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Abstract

Algebraic and algorithmic specification methods for abstract data

types are combined in the specification language ASPIK covering

t h e  w h o l e  s c o p e  f r o m  h i g h  l e v e l  r e q u i r e m e n t s  a n d  f o r m a l

specifications to functional proqrams. The link between axiomatic

and algorithmic specifications is provided by the notion of

canonical term functor, a generalization o f  canonical term

algebra. Specifications are structured hierarchically and the new

concept of parameterization—by-use offers a flexible means to

refine such hierarchies. These features are illustrated by

several examples of ASPIK specifications.
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1. I n t r o d u c t i o n

Abstract d a t a  types (ADTs) have turned o u t  to be a useful and

powerful concept for the description of data types ([zi 75], [Gut

75], [GHM 78]). The predominant method for specifying ADTs is the

axiomatic specification method (e.g. [GTW 78], [EKTWW 80], [BDPPW
80]). T h e  purpose o f  abstract specifications is t o  provide a

method for specifying problems and solution approaches without

talking about undue details o f  representation. However, a

specification method must not only provide a sufficient level of

abstraction but should also be close to the ways of reasoning o f

those developing specifications: specifications are meant t o

bridge the g a p  between informal descriptions and executable

p r o g r a m s .  W h e r e a s  t h e  l e v e l  o f  a b s t r a c t i o n  i n  a x i o m a t i c

specifications i s  very high, it poses problems a s  well. I t  m a y

often be easier and m o r e  natural t o  think i n  t e r m s  o f  models

instead o f  axiom systems, though still o n  a high level o f

abstraction. I n  the axiomatic approach problems o f  proving

consistency and completeness properties arise. I n  [ K l  8 0 ]  and

[Lo 81] algorithmic specification methods are used that are
i n t e n d e d  t o  o v e r c o m e  s o m e  o f  t h e s e  d i f f i c u l t i e s .  W h e r e a s

axiomatic specifications merely describe the desired properties

o f  operations, carriers and operations must be defined explicitly

a s  sets and functions in algorithmic specifications.

Algorithmic specifications therefore constitute a lower level of

abstraction than axiomatic specifications. Since both levels are

useful they are incorporated in our specification language ASPIK.

To close the g a p  between both levels w e  use canonical term

f u n c t o r s ,  a g e n e r a l i z a t i o n  o f  t h e  n o t i o n  o f  c a n o n i c a l  t e r m

algebra ([GTW 78]). Axiomatic specifications a r e  taken t o  be

loose specifications, whereas canonical term functors are used to

define so-called Z-fixes, a constraint mechanism similar t o

initial or generating constraints in [HKR 80], [RG 80], [SW 82].

1. Introduction

A b s t r a c t  d a t a  t y p e s  ( A n T s )  h a v e  t u r n e d  o u t  to be a u s e f u l  a n d

powerful concept for the description of data types ([zi 75], [Gut

75], [GHM 78]). The predominant method for specifying ADTs is the

axiomatic specification method (exp [GTW 78], [EKTWW 80], [BDPPW
80]). T h e  purpose o f  abstract specifications is t o  provide a

method for specifying problems and solution approaches without

talking about undue details o f  representation. However, a

specification method must not only provide a sufficient level of

abstraction but should also be close to the ways of reasoning of

those developing specifications: specifications are meant to

bridge the g a p  between informal descriptions and executable

p r o g r a m s .  W h e r e a s  t h e  l e v e l  o f  a b s t r a c t i o n  in a x i o m a t i c

specifications is very high, it poses problems a s  well. It m a y

often be easier and more natural t o  think in terms o f  models

instead o f  axiom systems, though still on a high level of

abstraction. I n  the axiomatic approach problems o f  proving

consistency and completeness properties arise. In  [ K l  8 0 ]  and

[Lo 81] algorithmic specification methods are used that are
i n t e n d e d  t o  o v e r c o m e  s o m e  o f  t h e s e  d i f f i c u l t i e s .  W h e r e a s

axiomatic specifications merely describe the desired properties

of operations, carriers and operations must be defined explicitly

a s  sets and functions in algorithmic specifications.

Algorithmic specifications therefore constitute a lower level of

abstraction than axiomatic specifications. Since both levels are

useful they are incorporated in our specification language ASPIK.

To close the g a p  between both levels w e  use canonical term

functors, a generalization o f  the notion o f  canonical term

algebra ([GTW 78]). Axiomatic specifications are taken to be
loose specifications, whereas canonical term functors are used to

define so-called 2-fixes, a constraint mechanism similar to

initial or generating constraints in [HKR 80], [PG 80], [SW 82].



ASPIK supports the development of hierarchical specifications. In

contrast to other approaches (e.g. [BG 80], [Sa 81], [Rh 81], [Ba
81]), in our parameterizatinn—by—use concept no distinction is

m a d e  b e t w e e n  p a r a m e t e r ,  p a r a m e t e r i z e d ,  a n d  n o n - p a r a m e t e r i z e d

specifications. Instead, every specification hierarchically lower

than s o m e  other specification m a y  be regarded a s  a formal

parameter and replaced by s o m e  fitting actual parameter. T h i s

represents a n e w type o f  abstraction: w h e n  writing d o w n

specifications one does not have to care about parameterization;

only when creating an instantiation the parts regatded as formal

w.r.t. that instantiation must be identified.

ASPIK is integrated in a program development and verification

system ([RS 80]). It is supported by the interactive INTERLISP
system SPESY ([KRST 83 ] ) ,  comprising a guiding input facility,
a s y n t a x  o r i e n t e d  e d i t o r ,  a f i l e  m a n a g e r  a n d  a s y m b o l i c

interpreter for algorithmic specifications. Various properties of

ASPIK specifications are proved by an automatic theorem prover

( [ a  81]).

I n  Sec. 2, the language ASPIK is presented by working through

several example specifications in 2.1. An abstract syntax and the

main concepts of ASPIK semantics are sketched in 2.2.

2. The specification language ASPIK

ASPIK is intended to be a specification language supporting the

s o f t w a r e  d e v e l o p m e n t  c y c l e  f r o m  h i g h  l e v e l  r e q u i r e m e n t

definitions d o w n  to executable programs. It a l l o w s  the use o f

loose specifications to formalize requirements. Starting with

loose specifications they m a y  be tightened and refined over

several steps finally c o m i n g  up w i t h  a l g o r i t h m i c  specifications.

Algorithmic specifications can be viewed a s  abstract, but

complete, executable programs.

ASPIK supports the development of hierarchical specifications. In

contrast to other approaches (eqh [BG 80], [Sa 81 ] ,  [Rh 81],[Ba
81]): in our parameterization-by—use concept no distinction is

made between parameter, parameterized, and non-parameterized

specifications. Instead, every specification hierarchically lower

than s o m e  other specification m a y  be regarded a s  a formal

parameter and replaced by s o m e  fitting actual parameter. T h i s

represents a n e w type o f  abstraction: w h e n  writing d o w n

specifications one does not have to care about parameterization;

only when creating an instantiation the parts regarded as formal

w.r.t. that instantiation must be identified.

ASPIK is integrated in a program development and verification

system ([RS 80]). It is supported by the interactive INTERLISP

system SPESY ([KRST 83]), comprising a guiding input facility,
a s y n t a x  o r i e n t e d  e d i t o r ,  a f i l e  m a n a g e r  a n d  a s y m b o l i c

interpreter for algorithmic specifications. Various properties of

ASPIK specifications are proved by an automatic theorem prover

([Rns 81]).

I n  Sec. 2, the language ASPIK is presented by working through

several example specifications in 2.1. An abstract syntax and the

main concepts of ASPIK semantics are sketched in 2.2.

2. The specification language ASPIK

ASPIK is intended to be a specification language supporting the

s o f t w a r e  d e v e l o p m e n t  c y c l e  f r o m  h i g h  l e v e l  r e q u i r e m e n t

definitions d o w n  to executable programs. It a l l o w s  the use o f

loose specifications to formalize requirements. Starting with

loose specifications they m a y  be tightened and refined over

several steps finally coming up with algorithmic specifications.

Algorithmic specifications can be viewed a s  abstract, but

complete, executable programs.



2.1. Specifications in ASPIK

I n  ASPIK both algorithmic and loose specifications as well as all

intermediate f o r m s  follow a single specification scheme thus

documenting the link between specifications and supporting the

step from a specification to a refinement thereof.

A specification consists o f  a unique name, a specification header

and a specification body, the latter being empty in the case of

loose specifications. The language constructs as sketched in Fig.

2.0 will be discussed in 2.1.1 and 2.1.2 using the specifications

B O O L  ( F i g .  2.1), NAT ( F i g .  2.2), L I M I T  ( F i g .  2.3), E L E M  ( F i g .

2 .4 )  and BOUNDED-STACK (Fig. 2.5) for illustration.

2.1.1. Specification header

T h e  header o f  a n  ASPIK specification S P  describes S P  t o  the

outside world. The header V
— says which other specifications it is based upon,
- g i v e s  the n a m e  and arity o f  the sorts resp. functions it

provides a s  accessible to the outside, and

— s t a t e s  p r o p e r t i e s  m e t  by t h e s e  functions.

2 . 1 . 1 . 1 .  H i e r a c h i e s

ASPIK supports the hierarchical development o f  specifications.

The hierarchical relationship between specifications is expressed

by their use-clauses. A specification S P  containing

EEE S P 1 ,  . . .  , S P n

denotes an implicit combination of SP1, „. ‚ SPn enriched by the

n e w  sorts and/or operations introduced by S P  (see 2 J L 1 . 2 L  T h e

use—relationship establishes a partial ordering on specifi-

cations; its transitive closure m u s t  not introduce any cycles,

thus guaranteeing its hierarchical nature.

NAT only uses spec BOOL which is used directly o r  indirectly by

2 .1 .  Specifications in ASPIK

In ASPIK both algorithmic and loose specifications as well as all

intermediate forms follow a single specification scheme thus

documenting the link between specifications and supporting the

step from a specification to a refinement thereof.

A specification consists of a unique name, a specification header

and a specification body, the latter being empty in the case of

loose specifications. The language constructs as sketched in Fig.

2.0 will be discussed in 2.1.1 and 2.1.2 using the specifications

BOOL (Fig. 2.1), NAT (Fig. 2.2), LIMIT (Fig. 2.3), ELEM (Fig.

2 .4 )  and BOUNDED-STACK (Fig. 2.5) for illustration.

2.1.1. Specification header

T h e  header o f  a n  ASPIK specification S P  describes S P  t o  the

outside world. The header

- says which other specifications it is based upon,

- gives the name and arity of the sorts resp. functions it
provides as accessible to the outside, and

— states properties met by these functions.

2 . 1 . 1 . 1 .  H i e r a c h i e s

ASPIK supports the hierarchical development of specifications.

The hierarchical relationship between specifications is expressed

by their use-clauses. A specification SP containing

EEE S P 1 ,  . . .  , S P n

denotes an implicit combination of SP1, „. , SPn enriched by the

new sorts and/or operations introduced by S P  (see 2 J L 1 . 2 L  The

use-relationship establishes a partial ordering on specifi-

cations; its transitive closure must not introduce any cycles,

thus guaranteeing its hierarchical nature.

NAT only uses spec BOOL which is used directly or indirectly by



spec <spec-name>

spec bod!

constructors ...

auxiliaries ...

d e f i n e  auxiliaries . . .

define carriers...

define constructor ops ...

private og . . .

d e f i n e  op . . .

endsgec

L
V

JH
J

}}

hierarchy of
specifications

signature of specification
specification header

properties o f
specification

d e f i n i t i o n
o f

c a r r i e r s

specification
body-

definition
o f

operations

Figure 2.0: Syntactic structure of ASPIK-specification

SEQC ( spec -name  >

u s e  . . .

so r t -S  . . .

2 E  ' . .

RIDES.  . .

spec bod!

constructors ...

auxiliaries ...

de f ine  auxiliaries ...

define carriers...

define constructor ops ...

pr iva t e  op . . .

d e f i n e  on . . .

endspec

H
—

JH
—

J
}}

hierarchy of
specifications

signature o f  specification
specification header

properties o f
specification

d e f i n i t i o n
o f

carriers

specification
body

definition
o f

operations

Figure 2 .0 :  Syntactic structure of ASPIK-specification



s E e c  BOOL

s o r t s  bool

ogs true, false: ———> bool
no t :  bool - - ->  bool
a n d ,  o r :  bool bool —-->  bool

f a l s e
t r u e
or(not(x),not(Y))

Erogs  n o t ( t r u e )
n o t ( f a l s e )

not(and(x,y))

snec bod!

c o n s t r u c t o r s  t r u e ,  f a l s e

define constructor ops
true :=—*true
false:= *false

d e f i n e  ops
n o t ( x ) : =  c a s e  x is

*tru€—: false
*false: true

esac

and(x,y):= case x is
* t r u e  : y
* f a l s e :  f a l s e

esac

o r ( x , y )  : =  case x is
* t r u e  : t r u e
*false: y

esac

endsgec

Figure 2 .1 :  The specification BOOL

sEec BOOL

sorts bool

ogs true, false: - - ->  bool
n o t :  bool - - ->  bool
a n d ,  o r :  bool bool ——-> bool

f a l s e
true
or(not(x),not(y))

EroEs n o t ( t r u e )
n o t ( f a l s e )

n o t ( a n d ( x , y ) )

s ec bodx

constructors t r u e ,  f a l s e

define constructor ops
true := *true
false:= *false

define 225
not (x ) :=  case x 35

I t r u e  : false
*false: true

2522

and(x‚y):= case x is
true—: y

*false: false
esac

or(x,y) := case x is
true : true

*false: y
esac

endsgec

Figure 2 .1 :  The specification BOOL



sEec NAT

use BOOL

s o r t s  n a t

ogs n :_ -—->  nat
succ: nat ———> nat
add : n a t  n a t  - -—> n a t
l e  : n a t  n a t  --—> bool

Erogs  a d d ( x ‚ y )  = a d d ( y , x )
add(x,add(y,z)) = a d d ( a d d ( x , y ) , z )
le(x,add(x,y)) = t r u e

spec bodx

constructors O ,  s u c c

define constructor ops
O :=_1 O
succ(x) := *succ(x)

define ogs
add(x,y):= case x ig

O :
*succ (x ‘ ) :  succ(add(x’,y))

esac

le(x,y):= case x lg
*Ü : true
*succ(x’): case y is

* 0  : f a l s e
*succ(y’): 1e(x'‚v')

esac
e s a c

endsgec

Figure 2 .2 :  The specification NAT

snec NAT

use BOOL

sorts nat

ogs n=_ - - ->  nat
s u c c :  nat - - ->  nat
add : n a t  n a t  —--> nat
le nat nat -—->  bool

grogs add(x‚y) = add(y  x )
add(x,add(y,z)) = add(aéd(x,y),z)
1 e ( x , a d d ( x , y ) )  = true

spec body

constructors 0 ,  succ

d e f i n e  constructor OBS_1_fi-—_——-—

succ(x) := *succ(x)

define ons
add(x,y):= case x is__1_ __

0 : y
*succ(x’): succ(add(x’,y))

esac

1e(x,y):= case x lg
: true

*succ(x’): case y is
‘0 : false
*succ(y’): 1e(x’,y‘)

esac
esac

endsgec

Figure 2 .2 :  The specification NAT



sEec L I M I T

use NAT

oEs l i m i t :  -—->  nat

EroEs 1e(limit,succ**100(0)) = true
1e(succ(0)‚limit) = true

endsgec

Figure 2 .3 :  The specification LIMIT

sgec ELEM

u s e  BOOL

s o r t s  elem

endsEec

Figure 2 .4 :  The specification ELEM

sgec L I M I T

use NAT

025 l i m i t :  - - ->  nat

EroEs le(1imit,succ**100(0))
1e(succ(0),limit)

true
truel

l
 I
I

endsgec

Figure 2 .3 :  The specification LIMIT

sEec ELEM

u s e  BOOL

sorts eleu

endsEec

Figure 2 .4 :  The specification ELEM



spec BOUNDED-STACK

use BOOL, NAT, LIMIT, ELEM

s o r t s  s t a c k
ops empty: -——> stack

push: stack elem ——-> stack
pop: stack -—->  stack
t o p :  stack ———> elem
e m p t y ? ,  f u l l ? :  s t a c k  - - ->  bool

ro s f ull?(s) = f a l s e  ==> pop(push(s‚e))
full?(s) = false ==> top(push(s,e))
empty?(empty) = true

spec bod!

constructors empty, p u s h

"
H

m

auxiliaries depth: stack ——> nat

define auxiliaries
depth(s):= case s is

*empty : 0
*push(s’,e): succ(depth(s’))

esac

define carrier
is—stac ( s  := case s ig

*empty : true
*push(s’,e): if not(is—stack(s))

t h e n  f a l s e
else 1e(succ(depth(s’)),limit)

e s a c

define constructor ops
empty=:4*empty
push(s,e):= if le(succ(depth(s)),limit)

then *push(s,e)
else error-stack

define o s
pop(s := case s is

*empty : error-stack
*push(s’,e): s ’

SEES

top(s):= case s is
*empt? : error~elem
*push(s’,e): e

esac

empty?(s):= case 5 is
*empt? : true
*push(s’,e): false

esac

full?(s):= not(le(succ(depth(s)),1imit))

endspec

Figure 2 .5 :  The specification BOUNDED-STACK

R

sgec BOUNDED—STACK

u s e  BOOL, NAT, L I M I T ,  ELEM

sorts st ack
02s empty: - - ->  stack

push:  stack elem - - >  stack
pop: stack - - ->  stack
top: stack - -—> elem
empty?, fu11?: stack - - ->  bool

ro s f u 1 1 ? ( s )  = f a l s e  ==> pop(push(s‚e))
fu11?(s) = false ==> top(push(s,e))
empty?(empty) = true

sgec bodx

constructors empty, push

II
"

o

auxiliaries depth: stadk --> nat

define auxiliaries
depth(s):= case s is

*empty : 0
*push(s’,e): succ(depth(s’))

esac

define c a r r i e r___‚__ _
is-stac ( s  : =  case s i s

*empty : true
*push(s‘‚e): i_; not(is—stack(s))

then f a l s e
else le(succ(depth(s’)),1imit)

e s a c

define constructor ops
empty=:;*empty
push(s,e):= 35 1e(succ(depth(s)),1imit)

then *push(s,e)
e l s e  error-stack

define o s
pop(s : =  case s is

‘empty :
*push(s’,e):

esac

a
error-stack
s

top(s):= case s is
*empty :
*push(s’,e):

esac

error-elem
e

empty?(s):= case s is
*empty : true
*push(s’,e): false

esac

fu11?(s):= not(1e(succ(depth(s)),1imit))

endsEec

Figure 2 .5 :  The specification BOUNDEn—STACK

R



every other specification. This convention makes boolean

constants and functions, and thus the if-then-else language

construct, available in every ASPIK specification. BOOL is the

only specification without a use-clause; it is given in Fig. 2.1.

T h e  sorts and operations provided b y  a l l  specifications used

constitute the imported interface.

2.1.1.2. The signature

T h e  sorts and o p s  clauses introduce n e w  (also referred t o  a s

’public‘) sorts and operation names. Together with the imported

interface, they constitute the exported interface which is

provided to each specification using this one. I n  NAT, a new sort

n a t  i s  introduced following the k e y  word sorts, a s  w e l l  a s  n e w

operations o ,  succ, add, and l e  following t h e  key word gp_.

Their domains and codomains may contain only sort names from the

exported interface.

2.1.1.3. Properties

I n  this clause, properties of the public functions may be given.

I n  the ASPIK version currently supported by SPESY, the properties

m a y  be expressed by equations over the operation n a m e s  and

variables. T h e  equations a r e  implicitly universally quantified

a n d  m a y  b e  c o n d i t i o n a l .  T h e  c o n d i t i o n s  t h e m s e l v e s  a r e

conjunctions o f  one or more equations.

T h e  properties a l l o w  for axiomatic ASPIK specifications. An

algebra is a model o f  a specification S P  only if it fulfills all

o f  SP’s properties. However, in contrast to the initial approach

in eJL [GTW 7 8 ] ,  all m o d e l  algebras a r e  considered, n o t  just

initial ones. T h u s ,  the user m a y  w r i t e  d o w n  a specification

s t a t i n g  o n l y  s o m e  a x i o m s  a s  r e q u i r e m e n t s ;  l a t e r  o n ,  t h e

specification may be refined by a tighter one having more axioms

or by a specification with an algorithmic definition part, i.e. a
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I n  NAT, s o m e  properties o f  add and l e  are stated, e.g.

e v e r y  o t h e r  s p e c i f i c a t i o n .  T h i s  c o n v e n t i o n  m a k e s  b o o l e a n

constants and functions, and thus the if-then-else language

construct, available in every ASPIK specification. BOOL is the

only specification without a use-clause; it is given in Fig. 2.1.

T h e  s o r t s  and operations provided by a l l  specifications used

constitute the imported interface.

2.1.1.2. The signature

T h e  s o r t s  a n d  o p s  c l a u s e s  i n t r o d u c e  n e w  ( a l s o  r e f e r r e d  t o  a s

’public‘) sorts and operation names. Together with the imported

interface, they constitute the exported interface which is

provided to each specification using this one. I n  NAT, a new sort

n a t  i s  i n t r o d u c e d  f o l l o w i n g  t h e  k e y  word s o r t s ,  a s  w e l l  a s  n e w

operations O ,  succ, add ,  and l e  following t h e  key word gp_.

Their domains and codomains may contain only sort names from the

exported interface.

2.1.1.3. Properties

I n  this clause, properties of the public functions may be given.

I n  the ASPIK version currently supported by SPESY, the properties

m a y  be expressed by equations over the operation n a m e s  and

variables. T h e  equations a re implicitly universally quantified

a n d  m a y  b e  c o n d i t i o n a l .  T h e  c o n d i t i o n s  t h e m s e l v e s  a r e

conjunctions o f  one or more equations.

T h e  properties a l l o w  for axiomatic ASPIK specifications. An

algebra is a model of a specification S P  only if it fulfills all

o f  SP’s properties. However, in contrast to the initial approach

in e.g. [GTW 7 8 ] ,  all m o d e l  algebras ar e considered, n o t  just

initial ones. T h u s ,  the user m a y  w r i t e  d o w n  a specification

s t a t i n g  o n l y  s o m e  a x i o m s  a s  r e q u i r e m e n t s ;  l a t e r  o n ,  t h e

specification may be refined by a tighter one having more axioms

or by a specification with an algorithmic definition part, i.e. a

non-empty specification body.

I n  N A T ,  s o m e  p r o p e r t i e s  o f  a d d  a n d  l e  a r e  s t a t e d ,  e . g .



commutativity and associativity of the operation add. LIMIT gives

properties of limit in relationship to le, 0 and succ.

2.1.1. Specification body

For loose specifications the body is empty; otherwise for the new

sorts and operation names carriers and functions must be defined

representing a CTA resp. CTF a s  a model o f  the properties.

For the formal definition, the reader is referred to 2 .2 .2 .
First, CTAs a r e  considered.

2.1.2.1. Definition of carriers

The carriers of a CTA are subsets of the Herbrand universes over

i t s  s i g n a t u r e .  I n  t h e  s i m p l e s t  c a s e ,  s u c h  a s u b s e t  i s  g e n e r a t e d

by a subset Z ’  o f  the functions in the algebra’s signature Z ,

(EflgZ)  . I n  o t h e r  cases  the Herbrand universe H(Z,s) o f  some sort

s may not be isomorphic to the intended data type carrier.

T h e r e f o r e ,  A S P I K  p r o v i d e s  a m e c h a n i s m  t o  d e f i n e  a s u b s e t  C S  2

H(Z,s), such that CS will be a CTA-carrier for sort s. T h e

definition of CTA-carriers in ASPIK may be done in three steps

with the second and third step being optional.

Following the key word constructors a list of function names with

codomain 3 is g i v e n  for every n e w  sort s introduced in this

specification.Since the carrier elements are t e r m s  build from

the constructors, w e  will use the ’*-notation‘ t o  distinguish

carrier elements from GTA-function applications: the terms in the

Herbrand universe H(Z,s) and t h u s  t h e  e l e m e n t s  o f  t h e  c a r r i e r  C s

are prefixed by “*“. NAT has constructors O and succ for sort

nat, ROUNDED-STACK has empty and push for stack.

If the CTA carrier o f  sort 5 is a proper subset of the Herbrand

universe a characteristic predicate is—s must be defined. In

order to facilitate its definition, Efilili§£i£§ may be

introduced. These are functions o n  the Hebrand universe a s
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opposed to e.g. the functions defined o n  the carrier only: in

BOUNDED—STACK a function depth is used yielding the number o f

‘push’ occurrences in a given stack term.

The characteristic predicate ifili is defined following the key

w o r d  define EEEEÄSEE' S i m p l e  s y n t a c t i c  r e s t r i c t i o n s

( a u t o m a t i c a l l y  checked by S P E S Y )  g u a r a n t e e  that o n l y  proper CTA

carriers can be defined: since all subterms of a carrier element

m u s t  b e  c a r r i e r  e l e m e n t s  t h e m s e l v e s  ( s u b t e r m  p r o p e r t y ) .  t h e

definition of is—s must start with a case analysis over the

syntactic structure of a term t and for every case is-s(t) m a y

yield true only if is-s'(tfi yields true for every subterm t ’ o f

t and every new sort 3’. The carrier of sort stack contains all

t e r m s  over e m p t y  and push such that t h e  d e p t h  o f  t h e  term is n o t

greater than the given limit.

In algorithmic specifications the ASPIK language constructs

auxiliaries, define auxiliaries, define carriers are optional.

I n  case they are missing the trivial characteristic predicate

yielding constantly true is assumed. Thus, the carrier of sort

nat in specification NAT is just the Herbrand universe over 0 and

succ, i.e. {*O, *succ(0)‚ *succ(succ(0))‚ „ . } .

S i n c e  o n l y  n e w  s o r t s  and o p e r a t i o n s  a r e  d e f i n e d  in t h e

specification body, and since imported sorts are referenced via

imported o p e r a t i o n s  o n l y ,  the c a r r i e r  structure o f  imported sorts

is i n v i s i b l e  t o  t h e  i m p o r t i n g  s p e c i f i c a t i o n  a n d  t h e  s a m e

syntactical s c h e m e  m a y  be employed to define CTAs as well as

CTFs. I f  all specifications used are algorithmic, the scheme

yields a CTA. It yiedls a CTF, if s o m e  specifications used are

loose. The specification body of ROUNDED—STACK is an example for

a C T F  d e f i n i t i o n  b e c a u s e  it u s e s  s o r t  e l e m  o f  t h e  l o o s e

specificaion ELEM.
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2 .1 .2 .2 .  Definition of operations

E v e r y  n e w  o p e r a t i o n  m u s t  b e  d e f i n e d  o n  t h e  r e s p e c t i v e

carriers. This is achieved by dividing the operation definitions

into t w o  steps. First, operations are defined corresponding to

the constructors that were used to define the carriers, second,

the other new operations are defined possibly by means of some

private operations (also called hidden functions in e.q. [ T W W

82] ) .  As opposed to implicit operation definitions by equations

([GTW 78]), ASPIK provides a definition technique that is similar
to the algorithmic specification method used in [K1 80] and [L0

81]. The left hand side (lbs) of an operation definition consists

of the n a m e  of the operation to be defined applied to variables

of appropriate sorts; the right hand side (rhs) is an operation

scheme over the lhs variables. An operation scheme is one of the

following:

- public operation term

if-then-else scheme

case scheme

l e t  scheme

A public operation term is a possibly nested application of

public functions to appropriate variables.

An if-then—else scheme is the usual conditional where the

condition is a public operation term of sort bool. The then- and

else—branches are again operation schemes.

A case scheme relies upon the fact that the arguments o f  public

functions are elements from CTA—carriers. Depending o n  the

syntactic structure of the arguments one can give different

function values. A simple pattern matching is employed where only

the outermost operator is relevant.

In a let scheme, a variable can be introduced as an abbreviation

f o r  a t e r m .

Following define constructor ops the operations corresponding to

the constructors of every public sort are defined. T w o  m a i n
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c o n d i t i o n s  m u s t  be m e t :

(1) constructor property

Whenever  a term *op(t1‚„.‚tn) is in the carrier of sort 5,

op(t1,...,tn) must yield *op(t1,...,tn).

I n  BOUNDED-STACK t h e  constructor property e n f o r c e s

empty := *empty and push(s,e) := *push(s,e)

if the depth of stack s is less t han  limit.

(2) operations closed gg carriers

Wheneve r  a constructor term *op(t1‚„.‚tn) is not in the

carrier of sort 5, op(t1‚„.,tn) must not yield
*op(t1,...,tn).

In BOUNDED-STACK push(s,e) must not yield *push(s,e) if the

depth o fs;is  equal to  limit  since it m u s t  yield an element

of the stack carrier.

In ASPIK, the above  conditions are guaranteed automatically. T h e

constructor definitions are defined along the characterisitic

predicates. For each constructor the corresponding right hand

side of the characteristic predicate’s case scheme is transformed

i n t o  an o p e r a t i o n  s c h e m e ,  w h e r e ,  roughly speaking, a true-branch

is substituted by the corresponding carrier term *op(t1,...,tn),

and a false-branch has to be filled in with s o m e  user given

operation scheme. Thus, SPESY generates parts of the constructor

definitions automatically. In NAT, is-nat is assumed to be

c o n s t a n t l y  t r u e ;  S P R S Y  g e n e r a t e s  t h e  c o m p l e t e  o p e r a t i o n

definitions for both 0 and succ. in ROUNDED-STACK, the definition

for e m p t y  is generated a s  well, and in the push definition only

the else-branch must be filled in by the user. It cannot be

automatically generated, since one might want to define a

’forgetful‘ bounded stack by setting push(s,e) := 5 iff 3 is

a l ready  full.

P r i v a t e  o p e r a t i o n s  a r e  n o t  a c c e s s i b l e  f r o m  t h e  o u t s i d e .
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. Therefore, they are not declared in the specification header but

in its body. All auxiliaries are automatically available a s

private operations, the difference being that auxiliaries are

defined on the Herbrand universe while private operations operate

o n  the carrier sets. Private operations a s  w e l l  a s  all public

operations other than constructors are defined algorithmically

following the k e y  word define gp_. An e x a m p l e  for the use o f

private operations is given in BOUNDED-STACK, where operation

full? is defined in terms of depth.

Closedness of all private and public operations is again enforced

by simple syntactic restrictions. Because o f  the hierarchical

r e l a t i o n s h i p s  o f  t h e  d i f f e r e n t  t y p e s  o f  o p e r a t i o n s  t h e i r

closedness want. the carrier sets may finally be reduced to the-

closedness of the constructors operations: Except for the

automatically generated parts of the constructor operation

definitions, the right hand sides of the defining operation

s c h e m e s  m a y  not contain *—prefixed t e r m s  from the Herbrand

universe explicitly; instead, function applications of the con-

structor operations evaluating to carrier elements must be used.

Termination of all algorithmically defined operations remains to

be shown, i.e. auxiliaries, characteristic predicates, con-

structor operations, private and public operations. For proving

termination an automatic theorem prover will be used ([PES 81]L

2.1.3. Parameterization-by-use

ASPIK provides a parameterization concept that w a s  designed

according to the following principles:

- Both formal and actual parameters are specifications.

— Loose and algorithmic specifications may be used as formal as
well as actual parameters.

- In a specification itself no parameters are declared;()nly

when instantiating a specification the formal parameters are

indicated.
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sgec  TWENTY

u s e  NAT

E u b l i c  °Es twenty: —-—> nat

snec bod!

d e f i n e  ogs
twenty:= succ**20(n)

endsEec

Figure 2 .6 :  The specifiCation TWENTY
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sgec TWENTY

use NAT

public ogs twenty: —-—> nat

sEec bod!

define oEs
twenty:= succ**20(0)

endsgec

Figure 2 .6 :  The specifiCation TWENTY
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BOUNDED-STACK

TWENTY LIMIT ELEM
//

BOOL

Figure 2 .7 :  The hierarchy o f  specifications with POUNDED-STACK

BOUNDEn-STACK{ELEM + NAT,
LIMIT + TWENTY}

BOUNDED—STACK BOUNDED—STACK ROUNDED-STACK
{LIMIT + TWENTY} {ELEM + NAT} {ELEM + BOOL}

\\\\\\ BOUNDED-STACK\ / \ / /
TWENTY L I M I T

NAT ELEM

BOOL

Figure 2 .8 :  The hierarchy with some instances of BOUNDED-STACK
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Figure 2 .7 :  The hierarchy of specifications with POUNDED-STACK

BOUNDED—STACK{ELEM + NAT,
LIMIT + TWENTY}

BOUNDED—STACK
{LIMIT + TWENTY}

BOUNDED-STACK
\ 4%

TWEEEZ\\\\\\\\‘ \\\\\Eir\\\\\

NAT ELEM

\/
BOOL

BOUNDED—STACK BOUNDED-STACK
{ELEM + NAT} {ELEM + BOOL}

Figure 2 .8 :  The hierarchy with some instances of BOUNDED-STACK
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— All specifications used  by a specification m a y  serve a s

formal parameters.

This yields a highly flexible system of parameter specification

and instantiation. I t s  formal treatment is discussed in 2.2.2

whereas in this section some illustrating examples are given.

T h e  use-clauses o f  all specifications define a hierarchy o f

specifications that can be represented by an acyclic graph. They

induce a partial order on specifications, with minimum element

B O O L .  S i n c e  e v e r y  used  s p e c i f i c a t i o n  i s  i n c l u d e d  in t h e

s p e c i f i c a t i o n  i t s e l f  a s  a s u b s p e c i f i c a t i o n  t h e  idea o f

instantiation amounts to consider s o m e  used specifications as

f o r m a l  p a r a m e t e r s  a n d  t o  r e p l a c e  ( o r  a c t u a l i z e )  t h e m  b y  s o m e

other specifications regarded a s  actual parameters. Such an

instantiation must be compatible with the hierarchical structure

o f  the specifications: every specification used by a formal

parameter must be used by the corresponding actual parameter (see

also 2.2.2).

T h e  hierarchy of Fig. 2.7 is generated by the specifications o f

Fig. 2 .1 .  — 2 .6 .  An instantiation o f  BOUNDED-STACK could be

produced by actualizing the used specification LIMIT - as formal

parameter — by specification TWENTY as actual parameter, thus
restricting the m a x i m a l  depth o f  a stack to 20. The result of

this instantiation process is denoted by

0’

(1) POUNDED-STACKUJMIT + TWENTY

where a is part of a specification morphism mapping new sorts and

operations of LIMIT to sorts and operations in TWENTY’s exported

interface:

a: ops limit + twenty

17

- All specifications used  by a specification m a y  se rve  a s

formal parameters.

This yields a highly flexible system o f  parameter specification

and instantiation. I t s  formal treatment is discussed in 2 .2 .2
whereas in this section some illustrating examples are given.

T h e  use—clauses o f  all specifications define a hierarchy o f

specifications that can be represented by an acyclic graph. They

induce a partial order on specifications, with minimum element

BOOL.  S i n c e  e v e r y  u s e d  s p e c i f i c a t i o n  i s  i n c l u d e d  in t h e

s p e c i f i c a t i o n  i t s e l f  a s  a s u b s p e c i f i c a t i o n  t h e  i d e a  o f

instantiation amounts to consider s o m e  used specifications a s

formal parameters and to replace ( o r  actualize) them by s o m e

other specifications regarded a s  actual parameters. Such an

instantiation must be compatible with the hierarchical structure

of the specifications: every specification used by a formal

parameter must be used by the corresponding actual parameter (see

also 2 .2 .2 ) .

T h e  hierarchy o f  Fig. 2.7 is generated by the specifications o f

Fig. 2 .1 .  - 2 . 6 .  An instantiation o f  BOUNDEn—STACK could be

produced by actualizing the used specification LIMIT - as formal

parameter - by specification TWENTY a s  actual parameter, thus

restricting the m a x i m a l  depth o f  a stack to 20 .  T h e  result of

this instantiation process is denoted by

0’

(l) BOUNDED-STACKUJMIT + TWENTY

where a is part of a specification morphism mapping new sorts and

operations of LIMIT to sorts and operations in TWENTY’S exported

interface:

a: ops limit + twenty
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The complete specification morphism is obtained by extending the

given part by mapping all used specifications that are not

parameters identically to themselves. a must be compatible with

the arity o f  the operations and all properties o f  the formal

parameter translated by a must be met by the actual parameter.

While the first condition is easily checked the second one has to

be proved. This could be done by an automatic theorem prover.

The specification denoted by (1) originates from BOUNDED—STACK by

substituting the specification name TWENTY for LIM1T in the use

c l a u s e  and t h e  o p e r a t i o n  n a m e  t w e n t y  f o r  l i m i t  in t h e

specification body.

Some more examples for instantiations are:

( 2 )  BOUNDED—STACK { E L E M  * NAT

sorts elem + nat}

( 3 )  BOUNDED-STACK {ELEM +BOOL

sorts elem + b o o l }

(4) BOUNDED—STACK {ELEM + NAT
sorts elem + n a t ;

LIMIT + TWENTY
gpg limit + twenty}

Considering the hierarchy extented by ( l ) —  (4) in Fig.2.8, n e w

instantiations are now possible, emu

f g
( 5 )  BOUNDED—STACK { L I M I T  + TWENTY} {ELEM + NAT}

g f

( 6 )  BOUNDED-STACK {ELEM +NAT} { L I M I T  + TWENTY}

where: f: ops limit * twenty

g :  sorts elem + nat
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The complete specification morphism is obtained by extending the

given part by mapping all used specifications that are not

parameters identically to themselves. a must be compatible with

the arity o f  the operations and a l l  properties o f  t h e  formal

parameter translated by a must be met by the actual parameter.
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c l a u s e  a n d  t h e  o p e r a t i o n  n a m e  t w e n t y  f o r  l i m i t  i n  t h e
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LIMIT * TWENTY
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(5) BOUNDED-STACK {LIMIT + TWENTY} {ELEM + NAT}
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I t  should not matter in which sequence independent parameters are

actualized or whether they are actualized in parallel, thus both

the specifications denoted by ( 5 )  and ( 6 )  should be identified

w i t h  ( 4 ) .  I n  A S P I K ,  t h i s  i s  i n d e e d  t h e  c a s e .  I n s t a n t i a t i o n s  a r e

denoted by specification terms. ASPIK semantics refer every

specification term to a specification and to a node in the

specification hierarchy, e.g. the different t e r m s  ( 4 )  — (6)

denote the same specification under ASPIK semantics. Thus, the

u s e — c l a u s e  o f  a specification m a y  not only contain simple

specification names but also specification terms such as (2) -

(4). M o r e  sophisticated examples o f  parameterization-by—use

exhibiting these and other aspects can be found in [BGV 83 ] .

2 .2 .  O u t l i n e  o f  a formal d e f i n i t i o n  o f  A S P I K

2 .2 .1 .  Abstract ASPIK syntax

Note: The syntax is given in a BNF-like notation.

Terminal symbols are underlined.

spec:: £233 specid

[comment text]
[EEE spec-term...]
[sorts sortid...]
[92s op-header...]
[props property...]

[spec-body body]
endspec

spec-term:: specid [Lspec-map...l]...

spec-map:: spec-term I spec—term
Sig-map

Sig-map: [sorts (sortid I sortid)...]
[ops (opid : opid)...]
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It should not matter in which sequence independent  parameters are

actualized or whether they are actualized in parallel, thus both

the specifications denoted by (5) and (6) should be identified

with ( 4 ) .  In ASPIK, this is indeed the case. Instantiations are

denoted by specification terms. ASPIK semantics refer every

specification term to a specification and to a node in the

s p e c i f i c a t i o n  h i e r a r c h y ,  e.g. t h e  d i f fe ren t  t e rms  ( 4 )  - ( 6 )

denote the same specification under ASPIK semantics. Thus, the

use—clause of a specification may not only contain simple

specification names but also specification terms such as (2) -

(4). More sophisticated examples of parameterization-by-use

exhibiting these and other aspects can be found in [BGV 83].

2 .2 .  O u t l i n e  o f  a formal d e f i n i t i o n  o f  ASPIK

2.2.1. Abstract ASPIK syntax

Note: The syntax is given in a BNF-like notation.

Terminal symbols are underlined.

spec:: gpgg specid

[comment text]
[HES spec—term...]
[sorts sortid...]
[925 op—header...]
[props property...]
[spec-body body]
endspec

spec-term:: specid [Lspec-map...l]...

s p e c - m a p : :  spec—term I spec—term

sig-map

sig—map: [sorts (sortid I sortid)...]
[gpg (opid I opid)...]
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opheaderzz opid ...i[sortid;..] j sortid

property:: equation]inequationlcond-equation

equation:: termiterm

inequation:: termgziterm

cond-equation:: equation[g equation]...:l
(equationlinequation)

body: [carrier-part]
op—part

carrier-part:: constructors o p i d . . .

[[auxiliaries op—header...
[define auxiliaries op—body...]]
define carriers op-body...]

op—partg: [define constructors op—body...]
[Erivate 025 op—header...]
[define oEs op—body...]fl

op—bod :: opid[L varid...l] ii op-scheme

op—scheme: :  term]if—schemelcase-scheme[let-scheme

term:: varidlopid[i term...l]

1et-scheme:: l e t  (varid = term)...

i. op—scheme

case—scheme:: case varid is

(opid[i varid..l]i op—scheme)...
[otherwise op—Scheme]

esac
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opheader:: opid ...£[sortid;..] j sortid

property:: equation]inequationlcond-equation

equation:: termiterm

inequation:: termgziterm

cond-equation:: equation[g equation]...:l
(equationlinequation)

body: [carrierbpart]
op- part

carrier-part:: constructors opid...

[[auxiliaries op—header...
[de f ine  auxiliaries op—body...]]
define carriers op—body...]

op—partg: [define constructors op-body...]

[Erivate ogs op—header...]
[define 02s op—body...]

op—body:: opid[L varid...l] ii op-scheme

op—schemez: termlif—schemeIcase-schemellet-scheme

term:: varidlopid[i term...l]

1et—scheme:: l e t  (varid = t e r m ) . . .

l. op—scheme

case—scheme:: case varid is

(opid[i varid..l]£ op-scheme)...
[otherwise op-Scheme]

esac
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if-scheme:: if term

t hen  op—schene

[elsif term
then op—scheme]...
else op—scheme

2 .2 .2  Semantics

T h e  objective o f  the algebraic specification method is the

definition o f  abstract data types. Data types are usually

regarded a s  algebras o r  classes of algebras. ASPIK definitions

denote hierarchies of specifications a s  induced by the use

relationship. S u c h  hierarchical specifications have classes of

algebras as models, constituting the abstract data types.

2.2.2.1 SPEC - the category of specifications

A s i g n a t u r e  X i s  a s e t  o f  s o r t s  S t o g e t h e r  w i t h  a set o f

operators each operator having an arity in S*x S. A signature

morphism a is a translation of sorts to sorts and operators to

operators such that the arities are preserved. SIG is the

category o f  signatures, S f G  the subcategory of S I G  with only

signature inclusions as morphisms.

A Z-algebra is an S-indexed family of sets together with an S ü s -

indexed family of functions. A Z-algebra morphism is an S-indexed

f a m i l y  of functions fs such that the functions are preserved.

ALG(E) is the category of Z—algebras. A (conditional) E-equation
e is a pair of two Z—terms over an S—indexed family of variables

(together with a list o f  Z-equations as condition). A Z—algebra

satisfies e iff it satisfies every ground instance of e.

Given a Z’—algebra A’ and a signature morphism a: Z + 2’ the 2—

restriction of A’ along a is denoted by A°|z or just Alz if a is
understood. It is the Z-algebra A defined by As = A € a ( s )  and opA

= o(op)A—.
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regarded a s  algebras or classes o f  algebras. ASPIK definitions

denote hierarchies o f  specifications a s  induced by the use

relationship. S u c h  hierarchical specifications have classes of

algebras as models, constituting the abstract data types.

2.2.2.1 SPEC - the category of specifications

A s i g n a t u r e  £ i s  a s e t  o f  s o r t s  S t o g e t h e r  w i t h  a s e t  o f

operators each operator having an arity in S*x S. A signature
morphism a is a translation of sorts to sorts and operators to

operators such that the arities are preserved. S I G  is the

category o f  signatures, s i e  the subcategory o f  S I G  with only

signature inclusions as morphisms.

A Z-algebra is a n  S-indexed family  o f  sets  together with an  S&S-

i ndexed  family of functions. A Z-algebra morphism is an S-indexed
f a m i l y  o f  functions f s  such that the functions are preserved.

ALG(Z) is the category o f  Z-algebras. A (conditional) Z—equation
e is a pair of two E-terms over an S—indexed family of variables

(together with  a list o f  X—equations a s  c o n d i t i o n L  A t-algebra
satisfies e iff it satisfies every ground instance of e .

Given a Z’-algebra A’ and a signature morphism a: Z + 8’ the X—

restriction of A7 along a is denoted by A°|£ or just Alz if a is
understood. It is the Z-algebra A defined by A s  = A‚o (s )  and opA

= a(op)A—.
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with these preliminaries we can now give the formal definition of

a canonical term functor.

Definition

Let E, 2’ be signatures with Z E 2’, C(2) a subcategory of

ALG(Z). A f u nctor

g : C ( Z )  + A L G ( Z ’ )

is a canonical term functor (CTF)  iff

V A e C ( Z )  conditions ( i )  to ( i v )  h o l d :

(i) 9(A)l£ = A (persistency)

(ii) g(A)S g Tz—_2(A) for all s e £’—£

( t e r m  property)

V op e E’-Z. op: sl ... s + s (where s e £’—E):n
(iii) op(t , ..., t ) s g(A)1 n 5

=> [Vie{l‚...n} . sieZ’-Z => t i  5 g(A)Si]
(subterm property)

(iv) op(t1‚ ..;‚ tn) e g(A)s

=> opg(A) (t1, ..., tn) = op(t1‚ ..., t n )

(constructor property) Kflj};%fiy r

T h e  concept of a CTF is a generalization o f  the otion of

canonical term algebra (CTA) as introduced in [GTW 78]. A Z-

algebra A is a CTA iff the constant functor gA: ALG(¢) + ALG(£)

yielding A is a CTF. S o m e  other useful facts are also easy t o

prove: every CTF is strongly persistent, the composition of CTFs

yields again a CTF, and the application of a CTF to a CTA yields

a C T A .

T h e  body o f  an ASPIK specification can be evaluated to a CTF.

Its source is given by the combination of the use-clause entries

yielding C(Z) in the definition above and its target is given by

that combination enlarged by the public sorts and operations.

Just like the properties in the specification header restrict the

class of model algebras the specification body evaluated to a CTF

represents a restriction as well.
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with these preliminaries we can now give the formal definition of

a canonical term functor.

Definition

L e t  £, 2’ be signatures with 2 g 2’, C(2) a subcategory o f

ALG(£). A functor

g : C ( Z )  + A L G ( Z ’ )

is a canonical term functor (CTF) iff

V A 8 C(2) conditions ( i )  to (iv) hold:

(i) 9 ( A ) | z  = A (persistency)
(ii) g(A)S g Tz—_z(A) for all s e 2’—Z

(term property)

V op e x'-z. op: sl ... sn + s (where s e Z’-£):

(iii) op(t1, ..., tn) e g(A)s

=> [Vie{l,...n} . sie£’-£ => t i  e g(A)si]
(subterm property)

(iv) op(t1, ..., tn) 6 g(A)s

=> opg(A) (tl, ..., tn) = op(t1, . . . ,  tn)

(constructor property) Kpucg3g” „

T h e  concept o f  a CTF is a generalization o f  the o t i o n  o f

canonical term algebra (CTA) as introduced in [GTW 78]. A Z-
algebra A is a CTA iff the constant functor gA: ALG(¢) * A L G ( Z )

yielding A is a CTF.  S o m e  other useful facts are also easy t o

prove: every CTF is strongly persistent, the composition of CTFs

yields again a CTF, and the application of a CTF to a CTA yields

a CTA.

T h e  body  o f  an ASPIK specification can be evaluated to a CTF.

Its source is given by the combination of the use-clause entries

yielding C(Z) in the definition above and its target is given by

that combination enlarged by the public sorts and operations.

Just like the properties in the specification header restrict the

class of model algebras the specification body evaluated to a CTF

represents a restriction as well.
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Definition

Let E“, E", 2 be signatures, Z ’  g Z".

A Z-fix f is a pair

( 9 :  C ( 2 ’ )  + ALG(Z"),o:Z" + 2 )

consisting of a canonical term functor g and signature morphism

0 .

A E—fix is s i m i l a r  t o  initial o r  generating constraints d H K R

80], [BG 80], [SW 82]). Let E, 2’, 2" be as above, A a Z-algebra,
A" its E"-restriction. Then A satisfies a Z-fix (g,a) if

- g i s  applicable to t h e  Z’-restriction o f  A", i.e. AnIZ ’  is

in t h e  domain o f g

- the carriers o f  sorts in Z"-Z’ and the corresponding

operations in A" a r e  "defined just as" in the algebra

obtained by applying 9 to the Z’—restriction o f  A".

Since the second condition is guaranteed for t h e  Z’—part o f  A"

b y  the persistency o f  g ,  the "defined just as" is captured by  an

isomorphism between the two algebras:

Definition

A Z—algebra A satisfies a E-fix

f ( g :  C ( Z ’ )  + A L G ( Z " ) ‚  o : £ “ +  E )

iff

(A l t " ) l z '  € C ( Z ’ )  9.12.9.

9 ( ( A l z u ) l z ’ )  5 Alt"

For a s e t  o f  Z-equations E and a s e t  o f  Z-fixes F ALG(Z,E,F) is

the subcategory o f  ALG(£) with algebras satisfying E and F.

Like data constraints in Clear [BG 80] a E—fix f = (q,o) may be
translated by a signature morphism a’ : Z + 2’ yielding the 2’-

fix (g,o’00). A specification representation SP=(Z,E,F) with £-

equations E and E—fixes F represents the specification SP“ =
(Z,E’,F’) w h e r e  (E’,F’) is the closure o f  (E,F), i.e. the sets o f

Z - e q u a t i o n s  r e s p .  Z — f i x e s  s a t i s f i e d  b y  a l l  a l g e b r a s  i n

ALG(Z,E,F). A specification morphism o:(Z‚E,F) + ( F U E ’ , F W  is a
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Definition

Let Z’, Z", 2 be signatures, 2 ’  g E".

A z-fix f is a pair

( 9 :  C(2’) + ALG(Z"),a:E" + 2)

consisting of a canonical term functor g and signature morphism

G .

A E-fix is s i m i l a r  to initial or generating constraints HHKR
80 ] ,  [BG 80 ] ,  [SW 82 ] ) .  Let £, 2’, 2" be as above, A a Z-algebra,
A" its Z"-restriction. Then A satisfies a Z-fix ( 9 ,0 )  if

- g is applicable to t h e  2’-restriction o f  A", i.e. A"|z— is

in t h e  domain  o f g

- the carriers o f  sorts in 2"—£’ and the corresponding

operations in A" are "defined just as" in the algebra

obtained by applyinq g to the 2’-restriction of A".

S i n c e  the second condition is guaranteed for t h e  Z’-part o f  A"

b y  the persistency o f  g ,  the "defined just as" is captured by an

isomorphism between the two algebras:

Definition

A Z-algebra A satisfies a E—fix

f = ( g :  C ( Z ’ )  + A L G ( 2 " ) ‚  o : £ “ +  2 )

if;
( A | Z " ) | E '  e C(x’) 229

g ( ( A | £ n ) | z f )  5 Alta

For a set o f  Z-equations E and a set o f  E-fixes F ALG(Z,E,F) is

the subcategory of ALG(Z) with algebras satisfying E and F.

Like data constraints in Clear [BG 80] a Z—fix f = (q ,o )  may be
translated by a signature morphism d ’ :  E + E’ yielding the 2’-

fix (g,o’oa). A specification representation SP=(£‚E‚F) with 2-

equations E and Z-fixes F represents the specification SP ’ =
(Z,E’,F’) where (E’,F’) is the closure o f  (E,F), i.e. the sets of

z - e q u a t i o n s  r e s p .  Z - f i x e s  s a t i s f i e d  b y  a l l  a l g e b r a s  in

ALG(Z,E,F). A specification morphism o:(£,E‚F) + (Z’,E’,F’) is a
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signature morphism 6:2 + 2‘ such  that 0(E) g E’ and a(F)  2 F1
SPEC is the category of specifications, SPEC the subcategory of
SPEC with only inclusions as morphisms.

2 .2 .2 .2  Specification hierarchies

In the category SPEC the hierarchical structure of specifications

is not represented. In the semantics of ASPIK this is achieved by

special diagrams in SPEC, called specification hierarchies. Let

AO be a well founded irreflexive partial order with a minimal

e l e m e n t  s u c h  t h a t  e v e r y  e l e m e n t  h a s  o n l y  f i n i t e l y  m a n y

predecessors. Let A0 also denote the induced path category. A

specification hierarchy is a functor H: A0 + SPEC where the
minimal element is mapped to the specification BOOL. Since  there-

is at most one morphism between any t w o  objects in S P fi C ,  H is

determined by its object part: if there is a path from A to B in

A0 t hen  t h e r e  m u s t  be a n  i n c l u s i o n  H ( A )  + H(P) ‚  t h u s  r e f l e c t i n g

precisely a use-relationship between the two specifications.

A sequence of ASPIK-specifications yields a specification

hierarchy. Having already evaluated the first n—l specifications

to a hierarchy H, the nth specification, say spec SP, yields the

hierarchy H’ generated from H in two steps:

( 1 )  A0 i s  e n l a r g e d  b y  t h e  n e w  e l e m e n t  S P  w h e r e  s o m e  a l r e a d y

existing element A is smaller than S P  iff S P  uses A. As

sketched in 2.2JL1, spec S P  is evaluated t o  a triple (Zuz’,

EuE’,FuFW where (Z,E,Ffi is the union of all specifications

used. E“ contains SP’s public sorts and operations (prefixed

b y ’ S P ‘  in order to avoid unwanted name clashes), E’ is the

set of SP’s properties and F’ contains the CTF SP’s body is

evaluated to. T h i s  specification representation yields the

specification that is the label of S P  under RC

(2) In the second step all specification t e r m s  in normal form

involving S P  are considered. A normal form term must not

contain trivial parameter replacements like id: S P  + S P  nor

a n y  s e q u e n t i a l  r e p l a c e m e n t s ,  e . g . ( 4 )  i n  s e c t i o n  2.1.3 i s  i n
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signature morphism 0:2 + 2’ such that 0 (3 )  g E’ and 0(F)  g F’.

SPEC is the category of specifications, SPEC the subcategory of

SPEC with only inclusions as morphisms.

2.2.2.2 Specification hierarchies

In the category SPEC the hierarchical structure of specifications

is not represented. In the semantics of ASPIK this is achieved by

special diagrams in SPfiC, called specification hierarchies. Let

A0 be a well founded irreflexive partial order with a m i n i m a l

e l e m e n t  s u c h  t h a t  e v e r y  e l e m e n t  h a s  o n l y  f i n i t e l y  m a n y

predecessors. Let A0 also denote the induced path category. A

specification hierarchy is a functor H: A0 + S P E C  where the

minimal element is mapped to the specification BOOL. Since  there-

is at most one morphism between any t w o  objects in S P fi C ,  H is

determined by its object part: if there is a path from A to B in
A0 t hen  there must be an inclusion H(A) + H(P), thus reflecting

precisely a use-relationship between the two specifications.

A sequence o f  ASPIK-specifications yields a specification

hierarchy. Having already evaluated the first n-l specifications

to a hierarchy H, the nth specification, say £222 SP, yields the

hierarchy H’ generated from H in two steps:

( 1 )  A0 is enlarged by the new element S P  where s o m e  already

existing element A is smaller than S P  iff S P  uses A. As

sketched in 2.2.2.1, EM S P  is evaluated to a triple (Zuz’,

EuE’,FuF1 where (Z,E,F,) is the union of all specifications

used. E’ contains SP’s public sorts and operations (prefixed

b y ‘ S P ‘  in order to avoid unwanted n a m e  clashes), E’ is the

set of SP’s properties and F’ contains the CTF SP’s body is

evaluated to.'rhis specification representation yields t h e

specification that is the label of S P  under H1

(2) I n the second step all specification t e r m s  in normal form

involving S P  are considered. A normal form term m u s t  not

contain trivial parameter replacements like id: S P  + S P  nor

any sequential replacements, e.g.(4) in section 2.1.3 i s  in
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n o r m a l  f o r m ,  but ( 5 )  and (6) are not. Every specification

term can be transformed into an equivalent normal form term

([BV 83]). For every normal form term a new node is
introduced that is labeled with the instantiation object of

the specificaion term. By repeating this process inductively

a glgggg hierarchy H’ is generated such that every
specification term can be mapped t o  a node n with H’Ufl

being the corresponding instantiation object.

In [BV 83] hierarchies are studied in more detail. The results
reported there are applicable to specification hierarchies as

well.
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