerable with nondecreasing maximal term depth in their codomain, it is sufficient

to show that. there is an algorithm that decides whether a unifier is a minimal one. The
number of nonequivalent (EE [W]) substitutions that are more general than a given

substitution 0 i s finite and effectively computable, hence minimality of unifiers is

decidable. I

Our interest in Q—free theories comes from the fact that in the unsorted case the Q—free theories

are exactly the regular, unitary matching theories.
In the sorted Case, this relation is true, provided some additional conditions hold:-

1.38

2. 6 Example. There are Q-free, nonregular theories:

‘ Let 2 : {AB, f : A —-> B} and let E . = {xA= yA}. Then z i s consistent, Q-free, but not

regular.

2.7 Proposition. i) If 95 is Q-free, then £ is unitary matching.

ii) If 1: is regular, unitary matching and for every function there is a maximal function

declaration, then £ is Q—free.
Proof .

i) Assume 2: is not unitary matching, then there exists a term t and two different

idempotent substitution 6,1: such that ot =2£ "tt. We can assume that t is such a term
with minimal term depth. Obviously t is not a variable or constant. Hence Q-freeness

implies that with t = f(t1,...,tn) we have ati :::,E tti. Repeatedly applied, this gives
0:}; E "5 [V(t)l

i i) Assume there i s a counterexample ‘E, that i s not 9 - free With the above

properties. Then there exists terms f (s1 , . . . , sn) and f (t l , . . . , tn), such. that

f(sl,...,sn) =E,E f(t1,. . .,tn), but for some i , we have not Si =z£ ti. Now consider the

matching problem (f(xl‚. . .,xn) « f(t1,. ..,tn‘)), where Xi are new variables and the term

f(x1,. . .,xn) corresponds to the maximal function declaration for f. Then there are two

different matchers {xi (— ti} and {Xi (—- Si} and since in regular theories every matcher

is minimal (cf I.11) , we have reached a contradiction. I

3. Unification in Sort-Preserving and Congruence-Closed Theories.

An important property of congruence-closed equational theories is that unifiers of an equation

system can be computed in a particularily simple way. It is done by first computing unifiers

ignorin g the sort information and as a second step the sort handling is done without reference

_to the equational theory. ‘ . .

3.1 Proposition. Let 2: be a congruence-closed equational theory. Then

UE(I‘) n SUB: = U2,E(r)

Proof. We prove the nontrivial direction:

Let o e UE(I ‘) n S UB 2:- Then os i =3:,E a t i for all Si = ti & I‘. Since £ is

congruence-closed, we have also osi =25 oti for all Si = ti e l", hence O' e U}:
EG“) . I

Unfortunately, this nice property is not true for not congruence-closed theories and

furthermore there are in fact interesting noncongruence—closed theories. For example feature

139

unification [SA87] is unification in a theory that is not congruence-closed. In a sense the above
property characterizes congruence-closed equational theories: Let ’E be a noncongruence—closed
theory and let s,t be terms such that s g iE t, but not s =):‚E t. Then Id e U 113((5 = t)) m
SUBZ, but Id 65 U££((s = t)).
Theories with collapse axioms are likely to be noncongruence—closed. For example if there are
sorts A = B , f:A —) A and E contains the axiom f(xB) _: xB , then for 95 to be
congruence-closed it is necessary that f(xA) =E,E xA holds.

Without additional requirements there i s little hope to obtain general results for
con gruence—closed equational theories. One requirement is that the equational theory should be

sort-preserving. We will also take the requirement into account that the equational theory has a
sort—decreasin g term rewriting system.
In this paragraph we concentrate on the sort—preservation of equational theories.

3.2 Assumption. Throughout this paragraph we assume that equational theories are
sen-preserving, congruence-closed and the sort—structure has one maximal sort.

Note that there i s some preliminary work in paragraph 11.6 that investigatescriteria for

sort—preservation and congruence-closedness. Furthermore some properties of substitutions in
sort-preserving and congruence-closed theories are stated in II.6.15 '- H.6. 18.
In paragraph 4.4 there are also some examples that demonstrate the consequences of these
assumptions, for example a group as a sort—preserying congruence with an underlying regular
and elementary signature can only have a many-Sorted sort-structure.

An advantage of sort-preserving equational theories is that equality preserves well—sortedness
of substitutions, i.c. 0' ”2.13 1: and 0' e SUB; implies 1: e SUBS, which may be false in
general. '

We assume in the following that complete and minimal sets with respect to f. are chosen such
that all variables in the codomain of substitutions are of maximal sort (cf. Corollary 11.7.8)

3.3 Main Theorem. _ _
Let =E‚E be an equational theory. Let W be a finite set of variables and let U ;: SUB g be
an upper segment with respect to SE[W]. Then .

[cm: | 1: e cE(U), (_o e „WEG:) } is a complete subsetbf U n SUBS.

PI'OOf. We show that this set is a correct, complete subset of U n SUBS.
i) Comectness: Trivial, since U is an upper segment.

140

ii) Completeness: Let 6 e U n SUB;. Then there exists a substitution 1 & SUB ;- with
DOM(7L)--— V(1W) and a substitution 1: e cE(U) with M = 2,5 9 [W]. The assumption
congruence—closedness implies that M-=; E 6 [W] and hence by sort-preservation X'tx

is well-sorted for all x e W. The signature is subterm-closed, hence all terms in

COD(Ä) are well—sorted. Since we have assumed that all variables in [(t) are of

maximal sort, we have X E SUB;. '
HI. 1.3 implies that there exists some set ttW;('c).

There exists an a) e ttW;('t) and an n e SUB; such that 7L:=na) [V('cW)].
From 6 =Z,E non [W] it follows 9 22E (m: [W] . I -

3.4 Theorem. Let the conditions of Theorem 3.3 be satisfied. If in addition 2 is elementary

and a minimal subset 112,5(U) exists, then we obtain a minimal subset of U n SUB; as the

union of the minimal subsets of {cm: | (o e uW;(1:)} where 1: ranges over the set Maw)-
Proof . For a fixed substitution 1: e ”EEG” the set |.1W;('c) is finite, hence the set

{cm: | a) 6 qCt) } is finite, thus there exists a minimal subset of {on I m' e 11W;(1:) }. .
We show that it is sufficient to minimize the finite subsets in order to obtain a minimal

subset of U (\ SUB; '

Let “cl, t; e 11 ; ‚;(U) and let (Opa); e ttW;(1:) such that (01115; .E (021:2 [W]. Then there

exists a well-sOrted substitution 7L with Malt] =Z,E (021:2 [W]. Proposition III. 1.5 implies
that (02 is a renaming, hence by applyin g (02“ we obtain 052" M3111 = ;; (02" (1)212 = "2,5

1:2 [W]. The minimality of tt ZEN) implies that 1:1 =12. I

In order to apply these theorems to unification problems note that the set U 556‘) is always an

upper segment with respect to the ordering S 35W] (cf. 11.6)

3.5 Corollary. The set {cm: I t e cU EEG), 0) e ttW;(1:)} is a complete subset of
U;,E(I‘) n SUB; with respect to 5):,E[W] . I

In the case of elementary signatures, we have: ‘

3.6 Corollary. For an elementary signature a minimal, complete subset of U; Ea") n SUB;

with respect t o< SEW” can be obtained as the union of minimal, complete subsets of

the finite sets {cm: | 0) e uW;('c)} for 1: 6 CU ;;(I‘) . I

An interesting application of these theorems to matching problems in regular theories is the

following: compute the matchers with an unsorted algorithm and delete the ill-sorted matchers:

141

3.7 Corollary. If £ is regular, then a minimal and complete set of matchers can be obtained

as: “M£,E(r) = SUB}: n “M EEG").

That means that a regular theory £ that has effectively finitary E—matching problems, has

also effectively finitary Z-matching problems. I '

3.8 Corollary. Let E be elementary, let £ be regular and effectively finitary matching.

i) If £ i s of effective f -unification type 1 or 0), then minimal set of Z-unifiers are

finite and effectively computable.

ii) If 23 i s of f—unification type oo and minimal set of f-unifers are recursively

cnumerablc , then minimal sets of Z-unifers are recursively enumerable.

From Paragraph 2 it follows that Corollary 3.8 is applicable to all finite equational theories.

3.9 Example. The minimizing step for elementary signatures (Theorem 3.4) may be

necessary to obtain a minimal set of unifiers:

Let 2 = { A = B, f: AxA -) A; AxB —) B ; BxA—-) B ; BxB —->B,

g:B—->B; h:B—)B]

Let E := I g<f<xA .yB» = h<f<xA‚yB))‚ f(xA‚yA) = f(yA‚xA> }.
This signature is elementary, furthermore the generated congruence is sort-preserving and

congruence—closed due to Propositions II.6.11 and 11.6.2.

Now consider the unification problem (g(zB) = h(zB)).
The unsorted solution is: [zB <— f(x1 Y1)], where xl , Yl are of sort A.
We have ttW(zB (— f(x1 yl)) = {(xl (— XLA’ Y] (—- XLB) ;(xl (-— x'LB, y l (— x'LA) }.

The combination, however, can be minimized, since f is commutative and the final set of

unifiers is: { { ZB <— fixLA Y1,B) } }. I

We give an example that unification may become undecidable, if sorts are introduced. A

similar result that can be translated to ours can be found in [Bü8_6], where constants instead of

sorts are added: ' ‘

3 .10 Example. Unification may become undecidable, if sorts are introduced even if the

resulting congruence is sort-preserving and congruence-closed:

It is well—known that unification under distributiv‘ity and associativity is undecidable

[3282]. The axioms are: ‘

x*(y+z) = x*y + x*z and (x+y)*z = x*y + y*z (distributivity)

x + (y + z) = (x + y) + z (associativity)

142

In order to construct an appropriate example, we add a third argument to + and * and write
f for * and g for +. Furthermore we assume that we have a constant a in the signature.
Distributivity and associativity are translated into the following axioms:

f(x1 g(x2 x3 x4) x4) = g(f(x1 x2 x4) f(x1 x3 x4) x4)
f(g(xl x2 x4) x3 x4) = g(f(x1 x3 x4) f(x2 x3 x4) x4)

g(g(x1 X2 X4) X3 x4) = g(xi g(x2 X3 x4) x4)

Now assume the following axioms, and note that all problems are trivially unifiable "in this
theory: . .

f(xl x2 a) = a .
f(xl x2 f(x3 x4 x5)‘) &: a
f(xl x2 g(x3 X4 x5)) = a
g(xl x2 a) = a
g(xl x2 f(x3 X4 x5)) = a
g(xl x2 g(x3 X4 x5)) = a

We have that every equation system F is trivially unifiable by instantiating the third
argument of the toplevel function symbol, if necessary. Hence unification is decidable.

Now we add sorts to the signature and assume that
2 = [A = B, f:AxAxA —> A, g:AxAxA -9 A, azA].
Furthermore we assume that all variables in ‚the above axioms are of sort A. Obviously this
theory is sort-preserving, since no term of sort B is equal to some term of 3011 A. In fact all
terms of 'sor t B are variables. Furthermore this theory is congruence-closed due to

— Proposition 11.6.2. ' _ ‘ . '
We show that unification in this new theory with sorts is undecidable, since DA-unification
problems are embeddable in this theory: . I
Consider the subset TB of terms that have as third argument of every subterm the
same variable of sort B , say zB. The mapping (p defined by f(s t 23) l———> s*t and
g(s t zB) |—-> s+t , recursively applied, gives the translation of TB-terms to DA-terms.
Now unification of two terms s,t in TB is equivalent to DA-unifying the terms tps,tpt, since
instantiations into zB are irrelevant. I

Next we consider an example for a sort-preserving and congruence-closed equational theory
which is of type infinitary, but if we add sorts, the theory becomes nullary unifying.

143

3.11 Example. There exists a sort-preserving, congruence-closed equational theory ‘Eof

type nullary such that the unsorted theory is of type infinitary:

Consider the following (unsorted) term rewriting system:
f1(g1(x)) —> g2(f1(x). f2(g1(x)) ——> g2(f2(x)
f‚(k<x)) —> fzacoo
g1(k(h(l (X)))) —> k(h(X))

g2(f2(l_<(h(l(X))))) -—> f2(k(h(X)))

This term rewriting system is canonical and the generated theory is of unification type

infinitary as proved in Appendix A.2.

. Now we introduce sorts:

Le t2={ A: B, f l—>A,B-—>B,

f2 :A —> A, B ——> B,

g2 : B -—) B ,

g l : B -) B,
k: A—> A, h: A—) A, 1: A—-> A,

‘ kann,» _: B}
The sorted term rewriting rules are as follows;
f1 (g1 (xß)) _) g2(f1(xB) f2(g1(xB)) "" g2(f2(xB)
f1(k(xA)) —-> f2(k(xA))

g1(k(h(l(xA)))) —+ k(h(xA))

gz(f2(k(h(l(xA))))) —+ f2(k_(h(xA)))- '

' We have to show that this term rewriting system is canonical, and that the equational theory
is sort—preserving and congruence—closed.

» 1) Rz is canonical and son-decreasing:
Termination follows as in the unsorted case (cf. Appendix A2).

The critical pairs are the same as in the unsorted case and are all confluent.

In order to use the criterion in Theorem 1135, we have _to consider the critical sort
relations. The only nontrivial critical sort-relation is f2(k(h(xB))): B , which comes from

unifying f] : B -> B with the rule f1(k(xA)) —> f2(k(xA)). This critical sort relation 18

satisfied.
2) £ is sort--preserving: .

' In order to use the criterion of Corollary 3. 7 we have to consider the Critical

sort- relation for the reversed rewrite rules. Again the only nontrivial critical

sort-relation 18 related to rule 3, and 1s f'1(k(h(xB))): B, which is satisfied.

144

3) 1: is _congruence-closed:
Use Criterion II. 6. 2 i). It is sufficient to consider the rewrite rules

f1(gl(xB)) —> g2(f1(xB), f2(gl(xB)) _) g—2(f2(xB). If a term of sort A 1s instantiated for

x13, then m every case both terms are ill- sorted.
4) € is of unification type 0:

Consider the unification problem (f1 (xA) f2(x A)) .

A complete set is {{e— g1i(k(h(yA))) } I 1—— 0,1 ,,..2 .} U{XA(— k(yA)|, which is
easily proved by induction.
However, this set has no basis since gli(k(h(l(yA))) =E gli'1(k(h(yA)). I

The following table summarizes some results given in this paragraph. The column "unsorted"

contains the assumptions and the column "elementary" and "not elementary" the conclusion;

| and£e Mlmpff I |
| | — xl

_v i

| unsorted „ _ | elementary | not'elementary | ReferenceJ. |. | | - |_
| £ e Mm’effand | uUz£$Q | „Uzßatß not | 3.4, 3.6, III.3.5
| luU f’E(I‘)I < 0° | decidable | decidable | III.6.1

J, l .L I
IluUfE(F)l=w, | „U,—„51:9 not l pumaeo not | 3.10'
| “U214”?t Q I decidable | decidable |
| decidable | | |
J. | | |
| |LUiE(l") exists I LLUZBG‘) exists I docsnot exist | 3.6, 311
| | L |
I put-‚Em . _ I puma) I ? MA. 3 8
| rec. enumerable | rec. enumerable | |

|
|

145

4. Example: Unification in Sets, Multisets, Semigroups and Groups.

The following example demonstrates how to compute complete and minimal sets of unifiers
using Theorem 3.3. It shows also that the minimization procedure of Theorem 3.4 becomes
incorrect if the signature is not elementary.

4 .1 Example: Unification of Sets.

Unification of sets (where sets are not allowed as elements of sets) [LS76, Bü86b] can be
modelled as unification of terms built from variables, constants and a binary ACI—function

symbol f, i.e. f is associative, commutative and idempotent. For convenience we denote terms

as sets of the occurring variables and constants. For example f(a x) i s denoted as {a ,x}.
Furthermore {a, a} = {a} . It follows from the axioms that it is alloWed to remove duplicates.

It is well-known that ACI—unification is of type finitary and that ACI—matching is also

finitary [LS76, Bü86b]. _ '
In unsorted ACI-unification problems it is not possible to make a difference between

element variables and set—variables. However, there are applications, where sets have to be
unified and some variables denote elements and not sets. Such a unification problem can easily

be described using the following sort structure, modelling sets and 'singletons:

Let E := { SET =! SING, f:SETxSET ——> SET, ai:SING, i=1,. . .,n}

ACI == { f(f("SET ’ ySET) ' zSET) = f("SET , f(ysrs'r , ZSET» =
f(xSET , YsET) = f(YSET , XSET) ,
f(xSET,’ XSET) = xSET}

In this elementary signature all terms are “well—sorted and the equational theory is
con gruence—closed. However, the - equational theory i s not sort-preservin g, since
f(xSING' xSING) =>:‚E xSING but Lsz(f(xsnvo , isms» = SET and LS): (XSING) =_ SING-
We can use Theorem II.9.1_ to obtain a sort—assignment SORT such that the equational theory

' is sort—preserving:

[SING, if t can be reduced to a variable or constant of sort SING.

SORT(t) := i
_ l LSE(t) , otherwise.

From now on we use SORT as sort-assignment, which is not elementary.

Theorem II.9.l yields that the equational theory with respect to SORT is sort-preserving.

An interesting obsetvation is that ttWE({x (— t}) is always a singleton and that all terms in the

' 146

codomain of substitutions in qflx e— t}) are variables or constants:

We have the cases:
i) x is of sort SET, then “W): ({x <— t}) = {Id}

ii) x is of sort SING, t contains more than one constant, then ”WZ ({x <— t}) = 9

iii) x is of sort SING, t contains exactly one constant a, '

then pWZ({x (— t}) = {u} , where u maps all variables in V(t) to a.

iv) x is of sort SING , t contains only variables,

then s ([x (- t}) = {u} , where p maps all variables in t to a new

variableof sort SING.

Theorem 3. 3 now yields a finite set CU); ACI(S’t) for arbitrary terms s ,t.

Since ACI—matching 1s decidable, we can remove instances and obtain NU}; AC1“,t) as a subset

of cU£‚ACI(s‚t) . Hence “U2,ACI(S»Ü exists and '1s finite for all terms s and t. .

The following example which is taken from [Bü86b] demonstrates how to compute the set

“UZ,ACI(Svt)° As constants we use a,b,c,d .

Let s = [XSETrySING’ d} and t = {a, b, WSET]
The set of most general unifiers for the unsorted problem consists of 9 unifiers (where u and v
are of sort SET):

61 = {x é— u ,

02 = {x
63 = {x
64 = _{x
0'5 = [x
66 = {x
67 '- {x
0'8 — {x
0'9 = {x

(— {u,a},
(— {u,a},
(— {u,b},
(— {u,b},
<——' {u,a,b},
(— {u,a,b},-
(— {u,a,b},
(— {u,a,b},

y <— {V.a.b},
y <— {v‚b}‚
y 6— {v‚a‚b}‚
y +— {m} ,

y <— {v‚a‚b}‚
y <— v

y <— {v . a}

y <— {v .b}

y <— {v ,a ,b}

w (— {u,v,d} }
w (— {u,v,d}}
w +— {11,9411}
w (— {u,v,d]}
w <— {u,x,d}}
w (+ {u,v,d}}
w (— {u,v,d}}
w (— {u,v,d}}
w (— {u,v,d}}.'

The next computation step is to examine each of these unifiers and instantiate them into

well—sorted ones. This IS not possible for the unifiers 01, 03, 05 and 69, since ySING is of

sort SING. We obtain a complete set CUE ACI(S’t) cons1st1ng of 5 unifiers:

62' = [x (— {u,a},
0'4 ' = {x
06' = [x

‘ 0'7' = [x

68' = [x

(— {u,b},
(— {u ,a ,b} ,

(- {u,a,b), ‘
<— {u,a,b},

y<—-b,

y<——a,
y<——v',
y<——a,
y<—b,

w (-— {u,b,d}}
w (— {u,a,d}}
w (— {u,v',d]} (v' new of sort SING)

w (— {u,a,d]}
w (— {u,b,d}] '

147

Now we can remove 67' and 68', since they are instances of the unificr 66'. Note that this
subsumption is only possible in the case of nonclementary signatures. The set “U2,ACI(S’Ü

consists of the three unifiers 62', 04', and 66'. It may be the case that a modification of the

unification algorithm in [Bü86b] yields a more efficient unification algorithm for the theory

ACI together with the sort structure described above.

If a sort structure is used, where SING has subsorts and these subsorts form a semi-lattice,

then there are only minor changes to the above procedure. The set q ACI({X <— t}) is a

singleton m this case, too.

4.2. Example: Unification of Multisets.

The structure multisets [LS76‚ St81, Fa84, F085, HS87, Bü86a] is equivalent to the structure

of AC—terms, generated by an associative and commutative function symbol, variables and

constants.
The theory of AVG-terms is regular and finite, furthermore it is well—known that most general

unifier sets are finite [LS76]. Hence for every sort-structure that makes the congruenCe

congruence—closed and sort—preserving, the set of most general unifiers ”ULACß’ t) exists for

every term pair s, t.
The sort- structure on multisets, however, is very often a regular, elementary signature.

In this case, we have: ' _
i) q ({x <— t}) is finite and consists of renamin gs.

ii) uU £,AC'(s,t) exists and is finite

According to 11.6.20, in a regular elementary signature the sorts form a commutative monoid

that is compatible with the subsort—structure.

In order to give a more concrete example, we consider the addition (+) on integers (INT)

considered as a associative and commutative function and let O and E be subsorts of the

integers denoting odd and even integers.

‘Thatis2= (INT: o, INT: E, +:INTxINT—>INT,OxO—>E,OxE——>O,Ex0—>O,
E x E —-> E] and

= { XINT +(Y1NT + ZINT)= (KM + YINT) + ZINT , (XINT + YEW): Ö’INT + KIN-19}

' The theory is congruence-closed and sort—preserving:

Congruence—closedness follows from Proposition 11.62.

In order _to show sort—preservation, we use Corollary 11.3.7. This is equivalent to checking

equations like O + (O + E) = (O + O) + E and (O + Ii) = (E + 0), which are all satisfied. .

148

Consider the unification problem < x0 + yo = x’E + y’E >. First we ignore the sorts and

- compute a minimal set of solutions:
1) {xo f—zl ,yO<-—zz , x’E t—zl , y ’Eé—zz}

2) {xO<—zl, yO‘FZZ’X 'EG 'ZZ ' y’E<—zl}

3) {xO(—zz, y0<——z3+z4,x’E<-—z3, y’E(—z2+z4}

4) {xOA(—zl, yO<—-z3+z4,x’E<—zl+z3, y’Eé—z4]

5) {x0<— z l+22 , yO<—z4,x'E<—zl‚ y ’Ee -zz+z4 }
6) {xO<—- z1+2‚2 , yOe—z3,x’E<—z1+z3, y’Ee—zz}
7) {x06— 21+22 , yO<—z3+z4 , x ’Eé—zl+z3 , y ’Eé—zz+z4}

Next we try to make the substitutions well-sorted and assume that all introduced variables Zi

are of sort INT. . ' , _
1) and 2) have no well-sorted instance. The unifiers 3),4),5),6) have exactly one well-sorted

instance and the unifer 7) has two well—sorted instances.-In weakening the unifier 7) , we have

to solve problems of the form x0 = zl + 22 which have two solutions, namely the sum of two

even numbers is even and the sum of two odd numbers is even.

3 ') {X0 ‘- 742‚o’ Yo ‘— 23,]; + z4,0,7513 ‘— 23‚E» Y'E ‘" z2,0 + z4,0}

4 ') “‘0."— 21 ,0 , yo (— 23.0 + z4£ , x’E (— 21 ,0 + 23,0 , y’E (— 24,13 }

5 ') {x0 (— z l ‚E + 22,0 , yo <— z4,0 , x’E (— ZLE ' y’E (— 229 + 24,0 }

6 ') {x0 (— z1 ,0 + 22,E , yo (— z3,0 , x’E (— 21 ,0 + 23,0’ y’E (— 22,5}
71){"o ‘— z1,0 + 22,15 ’ yo ‘“ z3,0 + z4,13 »X'E ‘— 7—1‚o + 23,0, Y'E ‘— ”2,15 + z4,15}

72) [Ko ‘— zl,E + ”2,0 , yo "“ z3,E'+ z4,0 ‚X 'E ‘— zua + 23,5, Y'E ‘— z2,0 + z4 ,0}

Due to Theorem 3.4 it is nOt possible that instances of different unsorted unificrs subsumc
each other. Furthermore 71) and 72) are independent. Hence the above set of unifiers _is a
minimal set of E—unifiers. ' '

The same procedure applied for example to the unification problem <x0 + yo = x’o + y’E>
yields no well-sorted solution.

4.3 Example: Unification under Associativity. ,
We give a similar example for associativity: Let + be the addition on integers (INT)

considered as an associative function symbol and let 0 and E be subsorts of the integers

denoting odd and even integers. .
Tha t i sZ= {INT=| O , INT= E, + : INTxINT—>INT,OxO—)E,OxE—>O,ExO—>O‚

149

ExE—aE] and

E:{KINT+(Y1NT+ZINT)=(XINT+YINT)+ZINT}

The theory E is congruence—closed and sort-preserving.

Consider the unification problem (x0 + yo = x’E + y'E). First we ignore the sorts and compute
a minimal set of solutions:
1) {e—zl ; yOe-zz ; x ’Eé—zl ; y’Ee—zz}

2) {xoé—z3+z4 ;y0<—zs ;x 'E<—z3; y 'E(—z4+25}

3) {x0<—zö;y0 (—z7+z8 ;x 'E<—zö+z7 ; y’E(—zs}

Next we try to make the substitutions well—sorted resulting in:

2’) WV“ Z1‚E+Zz ,o ; YO‘TZ3,O; x‚E("z l ‚E ; y 'E ‘_22‚0+Z3‚0}

3’) Mo“ z4,0 ; 3’0“- zs .o+26 .E3 x 'E ‘—Z4‚0”5 ‚Oi “€*—26,5}

The set consisting of the unifiers 2') and. 3') i s a complete and minimal set of unifiers for the

pr0blem (X0 + yo = x‚E + y’E). .

The same procedure applied for example to the unification problem (x0 + y() =_ x’o + y’E)
yields no well-sOrted solution.

4.4 Example. Unification in Groups.

In this example we show that a group defined by a sort-preserving congruence and by a

regular, elementary and finite sort-structure can only have a many-sorted sort-structure. This

shows also that fOr combining subsorts and equations in order to obtain a sortéprcscfvin g

con gruencc, term declarations are indispensible. '

We assume that the Operations of the group are defined everywhere and that the signature is

finite.
Due to II.6.20, the set of sorts forms a' finite group with unit-sort'E.

We show that E has no proper subsorts and supersorts:

Assume there is a sort A with A = E or A = E. Since the group is finite, we have A“ = E

for some n. Furthermore by 11.6.20, we have An = E or An = E, respectively. This is
impossible.

No subsort relation is possible:

150

Let A E B. Then from An = E we obtain E = A"‘A“’l E B*A““1. Hence E ==_ B"‘A“’1 and by
cancellation we obtain A = B.

5. Narrowing.

Narrowing [Fa79, Hu180, SSB] , 8282| is a universal unification procedure that works for

the class of equational theories that admit a canonical term rewriting system. The process of

narrowing was extended to sorted signatures in [SNMG87], however, not for signatures with

term declarations. As a further difference we will allow a more general kind of rewriting
relation, namely weakly sort—decreasing instead of sort-decreasing relations. .

In this paragraph we intend to give arguments that narrowing behaves as usual in the

context of term declarations. We are not interested in the details of different narrowing
techniques.

Assume given an equational theory £ together with a canonical term rewriting system R

and a unification problem (3 = t). Narrowing performs unification by nondetcrminstic

successive steps, where one step searches for most general instances of s and t such that a

rewrite rule becomes applicable. A typical narrowing step is performed as follows: Let It be a

' nonvariable position in s and let 0' be a most general (Robinson—) unifier of s\rc and 1, where I

—) r i s a rule in R. Then reursively try to unify the modified problem (asp: (— or] = ot)

keeping the substitution o in mind. _
A key to narrowing is a lemma in [Hu180], we include a proof of a part of it in order to check

whether it holds in a signature with term declarations.

5.1 Lemma. Let s be a term and let 0' be a normalized substitution.
Furthermore let os be reduced to t l in a one-step reduction at position rt with the rule 1 —'> r.

__ Then narrowing of 5 at position It with rule 1 —%> r produces a term s l that is more

general than t l . '
Proof. Since 6 is normalized, rt is a nonvariable occurrence of s.

Let t l = os[1t (— Or], where 61 = Gs\1t. Since we can assume that l and s are

variable disjoint, we have that 1 and S\Jt are unifiable.
Let u be a most general unifier of l and s\1t such that pt 5 6U o [V(l,s\rt]. Narrowing

yie lds the term 31 := t t s [1t <— u r] . There exis ts a subst i tut ion Ä such tha t

Mt = 9 u o [V(l,s] . '
Now we have 9.31 = MtsDt <— ?tur] = os[1t <— 9r] = t1. I

This lemma allows to derive by induction on the length of a reduction that narrowing is a

151'

complete unification procedure for normalized unifiers. Now, since R i s weakly

son-decreasing, there exists for every unifier also a normalized unifier, hence narrowing is

complete for all substitutions. In contrast to usual narrowing sorted narrowing introduces a

further nondetenninism. For a fixed position and rewrite rule, there" may be an infinite number

of possible narrowing steps, since the number of most general uhifiers may be infinite.

4;

There are several improvements of the first approach to narrowing, such as basic narroWin g

[Hu180, Re87, NRSS7] and some other techniques. Presumably all these improvements are

also applicable in the general case of sorted signatures considered in this thesis.

152

Part V
Sorted Resolution—Based Calculi

Overview: In this part we consider several resolution-based calculi with order—sorted
signatures. We investigate resolution, paramodulation and factoring, G . Plotkin's resolution
with built—in equational theories, J. Morris’ E—resolution and M. Stickels theory resolution. We
show that the completeness results that holdin the unsorted case or in the case of simple
signatures [Wa83] hold also in-the presence of term dclarations. The results concerning the fact
that the functionally reflexive axioms are not needed for clause sets with equations are in
general not liftable, as Shown 1n an example.

In this part we assume that there are no ill-sorted terms and literals. Furthermore, we
sometimes omit the adjective ‘well-sorted’, but always mean that every thing is well-sorted, in
particular substitutions are well-sorted.

' 1 . Resolution, Paramodulation and Factoring.

1.1 Definition. [R065‚ RW69, CL73].
i) Resolution of two clauses is defined as: - _ _ _

Let c l = {P(sl,.'..,sn)] u cLR and (12 = {-P(t1‚...‚tn)] o cm. We assume that c l and
C2 are variable-disjoint. Let 0' e pUz(sl=tl‚. . .‚sn'=tn). Then the clause °C1‚R U °C2‚R is

' a resOlvent of C1 and C2. ‘ ' '
ii) Factoring is defined as follows:

Let C——- {P(sl‚...‚sn)‚ P(t1‚... ‚tn)] U CR be a clause. Le to e uUE(s1=t1‚.. .‚s n=tn). Then
the clause [oP(s1‚.. '.‚sn)] U oCR 'is a factor of C.

iii) Paramodulation lS defined as follows:
LetCI = {s—— t} U C1 R and C2-- {L} U C23 be two variable—disjoint clauses. Let 1t be
an occurrence in L and le t o e uU z (S, Lit:) . Then the c lause
[(oL)[1t<—- ot]}uoC1‚RuoC2‚R is a paramodulant. I

In general it may be the case that the clause obtained by paramodulation is not well-sorted. Ch.
Walther [Wa83] gives examples and his calculus must be aware of this problem, but we make _
assumptions to avoid this:

1.2 General Assumption. If equations are in the clause set, we assume in the following
that a greatest sort TOP is available, such that all literals and terms are well-sorted, and also
that the unit equation xTOP = xTOP is in every clause set. I

153

In 11.] we have justified these assumptions and shown that the addition of a sort IT is a
conservative transformation.

‘ 1.3 Lemma. Resolution, factoring and paramodulation are sound deduction rules. I

Proposition I. 13.7 implies that successively factoring a clause yields the same factors (up to

renamin g) as a generalized factoring step, where more than two literals are considered.

In order to prove the completeness of our sorted calculi, we use Herbrand's Theorem II.11.2

and the usual lifting arguments. These arguments work as folloWs: Given an unsatisfiable

clause set, the Herbrand Theorem yields' a finite unsatisfiable clause set consisting of ground

instances of the original clauses. Then a ground refutation (a deduction of the empty clause) 1s

lifted to a refutation'1n the original clause set.

Lifting a deduction step is defined as follows: Given n clauses Cl , . . . ,Cn, and 11 ground

instances CLgr" . .,Cn’gp such that ' i i : Ci gr
Dgr i s deducable from Cl ,g r ’ “ "C2‚g r ’ then we say this deduction is l i f table, iff we can —

deduce a clause D from C1,. . .,Cn, such that Dgr is a ground instance of D and D and Dgr have

and 71 is a 1-1 mapping on literals. If a clause

the same number of literals. _
Factoring is needed to lift the merge operation, which is impliCtely done byset union: _One

literal on the ground level may be an instance; of several literals on the. general level. In order to

obtain a 1—1 mapping between the general "and the ground clauses, one may need some

factoring steps on the general level.

For factoring. we have: (cf. [WR73, CL73])
1.4 Lemma. For every ground instance Cgr of a clause C there exists a clause C' derivable

by factoring, such that Cgr is a ground instance of 0 and both C' and Cgr have the same
number of literals. .

Proof. Straightforward using Proposition I . 13. 7 . I

1.5 Lemma. [R065, WR73, CL73] A ground resolution step is liftable to a resolution step
and factoring _.steps .

Suppose a sort TOP is in 2 , then we mean by the functionally reflexive axioms all
‘ax ioms of the form f (x1 ,TOP’° . "xn,TOP) = ' f (x1 ,T0Pv°°1xn ,TOP)° '

154

1.6 Lemma. [RW69 ,WR73] If the Assumptions 1.2 hold, then a ground paramodulation _
step is liftable to one paramodulation step between clauses, some factoring steps and
some paramodulation steps with the functionally reflexive axioms._

2 . Deductions on Ground Clauses.

In this paragraph we consider deduction systems on ground clause sets and show how a
refutation can be found. This is some preliminary work for the completeness results for sorted
calculi. Furthermore we demonstrate how to use the completion procedure in 11.3 to de'scribe a _
decision procedure for sets of ground clauses.

The next proposition is well-known. Nevertheless, we will provide a (simple) proof „for it.

2.1 Proposition. An unsatisfiable ground clause set CS without equations is rcfutable with
resolution. Furthermore unsatisfiability is decidable, '

Proof. We show this by induction on the k-—parameter (or the excess literal number) [AB70]:
k(CS). = £{ (ICI 1-) I C e CS}, where ICI 1s the number of literals 111- the clause C.
Let CS be an unsatisfiable ground clause set.
If k(CS) : 0, then there are two complementary literals _and _hence a resolution on those

literals yields the empty clause. '
If k(CS) > 0, then there exists a non--unit clause C. We partition C into two parts C1 and C2

and obtain two unsatisfiable clause sets CSI and C32 by replacing C by C1 or C2
respectively. Since k(CSi) < k(CS), there are refutations of - CSI and CSZ' by
resolution. These two resolutions proofs can be combined to a resolution proof of the
empty clause in CS, since all'clauses are ground. CI

Resolution provides a decision procedure, since only a finite number of clauses is derivable
from cs. I '

In the rest of this paragraph we consider ground clause sets with equality and we will proVe a
similar result for them. '
Note that we use the total ordering <S on ground terms given in 11.3. We shall use the
E-resolution technique [M069] in order to prove results on a calculus using paramodulation.

- In the following we will assume that enough units = t are in ground clause sets rather than to
use reflexivity implicitcly. More precisely, we assume that every set of ground clauses CSgr
that contains equality literals, also contains all the (finitely many) unit equations [t = t}, where
t ss s for some term s in CSgr. ‘

155

This assumption avoids the need for two different ground E—resolut'ion rules.

2.2 Proposition. An E-unsatisfiable set CS of ground unit clauses can be refuted by
resolution and paramodulation. Furthermore it is decidable whether it is E-unsatisfiable.

Proof. Note that enough ground units of the form t = t are available. 'The set of ground unit

equations can be completed ‚as in 11.3.15. The resulting TRS is then used to normalize all

other terms. Note that completion and normalization can be simulated by paramodulation

steps. The clause set i s E-unsatisfiable, iff there are two complementary literals. This

includes the case of an inequation s # s, where s i s in normalform, since then an equation

s =_s is in the clause set. The complementary literals can be resolved and hence the empty

clause can be obtained. I I .

We give deduction rules for ground ‚equations, Which are essentially E—resolution rules.

2.3 Definition. A ground E-resolution step is defined as follows:
Take n clauses C1,I...,Cn from theset CS of ground clauses (some clauses Ci may be

identical) and from every clause a literal Li, such that L1 and LZ have the same predicate,

but a different sign and L3,. . .,Ln are equations. If L1,. . .,Ln are contradictory (with. 2.2),

then infer the clause (Cr {Ll }) U U (Cn— {Ln}).
A- ground E-resolution step is minimal, if all equations L3,. . .,Ln are necessary in order to

make LI and LZ complementary. I ‘ .

"2.4 Lemma. A minimal ground E-resolution step can be simulated by paramodulatibn and

resolution. " '
Proof. The procedure in 2.2 (completion and normalization) performed 'by _paramodulation

gives exactly the desired clause. I ' - '

2.5 Proposition. An E-unsatisfiable ground clause set CS can be refuted by (minimal)

E—resolution steps (and hence by resolution and paramodulation). Furthermore

E-unsatisfiability of a set CS of ground clauses is decidable with this procedure. '

Proof. We prove this by induction on the k—parameter .
Bam If k(CS) = 0, then CS consists of unit clauses and we can make a minimal

' E-resolution step due to Proposition 2.2.
_ WL If k(CS)} > 0, then there exists a clause C with ICI > 1. We partition

C into C1 U C2 and consider two different clause sets CSI and C82, where in CSi the

clause c is replaced by Ci. Obviously, if es is unsatisfiable, then csl and cs2 are
both unsatisfiable. We have k(CSi) < k(CS). By induction, the clause sets CSI and

C52 both have a refutation using minimal ground E-resolution. Since C is ground, we“

156

can combine the two refutations and obtain a refutation by minimal E—resolution of CS.E] _

To recognize satisfiability, we perform ground E—resolution steps until no new clause can
be derived. Since the number of derivable clauses is finite, this procedure terminates. I

3 . Completeness of Sorted Calculi Based on Resolution, Paramodulatlon and
Factoring.

We giveextensions of the theorems of [R065,.RW69] to the sorted case. These results extend

_also the theorems in [Wa83]. '

3.1 Theorem. Every unsatisfiable clause set CS without equations can be refuted by
resolution and faCtoring. _

Proof. By the Herbrand theorem II.11.2 there exists a finite unsatisfiable clause set CSgr of
ground instances of clauses from CS. This clause set can be refuted by resolution and
factoring due to Proposition 2.2. Lemma 1.5 shows that this ground resolution is liftable
to the general case. I '

3. 2 Theorem. Let the assumptions in 1. 2 be satisfied. Every unsatisfiable clause set CS
with equations can be refuted by paramodulation, resolution and factoring, provided the
functionally reflexive axioms are in CS.

Proof. By the Herbarand theorem H. 1 1.2 there exists a finite unsatisfiable set CSgr of ground
instances of clauses from CS. This clause set can berefuted by paramodulation and
resolution due'to Proposition 2.5. Lemma 1.5.an'd Lemma 1.6 show that. these ground
steps are liftable to resolution, paramodulation and faCtoring steps at the general level,
provided the funCtionally reflexive axioms are in the clause set, hence there exists a
deduction of the empty clause. I

There are several proofs of the fact that for the unsorted case the functionally reflexive axioms
are not needed in Theorem 3.2 (cf. [Bra75, Ri78, Pe83, HR86]). These proofs are rather
complicated and either need involved arguments on semantic trees [Pe83] or they need '
arguments based on sequent calculus [Ri78]. Furthermore, in [Pe83] it is shown that
paramodulation into variables is also not necessary in the unsorted case.

In the following examples we show that in the case of simple signatures paramodulation '
into'variables is necessary and that for more general signatures, functionally reflexive axioms
will be needed. We conjecture, that the functionally reflexive axioms are not needed for simple

signatures.

157

3.3 Example.
i) If the signature is simple, then paramodulation into variables may be necessary:

Let E:: {A,B = TOP, a:A, s} and let CS := {[P(xA)], {-uP(yB)}‚{a=b} }.
This clause set is unsatisfiable, but can be refuted only by paramodulating into one of the
variables xA or yB.

ii) If the functionally reflexiveaxioms are not in the clause set and the signature is not simple,
then resolution, paramodulation and factoring are not sufficient to deduce the empty clause
for every unsatisfiable clause set: .
Let 2:: [TOP = A,B,C,D‚ a:A‚ b:B, c:C, d:D, nOP —> TOP, g:A --) C, g:B —-> D} and
let CS := { {zTOP =ZTOP} {xc¢yD}, [a=b] }. This clause set is unsatisfiable, since
g(a) = g(b) holds in every model and g(a) is of sort C and g(b) is of sort D.
It is easy to see, that paramodulation and resolution are not sufficient to deduce the empty
clause, since the symbol g cannot be introduced. I

4. Resolution with Equational Theories.

If the clause set can be divided into two parts, a set of clauses CS without equations and a set
of unit equations E, then we can use the method of [Plo72] to build them into an E—unification
procedure (cf. part IV). The following theorem h,olds which 1s due to G. Plotkin [Plo72] for
unsoned equational theories: . - , „

4.1 Theorem. [Plo72] Let £ be an equational theory and let CS be a clause set without
equationalliterals. Suppose we have a complete E—unification procedure.
Then resolution and factoring with E-unification is a complete deduction system. I

We can extend Proposition 2.2:
4.2 Proposition. If the theory 95: has a unification algorithm, i.e.‚ for every set I‘ a finite

complete and minimal set of unifiers is effectively computable, then for every set of ground
clauses CSg it is decidable, whether CSgr is contradictory under £. I .

The extension of this calculus to clause .'setsthat contain equations raises the problem that
paramodulation has to take into account all potentially available subterms of some term, not
only the syntactically given ones. In [Plo7 2] a modified unification procedureis proposed. In
completing term rewriting systems modulo an equational theory this problem leads to the
definition of a new condition, called coherence condition [JK84].

158

5. Morris‘ E-resolution.

E-resolution was first introduced by J. Morris in [M069]. R. Anderson [An70] defined it in .

terms of paramodulation and showed that E—resolution is a complete refutation procedure. The

essential idea in the definition of E—resolution is to paramodulate only if complementary literals

are generated such that a resolution step can be performed. For example, from the three clauses

[P(a)}, {a=b,Q } and {-P(b)} an E-resolution step can deduce Q at once. The problem to find

' such literals that can be made complementary is very ”similar to unification with respect to an

equational-theory. However, in general the equations are conditional, hence unification should
not only generate a set of unifiers, but also for every unifier 6 the instantiations which are used

to prove that 0' i s indeed a unifier. This would require that the unification procedure can copy

equations. We do not consider this type of unification, but a more restricted one, which does

not copy equations, and we assume that a higher level module provides the copies of clauses

or equations. .
Hence the unification problem is of the following type: Given a set of equations

E := {li f—- ri I i = 1,...,n] and a set F of unification problems ('s, = ti ! i = 1,...,m), find a
substitution 0' such that the equations {Oli = ori I i = l , . . . ,n] imply the equations

_ {osi = oti | i = l , . . .,m} where variables are considered as constants, i.e., by using the
congruence closure method [N080, Ga86,Koz76 ‚Sh84] or completion and reduction as

described'in II. 3. Note that li,ri,sj,tj may have variables 1n common. The problem is equivalent

to the following: find a substitution o, such that the universally quantified formula 0(E = I‘)

becomes a tautology. The same unification problem comes up in equational matings considered

in [GRSS7, And81], "where this type of unification 1s called rigid E—unification.

The behaviour of equality in equational theories generated by ground equations was first

considered by W. Ackermann [Ack54] who proved it to be a decidable problem. Recent

investigations - show that this problem has fast decision algorithms (even one of
time-complexity O(m*log(m)) [NO79, N080, DSTSO, Ga86,Sh84].

' 5.1 Def ini t ion. Let E :={li = ri l i = 1,. . . ,n} be a set of equations and let F :=

{si = ti | i = 1-,...,m} be a set of unification problems, then 0 is a rigid E-unifier, iff
the implication O'E => 61" holds in all interpretations. Equivalently GI“ is solved under the
‘theory’ GE, where all variables in GE and GI“ are considered as constants. I

A rigid E-unifier is an E-unifier, but the converse is not true (cf. [GRSS7]). In [GR887] there

is also a discussion on the complexity and decidability of rigid E—unification, and it is shown,

that rigid E-unification is NP-hard. Furthermore it i s announced that rigid E—unification is

decidable. An algorithm for rigid E-unification is also given in [GRS 87], but there is no prOof

of completeness. .

159

5.2 Lemma. The instance of a rigid E-unifier is also a rigid E-unifier:
Proof. If the formula (OE => OT) holds, then it i s true in all interpretations. Hence an

instance (AGE => lol") is also true in all interpretations. This means 2.0“ is also a rigid
E-unificr of F. I

We want to define complete sets of rigid E-unifiers and use them as substitutions in an

E-resolution step. Unfortunately, this i s troublesome as the following example shows:

n'gid-unify the terms x and y with respect to the equation {f(z a) = f(z b)]. Intuitively, the

substitution o = [x <— y} should be the most general one. Now consider the substitution 1: :=

{x (— f(a b), y (— f(a a)}. Then 1: is an E-instance of 6, if we use {f(z a) = f(z b)} as an

equational theory. However, the equation is used with the instantiation [z <— a}. This notion -

of instance would allow 1: ':= {x (— f(f(a b) b), y <— f(f(a a) a)} to be an instance of 0',

which is not a rigid E-unifier, since then two instantiations of the equation f(z a) = f(z. b) are

needed. _ _
Thus we define the instance relation as follows (note that we define the subsumption

different frOm [GRS 87]) :

5.3 Definition. Let E :={li =.ri l i = 1,...,n} be a set of equations,let 0', 1: be substitutions

and let W be a set of variables.
Thenwe say 1: is rigid-equal to o (a =rig «: [E,W]) iff

i) (OB <=» tE) is valid.

ii) for all x e W: (15E =» 0x = 1:x) is valid.

Furthermore we say 1: is a r igid-instance of 0' (o Srig 'c [E,W]), iff there exists a

substitution ?» such that lo =fig 1: [E,W]. '
We say two substitutions a and ': are rigid-equivalent (t Erig o [E,W]) ', iff

t sfigo[E ,W] and GSfigT[E ,W] . I

5 .4 Lemma. Let E :={li = ri ! i_= 1,.—..,n} be a set of equations and let [‘ :=
[51 : till i = l , . . . ,m} be a set of unification problems. Let W := V(E,I‘) ‘
i) o =fig 1: [E,W] implies 76.6 =fig M: [E,W] for substitutions '1.

ii) A rigid instance of a rigid E—unificr is a rigid E—unifier.
iii) Srig is a quasiiordering.

i s an equivalence—relation.

Proof.
i) The statement o :r ig 1: [E,W] means that (GE @ 'cE) is valid and that for all x e W

(GE => ox = TX) is valid. Both statements remain valid, if they are instantiated by Ä.
ii) Let 0 be a rigid E—unifier of F and let 1: be a rigid-instance of o (o sfig z [E,W]).

By definition we have that (ÄO'E {: 1:E) is valid and that (TE => lax = tx) is valid for all

160

x e W. Furthermore lo 1s a rigid E-unifier of I‘ by Lemma 5.2. Together these facts

imply that 1: is a rigid E—unifier of F.
iii) Let °1<—nig 02 Srig 03 [E, W] for substitutions 01,02,03. Then there exist substitutions 7L]

and k2 such that 210131862 [E, W] and 1202=r ig o3 [E,W]. By i) we obtain

2.21101 =rig 1202 [E, W]. Furthermore, from the validity of (ÄIOIE ¢=> 02E) and

OLZGZE <=» 03E) we obtain that (lzllolE ¢=> 71262E «==> o3E) is valid. We conclude that
MMO] :rig o3 [E, W] and hence o l Srig 0'3 [E, W] .

iv) Follows from iii). I

Similarily as for _usual E-unification, we define complete and minimal sets of rigid E-unifiers,
here with respect to the rigid-instance relation.
An interesting open problem i s the existence of minimal sets of rigid E-unifiers. We

conjecture, that a finite minimal complete and effectively computable set of rigid E—unifiers

always exists.

As an example for rigid E-unification let E := {a = f(a)} and F := {x = a}. The most general
rigid E-unifier is 0 := {x <— a} , since the theory is defined by ground equations. The set of all
rigid E-unifiers is { {x (— t“(a)} l n 2 0}, which is infinite.

Now we define E—resolution with respect to a procedure that computes a complete and perhaps
minimal set of E-unifiers.

5.5 Definition. Let Arid be a procedure that computes complete sets of rigid E- unifiers.
Then E- resolution 1s defined as follows: “.
Let [P(sl,... ,sm)] U R_1,_{_—P(t1,...,tm)}u R2, [l3 = r3] u R3 , {1n = rn} u Rn be n
variable-disjoint clauses (where the clauses may be renamed cOpies), and let 0‘ be a unifier
produced by Arid for E = {13 = r3,...,1n = In} and the problem F := (sl = t1,..., sm = tm) .
Then the E-resolvent is o(R1U UR“). i ' ' '

5.6 Lemma. E-resolution is sound. I

We propose to use E-resolution (together with a complete rigid E—unification algorithm) as a
general inference rule together with factoring. We conjecture that this would provide a
complete refutation procedure for arbitrary clause sets.

Let Arid,pm be the algorithm, that computes rigid-um'fiers of P(s1,. . .,sn) and —-1P(t1,. . .,tn) and
11 = r1,. . . ,]m = rm by paramodulating from 1i = ri into the two literals and that uses every
equation at most once. 'The returned substitutions are the combined substitutions from the

161

paramodulation.
This algorithm is not a complete algorithm for rigid. E-unification, however, it is sufficient for

completeness of E-rcsolution:

5.8 Theorem. Let all functionally reflexive axioms be in the clause set.
Then E-resolution with the algorithm Arid,pm together with factoring is refutation-complete.

Proof. The theorem follows from Proposition 2.5, since in the presence of functionally

reflexive axioms, all E-resolution steps are liftable due to Lemma 1.6. I

An extension of the above algorithm A is to make a paramodulation-like deduction andrid‚pm

use equations more than once without copying them and without renaming them, but after a

‘paramodulation’ step, the corresponding substitution is applied to all involved clauses.

We conjecture, that in the unsorted case this extended algorithm is a Complete rigid

E-unification algorithm, even if paramodulation into variables is forbidden. For the case of

simple signatures we conjecture, that full paramodulation provides a complete rigid

E-unification algorithm. In polymorphic signatures Example 3.3 shows that functionally

reflexive axioms are necessary.

The following example shows that the intuitive notion of most general E-resolvent has the

same lifting problems as paramodulation: ' ' '
5.7 Example: ' ' * - . - ,

Consider the ‚three clauses [P(x , a), Q(x)], [-P(y, b), R(y)} {a=b} and their respective

ground instances {P(f(a), a), Q(f(a))}, {—P(f(b), b), R(f(b))} [a=b]. .

Then the most general E-resolvent should be [Q(x), R(x)}, whereas on the ground level,

we obtain the E-resolvent {Q(f(a))‚ R(f(b))]. Obviously, this E-resolvent is not an

instance of the general E—resolvent. I

6.’ Theory Resolution.

In this paragraph we give an, outline of ‚how to extend the theory resolution (T—resolution) '

method of [St85] to orderasorted signatures. The idea of theory resolutiOn i s to exploit

specialized algorithms for some th'eories such as taxonomic structures or partial orderings in

the deductive machinery. For example in the theory 0RD of partial orderings one can easily

decide that x < b A b < c A c < x is unsatisfiable without deducing furtherliterals. _ *
It has similarities with resolution using E—unification or with E—resolution, but there are

differences as we will show in an example. Theory resolution with a taxonomic hierarchy as

162

theory 1s similar to but not the same as order-sorted deduction, since T-resolution may need

more unifiers than order-sorted resolution (cf. [St85]).

For the convenience of the reader we repeat the definitions given in [St85]:

We assume that a signature 2 '1s given. ' .

Let T (the theory) be a satisfiable, finite set of first order axioms. Without loss of generality
we can assume that T 1s a set of clauses. A set of ground literals C 13 T-unsatisfiable, iff
T u C is unsatisfiablc, otherwise C is T-satisfiable. .
A set I of ground literals is a T-interpretation, iff it is a model of T.
A set of ground literals LS is minimal T-unsatisfiable, iff LS 'is T—unsatisfiable and every
proper subset LS' of LS is T-satisfiable. ‘ . '

_ A ground literal D is valid in a T-interpretation I iff D e I. A ground clause C8? is valid in

I, iff Cgr n I at Q. A clause C 13 valid, iff every ground instance of C 15 valid 1n 1.
A T—interpretation I 15 a T-model of a clause set CS, iff every clause from CS 18 valid m I . '

A Claus: set CS 'IS T-unsatisfiable, i f f '1t has no T-model.

Ground TeResolution: Leit {{Dl '} u E1‚... , {Dk} u Bk} be a set of' ground clauses (Di are '

' literals). Let {D1,.. .,Dk} be (minimally) T—unsatisfiable.
Then {El,._.. ,Ek} is a narrow total T- resolvent. .

M. Stickel [St85] defines different kinds of resolution, such as wide resolution instead of

. narrow resolution, or partial resolution instead of total resolution. We concentrate on narrow
total T-resolution, since this is the straightforward extension of usual, binary resolution.

6.1 Lemma. (Herbrand) A minimally T-unsatisfiable set LS of ground literals is finite.
Proof. Let LS be a T-unsatisfiable set of ground literals. Then T U LS is unsatisfiable. By '

_Herbrands Theorem (I I . l l .2) there exists a finite set of instances of T U LS that is
unsatisfiable. Hence there exists a finite subset LS' of LS such that LS' U T is
unsatisfiable. I _

6.2 Definition. A unification algorithm T-UNIFY for a theory T has as input a set of

literals and generates a complete set of substitutions that make this set of literals

contradictory. More precisely: _
For every set of (variable-disjoint) literals [D1,.. .,D }, every ground substitution ogr such
that {ogrDl ‚ . . . , o gr n lD} i s minimally T-c-ontradictory and og : { . .D l , Du} —>
{og-DI ," „oga} 1s a bijection, there exists a substitution o e T- UNIFY (D1,.. .,Dn) su'ch

that ogr>_ 0' [V(D1,.. .,Dn)]. Furthermore {oD1‚...,oDn} should be T-unsatisfiable. In

this case, we say T—UNIFY is a complete T-unification algorithm for the theory T.-

163

An algorithm will generate in general more substitutions, since the condition that a set of
literals is minimally T-contradictory is hard to check. '

General (narrow total) T-Resolution: Let {{Dl} UE1,.'..,. [Dk) uEk] be a set of
clauses (where clauses may be renamed copies) and let 6 be a substitution produced by a
theory—unification algorithm. ,
Then [oEl‚ . . . ,oEk} is a narrow total T-resolvent .

The T-calculus consists of T-resolution together with a T-unification algorithm and factoring.

6.3 Lemma. (Lifting)
Every ground T-resolvcnt is an instance of a clause deduced with T-resolution and
factoring. ' '

Proof. Let {Di} U Ei, i = 1,...,n be the variable-disjoint general clauses and let ogr be a
ground substitution with og]. ({Di} U Ei) : {Dgn i } U Egrj for i = 1,...,n ._Furthermore
let [Dgr , l"°"Dgr ,k} be minimally T—contradictory. The unification algOrithm T-UNIFY
yields a substitution o such that OST 5 o [V(D1,...‚Dn)]. Let the corresponding resolvent
be O'ElU. . . U GER. Obviously OgrElU' . . U ogrEk is a ground instance of the resOlvent.
I .

6.4 Lemma. For every T-unsatisfiable clause set CS, there exists a finite T-unsatisfiable set
_ of ground instances.

'— Proof. Let CS U T be unsatisfiable, Then by Herbrand’s Theorem II .11.2 there exists a

finite set of ground instances of clauses from CS U T. The finite set of ground instances of _
CS is T-unsatisfiable. I '

6.5 Theorem. [St85] Narrow T—resolution together with factoring is refutation—complete,
i.e., every T-unsatisfiable set of clauses has a T—refutation of the empty. clause.

Proof. Lemma 6.4 above on lifting' shows that it suffices to consider a set CS of
ground clauses. We can assume that CS is T-unsatisfiable. We make induction using the
k-parameter.

Indugtig‘ n Das9, If k(CS) = 0, then CS consists of unit clauses. The clause set CS contains a
minimally T-unsatisfiablc clause set, hence in this case there exists a one-step refutation of

cs. '
Inguctign step, If k(CS) > 0, then CS contains a clause with more than one literal. We split C

into two nonempty disjoint parts Cl U C2. CSi is the set CS Where C is replaced by Ci.
CS] and C82 are T—unsatisfiable, hence by induction on k(CS) there exists a refutation of
CS-l and C82. Since clauses are ground, the deductions are combinable as follows: If the

1164

deduction of the-empty clause in CSI does not use the clause C l , then we have already a
refutation of CS . If a deduction uses C1, then we can derive the clause C2 and then we

perform the deduction in C82. I

The following example shows that M. Stickels argument that lifting is trivial and hence it is

sufficient to consider only the ground case is not correct if applied to paramodulation or

E-resolution. The hidden problem is that M. Stickel uses the usual (Robinson-) instance

‚relation, and hence if T—resolution simulates E-resolution or paramodulation, far more

T—resolvents are necessary“.

E-resolution is not simulatable by T-resolution:
6.6 Example. Narrow T-resolvents may be not liftable, if the instance relation is not

properly chosen: . [
This .is an example, that'El-resolution and narrow T—resolution with respect to the theory of
equality are different notions. ' ' '
We use the clause set in Example 5.7. and T should be the theory of equality.
Consider the three clauses {P(x , a), Q(x)}, {-P(y, b), R(y)} {a=b}.
For the ground instance {P(f(a), a), Q(f(a))}, { -P(f(b), b), R(f(b))} {a=b} we obtain the
T-resolvent {Q(f(a)), R(f(b))} and for the ground instance {P(f(a), a), Q(f(a))},
{-P(f(a), b), R(f(a))} {a=b} we obtain the T—resolvent {Q(f(a)), R(f(a))}.
Thus a complete algorithm T-UNIFY has to generate not only the T—unifier {x e—y}, but
also [x <-f(a), y <—f(b)}, and in fact it has to generate an infinite number of T—unifiers. _
Thi s - i s different from E—resolution, where only the unifier {x <— y}. is needed, if one

adOpts' the completeness of the paramodulation based 'rigid E-unification algorithm.
T—resolution in this case can be compared with E-reSolution if the functionally reflexive
axioms. are present. I '

165

VI A Sort Generating Algorithm

Overview: In this part we describe several transformations for sorted specifications. The

main motivation for investigating these transformations is efficiency of the corresponding

deduction system and the reduction of search spaces. The idea is to transform a complex and

hard to prove specification into a simpler (easier to prove) one, where the number of clauses is

reduced, but perhaps the sort structure is more complex. In order to gain efficiency these

transformations should be fast and the result should be in some sense simpler.

In the first paragraph we describe several sensible transformation mies and call the set of

rules also SOGEN. An evaluation of the rules of SOGEN-application is described. We prove

that all these rules are correct and give some examples for the performance of SOGEN. In an

extra paragraph the application of SOGEN to logic programs is described.

1. The Algorithm SOGEN.

The goal of this paragraph is to present the rule-based algorithm SOGEN. This algorithm

takes as input a clause set and a signature nd searches for information in'the clause set that can

be encoded in terms of a sorted" signature. In particular, it transrms unary predicates into

appropriate sorts, adds new relations between sorts, and adds term declarations.

In this part, we always assume that a topsort TOP is present. Furthermore We assume that

unary predicates have a unique maximal domain-sort. Both assumption are justified in § II.—1.2

and II.7.8.

1.1 Preliminaries t‘or SOGEN.

The algorithm SOGEN needs a memory to store already introduced relations on sorts and

relationships between sorts and unary predicates. We use sort-predicate equivalences (SPE)

and intersection constraints (ISC). The constraints and equivalences could be coded as special

clauses, but we keep them separate from the clause set CS 1n consideration. ' '

In the following we write P, if we mean a signed predicate. A unary predicate P for which,

a sort SP 18 generated, IS called a transformed predicate. Note that if P1s transformed, then

—P may not be transformed into a sort. . |

Now we make precise what SPE and ISC means:

. 166

1) A pair (P,SP) € SPE, where P e P and Spe S}: stands for "P is transformed into SP".

We denote this also by P <—> SP. Semantically, this means that P is valid exactly on

elements of the sort SP. In the clause set it can be simulated by the. formulas ‘v’x:SP P(x)

' and Vx:SDP P(x) = Syzsp x = y , where SDP is the domain-sort of P. ' '

In order to turn the axiom ssDP P(x) = Ely:SP x = y into a clause, we introduce the

Skolem-function gpsP ——) SP and then obtain the clause Vx:SDP P(x) = x = gp(x)

. 2) A pair ({Sl,.. .Sn},T) with Si,T e S): represents S l (\ n S“ = T. Semantically, this

means that for every term t: if t has sorts 81,32 ,. . .,Sh, then t is also of sort T.

This information can be encoded by the relations Si a T and an axiom like
Vxlzsl, ...,x„:s„' xl = x2 A A x1 = x“ = 3z:T xl = z. A short reflection shows
that this can also be encoded as a clause with a function hSl—)T :Sl —) T and the following

clause: Vx l l , ...,xnzsrl x1= x2 A A x l = "n = x1 = hSl—>T(x1) ° I

In general we use as signature 2 only the part of the signature without symbols from ISC and

SPE. If we use the whole signature (including the symbols gP and hR__)T), we shall state it

explicitely.

From the information in ISC, SPE and the signature we can immediately derive s'omc new

information such as sort—relations or equivalence of two sorts. For example from the

information in ISC aloneit may be possible to identify sorts. An algorithm for such a formal

handling of sets is easy to construct using the idea of Venn-diagrams (cf. [Sh84] Example 3).

In [Sh84] there are also unions and complements allowed. We use only intersection and the

subset relation, and it turns out (see Lemma 3.4.3) that in this case there exists a more efficient

algorithm than the Venn-diagram method. I

In the followin g we describe the rules of SOGEN by an E—part that contains the conditions for

firing and a tha—part that contains the actions to be performed. Some rules that provide

alternatives have in their then-part the alternatives in §i_t_h_gr_, g,. . . . _

Not all rules are completely defined, as their implementation may rely on special heuristics“

or requires special algorithms. For example Rule BTl has an undecidable precondition, but

_this condition describes best what is required. An implementation of the test for such a

condition must only be correct, i.e. if the test says ‘yes’ , then the condition must be true, but

the implementation may not be complete, i.e. it sometimes says ‘no’ or ‘don ’t know’ if the real

answer is ‘yes’.

167

1.2 Basic Transformation Rules.

Rule BT1. Introduction of sorts. .
If CS contains a unary predicate P with domain-sort SDP’ and

3x:SDP P(x) is deducable from CS, and
P is not yet transformed into a sort,

then add a new sort symbol SP,

add a new constant c of sort SP,

add SP E SDP’ where SDP is the domain of P,

add P (—> SP to SPE.

Note that the nonemptyness condition of BT1 is satisfied, if for example there is a unit clause

P(t) or a clause [P(sl),P(s2),...‚P(sn)].

Rule BT2. Adding new term declarations to 2.
I_f CS contains the clause C = {P(t)}, where t is not a variable, and

We have P <—> SP,

then add the term declaration t:SP.

Rule BT3. Introduction of sort relations.

11‘ CS contains the clause [P(x)], where x has the sort SX, and

wehaveP(—'>SP . .
then add the relation Sx E SP.

Rule BT4. Changing the sort of variables in clauses.
fi CS contains the clause C = [-P(x)} U A, where x has sort SX, and

.wehaveP<—>SP andSPnsT ,

then delete the literal -P(x) from C,

replace x by a new variable of sort T.

1.3 Reduction and Deletion Rules.

Besides the usual deduction rules like resolution, factoring or paramodulation and theusual

reduction rules like subSumption and tautology reduction, we give a sligthly modified purity
reduction rule and introduce some new deletion and reduction rules (which can be "seen as

su bsumption or replacement resolution [Ro_65‚CL73]‚ respectively)

168

Rule DDl. Purity deletion.

If CS contains a clause C such that C is a pure clause, i.e. C = {L} U A, the

predicate P of L is not the equality predicate, neither P nor -P is transformed

into asort and there exists no complementary literal in any of the clauses of CS,

then delete C from CS. .

Rule DD2. Special subsumption.

I£ CS contains a clause C of the form C = [P(t)] U A and

P (—9 SP and

SP 5. 320),

then delete C from CS.

Rule DD3. Literal deletion (replacement resolution).

I_t_' CS contains C = {-P(t)] U A and

P <—> SP and
SP 6 S ;(t),

then delete the literal -P(t) from C.

1.4 Manipulations Based on ISC.

We say ISC is regular, iff i) for all relations S] n. . . . (\ S“ = T, _we have that T is ‚the-greatest'

common subsort of $1,. . .‚S“ and ii) all relations that follow only from ISC and Z are already
in 2.

Rule ISCl. Introduction of sort relations by intersection constraints.
if we can derive S E T from the relations in ISC,
m add 8 E T to):. '

The following rule can be derived from the contraposition rule (P =>Q) => (fiQ => —-1P).

Rule ISC2. Application of contraposition.
11‘ 81 E SQ and

P<—>SPand-P<—>S_PandQ<—>SQand-Q<—->S_Qand

SnSP=Sl andSnS_Q=S2 ,

men add 82 E S_P to Z.

169

Rule ISC3. Introducing a new sort as the intersection of sorts.
li

Ihm

81,. . .,Sn have a common subsort,
and there is no sort S such that SI n (\ S“ = S is derivable from ISC,
add a new sort SN,
add the relation R E SN for every sort R with R E Si for all i,
add the relations SN- E Si for all i==1,. . .,n '
add the relation SI n n S_“ = SN.

Rule ISC4. Introducing new intersection constraints.
II

then

81,. . .,Sn have a common subsort,
81,. . .,Sn have SN as greatest common subsort,
the signature is regular,
there are no equations in CS,
ISC is regular,

SPE is empty,
add the relation S I n n S“ = SN.

1.5 Equivalence of Sorts

Rule ESI; Deletion of cycles in <SZ‚E>.
I_f

then
there exist sorts S,T such that S E T and T E S ,

'replace everywhere in the signature and CS (also in SPE and ISC) the two Sorts S
and T by one new symbol.

1.6 Manipulations within the Signature.

The'rules M82 and M83 in this paragraph are meta—rules, i.e. they do not specify how they
can be implemented. In general it is sufficient for rule M82 to perform Z-unification on the
term declarations to find the interesting terms (see III.6.7).

As a standard rule we have that redundant term declarations have to be removed: _

Rule MSI. '
Remove redundant term declarations.

170

Rule M'SZ. Adding intersections of range-sorts.
11‘, there is a term s with 52(5) = {S i I i = 1,...‚n}, and

‘ Sz(s) has no unique least sort,

. there is no sort S with S = 052(3), _
then add a new sort SN,

add a new constant 0 of sort SN and
add the relations SN E Si for all i and

add the relation SI n n Sn = SN.

Rule MS3. Adding a term declaration for intersection information.

If there i s a t e rmswi th 82(5) : {S i | i = 1,...,n}, and

' Sz(s) has no unique least sort, and
there'1s a sort S such that S=-S l n . . . nS is derivable from ISC,

men add the term declaration s: S to 2. '

1.7 Reducing ISC and SPE.

Here we give rules that provide a complete procedureto remove the extra clauses representing ‘

SPE and ISC. .

The rule RSPE i s actually subsumed by the next rule. Nevertheless, we state it explicitely

because of its importance.

Rule RSPE. Non complementary predicates.

fi ‘ neither P nor -P occurs in CS and

we have P <—> SP but not -P <-> S -P

11132 remove P from the signature and remove the relation P <—> SP from SPE.

Rule R-SPE&ISC. (complementary predicates, no equations).

I_f for all predicates P.

if P has domain sort SDP and

neither P nor -P occurs in CS and

for every ground term t with SDP e SEG) we have either SP 6 Sz(t) or
S_P & SEG), where P <—> SP and -P H S_P ,

the signature is ground-regular,

ISC is regular,

171

men for all transformed predicates P:

remove P from 2 and remove the relations P <—> SP and -P<——> S_P from SPE,

remove all relations from ISC.

Note that in the next rule we use the E—semantical sort-assignment SEE (cf. II. 9)

Rule R—SPE&ISC-E (complementary predicates with equations).

_I_f CS can be separated into equality-free clauses CS_E and clauses for an equational

theory E ,
for all predicates P:

if P has domain sort SDP and
neither P nor -P occurs in CS and , _

for every ground term t with SDP 6 $2,130) we have either SP 6 82E“) or

S_P e S£,E(t), where P <—-> SP and -P (——> S_P and

the sort-assignment SEE “is ground—regular,
ISC is regular with respect to 52,9

then for all transformed predicates P: _ _
remove P from E and remove the relations P <—-> SP and -P<—> S-P from SPE.

remove all relations from ISC.

1.8 _A Weakening Rule.

Rule WT
_I_i_' CS contains no equations,

Z is regular,
ISC is-regular,
For all transformed predicates P: -

—P is not transformed,

there is no literal of the form P(s) in CS,

there is a transformed predicate Q <—> SQ,

there is a clause C = [-Q(t)} U CR], .

then replace C by the clauses olCR, 62CR,. . . where {61,02, . . . } = “WEG E SQ).

-172 -

1.9 Analysis by Cases.

The following rules work by analysis of cases. The different cases are given in the either and

9; part. For deduction systems this means that both cases have to be refuted separately.

Rule AC1. Either P is universally true or there exists y such that P(y) is false.

E P is a predicate with domain S DP and P is not yet transformed,
then am add the clause Vx:SDP P(x) to the clause set CS.

9; add a new constant c of sort SDP to the signature
and the unit clause -P(c) to the clause set CS.

Rule AC2. For a constant ceither P(c) or —P(c) is valid.
E P is a predicate with domain SDP and c a constant of sort Sc and

Sc E SDP’ but Sc 5E SP and Sc &; S_P and '
P <—>SP and -P <—>S_P

then gm add the clause {P(c)] to CS
9; add the clause {—P(c)} to CS.

' RuleAC3. (For sets A,B we have eitherB <; A orB ; ÄorB n A at 0 and B (\ Ä at Q).

fi _. P is a predicate with domain SDP and ' -_
' S a sort with S E SDP’ but S E SP and S Eli S_P_ and

P <—>SP and —P <—>S_P

then film add the clause Vx:S P(x)

' @ add the clause Vx:S -P(x)

@ “add new constants c+ and c_ of Sort S and
add the clauses P(c+) and P(c_).

Rule AC4. Splitting a clause into two clauses.
E there is a predicate P with domain S DP and

there is a clause C with a variable x of 8011 S)(E SDP and
P <—>SP, -P <—);S_P and
aSP=Sl andnS_P=82

m replace the clause C by the two clauses C1 and C2, where Ci is obtained from C

by replacing x in C by a new variable xi of sort Si°

1'7’1

1 .10 Termination Condit ions.

Rule TCOl
5 we have P HSP, ——P <—->S_P, and

SP and S-P have a common subsort
then the specification is contradictory.

Rule TC02
Lt: the clause set CS is empty and ISC and SPE are empty
then the original clause set is satisfiable.

Rule TCO_3
11? the clause set CS is empty,

the signature is regular and elementary,
ISC is regular, .
for every predicate P with domain SDP such that P and -P is transformed: '

If for all S E SDP: either S E SP or S E S-P

then the original clause set is satisfiable.

Rule TCO4.

& some clause is empty,

then a refutation has been found.

The algorithm SOGEN has succeeded, if at the end the rules RISC and RSPE are able to

remove all relations from SPE and ISC. If some relations in SPE and ISC are retained, then
there are the alternatives to either add the appropriate clauses (cf. 2.1) or else to delete these

clauses and accept the incompleteness of the proof procedure. '

1 .11 Manipulations Caused by Equalities.

Rule EQl. Existence of an intersection sort.

I: CS contains a clause {'s=t} , where-S e Sz(s) and T e Sz(t) and

S and T have no common subsort '_ ' '
then _' add a new sort symbol SN with SN = S and SN = T and

add the relation S n T = SN,

add a new constant CN of sort SN.

174

Rule EQZ. New term declarations.

If CS contains a clause { s -— t] , where T e S,;(s) and S & S,;(t) and

' We have the relation S nT= R ,

then ' add the term declarations s:R and t:R to 2.

Rule EQB. New sort relations.

11: CS contains a clause {x = t} where x is a variable of sort SK and T e Sz(t)

mm add the relation Sx E T to Z.

1 .12 How the Rules Work.

We describe, which rules are tightly connected and Which combination of rules solve some

, subproblems, such as making the signature polymorphic. Furthermore we assign the blocks

of rules their priorities for application. , . ‚

These priorities of the rules _1s essential, since the set of rules without any priority may run in

a loop. Furthermore we have implicitly as a metarule that a rule is only _applicable if it actually

changes anything. '

1) The rules BTi and DDi have highest priority. They should be applied, whenever possible

(but BTl not if the predicate is inhibited for transformation). Every application of a rule

BT2, BT3 or BT4 should be followed by the deletion of the corresponding literal.

2) The rules ISCl , ISC3, ISC4, ESI form a block of rules, whose objective is to complete

the sort structure, such that for all sorts 81,82 either they have no common subsorts or they ‘

have a unique greatest common subsort, i.e. (SZ, E) is a semi-lattice.
However, the semilattice completion can be made as in 11.7. 12 or can be omitted.

3) The rule ISC2 permits to encode more infotniation into the signature. It avoids

the situation where the relations between the sorts SP _depend on a sequence of

rule applications. For example the clause P => Q is equivalent to -Q => -P, but if the

relation SPE SQ is generated, then the c lause '1s deleted, but the relation S_Q ‚=. S -P may

be missing. The rule IS C2 inserts this relation.

4) The rules MSI, MS2, MS3 together with the rules ISC1‚ISC3‚ISC4, ESI can
make the signature polymorphic. The priority of rules should be: M82, M83 , ISCl , ESI,

IS C3, ISC4, MS].
5) The rules RSPE, R— SPE&ISC or R- SPE&ISC- E should fire, if no other rules are

applicable. If all relations SPE and ISC are removed, then the algorithm has succeeded.

6) The rules ACi need some control and heuristics, since it depends on global information or

175

knowledge, which of these applications. may contribute to‘ a proof. Note that every
application of a rule ACi could be followed by a rule BTj.

7) The rules EQi are problematic, since in calculi that store the unifiers and use inheritance of
unifers (like connection graph calculi ([0h86, K075, KM84] or matrix calculi
[And81, Bib81a, Bib81b]) all stored unifiers have to be recomputed after application of
these rules.

8) If no equations are present, then the intersection constraints cannot be ignored. But at the
start of SOGEN we can assume that the greatest common subsort of a set of sorts is also
their intersection. '

9) A control module for SOGEN may inhibit some unary predicates from transforming
them into sorts. For example, the first run of SOGEN may have produced a failure and
now SOGEN starts a transformation of a reduced set of predicates.

2 Sort Generation in Logic Programs.

There are several proposals to extend logic programming languages like PROLOG [CMS],
Ko79a, Ko79b, L184] by sorts [Bü85, GM85b, Sm86].
We give a subSet of the rules of SOGEN as a transformation procedure for logic programs
without equations.

One possibility is to transform the program together with the query. This approach has the
— disadvantage that for every new query the whole program and the new query have to be

transformed again and that the result of such program transformations may depend on the
queries. '

' We propose the following procedure: Transform the program without queries and keep the
relations in SPE, Answering a query consists in transforming this query, making the
deductions and transforming the answers back. An alternative i s to give the new
sort-information to the user and to answer queries without transforming answer back.

2.1 Example.
Let the clause set be : P(a), {-P(x), P(f(x)}
The answer to a query of «the form ?P(y) i s an infinite set of substitutions, namely
y = a,y = f(a), y = f2(a),...
A sort generation yields an empty clause set and the signature:
P <—-> SP, a:SP , f:SP —-> SP.
Now the answer to a query ?P(y) is ‘y has sort SP’. An appropriate answer in terms of the
Original signature is to generate all ground terms of sort SP, that is [a , f(a), f2(a),. . .} I

176

We give a description of a sort generating algorithm for logic programs, the exact formulation

of the rules is similar to paragraph 1. We exhibit the complexity of every step and give hints to

avoid exponentiality in an implementation.

2.2 Definition. The following procedure is used to transform a logic program and queries.

i) Lt: ?P(x) succeeds as query,

mm introduce a new sort SP and the relation SP <—> P._

ii) I_f there is a. fact P(t), where t is not a variable and we have SP <—_-> P,

then add the term declaration ns? . ‘
iii) I_f we have the fact P(x), where the sort of x is Sxand we have SP <—-> P,

men add the relation SK 5 SP. ' . .
iv) I_f there is a clause C with a literal P(x) in its body, where the sort of x_is S" and

we have P <—>SP and SPx is the intersection of SK and SP,
then delete P(x) from C, and

replace x by a variable y of sort SPx'

v) Make 2“. and ISC regular.
vi) Make simplifications like

P(t) —-> TRUE, iff SP e SEQ).
That means: delete literals 1n the body, if they satisfy this condition and if the literal

is the head, then delete the whole clause.
vii) A query is transformed and answered as follows.

If P(t) 18 a literal 1n the query with P <-—> SP, then the answer-substitutions are
exactly the most general weakenings for the problem (t ESP). The other literals are
treated as usual._ El ‘ . '

The procedure succeeds, if for every predicate P that is transformed (i.e. P <—>SP), there are no
more literals starting with P or -P in the clause set. If the weakening rule is used also for

literals in the clause, then the procedure succeeds for a larger class of logic programs.

However, the complexity may be exponential in this case, since there may be an exponential

number of clauses necessary even for polymorphic signatures (cf. III.4).

The procedure described above has the drawback that in the general case it may be possible

that the weakening problems are undecidable (cf. 111.6). This, however, is nothing really new

since Horn clause deduction in itself is undecidable.
_ A remedy for this problem is to try to obtain a polymorphic signature as the result of this

transformation. In order to achieve this the above rules have to be restricted such that only

function declarations are introduced. In this case the weakening problem is NP-complete

177

(Proposition 111.43).
A source of exponentiality is the completion to a semilattice, which should be made if it is

not exponential and should be avoided otherwise.

2.3 Theorem. The transformation of a Horn clause program is possible in polynomial time,

if the procedure satisfies the following preconditions:
i) It transforms the signature into an elementary one.
ii) The lattice-completion is not performed.
iii) It tests regularity instead of ground regularity.
iv) Intersection of sorts is only introduced if-needed, i.e., in rules BT4 and M83.

v) The weakening rule is not used. .
Proof. Lemma 3.4.5 shows that the tests corresponding to ISC can be performed in

polynomial time. The intersection of a sort in BT4 is not critical, since a literal is deleted,
hence rule BT4 can introduce at most as many sorts as literals are in ISC. In the case of

elementary signatures it suffices for Rule M83 to consider terms of the form f(x1,. . .,xn).

The number of such terms is polynomial in the number of sorts and functions. Hence at

most a polynomial number of new sorts has to be introduced. This implies that the whole

‘ procedure can be performed in polynomial time. I

3 The Rules of SOGEN are Conservative.

This paragraph provides a theoretical foundation for the sort generating procedure

described in §1. It can be seen as an extension of II.7.
We try to organize this Chapter in the same way as Chapter 1, such thatthe proofs and the

examples for rules of paragraph 1.n are now in paragraph 3.n.
For the proofs of conservativeness we let 51 be the specification before the transformation

and let .52 be the specification after the transformation. The aim of the proofs is then to show
that 51 has a Ill—model iff 52 has a 22-modcl.

3 .1 ISC- and SPE-clauses.

We show that the clauses in 1.1 are appropriate for encoding equivalence of sorts and

predicates and for encoding intersection information.

178

3.1.1 Lem’ma. Let P be a predicate with domain SDP and let SPE SDP be a sort.

Then the axioms Vx: SP P(x) and Vx: SDP (P(x) => 3y: SP x = y) imply that '1n every
Z—model Qof every clause set CS we have 0P = SP 0

Proof. Obviously, the first axiom implies SPA) <; P „. The second axiom implies the
_ converse: Let d e P9 , then there exists a E-assignfient (p with (px = d. Since mis a

model, the first literal P(x) is true, hence the second assertion (ByzsP x = y) is true under

(p. This means that d is in SP3? I

3.1.2 Lemma. Let SI , S “ ‚T be sorts with Si a T. Then the axiom
Vxlzsl , ...,xn:Sn x1 = x2 A A x1 = x“ => ElzzT x l = z implies that for every model 00 f

this axiom we have S] „n . . n S“ „= Ta)

Proof. We show SI „n . . ‚n Sn a) ; TD:

Let d e SI . a) n . . . n Sn. 1)— Then there exists a E-assigment (p such that (pxi = d for all 1.
Since f.!) i s a model, the first assertion of the axiom i s true, hence also the second

EzzT x = z. This means d i s equal to an element of Ta), hence drei Ta)- I

3.2 The Basic Transformation Steps are Conservative.

3.2.1 Lemma. Rule BT1 is conservative.
Proof .
i) Let 91 be a model of 51. Since Elx: SDP P(x) lS deducable, the set Pax 1s not empty, hence

we can construct a £2—m-odel by assigning the new constant 0 an element from Pan and by

defining SP 02 -:=: Paar The relation P <—-> SP IS then satisfied. Furthermore all Clauses

remain valid. ‘ _ -
ii) To show the converse, let CD2 be a model of 52.Then obviously 02 is also a Ell—model of 51.

I - ‘

3.2.2 Example. The introduction of sorts is not conservative if 3x:SDP P(x) is not

' deducable:
Let the clause set be {—P(x), Q}, [-P(x), -Q) _

This clause set has a model, in which —P(x) is always valid.

The introduction of the son SP transforms this clause set with therules BT4 into Q,-Q‚

which is obviously unsatisfiable. I

The next lemma is an important one, since it gives a direct correspondence between unit

clauses P(t) and term declarations of the form t:SP. In this lemma a lot of previous work

179

culminates, such as work on algebras and on conservative transformations.

3.2.3 Lemma. The rule BT2 is conservative.
Proof .
i) Let 91 be a Ell-model of 51. The transformation H i s well-sorted in the sense of II.7.1,

since only a term-declarations is added to the signature. We use Theorem 11.7.6 to prove
that H is conservative. Therefore we have to show that H(Q)1)' is also a Zz—algebra. This
follows trivially from Definition I.6.1ii).

ii) To show the converse, let Let % be a IKZ-model of 52. We use Theorem II.7.6 ii) to prove
that H is conservative. Therefore we have to show that DI is a Ell-algebra, if H(Q)l) is a

Zé-algebra. ' _
Due to Definition I.6.1ii) the only condition to check is that for the new term declaration
t:SP, and every Zl— assignment (p, we have (pt 5 SP an We have that (p is also a

_ ZZ-assignment and that SP an = SP 432 , that 92 is a 22—model of 52 and that SP
m:

Pan-

Hence P(t) IS true under (p, which implies (pt e Pan—-- SP
91. I

3. 2. 4 Lemma. The rule BT3 isconservative.
Proof .

' i) Let DI be a ill-model of .51. The transformation H i s well-sorted'1n the sense of II. 7. 1,

since only a sort— declaration IS added to the signature. We use Theorem 11.7.6 to prove
that H is conservative. Therefore we have to show that H(£Dl) is also a ZZZ-algebra. Due to
Definition I.6.1i) we have to check that S,"m ; Sam . This is the case, since EDI i s a

model for P(x) and SPAR = Pan

ii) This direction is trivial. I

3. 2 .4 Lemma. The rule BT4 is conservative.
Proof .
i) Let CD] be a El-model of 51. Then it is a Zl-model of the clause C1 = {-P(x), A}. Consider

the clause C2 where the literal -—P(x) 1s deleted and x is replaced by a variable y of sort T.

Let (p be a Elf-assignment. Then (p is also a El—assignment, but (p makes -P(x) false. This
implies that (p makes A valid, and hence also C2. ..

ii) Let .02. be a ZZZ-model of 52. Then it is a Ill—model of the clause C2 '= A. Let (p be a
Ill-assignment. Then either (p makes -P(x) true and hence the whole clause C1 or (p makes
-P(x) false. In the second case (p is also a 22~assignment, hence (p makes C2 valid, Which
in turn implies that also C1 is valid under (p. I

180

3.3 The Deletion Rules are Conservative.

3.3.1 Lemma. Purity reduction i s conservative.-
Proof. Is the same as the usual proof, since neither P <—>SP nor -P <—>S_P holds. I

3.3.2 Lemma. The rule DD2 is conservative.
Proof. The lite'ral P(t) is always valid in models, since t e SP,“ = Pm. I

3. 3. 3 Lemma. The rule DD3 1s conservative.
Proof . The literal -P(t) is always false in models, Since t 6 SP 01 = Pm, hence

the literal can be deleted. I '

3.4 The ISC-Manipulations are Conservative.

First we give some examples, how sorts may be recognized as equivalent or how a subsort
relation may be derived from information'1n ISC. We give also a short explanation of how the
algorithrn 1n [Sh84] works.

' "‘s
3.4.1 Example. Let“ A,B,C,A1,B1,C1‚A2‚B2,C2 e S: and let A n B' = A1, A n c = Bl,
Ba=C1,A1_nB1=A2,AinC1=B2,B1hC1=C2.
The following diagram shows the relatBionships:

l><: ><j°
l><: X!

A short reflection shows that A2,B2 and C2 are equivalent, since they all represent AaC.
We demonstrate how the problem can be solved using Venn—diagrams :

There are 7 constituents of the diagram: A = El +" E2 + E3 + E4, B = EZ + E3 + ES + E6,
C = E3 + E4 + E6 + E7. The above equations give the relations for A1, B1 and C1:
A1 = E2 + E3, B1= E3 + E4, C1= E3 + 156- Finally, we get A2 =B2= C2 = E3;

3.4.2 Example. Let A,B,C,D be sets, such that A n B = C n D holds.
Then B nCQAnB, since AnB = (AnB)n(CnD) .
Again, we demonstrate the solution using Venn—diagrams:

The Venn—diagram contains 15 constituents, which we index by Strings of the form

181-

ABC instead of numbers: for example EA! means all A nB nö n 5.
From A n B = C n D we derive the equation

' EAB + EABc+ EABD + EABCD = Eco + EACD+ EBCD + EABCD'
This requires that all the consituents EAB , EABC, E ABD , ECD’ E ACD’ EBCD are empty.

Hence“ AnB=AaCnD=EABCD
Now B n C = BBC + EABCD which is a superset of A n B = EABCD' I

This method has as an advantage that it is rather intuitive. It demonstrates, that this theory is

decidable and how to compute the relations. However, the number of constituents in a disjoint

union is exponential in the number of different set symbols, hence its applicability is restricted.

We show that our problem is not the full word problem in Boolean algebra and that there is a

polynomial algorithm: ' . '
This translation of the ISC-deductions “into propsitional Hom-c'lauses is more suitable for

our purposes and better than the method of Venn-diagrams. Thus we used this approach for

our implementation. 6 I

First we consider propositional Horn clauses. In [Bö85] it is mentionned on p. 384, that
propositional Horn clauses can be decided in polynomial time.

3.4.3 Lemma. A set of propositional Horn clauses can be decided in at most quadratic time.

Proof. The decision algorithm is as follows:
1) If there are no unit clauses, then the clause set is satisfiable.

2) If an empty clause is obtained, then the clause set is unsatisfiable

3) If P is a (pOsitive) unit, delete it from the body of all other clauses and if i t is

in the head'of some clause, then delete this clause. '
This algorithm is quadratic, since to find a unit is a linear task,_andto delete a ‚variable from

the clause set is also linear, hence the whole procedure is at most quadratic. I ' '

Presumably the decision algorithm can be performed in quasilinear time by using a suitable

datastructure that avoids the waste of time in searching for a unit and searching for a clause

with an occurrence of some unit. a

3.4.4 Prdposition. A relation in ISC is decidable in polynomial time.
Proof. We have relations of the form S] n ”AS“ = S , which can be translated into the

clause 81 A A S“ :> S and n Horn-clauses S => Si. These are 2*n literals. The

I subsort relation from E can be translated into Horn-clauses of the form R =>S for R E S .

A relation to be decided is one of the‘following: i) R g S? or ii) is s1 n nsIn = s ? or

182

iii) 1s 81 n ' . ”ms equivalent to an existing sort?'or iv) does a' new relation R E S hold
after changing ISC.
The time complexity 1s polynomial and we give an upper bound 1n terms of the number of

literals nl of ISC , the number of literals mQ in the query and the number of sorts.
In the case i) n12, In case ii): (nI+nQ)2 in case i i i) : ISEI * (nI+nQ)2 , in case iv):

ISE|2* n12. I

3.4.5 Lemma. Rule ISCl is conservative.
Proof. _

i) If 51 has a El—model 111, then 131 is also a ZZZ-model of 52, since the newly derived

relation holds in 91 . - '
ii) The converse is trivial. I

3.4.6 Lemma. Rule ISC2 is conservative.
Proof . ' _'

i) This direction'preserves models.'
S n SP ; S n SQ implies S n S _Q ; S (\ S_P by taking the complements.

ii) The other direction' lS trivial. I

3.4.7 Lemma. Rule ISC3 is conservative.
Proof . .

i) If $1 , . . . ,Sn have a common subsort, then in a model 931 the denotation of the newly

introduced intersection-sort can be chosen as the intersection of the denotations of
Sl , . . . ,Sn. '

ii) trivial._l

3.4.8 Lemma. Rule ISC4 1s conservative.
Proof .

i) Lot 51 have a Zl-model. Then CS has a ill—model with TE
gl. as carrier (see I 8 7).

(without regard to ISC). This model of ground terms satisfies all possible
ISC-restriction of the kind SI hmm S“ = SN, where SN is the greatest common '
subsort of $1,. . .,Sn. Hence all such relations can be added. '

ii) Trivial. I

183

3.5 Using Equivalence of Sorts is Conservative.

3.5.1 Lemma. Rule ESI is conservative.

Proof. Both directions are trivial, since equivalent sorts have the same denotationl

3.6 Signature Manipulations are Conservative.

3.6.1. Lemma. The removal of redundant term declarations is conservative.

Proof. Trivial (of. 1.4) .

3.6.2 Lemma-Rule M32 is conservative.

Proof. i) Let 91 be a ill-model of 51. Then 31,01 n . . ‚m 31 ,91 # @, since the sorts have s as
common element. Hence we can add a new sort SN as subsort of Si and additionally'as

intersection Sl n nSn. '
ii) trivial. I

3.6.3 Lemma. Rule MS3 is conservative.

Proof. The proof is analogous to the proof of 3.2.3. I

3.7 The Reduction Rules for ISC and SPE are Conservative.

3.7.1 Lemma. Rule RSPE is conservative.

Proof .
. i) trivial

ii) Let 112 be a 22-model of 52. Since P is completely removed, we can define ‘the relation
Pm as SP 01- Furthermore _we define d= gP(d) for all (1 6 SPD 91° Then the new

structure is a model of 51. I

3. 7. 2 Lemma. Rule R- SPE&ISC lS conservative.

Proof. i) trivial, ‘ ‘ ‚ .
ii) Let 92 be a Ez-model of 52-. Then there exists a 22—mode1 of csz. and" hence a

ZZZ-model which has as carrier the set TEgr .Since the signature is ground-regular, all

intersection constraints are satisfied, since ISC IS regular. Furthermore the condition on

the ground terms implies that SP U S_P—— SDP and SP n S_P-- 0. Hence all relations

in SPE can be satisfied. This means we have a ill—model of 51. I

184

3.7.3 Lemma. Rule R—SPE&ISC-E is conservative.

Proof. i) trivial.
ii) Let 92 be a 22-mode1 of 52. Then there exists a EZ-model _of C82, and hence a

22-modcl which has as carrier the set T2‚g r / =23 (see Corollary 1.8.7).

Since the signature is ground—regular with respect to E, all intersection constraints are

satisfied, since ISC is regular with respect to SZ,E' Furthermore the condition on the

ground terms implies that SP U S _P = SDP and SP n S_P= 0. Hence all relations'm
SPE can be satisfied.

_ This means we have a ill-model of 51. I

We give some examples which demonstrate that the removal of relations from ISC and SPE is

not correct, if the preconditions of the rules are not satisfied.

3.7.4 Example. If the signature is not regular, then it is not correct to remove intersection

information. '
Let 2: = {A= C, B = C, o: A, c : B} and let the clause set CS be {R(c); -R(x: C)} and let ISC

be {A n B--- C}.
Then CS is unsatisfiable. However, if A n B: C is removed, then CS becomes

satisfiable.

3.7.5 Example. It is not sufficient to fommlatc the separation-condition in R-SPE&ISC and

R-SPE&ISC-E for Just one predicate: '
. Le tE- {S= SQ,S=I S _Q, SQ:l SP, SQ:| S_zP,cS, d1: SP,d2:S _:SP,d3 _Q} andlet

SPE: = {SP(—>P, S _PH-P , SQ<—> Q, S _-Q<—)-Q} andlettheclause setbc

cs = {{R(c)} {-R(x S.)} {-R<xS-p)} {-R(xs_Q)}1 ‘
This clause set i s unsatisfiable, the signature i s regular and satisfies the

separation-condition for the predicate P. However, if we remove P, SP _(—-> P and

S_P <—-> -P, then this clause set becomes satisfiable.

3.7.6 Example. It is not conservative to remove relations frOm ISC if SPE is not empty:
Let 2:: {s = sp, 3 =“ SQ, s = S_P , s = s_Q sP= ‘sPQ , sQ = sPQ ‚S_P =_ S_PQ,

SQ : S-PQ , SP : SP-Q , S_Q : SP-Q , S_P : S-P—Q S_Q : S-P-Q , C:.S} and

ISC := { SP fl SQ = SPQ , SP fl S 'Q = SP_Q , S-P (\ SQ : S_PQ , S-P (“\ S_Q = S-P 'Q} and

SPE := { SP <—-> P, SQ <-) Q, S_P <—-> -P, S_Q <-_—> —Q} and let the clause set be CS :=

{{R(C”: { 'R(X:Spq)}‚ ['R(XIS-pQ)} {'R(XISP_Q)} (“R(X3S-p.Q)}
This specification is unsatisfiable, since the constant c is either in SPQ, SP-Q'IS-PQ or in
S_P_Q, and hence R(c) contradicts one of the four other unit clauses.

185

If we remove the intersection information, this is no longer true. We have the four cases for
a more exact sort information on c, but we can not conclude from c:SP and c:SQ, that c is

also in SPQ- Hence the new specification is satisfiable. I

3.7.7 Example. This example shows that even if the signature i s regular, the clause set
CS is empty, there is a transformed predicate P such that -P is also transformed and
there is a ground term tgl. of sort SDP that is not of sort SP or S_P, then ISC and SPE may
be contradictory.
This is also an example that the removal of a function symbol g from the signature is not
conservative, even under the very reStricted conditions, that the signature is regular before
and after the removal, that the clause set does not contain the function symbol, and that all
term declarations that contain g are function declarations.
i) Let 2:: [SDP = SP, SDP = S_P, SDP = Sc, g:SP —) SP, g:S-_P —> SP, g:Sc —> S_P, czsc,

d:SP, e:S_P} and let ISC be empty and let SPE := {SP (—> P, S_P <—> -P}
This signature is regular and elementary, as can easily be verified.
The specification is unsatisfiable, since c is either of sort SP or S_P and then g(c) is of

sort SP and S_P.
If we remove the symbol g, then the signature remains regular, but the specification

becomes satisfiable.
This example shows that rule TCO3 is not conservative, if the signature is not
elementary.
Let E:: [SDP = SP, SDP= S _P, g: SP —>SP, g: S _P—> SP, g(c): S _P, o: SDP, d: SP, e: S P}

and let ISC be empty and let SPE. = [SP <—> P, S_PH -P}
This signature is regular, as can easily be verified. _
The specification'1s unsatisfiable, since 0 is either of sort SP or S _P and then g(c)1s of
sort SP and S _.P I .

3.8 The Weakening Rule is Conservative.

3.8 .1 Lemma. Rule WT is conservative.

Proof .

i) Let 51 be El-satisfiable. Then obviously .52 is also satisfiable, since the new clauses are
inStances of C.-

ii) Let 52 be 232--satisfiable. Then we can choose a Zz-model 92 of CS as follows:

If we fi r s t '1gnore the conditions in ISC, then CS U {P(x: SP) I P 1s transformed} has a

ZZZ-model. By Corollary 1.8.7 we can choose the carrier of 132 as the set of ground terms

186

T22,gr Due to our assumption that in CS there are no positive occurrences of the predicate

P, we can choose Pm = saw for all transformed predicates. In particular, SPE is then
satisfied. Furthermore due to regularity of ISC and 2, the relations in ISC are satisfied.

Let O'C be a ground‘instance of C = {-Q(t)} U CR}. If -Q(O’t) is true, then OC is also true.

In the other case -Q(0't) is false, that means .O't is a ground term of sort SQ. Hence 0C is an

instance of oiC for some ci e pwma E SQ), hence 0C is valid.

Together we have proven that % is a ill—model of 51. I

3.9 Analysis by Cases is Conservative.

Since the rules ACl , AC2 and AC3 are equivalent to the addition of a tautology to the clause

set, we have:
' 3.9.1 Lemma. The rules ACl, AC2 and AC3 are conservative. I

3.9.2 Lemma. Rule AC4 is conservative. . __

Proof. The rule is conseWative, since the union of the ground instances of the two new

clauses is the same as the set of ground instances of the original one. I » '

3 .10 The Termination Conditions are Conservative.

It is obvious that the rules TCOl, TC02 and TCO4 are conservative.

3.10.1 Lemma. Rule TCO3 is correct.
Proof. We have to construct a Z—model for the clauses in SPE and ISC:

To this end we first construct a E-algebra as follows:
Let 5mm ,...,snnimm be the minimal sorts of 32. Let D := {'dl‚...,dm} be the carrier of
the algebra to beidefined. . '
We define the denotation of Smin‚ i

denotation as the union iof the denotations for the. minimal sorts that it contains.
For a constant c we choose as CD an arbitrary element in D such that CD is in the denotation

of sort LSz(c). For a function f and elements e1,...,en & D we define f(el‚...,en) as an

element en+1 in D, such that en+1 is in the denotation of the sort of f(x1,. . .,xn), where the

as {d i } for every i. For the other sorts we define the

sort of xi is the minimal sort corresponding to ei.
These definitions provide a E-algebra, since Z is regular andelementary. Obviously all

intersection constraints in ISC are satisfied.

187

For a predicate P with P (_) SP and -P <—>S__P we have SP,D (‘s-PD, since SP and S-P have
no common subsort by assumption. Furthermore SP,D U S-P,D = SDP,D' since SDP,D is
the union of denotations of minimal subsorts of SDP,D’ and by assumption this is
equivalent to the union of all minimal subsorts of SP,D and S-P,D° I

3.11 The Rules Dealing with Equations are Conservative.

3.11.1 Lemma. Rule EQl is conservative.
Proof .

i) If we have a Ell-model ml for 51, then the equation s = t enforces that Sq,1 n Tan at Q),
hence we can Construct a ill—model 172 for 52.

ii) Trivial. I _ '

3.11.2. Lemma. Rule EQ2 i s conservative.
Proof. Analogous to. Lemma 3.2.3

3.11.3. Lemma. Rule EQ2 i s conservative.
Proof. Analogous to Lemma 3.2.4.

3.12 Properties of SOGEN.

3.12.1 Proposition. The combination of the rules ISCl, ISC3 and E81 provides a
terminating algorithm that makes ISC regular. The resulting sort-structure is a semi-lattice.

Proof. Consider the elementary parts of the Venn-diagram. The number of this elementary
parts is finite. Furthermore the three rules ISC], ISC3 and ESI do not increase the number
of those basic parts. The number of possible relations is finite and every rule introduces
new relations. We have assumed that new sorts are only introduced by ISC3, if after its
addition it does not become equivalent to some other sort by ISC alone, hence the process

. terminates. .
We show that ISC is regular and that the sort—structure is a semi-lattice:
Assume that no rule ISCl , ISC3 or ES l is applicable.

Assume further that ISC is not regular. If there is a relation R n S = T , where T is
not the greatest common subsort of R and S , we Could apply rule ISCl . In the case
where a derivable subsort relation does not hold, we again Can apply ISCl. Hence ISC
is regular.

188 '

Suppose now that the sort—structure is not a semi-lattice. This means there exist sorts

R,S with a common subsort, but there is no greatest common subsort T (with

R n S = T). In this case rule ISC3 is applicable. '
The subsort-relation is a partial ordering, since otherwise E81 is applicable. I

3.12.2 Proposition. If we restrict term declarations to elementary ones, then the rules

' MSI, M82, M83 together with ISCl , ISC3 and ESI provide a terminating algorithm to

make the signature regular. _ .

Proof. By rules ISC], ISC3 and E81 we can assume'that the signature i s a semi—lattice and-

that for all sorts R,S with a greatest common subsort T we'have R n S‘ = T.

In order to check that the signature is regular, it is sufficient toconsider all constants and all

terms f(x1,. . .,xn) and ‚check that they have a least sort. Hence in rules M82 and M83 it is

sufficient to consider only terms of this form. Using Venn-diagrams it'is easy to see that
rule M82 can only introduce a finite number of new sorts. The number of new relations

introduced by M82 is hence also finite. I

3.12.3 Proposition. If we restrict term declarations to elementary ones, then the rules BTi

_and DDi provide a terminating algorithm for sort- generation, if the rules MS 1, M82, M83,

ISCl , ISC3 and E81 are used to manipulate the signature. .
Proof. The rules BTi can be applied only a finite number of times, since rule BTl decreases

the number of not transformed predicates, and the rules BT2 , BT3 and BT4 (together with

deletion rules) decrease the number of literals in CS. The ‚other rules to make the signature
regular also. terminate, hence the application of rules terminates. I

3.12.4 Theorem. Assume vve restrict the signatures to elementary ones and that every rule

terminates.
The rules BTl , "BT2, BT3, BT4, DD] , DD2, DD3, M81, M82, M83, ISCl,

ISC3 and E81 provide an al gorithm for transforming a specification in a conservative way
into another specification with a regular signature.

Proof. A combination of the lemmas and propositons above. I

As summary of this Chapter we have the theorem:
3.12.5 Theorem. All rules of SOGEN are conservative. I
In the case of arbitrary signatures, the algorithm does not terminate in general. For example

the procedure for making a signature regular may not tenninate:

189

3.12.6 Example. The process of making an arbitrary signature regular may not terminate:
We modify the signature in III.5.1:
Let)3 := {A = B =! D, A = C = D, b:B, f(b):B, f(f(xB)): B , f(yB):C}.

We assume that B n C = D. *

Then the signature is not regular, since f(b) is of sort C and sort B.

Due to Theorem III.5.1, the set of most general instances of f(yB) that are of sort B is the

infinite set {etw i = 1,2,. ..}
Rule MS3 then says: add f(b):C to Z... This term declaration does not contribute to the sort

of the other terms fi(b). It is easy to see, that infinitely many term declarations are to be

added, namly fi(b):C for all i.

3.12.7 Example. If the requirement is given, that the intersection constraints should be

completed during transformation, such that every sort S i s the intersection of all of its

supersorts, and we use only binary relations of the form R n S = T, then SOGEN may

introduce an exponential number of sorts:
Consider the clause set CS consisting of the units Pi(c) , i = 1 , . . . ,n for the same constant c .

Then SOGEN introduces n sort Spi . The intersection Sp1 n . . ‚n Spn is nonempty, hence

the rules of SOGEN would then generate the whole lattice of all possible intersections of

sorts Spi. That are 2" -1 different sorts. _.

190

4. Examples

In this section some. examples are given, which demonstrate the power of SOGEN:

4.1 Schubert’s Steamroller [Wa85]

This example was presented in 1978 by Lenhart Schubert as a challenge to Automated

Deduction Systems. There are many solutions to this problem by now (see [St86] for a

comparison), the best solutions are obtained with an order-sorted formulation [Wa85, C085].

The problem of Schubert reads as follows: '

Wolves, foxes, birds, caterpillars, and snails are animals. Grains are plants. There exist

wolves, foxes, birds, caterpillars, snails, and grains.

Every animal eats all plants or any smaller animal that eats some plants.

Birds are smaller than fOxes which in turn are smaller than wolVes. wolves do not eat foxes or
grains; Birds eat caterpillars, but no snails. Caterpillars and snails eat some plants._

The theorem to prove is:

There is a grain eating animal that is eaten by another animal.

Here is an axiomatization in first order predicate logie (without sorts):

WOLF (x) = ANIMAL (x);
FOX (x) = ANIMAL (x) ;

‘ BIRD (x) - => ANIMAL (x);
CATERPILLAR (x) => ANIMAL (x);
SNAIL (x) => ANIMAL (x);
GRAIN (x) ' => PLANT (x);
WOLF (LUPO) A FOX (FOXY) A BIRD (TWEEDY) A CATERPILLAR (MAGGIE)

A SNAIL (SLIMEY) A GRAIN (STALKY) ; -

VW ANIMAL(w) =
((Vx PLANT (x) = EATS (w x))
v ((Vy ANIMAL(y) A SMALLER(y w) A (Elz: PLANT (z) A EATS (y z)))

= EATS(w y))

CATERPILLAR (x) A BIRD (y) = SMALLER (x y);

SNAIL (x) A BIRD (y) = SMALLER (x y);

191

BIRD (x) A FOX (y) => SMALLER (x y);

FOX (x) A WOLF (y) ‘ => SMALLER (x y) ;
WOLF (x) A FOX (y) => —-1 EATS(x y);

WOLF (x) A GRAIN (y) => —. EATS (x y);

BIRD (x) A CATERPILLAR (y) => EATS (x y);

BIRD (x) A SNAIL (y) => —-1 EATS(x y);

CATERPILLAR (x) => (3y: PLANT (y) A EATS (x y));

SNAIL (x) => (Ely: PLANT (y) A EATS (x y));

-—-1 EATS (x x);
ANIMAL (x) c: _. PLANT (x) ;

Theorem:

3x,y: ANIMAL (x) A ANIMAL (y) A EATS (xy) A (Vz GRAIN (z) => EATS (y z))

Normalization and skolemization yields the clauses:

Axl
Ax2
Ax3
Ax4
AxS
Ax6
Ax7
Ax8
Ax9
AxlO
Axl 1
Ax12

Ax13

Axl4

AxlS
AX16
Ax17

Ax18
Ax19

-WOLF (x), ANIMAL (x) ;
-FOX (x), ANIMAL (x) ; '
-BIRD (x); ANIMAL (x) ;

--CATERPILLAR (x), ANIMAL (x) ;
—SNAIL (x), ANIMAL (x) ;
-GRAIN (x); PLANT (x) ;
WOLF(LUPO) ;
FOX(FOXY) ;
BIRD (TWEEDY);
CATERPILLAR (MAGGIE) ;
SNAIL (SLIMEY) ;
GRAIN (STALKY) ; . -
-ANIMAL(w), -PLANT(x), EATS(w x), -ANIMAL(y), -SMALLER(y w),

—PLÄNT (z), -EATS(y z), EATS(w y) ;
CATERPILLAR (x), -BIRD (y), SMALLER(x y) ;
-SNAIL(x), -BIRD(y), SMALLER (x y) ;
-BIRD (x), -FOX(y), SMALLER(x y) ;
-FOX(x)‚ -WOLF(y), SMALLER(x y) ;

-WOLF(x), -FOX(y), -EATS(x y) ;
-WOLF(_x), -GRAIN(y), -EATS(x y) ;

192 .

' Ax20
Ax21
Ax22 ‘
Ax23
Ax24
Ax25
Ax26
Ax27 .
Ax28

Thl
'I'h2

-BIRD(x), -CATERPILLAR(y), EATS(x y) ;
—BIRD(x), -SNAIL(y), -EATS(x y) ;
-CATERPILLAR(x), PLANT(f1(x)) ;
I-CATERPILLAROL), EATS(x f1(x));
-SNAIL(x), PLANT(f2(x)) ;
-SNAIL(x)‚ EATS(x f2(x)) ;
ANIMAL(x), PLANT(x) ;
-ANIMAL(x), -PLANT(x) ;
-EATS (x x) ;

-ANIMAL(x), -ANIM'AL(y)‚ -EATS(x y), GRAIN(f3(y x)) ;
'-ANIMAL(x), -ANIMAL(y), -EATS(x y), -EATS (y f3(y_ x)) ;

The automated dedcution system MKRP [KM84] found a contradiction after 55 resolution

steps. This‘ proof uses only unit-resolution steps and was actually found by the
Terminator-module [A083].

This clause set was automatically transformed by S'OGEN mto its sorted version. The resulting

signature and clauses are.

Sorts: TOP; S+ANIMAL, S+PLANT

S+ANIMAL .:.! S+WOLF, S+FOX, S+BIRD, S+CATERPILLAR, S+SNAIL

S+PLANT ;. S+GRAIN
Constants: Lupo: S+WOLF; Foxy: S+FOX; Tweedy: S+BIRD;

‘ Maggie: S+CATERPILLAR; Slimey: S+SNAIL; Stalky: S+GRAIN.
Functions: f1: TOP _) TOP '

S+CATERPILLAR ——> S+PLANT

.f2: TOP ' —> TOP
S+SNAIL —-> S+PLANT

' f3: TOP —-> TOP
S+ANIMAL x S+ANIMAL _; S+GRAIN.

ClauSes: '
1C1 (Ax28) x:TOP -EATS(x x)
IC2 (Ax23) x:S+CATERPILLAR +EATS(x f1(x))
1C3 (Ax25) x:S+SNAIL +EATS(x f2(x))

IC4 (Ax14 x:S+CATERPHLAR, y:S+BIRD +SMALLER(x y)
1C5 (AxlS) x:S+SNAIL, y:S+BIRD +SMALLER(x y)

IC6 (Ax16) x:S+BIRD,y:S+FOX +SMALLER(x y)

193

IC7 (Ax17) x:S+FOX, S+WOLF +SMALLER(x y)

IC8 (Ax18) x:S+WOLF, x:S+FOX -EATS(x y)

IC9 (Ax19) x:S+WOLF, x:S+GRAIN -EATS(x y)

IClO (Ax20) x:S+BIRD, x:S+CATERPILLAR +EATS(x y)

IC11 (Ax21) x:S+BIRD, x:S+SNAIL -EATS(x y)

IC12 (Ax13) x,y:S+ANIMAL z,u:S+PLANT , +EATS(x u), -SMALLER(y x),

—EATS (y u),- +EATS(x y)

IC13 (Th2) x,y:S+ANIMAL -EATS(y x) , -EATS(x f3(x y))

The MKRP Theorem Prover found a (unit—) refutation for this clause set after 11 steps

(including 10 resolutions and one faCton'zation). The used CPU-time for the transformation

and the search for the proof in the sorted clause set was remarkablyshorter than the search for

the proof in the unsorted version.

We note some difficulties In getting this result with SOGEN.

1) The theorem clause Th1 was deleted by the literal reduction rule mentioned 1n [Sch85c]

3) The rule ISC2 rs needed to identify the sorts S—PLANT,S+AN1MAL

and S- ANIMAL, S+PLANT. ' _

4) The transformation rs complete, since the preconditions of rule R—SPE&ISC are

satisfied.

4.2 The Lion & Unicorn Examples

These examples are taken from "What is the Name of This Boo " [SM78], which appears to

be a goldmine for theorem proving cmples. During a course on automated theorem proving

in the semester ’85, the students had to translate these puzzles into first order predicate logic

and to solve them with our theorem prover (Markgraf Karl Refutation Procedure) [KM84].

Two of these problems (Problem 47 + 48) read as follows:

"When Alice entered the forest of furgetfulness, she did not forget everything, only certain

things. She often forgot her name, and the most likely to forget was the day of the week.

Now, the lion and the unicom were frequent visitors to this forest. These _two‘are Strange

creatures. The lion lies on Mondays, Tuesdays and Wednesdays and tells the truth on the, other

days of the week. The unicom, on the other hand lies on Thursdays, Fridays and Saturdays,

but tells the truth on the other days of the week."

194

Problem 42: One day Alice met the lion and the unicorn resting under a tree. They made the

following Statements: -

Lion: Yesterday was one of my lying days.

Unicom: Yesterday was one of my lying days. .

From these statements, Alice who was a bright girl, was able to deduce the day of the week.

What was it?

Problem 48: On another occasion Alice met the Lion alone. He made the following two
statements: _

1) I lied yesterday
2) I will lie again tomorrow.

What day of the week was it?

We use the predicates MO(x), TU(x), , SO(x) for saying that x is a Monday, Tuesday etc.

Furthermore we need the binary predicate MEMB, indicating set membership and a 3—ary
predicate LA. LA(x y z) is true if x says at day y that he lies at day z; LDAYS (x) denotes the

' set of lyin g days of x. The remaining symbols are self explaining. One-character symbols like
u,x,y‚z are regarded as universally quantified variables.

Axiomatization of the days of the week:

MO(x) c: -1(TU(x) v WE(x) v TH(x) v FR(x) v SA(x) v SU(x))

TU(x) @ —1(WE(x) v TH(x) v FR(x) v SA(x) v SU(x) v MO(x))

WE(x) _ © —:(TH(x) v FR(x) v SA(x) v SU(x) v MO(x) v TU(x))

TH(x) => -:(FR(x) v SA(x) v SU(x) v MO(x) v TU(x) v WE(x-))

FR(x) <= —.(SA(x) .v SU(x) v MO(x) v TU(x) v WE(x) v TH(x))

SA(x) ~ ‚(=> “__—‚(SU(x) v MO(x) v TU(x) v WE(x) v TH(x) v FR(x))
SU(x) . -¢=> . —:(M0(x) v TU(x) v WE(x) v TH(x) v FR(x) v SA(x))

Axiomatization of the function yesterday:
MO(yesterday(x)) <= TU(x)

TU(yesterday(x)) «===> WE(x)

WE(yesterday(x)) => TH(x)
TH(yesterday(x)) => FR(x)

FR(yesterday(x)) ¢=> SA(x)

SA(yesterday(x)) => SU(x)

' SU(yesterday(x)) «=> MO(x)

195

Axiomatization of the function two-after:

MO(two-after(x)) @ FR(x)
TU(two-after(x)) @ SACK)

WE(two—after(x)) © SUCK)

TH(two-after(x)) @ MO(x)
FR(two-after(x)) '<='-> TU(x)
SA(two—after(x)) => WE(X)
SU(two-after(x)) © THO‘)

Axiomatization of the function LDAYS:
MEMB(x LDAYS(lion)) <= MO(x) v TU(x) v WE(x)

MEMB(x LDAYS(unicom)) => TH(x) v FR(x) v SA(x)

Axiomatization of the predicate LA: .
fiMEMB(x LDAYS(u)) A LA(u x y) = MEMB(y LDAYS(u))
-1MEMB(x LDAYS(u)) A —.LA(u x y) => —1MEMB(y LDAYS(u))

MEMB(x LDAYS(u)) A LA(u x y) ä—wMEMB(y LDAYS(u))

MEMB(x. LDAYS(u)) A —1LA(u x y) . => MEMB(y LDAYS(u))

Theorem of Problem 47:

_ 3x LA(lion x yesterday(x)) A LA(unicorn x yesterday(x))

Theorem of Problem 48:
3x LA(lion x yesterday(x)) A LA(lion x two-after(x))

The MKRP automated deduction system found a proof for the unsorted version of problem 47

after 183 resolution steps, among them 81 unnecessary steps, hence the final 'proof was 102
steps long. This proof contains plenty trivial steps corresponding to common sense reasoning

(like: if today is Monday, it is not Tuesday etc.). _ . '
Later the sort structure and the signature of the problem 47 was generated automatically by

SOGEN. ‘ ‘ ' .
. The sort structure and the signature'contain all the relevant informationabout the relationship

of unary predicates (like our days) and the domain—rangesort relation of functions. The sort »

structure of the subsorts of DAYS in our example is equivalent to the lattice of subsets of [Mo,

Tu, We, Th, Fr, Sa, Su} without the empty set, ordered by the subset order. Hence there are

127 (=27-1) sorts. The functions "yesterday" and "two-after" are polymorphic functions

with 127 domain-sort relations. For example: yesterday ({MO, WEI) = [SU, TU}.

um

The unification algorithm exploits this information and produces only well-sorted unifiers.
For example the unifier of ' x:SO+TU and yesterday(y:M0+TU) i s
{x (— yesterday(y1: MO) ; y (— y lO} .

The MKRP theorem—proving system [KM84] has proved the theorem of both problems in
the sorted version immediately without any unnecessary steps. The length of the proof of
problem 47 is 6, whereas the length of the proof of problem 48 is 4. As the protocol shows,
the final substitution into the theorem clause (Problem 48) was {x'<— sO} . Thus the ATP
has found the answer, ‘monday’, in a very straightforward and humanlikc way. A proof
protocol for problem 47 Can be found in [Sch85]. We give a proof protocol for Problem 48:

C1 A11 s0 MEMB (x LDAYS(lion))
C2 All sU MEMB (x LDAYS(lion))
C3 All x:WE MEMB (x LDAYS(lion))

C4 All x,y:DAYS zzAnimal MEMB(y LDAYS(z)) MEMB (x LDAYS(z)) —LA(z y x).
C5 All x,y:DAYS zzAnimal MEMB(y LDAYS(z)) -MEMB(x LDAYS(z)) LA(z y x)
C6. All x,y:Days zzAnimal -MEMB(y LDAYS(z)) MEMB(x LDAYS(z)) LA(z.y X)
C7 All x,y:Days zzAnimal. ~MEMB(y LDAYS(z)) -MEMB(x LDAYS(z)) —LA(z y x)
C8 All sH+FR+SA+SU _ -MEMB(x LDAYS(lion))
Th1 All x:Days -- -LA(lion x yesterday(x)) -LA(lion x two-after(x))

Proof:

C1,1 & C6,1 -—) R1: All s0 y:TH+FR+SA+SU MEMB(y LDAYS(lion)) LA(lion x y)
R1,2 & C8, l —-) R2: All x:MO y:TH+FR+SA+SU LA(lion x y) . '

R2,1 & Th,2 -—> R3: All s0 —LA(lion x yesterday(x))
R3,1 & R2,1 —> R6: Cl

5. Extension of SOGEN to Well-Formed Formulae.

In this paragraph some special rules for introducing sorts in wff’s are given. The logical basis
for this paragraph is paragraph 11.12. The mixed application of sort-generation, simplification,
normalization and skolemization has the advantage, that the generated clause set is simpler and that
more unary predicates can be transformed into sorts. We introduce the rules in an informal way.
We give no rules for simplification, normalization or skolemization. All proofs that these rules are

sound and complete, are omitted, since they are either straightforward or similar to proofs in

197

Paragraph 3.

Remark. We assume, that the wff W i s the input to a theorem prover, which tests W for

satisfiability or unsatisfiability. If W = W] A A Wn , and some Wi is a clause, then the rules
of SOGEN can be applied to Wi.

5.1 Defintion. Transformation rules for Wff’s:

We use the set ISC and SPE with the same meaning as in SOGEN.

P<—> SpandSPn Sx=SO

replace (ssx aP(x) v A) by (Vx:SO FALSE v A)
pespandspmsfso'
replace (Elxzsx P(x) A A) by (3x:SO TRUE A A)
P <—> sP and sP e s,;(t) '
replace P(t) by TRUE.
P (—> SP and SP 6 SEG)
replace —1P(t) by FALSE
P<—) SP and SOP. SP

replace (Vx:SO —1P(X)A A) by FALSE.
P(—> Spand SO; SP

replace (Elxzso P(x) v A) by TRUE.
vii) replace (Vx:S A A B) by'(Vx:S A) A (ss B)
viii) replace (EIx:S A v B) by (Elias A) v (ss B)

V)

vi).

I—
I < V

E
IE

F
IR

F
H

F
H

E
H

F
H

===
=!

:3

5.2-Example. " Andrew ’s Little Challenge" [EW83].
The formula W is : - -

{ (Vx l (XY—l)) @ (3x2 Q(x2))} <=? {3x3 (VM Q(x3) @ Q(X4)) }
1) We use Rule ACl for Q, that means:

either —Q <—-> S_Q and S_Q = TOP or Q <—>SQ
Qa_se__. -Q <—> S_Q and S_Q = TOP

Then W = {FALSE @ FALSE } <=> { 3x3 (Vx4 FALSE @ FALSE)} by the rules

of 5.1. '
- This formula evaluates to TRUE by simplification rules.

gasp}. Q HSQ: . .
Then W = [(Vxl Q(x1)) (=> TRUE } ¢=> [3x3 (Vx4 Q(x3) <= Q(x4))} which

simplifies to (wl Q(x1)) © [3x3 (Vx4 Q(x3) @ Q(’.‘4))}

198

gas; 2 .1 SQ— = TOP.

Then W= TRUE => {3x3 (Vx4 TRUE => TRUE) } , which evaluates to

TRUE.

Case 2,2 -Q HS_Q
Then we can make the following transformations:

FALSE (:> {3x3 (Vx4 Q(x3) :» Q(x4))}

‘“{3X3 (VX4 Q(x3) <=? Q(X4))}

‘1{3X3 (VX4 ('“Q(X3) V Q(X4)) A (Q(X3) V “(20(4))”

"'{3X3 (VX4 (—'Q(x3) V (20(4)) A (Vx5 Q(X3) V '1Q(X5)))}

“ I {3X3 (Vx4:S -Q —'Q(X3)) A (VX5- SQ Q(X3))}

—1{3x3 '“Q(x3)) A Q(X3)}
FALSE.

i‘
ii

ll
l

5.3 Example. We demonstrate, how a formula that occurs in the first order formulation of
‘ "Schuberts Steamroller" [Wa85, St86] is normalized and skolemized using different methods:

We have the three axioms G(GO); A(A0) and Vx,y -1A(x) v —.E(x,y) v (32 G(z) A —.E(y‚z))
i) Sort generation after normalization. .

We obtain the following clauses after normalization:
(mo);

A(AO);

o' -A(X) v —E(x.y) V G(f(x.y));

Vw -A(X) v ——E(x‚y) v ——E(y‚ f(x‚y));

Sort generation yields:

S“; A, A0 : A, SAE TOP, SG; TOP.
The clauses are: :

C(60);
Vx: S A , : y TOP -E(x,y) v G(f(x,y));

Vx.S A , y:TOP -E(x,y) v -E(y, f(x‚y)) CI

ii) Sort generation during normalization. We get:
SG <—> G, SA HA, A0: SA ; GO: SG ; SAE TOP; 565 TOP; and the axiom

\7'x:S A , sOP -E(x,y) v (32:86 -E(y, z))

Skolemization then gives a function f: S A xTOP —-> SG and the clause
s s A , sOP —E(x,y) v -E(y, f(x, y)) D

The difference between the two methods is that in i) the clause s sA ,sOP —E(x,y) v
G(f(x,y)) contains the literal -E(x,y), whereas in ii) this literal is avoided.

199

6. Conclusion of part VI

The main results of this part are:
i) An algorithm SOGEN' IS described, which transforms unsorted clause sets (respectively

wffs) into a sorted version. Furthermore a p roof '1s given, that this algorithm preserves
(un)satisfiability.

ii) Conditions are given for the completeness of the transformation.
iii) A polynomial algorithm for sets of Horn-clauses is described. ’

It i s not possible to give a sufficient and necessary condition for a clause set to be
transfom1able into a sorted version. The reason is,that some deductions may be necessary for
such a transformation. ' .
The algorithm SOGEN was implemented at Kaiserslautern as a preprocessor for the MKRP

. Automated Theorem Prover [KM84]. It has shown remarkable improvements searching for a
_ proof in several test runs. '

Since this algorithm'is in some sense deterministic (no search) the cpu-time consumed by
SOGEN is negligible in most examples, but serious problems arise in cases, where the number
of sorts is very large. The sort structure constructed in example 4.2 is isomorphic to the lattice
of subsets of a set with 7 elements (i.e. 127 sorts) (see Example 3.12.7). I believe that a
modified implementation of sorts (computing sorts and their relations if needed) could handle
far bl gger sort structures of this type. V ' '

In the case that SOGEN fails, the cpu--time consumed 1s not totally wasted, since the validity
of the toplevel reductions (such as tautolbgy deletion and replacement resolution) do not
depend on the success of SOGEN. . '

200

References .

Ack54 '

Ai86

'An70

AB70

And8 1

A083

Ba76

Ba86

Bib81a
Bib81b .

BC83

Bl83

B187

Bra75

BB86

Bi35

Bö85

Ackermann, W. , Solvable Cases of the Decision Problem, North-Holland,

Amsterdam, (1954)
Ai't-Kaci, H., Nasr, R., Logic and Inheritance, Proc. 13th POPL, pp.219-228,

(1985) * '
Anderson, R., Completeness results for E-resolution. Proc. Spring Joint

' Conference, pp. 653- 656, 1970
Anderson, R., Bledsoe, W.W., A linear format for resolution with merging

and a new technique for establishing completeness, JACM 17, pp. 525—534,

(1970)
Andrews, P., Theorem Proving via General Matings, JACM 28, 2 ,

pp. 193-214, (1981)
Antoniou, G., Ohlbach, H. J.,
Karlsruhe, pp. 916—919, (1983) _
Baxter, L.‚D., The Complexitiy of Unification, Ph. D. thesis, University of

Terminator, Proc. of the 8 th IJCAI,

_ Waterloo, (1976)
Baader, F., The Theory of Idempotent Semigroups is of Unification Type

Zero, JAR 2, 3, pp. 283- 286, (1986)
Bibel, W., Automated Theorem Proving, Vieweg Verlag, Wiesbaden, (1981)

Bibel, w., Matings in Matrices, GWAI 81, Informatik Fachberichte 47,
Springer Verlag, pp 171-187, (1981)

M. Bidoit, J. Corbin: ‘A Rehabilitation of Robinson’s Unification Algorithm‘,
Inform. Processing 83, ed. R.E.A. Pavon, North Holland 1983, pp. 909-914
Bläsius, K. H , Equality Reasoning in Clause Graphs. Proc. IJCAI-83,
pp. 936- 939, (1983) '
Bläsius, K. H., Equality Reasoning Based on Graphs. Tech Report SR-87- 01,

' (1987)
Brand, D., Proving theorems with the modification method, SIAM J. of

Computing, 4 , pp. 412-430, (1975)
Bemot, G., Bidoit, M., Choppy, C., Abstract Data Types with Exception
Handling: An initial approach based. on a distinction between exceptions and

errors, Technical report N° 251, Universite de Paris-Sud, Centre d‘Orsay,

France
Birkhoff, G , On the Structure of Abstract Algebras, Proceedings of the
Cambridge Philosophical Society 31, pp. 433-454, (1935)
Börger, E., ‘Berechenbarkeit, Komplexität, Logik’, Friedr. Vieweg & Sohn,

(1985)

201

BR87

B881

BS 85

B886

Bu87

BHS87

Bü84

Bü85

Bi'186

Büt86a

Büt86b

CD85

CT82
CL73 _

C083a

. C083b

Co85

C086

Burmeister, P., Reichel, H . , A Model Theoretic Approach to Partial Algebras,

Mathematical research, Band 32, Akademie-Verlag, Berlin, (to appear)

Burris, S . , Sankappanavar, H.P., ‘A course in universal algebra’,

Springer-Verlag, (1981)
Book, R., Siekmann, J.H., On the Unification Hierarchy, Proc. of GWAI ’85,

Springer—Verlag, pp. 111-117, (1985)
Bahlke, R., Snelting, G., The PSG System: From formal language definitions

to interactive programming environment. ACM TOPLAS 8 (4), pp. 547-576,

(1986)
Buchberger, B., History and Basic Features of the Critical-Pair/Completion

Procedure.‚ JSC 3,1, pp. 3 -38 , (1987)

Bürckert, H.-J., Herold A., Schmidt-Schauß, M., on Equational Theories,
Unification and DeCidability, Proc. RTA, LNCS“ 256, pp. 204—215
also (to appear in J SC, special issue on unification)
Bürckert, ‘ H. -J., ‘Unification Algorithms’‚ PIPE-Working Paper, Universität
Kaiserslautern, 1984 I ' .
Bürckert, H. -J.‚ ‘Extending the WARREN Abstract Machine to Many-S-orted

Prolog’ , Tech. report SEKI-85-O7, Universität Kaiserslautern, (1985)

Bürckert , H . - J . , Some relat ionships between Unification, Restricted

Unification and Matching, in Proc. of 8th CADE, Springer, LNCS 230,
pp. 514-524, (1986)
also: SEKI-Report, SR-86-05, Universität Kaiserslautern, 1986

- Büttner, W., Unification in the Datastructure Multiset, JAR, vol.2, pp. 75-88,

(1986)
Büttner, W. Unification m the Datastructure Set, Proc 8th CADE, Springer,

LNCS 230, pp. 470- 488 ~
Cunningham, R. J., Dick, A. J. J, Rewrite Systems on a Lattice of Types. Acta

Informatica 22, pp. 149- 169, (1985)

Clark K. L., Tämlund S. -.A‚ Logic Programming, Academic Press, (1982)

Chang, C., Lee, R. C., Symbolic Logic and Mechanical Theorem Proving,

Academic Press, (1973)

Cohn, A.G., Improving the Expressiveness of Many-Sorted Logic, AAAI—83,

Washington, pp 84-87, (1983).
Cohn, A.,G., ‘Mechanising a Particularly Expressive Many Sorted Logic’,

PhD Thesis, University of Essex, (1983)
Cohn, A. G . On the solution of Schubert‘s steamroller in many sorted logic,

Proc. of 9th UCAI, Los Angeles, California, pp. 1169- 1174, (1985)

Cohn, A. ‚G Many--sorted Logic- '— Unsorted Logic + Control?‚ in M. Bramer

(ed.) Expert System 86, Cambridge University Press, pp. 184—194, (1986)

202

C087

CM81

De87
DM79

Di79 _

Di81

Di85 .

' DST80

EF78

EM85

EW83

Fa79 .

F884

Fo85

FGJM85

FH83

Ga86
GS87

GRS 87

. Cohn, A. G , A More Expressive Formulation of Many--Sortcd Logic.
JAR3„2 pp. 113- 200, (1987)
Clocksin, W.F., Mellish, C.S.,
Programming in Prolog, Springer Verlag, Berlin (1981)
Dershowitz, N., Termination of Rewriting, J SC 3, 1, pp. 69—1 15
Dershowitz, N., Manna Z., Proving Termination with Multisct Orderings,
CACM 22, pp. 465—476, (1979) '
Also in Proc of ICALP 79, pp. 188-202, (1979)
Digricoli, V.J., Resolution by Unification and Equality. Proc. 4th CADE,
Texas, pp. 43-52, (1979) „ _ '
Digricoli, _V.J. The Efficacy of RUE Resolution, Experimental Results and
Heuristic Theory., Proc. IJCAI-81, Vancouver, pp. 539-547,(1981)
Digricoli, V.] ., The Management of Heuristic Search in Boolean Experiments
with RUE Resolution” Proc IJCAI—85, Los Angeles, pp. 1154-1161(l985)
Downey, P . J . , Se th i , R . , Tarjan, R .E . , Variations on the common

subexpression problem, JACM 27,4, pp. 758-771, (1980)
»Ebbinghaus, H.-D., Flum, J., Thomas, W.,
Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft.
Darmstadt, (1978)
Ehrig, H., Mahr, B., Fundamentals of algebraic specification 1, EATCS 6,
Springer-Verlag, (1985) _
Eisinger N., Weigele M., A Technical Note on Splitting and Clausel Form
Algorithms. Proc. GWAI-83, Springer Fachberichte, pp. 225-232, (1983)
Fay, M., ‘First Order Unification in an Equational Theory’, Proc. 4th CADE,

' Texas, pp 161— 167, (1979)
Fages, F., Associative—Commutative Unification, Proc 7th CADE, LNCS 170,
pp. 194 208, (1984)
Fortenbacher, A., An Algebraic Aproach to Unification under "Associativity and
Commutativity, Proc. RTA, LNCS 202, pp. 381- 397, (1979)
Futatsugi, K. Goguen, J. A., Jouannaud, J. —P. and Meseguer, J , Principles
of OBJ2, Proc. 1985 POPL , pp. 52—66, ACM, (1985)
Fages F., Huet G., Complete sets of unifiers and matchers in equational
theories. Proc. CAAP—83, LNCS 159, (1983) .
Also in Theoretical Computer Science 43, pp. 189-200, (1986)
Gallier, J. H., Logic for Computer Science, Harper & Row, (1986)
Gallier, J.H., Snyder, W., A general complete E—unification procedure,
Proc. of RTA , LNCS 256, pp. 216-227, (1987)
Gallier, J .H . , Raatz, S . , Snyder, W. , Theorem Proving Us ing Rigid

E-unification: Equational Matings, CREAS workshop, (1987), (to appear)

203

Gi58

Go83

G086

GDL84

Gg78

GIM85

GM8 1

GM84

GM85a

GM85b

Gr79
Hay7 1

Hai57

Her30

Her7 1

He83

He86 '

Gilmore, P. C. , An Addition to the Logic of Many-Sorted Theories,

Compositio Math. 13, pp. 277-281, (1958)

Gogolla, M., Algebraic Specification with Partially Ordered Sorts and

Declarations. Techn. Report, Institut für Informatik, Dortmund (1983)

Gogolla, M., Über partiell geordnete Sortenmengen und deren Anwendung zur

Fehlerbehandlung in abstrakten Datentypen, Dissertation, Informatik,

Universität Braunschweig, West Germany, (1986) '
Gogolla, M., Drosten K. ,Lipeck U., Ehrich H. -D., Algebraic and operational
semantics of specifications allowing exceptions and errors, Theoretical

Computer Science 34, pp. 289— 313, (1984)

Goguen, J ‚A., Order-sorted algebra, Technical report, UCLA computer science
department, semantics and theorx of computation report N‘—’ 14, (1978)
Goguen, J.A. Jouannaud, J.-P., Meseguer, J . Operational Semantics of

Order—sorted algebra, Proc. 12 ICALP, LNCS 194, pp. 221-231 Springer
Verlag, (1985)
Goguen, J . A. Meseguer, J , Completeness of Many-sorted Equational Logic,

Sigplan Notices 16, 7 , pp. 24- 32 (1981)

latest version in Houston Journal of Mathematics 11,3 pp. 307—334 (1985).

Goguen, J . A. Meseguer, J .

Equalities, Types, Modules and Generics for Logic Programming, Journal of

Logic Programmingl, pp. 179-210 (1984). -
Goguen, J. A. Meseguer, J.

Order-Sorted Algebra I. Partial and Overloaded Operators, Error and

Inheritance., SRI Report (1985).
Goguen, J. A. Meseguer, J. EQLOG: equality, types, and generic moduls for
logic programming, to appear in Functional and Logic Programming, ed.

DeGroot and Lindstrom, Prentice-Hall, (1985)

Grätzer, G. Universal Algebra, Springer—Verlag, (1979)

Hayes, P. A Logic of A'ctions.’, Machine Intelligence 6, Metamathematics

Unit, University of Edinburgh. , pp. 495-520, (1971)
Hailperin, T., A theory of restricted quantification, J SL 22, pp. _19-35, (1957)

Herbrand, J . , Recherches sur la théory de la démonstration, Travaux de la

Soc. des Sciences et des Lettre de Varsovie, Nr. 33, 128, (1930)

Herbrand, J., Sur la Theorie de la Demonstration. In Logical Writings, w.
Goldfarb ed., Cambridge, (1971) .
Herold, A., Some Basic Notions of First Order" Unification Theory,

Univ. Karlsruhe, Interner Report, (1983) .

Herold, A., ‘Combination of Unification Algorithms’, Proc. 8th CADE, ed. J.
Siekmann , Springer—Verlag, LNCS 230, pp. 450-469, (1986)

204

1—1585 '

 HS87_

Hen72

HLS72

H080

Ho'Ul79

. HR86

HoUl79 _

Ho76

Hu76

Hu80

Hu180

1885“

JKK 83

JK 84

also: MEMO-SEKI 86-VHI-KL, Universität Kaiserslautern, 1985
Herold, A., Siekmann, J., Unification in Abelian Semigroups, Tech. report,
Universität Kaiserslautern, Memo SEKI-85-III, (1985)

. ‘ Herold, A., Siekmann, J., Unification in Abelian Semigroups, JAR 3 (3),
pp. 247- 283, (1987)
Henschen, L. J. ,‘N-sorted Logic for Automated Theorem Proving in
Higher-Order Logic.’ , Proc. ACM Conference, Boston (1972)
Hindley, J. R. Lercher, B., Seldin, J. P., Introduction to Combinatory Logic,
London Math. Soc. Lecture Note Series 7, Cambridge Univ. Press, (1972)
Huet, G. „Oppen D. C.
Equations and Rewrite Rules, SRI Technical Report CSL-111, (1980)
also in :Formal Languages: Perspectives and open problems, R. Book.(ed),
Academic Press, (1982)
Hopcraft J .E., Ullmann, J.D., Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, (1979)

~Hsiang, J., Rusinowitch, M., A new method for establishing refutation
7 completeneSs in Theorem Proving, Proc of the 8th _,CADE LNCS 230,

pp. 14—1152, (1986)
_ Hopcraft, J., Ullman, J., Introduction to Automata Theory, Languages and
Computation, Addison -Wesley, (1979)

HOWie, J‘.M., An Introduction to Semigroup Theory, Academic Press, (1976)
Huet, G. Resolution d‘équations dans des langages d’ordre 1,2,...‚(u, '
Thése d‘Etat, Univ. de Paris, v11, (1976)
Huet, G. Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems, JACM 27, 4 , pp. 797-821, (1980)
Hullot, J .-M., Canonical Forms and Unification, Proc. 5th CADE, LNCS 87,
pp. 318-334, (1980) '
Irani, K.B., Shin, D.G., A Many-Sorted Resolution Based on an Extension
of a First—Order Language, Proc. 9th IJCAI, pp. 1175-1177, (1985)
Jouannaud, J .-P., Kirchner, C., Kirchner, H., ‘Incremental Construction of
Unification Algorithms in Equational Theories’, Proc. of 10th ICALP ed
J.Diaz, Springer-Verlag, LNCS 154, pp. 361-373 , (1983)
also: Université de Nancy, Informatique, 82—R-047, 1982

Jouannaud, J .-P. and Kirchner, H., ‘Completion of a Set of Rules Modulo a
Set of Equations’, Proc. of 11th' ACM - Conference on Principles of
Programming Languages, Salt Lake City, (1984)
also: Université de Nancy, Informatique, 84-R-O46, (1984)

205

HKi85

HKi87

CKi84

CKi85

CKi 86

CKi87

KB7O

KM84

K075

Ko79a

K07 9b

Koz76

Koz77

LS76

Lo78

L184
MG85a '

MG85a

SIAM J. of Computing, Vol; 15,. 4, (1986)
Kirchner, H., Preuves par complétion dans les variétés d‘algébres, These
d‘Etat, University de Nancy I, (1985)
Kirchner, H., Schematization of infinite sets of rewrite rules. Application to the
divergence of completion processes., Proc. of RTA, LNCS 256, pp. 180-191,
(1987)
Kirchner, C., A New Equational Unification Method: A generalization of
Martelli— Montanari’s Algorithm. 7th CADE, LNCS 170, pp. 224-247, (1984)
Kirchner, C., Méthodes et outils de conception systématique d’algorithmes
d'unification dans les théories équationelles, These d’état de l’Univerité de
Nancy I , (1985),
C.Kirchner: ‘Computing Unification Algorithms’, Conf. on Logic in Computer
Science, pp. 206—216, (1986)
Kirchner, C . , Methods and Tools for Equational Unification, CNRS technical

report Nr. 87—R-008, University of Nancy I, (1987)
Knuth,D.E., Bendix, P.B., .‘Simple Word Problems in Universal Algebras’,
in: Computational Problems in Abstract Algebra, J.Leech ed. , Pergamon
Press, Oxford, (1970) .
Raph., Karl Mark G., The Markgraf Karl Refutation Procedure, SEKI-report
MK-84-01, Universität Kaiserslautern (1984)
Kowalsi, R., A proof procedure using connection graphs, JACM 22, 4 ,
(1975) '
Kowalski, R., Logic for problem solving, North-Holland, (1979)
Kowalski, R., Algorithm == Logic + Control. CACM 22, 7, pp. 424-436,
(1979) ' _
KOzen, D., Complexity of Finitely Presented Algebras, Technical Report
TR 76-294,Dept. of Comp. Science, Cornell University, Ithaca, NY, (1976)

Kozcn, D., Complexity of Finitely Presented Algebras, 9 th STOC
Symposium, Boulder Colorado, pp. 164-177, (1977)
Livesey, M., Siekmann, J., Unification of AC—terms (bags) and 'ACI-terms
(sets), Tech. report 3-76, Universität Karlsruhe, (1976) ' .
Loveland, D., Automated Theorem Prroving: A Logical Basis, North-Holland,
(1978)
Lloyd, J.W., Foundations of Logic Programming, Springer-Verlag, (1984)
Meseguer, J., Goguen, J . A., Initiality, Induction and Computability. In
M.Nivat and J . Reynolds (eds .) , Algebraic Methods in Semant ics ,

pp. 459-540, Cambridge University Press, (1985)
Meseguer, J., Goguen, J. A., Deduction with Many—Sorted Rewrite, Techn.
report CSLI-85-42, (1985) ' '

206

MGS 87

Ml78

Ml84

MM82 '

MMR86

Mc 76

M069 _

M085

N079

'N080

NR85

NRS87

Ob62

Oh85

Oh87

Pa86

Pe83

PW78

'Martelli, A., Moiso, C. and Rossi, G..,F
' Equational Theories’, Proc. of Symp. on Logic Programming II, pp. 180- 186,

' Untersuchungen zur mehrsort igen Quantorenlogik,

Meseguer, J., Goguen, J. A., Smolka, G , Order-sorted Unification, CREAS
workshOp, (1987), to appear
Milner, R., A Theory of Type Polymorphism in Programming, JCSS 17,
pp. 348-375, (1978)
Milner, R. A Proposal for Standard ML, 1984 ACM Symposium on LISP and
Funcitonal Programming, Austin, Texas, pp. 184—197, (1984)
Martelli, A. , and Montanari, U. , An Efficient Unification Algorithm, ACM

Trans. Programming Languages and Systems 4, 2, pp. 258—282, (1982) '
‘An Algorithm for Unification in

(1986)
McNulty,G
pp 589- 604, (1976)

.,‘Undecidable Properties of Finite Sets of Equations’, J SL 41, 3,

- Morris, J. Extension of resolution to include equality, Proc. first IJCAI— 69,
Washington D. C., pp. 287- 294, (1969)
Mycroft, A., O Keefe, R. A., A Polymorphic Type System for Prolog,
Artificial Intelligence 23, 3, pp. 295-307, (1984)
Nelson, G., Oppen, D.C., Simplification by Cooperating Decision
Procedures, ACM TOPLAS 1,2, pp. 245—257, (1979)
Nelson, G. , Oppen, D.C., ‘Fast Decision Procedures Based on Congruence
Closure’, JACM, 27, 2, pp. 356—364, (1980) '
Nivat, _.,M Reynolds J. C.,Algebraic Methods in Semantics, Cambridge
University Press, (1985)
Nutt, W. Réty, P., Smolka, G. Basic narrowing revisited, Technical report
SR- 87— 07, Universität Kaiserslautern, West Germany, (1987)
Oberschelp A.,

(i n German) ,

Mathematische Annalen 145, pp. 297—333, (1962)
Ohlbach, H.J., ‘Theory Unifcation in Abstract Clause Graphs’, Technical
report MEMO SEKI-85—I—KL, Universität Kaiserslautern, (1978)

Ohlbach, H.J., Link Inheritance in Abstract Clause Graphs, JAR 3,1,

pp. 1—34, (1987)
Padawitz, P., Foundations of Specification & Programming with Horn
Clauses, Fakultät für Mathematik und Informatik, Universität Passau, West

Germany, draft, (1986) ' ‘
Peterson, G.E. , A technique for establishing completeness results in theorem

proving with equality, Siam J. Comput., 12,1, pp. 82-100, (1983)
Paterson, M.S. , Wegman, M.N., Linear Unification, Journal of Computer and

SystemSciences 16, 158-167, (1978)

207

P1072

Re87

Ri75

Ri78
R065

RW69

Sch38

‘Sch51

SchSSa

Sch85b

Sch85c

Sch85d

Sch86a

Sch86b

Sch86c

Sh67
Sh84

SSS]

Si75

Plotkin, G., Building in equational theories, Machine Intelligence 7 , pp. 73-90,
(1972)
Réty,P., Improving basic narrowing techniques, Proc. 2nd RTA, Bordeaux
France, LNCS 256, pp. 216-227, (1987)
Richter, M.M. , A Note on Paramodulation and the Functional Reflexive

Axioms. Institut. für angewandte Mathematik und Informatik, TH Aachen,
(1975)
Richter, M.M., Logikkalküle., Teubner Verlag, Stuttgart, (1978)
Robinson. J .A. A machine—Oriented Logic Based on the Resolution Principle.
JACM 12,1 pp. 23—41, (1965)
Robinson, G., Wos, L., Paramodulation and theorem proving in first order
theories with equality, Machine Intelligence 4, pp. 135-150, (1969) ‘
Schmidt, A., Über deduktive Theorien mit mehreren Sorten von Grunddin gen,
Math. Annalen 115, pp. 485-506, (1938)
Schmidt, A., Die Zulässigkeit der Behandlung mehrsortiger Theorien mittels
der üblichen einsortigen Prädikatenlogik, Math Annalen 123, pp. 187-200,
(1951)
Schmidt-Schauss, M., A many--sorted calculus with polymorphic functions
based on resolution and paramodulation. Proc. of the 9th IJCAI, Los Angeles,
ed. A. Joshi, pp. 1162- 1168, (1985)
Schmidt-Schauss, M. A many—sorted calculus with polymorphic functions
based on resolution and paramodulation. SEKI-report MK—85-2, university of
Kaiserslautern (1985) '
Schmidt-Schauss, M., Mechanical generation of sorts in clause sets, Internal
SEKI—report MK-85-6, university of Kaiserslautern (1985)

' . Schmidt-Schauss M., Unification in a many-sorted calculus with declarations,
Proc. of the 9th GWAI, Dassel/Solling, (ed. H. Stoyan), pp. 118-132, (1985)
Schmidt-Schauss, M., Unification in Many-sorted equational theories, Proc of
the 8tln CADE, LNCS 230, pp. 538-552,'(1986)
Schmidt—Schauss, M., Unification under Associativity and Idempotence is of
Type Nullary, JAR 2,3, pp. 277-281, (1986)
Schmidt-SchauB, M.,‘Unification Properties of Idempotent Semigroups’,
SEKI Report SR-86—07, Universität Kaiserslautern, 1986
Shoenfield, J. R, ‘Mathematical Logic’, Addison-Wesley, (1967)
Shostak, R. E., Deciding Combinations of Theories, JACM 31, 1, pp. 1- 12,
(1984)
Siekmann, J., Szabö, Unification and Regular ACFM Theories, Proc of IJCAI
'81, Vancouver, pp. 532-538, (1981)
Siekmann, J., Stringunification, Essex university, Memo CSM-7, (1975)

208

Si84 .

Si86

Si87

Smu78

Sm86

SNMG87

'SA87

Sn86

SH85

St81

St85

St86

8282

Ta68'_

Ta79
Ti86a

Ti86b

Tu85

- Siekmann, J.H., Universal Unification, Proc. 7th CADE, Napa Valley,
California, LNCS 170, pp. 1-42, (1984).
Siekmann, J.H., Unification Theory, Proc. of ECAI‘86, Vol II, p. vi-xxxv,
Brighton, (1986) ' ' ‘
Siekmann, J.H., Unification Theory, to appear in Journal of Symbolic
Computation, special issue on unification , (1987)

Smullyan R., What is the Name of this Book? , Prentice Hall (1978)

Smolka, G. , Order—sorted Horn Logic, Semantic and Deduction, Seki-report

SR-86—l7, University of Kaiserslautern, (1986) '

Smolka, G., Nutt, W., Meseguer, J., Goguen. J.A., Order-sorted Equational

Computation., CREAS workshop, Austin, Texas, (1987) , to appear '

Smolka, G„ A'l't—Kaci. H Inheritance Hierarchies: Semantics and Unification,

MCC Technical report AI—057-87, (1987) '
G.Snelting, ‘Inkrementelle semantische Analyse in unvollständigen

Programmfragmenten mit Kontextrelationen’,[Dissertation, Techn. Univ.
Darmstadt, FB Informatik, 1986 '
G.Sneltin g, W.Henhapl: ‘Unification in Many Sorted Algebras as a Device for
Incremental Semantic Analysis’, Internal Report PU2R2/85, Techn. Univ.

'- Darmstadt, FB Informatik, 1985
Stickel, M., A Unification Algorithm for Associative—Commutative Functions,
JACM 28, 3 pp. 423—434, (1981)
Stickel, M., Automated deduction by Theory Resolution, Journal of Automated
Reasoning 1,4 , pp. 333-355, (1985)
Stickel, M. , Schubert’s Steamroller Problem: Formulation and Solutions,

JAR 2,1, pp. 89-101 , (1986)

Szabö, P., Theory of first order unification, (in German), Thesis, University
of Karlsruhe, (1982) ' _ '
A.Tarski: ‘Equational Logic and Equational Theories of Algebra’, (Schmidt et
al eds.), Contributions to Mathematical Logic, North Holland, pp. 275—288,

‘ (1968)
Taylor, W., ‘Equational Logic", Houston J. of Math. , 5 , (1979)
Tidén, E., First-Order Unification in Combinations of Equational Theories,
Thesis, Stockholm, (1986)

E.Tidén: ‘Unification in Combination of Collapse Free Theories with Disjoint
Sets of Function Symbols’, Proc. 8th CADE, LNCS 230, pp. 431-449, (1986)
Turner, D.A., Miranda: A non-Strict functional language with polymorphic

types, in Functional and Programming Languages and Computer Architecture,
LNCS 201 , pp.1—16, (1985)

209

Wad82

Wa83

W384

Wa85

Wa86

Wa87

Wan52

WR7 3

WRC67

Wadge, W. W., ‘Classified Algebras’, Internal report-N° 46, University of

Warwick, England, (1982)

Walther C., A many-sorted calculus based on resolution an paramodulation,

Proc. of the 8th IJCAI, Karlsruhe, (1983)
Walther C., Unification in many—sorted Theories, Proc. of the 6th ECAI, Pisa,
ed. T. O’Shea, North-Holland, pp. 383—392 (1983)

Walther C., A mechanical solution of Schubert ’s Steamroller by many-sorted

resolution. In Proc. 4th AAAI (Austin 1984), pp. 330-334, revised version in
in Artificial Intelligence 26,2 (1985), pp. 217-224

Walther C., A Classification of many-sorted unification problems, Proc of the

8th CADE, LNCS 230, pp. 525-537, (1986)
Walther, C., A many-sorted calculus based on resolution an paramodulation,

Pitman & Kaufman publishers (to appear)

Wang, H., Logic of Many—Sorted Theories, JSL_17', 2, pp. 105-116, (1952)

Wos, L., Robinson, G. , Maximal Models and Refutation Completeness:

Semidecision Procedures in Automated Theorem Proving. In "wordproblems"

(W.W.Boone, F.B.Ca‚nnonito, R.C. Lyndon eds .) North—Holland,

pp. 609-639, (1973)
Wos L., Robinson G., Carson D., Shalla L., The Concept of Demodulation in

Theorem Proving. JACM 14,-pp. 698-709, (1967)

210

Appendix

In the following we deal with monadic theories, i.e. regular equational theories in which every
function symbol is unary. For convenience we omit brackets in terms and denote terms as
strings. Sometimes we omit the variable, if it is clear from the context or does not matter.

' Theorem A.] : ' There exists a theory E such that ttUE(s = t) exists for all terms, but
‘ ttUE(sl = tl, 52 = tz) does not exist for some terms si,ti, i = 1,2.

Proof: We construct a regular, simple, Q-free and monadic theory that has the property
stated in the theorem. , .
Let Ebe the theory with the term rewriting system consisting of the following 11 rewrite rules:

R := { figl —> ni , i = 1,2,3,4 ' (R1 _ R4)
flkl —> f2 k1 , f3k2 _) f4 k2 (R5, R6)
klh _) kzh (R7)

This term rewriting system is canonical, the last'three rules come from the completion of the
first eight rules.
Note that the equational theory has some symmetriest

We can interchange i) f1 and f2, ii) f3 and f4, iii) f1,f2,kl and f3,f4,k2 without changing the
equational theory.

Furthermore the rewrite rules do never permute symbols.

i) E i s simple:
Assume by contradiction that there are terms s,t such that 3 zB t and s is a proper subterm
of t.Without loss of generality we can assume that 5 is in normalform. Since R is canonical,
there exists a reduction from t to s. The rules 5,6,7,9 are not used during this reduction,
since they increase the number of f2, f4 or k2 and the other rules do not change the number
of these symbols in terms. Hence #(F,s) = #(F,t) for all function symbols F e

{ fl,f2,f3,f4, k1,k2,h}. Thus t can be written as the string tos, where to contains only
function symbols in { g1,g2,l}. The rules 8,10 and 11 are not used, since they delete 1’s
from s as subtenn of t, but there is no rule that adds the symbol 1. The rules 1 - 4 alone are

211

not sufficient for such a reduction, since they increase the number of g2’s. This is a
contradiction.

B is Q—free:
Assume by contradiction there is a function symbol F and terms s,t such that F(s) =E F(t)
and s #E t. We can assume that the pair s, t is a minimal such pair. Furthermore we can
assume that s,t are in normalfonn. Since F(s) and F(t) are not literally equal at least one of
them is reducible. Withour loss of generality we can assume that F(s) is reducible.

Obviously the symbol F is in { f1,f3,kl,gl,g2}. We show that every possibility for F gives
a contradiction:
])SF at k l : If F = k l , then s = hs' and hence t = ht'. The equation kzhs' =13 k2ht' implies

='Et and hence s =Et.
2)SF at g l : If F=g1 , then s—— kzhls' and hence F(t)‘1s reducible and t—- k2h1t'. The equation

k2hs' =E kzht' implies s' =Et' and hence s =Et.
. 3) F at g2: If F : g2, then either rule 10 or 11 is applicable to F(s). The term s is either of

the form f2k2hls' or f4k2hls'. Let us consider the first case s -_— f2k2h1s' . Then F(t) is
reducible and t = f2k2hlt'. We have f2k2hs' ==E,f2k2ht ’ hence s ' =E t', since 3 and t are
choscn as minimal. This implies the contradiction s——E t

4) F at f :

We have four subcases:
(a) s = kls' and s' does nort start with h, F = f].
(b) F = f1,f2,f3‚«f4 , and s = glns' with n 2 1 and s' does not start with g1.
(c) s = kzs', F = f3.
(d) s = kzhs', F = f l .
a) s = kls ' implies that F(s) =E fzkls' and the symbols fzkl can no longer be used by a

rewite rule. Checking'the rewrite rules it is easy to see that the only possibility for
t is to be of the form klt'‚ hence f2kls' =E fzklt'. Since s' and t' do not start with
h (otherwise s i s reducible), this implies s' =E t'. and hence s =E t.

b) s = glns' implies g2“fis' =E fit.
Assume the normalforrn of fis starts with g2. Then t is of the form glt‘, and we
have figln'ls ' =E fit'. Minimality of s,t yields gln ' ls ' :15 t', hence s =E t.
Assume the normalform of fis starts with a symbol fj. Then fj is f2 or f4. The
term gznfis' must be reducible to a tem1 with topsymbol fj. Considerin g the rules
we see that s' = kzhl s", but then s = glns' is reducible by rule 8, a
contradiction. _ .

c) s = kis' implies that the normalform of f3k2s' starts with f4k2 and this two top
function symbols are no longer involved in a reduction. To reduce f3t to a term of
this form there are the possibilites t = k2t' or t = glt‘. The second case is not

212

' possible as proved in case b). Hence t is of the form kzt' and we have f4k2s' =
f4k2t'. Since f4k2 is not reducible this implies s ' =E t' and hence s =E t.

' d) s = kzhs' implies‘ F(s) =E f2k2hs'. Due to b) the term t has the form kzht' and we
have f2k2hs' = fzkzht'. This implies s' =E t' and hence s =E t.

iii) l) f l s =E fzt =>. s =Et:
Assume by contradiction that the statement i s false. Let f l s =E'f2t with s #E t . We can

assume that s and t are irreducible and minimal. Furthermore we can assume that f ls is

reducible.
There are three cases s = g1“',s s = kls ' , s = kzhs'. The second and third case are not

poSsible since E i s Q—free. .

Hence s—— gl" s ' where n -> 1 and s' does not start with g l . If the term f2t'1s reducible, then

t 13 of the form glt ' and We reach a contradiction by minimality of s,t and Q—freeness.

Thus gznfls' must be reducible to f2t. which is only possible if s' is of the form kzhls".

This is a contradiciton to the irreducibility of 3. '
2) ' f3s =Ef4t => s =E t: Symmetric to a)

3) kls =E k2t => 5 =E t: Obvious, since only rule 7 is applicable.

iv)_For all terms s, t there exists a minimal set of solutions for(s =E t):

Assume by contradiction that there exist tenns (in normalfon'n) s0,t0 such that a minimal set
of unifiers for (so = to)E does not exist. Then there exists a unifier o e UE(s0=t0), such .
that there exists no minimal tm e UE(so=t0) with o 25 tm [V(sO‚t0')]. Hence there exists

an infinite descending chain 0'l >E 0'2 >E [V(so. t0)] in UE(so=t0) with

6 2E 01 [V(sO‚t0)]. We assume that VCOD(oi) =_{z}. Let l i = {z +— ri} be the

substitution with oi =E Xi oi +1 [V(so,t0)]. We have to consider the two cases V(s_0) =
V(t0) = {x} and V(s0) = {x} , V(t0) = {y}, where x and y are different variables.

Case V(so) = V(t0) = {x}.
Let oi = {x <— ti}, where ti is in normalform and V(ti) = {2}. Without loss of

generality we can assume that the depth of t is pr0perly increasing and that the

number of h ’s , k s (i . e . , the sum of the occurrences of k and 1(2) and f s (i e . , the

sum of the occurrences of f1, f2, f3, and f4) 1s constant in ti. Furthermore we can
assume that (O'i) is a chain with a minimum number of these function symbols.

Considering the reduction rules we see that ri must be of the form lml and that ti stops

with k2h. From the rewrite rules it follows that tistops either with f2k2h,f4k2h or
glmkzh. If ti stops with f2k2h or f4k2h, then we can delete these symbols from ti
(obtaining ti') and get a unifier of 30 and to, since a reduction proof of (Iis0 rÄE oito

213

works also for o i ' so =E o i ' t o where o i ' = {x <— t i '} . Fur thermore
ai >E oi' [V(so,t0)], since oi’ has a smaller number of h’s. If for some j there i s
no minimal unifier (5'i UE(so=t0) with oj' 2E o'jm [V(s0,t0)], then we could
find an infinitely descending chain (pi) starting with (if. However, this chain has a
smaller number of h’s, k 's and f 's than (oi), hence this is a contradiction.
We have shown that ti stops with glmkzh.
A similar argument as for the deletion of f2k2h or f4k2h above shows that ti is already
of the form glmkzh. Hence we can assume that ti = glikzh. Since SO #E to and
{x (— ti} E-unifies them, the rewrite rules show that s0 and t0 are of the form
30 = so'fs and t0 = to 'fv where SO' =E to' and either {fs,ft] = {fpfz} or {fs,ft} =
{f3,f4]. But then there are more general unifiers than O'i in UE(so=t0): Either ci" :=
[x (— glikl} or o." = {x <— glikz} are such unifiers. Since these unifiers have a]

smaller number of h’s than oi, we have reached a contradiction.

Case V(so) = {x} .V(t0) = {y}

We do not give the proof in full detail, since the technique is exactly the same as in
case 1.
Let c i = {x '<— si , y (— ti }, where si,ti are in normalform and V(si,ti) ' : [2] .
Without loss of generality we can assume that the depths of si and ti are increasing,
that the depth of one of them is properly increasing and that the number of h’s, k’s
and f ’s is'constant in si and in ti. Furthermore we can assume that ci is a chain with a
minimum number of these functions symbols. Considering the reduction rules we see
that ri must be of the form lm and that both si and ti stop with kzh. Furtherrnore si and
ti can only stop with f2k2h , f4k2h or glkzh.
Since ci is a unifier it is not possible that si stops with fzkzh and ti stops with f4k2h.

_ If both si and ti stop with f2k2h (or f4k2h), then the same argument as in the proof of
the other case yields a contradiction.
If both si and ti stop with glkzh, then we first argue that si and ti are of . the form

gl“k2h and glmkzh and then that both 30 and t0 stop with an fj. A similar argument as
above shows that we can replace the right end of si and ti by glkl or glkz and obtain
a more general unifier.
The last case is that si stops with fzkzh and ti stops with g1k2h. We see that til has the
form glmkzh'and then the structure of R shows that t0 stops with some fj. But then
the same argument as above yields a more general substitution, replacing the right

' end of si by fzkl and the right end of ti by glmkl. This is a contradiction.
- The case that si steps with f4k2h and ti st0ps with glkzh is analogous to the previous
case.

214

v) There does not exist a minimal set of unifiers for some set of equations:
Consider the system (f] (x) = f2(x), f3(x) = f4(x))E. A complete set of unifiers for —
(f1(x)' = f2(x))E is UE" := { On}, where an := {x (— g1“klz] .
For completenes let 6 be a normalized unifier of fl (x) and f2(x). Since f1 6x is reducible,
we have to check three cases:

._ 6x = gls '‚ 6x = k l s ' and 9x = kzhs' .
1) 6x = gls'. Then nls ' =E nzs' , hence ll :={x <- s'} is already a solution of

(f 1x = fzx)E. Induction shows that u is an instance of some on. But then 6 is an
instance of on +1 .

2) 9x = kls' . Then 6 is an instance of GO.
3) 6x = k2hs'. Then 0 is an instance of oo.

Common solutions of (f1 (x) = f2(x), f3(x) = f4(x))E can be obtained from common
solutions of (x = glnklz , x = glnkzz). Hence cUE(f1(x) =' f2(x), f3(x) = f4(x)) =
[{x (— glnkzhz }I n 2 0} is a complete set of E-unifiers that has no minimal, complete
subset, since glnkzhlz = gln'lkzhz. I ‘

Remark: It is a pure technical task to construct theories En from the above theory such that
minimal sets of unifiers exist for all sets of n equations, but not for all sets of equations.

The next prOposition shows that E e ‘U is not equivalent to the condition that every decreasing
„ chain of substitutions in every UE(I") has a lower bound in UE(l"):_

A.2 Proposition There exists a theory E e ‘11 such that there exist terms s,t and an
' infinite decreasing chain ol >E 02 >15 of substitutions in UE(s‚t)

without a lower bound in UE(s‚t). '

Proof: We construct a regular, simple, Q-free and monadic equational theory E that has’ the
“prOperties' stated in the proposition.
Let E be defined by theterm rewritin g system consisting of the following five rewrite rules:
R := { f lgl _) g2f1 , fzgl —> g2f2 , _ (R1, R2)

g lkhl —} kh , (R4)

This term rewriting system is canonical, the last rule comes out of the completion of the
first four rules. Note that interchanging fl and f2 does not change the equational theory.
i) E is simple:

215

Assume by contradiction that there are terms s,t such that 3 =5 t and s is a proper
subterm of t. Without loss of generality we can assume that 3 is in normalform. Since
R is canonical, there exists a reduction from t to s. Rule 3 is not used during this

_ reduction, since it increases the number of f2’s. Hence s and t have the same number
of fl ’s, f2’s, k’s and h’s. The rules 4 and 5 are not used, since these rules delete l ' s
from s as subterm of t, but there is no rule that adds the symbol 1. The rules 1 and 2
alone are not sufficient for such a reduction, since they increase the number of g2’s.

This is a contradiction.

ii) E is Q—free:
Assume by contradiction there is a function symbol F and terms s,t such that
F(s) =E F(t) and s #15 t. We can assume that the pair s, t i s a minimal such pair.
Furthermore we can assume that s , t are in normalform. Since F(s) and F(t) are not

literally equal, at least one of them is reducible. We assume that F(s) is reducible.
Obviously F "e {f1,f2,g1,g2}. That F e {g1,g2} can easily be excluded by
considering the rules and by the minimality of 5 and t. _

1) If F = f2, then s = gls' . If F(t) i s reducible, then t = g l t ' and by minimality of 3
and t we obtain fzs' =E fzt', hence s' =E t', which is a contradiction. Hence F(t)
is not reducible. The only possibility to reduce fzs to & term with topsymbol f2 is
that-s = glnkhlns", but then s is reducible to khs", a contradiction to the
reducibility of F(s).

2) If F = fl,“ then s = ks' or s = gls'.
a) If s = ks', then f I t is reducible. From the minimality of s and t it follows that

t = kt' is not possible, hence t = glnt'._The term flglnt' must be reducible
to a term with topsymbol f2. This is only possible if t is reduCible, which is
a contradiction. .

b) If s = gls ' , then . f l t is reducible, hence t = g l t ' or t = kt' . The case ’t = g l t '
can be eliminated by induction. The other case. is symmetric toa case in a).

iii) E e u-
Assume by contradiction that there exists a system F and a nullary unifier
0'0 é UE(I‘), i.e., there is no minimal unifier "cm with 60 25 tm[V(F)] . Then there '
is an infinite descending chain oo >E o 1 >E 62 >5... [V(l")]_ in U50“). We can
assume that all terms in COD(oi) are in normalform, that DOM(oi) = V(I‘) and that
00 is minimal with respect to the number of h’s, k’s and f 's occurring in it, and hence
the number of h’s, k’s and f’s is constant in oix for every x e VG“). Furthermore
we can assume that the term depth of every oix i s non-decreasing. A further
assumption is that there i s at least one x e V(I‘), such that the depth of oix is

216

unbounded. The above assumptions and the rewrite rules show, that for every

'x e VO“), such that oix i s unbounded, the term oix stops with kh. Let Y :=

{x e V(I‘) I oix is unbounded}. Note that Y = @.
For every s=t e l", either V(s,t) ; Y or V(s,t) 0 Y = @: _

Assume by contradiction that s=t e F with V(s) = {x0}, V(t) = [x] }, x0 6 Y

and xl e Y. Then there exsits a n() , such that depth(ojx1) is constant for all
j 2 no. By choosing a subchain we can further assume that all 6i are E—equal

for j 2 no. Let li be a substitution with liq-l =E (5L1 [V(I‘)]. Then the rewrite

rules show that only the symbol 1 can occur as a function symbol in the codomain

of ki. Since the theory E is regular, we have V(ojxl) = V(i0) = {zj}. The term

1i is of the form lk for some k > 0, since the depth for oixo is properly
increasing. If we choose r = 6i for j > n0 then r has the property r1k =E r with

k > 0,'which is impossible. El

Let Z = V(60(Y)) and let p be a renaming of Z such that COD(p) consists _of

new variables. We define 1: as follows: 1x := 60x, for x e V(I‘)\Y , and 1:x :=

tx(pzx), if 6x = txh(zx) and x e Y.
The substitution 1: is a unifier:
Let s = t be any equation in F and let cos =E cot. The "above consideration shows

that either V(s,t) 0 Y = @ or V(s,t) ; Y. In the first case we have obviously

ts =E1:t and 'in the second case every reduction proof of cos =E cot is a reduction
proof for "cs =E'tt , since the rightmost h is not touched by a rewrite rule. '
The substitution 1: is more general than 00: Let 7L be defined as follows: 7Lz' := h(z),

if z' _: pz and Xx = x otherwise. We have oO =E M: [V(I‘)]:
If x @ Y, then Cox =E ?t =E tx .
If x 5 Y, then Mx =E Ä(tx(pzx)) ”E txOLpzx) = txh(zx) = 00x . Cl

Minimality of 60 implies that 1: is not nullary, hence 00. is not nullary, a cOntradiction to our
assumption.

iv) There exists a set of equations F and an infinitely descending chain of substitutions

‘ 0'1 >E 0'2 >E [V(I‘)] in UE(I‘) Without a lower bound in UE(I‘):
Let l" =(f1x = fzx). The set { {x <— gl“k2}| n 2 0} is a complete subset of U150") as

can easily be seen by induction using that E is Q—free. Let an be defined by a :=

glnkhz. We haveol >E 62 >E [V(I‘)]. Assume there is a lower bound o e UE(I‘)

with (Si 2E 0' [V(I‘)] for all i. Since {{ x (— g lns is a complete subset of UE(I"),

there exists a number m such that {x <— glmkz} is more general than o. Hence for all
11: glnkhz 2E glmkz. The rewrite rules imply that this is impossible. I

217

Index .

Z-algebra

alternatives, complete set
E—assignment, partial
Z—assignment
atom
axiomatization '
base
binding
canonical
Church—Rosser property
clause
collapse—free
compatible
complete subset
complete set of unifiers

component

confluent ‘
Econgruence
E—congruence, strong
congruence-closed .

consequence
consistent .
connected component
conservative
converse
cn'tical pair
critical sort-relation

critical sort—relation, weak
deduction-closed
demodulation
demodulation~complete
depth of terms
embedded
endomorphism
Z-endomorphism

equ ational' theory

218

1.6
1.13
1.6
1.6
1.2
1.9
1.1
1.2
1.12
1.12
1.2
1.9
1.12
1.1
1.11
1.2
11.3

» 1.7
' 1.7

11.2
1.9
1.9 '
IV.1
11.7
1.2
11.3
11.3
11.3
1.9
1.12
1.12
1.2
11.7
1.2
1.6
1.9

equivalent theories
equational theory, finitely presented
equational theory, standard model
equivalence-class
equivalent sorts
factoring
Q—free
f'mitaty
finite
function declaration
functional reflexive axioms
g.‘1.'b
ground object
Herbrand universe
Herbrand—base

I homomorphic extension
homomorphism '
Z-homomorphism
E—homomorphism, partial
Horn clau se
ill—sorted extension
immediate subterm

' infinitary
Efinstance .
E—interpretation

.. HID-interpretation
T-interpretation
intersection constraints
‘I’-invariant con gruenee
ISC, regular
irreducible
isolated variable
E—isomorphism
kernel of Z—homomorphism
lattice
least sort-assignment
liftable
linear term

219

1.9
1.9
I.9
I.1
1.3
V.1
1.9
I. 11
1.9
1.3
V.1

'I .1
1.2
1.2 _

- 1.2
I.6
1.2
1.6
1.6

1.2
11.1
1.2
1.11
1.5
1.8

1.8
V.6
V1.1
11.2
v1.4
1.12
NJ
1.6
1.7
1.1
11.4
v.1
1.2 _

literal
locally confluent
logic program
lower segment
1. u. b
matcher
matching problem
maximal element
minimal element
DES-model
HIS-model
T-model

' most general E—unifier
narrow T—resolution
Noetherian
normalform

nullary

occurrence (in term)

ordering, linear
ordering, well-founded
ordering, partial
paramodulation
path
path, circular
E—pennuation
predicate declaration
quasi-ordering
E—quasi-algebra
Z-quasi-structure
quasi—terms

query
quotient Dalgebra
R-system '
regular
relativization
renamin g
Z—renaming

resolution

220

1.2
11.3
1.2
1.1
1.1
1.11
1.1l
1.1
1.1
1.8
1.8
V.6
1.11
V.6
1.11, 1.12
1.12
1.11
1.2

1.1
1.1
1.1
V.1
IV.1
IV.1
1.10
1.3
1.1
1.6
1.8
11.2
1.2
1.7
11.8
1.9
11.10
1.2
1.4, 1.10
V.]

E-resolution
rigid E-unifier
rigid-equal

„ rigid-instance
rigid—equivalent
satisfiable
T—satisfiable _
semantical sort-assignment

semi-lattice
sequentially solved
signature, unsorted

signature, sorted
signature, finite
signature, one-sorted
signature, many-sorted
signature, order-sorted
signature,linear _
signature, elementary
signature, simple _
signature, subtenn-closed
signature, regular
signature, polymorphic I
signature, almost elementary

signature, ground regular
simple
size of terms
Skolemization
solved form
sort-assignment

sort-decreasin g

sort-decreasing, weakly

sort—predicate equivalence
sort-preserving
E—specification

strongly cyclic
Dstructure
subsort declaration
substitution

221

v.2, V.5
V.5
V5

V5

V.5
1.8

„ V.6
11.9

1.1
IV.1

1.2
1.3.1

1.3
1.3
1.3
1.3
1.3 .

"1.3

1.3
1.4
1.4
1.4
111.6

1.4
1.9
1.2
11.12

IV.1

11.4

1.12

11.3

V1.1 '
1.9
1.8 ‘
1.10

1.8
1.3
1.2

substitution, ground
substitution, idempotent

substitution, well—sorted
subtcrm-closed
term
term declaration
term declaration, redundant
term rewriting system
theory-resolution
transformation
transformation, well-sorted
transformed predicate
unifier
unification problem
unification-based
unification procedure,-complete _
unitary
unsatisfiable
upper segment
weakening
Weakly cyclic

”222 .

I .2
1.2
L4
I.2
I .2
I .3
I .4
I . 12
V.6
1.13
II.7
VI.1
I .] 1
I .] 1
1.11
1.13

. 1.11
1.8
LI
LU
I.10

Special Symbols._

fit)
(AS)
[a.°°]
[-°°.a]
C(U)

cU
M(U)

uU

D(t)
0(t)

depth(t)
t\1t
t[1t <— s]
subterms(t)
(P» ‘l’
SUB

DOM(o)
COD(o)
I(o)

o = 1: [W]

domain of the function f
a set A ordered by S..
the set of elements greater than or equal to a

the set of elements less than or equal to a

set of complete subsets of U
element of C(U)

set of minimal, complete subsets of U

. element of U

unso'rted signature
set of function symbols,

. elements are denoted by f,g‚h

set of variable symbols,
elements are denoted by x‚y‚z

set of predicate symbols,

elements are denoted by P‚Q

arity of the function symbols f

set of terms
terms are denoted as p‚q,r‚s,t,u,v,w
variables in term t.
set of atoms
set of literals
set of ground terms.
empty word
set of occurrences i n t
set of nonvariable occurrences in t
term depth of t
subterm of t at occurrence n:
s replaces the subterm of t at occurrence 1c

the set of subterms of t.
endomorphisms, homomorphisms

set of all substitutions,
elements are denoted as 0,1

[x eV(t) I ox at x}

oDOM(o)
V(COD(6))

6x= tx fo ra l l xe W

223

1.1
1.1
1.1
1.1

1.1
1.1
1.1
1.1
1.2

1.2

1.2

1.2
1.2

1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

1.2
1.2
1.2
1.2
1.2

f;Sl><...><Sn—+S

SET

=23.13.

6 =}:‚E T [W] .

identical substitution

composition of 0 and “c
restriction of 6 to the set of variables W
converse of a renaming
set of sort symbols
sorted signature
term declaration
function declaration
subsort—declaration
set of term declarations
subson-declarations
subsort-ordering
set of all well-sorted terms
set of all well-sorted terms of sort S
{S e S}: l t e Tz’s}
sort of a variable (also denoted as x:S)
unique least sort in SEG)
topsort
well-sorted substitutions

. 8 is a 2-instance of t
szz t andssz t
6x= tx fo ra l l xe W

El}. e SUB); 7v; = O' [W]

E-quasi-algebra, E—algebra
denotation for S in the algebra A.
denotation for f in the algebra A
homomorphic extension of (p
quotient algebra of A modulo 5
canonical mapping wk —>A/E
specification (21, CS)
interpretation (MCD)

E—model
s = t holds in'algebra A,
the set of consequences of 95.
deduction Operator
equality relation induced by a theory € = (LE)
6x=E£ tx fo ra l l xe W

224

1.2
1.2
1.2
1.2
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.4
1.4
1.4
1.4
1.4
1.4
1.4'
1.5
1.5
1.5
1.5
1.5
1.6
1.6
1.6
1.6
1.7
1.7
1.8
1.8
1.8
1.9
1.9
1.9
1.9
1.9

OUT union of substitutions
idempotent closure of substitution o

32. e SUB: lt =2,E s
371 e SUB: M: =25 0' [W]

o 22,15 1: [W] and o 52 ‚E T [W]

E-unification problem, also denoted as 1"
set of fi—unifiers of F

set of all complete set of Z-unifiers of I‘

elements are denoted as cU
set of all minimal, complete set of Z—unifiers of I‘

elements are denoted as uU

class of unitary unifying theories

class of finitary unifying theories
class of infinitary unifying theories

class of nullary unifying theories

class of unification based theories, ‘ulu ‘umu “u” .

class of unitary unifiying theories with effectively

computable set p.U(I‘)

Eeunification problem, also denoted as A

set of ‘E-matchers of A .

class of unitary matching theories
class of finitajy matching theories

class of infinitary matching theories
class of nullmy matching theon'es

class of matching based theories, MIL) Mmu Moo
set of weakening substitutions
set of weakenin g substitutions fort

- demodulation relation at occurrence 11 ‚in s , with

equation e, and substitution 0'

transitive closure of the demodulation relation
reduction relation induced by a tenn rewriting system

*>symmetric closure of
norrnalform of s with respect to R

set of used vauiables of F during a transformation

equation system induced by 6
transfomation relation from the rule system RS

transitive, reflexive closure ofd the transformation-
relation

225

1.10
1.10
1.10
1.10 '
1.10
1.11

1.11

1.11

1.11
1.11

- 1.11
1.11-
1.11
1.11

1.11
1.11

1.11
1.11
1.11
1.11
1.11
1.11
1.11 .
1.11

1.12
1.12
1.12
1.12
1.12
1.13
1.13
1.13

1.13

the unsolvable equation system
solved part of 1"
unsolved part of l"
s and t are 'E—equal modulo the initial algebra
strong initial subsumption
weak initial subsumption
free subsumption SLE [W]

quasi—terms with respect to '1‘.
parallel reduction with respect to the TRS R
simplification ordering on ground terms
set of substitutions for a restricted R-system
set of terms of an R—system
subsumption ordering with respect to-SUBR
equivalence relation corresponding to SR
equivalence class of x with respectto ER
relativited specification
equationally relativized Specification
s is connected to t by an equation in I"
k.parametcr, k(CS) = Z{|CS| —- l l C 6 CS}

variables W

1: is rigid-instance of 0 modulo the theory E and the
set of variables W

complete rigid E—unification procedure
set of son-predicate equivalences
(P,SP) € SPE
set of intersection constraints

_ ({Sl-,...,Sn},T) eISC

' 226

1.13
1.13
1.13
1.14
1.14
1.14
1.14
1.14
11.3
11.3
11.8
11.8
11.8
11.8
11.8

_ II. 10
II.10

‘ IV.1
' v.2

o is rigid-equal to 1: modulo the theory E and the set of

V.5

v.5
V.5

" V1.1
V1.1

. V1.1
V1.1

9.8.1953

1960-1964

1964-1972 '

1972

1973-1974

1974-1979

1979—1983

_1984-1987

Lebenslauf

geboren in Lorch/Rh g.

Besuch der Grundschule in Lorch/Rhg.

Besuch des Rheingau-Gymnasiums in Geisenheim
Abitur im Juni 1972.

Studium der Mathematik mit Nebenfach Physikan der
Johannes-Gutenberg Universität Mainz.

Wehrdienst:

Studium der Mathematik mit Nebenfach Physik an der
Johannes-Gutenberg Universität Mainz. .
Diplom im Juni 1979.

Organisator fiir Datenverarbeitung bei der
Unternehmensberatung Heyde&Brandt in Bad Nauheim.

wissenschaftlicher Mitarbeiter am FaChbereich Informatik der
Universität Kaiserslautern in der Arbeitsgruppe Siekmann im
Bereich Künstliche Intelligenz und Automatische
Deduktionssysteme. .

