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Abstrggt

This paper reports on the connection between proceduraL and
appLicative Languages. I t  presents features, notions and
methods derived from abstract data type theory that in our
judgement are heLpfuL and necessary for muLti-LeveL software
engineering environments in generaL, and especiaLLy for the
treatment of verification issues there. Reference is made to
an existing software engineering system and exempLary Lan-
guages of it. A denotationaL semantics based on aLgebraic
structures is introduced and empLoyed. Since object-
orientedness is Looked at as one of the most important
properties of such environments the notion of correctness is
appLied to objects and object reLations. FinaLLy a reaListic
semi-automatic method for the check of correctness criteria is
given, accompanied by remarks on our existing impLementation.
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O.  Overv iev  1

. Overv iew

The connec t ion  of  appL ica t ive  and proceduraL  Languages  i s  one
of  the  ma jor  issues of  a so f tware  engineer ing environment
(SEE) that  o f fe rs  more than  one Language to  a user .  Some
advanced sys tems incLude  a requi rement  descr ip t ion  Language ,  8
fo rmaL  spec i f i ca t ion  Language and  an  imperat ive  programming
Language .  We re fe r  to  the  en t i re ty  of  a Language and i t s  sup -
por t  envi ronment  as  LeveL of a SEE.  Espec iaLLy  in  the  L igh t  of
abs t rac t  da ta  type (ADT) theory  SEES i ncLud ing  an  aLgebra ic
spec i f i ca t ion  LeveL and a convent ionaL  programming Language
LeveL  have  become prominent :  so f tware  deveLopment  s ta r ts  a t
abs t rac t  spec i f i ca t ions  tha t  onLy cons ider  the  'pure '  aLgor -
i thm or  the  'pure '  in format ion  of  a t ask :  and  then  graduaLLy
comes  down to  concre te  p rograms  tha t  f inaLLy  run  on  computers .
In  th is  scenar io  d i f fe ren t  Languages  fo r  the  descr ip t ion  of
the  same thing a re  used;  o f ten  these  are  appL ica t ive  and
proceduraL  Languages .  In  th is  paper  quest ions  as  cons is tency
of  p roceduraL  programs w i th  appL ica t ive  programs and cor rec t -
ness  a re  t r i ed  to  be  answered .

The f i rs t  sec t ion  in t roduces  software engineering environments
i n  generaL ,  and espec iaLLy  the In tegra ted  Sof tware  DeveLopment
and  Ver i f i ca t ion  ( ISDV)  System ([BGGORV 831, [BOV 85 ] ) .  I t
aLso conta ins  a compar ison  and  ra t ing  o f  convent ionaL  Hoare -
s tyLe  ver i f i ca t ion  vs .  aLgebra ic  ver i f ica t ion  in  the  scenar io
of 8 SEE .

Sect ion  2 makes the up to  then informaL not ions of  ap-
pL ica t iveness  and proceduraL i ty  prec ise  and presents
representa t i ves  of  these  ca tegor ies .  The th i rd  sec t ion  then
prov ides  exac t  de f in i t ions  o f  syn tax  and  semant ics .  ExampLes
of  Language cons t ruc ts  a re  bundLed in  an  append ix .

The ma in  sec t ion  4 in t roduces  so -caLLed  rep—objec ts  and
aLgebra ic  foundat ions  tha t  enabLe the  de f in i t ion  of  a cor rec t -
ness  c r i t e r ion .  ALso  o ther  approaches  to  cor rec tness  a re
rev iewed .

In  the  f inaL  sec t ion  5 a semi-mechanic  method for  performing
the  cor rec tness  check  i s  presented ,  and i t s  impLementa t ion
aspec ts  are  d iscussed .

We cLose  w i th  a summary  and ou tLook  to  necessary  ex tens ions .

J .  In t rodugt ion

1 .1 .  So f tware  Eng ineer ing  Env i ronments

Sof tware  engineer ing may be seen  as  the overaLL  act iv i ty  of
soLv ing  probLems by  adequate  computer  p rograms.  Nowadays an
essent iaL  par t  o f  th is  ac t i v i t y . i s  performed in  spec i f ic  SEES:
tha t  prov ide  tooLs  and  methods su i ted  fo r  d i f ferent  appL i -
ca t ion  a reas  such  tha t  a Lo t  of  cumbersome and e f f i c iency -
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1 .1 .  Sof tware  Engineer ing Envi ronments[N

reducing tasks  do no t  take  pLace .  SEEs in our  unders tand ing
are  used  fo r  programming- in - the-Large ,  i . e .  the  deveLopment o f
voLuminous sof tware  p roduc ts .

One important  subcLass o f  SEES foLLows the  ' s tepwise -
re f inement '  paradigm in  program deveLopment:  p r imar iLy ,  a
probLem is  s ta ted  on  a to taLLy  informaL LeveL ,  us ing
coLLoqu iaL  speech;  unders tandabLe  bo th  fo r  the  cL ien t  and  the
computer  sc ien t is t  (we assume a scenar io  o f  th is  k ind in  the
sequeL) .  From th is  s ta r t ing  po in t ,  semi formaL requi rement
def in i t ions  a re  der ived  tha t  represent  a heLpfuL  in te rmed ia te
Language wi th  f i rs t  fo rmaL iza t ions .  Then formaL spec i f i ca t ions
wi th  exac t  semant ics  a re  in t roduced;  they  abs t rac t  f rom aLL
impLementa t ion  de ta iLs  and  descr ibe  the  probLem by  behav iour
in fo rmat ion  about  opera t ions  and  h ie ra rch icaL  reLa t ions
between  subprobLems. The s tepwise - re f inement  method then  sub-
s t i tu tes  ' abs t rac t '  spec i f i ca t ions  by 'more  concre te '  ones :
i . e .  des ign  dec is ions  as  da ta  types ,  aLgor i thm def in i t ions  o r
110  actions are  added .
This  procedure goes through severaL  i t e ra t ions  un t iL  a probLem
speci f ica t ion  i s  reached that  i s  executabLe  on  ex is t ing  compu-
te rs  (=  a convent ionaL  program) .

Some SEEs support ing th is  technique  aLso deaL wi th  an  i ssue
tha t  i s  most impor tan t  fo r  every  deveLopment o f  sens i t i ve
so f tware :  s ince  each  ref inement  s tep  i s  user -de f ined ,  how can
i t  be  guaranteed  tha t  the  re f in ing  s t ruc ture  sa t i s f i es  the
cond i t ions  imposed on  the  o r ig inaL  s t ruc ture?  And in  the  con-
sequence:  how can  i t  be guaranteed ,  tha t  the  f inaL  program
does what the  f i rs t  formaL spec i f ica t ion  of the probLem
demands? OnLy few  SEEs provide ass is tance  in  the  deveLopment
o f  ve r i f i abLe  so f tware  in  th is  sense  (e .g .  ES iL  81 ] ,  EBGGORV
83 ] ) :  aLthough Lack  of  reL iabLe  cor rec tnggs  concepts makes
SEEs inappL icabLe  to  many prac t icaL  s i tua t ions .  One reason  fo r
th is  def ic iency  i s  tha t  ve r i f i ca t ion  of  compLex programs is
imposs ibLe  i f  no  mechanicaL suppor t  fo r  the  check  of  cond i -
t ions  i s  o f fe red;  number ,  s i ze  and  charac te r  o f  proof  t asks
genera ted  by  cLass icaL  methods do no t  aLLow the  manuaL ver i f i -
ca t ion  of  even  smaLL-s i zed  programs in  acceptabLe  te rms .  But
power fuL  au tomat ic  proof  sys tems capabLe fo r  reaL -word  appL i -
ca t ions  are  d i f f i cuL t  to  des ign  and  cur ren tLy  ava iLabLe  onLy
in  pro to types  aL though  many theore t i caL  i ssues  have  been  un -
ders tood  success fuLLy .

In  th is  paper  we focus  the  a t ten t ion  on  SEEs  fo r  deveLopment
of  ver i f i abLe  sof tware  tha t  foLLow the  s tepwise  ref inement
parad igm,  which  in our  V iew represents  the  most reLevant  sub -
cLass  of  SEEs.  We assume di f ferent  LeveLs of  fo rmaL  probLem
spec i f i ca t ion :  and  user -de f ined  re f inement  s teps  tha t  t rans -
fo rm s t ruc tures  o f  one  LeveL  in to  s t ruc tures  o f  ano ther .
Addi t ionaLLy  we assume LeveLs  in which di f ferent  k inds o f  Lan -
guages are  empLoyed: an  appL ica t ive  .Language fo r  the
' abs t rac t '  por t ion  of the  so f tware  deveLopment ,  and  an  impera -
t i ve  Language fo r  the  f inaL  outcome of  the  p rocess .  Th is  sepa -
ra t ion  i s  jus t i f ied  by the  fac t  tha t  aspects as e .g .  abs t rac -
t ion ,  representa t ion - independence I  e f f i c iency ,  ava iL ib iL i ty
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1.g. Hoare-StyLe Verification 3

etc. are not satisfactory soLved by a singLe (specification or
programming) Language; emphasis of one aspect comes with
negLigence of another. But in our view SEEs shouLd cover them
aLL at some point of program deveLopment and profit from each
of them in order to generate verified; efficient software for
existing hardware.

It is obvious that the proof of correctness criteria becomes
more compLicated if transitions from the abstract to the con-
crete LeveL are considered. Now not o n L y  substantiaL changes
have to be examined but aLso issues caused by the invoLvation
of different formaL systems. For exampLe: a pure appLicative
description of something does not care for a state of a compu-
tation; if the description is expressed by imperative con-
structs (as assignments), it inevitabLy has to! - We wiLL
dedicate s e c .  2 for  a cLarification of notions and a com—
prehensive discussion of issues by exempLariLy presenting a
concrete SEE in detaiL.

1.2. Hoare-StVLe Verification

The notion of correctness of a program is c L o s e L y  connected to
concepts and methods deveLoped by FLoyd (inductive assertion
method; e.g. [FLo 67]) and Hoare (axiomatic semantics of
programming Languages; e.g. [Hoa 69]). The combination of
their ideas is known as Hoare-styLe verification. (See aLso,
among others, [Bak 80]: [Roe 76 ] ,  [Dij 74] for eLaborations
and extensions of the approach). I n  their understanding the
proof of the correctness of a program is equivaLent t o  the
proof of predicate caLcuLus formuLae which are generated semi-
automaticaLy from a program augmented by 'assertions'.

Hoare-styLe verification is based on the foLLowing in-
gradients:

o There is an imperative programming Language PL ( a s  ALGOL:
PASCAL etc.) for which the notion of state as binding of
variabLes to vaLues i s decLared.

0 There is an assertion Language AssL which in essentiaL is an
extension of standard predicate c a L c u L u s  by programming Lan-
guage specific constructs and functions. VariabLes occurring
i n  terms of A s s L  are PL v a r i a b L e s ,  i . e .  they range over
domains induced by predefined types (as integer, booLean) or
types generated by type constructors ( a s  array, record
etc.). The variabLes are interpreted identicaLLy independent
of their occurrence in terms of AssL o r  P L .

0 ELements of AssL can be eLaborated in some state s by taking
vaLues s(x) for every variabLe x of E and appLying the oper-
ation definitions. The resuLt is a booLean vaLue. An asser-
t i o n  Language construct C together with a s t a t e  s i s  caLLed
assertion.
Notation: Cs.

0 Hoare semantics for programming Languages are based on
formaL systems. A formaL system is a tupLe (FORM, RULE)
where FORM denotes a Herbrand universe over a given set of
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4 1.2. Hoare-StyLe Verification

symboLs (the formuLae): and RULE a set of ruLes F1 r Fz-that
aLLow to syntacticaLLy decuce formuLa F'2 from formuLa F1; r
F is caLLed axiom. ,
For the semantics of PL a set of proof ruLes of the form

P l ,  . . . - I  P" '" C l ,  . . . - I  C m

i s  given where the premises P ;  and concLusions C; are cor-
rectness expressions of the form '{P} constr {Q } ' ‚  P‚Q e
AssL :  constr e PL. Then a proof theory PT(PL)= (CorrIR) is
defined a s  a formaL system with correctness expressions Corr
a s  formuLae and proof r u L e s  R as r u L e s .

An interpretation I: Corr ——> State, ——> { t r ue ‚  faLse}
assigns a meaning to correctness expressions:

true if ( P s  ==> Gs ' ‚  constr
1({P} constr {0 } )5  := I transforms s into 5')

sr'reasonong)'='reasoning and assumptions on
faLse otherwise

PT(PL) is assumed to be sound and compLete with respect to
I .  Note that AssL is aLso connected to a sound and compLete
proof theory PT(AssL) where the ruLes are standard Logic
deduction ruLes. _

e The effect of every construct of PL is described by ruLes of
R .  Therefore in the correctness expressions of the r u L e s
technicaL constructions such as substitutions of variabLes:
introduction or spLitting of assertions speciaL notions or
pure impLications (P==>0) are used to formaLize the intended
meaning. For exampLe, the ruLes for assignment frequentLy
are '

r {P <x ** e)} x : =  e {P} or
r {P} x: =e { P  <x ** e>}

(dependent of backward or forward reasoning) where P <x **
9) denotes the substitution of aLL free occurrences of x by
e in P .  ( I n  fact, this ruLe is an axiom in PT(PL)). Un-
fortunateLy some features are o n L y  covered either with
restricted appLicabLe or unusabLe compLex r u L e s  ( e . g .  side-
effects I gLobaL variabLes, procedure and function
decLarations and caLLs, iterative structures). But despite
of these Limitations there is a proof technique that empLoys
the ruLes of R in backtracking, subgoaLing and unification
steps in order to generate from a given ' {P }  censtr {Q } '  s
Corr a (set of) AssL formuLae (see [STA  79] for an exempLary
impLementation).

with (at Least) these ingredients Hoare-styLe verification
works as f o L L o w s :

1) Suppose there is a program prog that is intended to soLve
some probLem. The goaL is to formaLLy prove that this is in
fact the case. The first step consists in a formaLization
of the intention: the programmer has to to state FIG 6 AssL
such that P hoLds before execution of prog, and o thereaf—
t e r .  Note that from this point o n L y  P and Q are the r a t e -
vant benchmarks; there is no 'verification' whether P and o
meet the intention! (This probLem is often brought up by
critics of the approach; but the transition from (im-
materiaL) intention to (materiaL) formaLization wiLL never
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1 .3 .  Hoare-StyLe Verification 5

be verifiabLe in the usuaL sense: independent from the
specific app roach .  So this objection (sometimes caLLed 'the
immanent bias') is not constructive: and we judge it sense-
Less).

2 )  P and o are a L s o  c a L L e d  input and output assertion r e s p .
and usuaLLy they do not describe properties of operations
of prog but vaLues of variabLes before and after execution.
Beside the input and output assertion: other assertions
have to be defined by the programmer: for procedure and
function decLaration bodies: entry and exit assertions have
to be suppLied that describe - simiLariLy to the input and
output assertion - the behaviour of the operations body.
Both assertions are used in the r u L e s  for procedure and
function caLLs. ALso: for each iterative structure (whiLe:
repeat): invariant assertions must be stated. Invariants
are true whenever controL f L o w  p a s s e s  t h e m .  They represent
inner properties of Loops: that are expLoited by the
programmer in his aLgorithm ( i n  prog). FinaLLy: (arbitrary)
free assertions may be stated: if it is viewed at as a
necessity to get a correctness decision: or to better docu-
ment prog: o r  other r e a s o n s .

3) ALL assertions except the Latter (input: output: entry:
exit: invariant) are inserted in the prog code at
predescribed positions; free assertions may be inserted
between arbitrary statements. Thereafter: instead of prog
an 'annoted' program prog' with inserted assertions is con-
sidered.
Note that the correctness of the program is checked not
onLy against the input/output assertion but aLso against
aLL entry: exit: invariant and free assertions. They aLL
together constitute the formaLization of the intention: and
with them numerous possibiLities of introduction of im-
manent bias are offered. AdditionaLLy: invariants wiLL
s e L d o m  a L L o w  proofs of correctness if they are not 'strong'
enough i.e. if their extensions cover too few cases.

4) With P(input): Q(output) € AssL: and prog' an annoted
program derived from prog e PL we now consider the correct-
ness expression

cexp : =  { P }  prog' {Q} .
Prog' wiLL be caLLed correct w.r.t. P and 0: if I(cexp)s =
true hoLds for aLL states 5 .  This is equivaLent to: cexp is
derivabLe in PT(PL) such that it is sufficient to construct
a derivation of cexp from R .
RuLes Like the assignment axiom correspond directLy to
(sets of) assertion Language formuLae: P ==> P <x ** e):
and this hoLds for every ruLe of R . Therefore a deduction
in PT(PL) is equivaLent to a set of assertion Language
formuLae: the so-caLLed verification conditions (VCs). If
aLL VCS can be shown vaLid (i.e. deducabLe in PT(AssL)):
then 05' hoLds; or in other words: I(cexp)s is vaLid and
prog' is correct.

5) A mechanicaL theorem prover is empLoyed for the proof of
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6 1.2. Hoare-StyLe Verification

the VCs. AdditionaL Lemmata can be inserted in a 'knowLedge
base' which aLready contains axioms and r u L e s  about A s s L .
If the proof attempt faiLs, then either

- entry/exit assertions were inadequate/wrong, or
- invariants were too weak or wrong, or
- free assertions were inadequate/wrong: or
- ( t h e  most interesting c a s e )  prog does not what is

specified in P and Q.
The detection of the Last aLternative represents the major
goaL of program verification efforts: a mathematicaLLy
precise proposition about an erroneous program, that
possibLy provides hints for maqnctioning code Lines. Un-
fortunateLy: it is the exceptionaL case that exactLy the
Last aLternative i s  appLicabLe; more often at; aLternatives
contribute t o  the unsuccessfuLL proof a t t e m p t ,  and the
programmer is encouraged to change program or assertions or
b o t h .

PictoriaLLy: Hoare-styLe verification encLoses two LeveLs:

AssL specification (expressions)

I correctness

PL soLution

Here, the cLassification of SEEs of the introduction above can
aLready be motivated: AssL is an extension of predicate
caLcuLus: a highLy appLicative specification Language, and PL
is by definition imperative. So Hoare-styLe verification is a
possibLe (rudimentary) incarnation of SEEs we consider here.

What are the disadvantages of this approach that hinder its
practicaL appLication in SEES?

e FirstLy: due to historicaL reasons: Hoare-styLe verification
i s  dedicated to 'reverse software deveLopment':
One starts with an aLready written program in which aLgor-
ithms are designed a L o n g  concrete data structures, and
annotes it with its intention. Nowadays peopLe go the other
way around, for various reasons (that are skipped here).

0 SecondLy, the whoLe theory knows o n L y  one refinement step
from AssL to PL. This is an unfeasibLe way for every Larger
software deveLopment, since the inherent compLexity and
hierarchicaL structure of a probLem has to be covered and
equaLized, often an impossibLe requirement.

o Third: This approach is not object-oriented - in contrast to
the wideLy accepted benefits of this programming s t y L e .  Con-
structs of AssL and PL are formuLae and programs(fragments):
and the approach refLects no r e s u L t s  of abstract data type
theory (e.g. the grouping of data and operation in one
structure and aLgebras as basic semanticaL concept).
CurrentLy, proof ruLes for objects and obfiect operations are
topics of research, but a successfuL answer is stiLL open.
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1 .3 .  ALgebraic Verification 7

0 Four th :  No concepts  fo r  paramete r i zed  s t ruc tures  have been
deveLoped .  Together  with a missing not ion  of  impLementat ion
two  important and  necessa ry  f ea tu res  fo r  sof tware  deveLop-
ment in  the  Large  cannot  be  used .

From aLL th is  i t  comes ou t  tha t  cLass icaL  Hoare -s tyLe  ver i f i -
ca t ion  is  bad su i ted  fo r  SEEs for  deveLopment of reL iabLe
sof tware .

1 .3 .  ALdebra ic  Veri f icat ion

EmpLoyment of  aLgebras and aLgebraic s t ructures  fo r  ver i f i -
ca t ion  purposes  (aLgebra ic  ver i f i ca t ion )  represents  an
aLte rna t ive  to  cLass icaL  approaches .  This  way i s  heav iLy  based
on  resuLts  of  abs t rac t  da ta  type  (ADT)  theory  as  deveLoped  fo r
exampLe in  [ADJ 783 ,  [EKP  783 ,  [ADJ 79 ] ,  among many others .  In
ADT theory  the  onLy  occur r ing  semant icaL  s t ruc tures  a re
aLgebras  and  aLgebra  morph isms  (o r  more  generaLLy :  func tors ) ;
and  concepts  L ike  impLementa t ion ;  paramete r i za t ion  o r  ver i f i -
ca t ion  a re  based  upon  them (9 .9 .  cor rec tness  o f  an  impLemen-
t a t ion  i s  o f ten  de f ined  by spec iaL  aLgebra  homo/ isomorph isms) .
I n  many cases ver i f ica t ion  i s  equivaLent to  correctness
cr i te r i a  expressed  in aLgebra ic  te rms ,  and a ver i f ied  s t ruc -
ture  is  one  tha t  sa t i s f i es  these  c r i t e r i a .

ALgebraic ver i f ica t ion  then  i s  used in two contexts :
o ver i f i ca t ion  o f  reLa t ions  be tween  s t ruc tures  of  a spec i f ic

LeveL  o f  a SEE
o ver i f i ca t ion  of  reLa t ions  be tween  s t ruc tures  of  two  di f -

fe ren t  LeveLs of  a SEE.

As po in ted  ou t  above :  we concent ra te  ourseLves  in  th is  paper
on  the  second appL ica t ion ,  and more p rec ise :  ve r i f i ca t ion  of
reLa t ions  be tween  a s t ruc ture  o f  an  appL ica t ive  LeveL  o f  3 SEE
and  a s t ruc ture  o f  an  impera t ive  LeveL of  a SEE.
A charac te r i za t ion  of aLgebra ic  ver i f ica t ion  in  th is  context
i nvoLves  (a t  Leas t )  the  foLLowing  fea tu res :

0 There i s  an  imperat ive programming Language PL fo r  which the
not ion  of  s ta te  as  binding o f  va r iabLes  to  vaLues i s
decLared .
ALso the  Language prov ides  cons t ruc ts  for  ob ject -or iented
programming,  f ea tu res  fo r  h ie ra rch iza t ion  of  ob jec ts ,  and
concepts  fo r  paramete r i zed  ob jec ts .

o There i s  an  aLgebra ic  spec i f i ca t ion  Language SL whose bas ic
s t ruc tures  a re  aLgebra ic  spec i f i ca t ions .  This guaran tees  the
poss ib iL i ty  of  ob jec t -o r ien ted  programming .
Add i t ionaLLy ,  the  Language aLLows h ierarch icaL speci f i -
ca t ions  and  prov ides  concepts  fo r  combinat ion ,
paramete r i za t ion ,  and  impLementa t ion .

. The semant ics  of  PL i s  based  on  the  idea  of  s ta te  t rans -
fo rmat ions  caused  by  PL -cons t ruc ts .  To describe i t  a t rad i -
t ionaL  denota t ionaL  semant ics  DS(PL )  i s  assumed .  From th is
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1 .3 .  Anbraic Verification

an aLgebraic semantics AS(PL) of PL is derived by:
- association of every pre- or user—defined type definition

with an appropriate aLgebra
- association of every object definition with an aLgebra
- association of state transitions caused by operation caLLs

with aLgebra operation caLLs
- association of concepts as parameterization or impLemen-

tation with speciaL aLgebra morphisms and aLgebras.
The standard semantics has to be enriched by appropriate
domains to achieve this modification. AS(PL) is assumed to
describe aLso issues as side-effects or pointer types:
scoping; typing of expressions, and so on.

For SL semantics: ADT theory provides severaL choices: ini-
tiaL, terminaL, Loose and variants thereof, and each ap-
proach is praised by its apoLogists. Since SL is empLoyed in
a SEE we require the f o L L o w i n g  mixture: To postpone

representation decisions as far as possibLe (i.e. to the fi-
naL refinement s t e p s )  the S L  semantics has t o  be a s  abstract
as possibLe. This can be achieved, if specifications are
‘suppLied with a Loose semantics: then the meaning of such an
object is the set of aLL modeLs = aLgebras, that satisfy
certain conditions) of it. Since in generaL aLgebras shouLd
serve as semantics of objects, a Loose semantics Like this

possesses a high degree of abstraction and fLexibiLity since
no possibLe modeL is excLuded. ALso, specifications may be
compared by Looking at their set of modeLs, and concepts as
refinement, impLementation or parameterization can be
described by mappings between such sets.
The stepwise-refinement method incLudes that finaL struc-
tures are reached on the appLicative LeveL which are no
Longer subject to refinement. For specifications with this
prOperty i t  is unwanted t o  have a s e t  of aLgebras a s
semantics but a singLe unique aLgebra. The SL semantics we
assume provides this property for certain specification
objects.

Since PL and SL are semanticaLLy based on aLgebraic struc-
t u res ,  a refinement situation in a SEE invoLving a SL speci-
fication and a PL object is just a reLation between (sets
o f )  a L g e b r a s .  Therefore a correctness criterion attached t o

this reLation shouLd aLso be expressed in aLgebraic terms.
For software engineering purposes, one is interested that
refining and refined structures behave equivaLentLy i.e.
there exist homomorphisms or isomorphisms between the asso-
ciated aLgebras. Even if homomorphy seems to be the weaker
requirement, it is sufficient as correctness criteria for
the SL-PL refinement (see aLso the remark after definition
( F u l fi l - 2 )  .

shouLd be cLear that this is an extremeLy brief and super-
ficiaL presentation of prerequisites for aLgebraic verifi-
cation, and that the attention is focussed onLy on ideas that
are heLpfuL in the expLanation of LeveL-transgressing refine-
ments in a SEE. Necessary precise definitions are suppLied in
the subsequent sections.
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1 .3 .  Atggbraic Verif ication 9

With  (a t  Leas t )  these  ingredients  aLgebra ic  ver i f icat ion of
re f inement  reLa t ions  be tween  s t ruc tures  o f  two  d i f ferent
LeveLs of a SEE works  as  foLLows (see  aLso sec t ion  A . ) :

1 )

2 )

3 )

4 )

5 )

Suppose there i s  a spec i f i ca t ion  S tha t  descr ibes  a probLem
soLut ion in SL. S i s  viewed as f inaL ,  such that  onLy a
re f inement  in to  a PL  s t ruc ture  has  to  be  done .  No te  tha t  S
i s  the  fo rmaL iza t ion  of  the  in tended probLem soLut ion .  From
now on  onLy  8 i s  the  reLevant  benchmark ;  the re  i s  no  ver i -
f i ca t ion  whether  S meets the  in ten t ion  (see  the  remark in
paragraph  1 )  o f  sec t ion  1 .2 . ) .
Le t  0 denote  an  ob jec t  of PL ,  tha t  i s  in tended to  represent
the  re f inement .  O d i f fers  f rom S i n  tha t  concre te  da ta
s t ruc tures  a re  in t roduced  and  aLgor i thms  a re  de f ined  oper -
a t ing  on  these  da ta  s t ruc tures  and aLL e f f ic iency-
increas ing  fea tu res  o f  PL a re  expLo i ted .

To be abLe  to  connect  S and  0 i t  i s  necessary  to  get  more
in fo rmat ion :  wh ich  da ta  in  O re f ines  opera t ions  of  S? The
programmer has  to  suppLy the  in tended  assoc ia t ions  tha t
have  to  respec t  some bas ic  requ i rements  (e .g .  p reserva t ion
of  opera t ion  func t ionaL i t i es ) .

Referr ing to  da ta  assoc ia t ions  add i t ionaL  in format ion i s
needed .  S as  weLL as  O are  semant icaLLy  descr ibed  by unique
aLgebras  A(S)  and  A(0 ) ‚  and  s ince  i t  i s  in  generaL  imposs i -
bLe  to  au tomat icaLLy  cons t ruc t  homomorphisms be tween  a rb i -
t ra ry  aLgebras :  the  p rogrammer  has  to  make  a sugges t ion .
From h is  knowLedge of  the  in tent ion  behind the  ref inement
s tep  and  the  de ta iLs  o f  h is  ob jec ts  S and  0 he is  abLe to
spec i fy  how concre te  da ta  reaL izes  abs t rac t  da ta :  tha t  i s
to  de f ine  a mapping M: A(0 )  ——> A(S)  tha t  appL ied  to  a con -
c re te  car r ie r  eLement of  A(0 )  y ieLds  an  abs t rac t  carr ier
eLement o f  A(S) .

From the  in fo rmat ion  ga thered  in  s teps  2 )  and 3 )  i t  i s  pos-
sibLe to  formuLate a se t  of  (homomorphy) equat ions .  The
generaL  scheme is :

M(O_op(a rguments ) )  = S_0p(M(arguments ) )
where o_op and  S_op a re  assoc ia ted  by s tep  2 ) .  I f  aLL
equat ions  can  be  shown vaL id ;  then  M i s  a homomorphism: and
one  ge ts  the  des i red  resuLt  about  S and  0 .
I t  shouLd be  no ted  tha t  the  ve r i f i ca t ion  i s  not  performed
soLeLy w i th  respec t  to  S but  aLso aga ins t  the  assoc ia t ions
of s tep  2 )  and M .  ALL i t ems  toge ther  cons t i tu te  the  in ten -
t ion  beh ind  the  re f inement ;  and  each  o f  them o f fe rs  a
poss ib iL i ty  o f  in t roduc t ion  of  immanent  b ias .

To show a se t  of  equa t ions  vaL id  in  some theory  requires
some mathemat icaL  appara tus .  ALSO cons t ra in ts  have to  be
considered that  come from the h ie ra rch icaL  s t ructure  Lying
on  ob jec t  se ts  (e .g .  onLy  those  p roo fs  w iLL  succeed  i f  aLL
subst ruc tures  of  invoLved  ob jec ts  a re  ' cor rec t ' ) .  Depend ing
on  the  charac te r is t i cs  o f  the  appL ied  p roo f  sys tem (equaL-
i t y  p rover ,  induc t ion  p rover ,  e tc . )  the  precondi t ions  and
techn iques  vary .  There fo re  we sk ip  de ta iLs  and re fer  to
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10 1 .3 .  ALgebraic Verification

section 5 .  where a spec iaL  cons teLLa t ion  and soLut ion  are
presented .

I f  the  proof attempt faiLs: t hen  either
— the  assoc ia t ions  of  s tep  2 )  were  inadequate /wrong:  o r
- S was  inadequateLy  o r  wrongLy  de f ined ;  o r
- O does  not  wha t  i s  spec i f i ed  in  S .

I f  one i s  sure  of  the  Las t  aL te rna t ive ,  aLgebra ic  ver i f i -
cation has  pa id  o f f :  one  has  a mathemat icaLLy  p rec ise
propos i t ion  fo r  an  inadequate  re f inement  in  which  requi red
proper t i es  ge t  Los t .  Un for tuna teLy ,  in  generaL  i t  i s  un -
cLear  which aL te rna t ive  causes  the  fa iLure .  Moreover ;  aLL
aLte rna t ive  poss ib iL i t i es  cont r ibu te  to  unsuccessfuL  proof
a t tempts .

ALgebra ic  ver i f i ca t ion  (as  descr ibed  above )  can  be summarized
and v isuaL ized  as  foLLows:

SL spec i f i ca t ion  (ob jec t  h ie ra rchy )

I cor rec tness

PL soLut ion  (ob jec t  h ierarchy)

- This conf igurat ion  s t rongLy  ressembLes to  SEE p ic tograms:  and
3 i n  f ac t ,  th is  approach  can  be  d i rec tLy  appL ied  in  the  SEE sub-

cLass  descr ibed  above .

Compared to  Hoare -s tyLe  ver i f icat ion:  aLL d isadvantages L is ted
in sec .  1 .2 .  are missing:  ' fOrward sof tware deveLopment':
muLt i -s tep  re f inement ,  ob jec t -o r ien tedness  and
paramete r i za t ion / impLementa t ion  concepts  are  essent iaL
fea tures  and cen t raL  i ssues  in  the  aLgebra ic  approach .  Many
use fuL  concepts  o f  ADT- theory  a re  made  accessabLe  to  non-
exper ts  tha t  use  SEEs bu iLd  on  th is  foundat ions .

A t  f i rs t  gLance ,  i t  wouLd be n ice  to  unify bo th  approaches :
ex tend  AssL of  sec .  1 .2 .  to  SL and  use  the  ex is t ing  appara tus
for  Hoare -s tyLe  ver i f i ca t ion :

SL

I correctness

AssL

I correctness

PL
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But  as  the  p ic ture  shows,  this comes with a new correctness
probLem:  SL  cons t ruc ts  have  to  be  re f ined  in to  AssL  cons t ruc ts
( i f  the  Hoare -s tyLe  ver i f i ca t ion  par t  i s  Le f t  unchanged) ,  and
th is  i s  a degree  of  add i t ionaL  compLex i ty  tha t  i s  h ighLy  un -
wanted .  Moreover ,  one  can  doubt  i f  an  embedding of  an  ob jec t -
o r ien ted  aLgebra ic  spec i f i ca t ion  Language in  a fo rmuLa-
or ien ted  asser t ion  Language is  poss ibLe  a t  aLL .

On the  o ther  hand ,  i f  one  wants  to  modify  AssL and  PL to
overcome some o f  the  p robLems bas ic  research  on  Hoare  Log ics
has  to  be  per fo rmed:  p roo f  ruLes  have  to  be  deveLoped  fo r
ob jec t  decLara t ions ,  fo r  ob jec t  incarna t ions :  fo r  decLara t ions
and caLLs  of  opera t ions  of  ob jec ts :  fo r  paramete r i za t ion  of
ob jec ts :  e tc . ;  the  asser t ion  Language  has  to  c0pe  w i th  these
ex tens ions ;  assoc ia ted  proof  theor ies  have  to  be  shown sound
and  compLete ,  and  so on .  Bu t  the  ma in  po in t  i s  tha t  even  a f te r
success fuL  compLet ion  o f  the  above agenda ,  Hoare -s tyLe  ver i f i -
ca t ion  wiLL s t iLL  be  inadequate .  I t  i s  s t iLL  backward  so f tware
deveLopment ,  and  the  bas ic  idea  i s  s t iLL  to  modeL the  s ta te
change  caused  by  PL  cons t ruc ts  and  then  show some asser t ions
and  impL ica t ions  vaL id .  How the  s ingLe  p roo f  t asks  cor respond
to  some proper ty  o f  the  spec i f ied  probLem ge ts  Los t  because
many fo rmuLae  a re  in t roduced  fo r  t echn icaL  reasons  (e .g .
decompos i t ion  ruLes ,  i t e ra t ion  ruLes ) .  Th is  i s  f a r  Less  than
of fe red  by  the  aLgebra ic  approach  where  each  p roo f  t ask  can  be
Log icaLLy  ass igned  to  some subprobLem. Moreover  the  proof
t asks  a re  o f  deeper  mathemat icaL  quaL i ty  than  p red ica te
caLcuLus  fo rmuLae  and  there fo re  aLLow more  power fuL  p ropos i -
t ions  about  the  genera ted  so f tware .

I n  the  foLLowing  we empLoy  the  aLgebra ic  ve r f i ca t ion  approach .

This  sec t ion  g ives  an  overv iew on  the  In tegra ted  Sof tware  De-
veLopment and Ver i f ica t ion  - (ISDV-) System (EBGGORV 83 ] ) .  The
ISDV—System is  a SEE  tha t  mee ts  our  con f inements ;  most  con -
cepts  p resented  here  were  o r ig inaLLy  des igned  and  impLemented
for  tha t  sys tem.  Th is  sys tem empLoys so f tware  eng ineer ing
techn iques  aLong the  "ver i f y -wh iLeudeveLop"  parad igm:  newLy
in t roduced  s t ruc tures  a re  ve r i f i ed  aga ins t  formaL spec i f i -
ca t ions  as  soon as  poss ibLe  so tha t  e r ro rneous  o r  inadequate
des ign  i s  de tec ted  earLy  be fore  i t  causes  g rea te r  damage
(=cos t  of  sys tem redes ign ) .  Th is  techn ique  i s  used  to  L ink  the
very  f i rs t  formaL spec i f i ca t ion ,  the  in te rmed ia te  spec i f i -
ca t ion  s t ruc tures  and  the  f inaL  ModPascaL program by  ass ign ing
proof tasks  (cor rec tness  c r i t e r i a )  to  aLL re f inement  s teps .
Then ,  the  vaL id i ty  of  aLL  p roo f tasks  impL ies  tha t  the  ModPas-
caL program meets  the  requi rements  imposed by the  f i rs t  formaL
spec i f i ca t ion  - a p ropos i t ion  tha t  i s  h ighLy  vaLuabLe fo r
aLmost  aLL  so f tware  deveLopments .

The appL ied  method invoLves  di f ferent  LeveLs of abst rac t ion
and  prov ides  concepts  and tooLs  fo r  a ve r i f i abLe  t rans i t ion
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12  1 .4 .  The ISDV-System

from abst rac t  to  concrete  s t ruc tures .  In  f igure  1 .4 . -1  a rough
overv iew of  the  var ious  LeveLs  i s  g iven together  wi th a aLso
rough  cLass i f i ca t ion :  and  the  ver i f i ca t ion  tasks  a re  Loca ted .

aLgebra ic  abstract  <
spec i f i ca t ions

veri f icat ion

aLgor i thmic  intermediate
speci f icat ions  <

ver i f icat ion

programming concrete
Language ob jec ts  v '

1 .4 . -1  F id . :  ISDv-System scenario

The formaL speci f icat ions are  given in the appLicat ive  speci -
f i ca t ion  Language ASPIK (EBV 83 ] )  tha t  i s  s t rongLy  based  on
aLgebraic spec i f ica t ions  ( [ADJ  78 ] ,  [EKP 78 ] )  but  reaL izes  the
' Loose -semant ics '  approach (E86  77 ] :  EHKR 80 ] ) .  ASPIK suppor ts
incrementaL ,  h ie rarch icaL  sof tware  des ign  and  of fers  a number
o f  power fuL descr ip t ion  fea tu res .  I t  i s  the  Language of the
'abs t rac t '  and ' in te rmed ia te '  LeveLs o f  program deveLopment in
the  ISDV-Sys tem;  the  Language  o f  the  ' concre te '  LeveL  is
ModPascaL .  As  a consequence ,  bo th  Languages  of fer  cons t ruc ts
tha t  are  semant icaLLy  equ ivaLent  ( e .g .  ASPIK spec i f ica t ions  -
ModPascaL moduLes /enr ichments )  but  expLo i t  the  advantages  of
appL ica t ive /p roceduraL  Languages  resp .

‚ ' The  abs t rac t  spec i f i ca t ion  LeveL can  be charac te r i zed  by three
subLeveLs wi th di f ferent  degrees  of  abs t rac t ion :

. the  ax iomat ic  LeveL (AX)

. the  aLgor i thmic  LeveL (ALG)

. the  in te rmed ia te  LeveL  (AX /ALG)

AX comprises what i s  known as  ' ( ax iomat ic )  aLgebraic specif i -
ca t ions ' :  ob jec ts  which a re  def ined by ind ica t ion  of a s igna -
tu re  (a  se t  o f  sor t  names  and  a se t  o f  opera t ion  names w i th
ar i ty )  and a se t  of  PC-1  fo rmuLae  ( ' ax ioms ' )  bu iL t  f rom the
symboLs of  the  s igna ture .  Every  probLem Spec i f i ed  on  AX is  a
se t  of ax iomat ic  spec i f i ca t ions ,  poss ibLy  h ie ra rch icaLLy  con-
nec ted ;  where the  semant ics  of  opera t ions  a re  descr ibed  by the
axioms of  the  spec i f i ca t ions .  There i s ,  by def in i t ion ,  no in -
fo rmat ion  about  con t roL  fLow or  sequent iaL i za t ion  in  Ax spec i -
f i ca t ions ;  a (more  o r  Less )  expL ic i t  de f in i t ion  of  an  oper -
a t ion  can  onLy be rece ived  by appLy ing  the  semant ics  gener -
a t ion  mechanism that  i s  assoc ia ted  to  one 's  (ax iomat ic )  spec i -
f i ca t ion  Language ( in i t i aL / te rminaL  aLgebra  semant ics :  modeL-
theore t i c  semant ics ;  rewr i te  ruLe  semant ics  o r  wha tever ) .
O f ten ;  the resuLt  of  such  an  appL ica t ion  i s  hard to  compute
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1.4. The ISDV-System 13

and hard t o  u s e .

On ALG: the demand of representation-independence is sLightLy
reLaxed: operation definitions are stiLL based  on terms buiLt
from symboLs of the signature ( a s  in axioms of AX objects):
but they are stated in an aLgorithmic manner empLoying con—
troLfLow constructs as 'if—then-eLse': 'case' branchings or
recursion. The aLgorithmic definition repLaces the axiomatic
definition of an operation: and in generaL it gives rise to a
unique semantics that can be generated by Least fixpoints of
functionaLs. with an appropriate environment (interpreter):
specifications of ALG become directLy executabLe: and testing
of 'abstract programs' then is the task of evaLuating terms:
which is feasibLe by appLying the operation definitions asso-
ciated to the operation names occuring in the term.

The intermediate LeveL AXIALG consists of those objects that
invoLve AX- as weLL as ALG-subobjects.

On aLL LeveLs it is possibLe to refine or impLement objects
into other objects; the main probLem is to ensure the
preservation of semanticaL properties during the estabLishment
of a refinement or impLementation reLation.
For e x a m p L e :  A X  and ALG objects are interwoven with each other
in two aspects:

0 Every axiomaticaLLy specified object is transformed during
the refinement process into an aLgorithmicaLLy specified
object. This technique borders the increase of compLexity of
refinement steps by onLy aLLowing modification of operation
(and not simuLtaneousLy modification of data).

I There is a notion of correctneSs of a refinement step from
AX t o  ALG: The aLgorithmic definition of an operation - up
to now in no way reLated to the axiomatic definition of the
identicaLLy named operation in AX - i s  required to fuLLfiLL
the axioms of the associated AX object. If this can be
guaranteed: both definitions describe ( a t  Least) overLapping
functions: and the refinement i s  semantics-preserving.

The concrete LeveL has t o  provide a Language that a L L o w  both
enough expressiveness and aLLow efficient programming on von-
Neumann machines. Expressiveness means that the probLem s o L u -
tion of the abstract LeveL - as it is visibLe in the structure
and number of specification objects in AX and ALG - has not be
reinvented: but can be carried over. Therefore it is necessary
to have specification-Like constructs.
Efficiency considerations are not much emphasized when Looking
a t  theoreticaL i s s u e s  o f  software deveLOpment environments.
But for reaL-worLd appLications and acceptance it is in-
dispensabLe to be abLe t o  'tune' program code 9.9. by
repLacing recursion through iterations in order to optimaL use
of hardware ressources. Therefore: the imperative Language of
the concrete LeveL s h o u L d  i ncLude major subsets of Languages
Like ADA or PascaL.

For compLeteness it shouLd a L s o  be mentioned that the ISDV-
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1 4  2 .  AppLicative and ProceduraL Languages

sys tem software deveLOpment scenario a L s o  incLudes t o o L s  tha t
a L L o w  to enter abs t rac t  or concrete programs, t o  estabLish
refinements and attach semanticaL properties to them; to
generate prooftasks that are submitted t o  connected mechanicaL
proof systems, and above aLL a sephisticated object
administration system that does the 'dirty work' of data base
management and of semanticaL preperty maintainance for objects
of aLL LeveLs. The data base contains pres and user-defined
objects and i t  heLps to avoid 'deveLopment-from-scratch'
because it is aLLowed and encouraged to re—use aLready defined
objects in different appLications. ALso Library puroses are
supported by it.

LogicaLLy: we have the foLLowing system structure of the ISDV-
System:

appLication
object systems

ASPIKI <——> adminis- <——> (editors; com-
ModPascaL tration piLers, inter-
objects <——> system <——> preters: provers:

input units)

.— F '  .: ISDV-System structure

One of the proof tasks mentioned above is described in this
paper: the aLgebraic verification of refinements of aLgor-
ithmic ASPIK objects into ModPascaL m o d u L e s .  Further d e t a i L s
about other proof tasks and the ISDV-System can be found in
[BV 85]: [Sch  85] or [ R L  85 ] .

z .  AppLicative and ProceduraL Languageg

The previous section introduced the scenario; in which we are
going to deveLOp our approach. Now we make more precise our
notion of appLicative and proceduraL Languages (sec. 2 .1 . ) .
Then the main probLems of a connection of both formaLisms are
presented ( s e c .  2 .2 . )  and f i n a L L y  two representatives of the
Language famiLies are briefLy introduced (sec.s 2 .3 .  and

I 2 -4 . ) ;  exact definitions are given in sec. 3 .

'  2 . ] .  CLgssification

I n  the foLLowing we try to partition the set of existing
programming Languages (PL's). This takes its justification
from the fact, that aLmost every appLication area of computer
science has deveLoped a preference for a specific set of PL's:
economy and buisiness L ocated tasks are programmed in e . g .
COBOL, numericaL appLications are preferabLy written in e.g.
FORTRAN, ALGOL, PASCAL: process automation is supported by
e.g. PEARL: concurrent programming is performed e.g. in ADA;
or artificiaL inteLLigence probLem soLutions are heaviLy based
on LISP and PROLOG. The benefits of these associations of ap-
pLication areas and Languages wiLL not be discussed here since
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2 .1 .  CLass i f i ca t ion  15

the  cLass i f i ca t ion  we are  aiming a t  i s  more generaL .

We wiLL distinguish th ree  categories of  PL 's  where the
descr ip t ion  of  each  ca tegory  i s  given beLow:

I appL ica t ive  PL 's
. proceduraL  PL 's
. other  PL 'S

The te rm ap ica t ive  PL refers  to  a Language  w i th  a t  Leas t  the
foLLowing  proper t i es :

a1 )  There i s  no concept  of  gLobaL var iabLes .
a2 )  There  a re  no "ass ignment -cons t ruc ts“ :  and the  semant ics

is  not  based  on  s ta tes  and s ta te  t rans i t ions .
a3 )  The  cont roL  s t ruc ture  of  a program is  de f inabLe  onLy by

means o f  cond i t ionaL  branch ing  and recurs ion .
a4 )  The concep t  of  action (i.e. how th ings are  sequen-

t i aL i zed  in  t ime)  incLudes  onLy func t ion  composi t ion  and
funct ion  appL ica t ion .

a5 )  The concept  of  da ta  cons is ts  o f  a se t  of  so -caLLed
eLementa ry  ob jec ts  and  assoc ia ted  funct ions  (see  remark
d)  beLow) .  No te  tha t  s t rong  typ ing i s  no t  induced
herewi th .

The te rm proceduraL  PL  re fers  to  a Language  with a t  Leas t  the
foLLowing  proper t i es :

p1)  There  i s  a concept  o f  gLobaL  var iabLes  (o f  a program or
Opera t ion ) .

p2)  There i s  an "assignment—construct" which changes ef fec-
t i veLy  the  vaLue of  an  ass ignabLe  ob jec t :  and the  Lan -
guage semant ics  i s  based  on  s ta tes  and s ta te  t rans i -
t ions .

p3 )  The cont roL  s t ruc ture  o f  a program is  de f inabLe  by means
of  cond i t ionaL  branch ing :  i t e ra t ion ,  jumps .  and  recur -
S ion .

p4 )  The concept  of  ac t ion  i s  sequences of s ta tements  (s ta te
changing ac t ions ) .

p5 )  The concept  of da ta  cons is ts  of predef ined types:
prede f ined  type  genera to rs ,  func t ions :  and  p rocedures .

PL 's  tha t  do  no t  f aLL  in to  one  o f  the  above  ca tegor ies  a re
re fe r red  to  as  o ther  PL 's .

This (and  every )  cLass i f i ca t ion  cannot  be cLean ,  exhaust ive ,
or  un ique .  ALready  the  p re ten t ion  o f  exac tness  and  compLete—
ness  o f  the  L is ted  p roper t i es  may ra ise  oppos i t ion ,  and  we are
consc ious  about  th is .  On the  o ther  hand ,  every  o ther  proposaL
wiLL have to  deaL w i th  the  above c r i t e r i a  more o r  Less expL ic -
i tLy :  poss ibLy  adding o r  removing spec i f i c  po in ts ,  o r  pu t t ing
emphasis  on  di f ferent  requ i rements .  For  exampLe,  approaches  to
the  semant ics  of  appL ica t ive  Languages may empLoy Lambda
caLcuLus ,  da ta  fLow modeLs or  reduc t ion  p rocesses ,  but  wiLL
aLways  be  'non—sta te  based ' .  Ob jec t ions  o f  th is  k ind  w iLL  no t
ques t ion  the  necess i ty  o f  any  cLass i f i ca t ion  fo r  our  con tex t ,
and there fore  we wiLL use  the  in t roduced  te rms as  in tended
wi thout  gLanc ing  over  the i r  de f i c ienc ies .
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1 6  2 .2 .  The Connection ProbLem

To make precise our understanding of proceduraL and appLica-
tive PL's, we add some remarks.

a) Existing practicaLLy used Languages are seLdom pureLy
proceduraL or pureLy appLicative. For exampLe: it is dif-
ficuLt to characterize INTERLISP as appLicative because
there are asignments: Loops and g o t o ' s  among the Language
constructs. These features were introduced into the ap-
pLicative PL (PURE) LISP to overcome aLLeged shortcomings
compared to FORTRAN and to popuLarize appLicative program-
ming.
ProceduraL PL's on the other hand frequentLy incLude
features as functions or recursion (e.g.. PASCAL) so that
the adjustment t o  some PL c L a s s  becomes questionabLe. But
despite this cLassification probLem for existing PL's we
wiLL maintain the categories because they highLight
theoreticaL probLems that occur in muLti-LeveL software de-
veLopment environments empLoying different Language types.

b) 0n todays machines, programs written in (more or Less) ap-
pLicative PL's are not supported by the hardware architec-
t u r e .  ConventionaL von-Neumann computers are designed for
tasks described in proceduraL PL's, and when using other
kinds of description Languages one is finaLLy forced to
compiLe one's description into the machine Language. This
aLso has caused the proLiferation of state manipuLating
constructs in appLicative PL's.
AppLicative PL's need appropriate machine support to ex-
pLoit their theoreticaL properties and convenience. As Long
as appropriate and powerfuL hardware is not deveLoped or
avaiLabLe’ appLicative PL's wiLL increase their invoLvement
of proceduraL PL concepts to remain competetive.

c) We cLassify some existing Languages as foLLows:
appLicative: PURE-LISP: INTERLISP: PROLOG: FPL: APL;
proceduraL: ALGOL; FORTRAN, ADA: PASCAL; MODULA-Z.

d) The term 'fgnctignaL PE' often refers to Languages that are
appLicative PL in our sense, with the medified property 85)
that a L L o w s  a L s o  functions a s  data objects ( a L L  LISP
diaLects are 'functionaL').

e )  The concept of action for appLicative P L ' s  is essentiaLLy
the buiLding of expressions and the evaLuation of them. I n
proceduraL P L ' s  a L s o  expressions may o c c u r  but they are
substructures of statements and are o n L y  u s a b L e  in this
context (i.e. vehicLe for the formuLation of a state trans-
ition).

. h nnect on ProbLem

ProceduraL and appLicative PL's have advantages in specific
probLem areas: as indicated above. I n  generaL one need not
_consider any interactions or reLations between them.

In the environment of software deveLopment systems empLoying
various Languages and/or Languages of different kinds the
separate view is no Longer possibLe. Objects (pieces of
programming Language code) of some stage of the deveLopment
are Linked to other objects of other stageS: and one is inter-
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2 .2 .  The Connection ProbLem 1 7

ested to state properties of such  Links (9.9. refinement
Links: impLementation Links: description Links). If Languages
are Changed within a Link between a source object and a target
object: the connection probLem (CP)  occurs:

How can some Link property be formaLized and how can the
formaLized property be verified?

Verification in this sense means to show the somehow defined
vaLidity of a correctness condition.
The situation becomes extremeLy severe if the Link preperty
states a kind of semanticaL preservation: i.e. the source and
target object of a Link are intended to be equivaLent even if
they are expressed in different Languages. This occurs in gen-
eraL in software deveLopment systems that start with require-
ment definitions of a probLem and end with executabLe code:
everything remains criticaL unLess the fuLLfiLment of the
requirements by the generated code is not assured.
I n  the sequeL: the CP is examined under the additionaL assump-
tion that the object descriptions are given on the one side in
an appLicative PL: on the other side in a proceduraL PL. Then:
taking the specific properties of appLicative and proceduraL
PL's as defined in sec. 2.1. into account: ( a t  Least) the
f o L L o w i n g  probLem areas may be Located that aggravate a con-
nection of the type "semanticaLLy equivaLent":

gEl: Side Effect Freeness vs. GLobaL VariabLes
TypicaLLy: data of appLicative PL's consists of set(s) of
eLementary objects and functions defined o n  them. The former
can a L s o  be viewed a t  as constants or no—argument functions
deLivering itseLf as vaLue. The Language aLLows the composi-
tion of expressions from this data such that the vaLue of the
expression is derivabLe onLy from the expression and the func-
tion definitions (this property is sometimes caLLed 'referen-
tiaL transparency').
This is not true for expressions or other pieces of code in a
proceduraL PL. Both may invoLve ( a  set of) gLobaL variabLes
that wiLL not have an expLicit vaLue by the actuaL parameters
suppLied to operation caLLs of the expression ( =  piece of
code). Therefore the meaning is onLy derivabLe in the context
where the gLobaL variabLe vaLues are known.
CP1 t hen  ma y be f o r m a L i z e d  a s :  C a n  expressions of an appLica-
tive PL and statements of a proceduraL PL be compared ( i n  the
sense of " s e m a n t i c a L L y  e q u i v a L e n t " ) :  and if so: what are the
conditions?

Q32: Functions vs. Procedures
I n  fact: this is a subcase of CP1 but an interesting one. If
an appLicative PL function and a proceduraL PL procedure are
considered the g L o b a L  variabLe and expression/statement ques-
tions are again raised. But Looking at the operation defini-
tions: now can a statement "the function is equivaLent to the
procedure" or "... does the same ..." be estabLished in a
formaL setting? This probLem occurs everywhere in SEEs when
operation definitions are optimized or reformuLated on dif-
ferent data structures.
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18  2 .3 .  The AppLicat ive  PL ASPIK

gg}: Object Oriented Semantics
AppL ica t ive  PL 's  used  in sof tware  deveLopment environments
of ten  come wi th  compound syn tac t icaL  s t ruc tures  tha t  encLose
da ta  as  weLL as  opera t ions  and  tha t  aLLev ia te  cLus te r ing  o f
t asks  in to  coherent  un i ts .  Sometimes these  un i ts  can  bu iLd
h ierarch ies  such  tha t  fo r  a h ierarchy eLement aLL depending
ob jec ts  a re  v is ibLe  and  the i r  conten ts  (da ta ,  opera t ions )  are
usabLe in  i t .  Languages w i th  these  poper t ies  a re  o f ten  caLLed
ob jec t  o r ien ted ,  and there  a re  aLso a number o f  p roceduraL
PL 's  tha t  mee t  the  above  descr ip t ion  more  o r  Less  exac tLy
( e .g .  ADA: CLU) .  Then:  the  connec t ion  probLem fo r  un i t  de f in i—
t ions  i s  on  the  one hand  independent  o f  the  k ind  o f  Language ,
on  the  o ther  hand  i t  i s  aggrava ted  in  our  so f tware  deveLopment
contex t  by  CP1 und  CP2 ;  the  p robLem may  be  s ta ted  as :  " i s  a
uni t  de f in i t ion  in an  appL ica t ive  PL ' semant icaLLy  equ ivaLent '
to  a unit de f in i t ion  in  a p roceduraL  PL?"  Or  more p rac t icaL :
" is  a g iven unit def in i t ion  a semant ic  preserv ing  impLemen-
ta t ion  of  another  one?"

Depending on  the point  of v iew,  more or  other  connect ion
probLems may be  recogn ized .  Whenever the ver i f icat ion aspect
i s  no t  s t ressed ,  the  connec t ion  p robLems are  p robabLy  soLvabLe
wi th  sa t i s fac to ry  concepts  and  pragmat ic  dec is ions .  In  the
other  case  a fo rmaL  mathemat icaL  f ramework  has  to  be  se t  up  in
which  appL ica t ive  and proceduraL  PL 's  become comparabLe and
not ions  as  "semant icaLLy  equ ivaLent"  o r  "cor rec t  impLemen-
t a t ion“  can  be in t roduced  na turaLLy .  w i thout  a fo rmaL ism of
th is  k ind the  so f tware  deveLopment ver i f i ca t ion  probLem is t
not  soLvabLe .

z , } .  Thg AppL ica t ive  PL ASPIK

I n  this section we give a brief  overview on our version of the
appL ica t ive  PL ASPIK that  di f fers f rom the vers ion  used  in the
ISDV-Sys tem (see  sec .  1 .4 . ) .  The overv iew covers  onLy  the  most
reLevant  f ea tu res  of  the  Language .  This  sec t ion  in t roduces
the i r  syn tax ,  whereas  a (pa r t i aL )  fo rmaL  semant ic  de f in i t ion
is  g iven in  sec t ion  3 .  A fuLL  descr ip t ion  of  ASPIK may be
found  in  [L ic  85 ] :  [Spa  85 ]  and  [Sch  85 ] .

The deveLopment of  ASPIK was heav iLy  in fLuenced by abstract
data  type theory .  Espec iaLLy  the  not ion  of  aLgebra ic  speci f i -
ca t ions  (see  e .g .  [ADJ 78 ] :  [EKP  78 ] )  had  formed the
morphoLogy of  the  Language .  ASPIK d is t inguishes  be tween  three
k inds  of  ob jec ts :

o specif icat ions (ax iomat ic  o r  aLgor i thmic)
. maps ( re f inement  o r  impLementa t ion )
e imps (s igna ture  o r  spec i f i ca t ion )

Spec i f i ca t ions  are  named syn tac t ic  un i ts  that  aLLow the
de f in i t ion  o f  da ta  - the  ' sor ts '  of the  spec i f ica t ion  - and
opera t ions ;  on  the  o ther  hand maps are  named syn tac t ic  un i ts
to  assoc ia te  sor t  and  opera t ion  names  in  d i f fe ren t  spec i f i—
ca t ions .  This assoc ia t ion  i s  necessary  fo r  the  re f inement ,
paramete r i za t ion  and  impLementa t ion  concept  o f  ASPIK .  Imp
ob jec ts  a re  used  to  reaL ize  the  ASPIK impLementa t ion  concept .
They spec i fy  cer ta in  proper t ies  of spec i f ica t ions  tha t  a re
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25} .  The AppLicative PL ASPIK 19

sa id  to  impLement each  o ther .  Spec i f i ca t ions ,  maps,  and imps
can  be s t ruc tu red  h ie ra rch icaLLy ,  i . e .  t hey  i ncLude  spec iaL
'use '  - sLots  fo r  indication of  aLL those  ob jec ts  the  cur ren t
one i s  bu iL t  upon .  S ince  the  use - reLa t ion  inheres  in  a d i rec -
t ion ,  a h ierarchy  of  ASPIK ob jec ts  can  be  v isuaL ized  by an
acycL ic  d i rec ted  g raph .  The requ i rement  o f  acycL ic i ty  excLudes
recurs ive  ob jec t  de f in i t ions  f rom the  Language .

For  the  purpose of th is  paper  i t  i s  suf f ic ient  to  focus  the
a t ten t ion  on  spec i f i ca t ions  s ince  onLy the  connect ion  of  th is
ob jec t  ca tegory  to  a p roceduraL  counte rpar t  i s  examined .
There fore  we w iLL  onLy  p resent  an  overv iew  on  maps  and  imps ,
but  go in to  de ta iLs  of  spec i f i ca t ion  ob jec ts .

Spec i f i ca t ion  ob jec ts  cons is t  of  a header  and a body .  I f  onLy
the  header  i s  def ined ,  the  spec i f i ca t ion  i s  caLLed  ax iomat ic
(o r  'Loose ' ;  see  [BV  853), otherw ise  aLdor i thmic .
A spec i f i ca t ion  ob jec t  in  ASPIK i s  composed o f  a number of
mandatory  (m) and  op t ionaL  (o )  cLauses :

spec i f i ca t ion  header  (m) :
cons is ts  o f  maximaLLy the  spec i f ica t ion  ident i f ier :
use -p  sor ts - r  ops - I  and p rops -cLauses .  The header
descr ibes  the  in te r face  of  the  ob jec t ,  i . e .  the  names
of  sor ts  and opera t ions  v is ibLe  to  the  env i ronment :

spec i f i ca t ion  iden t i f i e r  (m) :
a un ique  name fo r  the  en t i re  ob jec t ;  aLso used  in  some
contex ts  fo r  p re f ix ing  of  ident i f i e rs  tha t  a re  in -
t roduced  in  the  current  def in i t ion  ( cd ) .

use -cLause  (m) :
a L is t  of  ob jec ts  tha t  a re  used:  i . e .  the i r  sor ts  and
opera t ions  may occur  in  the  cd .  The ob jec ts  are  e i ther
re fe renced  by a spec i f i ca t ion  ident i f ie r  o r  by  a spec i -
f i ca t ion  te rm (spec - te rm;  see  beLow) .

sor ts -cLause  (o ) :
a L is t  of  new sor t  names.  The sor t  names can  be used  in
the  res t  o f  the  spec i f i ca t ion ,  9 .9 .  to  def ine
func t ionaL i t i es  o f  opera t ions  o r  to  ind icate  the  scope
of  va r iabLes  in  the  p rop -cLause .

ops-cLause  (o ) :
a L is t  of  opera t ion  func t ionaL i t i es  of the  form
op:  sor t1  sor t ,  . . .  so r tn  - ->  sor tn+1
The opera t ions  a re  v iewed a t  as  in ter face  o r  pubL ic
opera t ions  tha t  a re  v is ibLe  ins ide  the  cd  and  in  aLL
objects t ha t  use  the  cur rent  ob jec t .  The ops -cLause
conta ins  no expL ic i t  opera t ion  de f in i t ion .

props -cLause  (o ) :
The proper t ies  cLause  cons is ts  of  ax ioms which are
pred ica te  caLcuLus fo rmuLae  tha t  are  intended to
descr ibe  the  behav iour  o f  the  operat ions of  the ops -
cLause  (Note :  no concre te  de f in i t ion  i s  g iven fo r  oper -
a t ions ,  onLy func t ionaL i t i es ) .  There  a re  no ruLes  how
to  spec i fy  the  in tended  behav iour ;  o f ten  equat ions  are
used  to  express  the  opera t ions  semant ics  ax iomat icaLLy
(aL though  the  te rm 'ax iomat ic  spec i f i ca t ion '
ambiguousLy encLoses every  body -Less  spec i f i ca t ion  in -

November  1985



20 2 .3 .  The AppL ica t ive  PL ASPIK

dependent f rom the  form of  the  p rops -cLause ) .
The p rops -cLause  conten t  of  a spec i f i ca t ion  serves as  a
formaL requ i rement  def in i t ion  fo r  poss ibLe  aLgor i thmic
opera t ion  de f in i t ions  of  those  opera t ions  in t roduced  in
the  ops -cLause .  SeveraL  cor rec tness  c r i t e r i a  fo r  spec i -
f i ca t ions  a re  connec ted  to  the  reLa t ion  be tween
proper t ies  and  aLgor i thmic  opera t ion  de f in i t ions  (see
[BV  85 ]  and  beLow) .

spec i f i ca t ion  body (0 ) :
cons is ts  maximaLLy of the constructors-y  aux iL ia r ies - :
de f ine -aux iL ia r ies - I  de f ine -car r ie rs - r  def ine-
cons t ruc tor -ops - ,  p r iva te -eps - I  and  de f ine -ops -cLause .
In  the  spec i f i ca t ibn  body aLgor i thmic  def in i t ions fo r
newLy in t roduced  sor ts  and  opera t ions  of the  cd  a re
g iven .  To fac iL i ta te  th is :  one can def ine aux iL ia ry  and
pr iva te  opera t ions  which have L imi ted  scope .

const ruc tors  (m:  the  sor ts -cLause  i s  nonempty ) :
a subse t  of  the  ops -cLause  opera t ion  iden t i f i e rs .  The
const ruc tors  a re  the  genera tors  o f  the  Herbrand
un iverse  tha t  i s  used  in  the  de f in i t ion  of  ca r r i e rs .
Each  cons t ruc tor  con t r ibu tes  to  the  Herbrand un iverse
tha t  i s  assoc ia ted  wi th  i t s  t a rge t  sor t  name.  Herbrand
un iverses  a re  cons idered  fo r  each  sor t  name  occur r ing
i n  the  sor ts -cLause .

aux iL ia r ies  (o ) :
a L is t  of operat ion  func t ionaL i t i es  in  the  same form as
in  the  ops -cLause .  An aux iL ia ry  opera t ion  i s  in tended
to  ease  the  def in i t ion  of  car r ie r  se ts  in  the  def ine—
car r ie r -cLause .  The scope i s  res t r i c ted  to  the  spec i f i -
ca t ion  body .

de f ine -aux iL ia r ies  (m: the  aux iL ia r ies -cLause  i s
non-empty ) :  g ives  the  concre te  de f in i t ion  for  aLL
aux iL ia ry  opera t ions .  Occur rences  o f  cond i t ionaLs :
case -  and  Le tschemes:  recurs ion  and  opera t ion  caLLs  a re
aLLowed in  aux iL ia ry  opera t ion  de f in i t ions .  V is ibLe
i tems  are  aLL used  sor ts  and  Opera t ions :  newLy in -
t roduced  sor ts  and  newLy  in t roduced  opera t ions .

def ine -car r ie rs  (m: the  sor ts -cLause  i s  non—empty):
fo r  each  sor t  name of  the  sor ts  cLause ,  a car r ier  se t
i s  de f ined  by  the  ex tens ion  o f  a so -caLLed
charac te r is t i c  ( ca r r i e r )  p red ica te .  The  ex tens ion
represents  e i ther  the  compLete  Herbrand un iverse ,
spanned by assoc ia ted  cons t ruc tors ,  o r  a subse t  o f  i t
and  i t  i ncLudes  a spec iaL  e r ro r  eLement tha t  i s  d i f -
f e ren t  f rom aLL o ther  eLements .  In  the  subse t  case
provis ions have  to  be taken  to  guarantee  the  weLL-
def inedness of  operat ions  (cLosure  proper ty ;  see  be -
Low) .
I n  the  def in i t ion of the charac ter is t ic  pred ica tes ,  an
operat ion  of  the  Ops cLause  i s  unv is ibLe .  Used  and
aux iL ia ry  opera t ions  a re  v is ibLe .  The car r i e r  pred icate
def in i t ion  consis ts  of an  arb i t rary  opera t ion  scheme
(cond i t ionaL-y  case—I Le t -scheme or  t e rm)  tha t
sa t is f i es  the  subterm proper ty  (occur r ing  te rms a re
car r ie r  eLements )  and  tha t  evaLua tes  to  a booLean
vaLue:
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- t rue :  the  argument te rm is  car r ie r  eLement
- f aLse :  the  argument  te rm is  no t  ca r r i e r  eLement

I t  shouLd be emphas ized  tha t  the  car r ie r  def in i t ions
are  a very  c ruc iaL  par t  o f  an  ASPIK spec i f i ca t ion  s ince
they  determine  the  da ta  of  the  abs t rac t  type  behind the
spec i f i ca t ion  and  there fore  in fLuence  the  cons is tency
of  the  cd  w i th  the  in tended  modeL as  i t  i s  descr ibed  in
the  spec i f i ca t ion  header  (espec iaLLy  the  p rops -cLause ;
see  sec t ions  3 .2 .1 .  and 3 .4 .1 .  fo r  the  semant ics  of
spec i f i ca t ions ) .

de f ine -cons t ruc tor -ops  (m: the  cons t ruc tor -cLause  i s
non-empty):  here ;  the  constructors  given in the con-
s t ruc tor  cLause  onLy  by  name a re  compLeteLy  de f ined .
There  i s  L imi ted  f reedom in  the  opera t ion  de f in i t ion
s ince  the  dec is ions  o f  the  de f ine -car r i e r -cLause  have
to  be respec ted .  The ma in  po in t  i s :  i f  the  car r ie r
de f in i t ion  has  spec i f i ed  a t e rm op (a l r  . . . :  an)  as
car r ie r  eLement :  then  an  invoca t ion  of  the  opera t ion  op
on the  arguments a l :  . . ,  a" has to  evaLuate to  th is
t e rm (no te  the  su te  d is t inc t ion  be tween  te rms  and in -
voca t ions  o f  opera t ions  tha t  a re  assoc ia ted  to  the
names occur ing  in  the  te rms) .  Otherwise  the  vaLue of a
cons t ruc tor  opera t ion  invoca t ion  has  to  be de f ined  such
tha t  cLosedness i s  ma in ta ined  i . e .  i f  the  ca r r i e r
pred ica te  has  excLuded  a cons t ruc tor  t e rm then  the
assoc ia ted  cons t ruc tor  opera t ion  caLL has  to  be def ined
y ieLd ing  an  eLement o f  the  ca r r i e r  ( in  the  t r i v iaL
case :  the  er ror  eLement ) .  Cons t ruc tor  opera t ion  def in i—
t ions  may depend on  charac te r is t i c  p red ica te  de f in i -
t ions .  V is ibLe  i t ems  a re  the  used  opera t ions ,  the
aux iL ia r ies  and  the  cons t ruc tors  o f  cd :  and  the  def in i -
t ion  may be based  on  case -schemes ,  Le t -schemes:  con -
d i t ionaLs ,  recurs ions  and  opera t ion  caLLs .

p r iva te -ops  (0 ) :
in t roduces  func t ionaL i t i es  of  opera t ions  tha t  are  in -
tended  to  be  used  in  the  opera t ion  de f in i t ion  of  pubL ic
opera t ions  bu t  shouLd no t  be  access ibLe  ou ts ide  the
spec i f i ca t ion  (h idden  opera t ions ) .  They a re  s imiLar  to
aux iL ia ry  opera t ions  bu t  w i th  d i f ferent  appL ica t ion
area  (de f in i t ion  of  pubL ic  opera t ions  ins tead  of
de f in i t ion  of  car r ie r  p red ica tes ) .  The func t ionaL i t i es
may be  bu iL t  up  f rom used  sor ts  and  sor ts  o f  cd .

def ine -ops  (m: ops -  o r  p r iva te—ops  cLause  i s  non-empty ) :
aLL opera t ions  up  to  now onLy in t roduced  by  func t ionaL-
i t i es  a re  de f ined .  V is ibLe  i t ems  a re  aLL  used  oper—
a t ions ,  aLL sor ts :  opera t ions  and  pr ivate  opera t ions  of
cd .  The de f in i t ion  may incLude  occurences  of  case -  and
Let -schemes:  cond i t iona ts :  recurs ions  and  opera t ion
caLLs .

This br ings the overview on ASPIK speci f icat ion  ob jec ts  to  i t s
end .

z .3 . - ]  ExampLe: L imi ted  Queue spec i f i ca t ion  in  ASPIK
_.L _l_
" I
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22 2 .3 .  The AppLicative PL ASPIK

spec  OUEUE;
ggg INTEGER:  BOOLEAN;
sor ts  queue ;
gag emptyqueue:  - ->  queue;

en te r :  queue integer  - ->  queue;
remove:  queue -—> queue;
f i rs t ,  Las t :  queue - ->  in teger ;

grogs [P1 ]  aLL q :  queue aLL i :  in teger
remove(en te r (qz i ) )  ==  q

[PZ ]  aLL q :  queue aLL i :  in teger
Las t (en te r (q , i ) )  ==  '

[PB ]  aLL q :  queue aLL i :  in teger
q ==  emptyqueue

==> first(enter(q‚i)) ==  i
[P4 ]  q = l=  emptyqueue

==> first(enter(q‚i)) ==  f i rs t (q )

529g  gogx
const ruc tors  emptyqueue :  en te r ;
aux iL ia r ies

s i ze :  queue - ->  integer;
def ine aux iL ia r ies

s i ze (q )  = case 13q __
tyq  eue  : O
er (  1 ,11 )  .

*emp
*en t  succ (s i ze (q1 ) )
esac

define carr iers
is -queue (q )  _ case  q ig

*emptyqueue : true
*en te r (q1 , i 1 )  : Less (s i ze (q1 ) :10 )
esac

define gonstructorg
emptyqueue = *emptyqueue
ente r (q , i )  = if Less (s i ze (q1 )p10 )

then  *en te r (q ; i )
eLse  q

gering ogs
remove(q )  = case  q ig

*emp tyqueue  : e r ro r .queue
*en te r (q1 , i 1 )  : case  q1 ;;

*emptyqueue  : emptyqueue
*en te r (q2 , i , )
en te r ( remove(q1 ) , i 1 )
9.5.9.9.

Las t (q )  = case  q ' s
*emptyqueue : e r ro r .queue  '
*en te r (q1 : i1 )  : i1

f i rs t (q )  = case  q ig
*emptyqueue : e r ro r .queue
*en te r (q1 : i l )  : gase  q; is

*emptyqueue : i1
*en te r (q , : i . )  '
2322

f i rs t (q1 )
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”M? J
Remarks a )  Empty  cLauses  are  skipped

b)  INTEGER and  BOOLEAN denote  the  spec i f ica t ions  of
the  obv ious  ob jec ts .

c )  The p rops -cLause  shouLd aLso re fLec t  the  L imi ted -
ness  of  queues ;  apprOpr ia te  equa t ions  a re  d is -
regarded  to  suppor t  compactness o f  the  represen-
ta t ion .

d )  Succ denotes  the  successor  opera t ion  of  INTEGER.
e )  S ta r red  i t ems  denote  car r ie r  eLements:  whiLe

emptyqueue i s  an  opera t ion  of  OUEUE; *emptyqueue i s
an  eLement of  the  car r ie r  queue of  OUEUE.

f )  Less  denotes  the  obv ious  opera t ion  of  INTEGER.
g)  En te r  i s  de f ined  to  deL iver  i t s  queue argument  un -

changed if  the  maximaL s i ze  i s  reached .  F IRST
evaLuates  to  the  innermost  in teger  a rgument :  which
i n  tu rn  is  removed by REMOVE.

I

Two topics  were spared in  the  in t roduct ion  of speci f icat ions
above :  the  subte rm proper ty  and spec - te rms .

The subterm proper ty  i s  very c ruc iaL  fo r  the def in i t ion of
car r ie rs  and cons t ruc tors .  I t  says  that  whenever  a t e rm t con -
s is ts  of opera t ion  symboL op  and argument  te rms t1 ;  . . . :  tn ,
then  i t  hoLds:  i f  t i s  ca r r i e r  eLement ,  then  t ip  . . . :  tn  are
carr ier  eLements. This property  ensures fo r  exampLe the weLL-
def inedness  of  the  ca r r i e r  p red ica te  s ince  subte rm ex t rac t ions
do not  v ioLa te  the  cLosedness of  the  p red ica te ,  and aLso
recurs ive  invocat ions  a re  de f ined .  In  the  in t roduct ion  above
the subte rm proper ty  has  been  omi t ted  fo r  reasons  of  cLar i ty .

Spec- te rms  a re  a ve ry  important  f ea tu re  of ASPIK .  They i nvoLve
spec i f i ca t ions  as  weLL as  maps or  imps .  For  a p rec ise  under -
s tanding  of  spec - te rms  we g ive  a shor t  survey  on  map and imp
ob jec ts  in  ASPIK  which  bo th  a re  in tended  to  es tabL ish
reLa t ions  be tween  spec i f i ca t ions .  The essent iaL  no t ion  behind
maps is  the  no t ion  of  s igna ture  morphism.  S igna ture  morphisms
are  pairs  of  mappings be tween  se ts  of  sor t  names and between
se ts  o f  opera t ion  names  ( the  sor t  mapp ing  and  the  opera t ion
mapping ) .  The opera t ion  mapping has  to  p ro tec t  the  func t ionaL-
i t y  assoc ia ted  w i th  an  Opera t ion  name,  i . e .  the  ta rge t
func t ionaL i ty  i s  the  image  of  the source  func t ionaL i ty  under
the  sor t  mapping (see  aLso def in i t ion  4 .2 . -2 ) .

A map object  de f in i t ion  encLoses a t  most the  foLLowing
cLauses :

map-header  (m) :
i n t roduces  the  name of the  map ob jec t .  The  naming con-
vent ions  for  maps enforce the  ind ica t ion  of  a source
and  ta rge t  spec i f i ca t ion  ob jec t  as  part  of  the map
ob jec t  name .  The se ts  o f  sor t  names  of  the  source  and
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of the target  ob ject  are  taken as  source  and target  of
the  sor t  mapping:  wh i te  the  se ts  of  opera t ion  names of
the  source  and ta rge t  ob jec t  a re  taken  as  source  and
ta rge t  o f  the  opera t ion  mapp ing .

i s -cLause  (m) :
possesses  two poss ibLe  en t r i es :  refinement o r  impLemen-
t a t ion .  This cLause serves to  character ize  the  in ten-
t ion  beh ind  a map ob jec t :
- re f inements  res t r i c t  the  se t  o f  modeLs  o f  cd .
- impLementa t ions  es tabL ish  a semant icaL  connect ion

between  the  source  and the  ta rget  spec i f i ca t ion .
base -cLause  (o ) :

the  base  cLause  of fers  the  poss ib iL i ty  to  excLude
objec ts  of  the  source object  h ierarchy  from being modi-
f i ed  by the  s igna ture  morphism.  The sor ts  and  oper -
a t ions  of  ob jec ts  L is ted  in  the  base  cLause  a re  mapped
ident icaLLy .

use -cLause  (o ) :
a L is t  of  map  ob jec t  names .  V ia  the  use  cLauses :  map
ob jec ts  may  cons t i tu te  h ie rarch ies  and  there fore  aLLow
the  incorporat ion o f  aLready def ined map objects  in a
new one .  Semant icaLLy ,  every  used  map  represents  a par t
of  the  s ignature  morphism induced  by the  map ob ject
def in i t ion .

sor ts -cLause  (m:  The sor ts  cLause  of the  source -ob jec t  i s
non-empty ) :  the  sor ts  cLause  cons is ts  of  pa i rs  "oLd  =
new"  where  'oLd '  i s  a sor t  name  o f  the  source  ob jec t
sor t  name se t ,  and 'new '  i s  a sor t  name of  the  sor t
name se t  of  the ta rget  ob jec t  h ie ra rchy .  Every  oLd  sor t
name has  to  be assoc ia ted  to  a new name.
The sor t  cLause  represents  (a  par t  o f )  the  sor t  mapping
induced by  the  map ob jec t .

ops-cLause  (m:  the  ops  cLause  of  the  source  ob jec t  i s
non-empty ) :  the  ops  cLause  cons is ts  of  pa i rs  "oLd  =
new", where 'oLd '  i s  an Operat ion name of  the  operat ion
name se t  of  the  source  ob jec t ,  and 'new '  i s  an  oper -
a t ion  name of the  opera t ion  name se t  o f  the  ta rge t
ob jec t  h ie ra rchy .  Every  oLd  sor t  name has  to  be asso -
c ia ted  to  a new name under  p reserva t ion  o f  the
func t iona t i t y .
The ops -cLause  represents  (a  part  o f )  the  operat ion
mapping induced  by  the  map ob jec t . “

This brings the overv iew on  ASPIK map objects  to  i t s  end .

2 -1 - ‘ 2  ExampLe:  Map ob jec t  STACK- -M1- ->QUEUE
Let  QUEUE be as  in  2 .3 . - 1 .
Let  STACK denote  a speci f icat ion object  of the weLL-known
s t ruc ture  w i th  sor t  ' s tack '  and opera t ions  'push ' ,  ' pop ' ,
' top '  and  ' emptys tack ' .
Let  ELEM1 and  INTEGER denote  used  spec i f ica t ions  of  STACK and
QUEUE rep . ,  and  ELEM1- -M0- -> INTEGER an  aLready  def ined map
ob jec t .

map STACK'-M1-->OUEUE ]

November  1985



2 .3 .  The AppLicative PL ASPIK 25

ig impLementation
base  BOOL
ggg ELEM- -M0- -> INTEGER
sor ts  s tack  = queue
gg; push  = ente r

pop  = remove
top  = Las t
emptys tack  = emptyqueue

endmap

Remarks: a )  The i s -cLause  indicates the ex istence of ( a t
Leas t )  one  imp  ob jec t  ( see  beLow) .

b)  BOOL is  Le f t  unchanged by the  s ignature  morphism
i nduced  by STACK- -M1- ->QUEUE.

c )  The expL ic i t  def in i t ion of ELEM--M0-->INTEGER is
omi t ted  here .

n
CLoseLy connec ted  to  map ob jec ts  are  ASPIK imp ob jec ts .  S ince
maps onLy cons t i tu te  syn tac t icaL  reLa t ions  be tween  ASPIK
spec i f i ca t ions  th is  wouLd no t  su f f i ce  to  es tabL ish  'deeper '
semant icaL  p ropos i t ions  (as  fo r  exampLe the  impLementa t ion
concept ) .  For  th is  reason  maps can  be  equipped wi th  imp
ob jec ts  tha t  provide  the  necessary  in format ion .  S ince  ASPIK
imp ob jec ts  a re  s t iLL  under  research  and  ou ts ide  the  scope of
th is  paper ;  we do not  go in to  fu r ther  de ta iLs .  I f  map and  imp
ob jec ts  a re  assoc ia ted  to  descr ibe  an  ASPIK impLementa t ion ;
they  a re  aLso caLLed  ' impLementa t ion  s igna ture '  and ' impLemen-
ta t ion  spec i f i ca t ion '  resp .  to  ind ica te  the i r  semant icaL
purpose.

Comming back  to  the  branch ing  point  ' spec - te rms ' :  we can  now
i n t roduce  th is  no t ion .  A spec - te rm is  syn tac t icaLLy  a spec i f i -
ca t ion  iden t i f i e r  ( the  domain)  foLLowed by  a L is t  of  map
ob jec t  ident i f ie rs  (e .g .  STACK {ELEM1- -M0- -> INTEGER} ) .  Seman-
t i caLLy :  a spec - te rm descr ibes  a spec i f i ca t ion  ob jec t  tha t  i s
der ived  f rom the  domain h ie ra rchy  by  exchang ing  ob jec ts ,  oper -
a t ions  and  sor ts  accord ing  to  the  L is ted  s ignature  morphisms
(e .g .  the  spec i f i ca t ion  (h ie ra rchy )  behind STACK
{ELEM1- -M0- -> INTEGER}  has  aLL occur rences  o f  ob jec t  ident i f ie r
ELEM1, sor t  eLem1 and operat ions  of  ELEM1 subs t i tu ted  by
occur rences  of  ob jec t  ident i f i e r  INTEGER: sor t  in teger  and IN -
TEGER Opera t ions  resp . ) .  This  use  of map ob jec ts  represents
what i s  caLLed the parameter iza t ion-by-use  concept of ASPIK:
spec i f i ca t ions  a re  not  f i xed  s t ruc tures ,  they  show gener ic
proper t i es .  Every  (even  ind i rec t )  used  spec i f i ca t ion  i s  v iewed
as  a poss ibLe  ' fo rmaL  paramete r '  wh ich  might  be  ac tuaL ized  in -
s ide  a spec - te rm.  An ASPIK spec - te rm is  comparabLe w i th
procedure  o r  func t ion  caLLs  in  impera t ive  Languages ,  where
fo rmaL  paramete rs  a re  subs t i tu ted  by  ac tuaL  ones .  Now th is
concept  i s  appL ied  to  type -s imiLar  s t ruc tures  (spec i f i -
ca t ions ) .  Spec - te rms  represent  a ve ry  convenient  and fLex ibLe
fea ture  fo r  re -us ing  spec i f i ca t ions  in  va r ious  contex ts .  For
exampLe,  i f  the re  ex is t  map ob jec ts  ELEM1--M0- -> INTEGER,
ELEM1--M1-->NATURAL_NUMBER: one  can  eas iLy  use  di f ferent
ac tuaL iza t ions  of  STACK in  a new spec i f ica t ion  in  paraLLeL:
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use  STACK {ELEM1- -MO- -> INTEGER} :
STACK {ELEM1- -M1- ->NATURAL_NUMBER}

We cLose this section on  the  main  Language  f ea tures  of ASPIK
with  two remarks:

a )  ModPascaL prov ides  an  anaLogon to  maps in  form o f  in -
s tan t ia t ion  def in i t ions:  and to  spec - te rms  in  fo rm of in -
s tan t ia te  types .

b )  Mos t  of  the  in t roduced  por t ions of ASPIK are  impLemented .
The so f tware  tooL  SPESY i s  descr ibed  in  [Sch  85 ] .  A fuLL
Language descr ip t ion  may be  found  in  EBV 85 ] .

2 .4 .  The ProceduraL  Programming Language ModPascaL

This sect ion  covers the  PascaL-extension ModPascaL (EOLt
84a :b ] ) :  the  Language of  the  concre te  LeveL of  our  assumed
scenar io .  ModPascaL  encLoses  s tandard  PascaL  [ I S O  7186 ] :  and

- s ince  the  Le t te r  Language may be seen  as  a subse t  of  ADA: a
- .huge par t  of  ModPascaL programs may be  d i rec tLy  expressed  in

ADA. The new (and  d i f fe rent  f rom ADA) concepts  a re :

moduLe type de f in i t ions
enrichment de f in i t ions
ins tan t ia t ion  de f in i t ions
ins tant ia te  type def ini t ions

At  f i rs t  v iew:  moduLe types  a re  s imiLar  to  packages .  Bu t  mod-
uLes  possess  an  impor tan t  p reper ty  tha t  i s  necessary  in a
sof tware  deveLopment environment as  weLL as  fo r  programming
wi th  abst rac t  da ta  types in  generaL :  they  can  be incarna ted :
and  var iabLes  decLared  o f  a moduLe  type  may  be  used  accord ing
to  the  same ruLes  tha t  hoLd fo r  ordinary  types .  ALso:  the  in -
te r face  of  a moduLe type i s  des igned  on  theore t i caLLy  ins ights
of  abs t rac t  da ta  type  theory  and  there fo re  excLudes  'uncLean '
f ea tu res .

A ModPascaL moduLe type  de f in i t ion  cons is ts  of  the  foLLowing
par ts :

modid : Name of the current moduLe.
use  : List of moduLes tha t  a re  used  by modid .
pubL ic  : Names and ar i t ies  of new inter face procedures:

funct ions  and  in i t i aLs .
LocaL : Cons is ts  of LocaL types :  LocaL procedures and

func t ions :  and LocaL var iabLes .  LocaL i tems
are  onLy v is ibLe  in  the  cur rent  moduLe def ini -
t ion .

operat ions : CompLete def in i t ion (name: bLock) of  aLL
pubL ic  and LocaL opera t ions .

(The  concre te  syn tax  o f  ModPascaL  moduLes  is  sL igh tLy  d i f -
f e ren t ;  i t  was  abbrev ia ted  here .  See  aLso  exampLe  2 .4 . -1  be -
Low. )
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ModuLes are  assumed to  have an i n te rnaL  s ta te .  This s ta te  may
be changed by the  invocation of  a moduLe procedure ;  inspected
by an moduLe function invocation or  in i t i aL i zed  by a caLL of
an initiaL opera t ion .  The mandatory  LocaL var iabLes  of  a mod-
uLe contain the  ac tuaL  state in the  ac tuaL  b ind ings .  There-
fo re :  if one  Looks a t  the  ( a b s t r a c t )  data t ype  ( a n  aLgebra )
described by a moduLe def in i t ion ,  i t s  se t  of carr iers  contains
a s  s ingLe  new eLement  the  ca r tes ian  p roduc t  ca r r i e r  o f  those
car r ie rs  associated to  the  types  of  the  LocaL var iabLes ,  and
i t s  se t  of  operations has  as new eLements ( the  semantics of )
aLL pubLic operations of  the  cur ren t  definition. The aLgebra
const ruc ted  i n  this way i s  a L s o  caLLed  the  moduLe  aLgebra .

LocaL t ypes  and LocaL procedures  and functions do not  have a
comparabLe impact on  the  moduLe semantics as  the  LocaL
var iabLes .  The  types  and Operations are  thought  to  ease  the
programming process  fo r  the  pubLic operations. The definition
bLocks in the  operations par t  may empLoy aLL f ea tu res  of
standard PascaL and a L L  ModPascaL ex tens ions  except  tha t
nes ted  moduLe type  definitions are  not  aLLowed. I f  a program
requi res  such  a s t ruc ture  i t  has  to  be modeLLed by using of
previousLy def ined moduLes. '

2 .4 . -1  ExampLe

tgge  MSTACK =
moduLe  use  MELEM, MINTEGER;

pubLic procedure  mpush(e:  MELEM);
procedure  mpop;
func t ion  mtop:  MELEM;
initiag mempty;

LocaL t ype  A = ar rayE1:10 ]  of MELEM;
gg; a :A ‚  i :M INTEGER;  LocaLend ;

procedure  mpush;
begin if i < 10

then  begin i :
eLse  er ror  e

procedure  mpop;
begin if i=0 then  error

eLse  i :=  i - 1  gag
function mtop;

begin if i=0 then  error  eLse mtop :=  ati] gnd_
i n i t i a L  mempty ;

begin i :=  O end; "

p + . ; \ a Ifi p. Ll

H

0
:3

0
I: Q

.

modend

Th is  exampLe  shows  a ModPascaL vers ion  o f  bounded s tack .  MELEM
and MINTEGER a re  assumed as  aLready  de f ined .  PubLic opera t ion
ar i t i es  omit a f i r s t  pa ramete r  of  type  MSTACK; th is  paramete r
i s  suppL ied  by  the  spec iaL  syn tax  o f  moduLe  opera t ion  c a L L s .

n
The aLgebra  ca r r i e r  in t roduced by MSTACK is  the  car tes ian
product  (A  x MINTEGER) i . e .  tupLes  of  a r ray - in teger  vaLues .
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The semant icaL Operat ions behind mpush: mpop, e tc .  take  t hese
tupLes  as  arguments  and y ieLd  new tupLes  or  seLec t  components .

Enr ichments  aLLow the  extension of aLready  def ined  moduLes  by
new opera t ions .  The main  d i f ference to  a moduLe type def in i -
t ion  i s :  tha t  no new da ta  i s  in t roduced  and  the  opera t ions  o f
the  enr ichment  have  to  be  based  upon the  ca r r i e rs  beh ind  the
enr iched moduLes. Enr ichments cor respond to  spec i f i ca t ions  of
abs t rac t  da ta  type  w i th  empty sor t  cLause .

An ins tan t ia t ion  ob jec t  in  ModPascaL aLLows the  h ie ra rch icaL
spec i f i ca t ion  o f  s ignature  morphisms.  Th is  i s  no t  suppor ted  in
any  of  the  ex is t ing  impera t ive  programming Languages .  The se t
of  new sor t  names  of  a moduLe  cons is ts  of  the  one -eLement -se t
{modid}  where modid ambiguousLy denotes  the  ca r tes ian  product
o f  LocaL var iabLe  types .  The se t  o f  new opera t ion  names o f  a
moduLe is  the  se t  o f  names o f  aLL pubL ic  opera t ions  w i th  asso -
c ia ted  a r i t i es .  Then,  the  s ignature  morphism induced  by an  in—
stan t ia t ion  ob ject  L inks two moduLs toge ther  by providing a
mapping be tween  the  sor t  se ts  and  an  (a r i t y -p reserv ing )
mapping be tween  the  opera t ion  se ts .

Ins tan t ia t ion  ob jec ts  a re  used  in ins tan t ia te  type def in i -
t ions .  An ins tant ia te  type i s  an  ins tance  of  a moduLe or
enr ichment .  This ins tance  is  generated  accord ing  to  the  infor -
mat ion  prov ided by  the  ins tan t ia te  type  de f in i t ion :  a base
ob jec t  (moduLe,  enr ichment )  and  a L is t  of  ins tan t ia t ion

‘ ob jec ts .  The s igna ture  morphism induced  by  the  ins tan t ia t ions
v is  appL ied  as  subs t i tu t ion  to  the  base  ob jec t  (h ie ra rchy ) ,

yieLding in the modif ied base object  as ins tance .

I ns tan t ia t ions  and ins tant ia te  types  represent  the  ModPascaL
paramete r i za t ion  concept  fo r  moduLes ( types ) .  By  th is ,  i t  i s
not  necessary  to  f i x  the  paramete rs  and  non-paramete rs  o f  a
given moduLe or  enr ichment .  ALL subs t ruc tures  occur ing  in  the
source  of  the  s igna ture  morphism are  parameters  in  the  appL i -
ca t ion  a t  hand;  o ther  appL ica t ions  based  on  o ther  s igna ture
morph isms ,  may seLec t  o ther  subs t ruc tures  o f  the  base  ob jec t .
The task  of  pa ramete r i za t ion  of  types  i s  Le f t  as  fLex ibLe  as
poss ibLe  fo r  the  programmer,  wh iLe  s imuLtaneousLy  a s t rong  and
theore t icaLLy  weLL- founded fo rmaL ism is  in t roduced .  ( I t  shouLd
be noted  tha t  th is  k ind of  parameter i za t ion  i s  aLso poss ibLe
for  f amiL ia r  s t ruc tures  as  a r rays ;  records  e tc . ;  see  EOLt
84a ;b ] ) .

Our invest igat ion of sequent iaL  ver i f icat ion wiLL not empLoy
ModPascaL in i ts  compLete s i ze  (see  sec .  4 .1 . ) .
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. a n  U 9 Semant 8

In this section we describe the semantics of seLected con-
structs of our version of ASPIK and ModPascaL. We restrict
ourseLves t o  those topics that are of interest in the connec-
tion context between the Languages.
Since connections wiLL be estabLished between specifications
and moduLes/enrichments, their semantics is defined beLow.
This incLudes aLso a definition of ASPIK maps because they may
occur in the use-cLause of a specification object, and: for
consistency, aLso a definition of the ModPascaL instantiation
and instantiate type features.

An exhaustive presentation of the semantics can be found in
[BV 85] (ASP IK )  and [OLt 84b] (ModPascaL).

I n  section 3 . 1 .  an abstract syntax describes the two Language
subsets to be considered in the sequeL. The discussion of the
semantics is spLitted into two parts: the context-sensitive
conditions and the dynamic semantics. The first part is given
in section 3.2.; whereas the second part covers sections 3.3.
(semantic domains) and 3.4. (semantic cLauses).

. . Abstract S n tax

A convenient way t o  describe the syntax of the ASPIK  and
ModPascaL portions of interest is by Vienna Definition Lan-
guage (VDL: [Weg  72]). we briefLy introduce VDL by repeating
the main notions and features which are used in sec.s 3.1.1.
and 3 . 1 . 2 .

VDL supports the idea of abstract syntax in that sense, that
no famiLiar Language symboLs as 'begin' or 'end' (i.e. the
terminaL vocabuLary) occur in a VDL description. Instead, aLL
objects (syntactic entities) are coLLected in sets, and there
are seLectors that aLLow manipuLation . o f  them. Objects are
separated into two kinds:

- eLementary objects: objects with no components and therefore
no s e L e c t o r s ,

- composite objects : objects which are be composed of objects
by construction operators. The com-
ponents may be eLementary or composite
objects, and each is seLectabLe by a
unique seLector.

Notation: { 0 1 :  o,} denotes a set of eLementary objects.
(51: C1: s2: C2) denotes a set of composite objects
with seLectors sl, s2 and component  object sets c1.
C Z  I

Composite objects represent tree structures in which the arcs
are LabeLLed by seLectors. the Leaf nodes are eLementary
objects and a L L  other nodes are composite objects.

There is a distinguished eLementary object: the so-caLLed ngLL
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gpjgg;_4$ which i s  di f ferent  f rom every other  eLementary
ob jec t .  The nuLL ob jec t  i s  ambiguousLy used  to  denote  empty
domains as  weLL as  e r roneous  man ipuLa t ions  on  domains.

3 .1 . -1 .  De f . :  EseLec tor  appL ica t ion ]
Le t  c = (sl: c1 :  . . . :  s " :  c„ )  denote  a compos i te  ob jec t .  Let  5
denote  a seLec tor :  and Le t  c € C with c = ( c1 :  . . . :  c " ) .
Then (s  c )  i s  caLLed  seLec tor  appL ica t ion  w i th

(s  c )  :=  case  5 = s i :  i € (n )  : c ;
o thecwise  L

u
Notation: ( sn  c )  :=  ( s  ( s  ( s  . . .  ( s  c )  . . .  ) [n  t imes :  n > 0 ]

( 5 °  c )  = c

SeLec tors  may be composed: too .  I f  (sl: c l )  and 01  E ( s , :  c„
S3:  C3 )  a re  compos i te  ob jec ts  then  8381 i s  a compos i te  seLec -
39:. I f  x € (51: C1)  then  8381 can  be appL ied  to  x to  seLec t
the  cg-component.

Nota t ion :  I f  s„s„_1  . . .  5 ;  denotes  a compos i te  seLec tor :  then
(sn (sh .1  ( . . .  ( 51  x )  . . . )  denotes  the  appL ica t ion
to  a compos i te  ob jec t  x .

3 .13 -2 ,  Dg f . :  Eadmissab i t i t y ]  .
Le t  s :=  5n . . .  s1 denote  a compos i te  seLec tor :  c a se t  of
compos i te  ob jec ts .
1 )  The appL ica t ion  of s to  c € C:  1 .9 .

(sn (sn_1  ( . . . ( 51  c )  . . . )
i s  admissabLe:  i f

v i e (n )  . s ;  ( s i . 1  ( . . . . . (s1 c )  . . . )  :::-L.
s i s  aLso caLLed gdmissabLe seLec tor  fo r  c .

2) AD(c) :=  ( 5 !  s is  admissabLe seLector for  c}

The foLLowing  convent ions and  opera tors  are  used:

—Ü1) He assume aLL object  se ts  to  be fLa t  domains (see  [OLt
84b ] ) .

2) Syntact ic  Domains are  denoted by identi f iers star t ing wi th
cap i taL  Le t te r .  SeLec tors  and syn tac t ic  domains may occur
pos t f i xed  by 'L '  ( fo r  ' L is t ' ) .  This  impL ies  the foLLowing
L is t  s t ruc ture :

DomainL  = ( f i r s t :  Domain :  res t :  DomainL )

I f  Domain = Dom1 v Dom2
then  DomainL = Dom1L u Dom2L

3 )  The L -vers ion  of  a domain i s  no t  expL ic i tLy  ment ioned  in
the  abs t rac t  syn tax  o f  ModPascaL.
Spec iaL  case :  DomLL = ( f i r s t :  DomainL:  res t :  DomainLL)

4 )  The generaL  assignment  opera tor  is  u :
For  d € D:  d
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3 .1 .1 .  Specifications and Maps

s7/ \ia
oLd1 oLd,

u(d; s,: neu , )  : =  d '  : d '8/ \»
new; oLd1

5) The generaL construction operator is no:
u°(sl: DI, s,:u°(s3: D3, 3‘: 04 ) )  describes the domain:

5?/ \iz

01 .
S / Y ‘
D; D e

The assignment and construction operators wiLL be used in
semantic c L a u s e s  of s e c .  3 .4 .

6 )  BeLow;  domains of structure
(Domain* x Domain)

wiLL be u s e d .  Sometimes i t  is necessary to transform e L e -
ments thereof into Lists:

makeList: (Domain* x Domain) ——> DomainL
is defined by

makeList((d1 ... d": d)) := u°(first: dl: rest:
uo(first: da, rest: uo( ...(first: day
rest:uo(first:dr rest: L )  . . . )

?) An operator Length: DomainL ——> N that returns the number
of List eLements is defined for every domain. Length(L)
0 .

Sometimes it is convenient to convert Lists into sets:
?: Doma inL  ——> P(Domain)

with
f ( d )  := {dal i e (Length(d)) egg

% i € (d) . d; = (first(rest“(d))}

The operator
concat: DomainL x Domain ——> DomainL

i s  defined a s  expected:
concat(d, dl) : =  'f (first d) = L gngn d1 gggg

gi (rest d) = L )  then
u°(first: d, rest: u°(first: dl:

rest: L ) )

eLse u°(first: (first d),
rest: concat((rest d); d1))

ALso _
concatL: DomainL x DomainL -—> DomainL with
concatL(d1,d2) := ii (first dz) = L then d1 eL§e
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32 3 .1 .1 .  Specifications and Maps

ii (rest de) = L
gngn conca t (d1 ‚  (first d,)) eggs

concatL<concat(d1a (first d2)):
(rest d,))

3 .1 . ] ,  Specifications and Maps

An ASPIK specification object is desoribed syntacticaLLy by
the foLLowing abstract grammar:

Spec = (Sp_head: Sp_head; Sp_body: Sp_body)
Sp_head = (spec_id: Id, useL: Sp_termL, sorts: IdL:

ops: OpL)
Op = (op_id: Id, arity: Arity)
Arity = Id* x Id
Id = {<aLphanumeric identifier>3
Sp_body = (cons: IdL: aux: OpL’ def_aux: Op_defL:

def_car: Op_defL: def_con: Op_defL:
priv: OpL, def_ops: Op_defL)

Op_def = (op_head: Op_head, op_body: Op_body)
Op_head = (op_id: Id, params: IdL)
Op_body = Term v Case v Cond v Let
Term = (op_id: Id, termL: TermL)
Case = ( c a s e  _va r :  I d ,  cases: CasesL)
Cases = ( t a g :  T e r m 1 :  exit: Op_ body )
Term1 = Term v {OTHERWISE}
Cond = (if: Term, then: Op_body; eLse: Op_body)
Let = (Let_var: Id: Let_term: Term; Let_body: Op_body)

An ASPIK map object is described by:

Map = (map_id: Map_id, is: I s: base: Sp_termL:
use: I s  s o r t s :  AssocL: o p s :  AssocL)

Map_id = (from: Id: to: Id, map_name: Id)
I s  = (refinement. impLementation}
Assoc = ( o L d :  I d ,  new: I d )

An ASPIK specification term (specterm) is described by

Sp_term = I d  v Spec_term
Spec_term = (spec_id:Id, mapL: Map_idL)

Note that the empLoyed concept of an ASPIK specification is
not compLeteLy coincident with [BV 853 .  There a distinction is
made: if for s € Spec; (Sp_body s) i s  defined or not. I n  the
former case the specification is caLLed aLgorithmic, otherwise
axiomatic. ALso predicate caLcuLus formuLae can be attached to
specifications. For reasons described in sec. 4 .1 .  we onLy
consider - in terms of [BV 85] - aLgorithmic specifications
without attached predicate caLcuLus formuLas.

November 1985



3 .1 .2 .  ModPascaL 3 3

3 . 1 . 2 .  nPgscaL

I n  this section we introduce the abstract syntax of moduLe
type definitions, enrichment definitions, instantiation
definitions and instantiate type definitions. Not every syn-
tactic domain wiLL be refined to fuLL detaiL; see [OLt 84b]
for the compLete abstract syntax of M o d PascaL.

A ModPascaL moduLe type is defined by:

ModuLe_type
= (useL: IdL, pubLicL: PubLicL, LocaL: LocaL,

operationL : OperationL)
PubLic = Proc_head v Func_head v Init_head
Proc_head = (proc_id: I d ,  paramL: ParamL)
Param = (idL: IdL, type: ID)
Func_head = (func_id: I d ,  paramL: ParamL’ resuLt: Id)
Init_head = (init_id: I d ,  paramL: ParamL)
L o c a L  = ( L o c a L _ t y p e L :  LocaL_typeLr LocaL_varL: VarL’

LocaL_operationL: LocaL_operationL)
LocaL_type

= SimpLe_type v Array_type v Record_type v
Set_type v FiLe_type v Pointer_type

Var = (idL: IdL, type: Type: init: Init_stmt)
LocaL_operation

Proc_head v Func_head
Proc_spec v Func_spec v Init_spec
(proc_id: I d ,  body: BLock)
(func_id: Id: body: BLock)
(init-id: Id, body: BLock)

Operation
Proc_spec
Func_spec
Init_spec

A ModPascaL enrichment is defined by:

Enrich_def = (enr_id: I d ,  useL: I d L ,  addL: AddL;
operationL: OperationL) _

Add = (add_id: Id: pubL i cL :  PubL icL )

A ModPascaL instantiation is defined by:

Inst_def = useL: IdL, obj_actL: Obj_actL,
type_actL: Type_actL: op_actL: Op_actL)

0bj_act = ( oLd :  I d ,  new: I d )
Type_act = (oLd: Id, new: I d )
0p_act = (oLd: I d ,  new: Id)

A ModPascaL instantiate type-is defined by:

Instantiate_type = (base_type: I d ,  objectL: IdL)
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3 4  3.2. Context-sensitive Conditions

3.2, gontext-sensitge Conditions

3 - 2 - 1 .  ASPIK

we now state for the most important domains context-sensitive
conditions that define the notion of static correctness for
objects of the domain. The presentation of the denotationaL
semantics in sec. 3.4. wiLL assume correct objects.

Let s € Spec. Then its context-sensitive correctness is
defined as foLLows:

SP1: 5 correct :¢==e (sp_head 5) correct
gng (sp_body 5) correct.

SP11: sh := (sp_head 5) correct :¢==> (spec_id sh) is
unique in the environment of s ggg (use sh)
correct ggg (sorts sh) correct ggg (ops sh)
c o r r e c t .

SP111: uL : =  (useL sh) correct :¢==> Every used specifi-
cation is correct (and visibLe) gng every used
specterm i s  correct ( a n d  v i s i b L e )  ggg no
cycLic usage of specifications occurs ggg aLL
identifiers provided by the interface Is of gLL
u s e d  objects are unique ( p o s s i b L y  through
appropriate prefixing) (Is = ({sort names};
{operation names})).

SP112 :  s o L : = ( s o r t s  s h )  correct : ¢==>
Every sort identifier is unique in
I s  \: (SOL:  @ )

SP113:  opL :=  (ops sh) correct : ¢==>
Every operation identifier is unique in
Is u (soL; opL) ggg every arity is correct.

SP1131:  arity correct :¢==>  V o e (ops sh) . Let
(s1 s2 ... s": sn+1):= (arity o) gg
s ;  e ( ( I $ )¢1 u SOL) :  i e ( n + 1 )

SP12 :  s b : = ( s p _ b o d y  5 )  correct :<==$
(cons sb) correct ggg (aux sb) correct gng
(def_aux sb) correct ggg (def_car sb) correct
gng (def_con sb) correct ggg (priv sb) correct
gng (def_ops sb) correct.

SP121 :  coL:=(cons s b )  correct :¢==e
Every identifier is contained i n
{ i d l ä i  e Length(opL)
id= (op_ id (first ( r es t “  opL)))}

SP122:  auL:=(aux sb) correct :¢==: Every operation
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3 .2 .1 .  ASPIK 35

identifier is unique in Is u (soL’ opL u auL)
ggg SP1131 hoLds for every 0 e ( aux  sb)

SP123 :  dauL :  =(def_aux sb) correct :¢==¢
Every operation definition odef e dauL
is correct with admissabLe  identifier set
AIS:=IS u (SOL:  opL u auL ) .
For every eLement of auL there is an Operation
definition in dauL; no other definitions occur
in dauL.

SP1231 :  opdef e Op_def correct with AIS :¢==>
(op_head opdef) is correct with AIS gng
(op_body  opdef) correct with AIS u
( d ,  ( p a r a m s  (op_head o p d e f J J ) .

SP12311: oph:= (op_head opdef) correct with AIS :<==$
(op_id oph) € AIS¢2 \ Iswz gag
(params (op_head opdef)) are not contained in AIS

SP12312 :  opb := (op_body  opdef) correct with AIS :¢==>
Let 2 € {Te rm ‚  Case, Cond, Let} in
case  opb € z : opb is z-correct with AIS .

SP123121 :  Opb Term-correct with AIS :¢==>
(op_id opb) e AISwZ and every eLement
of (termL opb) is Term-correct with AIS .

SP123122 :  opb Case-correct with A I S  :<==¢
(case_var opb) € AIS+2  gag every
c € (cases opb )  is correct.

SP1231221 :  c € ( cases  opb )  correct :¢==>
gg; V denote the new variabLes of (tag c) in
(tag c) is Term-correct with AIS u
( ¢ ,  V) ggg (exit c) is correct with
AIS u ( d ,  V).

SP123123 :  opb Cond-correct with AIS :<==¢
(if opb) is Term-correct with AIS fing
( t hen  opb )  is correct with AIS gng
( eLse  opb )  is correct with AIS .

SP123124 :  opb Let-correct with AIS : 222
( Le t_ te rm  opb )  is Term-correct with AIS u
is correct with AIS u ( ¢ ;  (Let_var opb)).

SP124 :  dcaL : =  (def_car sb) correct :¢==> For every
5 e soL there is a carrier predicate
definition in dcaL; no other definitions
occur. ‘
gg; caL := {idl ä i e (Length (dcaL)) .
(op_id (op_head (first (rest"1 (dcaL))))) = id} in
Every operation definition is correct
with AIS : =  IS u (SQL ,  opL u auL u caL )
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SP125

SP126

SP127

3%;‚1. ASPIK

: dcoL :=  (def_con sb )  correct  :¢==> For  every
c € coL there  i s  an  opera t ion  def in i t ion  in
dcoL;  no o ther  def in i t ions  occur .  Every
operat ion  de f in i t ion  i s  cor rec t  w i th
AIS  :=  I 8  v ( soL ‚  opL  v auL  v caL)

: prL :=  (p r iv  sb )  cor rec t  :¢==e Every  Opera t ion
ident i f i e r  i s  un ique  in  IS  u ( soL ,  opL u
auL  u caL ) .  Every  a r i t y  i s  cor rec t .

: dopL :=  (de f_ops  sb )  cor rec t  :¢==e For  every

b )

opera t ion  o f  (opL  u prL )  \ coL  there  i s
an  opera t ion  de f in i t ion  in  dopL;  no o ther
de f in i t ions  occur .  Every  opera t ion
def in i t ion  i s  cor rect  wi th  A IS  :=  IS  u
( soL :  opL  u prL  u caL )

Specterm cor rec tness  (SP  111 )  i s  def ined beLow.
The in te r face  I .  o f  a spec i f i ca t ion  i s  the  vaL id
name space  genera ted  by aLL -sor t  and  opera t ion
iden t i f i e rs  of  ( t rans i t i veLy )  used  spec i f i ca t ions .
I t  i s  aLso  caLLed  impor ted  in te r face ,  whereas  the
expor ted  in te r face  conta ins  add i t ionaLLy  the  sor ts
and  (pubL ic )  opera t ions  o f  the  cur ren t  spec i f i -
ca t ion .

Let m 6 Map. Then i ts  context -sensi t ive  correctness is  defined
as  foLL

MA1:

MA11:

MA12 :

MA13 :

MA14:

MA15:

Ows:

m correct  :¢==> (map_id m) i s  correct  fing (base  m) is

mid

baL

soL

opL

cor rec t  gag (use  m) i s  cor rec t  eng  (sor ts  m)
is  cor rec t  gng (ops  m) is  cor rec t

:=  (map_id m) cor rec t  :¢==e The speci f icat ions
( f rom mid )  and ( to  mid )  a re  v is ibLe  and cor rec t
gng (map_name mid) i s  un ique  in  the  envi ronment
of m.

:=  (base  m) cor rec t  :<==$ Every  spec te rm in  baL
is  cor rec t .

:=  (use  m) cor rec t  :¢==e  Every  used  map ob jec t  i s
cor rec t  and the  un ion of aLL mappings induced  by
used  ob jec ts  i s  i t seL f  a s igna ture  morphism.

:=  ( sor ts  m) cor rec t  :¢==>  For  every  assoc ia t ion
a € soL i t  hoLds:  (oLd  a )  i s  v is ibLe  sor t
iden t i f i e r  in  the  h ie ra rchy  spanned by ( f rom mid )
gag (new a )  i s  v is ibLe  sor t  ident i f i e r  in  the
h ie ra rchy  spanned by  ( to  mid )  gag (new a )  as
weLL as  (oLd  a )  a re  not  sor t  iden t i f i e r  of  some
spec i f ica t ion  of  baL .

:=  (ops  m) cor rec t  :¢==> For  every assoc ia t ion
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___

a s opL it hoLds: (oLd a )  is visibLe operation
identifier in the hierarchy spanned by (from mid)
gag (new a )  is visibLe operation identifier
in the hierchy spanned by ( t o  mid) gag (new a)
a s  weLL a s  (oLd a )  are not operation identifier
of some specification of baL gag the
functionaLities of (oLd a )  and (new a )  are
compatibLe (i.e. the signature morphism property
is satisfied).

Remarks: 8) Specterm correctness (MA12) is defined beLow.
b) Since different used objects may invoLve the same

object: and therefore sort and operation mappings
are defined on the same source sets i t  has to be
guaranteed in MA13 that in this case equaL argu-
ments yieLd equaL resuLts (i.e. the function
property of the union of aLL used signature
morphisms).

Let st 6 Sp_term. Then its context-sensitive conditions are:

ST1:  s t  correct :¢==$ gggg st e I d  : s t  denotes a correct
specification;
case st € Spec_term : (spec_id st) denotes a
correct specification gag (mapL st) is correct
gng (mapL st) i s  appLicabLe to (spec_id st)

STZ: mL : =  (mapL st) correct :¢==> every eLement of mL is a
correct mapobject and t h e  union of a L L  e L e m e n t s
of mL is a signature morphism

8T3: mL is appLicabLe t o  (spec_id st) :¢==> 333 mp : =  the
signature morphism induced by mL: sh : =  the
hierarchy spanned by (spec_id st) in
source(mp) 9 sh

Remarks: a )  The notion of 'union of signature morphisms' (ST?)
s tands  for union of source and target sets of sort
and operation mappings where the arity operators
for each operation name set are maintained.

3 .3 .3 .  ModPascaL

I n  the foLLowing context-sensitive conditions wiLL be given
for the object domains introduced in sec. 3.1.2. The fuLL set
of conditions for ModPascaL and more detaiLs may be found in
[OLt 84a].

Let m e ModuLe_ type .  Then its context-sensitive correctness is
defined as foLLows:

November 1985



38 3 .2 .g ;  ModPascaL

MU1: m correct  :¢==e (useL  m) cor rec t  gag (pubL icL  m) I
correct gag (LocaL m) correct gag (operationL m)|
cor rec t  gag m in te r face  cor rec t

MU11:  usL  :=  (useL  m) cor rec t  :<==>  Every  used  moduLe  or
enr ichment  i s  v is ibLe  and  cor rec t  gag no cycLes
in  the  use - reLa t ion  occur  gag aLL iden t i f i e rs
prov ided by  the  in te r face  IM  o f  aLL used
ob jec ts  a re  un ique  (poss ibLy  th rough  appropr ia te
pre f ix ing ) .

MU12: puL :=  (pubL icL  m) cor rec t  :¢==> For  every  eLement
oph of  puL i t  hoLds:
case  oph € Proc_head : (p roc_ id  oph)  and

(paramL oph)  con ta in  un ique  ident i f i e rs  gag
V i € (Length ( (paramL oph) ) )  .
( t ype  ( f i r s t  ( res t  H (paramL oph) ) ) )  €
( I „+1  u { m _ i d } )

gggg oph € Func_head : ( func_id  oph)  and
(paramL oph)  and  ( resuLt  oph)  con ta in
un ique  iden t i f i e rs  gag
V i € (Length ( (paramL oph) ) )  .
( t ype  ( f i r s t  ( res t  H (paramL oph) ) ) )  e
( IHW1 u {m_id})
gag ( resuLt  oph) € Iflv1

cgse  oph e Init_head : (init_id oph )  and
(paramL oph) conta in  unique ident i f ie rs  gag
V i € (Length ( (paramL oph) ) )  .
( t ype  ( f i r s t  ( res t  H (paramL oph) ) ) )  € INW1

gag a t  Leas t  one  in i t i aL  header  occurs .

MU13:  Lp  :=  ( LocaL  m) cor rec t  :¢==>  (LocaL_ typeL  Lp )
cor rec t  gag (LocaL_varL  Lp )  cor rec t  gag
LocaL_operationL Lp) correct  gag
Length  ( (LocaL_varL  Lp ) )  > 0

MU131: L tL  :=  (LocaL" typeL  Lp)  cor rec t  :<==e no in t roduced
type  i s  a moduLe type  gag aLL type  iden t i f i e rs
are  un ique  gag aLL  occur r ing  type  iden t i f i e rs
are  e i ther  de f ined  in  L tL  o r  con ta ined  in  IM¢1

MU132: LVL :=  (LocaL_varL  Lp)  cor rec t  ;<==e aLL var iabLe
names a re  un ique  gag aLL var iabLe  types a re
e i ther  con ta ined  in  I „+1  o r  a re  impL ic i t  non-
moduLe  types

MU133: LoL :=  (LocaL_opera t ionL  Lp) cor rec t  :¢==> For  every
eLement oph  of  LoL i t  hoLds:
case  oph € Proc_head : (p roc_ id  oph)  and

(paramL oph)  con ta in  unique ident i f iers  gag
V i € (Length ( (paramL oph) ) )  .
( t ype  ( f i r s t  ( res t  H (paramL oph) ) ) )  e
( I „+1  u Cm_id} u {< type  iden t i f i e r  of  L tL>} )

gggg oph e Func_head : ( func_ id  oph)  and
(paramL oph)  and  ( resuLt  oph)  con ta in
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MU14:

MU141:

MU1411 :

opL

3 .2 .2 .  ModPascaL 3 9

unique identifiers gag
V i e (Length((paramL oph))) .
( t ype  (first (rest “ (paramL oph)))) e
(IMW1 v {m_id} u {< t ype  identifier of LtL>})
fing (resuLt oph) € ( I „+1  u {m_id} u
{< t ype  identifier of LtL>})

: =  (operationL m) correct :¢==> For each pubLic
and each LocaL operation heading of puL and LoL
there is exactLy one operation definition in opL
gng no other definition occurs gag aLL operation
definitions of opL are correct.

opd € opL i s  correct :¢==$ Let 11 : =  IH v

MU14111 :

Remarks: a )

b)

c)

({m_id‚ <LocaL  type identifiers>}, {<operation
identifiers of puL and LoL>}), I2 : =  11 \
( ß ,  {<initiaL operation identifiers of puL>}),
Lv : =  {<variabLe identifier of LvL> } :
fp : =  {<formaL parameters of opd in puL>},
V1 :=LVU 'FPÄD_
case opd € Proc_spec : (body opd) is correct

with I, and V1
cage opd € Func_spec  : (body opd) is correct

with I2 and V1
case opd € Init_spec : gg; 13 : =  Il \

(¢, {<procedure and function identifiers in
puL>}) in

( body  opd )  correct with I3 and V1;
gng gLobaL  variabLes of (body opd) are

contained in Lv

bd : =  (body opd) correct with I and V :¢==> aLL
(free) type identifiers of bd are contained in
1+1 gag aLL (free) operation identifiers of
bd are contained in 1&2 gag aLL (free) variabLe
identifiers are contained in V gng bd is
bLock-correct.

(body opd) bLock-correct :¢==e (see EOLt 84a] for
the correctness of bLocks and remark c )  beLow>

The moduLe identifier m_id is associated to the
embedding type definition domain Type_def (see
EOLt 84b], sec. 2 .1 .2 ) .  Its correctness is
assumed.
The interface IN = (OB ,  OP) of a moduLe M is the
vaLid name space generated by aLL moduLe (OB) and
moduLe operation (OP) names of (transitiveLy) used
objects. It is aLso caLLed imported interface,
whereas the exported interface contains
additionaLLy the moduLe name and moduLe operation
names of the current moduLe M .
Contrary to the concrete ModPascaL syntax of [OLt
848 ]  we here assume no impLicit parameters of
procedures, functions and initiaLs. Therefore
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40 3.21;, ModPascaL

(paramL oph) in MU12 seLects aLso the (first-
position) moduLe argument (see aLso sec. 3 .2 .2 . ,
CMZ in [ O L t  848]).

d) The co r rec tness  of bLocks is coincident with Pas-
c a L  context—sensitive conditions for bLocks except

the restrictions that the set of g L o b a L  variabLes

is restricted t o  the set of LocaL variabLes of the
moduLe and that no nested moduLe type definitions
occur.

Let e e Enrich_def. Then its context-sensitive correctness is

defined as foLLows:

EN1 :

EN11:

EN12 :

EN121 :

EN13 :

9 correct :¢==$ (enr_id e )  is unique in the environ-
ment of e and (useL e) is correct and (addL e )
is correct and (operationL e )  is correct

uL : =  ( u s e L  m )  correct :¢==$ Every used m o d u L e  o r

enrichment is visibLe and correct gag no cycLes
in the use-reLation occur ggg aLL identifiers
provided by the interface IE of at; used
objects are unique (possibLy through appropriate
prefixing).

at : =  (addL e) correct :<==$  aLL operation
identifiers introduced in aL are distinct and
for aLL eLements ad of aL it hoLds:
(add_id ad) e {idl id e IE+1 A id is moduLe

name} ggg
( pubL i cL  ad) is nonempty gag
(pubLicL ad) is correct in the environment of

(add_id ad)

(pubLicL ad) correct in (add_id ad) :c==>
( pubL i cL  (add_id ad)) u ( pubL i c  ad) is correct
<see MU12>

oL : =  (operationL e) is correct :¢==> For each
pubLic operation heading of each eLement ad of aL

there is exactLy one operation definition in oL

fing no other operation definition occurs fing
aLL operation definitions are correct

EN131:  opd € oL is correct :¢==b Let mod : =  (add_id ad)
where ad denotes the eLement of aL in which the
associated operation header is defined in
get I1 := IE u (9, {(operation identifiers
defined in aL>)), Lv : =  {<LocaL  variabLe
identifier of mod>}: fp : =  {<formaL parameters of
opd in aL> } ‚  V; : =  L V  \: 'Fp in

case  opd € Proc_spec gg Opd € Func_spec :
( body  apd )  is correct with I1 and V1

cgse opd € Init_spec : gg; I, : =  I; \
( ß ,  {<procedure and function identifier in
(pubLicL ad)>}) in
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3 .2 .2 .  ModPascaL  41

( body  opd )  i s  cor rec t  w i th  I a  and V1 ;
gag gLobaL  va r i abLes  of  ( body  opd )  a re

contained i n  Lv .

EN1311 :  ( body  opd )  co r rec t  with I and  V :¢==$ ( see  MU1411>

Remarks :  a )  The interface IE  = (OB ,  OP) o f  an  enr ichment  E i s
} the  vaL id  name space genera ted  by aLL moduLe (OB)

and moduLe ope ra t i on  (OP) names o f  ( t r ans i t i veLy )
used  ob jec t s .  I t  i s  caLLed  impor ted  i n te r face
whereas  the  expo r ted  i n te r face  con ta ins
add i t i onaLLy  t he  moduLe  ope ra t i on  names  o f  t he
cu r ren t  en r i chmen t  E .

Let  i e I ns t_de f .  Then i t s  context-sensitive cor rec tness  i s
def ined as :

101 :  i co r rec t  :¢==$ ( i ns t_ i d  i )  i s  unique i n  t he
env i ronment  of i gag ( useL  i )  co r rec t  gag
(ob j_ac tL  i )  co r rec t  gag ( t ype_ac tL  i )  co r rec t
gag ( op_ac tL  i )  co r rec t  gag a t  Leas t  e i t he r
t he  useL i s t  o r  some ac tuaL i za t i on  L i s t  a re
nonempty  gag ( useL  i )  and  the  ac tuaL i za t i ons
t oge the r  desc r i be  a s i gna tu re  moph i sm ( see
remark  a )  beLow)

1011 :  UL :=  (useL  i )  co r rec t  :¢==$ Every  used  i ns tan t i a t i on
i s  v i s i bLe  and  co r rec t  gag no  cycLes  i n  t he
use - reLa t i on  occu r  gag t he  un ion  of  aLL  used
ob jec t s  desc r i bes  a s i gna tu re  morph i sm.

1012 :  OL :=  (ob j_ac tL  i )  co r rec t  :<==# Fo r  each  eLemen t  ob
o f  oL  i t  hoLds :
( new  ob )  and  (oLd  ob )  a re  e i t he r  bo th  moduLe o r
en r i chmen t  i den t i f i e r s  gag ( new  ob )  and
( oLd  ob )  a re  v i s i bLe  and  co r rec t .

ID13 :  t L  : =  ( t ype_ac tL  i )  co r rec t  :<==$ For  eve ry  eLemen t
t p  o f  t L  i t  hoLds :
( new  ob )  and  (oLd  ob )  a re  bo th  moduLe iden t i f i e r
gag ( new  ob )  and  (oLd  ob )  a re  occu r r i ng  i n
en r i chmen ts  t ha t  cons t i t u t e  an  ob jec t  ac tuaL i za -
t i on  eLemen t  o f  oL .

ID14 :  pL  :=  (op_ac tL  i )  co r rec t  : 222  Fo r  eve ry  eLemen t  op
of pL  i t  hoLds :
(new  op )  and  (oLd  op )  a re  pubL i c  ope ra t i on  names
of  ob jec t s  ( new  ob )  and  (oLd  ob )  of  some eLemen t
ob  o f  oL  gag t he  assoc ia ted  f unc t i onaL i t i es
obey  t he  s i gna tu re  morph i sm p rope r t y  ( see
remark  a )  beLow)

Remarks :  a )  The  concep t  of s i gna tu re  morph ism i s  very  c ruc iaL
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i n  this con tex t .  A f i r s t  definition i s  given be -
Low; whereas i t s  Definition: Sidnatung_morphism
Le t  081 ;  082 be  se t s  o f  object names (moduLes ‚
enrichments)‚ and  OP; deno te  t he  se t  o f  pubL i c
opera t i ons  o f  ob jec t s  i n  08 ; ,  i s { 1 ,2 } .
1 )  A mapping A l  : DP; __.> OB i *  (nonempty s t r i ngs

ove r  08 ; )  i s  caLLed  a r i t y  ( i  € ( 1 :2 ) ) .
I f  A (op )=ob lob , . . . obn :  t hen  ob l . . . obn -1  a re
caLLed  t he  sou rce  o f  op ,  and  ob "  t he  t a rge t  o f
op .

2 )  A t upLe  ( f yg )  o f  mapp ings  f :OB1  >082:
g:OP1 >OP2 i s  caLLed  s ignature  mocph ism,  i f
Vop € OP1 with A1(op )=ob1 . . . obn  .
A2 (g (op ) )= f (ob1 ) . . . f ( obn )

The a r i t y  o f  an  ope ra t i on  is  the s t r ing  cons i s t i ng
of aLL  pa rame te r  t ype  and  vaLue  type names .  The
s igna tu re  morph ism p rope r t y  says :  t ha t  t he  mapp ing
be tween  ope ra t i on  names p rese rves  t he  a r i t y  and  i s
compa t i bLe  w i t h  t he  mapp ing  be tween  ob jec t s .

Le t  i e I ns tan t i a te_ type .  Then i t s  con tex t - sens i t i ve  co r rec t -
ness  is def ined  by :

1T1 :  i co r rec t  :¢==e (base_ type  i )  is a moduLe o r

I T11 : OL

enr i chmen t  ob jec t  and  (ob jec tL  i )  is co r rec t
and  (ob jec tL  i) is appL i cabLe  t o  ( base_ type  i )

: =  ( ob jec tL  i )  co r rec t  :¢==$ Eve ry  eLemen t  o f  oL
is a y i s i bLe  and  co r rec t  i ns tan t i a t i on  ob jec t
ang  Le t  s i g  deno te  the  un ion  o f  aLL  i ns tan t i a t i on
ob jec t s  of 0L  in s i g  i s  a s igna tu re  morph ism

I T12 :  oL  i s  appL i cabLe  t o  ( base_ type  i )  :¢==>  aLL  sou rce

Remarks : a )

b )

ob jec t s  o f  s i g  a re  con ta i ned  i n  t he  h i e ra r chy
spanned  by  (base_ type  i )

The i ns tan t i a te  t ype  i den t i f i e r  i s  assoc ia ted  t o
t he  embedd ing  type  de f i n i t i on  doma in  Type_def  ( see
[OL t  SAD];  sec .  2 .1 .2 . ) .  I t s  co r rec tness  i s
assumed .
The appL i cab iL i t y  i s  de f ined s t ronger  i n  sec .
3 .7 .2 .  o f  [OL t  84b ]  ( ope ra to r  Comp?) such  t ha t
h i e ra r ch i caL  cond i t i ons  a re  respec ted .  Fo r  t he
purposes  o f  t h i s  paper  IT12  su f f i ces .
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3,3, Semantic Domains and Semantic Funct ions

The semantic domains introduced in this section are choosen
such that a concise and sufficient description is possibLe of
both Languages a s  w e L L  a s  of the correctness concept of s e c -
tion 4. Therefore the number of domains i s  increased compared
to the case of a singLe Language semantics. On the other hand,
there are domains that wiLL serve for the semantics definition
of ASPIK gag ModPascaL: and are aLso important in sec. 4 (9.9.
the domain ALg of strict aLgebras). This is intended since it
f a c i L i t a t e s  t he comparison of ASPIK  and ModPascaL structures.
The set of domains is based on EOLt 84b].

Section 3.3.2. deaLs with semantic functions. ALso there are
some additions and modifications compared to [OLt 84b] since
the treatment of ASPIK constructs requires different
functionaLities. DetaiLs of ModPascaL reLated semantic func-
tions are omitted here; detaiLs of the construction of the
centraL domain A L g  are postponed (serving a s  target domain for
a L L  object definitions; s ee s e c .  4 . 2 . ) .

ASPIK: as defined in [BV 83] and [BV 85 ] ,  was originaLLy sup-
pLied with a category-theoretic semantics. For the purpose of
this paper and our modified version of ASPIK the semantics has
been reformuLated in terms of a denotationaL semantics com-
patibLe with those of ModPascaL. This aLso infLuenced the set
of empLoyed domains.

3.3.1. Domains

' The  foLLowing semantic domains are used in the semantic
cLauses of sec. 3.4.:

F L a t  Domains:

Q BOO;
= ( t r ue ,  faLse}: The booLean vaLues.

INT
= { . . . ,  -2‚ - 1 ‚  0: 1 :  2: . . . } :  The integer vaLues.

;.
= { i d l  i d  € { A ,  nun ,  2 ,  D '  . . . I  9 } . . -  A f i r ‘ S t ( i d )  € { D '  . . . I

9 } } :  Identifiers are strings of Letters and digits, starting
with a Letter.

M a p
= I d  ——> Id: serves as domain for mapping definitions by ASPIK

map-objects or ModPascaL instantiations.

A L g
= + {ALgEZJI E is signature}: The domain of aLgebras. It is

constructed as the direct sum ( o r  coaLesced) sum of signa-
ture dependant aLgebra domains. ALg is not "the set of
sets": but a set of aLL interesting strict aLgebras to
describe semantics of data types; see sec. 4.2.
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Loc
= {an  unbound domain of Locat ions} :  I f  Locat ions are inter-

pre ted  as  ma in  memory  addresses :  Loc  couLd  be  seen  as  in -
t eger  subse t .  Bu t  every  in te rpre ta t ion  in to  d is t ingu ishabLe
eLements wiLL work .

ALgQuaL
= (SPEC:  MAIN :  BOOLEAN:  INTEGER:  REAL:  CHAR:  SCALAR:  SUBRANGE:

ARRAY:  RECORD:  F ILE :  SET:  POINTER:  MODULE:  ENRICHMENT} :  The
aLgebra  quaL i f i ca t ions  ind ica te  the  bas ing  s t ruc ture  fo r  an
aLgebra .  MAIN  re fe rs  to  the  ma in  p rogram aLgebra .

ObQuaL
= {CTASEL:  MODSEL:  SORT:  REPSEL :  ENRSEL :  REPOB:  LAB :  CONST:

VAR:  PROC:  FUNC:  IN IT :  INST}  + ALgQuaL:  The ob jec t  quaL i f i -
ca t ions  ind ica te  e i ther  the  bas ing  ModPascaL fea tu re  o f  an
i tem or  the  bas ing  ModPascaL type .

VaLQuaL
= {C l  C = TOItAJ+1 for  A € ALg} :  ALL carr iersets  of  interest

fo r  aLgebras  in ALg .  VaLouaL may be seen  as  a f ac to r i za t ion
of  ALg (TOI  = t ype  of  in te res t ;  see  EOLt 84bJ ) .

Ar i ty
= (Id* x Id): provides ar i t ies  ( func t ionaL i t i es )  fo r  ASPIK

opera t ions .

ArDes
= ( Id  ——> Ar i ty ) :  t echn icaL ;  combines operat ion and a r i t y .

SigMorph
= (Map x Map x ArDes) :  S ignature morphisms.  The f i rst  two com-

ponents  conta in  the  ob jec t  and  opera t ion  mapping resp .  The
th i rd  component i s  a se t  of  a r i t y  assoc ia t ions .  An exac t
de f in i t ion  i s  g iven  in  sec .  4 .3 .4 .

AQnseOps
= {c ta? :  use? :  sor ts? :  p_op_id?:  p_op_ar?:  cons t r? :  aux_ id? :

aux_op_ar? :  ca r_de f? :  pr_op_id?:  pr_op_ar?:  cons_de f? :
sop_de f?} :  The se t  of predef ined ident i f ie rs  fo r  syntac t ic
opera to rs  on  spec i f i c t ions .  They a re  connec ted  to  the  no t ion
of  e ta -env i ronment  (see  def in i t ion  3 .4 .1 . -1 ) .

MCLaunps
= {maLg?:  muse?: p_proc_id?:  p_func_id?: p_init_id?:

L_ type_ id? :  L_proc_ id?:  L_func_id?:  L_var_ id?:  p_proc_ar?:
p_func_ar?:  p_ in i t_ar?:  L_proc_ar? :  L_ func_ar?:  L_var_ type?:
map_def?} :  The se t  of  predef ined  ident i f ie rs  fo r  syn tac t ic
opera to rs  on  moduLe type  de f in i t ions .  They a re  connec ted  to
the  no t ion  of  mod-env i ronment  (see  de f in i t ion  3 .4 .2 . -1 ) .

ECLauseOps  _
= {enr? :  euse?:  add_ id?:  add_proc_id?:  add_func_id?:

add_in i t_ id?:  add_proc_ar?:  add_ini t_ar?:  add_func_ar?:
copgdef? ) :  The se t  of  predef ined  ident i f i e rs  fo r  syn tac t ic
opera to rs  on  enr ichment  de f in i t ions .  They are connec ted  to
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the notion of enr-environment (see definition 3 .4 .2 . -2 ) .

RCLauseOps
= {rob?: ruse?: connect?: operations?: rf_ar?: rf_def?}: The

set of predefined identifiers for syntactic operators on
rep-objects ( s e e  s e c .  4 .3 . ) .  They are connected t o  the no-
tion of rep-environment (see definition 4 .3 .4 . -1 ) .

Not necessariLy fLat domains:

Store
= ( L o c  ——> VaL): Links Locations and v a L u e s .

Env
= ( I d  ——> (Loc x ObOuaL x VaLGuaL)): Each identifier id 6 I d

is connected to a tripLe. The second and third components
describe properties of i d .

State
= Env x Store : Characterization of a state as tupLe. See aLso

the memory modeL in sec. 3 .3 .3 .

Trans
= (State ——> State): State transformation that are induced by

programming Language constructs wiLL be described with T 6
Trans.

ETrans
= (State ——> (State x VaL)): AnaLogousLy Trans: but with

v a L u e s  o u t of V a L .

OpDen
= + (VaLQuaL“  ——e VaLQuaLm): Function between n-ary and

n : m € N

m-ary cartesian products of VaLQuaL. A generaLization of
functions of aLgebras of ALg.

: D_BOOL + D_INT + Id + ALg + VaLQuaL + OpDen
Des
( I d  x OpDen) :  technicaL; combines operation and denotation.

F
”

D_BOOL = (true: faLse}
D__INT : ( . . . :  ‘ 1 :  U :  1 :  . . . }
I d  : { i d l  i d  € { A I  . . . :  Z: O I  ...: 9}+ A fiPSt(id) €

{ 0 :  . . . :  9}}
Map = I d  ——> I d
ALg = + {ALgEZJ I  Z is signature}
Loc = {unbound domains o f  Locations}
ALgQuaL = (SPEC: MAIN: BOOLEAN: INTEGER: REAL: CHAR:

SCALAR: SUBRANGE: ARRAY: RECORD: FILE: SET:
POINTER: MODULE: ENRICHMENT}

ObQuaL ' ALgQuaL + {CTASEL: MODSEL: REPSEL: ENRSEL: SORT:
REPOB: LAB: PROC: FUNC: VAR: INIT}
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VaLQuaL = {c I c = T01<A>+1 for A e ALg}
Va L = D_BOOL + D_INT + I d  + A L g  + VaLouaL  + OpDen
Store = Loc ——> V a L
Env = I d  ——> ( Loc  x ObQuaL x VaLOuaL)
State = Env x Store
Trans = S t a t e  ——> State
ETrans = Sta te ——> ( S t a t e  x V a L )
OpDen = + {VaL “  ——> VaLml n; m e N}
Arity = (Id* x Id)
ArDes = (Id  ——> Arity)
ACLauseOps  =
MCLauseOps = ( a s  above)
ECLauseOps =
RCLauseOps =

I n  the foLLowing we assume that the syntactic domain I d  and
the semantic domain I d  are identicaL.

3 .3 .2 .  Functions

The syntactic and semantic domains are Linked by the foLLowing
functions, that are based on the overaLL domain Constr:

Constr = Spec + Sp_head + Op + . . .  +
ModuLe_ type  + PubL i c  + ...

(i.e. Constr i s  the coaLesced sum of aLL syntactic domains
used in sec. 3 .1 .  for ASPIK and ModPascaL; in the ModPascaL
case: aLL domains of EOLt 84b] are contained in Constr.
AmbiguousLy denoted domains D are assumed t o  be tagged appro-

priateLy ( D A ,  D„ ) ) .

c € Cons t r :

If no exception for c is Listed beLow: the semantic function
M: Cons t r  ——> State ——> State

is appL i cabLe .

M Links an initiaL state prior execution of a Language con-
struct to a state after execution of it. M is defined by the
semantic cLauses of sec. 3 .4 .  which are eLaborated to an ap-
propriate LeveL of d e t a i L .

Notation: ELements of Constr wiLL be encLosed in doubLe
brackets E and I. ELements (g. e) of State wiLL be
suppLied to M with juxtaposed components.
ExampLe: MECI§6

C e Expr:

( b )  E: Expr -—> State ——> (State x VaL)
and MEcflge =? EEcIQs

c e (Stand type v Stand type gen):

( c )  Mt: (Stand_type v Stand_type_gen) ——> State ——> (ObQuaL x
VaLGuaL x ALg)
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3 .3 .2 .  Funct ions  47

and MEcs  =9 MtEcflgs

C e ModuLe_te:

(d )  Mm: ModuLe_ type  ——> State
-——> ( (ObQuaL x VaLQuaL x ALg) x State)

and  MEc lgs  =9 MmEcflge

C e Enr ich  de f :

(e )  Me: Enrich_def —w> S ta te  ——> State
and  MEcflfis =9 MeEcflgs

C € Instantiate t ype :

( f )  M i :  Ins tan t ia te_ type  ——> Sta te  ——> ( (ObouaL x VaLQuaL x
ALg) x State)
and  MEclgs =? M iEc lgs

In  the  semantic cLauses  for  ModPascaL aLso  the foLLowing
aux iL ia ry  func t ions  occur :

newLoc
newLoc gets  a cur rentLy  unused Locat ion of  an environment.

newLoc:  Env  ——> Loc
newLoc(§ )  :=  1 Loc . V id  € I d  . gt id )+1  # Loc

searchdef
searchde f  Looks fo r  the aLgebra  to  which  an  opera t ion  i s  asso -
ciated; i t  re tu rns  the  aLgebra  iden t i f i e r .

searchde f :  Id  ——> Sta te  ——> Id
searchde f (op id )§s  :=

Le t  id  :=  L id1 € I d  . § ( id1 )¢2  € ALgQuaL and
Let  (C ,  F )  :=  6 (§ ( id1 )§1 )  in

opid  e opnames(F) in
i d

( l  re turns  LN i f  no unique id1 ex is ts  wi th  the  required
proper ty )

s tandard
i nd ica tes  whether  an  ident i f ier  denotes  a s tandard ob jec t ,  and
prov ides  i t s  in i t i aL i za t ion  vaLue in  the  posi t ive  case .

s tandard :  Id  ——> (D_BooL  x VaL)
s tandard< idJ  :=

ii i d  = BOOL ——> ( t rue :  faLse) eLse
ii i d  = INT  ——> ( t r ue :  0)  eLse

eLse  ( faLse :  L)
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0!" de

Though  we a re  considering an  appL i ca t i ve  Language :  f o r  r easons
of  compa t i b i L i t y  an  env i r onmen taL  v iew i s  t aken  i n  the  f o rmu-
La t i on  o f  seman t i caL  cLauses  f o r  ASP IK .  Tha t  means t ha t  t he
decLa ra t i on  o f  a spec  o r  t he  evaLua t i on  of a t e rm  takes  pLace
in  a given argument  state; t he  state i s  mod i f i ed  i n  t he  case
o f  decLa ra t i on .  Th is  v iew i s  no  a -p r i o r i  v i oLa t i on  o f  t he
requ i remen ts  f o r  appL i ca t i ve  PLs ;  as  g i ven  i n  sec .  2 .1 .  I f  t he
r uLes  a re  respec ted  - as  we do - ‚  t hen  t he  s ta te -o r i en ted
modeL shows t he  same behav iour  as  e .g .  any  pu reLy  f unc t i onaL
modeL t ha t  i n  a d i f fe ren t  way keeps  t r ack  o f  i t s  v i s i bLe
ob jec t s .

Ou r  s ta tes  f oLLow a two -LeveL  memory  modeL  ( t ha t  was  p r ima r i Ly
used  f o r  p rocedu raL  PLs :  bu t  f i t s  aLso  f o r  appL i ca t i ve  PLs ) :
The f i r s t  LeveL ,  represented by t he  domain  Env  o f  env i ron-
men ts ,  L inks  iden t i f i e rs  t o  a vec to r  o f  vaLues .  One of t hem i s
a Loca t i on  o f  a ( v i r t uaL )  memory ,  i n  wh ich  an  assoc ia ted  vaLue
i s  s to red .  Th is  r ep resen ts  t he  second  LeveL  o f  t he  memory
modeL ,  and  i t  i s  f o rmed  by  t he  doma in  S to re .

Using g € Env: s 6 Sta te  we have for  id  é I d :

i d  ___—___") ( L o c a t i o n ,  I I I )

s

( vaLue )

Fo r  moduLes /en r i chmen ts  and  spec  ob jec t s  we  have

obq  :=  ! ( i dJÖZ  € (MODULE: ENRICHMENT: SPEC}

i d  -———————9 (Loca t i on ,  obq: V e VaLQuaL)

AeALg

(No te  the ex tens ion  of the memory modeL i n  sec .  4 .3 .4 . ) .

3 .5 .  Seman t i c  CLauses

Be fo re  we s ta te  the  mos t  impor tan t  seman t i caL  equa t i ons  f o r
ASPIK  and  ModPascaL ;  we  i n t r oduce  some  no ta t i onaL  conven t i ons
f r equen tLy  occu r r i ng  La te ron .

No ta t ions

N deno tes  t he  se t  o f  na tu raL  numbers .

For  a na tu raL  number  n :  ( n )  deno tes  t he  se t  { 1 ,  . . . :  n } :  and

For  vec to rs  v = ( v1 ;  . . . ,  vn ) ;  (V1 :  . . . ,  v„)+i o r  v i i  denotes
the  i - t h  component  v ;  o f  v .
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3 .4 .1 .  ASPIK  49

For  a se t  3 ,  @(s )  denotes  the  power  se t  of  s .

ä denotes the unique existentiaL quant i f icat ion.

For  a mapping m: A ——> B def ined by m: ;  (A  x B ) :  the subs t i tu -
t ion  mEa ** a1 ]  denotes  (m \ ( ( a :  m(a ) ) } )  u ( ( a ,  a1 ) } .

Four  operators  a re  used  fo r  funct ionaL  abs t rac t ion :
- Ax . t e rm:  Bounds f ree  occur rences  of  x in  t e rm.  This

abs t rac t ion  i s  equ ivaLent  to  a def in i t ion  ' F ( x )  =
t e rm '  o f  a func t ion  F .

- Lx  . cond  :
Bounds x in cond and quaLi f ies  the x as unique to
fuLLf iLL  cond. EquivaLent to :  ä x . (cond =
t rue ) .  I f  no un ique  x ex is ts ,  L evaLua tes  to  L .

ExampLe: n :=  L i  . ( i +1=5 )  =? (n=4 )
- f i x  f . t e rm:

Bounds  f ree  occur rences  o f  f i n  t e rm and  denotes
the  Leas t  f i xpo in t  o f  the  func t ionaL  equa t ion  F =
termEFJ where termEFJ is  a t e rm w i th  f ree
occur rences  o f  F .
ExampLe: f i x  f . (An . ii n = 0 than  1 eL§e

n* f (n -1 ) )
denotes  the  Leas t  f i xpo in t  of  the  func t ionaL
equat ion  F (n )  = ii n = 0 then  1 eL§e  n *F (n -1 ) ;
tha t  i s  the  s tandard  facuLty  func t ion .

- n x . cond :
bounds  x in  cond  and quaL i f i es  x as  one poss ibLe
vaLue tha t  sa t i s f i es  cond .  Equ ivaLent  to :  3 x .
( cond  = t rue ) .  I f  no  vaLue ex is ts  tha t  sa t i s f i es
cond:  n evaLuates  to  L .

ExampLe: n :=  n x . ( x *x  = 9 )  => n € ( 3 :  - 3 } )

I f  i ndexed  i t ems  occur  themseLves in  index pos i t ions :  the  in-
d ices  a re  jux taposed  in  paren thes is .
ExampLe:  xn  _ )  Y t  ) _ )  ZYt t  ) :

Xi }  ........> Y)’.( I. a t i )

3 .4 .1 .  ASPIK

As ment ioned  above ,  th is  sec t ion  i s  an  abbreviated and con-
densed  re fo rmuLat ion  o f  the  ca tegory - theore t i c  semant ics  of
ASPIK as  g iven  in  [BV  85 ] .  For  reasons  descr ibed  in  sec .  4 .1 .
we do no t  t rea t  the  semant ics  of  ax iomat ic  spec i f i ca t ions ;  in -
s tead  o f  we p resent  a semant ics  o f  aLgor i thmic  spec  ob jec ts  in
fuLL  de ta iL  wh ich  i s  no t  equ ivaLent  to  EBV 85 ]  bu t  f i t s  in to
our  purposes .  To adapt  i t  to  the  denota t ionaL  env i ronment ;
some add i t ionaL  Opera to rs  and  fea tu res  have  to  be  incLuded .
They cover  mostLy the  invoLva t ion  of  spec i f i c  syn tac t ic  in fo r -
mat ion  in  s ta tes  and  the  p rocess ing  o f  th is  in fo rmat ion  in  the
computa t ion  o f  spec i f i ca t ion  semant ics .

The f i rs t  def in i t ion  of  th is  k ind“  deaLs wi th  a
character i za t ion  o f  environments g € Env tha t  provide
predef ined  ident i f i e rs  tha t  coLLec t  in format ion about  syn-
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50 3.4.1. ASPIK.

tactic st ructures  of specifications. This information must be
gathered because our appLication of this semantics in sec. 4
must have access to the syntactic items that generated the

specific meaning. This i s  simiLar to famiLiar issues of im—
perative programming Languages as type checking or scoping,
which - if modeLLed in a denotationaL setting — wouLd require
an anaLogous proceeding. I n  generaL: it wouLd suffice t o  con-
sider onLy the overaLL meaning of a spec object 8 ( a n
aLgebra): and incorporate this in semantic cLauses invoLving
S.

Syntactic information is stored in speciaL stats of environ-
ments that contain for a L L  visibLe spec objects reLevant

vaLues of specific cLauses.

3.4.1.-1 D e f .  Iota-environment]

Let ACLauseOps e Id with
ACLauseOps = { c t a ? ‚  use? ‚  sorts?‚ p_op_id?‚ pr_op_id?‚ con -

str?‚ aux_id?‚ p_op_ar? ‚  aux „op_ar? ‚  p r_op_ar? ‚
ca r_de f? ‚  cons_de f? ‚  op_de f? } .

Then g € Env is caLLed eta-environment, if for x € ACLauseOps
a) §(x) # L, and
b) § ( x ) t 2  = CTASEL n

Remark: Associated to every eLement e L  of ACLauseOps is a

(ambiguousLy denoted) speciaL function eL that evaLu-
ates to syntactic information if appLied to specifi-

cation and operation identifiers:

a t  = ct§?:
Associated operation: cta? : Id -—> State ——> D_BOOL
§(cta?) = (Lac ,  CTASEL: L )

6(Loc) = {(id. tv) | id e Id. tv e D_BOOL}
cta?(id)§s : =  6(§(cta?)¢1) (id)

9L € {ugsze 59PtfilA_E_2B_iQlL_2£_2R_iL_£QD££ElL_£EÄ_lQll=
Associated operation: eL : Id ——> State ——> IdL
:(eL) = (Lee, CTASEL: L

)

6 ( L O C )  = { ( i d l  ( i d l l  . . . :  i d „ ) ) l  id: i d :  € I d :

i e (n); n e N}
eL(id)§6 := s(§(eL)+1) (id)

gt a {b op er?: aux op_ar?: pr op e r? } :
Associated operation: at: Id ——> Id ——> State ——> Arity

§(eL) = (Loc, CTASEL, L
)

6(Loc) = {(id‚ ad ) |  id 6 Id, ad e ArDes}
eL(id1,id2)§6 := 6(§(eL)¢1)(id1)(id2)>

eL e { can_de f? ‚  congrdef?, op def?}:
Associated operation: eL : Id ——> State ——> Op_defL
§(eL) = (Loc, CTASEL: L )
6 (LOC)  = { ( i d l  (Opd l l  . . . :  Opd„ ) ) l  id  € I d !  O p d ;  € Op_d9f ‚

i e ( n ) ,  n e N)
eL(id)§s : =  6(§(eL)+1) (id)

I
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3 -4 .1 .  ASPIK  51

In a given state ( g ,  s), s(§(op)¢1) for op e ACLauseOps
denotes  a functionaL reLation that, appLied to a specification
identifier, evaLuates to syntactic information about the
specification (for iLLustration, see definition 3 .4 .1 . -2  be-
L o w ) .

Notation Let R := C(x ‚ y ) l  x 6 X: y e Y} denote a LefttotaL:
right unique reLation on ( X  x Y). Then R(x) denotes
the appLication of R to x 6 X and R(x) = y :¢==>
( x ‚ y )  € R. If R ; ( X  x Y x 2): then R(x)(y) = z ¢==>
( X I Y I Z )  € R

The next operator is technicaL. By appLication of EXT, the
functionaL reLation of an eLement of ACLauseOps is extended
( i . e .  source and target of the associated operation are
enLarged).

3 -4 -1 - ‘ 2  Def .  [EXT ]

Let CLauseVaL be defined a s  above.
Let (grs) 6 State with g eta-environment. Let

EXT:  I d  ——> I d  —-> CLauseVaL ——> State ——> State

with
EXT (id1:id2‚cv)g6 :=

ii 393 (id1 € ACLauseOps) gngn L gggg
(cgse id1 = cta?:

ii 33; (cv € D_BOOL) gngn L
gggg id1 € { use? ‚  sorts?‚ p_op_id?‚ cons t r? ‚  aux_id?‚

pr_op_id?}:
ii ng; (cv € I dL )  then L eLse
gg; 61:: 6[§(idl)¢1 ** 6<€<id1)+1)u{(id2‚cv)}] in

case id1 € {p_op_ar? ‚  aux_op_ar? ‚  pr_op_ar?}:
ii gg; (cv € ArDesL) then L eLse )

gg; 61 : =  6E§(id1)¢1 ** s(g(id1)+1) u (Cid2}x{?(cv)) in
case id1 e (car_def?, cons_def?, op_def?}:

ii 33; (cv € OpDesL) then L eLse
Let 5 1  := s[§(id1)¢1 ** s(g(id1)+1) u ({idz}x{?(cv))
l n
(E161 )

u

Remarks a )  v denotes the List transformation (into sets) of
s e c .  3 .1 .

b) EXT is appLied in the semantic cLauses beLow during
extraction of syntactic structures. Thereafter it
is possibLe to refer to these structures via the
s t a t e .

If for a given S € Spec  aLL ACLauseOps eLements shouLd  be
updated in a given state; the operator EXTEND is used:

3 .5 . ] . - 3  D e f .  [EXTEND]
Let s € Spec, ( g ,  s )  € State with 5 eta-environment.
Then the operator
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52 3 .4 .1 .  ASPIK

EXTEND:  Spec  ——> State ——> State
is defined as

EXTEND(s)§e : =
gg; s_id := (spec_id (sp_head s)),

( u l :  . . . ,  u “ )  ( u s e  (sp_head s ) ) :
( s l ,  . . . ,  sa) : (sorts (sp_head s)),
(01; . . . ,  ob) ( ops  ( sp_head  s)),
(a1, ...: ac) ( aux  (sp_body s ) ) ;
( c 1 ,  . . . ,  c d )  : ( cons  ( sp_body  s ) ) ,
(p1 ,  . . . :  pe) . (priv (sp_body s ) ) :
( aud1 ‚  . . . ,  audc )  (def_aux (sp_body s)),
(cadl, . . . :  cada) = (def_car (sp_body s ) ) :
( c o d 1 ‚  . . . ,  c o d a )  = (def_cons (sp_body s ) ) ,
(opdlp . . . ;  opdk)  = (de f_ops  (sp_body s)) in

Les (gl, 61) EXT(cta?, s_id, true)§6:
(gg, 62) : EXT(use?, s_id, ( u l ,  . . . ;  u„ ) )£161 ‚

EXT(SOPtS? r  S_idl ( 8 1 :  . . . :  s„ ) )5 ‚62 ‚
EXT<p_op_id?‚ s_id‚ (o id ;  l a i e (b) .

(op_id pi) = Cidil i € (b ) ) )g363 ‚
EXT(p_op_a r? ‚  s_id‚

(ops (sp_head s)))g464
(g„‚ 66) := EXT<pr_op_id?‚ s_id‚ (oid; l Si e (e) .

(op_id pi) = oidi))£565‚
EXT(p r_0p_a r? ‚  s_id‚

(priv(sp_body S) ) )§6662
(§., 63) := EXT(aux_id?‚ s_id‚ (oidil 5 i e (c) .

(op_id at) = oid;))§767,
EXT(aux_op_ar?, s_id,

(aux (sp_body s ) ) )§868 :  —;n

( g 3 l  6 3 )  :

( € * )  61,) :

( g s !  6 5 )

( g ? !  6 7 )  :

( g g !  6 9 )  :

«!=—g; ( g o )  6 ° )  : =  ( g g !  6 9 )  ‚if-„u

kg; ( : 1 :  6 1 )  = E X T ( c o n s t r ? z  S_idr ( C i ,  . . . ,  Cd) )g06° l
(ga, 62) : =  EXT(aux_def?, s_id, ( aud i :  . . . ,  audc ) )g161 ‚
( : 3 ,  63) : =  EXT(car_def?, s_id, (cadl, . . . ,  cada ) )g ‚ 62 ‚
(54, 54) = EXT(cons_de f? ‚  s_id‚

(COdll . . . :  codd ) )g363 ‚
( g „  65) : EXT(op_de f? ‚  s_id‚ ( opd1 ‚  . . . ,  opd„))g‘s4

in ( g g )  6 5 )

Remark: EXTEND produces a state in which aLL necessary syn-
tactic information about a spec is stored in sLots
defined by eLements of A C L a u s e O p s .

:.g,1.-5 Def. [ I F I ]
Let 8 denote a set and BOOL = (true, faLse} denote the booLean
v a L u e s .  Then, f o r  a function F : S ——> BOOL:  the extension [ F l
of F is defined a s

‚FI == { S I  5 € S gag F(s) = true}. n

The next definition introduces the important notion of a
Herbrand universe in terms of cta—environments. Herbrand
universes are sets of aLL weLL-formed terms buiLt from given
operation symboLs and arities.
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}4Au14:i_22£- EH3
Let (§:e) € State with ; eta-environment.
Let  id € I d  with g(id)+2 = SPEC: (s1: . . . :  s.) : =  sorts?(id)§s
Let  (c1: . . . :  c") : =  constr?(id)§s
Let  (5;; ... s i m t i ) ’  S a f m t a > + 1 ‚ )  : =  p_op_ar?(id: c;)§s: i €
( n )  m ;  € N

Then the flgrbrand:gniver§e(s) H,(1,: . . . :  H „ „  of id is (are)
defined by:

For 5 € ( a ) :  i € ( n )
H5(3 ,  is the smaLLest set with
i )  i n i m i z o g m s i t m t i y + 1 r = s i m c i e H S t J )

i i )  gi h l  € H s c i l w ’  " "  hmci )  € H : t i m t i 1 )  Eng s i t m t i ) + 1 )  =
5 3

. m C i ( h 1 l  I I I ,  hmt i l )  € H 5 3

i i l )  LSIJ )  € H5t3 )

The operator
H : Id -—> State ——> VaLL

is defined as
H(id)§6 : =  ( H 5 t 1 , :  . . . :  HSIOI )

where  (§:s) € State: g eta-environment and
a : =  Length(sorts?(id)§6). n

Remarks a )  The H image ( a n  eLement of VaLL) is aLways a
sequence of sets. The case of an empty set as
sequence eLement i s  excLuded by the con tex t  sensi-
tive conditions imposed on specification objects
(see sec. 3 .2 .1 . :  SP1221 :  SP124 ) .

b) The (canconicaL) Herbrand universe is taken as
(primary) semantics of sorts of specifications
( ' c a n o n i c a L  t e rm aLgebra'); see SEM_1 b e L o w .

We are now ready to s ta te  the  semantics of an ASPIK specifi-
cation.

Sem_1

MES: Speclge : =
(1) 333 s_id : =  (spec_i

( u l :  . . . :  u " )
( 31 ’  en . - I  S , )

( 0 1 ’  . . . :  O b )

( sp_head  3)):
(use (sp_head s)):
(sorts (sp_head s)):
(ops (sp_head 5)):

( a 1 :  . . . :  ac) ( aux  ( sp_body  5)):
( c 1 :  . . . :  c d )  : ( cons  ( sp_body  s ) ) :
( p l :  . . . :  pe) : (priv (sp_body s)):
(audi, . . . :  aud ) (def_aux (sp_body s)):
(cadl: . . . :  cada) (def_car (sp_body s)):
( c o d l :  . . . :  c o d a )  : (def_cons (sp_body s ) ) :
(opdl: . . . :  opdk) (def_ops (sp_body s)) in

H
I
II
II
I

I
I||

9
.

( 2 )  Let  (gl, 61) : =  EXTEND(s)§e AM

( 3 )  kg; U ;  : =  EEUiIESI 1 € ( n )  Än
Let U : =  U U 3 ,  1 € ( n )  in
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54 ;LA.1. ASPIK

( 4 )  gg; ( co ;  6 . )  : =  (g„  61 ) :  Loc ;  :=  nowLocC§ i -1 ) :

( 5 )

(6 )

(7 )

(8 )

(9 )

( 10 )

L

£2
?

3 :
C

" 0 (+ 5
55

-;
8%

r 0 fl %
&

&
r

0
0

d- i
E

§g(51 )  :=  (Loc i :  SORTI  L) :  6 '  :=  61 -1 [LOC1  ** L] :

i e (a )  39
:=  (g„  6 . ) :  Loc ;  :=  newLoc(§ ;_1 ) ,

p id  cad i ) )  :=  (Loc i :  FUNCI  L) :

{_ IELOC;  ** L] :  1 € ( a )  in
‚ =  ( 5 ° ,  6 ° ) :  Loc i  :=  newLoc(§ i_1 ) :

p_id 0a ) )  :=  (Loc i ,  FUNCI  L) :

61 -1 [LOCE ** L] :  i € (b )  in
:=  (gb ,  s b ) ,  Loc ;  :=  newLoc(§ ;_1 ) :

§ ; ( (op_ id  a i ) )  :=  (Loc i ,  FUNCI  L) ,

6 ;  :== 6;-1ELOC; 64 L] ;  1 € ( c )  in
(go :  60 )  :=  (fig:  Sc ) :  LOC; :=  hewLoc(§ ;_1 ) ,

§ ; ( (op_ id  p ; ) )  :=  (Loc i :  FUNCI  L) :

6 ;  :=  3 ;_1 [LOC;  ** L] :  1 € ( 9 )  an
(go !  60 )  :=  (ge l  6e )  an
(H1 :  . . . :  H. )  :=  H ( s _ i d ) g ° 6 °  an
( 91 :  31 )  :=  (go !  6 ° [Eo (81 )+1  H H1]! . . .

§o(5a )W1  «* Ha ]  _én
(A l l  ana l  Ac )  :=  f i x  f l ,  . . . ,  f c  _ Äfß .

gg; o id ;  :=  (op_id  aud i ) ,  i e ( c )  g3
(EE(op_body aud1)fl§EE§(oid; )¢1 +4 f1 ] :

II
O

‘9
II

O
‘“

Ic
m

'

(EE(op_body audc) l fä t f (o idc)+1 ** f c l )  in
( : 1 ,  61 )  :=  (go )  6 ° [§o ( (0p_ id  auch) )vb ‘ l  H Al l  Inu - I

§° ( (op_ id  audc ) )w1  ** Aa l )  an
(C1 :  . . . :  C. )  :=  f i x  f l :  . . . :  f ,  . AQE .

gg; C id ;  :=  (op_id C8d1): i € ( a )
such  that Cid ;  corresponds to  s ;  in

(E I (op_body  cad1 ) ]EE[ f (c id i )+1  ** f 1 ] ,

(EE(op_body cad . ) ] §§ [§ ( c i da )+1  *4 f a l )  in
(g„  s , )  :=  (g1 ,  61E§1((0p_id cad1 ) )&1  +4 C1 :  . . . :

§1 ( (op_ id  cad ))W1 ** ca],
§1 (51 )Vb1  H ( IO ;  U { 'LS I I  ‚ ) ) ,  unn l  '

§1<s .>+1  «H ( c .  u {L„ ( . J }  ) in I
(Co„  ...: Cod) :=  f ix  f l :  . . . :  fg  . REG .

gg; o id ;  :=  (op_id cod ) ,  i e (d )  in
(EE(op_body cod1) ]§§Ef (o id ; )+1  ** f , ] :

(EE(0p_body coda)]EE[E(oida)+1 ** fdJ) ;D
(K : !  63 )  :=  (gg ,  62£§3 ( (0p_ id  C0d1) )+1  H Col :  . . .

g ‚ ( (op_ id  codd) )w1  6* Coa l )  in
( 01 ’  Inn - I  OK)  := f i 1 :  . . . ,  f x  ‚AES .

gg; o id i  :=  (op_id opd- ) ,  i e ( k )  in
(EE(op_body opd,) I§§[E(oid; )¢1 +4 f1 ] :

(E[(op_body opdn)]§§[§(oidx)&1 ** fKJ) in
(g t . !  6,1.) :=  (g3 l  6 3 E § 3 ( ( 0 p _ i d  Opd1) )+1  H 01 ’  coa l

§3 ( (op_ id  opd „ ) )+1  ** O„ ] )  ;n
C :=  {64 (g4  (51 )+1 ) I  . . . !  64 (g4 (sa )+1 ) }

F :=  {A1} -  . . . I  Act  C1 :  . . . :  Car  C01 :  . . . :  COdI I I I
01 ,  . . . :  OK}  an

Loc  :=  nowLoc tg  ) ,
g ,  :=  ! [Sp_ id  ** (LOCI  SPEC:  L) ] :

65  :=  64ELOC ** (C I  F )  u U] in
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Remarks :  a )  No

3 .4 .1 .  ASPIK 55

contex t -sens i t i ve  cor rec tness  condi t ions are
considered  (see  sec .  3 .2 . ) .  ALso type checking and
scoping  are  d is regarded .

b )  The semant ics  of  a spec i f i ca t ion  i s  cons t ruc ted  as
foLLows:
( 1 )

(2 )

( 3 )

( 4 )

(5 )

( 6 )

( 7 )

November 1985

Ident i f iers  fo r  important  components are  in-
t roduced  by abs t rac t  syntax  seLec t ions .
Charac te r is t i c  predef ined (Opera t ion )  ident i -
f i e rs  of  a c ta -env i ronment  are  suppL ied  w i th
syntac t icaL  in fo rmat ion .  This wiLL be used  in
(5 )  where the  opera to r  H i s  appL ied  to  gener -
a te  Herbrand un iverses  fo r  the  new sor ts .
The semant ic  aLgebra  der ived  f rom aLL used
ob jec ts  i s  genera ted .  The  case  o f  used
spec te rm ob jec ts  i s  aLso covered  aL though  La -
te r  onLy spec te rm- f ree  spec i f ica t ions  wiLL be
cons idered  (see  sec .  4 .1 . ) .  The aLgebra  U i s
weLL-de f ined ,  s ince  in  the  case  of  cons t ruc -
t i ve  h ie ra rch ies  every  used  ob jec t  un iqueLy
corresponds to  a s t r i c t  aLgebra  A € ALg:  and
the  un ion  of  aLgebras  then  cons is ts  of  se t
union (o f  ca r r ie r  and opera t ion  se ts ) .  S ince
aLL ident i fers  a re  gLobaLLy unique (1 .9 .  in
g ) .  unwanted  iden t i f i ca t ions  of  car r ie r ‘  se ts
by the  un ion  p rocess  can  be  inh ib i ted  by an
appropr ia te  tagging of  eLements w i th  the
car r ie r  se t  iden t i f i e r .  (For  s t r i c t  aLgebras
and  aLgebra  un ion ,  see  aLso [OLt  84b ] :  sec .
2 .2 .1 . ) .  .
As a resuLt  of  the  ASPIK-spec i f i c  separa t ion
of  sor t /opera t ion  ident i f i e r  in t roduct ion
(spec i f i ca t ion  header )  and sor t /opera t ion
def in i t ion (spec i f i ca t ion '  body ) ,  a t  f i rst
sLots  are  es tabL ished  in  the  environment tha t
conta in  minimaL in fo rmat ion  about  each  ident i -
f i e r .
The Herbrand  un iverse  assoc ia ted  to  each  newLy
in t roduced  sor t  i s  genera ted  by appL ica t ion  of
the  opera to r  H (see  def in i t ion  3 .4 .1 . - 5 )  and
ass igned  as  p reL iminary  meaning to  the  sor t
iden t i f i e r .
The semant ics  of the  aux iL ia ry  operat ions i s
generated by paraLLeL f ixpoint  computation.
Every operat ion body is  funct ionaL (no s ta te
change 3 )  such  tha t  E i s  appL icabLe .  The s ta te
(E IE )  i s  assumed to  conta in  informat ion about
actuaL parameter caLLing and passing (ASPIK
paramete rs  a re  caLLed  and  passed  by vaLue ) .
The resuLt ing  monotonous s t r i c t  funct ions are
bound to  the  aux iL ia ry  opera t ion  iden t i f i e rs .
AnaLogousLy to  (6 ) ,  bu t  fo r  the  carr ier
pred ica tes .  ALSO: the i r  ex tens ion  - a res t r i c -
t ion  of  the  Herbrand un iverse  - i s  bound to
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associated sort  ident i f i e rs .
(8 )  AnaLogousLy to  (6 ) ,  bu t  fo r  cons t ruc tor  oper -

a t ions .
( 9 )  AnaLogousLy  to  (6 ) :  bu t  fo r  aLL  remaining

opera t ions  (=  non-aux iL ia ry ’  non-car r i e r
pred ica tes ,  non-cons t ruc tors ) .

( 10 )  Since E maps opera t ion  bodies to  s t r i c t  func -
t i o n s :  aLL  opera t ions  and  sor ts  can  be  t i ed
toge ther  in  a s t r i c t  aLgebra  tha t  aLso con-
ta ins  U .  This  ob jec t  i s  ass igned  as  semant ics
to  the  spec i f i ca t ion  iden t i f i e r .

The evaLuat ion of  opera t ion  bodies by E i s  def ined in Sem_2.
We assume:
Let  s e Spec .
Let  op  denote  an  operat ion  of s (pubL ic :  pr iva te ,  aux iL ia ry  o r

car r i e r )  w i th  op  :=  uo (op_ id :  Id ;  params:  IdL :  op_body:
Op_body) .

Let  (g :  e )  6 S ta te  such that  necessary  contex t  in fo rmat ion  fo r
op is  avaiLabLe ( i . e .  pos i t ions  (6 ) ,  ( 7 ) :  (8), ( 9 )  in
Sem_1) .

Let  opb  :=  ( op_body  op ) .

Sem_2: opera t ion  bodies

EEopEs  :=
case opb € Term : gg ( termL opb) = L then s (§ (op_ id  opW1)

eLse gg; ( t 1 ,  . . . :  tn )  :=  ( termL opb) in
6 (§ (op_ id  opb)¢1) (EEt13§6 ,  . . . ,  E [ t „ läe )

gggg opb 6 Case : $$$ cv  :=  (case_var  opb) ,
( c l :  . . . :  on)  :=  (caseL  opb) ,
t i  : =  ( t ag  c i ) :  ex ;  :=  ( ex i t  cg ) ,

i € (n )  in
333 cvaL :=  s (g (cv )+1 )  in

ii ( ä  i e (n)  . t ;  matches cvaL)
than EEex l ' Igs

anfing ex l '  i s  ex ;  w i th
subs t i tu t ions  in t roduced  by
the  match ing

eLse ii ( ä  i € (n) .
t ;  =- 'OTHERHISE ' )

the“  EEQX [ 356
eLse  L

case opb e Cond : ii EE(if opb)3§e
£333 EE(then opb)3§6
eLse  EECeLse op I§s

cgse  opb e Let  : g3; L id  :=  (Le t_var  opb ) :
Lt  :=  (Le t_ te rm opb) :
bdy :=  (Let_body opb) in

kg; Loc :=  newLoc tQ) :
g„  : [L id  H (LOCI  VAR:  L ) ] :

= sELoc «a EELt lge ]  in51

Embdyfig  1 61
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Remacks: a )  The matching process occurring in the second  case
is the usuaL matching resuLting in ground terms
(note, tha t  carriers consists of Herbrand
universes, and variabLe vaLues are terms of these
carriers).

b) The refinement of Term1 is omitted.

By this definition the semantics of a specification is com-
puted as a unique aLgebra. It is sometimes caLLed the canoni-
c a L  term a L g e b r a .

Concerning the semantics of the remaining ASPIK objects (map-
objects, imp-objects, and spec_terms) we proceed a s  foLLows:

we skip imp-objects because they are not reLevant for this
paper and current Ly under research. Spec_terms i n  the generaL
case possess a compLex semantics that incLudes a 'normaL-form-
computation' and impLicit object generations. They represent
the parameterization concept of ASPIK, in which specifiCations
with 'parameters' can be actuaLized (i.e. object
parameterization). But it shouLd be noted that no new kind of
specification is generated by specterms: if aLL spec-objects
invoLved in a specterm are describabLe by Sem_1 then the
semantics of a specterm is aLso a canonicaL term aLgebra
(hierarchy).

According to the intention of this paper it wouLd be necessary
for compLeteness t o  incLude the parameterization concepts of
ASPIK and ModPascaL in the treatment of a connection of ap-
pLicative and proceduraL Languages. But from the Last para-
graph it foLLows that the parameterization case can be reduced
to the situation of specifications and their connection to
moduLes. I n  fact, we wiLL Later (sec. 4.1.) restrict the cLass
of spec-objects to specterm-free s p e c s .  I t  is c L e a r  that this
diminishes the expressivity of the Language and makes our con-
cept Less g e n e r a L ,  and a c t u a L L y  we consider the treatment of
parameterization onLy as postponed; the next iteration to this
topic wiLL incLude it. But for the moment we are freed from
many technicaL burdens, and therefore we skip expLicit
semantic definitions of specterms and aLso of maps (aLthough
the Latter do not c a u s e  p r o b L e m s ) .

3.4.2. MoascaL

The semantic cLauses for ModPascaL objects reLy heaviLy upon
the semantics of operation and type decLarations. Here we give
onLy the meanings of the objects introduced in sec. 3.1.2.
(moduLe t ype  definitions, enrichment definitions: in-
stantiation definitions and instantiate type definitions). No-
tions: operators, domains, variabLes, etc. that are not
defined here can be found in [OLt 84b]. In the sequeL the fuLL
semantics of ModPascaL is assumed.

In addition to the semantics of [OLt 84b], syntacticaL oper-
ators are introduced that store information about the syn-
tactic object. These data is used in the semantic cLauses of
section 4; therefore we cannot proceed in the usuaL way con-
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58 3 .4 .3 .  ModPascaL

sisting of generating a meaning from a syntactic object; and
then forgetting aLL detaiLs. To deaL with this issues, we in-
troduce the notion of a mod-environment in which sLots for
syntacticaL operators exist that evaLuate to the desired in-
formation if appLied. Note that mod-environments for ModPascaL
are the anaLogon of eta-environments for ASPIK (see definition
3 .4 .1 . -1 ) .  See aLso enr-environments’ definition 3 .4 .2 . -2 .

3 .4 .2 . -1  Def. [mod-environment]
Let MCLauseOps C I d  with

MCLauseOps : =  {maLg? ‚  muse? ‚  p_proc_id?‚ p_func_id?‚
p_init_id?‚ L_type_id?‚ L_proc_id?‚
L_func_id?‚ L_Van_id?‚ p_proc_ar? ‚  p_ func_ar? ‚
p_init_ar?‚ L_ func_a r? ‚  L_p roc_ar? ‚
L_var_ type? ‚  mop_de f? ‚  toi?)

Then g e Env is caLLed mod-environment if for aLL x e
MCLauseOps

a )  § (x )  # L
b) gtxJ+2 = MODSEL n

Remark: Associated to every eLement eL of MCLauseOps there is
an ambiguousLy denoted speciaL function eL that evaLu-
ates to syntacticaL information if appLied to moduLe
and moduLe operation identifiers:

eL = maLg?
Associated operation: maLg?: Id ——> State ——> D_BOOL
§(maLg?) = (Lee ,  MODSELI L )
6(Loc) C(id, tv)l id e Id: tv e D_BOOL}
maLg?(id)§6 := s(§(maLg?)¢1)(id)

eL 6 ° re 1 func id?‚ in‘t id?: L func id?r
L init id?, L var id?, L type id?)

Associated operation: eL: I d  ——> State ——> IdL
§(eL) = (LOCI  MODSEL, L )

6(Loc) = {(id‚ <id1‚ . . . ,  id„))| id, id; e Id, i e (n): n e N)
eL(id)§s : =  s(§(eL)¢1)(id)

eL e { p  proc gr?, p_func gr?: p init gr?, L_func ggl,
L_proc er?}

Associated operation: eL: I d  ——> State ——> Arity
g(eL )  = ( L O C I  MODSELI  L)
6(LOC) = {(id, aa)] id e Id: ad 6 ArDes}
eL(id1: ide) := 6(g(eL)+1)(id1)(id2)

- e L  = L gap type?
Associated operation: L_var_type?: Id ——> State ——> Id
§(L_var_type?) = (Lac ,  MODSEL: L)
6(Loc) = {(id1‚ id ,>> l  idi 6 Id: i e C1, .23}
L_var_type?(id)§s := s(§(L*var_type?)&1)(id)

e L  = mop def?
Associated operation: map def?: I d  ——> State -—> OperationL
§(mop_def?) = (Loc, MODSEL, L)
6(LOC) = { ( i d ‚  (Opd l r  . . . ,  opdn ))I id e Id, opdi 6 Opera t i on :

i € ( n ) ;  n € “)
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3 .4 .2 .  ModPascaL S 9

mop_def?(id)§e : =  e(§(mop_def?)+1)(id).

Note that aLL identifiers of moduLes, moduLe operations and
LocaL variabLes are assumed t o  be unique.

:

Based  on mod-environments the operations EXT and EXTEND of
section 3 .4 .1 .  are defined anaLogousLy except that EXTEND does
not invoLve an updating of the toi? sLot; since in the case of
moduLes the type-of-interest is a semanticaL notion, toi? is
of different (non-syntacticaL) quaLity and expLicitLy set in
the semantic cLause for moduLe definitions (Sem_3 beLow).

A moduLe type definition of a ModPascaL program is embedded in
a type definition scheme where a new type identifier is in-
troduced to which the semantics of the definition is asso-
ciated. We assume the identifier mid in Sem_3.

We are now ready to state the semantics of moduLe type defini-
tions:

Sem_3: ModuLe type

MtEm: ModuLe_typeI§6 : =
( 1 )  53; ( U 1 ,  . . . :  U a )  '

( p 1 :  . . Ä :  p b )

( L t1 ‚  . . . ,  Ltc) : =  (LocaL_typeL (LocaL m)) ,
( Lv1 ‚  . . . ,  Lvd )  = (LocaL_varL (LocaL m)) ,
(L01 ;  . . . ,  Loe) := (LocaL_operationL (LocaL m)) :
( 0 1 ,  . . . p  of) : =  (operationL m)

(useL m ) :
(pubLicL m),

an
( 2 )  333 (g1, 6 1 )  : =  EXTEND(m)§s in
( 3 )  33; U : =  U 6 (g (u ; )+1 )  in

i€(a)
( 4 )L_9$ (§ ° I6 ° )  := (§1 I61 )  in

kg; Loci : =  newLoc(§;)
where ( c g s e  p; € Proc_head :

gg; op id ;  := (proc_id pi): obq; := PROC in
case p; e Func_head :

gg; opidi := (func_id pi), obq; : =  FUNC,
res; := (resuLt pi) in

case p; € Init_head :
gg; Opidi := (init_id pi), obq; := INIT in

I i € ( b ) )
§i+1 : =  g i E o p i d ;  ** ( L o c i :  o b q i ,  it obq; = FUNC

SDQD P e s t
eLse L ) ] :

6 i + 1  = G E L O C ;  ** L]: 1 € ( b )  in
( 5 )  kg; ( g o :  6 0 )  : ( g b :  6 b )  39

gg; Loc; : =  newLoc(§i), i e ( c )
ungng §1+1 : =  giE(typeid Lt;) ** (Loci:

(MtE(type Lti)]g;e;)+1‚
(M tE ( t ype  Lti)IE;s;)+2)]‚
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60  3 .4 .2 .  ModPascaL

Bi t ;  :=  s i tLoc ;  ** (MtE( type  L t ; ) ]g is i )+3 ] ‚
i e (c )  in

( 6 )  £23 , . (go l  6 ° )  = (gg f  5c )  in

ge; ( 514 .1 :  6 i + 1 )  :=  MELn isu  1 € ( € ! )  m
333 LV :=  U (idL Lv ; )  an

ie(d)
(7)‚l_._e‚_1_;_(£°‚ 6 ° )  :=  ( 5 .5 !  6d )  ‚in

333 Loc; :=  newLoc(§;) in
guere (cgse  Lo ;  € Proc_head :

gg; opid; :=  (proc_id Le i ) ,  obq ;  :=  PROC 1n
case Lo;  € Func_head :

gag opid; :=  (func_id Lea ) ;  obq;  :=  FUNC:
res ;  :=  ( resuLt  Lo i )  in

: i € (a))
gg+1  :=  g iEob id ;  ** ( Loc i :  obq i :  gt Obq i  = FUNC

sham r93 :

83  L) ] :

6 i+1  :=  sgtLoc; +4 L] ,  i 6 ( e )  in
£23 ( 30 '  6o  : (ge r  3e )  in

( 8 )  (gggg o i  € Proc_spec :
gg; opid; :=  (proc_id o i ) ,  (pL1 :  . . . ,  pLg) :  = (paramL o-  ) ,

D ;  :=  (LV  u U (idL pL; ) )  x LV gm
j€(g)

cgse  o ;  € Func_spec :
322 Opid ;  :=  (func_id O;  ) :  ( l l  . . . :  pLg ) := (pa ramL  Oi  ) :

Di  :=  (LV u U (idL pL ) )  x LV x §(opid- )+3  an
je(g)

gage o i  e Ini t_spec :
gg; opid; :=  (init_id o i ) :  ( l ;  . . . ;  pLg ) := (paramL o ) ,

D;  :=  (LV  u U ( i d L  pL; ) )  x LV in
j€(g)

I i e ( f ) )
( 9 )  m ( 8 T 1 ,  . . . !  ST- f )  :=  f i x  T1 !  i n . )  T-f I A§161  I

(MEbody o1)3§1[opid1 ** ( ! (op id ‚ )+1 :  g<opid1)+2:  L) ]

6 C § ( o p i d 1 ) ¢ 1  ** R ( {T1 :  . . . :  Tf ) ’  g l :  0 1 ) ] :

MEbody of)3§1Eopid+ 6* (g (op id f )+1 ‚ 'g (op id f )+2 ‚  L) ]

s l cgcop id f )+1  +4 m({T1 ‚  . . . ;  T+} ‚  g1 .  D+) ] )

€?
?

?

m opdef ;  :=R(ST1 :  € ; :  Da ) :  i € ( f )
Let  (g1 ,  61 )  :=  (gofopid; ** ( ; (op id i )+1 :  g(opidi)+2‚ L]

6° [eo (go (op id ; )+1 )  6* opdef i l ) ,
i e ( f )  in

(10) g3; M-VaL := x { § 1 ( 1 d ) ¢ 3 |  id e LV} in
Let M- F :=  {61 (§1 (0p id ;  )W1JI 1 € ( f ) }  in
Let M-ALg :=  ({m- VaL}‚ M-F) „ u v {§1(typeid Lt )w1l

i e ( c )}  13
( (MODULEI  M“V8L I  M 'ALQ) :  ( : 1 :  61 ) )

Remarks :  3 )  No contex t -sens i t i ve  conditions are  considered
( see  sec .  3 .2 ) .  ALso type checking and  scoping are
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3 .4 .2 .  ModPascaL  61

disregarded.
b )  The semantics of  a moduLe type def in i t ion i s  con-

s t ruc ted  as  foLLows:
(1 )  Ident i f i e rs  fo r  important  components are  in -

t roduced  by  abs t rac t  syn tax  seLec t ions . ‘
( 2 )  The syn tac t ic  informat ion of  m is  embedded in

the  mod-env i ronment ;  the  moduLe ident i f ie r
mid i s  used .

(3 )  The semant ic  aLgebra  generated by the  used
ob jec ts  i s  computed .

(4 )  Locat ions  fo r  aLL pubL ic  operat ion ident i -
f i e rs  a re  reserved  and suppL ied  w i th  in i t i aL
vaLues .  The expL ic i t  binding of  moduLe Oper -
a t ions  in  env i ronments  has  onLy  techn icaL
reasons  (appL ica t ion  of  the  f ixpo in t  opera -
to r ) .  I t  wouLd suf f ice  to  ins taLL  them
di rec tLy  as  aLgebra  func t ions .

(5 )  The semant ics  of  LocaL types  i s  computed and
s tored .

( 6 )  The LocaL var iabLe  decLara t ions  are
eLabora ted .

( 7 )  As (4 )  bu t  fo r  LocaL opera t ions .
(8 )  The fo rmaL  parameter  L is ts  of  opera t ions  a re

computed;  they  wiLL be used  in ( 9 )  to  denote
the  gLobaL ,  fo rmaL  and  resuLt  va r iabLes  of  an
opera t ion .

(9 )  The semant ics  o f  aLL operat ions  are  computed
by paraLLeL f iXpoint  abs t rac t ion .  By using
the  opera to r  R the  f i xpo in t  i s  an  aLgebra
func t ion  de f ined  on  TOI ' s  o f  LocaL var iabLe
and  paramete r  t ypes .  The s ta te  ( 2 1 ,  61 )  i s
assumed to  conta in  the  appropr ia teLy  caLLed
and  passed  fo rmaL  paramete r  vaLues .

( 10 )  The resuLt ing  aLgebra  i s  bu iL t  on  the  union
of  the  used  ones  and  equipped wi th  the
carr ier  genera ted  f rom the ca r tes ian  product
o f  the  LocaL var iabLe  TOI ' s  and  wi th  aLL
pubL ic  and LocaL opera t ions .

c )  Bes ides  the  moduLe aLgebra ,  a resuLt ing  s ta te  i s
passed  to  save  aLL par ts  of  the  de f in i t ion .  Th is
makes convenient  access  poss ibLe  in  semant icaL
cLauses  tha t  are  based  on  moduLes (e .g .  enr ich-
ments :  ins tan t ia t ions ) .

d )  TO I (m)  :=  M-VaL;  aLso in the  embedding type
de f in i t ion  w i th  moduLe iden t i f i e r  mid  the  type -o f -
in te res t  i s  deL ivered  to  the  to i? -sLot  of  the  mod-
env i ronment :
by  EXT( to i? ;  m id ,  M-VaL)§1s l ,  where  ( : 1 ,  61 )  =
(MEm]§6 )¢2 .

We now present  to  the  semantics of  enrichments.  Enrichments
are  aLso embedded in  spec i f ic  env i ronments .

l - é -Z - ‘Z  De f .  [ eh r -env i ronmen t ]
Let  ECLauseOps ; I d  w i th

ECLauseOps :=  {enr? ,  euse? ,  add_ id? ,  add_proc_id?,
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62 3 .4 .2 .  ModPascaL

add_func_id?: add_init_id?: add_proc_ar?r
add_init_ar?, add_func_ar?: eop_def?}

Then g e Env is caLLed ear-environment if for aLL x e
ECLauseOps

a )  : ( x )  * L
D )  § (x )¢2  = ENRSEL u

Remark: Associated to every eLement eL of ECLauseOps is an
ambiguousLy denoted  speciaL function e L  tha t  evaLua tes  t o  syn-

tacticaL information if appLied to enrichment and enrichment
operation identifiers.

e L =  enr?
Associated operation: enr?: Id ——> State -— D_BOOL
§(enr?) = (Lac ,  ENRSEL‚ L)

6(Loc) = {(id‚ tv)| id 6 Id. tv e D_BOOL}
enr?(id)§s : =  s(§(enr?)¢1)(id)

e se? a ? d r dd f c ° a n 1 °}
Associated operation: eL: I d  -—> State ——> IdL
§(eL) = (Lee: ENRSEL, L)

5 (LOC)  = { ( i d l  ( i d l r  . . . ,  i d „ ) ) |  id: i d :  € Id: i € ( n ) ,  n € N}

eL(id)§s : =  s(§(eL)¢1)(id)

eL € { add  groc er?, add func gr?, add init ar?)
Associated operation: eL: I d  ——> State ——> Arity
§ ( e L )  = (LOCI  ENRSELI L)
6(Loc) = {(id‚ ad)| id'e Id, ad e ArDes}
eL(id1: id.) := 6(§(eL)¢1)(id1)(id,)

e L  = egg dgf?
Associated operation: eop_def?: I d  ——> State —-> OpDesL
§(eop_def?) = (Loc: ENRSEL’ L)

6(LOC)  = {(id, (Opa l ,  . . . ,  opd„ ) ) |  id 6 Id; opd; e OpDes ‚  i e
( n ) :  n € N}

eop_def?(id)§s := s(§(e0p_def?)+1)(id)

Note that aLL identifiers are assumed to be unique. I

Based on enr-environments the operators EXT and EXTEND of sec-

tion 3 .4 .1 .  are defined anaLogousLy.

In Sem_5 the syntacticaL operator
AO: PubL i c  x Enrich_def ——> I d

is used. A0 maps a pubLic operation header p e ( pubL i cL  a), a
€ ( addL  e ) ,  e € Enrich_def to that object identifier that is
enLarged by the occurrence of p in its associated addpart of
e: .

A0(p ‚  e )  : =  L id 6 Id .
33; (el, . . . ;  an} := (addL e) in

3 i € ( n )  . id = (add_id ai) fing
p e (pubLicL ai)

The next cLause introduces enrichments.
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3 .4 .2 .  ModPascaL 6;

Sem_5: Enrichment definition

1 MeEe:  Enrich_def]§6 : =
( 1 )  gg; eid : =  (enr_id e), ( u l ,  . . . ,  u,) : =  (useL  9):

( a l l  . . . - I  a b )  ( addL  e ) ,

( 01 ,  . . . ,  oc) : =  (operationL e) in
gg; aid; : =  (add_id a i ) ,  i € ( b )  in
£33 ( p11 :  . . . I  p i b „ ; ‚ )  : =  ( pubL i cL  aa ) ,  1 € ( b )  in

( 2 )  gg; ( g 1 ,  6 1 )  : =  EXTEND(e)§6 in
(3) gg; (goo, 600) := ( g „  61) in

333 Loc i ;  : =  newLoc (§ ; ; )
gbece

( cgse  pi; e Proc_head :
Leg opid;; :== (proc_id p i ; ) ‚  obq i j  : =  PROC in

case  pi; € Func_head :
gg; op id i ;  : =  (func_id pas ) :  obqg; = FUNC,

res ;3 :=  ( r esuL t  p;;) in
cgse  pi; € Init_head :

gg; opidi; := (init_id pg j ) :  obqgi = INIT in
I i € ( b ) :  j € (DE) )
§a,;+1 := §asfopidas ** (LOCis '  Obqas :

ä Obq;_5 : FUNC
t hen  res t ;  eLse L)]

6 i ‚ 3+1  : =  BELOCi ;  "" J—JI i € ( b ) :  j € ( b i )  an

ij n93 A0(opid;;, e) = aidgz i € (b), j e (bi) tnen L
GLSQ

( a )  „lag—E ( g o '  6 O )  : :  (gbbtb  3 ’  6 l o b c b  )) ÄO _
L e t  (§ ;+1 I  63+1 )  : =  ME(pa ramL  0 1 ) ] § ; 6 1 1  1 € ( C )  in

r( 5 )~££ (§016° )  := (§c I6¢ )  in

( cgge  0 ;  € Proc_spec
kg; opid; : =  (proc_id 0 ; ) ,

( l ,  ...: pLg )  : =  ( pa ramL  o i ) ,
Lvi : =  LocaL  va r i abLes  of AD(opid;):
D ;  : =  (LV i  u U ( i d L  pL ; ) )  x L V ;  in

j€(g)
cgse  o ;  € Func_spec  -
gg; opid; : =  (func_id oi):

( l ,  . . . ,  pLg )  : =  (paramL oa ) ,
LV; : =  LocaL  va r i abLes  of AD(opid;);
D; := ( LV ;  „ u (idL pL ; ) )  x LV; x gotopidi)+3 in

j€(g)
case  0; e Init_spec
ggg opid; : =  (init_id oa),

(pL1 ‚  . . . ,  pLg )  : =  ( pa ramL  o a ) ,
LVi : =  LocaL va r i abLes  of AD(opid;):
D; := ( LV ;  v u (idL pL ‚ ) )  x LV; in

j€(g)
, i e (c))

( 6 )  m ( 8T1 ,  . . . ,  STc )  : =  f i x  T 1 ,  an . ,  T C  . A g l a l  .

(Mmbody o;)]§1[opid1 ** (;(opid1)+1p :(opid1)+2, L)]

6 1 E € < 0 p i d 1 ) + 1  H ( E U C H :  . . . I  T . ; } !  g l ,  01 ) ] ,
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64 3 .4 .2 .  ModPascaL:

MEbody o¢ ) I§1Eop id¢  ** ( ; (op idc )+1 ‚  ;(opidc)+2‚ L) ]

( 7 )

(8 )

‘..
. 0 3

r (I) Ei
&

(_ (D d' i
d

‘d
’

U

A
€;
5 :

61 [€ (0p idc ) \ | v1  H R({T l l  nun !  Tc} !  g l . ,  Dc ) ] )

in
opdef ;  :=  R(ST ; I  g i :  D i ) ;  i € (C )  in
( £1 :  61 )  := (§o [op id i  ** (g (op id ; )+1 :  § (op id ; )¢2 :  L]

6°E60 (go (op id ; )+1 )  ** Opde f ;3 ) ‚
i e ( c )  in

:=  U 61 (§1 (u ; )+1 )  in
ieca)

E-F :=  {61 (§1 (op id ; )+1 ) l  i e ( c ) }  in

Lao :=  newLoc(§1 )  in
:= u v (p ,  E-F) in

§1Eeid H (Lac, ENRICHMENT, J . ) ]  in
51ELOC H A:

§ (ma in )¢1  ** « ( ! (ma in )+1 )  u A] in

( : 3 !  6 ; )

Remarks : a )

c )

No contex t -sens i t i ve  conditions are  cons idered
(see  sec .  3 .2 . ) .  ALso t ype  checking and  scoping
are  d isregarded .  The semant ics  excLude the  case  o f
enr ichments  o f  s tandard  types  w i th  in i t i aL  oper -
a t ions  (see  aLso [OLt  84a ] ) .
The semant ics  o f  an  enr ichment  de f in i t ion  i s  con -
s t ruc ted  as  foLLows:
( 1 )  Ident i f i e rs  fo r  important  components are  in-

t roduced  by abst ract  syntax  seLec t ions .
(2 )  The syntac t ic  in format ion  of  e i s  embedded in

the  enr -env i ronment .
(3 )  Loca t ions  fo r  aLL in t roduced  Opera t ion  iden t i -

f i e rs  are  reserved  and  suppL ied  w i th  in i t i aL
vaLues .

(4 )  ALL parameter  L is ts  are evaLua ted .
(5 )  The fo rmaL parameter  L is ts  o f  opera t ions  are

computed;  they  wiLL be  used  in  (6 )  to  denote
the  gLobaL ,  fo rmaL and  resuLt  va r iabLes  of  an
opera t ion .

(6 )  The semant ics  of aLL opera t ions  a re  computed
by paraLLeL  f ixpoint  abs t rac t ion .  By us ing  the
opera to r  R the  f ixpoint  i s  an aLgebra  func t ion
def ined on  TOI ' s  of  LocaL var iabLe  and parame-
te r  t ypes .  The s ta te  (g l ,  61 )  is  assumed to
conta in  the appropr ia teLy  caLLed  and passed
formaL parameter  vaLues .

(7 )  The semant ic  aLgebra  generated by aLL “used
objects i s  computed .

(8 )  The ins taLLa t ion  of the  new ob jec t  in  the
resuLt ing  s ta te  and the updat ing o f  the  main
program aLgebra (see  EOLt 84b ] )  i s  done ex -
pL ic i tLy .

Enr ichments do no t  possess  a type-o f - in teres t ,
s ince  they  a re  enLargements  of severaL  ob jec ts
wi th  severaL  types -o f—in te res t .  Therefore  the
§ (e id )¢3  component is  assigned to  L .
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3 .4 .2 .  ModPascaL 6 5

Since instantiations and instantiate types represent the
ModPascaL object parameterization concept, a simiLar remark as
that foLLowing Sem_1 is appLicabLe: probLems occurring in the
connection of parameterized structures are for the most part
reducabLe to probLems of the unparameterized case. Therefore
parameterization is skipped here, but the treatment is onLy
postponed. For  sake of compLeteness we give semanticaL c L a u s e s
of ModPascaL instantiation objects and instantiate type
definitions aLthough they wiLL be disregarded in section 4.

Instantiation definitions are defined a s :

Sem_5: Instantiation Definition

MEi: Inst_deffl§6 :=
Let in_id : =  (inst_id i): ( I l :  . . . :  1;) :== (useL i):

( ab ; :  ...: obb )  : =  (ob_actL i):
(tl; . . . ,  tc) := (type_actL i);
(opl, . . . ;  Opa)  : =  ( op_ac tL  i )

333 (f: g) := s(§(11)v1) + ... + 6(g(I.)+)1) in
33 ng; (SM?((f‚ g ) ) )  then L
eLse

F { ( ( o L d  0;): (new 0;)) i e (b ) }  u
{ ( (OLd  t i ) ’  ( n e w  t 1 ) )  1 € ( d ) }  in

33; G := { ( ( oLd  op ; ) ‚  (new op1 ) ) |  i e ( c )}  in
it fig; (SM?( (F ‚  G ) ) )  t hen  L eLse
ggM SM := (f, g) + (F , G) in
i: ng; (SM?(SM)) Eben L eL§e
Let Loc := newLoc(§) in
£33 gl = §Ein_id +4 (Loc, INST: L, L ) ]

61 = eELoc ** SM] in
ggm s2 = 61E61(§1(main)+1) ** s l ( g l (ma in )+1 )  u

( { sou rce (SM) ‚  t a rge t (SM) } ‚  (SH) ) !  gm
( g l :  6 ; )

Remarks: a )  SM? is the predicate to indicate signature
morphism property of its argument (see EOLt BAbJ).

c) For consistency and for verification contexts, an
aLgrebra of the form above (Last Let-scheme) is
added to 'main' (see EOLt 84b]).

The next cLause introduces instantiate type definitions:

Sem_6: Instantiate Type Definition

MmEi: Instantiate_type1§s :=
gg; bid := (base_type i),

{ i l l  . . . :  i n }  : =  ( o b j e c t L  i )  an

Bid := (Retrieve(bid)gs)+1 in
{ I l l  . . . :  I n }  : =  Ret0b ( {11 :  . .  : i n } ) § 6  in
I : = I1+ . . . + In r  I = ( f : g

31 ng; (SM?(I)) = true then L eL
gg ng; (Comp?(Bid‚ I)) then L eLs

(
" d
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66 4. Connection and Correctness

gg; Bid1 := MARK(U(ä„(Bid>)‚ f) in
333 aida := GENERATE(Bid1; g).

{ O b i t  . . . :  Obm}  : Bid: ‚jan
Lg; objL := SEQ({ob1; . . . ,  obm}) in
33; (g1. 61) := MEoblgs  in
333 ( A :  (:2. az ) )  : =  METOP(Bid,)]§1s1 in

( A !  ( g a ,  62) )

Remarks: a) The semantics of the base type and the used in-
stantiation objects (both are eLements of Id) are
computed from the appLication s t a t e .  B y  means of
the Retrieve Operator the associated syntactic
objects are taken to perform the instantiation
process (marking, object generation). The
resuLting object set is sequentiaLized and mapped
to the apprOpriate semantic domain. The resuLting
state and the aLgebra of the TOP-eLement are
passed (for the definition of operators: see EOLt
84b3).

b) ALL impLicitLy generated objects are instaLLed. An
appropriate naming procedure is assumed. '

& .  Connggtign and Correctness

We are now going to formuLize the situation that was in-
formaLLy described in section 1: we assume a SEE with LeveL
Languages ASPIK and ModPascaL. and a stepwise-refinement
methodoLogy that at Last connects specification objects with
moduLe objects. The connection wiLL be defined by specific
objects: the representation objects. We assume that aLL this
information (specification. moduLe, representation) is given
( =  suppL ied  by the programmer), and then the centraL issue is
to show a homomorphy condition that serves as notion of cor—
rectness for this refinement.

Section 4.1. introduces basic notions and confinements. Then
foundations of abstract data types (with main emphasis on
homomorphisms and aLgebras) are briefLy reviewed in section
4.2. The syntactic and semanticaL definitions of represen—
tation objects are given in section 4.3., and reaLization con-
ditions are introduced as sufficient conditions for correct-
ness in 4.4. We cLose this section with an overview on other
approaches to object correctness.

4.1. Confinements and Basic Notions

The need for the introduction of confinements into our ap-
proach arises from a substantiaL and a theoreticaL fact:

substantiaL:lif constructs of appLicative and proceduraL
Languages are going t o  be connected semanticaLLy’ then ( a t
Least) the connection probLems CP1 to CP3 of sec. 2.2.
occur. But beLow this LeveL’ aLso care has to be taken to
respect eLementary characteristics of the Language types
(e.g. typing of expressions or scoping of variabLes). Provi-
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4 .1 .  Confinements and Basic Notions 6?

sions must be made to Limit side-effects impLied by these
characteristics.

technicaL: if we consider both Languages with their fuLL
expressibiLity many boring i ssues  have to be treated
‘detaiLed aLthough they do not contribute to a better insight
in the approach (the topics range from variabLe renamings
t o :  for exampLe, r u L e s  for connecting caLL~by-vaLues func-

tions with caLL-by-reference functions). For cLearness of
presentation of this paper the attention is focussed on
centra L em_6: Instantiate Type Definition I I points;
doutess, a future exhaustive description has to cover the
Languages compLeteLy.

To f o r m u L a t e  our confinements we introduce some terms and

phrases informaLLy; the precise version foLLows in sec. 4.4.

5 . ] . - ]  Terms/Phrases

(a) By externaL indication (programmer, user of a SEE) two
objects of ASPIK and ModPascaL may be characterized as be-
ing 'invoLved in a (b) An impLementation is a refinement

reLation between two ASPIK spec
objects that satisfies some condi-
tions.

( c )  A reaLization is a refinement reLation between an ASPIK
spec object and a ModPascaL moduLe object that satisfies
some conditions. The term 'reatization context' is used:
if the vaLidity of the conditions is uncertain. a

With this terminoLogy we are abLe to state our restrictions:

R1: Every spec-object invoLved in a reaLization
context is aLgorithmic

For the justification of R1 we have to go into deeper detaiLs
of the ASPIK semantics.

The cLassification of specs into axiomatic and aLgorithmic
ones is not onLy a syntacticaL question (presence/absence of
the specification body). It is used to assign different seman-
ticaL structures such that axiomatic specs may be
characterized as 'more generaL' than aLgorithmic specs. That
term requires precision.

Let an aLgebraic specification SP be a tripLe ( S :  0, C) con-
sisting of a set S of sort names, a set O of operation names
with operation functionaLities’ and a set C of constraints
buiLt from the symboLs of S, o. and specific predefined
symboLs. The tupLe ( S .  0 )  is aLso caLLed signature (see sec.
4.2.). It i s  easy to see that an ASPIK spec is an aLgebraic
specification in this sense: the sets S and O are given by the
sorts- and ops-cLause of the spec hierarchy: and the con-
straints are either the definitions of the spec body or con-
tained in the props-cLause (since ASPIK aLLows predicate
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68  4 .1 .  Conf inements  and Bas ic  Not ions

caLcuLus  as  property  Language:  predef ined symboLs  o f  con -
s t ra in ts  a re ,  fo r  exampLe,  the  Log icaL  connect ives  and
quaL i f i e rs ) .

In  the in i t i aL  approach,  the  set  C of constra ints  i s  usuaLLy a
se t  of equat ions  (o r  a t  most  un iversaL  horn cLauses ) ;  ASPIK is
more power fuL  in th is  po in t .  Now, independentLy  f rom the
speci f ic  approach  aLgebras  a re  cons idered  w i th  respec t  to  a
g iven  s ignature  S IG  = (S ,  O ) :  i . e .  aLgebras  tha t  possess
car r ie r  se ts  assoc ia ted  to  the  names o f  S ,  and  opera t ions
assoc ia ted  to  the  names  (and  func t ionaL i t i es )  o f  O .  The  se t  o f
these  aLgebras  i s  the  ob jec t  se t  of  a ca tegory  ALgESIG] .  An
important subca tegory  o f  ALgESIG] i s  def ined by those  aLgebras
A e ALgESIGJ tha t  sa t i s fy  the  cons t ra in ts  of  C .  We denote  i t
by ALgESIG, C ] .

At  th is  point  d i f ferences among approaches to  the  semant ics  of
aLgebra ic  spec i f ica t ions  become s ign i f icant :  I f  an  ax iomat ic
spec  S induces  a s igna ture  S IG  and cons t ra in ts  C ,  t hen  the  in -
i t i aL  aLgebra  approach wouLd seLec t  as  semant ics  of  S the
( isomorph ism cLass  of  the )  in i t i aL  ob jec t  in  ALgESIG; C ] .  The
in i t i aL  ob jec t  i s  a unique eLement of  tha t  ca tegory ,  and
therefore  the  semant ics  of  the  spec i f i ca t ion  i s  ra ther  f i xed .
I ns tead  o f ,  ASP IK  empLoys  the  'Loose '  approach .  In  o rder  to
avo id  a charac te r is t i c  of  the  in i t i aL  aLgebra  approach tha t
fo rces  the  programmers  a t ten t ion  to  one  de te rmined  ob jec t  a t
the  very f i rs t  steps of  sof tware  deveLopment (as  represented
by ax iomat ic  specs )  - a fac t  which in  our  v iew essent iaLy
diminishes the  benef i ts  of  abs t rac t ion  - ‚  the  ASPIK semant ics
chooses  the  whoLe  cLass  ALgESIG ,  C ]  as  semant ics  o f  S .  Then  an
ax iomat ic  spec  i s  aLso descr ibed  by non- in i t i aL  aLgebras ;
every  eLement of  ALgESIG: CJ can  be  taken  as  meaning  o f  S i n
arb i t ra ry  appL ica t ions .

The s i tua t ion  changes, i f  aLgor i thmic specs are considered.
Since they  are  in tended to  descr ibe  a spec i f ic  aLgebra  more
concre te :  the  ASPIK semant ics  cons t ruc ts  a canon icaL  te rm
aLgebra  (CTA) .  I t s  ca r r ie rs  cons is t  of  ( subse ts  o f )  the
Herbrand un iverses  genera ted  f rom the  eLements of  the  con-
s t ruc tor  cLause .  I t s  operat ions  are  der ived f rom aLL opera t ion
def in i t ions of  the  spec ,  such  tha t  v ioLa t ions  o f  cLosedness
condi t ions  do no t  t ake  pLace .  Then ALgESIG,  C]  cons is ts  onLy
of  the  i somorph ism cLass  o f  the  CTA;  then  a t r i v iaL  con-
sequence i s  tha t  canon icaL  te rm aLgebras  are  in i t i aL  ob jec ts
in  the i r  ca tegor ies .  In  some sense ,  aLgor i thmic  specs
represent  a f inaL  s ta te  in  the  deveLopment and refinement
process :  the i r  semant ics  i s  (up  to  iSOmorphism) a spec i f ic
ob jec t  and there  a re  no  o ther  modeLs ava iLabLe .  ( I f  never the-
Less  aLgor i thmic  specs  a re  re f ined in to  o ther  aLgor i thmic
specs ,  the  te rm ' impLementa t ion '  and  the  ASPIK impLementa t ion
concept  a re  appL ied ) .

This brings the in te rLude  on the ASPIK semant ics to  i t s  end; a
de ta iLed  presentat ion  of the  mater iaL  can be found in  [BV 85 ] .

How is  R1 jus t i f i ed  by tha t  def in i t ions? I f  we aLLow ax iomat ic

November  1985



4 .1 .  Confinements and  Bas ic  Notions 69

specs occurr ing in reaL iza t ion  contexts :  we have to

o deveLop a concept  of reaL iza t ion  of a se t  of aLgebras
( spec  semant ics )  by  a s ingLe  aLgebra  (moduLe /enr ichment
semant ics ) :  o r  to

I seLec t  one  poss ibLe  aLgebra .

The f i rs t  aL te rna t ive  is  more generaL :  and i t  has inheri tant
deeper  theore t i caL  i ssues  as  weLL as  cLearness  decreasing com-
pLex i ty .  Bu t  the ma in  counte r  argument  i s  tha t  in  SEEs
reaL iza t ion  s teps  of th is  ' s i ze '  (h igh  abst rac t ion  to  concre te
representa t ion )  a re  unreaL is t i c ;  sof tware  deveLopment
processes  a re  more cont inuous:  and  aLL  ef for ts  in  so f tware
engineer ing  t ry  to  avo id  t ransparency  reduc ing  re f inements  of
th is  k ind .

But  seLec t ion  of  a spec i f i c  aLgebra  comes  w i th  o ther  p robLems:
what  c r i t e r ion  has  to  be appL ied  and how good is  i t?  We assume
tha t  th is  ques t ion  can  be  answered  sa t is fac to r iLy :  and  tha t
the  in i t i aL  aLgebra  of the  appropr ia te  ca tegory  is  choosen
( th is  c r i t e r ion  is  acceptabLe  s ince  many concepts  of  abs t rac t
da ta  type theory  a re  based  on  in i t i aL  aLgebras :  and therefore
resuLts  can  be appL ied ) .  I f  we are  go ing to  def ine the
reaL iza t ion  cond i t ions :  we have  to  have  a concre te  represen-
ta t ion  of  the  in i t i aL  ob jec t .  S ince  i t  i s  induced  'onLy '  by  an
ax iomat ic  spec  there  i s  in  generaL  no (cons t ruc t ive )  way to
genera te  such  a representa t ion ,  due to  the  undec idab iL i ty  of
p red ica te  caLcuLus .  In  the  spec iaL  case  tha t  onLy equat ions
are  used  as  proper t ies  of  spec i f i ca t ion ,  then  spec the  onLy
representa t ion  we have  i s  the  so -caLLed  'quot ien t  t e rm
aLgebra '  (GTA) :  the  ca r r i e rs  a re  congruence  cLasses  genera ted
over  the  Herbrand un iverse  by the  cons t ra in t  se t  of the  spec :
and  the  genera t ions  a re  def ined on  the  congruences .

Then:  i f  proof  t asks  have to  be processed they  wouLd have to
deaL wi th  congruence  cLasses  o f  t e rms:  not  w i th  terms
d i rec tLy .  This i s  h ighLy  unwanted :  s ince  then

0 proof systems have to  incLude  the  theory  of  congruences:
0 every  der iva t ion  has  to  be  checked  fo r  independence  o f  the

representa t i ve :  and
o the  connec t ion  of  the  moduLe  aLgebra  and  the  spec  aLgebra

becomes more unna turaL  by Linking a s ingLe  concre te
representa t ion  (ca r r i e r  eLement )  to  a se t  of abst rac t  terms;
usuaLLy:  i t  i s  the  o ther  way a round .

I t  i s  not  cLear to  us i f  sat is factory  soLutions to  th is  issues
ex is t  fo r  SEES.

I n  th is  L ight  the  advantages of  restr ict ing reaL iza t ions  to
aLgor i thmic  speci f icat ions  wi th  CTAs as  semant ics  have to  be
seen:

0 carr iers  and  operat ions of  the semant icaL  aLgebra  are con-
s t ruc t ive :  the  former are  g iven by the Herbrand universes
(or  res t r ic t ions  thereo f ) :  the  La t te r  are jus t  the  aLgor -
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7 0  4 .1 .  Confinements and Basic Notions

ithmic operation definitions given by the programmer in the
spec  object definition;

0 the moduLe aLgebra carriers and the CTA carriers can be
Linked by associating singLe representations to singLe
terms;

0 the restrictions imposed on carrier sets of CTA aLLow to use
structuraL induction a s  proof method; therefore

0 proof tasks can be treated by existing systems without grea-
ter modifications. This incLudes that there is a choice
between different proof methods impLemented by different
systems (theorem provers: induction provers: rewrite r u L e

derivations), and one possesses a greater fLexibiLity to
adapt an appropriate method to a given task.

0 it is very easy to 'execute' aLgorithmic specifications by
interpreters, and by this there is strong support of a
testing tooL of a SEE.

The next restriction concerns the sort cLause of an aLgor-
ithmic specification.

R 2 :  Every spec-object introduces at most one new sort

The reason for this restiction Lies in a principLe property of
proceduraL, strongLy typed Languages.

Consider the case of moduLe constructs of ModPascaL. UnLike
simiLar constructs for object oriented programming Languages
(ADA packages, ModuLa-Z m o d u L e s ) ,  ModPascaL moduLes are in-

carnatabLe: variabLes might be decLared of a moduLe type and
used in statements and expressions. (SimuLa cLasses or CLU
cLusters are incarnatabLe; but both concepts do not fit a s  im-

perative counterpart to ASPIK ) .  By the decLaration, the asso-
ciation variabLe-type is fixed in the scope and extent of the
variabLe. SemanticaLLy, this is modeLLed by the fact that the
moduLe aLgebra possesses one speciaL carrier (the cartesian
product carrier) which suppLies moduLe incarnations with
vaLues. Every moduLe definition introduces just one of these
speciaL carriers, and thus may onLy be used for a refinement
of specifications with one sort.

If a spec 8 contains (at Least) two different sorts in its
sort-cLause: the CTA A(S)  has (at Least) two different
carriers. In the specification Language this causes no
probLems: there are no spec-variabLes (i.e. variabLes taking
their vaLues out of a set of spec names) but onLy sort
variabLes. ASPIK terms are connected to a unique sort and not
to a spec.

This is not true in the case of ModPascaL. (and any imperative
Language with incarnatabLe moduLe construct): there is the no-
tion of a moduLe type, and variabLes are decLared being
thereof; since o n L y  one new data set is introduced by a moduLe

type definition, there is no choice for the vaLue set of
variabLes. (AdmittedLy, this design decision couLd be modified
such that severaL cartesian product carriers are introduced by
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4 .1 .  confinements and Basic Notions 71

a moduLe type definition, but at what a price: either one
wouLd Loose the cLass i caL  fea ture  of variabLes as object in-
carnations, or 'over-Loading' of variabLes becomes  possibLe.
I n  generaL, it wouLd not be distinguishabLe for a given con-
struct from which cartesian product carrier a moduLe variabLe
takes its vaLues. This is not a practicabLe road.)

Having these preconditions in mind i t  is obvious to impose
restriction R2 on specifications occurring in reaLization con-
texts. Then there is aLso no difficuLty in associating
abstract and concrete data a s  demanded by the technique of
aLgebraic verification (see secs. 1 .3 .  and 4 .4 . ) :  there is a
' r e a L '  one-to-one mapping between the s i n g L e  abstract and the
singLe concrete carrier.

It shouLd be emphasized that R2 represents a serious Limi-
tation of the approach: in SEES: one has to impose an artifi-
ciaL structure on ones probLem soLution t o meet this require-
ment; and possibLy Looses some of the benefits gained by the
appLication of aLgebraic specifications. ALso there is a (non-
triviaL) subcLass of probLems that become unspecifiabLe in
ASPIK if introduction of more than one sort at a time is
forbidden. We therefore try to find (for the subsequent
iterations of the approach) a more satisfactory soLution that
treats incarnabiLity gag muLtipLe carrier introduction; for
the moment we require R2.

R3: Specterms do not occur

Specterms may occur in the use c L a u s e  of ASPIK  s p e c s .  Semanti-
c a L L y ,  they denote new spec objects that are generated by ap-
pLication of the map component to the source spec. I n  this
sense specifications with specterm occurrences are
isomomorphic to specterm-free specs: if the structures behinds
specterms are instaLLed in the environment as (simpLe) spec
objects, then these objects ( m o r e  precise: object names) can
be appropriateLy substituted for specterms yieLding specterm-
free s p e c s .

This fact a L L o w s  t o  remove the compLexity induced by specterms
in reaLization contexts. Issues such a s  normaL form compu-
t a t i o n  or impLicit object generation need not be considered
here, since equivaLent and more simpLe objects are a v a i L a b L e .
Furthermore, specterms are the constructs of the ASPIK
parameterization concept for specifications: and the
properties and correctness criteria of parameterization
reaLization are not topic of this paper.

R 4 :  ModuLes and enrichments do not contain instantiate
type definitions

This is the anaLogon of R3 for ModPascaL objects occurring in
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72  4 .2 .  Homomorphisms and Atgebras

reaL iza t ion  con tex ts ;  the same arguments appLy .

Remark: The renunciat ion of specterms impL ies  the absence of
map-  (and  imp- )  ob jec t s ;  the  renunc ia t ion  of  in -
s tan t ia te  type  def in i t ions impL ies  the  absence  of in -
s tan t ia t ion  de f in i t ions .

We summarize our  res t r i c t ions  for  ob jects  occurr ing in
reaL iza t ion  contex ts  as  a p rec is ion  of  def in i t ion  4 .1 . -1 :

4 .1 . -2  De f .  E reaL iza t ion :  reaL iza t ion  contex t ]
Let  S denote  an  ASPIK  spec ,  M a ModPascaL  moduLe  or  enr ich-
ment .
Let  (S :  M ,  t rue )  denote an  unspeci f ied reLa t ion  between S and
M,  where the booLean vaLue ' t rue '  ind ica tes  tha t  no cond i t ions
need hoLd .
Let  C1 denote  the  condi t ions

R1:  8 i s  aLgor i thmic
R2:  S i s  s ingLe -sor ted
R3:  S i s  spec te rm- f ree
R4:  M i s  instant iate_type_def ini t ion-free

Let C ,  denote  (up  to  now) unspeci f ied  semant icaL  cond i t ions .

Then the t r ipLe  (S ,  M ,  C l )  i s  caLLed  reaL iza t ion  contex t
( re -co )  i f  S and M sat is fy  C l .
The t r ipLe  (S ,  M:  C1 gng C2)  i s  caLLed  reaL iza t ion ,  if  S and M
sa t is fy  both  C;  and cz .  n

Remark: The condi t ion se t  C2 wiLL be made concrete  in sec .
4 .4 .  I t  wiLL turn out  to  be the correctness cr i ter ia
fo r  the  ref inement  of spec i f ica t ions  in to  moduLes.

4 .2 .  Homomorghisms and  ALgebras

To aLLow an  exac t  fo rmuLat ion  of our  concept  we now give
def in i t ions of  bas ic  no t ions  of  abst rac t  da ta  type  theory .  We
are abLe to use them in our  contex t  s ince  ASPIK as weLL as
ModPascaL fea tures  have been  des igned in  cLose  connect ion  to
th is  theory :  and bo th  empLoy an  aLgebra ic  semant ics .

4 .2 .11  De f .  [ s igna ture ]
Let  OB, OP denote  se ts  of (ob jec t  and operat ion)  ident i f iers .
Let  a r i ty :  OP ——> ( 08 *  x OB) be de f ined . .
Then the t r ipLe  (08 :  GP, ar i ty )  i s  caLLed s ignature .  n

Remarks: a )  Ar i t y  assoc ia tes  a func t ionaL i ty  to  an operat ion
name.  In  generaL ,  the  func t ionaL i ty  may be muLti—
vaLued, i . e .  a r i t y :  OP ——> (OB* x 08* ) .

b)  A s igna ture  in t roduces  onLy names fo r  i t ems ,  not
i tems  w i th  a spec i f i c  mean ing .

flota t igns:  Let  (OB,  OP:  a r i t y )  denote  a s igna ture .
OPs,t :=  { op l  op € OP gng ar i ty (op)  = ( s :  t ) }
For  a r i t y (0p )  = ( s ;  t ) ,  s i s  caLLed  source ;  and t
genes; of op-

8 e 08 *  denotes  the empty source .
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4 .2 .  Homomorphisms and Anbras 7;

In the foLLowing we assume arity as function (excLusion of
overLoading). Then it foLLows: that OP = U{0P„ t |  s € OB*‚ t e
03} and n{0P,,.| s e os*‚ t e 03} = ¢.

4 .z . -g  Def. [signature morphism]
Let ( 03 ; ,  OPi, arityi), i € ( 1 :  2} denote  signatures.
Then, a pair (f: OB1 ——> GB„ 9: OP1 ——> 0P2) of functions is
caLLed §idngture morphism if it hoLds:

for aLL op e OP1 with arity1(op) = (ob; ... ob"; ob) .
arity2(g(0p)) = (f(ob1) ... f(obn): f(ob)) n

Signature morphisms are arity-preserving functions between
signatures.

The next definitions are needed to associate signatures with
an appropriate semanticaL domain.

532,-: gef. [fLat domain]
Let S denote a set. Then (8;, C) is caLLed a fLat domain
if 1) L5 $ S denotes the bottom eLement of S.

S; : =  S U {L5}

2) E c (S; x Si) is a partiaL order with
x : Y : ¢==> x = L, or x = Y n

Notation: If no ambiguities are possibLe’ we denote the fLat
domain 8‘ simpLy as S and the bottom eLement L, as
L .

4 .2 . -4  Def. [strict]
Let c 1 ,  . . . ,  Cm denote fLat domains; and n e (m). A function

f: C, x . . . x  C" ——> cn+1 x . . . x  cm
is caLLed strict: if
f (C1 ’  . . . - I C , , )  = ( ' L c n + 1 ’  . . . ,  143,“) m a i e ( h )  . C i  = L e i

'

Romans: MuLti-vaLue functions are considered because sometimes
moduLe operations take them as semantics.

5.3.-§'Def. [monotonic]
Let f: C; x ... x Cn -—> cn+1 x ... x Cm be a strict function.
Let X 1 :  Y ;  € C i r  i € ( n ) .
Then f is caLLed monotonic if

X i  ; Y i l  i € ( n )  = f ( x l l  o n . ,  X " )  : f (Y I I  i n . ,  Y “ )  hOLdS-

I

4.2.-6 Def. [continuous]
Let f: c1 x ... x cn ——> cn+1 x ... x cm be a monotonic func-
tion.
Let X; c Ci such  tha t  for aLL a, b € X; either a : b or b E a
h o L d s .
Then f is caLLed continuous if

f ( uX1 ‚  . . . :  UX„ )  = U{f(Xll . . . :  X„) |  X i  € X i }
where u denotes the L e a st upper bound. n

Remark: Since we consider onLy fLat domains the sets X‘ con-
tain at most two eLements.
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74 4 . 2 .  Homomorphisms and ALgebras

AIZI:fl_E§2§
Let Ci, i e ( 1 :  2} denote  fLat domains, and
f: C1 ——> c,. Then it is equ i vaLen t :

. f is continuous
o f is strict 9; f is constant. n

This ensures the weLL-definedness of those functions f we wiLL
Later use as meaning of operation definitions 0p: if the
strictness of f can be guaranteed, the continuity impLies the
existence of a Least fixed point which can be taken as unique
meaning of op.

We now deviate from the usuaL way and introduce aLgebras not
over given signatures. Instead we define them expLicitLy and
derive an associated signatur e in a second step.
meaning.

The reasons for this modification are that ModPascaL moduLes
are associated constructiveLy to aLgebras (without e.g. term-
generated carriers) and that there is no way to characterize
these aLgebras in their categories (since no equations/axioms
are avaiLabLe for moduLes). we wiLL use the associated
signatures of a given aLgebra A onLy to 'forget' specific data
and operations of A; With this prerequisites we can define the
notion of strict a L g e b r a s .  They wiLL be used a s  semanticaL
objects assigned to specification objects or moduLe type
definitions.

4.2.-9 Def. [strict aLgebra]
Let C = (Cl, . . . ,  C“) denote a non-empty set of fLat domains
C i r  1 € ( n ) .
Let F = { < f : c i t 1  > X ' "  X c h m )  _) c icm+1  ‚>! Cie .?  > G C 309
{ill . . . ,  im+1} c { 1 ’  ..., n)} denote a set of strict con-
tinuous functions.
Then the tupLe ( C ,  F )  is caLLed strict aLgebra. The eLements
of C are caLLed carriersets or carriers.

u

Strict aLgebras can be associated to a signature under the
assumption that there exist naming functions.

. - D f .  [naming functions]
Let A = ( C ,  F )  denote an strict aLgebra, and Id an unbound set
of identifiers.
Then the naming functions

obname-A: C —-> I d  and opname-A: F ——> I d
associate unique names to carrier sets and operations of A.
obnames(A) := {obn 3 c € C . obn obname-A(c)}
opnames(A) := {opn 3 f e F . opn opname-A(f)}

4.2.—11 Def. [associated signature]
Let A = ( C :  F )  denote an strict aLgebra.
Let arity-A: opnames-A -> (obnames-A* x obnames-A) be defined
by:
(f: C1 x ... x Cm —-> Cm+1) e F gag opname-A(f) = f
=: arity-A(f) = (c1 ... cm. cm+1)
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4.2. Homomorghisms and ALgebras 75

Then 2(A) = ( obnames -A ‚  opnames—A‚ arity-A) is caLLed the
associated signature to A w.r.t. (ob_name-A, op_name-A).

' n

Now we consider strict aLgebras and arbitrary signatures.

§ . g . - 1 z  Def. [Z-aLgebraJ
Let 2 denote a signature.
Let A denote an strict_aLgebra.
Then A is caLLed z-ALgebrg if there exists a signature
morphism (f: 2&1 —-> {(A)&1: g: 2 & 2  ——> c )+2 )  such that f
and g are bijective.

I

4.z.-]: Def. [ALgEZ], ALg]
Let z denote a signature.
Then

ALgEZ] := { A l  A is z-aLgebra} u {L:}
ALg := + { A L g E E J I  E is signature}

( +  denotes the coaLesced sum of domains). u

The definition of the domain ALg as coaLesced sum of 2-sorted
aLgebra domains is not unprobLematic. I t  wouLd aLLow aLgebras
that possess as carriers "the set of aLL sets". Since this is
a weLL-known paradoxon-generating construction, we assume a
meta-structure c a L L e d  ' u n i v e r s u m '  U whose eLements are s e t s .
There are axioms that make the "set of aLL sets" underivabLe
in U. Then, aLL carriers of eLements A € ALg are assumed to be
eLements of U .

' We now need a reLation between aLgebras of ALg. Since asso-
ciated signatures may differ we Look at common subsignatures
and subaLgebras.

4 .2 . -14  Def. [subsignature]
Let 2 = ( O B :  OP, arity) denote a signature.
Then 3: = (081: 0P1 ,  arityl) is caLLed subsignature of z if
031 ; oa, OP1 ; OP: arityl: 0P1 ——> (031* x 031) such that
arity1(op) = arity (op) for aLL op e DPI .

n

Subsignatures are used to modify aLgebras: a given strict
aLgebra is reduced to a subaLgebra described by a subsigna-
ture; moduLe aLgebras ( t h e  aLgebras associated t o  moduLe type
definitions) wiLL be treated in this way.

4.2.-15 Def. [subaLgebra]
Let Z denote a signature: and A € ALg.
Then the 2-subaebra of A is defined by

( 1 )  A is Z-aLgebra: A
( 2 )  A is not Z-aLgebra:

(2.1) There exists a subsignature sZ(A) of 2(A) such
that a signature morphism (f: 2&1 ——> sz(A)+1: g:
z w z  ——> sZ(A)¢2) with f bijective:

( C I  0) m
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c := {ca ca e A¢1 gag obname-A(ca) e sZ(A)+1}
O : =  { o p  op e A+2 and opname-A(op) € sZ(A)v2}

(2.2) otherwise: L A L g

n

Remark: If A is a Z-aLgebra with 2 (A)  = z ( i . e .  the bijective
signature morphism is the identity), and if 21 is sub-
signature of X ,  then there is aLways a £1 subaLgebra
of A .

Notation: The symboL 'c' is ambiguousLy used t o  describe the
subsignature reLation (I; ; z , )  as weLL as the subaLgebra re-
Lation (A1 g A,).

Note  that severaL z-aLgebras of a given aLgebra A may exist
(e.g. if operations of A have the same functionaLity or
'pLenty' carriers occur).
Sub(2: A) denotes the set of aLL 2-subaLgebras of A .

we now connect aLgebras by homomorphisms. Again, we deviate

from the u s u a L  path and modify the notion of aLgebra

homomorphism in two ways: we assume that source object and
target object are standing in a subaLgebra r e L a t i o n :  and we

define onLy partiaL mappings between the carriers.
The subatgebra assumption was impLied by, the appLication of
aLgebra homomorphisms in representation objects (see sec.
4.3.); partiaLity e x c L u d e s  those eLements of source object

carriers that are mapped to bottom eLements. Again: in the ap-
pLication Lateron we wiLL not consider these eLements (because
they do not contribute t o  the desired correctness proposi-
tion).

4.2.-16 Def. [partiaL aLgebra homomorphism]
Let A ;  € ALg:  i € { 1 1  2).
Then a famiLy H of mappings <h¢¢1,: C1 ——> C‚| C; e A1+1r C: e
A N D  is Catt-ed W: if
( 1 )  There is a 2 (A1 )  subaLgebra of A., denoted by 3A.. (ft

9): z tA l )  ——> z (sA ‚ )  denotes the bijective signature
morphism.

(2) For aLL (hc„1‚: c1 ——> c,) e H it hoLds:
(2.1) c2 e <sA‚)»l«1
( 2 .2 )  obname-A2(C2) = f(obname-A1(01))

(3) For every ca € (A1)+1  there is (hc(1,: C1 ——> C.) such
that ca = C l .

( 4 )  For aLL op e (A1 )+2  with arity-Z(A1)(opname-A1(op)) =
(C1 ... Cm: Cm+1) there exists by means of ( f ,  g )  op' e
( sA , )+2  with arity-z(sA2)(opname-sAz(op')) = (f
(obname-A1 (c1)) ... f(obname-A1 ( cm) ) ,  f(obname-A1
(Cm.1))) and opname-sA2(op') = g( opname-A1(op)).
Then, for aLL ce; € C i ,  with h(ce;) # L„ a : =
obname-A,(ftobname-A1(c;))); i € ( m )  and for aLL op e
(A1)¢2

hcym.1,(op(ce1p ...a com)) = op'(h¢‘1,(ce1), ...,
hc‘m‚(com))

ll
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Bemgrks: a) This definition is taiLored to many-sorted
aLgebras as they  are contained in ALg. The one-
sorted case  is characterized by far Less technicaL
detaiLs.

b )  I t  o n L y  makes  sense  t o  consider homomorphims
between aLgebras with appropriate associated
signatures, i.e. isomorphic signatures. Therefore
A2 has to be reduced to a subaLgebra with this
property and the homomorphism is onLy defined
between sA2 and A 1 .
This refLects the case that the moduLe object M
occurring in a reaLization context ( S ,  M, C) has a
- LooseLy spoken - richer structure that S i.e.
introduces more data and/or more operations. Then
it is necessary to cut off the overLapping edges.

c )  The homomorphism property is onLy considered on
eLements of C; that are mapped to non-bottom eLe-
ments by h¢(;,. This impLies partiaLity of the
homomorphisms, and it is used Lateron to partition
cartesian product carriers into eLements that
s h o u L d  correspond t o  an abstract carrier eLement,
and those that s h o u L d  not ( s e e  s e c .  4 .3 . ) .

d) The interaction between the various syntacticaL
and semanticaL operators may be visuaLized as
f o L L o w i n g :

arity-z(A1) arity-z(sA,) arity-Z(A,)

F1 (f, g) H H
2 (A1 )  > 2(sA2) C ZflAz)

obname-A1 opname-sA, obname-A,
opname-A1 obname-SA2 opname-A2

H
A, > sA, ; A,

As definition 4 .2 . -16  shows there is a cLose reLation between
aLgebra homomorphisms and signature morphisms. EspeciaLLy the
subaLgebra-generating bijections are of great importance: if
21 :22  and Sub(£1,A2)¢¢, then it depends on the choice of the
bijection (and therefore sAa e Sub(£1:A,)) if homomorphy can
be shown with a given H. This fact may be used to strengthen
the notion of aLgebra morphism by demanding property (4) for
every eLement of S u b ( 2 1 , A 2 ) .  For our appLications the weak
version suffices.

In generaL the carriers of two aLgebras are not isomorphic. In
the context of reaLizations this means that there is no infor-
mation about a reLation between the specification carriers and
the moduLe carrier. EspeciaLLy the questions if the data in-
troduced by the moduLe is 'suffient' enough or is 'too Large'
( i . e .  contains eLements of no interest) cannot be answered.

In the case of aLgebra homomorphisms the situation Looks bet-
ter. Every homomorphism h: S —> T can be used to factorize its
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78  4 .3 .  Representat ion  Objects

source  S to  an isomorphic ob jec t  S ' .  Then i t  can  be shown t ha t
T i s  aLso isomorphic  to  S ' .  “9 fo rmaL ize  these  ideas  in  sec .
4 .4 .  when Look ing  a t  reaL iza t ion  cond i t ions .

5 . } .  Representa t ion  Objects

The Las t  sec t ion  has  in t roduced  a number of concepts  as  s igna -
tu re  morphism or  aLgebra  homomorphism tha t  wiLL be used  as
bas is  of  our  no t ion  of reaL iza t ion .  Bu t  up  to  now we have  no t
sa id  D2! the  connection o f  ASPIK spec i f ica t ions  and ModPascaL
moduLes /enr ichments  i s  g iven .  This  sec t ion  i s  ded ica ted  to
th is  task :  The  concept  o f  a representa t ion  ob jec t  ( rep~ob jec t )
i s  p resen ted  i n  sec .  4 .3 .1 . ‚  whereas  the  subsequent  subsec -
t ions  t rea t  abs t rac t  syn tax :  con tex t -sens i t i ve  cond i t ions  and
semant ics  resp .  ( secs .  4 .3 .2 .  to  4 .3 .4 . ) .

. . . Conce  t

A rep-object  i s  a syntact ic  unit in which information about
the  connect ion  between a spec  and a moduLe /enr ichment  i s
ga thered .  This informat ion may be spL i t ted  in to :

. information about  the  reLa t ion  be tween  opera t ions  of the
spec and opera t ions  of  the  moduLe /enr ichment  (=  s igna ture
morphism)

0 in format ion  about  the  reLa t ion  between eLements of  spec
car r ie rs  and eLements of moduLe car r ie rs  (=  car r ie r  mapp—
ings ) .

One couLd presume tha t  w i th  these  ingredients the  condi t ion
for  aLgebra  homomorphisms a re  d i rec tLy  sa t i s f i ed  (see  de f in i -
t ion  4 .2 . -16 )  bu t  th is  i s  no t  t rue .  S ince  we Look  a t  a very
spec i f ic  s i tua t ion  ( re f inement  of  spec i f i ca t ions  in to
moduLes/enrichments): rep-objects  aLso incLude speci f ic  modi-
f i ca t ions .  '

What informat ion shouLd be given by a programmer who re f ines  a
spec S into a moduLe M?

F i rs tLy  he shouLd say  for  every operat ion of 8 which i s  the
Operat ion  of  M tha t  i s  in tended to  re f ine  i t .  Or  wi th  o ther
words:  we require  the  s igna ture  morphism sm going f rom ( the
s igna ture  o f )  S to  ( the  s igna ture )  of  M .  I f  sm: M —> S ,  th is
wouLd cor respond to  a ref inement  in  reverse  d i rec t ion  ( i . e .  an
abst rac t ion  s tep ) .  This i s  aLso an  important  scenar io :  but
ou ts ide  the  scope of  th is  paper .

SecondLy he shouLd say  how vaLues  are connec ted .  I f  he  designs
the  ref ining s t ruc ture  ( the  moduLe) he has  to  cons ider  car r ie r
eLements of CTA(S) and  car r ie r  eLements 0f  MaLg(M) ( the  moduLe
aLgebra  assoc ia ted  to  M; i t s  car r ie rs  are  ca r tes ian  products
of those  car r i e rs  tha t  a re  assoc ia ted  to  the  types  o f  the  L0 -
caL  var iabLes  of  M; see  EOLt  84b ]  fo r  de ta iLs ) .  There  a re  two
poss ib iL i t i es  fo r  such  a representa t ion  func t ion  ( rep -
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4 .3 .1 .  Concept  79

function) Rf between CTA(S) and MaLg(M) :

a )  R f :  CTA(S)  -—> MaLg(M) :  This impL ies  tha t  abstract data
can  be un iqueLy  represented  by  concre te  da ta .  I f  th is  i s
t rue ,  then  re f in ing i s  jus t  renaming ,  and no seph is t i ca ted
semant icaL  c r i te r ia  a re  necessary .  Bu t  th is  i s  not  the
case  in  generaL . ‘
ProbLemat icaLLy  aLso is  the  t rea tment  of  m € MaLg(m) with:
fo r  aLL s € CTA(S)  . R f (s )  # m (i.e. the  sur jec t i v i t y  of
R f ) .  This  da ta  has  no connec t ion  to  abs t rac t  da ta  a t  aLL :
bu t  th is  property  i s  not  v is ibLe  and moduLe opera t ions  may
work weLL on  such  a rguments .  The onLy soLut ion  i s  to  ex -
cLude them f rom the  cor rec tness  check  cons idera t ions ;  what
is  equ ivaLent  to  moving f rom to taL  to  par t i aL  opera t ions .
But  then  aLso  to taL  func t ions  o f  S are  connec ted  to  par -
t i aL  opera t ions  o f  M ,  and  th is  i s  no t  in tended  in  a
ref inement  ( the  expressab iL i ty  shouLd not  decrease ) .

b )  R f :  MaLg(M) „>  CTA(S) :  Here ,  concre te  da ta  (vec tors )  i s
mapped to  abs t rac t  vaLues ( te rms) .  This  way aLLows to
represent  a s ingLe  te rm in  d i f fe rent  ways :  o r  to  expL ic -
i tLy  d is regard  concre te  in format ion  i f  i n tended .  This i s
advantageous  s ince  re f inements  a re  o f ten  per formed by
moduLes /enr ichments  w i th  more o r  Less  redundancy (s ince
the  car tes ian  product  ca r r i e r  i s  no t  fu r ther  res t r i c ted ,
or  p rede f ined  types  o f  the  Language  o f fe r  more  opera t ion
and  da ta  types  than  needed) .  In  these  cases  Rf can  be used
to  ta iLor  the  ca r r i e rs  by iden t i f i ca t ion  of equ ivaLent
concre te  da ta  o r  by  mapping redundant  da ta  to  bo t tom eLe -
ments  of  the  abs t rac t  ca r r i e rs .
The sur jec t i v i t y  of  Rf assur ing  tha t  at; abs t rac t  da ta  i s
in  fac t  re f ined i s  aLso no t  guaran teed  by th is  func t ionaL—
i ty  of  Rf ( espec iaLLy  because  Rf i s  assumed to  be g iven  by
the  'unper fec t '  p rogrammer ) .  Bu t  under  cer ta in
c i rcumstances  sur jec t i v i t y  i s  der ivabLe  in  our  approach
(see  sec  4 .4 . ) .

The sur jec t iv i ty  of  Rf i s  a very  important  and  necessary
property  in  the  SEE contex t .  I t  ensures  that  no ' abs t rac t '
da ta  i s  ' fo rgo t ten '  i . e .  has  no ' concre te '  counte rpar t .
Otherwise  i t  wouLd be imposs ibLe  to  check  the  p reserva t ion  of
spec i f i ed  proper t ies  s ince  the  da ta  tha t  car r ies  i t  i s
miss ing .  we Look a t  sur jec t i v i t y  of  Rf  (o r  an  anaLogous func-
t ion )  as  an  essent iaL  requ i rement  for  a cor rec tness  no t ion .

In  the  foLLowing  we assume Rf having funct ionaL i ty  as  in  case
b)  above .  No te  tha t  s igna ture  morphism and  rep - func t ion  map
in to  d i f ferent  d i rec t ions :
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signature morphism
> moduLel

specification < enrichment
representation function

representation
representation

object

If we want to empLoy rep-objects as aLgebra partiaL
homomorphisms we have to sLightLy modify the above definition
4 .2 . -16  to meet the technicaL constraints (functionaLities of
signature morphisms and carrier mappings; see s e c .  4 .4 . ) .  But
then rep-objects may be seen as the syntactic vehicLe to
define a famiLy of mappings that is intended to describe a
partiaL aLgebra homomorphism. If this is in fact the case
remains to be shown, with the heLp of proving tooLs of the SEE
for exampLe. Depending on the outcome correctness of the
refinement is achieved or not; we discuSs this notion in sec.
4 .4 .

It shouLd be noted that rep-objects may form hierarchies. Like
specifications and moduLes/enrichments, they possess use-
cLauses in which other ( r e p - ) o b j e c t s  may occur. The effect i s ,

that aLL used signature morphisms and a L L  used rep-functions
are visibLe and have to be respected in a given rep-object.
This in convenient because it aLLows to partition the rep-
object design into subs t ruc tu res :  and it is more naturaL since
the invoLved specification and moduLes are hierarchicaL. Un-
fortunateLy, technicaL issues become more compLex, because
objects gag hierarchy reLations have to be considered.

The hierarchicaL structure of aLL kinds of objects is ex-
pLoitet in the proof method of sec. 5 .2 .  where a bottom-up
procedure is proposed.

I n  other approaches to the correctness of object reLations:
rep-objects in this sense do not occur as independent objects.
There, the necessary information is provided and gathered at
severaL pLaces, sometimes in the objects and sometimes in the
method (see sec. 4 .5 . ) .  We beLieve that this expLicit presen-
tation is best suited to the needs of SEEs and it emphasizes
the importance of the rep-object information by assigning an
own structure to it. '
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4 .3 .2 .  Abs t rac t  Syntax 81

5 .3 .2 ,  Abs t rac t  Syn tax

A rep-ob jec t  i s  described syntac t icaLLy  by the  foLLowing
abs t rac t  g rammar :

Repobj  = ( rob_id  : I d ,  connec t  : Connec t ,
useL  : I dL ‚  opera t ionL  : Opera t ionL ,
rep_fct  : Rep_fct )

Connec t  = ( source  : I d ,  t a rge t  : I d )
Opera t ion  = ( f rom : I d ,  to  :Id)
Rep_fct  = ( r f_ id  : I d ,  paramL : IdL,

rf_body : Rf_body)
Rf_body = (Le t_schemeL  : Let_schemeL ,

a_term : A_ te rm)  v I f
Let_scheme (Le t_var  : I d ,  Le t_body  : Let_body)
Let_body A_term v St t
A_term (a t_ id  : I d ,  exprL : ExprL)  v ( a_ id  : I d :

afl termL : A_termL)
Expr  = I d  v Term v S_te rm v Const_vaL
Term = SimpLe_term v 0p_des ignator
SimpLe_term = (op_ id  : Op_id‚ paramL : ExprL)
Op_id = I d  v Pre_id
Op_designator = (var_ id  : I d ;  op_idL : I dL ‚  paramL : ExprL)
S_term = ( s ign  : Sign, t e rm : SimpLe_term)
Sign  = { "  + }

Cons t_vaL  = I d  v INT  v ( s ign  : Sign: i d  : I d )
S tmt  = Ass ign  v Op_des ignator
Ass ign  = ( as_var  : I d ,  expr  : Expr )
I f  = ( i fflpar t  : I f _pa r t ‚  th_part : Th_part ,

eL_par t  : EL_pa r t )
I f_part  = (Le t_schemeL : Let_schemeL,  i f  : Expr )
Th_part  = (Le tuschemeL : Le t_schemeL ‚  t hen  : A_term)
ELflpar t  = ( eLse  : I f  v {e r ro r } )

The domains Id ,  Pre_id,  INT  are  not ref ined here .  They
represent  aLphanumer ic  iden t i f i e rs ,  predef ined opera t ion  iden-
t i f i e rs  of  ModPascaL,  and  the  in teger  vaLues .

Note  tha t  the  domain Rf_body tha t  descr ibes  the  s t ructure  of
the  rep_funct ion de f in i t ion  i s  based  upon domains fo r  ASPIK
gflg ModPascaL.  This  ind ica tes  the  cen t raL ,  connec t ing  roLe
representa t ion  ob jec ts  pLay ;  the i r  charac te r  as  b r idge -
s t ruc ture  i s  suppor ted  by  aLLowing  subse ts  o f  the
par t i c ipa t ing  Languages to  occur .  ALthough th is  in t roduces
more compLex i ty  i t  i s  inev i tabLe :  there  i s  no way to  fo rmaL ize
a connec t ion  be tween  ob jec ts  and  i t ems  w i thout  ment ion ing
them!

An exampLe fo r  rep -ob jec ts  in  a concre te  syn tax  may be found
in  appendix  A .
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82  4 .3 .3 .  Context-sensitive Conditions

5 .3 .3 .  Contgxt-gensitive Conditions

“@ now s ta te  f o r  t he  cen t raL  domains con tex t - sens i t i ve  cond i -
t i ons  t ha t  define t he  no t i on  o f  s t a t i c  co r rec tness  f o r  t ha t
doma ins .  The p resen ta t i on  o f  deno ta t i onaL  seman t i cs  i n  t he
nex t  sec t i on  w iLL  assume  co r rec t  ob jec t s .

We w iLL  exp ress  the  cond i t i ons  as  p rec i se  as  poss ibLe .  To do
th i s  we use  aux iL i a r y  ope ra t i ons  tha t  a re  g i ven  f i r s t .

Sh i f t  moves an  ident i f ie r  o f  an  ident i f ie r  L i s t  t o  i t s  beg in-
n i ng .

4 .3 .3 . - 1  De f .  [Sh i f t ]
The ope ra to r  sh i f t :  IdL x I d  -—> IdL i s  def ined by :

sh i f t ( ( i d l ,  ..., i d " ) ,  i d )  : =  it n = 1 then ( i d l )  eLse
Lg; j : =  L k € ( n )  . f o r  aLL  i € ( k )  .

i d i * i d „ a m | _ i d x = i d  @
;; j = I t hen  ( i d l ,  . . . ,  i d " )  eL§e

( i dk l  i d l l  non - I  i dk_ l l  i dg+1 l  I I I ,  i d " )

n

Objmap ex t rac t s  the  con ten ts  o f  the  connect  component  o f  a
rep -ob jec t  h ie ra rchy .

4 .3 .3 . -2  De f .  [ ob jmap ]
The ope ra to r  ob jmap :  Repobj  ——> @( Id  x I d )  i s  def ined by

ob jmap ( r )  : =  gg; s : =  ( sou rce  ( connec t  r ) )
t : =  ( t a rge t  ( connec t  r ) )  in

ii ( useL  r )  = L t hen  { ( s ,  t ) }  eLse
gg; ( r 1 ,  . . . ,  r " )  : =  (useL  r )  in

{ ( s ,  t ) }  u ob jmap ( r1 )  u . . .  u ob jmap ( rn )
n

A resuL t ing  mapping om can  be appL ied  to  an  ident i f ie r  L i s t  by
appLy :

4 .§ .§ . -3  De f .  EappLy]
The ope ra to r  appLy :  ( I d  x I d )  x I dL  ——> IdL i s  def ined by :

appLy (om,  ( i d l l  . . . ,  id„)) : =  ( om( id1 ) ,  . . . :  om(id„))
n

I n  cond i t ion  RO14213 beLow a pred ica te  t e rm? :  S t t  ——> D_BOOL
is  used .  Term? hoLds  i f  i t s  a rgument  - a ModPascaL s ta temen t
L i s t  - i s  o f  a spec iaL  s t r uc tu re  t ha t  aLLows  t o  t rans fo rm i t
un iqueLy  i n to  a t e rm .  I n  t ha t  p rocess  occu r rences  o f  ModPascaL
va r i abLes  a re  subs t i t u t ed  f rom r igh t  t o  Le f t  by  ope ra t i on
caLLs ,  where no  d i s t i nc t i on  i s  made be tween  p rocedu res ,  f unc -
t i ons  o r  i n i t i aLs .
The s t t  has  t o  have t h i s  p roper ty :  o the rw ise  t he  sur round ing
Le t - scheme  wouLd be  i LL -de f i ned  ( i f  ( seman t i caLLy )  no  t e rm  i s
ass igned  t o  t he  Le t - va r i abLe ) .  The poss ib i L i t y  o f  hav ing  ASPIK
t e rms  as  weLL  as  ModPascaL  s ta temen t  L i s t s  as  Le t - scheme
bod ies  g ives  the programmer of  the  repob jec ts  t he  exp ress ib i L -
i t y  o f  bo th  Languages  i n  t he  Le t - schemes  o f  r ep -ob jec t s .
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5 .§ .§ . -§  De f .  [ t e rm?]
Let  ( s tmt l l  . . . ,  s tm t „ )  € St t ‚  s tmtn  a p rocedure  caLL .
Then  the  pred ica te  te rm?:  S t t  -—> BooL is  def ined as

te rm?( (s tmt1 ,  . . . :  stmt„)) :=
gi conv_Lst ( (s tmt1 ,  . . . ,  s tmtn_ ; ) ,  conv_caLL(stmtn)) # L

t hen  t rue  eLse  faLse
where
( a )  conv_Ls t :  S t t  x A_term -—> A_term

conv_Ls t ( (s tmt1 :  . . . ,  s tm t „ )  t e rm)  :=
gg n = 0 then  te rm eLse

case  stmtn € Ass ign
;; t e rm conta ins  no occurrence  of  ( ass_var  s tmtn )

gngn L eLse
gg; t e rm1  :=  te rm<(ass_var  s tmtn )  **

(eXpr stmtn)> in
conv_Ls t ( (s tmt1 ,  . . . ,  stmt„_1)‚ t e rm1)

cgse  stmtn € Op_designator  :
ii term conta ins  no occurrence of (var_ id  stmtn)

gngn L eLse
kg; te rm1 :=  te rm<(var_ id  s tmtn )  **

conv_caLL (s tm t „ )  in
' conv_Ls t ( ( s tm t1 ‚  . . . ,  stmt„_1)‚ t e rm1)

(b )  conv_caLL:  Proc_stmt  ——> A_term
conv_caLL(p_s tmt )  :=

case  p_stmt € Op_designator  :
gg; termo :=  (va r_ id  p_s tmt ) ,

(op l ,  . . . ,  opa )  :=  (opfl i dL  p_s tmt ) :
(pL ; ,  . . . :  pLa)  :=  (paramLL p_stmt )  in

kg; term;  fo r  i € ( a )  be def ined as:
case  op ;  € I d  gag pL ;  = L :

t e rm;  :=  (op ;  t e rm;_1 )
case  op ;  € I d  gng pL ;  = ( expr l ,  ___ ,  exprn )  :

term; :=  (op;  term;__1 expr1 . . .  exp r „ )  in
terma

gase  p_stmt e S impLe_term : pustmt
n

Remark:  The def in i t ions  of  conv_Lst  and  conv_caLL a re  based  on
the  Op_designator  f ea tu re  of  ModPascaL which  aLLows to
j ux tapose  severaL  p rocedure  and  func t ion  caLLs  in  a
s ingLe  cons t ruc t  and  which  ass igns  a meaning by Le f t -
to - r igh t  evaLua t ion  of  the  caLL sequence;  see  [OLt
84a ]  and  [Ot t  84b]  fo r  de ta iLs  ( ' ex tended  do t  no -
ta t ion ' ) .
The def in i t ion  of  conv_Lst  and  conv_caLL are  der ived
f rom the  equaLLy named opera to rs  o f  [BR 85 ] .

Let  r e RepOb j .  Then i t s  con tex t -sens i t i ve  cor rec tness  i s
def ined as  foLLows:

R01 :  r cor rec t  :¢==e ( rob_ id  r )  i s  un ique  in  the  environ-
ment o f  r gng ( connec t  r )  i s  cor rec t  egg
(useL  r )  i s  cor rec t  fing (opera t ionL  r )  i s
cor rec t  gag ( rep_ fc t  r )  i s  cor rec t .
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R011:  cn : =  ( connec t  r )  correct :¢==$ (source c n )  is a
correct and visibLe moduLe or enrichment object
gag (target cn) is a correct, visibLe; specterm-
free and aLgorithmic spec object gag
case (source cn) is moduLe : ( t a rge t  cn) is

one-sorted
c a s e  ( s o u r c e  c n )  i s  enrichment : ( t a rge t  c n )  is

zero—sorted

R012 :  uL := (useL r) correct :<==¢  Every used rep-object
is visibLe and correct ggg no cycLic usage of
rep-objects occurs fing f o r  a L L  rob € f ( uL )  .
(source (connect rob)) € f ( useL  (source cn)) A
( t a r g e t  ( c o n n e c t  r o b ) )  e f ( u s e L  (spuhead ( t a r g e t
c n ) ) )  gng no object i s  u s e d  by ( s o u r c e  c n )  or
(target cn) that is not invoLved in some
rob € f ( uL )  gng the signature morphisms of
eLements of uL are pairwise compatibLe

R013 :  oL := (operationsL r )  correct :<==$ Let
(aopl, . . . ,  aopn) : =  (opsL(sp_head(target cn)))
( c o p l :  . . . :  cop „ )  : =  ( p u b L i c L ( s o u r c e  c n ) )
Op_seL := {proc_id‚ func_id‚ init_id} in

( a )  for aLL op € oL . gg;
a0p := ( f r om Op); cop := (to op) in
ä i € (n) . aop = (op_id aopi )  gng ä i € (m) A
3 oid € 0p_seL . cop = (oid cop;)
Le aopiz cop; satisfy (a) for op € oL in
Let aopar : =  shift(makeList((arity aop ; ) ) ‚

target(cn)) in
resob := ij (resuLt c0p3) t L then

( r e s u L t  c o p s )  e L s e  (source cn ) ,
copar : =  appLy(objmap(r),

concat((paramL copj),
' resob)) in

for aLL i € N . (first(restH aopar)) =
(first(restH copar))

(c) for aLL j e (n) . ? i € (Length oL) .
(op_id aop5) = (from(first(restH oL)))

(d) 333 oL = (opl: . . . :  op.) in
f o r a L L i ’ j € ( a ) z i ¢ j .

ii (from opg) (from op5) then
( t o  o p ; )  ( t o  o p j )

(+(b) !2
(+Le %

R014 :  rfct : =  (rep_fct r) correct :¢==>
case (source cn) is enrichment : rfct = L
case  (source cn) is moduLe

(rf_id rfct) = (rob_id r )  gng (paramL rfct) is
correct ggg (rf_body rfct) is correct

R0141:  pL : =  (paramL rfct) correct :¢==e
Let ( v c 1 ,  . . . ,  vc „ )  : =

( L o c a L _ v a r L ( L o c a L ( s o u r c e  c n ) ) ) .
( v l ,  . . . ,  vm) : =  conca tL ( ( i dL  vc1 ) ‚
concatL((idL v c z ) ,  . . . ,
concatL((idL vc „_1 ) ‚  (idL vc „ ) )  . . . )  in
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$.23 pL = ( p l :  . . . ,  p . )  in
a = m egg v ;  = p ;  f o r  i e (m)

R0162: rfb : =  ( r f_body r f c t )  cor rec t  :<==e case rfb € I f  :
( i f_par t  r fb )  is cor rec t  gng ( th_par t  r fb)  i s
co r rec t  gng ( eL_pa r t  r f b )  is co r rec t  o the rw i se
(Le t_schemeL  r fb )  i s  co r rec t  gng ( a_ te rm  r f b )  i s
co r rec t

RO1421:  i p  : =  ( i f _pa r t  r f b )  co r rec t  :¢==> ( Le t_schemeL  i p )
i s  co r rec t  and  ( i f  i p )  i s  co r rec t

RO14211:  ( L t s l l  ...; L ts „ )  : =  (Le t_schemeL i p )  co r rec t
:¢==> f o r  aLL  i e (n )  . ggg L i d i  : =
(Le t_va r  L t s i ) ,  Lbdy ;  : =  ( Le t_body  L t s i )  in
L ida  * L idb  “F0?“ 8 :  b € ( n ) :  a * b m L id ;  €

? ( ( v1 ‚  . . . ,  v „ ) )  [V5 as  i n  R0141 ]  ggg ( cage  Lbdy ;
€ A_te rm:  RO14212 hoLds  case  Lbdy i  € St t :
R014213 hOLdS)

RO14212:  a t  € A_term co r rec t  :¢==e case  a t  € (at_id: I d ,
exp rL :  Exp rL )  : ( a t_ i d  a t )  i s  v i s i bLe  ope ra t i on
i den t i f i e r  i n  t he  h ie ra rchy  spanned  by ( t a rge t
cn )  gng occu r r i ng  va r i abLes  a re  v i s i bLe  Le t -
va r i abLes ,  o r  con ta i ned  i n  ( v l ,  . . . ,  v " )  o f  R0141
Qgg eve ry  so r t  o f  t he  a r i t y  o f  a t  is v i s i bLe
( i f  a t  ope ra t i on )  gng eve ry  exp ress ion  o f  ( exp rL
a t )  is co r rec t
case  a t  € (a_id: I d ,  a_ te rmL:  A_termL)
[ f i r s t  two  cond i t i ons  o f  t he  f i r s t  case ]
fing every  eLemen t  o f  ( a_ te rmL  a t )  is co r rec t

R014213 :  s t t  co r rec t  :¢==e Le t  s t t  = ( s tm t l r  . . . ,
s tm t „ )  in s tm t i r  i € ( n )  i s  co r rec t  and  s tm tn
i s  p rocedure  caLL and t e rm?(s t t )  hoLds

R014214 :  s tm t  € Stmt co r rec t  :¢==>
case  s tm t  e Ass ign  : ( as_va r  s tm t )  i s  ne i t he r

v i s i bLe  Le t_va r i abLe  no r  con ta i ned  in
( v l ,  . . . ,  v „ )  o f  R0141 gng ( exp r  s tm t )  i s
co r rec t

5333 stmt € Op_des igna to r  : 53; i d  : =
( va r_ id  s tm t ) ,  ( cp l ;  . . . ,  op" )  ‘ (op_idL
s tm t ) :  ( pL1 ‚  . . . ,  pLa )  : =  ( pa ramLL  s tm t ) ,
LvL  :=  ( LocaL_va rL (LocaL (sou rce  cn ) ) ) ,  m :=
Leng th (LvL )  in
333 t ;  = ( t ype ( f i r s t ( r es tH  LVL ) ) ) ,  i € (m) in
i d  i s  v i s i bLe  moduLe i den t i f i e r  gag op ;  i s
con ta i ned  i n  t he  expo r ted  i n te r f ace  o f  some
t ; :  i € ( a ) ,  j € ( n )  gag opa i s  moduLe
p rocedu re  and  Le t  pL ;  = ( exp r l l  . . . ,
exp rn [ ; , )  gg exp r ;  i s  co r rec t ,  i € ( n i ) :
mew

RO14215:  exp r  € Exp r  co r rec t  :¢==e gg; t ;  be  de f ined  as
i n  R014214 in aLL occu r r i ng  ope ra t i ons  a re
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RO1422:

RO1423 :

RO1424:

Remarks :

4 .3 .3 .  Contex t -sens i t i ve  Conditions

contained i n  the  expor ted  in ter face  of some t ;
gag aLL occur r ing  var iabLes  a re  e i ther  Le t -
va r iabLes  o r  con ta ined  in  ( v l ,  . . . ,  v " )  o f  R0141

( i f  i p )  cor rec t  :¢==e R014215 hoLds and  ( i f  i p )  i s

tp

°P

a )

b)

c )

d )

booLean express ion  gng gg op  6 0p_designator  w i th
(op l :  . . . ;  opn)  :=  (op_ idL  op)  occurs  in  ( i f  i p )
t hen  op is  function caLL

:=  ( th_par t  r fb )  cor rec t  :<==$  (Le t_schemeL  tp )
i s  cor rec t  gng ( t hen  tp )  sa t i s f i es  R014212
gag gg; s denote the  target  of  ( a tfl i d  tp )  in S i s
i n t roduced  in  ( t a rge t  cn )

:=  ( eL_par t  r fb )  cor rec t  : ¢==e  gggg op  6 I f  :
( i f _par t  ep )  i s  cor rec t  gag ( th_par t  ep )  i s
cor rec t  gag (eL_par t  ep )  i s  cor rec t
case  ep  = {ERROR}  : t rue

We ambiguousLy denote  the  ob ject  and  the in-
t roduced  da ta  by the  same  iden t i f i e rs  ( ( source  cn )
and ( ta rge t  a ) .
The no t ions  o f  spec te rm- f ree ,  aLgor i thmic ,  one -
and ze ro -sor ted  specs  (R011 )  are  in t roduced  in
sec .  4 .3 .1 .
The cor rec tness  o f  uL impL ies  a h ie ra rch icaL ,
bo t tom-up  cor rec tness .  Compat ib iL i ty  of  s igna ture
morph isms  means  tha t  appropr ia te  p re f i x ing  i s  done
i f  opera t ion  iden t i f i e rs  in  d i f f e ren t  specs  a re
named iden t icaL .
R013  i s  equ ivaLent  to :  " (opera t ionsL  r )  i s  a
s igna ture  morph ism" .  The mod i f i ca t ions  of  a r i t i es
in  R013 (b )  a re  per formed fo r  the  foLLowing
reason:  an  abs t rac t  ( as  weLL as  a concre te )  oper -
a t ion  may have  two  or  more a rguments  of  sor t
( t a rge t  on )  ( ( source  cn ) ) .  None of  them is
spec iaLLy  emphas ized .  From the  v iew  of  p roceduraL
PLs ,  the  concre te  opera t ion  has  to  be  invoked  on  a
spec i f i c  incarna t ion ,  and  onLy th is  s t ruc ture  wiLL
be a f fec ted  by  poss ibLe  mod i f i ca t ions  whereas
other  parameters  a re  caLLed  by  vaLue .  ModPascaL
has  in t roduced  a s tandard :  the  Le f t -most  paramete r
type  o f  every  moduLe  opera t ion  i s  o f  t ype  (source
cn ) .
To_ compare ASPIK operat ion  ar i t ies  and ModPascaL
opera t ion  a r i t i es  by s ignature  morphisms:  the
former  a re  modi f ied :  the  Le f t -most  occur rence  of
( ta rge t  cn )  in  an  opera t ion  a r i t y  i s  sh i f t ed  to
the  very  Le f t  pos i t ion  o f  th is  a r i t y .  By th is ,  the
syntac t icaL  c r i t e r i a  of  the  s igna ture  morphism
condi t ion  wiLL not  f a iL  because  of  ModPascaL
s tandards .
Note  tha t  the  arrangement  of  parameter  types  in
the  a r i t y  of  opera t ions  i s  ' syn tac t ic  sugar '  and
does no t  in fLuence  the  mathemat icaL  func t ion
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4 .3 .3 .  Context-sensitive Conditions 87

behind or computationaL properties.
e )  In the case  of enrichments, (rep_fct r) is not

defined (R014 ) .  This makes sense; since by defini-
t i o n  enrichments do not introduce any data but
e n L a r g e  a s e t  of operations o n  a L r e a d y  existing
data. I n  this case the object (target cn) has to
be zero-sorted (see R011) .

f )  Parameters of the rep-function are the LocaL
variabLes of the moduLe. Note that this is
coincident with the fact that carriers of moduLe
definitions are generated as cartesian products of
the types of the LocaL v a r i a b L e s .

g )  Rep-functions are either defined by A_terms or by
nested eLements of If.
The A_term eLements directLy represent vaLues of
the abstract carrier of (target cn ) .  The if-
schemes branch for different vaLues of the LocaL
variabLes, and then yieLd in rep-function recur-
sions or A_terms. Note that A_term is a domain
that contains eLements buiLt from

- ASPIK operation and variabLe symboLs
— ModPascaL operation and variabLe symboLs
- Recursive caLLs of the rep-function and

caLLs of aLready defined rep-functions.
A_term eLements are the most Low-LeveL syntactic
items in which the connection of the different
Language LeveLs can be specified and made visibLe.

h) Let-schemes may introduce variabLes with binding
t o  ASPIK  terms a s  weLL a s  to ModPascaL statement
Lists. The second aLternative was introduced to
deaL with the foLLowing situation:

I n  a recursive rep-function caLL some parameter
( a  LocaL variabLe) of a m oduLe type has t o  be
modified. This modification is performed by a
moduLe procedure caLL on this variabLe.
Now, syntacticaLLy it is impossibLe to write a
statement on a parameter position (where e x -
pressions are expected).
Therefore, this Let—mechanism together with the
syntacticaL checks of R014211 ‚ -13 ‚ - 14 ‚  and
definition 4 .3 .3 . -4  were taken to soLve the
probLem.

i )  The domain Expr of expressions denotes pure
ModPascaL e x p r e s s i o n s .

j) The s tanda rd  exit of the if-scheme sequence
representing a rep-function definition is the
ERROR-eLsepart. I t  indicates that aLL concrete
d a t a  e L e m e n t s  up t o  now not considered are mapped
to the bottom eLement of (target cn ) ,  i.e. that no
abstract representation shouLd exist for these
concrete representations.
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4 .3 .5 .  Semantics of Rep-Objects

The dynamic semantics of rep-objects is given on the syntactic
domains of sec. 4 .3 .1 . :  whereas the semantic domains are those
aLready introduced in sec. 3 .3 .1 .  for ASPIK and ModPascaL. In
addition to the aLso assumed semanticaL functions of sec.
3 .3 .2 .  we here use a speciaL operator for rep-objects.
FinaLLy: we assume the semantic cLauses of sec. 3 .4 .  vaLid.

we extend the domain Constr of a L L  domains:
C o n s t r  = Spec + Sp_head + Op + . . .  +

ModuLe_ type  + PubLic + ... +
Repobj + Connect + Operation + . . .

Beside the generaL semantics function M : Constr ——> State ——>
State and its derivatives E, Mt, Mm, Me, Mi we now introduce
f o r

c e Repobj
Mr : Repobj ——> State ——> State
and MEcflgs =? MrEcfigs.

Tha t  means  t ha t  we assume an environment in which ASPIK  specs,
M o d P a s c a L  m o d u L e s  and rep-objects are a d m i s s a b L e ,  e q u a L L y

entitLed objects - a non-standard data base system: as for e x -
ampLe reaLized in the ISDV-System (RL-DMS; see [ R L  85 ] ) .
F o r  rep-function bodies we a p p L y  E since they are p u r e L y  func-
tionaL:

c € Rf_bodv
MEc]§e =: EEcmge

The memory modeL given in sec. 3 .3 .3 .  is now extended to rep-
objects. Their main semanticaL components - the signature
morphism and the rep-function - are administrated in different
s L o t s :

§ ( i d ) ¢ 2  = REPOB

id ———> (Location: REPOB: S € SigMorphT
!

6

op € OpDen

The domain SigMorph is given in definition 4 .3 .4 . -  beLow.

AnaLogousLy to the notions of cta-environment, mod-environment
and enr-environment we now introduce speciaL environments ac-
cording to rep-objects. The main requirement is that
predefined syntacticaL operators are accessabLe that provide
information about the syntacticaL object that generated a
given meaning. This is necessary because our semanticaL
domains offer no provision for this information; once a rep-
object meaning is computed, information of origin of identi-
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4 .3 .4 .  Semantics of Rep-Objects 89

fiers or of hierarchicaL reLations is obLiterated despite the

fact that it is important Lateron (mainLy because set union

has no 'memory').

4 .3 .4 . -1  Def. [rep—environment]

.Let RCLauseOps ; I d  with
RCLauseOps := { rob?‚ r use? ‚  connec t? ‚  operations?, rf_ar?’

rf_def?}

Then g € Env is caLLed rep-environment if for aLL x e

RCLauseOps
a) §(x):L
b) § ( x ) ¢ 2  = REPSEL

I

Remark: Associated to every eLement e L  of RCLauseOps there is

an (ambiguousLy denoted) speciaL function eL that evaLuates to
syntacticaL information if appLied to rep-object identifiers:

9 L  = rob?
Associated operation: rob? : Id  ——> State ——> D_BOOL
§(rob?) = (Loc, ROBSEL, L )

6(LOC) = {(id‚tr)| id e Id, tr e D_BOOL}
rob?(id)§s : =  s(§(rob?)¢1) (id)

e L  = ruse?
Associated operation: ruse? : Id ——> State ——> IdL
§(ruse?) = (Lee ,  ROBSEL, L )

6 ( L O C )  = { ( i d r  ( i d l l  . . . :  i d „ ) ) |  id: i d ;  € I d :  i € ( h ) !  n € N}

ruse?(id)§6 := 6(§(ruse?)w1) (id)

eL € { connec t? ‚  operations?)
Associated operation : eL : Id ——> State -—> P(Id x Id)
§(eL) = (Loc, REPSEL: L )

6 ( L O C )  : { ( i d l  { ( i d l l  i d l ' ) )  . . . :  ( i d n l  i d n ' ) } |  i d !  i d i l

id;' 6 Id, i e (n ) ,  n e N}
eL(id)§s = 6(§(eL)&1) (id)

e L  = rf ar?
Associated operation : rf_ar? : Id ——> Id ——> State ——> Arity
§(rf_ar?) = (Loc, ROBSEL, L )

6(LOC) = { ( i d :  ad)l id € I d :  ad € ArDes}
rf_ar?(id1;id2)§s : =  s(§(rf_ar?)+1) (idl) (idz)

eL = rf def?
Associated operation : rf_def? : I d  ——> State ——> OpDen

§<rf_def?) = (Loc, ROBSEL, L)

6(Loc) = {(id, opden)! id € Id, opden € Opden}
rf_dof(id)§6 : =  e(§(rf_def?)¢1) (id)

!

Based  on rep-environments; the operators EXTEND and EXT of

sec. 3 .4 .1 .  are defined anaLogousLy.
Our cLassification of environments is used to define those
'environments in which we want to consider semanticaL defini-
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90 4 .3 .4 .  Semantics of Rep-Objects

tions and cor rec tness  issues: verification ( v - )  environments:

4 .3 .4 . -2 ,  Def. Ev-environment]
S e t  g e Env .
§ is caLLed verification (v-) environment, if g is cta-
environment, mod-environment. enr-environment and rep-
environment.

n

The domain SigMorph - informaLLy introduced in sec. 3 .3 .1 . -
serves as semantics for signature morphisms defined by rep-
objects (i.e. morphisms between specifications and moduLes).

4 .3 .4 . -3  Def. ESigMorph]
Let (gls) € State with @ v-environment.
The domain SigMorph of signature morphisms is defined by:
( a )  SigMorph g (Map x Map x ArDes) with

for aLL sm € SigMorph .
gg; f:=sm¢1: g:=sm¢2: h:=sm&3 in

( a . 1 )  Vid 6 s o u r c e ( f )  . c t a ? ( i d ) § s  = true gng
Vid e target(f) . maLg?(id)§s = true

(a.2) Vid1 € source(g) . 3 id2 € source(f) .
id1 € p_op_id?(id‚)€6 gag

Vid1 € target(g) . Bid2 e target(f) .
333 S := p_proc_id?(id2) u p„func_id?(id2)

u p_init_id?(id2) in
id1 e S

(a.3) source(h) = source(g) u target(g)
(a.4) Vid € source(g) .

L % E ( i d 1  . . .  i d “ ,  i d n + 1 )  : =  h t i d ) ’

(idl' ... idm'‚ idm.1') : =  h(g(id))‚
mum € N ‚ai-„Q

(a.4.1) n=m
(a.4.2) idi € sou rce ( f ) ‚  id;' € t a rge t ( f ) ‚  i e

(n+1)
( 8 .4 .3 )  id;' = f(id;), i € ( n+1 )

( b )  SigMorph is maximaL with ( a )

Remark This characterization of SigMorph coincides with the
signature morphism definition in 4 .2 . -2 .

4 .3 .4 . - 4  Def. Eis-sigmorph]
The predicate

is—sigmorph : (Map x Map x ArDes) ——> D_BOOL
is defined by

true if ( f ,  g: h) e SigMorph
is—sigmorph((f: g: h)) : =  {

faLse otherwise
n

It wiLL be important to unite signature morphisms. To define
the union we unite mappings.

4 .3 .4 . -5  Def. [union]
Let M : =  (Map + ArDes); ml: m2 € M .

November 1 9 8 5



4 .3 .4 .  Semantics of Rep-Objects 9 1

Let + : M x M ——> ( I d  x ( I d  x Arity)) be defined as
+(m1, mg) := ( ( x ,  m i ( x ) ) |  x € source(m; ) ‚  ie {1: 2}}.

Let s m ;  € S igMorph :  s m ;  = ( f i :  g i ,  h i ) :  ie 
{ 1 :  2}.

L e t  s m : = ( + ( f 1 :  ' Fa ) ’  + ( g l '  g g ) ,  +(h1 l  h2 ) ) -

Then sm is caLLed  the un ion  of sm1 and sm2 if
( a )  smii denotes a function, i € ( 3 )
( b )  is-sigmorph(sm) = true

Notation: If the union of sm; and sm, is def ined we

ambiguousLy denote it by sm1 + sm, .
s m l  + I I I + SIT!"  : =  ( I I I ( s m l  + S ina )  + I I I )  + sm" )

4 .3 .4 . -6 .  Def. [signature cLassifications]
Let M denote a moduLe/enrichment o b j e c t .

Let ( g ,  s )  € State with g v-environment such  that M is
eLaborated in ( g ,  6 ) .  Let ( u l :  . . . ;  u " )  := muse?((mod_id M))§6

The signature
iX(MaLg(M)) : =  (...(Z(s(§(u1)+1)) + E(e(§(u2)¢1))) + (...

...) + Z(s(§(un)¢1)))
is caLLed imported sidnature of M .

eZ(MaLg(M)) : =  E(MaLg(M))
is ambiguousLy denoted exported siqnature of M
The tupLe

new(M) := (eZ(MaLg(M))¢1 \ iz(MaLg(M))+1‚
eZ(MaLg (M) )+2  \ iZ(MaLg(M))+2)

is caLLed  the set of new object and operation identifier in-
troduced by M .
A n a L o g o u s  definitions h o L d  for spec objects. I

Remark: The union is aLways defined because objects (and their
hierarchies) are assumed to be correct.

Now we are ready t o  s t a t e  the semantics of rep-objects:

Sem_7 : Rep-Objects

MrEr: Repobjflgs : =
( 1 )  ‘Let rid : =  (rob_id r), sob : =  (from (connect r))

tob : ( t o  (connect r)), ( u l :  ...; u") : =
(useL r), ( p l ,  . . . ,  pm) : =  (operationL r),
( L 1 ,  . . . ,  L a )  : =  (paramL hf),
rf : =  (rep_fct r) in

(2) 33; (ge ,  60) := EXTEND(r)§6 in

( 3 )  L e t  s m i  : =  g ( u i ) + 3 ‚  i € ( n )  in

Le sm = sm1 + ... + smn in
if sm = L t hen  L eLse

( 4 )  et aop; : =  (from p i ) ,  copi : =  ( t o  p;); i e ( m )  in
gm {aopil i € (m)}  * p_ops_id?(tob )goso then L eLse

: =  p_op_a r? ( t ob ‚  aop;)§oeo in

November 1985



( 5 )

( 6 )

( 7 )

( 8 )

Remarks :

Le t
m

455 .4 .  Semantics of Rep-Objects

copar ;  :=
case  cop;  e p_proc_ id? (sob)§oeo

- p_proc_ar? (sob ,  cop i ) .
case  cop;  e p_ func_ id ‘? (sob)§oso  '

p_ func_a r? (sob ‚  cop i )
case cop; € p_in i t_ id?(sob)§oso

p_ in i t_a r? (sob ,  cop i ) ,
i e (m) in

Let  f denote  the  mapping f : { sob}  ——> { tob}
f1 := +(smw. f ) an

ii f 1  i s  no t  a function then  L eLge
L-WQEaOPar ‘ i  : ( id i t l l  ""  i d i tn t i l l '  i d i tn t iH - l  l ) ’

i € (m) in
333 saopar ;  :=  ( f 1 ( id ; (1 , )  . . .  f 1 ( id ; .n ( ; , , ) :

f 1 ( id i tn t i )+1  ) ) ) ,  i € (m)  in
if saopar; # copar i :  i e (m) then L eLge
gg; obmap :=  f 1 ,

opmap : “  + (sm+2 ‚  { (aop i ,  cop i ) l  i e (m) } ) ‚
armap  + (sm¢3 ,  { (aop ; ,  aopar ; ) |  i € (m) }  u

{ (cop ; :  copar;) |  ie (m)}) in

ii opmap or  armap denote  not  a func t ion  then  L eLse
Leg sigmorph :=  (obmap; 0pmap, armap) in

Let  r f id :=  (r f_id r f ) :  rfbody :=  ( r f_body r f )  in
Let  r fde f  :=  f i x  f . A§161  .

(EEr fbdy ]§1 [ r f id  +4 (Loc l :  FUNC; L) ]

61ELoc ** f ] ) +1
where (g l ,  61 )  i s  ( go ,  so)  bu t  contains L i :

1 e (a )  evaLua ted  gag Loc i  :=
newLoc(§o) in

Le;  (g ,  s )  :=  (go ,  60 ) :  Loc :=  newLoc(§o)  in
Lg; § '  : =  gEr id  ** ( Loc :  REPOB: s igmorph) ]

a )

b)

e '  :=  sELoc ** r fdef]  in
(g ' ‚  6 ' )

The d is t inc t ion  between context -sens i t ive  condi -
t ions  and  dynamic semant ics  i s  sL igh tLy  so f tened
in  Sem_7: the  computa t ion  of  the  induced  s igna ture
morphism is  repea ted .  Th is  i s  necessary  s ince
s ignature  morphisms are  impor tan t  subs t ruc tures  o f
representa t ion  ob jec ts :  and  they  fo rm the  spec iaL
domain S igMorph .
No o ther  context -sensi t ive  . cond i t ions  a re  re -
checked .  ‘
The semant ics  of  rep -ob jec ts  i s  const ructed  in
v-environments  as  foLLows:
( 1 )  Identifier fo r  important components are

i n t roduced  by abs t rac t  syntax  seLec t ions .
(2 )  Charac te r is t i c  predef ined (opera t ion )

iden t i f i e r  of  a rep -env i ronment  a re  sup-
pL ied  w i th  the  syn tac t icaL  in fo rmat ion .
This  wiLL be used  in  ( 3 ) ,  ( 4 )  and  (5 )
where  genera t ion  and  un ion  o f  s igna ture
morphisms are per fo rmed .
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Assignment to other predefined identifiers
are given in Sem_8.

( 3 )  The union of aLL used signature morphisms
i s  generated via the '+'-operator of
definition 4 .3 .4 . -5 .  OnLy if the union is
defined the rep-object semantics is
d e c L a r e d .

(h ) - (6 )  It is checked if the operation cLause
together with the resuLt of ( 3) con-
stitutes a signature morphism.

( 7 )  The rep-function semantics i s  computed as
Least fixed point of the functionaL
derived from the rep-function body.

( 8 )  The new object is instaLLed in the
environment.

c )  Note that the rep-object semantics does not denote
a n  a L g e b r a .

Rep-function body semantics is given in Sem_B.
We assume:
Let r € Reprobj.
Let rf : =  (rep_fct r): rid : =  (rf_id hf),

(L1, . . . ,  L.) : =  (paramL rf), rfbdy : =  (rf_body rf)
Let ( g ,  6 )  6 State such that necessary syntacticaL information

about r is avaiLabLe (i.e. position (7) in Sem_7).

Sem_8: Rep—function bodies

(1) EErfbdy: Rf_bodyfl§6 :=
case rfbdy € If : EErfbdy: Ifflgs
case rfbdy € A_term : EErfbdy: A_term]§6

( 2 )  EEifs: If3§6 : =
333 ( g 1: 61) : =  ME(Let_schemeL(if_part ifs))3§s in
it (EE(if(if_part ifs))]§161)v2 = true gngn

gg; ( g „  s,) := ME(Let_schemeL(th_part ifs))fl§s in
(EE(then(th_part ifs))3§262)¢2

eLse gg (eL_part ifs) = { e r r o r }

then LS eLse  E[(eL_part ifs)fl§6

( 3 )  MELts: Let_schemeLB§s : =
gg (first Lts) = L then L 333g
ifi (rest Lts) = L t hen  ME(first Lts)]§6 eLse

ME(rest Lts)I(ME(finst Lts)3§6)

(4) MELt: Let_schemel§6 :=
333 Lid := (Let_var Lt), Lbdy := (Let_body Lt) in
case Lbdy € A_term :

gg; Loc : =  newLoc(§) gg
Let gl : gELid H (Lac ,  VAR, J . ) ]

61 = 6ELoc ** EELbdy :  A_termI§sJ in
( g l ,  6 1 )

gase Lbdy € Stt '
gg term?(Lbdy) $ true gngn L eLse

Let Lbdy = stmtl; . . . ;  stmtn in
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9 4  4 .3 .5 .  Connection to ALgebra Homomorphisms

kgk t = conv_Ls t ( ( s tm t1 ‚  . . . ;  stmtn_1),
conv_caLL(stmtn)) in

kgk Loc : =  newLoc(§) in
[ L i d  "" ( LOC VAR:  l ) ]

[ Loc  9“ EEt: A_term3§s] in
‘—

® d
' W

|..
.

I
I
I
I

G
e
t
/
“
6

( 5 )  EEat: A_term3§e :=.
gggg at e (at_id: Id, exprL: ExprL) :

kgk aid := (at_id at),
(el, ..., en) := (exprL at) in

kgk ev; : =  (EEe;IEG)+2‚ i e ( n )  33
( ( E ,  6 ) :  6 ( g ( a i d ) + 1 ) ( e v 1 ‚  . . . I  9V„ ) )

case at € (at_id: I d ,  a_termL: A_termL) :
kgk aid := (at_id at) 33

;: (a_termL at) = L t hen  e(§(aid)¢1) eLse
kgk (al, . . . :  a„) := (a_termL at) ÄD
kgk av; := (EEa;3§6)¢2 in

( ( g .  e ) ,  s(§(aid)¢1)(avll ...: av „ ) )

(6) EEex: Expr] : (see Sem_4 of [OLt 84b])

Remarks: a )  Sem_8 Lists aLL important cLauses of the rep-
function body semantics computed in a
v-environment; syntactic domains which do not
occur in sec. 4 .3 .2 .  can be found in [OLt 84b].

b) Specific remarks:
( 1 )  Switches onLy.
( 2 )  The sort 5 of La corresponds to the sort in-

troduced in the source of the corresponding
rep-object r (i.e. in (from(connect r))).

( 3 )  Letscheme—Lists are eLaborated iterativeLy.
( 4 )  Letschemes instaLL variabLe-vaLue bindings in

environments. I n  the case of statementLists
( c . f .  remark h of s e c .  4 .3 .3 . )  the operators
term?, conv_List and conv_caLL of definition
4 .3 .3 . -4  are empLoyed. This aLLows t o  compute
the semantics of the statement List on an

' e q u i v a L e n t  expression.
( 5 )  A_terms are evaLuated by appLication of the

associated function. Note that EEe;B and Email
describe appLications of E t o  ModPascaL (e;)
and ASPIK/rep-function . ( a i )  constructs;
.because of our choice of semanticaL domains
and semanticaL functions these formuLae are
defined and sensefuLL.

( 6 )  The domain Expr is the associated ModPascaL
domain.

4 .3 .5 .  Connection t o  ALgebra Homomorghisms

Rep-objects incLude two essentiaL informations: the signature
morphism and the rep-function. Both are instaLLed in
v-environments as resuLt of M .  How do the so-described objects
reLate to aLgebra homomorphisms of sec. 4 .2 .?
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For a direct appLication of definition 4 .2 . -16  we must in-
troduce additionaL requirements for rep—objects to satisfy
conditions ( 2 )  and ( 3 )  there. They mainLy ensure that for
every object of the source and target hierarchy there is an

appropriate rep-object visibLe.

4 .3 .5 . -1  Def. [structure respecting]
Let ( g ,  6 )  denote a v-environment.
Let r € Repobj, and ( E 1 ,  6 1 )  : =  MErflgs such t ha t

§((rob_id r))¢3 $ L
Then  r is caLLed structure respecting if it hoLds:

gg; A1 := ME(from(connect r))l§s,
A2 : =  ME( to ( connec t  r))3§s gm

( 1 )  S U b ( E ( A 1 ) I  A 2 )  $ ¢
( 2 )  3 sA2 € Sub(Z(A1), A2) .

533 ( f ,  g )  denote the signature morphism connected
to sAa in

( f ,  g )  E §1((rob_id r))+3
V s e use?((spec_id(from(connect P) ) ) )§161  .
ä m € muse?((mod_id(to(connect r))))§,_61 .
ä r' € ruse?((rob_id r))§,_s1 .
(from(connect r')) = s ggg (to(connect r')) = m

( 4 )  V m € muse?((mod_id(to(connect P) ) ) )§161  .
ä s € use?((spec_id(from(connect P) ) ) )§161  .
ä r' € ruse?((rob_id P))§161 .
(from(connect r')) = s gag (to(connect r')) = m

( 3 )

Remark: Structure respecting is a property of rep-objects that
impLies isomorphic hierarchies of specs and
moduLes/enrichments.

From this we have the foLLowing proposition.

g.5.3.—g Proposition
A structure respecting rep-object r is a partiaL aLgebra
homomorphism if its rep-function satisfies condition ( 4 )  of
4 .2 . -16 .

Proof: We show how condition (1) to (3) of 4 .2 . -16  are im-
pLied.
Let A1, A2: 3A2; ( g ,  s ) ,  ( : 1 ,  6 1 )  be a s  in definition

4 -5 -3 - ‘ 1 .

Let ( r l ,  . . . ,  r") : =  cLosure(ruse?((rob_id P) )§161  (the
cLosure operation generates a List of names of aLL
directLy or indirectLy used objects; see [OLt 84bJ).

Let <rfi: C ;  ——> sC;I i € ( n )>  denote a f a m i L y  of functions
with rf; : =  sl(§1(r;)¢1), i € (n). Note that rf; = LOpDen

if for id 6 connect?(r)§ls1 enr?(id)§ls1 hoLds (equivaLent
to: sorts?(id)§1es1 = ¢).

Then it foLLows:
( 1 )  : Since r is structure respecting there exists a sub-

aLgebra sA2 of A2 with the required signature morphism
( f ,  g). The direction of f (source: spec, target:
moduLe/enrichment) is invertibLe because of its
bijectivity. Therefore in the sequeL we assume f mapping
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9 6  4.4. R eaLization Conditions

anaLogous to the r f ; .
(2.1) : I t  hoLds: f(obname-A1(C)) = obname-sA2(sC) for c €

{C1 ,  . . . ,  Ch} ,  56 € { s c 1 ,  . . . ,  sch} .
sci € ( sAz )+1  =9 obname-sA2(sC;) $ target(f)
=? f is not bijective, in contradiction to the assump-

tion.
( 2 .2 )  : Again by the bijectivity of f
( 3 )  : If ca € (A1 )+1 ‚  but no i € ( n )  exists with c6 = c;

=: there is a spec s not invoLved in some rep-object r;
=? the object mapping f i s  not totaL o n  the set of visi-

bLe objects: contrary to the assumption.

If additionaLLy ( 4 )  is satisfied by <rfi: Ci ——> scil i e (n)>

the proposition foLLows directLy. n

This reLation between structure respecting rep-objects and

partiaL aLgebra homomorphisms wiLL be used for the formuLation

of our correctness criteria in the next section.

4 . 4 .  ReaLization Conditions

' R W e  now return t o  our treatment of reaLizations and reaLization

contexts. Both notions differ onLy in the additionaL require—

ments demanded for r e a L i z a t i o n s .

The situation is the foLLowing: there are a user—defined spec

object, a moduLe/enrichment object and a rep-object. The first

two are s e m a n t i c a L L y  described by a L g e b r a s ;  the rep-object

estabLishes a signature morphism between them, and under cer-

tain conditions an aLgebra homomorphism. These additionaL con-

ditions wiLL be embodied in the reaLization re-definition of
4.1.-2.

4.4.-1 Def. [reaLizationI reaLization-context]
Let 8 denote an ASPIK spec, M a ModPascaL moduLe/enrichment

and R a r e p — o b j e c t .
Let C1 denote the conditions

- S is aLgorithmic, singLe—sorted, specterm-free
— M is instantiation type definition free
- R is defined o n  S and M
- R i s  structure respecting

Let C2 denote the condition
- R satisfies ( & )  of 4 . 2 . - 1 6

Then the tripLe (S, M; R) is caLLed reaLization, if its com-
ponents satisfy Cl and Ca. It is caLLed reaLization-cqntex I
if onLy Cl is satisfied.

"

By this definition, a user of a software deveLopment system

has to proceed in three steps to verify his sequentiaL impLe-

mentation (=reaLization):

1) Specify the task in constructive: at most one-sorted

specterm-free spec objects. Re-program it in moduLes and

enrichments whiLe utiLizing efficiency increasing features.

K ' A I I A M H A H  Q D O E
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2) Write a rep-object in which you try to express the intended
reLations syntacticaLLy (signature morphism) and semanti-
c a L L y  ( c a r r i e r  m a p p i n g ) .
Compute the mapping between the canonicaL term aLgebra and
the moduLe aLgebra induced by the rep-object.

3 )  According t o  definition 4.2.-16: show for each operation of
the canonicaL term aLgebra, that the homomorphism equations
h o L d s .

I n  section 5 we w i L L  deveLop a proof method suitabLe t o  this
s t e p s .

4.4.-2. Def. Ecorrectness: reaLization conditions]
A moduLe (enrichment) M is said to reaLize a specification 8
correctLv: if there exists a rep-object R such that ( S ,  M ;  R)
is a reaLization. The homomorphy equations derived from R (the
set C2 of 4.4.-1) are caLLed reaLization conditions.

:

Note  that this definition of correctness depends not on a
specific rep-object (perhaps severaL wiLL do it). But it is
obvious that correctness statements for fixed S and M, and for
different R come up with incomparabLe semanticaL structures.
Therefore reaLizations (SIMIRl) and (S ‚M ‚Rz )  are not exchange—
abLe in generaL.
Note aLso, that there are no Limitations in the number of
reaLization (context)s an object may be invoLved. This is
soLeLy an administration probLem which has to be resoLved by
the object management of the software deveLopment system.

One may argue that the homomorphism prOperty is t o o  weak t o
serve as correctness criteria for refinements of this kind. We
do not beLieve this. If a designer of software can be assured
that his finaL program behaves in just the way he specified on
the abstract LeveL, he wiLL be satisfied and not be worrying
about the possibiLity that it might do more than he intended.
If additionaLLy homomorphy is easier derivabLe in practicaL
environments than say isomorphy one shouLd not feeL un-
comfortabLe with this aLLeged weakness.

I n  section 4.1. the probLems arising from non-surjective
carrier mappings were discussed. I n  the speciaL context of
reaLizations surjectivity i s  deLivered for-free.

4 . 4 . - 3 .  C o r r o L L a r v
Let ( S ,  M ,  R) denote a reaLization with homomorphisms <rfi: C;
——> C;' I i € (n)> for some n.
Then rf; is surjective’ i e (n).

Proof: Let ( g ,  6 )  denote a v-environment with semanticaL
embedding of S: M ;  and R ,  such  that the homomorphisms of the
premise exist as s(§(r;)+1) for some rep-objects r t : i e (n).

Let sid : =  sort_id?((spec_id S) )ga :  C5 : =  6(§(sid)¢1),
{con1, . . . ,  cone} : =  constr?((spec_id S))§s;
CN : =  toi?((mod_id M))§s.
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9 8  4 .4 .  ReaLization Conditions

= L (P f -3 :  C ;  “"-"> CJ . )  € ( P f - t :  C i  _ )  C i .
Let ( r f :  C H  ——> c s )

i e (n)> . CM

Then it is sufficient to consider the surjectivity of rf since
r is structure respecting.

Let SIG; = ( 08 ; ,  OP ; ,  arityi), i € { M ,  S} denote the asso-
ciated signatures to S and M.

Let ( f ,  g) : SIGS ——> SIGM denote the restriction of
§((rob_id))¢3 to 8163.

(1) Every eLement of C8 is finitLy generatabLe by appLications
of con;, 1 € (a)
=» structuraL induction is appLicabLe

(2) V con € { con1 ‚  . . . ,  con.) .
aritys(con) = ( 8 ;  sid) =$
con = rf(g(con))
since rf is homomorphism.

(3) V con € { con1 ‚  . . . ,  cone}, (arity,(con))¢1 t 8 .
V sid1 ... sidb e 033*, b e N .
v t; e ci' a s(§(sid;)¢1)).
Induction hypothesis: t; = rf;(g(t;)).
(where g is appLied to the constituents of ti)
Induction step: arity3(con) = (sid1 ... sidb, sid) =?

con(t1‚ . . . ;  tb) = r f ( g ( con ( t1 ‚  . . . ,  tb)))
since rf is homomorphism

" E v e r y  eLement of C s  is target under rf; from this conjecture
i ' f o L L o w s .

n

The surjectivity of the homomorphisms induced by rep-objects
( S ,  M, R) aLLows to factorize the moduLe aLgebra by a con-
gruence induced by the homomorphism. The factor aLgebra is
isomorphic to CTA(S) and to the reLevant subaLgebra of M(ALG)
(where reLevant means: with respect to the correctness issue
in SEES) .  The deveLopment of this resuLts rounds this section
o f f .

[ k m h - _ “ .  03-f- [E r - f ]

Let (s, M, R) denote a reaLization with <rfi: c; ——> c;' I i e
( n ) > .

Then the carrier identification E „ f ;  induced by rf; is defined
as:

apfa := { ( C l :  Cz) l  C1! C2 € c a  QQQ rfi(c1) : rfi(c2)}
ll

Notation: a n  := { a „ f .  | 1 e ( n ) }  \
[ c ]  : =  E,.“ e ER . 3 ( c „  c2) 6 a . . . “  .

c1 = c 9; c2 = c

I n  the next Lemma the notion of a Z-congruence is empLoyed
where 2 denotes a signature. A z-congruence reLation is con-
gruence reLation that hoLds for aLL operations named by eLe-

l u - u n ' fl fl l —  “ n o t
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ments of I .

4 .4 . -5 .  Lemma
Let (S, M, R) denote a reaLization with <rfi: c; ——> ci'l i e
(n)> and with associated subaLgebra sM of MaLg(M) .  Let I =
(08; OP: arity) : =  I(SM).

Then  E R  is a Z-congruence.

Proof:
( 1 )  E R  is equivaLence reLation

( 1 .1 )  E R  refLexive: Vc; € ci rfi(c;) = rf;(c;)
4==¢ C i  rfi C i -

( 1 .2 )  E R  symmetric: Vol. c2 € Ci . c1 arfi C a

¢==> rf;(c1) = rfi(cz)
¢==> rf;(c2) = Pf;(C1)
m C 2  Er f i .  C 1

( 1 .3 )  E R  transitive: Vol, c a ,  c3 € C; .
C:. E r f l  C2 @119. C e  E r f i  C a

¢==> r f ; ( c 1 )  = r f ; ( c a )
gag rf;(c2) = Pf i (C3 )
=? Pf ; (C1 )  = Pf i (3 )
{==> C 1  E r - f i  C 3

( 2 )  5 "  z-congruence
t o  show: V op s OP with arity(op) =

( o b n a m e - M a L g ( M ) ( C ; ( 1 , )  . . .  obname-MaLg(M)(C;(K,);
obname-MaLg(M)(Cm)),
C W ] !  C i t ;  J € { 0 1 1  no . ,  cn } ,  i } ,  m € { 1 ‚  no . ,  n } ,  j €

( k ) .
V C ; ( ; , I  C; [ ; ‚ '  € C ; ( ; , I  M l i ;  € { 1 i  . . . )  n}: j € ( k )

C i t } :  E r f i t i y  Ci t i )

Il
l

‘
U
’

o p ( c i t 1 ) ’  " "  c i t k y )  r f m  °p ( c i t 11 "  " "  c i tka ' )

Then  we have
gg; (g, 6 )  denote a v-environment with eLaborated R in
33; (f: g) := §((rob_id r))v3 in
V C ; ( 3 , r  Ci ( ; , '  € C ; [ ; ‚ :  m ;  i 3  € { 1 1  . . . :  n}; j € — ( k )  .

C i t } :  E r f i t i )  Ci t i a '

=> rfm ( o p ( c ; ( 1 , :  ...: c i ( „ ‚ ) )
f q ( 0 p ) ( P f i ( 1 , ( C i t l ‚ ) r  . . . :  Pf i tk , (C i (K ) ) )

f*(op)(rfi„1‚(c;(1‚')‚ . . . ;  rf;(„‚(c;(„‚'))
-m(0p (C i (1 ‚ ' f  . . . ;  C i ‘ g , ' ) )

=> o p < c l ¢ 1 ) ’  ""  c i t k  I) E r f m  op<c i t1 ) "  " " ,  c i t !  ) . )
I

In generaL MaLg(M) contains more data and operations than are
of interest (LocaL types, LocaL operations). I n  Sub(Z (CTA(S ) ) ;
MaLg(M)) onLy those aLgebras occur that Lack superfLuous
items. Since every reaLization is associated to a specific
aLgebra out  of this s e t ,  we take those aLgebras for
factorization instead of MaLg(M).

[ h u l k - ' 6 .  De-F -  [Q (MI  R ) ]

Let (S; M, R) denote a reaLization with <rf; : C; —— Ci ' l  i e
( n )>  and associated subaLgebra sM, ( € ,  s )  € State with €
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v-env i ronment  and  eLabo ra ted  R .
Le t  £ ( sM)  :=  ( 08 ,  GP, arity)‚ ( f ,  g )  : =  § ( ( r ob_ id  R ) )¢3
Le t  [_ ]  deno te  t he  congruence  cLasses  genera ted  by  ER.

Then the  quo t ien t  aLgeb ra  0 (M ,  R)  of M by  R i s  def ined by :
0 (MI  R )  : =  ( q  Oq )  whe re

( 1 )  Cq :=  { cob l  ob  e 08 }
(2)  Cob :=  ( [ c ] !  c € C; and obname-Z(sM)(C;) = ob

f o r  some i e ( n ) }
( 3 )  V o e ( sM)+2  with a r i t y - z ( sM) (opname—E(sM) (o ) )  =

( ob1  . . .  ob " ,  ob ) :  ob i ,  ob  € OB,  ie  ( n )  .
V c ;  e 0 ;  with obname-2 (sM) (c ; )  = ch i ,  i e ( n )  .
t he re  ex i s t s  an  ope ra t i on  Oq de f i ned  by

oq([c13‚ . . . :  Co l l )  : =  Eo (c1 ,  . . . ,  c„ ) ]
( 4 )  o. : =  { oq l  o e <sM)12}

3

Remark :  This de f in t ion  i s  independent  f r om the  cho ice  of the
[C i ] -

By  def in i t ion  4 .4 . - 6  there  i s  an  induced s igna tu re  morph ism
( f ,  5) : Z(SM) ——> z<o(R‚ M)) with

( 1 )  i f  P f i _ :  C ;  __)  Ci '  : Le t  Ob  2 :  obname-X (sM) (C ; )  in
f ( ob )  = obname-Z (Q(R ,  M)) (Cob)  = ob

( 2 )  i f  0 € (sM)+2:  Le t  op  :=  opname-Z(sM)(o)  in
§ (op )  = opname-Z(Q(R, M) ) (Oq)  = op

Since t he  identicaL morph ism does  cause  no  harm in compos i -
t i ons  we appLy  ( f ,  g )  aLso  i n  s i t ua t i ons  where ( f ,  g )  o ( f ,  g )
i s  co r rec t .

0 (M:  R)  i s  t he  seman t i caL  ob jec t  t ha t  genera tes  the  aL ready
ment ioned i den t i f i ca t i ons  and  j us t i f i e s  ou r  no t i on  of  co r rec t -
ness :

4 .4 . -74Lemma
- Le t  (S ,  M: R) denote a reaL iza t ion  wi th  < r f i  : C; -—> c i ' l  i e

" ( n )> :  SM:  and  Q(MI  R ) .

Then
( 1 )  0 (M ,  R )  i s  isomorphic t o  CTA(S ) .
( 2 )  Q(M;R)  i s  homomorph ic  t o  sM.

P roo f :  ‘
Le t  ( f ;  9 )  deno te  the  s igna tu re  morph ism assoc ia ted  t o  5M.

(1)  Let < i s ; :  c°„———> Ci ' l  i 6 (n )  gag obname-2(sM)(ci ' )  = ob>
be def ined by

i S i ( [C i ] )  : =  P f i (C1 )
( 1 .1 )  i s ;  i s  i n j ec t i ve :  v [ c1 ] ,  [ c z ]  e cob  .

i s ; ( [ c13 )  = i s ; ( [ c2 ] )
¢==> r f ; ( c1 )  = Pf i ( c ‚ )  ¢==e [ c l ]  = [ c , ]

( 1 .2 )  i s ;  i s  su r j ec t i ve :  r f ;  i s  sur jec t i ve  ( c . f .  4 . 4 . - 3 )
=? V Ci '  € Ci .  . 3 C ;  € C;  . P f1 (C1 )  = C1 '  .
ALSO V C ;  € Ci  . 3 [C ]  € Cob  . (C i ,  Ci )  € [C] .
=# v c ; '  6 C i '  w i t h  c ; '  = r f i ( c ; )  f o r  some c ;  6 C i .

. . . . . . . .  | . . - “  ana l?
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3 [ c ]  € Cob . ( C i :  Ci) e [ c ]  and isi(EcJ) = rf;
= C i ' u

( 1 .3 )  is; is homomorph ism:  Let (OBI, 0P1;  arityl)

V Oq € (Q (M ‚  R ) )¢2  with opname-Z(Q(M; R) ) (Oq )  =
and arity(op1) = (ob1 ... ob", ob)

101

(C ; )

Op;

and o € (sM)¢2: Opname-Z(sM)(o) = f(opname-I(Q(Mr
R) ) (oq ) )  .

v 02 e (CTA(3))+2 with opname-X(CTA(S))02) : op2
and 0p; = g (op1 )  and arity2(op2) = (f(ob1)
f ( ob „ ) ‚  f ( ob ) )  .

V [ c l ]  € C o b ’  C i  € C i r  i € ( n )  .
i s ; ( o q ( [ c 1 ] ‚  . . . - J  [C „ ] ) )

= is;([o(c1: . . . :  c „ ) J )  def. Oq
= rf;(o(c1, . . . ,  c „ ) ] )  def. is;
= o , ( r f 1 ( c 1 ) ,  . . . ,  r f „ ( c „ ) )  rf; homom.
= o‚(isl([c1])‚ ...; is„([c„])) def. isi

( 2 )  Let ( h i :  C l  __} Cowl  i € ( n ) :  o b n a m e - E ( s M ) ( c ; )  : Ob) be
def ined by:

V C i  € C i :  h1 (C ;_ )  : =  [ C 1 ]

Let (OBI, CPI ,  arityl) : =  I ( sM) :  (082, 0P2 ,  arity2
z (o (M ‚  R ) ) .
V o1 € ( sM)+2  with arity1(opname-Z(5M)(ol)) = ( ob l

) : =

op", oh) and 02 e (Q(M‚ R) )éz  with arity2(0pname—Z(Q(M‚
R) ) (oz )  = (f(obl) ... f ( ob „ ) ‚  f(ob)) and opname-Z(Q(M,
R) ) (oz )  = f ( o p n ame-E(sM)(ol)) .

V c; € C; with obname-Z (sM) (C i )  = Obi: i € (n) .
h i (01 (C1 f  ‚ . . ,  CH) )

: [01 (C1_I  . . . ,  CH) ]  d e f  h i

: 02 (EC1] I  . . . - I  [CH ] )  d e f  0 2

= 02 (h1 (C1 ) ’  I l l ,  hn (Cn ) )  d e f  h i

Remargs: a) Note that in ( 1 .3 )  ( f ,  g) is appLicabLe since ( f ,
5 )  o ( f ,  g) = ( f ,  g)

b) ResuLt (2) hoLds for every factorization by a
homomorphism.

With this resuLt we are abLe to provide a sufficient quaLity
measure for our refinement scenario in S E E s .  We summarize the
most important structures graphicaLLy.
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102  4 .5 .  Other  Approaches to  Object Correc tness

4 .4 . -8  F id .  [ reaL iza t ion  scenar io]
Let  (S ,  M ,  R)  denote  a reaL iza t ion .

( f ,  g)
I(ETA(S)) —————> mim —

( f :  §>  signatures

note,  M)) -—
1‘

0 (R:  M)

i s ;  h ;
aLgebras

CTA(S)  < sM
% Pf i  T

I MaLg(M)  -

S R M ] objects

The Lowest  LeveL (Look ing  a t  4 .4 . -8  as  bot tom-up  d i rec ted
graph)  represents  our  s ta r t ing  s i tua t ion  in  SEEs:  spec i f i -
ca t ion  and moduLe are  g iven ;  a re -co  i s  cons t ruc ted  by the
add i t ion  of  R tha t  impL ies  mappings r f ;  and  a s igna ture
morphism ( f r :  9 , )  (L ink  omi t ted ) .  MaLg(M) i s  res t r i c ted  to  sM
to  cons ider  onLy reLevant  ( fo r  the  ve r i f i ca t ion  i ssue )
car r i e rs .  This res t r i c t ion  comes w i th  a s igna ture  morphism
tha t  has  to  be i somorph ic  to  ( f ry  g , )  ( p rac t i caLLy ‚  the  - wi th
respec t  to  R - appropr ia te  subaLgebra  5M 6 sub (E (CTA(S) ) ;
MaLg(M))  i s  chosen fo r  the  ve r i f i ca t ion ) .  I f  the  ve r i f i ca t ion
cond i t ions  hoLd ( i . e .  the  re -co  (S ,  M:  R )  becomes a
reaL iza t ion ) ;  the  r f ;  can  be used  to  fac to r i ze  sM y ieLd ing
0 (R ,  M) ,  an  isomorph ic  aLgebra  to  CTA(S) -  Q tR ,  M) i s  semant i -
caLLy the  ' essent iaL  chunk '  of  the  M semant ics ,  and  of M .  I t s
isomorphy impL ies  in tended er ror f ree  ref inement  o f  S in to  M .
The s igna ture  morphisms behave  in  the  ind ica ted  manner .  The
not ions  and resuLts  o f  th is  sec t ion  a re  appL ied  in  a concre te
method fo r  the  ver i f ica t ion  o f  re f inements .  I t  i s  g iven in
sec .  5 .

4 .5 .  Other Approaches to  Object Correctness

The probLem of  ass ign ing  a sa t i s fac to ry  semant ics  to  the  im-
pLementa t ion  i ssue  in  SEEs has  been  recogn ized  in  va r ious
pubL ica t ions .  Even  i f  no t  SEE appL ica t ion  was the  p r imary  goaL
of  the  proposaLs  aLmost every  au thor  cLa ims tha t  h is  soLut ion
wiLL do i t  weLL.  In  the  foLLowing  we br ie fLy  Look a t  d i f fe rent
approaches  hav ing  our  SEE scenar io  as  deveLoped  in  sec t ions  1
and  2 i n  mind.

Therefore  theor ies  fo r  the  abs t rac t  impLementa t ion  a re  not
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4 .5 .  Other Approaches to  Object Correctness 19;

considered ( i . e .  impLementa t ion  of  aLgebra ic  spec i f icat ions  by
aLgebra ic  spec i f i ca t ions )  aL though  by fa r  the  most research
ac t iv i t y  was and  is  concent ra ted  on  th is  i ssue .  One reason  fo r
th is  L ies  in  our  judgement  in  the  eLegant  and power fuL
mathemat icaL  mechanisms tha t  a re  bes t  appL icabLe  i f  the  con-
s idered  s t ruc tures  a re  as  mathemat icaL  as  poss ibLe  - a
requ i rement  tha t  the  harder  i s  to  meet  the  more concre te  the
s t ruc ture  to  modeL is .  Approaches o f  the  ADJ group  (EADJ 78 ] ,
[ADJ 79 ] ) :  Ehr ig  e t  aL .  (EEKP 78 ] ) ,  Ehr ich  ( [EL  80]), KLaeren
( [KLa 82]), Poigne (EPoi  83]), SaneLLa/Wirsing [SH 82]; or
Beie rLe  and Voss (EBV 853 ) :  among o the rs ,  f aLL  in  th is
ca tegory .  Never theLess  these  approaches  have  s t rongLy  in -
fLuenced  the  e f for ts  fo r  a cor rec tness  no t ion  fo r  reaL iza t ions

= concre te  impLementa t ions ) ,  and  aLL sugges t ions  beLow make
more  o r  Less  d i rec t  access  to  the i r  no t ions  and  resuLts .

( a )  ALgebra ic  Spec i f i ca t ions  as  Programming Language Semgnt ics

Pa i r  [Pa i  80 ]  studies the  ad jus tment  o f  an  in i t i aL  aLgebra
semant ics  fo r  a programming Language and  uses  th is  concept  to
show compiLer  cor rec tness .  For  th is  purpose  he de f ines  an
abs t rac t  da ta  Type  TL fo r  a Language  L .  TL conta ins

sor ts :  - fo r  each  p r im i t i ve  type  p o f  L there  i s  a cor -
responding sor t  p *  in  TL ,  which is  the  se t  of vaLues
of  p

— fo r  each  pr imi t ive  type  p of  L there  ex is ts  a sor t
p+ which i s  the  se t  of expressions of  p

- a sor t  'S tmt '  o f  s ta tements
- sor ts  fo r  s ta tes ;  iden t i f i e rs ,  decLara t ions ,  LabeLs

e tc .
opera t ions :  - each  pr imi t ive  opera t ion  of  L has  an  assoc ia ted

opera t ion  in  TL
- opera t ions  tha t  s imuLate  the  behav iour  o f

p rogram cons t ruc ts  (conca t  : Stmt x S tmt  ——>
S t m t )

- an  opera t ion  ' appLy '  fo r  execut ing  s ta tements
in  a s ta te

- an  opera t ion  ' evaL '  tha t  evaLua tes  express ions
in  a s ta te

- a number of  aux iL ia ry  func t ions  used  to  def ine
the  e f fec t  o f  the  p rogramming  Language  con-
s t ruc ts .

ax ioms:  - aLL opera t ions  are  def ined by more o r  Less  compLex
ax ioms o f  evaL .

The connec t ion  be tween  the  program cons t ruc ts  and  the i r
abs t rac t  t e rms  is  g iven  by a ' syn tac t icaL  abs t rac t ion '  func -
t ion  sa  tha t  i s  de f ined  on  the  grammar and  appL ied  to  the  syn -
tac t i c  t ree  of  a p rogram.

In  most of  the  sor ts  and  opera t ions  in t roduced  one can  see  a
s t rong  in ten t ion  to  modeL the  Language semant ics  in  a cLose
reLa t ionsh ip  to  a denota t ionaL  semant ics  (DS) :  t hough  no
f ixpo in t  theory  i s  ac tuaLLy  used .  Bu t  modeLLing s to res ,
env i ronments ,  bLocks t ruc tures  e tc .  en forces  a compar ison:  and
here  the  inc reas ing  compLex i ty  of  the  def in ing  ax ioms seemed
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104  4 .5 .  O ther  Approaches  to  Object Correc tness

to  be not  advantageous  in  most cases  versus corresponding
semant ics  func t ion  cLauses  in  a DS (e .g .  s ta tes  a re  ' t e rms '  of
subsequent  ass ignments  o f  vaLues  to  iden t i f i e rs  than  a mgpginq
between  se ts ) .

The resuLt  i s  a fuLL  descr ip t ion  of  a programming Language
semant ics  as  the  in i t i aL  aLgebra  semant ics  o f  a s ingLe
abs t rac t  da ta  type  T . .  Thus ,  i f  a Language  conta ins  a moduLe  -
L ike  cons t ruc t ,  by  the  method  i t  wouLd  cor respond  to  some
abs t rac t  sor ts  and opera t ions  in  TL and  a programming sys tem
tha t  i s  dev ised  to  check  compat ib iL i ty  of  a g iven  abs t rac t
ob jec t  ob w i th  a moduLe ob jec t  mod de f ined  in  L couLd proceed
as  foLLows:

a )  compute  the  semant ics  o f  mod in  the  quot ien t  t e rm aLgebra
Q' r t  L 1 '

b)  compiLe the  semant ics  o f  ob  (an  aLgebra )
c )  show the i r  i somorphy

Thus fuLLy  semant icaL  p reserva t ion  wouLd be guaran teed .
But  in generaL  and  espec iaLLy  in  our  env i ronment  th is  method
comes  w i th  p robLems:

- i f  no th ing  more about  the  semant ics  o f  a moduLe is  sa id ,  the
onLy cho ice  wiLL be a congruence  cLass  of  07“ ,  (nameLy tha t
cLass  tha t  conta ins  the te rm assoc ia ted  to  the  moduLe
def in i t ion ) .  Then an  isomorphism be tween  terms and  aLgebras
g ives  no sense  (c . f .  sec .  4 .1 . ) .

- I f  the  semant ics  of a moduLe is  a subaLgebra  S of GT.L ,  an
aLgebra  i somorph ism has  to  be cons t ruc ted  by the  sys tem - a
fo rmidabLe  task  tha t  i s  not  reaL is t i c  a t  the  moment.

(b )  Denota t ionaL  Semant ics  fo r  Programming Languages  based  on
ALdebra T rans format ions

Ganz inger  [Gan  82 ]  connec ts  an  aLgebra ic  semant ics  of  a spec i -
f i ca t ion  w i th  an  aLgebra ic  semant ics  of  a moduLe in  a s impLe
Language by def in ing a denota t ionaL  semant ics  fo r  the  Language
tha t  uses  aLgebra  cLasses  as  domains .  Type de f in i t ions  (mod-
uLes)  a re  cons idered  as  in  [Hoa  72 ]  as  cons is t ing  o f  a L is t  o f
procedure  o r  func t ion  decLara t ions ,  a se t  of  representa t ion
var iabLes  and  an  in i t i aL i za t ion ,  and a program is  regarded  as
a L is t  of  t ypede f in i t ions .

The cLass icaL  method to  def ine s ta tes  as  mappings Id  ——>
VaLues and envi ronments  as  mappings Id  ——> Opera t iondenota t ion
is  subs t i tu ted  by  giving environments as  aLgebra ic  spec i f i -
ca t ions  u = (S ,  E :  E )  Es ,  2 :  se ts  of  t ype /opera t ion  iden t i -
f i e rs ,  E se t  of  ax ioms of  the  opera to rs ]  and  s ta tes  be ing
aLgebras  in  the  ca tegory  ALgEu] genera ted  by  the  env i ronment
spec i f i ca t ion .  Then fo r  exampLe type  iden t i f i e rs  and  var iabLe
ident i f ie rs  (nuLLary  opera t ion  symboLs) in -u  are  suppL ied  w i th
concre te  vaLues  in  each  s ta te  (ca r r i e rse t ,  concre te  opera t ion )
and  execut ing  a Language  - s ta tement  w iLL  mean  a mapp ing

s between  the  s ta te  aLgebras .

To ge t  su i tabLe  domains :  the  ca tegor ies  ALgEu] are  (par t i aLLy )
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ordered t o  become  a compLe te  Lattice and  con t i nuous  func to rs
be tween  t he  ca tego r i es  a re  de f i ned  t ha t  cor respond  t o  t he  f r ee
( cons t ruc t i on )  f unc to r  F and  t he  f o rge t f uL  f unc to r  U of  [ADJ
7883: he re  be ing  used  i n  t he  de f i n i t i on  o f  enr ichments  and
res t r i c t i ons  o f  Spec i f i ca t i ons .  The ma in  s tep  t hen  i s  t o
def ine  on  programming Language  cons t ruc t s  C t he  functions

EEG]  : U ——> U (U  = Env i ronmen ts )
and

TuEC] : ALgEu] -—> ALgEEECJu]

i . e .  an  env i ronment  t rans fo rm ing  f unc t i on  E and a s t a te  t rans-
f o rma t i on  Tu f o r  u € U.

For  (moduLe)  t ype  de f in i t i ons  t d  EE td I (u )  i s  an  ex tended
aLgeb ra i c  spec i f i ca t i on  u '  i n  wh ich  t he  ope ra t i on -  and  type
names i n t r oduced  i n  t he  t ype  de f i n i t i on  and  some spec iaL  ope r -
a t i ons  a re  added  t o  u ,  whe reas  TuE t (A )  i s  a f r ee  aLgeb ra
cons t ruc t i on  gene ra ted  on  ( t he  s ta te  aLgeb ra )  A and  t he  ope r -
a t i on  symboLs  i n t r oduced  i n  t d .  The resuL t i ng  aLgeb ra  ge t s  i t s
ope ra t i ons  f r om the  appL i ca t i on  of Tu top ]  t o  each  ope ra t i on
de f in i t i on  of  t d ,  t ha t  i t seL f  i s  a modeL o f  op  as  an  a rgumen t -
resuL t  r eLa t i on  on  t he . ca r r i e r s  assoc ia ted  w i th  t he  pa ramete r -
and  vaLue  t ypes  o f  t he  ope ra t i on  op .

S ta r t i ng  w i th  an  env i ronmen t  PRE o f  t he  p rede f ined  t ypes  of
t he  Language  t he  me thodoLogy  ex tends  t he  i n i t i aL  PRE - aLgeb ra
by  use r  de f i ned  t ypes  v i a  TPREEtypede fJ .  Co r rec tness  o f  a
p rog ram P w i th  r espec t  t o  a spec i f i ca t i on  SPEC couLd  be
de f i ned  as

A I ppe  ( i n i t i aL  PRE - aLgebra)  in
TPREEPJ(A) : =  Ispgc (initiaL SPEC - aLgeb ra ) .

Be ing  used  i n  ou r  sys tem,  an  aLgo r i t hm fo r  check ing  the co r -
rec tness  o f  a r eaL i za t i on  of  a spec i f i ca t i on  couLd  Look  L i ke :

1 )  Compute  the  i n i t i aL  aLgeb ra  o f  t he  p rede f ined  t ypes  of t he
used  programming Language .

2 )  Gene ra te  t he  f r ee  cons t ruc t i on  ove r  the  i n i t i aL  PRE —
aLgeb ra  and  t he  t ypes  and  ope ra t i ons  i n t r oduced  by  t he
moduLe de f i n i t i on .

3 )  F ind  an  i somorph i sm be tween  t h i s  f r ee  cons t ruc t i on  and  the
canon i caL  t e rm  aLgeb ra  ( t he  seman t i caL  aLgeb ra  o f  t he
spec i f i ca t i on ) .

The f eas ib i L t y  of  such  a co r rec tness  proof  seems to  be h ighLy
un reaL i s t i c  i n  a mechan i caL  sys tem because  o f  sens i t i ve  t asks
as  i n i t i aL  aLgeb ra  cons t ruc t i on ,  f r ee  cons t ruc t i on  and
isomorph ism gene ra t i on ,  wh i ch  a re  aL ready  on  t heo re t i caL  LeveL
need  soph i s i t i ca ted  ma thema t i cs  t ha t  canno t  be  rep roduced  by
today ' s  p roo f  sys tems .  Add i t i onaLLy ,  t he  f ac t  t ha t  aLgo r i t hm ic
spec i f i ca t i ons  con ta i n  more  conc re te  i n fo rma t i on  abou t
ca r r i e r s  and  ope ra t i ons  t han  pu reLy  aLgeb ra i c  spec i f i ca t i ons
has  no t  been  t aken  i n to  accoun t  i n  t h i s  app roach .

Neve r theLess  t h i s  L i nk  be tween  aLgeb ra i c  spec i f i ca t i ons  and
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proceduraL  programming Languages  has  g iven some adv ice  to  the
semant ics  of  ModPascaL.

( c )  Te rminaL  ALqebra  Semant ics  fo r  ModuLes

SchuLz  [Sch  82 ]  has  deveLoped  a method  fo r  reaL iz ing  abs t rac t
data  types  tha t  i s  based  on  a t e rminaL  aLgebra  semant ics .
Genera t ing  contex ts  ( t e rms  o f  sor t  8 '  w i th  exac tLy  one  var ia -
bLe  o f  sor t  8 ) ,  appLy ing  them to  aLL  appropr ia te  te rms  o f  the
Herbrand - universe  o f  the  spec i f i ca t ion  and ident i f ing  those
which  a re  und is t ingu ishabte  by  equa t ionaL  reason ing  in  aLL
contex ts ,  g ives  a fo rmaL iza t ion  of  the  idea  tha t  onLy the  out—
side v is ibLe  behav iour  o f  a moduLe is  impor tan t  fo r  i t s
semant ics .

Th is  congruence generat ion  i s  aLso appL ied  to  an  aLgebra  ex -
t rac ted  f rom a moduLe de f in i t ion  in  a spec i f ic  Language tha t
is  supposed to  reaL ize  the  abs t rac t  spec i f i ca t ion .  Cor rec tness
is  then  def ined  as  the  isomorphy  o f  the  assoc ia ted  te rminaL
aLgebras  and  a method is  g iven  tha t  cons t ruc ts  a se t  of  "ve r i -
f i ca t ion  cond i t ions"  fo r  each  concre te  opera t ion  o f  the  mod-
uLe ,  whose fuLLf iLLment  impL ies  the  i somorphy .

Taking th is  approach over  to  our  sys tem ignores two important
fac ts :
- the  semant ics  of  an  aLgor i thmic  spec i f i ca t ion  i s  a canon icaL

t e rm aLgebra  whose  car r i e rs  conta in  eLements ,  wh ich  by
def in i t ion  must not  be  iden t i f i ed  w i th  any  o ther .  Thus
es tabL ish ing  a t e rminaL  congruence  reLa t ion  i s  con t ra ry  to
the  fac t  o f  be ing  canon icaL .

- The opera t ions  in  spec i f i ca t ions  are  not  de f ined  by
equat ions  but  by  func t ionaL  recurs ive  schemes.  Their  behav-
iour  has  to  be modeLLed in  the  aLgebra  der ived  f rom the  mod-
uLe de f in i t ion .  The p roposed  method cannot  handLe th is .

(d )  Trgnsformat ion  RuLes as  Opera t ion  Semant ics

The C IP  pro jec t  ( [Bau  81 ] )  a imed  a t  goa ts  s imiLar  to  our
scenario: a SEE that  provides for  most act iv i t ies semanticaL
founda t ions  which  enabLe and  suppor t  ve r i f i ca t ion  i ssues .

In  the i r  environment Laut  [Lau  80 ]  s ta r ts  wi th  ' computa t ion
s t ruc tures '  ( aLgebras 's  w i th  f in i teLy  genera ted  car r i e rs  and  a
se t  of  func t ions  wh ich  toge ther  sa t i s fy  the  ax ioms of the
spec i f i ca t ion )  of  an  aLgebra ic  spec i f i ca t ion  and de f ines  an
assoc ia ted  moduLe to  the  computa t ion  s t ruc ture .  The opera t ions
of  the  moduLe  a re  assumed  to  sa t i s fy  denota t ionaL  t rans -
fo rmat ions  as

caLL mod .op (x1 ,  . . . ,  x " )

x1  :=  op (x1 ‚  . . . :  x" )

(what  means  tha t  the  e f fec t  of  the  moduLe  opera t ion  caLL  can
be  modeLLed as  an  ass ignment  o f  the  vaLue  o f  an  invocat ion  o f
the  ' abs t rac t '  func t ion  to  i t s  f i rs t  argument  as  sugges ted  in
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[Hoa 72]). with this semantics of procedure  caLLs  he shows
tha t  the axioms of the aLgebraic specification are aLso satis-
fied by the moduLe operations. Because of the use of a predi-
cate transformer semantics and the restriction t o  assignments
this t a s k  reduces t o  t he  comprehensabte and weLL-known process
of generating weakest preconditions for assignments.

UnfortunateLy: no Language construct is considered whose in-
stantiations are capabLe of possessing a n  internaL state and
are passed t o  other objects or are s t o r e d .  A L s o  the tranfor-
mation r u L e s  f o r the different types of arities of t h e
abstract operations make no difference between program
variabLes and term variabLes and they add assignments to a
functionaL Language. Therefore onLy LittLe information can be
derived from this approach w . r . t .  our environment.

5 .  A Proof Method

A very important characteristic of correctness criteria in
generaL is the degree of mechanization that can be achieved in
order to proof their vaLidity. If for exampLe nearLy no
mechanic support is obtainabLe the integration of the criteria
i n  a SEE w o u L d  be s e n s e L e s s .  On the other hand it f o L L o w s  from
research in this area and aLready impLemented soLutions, that
fuLL mechanization i s  currentLy impossibLe - due to Limi-
tations of existing proof systems. As a consequence a semi-
automatic procedure is a most LikeLy candidate: and in the
foLLowing we present a proof method for reaLizations (PMR)
t h a t  i n v o L v e s  user-dependant, method-dependant and system-
dependant substeps: where the Last two modes are performed
a u t o m a t i c a L L y .  we f i r s t L y  introduce the substeps i n  s e c .  5 . 1 :
point out Limitations in sec. 5.2., and then assembLe the sub-
steps to a method for the proof of the reaLization property
(PMR) appLicabLe in SEEs (sect. 5.3.)

5 . 1 .  Basic Steps

In our scenario the check of the reaLization property is to
mechanize a s  far as possibLe. In other words: the vaLidity of
a set of equations (homomorphy equations) in a certain theory
has to be shown. RoughLy there are five steps:

( 1 )  generation of a set HEQ of homomorphy equations from a
given re-co (S: M ,  R)

( 2 )  invoLvation of hierarchy information ( o f  S, M and R )  into
HEQ

( 3 )  formuLation of an induction proof task
( 4 )  transferring proof tasks t o  proof systems, and
(5) administrating resuLts in the SEE.
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108  5 .1 .1 .  HEQ Generation

5 .1 .1 .  HEQ_Genera t i on

Th is  s tep  i s  p r ima r i Ly  o f  syn tac t i caL  na tu re .  Given a re - co
(S IM IR)  t he  s tanda rd  homomorphy equations can  be  gene ra ted
au toma t i caLLy .  We d i s t i ngu i sh  two  cases  dependan t  on  t he  used
fo rmaL  Language  f o r  HEQ:
I HEQ i s  muL t i - f o rmaL
I HEQ i s  s i ngLe - fo rmaL
where  t he  t e rms  muL t i -  and  s ingLe- fo rmaL  re fe r  t o  s i t ua t i ons
t ha t  HEO con ta ins  occu rences  o f  t e rms  o f  mo re  t han  one  f o rmaL
sys tem resp .  exac tLy  one  f o rmaL  sys tem.  We make t h i s  d i s t i nc -
t i on  more  p rec i se  beLow.

5 .1 .1 .1 .  MuL t i - f o rmaL i sm

Since S;  M and  R a re  ob jec t s  of  the  SEE da ta  base  and  the re -
f o re  possess  co r rec tness  f Lags  t he  se t  HEQ may  be  cons t ruc ted
au toma t i caLLy  f r om the  i n fo rma t ion  con ta i ned  i n  t he  ob jec t s
( see  i n  t he  append i x  f o r  an  exampLe ) .  The  gene raL  f o rm  o f
t hese  equa t i ons  i s :

( * )  S—Op( r f 1 (a rg l ) ‚ . . . ‚ r f „ ( a rg „ ) )  = r f (M-op (a rg1 , . . . za rgn ) )

where  S -op :  M-op  deno te  ope ra t i ons  o f  S and  M tha t  a re  con -
nec ted  by  the  s i gna tu re  morph i sm induced  by  R
r f  deno tes  t he  rep - f unc t i on  o f  R
r f ;  deno tes  rep - f unc t i ons  o f  used  rep -ob jec t s  o f  R :  i

€ ( n ) .
a rg ;  deno te  appropr ia te  a rgument  exp ress ions  o f

ModPascaL .

The proof  o f  HEQ bears  some  p robLems .  I n  gene raL :  t he  t heo ry
i n  wh ich  the  equa t i ons  a re  f o rmaL i zed  i s  no t  p red i ca te
caLcuLus  o r  some  o the r  s t anda rd  Log i c ,  and  t he re fo re  s tanda rd
techn iques  do  no t  appLy .  I n  gene raL ,  t he  f o rma t  sys tems  a re :

S-op  : ASPIK ope ra t i on ,  aLgo r i t hm icaLLy  de f i ned .
m-op  : ModPascaL ope ra t i on ,  de f i ned  by  an  impera t i ve

p rog ram.
r f ,  r f ;  : ca r r i e r  mappings of r ep -ob jec t s ,  de f ined  i n  a

m ixed  ASPIK/ModPascaL mode .
a rg i  : ModPascaL va r i abLes  and  exp ress ions ,  tak ing

vaLues  ou t  o f  a seman t i caL  ca r r i e r .
We caLL  the  above  s i t ua t i on  muL t i - f o rmaL  s i nce  seve raL
f o rmaL i sms  a re  used  t o  exp ress  HEQ.

A t  f i r s t  gLance  t hese  d i f ferent  i tems may be  un i ted  by the i r
aLgeb ra i c  mean ing :  ASPIK as  weLL as  ModPascaL ope ra t i ons  a re
assoc ia ted  t o  aLgeb ra  Ope ra t i ons :  and  t he  ca r r i e r  mapp ing i s
eas iLy  embedded .  Bu t  t he  seman t i cs  i s  de f i ned  deno ta t i onaL :
and  the  mean ings  o f  ope ra t i ons  a re  cons t ruc ted  v i a  Leas t  f i xed
po in t s  o f  assoc ia ted  f unc t i onaLs .  Th is  does  no t  aLLow
reason ing  i n  s tanda rd  Log i c ,  s i nce  f i xed  po in t s  canno t  be  ex -
p ressed  i n  f i r s t  o rder  Log i caL  f o rmuLas .  To  be  abLe  t o  proof
p ropos i t i ons  unde r  t h i s  p recond i t i ons  one  has  t o  empLoy
me thods  and  t ooLs  capabLe  o f  deaL ing  w i t h  deno ta t i onaL

Nnunmhnr  1 O R' ;
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semantics (e.g. LCF [GMW 793).

I n  that case equation ( * )  above  w o u L d  become

MES-op(rf1(arg1);...rrfn(argn))fl§6 E MErf(M-op(arg1:...z
argn))fl§s

for states ( § .6 )  in which the occuring operation identifiers
are defined; an unfoLding of M yieLds to

s(§(S-op)¢1)(EErf1(arg1)]§sz...,EErfn(argn)]§6) =
6(g(rf)+1)(MEM-op(argl‚...‚arg„)3€6)

¢==$

( * * )  s(g(S-op)+1)(s(g(rf1)w1)(EEarglflgs)‚...‚
s(§(rfn)¢1)(EEargnfl§6)) =

6(£(rf)+1)((s(€(M—op)$1)(EEarglfigs‚...‚EEarg„]£6)))

(first component  seLection of EEarg13§s is omitted).

I t  is obvious that a proof of the vaLidity of (**) for given
( § . s )  € S t a t e  goes  beyond  the scope  of the currentLy most

easiLy avaiLabLe first order theorem provers; more appropriate
systems are not designed for this appLication and this use in-
side a SEE. This couLd caLL in question our approach since we
appearentLy have t o  pa y our empLoyment of denotationaL

semantics with unmechanizabiLity of associated proof tasks.

A first answer t o  this objection may point a t  the temporaL

character of this situation. Since the theory behind denota-
tionaL semantics is weLL-deveLopped and severaL proof tech-
niques are known (e.g. fixpoint induction: fixpoint compu-
tation; c.f. [Man 74 ] ) ,  a proof system suited to our needs
couLd be very weLL impLemented. with speciaL emphasis on us.-
biLity in SEEs. Here we wiLL not further investigate this
aLternative.

More important is another soLution that is based on the fact
that under certain circumstances the set HEQ can be generated

by using a singLe formaLism. BeLow we make concrete this idea
( s e c .  5 .1 .1 .2 . ) .

I t  shouLd be emphasized that this compLications do not in-
fLuence our principaL conviction that denotationaL semantics
i s  best-suited to describe SEE Language semantics. The exact-
ness and uniqueness of this formaLism makes disambiguities im-
possibLe, and it gives every SEE user a soLid framework for
his software deveLopment indepentLy from the necessity of
verification.

5 .1 .1 .2 .  SinqLe FormaLism

We now present a soLution to the muLti-formaLism probLem. The
set HEQ is automaticaLLy generated in the form given in the
previous section. but then modified untiL the equations are
written in a s i n g L e  f o r m a L i s m :  as properties of an ASPIK
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specification.

A very important fact is that this process is t o t aLLy  mechani-
caL: if some pre-conditions are satisfied (essentiaLLy object-
associated properties that are administrated in the data base
of the SEE  and therefore are e a s i L y  a c c e s s a b L e  and c h e c k a b L e ) ,
then the modifications of HEQ take pLace according to a given
aLgorithm without u s e r  i n t e r a c t i o n .  The denotationaL semantics
probLems can be disregarded; it onLy remains to make sure that
the empLoyed descriptions for the Languages a s  a w h o L e
coincide; i.e. that

I the equationaL (first order) descriptions used for ASPIK
specifications and the denotationaL semantics for ASPIK are
equivaLent

o the proof theory used for ModPascaL i s  equivaLent t o  the
denotationaL semantics

o the denotationaL semantics for rep-objects is a weLL-defined
extension of the ASPIK and ModPascaL semantics.

This is a voLuminous task, but it has to be performed
soLitariLy and independentLy from a given SEE scenario, e.g.
by the SEE designer. It then provides an exact base for SEE
Languages / objects and SEE verification theories (an ex-
empLary treatment of equivaLence of various Language defini-
tions can be found in [Don 76]). For our treatment we assume
that the three equivaLences above are shown.

An aLgorithm TR for transformation of singLe—formaLism HEQ
(short: SHEQ) out of muLti-formaLism HEQ (MHEQ) is infLuenced
by the fact that despite of the probLems arising from the
ASPIK semantics there are proof tasks of the abstract LeveL
that can be decided within standard Logic. The reason is that
sometimes it i s  not necessary to compute the aLgebra operation
behind a n  aLgorithmic d efi nit ion. I n s t e a d ,  one c a n  t a k e  t h e
definition directLy t o  perform induction proofs with a n  appro—
priate mechanicaL theorem prover. S i n c e  t he d a t a  i n v o L v e d  are
eLements of carriers of canonicaL term aLgebras every induc-
tion is weLL—founded (structuraL induction). For exampLe, one
semanticaL property of a spec object of ALG i s  the consistency
of the aLgorithmic definitions with the preperties. They can
be checked by structuraL induction proofs of every property by
using the aLgorithmic definitions. (Note, that termination has
to be considered separateLy.)

TR is based on this fact, and it tries to express SHEQ as
ASPIK equations; the occuring function symboLs are then
defined aLgorithmicaLLy in some specification t o  be con-
structed (see sec. 5.1.3.). Therefore the ModPascaL portions
of MHEO have to be eLiminated and substituted by TR.

The rep-function ( =  carrier mapping) caLLs in HEQ are treated
more tricky: since the rep-function definition i s  a mixture of
ModPascaL and ASPIK ;  a n  anaLogous eLimination and substitution
of ModPascaL parts is performed in the definition. That yieLds
to a pure ASPIK operation body, and caLLs of an aLgorithmi-

l u v - u h . -
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caLLy  def ined  ASPIK operation. With this detour the occurences
of rep-functions in MHEQ are integrated in an ASPIK formaLism
( w e  have: in f a c t ,  cr eat ed a new rep-function by this process

which we wiLL caLL Lifting; therefore a new rep-function iden-

tifier wiLL be used in SHEQ).  Note that Lifting has to be

semantics-preserving; see the formaL definition 5.1.1.2.-2 be-

L o w .

But how to eLiminate the ModPascaL parts of properties and

carrier mapping definition? Otherwise AS wouLd not be weLL-

defined!

The idea is to exchange ModPascaL constructs by 'semanticaL
equivaLent' ASPIK constructs to get a pure ASPIK specification
AS to which the method i s  appLicabLe. Since every ModPascaL

operation is associated to a defining moduLe ( o r  enrichment),
the semanticaL equivaLence is primariLy defined on o b j e c t s .  I t

is advantageous to base this notion on reaLizations.

5.1.1.2.-1 Def. EsemanticaL equivaLent]
Let S € Spec: M € (MOD u ENR) .
Then S and M are caLLed semanticaLLv equivaLent I if there ex-

ists R € Repob j  with
( 1 )  ( S I M I R )  is r e a L i z a t i o n
( 2 )  The signature morphism of R is bijective

!

Notation: SE(S‚ M )  s tands  for 'S is semanticaLLy equivaLent to
M ' .
SE(S ‚  M, R )  additionaLLy seLec t s  a rep-object.

The new requirement imposed on reaLizations ensures the ex-

changabiLity of ModPascaL operations by ASPIK  Operations. I n -

jectivity is not sufficient since it wouLd be uncLear how to
treat additionaL moduLe operations that occur in the MHEQ or
in the carrier mapping definition.

A first approximation of TR for semanticaL equivaLent objects
is:

There are three actions:
A) repLace a occurrence of a ModPascaL Operation identifier by

the uniqueLy associated ASPIK identifier
B )  r e p L a c e  the occurrence of a ModPascaL variabLe a s  f o L L o w s :

since the variabLe i s  of a fixed type, and since this type
is uniqueLy associated to an ASPIK sort, a new variabLe of
that sort has t o  be generated and substituted in p L a c e  of

the ModPascaL variabLe.
C) repLace the occurence of a rep-function identifier as

foLLows: appLy steps A and B to the rep-function defini-
tion; estabLish the resuLt (the 'Lifted' rep-function) as a
new operation identifier; substitute this identifier for
the occurrence of the rep-function identifier.

If TR is appLied to a set of syntactic structures, the steps
A ,  B ,  C are performed.
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We write TR(S)  for the resuLt of the appLication of TR to a
structure S .

with this definition of TR the Lifting of_a repfunction can be
decLared. To guarantee appLicabiLity of step c )  we assume a
s e t  of primitive rep-functions with appropriate Lifted ver-
s i o n s .

5 .1 .1 .2 . -2  Def. [Lifting]
Let S and M be semanticaLLy equivaLent with R .
Let rf denote the rep-function of R .
Then the Lifting rfL of rf is defined by rfL : =  TR(rf).

For a given MHEO. TR(MHEQ) yieLds in a tupLe consisting of
o a modified MHEQ. that is nearLy pure ASPIK ;  we denote this

set by 'MHEQ' .
o Lifted versions of the rep-functions.

The main point is that TR is onLy appLicabLe for semanticaL
equivaLent objects i.e. if SE(S ‚  M) hoLds ;  but S and M of a
given re-co (S IM IR)  do not yet have t ha t  p rope r t y  and there—
fore step A above wiLL onLy be appLicabLe for the definition
of some used rep-function (which has occurrences of Operations
of semanticaLLy equivaLent objects); but it does not modify
MHEO!

Therefore we introduce an intermediate step that wiLL overcome
this probLem with ModPascaL constructs in MHEQ (note that we
we need to consider onLy this case; in the case of the rep-
function definition of R it is enforced by syntax and
semantics of rep-objects that onLy constructs of objects occur
which are used by M (the moduLe/enrichment invoLved in the
connecting c L a u s e  of t h e  r e p - o b j e c t ) .  I n  other words: no
pubLic operations of M occur in the rep—function definition.)
The case of MHEQ is sLightLy different. Every equation
embodies eXpLicitLy a pubLic operation of M. and no operation
of used o b j e c t s .  I n  this case a substitution-Like exchange of
ModPascaL by ASPIK is impossibLe and senseLessz since the
vaLidity of the equation is used to impLy just this inter-
changabiLity.

A soLution is offered by the foLLowing considerations: in the
homomorphy equation c a s e :  we are f i n a L L y  interested in the
effect of a m oduLe operation c a L L ,  where effect means either
the induced s t a t e  change or the represented v a L u e .  To deter-
mine the effect we couLd use our denotationaL semantics func—
tion for ModPascaL: w e  c o u L d  compute MEdpcaLLflge and sub—
stitute the resuLt in MHEG for 0pcaLL. But this is sLightLy
orthogonaL to our above described intention:

. MEOpcaLLIgs i s  based on an aLgebra function defined by an
appropriate ModPascaL operation definition opdef and
MEopdef]. UnfortunateLy, if we wouLd substitute opcaLL by

. . . I - . . . . . -  I nfi l -
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MEopcaLne  in MHEQ‚ we wouLd exchange  ModPascaL by a pure
mathematicaL formaLism, and getting no step c L o s e r  to our

goaL of gag formaLism! Beside that we wouLd torpedo our
decision for a n  ASPIK formaLism.

o If we w o u L d  not o n L y ~ s u b s t i t u t e  but simuLtaneousLy evaLuate

the M terms, we might be more Lucky .  But evaLuation of

denotationaL semantics cLauses invoLves sophisticated: not
avaiLabLe machinery (c.f. the remark on this topic in sec.
5.1.1.1.). As a resuLt we wouLd not increase the degree of
mechanization in our SEE.

We propose another way apart of denotationaL semantics terms
that uses a symboLic evaLuation step (sec. 5 .1 .1 .2 .1 . ) ‚  but is
not free of probLems (sec. 5 .1 .1 .2 .2 . ) .

5 .1 .1 .2 .1 .  SvmboLic EvaLua t i on

I n  this section we outLine how symboLic evaLuation can be used
to achieve a symboLic representation of the effect of a
ModPascaL Operation caLL.

Consider the design of moduLe types in ModPascaL. A mandatory
component of these constructs are LocaL variabLes. Every set

of gLobaL variabLes of a moduLe operation definition has to be
a subset of this LocaL variabLe set.

Let L i ,  i € ( n )  denote the types of the LocaL variabLes of a

moduLe M ,  and ( v 1 ,  . . . ,  vn) € (L1 x ... x L") a vector of
vaLues of LocaL variabLes. Every ( v l ,  . . . ,  v“) is aLso caLLed
a n  internaL state of the moduLe incarnation ( s i n c e  this is
just the information that the denotationaL semantics of
ModPascaL assigns t o  a variabLe of type M).

Then every moduLe operation caLL either
- seLects information from an internaL state, or
- modifies an internaL state.

or pictoriaLLy:

mod-op-caLL
(V1 ,  0 - . )  V " )  > (V I . ,  . . . ,  Vn ' )

mod—op-caLL

v a L

where vaL denotes an expression over ( v l ,  . . . ,  v " ) ,  and the
v;': i e ( n )  are vaLues of LocaL variabLes after execution the
operation caLL.

Now the main point is that in speciaL cases the v;' and vaL
can be computed by symboLic evaLuation in a way that no pubLic
operations of M occurs - due to the semanticaL restrictions
imposed on moduLe operation definitions. Then we can sub-
stitute ModPascaL operation c a L L s  by equivaLent (vectors o f )
expressions of the LocaL variabLes of M which do not contain
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occur rences  of any pubL i c  operation of M .  Together  w i t h  some
h ie ra rchy  assumptions of  sec .  5 .1 .2 .  we t hen  a re  abLe  t o
mechan i caLLy  gene ra te  s i ngLe  f o rmaL i sm HEQ and  t o  der i ve  p roo f
t asks  su i t abLe  f o r  mechan i caL  f i r s t  o rde r  t heo rem p rove rs  ( see
sec .  5 .1 .3 .  beLow) .

There fo re  we de f ine  a new ac t i on  fo r  ou r  t r ans fo rma t i on  aLgo r -
i t hm  and  caLL  t he  resuL t i ng  se t  o f  ac t i ons  TR-SYM:

TR-SYM (aLgo r i t hm fo r  gene ra t i on  o f  SHEO by  symboL i c
evaLua t i on )

TR-SYM cons i s t s  o f  f ou r  ac t i ons :
A)  repLace  an  occu r rence  o f  a ModPascaL  Ope ra t i on  i den t i -

f i e r  by  t he  un iqueLy  assoc ia ted  ASPIK iden t i f i e r
B)  repLace  t he  occu r rence  o f  a ModPascaL  va r i abLe  as

f oLLows :  s i nce  t he  va r i abLe  i s  o f  a f i xed  t ype :  and
s ince  th is  t ype  i s  un iqueLy  assoc ia ted  t o  an  ASPIK so r t :
a new  va r i abLe  o f  t ha t  so r t  has  t o  be  gene ra ted  and  sub -
s t i t u t ed  i n  pLace  o f  t he  ModPascaL va r i abLe .

C) r epLace  t he  occu r rence  o f  a r ep~ func t i on  i den t i f i e r  as
f oLLows :  appLy  s teps  A and  B t o  t he  rep - f unc t i on  de f i n i -
t i on ;  es tabL i sh  t he  resuL t  ( t he  ' L i f t ed '  r ep - f unc t i on )
as  a new ope ra t i on  i den t i f i e r ;  subs t i t u t e  t h i s  i den t i—
f i e r  f o r  t he  occu r rence  o f  t he  rep - f unc t i on  i den t i f i e r .

S )  evaLua te  eve ry  caLL  o f  a pubL i c  ope ra t i on  o f  M symboL i -
caLLy  by  p roduc ing  a vec to r  o f  exp ress ions  o f  t he  LocaL
va r i abLes  o f  M tha t  r ep resen ts  t he  e f f ec t  o f  t he  ope ra -
t i on  caLL ;  subs t i t u t e  t he  vec to r  f o r  t he  ope ra t i on  caLL .

The appL i ca t i on  o f  TR-SYM to  a syn tac t i c  s t r uc tu re  (MHEQ
o r  r ep - f unc t i on  de f i n i t i on )  means :

1 )  pe r fo rm S
2 )  pe r f o rm  A ;  B and  C

The resuL t  o f  an  appL i ca t i on  o f  TR-SYM to  a se t  MHEQ i s  a t u -
pLe  (SHEQ: r f L )  w i th
o SHEQ: the mod i f i ed  se t  MHEQ; f o rmaL i sm i s  ( pu re )  ASPIK
o r f L :  a L i f t ed  ve rs i on  o f  r ep - f unc t i ons .

( see  aLso  the  append ix  f o r  an  i LLus t ra t i ve  exampLe . )

An impor tan t  cond i t i on  f o r  the soundness  o f  t h i s  aLgor i t hm i s
t ha t  t he  symboL i c  evaLua t i on  co inc i des  w i th  ou r  deno ta t i onaL
seman t i cs  f o r  ModPascaL .  Bu t  aga in :  t h i s  i s  a once -and -neve r -
aga in  t ask  wh i ch  has  t o  be  pe r f o rmed  by  t he  des igne r  o f  a SEE;
we sk ip  i t  he re .

5 .1 .1 .2 ,2 .  Cu r ren t  L im i t a t i ons

The usab iL i t y  o f  symboL i c  evaLua t i on  t o  exp ress  the  e f fec t  o f
ModPascaL cons t ruc t s  - i n  MHEQ depends on  t he  L im i t a t i ons  t ha t
come w i t h  t h i s  t echn ique .  Bes ide  numerous  t echn i caL  p robLems
rang ing  f r om i n teg ra t i on  o f  such  a sys tem i n to  t he  con tex t  o f
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ASPIK and ModPascaL up to administration of traversaLs,
unfoLdings/foLdings of definitions etc. and preserving of con-
sistency of the evaLuation process, there are aLso severe
theoreticaL difficuLties.

For e x a m p L e ,  iterative structures c a u s e  probLems since the

nUmber of repetitions is unknown in generaL. Then two soLu-
tions are thinkabLe: either
- counters are introduced that bound the traversaLs through a

Loop and that aLLow to reLate variabLe vaLues of different
t r a v e r s a L s :  o r

- Loop invariants are introduced; then probLems arise weLL-
known from cLassicaL Hoare verification: How to get in-
variants? Are they strong enough? e t c . ,  and one L o o s e s  much

of the benefits of aLgebraic verification concepts.

Since both a L t e r n a t i v e s  have far-reaching consequences on the

proof method we do not invoLve one of them in the current
paper and restrict ourseLves t o  what is possibLe in our
current framework. If situations with iterative structures
occur; we wiLL not appLy symboLic evaLuation but present an
equation Like (**) in sec. 5 .1 .1 .1 .  to the user. Then he has
interactiveLy decide the vaLidity of the equation, and then
the system carries on with his answer (see the appendix for an
exampLe). With this Limitations it is obvious that the cLass
of operations and moduLes suitabLe for symboLic execution is
not Large enough t o  be s u c c e s s f u L L y  empLoyed i n  practicaL e x -

periences, and essentiaL extensions are necessary. Neverthe-
Less ,  in the (unexpected frequent) cases where our technique
is nevertheLess appLicabLe, it mechanizes compLeteLy the
generation of prooftasks suitabLe for automatic theorem
provers and in the consequence the check of correctness of a
reaLization, a fact that i s  highLy vaLuabLe for the acceptance
and performance of a software deveLopment system dedicated t o

verification issues.

5 . 1 . 2 .  Invo Lv ation of Hierarchy Information

Up to now a basic property of a L L  components of a re-co
(S IM IR)  has not been considered: each object is hierarchicaL
i n  that sense that i t  is b a s e d  on a L r e a d y  defined objects. Now
the idea is to make assumptions concerning the hierarchies
that aLLow u s  to consider onLy the top-eLements in our cor-
rectness c h e c k s .  This w o u L d  free u s  from the necessity of
resoLving aLL use-reLations before making correctness checks;
the then generated three 'overaLL' objects wouLd be of
enormous compLexity in generaL and not very weLL suited to
mechanicaL treatment. (Note that ( a )  use-reLations are of pure
syntacticaL nature (structuring), ( b )  hierarchies are
cycLefree, therefore resoLution is possibLe, and ( c )  the
vaLidity of formuLae is not affected by merging / separating
formuLae sets.)

The first assumption deaLs with predefined structures of
ModPascaL ( t y p e s ,  type g e n e r a t o r s ) .
Let T : =  { B O O L E A N }  INTEGER; CHAR; STRING} and
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116  5 .1 .2 .  I nvoLva t i on  of Hierarchy Information

T6 :=  (a r ray ,  record:  f iLe ,  se t ,  ( enumera t ion ) ,  ( sub -
range>}

(REAL  omitted; the  b racke ted  eLements  o f  Tc denote  the  obvious
type  cons t ruc tors . )

Now we assume tha t  every  eLement  o f  (T  u TC)  has  a counte rpar t
i n  ASPIK ’  i . e .  tha t  there  i s  a se t  S (T )  of  aLgor i thmic  spec i -
f i ca t ions  and  a se t  SC(TC) of  aLgor i thmic  spec i f i ca t ion  con-
s t ruc te rs  such  tha t  ASPIK  and  ModPascaL  s t ruc tures  a re
un iqueLy  assoc ia ted .

The second  assumpt ion  says  tha t  the  assoc ia ted  ob jec ts  a re
semant icaL  equ ivaLent ,  i . e .  there  a re  rep -ob jec ts  fo r  every
ModPascaL-ASPIK ob jec t  pa i r  such  tha t  5 .1 .1 .2 . - 1  i s  sa t i s f i ed .

Both  assumpt ions  are  eas iLy  sa t i s fyabLe  s ince  they  do not  in -
cLude user -de f ined  ob jec ts ;  the  ins taLLa t ion  of  appropr ia te
ob jec ts  as  sys tem components  i s  a soL i ta ry  task .

The third assumpt ion  ex tends  the  f i rs t  two  to  aLL ob jec ts
(p roperLy )  used  by  any  user -de f ined  ModPascaL  ob jec t  M of  the
re -co :  every  used  s t ruc ture  o f  M '  has  an  assoc ia ted  aLgor -
i thmic  ASPIK spec i f i ca t ion  8 ' ,  such  tha t  S '  and  M'  a re  seman-
t i caL  equ ivaLent .

The four th  and  f inaL  assumpt ion  der ived f rom the  h ie ra rchy
proper ty  deaLs  w i th  the  LocaL  ob jec ts  of  M .  Every  LocaL  ob jec t
L i s  aLso  assumed  to  be  connec ted  to  a spec i f i ca t ion  SL  such
tha t  the  semant icaL  equ ivaLence  hoLds .  Bu t  s ince  L i s  not  ex -
pL ic i tLy  used  by  M .  we cannot  cons ider  the  usuaL h ierarchy  re -
Lat ion .  To  modeL the  s i tua t ion  we in t roduce  a use -LocaL  re -
La t ion  tha t  hoLds  be tween  a moduLe  and  i t s  LocaL  ob jec ts .  The
hierarchy  no t ion  fo r  ModPascaL ob jec ts  i s  ex tended  to  aLLow
both  use -  and  use -LocaL- reLa t ions .  We use  U (ob )  to  denote  the
used  ob jec ts  of  0b :  and  UL(ob )  to  denote  the  used  LocaL
ob jec ts  o f  ob .

To preserve  cons is tency ,  an  anaLogous  mod i f i ca t ion  i s  per -
fo rmed on  the  ASPIK LeveL fo r  those  spec i f i ca t ions  tha t  a re
semant icaL  equ ivaLent  to  a moduLe. (No te  tha t  ' use -LocaL '  i s
equ ivaLent  to  'use '  in  the  case  of  spec i f i ca t ion  h ie ra rch ies ) .

Note  tha t  the  Las t  two  assumpt ions  can  be reduced  to  the  f i rs t
two:  every  user -de f ined  ModPascaL ob jec t  i s  bu iL t  f rom eLe -
ments of  T u TC; so  by s t ruc turaL  decompos i t ion  the  assump-
t ions  on  used  and  used-LocaL  ob jec ts  may be  reduced  to  the
assumpt ions  for  T u TC .  ALSO: in  the  case  of t ype  genera to rs
the  pos tuLa tes  above  can  be der ived  f rom the  semant icaL
equ ivaLence  o f  the  base  types .  Bu t  the re  is no way  to  repLace
the  assumpt ions  fo r  the  La t te r .
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5 .1 .2 .  InvoLvation of Hierarchy In format ion 117

PictoriaLLy: we have for a re-co (S:M:R) the foLLowing
hierarchies and assumptions:

3 M
l I

l l | l
31 . . . .  Sm M1 . . . . .  M

l I I | l l
BOOL BOOLEAN

(fl

“
"
-
3

| use -LocaL  |

1
l I l
s'1 ... s'K M' . . . .  w e

1 I l I | J
BOOL BOOLEAN

Fig. 5 .1 .2 . -1 :  Object hierarchies

For the proof that S e Spec and M € (MOD u ENR)  are semanti-
c a L L y  equivaLent we proceed a s  f o L L o w s :
( a )  SuppLy R € Repobj
( b )  S h o w ;  t ha t  ( S I M I R )  i s  r e a L i z a t i o n

( c )  Show the bijectivity of the signature morphism of R

Let R € Repob j  be given.
To decide ( b ) :  we construct an inductive proof of the con—
sistency of the artificiaL specification AS. The induction is
L e a n e d  t o  the hierarchicaL structures that are induced by S
and M via their use—reLations.

The assumptions in this situation are:
I Every M; is semanticaL equivaLent to some S 5 ;  i e (n ) ,  j e

( m )
o Every M'; is semanticaL equivaLent to some S';: i e (L ) ,  j e

( K )
. ALL other eLements in the M hierarchies are semanticaL

equivaLent t o  some ob ject s of t h e  associated S hierarchies.

Note that these assumptions aLone do not impLy isomorphic
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118  5 .1 .3 .  FormaLism of  the  Induction Proof Task

hierarch ies .

5 .1 .3 .  FormuLation of the Induction Proof Tag;

As pointed ou t  we wiLL use  our  modi f ied se t  SHEG and the
L i f ted  rep- funct ion r fL  to  const ruc t  an  a r t i f i c iaL  spec i f i -
ca t ion  ob jec t  AS ' (S ‚M)  fo r  given re -co  (S IM IR)  w i th

I p roper t i es :  SHEQ
. operation: r fL

AS ' (S ‚M)  i s  weLL-de f ined :  because  aLL used  ModPascaL ob jects
M; are  semant icaLLy  equ ivaLent  to  ASPIK ob jec ts  S i ,  we can  ex -
change occur rences  of  opera t ions  of  M; by  opera t ions  of  8 ;
w i thout  caus ing  harm.  ALso ,  moduLe var iabLes  may be t rans -
fo rmed  in  spec  var iabLes .  And th i rd ,  fo r  aLL LocaL ob jec ts  M ' ;
o f  M there  a re  semant icaLLy  equ ivaLent  specs .  In  the  case ,
when symboLic execut ion  i s  appL icabLe  th is  can  be  used  to
remove  f rom MHEQ the  express ions  tha t  were  subs t i tu ted  fo r  the
pubL ic  opera t ion  occur rences .  The express ions  over  LocaL
var iabLes  tha t  were  genera ted  by symboLic execut ion  of  oper -
a t ion  def in i t ions in  order  to  ca tch  the  e f fec t  o f  an  opera t ion
caLL  a re  t rans formabLe  in to  ASPIK express ions  by  exchang ing
semant icaLLy  equ ivaLent  opera t ions  and var iabLes .  From th is  i t
foLLows: both  opera t ions  and  proper t ies  of  AS conta in  no
ModPascaL  cons t ruc t  ( i . e .  AS € Spec) .

Graph icaLLy  we can  const ruc t  AS ' (S ‚M)  with  the not ions  of  the
prev ious  sec t ion :

AS ' (S :M)

S;  S'" S ' ;  S 'K

F"! ["—l FL! F"!
l I " I  !

BOOL

5 .1 .3 . -1  Fig.: AS' (S ‚M)  h ierarchy

S ince  we want to  have r fL  as  s ingLe  funct ion of AS ' tS ’M)  and
r fL  is  defined on 8 '1 ,  i € (K ) ,  then  the above objects  are
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5 .1 .3 .  FormaLism of the Induction Proof Task 119

necessa ry .  I f  so r t s  a re  amb iguousLy  deno ted  by ob jec t  names :
t hen  the  f unc t i onaL i t y  of  r f L  i s

9 .1  x . . .  X 8 . “  © S

New the  properties o f  AS ' (S ‚M)  (=SHEQ) just say  t ha t  r fL  i s  a
homomorph ism.  I f  we can  show the i r  vaL id i t y  we are  nea rLy
r eady :  we  onLy  have  t o  de r i ve  f r om the  homomorphy  o f  r f L  t he
homomorphy o f  r f  t o  sa t i s f y  ou r  de f i n i t i on  o f  r eaL i za t i on .  Bu t
t h i s  i s  a t r i v i aL  s tep :  s i nce  we gene ra ted  r f L  f r om rf by  sub -
s t i t u t i ng  seman t i caL  equ i vaLen t  Ope ra t i ons ,  da ta  and
va r i abLes ,  eve ry  p repos i t i on  f o r  r f L  hoLds  d i r ec tLy  f o r  r f .
There fo re  i t  i s  su f f i c i en t  t o  show homomorphy  f o r  r f L .

Up t o  now AS ' (S :M)  contains onLy  the  de f i n i t i on  o f  r f L  bu t  no
de f in i t i on  of used  rep—func t i ons  (wh i ch  might  occu r  i n  SHEQ as
weLL as  i n  t he  r f  and  r f L  de f i n i t i on ) .  To i ncLude  aLL  po ten-
t i aL  necessa ry  de f i n i t i ons  we cons t ruc t  a h i e ra r chy  o f  AS—
ob jec t s .

This  i s  aLways  poss ibLe  i f  we i nvoLve  the  h ie ra rchy  in fo r -
ma t i on  o f  S and  M ,  acco rd ing  t o  the  p rev ious  sec t i on .
Espec iaLLy ,  we assume tha t  we have seman t i caL  equ i vaLen t
h ie ra rch ies  f o r  S and  M i . e .  SE(U(S ) ,  U (M) )  and  SE(UL(S ) ,
UL (M) )  hoLd .  Under  t h i s  assump t i on  f o r  eve ry  S '  € (U (S )  v
UL(S) )  and  M '  € (U (M)  v UL(M) )  t he  ob jec t  AS ' (S ' ‚  M ' )  i s  con -
s t ruc tabLe .  S ince  AS ' -ob jec t s  f o rm  aLso  a h ie ra rchy  ( s ta r t i ng
w i t h  AS ' (BOOL,  BOOLEAN)) we have  t he  f oLLow ing  s i t ua t i on :

AS ' (S ‚M)

[
AS' (S  ‚M1 )  AS' (Sm:Mm) AS ' (S '  ,M'l) AS' (S 'K ‚M '„ )

‚__Lj
' I '  I I

I
AS'(BOOL:BOOLEAN)

5 .1 .3 . -2  F iq :  AS-ob jec t s  ( i somorph i c  h ie ra rch ies  f o r  S ‚M)

We wiLL use  the f oLLow ing

Nota t i on :  AS(S ‚  M) deno tes  an  a r t i f i c iaL  spec i f i ca t ion  con-
s t ruc ted  as  AS'(S‚ M) ,  bu t  U (AS(S ‚  M) )  contains onLy
S and  o the r  AS-ob jec t s .
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120 5 .1 .3 .  FormaLism of the Induction Proof Task

Note that  AS(S ‚  M) contains definitions of aLL (Lifted) rep-
functions; it therefore w i L L  be used in proof scenarios.

To show properties of an ASPIK specification vaLid; there are
two aLternatives:
o deduce them from v a L i d  ( o t h e r )  properties
. show them consistent with aLgorithmic definitions of the

occuring operations.

Deduction as weLL as consistency check invoLve support from
mechanicaL theorem provers. 80 both possibiLities are of
simiLar compLexity. But since AS(S ‚M)  is aLgorithmic we take
the consistency check to prove SHEQ.
I n  order to show consistency of an aLgorihmic specification
one has to proceed a L o n g  the f o L L o w i n g  aLgorithm CON:

gg_ input: aLgorithmic, specterm-free,
zero/one-sorted specification S

output: true, if aLgorithmic definitions satisfy
the properties P(S)  of S

faLse otherwise

(1) 31 S contains no properties, gngn CONtS):=true
( 2 )  for every property p of P(S) .

for aLL variabLes v; of sort 8 ;  occuring in P:
i € {1...u}.
gg; ec;; denote the set of eLementary (=no arguments)

constructors of sort 8 ; ,
1 € ( n ) ;  j € (Q i ) :  q ;  € N in

333 cg; denote the non-eLementary constructors
Of SOPt  S i r  1 € ( n ) :  j € (P i ) !  Pi € N Än

( 2 .1 )  gg; EC : =  { ( ec1 ;1 ‚ . . . ‚ e c „ ; „ )
jK € ( q „ ) ‚  K € ( n ) )

denote the set of vectors of eLementary
constructors in

for every ( e1 ‚ . . . ‚ e „ )  € E C .
p [ ( v1 ‚ . . . ‚ v „ )+fl ( e1 ‚ . . . ‚ e „ ) ]  hoLds

( 2 -2 )  % C : =  { (C13 (1  ‚ r . . . : C „ ; ‚ „  ‚)

jK e ( r k ) ,  K € ( n ) }
denote the set of vectors of constructors in

kg; ct; denote a constructer term of sort S i :
i e (n) in

for every ( e l ‚ . . . ‚ e „ )  e C .
ii p[(v1I...,vn)+fi(ct1,...:ctn)] hoLds
then p[(v1‚...‚v„)+*(el<ct1‚...‚ct„‚

C t ' l l . . . : C t ' a > r
e „ < C t 1 : . . . l C t „ l C t ' l l . . . r C t ' a > ) ]

hoLds
Where  @ ;  ( C t l l u u n - I C t n  I C t ' 1 1 - - - I C t ' a >

denotes the constructor term buiLd
from 9 3 :  C t ; ( 1 ‚ l . . - C t ; ( b ‚ l c t ' ; „ 1 ‚ r . - . :
c t ' ; ( c „  according to the arity
of e s ,  with

ct'; constructor term of some sort,
i € ( a ) :  a € N
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5 .1 .3 .  Fo rmaL i sm o f  t he  Induction Proo f  Task  121

{ i l l - nn l i b }  b {1 l . . . l n } l

( ‚ f i l l - . . l j c }  b { 1 ‚ . . . : a }

( 3 )  I f  bo th  (2 .1 )  and  (2 .2 )  hoLd ,  t hen  CON(S) : =  t rue ;
otherwise CON(S)  :=  f aLse

Remarks :  a )  The  s teps  (2 .1 )  and  (2 .2 )  t oge the r  f o rm  a s t r uc -
t u raL  induction scheme tha t  can  be  d i r ec tLy  used
by  t he  p roo f  sys tem.

b )  ( 2 .1 )  can  be  shown  by  s impLe  appL i ca t i on  o f  oper -
a t i on  de f i n i t i ons  (e .g .  by  use  of an  i n te rp re te r
f o r  ASP IK ) .  Since EC i s  f i n i t e ,  a poss ibLe  way i s
t o  check  mechan i caLLy  eve ry  aL te rna t i ve .

c )  ( 2 .2 )  r ep resen ts  t he  induction s tep :  s ince  the  c t ;
se t s  a re  coun tabLe  (bu t  weLL - founded ) ,  t he  onLy
way t o  show the  impL i ca t i on  i s  t o  use  an  induction
p roo f  sys tem tha t  may  t ake  Lemmata  e t c .  f r om un -
f oLd ing  o f  ope ra t i on  de f in i t i ons  o r  f r om proper ty
se t s  o f  ' Lower ' ,  aL ready  cons i s ten t  specs .

I

I n  the  case  o f  AS(S,M) a second induc t ive  scheme i s  impL i c i t Ly
empLoyed  as  a r esuL t  o f  ou r  assump t i ons .  The  used  and  used -
LocaL  ob jec t s  M '  o f  M a re  assumed  to  be  seman t i caLLy  equ i va -
Len t  t o  some spec i f i ca t i ons  S ' .  I n  t h i s  v i ew  we have  a
h ie ra rchy  o f  a r t i f i c i aL  spec i f i ca t i ons  ( s ta r t i ng  w i th
AS(BOOL,BOOLEAN) )  t ha t  a re  aLL  assumed  to  be  cons i s ten t  excep t
a t he  t op -eLemen t  AS(S ,M)
e S
. used  objects S '  o f  S such  that no used  ob jec t  M '  o f  M i s

seman t i caLLy  equ i vaLen t  t o  S ' .

The cons i s tency  o f  S i s  no t  de r i vabLe  f r om a seman t i caLLy
equ i vaLence ,  s i nce  t he  La t t e r  i s  j us t  t he  goaL  o f  t hese  con -
s i de ra t i ons !  I f  cons i s tency  o f  S i s  needed  i t  has  t o  be  shown
expL i c i t Ly .  The same hoLds  f o r  ob jec t s  8 '  above .
I f  add i t i onaL  requ i remen ts  a re  imposed  on  t he  h i e ra r ch ies
( " i somorph i c  s t r uc tu re " ) ,  t hen  t he  t h i r d  k i nd  o f  unknown con -
s i s tency  above  w iLL  no t  occu r .  I f  i n  t h i s  case  t he  cons i s tency
o f  S i s  shown  sepa ra teLy ,  aLL  p rope r t i es  o f  aLL  used  spec i f i -
ca t i ons  o f  AS(S ,M)  may be  empLoyed  i n  s tep  (2 .2 )  o f  CON: ap -
pL ied  to  AS(S:M).

I t  shouLd  be  ment ioned  t ha t  t he  cons t ruc t i on  of a r t i f i c i aL
spec i f i ca t i ons  AS(S ,M)  f o r  M be ing  ModPascaL p rede f ined  type
i s  no t  unp robLema t i c .  Th is  i s  due  t o  t he  f ac t  t ha t  ( 1 )  t he
modeL o f  ModPascaL s tanda rd  t ypes  has  t o  r esoLve  cycLes  ( see
sec .  4 o f  EOLt  8433 ) ,  and  (2 )  r ep - f unc t i ons  a re  gene raLLy
based  on  LocaL  va r i abLes ;  i n  t he  case  o f  s t anda rd  t ypes  t he re
a re  no such  va r i abLes !

The f i r s t  po in t  i s  ma inLy  o f  t echn i caL  na tu re :  i f  t he  cor rec t
h ie ra r chy  o f  ModPascaL  ob jec t s  i s  used ,  onLy  t he  degree  o f
compLex i t y  w iLL  i nc rease .
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The second probLem can onLy be soLved in a speciaL treatment
of rep-objects and rep-functions for ModPascaL standard t y p e s .
For exampLe one couLd aLLow a missing rep-function definition
in that case, and if carrier eLements of the ModPascaL struc-
ture occur one immediateLy switches over to the associated
ASPIK structure and its carrier eLements.
Independent of the choosen soLution the necessary consequence
is that empLoyed aLgorithms and u s e d  proof systems have t o  be
advised t o  handLe correctLy the standard object s i t u a t i o n .

Though we are conscious about the technicaL and theoreticat
probLems arising we do not go into further detaiL and postpone
a more comprehensive discussion.

We summarize the induction proof task:
Given the situation of figure 5 .1 .3 . -2 :
( a )  Require isomorphic hierarchies for S and M
( D )  Show CON(S) = true
( c )  Show CON(AS(S ‚M) )  = true
=> rfL is homomorphism

. . . -  Lemma
Let S € Spec, M e (MOD u ENR) ‚  R e Repobj.
Let AS(S :M)  be as above such that AS(S ‚M)  e Spec.
Then it is equivaLent:

(SIMIR) is reaLization c==> AS(S ‚M)  is consistent
u

Remarks: a )  AS(S ‚M)  € Spec  impLies pure ASPIK properties (and
therefore previous appLicabiLity of symboLic ex-
ecution).

b) The equivaLence is expLoited to check re-co's. The
consistency of AS(S ,M)  may be shown by standard
methods empLoyed for non-artificiaL ASPIK specs,
different from CON.

n

5 .1 .4 .  Transfer of Proof Tasks

Once proof tasks suitabLe for mechanicaL theorem provers have
been generated: a transfer to some a v a i L a b L e  proof system has
to be initiated. Since in generaL provers are designed to sup-
port one specific proof type (induction, rewriting, equaLity
reasoning), it shouLd be cLear from the proof task which sys-
tem has t o  be u s e d .

Since we are interested in consistency proofs by induction
( c . f .  s e c .  5 . 1 . 3 . ) ,  one c o u L d  a u t o m a t i c a L L y  transfer generated
proof tasks. Independentty form the target system one wiLL
have to transform the ASPIK equations into the accepted input
Language. To get reLiabLe resuLts it has t o be guaranteed that
the transformation of proof tasks is semanticaLLy correct 1.9.
one has to perform another once-and-never-again t a s k  con-

sisting in the check of 'semanticaL equivaLence' of proof task
representation. We assume that this has been done for our
scenario.
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5 .2 .  PMR 123

There i s  no scheme for  deciding: which equat ions beside those
of  AS(S ‚M)  ( e .g .  aLL equa t ions  of the  h ie ra rchy?)  shouLd be
phys icaLLy  a t tached  to  the  p roo f task .  There  a re  cases  in  wh ich
nearLy  every  equa t ion  i s  necessary  fo r  a success fuL  p roo f ;
sometimes the  p resence  o f  redundant  equa t ions  d ramat icaLLy
decreases  e f f ic iency  o r  even  makes a proof  imposs ibLe .  We
assume an  appropr ia te  soLut ion  o f  th is  probLem.

5 .1 .5 .  Administration

I n  SEES: every  so f tware  deveLopment wiLL come wi th  consideraw
bLe  number of  p roof  t asks ;  fo r  exampLe:  if  spec i f i ca t ion
h ie ra rch ies  a re  reaL ized  in  ModPascaL then  fo r  every  ob jec t
the re  i s  a separa te  p roo f  t ask .  There  has  to  be  a sa t i s fac to ry
soLut ion  to  the  representa t ion  probLem of  proof  t asks  and  to
the  admin is t ra t ion  o f  aLready  ach ieved  in te rmed ia te  resuLts .
In  par t i cuLar :
a proof  t asks  shouLd become ob jec ts  by the i r  own ,  w i th

reLa t ions  to  da ta  (spec i f i ca t ions ,  moduLes) and  tooLs .
o proof  t asks  conta in  the i r  cur ren t  s ta te  (p roved  or  no t ) .
I vaL id  formuLae  a re  marked  i f  a p roof  sys tem or  the  sof tware

eng ineer  vaL ida ted  them.
. pend ing  proof  t asks  induce  a Lock  on  invoLved  ob jec ts  tha t

hinders  des t ruc t ive  access .
o the re  a re  induc t ive  schemes which aLLow to  incorpora te

aLready  vaL id  fo rmuLae  in to  a proof  t ask  conven ien t ty .
I t he re  i s  a p ropaga t ion  aLgor i thm tha t  upda tes  vaL id i ty  o f

proof  t asks  i f  des t ruc t ive  ac t ions  (as  ed i t ing  of  cor rec t
ob jec ts )  have  occured .

ALL these  fea tu res  have  to  be  t ighLy  coupLed  to  the  user  in—
t e r face  to  aLLow e f f i c ien t  p rocess ing  of p roof  t asks .  We
assume a SEE w i th  comparabLe capab iL i t i es .

5 .2 .  PMR

we now put  toge ther  the  s ingLe  subtasks  descr ibed  in  sec .  5 .1 .
The resuLt  i s  an  aLgor i thm tha t  gu ides  the  sof tware  engineer
and  the  SEE in  o rder  to  show the  reaL iza t ion  p roper ty .  We do
not  expL ic i tLy  d is t ingu ish  whether  s ingLe  s teps  a re  per formed
manuaLLy or  mechan icaLLy;  th is  aspec t  was covered  in  the
prev ious  sec t ion .

The method  fo r  the  p roo f  o f  the  reaL iza t ion  proper ty  (PMR)
then  i s  de f ined  as  foLLows:

PMR

Let  (S ,  M ,  R )  denote  a re -co .
Let  SE(U(S ) :  UCM) ;  U (R) )  and  SE(UL(S ) :  UL (M) ‚  UL (R) )  hoLd .

( 1 )  Le t  SM denote  the  s ignature  morphism induced by  R .
I f  SM is  not  b i j ec t i ve ,  s top  wi th  fa iLure .

( 2 )  Genera te  MHEQ
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124  5 .2 .  PMR

(3 )  Check i f  symboL ic  evaLua t i on  i s  appL i cabLe .
I f  no t ,  b ranch  t o  ( 6 ) .
O the rw i se :  SHEQ :=  TR_SYM (MHEQ)$1

r f L  : =  TR_SYM (MHEQJTZ
( 4 )  Genera te  AS(S ‚  M)
( 5 )  Check ,  i f  CON(AS(S‚ M))  hoLds .

I f  i t  i s  t he  case :  s t op  with success
Othe rw i se :  s t op  w i t h  f a i Lu re

( 6 )  Compute MHEQ w i th  seman t i caL  ope ra to r s .
Look  f o r  ex te rnaL  dec i s i on  abou t  t he  vaL id i t y  o f
MHEQ eLemen ts .
B ranch  t o  ( 4 )

Remarks  a )  The used  and  used -LocaL  ob jec t s  a re  assumed  to  be
aL ready  seman t i caL  equ i vaLen t .

b )  The b i j ec t i v i t y  o f  SM i s  no t  necessa ry  i f  S and  M
a re  t he  f i naL  ob jec t s  o f  t he  so f twa re  deveLopmen t .
I n  t he  o the r  case  t h i s  cond i t i on  ensu res  t ha t
ob jec t s  us i ng  M can  be  t r ea ted  w i t h  PMR ( see  a ) .
The ma in  po in t  i s  t ha t  f o r  eve ry  conc re te  ope ra t i on
t he re  has  t o  be  an  abs t rac t  coun te rpa r t  i n  o rde r  t o
per form techn i caL  s teps  as  L i f t i ng  o r  SHEQ gener—
at i on .  Toge the r  w i t h  t he  s i gna tu re  morph ism
proper ty  th i s  i nduces  b i j ec t i v i t y .

c )  No te  t ha t  a f t e r  s t ep  6 i t  i s  i n  f ac t  poss ibLe  t o
genera te  AS(S ,  M) ,  s i nce  b i j ec t i v i t y  of  SM i s
assumed. The se t  MHEG i s  mod i f ied  by subs t i t u t i on
o f  ModPascaL  cons t ruc t s  by  ASPIK  cons t ruc t s ,  w . r . t .
SM.

d )  S top  w i th  success  means :  (S ;  M ,  R )  i s  a
reaL i za t i on ,  o r  SE(S ,  M) hoLds .  The nega t i on  " s top
w i th  f a i Lu re "  does  no t  po in t  t o  a un ique  sou rce
tha t  causes  the  non -p rovab iL i t y :  e i t he r
- SM assoc ia tes  ob jec t s /ope ra t i ons  wrong  o r  i n -

adequa teLy ,  o r
- S was i nadequa teLy  o r  wrongLy  de f ined ,  o r
- M does  no t  wha t  i s  spec i f i es  i n  S .
A t ho rough  anaLys i s  of  aLL  poss ib i L i t i es  has  t o
f oLLow.  .

This aLgo r i t hm g ives a rough  overv iew on  PMR. The de ta i Ls  a re
skipped (9 .9 .  how to  t rea t  'm i xed '  cases ,  when fo r  some oper-
a t i ons  o f  a moduLe symboL i c  evaLua t i on  i s  poss ibLe ;  bu t  no t
f o r  o the rs ) .

A sys tem where PMR i s  impLemented  aLLows  the  in te rac t i ve  check
of  cond i t i ons  t ha t  impLy  the  co r rec tness  of  a r eaL i za t iOn .
Moreove r ,  i n  some cases  i t  i s  poss ibLe  t o  mechan i ze  t he  proo f
compLe teLy .  Th is  f ac t  con t r i bu tes  eno rmousLy  t o  t he  accep tance
and  appL i cab iL i t y  o f  the  so f twa re  deveLopmen t  sys tem s i nce  no
spec iaL i s t s  a re  needed  t o  ve r i f y  p roo f  t asks .
I t  shouLd  be  recaLLed  t ha t  t he  embedd ing  o f  PMR (as  every
ve r i f i ca t i on  me thod )  r equ i res  a comprehens i ve  and
soph i s t i ca ted  ob jec t  adm in i s t r a t i on  sys tem tha t  gene ra tes ,  i n -
spec t s ,  man ipuLa tes ,  o r  p ropaga tes  seman t i c  p rope r t i es  o f  t he
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kind "is-reaLization". Cons is tency  issues have to be soLved
arising from destructive operations as e.g. editing or erasing
of o b j e c t s .

6 .  Summary

This paper presents an overview on a soLution of the impLemen-
tation verification task arising in muLti-LeveL and muLti-
Language software deveLopment environments. The situation is
considered, when

o aLgebraic specifications for the abstract description, and
o moduLe constructs for the concrete description

of non-concurrent behaviour are u s e d .  For both description
LeveLs the exempLary Languages ASPIK  and ModPascaL are
formaLLy introduced. ASPIK is an aLgebraic specification Lan-
guage supporting hierarchicaL design of software; it provides
verifiabLe notions for inter-object reLations as 'refinement'
or 'impLementation', and offers a f L e x i b L e  object
parameterization c o n c e p t .  ModPascaL extends standard PascaL by

a moduLe construct and a type parameterization concept based
on signature morphisms.

To connect a moduLe M and a specification 8 the concep t  of
representation object (rep-object) is introduced and suppLied
with a formaL s e m a n t i c s .  Rep-objects a L L o w  the user t o  define

a) a signature morphism between the specification and the
mod uL e: and

b )  a carrier mapping between the semanticaL aLgebras of the
two o b j e c t s .

The most important point is that - in contrast to 'abstract'
approaches of e.g. EEKP 78 ] ,  [ E L  80]; or [sw 821 - rep-objects
modeL a reLation between objects of different Language LeveLs
(appLicative and proceduraL). There are numerous difficuLties
induced by such a scenario, and to get started a satisfactory
soLution was found onLy by introduction of confinements: S is
a singLe-sorted, specterm-free constructive spec (hierarchy);
M contains no instantiate type definitions; i.e. not arbitrary
ModPascaL or ASPIK objects are considered in the reLation in-
duced by rep-objects. The notion of reaLization context ruLes
o u t  unadmissabLe o b j e c t s .

If one can specify a representation object R that Links 8 and
M by a syntacticaL and a semanticaL mapping such that a
homomorphism between the semanticaL aLgebras of S and M is in-
duced, then a correct reaLization of 8 through M is achieved.

Under specific conditions the proof of the homomorphism
property is mechanizabLe so that tedious and expert-dependent
formaL derivations are reduced. we present a comprehensive
method for the treatment of these cases that aLso expLoits the
hierarchicaL structure of specifications and moduLes for in-
ductive argumentation. The method is demonstrated by an
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126  6 .  Summary

eLementa ry  exampLe .

The concepts  and the  proof  method  have aLready  been  success -
fuLLy  empLoyed in  the  ISDV-Sys tem where the reaL iza t ion  check
is  onLy one of  severaL  ver i f i ca t ion  t asks  i n  order  to  de te r -
mine cons is tency  o f  requi rement  spec i f i ca t ion  and  impera t ive
program.  There ,  the  mechan icaL  tooLs  fo r  p rov ing  p roper t i es
are  an  au tomat ic  theorem prover  and  a rewr i te  ruLe  Labora tory .

Wi th in  the  ISDV sys tem,  severaL  case  s tud ies  on  reaL  worLd
probLems were  success fuLLy  Launched  e .g .  a f inanc iaL  ac -
count ing  probLem (EOLt  85bJ ) .

Curren t  and fu tu re  research  incLudes :

o ReLaxa t ion  of  the  requ i rements  ' ze ro /one  - sor tness '  and
' cons t ruc t iv i t y '  imposed  on  spec i f i ca t ion  ob jec ts .
As inev i tabLe  consequences the  moduLe concept  o f  ModPascaL
has  to  be mod i f i ed ,  and  car r ie r  mappings def ined by rep-
ob jec ts  have  to  be  cons idered  be tween  se ts  o f  aLgebras  ( in -
s tead  of  two  cons t ruc t iveLy  def ined  aLgebras ) .

I I nvoLva t ion  of  spec - te rms  and  ins tant ia t ions  l i ns tan t ia te
types  in  reaL iza t ion  contex ts .
Th is  seems to  be  a more  techn icaL  i ssue  because  the  con-
s t ruc ts  denote  semant icaLLy  ord inary  spec i f i ca t ions  resp .
moduLes /enr ichments ,  such  tha t  the  base  case  i s  appL icabLe .

. FeasibiLity s tudy  i f  these  concepts  a re  adaptabLe  to  the  de -
veLopment  of  so f tware  fo r  non-sequent iaL  sys tems .
I n  f ac t  there  i s  an  ESPRIT pro jec t  (GRASPIN) tha t  i s  par -
t i aLLy  ded ica ted  to  a soLut ion  o f  th is  p robLem;  and  there  i s
a cLose coLLabora t ion  be tween  the  au thor  and  the  GRASPIN
team on  th is  top ic .

Mnuomhar ‘  1 O RR'
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Appendix

Th is  appendix t r ies  to  serve  two  purposes :
- i LLus t ra t ion  of  the ob jec ts  (spec i f i ca t ions :  moduLes,  rep-

ob jec ts )  t ha t  are  eLements of  the  Languages and  of the
scenar io  we have inves t iga ted ;  we present  exampLes;

- i LLus t ra t ion  of  concepts  and  aLgor i thms of  our  approach in a
'm ic ro '  so f tware  deveLopment p ro jec t  w i th  demands o f  ver i f i -
ca t ion .

Since  th is  paper  i s  intended to  descr ibe the  theore t i caL
foundat ions  of  the  approach,  the  chosen  exampLe is  ra ther  t iny
and s impLe .  A cLoser - to—reaL i ty  appL ica t ion  can  be found in
[OLt  85b ] .

Our exampLe is  the  famous s tack ,  and we give def in i t ions of  i t
in  ASPIK and ModPascaL. In  order  to  ver i fy  a t rans i t ion  f rom
the  ASPIK  s tack  to  the  ModPascaL  s tack ,  we de f ine  a rep -ob jec t
and check ,  if  the  reaL iza t ion  proper ty  hoLds .

A s tack  may be spec i f ied  in  ASPIK as  foLLows:

spec  STACK
_L_J_S___Q ELEM:  NAT
sor ts  s tack
gg; push :  s t ack  eLem ——> s tack ,  pop:  s tack  -—> s tack :

top :  s tack  ——> eLem,  empty :  ——> s tack
props aLL s :  s tack  ELL 9 :  eLem

[P1]  pop(push(s ,e ) )  ==  3
[P2 ]  top (push(s ,e ) )  ==  9
[PB ]  top (empty )  “ "  er ror
[P4 ]  pop(empty )  e r ro r

sgec -bodx
const ruc tgrs  empty ,  push
aux iL ia r ies  s i ze :  s tack  —-> na t
def ine -aux iL ia r ies  s i ze (s )  :=  case  s i s

*push(s l , e1 )  = s ize  (s l )+1
esac

gsfinefissrriers
is -s tack (s )  :=  case s is

*empty :  t rue
*push(s l , e1 ) :  if s i ze (s l )  < 10

t hen  t rue  eLse  faLse

(D SBC
def ine-gonst ructors

empty :=  *empty
pushts ,e )  :=  if s i ze (s )  < 10  then  *push(s ,e )

eLse  error
define-ops

pop(s )  :=  case  s is *empty:  error
*push(s l , e l ) :  s1 esac

top (s )  :=  case  s is *empty :  error
*push(s1 :e l ) :  e1  esac
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endsgec

This specification exhibits most of the syntax of specs.
Starred items denote carrier eLements; ELEM, NAT and BOOL are
assumed a s  aLready defined.

I t  shouLd be recaLLed that the semantics of the axiomatic part
of STACK (the spec header) consists of the category of un-
bounded stack aLgebras, whereas the aLgorithmic part (the spec
body) restricts the semantics to the category of stack
aLgebras 'of a t  most size 10 ' .  A s  a w h o L e ,  STACK possesses the
second meaning.

A stack may be defined in ModPascaL as foLLows:

tyge MSTACK =
moduLe u s e  MELEM,  MINTEGER;

pubLiC procedure mpush(e: MELEM);
procedure mpop;
f u n c t i o n  mtop: MELEM;
initiaL mempty;

LocaL type A = arrayE1:10] of MELEM;
Egg a :A ‚  izMINTEGER; LocaLend ;

procedure mpush;
begin if i < 1 0

then begin i : =  i+1; aEi] : =  9 end
e L s e  error end

procedure mpop;
begin if i=0 then error

eLsg i : =  i—1 end
function mtop;

begin if i = 0  then error eLse mtop : =  ati]
sag

initiaL mempty;
begin i : =  0 end;

This definition shows a ModPascaL version of bounded stack.
MELEM and MINTEGER are assumed a s  aLready defined. PubLic
operation arities omit a first parameter of type MSTACK; this
parameter is s u p pLied by the speciaL syntax of moduLe Oper-
ation caLLs.

The aLgebra carrier introduced by MSTACK is the cartesian
product ( A  x MINTEGER) i.e. tupLes of array-integer vaLues.
The semanticaL operations behind mpush: mpop, etc. take these
t u p L e s  a s  arguments and y i e L d  new t u p L e s  o r  s e L e c t  components.

We now want t o  specify a connection of both objects that
0 maps the sort s t a c k  of STACK t o  the cartesian product sort

of MSTACK and the STACK operations to their obvious con-
terparts in MSTACK (signature morphism) -

I maps array-integer tupLes (aIi) to STACK terms such that
onLy significant vaLues are associated to non-erroneous
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terms (carrier mapping)

This is achieved by the rep-object RSTACK:

Egg RSTACK
connectind STACK, MSTACK;
ggg RELEM;
925 push  = mpush

POP = mpop
top = mtop
emp ty  = mempty

repfct R STACK(a,i) =
if i=0 then  empty  eLse
ii 1s i s10  then  push  (RSTACK(a ‚ i - 1 ) ‚

RELEM(a [ i ] ) )
e L s e  e r r o r . s t a c k

repend

Remarks: a )  RELEM is an aLready defined rep-object for the
obvious connection ( a L thou gh  rep-object names are

arbitrary in generaL).
b) The repfct RSTACK is ambiguousLy denoted by the

rep-objects name. .
c )  The conditions of the if-cLauses are pure ModPas-

caL, the then- or eLse-branches are either pure

ASPIK expressions or structures mixed of ASPIK
portions, ModPascaL portions, and recursive RSTACK
c a L L s .

n

We now appLy PMR to check if the re-co (STACK, MSTACK, RSTACK)

is a reaLization.

( 1 )

( 2 )

(3)

The signature morphism is bijective; the sort mapping is
impLicitLy contained in RSTACK ( stack => cartesian

product type).
The homomorphy equations MHEQ are:

EH1] RSTACK(M.mpush(E))
[HZ ]  RSTACK(M.mpop)
[H3 ]  RSTACK(mempty)
[H4 ]  RELEM(M.mtop)

push(RSTACK(M), RELEM))
pop(RSTACK(M))
empty
t o p ( R S T A C K ( M ) )

The dot notation in e.g. M.push(E) is equivaLent to

mpush(M:E). The variabLes M and E range over the concrete

(cartesian product) carriers of MSTACK and MELEM.

SymboLic execution is appLicabLe to aLL equations of MHEQ.

The LocaL variabLe types of STACK are ARRAY and INTEGER.

The internaL state of a stack incarnation i s  therefore

represented by a vector (aii) where a.and i are the LocaL

variabLes of STACK. We get the foLLowing formuLae and ex-
pressions as effect of the operations: A

. SymboLic representation of a stack object before ex-
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ecut ion  of a procedure : (api)
. SymboLic representa t ion  of a s tack  component ob ject

be fore  execut ion  o f  a func t ion  : ( c )
Then we have
for  mpush:
[S1 ]  ( i < 1 0 )  =9 ( {a r i re } r i+1 )
E82 ]  1 ( i<10 )  =9 (unde f ,unde f )

fo r  mpOp:
[S3 ]  ( i =0 )  =9 (unde f ;unde f )
E34] 1 (120 )  =9 (ar i—1)

for  mempty:
[SS ]  ( 8 :0 )

fo r  mtop:
[S6 ]  1 ( i=0 )  =9 (aE iJ )
[8? ]  ( i =0 )  =9 (unde f )

Notat ionaL remark: {ap ipe}  denotes the array a af ter
ass ign ing  e to  the  i - th  component .  'Unde f '  and 'unde f '  -
vec tors  a re  the  symboLic representa t ion  of  e r roneous
evaLuat ions .

The appL ica t ion  of  TR-SYM y ieLd  a se t  SHEQ and a L i f ted
rep - func t ion  RSTACKL.

We compute SHEQ i n  two s teps :
- subst i tu t ion  of the  resuLts  of the  symboLic evaLuat ion

(SHEQ-1)
- subst i tu t ion  of  renaming ModPascaL const ruc ts  (bu iL t

f rom used  or  LocaL  ob jec ts  of  STACK)  and  o f  RSTACK
occur rences  (SHEQ-Z ) .

SHEQ-  :
The subs t i tu t ion  i s  done in  [H1 ]  - [H4 ]  for  the  opera t ion
caLLs mpush, mpop, mtop and  mempty: accord ing to  [S1 ]  -
[ 8? ] .
[A1 ]  ( i <10 )  =9

RSTACK ( ( {a l i xE} :  i + 1 ) )  :

push (RSTACK( (a ‚ i ) ) ‚  RELEM(E))
[AZ ]  1 ( i<10 )  =?

RSTACK( (unde f ‚ unde f ) )  = push (RSTACK( (a : i ) ) ‚RELEM(E) )
[A3 ]  ( i =0 )  =9

RSTACK( (unde f runde f ) )
[A4 ]  1(130)  =$

RSTACK( (a , i - 1 ) )  = pop (RSTACK( (a ‚ i ) ) )
[A5 ]  RSTACK((a‚O)) = empty
[A6 ]  1 ( i=0 )  =?

RELEM( (aE i ] ) )
[A7 ]  ( i =0 )  =>

RELEM( (unde f ) )  = top (RSTACK( (a ; i ) ) )

pop(RSTACK( (a ; i ) ) )

top (RSTACK( (a r i ) ) )

RSTACK L:

The re fo rmuLat ion  of  RSTACK is  based  on  semant icaLLy
equ ivaLent  specs  fo r  the  ModPascaL  a r ray  and  INTEGER
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t ypes .  We assume the  obvious specs  w i th  the  obvious oper -
a t ions .

RSTACKL: ar ray  x i n teger -=9  s tack

where  a r ray :  in teger  and  s tack  denote  car r ie rs  o f  CTAs;

RSTACKL(a: i )  : =  if equaL . in teger ( i , ze ro )  t hen  empty  eLse
if be tween (succ (ze ro ) ;  i :  succ10 (ze ro ) )

then  push (RSTACKL(a ‚m inus ( i x1 ) ) ,
RELEML( read (a , i ) ) )

eLse  e r ro r .  s tack

Note ,  tha t  RSTACKL is  a pure  ASPIK  opera t ion .

SHEQ-z :
We modify  [A1 ]  - [A7 ]  by repLac ing  remain ing ModPascaL
through  ASPIK and carr ier  mapping caLLs  th rough  the i r
re fo rmuLated  vers ion  (RSTACK ' :  RELEM' ) .

[B1 ]  Less ( i ; succ10 (ze ro ) )  =?
RSTACK'(assign(a‚i‚e)‚ pLus ( i ‚ 1 ) )  =

push<RSTACK ' (a ‚ i ) :  RELEM' (e ) )
E82 ]  not(Less(i‚ succ10 (ze ro ) ) )  =:

RSTACK 'Ce r ro r . a r ray ‚  er ror . in teger )  =
push(RSTACK' (a ; i ) ;  RELEM' te ) )

EBS] equaL.integer(i‚zero) =;
RSTACK ' (e r ro r . a r ray ‚  er ror . in teger )  =

pop(RSTACK' (a ; i ) )
EBA] nottequaL.integer(i‚zero)) =9

RSTACK'(a, minus( i ,1) )  = pop(RSTACK'(a‚ i))
[BS ]  RSTACK ' (a ‚ ze ro )  = emp ty
[Bo ]  not(equaL.integer(i‚zero)) =9

RELEM' (Pead(a : i ) )  = t op (RSTACK ' (a ‚ i ) )
[B7 ]  equaL.integer(i‚zero) =?

RELEM' (e r ro r .eLem)  => t op (RSTACK ' (a ‚ i ) )

( 4 )  The a r t i f i c iaL  spec  AS(STACK,MSTACK) i s :

spec  AS(STACK:MSTACK)
gäg STACK:  AS(ARRAY:MARRAY) :  AS( INTEGER:MINTEGER)
g9; RSTACKL: ar ray  x i n teger  z: s tack
props [ *  [B1 ]  — [B7 ]  * !
spec -body
def ine -ops  RSTACKL(a , i )  : =  ii equaL . in teger ( i , ze ro )

then  empty  eLse
ii be tween<succ (ze ro ) ,

i : succ10 (ze ro ) )
then

push (RSTACKL(a ‚m inus ( i ‚ 1 ) ) ,
RELEML( read (a ; i ) ) ) ‘

eLse  e r ro r .s tack
§pgcend

Remarg: The AS-objects are  necessary Since they  conta in
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definitions of RELEML and RARRAYL. We omit detaiLs here.

( 5 )  The object AS(STACK,MSTACK) has to be submitted to an
automatic theorem prover. There, the consistency of [ 81 ]
to [B7 ]  with the aLgorithmic definitions has to be checked
by induction proof.
I n  our case we yieLd the resuLt: (SIMIR) is reaLization:
and the success is propagated in the SEE according to sec.

5 .1 .5 !

We shortLy scetch a situation; in which we currentLy branch to
( 6 )  in PMR (i.e. symboLic execution i s  not appLicabLe):

( 6 )  Assume a specification GUEUE of q u e u e s .  I t  encLoses an

operation dequeue that removes the front eLement from a

queue. QUEUE is aLso programmed as moduLe MGUEUE with
(among others) operation mdequeue. MQUEUE is represented
anaLogousLy t o  MSTACK by array-integer t u p L e s .  Inserting

an eLement in the queue is done by assigning it to an un-
used array eLement and increasing of the integer pointer.
Mdequeue shifts the whoLe array one step Left and
decreases the integer pointer:

mdequeue(q) : =  if i=0 then error eLse
begin j: INTEGER;  j : =  1 ;

whiLe j<i gg begin
aJ = a+1 ] ;
d := 3+1; eng

i : =  i-1 gag

The occurrence of the whiLe construct infLuences the ap-
pLicabiLity of symboLic execution; we then generate the
equation

MERGUEUE(Q.mdequeue)fl§e
E MEdequeue(RQUEUE)fl§s

and ask the user for the vaLidity of this homomorphy
equation; his answer is processed as if a proof system
wouLd have been u s e d  ( i . e .  the actions of s e c .  5 .1 .5 .  are
performed).
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