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The algorithms for homogeneous equations are extended to solve
inhomogeneous equations, since this is an important component of the
AC-unification algorithm of Livesey and Siekmann and the extension of Herold
and Siekmann.
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l . INTRODUCTION

l . INTRODUCTION

The interest in diophantine equations has a long tradition in mathematics.
However, recently algorithms to solve such equations became of great practical
relevance in computer—science, playing a central role in unification-algorithms
for terms with associative and commutative function-symbols (for short:
AC-Unification). AC-Unification turned out to be of practical importance for
term rewriting systems, automated theorem proving and many programming
languages in Artificial Intelligence (Al). ' ‘
In the literature two different approaches to the AC-Unification-Problem are
known: one based on M. Stickel [St 75], [St 81] and the other based on Livesey
and Siekmann [LS 76], which recently was extended by Herold and Siekmann
[HS 85]. A theoretical comparison is found in [Bil 85]. The most important
difference between the two algorithms is the reduction of the problem to linear
diophantine equations: Stickel abstracts his AC-Unification problem to a pure
variable unification. problem which leads to a homogeneous equation, whereas
Herold and Siekmann directly determine one homogeneous equation, which is
smaller than Stickers, and a system of inhomogeneous equations with the same
homogeneous part.
For example, Stickel [St 81 ]  gives the problem of unifying the terms
f(x,f(x,f(y. all) and f(b,f(b,z)). where f is an associative and commutative
function-symbol, and this yields the homogeneous linear diophantine equation
211 + 12 + x3 = y] + 2y2 .The same example is treatediaS 85].There
the reduction yields the equations

2’11  * x12  = Yu

2121  * x22 * 1 = V21

2’31 * x32 = V31 * 2 -
The set of all solutions with non-negative integer coefficients of a homogeneous
linear diophantine equation forms a commutative monoid which is  finitely
generated [CP 67]. Sequential algorithms for determining such a generator-set
have been proposed by Huet [Hu 78], Fortenbacher [Fo 83] and Lankford
[La 85], a parallel algorithm was outlined by Büttner [Bü 85].
After an introduction to the theory of linear diophantine equations we present
the algorithms of Huet and Fortenbacher and extend them to compute the sets
of all minimal solutions of a system of inhomogeneous equations like the one in
the example above. The main difference between both is that Huet's algorithm
is essentially depth-first whereas Fortenbacher's is breadth-first. The
algorithms have been implemented in ZETA-LISP on a SYMBOLICS 3640, a
comparison in terms of the runtime on various examples is presented.
The most important result is that in most cases it is faster to solve the multiple
equations of the Livesey and Siekmann algorithm than the larger homogeneous
equation of Stickel.
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2. SOLVING LINEAR DIOPHANTINE EQUATIONS OV. I

2.  SOLVING LINEAR DIOPHANTINB EQUATIONS OVER N

2.1" The Concept of lininality

We want to introduce some notion and definitions about vectors of
non-negative integers:
Let “0 be the set of non-negative integers, N = N„\{0} the set of positive
integers, and let it, xm be elements in No“. A p-Iinenr tantalum
(positive linear combination) of the x i  is

q = a,x1+_...+ aux"  ,withai zo

Vectors are called para-pendent, in“ none of them can be represented as a
p-linear combination of the others. If S s N„°\{n} and M s 5, then M is a
p-bln": of S, iff the elements of M are p-independent and every element of S
can be represented as a p-linear combination of elements of M.
Let x=(x„...,1n) and q= (y„ ...,yn) beinNn". We define astrict order

at“;  ifl‘ x“ ;  m x i sy i for l s i sn .

Let S be a set of vectors in N„“\{n}, then )( e Si s  limit/in S, iff there is no
I; e S with I; 4: x .

- LEMMA 2—1: Let S s Homo} . If every element of S is minimal in S, then the

elements are p—independent.

BREEZE Assume that S is minimal and there exists x e S and M = S\{x], M * ß,

such that x = 2 any ‚with  a“ > 0. Then every element of M must be smaller
than x .  ‘! e M
But this is a contradiction to the minimality of x .

To illustrate the notions we shall give some examples =
Firstwe have (1 ,2 ,1 )  4: (2, 2 ,2)  a (2,3,3),
butL (1 ,2 ,1 )  1: (2 ,1 ,2 )
and not (2,1,2) « ( 1 ,2 ,1 )  .
The setM - {(2, l ,  l )  , (1,2, l )  , ( l ,  l ,  2) ‚ ( l ,  0 S)} is minimal and its elements
are p—independent.
The elements of M' = { ( l ,  1, 1) , (1, 2, 1)} are p-independent, but M' is pg
minimal!
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2. SOLVING LINEAR DIOPHANTINE EQUATIONS OV. .

' 2.2 Homogeneous Linear Diophantine Equations

. Let u - (al, , an) e N', D = ( b r - ° -  , bh) e N“ and n, m z 0, them: and [I define a

homogeneous linear diophantine equation

HOM(u,b)= 31,1, + + aI I. = -bl y‘ + + ba Vu .

- The set of all solutions u e Komma} is denoted by 5(u, h), the set of all minimal
solutions in Stu, b) is denoted by Me, It). (Note that we only want to consider
nontrivial solutions !)
We do not consider the trivial case that both n = 0 and m = 0, i. e. the trivial
equation 0 = 0. I fn  = O or m = 0, we define HOM(u, b) as aI xI + + aIII Im = 0

resp. O = b ,yI  +...+ buyn

For example, given It - (2, l ) e  N2 and b - ( l ,  1 , 2 ) e  N3, we have
H0M(tt,l))=211 + x2 - y1+  y2 + 2y3

and M(n,b)={( l ,0 ,0 ,0 ,1) . ( .0 . .1 .1 .0) . (0 .1 .1 .0 .0) (0 ,1 ,0 , l ,0) .
(0.2.0.0,1).(1.  0. .2.0.0),(1.0.0.2.0)}

.. Since we are only interested in linear diophantine equations, we shall drop
"linear" and "diophantine" and just write "homogeneous equation".
We shall now explore, under which conditions there exist solutions to a
homogeneous equation and then take a closer look at the sets Slu, h) and
‘Mlu, h).

LEMMA 2—2 = Let u, [I define a homogeneous equation.
There exists a (nontrivial) solution iff n > 0 m m > 0 .

M "=": Assume S(u,b) * B and w. l. o. g. n = 0. Let s = (cl, , cn) be a
nontrivial solution. If W. l. o. g. c1 > 0, we have

0=a lc1+m+auc  zanc >0  é.
"<=": Let n, m > 0 and consider s=(b1, c2, , cm, a1, d2, , da), with ci = 0 for
2 s i s m and di = 0 for 2 s i s n. Then 5 is obviously a solution.
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nontrivial solution. If W. l. o. g. cl > 0 ,  we have

0 = a'cI *"°+an°m z alc1 > 0 é.
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2 s i s m and di = 0 for 2 s i s n. Then 5 is obviously a solution.

I





2. SOLVING LINEAR DIOPHANTINE EQUATIONS OV. .

LEMMA 2-3 = Let u and [I define a homogeneous equation and let
g == gcd(a1 an, b1 bu).
Define u' = (a,'....,a_'). b'= (b‚',...,bn') by

ai'- (l./g) ai for!  s i sm
bi'= (1/3) bi for ]  s i s n

Then S(u,b) - S(n'‚b') .

EBQQE; Obviously n ' eN ' ,  b'eN“ .
Now s - ( c l  ,...,c._,d1 ‚...,d”) € 501,5)

e: _ alcl  + + amem = bid!  + + bndn

<= ( l / g )  (a'c' + + a_c_) = (1/3) (bld1 + + bndn)
=» al'c1 + + am' cm = b‚' dI + + bn' dn
=» s e S(n', b ')

I

Because of the last two lemmas we may restrict ourselves to homogeneous
equations with n, m > 0 and gcd(al a., b1 bu) = 1.
Since the set of all solutions S(u, b) forms a commutative sub monoid of “0°“, it
is generated by a finite basis (c. f. [CP 67]), which consists of all minimal
elements of S(n, b). Hence M(u, b) is a finite p-basis of S(u, b).

THEOREM 2-4 : Let u = (a1 ‚...,am) e N' and b = (bl ,...,bn)eN“ define a
homogeneous equation. Define maxIll =- maria1 ,...,au} and
math = = maxlbl bu}. Then the components of every
minimal solution s - (cl cm, dI d“) are bounded by
Osc i smaxhandOsdi smaI ‘ for l s i smand  l s i sn .

For a proof see [Hu 78].
Since this theorem defines a finite and effectively computable search-space, we
can compute M(u, b) by generating each element of this space and removing
those that are no minimal solutions. in  fact this is the main idea of Huet's
algorithm [Hu 78], but he uses additional bounds to reduce the generation of
p—dependent elements.
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p—dependent elements.





2. SOLVING LINEAR DIOPHANTINE EQUATIONS OV. .

2.3 Inhomogeneous Linear Diophentine Equations

Let m, n z 0, u - (a1 am) e N', b - (bI  bn)e N“, and P- (p l  p‚}=l .
Then u, h and P define a system of r inhomogeneous linear diophantine
equations _

at !“  .* ""” “aim = blyfl  * "”a": * pl

INHOM(u, b, P) = -

. a lxr l  + + amxrm = bly t ' l  + + bnyrn + pr

In this chapter we only deal with a single inhomogeneous equation, i. e. P = {p}
with p e l . Instead ' of INHOMlu, b, P) we shall therefore write INHOMfilo, b).
Notice that we allow p = O and treat the homogeneous equation as a special
case. '
As with homogeneous equations we do not want to consider the trivial case
that both n=  0 and m=0 .  If n = 0 or m = 0 we define INHOMp(u,b) as
a l l l  + + am:II = p and 0 = bly l  + + buyn + p, respectively.

The set of all (nontrivial) solutions It e N„"*°\{ll} to INHOMput. b) is denoted by
Spur, b), the set of all minimal solutions is Mom, h) = Spun, b).
As with homogeneous equations, we shall drop “linear" and .“diophantine” and
just write "inhomogeneous equation".
First we shall look for conditions under which the set of solutions is empty:

Theorem 2 -5  = Let u, h and p define an inhomogeneous equation INHOMP and

define g = = gcdta‘ an, b '  bu).

(1 ) l fn>0  and m>0,then
there exists a solution iff g I p .

(2 )1 fn=0  or m= 0 thenwe have:
(a) If there is a solution then 3 I p .
(b) If m = 0 m p =.» 0 then there is no solution.
(c) If n = 0 and p s 0 then there is no solution.

ERQQL: Mill: "=>": If s = (cI cm. (1' an) is a nontrivial solution to
INHOMp, we have alcI + + amcIII = bldl + + bad“ + p ‚Since all coefficients

ai and bi  are from gl  and since 32  is an ideal of l, p e gl,  i. e. g I p follows.
"=": Let p/gez. For l s i s  m and l s j s -n  define si i:= (cI ‚...‚cmdl „‚d“)
whereck=hi  fork= iandck=0for  l sks i s  m, dk=a i fork=j  anddt=0
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In this chapter we only deal with a single inhomogeneous equation, i. e. P = {p}
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Theorem 2 -5  = Let a. h and p define an inhomogeneous equation INHOMP and

define g == gcdla1 ,...,a'.,bl ,...,bn).

( l )  I fn>0  and m>0,then
there exists a solution iff g l p .

(2 )1 fn=0  or m= 0 thenwe have:
(a) If there is a solution then 3 I p .
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INHOMP, we have aIc1 + + amcm = b‘dl + + budu + p .Since all coefficients
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2. SOLVING LINEAR DIOPHANTINB EQUATIONS OV. '

for l .<. k . i s 11. These vectors are solutions of the homogeneous equation.
Furthermore we know (from number theory) that the greatest common divisor
g is linear representable, i. e. there is a solution it - (u1 u., v' vn) e lm"
with al \:l + ...+ aIll "m = b' v1 + + bn vn + g. Multiplying by c = = p/g we get
a,  cu1  + + ame u_ = b]  cv l  + ..._+ bncva  + p.
Now suppose there is i or i with ui < 0 or vi < 0 . Then by adding sii to u for all
these i, i we obtain a solution with non-negative components.
bill): (2b) and (2c) are obvious. Our proof of the first part of ( l)  is also a
proof for ( 2a).

I

Lemma 2—6 _: Let m, n > 0. Let a e N“, be  N“ and p define an inhomogeneous
equation INHOMP.
Define g == gcdlal awb‘  Mb“) ,

‘n'== (al'‚..., am') with ai'= ( l /g )a i  for l s i s  m and
b'== (b‚'‚...‚ bn') with bi'= (l/g)l>i for l s j sn .
I fg lp then  it is Sp(u,b) = Sp,'(u‘‚b').

1711993: s = (c' „ . . , c l  Md“)  e Splat!)
«==> alc‚+.. .+a_c_' =b‚d‚+ . . .+bndn+  p

=» aI'cl+...+am‘cIll = bI'dI+...+bn‘du + p/g
=» s e s„„(um ).

I

From now on we shall only consider inhomogeneous equations with n, m > 0
and gcdlaI an, bI b“) = t ,  which, according to Theorem 2-5, always have
a solution.

Theorem 2-7 = The set of positive integer solutions Sp(u, 0) of an
inhomogeneous linear diophantine equation INHOM9 is

{ulu=xp+xowithxpe Mp(u,b)andxoeS(u,b)u{0}}.

Br_o_o__f: It is easy to see that x, + "0 is in Sp(a, b). Conversely let g e Split, b) then
if 1; is in Mp(u‚ b) we are done with x = ll. Suppose I; is not in Mplu, b) then there
exists by definition "9 in Mplu, b) with "p < 9. Therefore we have i; - xp > |] and
henoe u-xp=xoeS(n,b),i.e.q=xp+xo. I
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for l s k .. i s 11. These vectors are solutions of the homogeneous equation.
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a,  c uI + + anc  um = b'  cv1  + ...}+ bncvn  + p.
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&“l (2b) and (2c) are obvious. Our proof of the first part of ( l)  is also a
proof for (2a).
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and gcdlaI an, bI b“) = l ,  which, according to Theorem 2-5, always have
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Theorem 2-7 = The set of positive integer solutions Sp(u, b) of an
inhomogeneous linear diophantine equation INHOMp is
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PM It is easy to see that "v + "o is in 89(0, 0). Conversely let |; e Split, b) then
if 1; is in M901, 0) we are done with x = 0. Suppose I; is not in MP“), is) then there
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We now state an important relation between the sets Mom, b) and M(a, b), i. e.

the minimal solutions of an inhomogeneous equation and those of the
corresponding homogeneous equation.

THEOREM 2-8  = Let INHOMplu. h) be an inhomogeneous equation.
5 e Spun, b) isminimal inSp(a, b) iff there is no u e M(n, b)
with v << s .  .

m; Let s be a solmion to the inhomogeneous equation.
First let 5 be minimal in Sp(n‚ 0) and assume there is v e M03, [3) with u << 5. But
then s - u << 5 is also a non-negative solution of the inhomogeneous equation,
a contradiction to the minimality of 3.
Now assume there is no u e M(o, b) with u << 5, and s i s  not minimal in SP0}, h).

Hence there exists w 5 89m. 0) with w « s ,  and s - w « s is in 8(0. n). 5
I

As proved in [LS 76],— Mpm, b) is bounded. Maiwand [Mai 78]  showed, that

every component or a minimal solution to lNI-IOMpm, b) must be smaller than

max{ai an, bI by p}. In Theorem 2 -10  we shall give a slightly better

bound, for which we need the following technical lemma =

LEIIA 2-9 = Let 0 , ! )  and p define an inhomogeneous equation INHOMP.

( i )  If p > 0 ‚ define b'=-(b1,...,bn,p).Then
Mpm, h) = {(cl cm, a '  an) |

(c1‚...‚cm,dl‚...‚dn, 1 )  e M(u‚b')}.

(2)  Up  < 0 , define 13' == (aI man ,  -p ) .Then

Mpln, b) = {(c] cm, dI do) I
(cl cm, I .  dl  an) e M(u‘, b)}.

PRQF: We only prove ( l  ); (2) follows by exchanging a and b.
"s": If u - (ul um") is a minimal solution of INHOMpla, b), then obviously
u' = (u' um“, 1) is a solution to HOM(o, b'). Now assume there is
v - (v1 vmmdk M(u,b') and v << u'. If Vm+n+l - i, then (vI ,...,vmn) << u is
a solution of INHOMpm, b). If mq = 0, then (111 - v1 um“ - vum) « u is a
solution of INHOMpht, b). In both cases we get a contradiction to the minimality

ofu .
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We now state an important relation between the sets M'‚(u, b) and Wu, [1), i. e.
the minimal solutions of an inhomogeneous equation and those of the
corresponding homogeneous equation.

THEOREM 2-8 = Let INHOMpm. I!) be an inhomogeneous equation.
5 e 59(11, b) is minimal inSp(a, b) iff there is no u e M03, [1)
with v << s. '

EMP; Let s be a solution to the inhomogeneous equation.
First let 5 be minimal in Spat, b) and assume there is v 6 Wu, b) with u << 5. But
then s - v « s is also a non-negative solution of the inhomogeneous equation,
a contradiction to the minimality of 9.
Now assume there is no v e M(u, b) with v << 5, and sis not minimal in Sp(n, [1).
Hence there exists w e Spat. b) with w « s, and s - w « s is in 801.0). 5

I

As proved in [L5 76],— Mpln, b) is bounded. Maiwand [Mai 78] showed, that
every component of a minimal solution to 11111011511, b) must be smaller than
maxünl an, b ‘  bu, p}. In Theorem 2-10  we shall give a slightly better

bound, for which we need the following technical lemma =

LBIIIA 2-9 = Let a , n and p define an inhomogeneous equation INHOMP.

( l )  p>0 ,de f ine  b'==(b1‚„ "bw p).Then

M‚(u‚b)= {(c‚....‚ d‚... ..d" ) l
(ev.... cm,mdw ., do , “  15 M01, b '.)}

(2) p < 0 define n' : = (a ‚ .„  „I,-p)}l'hen
MWmM-M„‚ LP,MI

(c„„.‚cm,1‚d„...‚dn) 1-: M(u‘,h)}.

Mi We only prove ( l) ,  (2) follows by exchanging u and b.
"s": If u - (uI ‚.. , um") is a minimal solution of INHOM'„(a b), then obviously
u' = (u' um“, 1) is a solution to HOMla, 0'). Now assume there is
v.-(.v1, ., Vm+n+1)€M(°°  b ')and v «u .  ll‘vflmM - 1, then (v1... ., a)  «u  is
a solution of INHOM put, b). If vmm- =0, then ( "1  - V1 ,...‚umm - vum) « u is a
solution of INHOMpüt, b). In both cases we get a contradiction to the minimality
of u .
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"a": Let u' - (u1 u 1) be a minimal solution of HOM(a, b'). Thenm+n ’
obviously u _‘ (u1 um“) is a solution of INHOMpm, b). Now assume there is
v --(V1 a ) e Mom, b) and v << u . But then (vI "'"a ‚l) « u' is a solution
of Homo. b’) and therefore u' could not be minimal.

THEOREM 2-10 : Let u ‚n and p define an inhomogeneous equation INHOMp
Define max1 = - maxla1 an , 4p}

max2 = = max{b1 bu , p } .

— Then the components of every minimal solution
s-(cl  ,...,cm, d1 da) to INHOMgla, b) are bound by
Oscizzmax2 and Undi smaxI  for l s i sm and l s i sn .

The proof follows from Lemma 2-9 by applying the bounds of Theorem 2-4 to
the extended homogeneous equation.
As mentioned in the introduction, we are interested in a system of multiple
inhomogeneous equations and one corresponding homogeneous equation. With
respect to AC—Unification we expect that the inhomogeneous parts p will not be
substantially larger than the coefficients ai, bi“ But then, according to Theorems

2—4 and 2-10,  the search-spaces are overlapping. So we should avoid
generating the same elements for different equations, but try to test each
generated vector. if it is a solution to anyone of them .
In the next two chapters we shall use this idea to extend the algorithms of Huet
and Fortenbacher from homogeneous to systems of inhomogeneous equations.
Theorem 2-8  will help us in doing so.

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OV. .

"a": Let u' - (uI u 1) be a minimal solution of HOM(a, b'). Thenn+0 ’
obviously u é (u, um.) is a solution of INHOMpkt, 0). Now assume there is
v - (v1 VIM)e Mom, b) and v « u . But then (vI "WV-m ‚l) « u' is a solution
of HOM(u. b') and therefore u’ could not be minimal

THEORBII 2 -10  = Let a , b and p define an inhomogeneous equation INHOMP

Define max1 ==- maxla1 am , —'p}
max2 : = maxlb, bII , p } .

— Then the components of every minimal solution
s-(cl  ,...,cm, dl da) to INHOMfllu, b) are bound by
0.sci.<.max2 and Osd i smax1for l s i sm and l s i sn .

The proof follows from Lemma 2-9 by applying the bounds of Theorem 2-4 to
the extended homogeneous equation.
As mentioned in the introduction, we are interested in a system of multiple
inhomogeneous equations and one corresponding homogeneous equation. With
respect to AC—Unification we expect that the inhomogeneous parts p will not be
substantially larger than the coefficients ai, bi' But then, according to Theorems
2-4 and 2-10,  the search-spaces are overlapping. So we should avoid
generating the same elements for different equations, but try to test each
generated vector. if it is a solution to anyone of them .
In the next two chapters we shall use this idea to extend the algorithms of Huet
and Fortenbacher from homogeneous to systems of inhomogeneous equations.
Theorem 2-8 will help us in doing so.
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3 THE ALGORITHM OF HURT

3.1  The Homogeneous Case

In 1978 Gerard Huet described an algorithm to solve homogeneous linear
diophantine equations over No [Hu 78]. Before presenting it, we have to do

some preliminaries:

Let u = (a1 am) e N" and b = (h.1 bn) e N“ define a homogeneous
equation HOM(u, h); then let

_ maxI == mindsI a.}
maxb == max{b1 bu}.

For l s i smandl s i sn  wedefine _
dii === lcm(ai, bi )  / ai (least gommon multiple)
eii = lcm(ai‚ bi)  / hi
5i ;  =- (x‘ mi...-Y, ,...,yn )e N.,-‘“, with xi = dü, yi = eii,

all other components 0.

maxyii = = minleti - l ! xt z dti , 1 s t s i}, if this set is not empty,
m”:  otherwise.

The sii are obviously special minimal solutions. Now Huet states some
important properties of minimal solutions of HOM(n, b):

THEOREM 3 -1 :  Let n and b define a homogeneous equation and let
u = (II I., 371 ya) be a minimal solution to HOM(u, In),
different from the s ii'

Thenfor l sksm
(a) x i s  mash for l s i sk
(b) aI 11+ .”q  s b. malty." +...+bn maxyn".

Andfor l s s sn
(c) yi ; maxyill f or l s j s s
(d) b1V1*- - -*bsys  ; a‚x ‚+ . . .+a„x_ .

For the proof see [Hu 78]  .
Now we can cite Huet's description of the algorithm ([Hu 78], DP 145 f ), with
minor notational adjustments:
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Now we can cite Huet's description of the algorithm ([ Hu 78]. DP 145 f ), with
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3. THE ALGORITHM OF HUET

Our algorithm consists in generating potential solutions in increasing
lexicographic order. starting with (and not including) the trivial solution
(0,, ,0) .  The values of the xi's are progressively bounded according to the

- conditions (a) and (b) above. When all 15’s are chosen. the yi's are bounded
according to the conditions (c) and (d).
When the algorithm generates a potential solution (x. q). it checks that
(1) it is indeed a solution ( . . . )  [to  Home. b)]
(2) it is not greater than any solution previously generated.
Then it backtracks to generate further solutions. When it finally stops. all
particular solutions sii's are added. Remark that when a solution is generated and

checked, it is indeed minimal. because any solution generated later on will either
be greater in the lexicographic order (and therefore not below it in the
componentwise order). or one of the sii’s. which cannot be below it by

construction. The sii’s are themselves known to be minimal. which finishes the

correctness proof of our algorithm.

In the following we shall call these potential solutions, generated by the
algorithm, proposals.
In addition to these upper bounds for the Yi’  one might use the following

theorem which gives a lower bound for them.

THEORElß-Z : Let a and b define a homogeneous equation. Then for
every minimal solution u = (x1 In, yI ya) and for

l s i s nwe  have yi : max{0‚ ci/bi} , with

14 n

c. == Z ai!i  - Z biy i  - 2 hi maxyi“.
i - t  i - l  i -m

PROOF : Since u is a solution, it is for 1 s i s n :

m i - l  n

‚Zlaili " ‘b iy i  * hiya * Z biy i
‚ . i- i-M

In 1-1 n

and therefore biyi = Z ail:i - Z biy i  — 2 hi yi
i - l5-1 i-i+l

With Theorem 3-1 (c) we now get bi yi 2 Cr
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Our algorithm consists in generating potential solutions in increasing
lexicographic order, starting with (and not including) the trivial solution
(O.. ‚0).  The values of the xi's are progressively bounded according to the

- conditions (a) and (b) above. When all 15's are chosen. the yi's are bounded
according to the conditions (c) and (d).
When the algorithm generates a potential solution (x .  q). it checks that
(1) it is indeed a solution ( . . . )  [to  Home. b)]
(2)  it is not greater than any solution previously generated.
Then it backtracks to generate further solutions. When it finally stops. all
particular solutions sii's are added. Remark that when a solution is generated and

checked. it is indeed minimal. because any solution generated later on will either
be greater in the lexicographic order (and therefore not below it in the
componentwise order). or one of the sii’s. which cannot be below it by

construction. The sii’s are themselves known to be minimal. which finishes the

correctness proof of our algorithm.

In the following we shall call these potential solutions, generated by the
algorithm, propouls.
In addition to these upper bounds for the yi, one might use the following

theorem which gives a lower bound for them.

THBORBlß-Z = Let u and b define a homogeneous equation. Then for
every minimal solution u = (x1 In, yI ya) and for
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PROOF : Since u is a solution, it is for l s i s n:
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3. THE ALGORITHM OF HUE'I'

3.2 The Inhomogeneous Case.

We shall now show, how Huet's algorithm for homogeneous equations can be
extended to find in parallel the minimal solutions of a system of
inhomogeneous equations as defined in 2.3.
The resulting algorithm will be essentially the same as Huet's, but will use four
slightly different bounding criteria. After generating a proposal, we
additionally have to test, if it is a solution not only of the homogeneous
equation, but of any of the equations. Theorem 2-8 yields that no solution is
lost, if we test the minimality of a proposal by comparing it with the minimal
solutions of the homogeneous equation.

If u, b and P = {pI pr} = l give a system of inhomogeneous equations
INHOM(u, b, P), we define dii , eii and 511 as far the homogeneous case. But we
replace the definitions of max., maxb and maxyii by

maxI = mamaI am} u P‘) ‚where P' = { - D I p e P}
max2 - max({b‘ bn} u P) ,
maxy-inhii == min(eti - l I xt 2 ati. 1 s t s 1}. if this set is not empty,

maxl otherwise.
And in addition we define

max, == max(Pu (0})
min” = = min(P u {0}).

Now we can extend Huet's criteria to our inhomogeneous problem =

THEOREM 3—3: Let u, b and P define a system of inhomogeneous equations
INHOMlu, b, P) and let u = (x1 In, yI y“) be a minimal
solution to INHOMp(u, b) for some p e P, but different from
every sii. '

Thenfor l sk  s m
(a) :55 max2 for t s i sk
(b) 3,11+...+a„11ll s bl maxy—inhlh ...+

+ b" maxy—inhn" + max”.

And for l s s s n
(c) yi s maxy-inhi'“ for 1 s j s s
(d) b1y1+. . .+b'y'  +minp s aI xl+. . .+anx_ .

H
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3.2 The Inhomogeneous Case.

We shall now show, how Huet's algorithm for homogeneous equations can be
extended to find in parallel the minimal solutions of a system of
inhomogeneous equations as defined in 2.3.
The resulting algorithm will be essentially the same as Huet's, but will use four
slightly different bounding criteria. After generating a proposal, we
additionally have to test, if it is a solution not only of the homogeneous
equation, but of any of the equations. Theorem 2-8  yields that no solution is
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solutions of the homogeneous equation.
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INHOM(u, b, P), we define dii , eii and 5 ii as far the homogeneous case. But we
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maxl otherwise.
And in addition we define

max? = = maxi? u {0})
min” = = min(PU{0} ) .

Now we can extend Huet's criteria to our inhomogeneous problem :

Tamm-zu 3—3: Let u, b and P define a system of inhomogeneous equations
INHOM(u, h, P) and let u = (xl In, yI y“) be a minimal
solution to INHOMpm, h) for some p e P, but different from
every s“ .  '

Then for l .<. !( s m
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(b) :11 !‘ “‘n-”1:1: s b1 maxy-inh'*+...+
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m Agla  1: follows from Theorem 2—10.
Aglbzl a”! + .  " . .+akxk  a 'x l+ . . .+a .x l l

bly l+m+bnyn  +9
b‘ yl  + + b" y" + maxp
b maxy-inhl " +.  ‚+ bn maxy-inhn'I + max,
bI maxy—inh " + ‚+ b“ maxy-inhfl'K + maxp

Ag !c  I: If there is no t with x _>d . ,  then yi > maxy-inhi" = max' is a
contradiction to Theorem 2-  10. However, if there is t s k with xt 2 (1" and
maxy-inhiIll = eti —,l then Yi"> eti means sti << n, since u == sti. But sti is a
solution to the homogeneous equation, which contradicts the minimality of u by
Theorem 2-8 . '
Ad ld}: Since u is a solution to INHOMplu, b),we have

b 'y1+ . . .+b .y .+minp  s b‚y‚+ . . .+bnyn+
a +...+a—_x_. I

because of (c):

IA
M

IA

111

In addition to these bounding—criteria for the yi’s , there is another bound,
analogous to that of Theorem 3—2 :

THEOREM 3-4: Let it,!) and P define a system of inhomogeneous equations.
Then for every minimal solution it = (xl 1., yI ya) of
any of the equations and for all i s n, the yi are bounded
below by y i z  maxlO, ci/bi}, with

“s ix  ai xi _?  biy  -2  bi maxy-inhiIll - maxp.
i-i+l

EEQQIL: I fu  e Mp(n‚b) forsome peP ,  we have for ! s i s  n:

i -I

Z a.x .  Z biy i  + biy i  +2  b. yi +I I1-1 1-1 1- m

n

Zen-x  Zbi iy -Zb iy i -p .
j-i+l

With Theorem 3-3 (chndps max” we now get biyi a ci .

and therefore bi yi
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MA d: !g l  follows from Theorem 2-10.
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IA
M

IA
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THEOREM 3-4:  Let u, b and P define a system of inhomogeneous equations.
Then for every minimal solution u = (11 ,. „ z . ,  y' ,. ..,yn) 01‘
any of the equations and for all i -  n, the yi are bounded
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”:52  a ix  iz b iy  -Z  bi maxy-inhiII - max. .  "'
| - | + l

EEQQIL: I fu  e Mp(o,b) for some peP ,  we have for l s i s  n:

H

Za i x i -Zb i y i+b biy i  +Zb i i py+
I"  I"  ] - i+1

ZaH-x  Zb i i - y  Zb i i y -p .

With Theorem 3-3 (c) and p s mun we now get bi yi a c: .

and therefore bi yi

I2
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4 = 'I'IIB ALGORITHM OF FORTENBACIIBR

4.1 The Homogeneous Case

As we have seen in chapter 3, Huet's algorithm generates proposals in a lexical
order. This might be regarded as a depth-first search in the grid
[0  maxblx [0  max.]. In contrast, Fortenbacher presents a kind of
breadth-first algorithm [F0 83], for the description of which we need two
concepts:

Fora vector u = (uI ‚..., um, Vl Va) 6 Nam“ we define the cross-su.
s(u)==u1+...+ " . .+  v‘ + + vn. Obviously, if w « u then slw) < slu).
Further more we define the (ti/Terence between the left-hand and the
right-hand side of the homogeneous equation for u =

d(u) : = (a' u' + + aIII um) - (b1 V' + + bu vn).

Fortenbacher starts with the set L1 of those (mm) proposals u e Rom", which
have s(u) = 1. In the k-th step. k z 1. he constructs two sets LIM and
M" = = {se M(u, b) I s(s) < X} from those elements u = (ul um . vl vn) of L",
for which there is no v e Mk with v << u. Hence there is also no such v in We, b).
If u is a solution, it is therefore a minimal solution, and we put it into M'. If u is
not a solution, then we use it to generate LM, which is the set of children of all
these nonsolutions. If d(u) < 0, the children ui of u are generated by
incrementing the component ui on the left-hand side of u, i - 1 m. If
d(u) > 0, then the children ui of u are generated by incrementing the
component vi on the right-hand side of u. i = 1 n. The algorithm stops, if L"
is empty. Since for all u e Lk we have s(u) - k, all sets Lk are disjoint.
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these nonsolutions. If d(u) < 0, the children iii of u are generated by
incrementing the component ui on the left-hand side of u, i - l m. If
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component vi on the right-hand side of u. i = 1 n. The algorithm stops, if Lk
is empty. Since for all u e L" we have s(u) - 1:, all sets L" are disjoint.
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4. THE ALGORITHM OF FORTENBACHEI

FUNCTION FORT-HON! :

M A homogeneous equation HOM(a, b), defined by u = (a1 a.) e N‘“ and
b =- (b1 bowl" .

5.11% k =— 1;

LI =- {u1 um“) = lin-"‘,
where every component of ui is 0 but the i-th, which is 13

L2 == 6 ;
Ml = = ”;

SIEPLL= EQRALL u = (ui....,um, v1.....vn)eL" ng:
1E «(35eM*:s<<u) [HE

]_E ueS(a‚b)
IHEEMk=-MkU(u}.

ELSHE d(u)<0
[HE 1,M ‚_ LM umi Iui-(ul' , , um'‚v„ ‚v„).

u‚'-:==u8 i f s - r i ,u i '=u i+ l . l s i sm};

ELSEE dlu) > 0
131512t = - Lm u {ui I ui - (ul , , um, vl', ,vn'),

v8'=vsifs*i .vi '=vi+ 131 S ign} ;

“mm LN-fl  111m STOP;
ME k "k+1 ;

Mk =-Mt- ' ;
LtHH-H;

GOTO STEEL

OQIPUT = M" is the set of all minimal solutions to HOMlu, b).

ENDOF PORT—ROM .

In the following paragraph we shall extend this algorithm to a system of
inhomogeneous equations, defined by a ,  [1 and Pc  Z . Since we allow P = {0}, we
may treat the homogeneous equation as a special case. There we shall also
show that this algorithm can be significantly improved upon.
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FUNCTION FORT-HUM :

11133;: A homogeneous equation HOM(u, b), defined by u = (a' a.) e N'“ and
[! =- (b1 bn)eN".

S_'[BP_0_= k =— 1 ;
I.:l ==- {u‘ ‚ . . . ,  um") c Noll"! a

where every component of ui is 0 but the i-th, which is 1;

L2 = = H ;

M1 = = g ;

SIEEL= EQRALL u = (ul....‚u_,v„...,vn)eL" 129:
IE 'I(356Mk:s<<u) 1m

LE ueS(u ,b )
mm Mh-Mkum}.

ELSE}: d(u)<0
[um Lm =- Lm u {u1 lui - (ul' , , umßvi, .vn).

u , ‘ -u8  i f s«n= i ,u i '=u i+ l , l s i sm} ,

ELSE: dlu) > 0
IHEHL'” : - LM u {ui lui - (u1 , , uwv", ,vn'),

v‚ '=v‚ i f s* i ,v i '=vi+  131 s i gn} ;

"mm LN-a  zum STOP;

OQIPUT = M" is the set of all minimal solutions to HOM(u, b).

ENDOF PORT—HOH .

In the following paragraph we shall extend this algorithm to a system of
inhomogeneous equations, defined by a ,  b and Pc  Z . Since we allow P = {0}, we
may treat the homogeneous equation as a special case. There we shall also
show that this algorithm can be significantly improved upon.
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4. THE ALGORITHM OF FORTENBACHER

4.2 The Inhomogeneous Case

We now want to extend our version of Fortenbacher's algorithm to a system of
_ inhomogeneousequations, as defined in 2.3. First we present the main idea
which leads to a naive extension of FORT-ROM, whose correctness and
termination are shown in Theorem 4-1  and Theorem 4-2,  resp. Thereafter we
discuss some inefficiencies and propose ways to avoid them. This leads to a
second, more sophisticated algorithm, which inherits its correctness and
termination from the first approach. It is shown to be complete in Lemma 4-5
and Theorem '4—6. _ '
The main idea of the extension is to increment those proposals that satisfy the
criterion of the homogeneous case, but to increment in a' different manner. in
the homogeneous case, a proposal u was only incremented, if there was no
we  S(o, b) with w << 11. In the following we shall call such a proposal

. promising. We may take over this criterion to the inhomogeneous case,
because if there is such a 11: and if any descendant s of u would be a solution to
INHOMP for some p e P, then also w « s ,  and according to Theorem 2-8  5 could

not be a minimal solution. However, the incrementation-strategy changes: we
increment the left—hand side of u, if there is p e P with d(u) s p, increment the
right—hand side, if there is q e P with d(u) 2 q and increment both sides. if there
are p. qwi thq  < d(u)<p.
Hence we obtain a first extension of Fortenbacher's algorithm as:

FUNCTION NAIVE-FORT-INHOM :

Mm; A system of inhomogeneous equations with the same homogeneous
parts, defined by u = (a1 , , am) e N'“, I) = (b‘ , , ha) 6 N“
and?  - {p1, , mr . - z .

SIBLL k = 1 ;
' P' = Pu{0} .

Ll ={v1,. . . ,v"',w1‚. . . ‚w°}= Now“
where every component of v i is 0, but the i-th, which is 1,
for l s i s  m,
and every component of wi is 0, but the (m+i)-th, which
is 1, f or l s j sn .

L2 == fl ;
(M.,l =)M‘ we.

MpI ==ß  fora l lpePi
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termination are shown in Theorem 4-1  and Theorem 4-2,  resp. Thereafter we
discuss some inefficiencies and propose ways to avoid them. This leads to a
second, more sophisticated algorithm, which inherits its correctness and
termination from the first approach. It is shown to be complete in Lemma 4-5
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The main idea of the extension is to increment those proposals that satisfy the
criterion of the homogeneous case, but to increment in a different manner. In
the homogeneous case, a proposal u was only incremented, if there was no

. we S(u, b) with w « u. In the following we shall call such a proposal
. promising. We may take over this criterion to the inhomogeneous case,

because if there is such a w and if any descendant s of u would be a solution to
INHOMp for some p e P, then also to << s ,  and according to Theorem 2-8  5 could

not be a minimal solution. However, the incrementation-strategy changes: we
increment the left-hand side of u, if there is p e P with d(u) s p, increment the
right-hand side, if there is q e P with d(u) 2 q and increment both sides, if there
are p ,qwi thq<d(u)<p .
Hence we obtain a first extension of Fortenbacher's algorithm as:

FUNCTION NAIVE-FORT-INHOM :

M; A system of inhomogeneous equations with the same homogeneous
parts, defined by u = (a1 , , am) e N', D = (b. , , bn) e N“
andP =- {p1, , p‚}=z .

m k = 1 ;
P' = Pom} ,
L1 = {v'‚...‚v"‘‚w1‚...‚w°} c NOW"

where every component of v ‘ is 0, but the i-th, which is l ,
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and every component of wi is 0, but the (m+i)-th, which
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4. THE ALGORITHM OF FORTBNBACHER

SIEEI : FOEALL u = (“v , uwvv... ,vnleL" m:
' LE -(35€M'=s<<u) IEEE

LE ueS(n,b)
man M'==M'u{u}.

ELSE
1E 3peP’ :  ueSp(a,b)

THE! Mpttfl l } ;

LE VpeP‘=d (u )$ :P_
THE Lk+1;-.- LN u{u‘lu‘=(u‚',.„,u_‘‚ VI,...‚Vn)‚ with

u"=ui i f sa= i ,u i '=u i+1  for t  s i sm} ,

m VpeP‘=  d(u)zp
THEN Lt” == L‘” 1.1{uilui=(u1 ‚...‚um, v1“, ...,vn'), with

' , vs '=vs i fs=u=j ,v i '=vi+1forls jsn}

SEIF 3p ,q ‘=qsd(u) sp
mm LN== L‘Mumi|u‘=(u‚‘‚...‚u_'‚v„...,v„),wim

u"=u‚ i f s* i ,u i '=u i+1for l s i sm}
u{uilui=(u‚‚...,un‚v‚'‚...,vn‘),with

vs '=vs i l ‘3¢ j ,v i '=v i+ l  for l s j sn} ,

STE2=1£ L"*'=ß TH ST P.
@ k ' :  k+  1:

Mk :=  Mt- l

Mp" = Mp1M forallpeP;
Ltd—l  :=  a ;

GOTO SIEI  .

QLILEUI; M" is the set of all minimal solutions to HOM(a, b) .
For all p e P is Mp" the set of all minimal solutions to INHOMp(u, b).

ENDOF NAIVE—FORT-INHOM.

As an example consider the system of equations, defined by a = (2, 2), b =(3)
and P = {-5, 5}, for which the algorithm generates the following proposals (the
edges show, how each proposal is generated):
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SEE” .EQMLL u = (u„...‚ u_‚v1,...,vn)eL" m:
E 1 (356M'=s<<u)  film

1}: ueS(u,b)
THEN M“==M'u{u}.

ELSE
1E 3peP‘ :  ueSp(u,b)

111E M" = = Mp" U {u};

LE VpeP‘=d(u)$_P_
THE LN == L“u{u‘lu‘=(u‚'‚„.,u_', v„...,v„)‚ with

u . ‘=u i i f sa= i ,u i '=u i+1  for t s i sm} ,

ELSELF. VpeP‘:  d(u)zp
I__H__ENL1M == L*+‘u{ui|ui= (u,...„u_,v‚'‚... ‚v')‚ with

v '=v  ifs=n=j‚vi'= vi+1 for l s j sn}
ELSBIF ap ,q '=qsd_ (u )sp
zum Llm == LNu{ufl|ui=(u‚‘,...,u_', v„...,v„), with

u‚'=u‚i fs=ri‚  ui '=u i+1  for l s i sm}
:.:{I.|ilt.li=(uI ,.. .‚u_, v,“, ...,vn‘), with

v"=v' i fsa=j ,v l '=vi+1 for i s i sn ) ,

srmz:  113 who  EN ST 9.
M k '" k*1;

mt == Mk-I

Mp" = M',"'' forallpeP;
Ltd—l  „„ fl i

GOTO 5125131.

m Mk is the set of all minimal solutions to HOM(a, b) .
For all p e P is M," the set of all minimal solutions to INHOMpül, b).

ENDOF NAIVE—FORT-INHOM.

As an example consider the system of equations, defined by n = (2, 2), b =(3)
and P = {-5, 5}, for which the algorithm generates the following proposals (the
edges show, how each proposal is generated):
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4.  THE ALGORITHM OF FORTENBACHER

u=  {(IO:O)(OI :o ) (oo :1 ) }

L28 { (20 :0X10 :1 ) (11 :0 ) (02 :0 ) (01 :1 ) (OO:2 ) }

, ."."$\ £
L3= { (30 :O) (21 :0 ) (20 :1 ) (11 ' :1 ) “0 :2 ) (12 :0 ) (03 :0 ) (0220031 :2 ) (00 :3 ) }

if Lk is the first empty set, i. e. the algorithm stops in this step, we define for
the following proofs L' = = 6 and M; = = M.)"1 for all s z k and p e P u {0}.

THEOREM 4-1: For all p e P u {0} and k 2 l: every element of Mat is a
correct and minimal solution to INHOMP.

PROOF = Every element s of Mp" is a solution to INHOM9 by construction. By
Theorem 2-8 we know that s is _a minimal solution, if there is no.1: e Mlu, b)
with 9 << 5. By construction of MPl for j = 3(5), there is no such v in M' and since
NhIVE-FORT-INHOM is just an extension of FORT—HOM, we know that
M' = {56 Ma, h)| 3(5) s i}. However if ve  M(u, b) and us  M‘ then sw) >] and
hence not 1: << 5 Therefore s i s  a minimal solution to INHOMP. I

THEOREM 4-2: NAIVE—FORT-INHOM terminates after finitely many steps.

PßQQI-‘z The algorithm terminates, if no more proposals are generated. 50 we
have to show, that every chain u“ << u' << , generated by the algorithm, has
an upper bound, i. e .  there is an ui which is either a solution to the
homogeneous equation (dlui) = 0) or no longer promising.
It is easy to show, that for every proposal u‘, d(u‘) is bounded by

minp - maxII < d(u‘) < maxp - mash.
Hence there are only finitely many values for dlu‘). So in every chain there is
ui with either d(ui) = 0 or there is j < i with d(ui) = d(u‘). But in that case
ui - ui << 0‘ is a solution to the homogeneous equation, and therefore ui is not
promising. I
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Ll= {(10:O)(Ul :0 ) (00 : l ) }

ua  {(20:o)(1o:1)(11:o)(02:0)(01:1)(oo:2)}

' W‘ \ \
L3= {(30:0)(21 :0 ) (20 :1 ) (1 l> : l ) ( 10 :2 ) (12 :0 ) (03 :0 ) (02 : l ) ( 01  :2)(00:3)}

If Lk is the first empty set, i. e. the algorithm stops in this step, we define for
the following proofs L' = = 0 and M; = = Mp‘H for all s z k and p e P u {0}.

THEOREM 4-1: For all p e P u {0} and k >. 1: every element of Mpk is a
correct and minimal solution to INHOMP.

EROOF : Every element 5 of Mp" is a solution to INHOMp by construction. By
Theorem 2-8 we know that s is _a minimal solution, if there is not: 6 Mm, b)
with v << 5. By construction of Mp! for j = s(s)‚ there is no such v in M‘ and since
NhIVE-FORT-INHOM is just an extension of FORT—ROM, we know that
M' = {se Wo, 0)! s(s) s i}. However if ve  M(u‚ b) and 94  M’ then s(v) >] and
hence not v « a Therefore s i s  a minimal solution to INHOMp. I

THEOREM 4-2: NAIVE-FORT-INHOM terminates after finitely many steps.

13n = The algorithm terminates, if no more proposals are generated. 50 we
have to show, that every chain It” << u‘ << , generated by the algorithm, has
an upper bound, i. e.  there is an u‘ which is either a solution to the
homogeneous equation (d(ui) = 0) or no longer promising.
It is easy to show, that for every proposal ni, d(u‘) is bounded by

minp - maxI < dlu‘) < maxp - maxb.
Hence there are only finitely many values for dlui). So in every chain there is
ui with either d(ui) = 0 or there is j < i with d(ui) = d(u‘). But in that case
u‘ - ni << u‘ is a solution to the homogeneous equation, and therefore ui is not
promising. I
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It is left to show that the algorithm is complete, i. e .  every minimal solution to
any of the equations is generated. However, we shall first discuss four ways to
improve upon its efficiency and then show the completeness of a modified
algorithm FORT-INHOM.
First, if an ancestor of a proposal u was a solution to INHOMP for some p e P,
then neither it nor any descendant of u can be a minimal solution to this
equation. Hence, when incrementing u it is enough to consider the set

Plu) = = {p e Pu{0} | no ancestor of u was a solution to INHOMP}
instead of P.
Secondly, the following theorem tells us  that every solution to the
homogeneous equation, generated by the algorithm, is minimal. Hence we may
test only those it e Lk on minimality, that are no solutions.

THEOREM 4-3: Any solution 5 to HOMfu, h), generated by the algorithm, is
minimal.

EROOE: Without loss of generality, s = (c1 en, d ‘  dn) e M" might have been
generated from s' by incre mentation of the first component. Since 3' was
incremented, it was not a solution to HOM and there was no u e MH with
v « s', i. e. s '  was promising. Now assume that there is a solution v « s to HOM.
Then the first component of v is c„ since otherwise u << 5' and 5' would not be
promising. Consider w = s - 0, which is also a solution to HOM. I t  is w « s and,
since the first component of w is c1 - cI = 0, we have also 1» << s', which
contradicts that s‘ is promising. Hence there is no other solution 1: << 5, and s i s
minimal in 5(a, b). I

A third way to improve efficiency may be derived from the following
observation: if a proposal ui was generated by incrementing the i-th component
of a proposal u and if ui is either a solution to HOM(n, b) or no longer promising,
then we do not need to increment the i-th component of any other descendant
of it, since that new proposal would not be promising, too. However, we did not
find an easy and elegant way to integrate this idea with the three other
improvements.
The last, but most important improvement of NAIVE-FORT-INHOM concerns the
multiple generation of the same proposal. If there would be a unique history
for each proposal, the total number of incrementations would be significantly
reduced. Moreover, since we would not need to care about the distinctness of
the proposals, we could use lists and list-append to implement the Lk and Mp",
thus avoiding the computational overhead with sets and set-union. If we try to
analyze, in what ways the same proposal might be generated, we find at least
two schemata: Incre mentation of two components on different sides (Fig. 1 )  and
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since the first component of w is cI - c1 = 0 ,  we have also w « s', which

contradicts that s‘ is promising. Hence there is no other solution 1: << 5, and s i s
minimal in 8(0, b). I

A third way to improve efficiency may be derived from the following
observation: if a proposal ui was generated by incrementing the i-th component
of a proposal u and if ui is either a solution to HOM(n, b) or no longer promising,
then we do not need to increment the i-th component of any other descendant
of u, since that new proposal would not be promising, too. However, we did not
find an easy and elegant way to integrate this idea with the three other
improvements.
The last, but most important improvement of NAIVB-FORT-INHOM concerns the
multiple generation of the same proposal. If there would be a unique history
for each proposal, the total number of incrementations would be significantly
reduced. Moreover. since we would not need to care about the distinctness of
the proposals, we could use lists and list-append to implement the Lk and Mp",
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analyze, in what ways the same proposal might be generated, we find at least
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18





4. THE ALGORITHM OF FOR'I'ENBACHER

incre mentation of two components on the same side (Fig. 2).

( „ .= . . \  _ ( . . .: . . .)

„fifr/ „= )  V‘fT/\\\>§ J
(1) (2) v

(„=„)  ( „ :m)

(Fig. I )  (Fig. 2)

. )

In order to obtain a unique history for each proposal we somehow have to
prevent the confluences. In our modified algorithm we do this by eliminating
edges (1) and (3).
(1)  is eliminated as follows: If a proposal u is to be incremented on both sides,
than no descendant 19 of the right-hand side should ever be incremented on
the left. We shall mark this by defining a predicate LEFT—INCREMENTABLE on
the set of all proposals. (Note that edge (4) would be eliminated by exchanging
left and right in this rule.)
Eliminating edge (3) yields proposal-histories that look as if both sides of a
proposal were filled up from their back. (Analogous, eliminating edge (4)  would
fill both sides up from their front.) This is achieved by not incrementing all
components on one side, but only those up to and including the first component
different from 0. For each proposal u we shall mark the position of this first
positive component on the left-hand side by n1 (u) and on the right-hand side
by nahe). If there is no component different from 0 on one side, we use the
position of the last component and define nl(u) = m or nzlu) = n, resp.
With this incrementation-strategy, e .  g. the left-hand side of (2  3 0 1 = )
would be generated in the order (0 0 0 1 = )

(0  1 0 l : .
w201=„
w301=m
(1 3 0 1 : . .
(2 3 0 1:

Note that this process is likely to be dovetailed by filling the right--hand side
up, depending on P U {0}.
By definition n1(u) and n2(u) denote the last component on the corresponding
side, that is allowed to be incremented. It is interesting that this interpretation
may be used to express LEFT-INCREMENTABLEN) = false by setting nl(u) = =
This does not influence the following proofs.
To prove in Lemma 4—4 that the use of LEFT-INCRBMENTABLE, 1‘11 and n2 really

a I

w
w

w
—

‚H
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incre mentation of two components on the same side (Fig. 2).
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In order to obtain a unique history for each proposal, we somehow have to
prevent the confluences. In our modified algorithm, we do this by eliminating
edges (1) and (3). *
( l )  is eliminated as follows: If a proposal u is to be incremented on both sides,
than no descent 1» of the right-hand side should ever be incremented on
the left. We shall mark this by defining a predicate LEFT-INCREMENTABLE on
the set of all proposals. (Note that edge (4)  would be eliminated by exchanging
left and right in this rule.)
Eliminating edge (3) yields proposal-histories that look as if both sides of a
proposal were filled up from their back. (Analogous, eliminating edge (4)  would
fill both sides up from their front.) This is achieved by not incrementing all
components on one side, but only those up to and including the first component
different from 0.  For each proposal u we shall mark the position of this first
positive component on the left-hand side by n1(u) and on the right-hand side
by n2(u). If there is no component different from 0 on one side, we use the
position of the last component and define n1(u) = m or n2(u) = n, resp.

With this incrementation-strategy, e.  g. the left-hand side of (2  3 O 1 = )
would be generated in the order (0 0 0 l =... )

(0 1 0 l : .
(0 2 0 1 = .
(0301„
U301=„
(2  3 0 l = ).

Note that this process is likely to be dove ailed by filling the right-hand side
up, depending on P u {0}.
By definition n,(u) and n._,(u) denote the last component on the corresponding
side, that is allowed to be incremented. I t  is interesting that this interpretation
may be used to express LEFT-INCREMENTABLE(u) = false by setting n1(u) = = 0.

This does not influence the following proofs.
To prove in Lemma 4—4 that the use of LEFT-INCREMENTABLB, nI and n2 really
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guarantees a unique way to generate each proposal, we need to describe their
influence more formally: If u = (u‘ um, v l ,  ,Vn) is an anoestor of a proposal

w =- (w. , , w_, z„ , zn), then our rules obviously yield
(1) ul s wi for i =n1(u)
(2) ui = wi for n1(u) < i s  m
(3) (3 i = u‘ < wi ) =» LEFT —INCREMENT ABLE(u)
(4) v. s z. for i = n2(u)
(5) vi = zI for n2(u) <jsn.

We shall call proposals that satisfy these conditions for some w
w-incrementable.

LEMMA 4-4: Let w = (w‘ „ w... zl , zn) be a proposal.
Then for all k 2 l and for all u e Lk we have:
(a) If u is w-incrementable and u' is an ancestor of u, then u'

is also w—incrementable. (Transitivity)
(b) If u, x e L" are w-incrementable and both are generated

from the same pmposal u' e L‘", then u = x.
(c) Moreover: If u, x e Lk are w-incrementable , then u = x .
(d) u is w-incrementable iff u is an ancestor of m.

23% gg (a): If u' is an ancestor of u, then n1(u) s nltu’) and n2(u) s n2(u').
Therefore if u is w-incre mentable, u' is also w-incre mentable.

my); Let u = (u' , , u., v' , , vn) e L", generated from u' e L‘". be
w—incrementable. Assume there is another child x = (x1 , , xm , yl , ,yn) a: u
of n“ and an is also w-incrementable. Then u and x differ in exactly two
components. Each of these components is given either by 111 (if it is on the
left) or by n2 (if it is on the right).
9551n Both were generated by incrementation on the same side, w. l. o. g. on
the left one. Since it * x ,  we may w. l. o. g. assume that n1(u) < s = = n1(x). By
construction of u and x we then have u3 = 18-1. Since both are w-incrementable.

we get the contradiction wII = u. < x. s w. .
Q3512; Both were generated by incrementation on different sides, w. l. o. g. x
from the s-th component on the left and u from a component on the right side.
Hence us = x. - l and not LEFT-INCREMENTABLE(u). But since both are
w—incre mentable, this yields the contradiction w. = uI < x. s w‘.
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guarantees a unique way to generate each proposal, we need to describe their
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Then for all k z l and for all u e L" we have:
(a) If u is w-incrementable and u’ is an ancestor of u, then u'
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(b) If 11.x e Lk are w-incrementable and both are generated

from the same proposal u' e L‘", then u = x.
(c) Moreover: If u, x e L" are w-incrementable , then u = x,.
(d) u is w-incrementable iff it is an ancestor ofw.

23% Aug); If u' is an ancestor of u, then nl(u) s n1(u') and n2(u) s n2(u').
Therefore if u is w-incrementable, u' is also w-incrementable.
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of u' and x is also w-incrementable. Then it and x differ in exactly two
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left) or by 112 (if it is on the right).
CASE; Both were generated by incrementation on the same side, w. 1.0. g. on
the left one. Since u * x ,  we may w. l. o. g. assume that n,(u) < s = =- n‚(x). By
construction of u and x we then have u, = 18-1. Since both are w-incrementable,
we get the contradiction w. = u. < x. s w. .
QM Both were generated by incrementation on different sides, w. l. o. g. x
from the s-th component on the left and u from a component on the right side.
Hence u8 = x. - 1 and not LEI-‘T-INCREMENTABLEW). But since both are
w-incre mentable, this yields the contradiction w. = u. < x. s w‘.
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m If k = 1, menu and x can be regarded as beeing generated from I] and
hence are equal by (b). If k > 1, then (a) yields that both were generated from
proposals 11' and x' that were w—incrementable by (a). However by induction.

' hypothesis we get that u' = x', and hence by (b) u and ): must be equal. '

gg 1g! = We already mentioned that u is w—incrementable if u is an ancestor of
w. Now let u e Lk be w—incrementable._ Since u « w, we have i: < sh»). Therefore
w must have an ancestor in L" which is also w-incrementable. Now (c) yields
that this ancestor is u. '

I

As a corollary of this lemma we have that each proposal 19 can be generated in
exactly one way. Furthermore, since all starting-proposals are different, no
multiple occurrences of the same propOsal will appear, if we use lists and
"append" instead of sets and set—union.
We now present our final algorithm that integrates the discussed
improvements into NAIVE-FORT-INHOM. We will enclose lists in
square-brackets and denote list-append by "u".

FUNCTION FORT-INHOM =

NEIL A system of inhomogeneous equations with the same homogeneous
parts, defined by u = (a1 , , am) e N" . b = (b' , , bn) e N“
andp=lp10  " -opr lcz  .

5120 :  k = 1 ;
P' = P U [0 ]  ;

L1 = [v' , . . . ‚v ' ,w' , .„‚w"] = Nam”
where every component of v i is 0, but the i-th, which is l ,
n‚(vi) = i, n2(v') == n,LEFI‘-lNCREMENTABLE(v'),
P(vi)= P',for 1 s i sm,
and every component of wi is 0, but the (m+j)-th, which
is 1, n‚(wl) = m, n2(w i) =j, wLEFT-INCRBMENTABLEWU.
P(wi)= P', for 1 sjsn.

L2 == nil ; '
(M01 - ) M‘ :a-nil;
MI ==nil  f ora l lpeP;
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ML: If k = 1, menu and x can be regarded as beeing generated from I] and
hence are equal by (b). If k > 1, then (a) yields that both were generated from
proposals 11' and x' that were w—incrementable by (a). However by induction.

‘ hypothesis we get that u' = x', and, hence by (b) n and x must be equal.

gg [g1 : We already mentioned that u is w—incrementable if u is an ancestor of
19. Now let u e L" be w-incrementable, Since u « w, we have k < sh»). Therefore
to must have an ancestor in L" which is also w-incrementable. Now (c) yields
that this ancestor is u. '

I

As a corollary of this lemma we have that each proposal w can be generated in
exactly one way. Furthermore, since all starting-proposals are different, no
multiple occurrences of the same proposal will appear, if we use lists and
"append" instead of sets and set-union.
We now present our final algorithm that integrates the discussed
improvements into NAIVE-FORT-INHOM. We will enclose lists in
square-brackets and denote list-append by 'u“

FUNCTION FORT- INHOM :

m A system of inhomogeneous equations with the same homogeneous
parts. defined by u = (a1 , , a.) e N" , b = (b‘ , , ba) e N“
andP=[p„ . . . ,pr ]=z  .

5120:  k = 1 ;
P' = P U [0 ]  ;
L1 = [v‘, . . . ,v"‚w',.„‚w“] = NOW"

where every component of v i  is 0, but the i-th, which is 1,
nl(v')= i, nzwi) = n, LEFT -INCREMENTABLE(9'),
P(vi)= P',for ! s i sm,
and every. component of wi is 0, but the (m+j)-th, which
is 1, n‚(w1) = m, n2(w i) =i. wLEFT-INCRBMENTABLBmi),
P(wi)= P‘, for 1 sjsn.

L2 = ' ni] ; .

(Mo‘ - )M '  ”n i l ;
M],' := nil l‘orall map;
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sm 1 = FORALL u = (ul, , um, vl, ,vn) e 1.‘E 99:
E u e S(a, b)

mm Mt==Mtulu1
@SEIF -u(ase Mk :5 « u) I_H__

LE 3 pe  P(u)= ue  Sp(a‚b)
JEAN. M"t = = M?! U [11];

Phi) == Pm) \ [p];
LE V p E Pm) = (103) < p __A_N_D_ LEFT-INCREMENTABLHII)

DEN. L'” := L“' u luilu‘i = (U,“ , , u_',v|, ...,vn)‚with
u.‘ = ui- if s := i, ui' = ui+1i PM) =P(u).
LEF'lj-INCREMENTABLmui),
n1(u')= k, n2(u‘) -- 112(0) for 1 s i s n‚(u)l;

ELSEIF V pe  Ph!) = (flu) > p
ELEV“ = = LIM u [uf lul  = (l.!‘ ‚... , u., vl', , vn'), with

v; = v. if s == ], Vii. == vi + 1,. Pm") = PM.
LEFT—INCREMWTABLE(N) =>

LEFT-INCREMENTABLHIJ).
n‚(ui) = n1(u), n2(ui) = i for 1 s j s n2(u)]

ELSEIF 3 p,q e P(u) = q < d(u) < p ALNJl « LEFT-INCREMENTABLmu)
_I‘_I_I_E_I_\I_Lm == LIM u [uilui = (u' , , um, V1" ...‚vn'), with

Vs' = Vs if s * j, Vi' = Vi + 1, Ptu‘) = PW),
-. Lm-INCREMMABLE(u')‚
n‚(ul) = n‚(u)‚ n2(u!) = j for 1 s j s n2(u)]

ELSEIF El p,q e Pm) = q < d(u) < p MD LEFT-INCREMENTABLE(u)
111511 LN = = LIM u [ui Iui = (u; , , um', v„ , vn), With

u" =- ull if 3 == 1, i‘ = ui + 1; PM) = P(u).
LEFT-INCREMENTABLEmi),
nl(ui) = i, n2(ui) = n2(u), for 1 s i s n‚(u)l

u [ui I ui = (u' ‚... , um, vl', ‚vn'L with
vs' = vs if 3 == j, vi‘ = v +1; P(ui) = P(u)‚i .
-. LEFT-INCREMENTABLEÜJ').
nl(ui) = n1(u)‚ n2(ui) = j, for 1 $ ] $ n2(u)l;

___S_E_ k :=  k+1;
Mt :=  Mk-l

M9k = MD“ for a l lpeP,
L'“I == nil ;
QQTQ SIELL.
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sm 1 = FORALL u = (ul, , um, vl, ,vn) e I.“ gg:
115 u e S(u, b)

TEEN M“ = = M" u [u].
am? 1(356 Mk :5 « u) THEN

E 3 pe  P(u)= ue  Sp(u,b)
13151! M," = = M," U [u];

P(u) = = Ph!) \ [P ] ;
_I_I_"_ V p E Ph.!) : dh!) < p AND LEFT-INCREMENTABLH“)

THEN Um ‚= L“ u [ui I ni = (u; , , u_'‚ vl, ,v„)‚ with
u" = ui if s == i, ui' = ui + 1; PM) =P(u)‚
LEFT-INCREMENTAELHui).
n‚(u5) = k, n2(ui) = 112(0) for 1 s i s n‚(u)l;

ELSEIF V pe Piu) = cm > p
Egal.“ == LIM u [ui mi = (u] , , u_‚v‚'‚ , vn')‚ with

V" = V. if s * j, vii. = v i+1 ,  Hut) = P(u),
LEFT-INCREMENTAELEtui) =.

LEFT-INCREMENTABLHII),
n‚(ui) = n‚(u)‚ nz(ui) = j for 1 s i s n2(u)l

ELSEIF 3 p,q € P(u) = q < d(u) < p AND 1 LEFT-INCREMENTABLHIL)
ML“ == L"”I u [ui I ui = (ul , , u., vI‘, ,vn'), with

VB' = v" if s a: j, vi“ = vi + 1, put) = P(u)‚
-. LETT-INCREMENTABLEM).
n‚(ui) = n‚(u)‚ n2(ui) = ] for 1 s i $ n2(u)l

EgSEIF 3 p,q E PW) : q < d(u) < ;) AHQ LEFT-INCREMENTABLEW)
THEN L'm : = L‘M u [u‘ lui = (ul' , , um', v1, , vn), with

u" = \:8 if s * i, i“ = ui + 1; PM) =P(u),
LETT-INCREMENTABLEM).
nl(ui) = i, n2(ui) = n2(u), for 1 s i s n‚(u)l

u [ui l ui = (ul , , um, vl', ‚vn')‚ with
v" = Vs if s * ], vi‘ = v +1; PM) = P(u),i .
-. LEFT-INCREMENTABLEW’).
n‚(ui) = nl(u), n2(ui) = j, for 1 s i  s n2(u)l;

STEP 2 = y: 1.M = nil THEN ST ?.
M k = k+1;

Mk == Mt- l

M”‘ = Mp‘“l for a l lpeP,
L‘" == nil ;
QQTQ SIEILL.
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4. THE ALGORITHM OF FORTENBACHER

OQIPUT: M" is the set of all minimal solutions to HOMta, b) .
For all p e P is Mp" the set of all minimal solutions to INHOMpuI, b).

ENIDF FORT-INHOM .

Applied to our example, this algorithm generates the following proposals:

Ll= l(1o:o)(o « \

L2= [ (20 :OJ(10:1 ) (11 :0 ) (02 :0 ) (Ol :1 ) (00 :2 ) l

// // \\\\L3= [ ( 30 :OJ(20 :1 ) (10 :2 ) (21 :0 ) (11  : l ) (12 :0 ) (03 :0 ) (02 :1 ) (01 :2 ) (00 :3 ) l

Since the proposals generated by FORT-INHOM constitute a subset of those,
generated by NAIVE-I-‘ORT-INHOM, correctness and termination of
FORT-INHOM follow from Theorem 4-1 and Theorem 4-2, resp., if we prove
that finally Mk - M(u, b). From Theorem 4-3 we obtain Mk ; M(a, b). We shall
now show with Lemma 4—5 and Theorem 4-6  that the algorithm generates all
minimal solutions to any of the equations:

LEMMA 4-5:  Let a ,  b and P define a system of inhomogeneous equations and
let be p e P u {0}. Then for every minimal solution 5 to
INHOMpm, b) and for all k ?. 1, either s e  Mpk or there is u e L‘,
which is s -incre mentable.

EMI-;: Let s = (c„ , cm, d„  , dn) be a minimal solution to INHOMpm, b).
Note that to show 5 e Mpk, it is enough to show 5 e L", because by construction
it is recognized as a solution and added to the solution-set Mpk.
The proof is by induction on k in Mt:
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output: M" is the set or all minimal solutions to Homo, b) .
For all p e P is Mp" the set of all minimal solutions to INHOMpln, b).

ENIDF FORT-INHOM .

Applied to our example, this algorithm generates the following proposals:

Lt:  l(to:o)(01:\0)(\)l\

L2= l t20 ;o ) ( to : l ) ( t  l :0)(O2:0)(Ol : l ) (oo :2 ) l

// // \K\\\L38 l (30 :0 ) (20 :1 ) (10 :2 ) (21 :0 ) ( l l : l ) (12 :0 ) (03 :0 ) (02 :1 ) (01 :2 ) (00 :3 ) ]

Since the proposals generated by FORT-INHOM constitute a subset of those,
generated by NAIVE-FORT-INHOM, correctness and termination of
FORT-INHOM follow from Theorem 4-1 and Theorem 4-2, resp., if we prove
that finally M" - M(o, b). From Theorem 4-3 we obtain Mk e M(o, 0). We shall
now show with Lemma 4-5  and Theorem 4—6 that the algorithm generates all
minimal solutions to any of the equations:

LEMMA 4-5:  Let a ,  b and P define a system of inhomogeneous equations and
let be p e P u {0}. Then for every minimal solution 3 to
INHOMpm, b) and for all k z 1, either s e Mpk or there is u e L",
which is s -incre mentable.

BREED Let s = (c„ , cm, d„ , da) be a minimal solution to INHOMPÜLD).
Note that to show 5 e M", it is enough to show 5 e L', because by construction
it is recognized as a solution and added to the solution-set Mpk.
The proof is by induction on k in Mk:
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Base step k = l :
If there is i s m with ci > D . then let t be the greatest index with this property

and consider a = = v ‘ e L' .  Now either u = s or u is s-incrementable.
However, if ci = 0 for all i .<. 111, there must be i s n with di > 0 ,  because s == ll.

Let t be the greatest index with this property and consider u = = w ‘ e Ll . Then
either u = s or u ' is s—incrementable. ‘

Induction step:
If s e MPH then alsos e MP“.

If seMpH, then there is u'=(u‚',...,u..'„v‚',...,vm'heLH which is
s-incrementable. First we have to show that u '  is incremented: Since s is

minimal in Mp, Theorem 2-8 implies that s i s  also minimal in M0 u [9}. Hence

u' << 3 yields that u' e M" and that there is no we  Mk s M(n, b) with w « 11'.

Therefore u' will be incremented. Furthermore, p e P(u‘) because s i s  minimal in
Mp and u' << 5, and therefore neither u' nor any ancestor of u' can be a solution

to INHOMP.
To choose u eL", generated from u‘ and s-incrementable, we have to consider
four cases:

(1) d(u') < q for all q 6 P(u'), in particular d(u') < p =Hence u' is only
incremented on the left-hand side.

(2) d(u') > q for all q e P(u'), in particular d(u') > p : Hence u' is only
incremented on the right-hand side.

(3) There are ql, q2 e P(u') with (;1 < d(u') < qz, but u' is not

left-incre mentable: Hence 1" is only incremented on the right-hand side.
(4) There are ql, q2 e P(u') with ql < d(u') < qz, but u' is left-incrementable:

Hence u '  will be incremented on both sides.

QASEJ: There must exist i s 111 (u‘) with ui' < Cr Let t be the greatest index with

this property. Then by incrementing this component a new proposal u will be
generated, with n‚(u) = t ; n1(u')‚ n2(u) = n2(u’) and, because u' << 5, either

u = s or u is s-incrementable.

CASE 2: Since there must exist j $ n2(u') with v; < c' , we can choose it

analogous to CASE 1: if t is the greatest index with vi“ < di for 1 s j s nzlu'), then

t s n2(u'), and therefore by incrementing this component a new proposal u will

be generated which is either equal to s or s-incre mentable.
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Base step k = l :
If there is i s m with Cl > 0 , then let t be the greatest index with this property

and consider :1 = = v ‘ e L‘. Now either 11 = s or u is s-incrementable.
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generated, with n‚(u) = t s n‚(u' ), n2(u) = new) and, because u' << 5, either
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CASE 2: Since there must exist j s nzlu') with v '  < c we can choose 11i l ’
analogous to CASE 1: if t is the greatest index with vi‘ < di for 1 s j s n2(u'), then

t s n2(u'), and therefore by incrementing this component a new proposal u will

be generated which is either equal to s or s-incre mentable.
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m Since u‘ is. s-incrementable but not. left-incrementable, it must be
ul' = cl for 1 s i s  m and hence d(u') > p. Therefore we can choose u as in CASE 2,
by incre mentation on the right.

CASE &: This case is more oomplicated. If d(u') > p and ui' = ci for 1 s i s m, we
can choose u as in CASE 2 by incrementation on the right. But if d(u') > p, and
there exists i with ui < ci, then each proposal ni, generated by incrementation

on the right—hand side of u' will not be left—incre mentable and therefore not
satisfy condition (3) of s—incrementability. However in this case or if d(u') < p,
we can choose it as in CASE 1, by. incrementation on the left. In both subcases
either u = s or u is s-incre mentable. '

THEOREII 4—6: Function FORT-INHOM computes all minimal solutions to
INHOMpaI) for every pe  P .

PROOF : Let s be a minimal solution to INHOMpm, b). For 3(5), according to
Lemma 4—3, either s e  Mp" or there is u eL" with u << 5 .  Since we L" would
imply slu) = sis), which contradicts u << s ,  it must he s e  Mp!
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(355}; Since 11' is s-incrementable but not left-incrementable, it must he
ul' = cI for l s i s m and hence d(u') > p. Therefore we can choose u as in CASE 2,
by incre mentation on the right.

CASE 1: This case is more complicated. If d(u') > p and ui' = ci for 1 s i s m, we
can choose u as in CASE 2 by incrementation on the right. But if dlu') > p, and
there exists i with ui < ci, then each proposal ui, generated by incrementation

on the right-hand side of u' will not be left-incre mentable and therefore not
satisfy condition (3) of s-incre mentability. However in this case or if d(u') < p,
we can choose it as in CASE 1, by incre mentation on the left. In both subcases
either u = s or u is s—incre mentable. '

THEOREM 4—6: Function FORT-INHOM computes all minimal solutions to
INHOMpflt, b) for every peP .

PROOF = Let s be a minimal solution to INHOMput, h). For 3(5), acorn-ding to
Lemma 4—3, either s e  MP“ or there is u el} with u << 5. Since a s  L" would
imply s(u) = 3(5), which contradicts u « s ,  it must he s e  MI}.
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5. EXPERIEN‘ WITH THE ALGORITHMS

5 = BRIIIBNT S WITH THB ALGORITHMS

5 .1  General Remarks on Runtime-leuurements

Unfortunately, the SYMBOLICS 3600 does not provide a utility to measure pure
CPU-time, i. e. runtime without the time needed for paging or
garbage-collection. Hence we often measured very different runtimes for the
same problem. A closer look showed that about every third or fourth result
went astray. To overcome this problem and to get - at least to some extend -
exact values, we chose the following method =

Each task was measured eight times. From these values we only took the
smaller ones up to the greatest value that did not differ more than 10 x
from the next smaller one. The arithmetic mean of these values was taken
for result

Practice showed, that in most cases about six values out of eight were accepted
and that these did not differ more than S x from their mean.

5.2  A Note to Problem—Formulation

As Huet mentioned in his paper, a different formulation of the initial problem
might significantly improve upon runtime. He presented the following
heuristics to get a fast execution :

" maxi $ maxb

__  812322 . . .Zam

- -  b l sb l , s . . . sbn

Our experience validated these rules for the homogeneous as well as for the
inhomogeneous case.
Practice with our version of Fortenb acher's algorithm showed, that in the
average best results were achieved if

- -  a15a25 . . . san
- -  b lsbzs . . . sbn

and for the inhomogeneous case, if in addition
- -  m s n .

All values listed in the following are achieved with problem-formulations
accordingto these rules, the time to get these formulations (e. g. sorting of the
coefficients) is not included.
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5.  EXPERIEN WITH THE ALGORITHMS

5.3 An Attempt of I Comparison

Analyzing the results of our various measurements, we observe the following
points :
If many coefficients have no common divisors, so that the dii and eil get large,
the algorithm of Huet is very slow, because many pr0posals (also nonminimal
ones) must be generated.
The algorithm of Fortenb acher does not like large coefficients or large
inhomogeneous parts, because they slow down convergence (see theorem 4-2).

5.4  Use for AC— Unification

The presented algorithms play a crucial role in AC-Unification. As pointed out
in the introduction, the main difference between the unification-algorithms of
Stickel [St 81] and Herold/Livesey/Siekmann [LS 76], [HS 85] is the different
reduction to linear diophantine equations.
Besides the theoretical advantage (c. f. [Bü 851), our findings show that the
latter has important practical advantages:

- -  The tables with the runtimes show that in almost every case it is much
faster to compute all the solution—sets of the multiple inhomogeneous
equations and the homogeneous one than the single solution-set of
Stickel's large homogeneous equation. (This observation does not depend
on our assumption that the inhomogeneous parts are not substantially
larger than the homogeneous parts.)

- -  The unifiers can be directly derived from the sets of minimal solutions,
whereas in Stickel's algorithm a compatibility-computation has to be
performed in addition.

ACKNOWLEDGEMENTS:
We would like to express our gratitude to Hans—Jilrgen Bilrckert, _]örg Siekmann
and Manfred Schmidt—SchauB for a thorough reading of an earlier draft of this
paper. Their constructive criticism has contributed much to the present form of
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APPENDIX

APPENDIX

Runtime: for various Homogeneous Equations

hmmm I 11 of I Runtime o1 I Routine of | Fon-non
coefficients I solutions l HUET-HOM Ins] I Font-H011)“ I (am

(1) (1 2) I 2 I 4 I 3 I
(1) ‘ (1 1 2) I 3 I 5 I 4 I
(12) (1 1 2) I 7 I 9 I 9 I

I3 7) I5 8) I 12 I 53 I 56 I

(12) (1 1 12 2) I 13 I 15 I 16 I

(12) (1 12111) I 13 I 16 I 35 I

(2 3 4) (2 3 4) I 13 I 24 I I

(5 7) (3 a) I la I 59 I I
(12) (111223) I 19 I 29 I 27 I -

(12) (1 1 12 211)) I 19 I 26 I 54 I

(1 2 3) (4 5 6) I 22 I 60 I 73 I

(4 7) (2 3 5) I 22 I 95 I 96 I
(112) (11223) I 24 I 37 I 39 I
(13 4) (1 13 4) I 27 I 65 I 66 I

(1122) (11122) I 28 I 35 I 39 I
(1215) (3 511)) I 29 I 113 I 123 I
(12 5) (12 34) I 39 I 197 I 124 I
(1 1 12 5) (12 3) I 43 I 266 I 109 I

(1 12) (1210) I 43 I 67 I 166 I
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homogeneous I & or I Routine of I Runtime at I Fon-non
coelficienu I solutions I HUET-HOM Ins] I FORT-H011 In] I later
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(125) (1234) 39 197 124

11 l 12 5) (12 3) 43 266 109

( l  12) (1210) ‘13 87 168

I I I I
I I I I
I I I I
I I I I
| I I I
I I I I
I I I I
I I I I
I I I I -

(12)  (1 1 12  211)) I 19 I 26 I 54 I

I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
| | I |
I I I I
I I I l
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APPENDIX

Runtime: for Systems of Inhomogeneous Equations

In columns seven and eight we list the runtimes of our two algorithms for
various inhomogeneous problems. As mentioned before, such systems of
inhomogeneous equations arise with the AC—Unil'ication-algorithm of Herold
and Siekmann [HS 85]. Instead, the AC-Unirication—algorithm of Stickel [St 81]
would have to deal with a larger homogeneous equation, which we solved with
our versions of Huet’s and Fortenbacher’s algorithm. In column sir we give the
minimum of the two runtimes and mark in brackets, with which of the two
algorithms it was achieved.

homogeneous I immun. I number 0! solutions to I runtine in ma

pm: or the I pam ot the I the hom.I each of the I Sticker: big Ifor suckers I61 HUET I at FORT
equations | equation: I oquationI inborn. oqs I hon. equation I big hon. oqu. I -INH I -INH

(I) (2) I I  I I I I1  I 2 I 3 (F I I  4I  5

I12  I I11  I 3 I 4 (F) I 5 I 7

I 1 -1 -2 I  I 111 I  7 I 900 '  SI  9

(12) (112) I12 I 7 I32  I 13 I 15 (ml 15 I 20

I 123  I I 324 I  19 I 27 (F I I 18 I36

I12 -1 -2 I  I3 23 «I 23 I 35 (HII 20 I 33

I -10 I I 36 I 43 I 87 (ml 33 I 216

I 10I I 6I 13 I 16 (ml  25 I 156

I -1010I I 366I 50 I 153 (ml  59 I 203

I12-10 I I3236 I 349 I 4330 (F) I 44 I 247

I12  10I I32  6I 19 I 26 (H) I 35 I 170

(259N376) I1 2 I 65 I196 I 119 I 1439(1-‘JI3103 I 6414

I12 —1 -2I I1962439I 345 I 6070 (F) I 5013 I 835

I - 1010 I  I 3215 I  152 I 2319 (F) I4155 Inn
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