
u
n

i v
e

rs
i t

ä
t

K
a

i s
e

rs
l a

u
te

rn
F

a
ch

b
e

re
i c

h
l n

io
m

a l
ik

P
o

s t
f a

ch
30

49

S
E

H
l -

P
H

Ü
JE

H
T

H
7

5
0

K
a

i s
e

rs
l a

w
e

m
'

1
. ‘

W
.

B
é

n
n

a
n

y

Extending the
WARREN Abstract Machine

to Many-sorted PROLOG

Hans-Jürgen Bürckert'

MEMO SEKI—ss-VII-Ia.

PIPE-Universität-KL-OOO3

Extending the
WARREN Abstract Machine

to Many-sorted PROLOG

Hans-Jürgen Bürckert

Universität Kaiserslautern
Fachbereich Informatik

Postfach 3049
D-6750 Kaiserslautern

W. Germany

Abs t rac t :
This report describes an abstract Prolog instruction set, known as WARREN
Abstract Machine, for a many-sorted version o f MPROLOG. The Prolog

inference mechanism - based on SLD-resolution - i s extended to
many-sorted SLD-resolution, which reduces the deduction tree and helps
avoiding unnecessary backtracking. Building in those sorts i s also known as
introducing a type mechanism into Prolog, which helps detecting and
avoiding syntax errors.

This work was supported by the Bundesministerium für Forschung und Technologie of
the FR-Germany and by the NIXDORF Computer AG within the framework of the Joint
Research Project ITR-8501 A.

In troduct ion and Mot iva t ion

In the following paper we describe an extension of MPROLOG /HU 82/ with
sorts (=restricted quantification) and a corresponding abstract Prolog machine
based on the WARREN Abstract Machine (WAM), see /War 83/.
Our goal was not to design a new logic programming language but to extend an
available Prolog version, such that a modification of present implementations
should easi ly be possible. Moreover, already existing programs should run
without any modifications or run time worsening.
We chose MPROLOG, since this paper i s part of the PIPE—project (Pa ra l l e l
Inferencing PROLOG Environment)/PIPE 84+85/. The aim of this project is to
build a parallel MPROLOG machine - based on the WAM - to speed up present
and future MPROLOG programs. Hence our sort extension should be able to be
implemented on this machine. On the other hand no difficulties should arise in
adapting this sort mechanism to other Prolog dialects.

The var iables in logic programming languages can be regarded to be
universally quantified (first order logic) variables, that i s they might be
instantiated by every individual of the underlying universe. On the other hand,
if one wants to describe for example some mathematical propositions or natural
problems, the variables frequently are restricted to special domains of the
universe (we will call them sorts) :

Vx e N : x > 0 .
All men are morta l .

Here the quantifiers range only over the domains ‘N’ (natural numbers) and
"men’. Clearly both propositions can be transformed into normal first order
logics (without sorts):

Vx : x e N ==> x > 0 .
All x: (x i s man) implies (x is mortal).

But i t i s well known in the field of automated reasoning systems, that using
socalled many sorted first order calculi will shorten the search space and hence
lead to faster deductions [Wal 84/, /Sch 85/. This will be a main reason for
designing sorted Prolog versions /Fr 85/, /GM 85/. Another reason will be, that
restr ic ted quantification can be regarded as the introduction of a typing
mechanism into logic programming languages. This will help to respectively
avoid and detect syntax errors in logic prOgrams /Mi'84/‚ /MK 84/. The
following examples - written in (sorted) MPROLOG — should demonstrate those

advan tages :

Examplela /Fr 85/:

vehicle(X) :- bicycle(X).
vehicle(X) :- car(X).

_ bicycle(b1).

bicycle(bn).
car(c1).

car(cm).
car(mycar).
has(X‚tires) :- vehicle(X).
has(X,doors) :- car(X).
owns(alan‚mycar).

?- has(X‚tires),has(X‚doors)‚owns(alan‚X).

The program will consider all bicyles and all cars to succeed the first goal
‘has (X , t i r e s) ’ . Then it always has to backtrack for solving the next goals until it
finally will succeed with ‘X = mycar’. In the following sorted version the
variable will only be instantiated by the sort ‘ veh i c l e ’ and later on by the sort

‘ ca r ’ , before it finally will succeed with the constant ‘myca r ’ .

Example 1b :

csort(b1 ,bicycle).

csort(bn.bicycle).
cson(c1 ,car).

csort(cm,car).
cson(mycar,car).
subsort(bicycle,vehicle).
subson(car,vehicle).
has(X:vehic|e‚tires).
has(X:car‚doors).
owns(alan,mycar).

?- has(X‚tires)‚has(X,doos),owns(alan,X).

The following errorneous definition of the reverse and append relation for lists
will lead to a staticly recognizable error, if sorts are uSed.

ExampleZa /Mi 84/:

revbad([].U). '
revbad([X| L1],L2) :- revbad(L1 ‚L), app(L‚X‚L2).

app([l.L.L)-

app([XIL1].L2, [XI L31) :- app(L1,L2,L3).

The under l ined goa l of the reverse -def in i t ion shou ld cor rec t ly be
‘app(L,[X],L2)’, but the error might only arise dynamicly by returning ‘fail’, if
we for example call it with a l ist and its reversed list, instead of outputting
‘ t rue ’ . But using sorts ‘ l i s t ’ and ‘ any ’ (restriction to the sort ‘ any ’ is equivalent
to unrestricted quantification) an error will arise (stat icly), because the ‘X’ in

the underlined goal can be instantiated to a non-list, while ‘ app ’ requires lists
only as arguments.

Example2b:

(Note, that the sort of a variable must only be declared at its first occurrence;
‘any’-sor ted variables need no declaration.)

psort(revbad(list,list)).
psort(app(list,list‚list)).
fsort([any | any]‚list).
csort([],Iist).

revbad([],[]).
revbad([X | L1:Iist],L2:|ist) :- revbad(L1,L:list), app(L‚X,L2).

aPP([],L:list,L).
app([X] L1:Iist].L2:list. [X | L3:list]) :- app(L1.L2,L3).

Sor t ed Prolog

There are several approaches to introduce types or sorts in Prolog (or logic
programming in general) /Mi 84/,/MK 84/,/Fr 85/,/GM 85/. Some of them deal

with a typing mechanism used only for type checking, as in common
programming l anguages , and no t for computa t ion . Bu t s i nce Pro log
implementations can be regarded as automated reasoning systems, a logic
based approach would be to introduce restricted quantification like in many

sorted first order logics as it is done in automated theorem proving [MKRP 84/.

Therefore, we require a signature of finite sets of sort, constant, function,

predicate and variable symbols. The se t of sorts is partially ordered by a

subsort ordering with exactly one top sort ‘ any ’ , such that every two sorts will

have at least one maximal common subsort (this is sometimes called a complete

supremum semilat t ice) .

Every variable and every constant will be declared to have a fixed sort. A
range sort and n (maximal) argument sorts will be assigned to every n—ary
function symbol and every n-ary predicate will get It (maximal) argument
sorts. We agree upon the default sort to be ‘ any ’ in all cases.
Terms, literals, clauses and so on are defined as common in logic programming
/L1 83/, but with the following restrictions:
Let the sort of a structure (= complex term) be the range sort of its function
symbol. Then a term or a literal will be well sorted, iff its subterms will have a
sort less than or equal to the declared argument sorts of the leading symbol.
Other terms and literals are not allowed. In a program the sort relations and
declarations of the symbols must be given before the first occurrence of those
symbols .
The deduction will be done by usual SLD-resolution, but the unification
procedure [Ro 65/ will be restricted by: "
(1) A variable and a non-variable are unifiable, iff the sort of the non-variable

i s a subsort of that of the variable.
(2) Two variables are unifiable, iff there i s a maximal common subsort of their

sorts (note, that this is unique by the definition of the sort hierarchy). If this

subsort i s not the sort of one of the variables, the unifier i s represented by
binding both variables to a ‘ new’ variable with that subsort.
The soundness and completeness of the many sorted SLD-resolution i s an
immediate consequence of the results of [Wal 84/ and /Sch 85/ (if unification
is done with occur-check).
The following example demonstrates the use of sorts (see also the former
examples) :

Example3:

standard MPROLOG] sorted MPROLOG
I

personüohn). | csortüohmperson).
person(mary). | csort(mary‚person).
dog(bill).] csort(bi|l,dog).
animaI(X) :- dog()() | subsort(dog‚animal).
|ikes(john,mary). | Iikesüohnmary).
likesüohmbill). | Iikesüohmbill).

I
I?- Iikesüohn‚X)‚animal(X). ?-Iikes(iohn,X:animal).

The variable ‘X’ i s restricted to the sort ‘ an ima l ’ , and hence i t will not unify
with ‘mary ’ , but with ‘bill’, who i s of sort "dog’, a subsort of ‘ an ima l ’ .
In the examples we have already seen some of the new built-in predicates for
sort declarations. The formal definition of their syntax might be (see also the
MPROLOG manual [HU 82/):

<sort declaration> ::=
subsort(<name>,<name>)<full stop>l
csort(<name>,<name>)<full stop>l
fsort(<name>(<sort list>),<name>)<full stop> /
psort(<name>(<sort Iist>))<full stop>

<sort l i s t> : :=
<name>l
<name>.<sor t list>

‘ subso r t (s1 ,32) . ’ declares its first argument to be a subsort of its second one.

‘ c so r t (c , s) . ’ assigns the sort ‘ 3 ’ to the constant ‘ c ’ .
‘ f so r t (f (s1 , . . . , sn) , s) . ’ declares the n-ary function symbol ‘ f ’ to have range sort

‘8 ’ and argument sorts ‘ s1 , . . . , sn ’ .

‘p so r t (p (s1 , . . . , sn)) . ’ restricts the predicate ‘p ’ to the argument sorts ‘ s1 , . . . , sn ’ .

In a program such declaration have to be given before the first occurrence of

the symbols in any clause. The variable sort declaration will be given in the

clauses .

<term> : :=
<number> l
<name>/
<var i ab le> l
<var iable>:<name>/
<compund term>l
(<term>)

Examp1e4:

subsort(ss ,32). any
psort(p(52,s1,any)). / / \ \
f sor t (f (s1 ‚sS,s4) ,sS) . s1 52 $3 $4
csort(a,s4). |
p(f(X:s1,Y:sS,a),X,Z). $5

The second occurence of the variable ‘X’ needs no further sort restriction, while

the variable ‘2 ’ is regarded to have (default) sort ‘ any ’ . Since ‘35 ’ i s a subsort of

‘32 ’ and ‘f’ has range sort ‘55’, the first argument of ‘p ’ has a correct sort.

As side effects these sort declarations will influence the unification procedure

and the syntax checker. Terms and literals, which are not well sorted, will lead

to a syntax error. A subsort ordering, which will not be a complete supremum

semilattice, will also produce an error.

The Sor t Uni f i ca t ion Ins truct ions

In ' this section we define the sort unification instructions extending the
WARREN Abstract Machine (WAM) to sorts. We use the same notation as in
/Be '85 ,1 / .
The WAM is defined by an abstract instruction set for the compilation of Prolog
programs. The idea behind it is to transform the unification procedure for two
unknown terms into several special unification procedures determined by the
structures of the clause headers. Those structures are completely specified
when the program i s created. Hence they can be compiled into special
unification code, that can only unify terms with an analoguous structure, but
can do this very efficiently.
Additionally there are some instructions for memory management and Prolog
procedure calls. If we have for example a clause of the following form,

h(. . .) : -g l (. . .) , gZ(. . .) .

the instruction code will do something like the following /Be 85,1/,

allocate environment
unify h(. . .) with the calling goal
initialize argument registers for g1
call g1
initialize argument registers for g2
call 92
deallocate environment
return from clause.

For this several registers and memory stacks need to be assigned. /Be 85,1/
contains a detailed description. The reader i s also referred to the original
papers /War 77/, [War 83/ and the WAM tutorial /GLLO 84/.
Our extension needs only to guarantee that the unification codes respect the
sort hierarchies. So we have to introduce some new GET, PUT and UNIFY
instructions simulating the unification of goal and header arguments with
non- ‘any’ sorts; the original instructions will work with ‘any’—sorted arguments.
The allocation of the environments will also be somewhat modificated, because
we may have to store some sort information about the terms and literals.

Variables with a non- ‘any’ sort now contain as value their sort instead of a

self-reference. Unrestricted variables do however contain a self-reference like

in the original machine.

S_PUT_Y_VARIABLE Yn , Ai , S
This instruction represents a goal argument that i s an unbound variable with
sort 8 . It puts the address of variable Yn into regis ter Ai . The variable i s

determined by an offset in the current environment on the local stack,

containing the sort S and tagged by S_UNBOUND.

S_PUT_X_VARIABLE An, Ai, S
This instruction represents an argument of the final goal that i s an unbound
variable with sort S . It creates an unbound variable on the global stack with

sort S as content and puts references to it into the registers An and Ai .

The PUT....VALUE instructions need no equivalent for the sort case, since the
sort of a bound variable i s the sort of i ts value being available after

dereferencing. Bu t remember, that in opposite to the WAM an unbound
(sorted) variable now will not have a reference to i tself but to its sort , hence

the execution of this instructions has to watch this case.

S_PUT_CONSTANT C , Ai , S
This instruction represents a goal argument that i s a constant with sort 8 . I t

pushes C and S onto the heap and puts a corresponding sorted—constant pointer
into Ai .

S_PUT_STRUCTURE F , Ai , S
This instruction marks the beginning of a structure with sort S occuring in a

_ goal literal. The functor F together with its sort 8 is pushed onto the global

stack and a sorted-structure pointer is put into Ai . Execution then proceeds in

"write" mode.

In the next instructions the sort unification procedure is used:

S_GET_Y_VARIABLE Yn , Ai , S _

This instruction represents a head argument that is an unbound variable with

sort 8 . It stores the sort S in Yn and unifies this variable with the content of
register Ai.

S_GET___X_VARIABLE An, Ai , S
Same as S_GET_Y_VAR|ABLE but An is a register.

We need no S_GET_VALUE instructions. To garantee the speed, if there are no

sort declarations, the unification procedure should only do the sort checks, if

the sort table i s not empty. This might be controlled by special sort/no-sort
modes .

S_GET_CONSTANT C,A i ,S
This instruction represents a head argument being a constant with sort 8 . I t
gets the value of Ai and dereferences it. If the result i s a variable with a
greater sort than S , the constant and its sort is pushed onto the heap and the
variable i s bound to it . Otherwise, if the result i s not the constant C ,
backtracking occurs. '

S_GET_STRUCTURE F ,A i ,S
This instruction marks the beginning of a structure with sort 8 occurring as
head argument. It gets the value of Ai and dereferences i t . If the result is a
variable with a greater sort than 8 , the functor and its sort i s pushed onto the
heap and the variable i s bound to i t . Execution proceeds in "write" mode.
Otherwise, if the result is a structure and its functor is F , the register NEXTARG
i s set to point to the arguments of the structure, and execution proceeds in
"read" mode. Otherwise backtracking occurs.

S_UNIFY_Y_VARIABLE Yn , 8
This instruction represents an unbound variable with sort S occurring as a
structure argument. If it i s executed in "read" mode, i t gets the next argument
from NEXTARG and unifies i t with the variable Yn. If execution is done in "write"
mode, it pushes a new unbound variable with sort S onto the heap and stores a

. reference to it in Yn.

S_UNIFY_X_VARIABLE An , S
Same as S_UNIFY_Y_VARIABLE , but the variable is a temporary register
var iable .

Again no S__UN|FY....VALUE instructions are needed. The original instruction
must do sort unification, if the sort table is not empty.

S_UN|FY_CONSTANT 0 ,8
This instruction represents a structure argument being a constant of sort 8 . If it
i s executed in "read" mode, it gets the next argument from NEXTARG and
dereferences it. If the result is a variable with greater sort than S , the constant
C and its sort are pushed onto the heap and bound to this variable. Otherwise,
if the result i s not C , backtracking occurs. If execution i s in "write" mode, the
constant C and its sort are pushed onto the heap.

Since lists are built-in structures, they need no special sort instructions. But we
would like to assert a special built-in sort ‘ I i s t ' and to define the constant ‘n i l '
and the list constructor [. | .] having (range) sort ‘Iist' and argument sorts ‘ any ' .
The original l is t instructions then should be changed to work with the sort
‘ l is t ' . The integers and the arithmetic functions might also get special inbuilt
sor t s .

In the following we give the compile code of the entrance examples, both the
standard and the sorted version.

Ex ample 5 a :

vehicle/1 try_me_else V2
execute bicycle/1

V2 trust_me_else fail
execute car/1

bicycle/1 switch_on_term Bv.Bc,fail,faiI
Bc switch_on_oonstant ...,(b1 81 , , bn Bn, fail)
Bv try__me_else B2a
B1 get__constant b1,A1

proceed
82a » . -
Bna trust_me_else fail
Bn get_constant bn,A1

proceed

car/1 switch_on_term Cv,Cc,faiI,fai|
Cc switch_on_oonstant ...‚(c1 C1, , cm Cm, mycar C ,fail)
.Cv try_me_else 02a
01 get_con stant 01 ‚A1

proceed
02a - - -
Cma try_me_else Ca
Cm get_constant cm,A1

' proceed
Ca trust__me_else fail
C get__con stant mycar,A1

proceed

has/2 try_me_else H2
get_constant tires,A2
execute vehicle/1

H2 trust__me__e|se fail
get_constant doors,A2
execute car/1

owns/2 trust_me_else fail
get__constant alan,A1
get_con stant mycar‚A2
proceed

10

query/0 allocate 1
put _y_variable Y1 ,A1
put_constant tires,A2
call has/2
put_y_value Y1 ,A1
put_con stant doors,A2
call has/2
put_constant allan,A1
put_y_value Y1 ‚A2
execute owns/2

Examples The sorted version (examplelb) will be encoded this way.

csort/2
Cc
Cv
B1

82a Cm

subsort/2
Sc
S1 a
$1

82a -
S2

has/2

H2

owns/2

qüery/O

switch_on_term Cv,Cc,fail,fai|
switch__on_oonstant ...,(b1 B1,....,bn Bn,c1 C1,...,cm Cm, mycar C‚fail)
try_me_else 82a
get_constant b1 ‚A1
get_constant bicycle‚A2
proceed

trust_me_else fail
get__constant mycar,A1
get__constant car,A2
proceed

switch_on_term Sv,Sc,fail,fail
switch_on_constant ...,(blcycle S1, car 82‚fail)
try__me__else 82a
get_constant bicycle,A1
get_constant vehicle,A2
proceed
trust_me_else fail
get_constant car,A1
get_constant vehicle,A2
proceed

try_me_else H2
3_get _y_variable Y1 ,A1 ‚vehicle
get_constant tires,A2
proceed
trust_me_else fail
s_get_y__variable Y1,A1,car
get_constant doors,A2
proceed
trust_me__else fail
get_constant A1
s_get_constant mycar,A2.car
proceed

allocate 1
put_y_variable Y1 ,A1
put_constant tires,A2
call has/2
put__y_value Y1 ,A1
put_constant doors,A2
call has/2
put_constant allan.A1
put_v_va|ue Y1 ‚A2
execute owns/2

‘l‘l

psort/1
Ps
Pv
P1

P2a
P2

fsort/2

csort/2

rev/2
Rv
R0

R2
RI

app/3
Lv
Lc

L2
Ll

Example6: We give an encoding of the (correct) reverse and append definitions
with sorts (see exampleZb).

switch_on_term Pv,fail,fail,Ps
switch_on_structure ..,(rev P1 ,app P2,fail)
try_me__else P2a
get_structure rev/2,A1
unify_constant list
unify_constant list
proceed
trust_me_else fail
get__structure app/3,A1
unify_constant list
unify_constant list
unify_constant list
proceed

tru st_me_else fail
get__list A1
unify_constant any
unify_constant any
get__constant list,A2
proceed

trust_me_else fail
get_nil A1
get_constant list,A2
proceed

switch_on_term RV,Rc,Rl,fail
try_me__else R2
get__nil A1
get_nil A2
proceed
trust_me_else fail
allocate 3
get_list A1
Unify__y_variable Y2
s_unify__x_variable A1 ,list
s_get_y_variable Y3,A2,list
ejut_y_variable Y1 ,A1 ,list
call rev/2
put_unsafe_value Y1 .A1
put_|ist A2
unify_y_value Y1
unify_nil
put_y_value Y3.A3
deallocate
execute app/3

switch_on_term Lv,Lc,Ll,fail
try_me__else L2,3
allocate 1
get__nil A1
3_get _y__variab|e Y1 ,A2,list
get__x_value Y1 ,A3
proceed
trust__me_else fail
allocate 1
get_list A1

12

unify_x_variable A4
s_unify_x_variable A1 ‚list
s_get_y__variable Y1‚A2‚list
get_list A3
unify_x_value A4
s_unify__x_variable A3.list
execute app/3

Since the sorts are a finite supremum semilattice, we can store them in a
square table. Let {S i : 1sisn} be the set of sorts. The contents of the table are
inf(si,sj), the uniquely determined maximal common subsort of Si and S i

(1s i ‚ j sn) ‚ i f i t ex is t s , otherwise ‘ f a i l ’ . The entrances of the table will be the

different sorts. Since the table is symmetric, only half the storage is needed.
The following example should demonstrate this.

Example7:

The minimal information to be stored is the marked part of the table.

sort hierarchy

any

A
s l $2 s3

s4

l
95

sort table

any any s l 52 s3 s4 ss

s l s l s l s4 g s4 55

52 52 s4 52 z s4 55

s3 $3 a g 53 g g

s4 s4 s4 s4 :3 s4 s5
35 ss 55 35 z ss sS

13

Conc lus ion

During the writing of this report a similiar approach by M. Huber /Hub 85/ to
designing a sorted Prolog machine has reached us. It will be an extension of the
L-machine [Nie 85/, a sequential Prolog machine. It is similiar to our machine,
because the L-machine is also a WARREN Abstract Machine and the sort
extension i s based on the same papers as our extension (/Wal 84/, /Sch 85/).
The main difference apart from the syntax is, that for the sorted L-machine the
old unification instructions are changed, while we define new sort unification
instructions. Our approach therefore might result in a better run time behavior,
if no sorts are used.
Several further extensions will be part of our future investigations. It might be
possible to incorporate the sort restrictions into the indexing mechanism. In
addition the many sorted calculi are also defined for more general sort
hierarchies and for socalled polymorphic functions. But then the most general
unifier of two given terms will no longer be uniquely determined (/Wal 84/,
/Sch 85/) . This will also occur, i f unification i s extended to unification under

equational theories /Si 84/.
It i s not known, i f and how these extensions can be introduced into present

Prolog control mechanism, especially how this might be realized in an abstract
Prolog machine.

Literatur

[Be 85,1/ Beer J .
' Comments on Compiling PROLOG Programs Using

Warren’s Abstract PROLOG Instruction Set
PIPE—Report, GMD—FIRST, Berlin 1985

[Be 85 ,2/ Beer I .
An Extended PROLOG Instruction Set for the PIPE
PIPE-Report, GMD-FlRST, Berlin 1985

[Fr 85/ Frisch A.M.
An Investigation into Inference with Restricted Quantification and a Taxonomic
Representation
Logic Progeramming Newsletters 6, 1984/85

IGLLO 84/ Gabriel I., Lindholm T., Lusk E.L., Overbeek RA.
A Tutorial on the WARREN Abstract Machine for Computational Logic
Mathematics and Computer Science Division
Argonne National Laboratory 1984/85

[GM 85/ Goguen J.A., Meseguer I.
EQLOG: Equality, Types; and Generic Modules for Logic Programming
Functional and Logic Programming 1985

[HU 82/ MPROLOG-Manual
Institute for Coordination of Computer Techniques
Budapest 1982

[Hub 85/ Huber M.
L-Maschine: Maschinenmodell mit Sorten
Univerity of Karlsruhe 1985

14

[Ll 83/

Ni 84/

[MK 84/

IMKRP 84]

INei 85/

/PIPE 84,85/

R0 65/

[Sch 85/

[Si 84/

[Wal 84/

[W ar 77/

{War 83/

Lloyd J.W.
Foundations of Logic Programming
Berlin-Heidelberg-New York-Tokyo 1983
Mishra P.
Towards a Theory of Types in PROLOG
Proc. IEEE Intemat. Symp. Logic Programming 1984
Mycroft a., O ’Keefe R.A.
A Polymorphic Type System for PROLOG
Artificial Intelligence 23, 1984
Karl Mark G Raph
The Markgraf Karl Refutation Procedure
Memo—Seki, Universities of Kaiserslautern & Karlsruhe 1984
Neidecker B .
L-Maschine: Maschinenmodell
Universität Karlsruhe 1985
Parallel Inferencing PROLOG Environment
Workshops and Reports of the PIPE-Project
Berlin-Kaiserslautem-Paderbom 1984/85
Robinson J .A.
Computational Logic: The Unification Computation
Machine Intelligence 6, 1965
Schmidt-Schauß M.
A Many-sorted Calculus with Polymorphic Functions Based on Resolution and
Paramodulation
Internal Report, Universität Kaiserslautern, 1985
Siekmann J.
Universal Unification
Proc. Conf. Automated Deduction, Los Angeles 1984
Walther C .
Unification in Many-sorted Theories
Dissertation, Universität Karlsruhe, 1984
Warren D.H.D.
Compiling Predicate Logic Programs

' D.A.I. Research Report, University of Edinburgh, 1977
Warren D.H.D. -
An Abstract PROLOG Instruction Set
SRI Technical Note, Stanford, 1983

15

