Universitat Kaiserslautern
D-6750 Kaiserslautern 1. W. Germany

Fachbereich Informatik
Postfach 3049

MEMO

SEKI

acki-FRUJERT

i, ’U
e

A X E NN

(C

N
/

Canonical Term Functors and
Parameterization=by-use for the
Specification of Ahstract Data Types

Ch. Reierle, A. VOR

Memo SFKI-83-07 May 1983

CANONICAJI, TEFRM FUNCTORS AND PARAMFTERIZATION-RY-USF
FOR THF SPRCIFICATIONS OF ABSTRACT DATA TYPFS

Ch. Beierle, A. VoB

Fachbereich Informatik
Universitdt Kaiserslautern
Postfach 3049
ND-6750 Kaiserslautern

West Germany

May 1983

Abstract

Algebraic and algorithmic specification methods for abstract data
types are combined in the specification language ASPIK coverinqg
the whole scope from high level requirements and formal
specifications to functional proagrams. The link between axiomatic
and algorithmic specifications is provided by the notion of
canonical term functor, a generalization of canonical term
algebra. Specifications are structured hierarchically and the new
concept of parameterization-by-use offers a flexible means to
refine such hierarchies. These features are illustrated by

several examples of ASPIK specifications.

Druck: Abteilung Foto-Repro-Druck der Universitat Kaiserslautern

Contents

1. TIntroduction 1

2. The specification lanquage ASPIK 2
2.1. Specifications in ASPIK 3
2.1.1. Specification header 3
2.1.1.1 Hierarchies 3

2.1.1.2 The signature 9

2.1.1.3 Properties a

2.1.2. Specification body 10
2.1.2.1 pDefinition of carriers 10

2.1.2.2 pDefinition of operations 12

2.1.3. Parameterization-by-use 14
2.2 Outline of a formal definition of ASPIK 19
2.2.1. Abstract syntax 19
2.2.2. Semantics 21
2.2.2.1 SPEC - the category of specifications 21

2.2.2.2 Specification hierarchies 24

References 26

1. Introduction

Abstract data types (ADTs) have turned out to he a useful and
powerful concept for the description of data types ([Zzi 75], [Gut
75], [GHM 78]). The predominant method for specifying ADTs is the
axiomatic specification method (e.g. [GTW 78], [FKTWW 80], [RPPPW
80]). The purpose of abstract specifications is to provide a
method for specifying problems and solution approaches without
talking about undue details of representation. However, a
specification method must not only provide a sufficient level of
abstraction but should also be close to the ways of reasoning of
those developing specifications: specifications are meant to
bridge the gap between informal descriptions and executable
programs. Whereas the level of abstraction in axiomatic
specifications is very high, it poses problems as well, It may
often be easier and more natural to think in terms of models
instead of axiom systems, though still on a high level of
abstraction. In the axiomatic approach problems of proving
consistency and completeness properties arise. In [Kl 80] and
[ro 81] algorithmic specification methods are used that are
intended to overcome some of these difficulties. Whereas
axiomatic specifications merely describe the desired properties
of operations, carriers and operations must be defined explicitly

as sets and functions in alqgorithmic specifications.

Algorithmic specifications therefore constitute a lower level of
abstraction than axiomatic specifications. Since bhoth levels are
useful they are incorporated in our specification language ASPIK.
To close the gap between both levels we use canonical term
functors, a generalization of the notion of canonical term
algebra ([GTW 78]). Axiomatic specifications are taken to be
loose specifications, whereas canonical term functors are used to
define so-called I-fixes, a constraint mechanism similar to
initial or generating constraints in [HKR 80], [RG 80], [sw 82].

ASPIK supports the development of hierarchical specifications. In
contrast to other approaches (e.q. [BG 80], [sa 81], [Fh 81], [Ra
81]), in our parameterization-by-use concept no distinction is
made between parameter, parameterized, and non-parameterized
specifications. Instead, every specification hierarchically lower
than some other specification may be reqgarded as a formal
parameter and replaced by some fitting actual parameter. This
represents a new type of abstraction: when writing down
specifications one does not have to care about parameterization;
only when creating an instantiation the parts regarded as formal

w.r.t. that instantiation must be identified.

ASPIK is integrated in a program development and verification
system ([RS 80]). It is supported by the interactive INTERLISP
system SPFSY ([KRST 83]), comprising a quiding input facility,
a syntax oriented editor, a file manager and a symbolic
interpreter for algorithmic specifications. Various properties of
ASPIK specifications are proved by an automatic theorem prover
([rrS 81]).

In Sec. 2, the language ASPIK is presented by working through
several example specifications in 2.1. An abstract syntax and the

main concepts of ASPIK semantics are sketched in 2.2.

2. The specification language ASPIK

ASPIK is intended to be a specification language supporting the
software development cycle from high level requirement
definitions down to executahle programs. It allows the use of
loose specifications to formalize requirements. Starting with
loose specifications they may be tiahtened and refined over

several steps finally coming up with algorithmic specifications.

Algorithmic specifications can be viewed as abstract, but

complete, executable programs.

2.1. Specifications in ASPIK

In ASPIK both algorithmic and loose specifications as well as all
intermediate forms follow a single specification scheme thus
documenting the link between specifications and supporting the

step from a specification to a refinement thereof.

A specification consists of a unique name, a specification header
and a specification body, the latter being empty in the case of
loose specifications. The language constructs as sketched in Fiq.
2.0 will be discussed in 2.l1.1 and 2.1.2 using the specifications
BOOI. (Fig. 2.1), NAT (Fig. 2.2), LIMIT (Fig. 2.3), FLEM (Fig.
2.4) and BOUNDED-STACK (Fig. 2.5) for illustration.

2.1.1., Specification header

The header of an ASPIK specification SP describes SP to the
outside world. The header
- says which other specifications it is based upon,
- gives the name and arity of the sorts resp. functions it
provides as accessible to the outside, and

- states properties met by these functions.

2.1.1.1. Hierachies

ASPIK supports the hierarchical development of specifications.
The hierarchical relationship between specifications is expressed
by their use-clauses. A specification SP containing
use SP1, ... , SPn

denotes an implicit combination of SP1l, ... , SPn enriched by the
new sorts and/or operations introduced by SP (see 2.1.1.2). The
use-relationship establishes a partial ordering on specifi-
cations; its transitive closure must not introduce any cycles,

thus quaranteeing its hierarchical nature.

NAT only uses spec ROOL which is used directly or indirectly by

spec <{spec-name>

use ... hierarchy of
specifications
sorts ... siqgnature of specification
OPS «ee specification header
Props... } properties of
specification
spec body L
constructors ...
definition
auxiliaries ... of
carriers
define auxiliaries ...
define carriers... specification
r body
define constructor ops ...
definition
private ops ... of
operations
define ops ...
endspec J

Figure 2.0: Syntactic structure of ASPIK-specification

spec BOOL

sorts bool

ops true, false: ---> bool
not: bool =--=-=> bool
and, or: bool bhool --=> bhool

false
true
or(not(x),not(y))

props not(true)

not(false)
not(and(x,y))

spec bodz

constructors true, false

define constructor ops
true := *true
false:= *false

define ops
not(x):= case x is
true : false
*false: true
esac

and(x,y):= case x is
¥true : vy

or(x,y) := case x is
¥true : true

endspec

Fiqure 2.1: The specification BOOIL

spec NAT
use BOOL

sorts nat

ops 0: -——=> nat
succ: nat ---=> nat
add : nat nat ---> nat

le : nat nat ---> bool

props add(x,y) = add(y,x)
add(x,add(y,z)) = add(add(x,vy),z)
le(x,add(x,y)) = true
spec body
constructors 0, succ
define constructor ops
0 :=* 0
succ(x) := *succ(x)
define ops
add(x,y):= case x is
0 H
*succ(x”): succ(add(x”,y))
esac
le(x,y):= case x is
*0 : true
*succ(x”): case y is
*0 : false
*succ(y”): le(x™,y
esac

esac

endspec

Figure 2.2: The specification NAT

spec LIMIT

use NAT
ops limit: ---> nat
rops le(limit,succ**100(0)) = true
le(succ(0),limit) = true
endspec
Fiqgure 2.3: The specification ILLIMIT
spec FLEM
use BOOL

sorts elem

endspec

Figure 2.4: The specification EIL.FM

spec BOUNDED-STACK
use BOOL, NAT, LIMIT, FLEM

sorts stack

ops empty: ---> stack
push: stack elem -— > stack
pop: stack ---> stack
top: stack ---> elem
empty?, full?: stack =--> bool
props full?(s) = false ==> pop(push(s,e)) = s
full?(s) = false ==> top(push(s,e)) = e
empty? (empty) = true
spec body
constructors empty, push
auxiliaries depth: stack --> nat
define auxiliaries
depth(s):= case s is
*empty : 0
*push(s”,e): succ(depth(s”))
esac

define carrier
1s-stack(s):= case s is
*empty : true
*push(s” ,e): if not(is-stack(s))
then false
else le(succ(depth(s”)),limit)

esac

define constructor ops
empty=: *empty
push(s,e):= if le(succ(depth(s)),limit)
then *push(s,e)
else error-stack

define ops
pop(s):= case s is

*empty : error-stack
*push(s” ,e): s~
esac

top(s):= case s is

¥empty : error—-elem
*push(s” ,e): e
esac

empty?(s):= case s is

¥empty : true
*push(s” ,e): false
esac

full?(s):= not(le(succ(depth(s)),limit))

endspec
Figure 2.5: The specification BOUNDEN-STACK

!

every other specification. This convention makes boolean
constants and functions, and thus the if-then-else language
construct, available in every ASPIK specification. BOOIL is the
only specification without a use-clause; it is given in Fig. 2.1.
The sorts and operations provided by all specifications used

constitute the imported interface.

2.1.1.2. The signature

The sorts and ops clauses introduce new (also referred to as
“public™) sorts and operation names. Together with the imported

interface, they constitute the exported interface which is

provided to each specification using this one. In NAT, a new sort
nat is introduced following the key word sorts, as well as new
operations 0, succ, add, and le following the key word ops.
Their domains and codomains may contain only sort names from the

exported interface.

2.1.1.3. Properties

In this clause, properties of the public functions may be given.
In the ASPIK version currently supported by SPFSY, the properties
may be expressed by equations over the operation names and
variables. The equations are implicitly universally quantified
and may be conditional. The conditions themselves are
conjunctions of one or more equations.

The properties allow for axiomatic ASPIK specifications. An
algebra is a model of a specification SP only if it fulfills all
of SP’s properties. However, in contrast to the initial approach
in e.q. [GTW 78] , all model algebras are considered, not just
initial ones. Thus, the user may write down a specification
stating only some axioms as requirements; later on, the
specification may be refined by a tighter one having more axioms
or by a specification with an alqorithmic definition part, i.e. a
non-empty specification body.

In NAT, some properties of add and le are stated, e.qg.

commutativity and associativity of the operation add. LIMIT qgives

properties of limit in relationship to le, 0O and succ.

2.1.1. Specification body

For loose specifications the body is empty; otherwise for the new
sorts and operation names carriers and functions must be defined
representing a CTA resp. CTF as a model of the properties.
For the formal definition, the reader is referred to 2.2.2.

First, CTAs are considered.

2.1.2.1. Definition of carriers

The carriers of a CTA are subsets of the Herbrand universes over
its signature. In the simplest case, such a subset is generated
by a subset Z~ of the functions in the algebra”s signature 2,
(zfgz) . In other cases the Herbrand universe H(I,s) of some sort
s may not be isomorphic to the intended data type carrier.
Therefore, ASPIK provides a mechanism to define a subset CK c
H(Z,s), such that CS will be a CTA-carrier for sort s. The
definition of CTA-carriers in ASPIK may be done in three steps

with the second and third step being optional.

Following the key word constructors a list of function names with

codomain s is given for every new sort s introduced in this
specification. Since the carrier elements are terms build from

the constructors, we will use the “*-notation™ to distinguish

carrier elements from CTA-function applications: the terms in the
Herbrand universe H(I,s) and thus the elements of the carrier Cg

are prefixed by “*~, NAT has constructors O and succ for sort
nat, ROUNDED-STACK has empty and push for stack.

If the CTA carrier of sort s is a proper subset of the Herbrand
universe a characteristic predicate is-s must be defined. In

order to facilitate its definition, auxiliaries may be

introduced. These are functions on the Hebrand universe as

10

opposed to e.a. the functions defined on the carrier only: in
BOUNDED-STACK a function depth is used yielding the number of

“push”™ occurrences in a given stack term.

The characteristic predicate is-s is defined following the key
word define carriers. Simple syntactic restrictions
(automatically checked by SPESY) gquarantee that only proper CTA
carriers can be defined: since all suhterms of a carrier element

must be carrier elements themselves (subterm property), the

definition of is-s must start with a case analysis over the
syntactic structure of a term t and for every case is-s(t) may
yield true only if is-s”(t”) yields true for every subterm t~ of
t and every new sort s7, The carrier of sort stack contains all
terms over empty and push such that the depth of the term is not

greater than the given limit.

In algorithmic specifications the ASPIK language constructs

auxiliaries, define auxiliaries, define carriers are optional.

In case they are missing the trivial characteristic predicate
yielding constantly true is assumed. Thus, the carrier of sort
nat in specification NAT is just the Herbrand universe over 0O and

succ, i.e. {*O, *succ(0), *succ(succ(0)), ...}.

Since only new sorts and operations are defined in the
specification body, and since imported sorts are referenced via
imported operations only, the carrier structure of imported sorts
is invisible to the importing specification and the same
syntactical scheme may be employed to define CTAs as well as
CTFs. If all specifications used are algorithmic, the scheme
yields a CTA. It yiedls a CTF, if some specifications used are
loose. The specification body of ROUNDFD-STACK is an example for
a CTF definition because it uses sort elem of the 1loose

specificaion FLFM,

11

2.1.2.2. hefinition of operations

Every new operation must be defined on the respective
carriers. This is achieved by dividing the operation definitions
into two steps. First, operations are defined correspondina to
the constructors that were used to define the carriers, second,
the other new operations are defined possibly by means of some
private operations (also called hidden functions in e.g. [TWW
82]). As opposed to implicit operation definitions by equations
([ctw 78]), ASPIK provides a definition technique that is similar
to the algorithmic specification method used in [K1 80] and [LO
81]. The left hand side (lhs) of an operation definition consists
of the name of the operation to be defined applied to variables
of appropriate sorts; the right hand side (rhs) is an operation
scheme over the lhs variables. An operation scheme is one of the
following:

- public operation term

- if-then-else scheme

- case scheme

- let scheme

A public operation term is a possibly nested application of
public functions to appropriate variables.

An if-then-else scheme is the usual conditional where the
condition is a public operation term of sort bool. The then- and
else-bhranches are again operation schemes.

A case scheme relies upon the fact that the arquments of public
functions are elements from CTA-carriers. Depending on the
syntactic structure of the arguments one can give different
function values. A simple pattern matching is emploved where only
the outermost operator is relevant,

In a let scheme, a variable can be infroduced as an abbreviation

for a term.

Following define constructor ops the operations correspondina to

the constructors of every public sort are defined. Two main

12

conditions must be met:

(1) constructor property

Whenever a term *op(tl,u.,tn) is in the carrier of sort s,
op(tl,...,tn) must yield *op(tl,...,tn).
In BOUNDFD-STACK the constructor property enforces
empty := *empty and push(s,e) := *push(s,e)
if the depth of stack s is less than limit.

(2) operations closed on carriers

Whenever a constructor term *op(tl,".,tn) is not in the
carrier of sort s, op(ty,e.e,t) must not vyield
*op(tl,...,tn).

In BOUNDED-STACK push(s,e) must not yield *push(s,e) if the
depth of s is equal to limit since it must yield an element

of the stack carrier.

In ASPIK, the above conditions are quaranteed automatically. The
constructor definitions are defined along the characterisitic
predicates. For each constructor the corresponding right hand
side of the characteristic predicate”™s case scheme is transformed
into an operation scheme, where, roughly speaking, a true-branch
is substituted by the corresponding carrier term *op(tl,“.,tn),
and a false-branch has to be filled in with some user given
operation scheme. Thus, SPESY generates parts of the constructor
definitions automatically. In NAT, is-nat is assumed to be
constantly true; SPFSY generates the complete operation
definitions for both O and succ. in ROUNDED-STACK, the definition
for empty is generated as well, and in the push definition only
the else-branch must bhe filled in by the user. It cannot be
automatically generated, since one might want to define a
“forgetful~ bounded stack by setting push(s,e) := s iff s is
already full.

Private operations are not accessible from the outside.

13

Therefore, they are not declared in the specification header but
in its body. All auxiliaries are automatically available as
private operations, the difference being that auxiliaries are
defined on the Herbrand universe while private operations operate
on the carrier sets. Private operations as well as all public
operations other than constructors are defined algorithmically
following the key word define ops. An example for the use of

private operations is given in BOUNDED-STACK, where operation
full? is defined in terms of depth.

Closedness of all private and public operations is again enforced
by simple syntactic restrictions. Because of the hierarchical
relationships of the different types of operations their
closedness w.r.t. the carrier sets may finally be reduced to the
closedness of the constructors operations: Fxcept for the
automatically generated parts of the constructor operation
definitions, the right hand sides of the defining operation
schemes may not contain *-prefixed terms from the Herbrand
universe explicitly; instead, function applications of the con-
structor operations evaluating to carrier elements must be used.
Termination of all algorithmically defined operations remains to
be shown, i.e. auxiliaries, characteristic predicates, con-
structor operations, private and public operations. For proving

termination an automatic theorem prover will be used ([RFS 81]).

2.1.3. Parameterization-by-use

ASPIK provides a parameterization concept that was designed

according to the following principles:

- Both formal and actual parameters are specifications.

- Loose and algorithmic specifications may be used as formal as
well as actual parameters.

- In a specification itself no parameters are declared; only
when instantiating a specification the formal parameters are

indicated.

14

spec TWFENTY

use NAT
public ops twenty: ---> nat
spec body

define ops
twenty:= succ**20(0)

endspec

Figure 2.6: The specification TWFENTY

15

BOUNDED-STACK

\\\

TWENTY LIMIT FI.FM
NAT

BOOL

Figure 2.7: The hierarchy of specifications with POUNDED-STACK

BOUNDED-STACK{FLFM + NAT,
LIMIT + TWENTY }

BOUNDFED-STACK BOUNDFD-STACK ROUNDED-STACK
{LIMIT + TWENTY} {FLEM » NAT} {FLFM » BOOL}

N

/// BOUNDFD-STACK ,
/. L
TWENTY \\\\\JIMIT

ELFM

BOOL

Figure 2.8: The hierarchy with some instances of ROUNDFED-STACK

16

- All specifications used by a specification may serve as

formal parameters.

This yields a highly flexible system of parameter specification
and instantiation. Its formal treatment is discussed in 2.2.2

whereas in this section some illustrating examples are given.

The use-clauses of all specifications define a hierarchy of
specifications that can be represented by an acyclic graph. They
induce a partial order on specifications, with minimum element
BOOL. Since every used specification is included in the
specification itself as a subspecification the idea of
instantiation amounts to consider some used specifications as
formal parameters and to replace (or actualize) them by some
other specifications regarded as actual parameters. Such an
instantiation must be compatible with the hierarchical structure
of the specifications: every specification used by a formal
parameter must be used by the corresponding actual parameter (see
also 2.2.2).

The hierarchy of Fiqg. 2.7 is generated by the specifications of
Fig. 2.1. - 2.6. An instantiation of BOUNDED-STACK could be
produced by actualizing the used specification LIMIT - as formal
parameter - by specification TWENTY as actual parameter, thus
restricting the maximal depth of a stack to 20. The result of
this instantiation process is denoted by

o
(1) ROUNDED-STACK{LIMIT + TWFNTY

where o is part of a specification morphism mapping new sorts and

operations of LIMIT to sorts and operations in TWENTY s exported

interface:

o: Ops limit + twenty

17

The complete specification morphism is obtained by extending the
given part by mapping all used specifications that are not
parameters identically to themselves. o must be compatible with
the arity of the operations and all properties of the formal
parameter translated by o must be met by the actual parameter.
While the first condition is easily checked the second one has to

be proved. This could be done by an automatic theorem prover.

The specification denoted by (1) originates from BOUNDED-STACK by
substituting the specification name TWFENTY for LIM.T in the use
clause and the operation name twenty for 1limit in the

specification body.
Some more examples for instantiations are:

(2) BOUNDED-STACK {FLEM -~ NAT

sorts elem + nat}

(3) BOUNDED-STACK {ELEM +ROOI,
sorts elem + bool}

(4) BOUNDED-STACK {FLEM + NAT
sorts elem + nat;
LIMIT +» TWENTY
ops limit » twenty}

Considering the hierarchy extented by (1) - (4) in Fig. 2.8, new
instantiations are now possible, e.q.
£ g
(5) BOUNDED-STACK {LIMIT + TWENTY} {FLFM + NAT}
g f
(6) BOUNDFD-STACK {FLEM +NAT} {LIMIT + TWENTY}

where: f: ops limit » twenty
g: sorts elem * nat

18

It should not matter in which sequence independent parameters are
actualized or whether they are actualized in parallel, thus both
the specifications denoted by (5) and (6) should be identified
with (4). 1In ASPIK, this is indeed the case. Instantiations are

denoted by specification terms. ASPIK semantics refer every

specification term to a specification and to a node in the
specification hierarchy, e.g. the different terms (4) - (6)
denote the same specification under ASPIK semantics. Thus, the
use—clause of a specification may not only contain simple
specification names but also specification terms such as (2) -
(4). More sophisticated examples of parameterization-by-use
exhibiting these and other aspects can be found in [BRGV 83].

2.2. Outline of a formal definition of ASPIK

2.2.1. Abstract ASPIK syntax

Note: The syntax is given in a BNF-like notation.

Terminal symbols are underlined.

spec:: spec specid
[comment text]
[use spec-term...]
[sorts sortid...]
[ops op-header...]
[props property...]
[spec-body body]
endspec

spec-term:: specid [(spec-map...)]...

spec-map:: spec-term * spec-term
sig-map
sig-map: [sorts (sortid » sortid)...]

[ops (opid » opid)...]

19

opheader:: opid ...:[sortid...] » sortid
property:: equationlinequationlcond-equation
equation:: term=term

inequation:: term=/=term

cond-equation:: equation[& equation]...=>

(equation|inequation)

body: [carrier-part]

op-part

carrier-part:: constructors opid...

[[auxiliaries op-header...

[define auxiliaries op—body...]]

define carriers op—body...]

op-part:: [define constructors op-body...]

[private ops op-header...]

[define ops op-body...]
op-body:: opid[(varid...)] := op-scheme

op-scheme:: term|if-scheme|case-scheme|let-scheme
term:: varid|opid[(term...)]

let-scheme:: let (varid = term)...
in op-scheme

case-scheme:: case varid is
(opid[(varid..)]: op-scheme)...
[otherwise op-scheme]

esac

20

if-scheme:: if term
then op-scheme
[elsif term
then op-scheme]...

else op-scheme

2.2.2 Semantics

The objective of the algebraic specification method is the
definition of abstract data types. Data types are usually
regarded as algebras or classes of algebras. ASPIK definitions
denote hierarchies of specifications as induced by the use
relationship. Such hierarchical specifications have classes of
algebras as models, constituting the abstract data types.

2.2.2.1 SPEC - the category of specifications

A signature I is a set of sorts S together with a set of
operators each operator having an arity in S*x S. A signature
morphism o is a translation of sorts to sorts and operators to
operators such that the arities are preserved. SIG 1is the
category of signatures, siG the subcategory of SIG with only

signature inclusions as morphisms.,

A I-algebra is an S-indexed family of sets together with an S*%S-
indexed family of functions. A I-algebra morphism is an S-indexed
family of functions f_ such that the functions are preserved.
AL.G(Z) 1is the category of I-algebras. A (conditional) I-equation
e is a pair of two I-terms over an S-indexed familv of variables
(together with a list of I-equations as condition). A I-algebra

satisfies e iff it satisfies every ground instance of e.

Given a I"-algebra A"~ and a signature morphism o: £ + I” the I-
restriction of A" along o is denoted by A°|z or just AIZ if o is

understood. It is the I-algebra A defined by Ag = A~) and opP,

o(s
= o(op)A/.

21

With these preliminaries we can now give the formal definition of
a canonical term functor.

NDefinition
Let I, I be signatures with I ¢ I, C(I) a subcategory of
ALG(Z). A functor
g:C(Z) » ALG(L")

is a canonical term functor (CTF) iff
¥ A e C(L) conditions (i) to (iv) holAd:

(i) 9(A)|g = A (persistency)

(ii) q(A)S c Tz’-z(A) for all s € 7=

(term property)
¥ op € L =-L. op: Sy e+« S

n*s (where s € £7°-1I):
(iii) op(ty, ..., t,) € g(A)g
=> [wie{l,...n} . s;eI”=I => t; € g(A)g;]
(subterm property)
(iv) op(tl, cesy tn) € g(A)s
=)> opg(A) (tl, I tn) = op(tl, e sy tn)
(constructor property)

¢ w n\<\ r~
K/Q)l/t & é““

The concept of a CTF is a generalization of the notion of
canonical term algebra (CTA) as introduced in [GTW/78]. A I-
algebra A is a CTA iff the constant functor gp: ALG(¢) + ALG(Z)
yielding A is a CTF. Some other useful facts are also easy to
prove: every CTF is strongly persistent, the composition of CTFs
yields again a CTF, and the application of a CTF to a CTA yields
a CTA.

The body of an ASPIK specification can be evaluated to a CTF.
Its source is given by the combination of the use-clause entries
yielding C(I) in the definition above and its target is given by
that combination enlarged by the public sorts and operations.
Just like the properties in the specification header restrict the
class of model algebras the specification body evaluated to a CTF
represents a restriction as well.

22

Definition
Let £~, L", I be signatures, L~ ¢ I".
A I-fix f is a pair
(g: C(L”) » ALG(L"),0:L" + I)
consisting of a canonical term functor g and signature morphism

cl

A I-fix is similar to initial or generating constraints ([HKR
8n], [BG 80], [sw 82]). et £, ", I" be as above, A a I-algebra,
A" its I"-restriction. Then A satisfies a I-fix (g,o0) if
- g is applicable to the I"-restriction of A", i.e. A“Iz— is
in the domain of q
- the carriers of sorts in I"-I” and the corresponding
operations in A" are "defined just as" in the algebra
obtained by applying g to the I -restriction of A".
Since the second condition is guaranteed for the I“-part of A"
by the persistency of g, the "defined just as" is captured by an
isomorphism between the two algebras:

Definition
A I-algebra A satisfies a I-fix
f = (g:s C(Z7) + ALG(Z"), o:L"»>)
iff

[y}

c(z") and
Alzn

(Alzll)lz‘
Q((Alzn)lz‘)

n

For a set of I-equations F and a set of I-fixes F ALG(Z,F,F) is
the subcategory of ALG(I) with algebras satisfying F and F.

Like data constraints in Clear [BG 80] a I-fix £ = (g,0) may be
translated by a signature morphism ¢ : £ + " yielding the I“-
fix (g,0700). A specification representation SP=(Z,E,F) with I-
equations E and I-fixes F represents the specification SpP™ =
(£,E",F") where (FE",F") is the closure of (F,F), i.e. the sets of
I-equations resp. L[-fixes satisfied by all algebras in
AILG(L,E,F). A specification morphism o¢:(L,R,F) » (L°,E7,F7) is a

23

signature morphism o:I +» I” such that o(F) ¢ F~ and o(F) c F7.
SPEC is the category of specifications, SPEC the subcategory of
SPEC with only inclusions as morphisms.

2.2.2.2 Specification hierarchies

In the category SPFC the hierarchical structure of specifications
is not represented. In the semantics of ASPIK this is achieved by
special diagrams in SPﬁC, called specification hierarchies. Tet
AO be a well founded irreflexive partial order w.th a minimal
element such that every element has only finitely many
predecessors., Let AO also denote the induced path category. A
specification hierarchy is a functor H: A0 » SPEC where the
minimal element is mapped to the specification BOOT. Since there
is at most one morphism between any two objects in SPRC, H is
determined by its object part: if there is a path from A to R in
AO then there must be an inclusion H(A) + H(P), thus reflecting

precisely a use-relationship between the two specifications.

A sequence of ASPIK-specifications vields a specification
hierarchy. Having already evaluated the first n-1 specifications
to a hierarchy H, the nth specification, say spec SP, yields the
hierarchy H™ generated from H in two steps:

(1) AO is enlarged by the new element SP where some already
existing element A is smaller than SP iff SP uses A. As
sketched in 2.2.2.1, spec SP is evaluated to a triple (Zul”,
FukE”,FuF”) where (L,E,F,) is the union of all specifications
used. I~ contains SP"s public sorts and operations (prefixed
by “SP~ in order to avoid unwanted name clashes), F~ is the
set of SP”s properties and F~ contains the CTF SP”s body is
evaluated to. This specification representation yields the
specification that is the label of SP under H".

(2) In the second step all specification terms in normal form
involving SP are considered. A normal form term must not
contain trivial parameter replacements like id: SP + SP nor

any sequential replacements, e.qg. (4) in section 2.1.3 is in

24

normal form, but (5) and (6) are not. Fvery specification
term can be transformed into an equivalent normal form term
([BV 83]). For every normal form term a new node is
introduced that is labeled with the instantiation object of
the specificaion term. Ry repeating this process inductively
a closed hierarchy H” is generated such that every

specification term can be mapped to a node n with H7(n)

being the corresponding instantiation object.
In [BV 83] hierarchies are studied in more detail. The results

reported there are applicable to specification hierarchies as

well.

Acknowledgement

We would like to thank our colleaques from the SFKI-Projekt at
the University of Kaiserslautern for interesting discussions, H.
Klaeren for helpful criticism on an earlier version of this
paper, and D. Kilgore for excellent typing. This research is
supported by the Bundesministerium fiir Forschung und Technologie
under contract IT.8302363.

25

References

[Ra 81]

[Bov 83]

[BV 83]

[BES 81]

[BDPPW 80]

[RG 80]

(Eh 82]

[Fh 81]

Rauer, F.L. et al.: Report on a wide spectrum language
for program specification and development. TU Miinchen,
Inst.f.Informatik, Report TUM-18104, May 1981.

Beierle, Ch., Gerlach, M., VoB, A.: Parameterization
without parameters - the history of a hierarchy of
specifications. SEKI-Projekt, Univ. Kaiserslautern, FR

Informatik (in preparation).

Beierle, Ch., VoB, A.: Parameterization-by-use for
hierarchically structured objects. SFKI-Projekt,
Univ. Kaiserslautern, FB Informatik, May 1983.

Bldsius, K., Fisinger, N., Siekmann, J., Smolka, G.,
Herold, A., Walther, C.: The Markgraf Carl Refutation
Procedure, Proc. 7th IJCAI, 1981.

Broy, M., Dosch, W., Partsch, H., Pepper, P., Wirsing,
M.: On hierarchies of abstract data types, TU Miinchen,
Inst. fiir Informatik, TUM-I8007, May 1980.

Burstall, R.M., Goguen, J.A.: The semantics of Clear,
a specification language. Proc. of Advanced Course on
Abstract Software Specifications, Copenhagen. LNCS
vol.86, pp. 292-332,.

*
Fhrich, H.-D.: On the theory of specification,
Implementation and Parametrization of Abstract Data
Types. JACM Vol. 29, No. 1, Jan. 1982, pp. 206-227.

Fhrig, H.: Algebraic Theory of Parameterized

Specification with Requirements, Proc. 6th CAAP,
Genova, 1981.

26

[ERTWW 80] Fhrig, H., Kreowski, H.-J., Thatcher, J., Wagner, E.,

[cTw 78]

[Gut 75]

[GrM 78]

[HKR 80

[k1 80]

[RRST 83]

Wright, J.: Parameterized data types in algebraic
specification languages, Proc. 7th ICALP, LNCS Vol.

Goquen, J.A., Thatcher, J.W., Wagner, F.G.: An initial
algebra approach to the specification, correctness,
and implementation of abstract data types, in: Current
Trends in Programming Methodology, Vol.4, Data
Structuring (ed. R. Yeh), Prentice-Hall, 1978, pp. 80-
144,

Guttag, J.V.: The specification and application to
programming of abstract data types. Ph.D. thesis,
Univ. of Toronto, 1975.

Guttag,J., Horowitz, F., Musser, .2 Abstract Data
Types and Software Validation, CACM, Vol. 21, No. 12

Hupbach, U.L., Kaphengst, H., Reichel, H.: Initial
algebraic specifications of data types, parameterized
data types, and algorithms, VEB Robotron, Zentrum fir
Forschung und Technik, Dresden, 1980.

Klaeren, H.: A simple class of algorithmic specifica-
tions of abstract software modules. Proc. 9th MFCS
1980, I.NCS Vol. 88, pp 362 -374.

Kiicke, R., Rome,F., Sommer, W., Thomas, C.: Das SPEC-

System (SPESY): Benutzerhandbuch, SEKI-Projekt, Univ.
Kaiserslautern, FB Informatik, 1983.

27

[Lo 81]

[rs 80]

[sw 82]

[sa 81]

[Tww 82]

[zi 75]

l.oeckx, J.: Algorithmic specification of abstract data
types. Proc. 8th ICALP, LNCS 115, July 1981, pp. 129-
147.

Raulefs, P., Siekmann, J.: Programmverifikation.
Darstellung des Forschungsvorhabens, Univ.
Bonn/Karlsruhe, Inst.f. Informatik, Aug. 1980.

Sannella, D.T., Wirsing, M.: Implementation of
parameterized specifications, Proc. 9th ICALP 1982,
ILNCS Vol. 140, pp 473 - 488.

Sannella, D.T.: A new semantics for Clear. Report CSR
-79-81, Dept. of Computer Science, Univ. of Edinburgh,
1981.

Thatcher, J.W., Wagner, E.G., Wright, J.R.: Data Type
Specification: Parameterization and the Power of
Specification Techniques. ACM TOPLAS Vol. 4, No. 4,
Oct. 1982, pp. 711-732,

Zilles, S. N.: Abstract specifications for data types,
IBM Research Laboratory, San Jose, California, 1975.

28

