Thomas Guckenbiehl
Alexander Herold
MEMO SEKI-85-1V-KL

721
2
o
>
=
o
[£8]
8]
=
m
2)
a
:
=
—
0
=
=
S)
wn

AuBwilagy AA 'L WISINBISISSIEY 06/6-0
BY0E YOBjISOd OEWE
WIBINegIsiasie) ilIsiaAaiun l
HITBULIOHU] yDiausquoey _=mm

SOLVING LINEAR
DIOPHANTINE FQUATIONS

Thomas Guckenbiehl

Alexander Herold

MEMO SEKI-85-IV-KL

SOLVING LINEAR DIOPHANTINE EQUATIONS

Thomas Guckenbiehl
Alexander Herold

Universitdt Kaiserslautern
Fachbereich Informatik
Postfach 3049
6750 Kaiserslautern

ABSTRACT:

Linear diophantine equations are at the heart of any unification algorithm for
associative and commutative theories. The known algorithms for solving
homogeneous linear diophantine equations of Huet and Fortenbacher are
presented and their implementation is compared.

The algorithms for homogeneous equations are extended to solve
inhomogeneous equations, since this is an important component of the
AC-unification algorithm of Livesey and Siekmann and the extension of Herold
and Siekmann.

CONTENTS

1 INTRODUCTION

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER N
21 The Concept of Minimality

2.2 Homogeneous Linear Diophantine Equations

2.3 Inhomogeneous Linear Diophantine Equations

3. THE ALGORITHM OF HUET
31 The Homogeneous Case
32 The Inhomogeneous Case

4 THE ALGORITHM OF FORTENBACHER
41 The Homogeneous Case
42 The Inhomogeneous Case

5 EXPERIMENTS WITH THE ALGORITHMS

5.1 General Remarks on Runtime-Measurements
5.2 A Note to Problem-Formulation

5.3 An Attempt of a Comparison

5.4 Use for AC-Unification

ACKNOWLEDGEMENTS
BIBLIOGRAPHY

APPENDIX: Runtimes for various Homogeneous Equations
Runtimes for Systems of Inhomogeneous Equations

1. INTRODUCTION

1. INTRODUCTION

The interest in diophantine equations has a long tradition in mathematics.
However, recently algorithms to solve such equations became of great practical
relevance in computer-science, playing a central role in unification-algorithms
for terms with associative and commutative function-symbols (for short:
AC-Unification). AC-Unification turned out to be of practical importance for
term rewriting systems, automated theorem proving and many programming
languages in Artificial Intelligence (Al).

In the literature two different approaches to the AC-Unification-Problem are
known: one based on M. Stickel [St 75], [St 81] and the other based on Livesey
and Siekmann [LS 76], which recently was extended by Herold and Siekmann
[HS 85]. A theoretical comparison is found in [Bi 85]. The most important
difference between the two algorithms is the reduction of the problem to linear
diophantine equations: Stickel abstracts his AC-Unification problem to a pure
variable unification problem which leads to a homogeneous equation, whereas
Herold and Siekmann directly determine one homogeneous equation, which is
smaller than Stickel's, and a system of inhomogeneous equations with the same
homogeneous part.

For example, Stickel [St 81] gives the problem of unifying the terms
f(x, f(x, f(y, a))) and f(b, f(b, z)), where f is an associative and commutative
function-symbol, and this yields the homogeneous linear diophantine equation
21, + 1, + X, = y; + 2y, .The same example is treated in [HS 85] . There

the reduction yields the equations

2xy, * Xy = Y1
20, + Xy + 1 = ¥y,
213 * X3 = V3 * 2.

The set of all solutions with non-negative integer coefficients of a homogeneous
linear diophantine equation forms a commutative monoid which is finitely
generated [CP 67]. Sequential algorithms for determining such a generator-set
have been proposed by Huet [Hu 78], Fortenbacher [Fo 83] and Lankford
[La 85], a parallel algorithm was outlined by Bilttner [Bi 85].

After an introduction to the theory of linear diophantine equations we present
the algorithms of Huet and Fortenbacher and extend them to compute the sets
of all minimal solutions of a system of inhomogeneous equations like the one in
the example above. The main difference between both is that Huet's algorithm
is essentially depth-first whereas Fortenbacher's is breadth-first. The
algorithms have been implemented in ZETA-LISP on a SYMBOLICS 3640, a
comparison in terms of the runtime on various examples is presented.

The most important result is that in most cases it is faster to solve the multiple
equations of the Livesey and Siekmann algorithm than the larger homogeneous
equation of Stickel.

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER N

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER N
2.1 The Concept of Minimality

We want to introduce some notion and definitions about vectors of
non-negative integers:
Let N, be the set of non-negative integers, N = N;\{(0} the set of positive
integers, and let x; ,.., X, be elements in N,". A p-linear combinalion
(positive linear combination) of the x; is

Y=2a,xX; + ..+a Xy ,withai >0

Vectors are called p-independent, iff none of them can be represented as a
p-linear combination of the others. If S € N,"\{0} and M € S, then M is a

p-basis of S, iff the elements of M are p-independent and every element of S
can be represented as a p-linear combination of elements of M.

Let x=(x,,..,x) and y= (y,,..,y,) bein N,". We define a strict order
Xey iff x+y and x, <y, for1<i<n.

Let S be a set of vectors in N "\{0}, then x€ Sis min/malin$, iff there is no
yeSwithy «x.

LEMMA 2-1: Let S N,"\{0} . If every element of S is minimal in S, then the
elements are p-independent.

PROOF : Assume that S is minimal and there exists X € S and M e S\{x},M =+ @,

such that X = Z a,y, with a > 0. Then every element of M must be smaller

than x. yeM
But this is a contradiction to the minimality of x .

To illustrate the notions we shall give some examples :

First we have (1,2,1) « (2,2,2) « (2,3,3),

but not_ (1,2,1) « (2,1,2)

and not (2,1,2) « (1,2,1) .

The set M ={(2,1,1),(1,2,1),(1,1,2),(1, 0 3)} is minimal and its elements
are p-independent.

The elements of M' = {(1, 1, 1), (1, 2, 1)} are p-independent, but M' is not
minimal !

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER N

2.2 Homogeneous Linear Diophantine Equations

Letn=(a,,..,a)eN" b-(b,. . b)eN"andn m 2 0, thena and b define a
homogeneous linear diophantine equation

HOM(.b): a x, +..+a X = by, +.+by .
The set of all solutions u € N,™*"\{0} is denoted by S(a, b), the set of all minimal

solutions in S(n, b) is denoted by M(a, b). (Note that we only want to consider
nontrivial solutions !)

We do not consider the trivial case that bothn = 0 and m = 0, i. e. the trivial
equation 0 = 0.1f n = 0 or m = 0, we define HOM(@,b) asa, x, + ..+ a_ x =0

resp. 0 = b,y, +..+ by, .

For example, given a = (2, 1)e N2 and b=(1, 1, 2) e N3, we have

HOM(a,b): 2%, + X, = y, + Y, + 2V,
and M(a,b)={(1,0,0,0,1),(1,0,1,1,0),(0,1,1,0,0),(0,1,0,1,0),
(0,2,0,0,1),(1,0,2,0,0),(1,0,0, 2, 0)}.

Since we are only interested in linear diophantine equations, we shall drop
“"linear” and "diophantine” and just write "homogeneous equation”.

We shall now explore, under which conditions there exist solutions to a
homogeneous equation and then take a closer look at the sets S(m, b) and
M(a, b).

LEMMA 2-2 : Let 0, b define a homogeneous equation.
There exists a (nontrivial) solution iff n>0 and m>0.

PROOF : “": Assume S(o,b) + and w.l 0.8.n=0.Lets=(c,, .., c) bea
nontrivial solution. If W. 1. 0. g. C, > 0, we have

0 = a,ci+..+a.C 2 aC > 0 5.
“<": Let n, m > 0 and consider s = (b,, Cyy s Cp Ay, Ay e, dn), with¢, =0 for

2<i<m and dl =0 for 2<j<n. Thens is obviously a solution.

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER ¥

LEMMA 2-3 : Let a and b define a homogeneous equation and let
g : = gcd(a1 P . — bn).
Definea’ = (a,',...,a), b'= (b,',...b) by

a/=(1/g) a, for1 <iz<m

b, = (1/8) b, forl=sjs<n

Then S(a,b) - S(@',b’) .

PROOF : Obviously a'e N®, b'e N® .
Now s=(c,,.,c,d, ... d) € S(a,b)
& 8,C, +..+8 C
(1/g) (a,cl + ..+ amcm)
a/c +..+ a ¢,
s € S(@',b’)

bld1 +..+ bndn
(1/g)(b,d, + ..+ b d)
by d, +..+b'd_

t ¢3¢

Because of the last two lemmas we may restrict ourselves to homogeneous
equations with n, m > 0 and ged(a, ,..,a_, b, ,..,b)= 1.

Since the set of all solutions S(a, b) forms a commutative submonoid of No"‘“‘, it

is generated by a finite basis (c. f. [CP 67]), which consists of all minimal
elements of S(a, b). Hence M(a, b) is a finite p-basis of S(a, b).

THEOREM 2-4 :Let o = (a,,..,a_) ¢ N® and b = (b,....b) eN" define a
homogeneous equation. Define max, : = max{a, - 8} and
max, : = max{b, ,.., b). Then the components of every
minimal solution s = (c, ,.., ¢, d, ,.., d_) are bounded by
OscismaxbandOSdismaxlfor 1<i<mand1<j<n.

For a proof see [Hu 78].
Since this theorem defines a finite and effectively computable search-space, we
can compute M(a, b) by generating each element of this space and removing
those that are no minimal solutions. In fact this is the main idea of Huet's
algorithm [Hu 78], but he uses additional bounds to reduce the generation of
p-dependent elements.

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER N

2.3 Inhomogeneous Linear Diophantine Equations

Let m, n>0,0-(a ,.,a)eN" b-(b,,. b)eN" and P=-{p, .., plcl

Then o, b and P define a system of r inhomogeneous linear diophantine
equations

CESTREVRE ™ ST PN TR N SP
INHOM(G, b, P): .
3 Xyt Xy = blyrl Tt bnyrn * Py

In this chapter we only deal with a single inhomogeneous equation, i. e. P = {p}
with peZ . Instead of INHOM(a, b, P) we shall therefore write INHOMp(n, b).

Notice that we allow p =0 and treat the homogeneous equation as a special
case.

As with homogeneous equations we do not want to consider the trivial case
that both n=0 and m=0. If n = 0 or m = 0 we define INHOMp(u, b) as

ax, +..+ax =pand0=by +..+by + p, respectively.
The set of all (nontrivial) solutions u e N,™"\{0} to INHOMp(n, b) is denoted by
Sp(a, b), the set of all minimal solutions is Mp(u, b) e Sp(n, b).

As with homogeneous equations, we shall drop “linear” and "diophantine” and
just write "inhomogeneous equation™.
First we shall look for conditions under which the set of solutions is empty:

Theorem 2-5 : Let o, b and p define an inhomogeneous equation INHOMp and
define g : = gcd(a1 gy, B By s bn).

(1) Ifn>0 and m> 0, then
there exists a solution iff glp.

(2) Ifn=0 or m=0 then we have :
(a) If there is a solution then glp.
(b) If m=0 and p2 0 then there is no solution .
(c) Ifn =0 and p <0 then there is no solution .

PROOF: Ad (1): 3" Ifs=(c, ,.,c . d,,.,d) is a nontrivial solution to
INHOMp, we have a,c +..+aC = bld‘ + ..+ bﬂdﬂ + p . Since all coefficients
a; and b, are from gZ and since gZ is an ideal of Z, pe gZ, i.e. g | p follows.

"« Let p/gel. For 1 <i<m and 1<j<n define 850 = (¢, Cp dy oy dy)
whereck=bi fork=iande =0for1<sk+i<m d =afork=j andd =0

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER N

for 1 < k + j < n. These vectors are solutions of the homogeneous equation.
Furthermore we know (from number theory) that the greatest common divisor

g is linear representable, i. . there is a solution u =(u,,..,u_, v, ,.,v)e ™"
with a u +..+a u, =b v +._ +b v + g Multiplying by c: = p/g we get
a;cug+..+a cu, =bcv,+. +b cv + p

Now suppose there isior j withu, <0 or V; < 0 . Then by adding S;jlou for all

these i, j we obtain a solution with non-negative components.
Ad (2): (2b) and (2¢) are obvious. Our proof of the first part of (1) is also a
proof for (2a).

]

Lemma 2-6 : Let m, n>0.Let ae N® be N™ and p define an inhomogeneous
equation INHOMp .
Define g : = ged(a,,., a_,b,,.,b),
o':=(a,., a,) with a/= (1/g)a, for 1 si<m and
b':=(b,',.., bn') with bi'= (I/g)bi for 1<j<n.
If g | p then it is Sp(u,b) = Sm(n',b').

PROOF: s = (c,,..,cp, d;,...,d) € Sp(n,b)
& a,C +..+a C =b,dl+...+bndn+ p
& a/c +..+al ¢, =byd +.+b/ d + p/s
® seS @b).

From now on we shall only consider inhomogeneous equations with n, m > 0
and ged(a, ,..,a,, b bn) = 1, which, according to Theorem 2-5, always have

a solution.

‘ LA]

Theorem 2-7 : The set of positive integer solutions Sp(u, b) of an
inhomogeneous linear diophantine equation INHOMD is
{yly=x, +x; with x, € M (a, b) and x, € S(@, b) U {0}).

Proof: It is easy to see that X, + Xg is in Sp(a, b). Conversely let y e Sp(u, b) then
ifyisin Mp(u, b) we are done with x =0. Suppose y is not in Mp(u, b) then there
exists by definition x, in Mp(n, b) with X < Y. Therefore we have y - X, > 0 and
hence y-x, =X, € 5(8,b), i €. Y =X, + X B

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER N

We now state an important relation between the sets Mp(n, b) and M(a, b), i. e.

the minimal solutions of an inhomogeneous equation and those of the
corresponding homogeneous equation.

THEOREM 2-8 : Let INHOMp(a, b) be an inhomogeneous equation.
Se Sp(n, b) is minimal in Sp(u, b) iff there is no v ¢ M(a, b)
with v « §.

PROOF : Let s be a solution 1o the inhomogeneous equation.
First let s be minimal in Sp(u, b) and assume there is v € M(a, b) with v «< 5. But

then s-v <« s is also a non-negative solution of the inhomogeneous equation,
a contradiction to the minimality of &.
Now assume there is no v ¢ M(m, b) with v « s, and s is not minimal in Sp(u, b).

Hence there exists w € Sp(u. b) withw « s,ands-w « S isinS(@,b). ¢
B

As proved in [LS 76], Mp(n, b) is bounded. Maiwand [Mai 78] showed, that
every component of a minimal solution to INHOMp(n, b) must be smaller than
max{a1 ooy By Dig gy By, p). In Theorem 2-10 we shall give a slightly better
bound, for which we need the following technical lemma :

LEMMA 2-9 : Let o,b and p define an inhomogeneous equation INHOMp.
(1) Ifp>0, define b':=(b,,..,b_, p).Then
Mp(u,b) = {(c;...cp d;....d) |
(¢, Cgp dy s dy, 1) € M(m, b")).
(2) Ifp<0,define o' := (a,,..,a,, -p).Then
Mp(n,b) = K08y i€ By 5o d)l
(CfrnCp 1.4y, d)) € M(a', b)}.

PROOF : We only prove (1); (2) follows by exchanging & and b.

e Ifu=(u,,.,uy,) is a minimal solution of INHOM_(a,b), then obviously
'= (U, .., ug,. 1) is a solution to HOM(@,b'). Now assume there is

m+n
v=(V),..Vy,q.) €M@,B)and v« If vy =1, then (v .. vy)«uis
a solution of INHOM (@, b). If v, ., =0, then (u, -v . u, -V,)«uisa
solution of INHOMp(u, b). In both cases we get a contradiction to the minimality

of u.

2. SOLVING LINEAR DIOPHANTINE EQUATIONS OVER N

2" Let u = (u' vy U 1) be a minimal solution of HOM(a, b'). Then

m+n '
obviously u =(u, ..., uy,) is a solution of INHOM(a, b). Now assume there is

v=(v ., Vp,) €M@ D) andv «u.Butthen(v,,. v, 1) « W isasolution

m+n’
of HOM(am, b') and therefore u' could not be minimal.
]

THEOREM 2-10 : Let o ,b and p define an inhomogeneous equation INHOMp
Define max, :=- max(a,,.,a_,-p}
max, : = max{b,,..b_,p}.

Then the components of every minimal solution
s=(c ., ¢y dy .., d)) to INHOM (a, b) are bound by

0 < c, < max, and Osdismaxl fori<i<mand1<j<n

The proof follows from Lemma 2-9 by applying the bounds of Theorem 2-4 to
the extended homogeneous equation.

As mentioned in the introduction, we are interested in a system of multiple
inhomogeneous equations and one corresponding homogeneous equation. With
respect to AC-Unification we expect that the inhomogeneous parts p will not be
substantially larger than the coefficients a,, bi' But then, according to Theorems

2-4 and 2-10, the search-spaces are overlapping. So we should avoid
generating the same elements for different equations, but try to test each
generated vector, if it is a solution to anyone of them .

In the next two chapters we shall use this idea to extend the algorithms of Huet
and Fortenbacher from homogeneous 10 systems of inhomogeneous equations.
Theorem 2-8 will help us in doing so.

3. THE ALGORITHM OF HUET

3 THE ALGORITHM OF HUET
3.1 The Homogeneous Case

In 1978 Gérard Huet described an algorithm to solve homogeneous linear
diophantine equations over N, [Hu 78] Before presenting it, we have to do
some preliminaries:

leta=(a, .., a)eN"andb=(b ,. b)e N" define a homogeneous
equation HOM(a, b); then let

max, = max{a, ,., a)
max, := max{b, ,.,b}.
For 1<i<m and 1<j<n we define
d; = lem(a,, bi) / a, (least common multiple)
e; = lem(a,, bi) /b,
Sji i= (X, X0 Yy 0o ¥,) € Ng™2, With X, = di. ¥; = €,
all other components 0.
maxyii i = min{eti -1l x,2 d;. 1<ts i}, if this set is not empty,

max_ otherwise.

The s; are obviously special minimal solutions. Now Huet states some
important properties of minimal solutions of HOM(a, b):

THEOREM 3-1:Let o and b define a homogeneous equation and let
u=(x,. ,X,¥,,.Y,) bea minimal solution to HOM(a, b),
different from the s,

Thenfor 1<k <m
(a) X, < max, for1<ick

(b) a,x,+.+2,x < b, maxy*+_+b maxykt

Andfor1<s<n

(c) y, < maxy® for1<jss
(d) byy,+..+b,y, < a,x, +..+a X

For the proof see [Hu 78] .

Now we can cite Huet's description of the algorithm ([Hu 78], pp 145 f), with
minor notational adjustments:

3. THE ALGORITHM OF HUET

Our algorithm consists in generaling potential solutions in increasing
lexicographic order, starting with (and not including) the trivial solution
(0, ...0). The values of the x;'s are progressively bounded according to the
conditions (a) and (b) above. When all x;'s are chosen, the y;'s are bounded
according to the conditions (c) and (d).

When the algorithm generates a potential solution (x,y), it checks that

(1) it is indeed a solution (...) [to HOM(a,b)]

(2) it is not greater than any solution previously generated.

Then it backtracks to generate further solutions. When it finally stops, all

particular solutions Sij ‘s are added. Remark that when a solution is generated and

checked, it is indeed minimal, because any solution generated later on will either
be greater in the lexicographic order (and therefore not below it in the
componentwise order), or one of the s“’s, which cannot be below it by
construction. The s iils are themselves known to be minimal, which finishes the
correctness proof of our algorithm.

In the following we shall call these potential solutions, generated by the
algorithm, proposals.
In addition to these upper bounds for the yi, one might use the following

theorem which gives a lower bound for them.

THEOREM3-2 : Let @ and b define a homogeneous equation. Then for
every minimal solution u = (x, ,.., X, ¥; .-, ¥,) and for

1 <i<nwehave y,> max{0, ¢;/b;}, with

m i-1

i
C = Z 8 x - Z biyi - Z bi maxyi'“.
i=1 j=1 j=i+l

PROOF : Since u is a solution, itis for 1 ci<n:

m i-1 n
Z 5y - ,Z by, + by * Z b; ¥
j=1 ji=1 j=isd
m i-1 n
and therefore by, = Z 8 x - Z biyi - Z bi Y;
i-1 i-1 j-i+t
With Theorem 3-1 (c) we now get b, y, > ¢,
]

10

3. THE ALGORITHM OF HUET

3.2 The Inhomogeneous Case

We shall now show, how Huet's algorithm for homogeneous equations can be
extended to find in parallel the minimal solutions of a system of
inhomogeneous equations as defined in 2.3.

The resulting algorithm will be essentially the same as Huet's, but will use four
slightly different bounding criteria. After generating a proposal, we
additionally have to test, if it is a solution not only of the homogeneous
equation, but of any of the equations. Theorem 2-8 yields that no solution is
lost, if we test the minimality of a proposal by comparing it with the minimal
solutions of the homogeneous equation.

Ifa,band P= {p, ,.., p} € give a system of inhomogeneous equations
INHOM(m, b, P), we define d;;,e; and s;; as for the homogeneous case. But we
replace the definitions of max_ , max, and maxyii by

max = max({a,,.,a_}UP) ,where P ={-p| peP}
max, -~ max({b,,..,b }uP)
maxy-inhii := minfe, - 1] x,2 d,. 1 <t<i), if this set is not empty,
max, otherwise.
And in addition we define
max, := max(Pu{0})

minp := min(Pu (0)).

Now we can extend Huet's criteria to our inhomogeneous problem :

THEOREM 3-3: Let o, b and P define a system of inhomogeneous equations
INHOM(am, b, P) and let u = (X, ., T, ¥y 4 ¥,) De 2 minimal

solution to INHOMp(a, b) for some p e P, but different from
every s;; .

Thenfor1<k<m
(a) x, < max, for1<ick

_inh &
(b) a,x,+..+a x < b maxy inh ®+ . +
+b, maxy-inh k + max, .

Andfor 1<s<n
(c) Y; < maxy-inh™ for1<jss

(d) byy,+..+b y +min < 8y X, +..+8_ X

P m -

11

3. THE ALGORITHM OF HUET

PROOF : Ad (a): follows from Theorem 2-10.
Ad (b): a, X +.+a, X < a X +.+a X

b, Yittb y, *pP
by, +..+b y, + max,

IA

because of (c):

1A

b, maxy-inh,™ + ..+ b maxy-inh ™ + max,
b, maxy-inh ¥ + ..+ b maxy-inh ¥ + max,
Ad (c): 1If there is no t with x, > dti, then Y;? maxy-inhi“' = max, is a
contradiction to Theorem 2-10. However, if there is t < k with x, > dti and
mary-inh® = e, - 1, then y; 2 €, means S, « u, since u +5,; Buts;isa

solution to the homogeneous equation, which contradicts the minimality of u by
Theorem 2-8 .

Ad (d): Since u is a solution to INHOMp(u, b),we have

byy,+..+b,y, +minp < by, +.+by, +p

1A

8l!1+...+am!m. a

In addition to these bounding-criteria for the yi's , there is another bound,
analogous to that of Theorem 3-2:

THEOREM 3-4: Let a,b and P define a system of inhomogeneous equations.
Then for every minimal solution u = (x ,.., X, ¥, ,... ¥) of

any of the equations and for all i < n, the y, are bounded
below by y, 2 max{0, ¢;/b,}, with
m i-1 n
C := Z X - Z bi Y; - Z bi maxy—inhi"' - max,
j=1 ji-1 j=ist

PROOF : Ifu ¢ Mp(u, b) for some peP, we have for 1 <i< n:

i-1 n
Z ax = Z biyi + by, ¢+ Z b, Y + P
j-1 j=ist

m i-1 n

Z X - Z b.y. - Z b.y. -p.
_ i 7 i 7i

j=1 j=1 jis1

With Theorem 3-3 (c) and p < max) wenowget by, > ¢, .

and therefore b.y,

12

4. THE ALGORITHM OF FORTENBA CHER

4 : THE ALGORITHM OF FORTENBACHER
4.1 The Homogeneous Case

As we have seen in chapter 3, Huet's algorithm generates proposals in a lexical
order. This might be regarded as a depth-first search in the grid
[0,.., maxb]xlo max‘]. In contrast, Fortenbacher presents a kind of

breadth-first algorithm [Fo 83], for the description of which we need two
concepts:

For a vector u = (u‘ vos Uge Vi sey V) € N,™" we define the cross-sum
s(W:=u+..+u + v, + .+ v Obviously, if w « u then s(w) < s(u).

Furthermore we define the differemce between the left-hand and the
right-hand side of the homogeneous equation for u :

d(u): = (a1 Ug+oatag um) - (b1 Vi+..tb vn).

Fortenbacher starts with the set L! of those (m+n) proposals u € No"’", which
have s(u)=1. In the k-th step, k = 1, he constructs two sets L¥*! and
ME: = (se M(a, b) | s(s) < k} from those elements u = (0 i 0 5 Vi s V) OF LY,

for which there is no v € MK with v <« u. Hence there is also no such v in M(a, b).
If u is a solution, it is therefore a minimal solution, and we put it into MX. If u is
not a solution, then we use it to generate LX*1, which is the set of children of all
these nonsolutions. If d(u)<0, the children ui of u are generated by
incrementing the component u;, on the left-hand side of u, i = 1 .., m. If

d(u)> 0, then the children wi of u are generated by incrementing the
component v, on the right-hand side of u, j =1 ,..., n. The algorithm stops, if Lk

is empty. Since for all u € L* we have s(u) - k, all sets L¥ are disjoint.

13

4. THE ALGORITHM OF FORTENBA CHER

FUNCTION FORT-HOM :

INPUT: A homogeneous equation HOM(a, b), defined by @ = (a, ,.., a) e N" and
b = (b, ... b)eN".

STEPO: k := 1,
L' - {(ul,., umn) c¢ N0,
where every component of u is 0 but the i-th, which is 1;
L? := @,
M- g,

STEP1: FORALL u = (u,,..,ug V,,..,v,)eL¥ DO:
IF ~(3seMf:s«u) TH
IF ueS(a,b)
THEN ME:-MEu (u).
ELSEIF d(u) <0

THEN L%'.- LYt o quilui-(u', .., 0, v,, .., V),

U, =u, 1fsa=1,ui=ui+1,lslsm};

ELSEIF d(u)>0
THEN LE*! <= LT o ilui-(u,, .., u, v, .., V),

vs'=vsifs*i,vi'=vi+ 1,1 <j<n}

STEP2: IF L¥'-9 TH STOP,
SE kK :=k+1,
ME .- MK,
Lk”:-Q.
GOTO STEP 1 .

OUTPUT : MEF is the set of all minimal solutions to HOM(a, b).

ENDOF FORT-HOM .
In the following paragraph we shall extend this algorithm to a system of
inhomogeneous equations, defined by a,band P< Z . Since we allow P = {0}, we

may treat the homogeneous equation as a special case. There we shall also
show that this algorithm can be significantly improved upon.

14

4. THE ALGORITHM OF FORTENBA CHER

4.2 The Inhomogeneous Case

We now want to extend our version of Fortenbacher’s algorithm to a system of
inhomogeneous equations, as defined in 2.3. First we present the main idea
which leads to a naive extension of FORT-HOM, whose correctness and
termination are shown in Theorem 4-1 and Theorem 4-2, resp. Thereafter we
discuss some inefficiencies and propose ways to avoid them. This leads to a
second, more sophisticated algorithm, which inherits its correctness and
termination from the first approach. It is shown to be complete in Lemma 4-5
and Theorem 4-6.

The main idea of the extension is to increment those proposals that satisfy the
criterion of the homogeneous case, but to increment in a different manner. In
the homogeneous case, a proposal u was only incremented, if there was no
weS(a, b) with w « u. In the following we shall call such a proposal
promising. We may take over this criterion to the inhomogeneous case,
because if there is such a w and if any descendant s of u would be a solution to
INHOMp for some p € P, then also w « s, and according to Theorem 2-8 s could

not be a minimal solution. However, the incrementation-strategy changes: we
increment the left-hand side of u, if there is p € P with d(u) < p, increment the
right-hand side, if there is q € P with d(u) = q and increment both sides, if there
are p, q € P with q < d(u) < p.

Hence we obtain a first extension of Fortenbacher's algorithm as:

FUNCTION NAIVE-FORT-INHOM :

INPUT : A system of inhomogeneous equations with the same homogeneous
parts, defined by @ = (a,, .. ,a) e N®, b=(b,, .., b)eN"

andP={p,,..,plel.

STEPO: k = 1 H
P = pU{D};
L' = (! .. o2 wl _ wtcN™o

where every component of v i js 0, but the i-th, which is 1,
for 1 csi<m,

and every component of wi is 0, but the (m+j)-th, which
is1, fori<jsn.

14 = 0
(Mol_)M‘ =g;
M1 =9 forall peP,

15

4. THE ALGORITHM OF FORTENBA CHER

STEP1: FORALL u = (u,..,u,V,, ..,V,)€L*DO:
IF ~(3seMf:s«u) TH
IF ueS(a,b)
THEN ME:=MFu {u).
ELSE
IF 3peP: ueSp(a,b)
THEN Mp‘:=Mp“u{u};

IF VpeP: dlu)<p
THEN L®':= L¥'uuilui=(u,, .., u,, v, .., V,), With

us'=uiif3*i,ui'=ui+1 for 1 <i< m)
ELSEIF VpeP: dlu)2p
THEN L¥*! ;= L o fwilui=(u,, .., u v, .., v,), With
vs'=vsifs=:j,vi'=vi+1 for1<j<n)
ELSEIF p,qu‘:qsd_(u)sp
THEN L¥*!':= LYo fuilui=(u', . u, v, .., V,), with
u/=u ifs+i u'=u+1 for 1 <i< m)
viwluw=(u .. u,
s = Vgifs=j vi‘=v

Vi Vg), with

i+1 for 1 <j<n)

SE k =k+1;
Mt - k-1
Mp“ = Mp“'l for all pe P,
Lk+l s ,
GOTO STEP 1

OUTPUT: MZKis the set of all minimal solutions to HOM(a, b) .
ForallpePis Mp“ the set of all minimal solutions to INHOMp(u, b).

ENDOF NAIVE-FORT-INHOM .

As an example consider the system of equations, defined by a = (2, 2), b =(3)
and P = {-5, 5}, for which the algorithm generates the following proposals (the
edges show, how each proposal is generated):

4. THE ALGORITHM OF FORTENBA CHER

L= {(10:0)(01:0)(00:1)}

2= {2o0:0010:1)(11 :0)(02:00(01:1)(00:2)}

AN

3= {(30:0)0(21:00(20:1)(11:1)(10:2(12:00(03:0)(02:1)(01:2) (00 :3))

If LE is the first empty set, i. e. the algorithm stops in this step, we define for
the following proofs L® : = @ and Mp‘ ;= M‘,“‘I for all s > k and p e P v {0).

THEOREM 4-1: For all p e P u {0} and k > 1: every element of Mp" is a
correct and minimal solution to INHOMp.

PROOF : Every element s of Mpt is a solution to INHOMp by construction. By

Theorem 2-8 we know that s is ‘a minimal solution, if there is no v € M(a, b)
with v << 5. By construction of Mpl for j = s(s), there is no such v in M’ and since

NAIVE-FORT-INHOM is just an extension of FORT-HOM, we know that
M! = {se M(g, b)| s(s) < j). However if ve M(a, b) and v¢ M/ then s(v)>j and
hence not v « s. Therefore s is a minimal solution to INHOMp.]

THEOREM 4-2: NAIVE-FORT-INHOM terminates after finitely many steps.

PROOF : The algorithm terminates, if no more proposals are generated. So we
have to show, that every chain u? « u! « ..., generated by the algorithm, has
an upper bound, i. e. there is an u! which is either a solution to the
homogeneous equation (d(u') = 0) or no longer promising.
It is easy to show, that for every proposal u, d(u') is bounded by

min, - max, < d(ui) < max, - max,.
Hence there are only finitely many values for d(u!). So in every chain there is

u' with either d(uf) = 0 or there is j < i with d(ui) = d(ui). But in that case
ui - w « u' is a solution to the homogeneous equation, and therefore u! is not
promising. B

17

4. THE ALGORITHM OF FORTENBA CHER

It is left to show that the algorithm is complete, i. e. every minimal solution to
any of the equations is generated. However, we shall first discuss four ways to
improve upon its efficiency and then show the completeness of a modified
algorithm FORT-INHOM.

First, if an ancestor of a proposal u was a solution to INHOMp for some p € P,

then neither u nor any descendant of u can be a minimal solution to this
equation. Hence, when incrementing u it is enough to consider the set
P(u) : = {p € Pu{0} | no ancestor of u was a solution to INHOM)
instead of P
Secondly, the following theorem tells us that every solution to the

homogeneous equation, generated by the algorithm, is minimal. Hence we may
test only those u € L¥ on minimality, that are no solutions.

THEOREM 4-3: Any solution s to HOM(a, b), generated by the algorithm, is
minimal.

PROOF: Without loss of generality,s=(c, ,..,c_, d, ..,

generated from s by incrementation of the first component. Since s was
incremented, it was not a solution to HOM and there was no v ¢ Mf! with
v « §', i. e. ' was promising. Now assume that there is a solution v <« s to HOM.
Then the first component of v is ¢,, since otherwise v <« 8" and s' would not be

promising. Consider w = s - v, which is also a solution to HOM. It is w « s and,
since the first component of w is C -¢C = 0, we have also w <« s', which

contradicts that §' is promising. Hence there is no other solution v « s, and § is
minimal in S(a, b). N

d_) e M* might have been

A third way to improve efficiency may be derived from the following
observation: if a proposal u! was generated by incrementing the i-th component
of a proposal u and if ui is either a solution to HOM(a, b) or no longer promising,
then we do not need to increment the i-th component of any other descendant
of u, since that new proposal would not be promising, too. However, we did not
find an easy and elegant way to integrate this idea with the three other
improvements.

The last, but most important improvement of NAIVE-FORT-INHOM concerns the
multiple generation of the same proposal. If there would be a unique history
for each proposal, the total number of incrementations would be significantly
reduced. Moreover, since we would not need to care about the distinctness of
the proposals, we could use lists and list-append to implement the L¥ and Mp",

thus avoiding the computational overhead with sets and set-union. If we try to
analyze, in what ways the same proposal might be generated, we find at least
two schemata: Incrementation of two components on different sides (Fig. 1) and

18

4. THE ALGORITHM OF FORTENBA CHER

incrementation of two components on the same side (Fig. 2).

(Fig. 1) (Fig. 2)

In order to obtain a unique history for each proposal, we somehow have to
prevent the confluences. In our modified algorithm, we do this by eliminating
edges (1) and (3).

(1) is eliminated as follows: If a proposal u is to be incremented on both sides,
than no descendant w of the right-hand side should ever be incremented on
the left. We shall mark this by defining a predicate LEFT-INCREMENTABLE on
the set of all proposals. (Note that edge (4) would be eliminated by exchanging
left and right in this rule.)

Eliminating edge (3) yields proposal-histories that look as if both sides of a
proposal were filled up from their back. (Analogous, eliminating edge (4) would
fill both sides up from their front.) This is achieved by not incrementing all
components on one side, but only those up to and including the first component
different from 0. For each proposal u we shall mark the position of this first
positive component on the left-hand side by nl(u) and on the right-hand side

by n,(u). If there is no component different from 0 on one side, we use the
position of the last component and define n,(u) = m or n,(u) = n, resp.

With this incrementation-strategy, e. g. the left-hand side of (2 30 1 : ..)
would be generated in theorder (000 1:..)
0101:.
(0201:
(0301:
(1301:.
(2301:..).
Note that this process is likely to be dovetailed by filling the right-hand side
up, depending on P u {0}.
By definition n,(u) and n,(u) denote the last component on the corresponding
side, that is allowed to be incremented. It is interesting that this interpretation
may be used to express LEFT-INCREMENTABLE(u) = false by setting n,(u) : = 0.

This does not influence the following proofs.
To prove in Lemma 4-4 that the use of LEFT-INCREMENTABLE, n, and n, really

. .
. . . i
. N . .
N Swa unet e

19

4. THE ALGORITHM OF FORTENBA CHER

guarantees a unique way to generate each proposal, we need to describe their
influence more formally: If u = (“1 v Uy Vg, e ,vn) is an ancestor of a proposai

w=(W,,..,W,,2,..,2) then our rules obviously yield
(1) v, w, fori=n(u)

(2) v, =w, for n(u) <ism

(3) 3Qi: U, < W,) = LEFT-INCREMENTABLE(u)
(4) v.<z for j=n,(u)

i 5
(5) v,=2z for nfu) ¢<j<n

i
We shall call proposals that satisfy these conditions for some w

w-incrementable.

LEMMA 4-4: Letw=(w,,..,w_,Z,..,Z)beaproposal.

Then for all k > 1 and for all u € L¥ we have:

(a) If uisw-incrementable and u' is an ancestor of u, then u'
is also w-incrementable. (Transitivity)

(b) 1If u, x e LK are w-incrementable and both are generated
from the same proposal u'e L¥!, thenu =x.

(c) Moreover: If u, x € L¥ are w-incrementable , then u =% .

(d) u isw-incrementable iff u is an ancestor of w.

PROOF: ad (a): If u is an ancestor of u, then nl(u) < n,(u') and nz(u) < n,(u’).
Therefore if u is w-incrementable, u' is also w-incrementable.

ad (b} Letu=(u, . ,u,v,,. 6 v)e LK generated from u' e L¥!, be
w-incrementable. Assume there is another child x = (x,, .., x_,y,,..,y) +u

of u' and x is also w-incrementable. Then u and x differ in exactly two
components. Each of these components is given either by n, (if it is on the

left) or by n, (if it is on the right).

CASE 1: Both were generated by incrementation on the same side, w. 1. 0. g. on
the left one. Since u + x, we may w. L. 0. g. assume that n,(u) < s: = n,(x). By

construction of u and x we then have u = xs-l. Since both are w-incrementable,
we get the contradiction w, =u_<x_< W, .

CASE 2: Both were generated by incrementation on different sides, w. 1. 0. g. x
from the s-th component on the left and u from a component on the right side.
Hence u, = x, - 1 and not LEFT-INCREMENTABLE(u). But since both are

w-incrementable, this yields the contradiction w_ =u_<x < w_

20

4. THE ALGORITHM OF FORTENBA CHER

ad (c): If k = 1, then u and x can be regarded as beeing generated from 0 and
hence are equal by (b). If k > 1, then (a) yields that both were generated from
proposals u' and x' that were w-incrementable by (a). However by induction
hypothesis we get that u' = x, and hence by (b) u and x must be equal.

ad (d) : We already mentioned that u is w-incrementable if u is an ancestor of
w. Now let u € L¥ be w-incrementable. Since u <« w, we have k < s(w). Therefore
w must have an ancestor in L¥ which is also w-incrementable. Now (c) yields
that this ancestor is u.

]

As a corollary of this lemma we have that each proposal w can be generated in
exactly one way. Furthermore, since all starting-proposals are different, no
multiple occurrences of the same proposal will appear, if we use lists and
"append” instead of sets and set-union.

We now present our final algorithm that integrates the discussed
improvements into NAIVE-FORT-INHOM. We will enclose lists in
square-brackets and denote list-append by "u".

FUNCTION FORT-INHOM :

INPUT : A system of inhomogeneous equations with the same homogeneous
parts, defined by @ = (a; , .. ,a) e N*, b=(b,,..,b)eN"

andP=[p,,...pl=Z .

STEP 0 :

1
Pu[0];
[v!, . ,v® w! wh]c Nyo
where every component of viis 0, but the i-th, which is 1,
n,(v!) = i, ny(wi)= n, LEFT-INCREMENTABLE(vY),
Pvi)= P, for1 sism,
and every component of wi is 0, but the (m+j)-th, which
is 1, n,(w) = m, ny(w’) =j, - LEFT-INCREMENTABLE(w/),
Pwi)= P, for 1 sjsn.
Lz § i nil H
(M0‘=)M1 =*nil;
nil for all peP;

k
P
Ll

=
]

21

4. THE ALGORITHM OF FORTENBA CHER

STEP1: FORALL u = (u,..,u,,Vv,, ..,V)eLFDO:
IF ueS(a,b)
THEN ME:=MFfulul
ELSEIF -~(3seMf:s «u) THEN

IF 3peP(u): ue Sp(u,b)
THEN Mpk ;= Mpk u [u];
P(u) : = P(u) \ [p];

IF VpeP(u):du)<p AND LEFT-INCREMENTABLE(u)
THEN L¥!:= LB ufuifui=(u, ., u v, .., v,), with
u/=u, ifs+iu'=u+1, P(ui) = P(u),
LEFT-INCREMENT ABLE(ul),
n, (u) = k, n,(u') = ny(u) for 1 <i=<n (u)]
ELSEIF VpeP(u):d(u)>p
THEN LE¥*! .= L¥! y[ui|ui- (U, ., ug, Vo, o, v,), With
Vo=V ifsejvi=v+ 1, P(uk) = P(u),
LEFT-INCREMENT ABLE(u) &
LEFT-INCREMENT ABLE(u),
n,(u) = n,(u), n,(w) = jfor 1 < j<n,(u)]
ELSEIF 3 p,q e P(u): q < d(u) < p AND ~ LEFT-INCREMENT ABLE(u)

THENL®! i = LY uuiluwi=(u,, .., u v, .., v,), with
s =V ifs=j, v/ =v;+ 1, P(uk) = P(u),
~ LEFT-INCREMENT ABLE(uf),
n, (W) =n,(u), n,(w) = jfor 1 <j<n,(u)
ELSEIF 3 p,qeP(u):q <d(u) « p AND LEFT-INCREMENT ABLE(u)

THEN L**

THEN L¥*':.- Lk y[ui|ui= (u,, ., Uy, v,, .., Vv,), With
u/=u ifs=+i, u'=u, +1; Plul)=Pu),
LEFT-INCREMENT ABLE(u?),
n,(uf) = i, n,(u!) = n,(u), for 1 <i<n (u)]
ulu|w-= (U, Uy Vs, v, With
Vg =Vgif s+j,v/=v,+ 1, Plui) - P(u),
~ LEFT-INCREMENT ABLE(w))
n, (W) = n, (u), n(w) = j, for 1 <j=<n,(u)]

STEP2: IF L¥!'=-qnil TH STOP.
ELSE k = k+1,
Mk - Mt-l
Mp" = Mp“'l for all p e P,
LY i= nil
GOTO STEP 1 .

22

4. THE ALGORITHM OF FORTENBA CHER

OUTPUT: ME is the set of all minimal solutions to HOM(a, b) .
ForallpePis Mp“ the set of all minimal solutions to INHOMp(a, b).

ENDOF FORT-INHOM .

Applied to our example, this algorithm generates the following proposals:

L= [(10:0)(01:\0)(00\:1)1
2= [Co:D(o:1)(11 :o)(oz:o)(£>2)1

1IN

3= [(30:00(20:1)(10:2)(21:0)(11:1)(12:0)(03:0)(02:1)(01:2)(00 :3)]

Since the proposals generated by FORT-INHOM constitute a subset of those,
generated by NAIVE-FORT-INHOM, correctness and termination of
FORT-INHOM follow from Theorem 4-1 and Theorem 4-2, resp., if we prove
that finally MX - M(a, b). From Theorem 4-3 we obtain MX ¢ M(a, b). We shall
now show with Lemma 4-5 and Theorem 4-6 that the algorithm generates all
minimal solutions to any of the equations:

LEMMA 4-5: Let a,b and P define a system of inhomogeneous equations and
let be p € Pu{0). Then for every minimal solution s to
INHOMp(u. b) and for all k > 1, either s € Mpk or there is ue Lk,

which is s -incrementable.

PROOF : Lets=(c,..,c,d,, .., d)bea minimal solution to INHOMp(n,b).
Note that to show s € Mp", it is enough to show s € L", because by construction
it is recognized as a solution and added to the solution-set Mp".

The proof is by induction on k in M

23

4. THE ALGORITHM OF FORTENBA CHER

Base stepk =1:
If there is i < m with > 0, then let t be the greatest index with this property

and consider u :=v' e L!. Now either u =s or u iss-incrementable.
However, if ¢, = 0 for all i < m, there must be j <n with di > 0, because s =+ 0.

Let t be the greatest index with this property and consider u:=w'e L! . Then
either u =5 or u is s-incrementable.

Induction step:
Ifse Mp"“ then alsos € Mp‘.

If sQMp“", then there is u'=(u,',...,um',v,',...,vﬂ')eLk'I which is

s -incrementable. First we have to show that u' is incremented: Since s is
minimal in Mp, Theorem 2-8 implies that s is also minimal in My v [s). Hence

u' <« s yields that u' ¢ M, and that there is nowe MK ¢ M(a, b) with w « u"

Therefore u' will be incremented. Furthermore, p € P(u’) because s is minimal in
Mp and u' « s, and therefore neither u’ nor any ancestor of u’ can be a solution

to INHOMP.

To choose u €Lk, generated from u' and s-incrementable, we have to consider
four cases:
(1) d(u') < q for all q € P(u'), in particular d(u’) < p : Hence u' is only
incremented on the left-hand side.
(2) d(u’)> qfor all q e P(u'), in particular d(u’) > p : Hence u' is only
incremented on the right-hand side.
(3) There are q,, q, € P(u) with q, ¢ d(u) < g, but w is not

left-incrementable: Hence u' is only incremented on the right-hand side.
(4) There are q,, q, € P(u’) with q, < d(u') < q,, but u' is left-incrementable:

Hence u’ will be incremented on both sides.

CASE1: There must exist i< nl(u') with ui' < ¢;. Let t be the greatest index with

this property. Then by incrementing this component a new proposal u will be
generated, with n,(u) =t <n, (), n,(u) = ny(u’) and, because u’ « s, either

4 =8 or u iss-incrementable.

CASE 2: Since there must exist j < n,(u) with vi' ¢ ¢, we can choose u
analogous to CASE 1: if t is the greatest index with vi' < di for1<j< n2(u'), then
t< nz(u'), and therefore by incrementing this component a new proposal u will
be generated which is either equal to s or s-incrementable.

24

4. THE ALGORITHM OF FORTENBA CHER

CASE 3: Since u is s-incrementable but not left-incrementable, it must be
u, =¢ for 1 <i< m and hence d(u) > p. Therefore we can choose u as in CASE 2,

by incrementation on the right.

CASE 4: This case is more complicated. If d(u’) > p and u,' = ¢, for 1 <i< m, we

can choose u as in CASE 2 by incrementation on the right. But if d(u’) > p, and
there exists i with u, <, then each proposal ui, generated by incrementation

on the right-hand side of u' will not be left-incrementable and therefore not
satisfy condition (3) of s-incrementability. However in this case or if d(u’) < p,
we can choose u as in CASE 1, by incrementation on the left. In both subcases
either u =sor u is s-incrementable.

THEOREM 4-6: Function FORT-INHOM computes all minimal solutions to
INHOMp(u, b) for every peP.

PROOF : Let s be a minimal solution to INHOMp(n, b). For s(s), according to
Lemma 4-3, either se Mp" or there is u eL¥ with u « s. Since ue L¥ would
imply s(u) = s(s), which contradicts u « s, it must bese Mp‘.

25

5. EXPERIENCES WITH THE ALGORITHMS

S : EXPERIMENTS WITH THE ALGORITHMS
S.1 General Remarks on Runtime-Measurements

Unfortunately, the SYMBOLICS 3600 does not provide a utility to measure pure
CPU-time, i. e. runtime without the time needed for paging or
garbage-collection. Hence we often measured very different runtimes for the
same problem. A closer look showed that about every third or fourth result
went astray. To overcome this problem and to get - at least to some extend -
exact values, we chose the following method :

Each task was measured eight times. From these values we only took the
smaller ones up to the greatest value that did not differ more than 10 %
from the next smaller one. The arithmetic mean of these values was taken
for result.

Practice showed, that in most cases about six values out of eight were accepted
and that these did not differ more than 5 % from their mean.

S.2 A Note to Problem-Formulation

As Huet mentioned in his paper, a different formulation of the initial problem
might significantly improve upon runtime. He presented the following
heuristics to get a fast execution :

--= maxa < maxb

-- 812822...Zam

-- blsbzs...sbn

Our experience validated these rules for the homogeneous as well as for the
inhomogeneous case.

Practice with our version of Fortenbacher's algorithm showed, that in the
average best results were achieved if

== 315325...5am

-- blsbzs...sbn

and for the inhomogeneous case, if in addition

-- m<n.
All values listed in the following are achieved with problem-formulations
according to these rules; the time to get these formulations (e. g. sorting of the
coefficients) is not included.

26

S. EXPERIENCES WITH THE ALGORITHMS

5.3 An Attempt of a Comparison

Analyzing the results of our various measurements, we observe the following
points :

If many coefficients have no common divisors, so that the dii and € get large,
the algorithm of Huet is very slow, because many proposals (also nonminimal
ones) must be generated.

The algorithm of Fortenbacher does not like large coefficients or large
inhomogeneous parts, because they slow down convergence (see theorem 4-2).

5.4 Use for AC-Unification

The presented algorithms play a crucial role in AC-Unification. As pointed out
in the introduction, the main difference between the unification-algorithms of
Stickel [St 81] and Herold/Livesey/Siekmann [LS 76], [HS 85] is the different
reduction to linear diophantine equations.
Besides the theoretical advantage (c. f. [BU 85]), our findings show that the
latter has important practical advantages :

-- The tables with the runtimes show that in almost every case it is much
faster to compute all the solution-sets of the multiple inhomogeneous
equations and the homogeneous one than the single solution-set of
Stickel's large homogeneous equation. (This observation does not depend
on our assumption that the inhomogeneous parts are not substantially
larger than the homogeneous parts.)

-- The unifiers can be directly derived from the sets of minimal solutions,
whereas in Stickel's algorithm a compatibility-computation has to be
performed in addition.

ACKNOWLEDGEMENTS:

We would like to express our gratitude to Hans-Jiirgen Biirckert, Jorg Siekmann
and Manfred Schmidt-Schauf for a thorough reading of an earlier draft of this
paper. Their constructive criticism has contributed much to the present form of
this paper.

27

BIBLIOGRAPHY

BIBLIOGRAPHY

[Bi 85]

[CP 67]

[Fa 84]

[Fo 83]

[Go 1873]

[HS 85]

[Hu 78]

[La 85]

[LS 76]

[Ma 78]

[St 75]

[St 81]

W. Bittner: "Unification in the Datastructure Multisets".
Report, Siemens AG, Corporate Laboratories for Information
Technology, Milnchen, 1985.

Clifford / Preston : "“The Algebraic Theory of Semigroups”, Vol 2.
Providence, Rhode Island, 1967.

F. Fages: "Associative-Commutative Unification"”
in Proc. of 7' CADE (ed. RE. Shostak), pp. 194-208, 1984

A. Fortenbacher: "Algebraische Unifikation" .
Diplomarbeit, Universitit Karlsruhe, 1983

P. Gordon: “Uber die Auflésung linearer Gleichungen mit
reellen Coefficienten”.
in "Mathematische Annalen”, Leipzig, 1873

A. Herold / J. Siekmann: “Unification in Abelian Semigroups”.
Universitdt Kaiserslautern, MEMO SEKI-85-111-KL, 1985

G. Huet: "An Algortithm to generate the Basis of Solutions to
Homogeneous Linear Diophantine Equations”.
in "Information Processing Letters”, vol 7, no. 3, 1978

D. Lankford: "A new Non-negative Integer Basis Algorithm
For Linear Homogeneous Equations with Integer Coefficients”.
(unpublished)

M. Livesey /]. Siekmann: "Unification in Sets and Multisets".
Universitit Karlsruhe, MEMO SEKI-76-11, 1976

K. Maiwand: "An Implementation of an AC-Unification Algorithm"
Universitit Karlsruhe, 1978

M. Stickel: “A complete Unification Algorithm for Associative
-Commutative Functions” .
in Proc. 4t 1JCAI, Tblisi, USSR, 1975

M. Stickel: “A Unification Algorithm for Associative
-Commutative Functions”.
in "Journal of the ACM" , vol 28, no 3, 1978

28

APPENDIX

APPENDIX

Runtimes for various Homogeneous Equations

homogeneous # of Runtime of Runtimeof | FORT-HOM
coefficients | sotutions | HUET-HOM Ims] | FORT-HOM [ms] |
(1) (12) 2 4 3
(1) (112) 3 5 4
(12) (112) 7 9 9
37 (58) 12 53 56
(12) (11122) 13 15 16
(12) (11210 13 16 35
(234) (234) 13 24 34
(57) (38) 18 59 68
(12) (111223) 19 29 27
(12) (1112210) 19 26 54
(123) (456) 22 60 73
(47) (235) 22 95 96
(112) (11223) 24 37 39
(134) (1134) 27 65 66
(1122) (11122) 28 35 39
(1215) (3510) 29 113 123
(125) (1234) 39 197 124
(11125 (123) 43 266 109
(112) (1210) 43 87 168

29

(1122)

(357)

(1210)

(259)

(259)

(222333)

(259 10)

(12259)

(1210)

(11123)
(124)
(11210
(378)
(12378)
(222333)
(37810)
(12378)

(11122)

44

44

30

65

119

138

152

345

349

30

101

306

153

1213

11 000

654

13 000

64 000

11 000

83

176

236

454

1 489

483

2319

6070

4380

APPENDIX

APPENDIX

Runtimes for Systems of Inhomogeneous Equations

In columns seven and eight we list the runtimes of our two algorithms for
various inhomogeneous problems. As mentioned before, such systems of
inhomogeneous equations arise with the AC-Unification-algorithm of Herold
and Siekmann [HS 85]. Instead, the AC-Unification-algorithm of Stickel [St 81]
would have to deal with a larger homogeneous equation, which we solved with
our versions of Huet's and Fortenbacher’s algorithm. In column six we give the
minimum of the two runtimes and mark in brackets, with which of the two
algorithms it was achieved.

homogeneous | inhomogen. | number of solutions to | runtime in ms

parts of the | parts of the | the hom.| each of the | Stickel's big | for Stickel's |of HUET | of FORT

equations | equations Iaquationlinbom. eqslhom. equationlbig hom. aqu.l -INH | -INH
m (@ 1 1 11 2 3 (F) 4 5
12 11 3 4 (F) 5 7

1 -1 -2 111 7 9 (H) 5 9

(12) (112) j 1 2 7 132 13 15 (H) 15 20
123 324 19 27 (F) 18 36

1 2-1-2 3234 28 35 (H) 20 33

-10 36 43 87 (H) 33 218

10 6 13 16 (H) 28 156

-10 10 36 6 50 153 (H) 59 283

1 2-10 3236 349 4380 (F) 44 247

12 10 32 6 19 26 (H) 35 170

(259)(378) |1 2 65 196 119 1489 (F) 3103 644
12 -1 -2 19 6 24 39 345 6070 (F) | 5048 835

-10 10 32 15 152 2319 (F) 4155 | 1447

31

