
>
cm

E
h

m
0

.3‚_.

53359523.
8

.8
.0

m
3...”

co
m

rm
o

m
59399693.

„53535
„__E

E
ö

E
.

5293505.

ProceduraL and
AppLicative

Languages

neD.wteBn...
0

.1tCennOCAnO

HaLte r OLtho f f

Memo SEKI -BS-DS

h
sm

am
m

m
u

im
m

On a Connection between
ProceduraL and AppLicative

Languages

HaLter OLthoff

FB Informatik
University of KaisersLautern

PF 3049
6750 KaisersLautern

FederaL RepubLic of Germany

Abstrggt

This paper reports on the connection between proceduraL and
appLicative Languages. I t presents features, notions and
methods derived from abstract data type theory that in our
judgement are heLpfuL and necessary for muLti-LeveL software
engineering environments in generaL, and especiaLLy for the
treatment of verification issues there. Reference is made to
an existing software engineering system and exempLary Lan-
guages of it. A denotationaL semantics based on aLgebraic
structures is introduced and empLoyed. Since object-
orientedness is Looked at as one of the most important
properties of such environments the notion of correctness is
appLied to objects and object reLations. FinaLLy a reaListic
semi-automatic method for the check of correctness criteria is
given, accompanied by remarks on our existing impLementation.

Con ten t s

0 .

1 .

6 .

? -

Overview

Introduction
1 .1 . Software Engineering Environments
1 .2 . Hoare -s t yLe Ver i f i ca t ion
1 .3 . ALgeb ra i c Ver i f i ca t ion
1 .4 . The ISDV-Sys tem

AppL i ca t i ve and ProceduraL Languages
2 .1 . CLass i f i ca t i on
2 .2 . The Connec t i on P robLem
2 .3 . The AppL i ca t i ve PL ASPIK
2 .4 . The P rocedu raL PL ModPascaL

Language Seman t i cs
3 .1 . Abs t rac t Syn tax

3 .1 .1 . Spec i f i ca t i ons and Maps
3 .1 .2 . ModPascaL

3 .2 . Con tex t - sens i t i ve Cond i t ions
3 .2 .1 . ASPIK
3 .2 .2 . ModPascaL

3 .3 . Seman t i c Doma ins and Semant i c Funct ions
3 .3 .1 . Domains
3 .3 .2 . Func t i ons
3 .3 .3 . Memory ModeL

3 .4 . Seman t i c CLauses
3 .4 .1 . ASPIK
3 .4 .2 . ModPascaL

Connec t i on and Co r rec tness
4 .1 . Con f i nemen ts and Bas i c Not ions
4 .2 . Homomorph isms and ALgeb ras
4 .3 . Represen ta t i on Ob jec t s

4 .3 .1 . Concep t
4 .3 .2 . Abs t rac t Syn tax
4 .3 .3 . Con tex t -Sens i t i ve Condi t ions
4 .3 .4 . Seman t i cs o f Rep -Ob jec t s
4 .3 .5 . Connec t i on t o ALgeb ra Homomorphisms

4 .4 . ReaL i za t i on Cond i t i ons
4 .5 . Othe r App roaches t o Ob jec t Co r rec tness

A Proof Me thod
5 .1 . Bas i c S teps

5 .1 .1 . HEQ Generation
5 .1 .1 .1 . MuL t i - f o rmaL i sm
5 .1 .1 .2 . S ingLe - fo rmaL i sm

5 .1 .1 .2 .1 . SymboL i c EvaLua t i on
5 .1 .1 .2 .2 . Cur ren t L im i ta t ions

5 .1 .2 . I nvoLva t i on o f H ie ra rchy I n fo rma t i on
5 .1 .3 . FormuLa t i on of t he I nduc t i on Proo f Task
5 .1 .4 . Trans fe r o f P roo f Tasks
5 .1 .5 . Admin i s t r a t i on

5 .2 . PMR

Summary

Re fe rences

Appendix

_
l

g
u

m
—

11
.3

14
14
16
18
26

29

32
33
34
34
37
43

46
48
48

57

66
66
72
78

81
82

94
96

102

107
107
108
108
109
113
114
115
118
122
123
123
125

127

130

O. Overv iev 1

. Overv iew

The connec t ion of appL ica t ive and proceduraL Languages i s one
of the ma jor issues of a so f tware engineer ing environment
(SEE) that o f fe rs more than one Language to a user . Some
advanced sys tems incLude a requi rement descr ip t ion Language , 8
fo rmaL spec i f i ca t ion Language and an imperat ive programming
Language . We re fe r to the en t i re ty of a Language and i t s sup -
por t envi ronment as LeveL of a SEE. Espec iaLLy in the L igh t of
abs t rac t da ta type (ADT) theory SEES i ncLud ing an aLgebra ic
spec i f i ca t ion LeveL and a convent ionaL programming Language
LeveL have become prominent : so f tware deveLopment s ta r ts a t
abs t rac t spec i f i ca t ions tha t onLy cons ider the 'pure ' aLgor -
i thm or the 'pure ' in format ion of a t ask : and then graduaLLy
comes down to concre te p rograms tha t f inaLLy run on computers .
In th is scenar io d i f fe ren t Languages fo r the descr ip t ion of
the same thing a re used; o f ten these are appL ica t ive and
proceduraL Languages . In th is paper quest ions as cons is tency
of p roceduraL programs w i th appL ica t ive programs and cor rec t -
ness a re t r i ed to be answered .

The f i rs t sec t ion in t roduces software engineering environments
i n generaL , and espec iaLLy the In tegra ted Sof tware DeveLopment
and Ver i f i ca t ion (ISDV) System ([BGGORV 831, [BOV 85]) . I t
aLso conta ins a compar ison and ra t ing o f convent ionaL Hoare -
s tyLe ver i f i ca t ion vs . aLgebra ic ver i f ica t ion in the scenar io
of 8 SEE .

Sect ion 2 makes the up to then informaL not ions of ap-
pL ica t iveness and proceduraL i ty prec ise and presents
representa t i ves of these ca tegor ies . The th i rd sec t ion then
prov ides exac t de f in i t ions o f syn tax and semant ics . ExampLes
of Language cons t ruc ts a re bundLed in an append ix .

The ma in sec t ion 4 in t roduces so -caLLed rep—objec ts and
aLgebra ic foundat ions tha t enabLe the de f in i t ion of a cor rec t -
ness c r i t e r ion . ALso o ther approaches to cor rec tness a re
rev iewed .

In the f inaL sec t ion 5 a semi-mechanic method for performing
the cor rec tness check i s presented , and i t s impLementa t ion
aspec ts are d iscussed .

We cLose w i th a summary and ou tLook to necessary ex tens ions .

J . In t rodugt ion

1 .1 . So f tware Eng ineer ing Env i ronments

Sof tware engineer ing may be seen as the overaLL act iv i ty of
soLv ing probLems by adequate computer p rograms. Nowadays an
essent iaL par t o f th is ac t i v i t y . i s performed in spec i f ic SEES:
tha t prov ide tooLs and methods su i ted fo r d i f ferent appL i -
ca t ion a reas such tha t a Lo t of cumbersome and e f f i c iency -

November 1985

1 .1 . Sof tware Engineer ing Envi ronments[N

reducing tasks do no t take pLace . SEEs in our unders tand ing
are used fo r programming- in - the-Large , i . e . the deveLopment o f
voLuminous sof tware p roduc ts .

One important subcLass o f SEES foLLows the ' s tepwise -
re f inement ' paradigm in program deveLopment: p r imar iLy , a
probLem is s ta ted on a to taLLy informaL LeveL , us ing
coLLoqu iaL speech; unders tandabLe bo th fo r the cL ien t and the
computer sc ien t is t (we assume a scenar io o f th is k ind in the
sequeL) . From th is s ta r t ing po in t , semi formaL requi rement
def in i t ions a re der ived tha t represent a heLpfuL in te rmed ia te
Language wi th f i rs t fo rmaL iza t ions . Then formaL spec i f i ca t ions
wi th exac t semant ics a re in t roduced; they abs t rac t f rom aLL
impLementa t ion de ta iLs and descr ibe the probLem by behav iour
in fo rmat ion about opera t ions and h ie ra rch icaL reLa t ions
between subprobLems. The s tepwise - re f inement method then sub-
s t i tu tes ' abs t rac t ' spec i f i ca t ions by 'more concre te ' ones :
i . e . des ign dec is ions as da ta types , aLgor i thm def in i t ions o r
110 actions are added .
This procedure goes through severaL i t e ra t ions un t iL a probLem
speci f ica t ion i s reached that i s executabLe on ex is t ing compu-
te rs (= a convent ionaL program) .

Some SEEs support ing th is technique aLso deaL wi th an i ssue
tha t i s most impor tan t fo r every deveLopment o f sens i t i ve
so f tware : s ince each ref inement s tep i s user -de f ined , how can
i t be guaranteed tha t the re f in ing s t ruc ture sa t i s f i es the
cond i t ions imposed on the o r ig inaL s t ruc ture? And in the con-
sequence: how can i t be guaranteed , tha t the f inaL program
does what the f i rs t formaL spec i f ica t ion of the probLem
demands? OnLy few SEEs provide ass is tance in the deveLopment
o f ve r i f i abLe so f tware in th is sense (e .g . ES iL 81] , EBGGORV
83]) : aLthough Lack of reL iabLe cor rec tnggs concepts makes
SEEs inappL icabLe to many prac t icaL s i tua t ions . One reason fo r
th is def ic iency i s tha t ve r i f i ca t ion of compLex programs is
imposs ibLe i f no mechanicaL suppor t fo r the check of cond i -
t ions i s o f fe red; number , s i ze and charac te r o f proof t asks
genera ted by cLass icaL methods do no t aLLow the manuaL ver i f i -
ca t ion of even smaLL-s i zed programs in acceptabLe te rms . But
power fuL au tomat ic proof sys tems capabLe fo r reaL -word appL i -
ca t ions are d i f f i cuL t to des ign and cur ren tLy ava iLabLe onLy
in pro to types aL though many theore t i caL i ssues have been un -
ders tood success fuLLy .

In th is paper we focus the a t ten t ion on SEEs fo r deveLopment
of ver i f i abLe sof tware tha t foLLow the s tepwise ref inement
parad igm, which in our V iew represents the most reLevant sub -
cLass of SEEs. We assume di f ferent LeveLs of fo rmaL probLem
spec i f i ca t ion : and user -de f ined re f inement s teps tha t t rans -
fo rm s t ruc tures o f one LeveL in to s t ruc tures o f ano ther .
Addi t ionaLLy we assume LeveLs in which di f ferent k inds o f Lan -
guages are empLoyed: an appL ica t ive .Language fo r the
' abs t rac t ' por t ion of the so f tware deveLopment , and an impera -
t i ve Language fo r the f inaL outcome of the p rocess . Th is sepa -
ra t ion i s jus t i f ied by the fac t tha t aspects as e .g . abs t rac -
t ion , representa t ion - independence I e f f i c iency , ava iL ib iL i ty

November 1985

1.g. Hoare-StyLe Verification 3

etc. are not satisfactory soLved by a singLe (specification or
programming) Language; emphasis of one aspect comes with
negLigence of another. But in our view SEEs shouLd cover them
aLL at some point of program deveLopment and profit from each
of them in order to generate verified; efficient software for
existing hardware.

It is obvious that the proof of correctness criteria becomes
more compLicated if transitions from the abstract to the con-
crete LeveL are considered. Now not o n L y substantiaL changes
have to be examined but aLso issues caused by the invoLvation
of different formaL systems. For exampLe: a pure appLicative
description of something does not care for a state of a compu-
tation; if the description is expressed by imperative con-
structs (as assignments), it inevitabLy has to! - We wiLL
dedicate s e c . 2 for a cLarification of notions and a com—
prehensive discussion of issues by exempLariLy presenting a
concrete SEE in detaiL.

1.2. Hoare-StVLe Verification

The notion of correctness of a program is c L o s e L y connected to
concepts and methods deveLoped by FLoyd (inductive assertion
method; e.g. [FLo 67]) and Hoare (axiomatic semantics of
programming Languages; e.g. [Hoa 69]). The combination of
their ideas is known as Hoare-styLe verification. (See aLso,
among others, [Bak 80]: [Roe 76] , [Dij 74] for eLaborations
and extensions of the approach). I n their understanding the
proof of the correctness of a program is equivaLent t o the
proof of predicate caLcuLus formuLae which are generated semi-
automaticaLy from a program augmented by 'assertions'.

Hoare-styLe verification is based on the foLLowing in-
gradients:

o There is an imperative programming Language PL (a s ALGOL:
PASCAL etc.) for which the notion of state as binding of
variabLes to vaLues i s decLared.

0 There is an assertion Language AssL which in essentiaL is an
extension of standard predicate c a L c u L u s by programming Lan-
guage specific constructs and functions. VariabLes occurring
i n terms of A s s L are PL v a r i a b L e s , i . e . they range over
domains induced by predefined types (as integer, booLean) or
types generated by type constructors (a s array, record
etc.). The variabLes are interpreted identicaLLy independent
of their occurrence in terms of AssL o r P L .

0 ELements of AssL can be eLaborated in some state s by taking
vaLues s(x) for every variabLe x of E and appLying the oper-
ation definitions. The resuLt is a booLean vaLue. An asser-
t i o n Language construct C together with a s t a t e s i s caLLed
assertion.
Notation: Cs.

0 Hoare semantics for programming Languages are based on
formaL systems. A formaL system is a tupLe (FORM, RULE)
where FORM denotes a Herbrand universe over a given set of

November 1985

4 1.2. Hoare-StyLe Verification

symboLs (the formuLae): and RULE a set of ruLes F1 r Fz-that
aLLow to syntacticaLLy decuce formuLa F'2 from formuLa F1; r
F is caLLed axiom. ,
For the semantics of PL a set of proof ruLes of the form

P l , . . . - I P" '" C l , . . . - I C m

i s given where the premises P ; and concLusions C; are cor-
rectness expressions of the form '{P} constr {Q } ' ‚ P‚Q e
AssL : constr e PL. Then a proof theory PT(PL)= (CorrIR) is
defined a s a formaL system with correctness expressions Corr
a s formuLae and proof r u L e s R as r u L e s .

An interpretation I: Corr ——> State, ——> { t r ue ‚ faLse}
assigns a meaning to correctness expressions:

true if (P s ==> Gs ' ‚ constr
1({P} constr {0 })5 := I transforms s into 5')

sr'reasonong)'='reasoning and assumptions on
faLse otherwise

PT(PL) is assumed to be sound and compLete with respect to
I . Note that AssL is aLso connected to a sound and compLete
proof theory PT(AssL) where the ruLes are standard Logic
deduction ruLes. _

e The effect of every construct of PL is described by ruLes of
R . Therefore in the correctness expressions of the r u L e s
technicaL constructions such as substitutions of variabLes:
introduction or spLitting of assertions speciaL notions or
pure impLications (P==>0) are used to formaLize the intended
meaning. For exampLe, the ruLes for assignment frequentLy
are '

r {P <x ** e)} x : = e {P} or
r {P} x: =e { P <x ** e>}

(dependent of backward or forward reasoning) where P <x **
9) denotes the substitution of aLL free occurrences of x by
e in P . (I n fact, this ruLe is an axiom in PT(PL)). Un-
fortunateLy some features are o n L y covered either with
restricted appLicabLe or unusabLe compLex r u L e s (e . g . side-
effects I gLobaL variabLes, procedure and function
decLarations and caLLs, iterative structures). But despite
of these Limitations there is a proof technique that empLoys
the ruLes of R in backtracking, subgoaLing and unification
steps in order to generate from a given ' {P } censtr {Q } ' s
Corr a (set of) AssL formuLae (see [STA 79] for an exempLary
impLementation).

with (at Least) these ingredients Hoare-styLe verification
works as f o L L o w s :

1) Suppose there is a program prog that is intended to soLve
some probLem. The goaL is to formaLLy prove that this is in
fact the case. The first step consists in a formaLization
of the intention: the programmer has to to state FIG 6 AssL
such that P hoLds before execution of prog, and o thereaf—
t e r . Note that from this point o n L y P and Q are the r a t e -
vant benchmarks; there is no 'verification' whether P and o
meet the intention! (This probLem is often brought up by
critics of the approach; but the transition from (im-
materiaL) intention to (materiaL) formaLization wiLL never

November 1985

1 .3 . Hoare-StyLe Verification 5

be verifiabLe in the usuaL sense: independent from the
specific app roach . So this objection (sometimes caLLed 'the
immanent bias') is not constructive: and we judge it sense-
Less).

2) P and o are a L s o c a L L e d input and output assertion r e s p .
and usuaLLy they do not describe properties of operations
of prog but vaLues of variabLes before and after execution.
Beside the input and output assertion: other assertions
have to be defined by the programmer: for procedure and
function decLaration bodies: entry and exit assertions have
to be suppLied that describe - simiLariLy to the input and
output assertion - the behaviour of the operations body.
Both assertions are used in the r u L e s for procedure and
function caLLs. ALso: for each iterative structure (whiLe:
repeat): invariant assertions must be stated. Invariants
are true whenever controL f L o w p a s s e s t h e m . They represent
inner properties of Loops: that are expLoited by the
programmer in his aLgorithm (i n prog). FinaLLy: (arbitrary)
free assertions may be stated: if it is viewed at as a
necessity to get a correctness decision: or to better docu-
ment prog: o r other r e a s o n s .

3) ALL assertions except the Latter (input: output: entry:
exit: invariant) are inserted in the prog code at
predescribed positions; free assertions may be inserted
between arbitrary statements. Thereafter: instead of prog
an 'annoted' program prog' with inserted assertions is con-
sidered.
Note that the correctness of the program is checked not
onLy against the input/output assertion but aLso against
aLL entry: exit: invariant and free assertions. They aLL
together constitute the formaLization of the intention: and
with them numerous possibiLities of introduction of im-
manent bias are offered. AdditionaLLy: invariants wiLL
s e L d o m a L L o w proofs of correctness if they are not 'strong'
enough i.e. if their extensions cover too few cases.

4) With P(input): Q(output) € AssL: and prog' an annoted
program derived from prog e PL we now consider the correct-
ness expression

cexp : = { P } prog' {Q} .
Prog' wiLL be caLLed correct w.r.t. P and 0: if I(cexp)s =
true hoLds for aLL states 5 . This is equivaLent to: cexp is
derivabLe in PT(PL) such that it is sufficient to construct
a derivation of cexp from R .
RuLes Like the assignment axiom correspond directLy to
(sets of) assertion Language formuLae: P ==> P <x ** e):
and this hoLds for every ruLe of R . Therefore a deduction
in PT(PL) is equivaLent to a set of assertion Language
formuLae: the so-caLLed verification conditions (VCs). If
aLL VCS can be shown vaLid (i.e. deducabLe in PT(AssL)):
then 05' hoLds; or in other words: I(cexp)s is vaLid and
prog' is correct.

5) A mechanicaL theorem prover is empLoyed for the proof of

November 1985

6 1.2. Hoare-StyLe Verification

the VCs. AdditionaL Lemmata can be inserted in a 'knowLedge
base' which aLready contains axioms and r u L e s about A s s L .
If the proof attempt faiLs, then either

- entry/exit assertions were inadequate/wrong, or
- invariants were too weak or wrong, or
- free assertions were inadequate/wrong: or
- (t h e most interesting c a s e) prog does not what is

specified in P and Q.
The detection of the Last aLternative represents the major
goaL of program verification efforts: a mathematicaLLy
precise proposition about an erroneous program, that
possibLy provides hints for maqnctioning code Lines. Un-
fortunateLy: it is the exceptionaL case that exactLy the
Last aLternative i s appLicabLe; more often at; aLternatives
contribute t o the unsuccessfuLL proof a t t e m p t , and the
programmer is encouraged to change program or assertions or
b o t h .

PictoriaLLy: Hoare-styLe verification encLoses two LeveLs:

AssL specification (expressions)

I correctness

PL soLution

Here, the cLassification of SEEs of the introduction above can
aLready be motivated: AssL is an extension of predicate
caLcuLus: a highLy appLicative specification Language, and PL
is by definition imperative. So Hoare-styLe verification is a
possibLe (rudimentary) incarnation of SEEs we consider here.

What are the disadvantages of this approach that hinder its
practicaL appLication in SEES?

e FirstLy: due to historicaL reasons: Hoare-styLe verification
i s dedicated to 'reverse software deveLopment':
One starts with an aLready written program in which aLgor-
ithms are designed a L o n g concrete data structures, and
annotes it with its intention. Nowadays peopLe go the other
way around, for various reasons (that are skipped here).

0 SecondLy, the whoLe theory knows o n L y one refinement step
from AssL to PL. This is an unfeasibLe way for every Larger
software deveLopment, since the inherent compLexity and
hierarchicaL structure of a probLem has to be covered and
equaLized, often an impossibLe requirement.

o Third: This approach is not object-oriented - in contrast to
the wideLy accepted benefits of this programming s t y L e . Con-
structs of AssL and PL are formuLae and programs(fragments):
and the approach refLects no r e s u L t s of abstract data type
theory (e.g. the grouping of data and operation in one
structure and aLgebras as basic semanticaL concept).
CurrentLy, proof ruLes for objects and obfiect operations are
topics of research, but a successfuL answer is stiLL open.

November 1985

1 .3 . ALgebraic Verification 7

0 Four th : No concepts fo r paramete r i zed s t ruc tures have been
deveLoped . Together with a missing not ion of impLementat ion
two important and necessa ry f ea tu res fo r sof tware deveLop-
ment in the Large cannot be used .

From aLL th is i t comes ou t tha t cLass icaL Hoare -s tyLe ver i f i -
ca t ion is bad su i ted fo r SEEs for deveLopment of reL iabLe
sof tware .

1 .3 . ALdebra ic Veri f icat ion

EmpLoyment of aLgebras and aLgebraic s t ructures fo r ver i f i -
ca t ion purposes (aLgebra ic ver i f i ca t ion) represents an
aLte rna t ive to cLass icaL approaches . This way i s heav iLy based
on resuLts of abs t rac t da ta type (ADT) theory as deveLoped fo r
exampLe in [ADJ 783 , [EKP 783 , [ADJ 79] , among many others . In
ADT theory the onLy occur r ing semant icaL s t ruc tures a re
aLgebras and aLgebra morph isms (o r more generaLLy : func tors) ;
and concepts L ike impLementa t ion ; paramete r i za t ion o r ver i f i -
ca t ion a re based upon them (9 .9 . cor rec tness o f an impLemen-
t a t ion i s o f ten de f ined by spec iaL aLgebra homo/ isomorph isms) .
I n many cases ver i f ica t ion i s equivaLent to correctness
cr i te r i a expressed in aLgebra ic te rms , and a ver i f ied s t ruc -
ture is one tha t sa t i s f i es these c r i t e r i a .

ALgebraic ver i f ica t ion then i s used in two contexts :
o ver i f i ca t ion o f reLa t ions be tween s t ruc tures of a spec i f ic

LeveL o f a SEE
o ver i f i ca t ion of reLa t ions be tween s t ruc tures of two di f -

fe ren t LeveLs of a SEE.

As po in ted ou t above : we concent ra te ourseLves in th is paper
on the second appL ica t ion , and more p rec ise : ve r i f i ca t ion of
reLa t ions be tween a s t ruc ture o f an appL ica t ive LeveL o f 3 SEE
and a s t ruc ture o f an impera t ive LeveL of a SEE.
A charac te r i za t ion of aLgebra ic ver i f ica t ion in th is context
i nvoLves (a t Leas t) the foLLowing fea tu res :

0 There i s an imperat ive programming Language PL fo r which the
not ion of s ta te as binding o f va r iabLes to vaLues i s
decLared .
ALso the Language prov ides cons t ruc ts for ob ject -or iented
programming, f ea tu res fo r h ie ra rch iza t ion of ob jec ts , and
concepts fo r paramete r i zed ob jec ts .

o There i s an aLgebra ic spec i f i ca t ion Language SL whose bas ic
s t ruc tures a re aLgebra ic spec i f i ca t ions . This guaran tees the
poss ib iL i ty of ob jec t -o r ien ted programming .
Add i t ionaLLy , the Language aLLows h ierarch icaL speci f i -
ca t ions and prov ides concepts fo r combinat ion ,
paramete r i za t ion , and impLementa t ion .

. The semant ics of PL i s based on the idea of s ta te t rans -
fo rmat ions caused by PL -cons t ruc ts . To describe i t a t rad i -
t ionaL denota t ionaL semant ics DS(PL) i s assumed . From th is

November 1985

1 .3 . Anbraic Verification

an aLgebraic semantics AS(PL) of PL is derived by:
- association of every pre- or user—defined type definition

with an appropriate aLgebra
- association of every object definition with an aLgebra
- association of state transitions caused by operation caLLs

with aLgebra operation caLLs
- association of concepts as parameterization or impLemen-

tation with speciaL aLgebra morphisms and aLgebras.
The standard semantics has to be enriched by appropriate
domains to achieve this modification. AS(PL) is assumed to
describe aLso issues as side-effects or pointer types:
scoping; typing of expressions, and so on.

For SL semantics: ADT theory provides severaL choices: ini-
tiaL, terminaL, Loose and variants thereof, and each ap-
proach is praised by its apoLogists. Since SL is empLoyed in
a SEE we require the f o L L o w i n g mixture: To postpone

representation decisions as far as possibLe (i.e. to the fi-
naL refinement s t e p s) the S L semantics has t o be a s abstract
as possibLe. This can be achieved, if specifications are
‘suppLied with a Loose semantics: then the meaning of such an
object is the set of aLL modeLs = aLgebras, that satisfy
certain conditions) of it. Since in generaL aLgebras shouLd
serve as semantics of objects, a Loose semantics Like this

possesses a high degree of abstraction and fLexibiLity since
no possibLe modeL is excLuded. ALso, specifications may be
compared by Looking at their set of modeLs, and concepts as
refinement, impLementation or parameterization can be
described by mappings between such sets.
The stepwise-refinement method incLudes that finaL struc-
tures are reached on the appLicative LeveL which are no
Longer subject to refinement. For specifications with this
prOperty i t is unwanted t o have a s e t of aLgebras a s
semantics but a singLe unique aLgebra. The SL semantics we
assume provides this property for certain specification
objects.

Since PL and SL are semanticaLLy based on aLgebraic struc-
t u res , a refinement situation in a SEE invoLving a SL speci-
fication and a PL object is just a reLation between (sets
o f) a L g e b r a s . Therefore a correctness criterion attached t o

this reLation shouLd aLso be expressed in aLgebraic terms.
For software engineering purposes, one is interested that
refining and refined structures behave equivaLentLy i.e.
there exist homomorphisms or isomorphisms between the asso-
ciated aLgebras. Even if homomorphy seems to be the weaker
requirement, it is sufficient as correctness criteria for
the SL-PL refinement (see aLso the remark after definition
(F u l fi l - 2) .

shouLd be cLear that this is an extremeLy brief and super-
ficiaL presentation of prerequisites for aLgebraic verifi-
cation, and that the attention is focussed onLy on ideas that
are heLpfuL in the expLanation of LeveL-transgressing refine-
ments in a SEE. Necessary precise definitions are suppLied in
the subsequent sections.

November 1985

1 .3 . Atggbraic Verif ication 9

With (a t Leas t) these ingredients aLgebra ic ver i f icat ion of
re f inement reLa t ions be tween s t ruc tures o f two d i f ferent
LeveLs of a SEE works as foLLows (see aLso sec t ion A .) :

1)

2)

3)

4)

5)

Suppose there i s a spec i f i ca t ion S tha t descr ibes a probLem
soLut ion in SL. S i s viewed as f inaL , such that onLy a
re f inement in to a PL s t ruc ture has to be done . No te tha t S
i s the fo rmaL iza t ion of the in tended probLem soLut ion . From
now on onLy 8 i s the reLevant benchmark ; the re i s no ver i -
f i ca t ion whether S meets the in ten t ion (see the remark in
paragraph 1) o f sec t ion 1 .2 .) .
Le t 0 denote an ob jec t of PL , tha t i s in tended to represent
the re f inement . O d i f fers f rom S i n tha t concre te da ta
s t ruc tures a re in t roduced and aLgor i thms a re de f ined oper -
a t ing on these da ta s t ruc tures and aLL e f f ic iency-
increas ing fea tu res o f PL a re expLo i ted .

To be abLe to connect S and 0 i t i s necessary to get more
in fo rmat ion : wh ich da ta in O re f ines opera t ions of S? The
programmer has to suppLy the in tended assoc ia t ions tha t
have to respec t some bas ic requ i rements (e .g . p reserva t ion
of opera t ion func t ionaL i t i es) .

Referr ing to da ta assoc ia t ions add i t ionaL in format ion i s
needed . S as weLL as O are semant icaLLy descr ibed by unique
aLgebras A(S) and A(0) ‚ and s ince i t i s in generaL imposs i -
bLe to au tomat icaLLy cons t ruc t homomorphisms be tween a rb i -
t ra ry aLgebras : the p rogrammer has to make a sugges t ion .
From h is knowLedge of the in tent ion behind the ref inement
s tep and the de ta iLs o f h is ob jec ts S and 0 he is abLe to
spec i fy how concre te da ta reaL izes abs t rac t da ta : tha t i s
to de f ine a mapping M: A(0) ——> A(S) tha t appL ied to a con -
c re te car r ie r eLement of A(0) y ieLds an abs t rac t carr ier
eLement o f A(S) .

From the in fo rmat ion ga thered in s teps 2) and 3) i t i s pos-
sibLe to formuLate a se t of (homomorphy) equat ions . The
generaL scheme is :

M(O_op(a rguments)) = S_0p(M(arguments))
where o_op and S_op a re assoc ia ted by s tep 2) . I f aLL
equat ions can be shown vaL id ; then M i s a homomorphism: and
one ge ts the des i red resuLt about S and 0 .
I t shouLd be no ted tha t the ve r i f i ca t ion i s not performed
soLeLy w i th respec t to S but aLso aga ins t the assoc ia t ions
of s tep 2) and M . ALL i t ems toge ther cons t i tu te the in ten -
t ion beh ind the re f inement ; and each o f them o f fe rs a
poss ib iL i ty o f in t roduc t ion of immanent b ias .

To show a se t of equa t ions vaL id in some theory requires
some mathemat icaL appara tus . ALSO cons t ra in ts have to be
considered that come from the h ie ra rch icaL s t ructure Lying
on ob jec t se ts (e .g . onLy those p roo fs w iLL succeed i f aLL
subst ruc tures of invoLved ob jec ts a re ' cor rec t ') . Depend ing
on the charac te r is t i cs o f the appL ied p roo f sys tem (equaL-
i t y p rover , induc t ion p rover , e tc .) the precondi t ions and
techn iques vary . There fo re we sk ip de ta iLs and re fer to

November 1985

10 1 .3 . ALgebraic Verification

section 5 . where a spec iaL cons teLLa t ion and soLut ion are
presented .

I f the proof attempt faiLs: t hen either
— the assoc ia t ions of s tep 2) were inadequate /wrong: o r
- S was inadequateLy o r wrongLy de f ined ; o r
- O does not wha t i s spec i f i ed in S .

I f one i s sure of the Las t aL te rna t ive , aLgebra ic ver i f i -
cation has pa id o f f : one has a mathemat icaLLy p rec ise
propos i t ion fo r an inadequate re f inement in which requi red
proper t i es ge t Los t . Un for tuna teLy , in generaL i t i s un -
cLear which aL te rna t ive causes the fa iLure . Moreover ; aLL
aLte rna t ive poss ib iL i t i es cont r ibu te to unsuccessfuL proof
a t tempts .

ALgebra ic ver i f i ca t ion (as descr ibed above) can be summarized
and v isuaL ized as foLLows:

SL spec i f i ca t ion (ob jec t h ie ra rchy)

I cor rec tness

PL soLut ion (ob jec t h ierarchy)

- This conf igurat ion s t rongLy ressembLes to SEE p ic tograms: and
3 i n f ac t , th is approach can be d i rec tLy appL ied in the SEE sub-

cLass descr ibed above .

Compared to Hoare -s tyLe ver i f icat ion: aLL d isadvantages L is ted
in sec . 1 .2 . are missing: ' fOrward sof tware deveLopment':
muLt i -s tep re f inement , ob jec t -o r ien tedness and
paramete r i za t ion / impLementa t ion concepts are essent iaL
fea tures and cen t raL i ssues in the aLgebra ic approach . Many
use fuL concepts o f ADT- theory a re made accessabLe to non-
exper ts tha t use SEEs bu iLd on th is foundat ions .

A t f i rs t gLance , i t wouLd be n ice to unify bo th approaches :
ex tend AssL of sec . 1 .2 . to SL and use the ex is t ing appara tus
for Hoare -s tyLe ver i f i ca t ion :

SL

I correctness

AssL

I correctness

PL

November 1985

1 .4 . The ISDV-Sys tem 11

But as the p ic ture shows, this comes with a new correctness
probLem: SL cons t ruc ts have to be re f ined in to AssL cons t ruc ts
(i f the Hoare -s tyLe ver i f i ca t ion par t i s Le f t unchanged) , and
th is i s a degree of add i t ionaL compLex i ty tha t i s h ighLy un -
wanted . Moreover , one can doubt i f an embedding of an ob jec t -
o r ien ted aLgebra ic spec i f i ca t ion Language in a fo rmuLa-
or ien ted asser t ion Language is poss ibLe a t aLL .

On the o ther hand , i f one wants to modify AssL and PL to
overcome some o f the p robLems bas ic research on Hoare Log ics
has to be per fo rmed: p roo f ruLes have to be deveLoped fo r
ob jec t decLara t ions , fo r ob jec t incarna t ions : fo r decLara t ions
and caLLs of opera t ions of ob jec ts : fo r paramete r i za t ion of
ob jec ts : e tc . ; the asser t ion Language has to c0pe w i th these
ex tens ions ; assoc ia ted proof theor ies have to be shown sound
and compLete , and so on . Bu t the ma in po in t i s tha t even a f te r
success fuL compLet ion o f the above agenda , Hoare -s tyLe ver i f i -
ca t ion wiLL s t iLL be inadequate . I t i s s t iLL backward so f tware
deveLopment , and the bas ic idea i s s t iLL to modeL the s ta te
change caused by PL cons t ruc ts and then show some asser t ions
and impL ica t ions vaL id . How the s ingLe p roo f t asks cor respond
to some proper ty o f the spec i f ied probLem ge ts Los t because
many fo rmuLae a re in t roduced fo r t echn icaL reasons (e .g .
decompos i t ion ruLes , i t e ra t ion ruLes) . Th is i s f a r Less than
of fe red by the aLgebra ic approach where each p roo f t ask can be
Log icaLLy ass igned to some subprobLem. Moreover the proof
t asks a re o f deeper mathemat icaL quaL i ty than p red ica te
caLcuLus fo rmuLae and there fo re aLLow more power fuL p ropos i -
t ions about the genera ted so f tware .

I n the foLLowing we empLoy the aLgebra ic ve r f i ca t ion approach .

This sec t ion g ives an overv iew on the In tegra ted Sof tware De-
veLopment and Ver i f ica t ion - (ISDV-) System (EBGGORV 83]) . The
ISDV—System is a SEE tha t mee ts our con f inements ; most con -
cepts p resented here were o r ig inaLLy des igned and impLemented
for tha t sys tem. Th is sys tem empLoys so f tware eng ineer ing
techn iques aLong the "ver i f y -wh iLeudeveLop" parad igm: newLy
in t roduced s t ruc tures a re ve r i f i ed aga ins t formaL spec i f i -
ca t ions as soon as poss ibLe so tha t e r ro rneous o r inadequate
des ign i s de tec ted earLy be fore i t causes g rea te r damage
(=cos t of sys tem redes ign) . Th is techn ique i s used to L ink the
very f i rs t formaL spec i f i ca t ion , the in te rmed ia te spec i f i -
ca t ion s t ruc tures and the f inaL ModPascaL program by ass ign ing
proof tasks (cor rec tness c r i t e r i a) to aLL re f inement s teps .
Then , the vaL id i ty of aLL p roo f tasks impL ies tha t the ModPas-
caL program meets the requi rements imposed by the f i rs t formaL
spec i f i ca t ion - a p ropos i t ion tha t i s h ighLy vaLuabLe fo r
aLmost aLL so f tware deveLopments .

The appL ied method invoLves di f ferent LeveLs of abst rac t ion
and prov ides concepts and tooLs fo r a ve r i f i abLe t rans i t ion

November 1985

12 1 .4 . The ISDV-System

from abst rac t to concrete s t ruc tures . In f igure 1 .4 . -1 a rough
overv iew of the var ious LeveLs i s g iven together wi th a aLso
rough cLass i f i ca t ion : and the ver i f i ca t ion tasks a re Loca ted .

aLgebra ic abstract <
spec i f i ca t ions

veri f icat ion

aLgor i thmic intermediate
speci f icat ions <

ver i f icat ion

programming concrete
Language ob jec ts v '

1 .4 . -1 F id . : ISDv-System scenario

The formaL speci f icat ions are given in the appLicat ive speci -
f i ca t ion Language ASPIK (EBV 83]) tha t i s s t rongLy based on
aLgebraic spec i f ica t ions ([ADJ 78] , [EKP 78]) but reaL izes the
' Loose -semant ics ' approach (E86 77] : EHKR 80]) . ASPIK suppor ts
incrementaL , h ie rarch icaL sof tware des ign and of fers a number
o f power fuL descr ip t ion fea tu res . I t i s the Language of the
'abs t rac t ' and ' in te rmed ia te ' LeveLs o f program deveLopment in
the ISDV-Sys tem; the Language o f the ' concre te ' LeveL is
ModPascaL . As a consequence , bo th Languages of fer cons t ruc ts
tha t are semant icaLLy equ ivaLent (e .g . ASPIK spec i f ica t ions -
ModPascaL moduLes /enr ichments) but expLo i t the advantages of
appL ica t ive /p roceduraL Languages resp .

‚ ' The abs t rac t spec i f i ca t ion LeveL can be charac te r i zed by three
subLeveLs wi th di f ferent degrees of abs t rac t ion :

. the ax iomat ic LeveL (AX)

. the aLgor i thmic LeveL (ALG)

. the in te rmed ia te LeveL (AX /ALG)

AX comprises what i s known as ' (ax iomat ic) aLgebraic specif i -
ca t ions ' : ob jec ts which a re def ined by ind ica t ion of a s igna -
tu re (a se t o f sor t names and a se t o f opera t ion names w i th
ar i ty) and a se t of PC-1 fo rmuLae (' ax ioms ') bu iL t f rom the
symboLs of the s igna ture . Every probLem Spec i f i ed on AX is a
se t of ax iomat ic spec i f i ca t ions , poss ibLy h ie ra rch icaLLy con-
nec ted ; where the semant ics of opera t ions a re descr ibed by the
axioms of the spec i f i ca t ions . There i s , by def in i t ion , no in -
fo rmat ion about con t roL fLow or sequent iaL i za t ion in Ax spec i -
f i ca t ions ; a (more o r Less) expL ic i t de f in i t ion of an oper -
a t ion can onLy be rece ived by appLy ing the semant ics gener -
a t ion mechanism that i s assoc ia ted to one 's (ax iomat ic) spec i -
f i ca t ion Language (in i t i aL / te rminaL aLgebra semant ics : modeL-
theore t i c semant ics ; rewr i te ruLe semant ics o r wha tever) .
O f ten ; the resuLt of such an appL ica t ion i s hard to compute

November 1985

1.4. The ISDV-System 13

and hard t o u s e .

On ALG: the demand of representation-independence is sLightLy
reLaxed: operation definitions are stiLL based on terms buiLt
from symboLs of the signature (a s in axioms of AX objects):
but they are stated in an aLgorithmic manner empLoying con—
troLfLow constructs as 'if—then-eLse': 'case' branchings or
recursion. The aLgorithmic definition repLaces the axiomatic
definition of an operation: and in generaL it gives rise to a
unique semantics that can be generated by Least fixpoints of
functionaLs. with an appropriate environment (interpreter):
specifications of ALG become directLy executabLe: and testing
of 'abstract programs' then is the task of evaLuating terms:
which is feasibLe by appLying the operation definitions asso-
ciated to the operation names occuring in the term.

The intermediate LeveL AXIALG consists of those objects that
invoLve AX- as weLL as ALG-subobjects.

On aLL LeveLs it is possibLe to refine or impLement objects
into other objects; the main probLem is to ensure the
preservation of semanticaL properties during the estabLishment
of a refinement or impLementation reLation.
For e x a m p L e : A X and ALG objects are interwoven with each other
in two aspects:

0 Every axiomaticaLLy specified object is transformed during
the refinement process into an aLgorithmicaLLy specified
object. This technique borders the increase of compLexity of
refinement steps by onLy aLLowing modification of operation
(and not simuLtaneousLy modification of data).

I There is a notion of correctneSs of a refinement step from
AX t o ALG: The aLgorithmic definition of an operation - up
to now in no way reLated to the axiomatic definition of the
identicaLLy named operation in AX - i s required to fuLLfiLL
the axioms of the associated AX object. If this can be
guaranteed: both definitions describe (a t Least) overLapping
functions: and the refinement i s semantics-preserving.

The concrete LeveL has t o provide a Language that a L L o w both
enough expressiveness and aLLow efficient programming on von-
Neumann machines. Expressiveness means that the probLem s o L u -
tion of the abstract LeveL - as it is visibLe in the structure
and number of specification objects in AX and ALG - has not be
reinvented: but can be carried over. Therefore it is necessary
to have specification-Like constructs.
Efficiency considerations are not much emphasized when Looking
a t theoreticaL i s s u e s o f software deveLOpment environments.
But for reaL-worLd appLications and acceptance it is in-
dispensabLe to be abLe t o 'tune' program code 9.9. by
repLacing recursion through iterations in order to optimaL use
of hardware ressources. Therefore: the imperative Language of
the concrete LeveL s h o u L d i ncLude major subsets of Languages
Like ADA or PascaL.

For compLeteness it shouLd a L s o be mentioned that the ISDV-

November 1985

1 4 2 . AppLicative and ProceduraL Languages

sys tem software deveLOpment scenario a L s o incLudes t o o L s tha t
a L L o w to enter abs t rac t or concrete programs, t o estabLish
refinements and attach semanticaL properties to them; to
generate prooftasks that are submitted t o connected mechanicaL
proof systems, and above aLL a sephisticated object
administration system that does the 'dirty work' of data base
management and of semanticaL preperty maintainance for objects
of aLL LeveLs. The data base contains pres and user-defined
objects and i t heLps to avoid 'deveLopment-from-scratch'
because it is aLLowed and encouraged to re—use aLready defined
objects in different appLications. ALso Library puroses are
supported by it.

LogicaLLy: we have the foLLowing system structure of the ISDV-
System:

appLication
object systems

ASPIKI <——> adminis- <——> (editors; com-
ModPascaL tration piLers, inter-
objects <——> system <——> preters: provers:

input units)

.— F ' .: ISDV-System structure

One of the proof tasks mentioned above is described in this
paper: the aLgebraic verification of refinements of aLgor-
ithmic ASPIK objects into ModPascaL m o d u L e s . Further d e t a i L s
about other proof tasks and the ISDV-System can be found in
[BV 85]: [Sch 85] or [R L 85] .

z . AppLicative and ProceduraL Languageg

The previous section introduced the scenario; in which we are
going to deveLOp our approach. Now we make more precise our
notion of appLicative and proceduraL Languages (sec. 2 .1 .) .
Then the main probLems of a connection of both formaLisms are
presented (s e c . 2 .2 .) and f i n a L L y two representatives of the
Language famiLies are briefLy introduced (sec.s 2 .3 . and

I 2 -4 .) ; exact definitions are given in sec. 3 .

' 2 .] . CLgssification

I n the foLLowing we try to partition the set of existing
programming Languages (PL's). This takes its justification
from the fact, that aLmost every appLication area of computer
science has deveLoped a preference for a specific set of PL's:
economy and buisiness L ocated tasks are programmed in e . g .
COBOL, numericaL appLications are preferabLy written in e.g.
FORTRAN, ALGOL, PASCAL: process automation is supported by
e.g. PEARL: concurrent programming is performed e.g. in ADA;
or artificiaL inteLLigence probLem soLutions are heaviLy based
on LISP and PROLOG. The benefits of these associations of ap-
pLication areas and Languages wiLL not be discussed here since

November 1985

2 .1 . CLass i f i ca t ion 15

the cLass i f i ca t ion we are aiming a t i s more generaL .

We wiLL distinguish th ree categories of PL 's where the
descr ip t ion of each ca tegory i s given beLow:

I appL ica t ive PL 's
. proceduraL PL 's
. other PL 'S

The te rm ap ica t ive PL refers to a Language w i th a t Leas t the
foLLowing proper t i es :

a1) There i s no concept of gLobaL var iabLes .
a2) There a re no "ass ignment -cons t ruc ts“ : and the semant ics

is not based on s ta tes and s ta te t rans i t ions .
a3) The cont roL s t ruc ture of a program is de f inabLe onLy by

means o f cond i t ionaL branch ing and recurs ion .
a4) The concep t of action (i.e. how th ings are sequen-

t i aL i zed in t ime) incLudes onLy func t ion composi t ion and
funct ion appL ica t ion .

a5) The concept of da ta cons is ts o f a se t of so -caLLed
eLementa ry ob jec ts and assoc ia ted funct ions (see remark
d) beLow) . No te tha t s t rong typ ing i s no t induced
herewi th .

The te rm proceduraL PL re fers to a Language with a t Leas t the
foLLowing proper t i es :

p1) There i s a concept o f gLobaL var iabLes (o f a program or
Opera t ion) .

p2) There i s an "assignment—construct" which changes ef fec-
t i veLy the vaLue of an ass ignabLe ob jec t : and the Lan -
guage semant ics i s based on s ta tes and s ta te t rans i -
t ions .

p3) The cont roL s t ruc ture o f a program is de f inabLe by means
of cond i t ionaL branch ing : i t e ra t ion , jumps . and recur -
S ion .

p4) The concept of ac t ion i s sequences of s ta tements (s ta te
changing ac t ions) .

p5) The concept of da ta cons is ts of predef ined types:
prede f ined type genera to rs , func t ions : and p rocedures .

PL 's tha t do no t f aLL in to one o f the above ca tegor ies a re
re fe r red to as o ther PL 's .

This (and every) cLass i f i ca t ion cannot be cLean , exhaust ive ,
or un ique . ALready the p re ten t ion o f exac tness and compLete—
ness o f the L is ted p roper t i es may ra ise oppos i t ion , and we are
consc ious about th is . On the o ther hand , every o ther proposaL
wiLL have to deaL w i th the above c r i t e r i a more o r Less expL ic -
i tLy : poss ibLy adding o r removing spec i f i c po in ts , o r pu t t ing
emphasis on di f ferent requ i rements . For exampLe, approaches to
the semant ics of appL ica t ive Languages may empLoy Lambda
caLcuLus , da ta fLow modeLs or reduc t ion p rocesses , but wiLL
aLways be 'non—sta te based ' . Ob jec t ions o f th is k ind w iLL no t
ques t ion the necess i ty o f any cLass i f i ca t ion fo r our con tex t ,
and there fore we wiLL use the in t roduced te rms as in tended
wi thout gLanc ing over the i r de f i c ienc ies .

November 1985

1 6 2 .2 . The Connection ProbLem

To make precise our understanding of proceduraL and appLica-
tive PL's, we add some remarks.

a) Existing practicaLLy used Languages are seLdom pureLy
proceduraL or pureLy appLicative. For exampLe: it is dif-
ficuLt to characterize INTERLISP as appLicative because
there are asignments: Loops and g o t o ' s among the Language
constructs. These features were introduced into the ap-
pLicative PL (PURE) LISP to overcome aLLeged shortcomings
compared to FORTRAN and to popuLarize appLicative program-
ming.
ProceduraL PL's on the other hand frequentLy incLude
features as functions or recursion (e.g.. PASCAL) so that
the adjustment t o some PL c L a s s becomes questionabLe. But
despite this cLassification probLem for existing PL's we
wiLL maintain the categories because they highLight
theoreticaL probLems that occur in muLti-LeveL software de-
veLopment environments empLoying different Language types.

b) 0n todays machines, programs written in (more or Less) ap-
pLicative PL's are not supported by the hardware architec-
t u r e . ConventionaL von-Neumann computers are designed for
tasks described in proceduraL PL's, and when using other
kinds of description Languages one is finaLLy forced to
compiLe one's description into the machine Language. This
aLso has caused the proLiferation of state manipuLating
constructs in appLicative PL's.
AppLicative PL's need appropriate machine support to ex-
pLoit their theoreticaL properties and convenience. As Long
as appropriate and powerfuL hardware is not deveLoped or
avaiLabLe’ appLicative PL's wiLL increase their invoLvement
of proceduraL PL concepts to remain competetive.

c) We cLassify some existing Languages as foLLows:
appLicative: PURE-LISP: INTERLISP: PROLOG: FPL: APL;
proceduraL: ALGOL; FORTRAN, ADA: PASCAL; MODULA-Z.

d) The term 'fgnctignaL PE' often refers to Languages that are
appLicative PL in our sense, with the medified property 85)
that a L L o w s a L s o functions a s data objects (a L L LISP
diaLects are 'functionaL').

e) The concept of action for appLicative P L ' s is essentiaLLy
the buiLding of expressions and the evaLuation of them. I n
proceduraL P L ' s a L s o expressions may o c c u r but they are
substructures of statements and are o n L y u s a b L e in this
context (i.e. vehicLe for the formuLation of a state trans-
ition).

. h nnect on ProbLem

ProceduraL and appLicative PL's have advantages in specific
probLem areas: as indicated above. I n generaL one need not
_consider any interactions or reLations between them.

In the environment of software deveLopment systems empLoying
various Languages and/or Languages of different kinds the
separate view is no Longer possibLe. Objects (pieces of
programming Language code) of some stage of the deveLopment
are Linked to other objects of other stageS: and one is inter-

November 1985

2 .2 . The Connection ProbLem 1 7

ested to state properties of such Links (9.9. refinement
Links: impLementation Links: description Links). If Languages
are Changed within a Link between a source object and a target
object: the connection probLem (CP) occurs:

How can some Link property be formaLized and how can the
formaLized property be verified?

Verification in this sense means to show the somehow defined
vaLidity of a correctness condition.
The situation becomes extremeLy severe if the Link preperty
states a kind of semanticaL preservation: i.e. the source and
target object of a Link are intended to be equivaLent even if
they are expressed in different Languages. This occurs in gen-
eraL in software deveLopment systems that start with require-
ment definitions of a probLem and end with executabLe code:
everything remains criticaL unLess the fuLLfiLment of the
requirements by the generated code is not assured.
I n the sequeL: the CP is examined under the additionaL assump-
tion that the object descriptions are given on the one side in
an appLicative PL: on the other side in a proceduraL PL. Then:
taking the specific properties of appLicative and proceduraL
PL's as defined in sec. 2.1. into account: (a t Least) the
f o L L o w i n g probLem areas may be Located that aggravate a con-
nection of the type "semanticaLLy equivaLent":

gEl: Side Effect Freeness vs. GLobaL VariabLes
TypicaLLy: data of appLicative PL's consists of set(s) of
eLementary objects and functions defined o n them. The former
can a L s o be viewed a t as constants or no—argument functions
deLivering itseLf as vaLue. The Language aLLows the composi-
tion of expressions from this data such that the vaLue of the
expression is derivabLe onLy from the expression and the func-
tion definitions (this property is sometimes caLLed 'referen-
tiaL transparency').
This is not true for expressions or other pieces of code in a
proceduraL PL. Both may invoLve (a set of) gLobaL variabLes
that wiLL not have an expLicit vaLue by the actuaL parameters
suppLied to operation caLLs of the expression (= piece of
code). Therefore the meaning is onLy derivabLe in the context
where the gLobaL variabLe vaLues are known.
CP1 t hen ma y be f o r m a L i z e d a s : C a n expressions of an appLica-
tive PL and statements of a proceduraL PL be compared (i n the
sense of " s e m a n t i c a L L y e q u i v a L e n t ") : and if so: what are the
conditions?

Q32: Functions vs. Procedures
I n fact: this is a subcase of CP1 but an interesting one. If
an appLicative PL function and a proceduraL PL procedure are
considered the g L o b a L variabLe and expression/statement ques-
tions are again raised. But Looking at the operation defini-
tions: now can a statement "the function is equivaLent to the
procedure" or "... does the same ..." be estabLished in a
formaL setting? This probLem occurs everywhere in SEEs when
operation definitions are optimized or reformuLated on dif-
ferent data structures.

November 1985

18 2 .3 . The AppLicat ive PL ASPIK

gg}: Object Oriented Semantics
AppL ica t ive PL 's used in sof tware deveLopment environments
of ten come wi th compound syn tac t icaL s t ruc tures tha t encLose
da ta as weLL as opera t ions and tha t aLLev ia te cLus te r ing o f
t asks in to coherent un i ts . Sometimes these un i ts can bu iLd
h ierarch ies such tha t fo r a h ierarchy eLement aLL depending
ob jec ts a re v is ibLe and the i r conten ts (da ta , opera t ions) are
usabLe in i t . Languages w i th these poper t ies a re o f ten caLLed
ob jec t o r ien ted , and there a re aLso a number o f p roceduraL
PL 's tha t mee t the above descr ip t ion more o r Less exac tLy
(e .g . ADA: CLU) . Then: the connec t ion probLem fo r un i t de f in i—
t ions i s on the one hand independent o f the k ind o f Language ,
on the o ther hand i t i s aggrava ted in our so f tware deveLopment
contex t by CP1 und CP2 ; the p robLem may be s ta ted as : " i s a
uni t de f in i t ion in an appL ica t ive PL ' semant icaLLy equ ivaLent '
to a unit de f in i t ion in a p roceduraL PL?" Or more p rac t icaL :
" is a g iven unit def in i t ion a semant ic preserv ing impLemen-
ta t ion of another one?"

Depending on the point of v iew, more or other connect ion
probLems may be recogn ized . Whenever the ver i f icat ion aspect
i s no t s t ressed , the connec t ion p robLems are p robabLy soLvabLe
wi th sa t i s fac to ry concepts and pragmat ic dec is ions . In the
other case a fo rmaL mathemat icaL f ramework has to be se t up in
which appL ica t ive and proceduraL PL 's become comparabLe and
not ions as "semant icaLLy equ ivaLent" o r "cor rec t impLemen-
t a t ion“ can be in t roduced na turaLLy . w i thout a fo rmaL ism of
th is k ind the so f tware deveLopment ver i f i ca t ion probLem is t
not soLvabLe .

z , } . Thg AppL ica t ive PL ASPIK

I n this section we give a brief overview on our version of the
appL ica t ive PL ASPIK that di f fers f rom the vers ion used in the
ISDV-Sys tem (see sec . 1 .4 .) . The overv iew covers onLy the most
reLevant f ea tu res of the Language . This sec t ion in t roduces
the i r syn tax , whereas a (pa r t i aL) fo rmaL semant ic de f in i t ion
is g iven in sec t ion 3 . A fuLL descr ip t ion of ASPIK may be
found in [L ic 85] : [Spa 85] and [Sch 85] .

The deveLopment of ASPIK was heav iLy in fLuenced by abstract
data type theory . Espec iaLLy the not ion of aLgebra ic speci f i -
ca t ions (see e .g . [ADJ 78] : [EKP 78]) had formed the
morphoLogy of the Language . ASPIK d is t inguishes be tween three
k inds of ob jec ts :

o specif icat ions (ax iomat ic o r aLgor i thmic)
. maps (re f inement o r impLementa t ion)
e imps (s igna ture o r spec i f i ca t ion)

Spec i f i ca t ions are named syn tac t ic un i ts that aLLow the
de f in i t ion o f da ta - the ' sor ts ' of the spec i f ica t ion - and
opera t ions ; on the o ther hand maps are named syn tac t ic un i ts
to assoc ia te sor t and opera t ion names in d i f fe ren t spec i f i—
ca t ions . This assoc ia t ion i s necessary fo r the re f inement ,
paramete r i za t ion and impLementa t ion concept o f ASPIK . Imp
ob jec ts a re used to reaL ize the ASPIK impLementa t ion concept .
They spec i fy cer ta in proper t ies of spec i f ica t ions tha t a re

aomhoh 102€

25} . The AppLicative PL ASPIK 19

sa id to impLement each o ther . Spec i f i ca t ions , maps, and imps
can be s t ruc tu red h ie ra rch icaLLy , i . e . t hey i ncLude spec iaL
'use ' - sLots fo r indication of aLL those ob jec ts the cur ren t
one i s bu iL t upon . S ince the use - reLa t ion inheres in a d i rec -
t ion , a h ierarchy of ASPIK ob jec ts can be v isuaL ized by an
acycL ic d i rec ted g raph . The requ i rement o f acycL ic i ty excLudes
recurs ive ob jec t de f in i t ions f rom the Language .

For the purpose of th is paper i t i s suf f ic ient to focus the
a t ten t ion on spec i f i ca t ions s ince onLy the connect ion of th is
ob jec t ca tegory to a p roceduraL counte rpar t i s examined .
There fore we w iLL onLy p resent an overv iew on maps and imps ,
but go in to de ta iLs of spec i f i ca t ion ob jec ts .

Spec i f i ca t ion ob jec ts cons is t of a header and a body . I f onLy
the header i s def ined , the spec i f i ca t ion i s caLLed ax iomat ic
(o r 'Loose ' ; see [BV 853), otherw ise aLdor i thmic .
A spec i f i ca t ion ob jec t in ASPIK i s composed o f a number of
mandatory (m) and op t ionaL (o) cLauses :

spec i f i ca t ion header (m) :
cons is ts o f maximaLLy the spec i f ica t ion ident i f ier :
use -p sor ts - r ops - I and p rops -cLauses . The header
descr ibes the in te r face of the ob jec t , i . e . the names
of sor ts and opera t ions v is ibLe to the env i ronment :

spec i f i ca t ion iden t i f i e r (m) :
a un ique name fo r the en t i re ob jec t ; aLso used in some
contex ts fo r p re f ix ing of ident i f i e rs tha t a re in -
t roduced in the current def in i t ion (cd) .

use -cLause (m) :
a L is t of ob jec ts tha t a re used: i . e . the i r sor ts and
opera t ions may occur in the cd . The ob jec ts are e i ther
re fe renced by a spec i f i ca t ion ident i f ie r o r by a spec i -
f i ca t ion te rm (spec - te rm; see beLow) .

sor ts -cLause (o) :
a L is t of new sor t names. The sor t names can be used in
the res t o f the spec i f i ca t ion , 9 .9 . to def ine
func t ionaL i t i es o f opera t ions o r to ind icate the scope
of va r iabLes in the p rop -cLause .

ops-cLause (o) :
a L is t of opera t ion func t ionaL i t i es of the form
op: sor t1 sor t , . . . so r tn - -> sor tn+1
The opera t ions a re v iewed a t as in ter face o r pubL ic
opera t ions tha t a re v is ibLe ins ide the cd and in aLL
objects t ha t use the cur rent ob jec t . The ops -cLause
conta ins no expL ic i t opera t ion de f in i t ion .

props -cLause (o) :
The proper t ies cLause cons is ts of ax ioms which are
pred ica te caLcuLus fo rmuLae tha t are intended to
descr ibe the behav iour o f the operat ions of the ops -
cLause (Note : no concre te de f in i t ion i s g iven fo r oper -
a t ions , onLy func t ionaL i t i es) . There a re no ruLes how
to spec i fy the in tended behav iour ; o f ten equat ions are
used to express the opera t ions semant ics ax iomat icaLLy
(aL though the te rm 'ax iomat ic spec i f i ca t ion '
ambiguousLy encLoses every body -Less spec i f i ca t ion in -

November 1985

20 2 .3 . The AppL ica t ive PL ASPIK

dependent f rom the form of the p rops -cLause) .
The p rops -cLause conten t of a spec i f i ca t ion serves as a
formaL requ i rement def in i t ion fo r poss ibLe aLgor i thmic
opera t ion de f in i t ions of those opera t ions in t roduced in
the ops -cLause . SeveraL cor rec tness c r i t e r i a fo r spec i -
f i ca t ions a re connec ted to the reLa t ion be tween
proper t ies and aLgor i thmic opera t ion de f in i t ions (see
[BV 85] and beLow) .

spec i f i ca t ion body (0) :
cons is ts maximaLLy of the constructors-y aux iL ia r ies - :
de f ine -aux iL ia r ies - I de f ine -car r ie rs - r def ine-
cons t ruc tor -ops - , p r iva te -eps - I and de f ine -ops -cLause .
In the spec i f i ca t ibn body aLgor i thmic def in i t ions fo r
newLy in t roduced sor ts and opera t ions of the cd a re
g iven . To fac iL i ta te th is : one can def ine aux iL ia ry and
pr iva te opera t ions which have L imi ted scope .

const ruc tors (m: the sor ts -cLause i s nonempty) :
a subse t of the ops -cLause opera t ion iden t i f i e rs . The
const ruc tors a re the genera tors o f the Herbrand
un iverse tha t i s used in the de f in i t ion of ca r r i e rs .
Each cons t ruc tor con t r ibu tes to the Herbrand un iverse
tha t i s assoc ia ted wi th i t s t a rge t sor t name. Herbrand
un iverses a re cons idered fo r each sor t name occur r ing
i n the sor ts -cLause .

aux iL ia r ies (o) :
a L is t of operat ion func t ionaL i t i es in the same form as
in the ops -cLause . An aux iL ia ry opera t ion i s in tended
to ease the def in i t ion of car r ie r se ts in the def ine—
car r ie r -cLause . The scope i s res t r i c ted to the spec i f i -
ca t ion body .

de f ine -aux iL ia r ies (m: the aux iL ia r ies -cLause i s
non-empty) : g ives the concre te de f in i t ion for aLL
aux iL ia ry opera t ions . Occur rences o f cond i t ionaLs :
case - and Le tschemes: recurs ion and opera t ion caLLs a re
aLLowed in aux iL ia ry opera t ion de f in i t ions . V is ibLe
i tems are aLL used sor ts and Opera t ions : newLy in -
t roduced sor ts and newLy in t roduced opera t ions .

def ine -car r ie rs (m: the sor ts -cLause i s non—empty):
fo r each sor t name of the sor ts cLause , a car r ier se t
i s de f ined by the ex tens ion o f a so -caLLed
charac te r is t i c (ca r r i e r) p red ica te . The ex tens ion
represents e i ther the compLete Herbrand un iverse ,
spanned by assoc ia ted cons t ruc tors , o r a subse t o f i t
and i t i ncLudes a spec iaL e r ro r eLement tha t i s d i f -
f e ren t f rom aLL o ther eLements . In the subse t case
provis ions have to be taken to guarantee the weLL-
def inedness of operat ions (cLosure proper ty ; see be -
Low) .
I n the def in i t ion of the charac ter is t ic pred ica tes , an
operat ion of the Ops cLause i s unv is ibLe . Used and
aux iL ia ry opera t ions a re v is ibLe . The car r i e r pred icate
def in i t ion consis ts of an arb i t rary opera t ion scheme
(cond i t ionaL-y case—I Le t -scheme or t e rm) tha t
sa t is f i es the subterm proper ty (occur r ing te rms a re
car r ie r eLements) and tha t evaLua tes to a booLean
vaLue:

November 1985

ga} . The AppL ica t ive PL ASPIK gl

- t rue : the argument te rm is car r ie r eLement
- f aLse : the argument te rm is no t ca r r i e r eLement

I t shouLd be emphas ized tha t the car r ie r def in i t ions
are a very c ruc iaL par t o f an ASPIK spec i f i ca t ion s ince
they determine the da ta of the abs t rac t type behind the
spec i f i ca t ion and there fore in fLuence the cons is tency
of the cd w i th the in tended modeL as i t i s descr ibed in
the spec i f i ca t ion header (espec iaLLy the p rops -cLause ;
see sec t ions 3 .2 .1 . and 3 .4 .1 . fo r the semant ics of
spec i f i ca t ions) .

de f ine -cons t ruc tor -ops (m: the cons t ruc tor -cLause i s
non-empty): here ; the constructors given in the con-
s t ruc tor cLause onLy by name a re compLeteLy de f ined .
There i s L imi ted f reedom in the opera t ion de f in i t ion
s ince the dec is ions o f the de f ine -car r i e r -cLause have
to be respec ted . The ma in po in t i s : i f the car r ie r
de f in i t ion has spec i f i ed a t e rm op (a l r . . . : an) as
car r ie r eLement : then an invoca t ion of the opera t ion op
on the arguments a l : . . , a" has to evaLuate to th is
t e rm (no te the su te d is t inc t ion be tween te rms and in -
voca t ions o f opera t ions tha t a re assoc ia ted to the
names occur ing in the te rms) . Otherwise the vaLue of a
cons t ruc tor opera t ion invoca t ion has to be de f ined such
tha t cLosedness i s ma in ta ined i . e . i f the ca r r i e r
pred ica te has excLuded a cons t ruc tor t e rm then the
assoc ia ted cons t ruc tor opera t ion caLL has to be def ined
y ieLd ing an eLement o f the ca r r i e r (in the t r i v iaL
case : the er ror eLement) . Cons t ruc tor opera t ion def in i—
t ions may depend on charac te r is t i c p red ica te de f in i -
t ions . V is ibLe i t ems a re the used opera t ions , the
aux iL ia r ies and the cons t ruc tors o f cd : and the def in i -
t ion may be based on case -schemes , Le t -schemes: con -
d i t ionaLs , recurs ions and opera t ion caLLs .

p r iva te -ops (0) :
in t roduces func t ionaL i t i es of opera t ions tha t are in -
tended to be used in the opera t ion de f in i t ion of pubL ic
opera t ions bu t shouLd no t be access ibLe ou ts ide the
spec i f i ca t ion (h idden opera t ions) . They a re s imiLar to
aux iL ia ry opera t ions bu t w i th d i f ferent appL ica t ion
area (de f in i t ion of pubL ic opera t ions ins tead of
de f in i t ion of car r ie r p red ica tes) . The func t ionaL i t i es
may be bu iL t up f rom used sor ts and sor ts o f cd .

def ine -ops (m: ops - o r p r iva te—ops cLause i s non-empty) :
aLL opera t ions up to now onLy in t roduced by func t ionaL-
i t i es a re de f ined . V is ibLe i t ems a re aLL used oper—
a t ions , aLL sor ts : opera t ions and pr ivate opera t ions of
cd . The de f in i t ion may incLude occurences of case - and
Let -schemes: cond i t iona ts : recurs ions and opera t ion
caLLs .

This br ings the overview on ASPIK speci f icat ion ob jec ts to i t s
end .

z .3 . -] ExampLe: L imi ted Queue spec i f i ca t ion in ASPIK
_.L _l_
" I

November 1985

22 2 .3 . The AppLicative PL ASPIK

spec OUEUE;
ggg INTEGER: BOOLEAN;
sor ts queue ;
gag emptyqueue: - -> queue;

en te r : queue integer - -> queue;
remove: queue -—> queue;
f i rs t , Las t : queue - -> in teger ;

grogs [P1] aLL q : queue aLL i : in teger
remove(en te r (qz i)) == q

[PZ] aLL q : queue aLL i : in teger
Las t (en te r (q , i)) == '

[PB] aLL q : queue aLL i : in teger
q == emptyqueue

==> first(enter(q‚i)) == i
[P4] q = l= emptyqueue

==> first(enter(q‚i)) == f i rs t (q)

529g gogx
const ruc tors emptyqueue : en te r ;
aux iL ia r ies

s i ze : queue - -> integer;
def ine aux iL ia r ies

s i ze (q) = case 13q __
tyq eue : O
er (1 ,11) .

*emp
*en t succ (s i ze (q1))
esac

define carr iers
is -queue (q) _ case q ig

*emptyqueue : true
*en te r (q1 , i 1) : Less (s i ze (q1) :10)
esac

define gonstructorg
emptyqueue = *emptyqueue
ente r (q , i) = if Less (s i ze (q1)p10)

then *en te r (q ; i)
eLse q

gering ogs
remove(q) = case q ig

*emp tyqueue : e r ro r .queue
*en te r (q1 , i 1) : case q1 ;;

*emptyqueue : emptyqueue
*en te r (q2 , i ,)
en te r (remove(q1) , i 1)
9.5.9.9.

Las t (q) = case q ' s
*emptyqueue : e r ro r .queue '
*en te r (q1 : i1) : i1

f i rs t (q) = case q ig
*emptyqueue : e r ro r .queue
*en te r (q1 : i l) : gase q; is

*emptyqueue : i1
*en te r (q , : i .) '
2322

f i rs t (q1)

November 102R

2 .3 . The AppLicative PL ASPIK 23

”M? J
Remarks a) Empty cLauses are skipped

b) INTEGER and BOOLEAN denote the spec i f ica t ions of
the obv ious ob jec ts .

c) The p rops -cLause shouLd aLso re fLec t the L imi ted -
ness of queues ; apprOpr ia te equa t ions a re d is -
regarded to suppor t compactness o f the represen-
ta t ion .

d) Succ denotes the successor opera t ion of INTEGER.
e) S ta r red i t ems denote car r ie r eLements: whiLe

emptyqueue i s an opera t ion of OUEUE; *emptyqueue i s
an eLement of the car r ie r queue of OUEUE.

f) Less denotes the obv ious opera t ion of INTEGER.
g) En te r i s de f ined to deL iver i t s queue argument un -

changed if the maximaL s i ze i s reached . F IRST
evaLuates to the innermost in teger a rgument : which
i n tu rn is removed by REMOVE.

I

Two topics were spared in the in t roduct ion of speci f icat ions
above : the subte rm proper ty and spec - te rms .

The subterm proper ty i s very c ruc iaL fo r the def in i t ion of
car r ie rs and cons t ruc tors . I t says that whenever a t e rm t con -
s is ts of opera t ion symboL op and argument te rms t1 ; . . . : tn ,
then i t hoLds: i f t i s ca r r i e r eLement , then t ip . . . : tn are
carr ier eLements. This property ensures fo r exampLe the weLL-
def inedness of the ca r r i e r p red ica te s ince subte rm ex t rac t ions
do not v ioLa te the cLosedness of the p red ica te , and aLso
recurs ive invocat ions a re de f ined . In the in t roduct ion above
the subte rm proper ty has been omi t ted fo r reasons of cLar i ty .

Spec- te rms a re a ve ry important f ea tu re of ASPIK . They i nvoLve
spec i f i ca t ions as weLL as maps or imps . For a p rec ise under -
s tanding of spec - te rms we g ive a shor t survey on map and imp
ob jec ts in ASPIK which bo th a re in tended to es tabL ish
reLa t ions be tween spec i f i ca t ions . The essent iaL no t ion behind
maps is the no t ion of s igna ture morphism. S igna ture morphisms
are pairs of mappings be tween se ts of sor t names and between
se ts o f opera t ion names (the sor t mapp ing and the opera t ion
mapping) . The opera t ion mapping has to p ro tec t the func t ionaL-
i t y assoc ia ted w i th an Opera t ion name, i . e . the ta rge t
func t ionaL i ty i s the image of the source func t ionaL i ty under
the sor t mapping (see aLso def in i t ion 4 .2 . -2) .

A map object de f in i t ion encLoses a t most the foLLowing
cLauses :

map-header (m) :
i n t roduces the name of the map ob jec t . The naming con-
vent ions for maps enforce the ind ica t ion of a source
and ta rge t spec i f i ca t ion ob jec t as part of the map
ob jec t name . The se ts o f sor t names of the source and

November 1985

g5 g;§. The AppLicative PL ASPIK

of the target ob ject are taken as source and target of
the sor t mapping: wh i te the se ts of opera t ion names of
the source and ta rge t ob jec t a re taken as source and
ta rge t o f the opera t ion mapp ing .

i s -cLause (m) :
possesses two poss ibLe en t r i es : refinement o r impLemen-
t a t ion . This cLause serves to character ize the in ten-
t ion beh ind a map ob jec t :
- re f inements res t r i c t the se t o f modeLs o f cd .
- impLementa t ions es tabL ish a semant icaL connect ion

between the source and the ta rget spec i f i ca t ion .
base -cLause (o) :

the base cLause of fers the poss ib iL i ty to excLude
objec ts of the source object h ierarchy from being modi-
f i ed by the s igna ture morphism. The sor ts and oper -
a t ions of ob jec ts L is ted in the base cLause a re mapped
ident icaLLy .

use -cLause (o) :
a L is t of map ob jec t names . V ia the use cLauses : map
ob jec ts may cons t i tu te h ie rarch ies and there fore aLLow
the incorporat ion o f aLready def ined map objects in a
new one . Semant icaLLy , every used map represents a par t
of the s ignature morphism induced by the map ob ject
def in i t ion .

sor ts -cLause (m: The sor ts cLause of the source -ob jec t i s
non-empty) : the sor ts cLause cons is ts of pa i rs "oLd =
new" where 'oLd ' i s a sor t name o f the source ob jec t
sor t name se t , and 'new ' i s a sor t name of the sor t
name se t of the ta rget ob jec t h ie ra rchy . Every oLd sor t
name has to be assoc ia ted to a new name.
The sor t cLause represents (a par t o f) the sor t mapping
induced by the map ob jec t .

ops-cLause (m: the ops cLause of the source ob jec t i s
non-empty) : the ops cLause cons is ts of pa i rs "oLd =
new", where 'oLd ' i s an Operat ion name of the operat ion
name se t of the source ob jec t , and 'new ' i s an oper -
a t ion name of the opera t ion name se t o f the ta rge t
ob jec t h ie ra rchy . Every oLd sor t name has to be asso -
c ia ted to a new name under p reserva t ion o f the
func t iona t i t y .
The ops -cLause represents (a part o f) the operat ion
mapping induced by the map ob jec t . “

This brings the overv iew on ASPIK map objects to i t s end .

2 -1 - ‘ 2 ExampLe: Map ob jec t STACK- -M1- ->QUEUE
Let QUEUE be as in 2 .3 . - 1 .
Let STACK denote a speci f icat ion object of the weLL-known
s t ruc ture w i th sor t ' s tack ' and opera t ions 'push ' , ' pop ' ,
' top ' and ' emptys tack ' .
Let ELEM1 and INTEGER denote used spec i f ica t ions of STACK and
QUEUE rep . , and ELEM1- -M0- -> INTEGER an aLready def ined map
ob jec t .

map STACK'-M1-->OUEUE]

November 1985

2 .3 . The AppLicative PL ASPIK 25

ig impLementation
base BOOL
ggg ELEM- -M0- -> INTEGER
sor ts s tack = queue
gg; push = ente r

pop = remove
top = Las t
emptys tack = emptyqueue

endmap

Remarks: a) The i s -cLause indicates the ex istence of (a t
Leas t) one imp ob jec t (see beLow) .

b) BOOL is Le f t unchanged by the s ignature morphism
i nduced by STACK- -M1- ->QUEUE.

c) The expL ic i t def in i t ion of ELEM--M0-->INTEGER is
omi t ted here .

n
CLoseLy connec ted to map ob jec ts are ASPIK imp ob jec ts . S ince
maps onLy cons t i tu te syn tac t icaL reLa t ions be tween ASPIK
spec i f i ca t ions th is wouLd no t su f f i ce to es tabL ish 'deeper '
semant icaL p ropos i t ions (as fo r exampLe the impLementa t ion
concept) . For th is reason maps can be equipped wi th imp
ob jec ts tha t provide the necessary in format ion . S ince ASPIK
imp ob jec ts a re s t iLL under research and ou ts ide the scope of
th is paper ; we do not go in to fu r ther de ta iLs . I f map and imp
ob jec ts a re assoc ia ted to descr ibe an ASPIK impLementa t ion ;
they a re aLso caLLed ' impLementa t ion s igna ture ' and ' impLemen-
ta t ion spec i f i ca t ion ' resp . to ind ica te the i r semant icaL
purpose.

Comming back to the branch ing point ' spec - te rms ' : we can now
i n t roduce th is no t ion . A spec - te rm is syn tac t icaLLy a spec i f i -
ca t ion iden t i f i e r (the domain) foLLowed by a L is t of map
ob jec t ident i f ie rs (e .g . STACK {ELEM1- -M0- -> INTEGER}) . Seman-
t i caLLy : a spec - te rm descr ibes a spec i f i ca t ion ob jec t tha t i s
der ived f rom the domain h ie ra rchy by exchang ing ob jec ts , oper -
a t ions and sor ts accord ing to the L is ted s ignature morphisms
(e .g . the spec i f i ca t ion (h ie ra rchy) behind STACK
{ELEM1- -M0- -> INTEGER} has aLL occur rences o f ob jec t ident i f ie r
ELEM1, sor t eLem1 and operat ions of ELEM1 subs t i tu ted by
occur rences of ob jec t ident i f i e r INTEGER: sor t in teger and IN -
TEGER Opera t ions resp .) . This use of map ob jec ts represents
what i s caLLed the parameter iza t ion-by-use concept of ASPIK:
spec i f i ca t ions a re not f i xed s t ruc tures , they show gener ic
proper t i es . Every (even ind i rec t) used spec i f i ca t ion i s v iewed
as a poss ibLe ' fo rmaL paramete r ' wh ich might be ac tuaL ized in -
s ide a spec - te rm. An ASPIK spec - te rm is comparabLe w i th
procedure o r func t ion caLLs in impera t ive Languages , where
fo rmaL paramete rs a re subs t i tu ted by ac tuaL ones . Now th is
concept i s appL ied to type -s imiLar s t ruc tures (spec i f i -
ca t ions) . Spec - te rms represent a ve ry convenient and fLex ibLe
fea ture fo r re -us ing spec i f i ca t ions in va r ious contex ts . For
exampLe, i f the re ex is t map ob jec ts ELEM1--M0- -> INTEGER,
ELEM1--M1-->NATURAL_NUMBER: one can eas iLy use di f ferent
ac tuaL iza t ions of STACK in a new spec i f ica t ion in paraLLeL:

November 1985

26 2 .4 . The ProceduraL PL ModPascaL

use STACK {ELEM1- -MO- -> INTEGER} :
STACK {ELEM1- -M1- ->NATURAL_NUMBER}

We cLose this section on the main Language f ea tures of ASPIK
with two remarks:

a) ModPascaL prov ides an anaLogon to maps in form o f in -
s tan t ia t ion def in i t ions: and to spec - te rms in fo rm of in -
s tan t ia te types .

b) Mos t of the in t roduced por t ions of ASPIK are impLemented .
The so f tware tooL SPESY i s descr ibed in [Sch 85] . A fuLL
Language descr ip t ion may be found in EBV 85] .

2 .4 . The ProceduraL Programming Language ModPascaL

This sect ion covers the PascaL-extension ModPascaL (EOLt
84a :b]) : the Language of the concre te LeveL of our assumed
scenar io . ModPascaL encLoses s tandard PascaL [I S O 7186] : and

- s ince the Le t te r Language may be seen as a subse t of ADA: a
- .huge par t of ModPascaL programs may be d i rec tLy expressed in

ADA. The new (and d i f fe rent f rom ADA) concepts a re :

moduLe type de f in i t ions
enrichment de f in i t ions
ins tan t ia t ion de f in i t ions
ins tant ia te type def ini t ions

At f i rs t v iew: moduLe types a re s imiLar to packages . Bu t mod-
uLes possess an impor tan t p reper ty tha t i s necessary in a
sof tware deveLopment environment as weLL as fo r programming
wi th abst rac t da ta types in generaL : they can be incarna ted :
and var iabLes decLared o f a moduLe type may be used accord ing
to the same ruLes tha t hoLd fo r ordinary types . ALso: the in -
te r face of a moduLe type i s des igned on theore t i caLLy ins ights
of abs t rac t da ta type theory and there fo re excLudes 'uncLean '
f ea tu res .

A ModPascaL moduLe type de f in i t ion cons is ts of the foLLowing
par ts :

modid : Name of the current moduLe.
use : List of moduLes tha t a re used by modid .
pubL ic : Names and ar i t ies of new inter face procedures:

funct ions and in i t i aLs .
LocaL : Cons is ts of LocaL types : LocaL procedures and

func t ions : and LocaL var iabLes . LocaL i tems
are onLy v is ibLe in the cur rent moduLe def ini -
t ion .

operat ions : CompLete def in i t ion (name: bLock) of aLL
pubL ic and LocaL opera t ions .

(The concre te syn tax o f ModPascaL moduLes is sL igh tLy d i f -
f e ren t ; i t was abbrev ia ted here . See aLso exampLe 2 .4 . -1 be -
Low.)

November 1985

2 .4 . The ProceduraL PL ModPascaL 27

ModuLes are assumed to have an i n te rnaL s ta te . This s ta te may
be changed by the invocation of a moduLe procedure ; inspected
by an moduLe function invocation or in i t i aL i zed by a caLL of
an initiaL opera t ion . The mandatory LocaL var iabLes of a mod-
uLe contain the ac tuaL state in the ac tuaL b ind ings . There-
fo re : if one Looks a t the (a b s t r a c t) data t ype (a n aLgebra)
described by a moduLe def in i t ion , i t s se t of carr iers contains
a s s ingLe new eLement the ca r tes ian p roduc t ca r r i e r o f those
car r ie rs associated to the types of the LocaL var iabLes , and
i t s se t of operations has as new eLements (the semantics of)
aLL pubLic operations of the cur ren t definition. The aLgebra
const ruc ted i n this way i s a L s o caLLed the moduLe aLgebra .

LocaL t ypes and LocaL procedures and functions do not have a
comparabLe impact on the moduLe semantics as the LocaL
var iabLes . The types and Operations are thought to ease the
programming process fo r the pubLic operations. The definition
bLocks in the operations par t may empLoy aLL f ea tu res of
standard PascaL and a L L ModPascaL ex tens ions except tha t
nes ted moduLe type definitions are not aLLowed. I f a program
requi res such a s t ruc ture i t has to be modeLLed by using of
previousLy def ined moduLes. '

2 .4 . -1 ExampLe

tgge MSTACK =
moduLe use MELEM, MINTEGER;

pubLic procedure mpush(e: MELEM);
procedure mpop;
func t ion mtop: MELEM;
initiag mempty;

LocaL t ype A = ar rayE1:10] of MELEM;
gg; a :A ‚ i :M INTEGER; LocaLend ;

procedure mpush;
begin if i < 10

then begin i :
eLse er ror e

procedure mpop;
begin if i=0 then error

eLse i := i - 1 gag
function mtop;

begin if i=0 then error eLse mtop := ati] gnd_
i n i t i a L mempty ;

begin i := O end; "

p + . ; \ a Ifi p. Ll

H

0
:3

0
I: Q

.

modend

Th is exampLe shows a ModPascaL vers ion o f bounded s tack . MELEM
and MINTEGER a re assumed as aLready de f ined . PubLic opera t ion
ar i t i es omit a f i r s t pa ramete r of type MSTACK; th is paramete r
i s suppL ied by the spec iaL syn tax o f moduLe opera t ion c a L L s .

n
The aLgebra ca r r i e r in t roduced by MSTACK is the car tes ian
product (A x MINTEGER) i . e . tupLes of a r ray - in teger vaLues .

November 1985

28 2 .4 . The ProceduraL PL ModPascaL

The semant icaL Operat ions behind mpush: mpop, e tc . take t hese
tupLes as arguments and y ieLd new tupLes or seLec t components .

Enr ichments aLLow the extension of aLready def ined moduLes by
new opera t ions . The main d i f ference to a moduLe type def in i -
t ion i s : tha t no new da ta i s in t roduced and the opera t ions o f
the enr ichment have to be based upon the ca r r i e rs beh ind the
enr iched moduLes. Enr ichments cor respond to spec i f i ca t ions of
abs t rac t da ta type w i th empty sor t cLause .

An ins tan t ia t ion ob jec t in ModPascaL aLLows the h ie ra rch icaL
spec i f i ca t ion o f s ignature morphisms. Th is i s no t suppor ted in
any of the ex is t ing impera t ive programming Languages . The se t
of new sor t names of a moduLe cons is ts of the one -eLement -se t
{modid} where modid ambiguousLy denotes the ca r tes ian product
o f LocaL var iabLe types . The se t o f new opera t ion names o f a
moduLe is the se t o f names o f aLL pubL ic opera t ions w i th asso -
c ia ted a r i t i es . Then, the s ignature morphism induced by an in—
stan t ia t ion ob ject L inks two moduLs toge ther by providing a
mapping be tween the sor t se ts and an (a r i t y -p reserv ing)
mapping be tween the opera t ion se ts .

Ins tan t ia t ion ob jec ts a re used in ins tan t ia te type def in i -
t ions . An ins tant ia te type i s an ins tance of a moduLe or
enr ichment . This ins tance is generated accord ing to the infor -
mat ion prov ided by the ins tan t ia te type de f in i t ion : a base
ob jec t (moduLe, enr ichment) and a L is t of ins tan t ia t ion

‘ ob jec ts . The s igna ture morphism induced by the ins tan t ia t ions
v is appL ied as subs t i tu t ion to the base ob jec t (h ie ra rchy) ,

yieLding in the modif ied base object as ins tance .

I ns tan t ia t ions and ins tant ia te types represent the ModPascaL
paramete r i za t ion concept fo r moduLes (types) . By th is , i t i s
not necessary to f i x the paramete rs and non-paramete rs o f a
given moduLe or enr ichment . ALL subs t ruc tures occur ing in the
source of the s igna ture morphism are parameters in the appL i -
ca t ion a t hand; o ther appL ica t ions based on o ther s igna ture
morph isms , may seLec t o ther subs t ruc tures o f the base ob jec t .
The task of pa ramete r i za t ion of types i s Le f t as fLex ibLe as
poss ibLe fo r the programmer, wh iLe s imuLtaneousLy a s t rong and
theore t icaLLy weLL- founded fo rmaL ism is in t roduced . (I t shouLd
be noted tha t th is k ind of parameter i za t ion i s aLso poss ibLe
for f amiL ia r s t ruc tures as a r rays ; records e tc . ; see EOLt
84a ;b]) .

Our invest igat ion of sequent iaL ver i f icat ion wiLL not empLoy
ModPascaL in i ts compLete s i ze (see sec . 4 .1 .) .

November 1985

3 . Language Semantics 29

. a n U 9 Semant 8

In this section we describe the semantics of seLected con-
structs of our version of ASPIK and ModPascaL. We restrict
ourseLves t o those topics that are of interest in the connec-
tion context between the Languages.
Since connections wiLL be estabLished between specifications
and moduLes/enrichments, their semantics is defined beLow.
This incLudes aLso a definition of ASPIK maps because they may
occur in the use-cLause of a specification object, and: for
consistency, aLso a definition of the ModPascaL instantiation
and instantiate type features.

An exhaustive presentation of the semantics can be found in
[BV 85] (ASP IK) and [OLt 84b] (ModPascaL).

I n section 3 . 1 . an abstract syntax describes the two Language
subsets to be considered in the sequeL. The discussion of the
semantics is spLitted into two parts: the context-sensitive
conditions and the dynamic semantics. The first part is given
in section 3.2.; whereas the second part covers sections 3.3.
(semantic domains) and 3.4. (semantic cLauses).

. . Abstract S n tax

A convenient way t o describe the syntax of the ASPIK and
ModPascaL portions of interest is by Vienna Definition Lan-
guage (VDL: [Weg 72]). we briefLy introduce VDL by repeating
the main notions and features which are used in sec.s 3.1.1.
and 3 . 1 . 2 .

VDL supports the idea of abstract syntax in that sense, that
no famiLiar Language symboLs as 'begin' or 'end' (i.e. the
terminaL vocabuLary) occur in a VDL description. Instead, aLL
objects (syntactic entities) are coLLected in sets, and there
are seLectors that aLLow manipuLation . o f them. Objects are
separated into two kinds:

- eLementary objects: objects with no components and therefore
no s e L e c t o r s ,

- composite objects : objects which are be composed of objects
by construction operators. The com-
ponents may be eLementary or composite
objects, and each is seLectabLe by a
unique seLector.

Notation: { 0 1 : o,} denotes a set of eLementary objects.
(51: C1: s2: C2) denotes a set of composite objects
with seLectors sl, s2 and component object sets c1.
C Z I

Composite objects represent tree structures in which the arcs
are LabeLLed by seLectors. the Leaf nodes are eLementary
objects and a L L other nodes are composite objects.

There is a distinguished eLementary object: the so-caLLed ngLL

November 1985

30 _ } .1 . Abst rac t Syn tax

gpjgg;_4$ which i s di f ferent f rom every other eLementary
ob jec t . The nuLL ob jec t i s ambiguousLy used to denote empty
domains as weLL as e r roneous man ipuLa t ions on domains.

3 .1 . -1 . De f . : EseLec tor appL ica t ion]
Le t c = (sl: c1 : . . . : s " : c„) denote a compos i te ob jec t . Let 5
denote a seLec tor : and Le t c € C with c = (c1 : . . . : c ") .
Then (s c) i s caLLed seLec tor appL ica t ion w i th

(s c) := case 5 = s i : i € (n) : c ;
o thecwise L

u
Notation: (sn c) := (s (s (s . . . (s c) . . .) [n t imes : n > 0]

(5 ° c) = c

SeLec tors may be composed: too . I f (sl: c l) and 01 E (s , : c„
S3: C3) a re compos i te ob jec ts then 8381 i s a compos i te seLec -
39:. I f x € (51: C1) then 8381 can be appL ied to x to seLec t
the cg-component.

Nota t ion : I f s„s„_1 . . . 5 ; denotes a compos i te seLec tor : then
(sn (sh .1 (. . . (51 x) . . .) denotes the appL ica t ion
to a compos i te ob jec t x .

3 .13 -2 , Dg f . : Eadmissab i t i t y] .
Le t s := 5n . . . s1 denote a compos i te seLec tor : c a se t of
compos i te ob jec ts .
1) The appL ica t ion of s to c € C: 1 .9 .

(sn (sn_1 (. . . (51 c) . . .)
i s admissabLe: i f

v i e (n) . s ; (s i . 1 (. (s1 c) . . .) :::-L.
s i s aLso caLLed gdmissabLe seLec tor fo r c .

2) AD(c) := (5 ! s is admissabLe seLector for c}

The foLLowing convent ions and opera tors are used:

—Ü1) He assume aLL object se ts to be fLa t domains (see [OLt
84b]) .

2) Syntact ic Domains are denoted by identi f iers star t ing wi th
cap i taL Le t te r . SeLec tors and syn tac t ic domains may occur
pos t f i xed by 'L ' (fo r ' L is t ') . This impL ies the foLLowing
L is t s t ruc ture :

DomainL = (f i r s t : Domain : res t : DomainL)

I f Domain = Dom1 v Dom2
then DomainL = Dom1L u Dom2L

3) The L -vers ion of a domain i s no t expL ic i tLy ment ioned in
the abs t rac t syn tax o f ModPascaL.
Spec iaL case : DomLL = (f i r s t : DomainL: res t : DomainLL)

4) The generaL assignment opera tor is u :
For d € D: d

November 1985

3 .1 .1 . Specifications and Maps

s7/ \ia
oLd1 oLd,

u(d; s,: neu ,) : = d ' : d '8/ \»
new; oLd1

5) The generaL construction operator is no:
u°(sl: DI, s,:u°(s3: D3, 3‘: 04)) describes the domain:

5?/ \iz

01 .
S / Y ‘
D; D e

The assignment and construction operators wiLL be used in
semantic c L a u s e s of s e c . 3 .4 .

6) BeLow; domains of structure
(Domain* x Domain)

wiLL be u s e d . Sometimes i t is necessary to transform e L e -
ments thereof into Lists:

makeList: (Domain* x Domain) ——> DomainL
is defined by

makeList((d1 ... d": d)) := u°(first: dl: rest:
uo(first: da, rest: uo(...(first: day
rest:uo(first:dr rest: L) . . .)

?) An operator Length: DomainL ——> N that returns the number
of List eLements is defined for every domain. Length(L)
0 .

Sometimes it is convenient to convert Lists into sets:
?: Doma inL ——> P(Domain)

with
f (d) := {dal i e (Length(d)) egg

% i € (d) . d; = (first(rest“(d))}

The operator
concat: DomainL x Domain ——> DomainL

i s defined a s expected:
concat(d, dl) : = 'f (first d) = L gngn d1 gggg

gi (rest d) = L) then
u°(first: d, rest: u°(first: dl:

rest: L))

eLse u°(first: (first d),
rest: concat((rest d); d1))

ALso _
concatL: DomainL x DomainL -—> DomainL with
concatL(d1,d2) := ii (first dz) = L then d1 eL§e

November 1985

32 3 .1 .1 . Specifications and Maps

ii (rest de) = L
gngn conca t (d1 ‚ (first d,)) eggs

concatL<concat(d1a (first d2)):
(rest d,))

3 .1 .] , Specifications and Maps

An ASPIK specification object is desoribed syntacticaLLy by
the foLLowing abstract grammar:

Spec = (Sp_head: Sp_head; Sp_body: Sp_body)
Sp_head = (spec_id: Id, useL: Sp_termL, sorts: IdL:

ops: OpL)
Op = (op_id: Id, arity: Arity)
Arity = Id* x Id
Id = {<aLphanumeric identifier>3
Sp_body = (cons: IdL: aux: OpL’ def_aux: Op_defL:

def_car: Op_defL: def_con: Op_defL:
priv: OpL, def_ops: Op_defL)

Op_def = (op_head: Op_head, op_body: Op_body)
Op_head = (op_id: Id, params: IdL)
Op_body = Term v Case v Cond v Let
Term = (op_id: Id, termL: TermL)
Case = (c a s e _va r : I d , cases: CasesL)
Cases = (t a g : T e r m 1 : exit: Op_ body)
Term1 = Term v {OTHERWISE}
Cond = (if: Term, then: Op_body; eLse: Op_body)
Let = (Let_var: Id: Let_term: Term; Let_body: Op_body)

An ASPIK map object is described by:

Map = (map_id: Map_id, is: I s: base: Sp_termL:
use: I s s o r t s : AssocL: o p s : AssocL)

Map_id = (from: Id: to: Id, map_name: Id)
I s = (refinement. impLementation}
Assoc = (o L d : I d , new: I d)

An ASPIK specification term (specterm) is described by

Sp_term = I d v Spec_term
Spec_term = (spec_id:Id, mapL: Map_idL)

Note that the empLoyed concept of an ASPIK specification is
not compLeteLy coincident with [BV 853 . There a distinction is
made: if for s € Spec; (Sp_body s) i s defined or not. I n the
former case the specification is caLLed aLgorithmic, otherwise
axiomatic. ALso predicate caLcuLus formuLae can be attached to
specifications. For reasons described in sec. 4 .1 . we onLy
consider - in terms of [BV 85] - aLgorithmic specifications
without attached predicate caLcuLus formuLas.

November 1985

3 .1 .2 . ModPascaL 3 3

3 . 1 . 2 . nPgscaL

I n this section we introduce the abstract syntax of moduLe
type definitions, enrichment definitions, instantiation
definitions and instantiate type definitions. Not every syn-
tactic domain wiLL be refined to fuLL detaiL; see [OLt 84b]
for the compLete abstract syntax of M o d PascaL.

A ModPascaL moduLe type is defined by:

ModuLe_type
= (useL: IdL, pubLicL: PubLicL, LocaL: LocaL,

operationL : OperationL)
PubLic = Proc_head v Func_head v Init_head
Proc_head = (proc_id: I d , paramL: ParamL)
Param = (idL: IdL, type: ID)
Func_head = (func_id: I d , paramL: ParamL’ resuLt: Id)
Init_head = (init_id: I d , paramL: ParamL)
L o c a L = (L o c a L _ t y p e L : LocaL_typeLr LocaL_varL: VarL’

LocaL_operationL: LocaL_operationL)
LocaL_type

= SimpLe_type v Array_type v Record_type v
Set_type v FiLe_type v Pointer_type

Var = (idL: IdL, type: Type: init: Init_stmt)
LocaL_operation

Proc_head v Func_head
Proc_spec v Func_spec v Init_spec
(proc_id: I d , body: BLock)
(func_id: Id: body: BLock)
(init-id: Id, body: BLock)

Operation
Proc_spec
Func_spec
Init_spec

A ModPascaL enrichment is defined by:

Enrich_def = (enr_id: I d , useL: I d L , addL: AddL;
operationL: OperationL) _

Add = (add_id: Id: pubL i cL : PubL icL)

A ModPascaL instantiation is defined by:

Inst_def = useL: IdL, obj_actL: Obj_actL,
type_actL: Type_actL: op_actL: Op_actL)

0bj_act = (oLd : I d , new: I d)
Type_act = (oLd: Id, new: I d)
0p_act = (oLd: I d , new: Id)

A ModPascaL instantiate type-is defined by:

Instantiate_type = (base_type: I d , objectL: IdL)

November 1985

3 4 3.2. Context-sensitive Conditions

3.2, gontext-sensitge Conditions

3 - 2 - 1 . ASPIK

we now state for the most important domains context-sensitive
conditions that define the notion of static correctness for
objects of the domain. The presentation of the denotationaL
semantics in sec. 3.4. wiLL assume correct objects.

Let s € Spec. Then its context-sensitive correctness is
defined as foLLows:

SP1: 5 correct :¢==e (sp_head 5) correct
gng (sp_body 5) correct.

SP11: sh := (sp_head 5) correct :¢==> (spec_id sh) is
unique in the environment of s ggg (use sh)
correct ggg (sorts sh) correct ggg (ops sh)
c o r r e c t .

SP111: uL : = (useL sh) correct :¢==> Every used specifi-
cation is correct (and visibLe) gng every used
specterm i s correct (a n d v i s i b L e) ggg no
cycLic usage of specifications occurs ggg aLL
identifiers provided by the interface Is of gLL
u s e d objects are unique (p o s s i b L y through
appropriate prefixing) (Is = ({sort names};
{operation names})).

SP112 : s o L : = (s o r t s s h) correct : ¢==>
Every sort identifier is unique in
I s \: (SOL: @)

SP113: opL := (ops sh) correct : ¢==>
Every operation identifier is unique in
Is u (soL; opL) ggg every arity is correct.

SP1131: arity correct :¢==> V o e (ops sh) . Let
(s1 s2 ... s": sn+1):= (arity o) gg
s ; e ((I $)¢1 u SOL) : i e (n + 1)

SP12 : s b : = (s p _ b o d y 5) correct :<==$
(cons sb) correct ggg (aux sb) correct gng
(def_aux sb) correct ggg (def_car sb) correct
gng (def_con sb) correct ggg (priv sb) correct
gng (def_ops sb) correct.

SP121 : coL:=(cons s b) correct :¢==e
Every identifier is contained i n
{ i d l ä i e Length(opL)
id= (op_ id (first (r es t “ opL)))}

SP122: auL:=(aux sb) correct :¢==: Every operation

November 1985

3 .2 .1 . ASPIK 35

identifier is unique in Is u (soL’ opL u auL)
ggg SP1131 hoLds for every 0 e (aux sb)

SP123 : dauL : =(def_aux sb) correct :¢==¢
Every operation definition odef e dauL
is correct with admissabLe identifier set
AIS:=IS u (SOL: opL u auL) .
For every eLement of auL there is an Operation
definition in dauL; no other definitions occur
in dauL.

SP1231 : opdef e Op_def correct with AIS :¢==>
(op_head opdef) is correct with AIS gng
(op_body opdef) correct with AIS u
(d , (p a r a m s (op_head o p d e f J J) .

SP12311: oph:= (op_head opdef) correct with AIS :<==$
(op_id oph) € AIS¢2 \ Iswz gag
(params (op_head opdef)) are not contained in AIS

SP12312 : opb := (op_body opdef) correct with AIS :¢==>
Let 2 € {Te rm ‚ Case, Cond, Let} in
case opb € z : opb is z-correct with AIS .

SP123121 : Opb Term-correct with AIS :¢==>
(op_id opb) e AISwZ and every eLement
of (termL opb) is Term-correct with AIS .

SP123122 : opb Case-correct with A I S :<==¢
(case_var opb) € AIS+2 gag every
c € (cases opb) is correct.

SP1231221 : c € (cases opb) correct :¢==>
gg; V denote the new variabLes of (tag c) in
(tag c) is Term-correct with AIS u
(¢ , V) ggg (exit c) is correct with
AIS u (d , V).

SP123123 : opb Cond-correct with AIS :<==¢
(if opb) is Term-correct with AIS fing
(t hen opb) is correct with AIS gng
(eLse opb) is correct with AIS .

SP123124 : opb Let-correct with AIS : 222
(Le t_ te rm opb) is Term-correct with AIS u
is correct with AIS u (¢ ; (Let_var opb)).

SP124 : dcaL : = (def_car sb) correct :¢==> For every
5 e soL there is a carrier predicate
definition in dcaL; no other definitions
occur. ‘
gg; caL := {idl ä i e (Length (dcaL)) .
(op_id (op_head (first (rest"1 (dcaL))))) = id} in
Every operation definition is correct
with AIS : = IS u (SQL , opL u auL u caL)

November 1985

36

SP125

SP126

SP127

3%;‚1. ASPIK

: dcoL := (def_con sb) correct :¢==> For every
c € coL there i s an opera t ion def in i t ion in
dcoL; no o ther def in i t ions occur . Every
operat ion de f in i t ion i s cor rec t w i th
AIS := I 8 v (soL ‚ opL v auL v caL)

: prL := (p r iv sb) cor rec t :¢==e Every Opera t ion
ident i f i e r i s un ique in IS u (soL , opL u
auL u caL) . Every a r i t y i s cor rec t .

: dopL := (de f_ops sb) cor rec t :¢==e For every

b)

opera t ion o f (opL u prL) \ coL there i s
an opera t ion de f in i t ion in dopL; no o ther
de f in i t ions occur . Every opera t ion
def in i t ion i s cor rect wi th A IS := IS u
(soL : opL u prL u caL)

Specterm cor rec tness (SP 111) i s def ined beLow.
The in te r face I . o f a spec i f i ca t ion i s the vaL id
name space genera ted by aLL -sor t and opera t ion
iden t i f i e rs of (t rans i t i veLy) used spec i f i ca t ions .
I t i s aLso caLLed impor ted in te r face , whereas the
expor ted in te r face conta ins add i t ionaLLy the sor ts
and (pubL ic) opera t ions o f the cur ren t spec i f i -
ca t ion .

Let m 6 Map. Then i ts context -sensi t ive correctness is defined
as foLL

MA1:

MA11:

MA12 :

MA13 :

MA14:

MA15:

Ows:

m correct :¢==> (map_id m) i s correct fing (base m) is

mid

baL

soL

opL

cor rec t gag (use m) i s cor rec t eng (sor ts m)
is cor rec t gng (ops m) is cor rec t

:= (map_id m) cor rec t :¢==e The speci f icat ions
(f rom mid) and (to mid) a re v is ibLe and cor rec t
gng (map_name mid) i s un ique in the envi ronment
of m.

:= (base m) cor rec t :<==$ Every spec te rm in baL
is cor rec t .

:= (use m) cor rec t :¢==e Every used map ob jec t i s
cor rec t and the un ion of aLL mappings induced by
used ob jec ts i s i t seL f a s igna ture morphism.

:= (sor ts m) cor rec t :¢==> For every assoc ia t ion
a € soL i t hoLds: (oLd a) i s v is ibLe sor t
iden t i f i e r in the h ie ra rchy spanned by (f rom mid)
gag (new a) i s v is ibLe sor t ident i f i e r in the
h ie ra rchy spanned by (to mid) gag (new a) as
weLL as (oLd a) a re not sor t iden t i f i e r of some
spec i f ica t ion of baL .

:= (ops m) cor rec t :¢==> For every assoc ia t ion

November 1985

3 .2 .2 , ModPascaL 37

a s opL it hoLds: (oLd a) is visibLe operation
identifier in the hierarchy spanned by (from mid)
gag (new a) is visibLe operation identifier
in the hierchy spanned by (t o mid) gag (new a)
a s weLL a s (oLd a) are not operation identifier
of some specification of baL gag the
functionaLities of (oLd a) and (new a) are
compatibLe (i.e. the signature morphism property
is satisfied).

Remarks: 8) Specterm correctness (MA12) is defined beLow.
b) Since different used objects may invoLve the same

object: and therefore sort and operation mappings
are defined on the same source sets i t has to be
guaranteed in MA13 that in this case equaL argu-
ments yieLd equaL resuLts (i.e. the function
property of the union of aLL used signature
morphisms).

Let st 6 Sp_term. Then its context-sensitive conditions are:

ST1: s t correct :¢==$ gggg st e I d : s t denotes a correct
specification;
case st € Spec_term : (spec_id st) denotes a
correct specification gag (mapL st) is correct
gng (mapL st) i s appLicabLe to (spec_id st)

STZ: mL : = (mapL st) correct :¢==> every eLement of mL is a
correct mapobject and t h e union of a L L e L e m e n t s
of mL is a signature morphism

8T3: mL is appLicabLe t o (spec_id st) :¢==> 333 mp : = the
signature morphism induced by mL: sh : = the
hierarchy spanned by (spec_id st) in
source(mp) 9 sh

Remarks: a) The notion of 'union of signature morphisms' (ST?)
s tands for union of source and target sets of sort
and operation mappings where the arity operators
for each operation name set are maintained.

3 .3 .3 . ModPascaL

I n the foLLowing context-sensitive conditions wiLL be given
for the object domains introduced in sec. 3.1.2. The fuLL set
of conditions for ModPascaL and more detaiLs may be found in
[OLt 84a].

Let m e ModuLe_ type . Then its context-sensitive correctness is
defined as foLLows:

November 1985

38 3 .2 .g ; ModPascaL

MU1: m correct :¢==e (useL m) cor rec t gag (pubL icL m) I
correct gag (LocaL m) correct gag (operationL m)|
cor rec t gag m in te r face cor rec t

MU11: usL := (useL m) cor rec t :<==> Every used moduLe or
enr ichment i s v is ibLe and cor rec t gag no cycLes
in the use - reLa t ion occur gag aLL iden t i f i e rs
prov ided by the in te r face IM o f aLL used
ob jec ts a re un ique (poss ibLy th rough appropr ia te
pre f ix ing) .

MU12: puL := (pubL icL m) cor rec t :¢==> For every eLement
oph of puL i t hoLds:
case oph € Proc_head : (p roc_ id oph) and

(paramL oph) con ta in un ique ident i f i e rs gag
V i € (Length ((paramL oph))) .
(t ype (f i r s t (res t H (paramL oph)))) €
(I „+1 u { m _ i d })

gggg oph € Func_head : (func_id oph) and
(paramL oph) and (resuLt oph) con ta in
un ique iden t i f i e rs gag
V i € (Length ((paramL oph))) .
(t ype (f i r s t (res t H (paramL oph)))) e
(IHW1 u {m_id})
gag (resuLt oph) € Iflv1

cgse oph e Init_head : (init_id oph) and
(paramL oph) conta in unique ident i f ie rs gag
V i € (Length ((paramL oph))) .
(t ype (f i r s t (res t H (paramL oph)))) € INW1

gag a t Leas t one in i t i aL header occurs .

MU13: Lp := (LocaL m) cor rec t :¢==> (LocaL_ typeL Lp)
cor rec t gag (LocaL_varL Lp) cor rec t gag
LocaL_operationL Lp) correct gag
Length ((LocaL_varL Lp)) > 0

MU131: L tL := (LocaL" typeL Lp) cor rec t :<==e no in t roduced
type i s a moduLe type gag aLL type iden t i f i e rs
are un ique gag aLL occur r ing type iden t i f i e rs
are e i ther de f ined in L tL o r con ta ined in IM¢1

MU132: LVL := (LocaL_varL Lp) cor rec t ;<==e aLL var iabLe
names a re un ique gag aLL var iabLe types a re
e i ther con ta ined in I „+1 o r a re impL ic i t non-
moduLe types

MU133: LoL := (LocaL_opera t ionL Lp) cor rec t :¢==> For every
eLement oph of LoL i t hoLds:
case oph € Proc_head : (p roc_ id oph) and

(paramL oph) con ta in unique ident i f iers gag
V i € (Length ((paramL oph))) .
(t ype (f i r s t (res t H (paramL oph)))) e
(I „+1 u Cm_id} u {< type iden t i f i e r of L tL>})

gggg oph e Func_head : (func_ id oph) and
(paramL oph) and (resuLt oph) con ta in

November 1985

MU14:

MU141:

MU1411 :

opL

3 .2 .2 . ModPascaL 3 9

unique identifiers gag
V i e (Length((paramL oph))) .
(t ype (first (rest “ (paramL oph)))) e
(IMW1 v {m_id} u {< t ype identifier of LtL>})
fing (resuLt oph) € (I „+1 u {m_id} u
{< t ype identifier of LtL>})

: = (operationL m) correct :¢==> For each pubLic
and each LocaL operation heading of puL and LoL
there is exactLy one operation definition in opL
gng no other definition occurs gag aLL operation
definitions of opL are correct.

opd € opL i s correct :¢==$ Let 11 : = IH v

MU14111 :

Remarks: a)

b)

c)

({m_id‚ <LocaL type identifiers>}, {<operation
identifiers of puL and LoL>}), I2 : = 11 \
(ß , {<initiaL operation identifiers of puL>}),
Lv : = {<variabLe identifier of LvL> } :
fp : = {<formaL parameters of opd in puL>},
V1 :=LVU 'FPÄD_
case opd € Proc_spec : (body opd) is correct

with I, and V1
cage opd € Func_spec : (body opd) is correct

with I2 and V1
case opd € Init_spec : gg; 13 : = Il \

(¢, {<procedure and function identifiers in
puL>}) in

(body opd) correct with I3 and V1;
gng gLobaL variabLes of (body opd) are

contained in Lv

bd : = (body opd) correct with I and V :¢==> aLL
(free) type identifiers of bd are contained in
1+1 gag aLL (free) operation identifiers of
bd are contained in 1&2 gag aLL (free) variabLe
identifiers are contained in V gng bd is
bLock-correct.

(body opd) bLock-correct :¢==e (see EOLt 84a] for
the correctness of bLocks and remark c) beLow>

The moduLe identifier m_id is associated to the
embedding type definition domain Type_def (see
EOLt 84b], sec. 2 .1 .2) . Its correctness is
assumed.
The interface IN = (OB , OP) of a moduLe M is the
vaLid name space generated by aLL moduLe (OB) and
moduLe operation (OP) names of (transitiveLy) used
objects. It is aLso caLLed imported interface,
whereas the exported interface contains
additionaLLy the moduLe name and moduLe operation
names of the current moduLe M .
Contrary to the concrete ModPascaL syntax of [OLt
848] we here assume no impLicit parameters of
procedures, functions and initiaLs. Therefore

November 1985

40 3.21;, ModPascaL

(paramL oph) in MU12 seLects aLso the (first-
position) moduLe argument (see aLso sec. 3 .2 .2 . ,
CMZ in [O L t 848]).

d) The co r rec tness of bLocks is coincident with Pas-
c a L context—sensitive conditions for bLocks except

the restrictions that the set of g L o b a L variabLes

is restricted t o the set of LocaL variabLes of the
moduLe and that no nested moduLe type definitions
occur.

Let e e Enrich_def. Then its context-sensitive correctness is

defined as foLLows:

EN1 :

EN11:

EN12 :

EN121 :

EN13 :

9 correct :¢==$ (enr_id e) is unique in the environ-
ment of e and (useL e) is correct and (addL e)
is correct and (operationL e) is correct

uL : = (u s e L m) correct :¢==$ Every used m o d u L e o r

enrichment is visibLe and correct gag no cycLes
in the use-reLation occur ggg aLL identifiers
provided by the interface IE of at; used
objects are unique (possibLy through appropriate
prefixing).

at : = (addL e) correct :<==$ aLL operation
identifiers introduced in aL are distinct and
for aLL eLements ad of aL it hoLds:
(add_id ad) e {idl id e IE+1 A id is moduLe

name} ggg
(pubL i cL ad) is nonempty gag
(pubLicL ad) is correct in the environment of

(add_id ad)

(pubLicL ad) correct in (add_id ad) :c==>
(pubL i cL (add_id ad)) u (pubL i c ad) is correct
<see MU12>

oL : = (operationL e) is correct :¢==> For each
pubLic operation heading of each eLement ad of aL

there is exactLy one operation definition in oL

fing no other operation definition occurs fing
aLL operation definitions are correct

EN131: opd € oL is correct :¢==b Let mod : = (add_id ad)
where ad denotes the eLement of aL in which the
associated operation header is defined in
get I1 := IE u (9, {(operation identifiers
defined in aL>)), Lv : = {<LocaL variabLe
identifier of mod>}: fp : = {<formaL parameters of
opd in aL> } ‚ V; : = L V \: 'Fp in

case opd € Proc_spec gg Opd € Func_spec :
(body apd) is correct with I1 and V1

cgse opd € Init_spec : gg; I, : = I; \
(ß , {<procedure and function identifier in
(pubLicL ad)>}) in

November 1985

3 .2 .2 . ModPascaL 41

(body opd) i s cor rec t w i th I a and V1 ;
gag gLobaL va r i abLes of (body opd) a re

contained i n Lv .

EN1311 : (body opd) co r rec t with I and V :¢==$ (see MU1411>

Remarks : a) The interface IE = (OB , OP) o f an enr ichment E i s
} the vaL id name space genera ted by aLL moduLe (OB)

and moduLe ope ra t i on (OP) names o f (t r ans i t i veLy)
used ob jec t s . I t i s caLLed impor ted i n te r face
whereas the expo r ted i n te r face con ta ins
add i t i onaLLy t he moduLe ope ra t i on names o f t he
cu r ren t en r i chmen t E .

Let i e I ns t_de f . Then i t s context-sensitive cor rec tness i s
def ined as :

101 : i co r rec t :¢==$ (i ns t_ i d i) i s unique i n t he
env i ronment of i gag (useL i) co r rec t gag
(ob j_ac tL i) co r rec t gag (t ype_ac tL i) co r rec t
gag (op_ac tL i) co r rec t gag a t Leas t e i t he r
t he useL i s t o r some ac tuaL i za t i on L i s t a re
nonempty gag (useL i) and the ac tuaL i za t i ons
t oge the r desc r i be a s i gna tu re moph i sm (see
remark a) beLow)

1011 : UL := (useL i) co r rec t :¢==$ Every used i ns tan t i a t i on
i s v i s i bLe and co r rec t gag no cycLes i n t he
use - reLa t i on occu r gag t he un ion of aLL used
ob jec t s desc r i bes a s i gna tu re morph i sm.

1012 : OL := (ob j_ac tL i) co r rec t :<==# Fo r each eLemen t ob
o f oL i t hoLds :
(new ob) and (oLd ob) a re e i t he r bo th moduLe o r
en r i chmen t i den t i f i e r s gag (new ob) and
(oLd ob) a re v i s i bLe and co r rec t .

ID13 : t L : = (t ype_ac tL i) co r rec t :<==$ For eve ry eLemen t
t p o f t L i t hoLds :
(new ob) and (oLd ob) a re bo th moduLe iden t i f i e r
gag (new ob) and (oLd ob) a re occu r r i ng i n
en r i chmen ts t ha t cons t i t u t e an ob jec t ac tuaL i za -
t i on eLemen t o f oL .

ID14 : pL := (op_ac tL i) co r rec t : 222 Fo r eve ry eLemen t op
of pL i t hoLds :
(new op) and (oLd op) a re pubL i c ope ra t i on names
of ob jec t s (new ob) and (oLd ob) of some eLemen t
ob o f oL gag t he assoc ia ted f unc t i onaL i t i es
obey t he s i gna tu re morph i sm p rope r t y (see
remark a) beLow)

Remarks : a) The concep t of s i gna tu re morph ism i s very c ruc iaL

November 1985

42 3 .2 .2 . ModPascaL_

i n this con tex t . A f i r s t definition i s given be -
Low; whereas i t s Definition: Sidnatung_morphism
Le t 081 ; 082 be se t s o f object names (moduLes ‚
enrichments)‚ and OP; deno te t he se t o f pubL i c
opera t i ons o f ob jec t s i n 08 ; , i s { 1 ,2 } .
1) A mapping A l : DP; __.> OB i * (nonempty s t r i ngs

ove r 08 ;) i s caLLed a r i t y (i € (1 :2)) .
I f A (op)=ob lob , . . . obn : t hen ob l . . . obn -1 a re
caLLed t he sou rce o f op , and ob " t he t a rge t o f
op .

2) A t upLe (f yg) o f mapp ings f :OB1 >082:
g:OP1 >OP2 i s caLLed s ignature mocph ism, i f
Vop € OP1 with A1(op)=ob1 . . . obn .
A2 (g (op))= f (ob1) . . . f (obn)

The a r i t y o f an ope ra t i on is the s t r ing cons i s t i ng
of aLL pa rame te r t ype and vaLue type names . The
s igna tu re morph ism p rope r t y says : t ha t t he mapp ing
be tween ope ra t i on names p rese rves t he a r i t y and i s
compa t i bLe w i t h t he mapp ing be tween ob jec t s .

Le t i e I ns tan t i a te_ type . Then i t s con tex t - sens i t i ve co r rec t -
ness is def ined by :

1T1 : i co r rec t :¢==e (base_ type i) is a moduLe o r

I T11 : OL

enr i chmen t ob jec t and (ob jec tL i) is co r rec t
and (ob jec tL i) is appL i cabLe t o (base_ type i)

: = (ob jec tL i) co r rec t :¢==$ Eve ry eLemen t o f oL
is a y i s i bLe and co r rec t i ns tan t i a t i on ob jec t
ang Le t s i g deno te the un ion o f aLL i ns tan t i a t i on
ob jec t s of 0L in s i g i s a s igna tu re morph ism

I T12 : oL i s appL i cabLe t o (base_ type i) :¢==> aLL sou rce

Remarks : a)

b)

ob jec t s o f s i g a re con ta i ned i n t he h i e ra r chy
spanned by (base_ type i)

The i ns tan t i a te t ype i den t i f i e r i s assoc ia ted t o
t he embedd ing type de f i n i t i on doma in Type_def (see
[OL t SAD]; sec . 2 .1 .2 .) . I t s co r rec tness i s
assumed .
The appL i cab iL i t y i s de f ined s t ronger i n sec .
3 .7 .2 . o f [OL t 84b] (ope ra to r Comp?) such t ha t
h i e ra r ch i caL cond i t i ons a re respec ted . Fo r t he
purposes o f t h i s paper IT12 su f f i ces .

November 1985

3 .3 . Semantic Domains and Semantic Funct ions 43

3,3, Semantic Domains and Semantic Funct ions

The semantic domains introduced in this section are choosen
such that a concise and sufficient description is possibLe of
both Languages a s w e L L a s of the correctness concept of s e c -
tion 4. Therefore the number of domains i s increased compared
to the case of a singLe Language semantics. On the other hand,
there are domains that wiLL serve for the semantics definition
of ASPIK gag ModPascaL: and are aLso important in sec. 4 (9.9.
the domain ALg of strict aLgebras). This is intended since it
f a c i L i t a t e s t he comparison of ASPIK and ModPascaL structures.
The set of domains is based on EOLt 84b].

Section 3.3.2. deaLs with semantic functions. ALso there are
some additions and modifications compared to [OLt 84b] since
the treatment of ASPIK constructs requires different
functionaLities. DetaiLs of ModPascaL reLated semantic func-
tions are omitted here; detaiLs of the construction of the
centraL domain A L g are postponed (serving a s target domain for
a L L object definitions; s ee s e c . 4 . 2 .) .

ASPIK: as defined in [BV 83] and [BV 85] , was originaLLy sup-
pLied with a category-theoretic semantics. For the purpose of
this paper and our modified version of ASPIK the semantics has
been reformuLated in terms of a denotationaL semantics com-
patibLe with those of ModPascaL. This aLso infLuenced the set
of empLoyed domains.

3.3.1. Domains

' The foLLowing semantic domains are used in the semantic
cLauses of sec. 3.4.:

F L a t Domains:

Q BOO;
= (t r ue , faLse}: The booLean vaLues.

INT
= { . . . , -2‚ - 1 ‚ 0: 1 : 2: . . . } : The integer vaLues.

;.
= { i d l i d € { A , nun , 2 , D ' . . . I 9 } . . - A f i r ‘ S t (i d) € { D ' . . . I

9 } } : Identifiers are strings of Letters and digits, starting
with a Letter.

M a p
= I d ——> Id: serves as domain for mapping definitions by ASPIK

map-objects or ModPascaL instantiations.

A L g
= + {ALgEZJI E is signature}: The domain of aLgebras. It is

constructed as the direct sum (o r coaLesced) sum of signa-
ture dependant aLgebra domains. ALg is not "the set of
sets": but a set of aLL interesting strict aLgebras to
describe semantics of data types; see sec. 4.2.

November 1985

44 3 .3 .1 . Domains

Loc
= {an unbound domain of Locat ions} : I f Locat ions are inter-

pre ted as ma in memory addresses : Loc couLd be seen as in -
t eger subse t . Bu t every in te rpre ta t ion in to d is t ingu ishabLe
eLements wiLL work .

ALgQuaL
= (SPEC: MAIN : BOOLEAN: INTEGER: REAL: CHAR: SCALAR: SUBRANGE:

ARRAY: RECORD: F ILE : SET: POINTER: MODULE: ENRICHMENT} : The
aLgebra quaL i f i ca t ions ind ica te the bas ing s t ruc ture fo r an
aLgebra . MAIN re fe rs to the ma in p rogram aLgebra .

ObQuaL
= {CTASEL: MODSEL: SORT: REPSEL : ENRSEL : REPOB: LAB : CONST:

VAR: PROC: FUNC: IN IT : INST} + ALgQuaL: The ob jec t quaL i f i -
ca t ions ind ica te e i ther the bas ing ModPascaL fea tu re o f an
i tem or the bas ing ModPascaL type .

VaLQuaL
= {C l C = TOItAJ+1 for A € ALg} : ALL carr iersets of interest

fo r aLgebras in ALg . VaLouaL may be seen as a f ac to r i za t ion
of ALg (TOI = t ype of in te res t ; see EOLt 84bJ) .

Ar i ty
= (Id* x Id): provides ar i t ies (func t ionaL i t i es) fo r ASPIK

opera t ions .

ArDes
= (Id ——> Ar i ty) : t echn icaL ; combines operat ion and a r i t y .

SigMorph
= (Map x Map x ArDes) : S ignature morphisms. The f i rst two com-

ponents conta in the ob jec t and opera t ion mapping resp . The
th i rd component i s a se t of a r i t y assoc ia t ions . An exac t
de f in i t ion i s g iven in sec . 4 .3 .4 .

AQnseOps
= {c ta? : use? : sor ts? : p_op_id?: p_op_ar?: cons t r? : aux_ id? :

aux_op_ar? : ca r_de f? : pr_op_id?: pr_op_ar?: cons_de f? :
sop_de f?} : The se t of predef ined ident i f ie rs fo r syntac t ic
opera to rs on spec i f i c t ions . They a re connec ted to the no t ion
of e ta -env i ronment (see def in i t ion 3 .4 .1 . -1) .

MCLaunps
= {maLg?: muse?: p_proc_id?: p_func_id?: p_init_id?:

L_ type_ id? : L_proc_ id?: L_func_id?: L_var_ id?: p_proc_ar?:
p_func_ar?: p_ in i t_ar?: L_proc_ar? : L_ func_ar?: L_var_ type?:
map_def?} : The se t of predef ined ident i f ie rs fo r syn tac t ic
opera to rs on moduLe type de f in i t ions . They a re connec ted to
the no t ion of mod-env i ronment (see de f in i t ion 3 .4 .2 . -1) .

ECLauseOps _
= {enr? : euse?: add_ id?: add_proc_id?: add_func_id?:

add_in i t_ id?: add_proc_ar?: add_ini t_ar?: add_func_ar?:
copgdef?) : The se t of predef ined ident i f i e rs fo r syn tac t ic
opera to rs on enr ichment de f in i t ions . They are connec ted to

November 1985

3 .3 .1 . Domains 45

the notion of enr-environment (see definition 3 .4 .2 . -2) .

RCLauseOps
= {rob?: ruse?: connect?: operations?: rf_ar?: rf_def?}: The

set of predefined identifiers for syntactic operators on
rep-objects (s e e s e c . 4 .3 .) . They are connected t o the no-
tion of rep-environment (see definition 4 .3 .4 . -1) .

Not necessariLy fLat domains:

Store
= (L o c ——> VaL): Links Locations and v a L u e s .

Env
= (I d ——> (Loc x ObOuaL x VaLGuaL)): Each identifier id 6 I d

is connected to a tripLe. The second and third components
describe properties of i d .

State
= Env x Store : Characterization of a state as tupLe. See aLso

the memory modeL in sec. 3 .3 .3 .

Trans
= (State ——> State): State transformation that are induced by

programming Language constructs wiLL be described with T 6
Trans.

ETrans
= (State ——> (State x VaL)): AnaLogousLy Trans: but with

v a L u e s o u t of V a L .

OpDen
= + (VaLQuaL“ ——e VaLQuaLm): Function between n-ary and

n : m € N

m-ary cartesian products of VaLQuaL. A generaLization of
functions of aLgebras of ALg.

: D_BOOL + D_INT + Id + ALg + VaLQuaL + OpDen
Des
(I d x OpDen) : technicaL; combines operation and denotation.

F
”

D_BOOL = (true: faLse}
D__INT : (. . . : ‘ 1 : U : 1 : . . . }
I d : { i d l i d € { A I . . . : Z: O I ...: 9}+ A fiPSt(id) €

{ 0 : . . . : 9}}
Map = I d ——> I d
ALg = + {ALgEZJ I Z is signature}
Loc = {unbound domains o f Locations}
ALgQuaL = (SPEC: MAIN: BOOLEAN: INTEGER: REAL: CHAR:

SCALAR: SUBRANGE: ARRAY: RECORD: FILE: SET:
POINTER: MODULE: ENRICHMENT}

ObQuaL ' ALgQuaL + {CTASEL: MODSEL: REPSEL: ENRSEL: SORT:
REPOB: LAB: PROC: FUNC: VAR: INIT}

November 1985

46 3 .3 .2 . Func t i ons

VaLQuaL = {c I c = T01<A>+1 for A e ALg}
Va L = D_BOOL + D_INT + I d + A L g + VaLouaL + OpDen
Store = Loc ——> V a L
Env = I d ——> (Loc x ObQuaL x VaLOuaL)
State = Env x Store
Trans = S t a t e ——> State
ETrans = Sta te ——> (S t a t e x V a L)
OpDen = + {VaL “ ——> VaLml n; m e N}
Arity = (Id* x Id)
ArDes = (Id ——> Arity)
ACLauseOps =
MCLauseOps = (a s above)
ECLauseOps =
RCLauseOps =

I n the foLLowing we assume that the syntactic domain I d and
the semantic domain I d are identicaL.

3 .3 .2 . Functions

The syntactic and semantic domains are Linked by the foLLowing
functions, that are based on the overaLL domain Constr:

Constr = Spec + Sp_head + Op + . . . +
ModuLe_ type + PubL i c + ...

(i.e. Constr i s the coaLesced sum of aLL syntactic domains
used in sec. 3 .1 . for ASPIK and ModPascaL; in the ModPascaL
case: aLL domains of EOLt 84b] are contained in Constr.
AmbiguousLy denoted domains D are assumed t o be tagged appro-

priateLy (D A , D„)) .

c € Cons t r :

If no exception for c is Listed beLow: the semantic function
M: Cons t r ——> State ——> State

is appL i cabLe .

M Links an initiaL state prior execution of a Language con-
struct to a state after execution of it. M is defined by the
semantic cLauses of sec. 3 .4 . which are eLaborated to an ap-
propriate LeveL of d e t a i L .

Notation: ELements of Constr wiLL be encLosed in doubLe
brackets E and I. ELements (g. e) of State wiLL be
suppLied to M with juxtaposed components.
ExampLe: MECI§6

C e Expr:

(b) E: Expr -—> State ——> (State x VaL)
and MEcflge =? EEcIQs

c e (Stand type v Stand type gen):

(c) Mt: (Stand_type v Stand_type_gen) ——> State ——> (ObQuaL x
VaLGuaL x ALg)

November 1985

3 .3 .2 . Funct ions 47

and MEcs =9 MtEcflgs

C e ModuLe_te:

(d) Mm: ModuLe_ type ——> State
-——> ((ObQuaL x VaLQuaL x ALg) x State)

and MEc lgs =9 MmEcflge

C e Enr ich de f :

(e) Me: Enrich_def —w> S ta te ——> State
and MEcflfis =9 MeEcflgs

C € Instantiate t ype :

(f) M i : Ins tan t ia te_ type ——> Sta te ——> ((ObouaL x VaLQuaL x
ALg) x State)
and MEclgs =? M iEc lgs

In the semantic cLauses for ModPascaL aLso the foLLowing
aux iL ia ry func t ions occur :

newLoc
newLoc gets a cur rentLy unused Locat ion of an environment.

newLoc: Env ——> Loc
newLoc(§) := 1 Loc . V id € I d . gt id)+1 # Loc

searchdef
searchde f Looks fo r the aLgebra to which an opera t ion i s asso -
ciated; i t re tu rns the aLgebra iden t i f i e r .

searchde f : Id ——> Sta te ——> Id
searchde f (op id)§s :=

Le t id := L id1 € I d . § (id1)¢2 € ALgQuaL and
Let (C , F) := 6 (§ (id1)§1) in

opid e opnames(F) in
i d

(l re turns LN i f no unique id1 ex is ts wi th the required
proper ty)

s tandard
i nd ica tes whether an ident i f ier denotes a s tandard ob jec t , and
prov ides i t s in i t i aL i za t ion vaLue in the posi t ive case .

s tandard : Id ——> (D_BooL x VaL)
s tandard< idJ :=

ii i d = BOOL ——> (t rue : faLse) eLse
ii i d = INT ——> (t r ue : 0) eLse

eLse (faLse : L)

November 1985

48 3 .3 .3 . Memory ModeL

0!" de

Though we a re considering an appL i ca t i ve Language : f o r r easons
of compa t i b i L i t y an env i r onmen taL v iew i s t aken i n the f o rmu-
La t i on o f seman t i caL cLauses f o r ASP IK . Tha t means t ha t t he
decLa ra t i on o f a spec o r t he evaLua t i on of a t e rm takes pLace
in a given argument state; t he state i s mod i f i ed i n t he case
o f decLa ra t i on . Th is v iew i s no a -p r i o r i v i oLa t i on o f t he
requ i remen ts f o r appL i ca t i ve PLs ; as g i ven i n sec . 2 .1 . I f t he
r uLes a re respec ted - as we do - ‚ t hen t he s ta te -o r i en ted
modeL shows t he same behav iour as e .g . any pu reLy f unc t i onaL
modeL t ha t i n a d i f fe ren t way keeps t r ack o f i t s v i s i bLe
ob jec t s .

Ou r s ta tes f oLLow a two -LeveL memory modeL (t ha t was p r ima r i Ly
used f o r p rocedu raL PLs : bu t f i t s aLso f o r appL i ca t i ve PLs) :
The f i r s t LeveL , represented by t he domain Env o f env i ron-
men ts , L inks iden t i f i e rs t o a vec to r o f vaLues . One of t hem i s
a Loca t i on o f a (v i r t uaL) memory , i n wh ich an assoc ia ted vaLue
i s s to red . Th is r ep resen ts t he second LeveL o f t he memory
modeL , and i t i s f o rmed by t he doma in S to re .

Using g € Env: s 6 Sta te we have for id é I d :

i d ___—___") (L o c a t i o n , I I I)

s

(vaLue)

Fo r moduLes /en r i chmen ts and spec ob jec t s we have

obq := ! (i dJÖZ € (MODULE: ENRICHMENT: SPEC}

i d -———————9 (Loca t i on , obq: V e VaLQuaL)

AeALg

(No te the ex tens ion of the memory modeL i n sec . 4 .3 .4 .) .

3 .5 . Seman t i c CLauses

Be fo re we s ta te the mos t impor tan t seman t i caL equa t i ons f o r
ASPIK and ModPascaL ; we i n t r oduce some no ta t i onaL conven t i ons
f r equen tLy occu r r i ng La te ron .

No ta t ions

N deno tes t he se t o f na tu raL numbers .

For a na tu raL number n : (n) deno tes t he se t { 1 , . . . : n } : and

For vec to rs v = (v1 ; . . . , vn) ; (V1 : . . . , v„)+i o r v i i denotes
the i - t h component v ; o f v .

November 1985

3 .4 .1 . ASPIK 49

For a se t 3 , @(s) denotes the power se t of s .

ä denotes the unique existentiaL quant i f icat ion.

For a mapping m: A ——> B def ined by m: ; (A x B) : the subs t i tu -
t ion mEa ** a1] denotes (m \ ((a : m(a)) }) u ((a , a1) } .

Four operators a re used fo r funct ionaL abs t rac t ion :
- Ax . t e rm: Bounds f ree occur rences of x in t e rm. This

abs t rac t ion i s equ ivaLent to a def in i t ion ' F (x) =
t e rm ' o f a func t ion F .

- Lx . cond :
Bounds x in cond and quaLi f ies the x as unique to
fuLLf iLL cond. EquivaLent to : ä x . (cond =
t rue) . I f no un ique x ex is ts , L evaLua tes to L .

ExampLe: n := L i . (i +1=5) =? (n=4)
- f i x f . t e rm:

Bounds f ree occur rences o f f i n t e rm and denotes
the Leas t f i xpo in t o f the func t ionaL equa t ion F =
termEFJ where termEFJ is a t e rm w i th f ree
occur rences o f F .
ExampLe: f i x f . (An . ii n = 0 than 1 eL§e

n* f (n -1))
denotes the Leas t f i xpo in t of the func t ionaL
equat ion F (n) = ii n = 0 then 1 eL§e n *F (n -1) ;
tha t i s the s tandard facuLty func t ion .

- n x . cond :
bounds x in cond and quaL i f i es x as one poss ibLe
vaLue tha t sa t i s f i es cond . Equ ivaLent to : 3 x .
(cond = t rue) . I f no vaLue ex is ts tha t sa t i s f i es
cond: n evaLuates to L .

ExampLe: n := n x . (x *x = 9) => n € (3 : - 3 })

I f i ndexed i t ems occur themseLves in index pos i t ions : the in-
d ices a re jux taposed in paren thes is .
ExampLe: xn _) Y t) _) ZYt t) :

Xi } > Y)’.(I. a t i)

3 .4 .1 . ASPIK

As ment ioned above , th is sec t ion i s an abbreviated and con-
densed re fo rmuLat ion o f the ca tegory - theore t i c semant ics of
ASPIK as g iven in [BV 85] . For reasons descr ibed in sec . 4 .1 .
we do no t t rea t the semant ics of ax iomat ic spec i f i ca t ions ; in -
s tead o f we p resent a semant ics o f aLgor i thmic spec ob jec ts in
fuLL de ta iL wh ich i s no t equ ivaLent to EBV 85] bu t f i t s in to
our purposes . To adapt i t to the denota t ionaL env i ronment ;
some add i t ionaL Opera to rs and fea tu res have to be incLuded .
They cover mostLy the invoLva t ion of spec i f i c syn tac t ic in fo r -
mat ion in s ta tes and the p rocess ing o f th is in fo rmat ion in the
computa t ion o f spec i f i ca t ion semant ics .

The f i rs t def in i t ion of th is k ind“ deaLs wi th a
character i za t ion o f environments g € Env tha t provide
predef ined ident i f i e rs tha t coLLec t in format ion about syn-

November 1985

50 3.4.1. ASPIK.

tactic st ructures of specifications. This information must be
gathered because our appLication of this semantics in sec. 4
must have access to the syntactic items that generated the

specific meaning. This i s simiLar to famiLiar issues of im—
perative programming Languages as type checking or scoping,
which - if modeLLed in a denotationaL setting — wouLd require
an anaLogous proceeding. I n generaL: it wouLd suffice t o con-
sider onLy the overaLL meaning of a spec object 8 (a n
aLgebra): and incorporate this in semantic cLauses invoLving
S.

Syntactic information is stored in speciaL stats of environ-
ments that contain for a L L visibLe spec objects reLevant

vaLues of specific cLauses.

3.4.1.-1 D e f . Iota-environment]

Let ACLauseOps e Id with
ACLauseOps = { c t a ? ‚ use? ‚ sorts?‚ p_op_id?‚ pr_op_id?‚ con -

str?‚ aux_id?‚ p_op_ar? ‚ aux „op_ar? ‚ p r_op_ar? ‚
ca r_de f? ‚ cons_de f? ‚ op_de f? } .

Then g € Env is caLLed eta-environment, if for x € ACLauseOps
a) §(x) # L, and
b) § (x) t 2 = CTASEL n

Remark: Associated to every eLement e L of ACLauseOps is a

(ambiguousLy denoted) speciaL function eL that evaLu-
ates to syntactic information if appLied to specifi-

cation and operation identifiers:

a t = ct§?:
Associated operation: cta? : Id -—> State ——> D_BOOL
§(cta?) = (Lac , CTASEL: L)

6(Loc) = {(id. tv) | id e Id. tv e D_BOOL}
cta?(id)§s : = 6(§(cta?)¢1) (id)

9L € {ugsze 59PtfilA_E_2B_iQlL_2£_2R_iL_£QD££ElL_£EÄ_lQll=
Associated operation: eL : Id ——> State ——> IdL
:(eL) = (Lee, CTASEL: L

)

6 (L O C) = { (i d l (i d l l . . . : i d „)) l id: i d : € I d :

i e (n); n e N}
eL(id)§6 := s(§(eL)+1) (id)

gt a {b op er?: aux op_ar?: pr op e r? } :
Associated operation: at: Id ——> Id ——> State ——> Arity

§(eL) = (Loc, CTASEL, L
)

6(Loc) = {(id‚ ad) | id 6 Id, ad e ArDes}
eL(id1,id2)§6 := 6(§(eL)¢1)(id1)(id2)>

eL e { can_de f? ‚ congrdef?, op def?}:
Associated operation: eL : Id ——> State ——> Op_defL
§(eL) = (Loc, CTASEL: L)
6 (LOC) = { (i d l (Opd l l . . . : Opd„)) l id € I d ! O p d ; € Op_d9f ‚

i e (n) , n e N)
eL(id)§s : = 6(§(eL)+1) (id)

I

November 1985

3 -4 .1 . ASPIK 51

In a given state (g , s), s(§(op)¢1) for op e ACLauseOps
denotes a functionaL reLation that, appLied to a specification
identifier, evaLuates to syntactic information about the
specification (for iLLustration, see definition 3 .4 .1 . -2 be-
L o w) .

Notation Let R := C(x ‚ y) l x 6 X: y e Y} denote a LefttotaL:
right unique reLation on (X x Y). Then R(x) denotes
the appLication of R to x 6 X and R(x) = y :¢==>
(x ‚ y) € R. If R ; (X x Y x 2): then R(x)(y) = z ¢==>
(X I Y I Z) € R

The next operator is technicaL. By appLication of EXT, the
functionaL reLation of an eLement of ACLauseOps is extended
(i . e . source and target of the associated operation are
enLarged).

3 -4 -1 - ‘ 2 Def . [EXT]

Let CLauseVaL be defined a s above.
Let (grs) 6 State with g eta-environment. Let

EXT: I d ——> I d —-> CLauseVaL ——> State ——> State

with
EXT (id1:id2‚cv)g6 :=

ii 393 (id1 € ACLauseOps) gngn L gggg
(cgse id1 = cta?:

ii 33; (cv € D_BOOL) gngn L
gggg id1 € { use? ‚ sorts?‚ p_op_id?‚ cons t r? ‚ aux_id?‚

pr_op_id?}:
ii ng; (cv € I dL) then L eLse
gg; 61:: 6[§(idl)¢1 ** 6<€<id1)+1)u{(id2‚cv)}] in

case id1 € {p_op_ar? ‚ aux_op_ar? ‚ pr_op_ar?}:
ii gg; (cv € ArDesL) then L eLse)

gg; 61 : = 6E§(id1)¢1 ** s(g(id1)+1) u (Cid2}x{?(cv)) in
case id1 e (car_def?, cons_def?, op_def?}:

ii 33; (cv € OpDesL) then L eLse
Let 5 1 := s[§(id1)¢1 ** s(g(id1)+1) u ({idz}x{?(cv))
l n
(E161)

u

Remarks a) v denotes the List transformation (into sets) of
s e c . 3 .1 .

b) EXT is appLied in the semantic cLauses beLow during
extraction of syntactic structures. Thereafter it
is possibLe to refer to these structures via the
s t a t e .

If for a given S € Spec aLL ACLauseOps eLements shouLd be
updated in a given state; the operator EXTEND is used:

3 .5 .] . - 3 D e f . [EXTEND]
Let s € Spec, (g , s) € State with 5 eta-environment.
Then the operator

November 1985

52 3 .4 .1 . ASPIK

EXTEND: Spec ——> State ——> State
is defined as

EXTEND(s)§e : =
gg; s_id := (spec_id (sp_head s)),

(u l : . . . , u “) (u s e (sp_head s)) :
(s l , . . . , sa) : (sorts (sp_head s)),
(01; . . . , ob) (ops (sp_head s)),
(a1, ...: ac) (aux (sp_body s)) ;
(c 1 , . . . , c d) : (cons (sp_body s)) ,
(p1 , . . . : pe) . (priv (sp_body s)) :
(aud1 ‚ . . . , audc) (def_aux (sp_body s)),
(cadl, . . . : cada) = (def_car (sp_body s)) :
(c o d 1 ‚ . . . , c o d a) = (def_cons (sp_body s)) ,
(opdlp . . . ; opdk) = (de f_ops (sp_body s)) in

Les (gl, 61) EXT(cta?, s_id, true)§6:
(gg, 62) : EXT(use?, s_id, (u l , . . . ; u„))£161 ‚

EXT(SOPtS? r S_idl (8 1 : . . . : s„))5 ‚62 ‚
EXT<p_op_id?‚ s_id‚ (o id ; l a i e (b) .

(op_id pi) = Cidil i € (b)))g363 ‚
EXT(p_op_a r? ‚ s_id‚

(ops (sp_head s)))g464
(g„‚ 66) := EXT<pr_op_id?‚ s_id‚ (oid; l Si e (e) .

(op_id pi) = oidi))£565‚
EXT(p r_0p_a r? ‚ s_id‚

(priv(sp_body S)))§6662
(§., 63) := EXT(aux_id?‚ s_id‚ (oidil 5 i e (c) .

(op_id at) = oid;))§767,
EXT(aux_op_ar?, s_id,

(aux (sp_body s)))§868 : —;n

(g 3 l 6 3) :

(€ *) 61,) :

(g s ! 6 5)

(g ? ! 6 7) :

(g g ! 6 9) :

«!=—g; (g o) 6 °) : = (g g ! 6 9) ‚if-„u

kg; (: 1 : 6 1) = E X T (c o n s t r ? z S_idr (C i , . . . , Cd))g06° l
(ga, 62) : = EXT(aux_def?, s_id, (aud i : . . . , audc))g161 ‚
(: 3 , 63) : = EXT(car_def?, s_id, (cadl, . . . , cada))g ‚ 62 ‚
(54, 54) = EXT(cons_de f? ‚ s_id‚

(COdll . . . : codd))g363 ‚
(g „ 65) : EXT(op_de f? ‚ s_id‚ (opd1 ‚ . . . , opd„))g‘s4

in (g g) 6 5)

Remark: EXTEND produces a state in which aLL necessary syn-
tactic information about a spec is stored in sLots
defined by eLements of A C L a u s e O p s .

:.g,1.-5 Def. [I F I]
Let 8 denote a set and BOOL = (true, faLse} denote the booLean
v a L u e s . Then, f o r a function F : S ——> BOOL: the extension [F l
of F is defined a s

‚FI == { S I 5 € S gag F(s) = true}. n

The next definition introduces the important notion of a
Herbrand universe in terms of cta—environments. Herbrand
universes are sets of aLL weLL-formed terms buiLt from given
operation symboLs and arities.

November 1985

5.4.1. ASPIK 53

}4Au14:i_22£- EH3
Let (§:e) € State with ; eta-environment.
Let id € I d with g(id)+2 = SPEC: (s1: . . . : s.) : = sorts?(id)§s
Let (c1: . . . : c") : = constr?(id)§s
Let (5;; ... s i m t i) ’ S a f m t a > + 1 ‚) : = p_op_ar?(id: c;)§s: i €
(n) m ; € N

Then the flgrbrand:gniver§e(s) H,(1,: . . . : H „ „ of id is (are)
defined by:

For 5 € (a) : i € (n)
H5(3 , is the smaLLest set with
i) i n i m i z o g m s i t m t i y + 1 r = s i m c i e H S t J)

i i) gi h l € H s c i l w ’ " " hmci) € H : t i m t i 1) Eng s i t m t i) + 1) =
5 3

. m C i (h 1 l I I I , hmt i l) € H 5 3

i i l) LSIJ) € H5t3)

The operator
H : Id -—> State ——> VaLL

is defined as
H(id)§6 : = (H 5 t 1 , : . . . : HSIOI)

where (§:s) € State: g eta-environment and
a : = Length(sorts?(id)§6). n

Remarks a) The H image (a n eLement of VaLL) is aLways a
sequence of sets. The case of an empty set as
sequence eLement i s excLuded by the con tex t sensi-
tive conditions imposed on specification objects
(see sec. 3 .2 .1 . : SP1221 : SP124) .

b) The (canconicaL) Herbrand universe is taken as
(primary) semantics of sorts of specifications
(' c a n o n i c a L t e rm aLgebra'); see SEM_1 b e L o w .

We are now ready to s ta te the semantics of an ASPIK specifi-
cation.

Sem_1

MES: Speclge : =
(1) 333 s_id : = (spec_i

(u l : . . . : u ")
(31 ’ en . - I S ,)

(0 1 ’ . . . : O b)

(sp_head 3)):
(use (sp_head s)):
(sorts (sp_head s)):
(ops (sp_head 5)):

(a 1 : . . . : ac) (aux (sp_body 5)):
(c 1 : . . . : c d) : (cons (sp_body s)) :
(p l : . . . : pe) : (priv (sp_body s)):
(audi, . . . : aud) (def_aux (sp_body s)):
(cadl: . . . : cada) (def_car (sp_body s)):
(c o d l : . . . : c o d a) : (def_cons (sp_body s)) :
(opdl: . . . : opdk) (def_ops (sp_body s)) in

H
I
II
II
I

I
I||

9
.

(2) Let (gl, 61) : = EXTEND(s)§e AM

(3) kg; U ; : = EEUiIESI 1 € (n) Än
Let U : = U U 3 , 1 € (n) in

November 1985

54 ;LA.1. ASPIK

(4) gg; (co ; 6 .) : = (g„ 61) : Loc ; := nowLocC§ i -1) :

(5)

(6)

(7)

(8)

(9)

(10)

L

£2
?

3 :
C

" 0 (+ 5
55

-;
8%

r 0 fl %
&

&
r

0
0

d- i
E

§g(51) := (Loc i : SORTI L) : 6 ' := 61 -1 [LOC1 ** L] :

i e (a) 39
:= (g„ 6 .) : Loc ; := newLoc(§ ;_1) ,

p id cad i)) := (Loc i : FUNCI L) :

{_ IELOC; ** L] : 1 € (a) in
‚ = (5 ° , 6 °) : Loc i := newLoc(§ i_1) :

p_id 0a)) := (Loc i , FUNCI L) :

61 -1 [LOCE ** L] : i € (b) in
:= (gb , s b) , Loc ; := newLoc(§ ;_1) :

§ ; ((op_ id a i)) := (Loc i , FUNCI L) ,

6 ; :== 6;-1ELOC; 64 L] ; 1 € (c) in
(go : 60) := (fig: Sc) : LOC; := hewLoc(§ ;_1) ,

§ ; ((op_ id p ;)) := (Loc i : FUNCI L) :

6 ; := 3 ;_1 [LOC; ** L] : 1 € (9) an
(go ! 60) := (ge l 6e) an
(H1 : . . . : H.) := H (s _ i d) g ° 6 ° an
(91 : 31) := (go ! 6 ° [Eo (81)+1 H H1]! . . .

§o(5a)W1 «* Ha] _én
(A l l ana l Ac) := f i x f l , . . . , f c _ Äfß .

gg; o id ; := (op_id aud i) , i e (c) g3
(EE(op_body aud1)fl§EE§(oid;)¢1 +4 f1] :

II
O

‘9
II

O
‘“

Ic
m

'

(EE(op_body audc) l fä t f (o idc)+1 ** f c l) in
(: 1 , 61) := (go) 6 ° [§o ((0p_ id auch))vb ‘ l H Al l Inu - I

§° ((op_ id audc))w1 ** Aa l) an
(C1 : . . . : C.) := f i x f l : . . . : f , . AQE .

gg; C id ; := (op_id C8d1): i € (a)
such that Cid ; corresponds to s ; in

(E I (op_body cad1)]EE[f (c id i)+1 ** f 1] ,

(EE(op_body cad .)] §§ [§ (c i da)+1 *4 f a l) in
(g„ s ,) := (g1 , 61E§1((0p_id cad1))&1 +4 C1 : . . . :

§1 ((op_ id cad))W1 ** ca],
§1 (51)Vb1 H (IO ; U { 'LS I I ‚)) , unn l '

§1<s .>+1 «H (c . u {L„ (. J }) in I
(Co„ ...: Cod) := f ix f l : . . . : fg . REG .

gg; o id ; := (op_id cod) , i e (d) in
(EE(op_body cod1)]§§Ef (o id ;)+1 ** f ,] :

(EE(0p_body coda)]EE[E(oida)+1 ** fdJ) ;D
(K : ! 63) := (gg , 62£§3 ((0p_ id C0d1))+1 H Col : . . .

g ‚ ((op_ id codd))w1 6* Coa l) in
(01 ’ Inn - I OK) := f i 1 : . . . , f x ‚AES .

gg; o id i := (op_id opd-) , i e (k) in
(EE(op_body opd,) I§§[E(oid;)¢1 +4 f1] :

(E[(op_body opdn)]§§[§(oidx)&1 ** fKJ) in
(g t . ! 6,1.) := (g3 l 6 3 E § 3 ((0 p _ i d Opd1))+1 H 01 ’ coa l

§3 ((op_ id opd „))+1 ** O„]) ;n
C := {64 (g4 (51)+1) I . . . ! 64 (g4 (sa)+1) }

F := {A1} - . . . I Act C1 : . . . : Car C01 : . . . : COdI I I I
01 , . . . : OK} an

Loc := nowLoc tg) ,
g , := ! [Sp_ id ** (LOCI SPEC: L)] :

65 := 64ELOC ** (C I F) u U] in

November 1985

[__ g„ s ,)

Remarks : a) No

3 .4 .1 . ASPIK 55

contex t -sens i t i ve cor rec tness condi t ions are
considered (see sec . 3 .2 .) . ALso type checking and
scoping are d is regarded .

b) The semant ics of a spec i f i ca t ion i s cons t ruc ted as
foLLows:
(1)

(2)

(3)

(4)

(5)

(6)

(7)

November 1985

Ident i f iers fo r important components are in-
t roduced by abs t rac t syntax seLec t ions .
Charac te r is t i c predef ined (Opera t ion) ident i -
f i e rs of a c ta -env i ronment are suppL ied w i th
syntac t icaL in fo rmat ion . This wiLL be used in
(5) where the opera to r H i s appL ied to gener -
a te Herbrand un iverses fo r the new sor ts .
The semant ic aLgebra der ived f rom aLL used
ob jec ts i s genera ted . The case o f used
spec te rm ob jec ts i s aLso covered aL though La -
te r onLy spec te rm- f ree spec i f ica t ions wiLL be
cons idered (see sec . 4 .1 .) . The aLgebra U i s
weLL-de f ined , s ince in the case of cons t ruc -
t i ve h ie ra rch ies every used ob jec t un iqueLy
corresponds to a s t r i c t aLgebra A € ALg: and
the un ion of aLgebras then cons is ts of se t
union (o f ca r r ie r and opera t ion se ts) . S ince
aLL ident i fers a re gLobaLLy unique (1 .9 . in
g) . unwanted iden t i f i ca t ions of car r ie r ‘ se ts
by the un ion p rocess can be inh ib i ted by an
appropr ia te tagging of eLements w i th the
car r ie r se t iden t i f i e r . (For s t r i c t aLgebras
and aLgebra un ion , see aLso [OLt 84b] : sec .
2 .2 .1 .) . .
As a resuLt of the ASPIK-spec i f i c separa t ion
of sor t /opera t ion ident i f i e r in t roduct ion
(spec i f i ca t ion header) and sor t /opera t ion
def in i t ion (spec i f i ca t ion ' body) , a t f i rst
sLots are es tabL ished in the environment tha t
conta in minimaL in fo rmat ion about each ident i -
f i e r .
The Herbrand un iverse assoc ia ted to each newLy
in t roduced sor t i s genera ted by appL ica t ion of
the opera to r H (see def in i t ion 3 .4 .1 . - 5) and
ass igned as p reL iminary meaning to the sor t
iden t i f i e r .
The semant ics of the aux iL ia ry operat ions i s
generated by paraLLeL f ixpoint computation.
Every operat ion body is funct ionaL (no s ta te
change 3) such tha t E i s appL icabLe . The s ta te
(E IE) i s assumed to conta in informat ion about
actuaL parameter caLLing and passing (ASPIK
paramete rs a re caLLed and passed by vaLue) .
The resuLt ing monotonous s t r i c t funct ions are
bound to the aux iL ia ry opera t ion iden t i f i e rs .
AnaLogousLy to (6) , bu t fo r the carr ier
pred ica tes . ALSO: the i r ex tens ion - a res t r i c -
t ion of the Herbrand un iverse - i s bound to

56 3 .4 .1 . ASPIK

associated sort ident i f i e rs .
(8) AnaLogousLy to (6) , bu t fo r cons t ruc tor oper -

a t ions .
(9) AnaLogousLy to (6) : bu t fo r aLL remaining

opera t ions (= non-aux iL ia ry ’ non-car r i e r
pred ica tes , non-cons t ruc tors) .

(10) Since E maps opera t ion bodies to s t r i c t func -
t i o n s : aLL opera t ions and sor ts can be t i ed
toge ther in a s t r i c t aLgebra tha t aLso con-
ta ins U . This ob jec t i s ass igned as semant ics
to the spec i f i ca t ion iden t i f i e r .

The evaLuat ion of opera t ion bodies by E i s def ined in Sem_2.
We assume:
Let s e Spec .
Let op denote an operat ion of s (pubL ic : pr iva te , aux iL ia ry o r

car r i e r) w i th op := uo (op_ id : Id ; params: IdL : op_body:
Op_body) .

Let (g : e) 6 S ta te such that necessary contex t in fo rmat ion fo r
op is avaiLabLe (i . e . pos i t ions (6) , (7) : (8), (9) in
Sem_1) .

Let opb := (op_body op) .

Sem_2: opera t ion bodies

EEopEs :=
case opb € Term : gg (termL opb) = L then s (§ (op_ id opW1)

eLse gg; (t 1 , . . . : tn) := (termL opb) in
6 (§ (op_ id opb)¢1) (EEt13§6 , . . . , E [t „ läe)

gggg opb 6 Case : $$$ cv := (case_var opb) ,
(c l : . . . : on) := (caseL opb) ,
t i : = (t ag c i) : ex ; := (ex i t cg) ,

i € (n) in
333 cvaL := s (g (cv)+1) in

ii (ä i e (n) . t ; matches cvaL)
than EEex l ' Igs

anfing ex l ' i s ex ; w i th
subs t i tu t ions in t roduced by
the match ing

eLse ii (ä i € (n) .
t ; =- 'OTHERHISE ')

the“ EEQX [356
eLse L

case opb e Cond : ii EE(if opb)3§e
£333 EE(then opb)3§6
eLse EECeLse op I§s

cgse opb e Let : g3; L id := (Le t_var opb) :
Lt := (Le t_ te rm opb) :
bdy := (Let_body opb) in

kg; Loc := newLoc tQ) :
g„ : [L id H (LOCI VAR: L)] :

= sELoc «a EELt lge] in51

Embdyfig 1 61

November 1985

3 .4 .2 . ModPascaL 5 7

Remacks: a) The matching process occurring in the second case
is the usuaL matching resuLting in ground terms
(note, tha t carriers consists of Herbrand
universes, and variabLe vaLues are terms of these
carriers).

b) The refinement of Term1 is omitted.

By this definition the semantics of a specification is com-
puted as a unique aLgebra. It is sometimes caLLed the canoni-
c a L term a L g e b r a .

Concerning the semantics of the remaining ASPIK objects (map-
objects, imp-objects, and spec_terms) we proceed a s foLLows:

we skip imp-objects because they are not reLevant for this
paper and current Ly under research. Spec_terms i n the generaL
case possess a compLex semantics that incLudes a 'normaL-form-
computation' and impLicit object generations. They represent
the parameterization concept of ASPIK, in which specifiCations
with 'parameters' can be actuaLized (i.e. object
parameterization). But it shouLd be noted that no new kind of
specification is generated by specterms: if aLL spec-objects
invoLved in a specterm are describabLe by Sem_1 then the
semantics of a specterm is aLso a canonicaL term aLgebra
(hierarchy).

According to the intention of this paper it wouLd be necessary
for compLeteness t o incLude the parameterization concepts of
ASPIK and ModPascaL in the treatment of a connection of ap-
pLicative and proceduraL Languages. But from the Last para-
graph it foLLows that the parameterization case can be reduced
to the situation of specifications and their connection to
moduLes. I n fact, we wiLL Later (sec. 4.1.) restrict the cLass
of spec-objects to specterm-free s p e c s . I t is c L e a r that this
diminishes the expressivity of the Language and makes our con-
cept Less g e n e r a L , and a c t u a L L y we consider the treatment of
parameterization onLy as postponed; the next iteration to this
topic wiLL incLude it. But for the moment we are freed from
many technicaL burdens, and therefore we skip expLicit
semantic definitions of specterms and aLso of maps (aLthough
the Latter do not c a u s e p r o b L e m s) .

3.4.2. MoascaL

The semantic cLauses for ModPascaL objects reLy heaviLy upon
the semantics of operation and type decLarations. Here we give
onLy the meanings of the objects introduced in sec. 3.1.2.
(moduLe t ype definitions, enrichment definitions: in-
stantiation definitions and instantiate type definitions). No-
tions: operators, domains, variabLes, etc. that are not
defined here can be found in [OLt 84b]. In the sequeL the fuLL
semantics of ModPascaL is assumed.

In addition to the semantics of [OLt 84b], syntacticaL oper-
ators are introduced that store information about the syn-
tactic object. These data is used in the semantic cLauses of
section 4; therefore we cannot proceed in the usuaL way con-

November 1985

58 3 .4 .3 . ModPascaL

sisting of generating a meaning from a syntactic object; and
then forgetting aLL detaiLs. To deaL with this issues, we in-
troduce the notion of a mod-environment in which sLots for
syntacticaL operators exist that evaLuate to the desired in-
formation if appLied. Note that mod-environments for ModPascaL
are the anaLogon of eta-environments for ASPIK (see definition
3 .4 .1 . -1) . See aLso enr-environments’ definition 3 .4 .2 . -2 .

3 .4 .2 . -1 Def. [mod-environment]
Let MCLauseOps C I d with

MCLauseOps : = {maLg? ‚ muse? ‚ p_proc_id?‚ p_func_id?‚
p_init_id?‚ L_type_id?‚ L_proc_id?‚
L_func_id?‚ L_Van_id?‚ p_proc_ar? ‚ p_ func_ar? ‚
p_init_ar?‚ L_ func_a r? ‚ L_p roc_ar? ‚
L_var_ type? ‚ mop_de f? ‚ toi?)

Then g e Env is caLLed mod-environment if for aLL x e
MCLauseOps

a) § (x) # L
b) gtxJ+2 = MODSEL n

Remark: Associated to every eLement eL of MCLauseOps there is
an ambiguousLy denoted speciaL function eL that evaLu-
ates to syntacticaL information if appLied to moduLe
and moduLe operation identifiers:

eL = maLg?
Associated operation: maLg?: Id ——> State ——> D_BOOL
§(maLg?) = (Lee , MODSELI L)
6(Loc) C(id, tv)l id e Id: tv e D_BOOL}
maLg?(id)§6 := s(§(maLg?)¢1)(id)

eL 6 ° re 1 func id?‚ in‘t id?: L func id?r
L init id?, L var id?, L type id?)

Associated operation: eL: I d ——> State ——> IdL
§(eL) = (LOCI MODSEL, L)

6(Loc) = {(id‚ <id1‚ . . . , id„))| id, id; e Id, i e (n): n e N)
eL(id)§s : = s(§(eL)¢1)(id)

eL e { p proc gr?, p_func gr?: p init gr?, L_func ggl,
L_proc er?}

Associated operation: eL: I d ——> State ——> Arity
g(eL) = (L O C I MODSELI L)
6(LOC) = {(id, aa)] id e Id: ad 6 ArDes}
eL(id1: ide) := 6(g(eL)+1)(id1)(id2)

- e L = L gap type?
Associated operation: L_var_type?: Id ——> State ——> Id
§(L_var_type?) = (Lac , MODSEL: L)
6(Loc) = {(id1‚ id ,>> l idi 6 Id: i e C1, .23}
L_var_type?(id)§s := s(§(L*var_type?)&1)(id)

e L = mop def?
Associated operation: map def?: I d ——> State -—> OperationL
§(mop_def?) = (Loc, MODSEL, L)
6(LOC) = { (i d ‚ (Opd l r . . . , opdn))I id e Id, opdi 6 Opera t i on :

i € (n) ; n € “)

November 1985

3 .4 .2 . ModPascaL S 9

mop_def?(id)§e : = e(§(mop_def?)+1)(id).

Note that aLL identifiers of moduLes, moduLe operations and
LocaL variabLes are assumed t o be unique.

:

Based on mod-environments the operations EXT and EXTEND of
section 3 .4 .1 . are defined anaLogousLy except that EXTEND does
not invoLve an updating of the toi? sLot; since in the case of
moduLes the type-of-interest is a semanticaL notion, toi? is
of different (non-syntacticaL) quaLity and expLicitLy set in
the semantic cLause for moduLe definitions (Sem_3 beLow).

A moduLe type definition of a ModPascaL program is embedded in
a type definition scheme where a new type identifier is in-
troduced to which the semantics of the definition is asso-
ciated. We assume the identifier mid in Sem_3.

We are now ready to state the semantics of moduLe type defini-
tions:

Sem_3: ModuLe type

MtEm: ModuLe_typeI§6 : =
(1) 53; (U 1 , . . . : U a) '

(p 1 : . . Ä : p b)

(L t1 ‚ . . . , Ltc) : = (LocaL_typeL (LocaL m)) ,
(Lv1 ‚ . . . , Lvd) = (LocaL_varL (LocaL m)) ,
(L01 ; . . . , Loe) := (LocaL_operationL (LocaL m)) :
(0 1 , . . . p of) : = (operationL m)

(useL m) :
(pubLicL m),

an
(2) 333 (g1, 6 1) : = EXTEND(m)§s in
(3) 33; U : = U 6 (g (u ;)+1) in

i€(a)
(4)L_9$ (§ ° I6 °) := (§1 I61) in

kg; Loci : = newLoc(§;)
where (c g s e p; € Proc_head :

gg; op id ; := (proc_id pi): obq; := PROC in
case p; e Func_head :

gg; opidi := (func_id pi), obq; : = FUNC,
res; := (resuLt pi) in

case p; € Init_head :
gg; Opidi := (init_id pi), obq; := INIT in

I i € (b))
§i+1 : = g i E o p i d ; ** (L o c i : o b q i , it obq; = FUNC

SDQD P e s t
eLse L)] :

6 i + 1 = G E L O C ; ** L]: 1 € (b) in
(5) kg; (g o : 6 0) : (g b : 6 b) 39

gg; Loc; : = newLoc(§i), i e (c)
ungng §1+1 : = giE(typeid Lt;) ** (Loci:

(MtE(type Lti)]g;e;)+1‚
(M tE (t ype Lti)IE;s;)+2)]‚

November 1985

60 3 .4 .2 . ModPascaL

Bi t ; := s i tLoc ; ** (MtE(type L t ;)]g is i)+3] ‚
i e (c) in

(6) £23 , . (go l 6 °) = (gg f 5c) in

ge; (514 .1 : 6 i + 1) := MELn isu 1 € (€ !) m
333 LV := U (idL Lv ;) an

ie(d)
(7)‚l_._e‚_1_;_(£°‚ 6 °) := (5 .5 ! 6d) ‚in

333 Loc; := newLoc(§;) in
guere (cgse Lo ; € Proc_head :

gg; opid; := (proc_id Le i) , obq ; := PROC 1n
case Lo; € Func_head :

gag opid; := (func_id Lea) ; obq; := FUNC:
res ; := (resuLt Lo i) in

: i € (a))
gg+1 := g iEob id ; ** (Loc i : obq i : gt Obq i = FUNC

sham r93 :

83 L)] :

6 i+1 := sgtLoc; +4 L] , i 6 (e) in
£23 (30 ' 6o : (ge r 3e) in

(8) (gggg o i € Proc_spec :
gg; opid; := (proc_id o i) , (pL1 : . . . , pLg) : = (paramL o-) ,

D ; := (LV u U (idL pL;)) x LV gm
j€(g)

cgse o ; € Func_spec :
322 Opid ; := (func_id O;) : (l l . . . : pLg) := (pa ramL Oi) :

Di := (LV u U (idL pL)) x LV x §(opid-)+3 an
je(g)

gage o i e Ini t_spec :
gg; opid; := (init_id o i) : (l ; . . . ; pLg) := (paramL o) ,

D; := (LV u U (i d L pL;)) x LV in
j€(g)

I i e (f))
(9) m (8 T 1 , . . . ! ST- f) := f i x T1 ! i n .) T-f I A§161 I

(MEbody o1)3§1[opid1 ** (! (op id ‚)+1 : g<opid1)+2: L)]

6 C § (o p i d 1) ¢ 1 ** R ({T1 : . . . : Tf) ’ g l : 0 1)] :

MEbody of)3§1Eopid+ 6* (g (op id f)+1 ‚ 'g (op id f)+2 ‚ L)]

s l cgcop id f)+1 +4 m({T1 ‚ . . . ; T+} ‚ g1 . D+)])

€?
?

?

m opdef ; :=R(ST1 : € ; : Da) : i € (f)
Let (g1 , 61) := (gofopid; ** (; (op id i)+1 : g(opidi)+2‚ L]

6° [eo (go (op id ;)+1) 6* opdef i l) ,
i e (f) in

(10) g3; M-VaL := x { § 1 (1 d) ¢ 3 | id e LV} in
Let M- F := {61 (§1 (0p id ;)W1JI 1 € (f) } in
Let M-ALg := ({m- VaL}‚ M-F) „ u v {§1(typeid Lt)w1l

i e (c)} 13
((MODULEI M“V8L I M 'ALQ) : (: 1 : 61))

Remarks : 3) No contex t -sens i t i ve conditions are considered
(see sec . 3 .2) . ALso type checking and scoping are

November 1 9 8 5

3 .4 .2 . ModPascaL 61

disregarded.
b) The semantics of a moduLe type def in i t ion i s con-

s t ruc ted as foLLows:
(1) Ident i f i e rs fo r important components are in -

t roduced by abs t rac t syn tax seLec t ions . ‘
(2) The syn tac t ic informat ion of m is embedded in

the mod-env i ronment ; the moduLe ident i f ie r
mid i s used .

(3) The semant ic aLgebra generated by the used
ob jec ts i s computed .

(4) Locat ions fo r aLL pubL ic operat ion ident i -
f i e rs a re reserved and suppL ied w i th in i t i aL
vaLues . The expL ic i t binding of moduLe Oper -
a t ions in env i ronments has onLy techn icaL
reasons (appL ica t ion of the f ixpo in t opera -
to r) . I t wouLd suf f ice to ins taLL them
di rec tLy as aLgebra func t ions .

(5) The semant ics of LocaL types i s computed and
s tored .

(6) The LocaL var iabLe decLara t ions are
eLabora ted .

(7) As (4) bu t fo r LocaL opera t ions .
(8) The fo rmaL parameter L is ts of opera t ions a re

computed; they wiLL be used in (9) to denote
the gLobaL , fo rmaL and resuLt va r iabLes of an
opera t ion .

(9) The semant ics o f aLL operat ions are computed
by paraLLeL f iXpoint abs t rac t ion . By using
the opera to r R the f i xpo in t i s an aLgebra
func t ion de f ined on TOI ' s o f LocaL var iabLe
and paramete r t ypes . The s ta te (2 1 , 61) i s
assumed to conta in the appropr ia teLy caLLed
and passed fo rmaL paramete r vaLues .

(10) The resuLt ing aLgebra i s bu iL t on the union
of the used ones and equipped wi th the
carr ier genera ted f rom the ca r tes ian product
o f the LocaL var iabLe TOI ' s and wi th aLL
pubL ic and LocaL opera t ions .

c) Bes ides the moduLe aLgebra , a resuLt ing s ta te i s
passed to save aLL par ts of the de f in i t ion . Th is
makes convenient access poss ibLe in semant icaL
cLauses tha t are based on moduLes (e .g . enr ich-
ments : ins tan t ia t ions) .

d) TO I (m) := M-VaL; aLso in the embedding type
de f in i t ion w i th moduLe iden t i f i e r mid the type -o f -
in te res t i s deL ivered to the to i? -sLot of the mod-
env i ronment :
by EXT(to i? ; m id , M-VaL)§1s l , where (: 1 , 61) =
(MEm]§6)¢2 .

We now present to the semantics of enrichments. Enrichments
are aLso embedded in spec i f ic env i ronments .

l - é -Z - ‘Z De f . [eh r -env i ronmen t]
Let ECLauseOps ; I d w i th

ECLauseOps := {enr? , euse? , add_ id? , add_proc_id?,

November 1985

62 3 .4 .2 . ModPascaL

add_func_id?: add_init_id?: add_proc_ar?r
add_init_ar?, add_func_ar?: eop_def?}

Then g e Env is caLLed ear-environment if for aLL x e
ECLauseOps

a) : (x) * L
D) § (x)¢2 = ENRSEL u

Remark: Associated to every eLement eL of ECLauseOps is an
ambiguousLy denoted speciaL function e L tha t evaLua tes t o syn-

tacticaL information if appLied to enrichment and enrichment
operation identifiers.

e L = enr?
Associated operation: enr?: Id ——> State -— D_BOOL
§(enr?) = (Lac , ENRSEL‚ L)

6(Loc) = {(id‚ tv)| id 6 Id. tv e D_BOOL}
enr?(id)§s : = s(§(enr?)¢1)(id)

e se? a ? d r dd f c ° a n 1 °}
Associated operation: eL: I d -—> State ——> IdL
§(eL) = (Lee: ENRSEL, L)

5 (LOC) = { (i d l (i d l r . . . , i d „)) | id: i d : € Id: i € (n) , n € N}

eL(id)§s : = s(§(eL)¢1)(id)

eL € { add groc er?, add func gr?, add init ar?)
Associated operation: eL: I d ——> State ——> Arity
§ (e L) = (LOCI ENRSELI L)
6(Loc) = {(id‚ ad)| id'e Id, ad e ArDes}
eL(id1: id.) := 6(§(eL)¢1)(id1)(id,)

e L = egg dgf?
Associated operation: eop_def?: I d ——> State —-> OpDesL
§(eop_def?) = (Loc: ENRSEL’ L)

6(LOC) = {(id, (Opa l , . . . , opd„)) | id 6 Id; opd; e OpDes ‚ i e
(n) : n € N}

eop_def?(id)§s := s(§(e0p_def?)+1)(id)

Note that aLL identifiers are assumed to be unique. I

Based on enr-environments the operators EXT and EXTEND of sec-

tion 3 .4 .1 . are defined anaLogousLy.

In Sem_5 the syntacticaL operator
AO: PubL i c x Enrich_def ——> I d

is used. A0 maps a pubLic operation header p e (pubL i cL a), a
€ (addL e) , e € Enrich_def to that object identifier that is
enLarged by the occurrence of p in its associated addpart of
e: .

A0(p ‚ e) : = L id 6 Id .
33; (el, . . . ; an} := (addL e) in

3 i € (n) . id = (add_id ai) fing
p e (pubLicL ai)

The next cLause introduces enrichments.

November 1985

3 .4 .2 . ModPascaL 6;

Sem_5: Enrichment definition

1 MeEe: Enrich_def]§6 : =
(1) gg; eid : = (enr_id e), (u l , . . . , u,) : = (useL 9):

(a l l . . . - I a b) (addL e) ,

(01 , . . . , oc) : = (operationL e) in
gg; aid; : = (add_id a i) , i € (b) in
£33 (p11 : . . . I p i b „ ; ‚) : = (pubL i cL aa) , 1 € (b) in

(2) gg; (g 1 , 6 1) : = EXTEND(e)§6 in
(3) gg; (goo, 600) := (g „ 61) in

333 Loc i ; : = newLoc (§ ; ;)
gbece

(cgse pi; e Proc_head :
Leg opid;; :== (proc_id p i ;) ‚ obq i j : = PROC in

case pi; € Func_head :
gg; op id i ; : = (func_id pas) : obqg; = FUNC,

res ;3 := (r esuL t p;;) in
cgse pi; € Init_head :

gg; opidi; := (init_id pg j) : obqgi = INIT in
I i € (b) : j € (DE))
§a,;+1 := §asfopidas ** (LOCis ' Obqas :

ä Obq;_5 : FUNC
t hen res t ; eLse L)]

6 i ‚ 3+1 : = BELOCi ; "" J—JI i € (b) : j € (b i) an

ij n93 A0(opid;;, e) = aidgz i € (b), j e (bi) tnen L
GLSQ

(a) „lag—E (g o ' 6 O) : : (gbbtb 3 ’ 6 l o b c b)) ÄO _
L e t (§ ;+1 I 63+1) : = ME(pa ramL 0 1)] § ; 6 1 1 1 € (C) in

r(5)~££ (§016°) := (§c I6¢) in

(cgge 0 ; € Proc_spec
kg; opid; : = (proc_id 0 ;) ,

(l , ...: pLg) : = (pa ramL o i) ,
Lvi : = LocaL va r i abLes of AD(opid;):
D ; : = (LV i u U (i d L pL ;)) x L V ; in

j€(g)
cgse o ; € Func_spec -
gg; opid; : = (func_id oi):

(l , . . . , pLg) : = (paramL oa) ,
LV; : = LocaL va r i abLes of AD(opid;);
D; := (LV ; „ u (idL pL ;)) x LV; x gotopidi)+3 in

j€(g)
case 0; e Init_spec
ggg opid; : = (init_id oa),

(pL1 ‚ . . . , pLg) : = (pa ramL o a) ,
LVi : = LocaL va r i abLes of AD(opid;):
D; := (LV ; v u (idL pL ‚)) x LV; in

j€(g)
, i e (c))

(6) m (8T1 , . . . , STc) : = f i x T 1 , an . , T C . A g l a l .

(Mmbody o;)]§1[opid1 ** (;(opid1)+1p :(opid1)+2, L)]

6 1 E € < 0 p i d 1) + 1 H (E U C H : . . . I T . ; } ! g l , 01)] ,

November 1985

64 3 .4 .2 . ModPascaL:

MEbody o¢) I§1Eop id¢ ** (; (op idc)+1 ‚ ;(opidc)+2‚ L)]

(7)

(8)

‘..
. 0 3

r (I) Ei
&

(_ (D d' i
d

‘d
’

U

A
€;
5 :

61 [€ (0p idc) \ | v1 H R({T l l nun ! Tc} ! g l . , Dc)])

in
opdef ; := R(ST ; I g i : D i) ; i € (C) in
(£1 : 61) := (§o [op id i ** (g (op id ;)+1 : § (op id ;)¢2 : L]

6°E60 (go (op id ;)+1) ** Opde f ;3) ‚
i e (c) in

:= U 61 (§1 (u ;)+1) in
ieca)

E-F := {61 (§1 (op id ;)+1) l i e (c) } in

Lao := newLoc(§1) in
:= u v (p , E-F) in

§1Eeid H (Lac, ENRICHMENT, J .)] in
51ELOC H A:

§ (ma in)¢1 ** « (! (ma in)+1) u A] in

(: 3 ! 6 ;)

Remarks : a)

c)

No contex t -sens i t i ve conditions are cons idered
(see sec . 3 .2 .) . ALso t ype checking and scoping
are d isregarded . The semant ics excLude the case o f
enr ichments o f s tandard types w i th in i t i aL oper -
a t ions (see aLso [OLt 84a]) .
The semant ics o f an enr ichment de f in i t ion i s con -
s t ruc ted as foLLows:
(1) Ident i f i e rs fo r important components are in-

t roduced by abst ract syntax seLec t ions .
(2) The syntac t ic in format ion of e i s embedded in

the enr -env i ronment .
(3) Loca t ions fo r aLL in t roduced Opera t ion iden t i -

f i e rs are reserved and suppL ied w i th in i t i aL
vaLues .

(4) ALL parameter L is ts are evaLua ted .
(5) The fo rmaL parameter L is ts o f opera t ions are

computed; they wiLL be used in (6) to denote
the gLobaL , fo rmaL and resuLt va r iabLes of an
opera t ion .

(6) The semant ics of aLL opera t ions a re computed
by paraLLeL f ixpoint abs t rac t ion . By us ing the
opera to r R the f ixpoint i s an aLgebra func t ion
def ined on TOI ' s of LocaL var iabLe and parame-
te r t ypes . The s ta te (g l , 61) is assumed to
conta in the appropr ia teLy caLLed and passed
formaL parameter vaLues .

(7) The semant ic aLgebra generated by aLL “used
objects i s computed .

(8) The ins taLLa t ion of the new ob jec t in the
resuLt ing s ta te and the updat ing o f the main
program aLgebra (see EOLt 84b]) i s done ex -
pL ic i tLy .

Enr ichments do no t possess a type-o f - in teres t ,
s ince they a re enLargements of severaL ob jec ts
wi th severaL types -o f—in te res t . Therefore the
§ (e id)¢3 component is assigned to L .

November 1985

3 .4 .2 . ModPascaL 6 5

Since instantiations and instantiate types represent the
ModPascaL object parameterization concept, a simiLar remark as
that foLLowing Sem_1 is appLicabLe: probLems occurring in the
connection of parameterized structures are for the most part
reducabLe to probLems of the unparameterized case. Therefore
parameterization is skipped here, but the treatment is onLy
postponed. For sake of compLeteness we give semanticaL c L a u s e s
of ModPascaL instantiation objects and instantiate type
definitions aLthough they wiLL be disregarded in section 4.

Instantiation definitions are defined a s :

Sem_5: Instantiation Definition

MEi: Inst_deffl§6 :=
Let in_id : = (inst_id i): (I l : . . . : 1;) :== (useL i):

(ab ; : ...: obb) : = (ob_actL i):
(tl; . . . , tc) := (type_actL i);
(opl, . . . ; Opa) : = (op_ac tL i)

333 (f: g) := s(§(11)v1) + ... + 6(g(I.)+)1) in
33 ng; (SM?((f‚ g))) then L
eLse

F { ((o L d 0;): (new 0;)) i e (b) } u
{ ((OLd t i) ’ (n e w t 1)) 1 € (d) } in

33; G := { ((oLd op ;) ‚ (new op1)) | i e (c)} in
it fig; (SM?((F ‚ G))) t hen L eLse
ggM SM := (f, g) + (F , G) in
i: ng; (SM?(SM)) Eben L eL§e
Let Loc := newLoc(§) in
£33 gl = §Ein_id +4 (Loc, INST: L, L)]

61 = eELoc ** SM] in
ggm s2 = 61E61(§1(main)+1) ** s l (g l (ma in)+1) u

({ sou rce (SM) ‚ t a rge t (SM) } ‚ (SH)) ! gm
(g l : 6 ;)

Remarks: a) SM? is the predicate to indicate signature
morphism property of its argument (see EOLt BAbJ).

c) For consistency and for verification contexts, an
aLgrebra of the form above (Last Let-scheme) is
added to 'main' (see EOLt 84b]).

The next cLause introduces instantiate type definitions:

Sem_6: Instantiate Type Definition

MmEi: Instantiate_type1§s :=
gg; bid := (base_type i),

{ i l l . . . : i n } : = (o b j e c t L i) an

Bid := (Retrieve(bid)gs)+1 in
{ I l l . . . : I n } : = Ret0b ({11 : . . : i n }) § 6 in
I : = I1+ . . . + In r I = (f : g

31 ng; (SM?(I)) = true then L eL
gg ng; (Comp?(Bid‚ I)) then L eLs

(
" d
'

9
e

9

%
(
— {+ €

(
'
-

d
' i

@

November 1985

66 4. Connection and Correctness

gg; Bid1 := MARK(U(ä„(Bid>)‚ f) in
333 aida := GENERATE(Bid1; g).

{ O b i t . . . : Obm} : Bid: ‚jan
Lg; objL := SEQ({ob1; . . . , obm}) in
33; (g1. 61) := MEoblgs in
333 (A : (:2. az)) : = METOP(Bid,)]§1s1 in

(A ! (g a , 62))

Remarks: a) The semantics of the base type and the used in-
stantiation objects (both are eLements of Id) are
computed from the appLication s t a t e . B y means of
the Retrieve Operator the associated syntactic
objects are taken to perform the instantiation
process (marking, object generation). The
resuLting object set is sequentiaLized and mapped
to the apprOpriate semantic domain. The resuLting
state and the aLgebra of the TOP-eLement are
passed (for the definition of operators: see EOLt
84b3).

b) ALL impLicitLy generated objects are instaLLed. An
appropriate naming procedure is assumed. '

& . Connggtign and Correctness

We are now going to formuLize the situation that was in-
formaLLy described in section 1: we assume a SEE with LeveL
Languages ASPIK and ModPascaL. and a stepwise-refinement
methodoLogy that at Last connects specification objects with
moduLe objects. The connection wiLL be defined by specific
objects: the representation objects. We assume that aLL this
information (specification. moduLe, representation) is given
(= suppL ied by the programmer), and then the centraL issue is
to show a homomorphy condition that serves as notion of cor—
rectness for this refinement.

Section 4.1. introduces basic notions and confinements. Then
foundations of abstract data types (with main emphasis on
homomorphisms and aLgebras) are briefLy reviewed in section
4.2. The syntactic and semanticaL definitions of represen—
tation objects are given in section 4.3., and reaLization con-
ditions are introduced as sufficient conditions for correct-
ness in 4.4. We cLose this section with an overview on other
approaches to object correctness.

4.1. Confinements and Basic Notions

The need for the introduction of confinements into our ap-
proach arises from a substantiaL and a theoreticaL fact:

substantiaL:lif constructs of appLicative and proceduraL
Languages are going t o be connected semanticaLLy’ then (a t
Least) the connection probLems CP1 to CP3 of sec. 2.2.
occur. But beLow this LeveL’ aLso care has to be taken to
respect eLementary characteristics of the Language types
(e.g. typing of expressions or scoping of variabLes). Provi-

November 1985

4 .1 . Confinements and Basic Notions 6?

sions must be made to Limit side-effects impLied by these
characteristics.

technicaL: if we consider both Languages with their fuLL
expressibiLity many boring i ssues have to be treated
‘detaiLed aLthough they do not contribute to a better insight
in the approach (the topics range from variabLe renamings
t o : for exampLe, r u L e s for connecting caLL~by-vaLues func-

tions with caLL-by-reference functions). For cLearness of
presentation of this paper the attention is focussed on
centra L em_6: Instantiate Type Definition I I points;
doutess, a future exhaustive description has to cover the
Languages compLeteLy.

To f o r m u L a t e our confinements we introduce some terms and

phrases informaLLy; the precise version foLLows in sec. 4.4.

5 .] . -] Terms/Phrases

(a) By externaL indication (programmer, user of a SEE) two
objects of ASPIK and ModPascaL may be characterized as be-
ing 'invoLved in a (b) An impLementation is a refinement

reLation between two ASPIK spec
objects that satisfies some condi-
tions.

(c) A reaLization is a refinement reLation between an ASPIK
spec object and a ModPascaL moduLe object that satisfies
some conditions. The term 'reatization context' is used:
if the vaLidity of the conditions is uncertain. a

With this terminoLogy we are abLe to state our restrictions:

R1: Every spec-object invoLved in a reaLization
context is aLgorithmic

For the justification of R1 we have to go into deeper detaiLs
of the ASPIK semantics.

The cLassification of specs into axiomatic and aLgorithmic
ones is not onLy a syntacticaL question (presence/absence of
the specification body). It is used to assign different seman-
ticaL structures such that axiomatic specs may be
characterized as 'more generaL' than aLgorithmic specs. That
term requires precision.

Let an aLgebraic specification SP be a tripLe (S : 0, C) con-
sisting of a set S of sort names, a set O of operation names
with operation functionaLities’ and a set C of constraints
buiLt from the symboLs of S, o. and specific predefined
symboLs. The tupLe (S . 0) is aLso caLLed signature (see sec.
4.2.). It i s easy to see that an ASPIK spec is an aLgebraic
specification in this sense: the sets S and O are given by the
sorts- and ops-cLause of the spec hierarchy: and the con-
straints are either the definitions of the spec body or con-
tained in the props-cLause (since ASPIK aLLows predicate

November 1985

68 4 .1 . Conf inements and Bas ic Not ions

caLcuLus as property Language: predef ined symboLs o f con -
s t ra in ts a re , fo r exampLe, the Log icaL connect ives and
quaL i f i e rs) .

In the in i t i aL approach, the set C of constra ints i s usuaLLy a
se t of equat ions (o r a t most un iversaL horn cLauses) ; ASPIK is
more power fuL in th is po in t . Now, independentLy f rom the
speci f ic approach aLgebras a re cons idered w i th respec t to a
g iven s ignature S IG = (S , O) : i . e . aLgebras tha t possess
car r ie r se ts assoc ia ted to the names o f S , and opera t ions
assoc ia ted to the names (and func t ionaL i t i es) o f O . The se t o f
these aLgebras i s the ob jec t se t of a ca tegory ALgESIG] . An
important subca tegory o f ALgESIG] i s def ined by those aLgebras
A e ALgESIGJ tha t sa t i s fy the cons t ra in ts of C . We denote i t
by ALgESIG, C] .

At th is point d i f ferences among approaches to the semant ics of
aLgebra ic spec i f ica t ions become s ign i f icant : I f an ax iomat ic
spec S induces a s igna ture S IG and cons t ra in ts C , t hen the in -
i t i aL aLgebra approach wouLd seLec t as semant ics of S the
(isomorph ism cLass of the) in i t i aL ob jec t in ALgESIG; C] . The
in i t i aL ob jec t i s a unique eLement of tha t ca tegory , and
therefore the semant ics of the spec i f i ca t ion i s ra ther f i xed .
I ns tead o f , ASP IK empLoys the 'Loose ' approach . In o rder to
avo id a charac te r is t i c of the in i t i aL aLgebra approach tha t
fo rces the programmers a t ten t ion to one de te rmined ob jec t a t
the very f i rs t steps of sof tware deveLopment (as represented
by ax iomat ic specs) - a fac t which in our v iew essent iaLy
diminishes the benef i ts of abs t rac t ion - ‚ the ASPIK semant ics
chooses the whoLe cLass ALgESIG , C] as semant ics o f S . Then an
ax iomat ic spec i s aLso descr ibed by non- in i t i aL aLgebras ;
every eLement of ALgESIG: CJ can be taken as meaning o f S i n
arb i t ra ry appL ica t ions .

The s i tua t ion changes, i f aLgor i thmic specs are considered.
Since they are in tended to descr ibe a spec i f ic aLgebra more
concre te : the ASPIK semant ics cons t ruc ts a canon icaL te rm
aLgebra (CTA) . I t s ca r r ie rs cons is t of (subse ts o f) the
Herbrand un iverses genera ted f rom the eLements of the con-
s t ruc tor cLause . I t s operat ions are der ived f rom aLL opera t ion
def in i t ions of the spec , such tha t v ioLa t ions o f cLosedness
condi t ions do no t t ake pLace . Then ALgESIG, C] cons is ts onLy
of the i somorph ism cLass o f the CTA; then a t r i v iaL con-
sequence i s tha t canon icaL te rm aLgebras are in i t i aL ob jec ts
in the i r ca tegor ies . In some sense , aLgor i thmic specs
represent a f inaL s ta te in the deveLopment and refinement
process : the i r semant ics i s (up to iSOmorphism) a spec i f ic
ob jec t and there a re no o ther modeLs ava iLabLe . (I f never the-
Less aLgor i thmic specs a re re f ined in to o ther aLgor i thmic
specs , the te rm ' impLementa t ion ' and the ASPIK impLementa t ion
concept a re appL ied) .

This brings the in te rLude on the ASPIK semant ics to i t s end; a
de ta iLed presentat ion of the mater iaL can be found in [BV 85] .

How is R1 jus t i f i ed by tha t def in i t ions? I f we aLLow ax iomat ic

November 1985

4 .1 . Confinements and Bas ic Notions 69

specs occurr ing in reaL iza t ion contexts : we have to

o deveLop a concept of reaL iza t ion of a se t of aLgebras
(spec semant ics) by a s ingLe aLgebra (moduLe /enr ichment
semant ics) : o r to

I seLec t one poss ibLe aLgebra .

The f i rs t aL te rna t ive is more generaL : and i t has inheri tant
deeper theore t i caL i ssues as weLL as cLearness decreasing com-
pLex i ty . Bu t the ma in counte r argument i s tha t in SEEs
reaL iza t ion s teps of th is ' s i ze ' (h igh abst rac t ion to concre te
representa t ion) a re unreaL is t i c ; sof tware deveLopment
processes a re more cont inuous: and aLL ef for ts in so f tware
engineer ing t ry to avo id t ransparency reduc ing re f inements of
th is k ind .

But seLec t ion of a spec i f i c aLgebra comes w i th o ther p robLems:
what c r i t e r ion has to be appL ied and how good is i t? We assume
tha t th is ques t ion can be answered sa t is fac to r iLy : and tha t
the in i t i aL aLgebra of the appropr ia te ca tegory is choosen
(th is c r i t e r ion is acceptabLe s ince many concepts of abs t rac t
da ta type theory a re based on in i t i aL aLgebras : and therefore
resuLts can be appL ied) . I f we are go ing to def ine the
reaL iza t ion cond i t ions : we have to have a concre te represen-
ta t ion of the in i t i aL ob jec t . S ince i t i s induced 'onLy ' by an
ax iomat ic spec there i s in generaL no (cons t ruc t ive) way to
genera te such a representa t ion , due to the undec idab iL i ty of
p red ica te caLcuLus . In the spec iaL case tha t onLy equat ions
are used as proper t ies of spec i f i ca t ion , then spec the onLy
representa t ion we have i s the so -caLLed 'quot ien t t e rm
aLgebra ' (GTA) : the ca r r i e rs a re congruence cLasses genera ted
over the Herbrand un iverse by the cons t ra in t se t of the spec :
and the genera t ions a re def ined on the congruences .

Then: i f proof t asks have to be processed they wouLd have to
deaL wi th congruence cLasses o f t e rms: not w i th terms
d i rec tLy . This i s h ighLy unwanted : s ince then

0 proof systems have to incLude the theory of congruences:
0 every der iva t ion has to be checked fo r independence o f the

representa t i ve : and
o the connec t ion of the moduLe aLgebra and the spec aLgebra

becomes more unna turaL by Linking a s ingLe concre te
representa t ion (ca r r i e r eLement) to a se t of abst rac t terms;
usuaLLy: i t i s the o ther way a round .

I t i s not cLear to us i f sat is factory soLutions to th is issues
ex is t fo r SEES.

I n th is L ight the advantages of restr ict ing reaL iza t ions to
aLgor i thmic speci f icat ions wi th CTAs as semant ics have to be
seen:

0 carr iers and operat ions of the semant icaL aLgebra are con-
s t ruc t ive : the former are g iven by the Herbrand universes
(or res t r ic t ions thereo f) : the La t te r are jus t the aLgor -

November 1985

7 0 4 .1 . Confinements and Basic Notions

ithmic operation definitions given by the programmer in the
spec object definition;

0 the moduLe aLgebra carriers and the CTA carriers can be
Linked by associating singLe representations to singLe
terms;

0 the restrictions imposed on carrier sets of CTA aLLow to use
structuraL induction a s proof method; therefore

0 proof tasks can be treated by existing systems without grea-
ter modifications. This incLudes that there is a choice
between different proof methods impLemented by different
systems (theorem provers: induction provers: rewrite r u L e

derivations), and one possesses a greater fLexibiLity to
adapt an appropriate method to a given task.

0 it is very easy to 'execute' aLgorithmic specifications by
interpreters, and by this there is strong support of a
testing tooL of a SEE.

The next restriction concerns the sort cLause of an aLgor-
ithmic specification.

R 2 : Every spec-object introduces at most one new sort

The reason for this restiction Lies in a principLe property of
proceduraL, strongLy typed Languages.

Consider the case of moduLe constructs of ModPascaL. UnLike
simiLar constructs for object oriented programming Languages
(ADA packages, ModuLa-Z m o d u L e s) , ModPascaL moduLes are in-

carnatabLe: variabLes might be decLared of a moduLe type and
used in statements and expressions. (SimuLa cLasses or CLU
cLusters are incarnatabLe; but both concepts do not fit a s im-

perative counterpart to ASPIK) . By the decLaration, the asso-
ciation variabLe-type is fixed in the scope and extent of the
variabLe. SemanticaLLy, this is modeLLed by the fact that the
moduLe aLgebra possesses one speciaL carrier (the cartesian
product carrier) which suppLies moduLe incarnations with
vaLues. Every moduLe definition introduces just one of these
speciaL carriers, and thus may onLy be used for a refinement
of specifications with one sort.

If a spec 8 contains (at Least) two different sorts in its
sort-cLause: the CTA A(S) has (at Least) two different
carriers. In the specification Language this causes no
probLems: there are no spec-variabLes (i.e. variabLes taking
their vaLues out of a set of spec names) but onLy sort
variabLes. ASPIK terms are connected to a unique sort and not
to a spec.

This is not true in the case of ModPascaL. (and any imperative
Language with incarnatabLe moduLe construct): there is the no-
tion of a moduLe type, and variabLes are decLared being
thereof; since o n L y one new data set is introduced by a moduLe

type definition, there is no choice for the vaLue set of
variabLes. (AdmittedLy, this design decision couLd be modified
such that severaL cartesian product carriers are introduced by

November 1985

4 .1 . confinements and Basic Notions 71

a moduLe type definition, but at what a price: either one
wouLd Loose the cLass i caL fea ture of variabLes as object in-
carnations, or 'over-Loading' of variabLes becomes possibLe.
I n generaL, it wouLd not be distinguishabLe for a given con-
struct from which cartesian product carrier a moduLe variabLe
takes its vaLues. This is not a practicabLe road.)

Having these preconditions in mind i t is obvious to impose
restriction R2 on specifications occurring in reaLization con-
texts. Then there is aLso no difficuLty in associating
abstract and concrete data a s demanded by the technique of
aLgebraic verification (see secs. 1 .3 . and 4 .4 .) : there is a
' r e a L ' one-to-one mapping between the s i n g L e abstract and the
singLe concrete carrier.

It shouLd be emphasized that R2 represents a serious Limi-
tation of the approach: in SEES: one has to impose an artifi-
ciaL structure on ones probLem soLution t o meet this require-
ment; and possibLy Looses some of the benefits gained by the
appLication of aLgebraic specifications. ALso there is a (non-
triviaL) subcLass of probLems that become unspecifiabLe in
ASPIK if introduction of more than one sort at a time is
forbidden. We therefore try to find (for the subsequent
iterations of the approach) a more satisfactory soLution that
treats incarnabiLity gag muLtipLe carrier introduction; for
the moment we require R2.

R3: Specterms do not occur

Specterms may occur in the use c L a u s e of ASPIK s p e c s . Semanti-
c a L L y , they denote new spec objects that are generated by ap-
pLication of the map component to the source spec. I n this
sense specifications with specterm occurrences are
isomomorphic to specterm-free specs: if the structures behinds
specterms are instaLLed in the environment as (simpLe) spec
objects, then these objects (m o r e precise: object names) can
be appropriateLy substituted for specterms yieLding specterm-
free s p e c s .

This fact a L L o w s t o remove the compLexity induced by specterms
in reaLization contexts. Issues such a s normaL form compu-
t a t i o n or impLicit object generation need not be considered
here, since equivaLent and more simpLe objects are a v a i L a b L e .
Furthermore, specterms are the constructs of the ASPIK
parameterization concept for specifications: and the
properties and correctness criteria of parameterization
reaLization are not topic of this paper.

R 4 : ModuLes and enrichments do not contain instantiate
type definitions

This is the anaLogon of R3 for ModPascaL objects occurring in

November 1985

72 4 .2 . Homomorphisms and Atgebras

reaL iza t ion con tex ts ; the same arguments appLy .

Remark: The renunciat ion of specterms impL ies the absence of
map- (and imp-) ob jec t s ; the renunc ia t ion of in -
s tan t ia te type def in i t ions impL ies the absence of in -
s tan t ia t ion de f in i t ions .

We summarize our res t r i c t ions for ob jects occurr ing in
reaL iza t ion contex ts as a p rec is ion of def in i t ion 4 .1 . -1 :

4 .1 . -2 De f . E reaL iza t ion : reaL iza t ion contex t]
Let S denote an ASPIK spec , M a ModPascaL moduLe or enr ich-
ment .
Let (S : M , t rue) denote an unspeci f ied reLa t ion between S and
M, where the booLean vaLue ' t rue ' ind ica tes tha t no cond i t ions
need hoLd .
Let C1 denote the condi t ions

R1: 8 i s aLgor i thmic
R2: S i s s ingLe -sor ted
R3: S i s spec te rm- f ree
R4: M i s instant iate_type_def ini t ion-free

Let C , denote (up to now) unspeci f ied semant icaL cond i t ions .

Then the t r ipLe (S , M , C l) i s caLLed reaL iza t ion contex t
(re -co) i f S and M sat is fy C l .
The t r ipLe (S , M: C1 gng C2) i s caLLed reaL iza t ion , if S and M
sa t is fy both C; and cz . n

Remark: The condi t ion se t C2 wiLL be made concrete in sec .
4 .4 . I t wiLL turn out to be the correctness cr i ter ia
fo r the ref inement of spec i f ica t ions in to moduLes.

4 .2 . Homomorghisms and ALgebras

To aLLow an exac t fo rmuLat ion of our concept we now give
def in i t ions of bas ic no t ions of abst rac t da ta type theory . We
are abLe to use them in our contex t s ince ASPIK as weLL as
ModPascaL fea tures have been des igned in cLose connect ion to
th is theory : and bo th empLoy an aLgebra ic semant ics .

4 .2 .11 De f . [s igna ture]
Let OB, OP denote se ts of (ob jec t and operat ion) ident i f iers .
Let a r i ty : OP ——> (08 * x OB) be de f ined . .
Then the t r ipLe (08 : GP, ar i ty) i s caLLed s ignature . n

Remarks: a) Ar i t y assoc ia tes a func t ionaL i ty to an operat ion
name. In generaL , the func t ionaL i ty may be muLti—
vaLued, i . e . a r i t y : OP ——> (OB* x 08*) .

b) A s igna ture in t roduces onLy names fo r i t ems , not
i tems w i th a spec i f i c mean ing .

flota t igns: Let (OB, OP: a r i t y) denote a s igna ture .
OPs,t := { op l op € OP gng ar i ty (op) = (s : t) }
For a r i t y (0p) = (s ; t) , s i s caLLed source ; and t
genes; of op-

8 e 08 * denotes the empty source .

November 1985

4 .2 . Homomorphisms and Anbras 7;

In the foLLowing we assume arity as function (excLusion of
overLoading). Then it foLLows: that OP = U{0P„ t | s € OB*‚ t e
03} and n{0P,,.| s e os*‚ t e 03} = ¢.

4 .z . -g Def. [signature morphism]
Let (03 ; , OPi, arityi), i € (1 : 2} denote signatures.
Then, a pair (f: OB1 ——> GB„ 9: OP1 ——> 0P2) of functions is
caLLed §idngture morphism if it hoLds:

for aLL op e OP1 with arity1(op) = (ob; ... ob"; ob) .
arity2(g(0p)) = (f(ob1) ... f(obn): f(ob)) n

Signature morphisms are arity-preserving functions between
signatures.

The next definitions are needed to associate signatures with
an appropriate semanticaL domain.

532,-: gef. [fLat domain]
Let S denote a set. Then (8;, C) is caLLed a fLat domain
if 1) L5 $ S denotes the bottom eLement of S.

S; : = S U {L5}

2) E c (S; x Si) is a partiaL order with
x : Y : ¢==> x = L, or x = Y n

Notation: If no ambiguities are possibLe’ we denote the fLat
domain 8‘ simpLy as S and the bottom eLement L, as
L .

4 .2 . -4 Def. [strict]
Let c 1 , . . . , Cm denote fLat domains; and n e (m). A function

f: C, x . . . x C" ——> cn+1 x . . . x cm
is caLLed strict: if
f (C1 ’ . . . - I C , ,) = (' L c n + 1 ’ . . . , 143,“) m a i e (h) . C i = L e i

'

Romans: MuLti-vaLue functions are considered because sometimes
moduLe operations take them as semantics.

5.3.-§'Def. [monotonic]
Let f: C; x ... x Cn -—> cn+1 x ... x Cm be a strict function.
Let X 1 : Y ; € C i r i € (n) .
Then f is caLLed monotonic if

X i ; Y i l i € (n) = f (x l l o n . , X ") : f (Y I I i n . , Y “) hOLdS-

I

4.2.-6 Def. [continuous]
Let f: c1 x ... x cn ——> cn+1 x ... x cm be a monotonic func-
tion.
Let X; c Ci such tha t for aLL a, b € X; either a : b or b E a
h o L d s .
Then f is caLLed continuous if

f (uX1 ‚ . . . : UX„) = U{f(Xll . . . : X„) | X i € X i }
where u denotes the L e a st upper bound. n

Remark: Since we consider onLy fLat domains the sets X‘ con-
tain at most two eLements.

November 1985

74 4 . 2 . Homomorphisms and ALgebras

AIZI:fl_E§2§
Let Ci, i e (1 : 2} denote fLat domains, and
f: C1 ——> c,. Then it is equ i vaLen t :

. f is continuous
o f is strict 9; f is constant. n

This ensures the weLL-definedness of those functions f we wiLL
Later use as meaning of operation definitions 0p: if the
strictness of f can be guaranteed, the continuity impLies the
existence of a Least fixed point which can be taken as unique
meaning of op.

We now deviate from the usuaL way and introduce aLgebras not
over given signatures. Instead we define them expLicitLy and
derive an associated signatur e in a second step.
meaning.

The reasons for this modification are that ModPascaL moduLes
are associated constructiveLy to aLgebras (without e.g. term-
generated carriers) and that there is no way to characterize
these aLgebras in their categories (since no equations/axioms
are avaiLabLe for moduLes). we wiLL use the associated
signatures of a given aLgebra A onLy to 'forget' specific data
and operations of A; With this prerequisites we can define the
notion of strict a L g e b r a s . They wiLL be used a s semanticaL
objects assigned to specification objects or moduLe type
definitions.

4.2.-9 Def. [strict aLgebra]
Let C = (Cl, . . . , C“) denote a non-empty set of fLat domains
C i r 1 € (n) .
Let F = { < f : c i t 1 > X ' " X c h m) _) c icm+1 ‚>! Cie .? > G C 309
{ill . . . , im+1} c { 1 ’ ..., n)} denote a set of strict con-
tinuous functions.
Then the tupLe (C , F) is caLLed strict aLgebra. The eLements
of C are caLLed carriersets or carriers.

u

Strict aLgebras can be associated to a signature under the
assumption that there exist naming functions.

. - D f . [naming functions]
Let A = (C , F) denote an strict aLgebra, and Id an unbound set
of identifiers.
Then the naming functions

obname-A: C —-> I d and opname-A: F ——> I d
associate unique names to carrier sets and operations of A.
obnames(A) := {obn 3 c € C . obn obname-A(c)}
opnames(A) := {opn 3 f e F . opn opname-A(f)}

4.2.—11 Def. [associated signature]
Let A = (C : F) denote an strict aLgebra.
Let arity-A: opnames-A -> (obnames-A* x obnames-A) be defined
by:
(f: C1 x ... x Cm —-> Cm+1) e F gag opname-A(f) = f
=: arity-A(f) = (c1 ... cm. cm+1)

November 1985

4.2. Homomorghisms and ALgebras 75

Then 2(A) = (obnames -A ‚ opnames—A‚ arity-A) is caLLed the
associated signature to A w.r.t. (ob_name-A, op_name-A).

' n

Now we consider strict aLgebras and arbitrary signatures.

§ . g . - 1 z Def. [Z-aLgebraJ
Let 2 denote a signature.
Let A denote an strict_aLgebra.
Then A is caLLed z-ALgebrg if there exists a signature
morphism (f: 2&1 —-> {(A)&1: g: 2 & 2 ——> c)+2) such that f
and g are bijective.

I

4.z.-]: Def. [ALgEZ], ALg]
Let z denote a signature.
Then

ALgEZ] := { A l A is z-aLgebra} u {L:}
ALg := + { A L g E E J I E is signature}

(+ denotes the coaLesced sum of domains). u

The definition of the domain ALg as coaLesced sum of 2-sorted
aLgebra domains is not unprobLematic. I t wouLd aLLow aLgebras
that possess as carriers "the set of aLL sets". Since this is
a weLL-known paradoxon-generating construction, we assume a
meta-structure c a L L e d ' u n i v e r s u m ' U whose eLements are s e t s .
There are axioms that make the "set of aLL sets" underivabLe
in U. Then, aLL carriers of eLements A € ALg are assumed to be
eLements of U .

' We now need a reLation between aLgebras of ALg. Since asso-
ciated signatures may differ we Look at common subsignatures
and subaLgebras.

4 .2 . -14 Def. [subsignature]
Let 2 = (O B : OP, arity) denote a signature.
Then 3: = (081: 0P1 , arityl) is caLLed subsignature of z if
031 ; oa, OP1 ; OP: arityl: 0P1 ——> (031* x 031) such that
arity1(op) = arity (op) for aLL op e DPI .

n

Subsignatures are used to modify aLgebras: a given strict
aLgebra is reduced to a subaLgebra described by a subsigna-
ture; moduLe aLgebras (t h e aLgebras associated t o moduLe type
definitions) wiLL be treated in this way.

4.2.-15 Def. [subaLgebra]
Let Z denote a signature: and A € ALg.
Then the 2-subaebra of A is defined by

(1) A is Z-aLgebra: A
(2) A is not Z-aLgebra:

(2.1) There exists a subsignature sZ(A) of 2(A) such
that a signature morphism (f: 2&1 ——> sz(A)+1: g:
z w z ——> sZ(A)¢2) with f bijective:

(C I 0) m

November 1985

76 4 .2 . Homomorphisms and ALgebras

c := {ca ca e A¢1 gag obname-A(ca) e sZ(A)+1}
O : = { o p op e A+2 and opname-A(op) € sZ(A)v2}

(2.2) otherwise: L A L g

n

Remark: If A is a Z-aLgebra with 2 (A) = z (i . e . the bijective
signature morphism is the identity), and if 21 is sub-
signature of X , then there is aLways a £1 subaLgebra
of A .

Notation: The symboL 'c' is ambiguousLy used t o describe the
subsignature reLation (I; ; z ,) as weLL as the subaLgebra re-
Lation (A1 g A,).

Note that severaL z-aLgebras of a given aLgebra A may exist
(e.g. if operations of A have the same functionaLity or
'pLenty' carriers occur).
Sub(2: A) denotes the set of aLL 2-subaLgebras of A .

we now connect aLgebras by homomorphisms. Again, we deviate

from the u s u a L path and modify the notion of aLgebra

homomorphism in two ways: we assume that source object and
target object are standing in a subaLgebra r e L a t i o n : and we

define onLy partiaL mappings between the carriers.
The subatgebra assumption was impLied by, the appLication of
aLgebra homomorphisms in representation objects (see sec.
4.3.); partiaLity e x c L u d e s those eLements of source object

carriers that are mapped to bottom eLements. Again: in the ap-
pLication Lateron we wiLL not consider these eLements (because
they do not contribute t o the desired correctness proposi-
tion).

4.2.-16 Def. [partiaL aLgebra homomorphism]
Let A ; € ALg: i € { 1 1 2).
Then a famiLy H of mappings <h¢¢1,: C1 ——> C‚| C; e A1+1r C: e
A N D is Catt-ed W: if
(1) There is a 2 (A1) subaLgebra of A., denoted by 3A.. (ft

9): z tA l) ——> z (sA ‚) denotes the bijective signature
morphism.

(2) For aLL (hc„1‚: c1 ——> c,) e H it hoLds:
(2.1) c2 e <sA‚)»l«1
(2 .2) obname-A2(C2) = f(obname-A1(01))

(3) For every ca € (A1)+1 there is (hc(1,: C1 ——> C.) such
that ca = C l .

(4) For aLL op e (A1)+2 with arity-Z(A1)(opname-A1(op)) =
(C1 ... Cm: Cm+1) there exists by means of (f , g) op' e
(sA ,)+2 with arity-z(sA2)(opname-sAz(op')) = (f
(obname-A1 (c1)) ... f(obname-A1 (cm)) , f(obname-A1
(Cm.1))) and opname-sA2(op') = g(opname-A1(op)).
Then, for aLL ce; € C i , with h(ce;) # L„ a : =
obname-A,(ftobname-A1(c;))); i € (m) and for aLL op e
(A1)¢2

hcym.1,(op(ce1p ...a com)) = op'(h¢‘1,(ce1), ...,
hc‘m‚(com))

ll

November 1985

4 .2 . Homomorphisms and ALgebras 77

Bemgrks: a) This definition is taiLored to many-sorted
aLgebras as they are contained in ALg. The one-
sorted case is characterized by far Less technicaL
detaiLs.

b) I t o n L y makes sense t o consider homomorphims
between aLgebras with appropriate associated
signatures, i.e. isomorphic signatures. Therefore
A2 has to be reduced to a subaLgebra with this
property and the homomorphism is onLy defined
between sA2 and A 1 .
This refLects the case that the moduLe object M
occurring in a reaLization context (S , M, C) has a
- LooseLy spoken - richer structure that S i.e.
introduces more data and/or more operations. Then
it is necessary to cut off the overLapping edges.

c) The homomorphism property is onLy considered on
eLements of C; that are mapped to non-bottom eLe-
ments by h¢(;,. This impLies partiaLity of the
homomorphisms, and it is used Lateron to partition
cartesian product carriers into eLements that
s h o u L d correspond t o an abstract carrier eLement,
and those that s h o u L d not (s e e s e c . 4 .3 .) .

d) The interaction between the various syntacticaL
and semanticaL operators may be visuaLized as
f o L L o w i n g :

arity-z(A1) arity-z(sA,) arity-Z(A,)

F1 (f, g) H H
2 (A1) > 2(sA2) C ZflAz)

obname-A1 opname-sA, obname-A,
opname-A1 obname-SA2 opname-A2

H
A, > sA, ; A,

As definition 4 .2 . -16 shows there is a cLose reLation between
aLgebra homomorphisms and signature morphisms. EspeciaLLy the
subaLgebra-generating bijections are of great importance: if
21 :22 and Sub(£1,A2)¢¢, then it depends on the choice of the
bijection (and therefore sAa e Sub(£1:A,)) if homomorphy can
be shown with a given H. This fact may be used to strengthen
the notion of aLgebra morphism by demanding property (4) for
every eLement of S u b (2 1 , A 2) . For our appLications the weak
version suffices.

In generaL the carriers of two aLgebras are not isomorphic. In
the context of reaLizations this means that there is no infor-
mation about a reLation between the specification carriers and
the moduLe carrier. EspeciaLLy the questions if the data in-
troduced by the moduLe is 'suffient' enough or is 'too Large'
(i . e . contains eLements of no interest) cannot be answered.

In the case of aLgebra homomorphisms the situation Looks bet-
ter. Every homomorphism h: S —> T can be used to factorize its

November 1985

78 4 .3 . Representat ion Objects

source S to an isomorphic ob jec t S ' . Then i t can be shown t ha t
T i s aLso isomorphic to S ' . “9 fo rmaL ize these ideas in sec .
4 .4 . when Look ing a t reaL iza t ion cond i t ions .

5 . } . Representa t ion Objects

The Las t sec t ion has in t roduced a number of concepts as s igna -
tu re morphism or aLgebra homomorphism tha t wiLL be used as
bas is of our no t ion of reaL iza t ion . Bu t up to now we have no t
sa id D2! the connection o f ASPIK spec i f ica t ions and ModPascaL
moduLes /enr ichments i s g iven . This sec t ion i s ded ica ted to
th is task : The concept o f a representa t ion ob jec t (rep~ob jec t)
i s p resen ted i n sec . 4 .3 .1 . ‚ whereas the subsequent subsec -
t ions t rea t abs t rac t syn tax : con tex t -sens i t i ve cond i t ions and
semant ics resp . (secs . 4 .3 .2 . to 4 .3 .4 .) .

. . . Conce t

A rep-object i s a syntact ic unit in which information about
the connect ion between a spec and a moduLe /enr ichment i s
ga thered . This informat ion may be spL i t ted in to :

. information about the reLa t ion be tween opera t ions of the
spec and opera t ions of the moduLe /enr ichment (= s igna ture
morphism)

0 in format ion about the reLa t ion between eLements of spec
car r ie rs and eLements of moduLe car r ie rs (= car r ie r mapp—
ings) .

One couLd presume tha t w i th these ingredients the condi t ion
for aLgebra homomorphisms a re d i rec tLy sa t i s f i ed (see de f in i -
t ion 4 .2 . -16) bu t th is i s no t t rue . S ince we Look a t a very
spec i f ic s i tua t ion (re f inement of spec i f i ca t ions in to
moduLes/enrichments): rep-objects aLso incLude speci f ic modi-
f i ca t ions . '

What informat ion shouLd be given by a programmer who re f ines a
spec S into a moduLe M?

F i rs tLy he shouLd say for every operat ion of 8 which i s the
Operat ion of M tha t i s in tended to re f ine i t . Or wi th o ther
words: we require the s igna ture morphism sm going f rom (the
s igna ture o f) S to (the s igna ture) of M . I f sm: M —> S , th is
wouLd cor respond to a ref inement in reverse d i rec t ion (i . e . an
abst rac t ion s tep) . This i s aLso an important scenar io : but
ou ts ide the scope of th is paper .

SecondLy he shouLd say how vaLues are connec ted . I f he designs
the ref ining s t ruc ture (the moduLe) he has to cons ider car r ie r
eLements of CTA(S) and car r ie r eLements 0f MaLg(M) (the moduLe
aLgebra assoc ia ted to M; i t s car r ie rs are ca r tes ian products
of those car r i e rs tha t a re assoc ia ted to the types o f the L0 -
caL var iabLes of M; see EOLt 84b] fo r de ta iLs) . There a re two
poss ib iL i t i es fo r such a representa t ion func t ion (rep -

November 1985

4 .3 .1 . Concept 79

function) Rf between CTA(S) and MaLg(M) :

a) R f : CTA(S) -—> MaLg(M) : This impL ies tha t abstract data
can be un iqueLy represented by concre te da ta . I f th is i s
t rue , then re f in ing i s jus t renaming , and no seph is t i ca ted
semant icaL c r i te r ia a re necessary . Bu t th is i s not the
case in generaL . ‘
ProbLemat icaLLy aLso is the t rea tment of m € MaLg(m) with:
fo r aLL s € CTA(S) . R f (s) # m (i.e. the sur jec t i v i t y of
R f) . This da ta has no connec t ion to abs t rac t da ta a t aLL :
bu t th is property i s not v is ibLe and moduLe opera t ions may
work weLL on such a rguments . The onLy soLut ion i s to ex -
cLude them f rom the cor rec tness check cons idera t ions ; what
is equ ivaLent to moving f rom to taL to par t i aL opera t ions .
But then aLso to taL func t ions o f S are connec ted to par -
t i aL opera t ions o f M , and th is i s no t in tended in a
ref inement (the expressab iL i ty shouLd not decrease) .

b) R f : MaLg(M) „> CTA(S) : Here , concre te da ta (vec tors) i s
mapped to abs t rac t vaLues (te rms) . This way aLLows to
represent a s ingLe te rm in d i f fe rent ways : o r to expL ic -
i tLy d is regard concre te in format ion i f i n tended . This i s
advantageous s ince re f inements a re o f ten per formed by
moduLes /enr ichments w i th more o r Less redundancy (s ince
the car tes ian product ca r r i e r i s no t fu r ther res t r i c ted ,
or p rede f ined types o f the Language o f fe r more opera t ion
and da ta types than needed) . In these cases Rf can be used
to ta iLor the ca r r i e rs by iden t i f i ca t ion of equ ivaLent
concre te da ta o r by mapping redundant da ta to bo t tom eLe -
ments of the abs t rac t ca r r i e rs .
The sur jec t i v i t y of Rf assur ing tha t at; abs t rac t da ta i s
in fac t re f ined i s aLso no t guaran teed by th is func t ionaL—
i ty of Rf (espec iaLLy because Rf i s assumed to be g iven by
the 'unper fec t ' p rogrammer) . Bu t under cer ta in
c i rcumstances sur jec t i v i t y i s der ivabLe in our approach
(see sec 4 .4 .) .

The sur jec t iv i ty of Rf i s a very important and necessary
property in the SEE contex t . I t ensures that no ' abs t rac t '
da ta i s ' fo rgo t ten ' i . e . has no ' concre te ' counte rpar t .
Otherwise i t wouLd be imposs ibLe to check the p reserva t ion of
spec i f i ed proper t ies s ince the da ta tha t car r ies i t i s
miss ing . we Look a t sur jec t i v i t y of Rf (o r an anaLogous func-
t ion) as an essent iaL requ i rement for a cor rec tness no t ion .

In the foLLowing we assume Rf having funct ionaL i ty as in case
b) above . No te tha t s igna ture morphism and rep - func t ion map
in to d i f ferent d i rec t ions :

November 1985

80 4 .3 .1 . Concept

signature morphism
> moduLel

specification < enrichment
representation function

representation
representation

object

If we want to empLoy rep-objects as aLgebra partiaL
homomorphisms we have to sLightLy modify the above definition
4 .2 . -16 to meet the technicaL constraints (functionaLities of
signature morphisms and carrier mappings; see s e c . 4 .4 .) . But
then rep-objects may be seen as the syntactic vehicLe to
define a famiLy of mappings that is intended to describe a
partiaL aLgebra homomorphism. If this is in fact the case
remains to be shown, with the heLp of proving tooLs of the SEE
for exampLe. Depending on the outcome correctness of the
refinement is achieved or not; we discuSs this notion in sec.
4 .4 .

It shouLd be noted that rep-objects may form hierarchies. Like
specifications and moduLes/enrichments, they possess use-
cLauses in which other (r e p -) o b j e c t s may occur. The effect i s ,

that aLL used signature morphisms and a L L used rep-functions
are visibLe and have to be respected in a given rep-object.
This in convenient because it aLLows to partition the rep-
object design into subs t ruc tu res : and it is more naturaL since
the invoLved specification and moduLes are hierarchicaL. Un-
fortunateLy, technicaL issues become more compLex, because
objects gag hierarchy reLations have to be considered.

The hierarchicaL structure of aLL kinds of objects is ex-
pLoitet in the proof method of sec. 5 .2 . where a bottom-up
procedure is proposed.

I n other approaches to the correctness of object reLations:
rep-objects in this sense do not occur as independent objects.
There, the necessary information is provided and gathered at
severaL pLaces, sometimes in the objects and sometimes in the
method (see sec. 4 .5 .) . We beLieve that this expLicit presen-
tation is best suited to the needs of SEEs and it emphasizes
the importance of the rep-object information by assigning an
own structure to it. '

November 1985

4 .3 .2 . Abs t rac t Syntax 81

5 .3 .2 , Abs t rac t Syn tax

A rep-ob jec t i s described syntac t icaLLy by the foLLowing
abs t rac t g rammar :

Repobj = (rob_id : I d , connec t : Connec t ,
useL : I dL ‚ opera t ionL : Opera t ionL ,
rep_fct : Rep_fct)

Connec t = (source : I d , t a rge t : I d)
Opera t ion = (f rom : I d , to :Id)
Rep_fct = (r f_ id : I d , paramL : IdL,

rf_body : Rf_body)
Rf_body = (Le t_schemeL : Let_schemeL ,

a_term : A_ te rm) v I f
Let_scheme (Le t_var : I d , Le t_body : Let_body)
Let_body A_term v St t
A_term (a t_ id : I d , exprL : ExprL) v (a_ id : I d :

afl termL : A_termL)
Expr = I d v Term v S_te rm v Const_vaL
Term = SimpLe_term v 0p_des ignator
SimpLe_term = (op_ id : Op_id‚ paramL : ExprL)
Op_id = I d v Pre_id
Op_designator = (var_ id : I d ; op_idL : I dL ‚ paramL : ExprL)
S_term = (s ign : Sign, t e rm : SimpLe_term)
Sign = { " + }

Cons t_vaL = I d v INT v (s ign : Sign: i d : I d)
S tmt = Ass ign v Op_des ignator
Ass ign = (as_var : I d , expr : Expr)
I f = (i fflpar t : I f _pa r t ‚ th_part : Th_part ,

eL_par t : EL_pa r t)
I f_part = (Le t_schemeL : Let_schemeL, i f : Expr)
Th_part = (Le tuschemeL : Le t_schemeL ‚ t hen : A_term)
ELflpar t = (eLse : I f v {e r ro r })

The domains Id , Pre_id, INT are not ref ined here . They
represent aLphanumer ic iden t i f i e rs , predef ined opera t ion iden-
t i f i e rs of ModPascaL, and the in teger vaLues .

Note tha t the domain Rf_body tha t descr ibes the s t ructure of
the rep_funct ion de f in i t ion i s based upon domains fo r ASPIK
gflg ModPascaL. This ind ica tes the cen t raL , connec t ing roLe
representa t ion ob jec ts pLay ; the i r charac te r as b r idge -
s t ruc ture i s suppor ted by aLLowing subse ts o f the
par t i c ipa t ing Languages to occur . ALthough th is in t roduces
more compLex i ty i t i s inev i tabLe : there i s no way to fo rmaL ize
a connec t ion be tween ob jec ts and i t ems w i thout ment ion ing
them!

An exampLe fo r rep -ob jec ts in a concre te syn tax may be found
in appendix A .

November 1985

82 4 .3 .3 . Context-sensitive Conditions

5 .3 .3 . Contgxt-gensitive Conditions

“@ now s ta te f o r t he cen t raL domains con tex t - sens i t i ve cond i -
t i ons t ha t define t he no t i on o f s t a t i c co r rec tness f o r t ha t
doma ins . The p resen ta t i on o f deno ta t i onaL seman t i cs i n t he
nex t sec t i on w iLL assume co r rec t ob jec t s .

We w iLL exp ress the cond i t i ons as p rec i se as poss ibLe . To do
th i s we use aux iL i a r y ope ra t i ons tha t a re g i ven f i r s t .

Sh i f t moves an ident i f ie r o f an ident i f ie r L i s t t o i t s beg in-
n i ng .

4 .3 .3 . - 1 De f . [Sh i f t]
The ope ra to r sh i f t : IdL x I d -—> IdL i s def ined by :

sh i f t ((i d l , ..., i d ") , i d) : = it n = 1 then (i d l) eLse
Lg; j : = L k € (n) . f o r aLL i € (k) .

i d i * i d „ a m | _ i d x = i d @
;; j = I t hen (i d l , . . . , i d ") eL§e

(i dk l i d l l non - I i dk_ l l i dg+1 l I I I , i d ")

n

Objmap ex t rac t s the con ten ts o f the connect component o f a
rep -ob jec t h ie ra rchy .

4 .3 .3 . -2 De f . [ob jmap]
The ope ra to r ob jmap : Repobj ——> @(Id x I d) i s def ined by

ob jmap (r) : = gg; s : = (sou rce (connec t r))
t : = (t a rge t (connec t r)) in

ii (useL r) = L t hen { (s , t) } eLse
gg; (r 1 , . . . , r ") : = (useL r) in

{ (s , t) } u ob jmap (r1) u . . . u ob jmap (rn)
n

A resuL t ing mapping om can be appL ied to an ident i f ie r L i s t by
appLy :

4 .§ .§ . -3 De f . EappLy]
The ope ra to r appLy : (I d x I d) x I dL ——> IdL i s def ined by :

appLy (om, (i d l l . . . , id„)) : = (om(id1) , . . . : om(id„))
n

I n cond i t ion RO14213 beLow a pred ica te t e rm? : S t t ——> D_BOOL
is used . Term? hoLds i f i t s a rgument - a ModPascaL s ta temen t
L i s t - i s o f a spec iaL s t r uc tu re t ha t aLLows t o t rans fo rm i t
un iqueLy i n to a t e rm . I n t ha t p rocess occu r rences o f ModPascaL
va r i abLes a re subs t i t u t ed f rom r igh t t o Le f t by ope ra t i on
caLLs , where no d i s t i nc t i on i s made be tween p rocedu res , f unc -
t i ons o r i n i t i aLs .
The s t t has t o have t h i s p roper ty : o the rw ise t he sur round ing
Le t - scheme wouLd be i LL -de f i ned (i f (seman t i caLLy) no t e rm i s
ass igned t o t he Le t - va r i abLe) . The poss ib i L i t y o f hav ing ASPIK
t e rms as weLL as ModPascaL s ta temen t L i s t s as Le t - scheme
bod ies g ives the programmer of the repob jec ts t he exp ress ib i L -
i t y o f bo th Languages i n t he Le t - schemes o f r ep -ob jec t s .

November 1985

4 .3 .3 . Contex t -sens i t i ve Conditions 83

5 .§ .§ . -§ De f . [t e rm?]
Let (s tmt l l . . . , s tm t „) € St t ‚ s tmtn a p rocedure caLL .
Then the pred ica te te rm?: S t t -—> BooL is def ined as

te rm?((s tmt1 , . . . : stmt„)) :=
gi conv_Lst ((s tmt1 , . . . , s tmtn_ ;) , conv_caLL(stmtn)) # L

t hen t rue eLse faLse
where
(a) conv_Ls t : S t t x A_term -—> A_term

conv_Ls t ((s tmt1 : . . . , s tm t „) t e rm) :=
gg n = 0 then te rm eLse

case stmtn € Ass ign
;; t e rm conta ins no occurrence of (ass_var s tmtn)

gngn L eLse
gg; t e rm1 := te rm<(ass_var s tmtn) **

(eXpr stmtn)> in
conv_Ls t ((s tmt1 , . . . , stmt„_1)‚ t e rm1)

cgse stmtn € Op_designator :
ii term conta ins no occurrence of (var_ id stmtn)

gngn L eLse
kg; te rm1 := te rm<(var_ id s tmtn) **

conv_caLL (s tm t „) in
' conv_Ls t ((s tm t1 ‚ . . . , stmt„_1)‚ t e rm1)

(b) conv_caLL: Proc_stmt ——> A_term
conv_caLL(p_s tmt) :=

case p_stmt € Op_designator :
gg; termo := (va r_ id p_s tmt) ,

(op l , . . . , opa) := (opfl i dL p_s tmt) :
(pL ; , . . . : pLa) := (paramLL p_stmt) in

kg; term; fo r i € (a) be def ined as:
case op ; € I d gag pL ; = L :

t e rm; := (op ; t e rm;_1)
case op ; € I d gng pL ; = (expr l , ___ , exprn) :

term; := (op; term;__1 expr1 . . . exp r „) in
terma

gase p_stmt e S impLe_term : pustmt
n

Remark: The def in i t ions of conv_Lst and conv_caLL a re based on
the Op_designator f ea tu re of ModPascaL which aLLows to
j ux tapose severaL p rocedure and func t ion caLLs in a
s ingLe cons t ruc t and which ass igns a meaning by Le f t -
to - r igh t evaLua t ion of the caLL sequence; see [OLt
84a] and [Ot t 84b] fo r de ta iLs (' ex tended do t no -
ta t ion ') .
The def in i t ion of conv_Lst and conv_caLL are der ived
f rom the equaLLy named opera to rs o f [BR 85] .

Let r e RepOb j . Then i t s con tex t -sens i t i ve cor rec tness i s
def ined as foLLows:

R01 : r cor rec t :¢==e (rob_ id r) i s un ique in the environ-
ment o f r gng (connec t r) i s cor rec t egg
(useL r) i s cor rec t fing (opera t ionL r) i s
cor rec t gag (rep_ fc t r) i s cor rec t .

November 1985

84 4 .3 .3 . Context-sensitive Conditions

R011: cn : = (connec t r) correct :¢==$ (source c n) is a
correct and visibLe moduLe or enrichment object
gag (target cn) is a correct, visibLe; specterm-
free and aLgorithmic spec object gag
case (source cn) is moduLe : (t a rge t cn) is

one-sorted
c a s e (s o u r c e c n) i s enrichment : (t a rge t c n) is

zero—sorted

R012 : uL := (useL r) correct :<==¢ Every used rep-object
is visibLe and correct ggg no cycLic usage of
rep-objects occurs fing f o r a L L rob € f (uL) .
(source (connect rob)) € f (useL (source cn)) A
(t a r g e t (c o n n e c t r o b)) e f (u s e L (spuhead (t a r g e t
c n))) gng no object i s u s e d by (s o u r c e c n) or
(target cn) that is not invoLved in some
rob € f (uL) gng the signature morphisms of
eLements of uL are pairwise compatibLe

R013 : oL := (operationsL r) correct :<==$ Let
(aopl, . . . , aopn) : = (opsL(sp_head(target cn)))
(c o p l : . . . : cop „) : = (p u b L i c L (s o u r c e c n))
Op_seL := {proc_id‚ func_id‚ init_id} in

(a) for aLL op € oL . gg;
a0p := (f r om Op); cop := (to op) in
ä i € (n) . aop = (op_id aopi) gng ä i € (m) A
3 oid € 0p_seL . cop = (oid cop;)
Le aopiz cop; satisfy (a) for op € oL in
Let aopar : = shift(makeList((arity aop ;)) ‚

target(cn)) in
resob := ij (resuLt c0p3) t L then

(r e s u L t c o p s) e L s e (source cn) ,
copar : = appLy(objmap(r),

concat((paramL copj),
' resob)) in

for aLL i € N . (first(restH aopar)) =
(first(restH copar))

(c) for aLL j e (n) . ? i € (Length oL) .
(op_id aop5) = (from(first(restH oL)))

(d) 333 oL = (opl: . . . : op.) in
f o r a L L i ’ j € (a) z i ¢ j .

ii (from opg) (from op5) then
(t o o p ;) (t o o p j)

(+(b) !2
(+Le %

R014 : rfct : = (rep_fct r) correct :¢==>
case (source cn) is enrichment : rfct = L
case (source cn) is moduLe

(rf_id rfct) = (rob_id r) gng (paramL rfct) is
correct ggg (rf_body rfct) is correct

R0141: pL : = (paramL rfct) correct :¢==e
Let (v c 1 , . . . , vc „) : =

(L o c a L _ v a r L (L o c a L (s o u r c e c n))) .
(v l , . . . , vm) : = conca tL ((i dL vc1) ‚
concatL((idL v c z) , . . . ,
concatL((idL vc „_1) ‚ (idL vc „)) . . .) in

November 1985

4 .3 .3 . Context-sensitive Conditions 85

$.23 pL = (p l : . . . , p .) in
a = m egg v ; = p ; f o r i e (m)

R0162: rfb : = (r f_body r f c t) cor rec t :<==e case rfb € I f :
(i f_par t r fb) is cor rec t gng (th_par t r fb) i s
co r rec t gng (eL_pa r t r f b) is co r rec t o the rw i se
(Le t_schemeL r fb) i s co r rec t gng (a_ te rm r f b) i s
co r rec t

RO1421: i p : = (i f _pa r t r f b) co r rec t :¢==> (Le t_schemeL i p)
i s co r rec t and (i f i p) i s co r rec t

RO14211: (L t s l l ...; L ts „) : = (Le t_schemeL i p) co r rec t
:¢==> f o r aLL i e (n) . ggg L i d i : =
(Le t_va r L t s i) , Lbdy ; : = (Le t_body L t s i) in
L ida * L idb “F0?“ 8 : b € (n) : a * b m L id ; €

? ((v1 ‚ . . . , v „)) [V5 as i n R0141] ggg (cage Lbdy ;
€ A_te rm: RO14212 hoLds case Lbdy i € St t :
R014213 hOLdS)

RO14212: a t € A_term co r rec t :¢==e case a t € (at_id: I d ,
exp rL : Exp rL) : (a t_ i d a t) i s v i s i bLe ope ra t i on
i den t i f i e r i n t he h ie ra rchy spanned by (t a rge t
cn) gng occu r r i ng va r i abLes a re v i s i bLe Le t -
va r i abLes , o r con ta i ned i n (v l , . . . , v ") o f R0141
Qgg eve ry so r t o f t he a r i t y o f a t is v i s i bLe
(i f a t ope ra t i on) gng eve ry exp ress ion o f (exp rL
a t) is co r rec t
case a t € (a_id: I d , a_ te rmL: A_termL)
[f i r s t two cond i t i ons o f t he f i r s t case]
fing every eLemen t o f (a_ te rmL a t) is co r rec t

R014213 : s t t co r rec t :¢==e Le t s t t = (s tm t l r . . . ,
s tm t „) in s tm t i r i € (n) i s co r rec t and s tm tn
i s p rocedure caLL and t e rm?(s t t) hoLds

R014214 : s tm t € Stmt co r rec t :¢==>
case s tm t e Ass ign : (as_va r s tm t) i s ne i t he r

v i s i bLe Le t_va r i abLe no r con ta i ned in
(v l , . . . , v „) o f R0141 gng (exp r s tm t) i s
co r rec t

5333 stmt € Op_des igna to r : 53; i d : =
(va r_ id s tm t) , (cp l ; . . . , op") ‘ (op_idL
s tm t) : (pL1 ‚ . . . , pLa) : = (pa ramLL s tm t) ,
LvL := (LocaL_va rL (LocaL (sou rce cn))) , m :=
Leng th (LvL) in
333 t ; = (t ype (f i r s t (r es tH LVL))) , i € (m) in
i d i s v i s i bLe moduLe i den t i f i e r gag op ; i s
con ta i ned i n t he expo r ted i n te r f ace o f some
t ; : i € (a) , j € (n) gag opa i s moduLe
p rocedu re and Le t pL ; = (exp r l l . . . ,
exp rn [; ,) gg exp r ; i s co r rec t , i € (n i) :
mew

RO14215: exp r € Exp r co r rec t :¢==e gg; t ; be de f ined as
i n R014214 in aLL occu r r i ng ope ra t i ons a re

November 1985

86

RO1422:

RO1423 :

RO1424:

Remarks :

4 .3 .3 . Contex t -sens i t i ve Conditions

contained i n the expor ted in ter face of some t ;
gag aLL occur r ing var iabLes a re e i ther Le t -
va r iabLes o r con ta ined in (v l , . . . , v ") o f R0141

(i f i p) cor rec t :¢==e R014215 hoLds and (i f i p) i s

tp

°P

a)

b)

c)

d)

booLean express ion gng gg op 6 0p_designator w i th
(op l : . . . ; opn) := (op_ idL op) occurs in (i f i p)
t hen op is function caLL

:= (th_par t r fb) cor rec t :<==$ (Le t_schemeL tp)
i s cor rec t gng (t hen tp) sa t i s f i es R014212
gag gg; s denote the target of (a tfl i d tp) in S i s
i n t roduced in (t a rge t cn)

:= (eL_par t r fb) cor rec t : ¢==e gggg op 6 I f :
(i f _par t ep) i s cor rec t gag (th_par t ep) i s
cor rec t gag (eL_par t ep) i s cor rec t
case ep = {ERROR} : t rue

We ambiguousLy denote the ob ject and the in-
t roduced da ta by the same iden t i f i e rs ((source cn)
and (ta rge t a) .
The no t ions o f spec te rm- f ree , aLgor i thmic , one -
and ze ro -sor ted specs (R011) are in t roduced in
sec . 4 .3 .1 .
The cor rec tness o f uL impL ies a h ie ra rch icaL ,
bo t tom-up cor rec tness . Compat ib iL i ty of s igna ture
morph isms means tha t appropr ia te p re f i x ing i s done
i f opera t ion iden t i f i e rs in d i f f e ren t specs a re
named iden t icaL .
R013 i s equ ivaLent to : " (opera t ionsL r) i s a
s igna ture morph ism" . The mod i f i ca t ions of a r i t i es
in R013 (b) a re per formed fo r the foLLowing
reason: an abs t rac t (as weLL as a concre te) oper -
a t ion may have two or more a rguments of sor t
(t a rge t on) ((source cn)) . None of them is
spec iaLLy emphas ized . From the v iew of p roceduraL
PLs , the concre te opera t ion has to be invoked on a
spec i f i c incarna t ion , and onLy th is s t ruc ture wiLL
be a f fec ted by poss ibLe mod i f i ca t ions whereas
other parameters a re caLLed by vaLue . ModPascaL
has in t roduced a s tandard : the Le f t -most paramete r
type o f every moduLe opera t ion i s o f t ype (source
cn) .
To_ compare ASPIK operat ion ar i t ies and ModPascaL
opera t ion a r i t i es by s ignature morphisms: the
former a re modi f ied : the Le f t -most occur rence of
(ta rge t cn) in an opera t ion a r i t y i s sh i f t ed to
the very Le f t pos i t ion o f th is a r i t y . By th is , the
syntac t icaL c r i t e r i a of the s igna ture morphism
condi t ion wiLL not f a iL because of ModPascaL
s tandards .
Note tha t the arrangement of parameter types in
the a r i t y of opera t ions i s ' syn tac t ic sugar ' and
does no t in fLuence the mathemat icaL func t ion

November 1985

4 .3 .3 . Context-sensitive Conditions 87

behind or computationaL properties.
e) In the case of enrichments, (rep_fct r) is not

defined (R014) . This makes sense; since by defini-
t i o n enrichments do not introduce any data but
e n L a r g e a s e t of operations o n a L r e a d y existing
data. I n this case the object (target cn) has to
be zero-sorted (see R011) .

f) Parameters of the rep-function are the LocaL
variabLes of the moduLe. Note that this is
coincident with the fact that carriers of moduLe
definitions are generated as cartesian products of
the types of the LocaL v a r i a b L e s .

g) Rep-functions are either defined by A_terms or by
nested eLements of If.
The A_term eLements directLy represent vaLues of
the abstract carrier of (target cn) . The if-
schemes branch for different vaLues of the LocaL
variabLes, and then yieLd in rep-function recur-
sions or A_terms. Note that A_term is a domain
that contains eLements buiLt from

- ASPIK operation and variabLe symboLs
— ModPascaL operation and variabLe symboLs
- Recursive caLLs of the rep-function and

caLLs of aLready defined rep-functions.
A_term eLements are the most Low-LeveL syntactic
items in which the connection of the different
Language LeveLs can be specified and made visibLe.

h) Let-schemes may introduce variabLes with binding
t o ASPIK terms a s weLL a s to ModPascaL statement
Lists. The second aLternative was introduced to
deaL with the foLLowing situation:

I n a recursive rep-function caLL some parameter
(a LocaL variabLe) of a m oduLe type has t o be
modified. This modification is performed by a
moduLe procedure caLL on this variabLe.
Now, syntacticaLLy it is impossibLe to write a
statement on a parameter position (where e x -
pressions are expected).
Therefore, this Let—mechanism together with the
syntacticaL checks of R014211 ‚ -13 ‚ - 14 ‚ and
definition 4 .3 .3 . -4 were taken to soLve the
probLem.

i) The domain Expr of expressions denotes pure
ModPascaL e x p r e s s i o n s .

j) The s tanda rd exit of the if-scheme sequence
representing a rep-function definition is the
ERROR-eLsepart. I t indicates that aLL concrete
d a t a e L e m e n t s up t o now not considered are mapped
to the bottom eLement of (target cn) , i.e. that no
abstract representation shouLd exist for these
concrete representations.

November 1985

88 4 .3 .4 . Semantics of Rep-Objects

4 .3 .5 . Semantics of Rep-Objects

The dynamic semantics of rep-objects is given on the syntactic
domains of sec. 4 .3 .1 . : whereas the semantic domains are those
aLready introduced in sec. 3 .3 .1 . for ASPIK and ModPascaL. In
addition to the aLso assumed semanticaL functions of sec.
3 .3 .2 . we here use a speciaL operator for rep-objects.
FinaLLy: we assume the semantic cLauses of sec. 3 .4 . vaLid.

we extend the domain Constr of a L L domains:
C o n s t r = Spec + Sp_head + Op + . . . +

ModuLe_ type + PubLic + ... +
Repobj + Connect + Operation + . . .

Beside the generaL semantics function M : Constr ——> State ——>
State and its derivatives E, Mt, Mm, Me, Mi we now introduce
f o r

c e Repobj
Mr : Repobj ——> State ——> State
and MEcflgs =? MrEcfigs.

Tha t means t ha t we assume an environment in which ASPIK specs,
M o d P a s c a L m o d u L e s and rep-objects are a d m i s s a b L e , e q u a L L y

entitLed objects - a non-standard data base system: as for e x -
ampLe reaLized in the ISDV-System (RL-DMS; see [R L 85]) .
F o r rep-function bodies we a p p L y E since they are p u r e L y func-
tionaL:

c € Rf_bodv
MEc]§e =: EEcmge

The memory modeL given in sec. 3 .3 .3 . is now extended to rep-
objects. Their main semanticaL components - the signature
morphism and the rep-function - are administrated in different
s L o t s :

§ (i d) ¢ 2 = REPOB

id ———> (Location: REPOB: S € SigMorphT
!

6

op € OpDen

The domain SigMorph is given in definition 4 .3 .4 . - beLow.

AnaLogousLy to the notions of cta-environment, mod-environment
and enr-environment we now introduce speciaL environments ac-
cording to rep-objects. The main requirement is that
predefined syntacticaL operators are accessabLe that provide
information about the syntacticaL object that generated a
given meaning. This is necessary because our semanticaL
domains offer no provision for this information; once a rep-
object meaning is computed, information of origin of identi-

November 1985

4 .3 .4 . Semantics of Rep-Objects 89

fiers or of hierarchicaL reLations is obLiterated despite the

fact that it is important Lateron (mainLy because set union

has no 'memory').

4 .3 .4 . -1 Def. [rep—environment]

.Let RCLauseOps ; I d with
RCLauseOps := { rob?‚ r use? ‚ connec t? ‚ operations?, rf_ar?’

rf_def?}

Then g € Env is caLLed rep-environment if for aLL x e

RCLauseOps
a) §(x):L
b) § (x) ¢ 2 = REPSEL

I

Remark: Associated to every eLement e L of RCLauseOps there is

an (ambiguousLy denoted) speciaL function eL that evaLuates to
syntacticaL information if appLied to rep-object identifiers:

9 L = rob?
Associated operation: rob? : Id ——> State ——> D_BOOL
§(rob?) = (Loc, ROBSEL, L)

6(LOC) = {(id‚tr)| id e Id, tr e D_BOOL}
rob?(id)§s : = s(§(rob?)¢1) (id)

e L = ruse?
Associated operation: ruse? : Id ——> State ——> IdL
§(ruse?) = (Lee , ROBSEL, L)

6 (L O C) = { (i d r (i d l l . . . : i d „)) | id: i d ; € I d : i € (h) ! n € N}

ruse?(id)§6 := 6(§(ruse?)w1) (id)

eL € { connec t? ‚ operations?)
Associated operation : eL : Id ——> State -—> P(Id x Id)
§(eL) = (Loc, REPSEL: L)

6 (L O C) : { (i d l { (i d l l i d l ')) . . . : (i d n l i d n ') } | i d ! i d i l

id;' 6 Id, i e (n) , n e N}
eL(id)§s = 6(§(eL)&1) (id)

e L = rf ar?
Associated operation : rf_ar? : Id ——> Id ——> State ——> Arity
§(rf_ar?) = (Loc, ROBSEL, L)

6(LOC) = { (i d : ad)l id € I d : ad € ArDes}
rf_ar?(id1;id2)§s : = s(§(rf_ar?)+1) (idl) (idz)

eL = rf def?
Associated operation : rf_def? : I d ——> State ——> OpDen

§<rf_def?) = (Loc, ROBSEL, L)

6(Loc) = {(id, opden)! id € Id, opden € Opden}
rf_dof(id)§6 : = e(§(rf_def?)¢1) (id)

!

Based on rep-environments; the operators EXTEND and EXT of

sec. 3 .4 .1 . are defined anaLogousLy.
Our cLassification of environments is used to define those
'environments in which we want to consider semanticaL defini-

November 1985

90 4 .3 .4 . Semantics of Rep-Objects

tions and cor rec tness issues: verification (v -) environments:

4 .3 .4 . -2 , Def. Ev-environment]
S e t g e Env .
§ is caLLed verification (v-) environment, if g is cta-
environment, mod-environment. enr-environment and rep-
environment.

n

The domain SigMorph - informaLLy introduced in sec. 3 .3 .1 . -
serves as semantics for signature morphisms defined by rep-
objects (i.e. morphisms between specifications and moduLes).

4 .3 .4 . -3 Def. ESigMorph]
Let (gls) € State with @ v-environment.
The domain SigMorph of signature morphisms is defined by:
(a) SigMorph g (Map x Map x ArDes) with

for aLL sm € SigMorph .
gg; f:=sm¢1: g:=sm¢2: h:=sm&3 in

(a . 1) Vid 6 s o u r c e (f) . c t a ? (i d) § s = true gng
Vid e target(f) . maLg?(id)§s = true

(a.2) Vid1 € source(g) . 3 id2 € source(f) .
id1 € p_op_id?(id‚)€6 gag

Vid1 € target(g) . Bid2 e target(f) .
333 S := p_proc_id?(id2) u p„func_id?(id2)

u p_init_id?(id2) in
id1 e S

(a.3) source(h) = source(g) u target(g)
(a.4) Vid € source(g) .

L % E (i d 1 . . . i d “ , i d n + 1) : = h t i d) ’

(idl' ... idm'‚ idm.1') : = h(g(id))‚
mum € N ‚ai-„Q

(a.4.1) n=m
(a.4.2) idi € sou rce (f) ‚ id;' € t a rge t (f) ‚ i e

(n+1)
(8 .4 .3) id;' = f(id;), i € (n+1)

(b) SigMorph is maximaL with (a)

Remark This characterization of SigMorph coincides with the
signature morphism definition in 4 .2 . -2 .

4 .3 .4 . - 4 Def. Eis-sigmorph]
The predicate

is—sigmorph : (Map x Map x ArDes) ——> D_BOOL
is defined by

true if (f , g: h) e SigMorph
is—sigmorph((f: g: h)) : = {

faLse otherwise
n

It wiLL be important to unite signature morphisms. To define
the union we unite mappings.

4 .3 .4 . -5 Def. [union]
Let M : = (Map + ArDes); ml: m2 € M .

November 1 9 8 5

4 .3 .4 . Semantics of Rep-Objects 9 1

Let + : M x M ——> (I d x (I d x Arity)) be defined as
+(m1, mg) := ((x , m i (x)) | x € source(m;) ‚ ie {1: 2}}.

Let s m ; € S igMorph : s m ; = (f i : g i , h i) : ie
{ 1 : 2}.

L e t s m : = (+ (f 1 : ' Fa) ’ + (g l ' g g) , +(h1 l h2)) -

Then sm is caLLed the un ion of sm1 and sm2 if
(a) smii denotes a function, i € (3)
(b) is-sigmorph(sm) = true

Notation: If the union of sm; and sm, is def ined we

ambiguousLy denote it by sm1 + sm, .
s m l + I I I + SIT!" : = (I I I (s m l + S ina) + I I I) + sm")

4 .3 .4 . -6 . Def. [signature cLassifications]
Let M denote a moduLe/enrichment o b j e c t .

Let (g , s) € State with g v-environment such that M is
eLaborated in (g , 6) . Let (u l : . . . ; u ") := muse?((mod_id M))§6

The signature
iX(MaLg(M)) : = (...(Z(s(§(u1)+1)) + E(e(§(u2)¢1))) + (...

...) + Z(s(§(un)¢1)))
is caLLed imported sidnature of M .

eZ(MaLg(M)) : = E(MaLg(M))
is ambiguousLy denoted exported siqnature of M
The tupLe

new(M) := (eZ(MaLg(M))¢1 \ iz(MaLg(M))+1‚
eZ(MaLg (M))+2 \ iZ(MaLg(M))+2)

is caLLed the set of new object and operation identifier in-
troduced by M .
A n a L o g o u s definitions h o L d for spec objects. I

Remark: The union is aLways defined because objects (and their
hierarchies) are assumed to be correct.

Now we are ready t o s t a t e the semantics of rep-objects:

Sem_7 : Rep-Objects

MrEr: Repobjflgs : =
(1) ‘Let rid : = (rob_id r), sob : = (from (connect r))

tob : (t o (connect r)), (u l : ...; u") : =
(useL r), (p l , . . . , pm) : = (operationL r),
(L 1 , . . . , L a) : = (paramL hf),
rf : = (rep_fct r) in

(2) 33; (ge , 60) := EXTEND(r)§6 in

(3) L e t s m i : = g (u i) + 3 ‚ i € (n) in

Le sm = sm1 + ... + smn in
if sm = L t hen L eLse

(4) et aop; : = (from p i) , copi : = (t o p;); i e (m) in
gm {aopil i € (m)} * p_ops_id?(tob)goso then L eLse

: = p_op_a r? (t ob ‚ aop;)§oeo in

November 1985

(5)

(6)

(7)

(8)

Remarks :

Le t
m

455 .4 . Semantics of Rep-Objects

copar ; :=
case cop; e p_proc_ id? (sob)§oeo

- p_proc_ar? (sob , cop i) .
case cop; e p_ func_ id ‘? (sob)§oso '

p_ func_a r? (sob ‚ cop i)
case cop; € p_in i t_ id?(sob)§oso

p_ in i t_a r? (sob , cop i) ,
i e (m) in

Let f denote the mapping f : { sob} ——> { tob}
f1 := +(smw. f) an

ii f 1 i s no t a function then L eLge
L-WQEaOPar ‘ i : (id i t l l "" i d i tn t i l l ' i d i tn t iH - l l) ’

i € (m) in
333 saopar ; := (f 1 (id ; (1 ,) . . . f 1 (id ; .n (; , ,) :

f 1 (id i tn t i)+1))) , i € (m) in
if saopar; # copar i : i e (m) then L eLge
gg; obmap := f 1 ,

opmap : “ + (sm+2 ‚ { (aop i , cop i) l i e (m) }) ‚
armap + (sm¢3 , { (aop ; , aopar ;) | i € (m) } u

{ (cop ; : copar;) | ie (m)}) in

ii opmap or armap denote not a func t ion then L eLse
Leg sigmorph := (obmap; 0pmap, armap) in

Let r f id := (r f_id r f) : rfbody := (r f_body r f) in
Let r fde f := f i x f . A§161 .

(EEr fbdy]§1 [r f id +4 (Loc l : FUNC; L)]

61ELoc ** f]) +1
where (g l , 61) i s (go , so) bu t contains L i :

1 e (a) evaLua ted gag Loc i :=
newLoc(§o) in

Le; (g , s) := (go , 60) : Loc := newLoc(§o) in
Lg; § ' : = gEr id ** (Loc : REPOB: s igmorph)]

a)

b)

e ' := sELoc ** r fdef] in
(g ' ‚ 6 ')

The d is t inc t ion between context -sens i t ive condi -
t ions and dynamic semant ics i s sL igh tLy so f tened
in Sem_7: the computa t ion of the induced s igna ture
morphism is repea ted . Th is i s necessary s ince
s ignature morphisms are impor tan t subs t ruc tures o f
representa t ion ob jec ts : and they fo rm the spec iaL
domain S igMorph .
No o ther context -sensi t ive . cond i t ions a re re -
checked . ‘
The semant ics of rep -ob jec ts i s const ructed in
v-environments as foLLows:
(1) Identifier fo r important components are

i n t roduced by abs t rac t syntax seLec t ions .
(2) Charac te r is t i c predef ined (opera t ion)

iden t i f i e r of a rep -env i ronment a re sup-
pL ied w i th the syn tac t icaL in fo rmat ion .
This wiLL be used in (3) , (4) and (5)
where genera t ion and un ion o f s igna ture
morphisms are per fo rmed .

November 1985

4.3.4. Semantics of Rep-Objects 93

Assignment to other predefined identifiers
are given in Sem_8.

(3) The union of aLL used signature morphisms
i s generated via the '+'-operator of
definition 4 .3 .4 . -5 . OnLy if the union is
defined the rep-object semantics is
d e c L a r e d .

(h) - (6) It is checked if the operation cLause
together with the resuLt of (3) con-
stitutes a signature morphism.

(7) The rep-function semantics i s computed as
Least fixed point of the functionaL
derived from the rep-function body.

(8) The new object is instaLLed in the
environment.

c) Note that the rep-object semantics does not denote
a n a L g e b r a .

Rep-function body semantics is given in Sem_B.
We assume:
Let r € Reprobj.
Let rf : = (rep_fct r): rid : = (rf_id hf),

(L1, . . . , L.) : = (paramL rf), rfbdy : = (rf_body rf)
Let (g , 6) 6 State such that necessary syntacticaL information

about r is avaiLabLe (i.e. position (7) in Sem_7).

Sem_8: Rep—function bodies

(1) EErfbdy: Rf_bodyfl§6 :=
case rfbdy € If : EErfbdy: Ifflgs
case rfbdy € A_term : EErfbdy: A_term]§6

(2) EEifs: If3§6 : =
333 (g 1: 61) : = ME(Let_schemeL(if_part ifs))3§s in
it (EE(if(if_part ifs))]§161)v2 = true gngn

gg; (g „ s,) := ME(Let_schemeL(th_part ifs))fl§s in
(EE(then(th_part ifs))3§262)¢2

eLse gg (eL_part ifs) = { e r r o r }

then LS eLse E[(eL_part ifs)fl§6

(3) MELts: Let_schemeLB§s : =
gg (first Lts) = L then L 333g
ifi (rest Lts) = L t hen ME(first Lts)]§6 eLse

ME(rest Lts)I(ME(finst Lts)3§6)

(4) MELt: Let_schemel§6 :=
333 Lid := (Let_var Lt), Lbdy := (Let_body Lt) in
case Lbdy € A_term :

gg; Loc : = newLoc(§) gg
Let gl : gELid H (Lac , VAR, J .)]

61 = 6ELoc ** EELbdy : A_termI§sJ in
(g l , 6 1)

gase Lbdy € Stt '
gg term?(Lbdy) $ true gngn L eLse

Let Lbdy = stmtl; . . . ; stmtn in

November 1985

9 4 4 .3 .5 . Connection to ALgebra Homomorphisms

kgk t = conv_Ls t ((s tm t1 ‚ . . . ; stmtn_1),
conv_caLL(stmtn)) in

kgk Loc : = newLoc(§) in
[L i d "" (LOC VAR: l)]

[Loc 9“ EEt: A_term3§s] in
‘—

® d
' W

|..
.

I
I
I
I

G
e
t
/
“
6

(5) EEat: A_term3§e :=.
gggg at e (at_id: Id, exprL: ExprL) :

kgk aid := (at_id at),
(el, ..., en) := (exprL at) in

kgk ev; : = (EEe;IEG)+2‚ i e (n) 33
((E , 6) : 6 (g (a i d) + 1) (e v 1 ‚ . . . I 9V„))

case at € (at_id: I d , a_termL: A_termL) :
kgk aid := (at_id at) 33

;: (a_termL at) = L t hen e(§(aid)¢1) eLse
kgk (al, . . . : a„) := (a_termL at) ÄD
kgk av; := (EEa;3§6)¢2 in

((g . e) , s(§(aid)¢1)(avll ...: av „))

(6) EEex: Expr] : (see Sem_4 of [OLt 84b])

Remarks: a) Sem_8 Lists aLL important cLauses of the rep-
function body semantics computed in a
v-environment; syntactic domains which do not
occur in sec. 4 .3 .2 . can be found in [OLt 84b].

b) Specific remarks:
(1) Switches onLy.
(2) The sort 5 of La corresponds to the sort in-

troduced in the source of the corresponding
rep-object r (i.e. in (from(connect r))).

(3) Letscheme—Lists are eLaborated iterativeLy.
(4) Letschemes instaLL variabLe-vaLue bindings in

environments. I n the case of statementLists
(c . f . remark h of s e c . 4 .3 .3 .) the operators
term?, conv_List and conv_caLL of definition
4 .3 .3 . -4 are empLoyed. This aLLows t o compute
the semantics of the statement List on an

' e q u i v a L e n t expression.
(5) A_terms are evaLuated by appLication of the

associated function. Note that EEe;B and Email
describe appLications of E t o ModPascaL (e;)
and ASPIK/rep-function . (a i) constructs;
.because of our choice of semanticaL domains
and semanticaL functions these formuLae are
defined and sensefuLL.

(6) The domain Expr is the associated ModPascaL
domain.

4 .3 .5 . Connection t o ALgebra Homomorghisms

Rep-objects incLude two essentiaL informations: the signature
morphism and the rep-function. Both are instaLLed in
v-environments as resuLt of M . How do the so-described objects
reLate to aLgebra homomorphisms of sec. 4 .2 .?

4 .3 .5 . Connect ion to ALgebra Homomorphisms 95

For a direct appLication of definition 4 .2 . -16 we must in-
troduce additionaL requirements for rep—objects to satisfy
conditions (2) and (3) there. They mainLy ensure that for
every object of the source and target hierarchy there is an

appropriate rep-object visibLe.

4 .3 .5 . -1 Def. [structure respecting]
Let (g , 6) denote a v-environment.
Let r € Repobj, and (E 1 , 6 1) : = MErflgs such t ha t

§((rob_id r))¢3 $ L
Then r is caLLed structure respecting if it hoLds:

gg; A1 := ME(from(connect r))l§s,
A2 : = ME(to (connec t r))3§s gm

(1) S U b (E (A 1) I A 2) $ ¢
(2) 3 sA2 € Sub(Z(A1), A2) .

533 (f , g) denote the signature morphism connected
to sAa in

(f , g) E §1((rob_id r))+3
V s e use?((spec_id(from(connect P))))§161 .
ä m € muse?((mod_id(to(connect r))))§,_61 .
ä r' € ruse?((rob_id r))§,_s1 .
(from(connect r')) = s ggg (to(connect r')) = m

(4) V m € muse?((mod_id(to(connect P))))§161 .
ä s € use?((spec_id(from(connect P))))§161 .
ä r' € ruse?((rob_id P))§161 .
(from(connect r')) = s gag (to(connect r')) = m

(3)

Remark: Structure respecting is a property of rep-objects that
impLies isomorphic hierarchies of specs and
moduLes/enrichments.

From this we have the foLLowing proposition.

g.5.3.—g Proposition
A structure respecting rep-object r is a partiaL aLgebra
homomorphism if its rep-function satisfies condition (4) of
4 .2 . -16 .

Proof: We show how condition (1) to (3) of 4 .2 . -16 are im-
pLied.
Let A1, A2: 3A2; (g , s) , (: 1 , 6 1) be a s in definition

4 -5 -3 - ‘ 1 .

Let (r l , . . . , r") : = cLosure(ruse?((rob_id P))§161 (the
cLosure operation generates a List of names of aLL
directLy or indirectLy used objects; see [OLt 84bJ).

Let <rfi: C ; ——> sC;I i € (n)> denote a f a m i L y of functions
with rf; : = sl(§1(r;)¢1), i € (n). Note that rf; = LOpDen

if for id 6 connect?(r)§ls1 enr?(id)§ls1 hoLds (equivaLent
to: sorts?(id)§1es1 = ¢).

Then it foLLows:
(1) : Since r is structure respecting there exists a sub-

aLgebra sA2 of A2 with the required signature morphism
(f , g). The direction of f (source: spec, target:
moduLe/enrichment) is invertibLe because of its
bijectivity. Therefore in the sequeL we assume f mapping

November 1985

9 6 4.4. R eaLization Conditions

anaLogous to the r f ; .
(2.1) : I t hoLds: f(obname-A1(C)) = obname-sA2(sC) for c €

{C1 , . . . , Ch} , 56 € { s c 1 , . . . , sch} .
sci € (sAz)+1 =9 obname-sA2(sC;) $ target(f)
=? f is not bijective, in contradiction to the assump-

tion.
(2 .2) : Again by the bijectivity of f
(3) : If ca € (A1)+1 ‚ but no i € (n) exists with c6 = c;

=: there is a spec s not invoLved in some rep-object r;
=? the object mapping f i s not totaL o n the set of visi-

bLe objects: contrary to the assumption.

If additionaLLy (4) is satisfied by <rfi: Ci ——> scil i e (n)>

the proposition foLLows directLy. n

This reLation between structure respecting rep-objects and

partiaL aLgebra homomorphisms wiLL be used for the formuLation

of our correctness criteria in the next section.

4 . 4 . ReaLization Conditions

' R W e now return t o our treatment of reaLizations and reaLization

contexts. Both notions differ onLy in the additionaL require—

ments demanded for r e a L i z a t i o n s .

The situation is the foLLowing: there are a user—defined spec

object, a moduLe/enrichment object and a rep-object. The first

two are s e m a n t i c a L L y described by a L g e b r a s ; the rep-object

estabLishes a signature morphism between them, and under cer-

tain conditions an aLgebra homomorphism. These additionaL con-

ditions wiLL be embodied in the reaLization re-definition of
4.1.-2.

4.4.-1 Def. [reaLizationI reaLization-context]
Let 8 denote an ASPIK spec, M a ModPascaL moduLe/enrichment

and R a r e p — o b j e c t .
Let C1 denote the conditions

- S is aLgorithmic, singLe—sorted, specterm-free
— M is instantiation type definition free
- R is defined o n S and M
- R i s structure respecting

Let C2 denote the condition
- R satisfies (&) of 4 . 2 . - 1 6

Then the tripLe (S, M; R) is caLLed reaLization, if its com-
ponents satisfy Cl and Ca. It is caLLed reaLization-cqntex I
if onLy Cl is satisfied.

"

By this definition, a user of a software deveLopment system

has to proceed in three steps to verify his sequentiaL impLe-

mentation (=reaLization):

1) Specify the task in constructive: at most one-sorted

specterm-free spec objects. Re-program it in moduLes and

enrichments whiLe utiLizing efficiency increasing features.

K ' A I I A M H A H Q D O E

4.4. ReaLization Conditions 9 7

2) Write a rep-object in which you try to express the intended
reLations syntacticaLLy (signature morphism) and semanti-
c a L L y (c a r r i e r m a p p i n g) .
Compute the mapping between the canonicaL term aLgebra and
the moduLe aLgebra induced by the rep-object.

3) According t o definition 4.2.-16: show for each operation of
the canonicaL term aLgebra, that the homomorphism equations
h o L d s .

I n section 5 we w i L L deveLop a proof method suitabLe t o this
s t e p s .

4.4.-2. Def. Ecorrectness: reaLization conditions]
A moduLe (enrichment) M is said to reaLize a specification 8
correctLv: if there exists a rep-object R such that (S , M ; R)
is a reaLization. The homomorphy equations derived from R (the
set C2 of 4.4.-1) are caLLed reaLization conditions.

:

Note that this definition of correctness depends not on a
specific rep-object (perhaps severaL wiLL do it). But it is
obvious that correctness statements for fixed S and M, and for
different R come up with incomparabLe semanticaL structures.
Therefore reaLizations (SIMIRl) and (S ‚M ‚Rz) are not exchange—
abLe in generaL.
Note aLso, that there are no Limitations in the number of
reaLization (context)s an object may be invoLved. This is
soLeLy an administration probLem which has to be resoLved by
the object management of the software deveLopment system.

One may argue that the homomorphism prOperty is t o o weak t o
serve as correctness criteria for refinements of this kind. We
do not beLieve this. If a designer of software can be assured
that his finaL program behaves in just the way he specified on
the abstract LeveL, he wiLL be satisfied and not be worrying
about the possibiLity that it might do more than he intended.
If additionaLLy homomorphy is easier derivabLe in practicaL
environments than say isomorphy one shouLd not feeL un-
comfortabLe with this aLLeged weakness.

I n section 4.1. the probLems arising from non-surjective
carrier mappings were discussed. I n the speciaL context of
reaLizations surjectivity i s deLivered for-free.

4 . 4 . - 3 . C o r r o L L a r v
Let (S , M , R) denote a reaLization with homomorphisms <rfi: C;
——> C;' I i € (n)> for some n.
Then rf; is surjective’ i e (n).

Proof: Let (g , 6) denote a v-environment with semanticaL
embedding of S: M ; and R , such that the homomorphisms of the
premise exist as s(§(r;)+1) for some rep-objects r t : i e (n).

Let sid : = sort_id?((spec_id S))ga : C5 : = 6(§(sid)¢1),
{con1, . . . , cone} : = constr?((spec_id S))§s;
CN : = toi?((mod_id M))§s.

November 1985

9 8 4 .4 . ReaLization Conditions

= L (P f -3 : C ; “"-"> CJ .) € (P f - t : C i _) C i .
Let (r f : C H ——> c s)

i e (n)> . CM

Then it is sufficient to consider the surjectivity of rf since
r is structure respecting.

Let SIG; = (08 ; , OP ; , arityi), i € { M , S} denote the asso-
ciated signatures to S and M.

Let (f , g) : SIGS ——> SIGM denote the restriction of
§((rob_id))¢3 to 8163.

(1) Every eLement of C8 is finitLy generatabLe by appLications
of con;, 1 € (a)
=» structuraL induction is appLicabLe

(2) V con € { con1 ‚ . . . , con.) .
aritys(con) = (8 ; sid) =$
con = rf(g(con))
since rf is homomorphism.

(3) V con € { con1 ‚ . . . , cone}, (arity,(con))¢1 t 8 .
V sid1 ... sidb e 033*, b e N .
v t; e ci' a s(§(sid;)¢1)).
Induction hypothesis: t; = rf;(g(t;)).
(where g is appLied to the constituents of ti)
Induction step: arity3(con) = (sid1 ... sidb, sid) =?

con(t1‚ . . . ; tb) = r f (g (con (t1 ‚ . . . , tb)))
since rf is homomorphism

" E v e r y eLement of C s is target under rf; from this conjecture
i ' f o L L o w s .

n

The surjectivity of the homomorphisms induced by rep-objects
(S , M, R) aLLows to factorize the moduLe aLgebra by a con-
gruence induced by the homomorphism. The factor aLgebra is
isomorphic to CTA(S) and to the reLevant subaLgebra of M(ALG)
(where reLevant means: with respect to the correctness issue
in SEES) . The deveLopment of this resuLts rounds this section
o f f .

[k m h - _ “ . 03-f- [E r - f]

Let (s, M, R) denote a reaLization with <rfi: c; ——> c;' I i e
(n) > .

Then the carrier identification E „ f ; induced by rf; is defined
as:

apfa := { (C l : Cz) l C1! C2 € c a QQQ rfi(c1) : rfi(c2)}
ll

Notation: a n := { a „ f . | 1 e (n) } \
[c] : = E,.“ e ER . 3 (c „ c2) 6 a . . . “ .

c1 = c 9; c2 = c

I n the next Lemma the notion of a Z-congruence is empLoyed
where 2 denotes a signature. A z-congruence reLation is con-
gruence reLation that hoLds for aLL operations named by eLe-

l u - u n ' fl fl l — “ n o t

4 .4 . ReaLization Conditions 99

ments of I .

4 .4 . -5 . Lemma
Let (S, M, R) denote a reaLization with <rfi: c; ——> ci'l i e
(n)> and with associated subaLgebra sM of MaLg(M) . Let I =
(08; OP: arity) : = I(SM).

Then E R is a Z-congruence.

Proof:
(1) E R is equivaLence reLation

(1 .1) E R refLexive: Vc; € ci rfi(c;) = rf;(c;)
4==¢ C i rfi C i -

(1 .2) E R symmetric: Vol. c2 € Ci . c1 arfi C a

¢==> rf;(c1) = rfi(cz)
¢==> rf;(c2) = Pf;(C1)
m C 2 Er f i . C 1

(1 .3) E R transitive: Vol, c a , c3 € C; .
C:. E r f l C2 @119. C e E r f i C a

¢==> r f ; (c 1) = r f ; (c a)
gag rf;(c2) = Pf i (C3)
=? Pf ; (C1) = Pf i (3)
{==> C 1 E r - f i C 3

(2) 5 " z-congruence
t o show: V op s OP with arity(op) =

(o b n a m e - M a L g (M) (C ; (1 ,) . . . obname-MaLg(M)(C;(K,);
obname-MaLg(M)(Cm)),
C W] ! C i t ; J € { 0 1 1 no . , cn } , i } , m € { 1 ‚ no . , n } , j €

(k) .
V C ; (; , I C; [; ‚ ' € C ; (; , I M l i ; € { 1 i . . .) n}: j € (k)

C i t } : E r f i t i y Ci t i)

Il
l

‘
U
’

o p (c i t 1) ’ " " c i t k y) r f m °p (c i t 11 " " " c i tka ')

Then we have
gg; (g, 6) denote a v-environment with eLaborated R in
33; (f: g) := §((rob_id r))v3 in
V C ; (3 , r Ci (; , ' € C ; [; ‚ : m ; i 3 € { 1 1 . . . : n}; j € — (k) .

C i t } : E r f i t i) Ci t i a '

=> rfm (o p (c ; (1 , : ...: c i („ ‚))
f q (0 p) (P f i (1 , (C i t l ‚) r . . . : Pf i tk , (C i (K)))

f*(op)(rfi„1‚(c;(1‚')‚ . . . ; rf;(„‚(c;(„‚'))
-m(0p (C i (1 ‚ ' f . . . ; C i ‘ g , '))

=> o p < c l ¢ 1) ’ "" c i t k I) E r f m op<c i t1) " " " , c i t !) .)
I

In generaL MaLg(M) contains more data and operations than are
of interest (LocaL types, LocaL operations). I n Sub(Z (CTA(S)) ;
MaLg(M)) onLy those aLgebras occur that Lack superfLuous
items. Since every reaLization is associated to a specific
aLgebra out of this s e t , we take those aLgebras for
factorization instead of MaLg(M).

[h u l k - ' 6 . De-F - [Q (MI R)]

Let (S; M, R) denote a reaLization with <rf; : C; —— Ci ' l i e
(n)> and associated subaLgebra sM, (€ , s) € State with €

November 1985

100 4 .4 . ReaL i za t i on Conditions

v-env i ronment and eLabo ra ted R .
Le t £ (sM) := (08 , GP, arity)‚ (f , g) : = § ((r ob_ id R))¢3
Le t [_] deno te t he congruence cLasses genera ted by ER.

Then the quo t ien t aLgeb ra 0 (M , R) of M by R i s def ined by :
0 (MI R) : = (q Oq) whe re

(1) Cq := { cob l ob e 08 }
(2) Cob := ([c] ! c € C; and obname-Z(sM)(C;) = ob

f o r some i e (n) }
(3) V o e (sM)+2 with a r i t y - z (sM) (opname—E(sM) (o)) =

(ob1 . . . ob " , ob) : ob i , ob € OB, ie (n) .
V c ; e 0 ; with obname-2 (sM) (c ;) = ch i , i e (n) .
t he re ex i s t s an ope ra t i on Oq de f i ned by

oq([c13‚ . . . : Co l l) : = Eo (c1 , . . . , c„)]
(4) o. : = { oq l o e <sM)12}

3

Remark : This de f in t ion i s independent f r om the cho ice of the
[C i] -

By def in i t ion 4 .4 . - 6 there i s an induced s igna tu re morph ism
(f , 5) : Z(SM) ——> z<o(R‚ M)) with

(1) i f P f i _ : C ; __) Ci ' : Le t Ob 2 : obname-X (sM) (C ;) in
f (ob) = obname-Z (Q(R , M)) (Cob) = ob

(2) i f 0 € (sM)+2: Le t op := opname-Z(sM)(o) in
§ (op) = opname-Z(Q(R, M)) (Oq) = op

Since t he identicaL morph ism does cause no harm in compos i -
t i ons we appLy (f , g) aLso i n s i t ua t i ons where (f , g) o (f , g)
i s co r rec t .

0 (M: R) i s t he seman t i caL ob jec t t ha t genera tes the aL ready
ment ioned i den t i f i ca t i ons and j us t i f i e s ou r no t i on of co r rec t -
ness :

4 .4 . -74Lemma
- Le t (S , M: R) denote a reaL iza t ion wi th < r f i : C; -—> c i ' l i e

" (n)> : SM: and Q(MI R) .

Then
(1) 0 (M , R) i s isomorphic t o CTA(S) .
(2) Q(M;R) i s homomorph ic t o sM.

P roo f : ‘
Le t (f ; 9) deno te the s igna tu re morph ism assoc ia ted t o 5M.

(1) Let < i s ; : c°„———> Ci ' l i 6 (n) gag obname-2(sM)(ci ') = ob>
be def ined by

i S i ([C i]) : = P f i (C1)
(1 .1) i s ; i s i n j ec t i ve : v [c1] , [c z] e cob .

i s ; ([c13) = i s ; ([c2])
¢==> r f ; (c1) = Pf i (c ‚) ¢==e [c l] = [c ,]

(1 .2) i s ; i s su r j ec t i ve : r f ; i s sur jec t i ve (c . f . 4 . 4 . - 3)
=? V Ci ' € Ci . . 3 C ; € C; . P f1 (C1) = C1 ' .
ALSO V C ; € Ci . 3 [C] € Cob . (C i , Ci) € [C] .
=# v c ; ' 6 C i ' w i t h c ; ' = r f i (c ;) f o r some c ; 6 C i .

. | . . - “ ana l?

4 .4 . ReaLization Conditions

3 [c] € Cob . (C i : Ci) e [c] and isi(EcJ) = rf;
= C i ' u

(1 .3) is; is homomorph ism: Let (OBI, 0P1; arityl)

V Oq € (Q (M ‚ R))¢2 with opname-Z(Q(M; R)) (Oq) =
and arity(op1) = (ob1 ... ob", ob)

101

(C ;)

Op;

and o € (sM)¢2: Opname-Z(sM)(o) = f(opname-I(Q(Mr
R)) (oq)) .

v 02 e (CTA(3))+2 with opname-X(CTA(S))02) : op2
and 0p; = g (op1) and arity2(op2) = (f(ob1)
f (ob „) ‚ f (ob)) .

V [c l] € C o b ’ C i € C i r i € (n) .
i s ; (o q ([c 1] ‚ . . . - J [C „]))

= is;([o(c1: . . . : c „) J) def. Oq
= rf;(o(c1, . . . , c „)]) def. is;
= o , (r f 1 (c 1) , . . . , r f „ (c „)) rf; homom.
= o‚(isl([c1])‚ ...; is„([c„])) def. isi

(2) Let (h i : C l __} Cowl i € (n) : o b n a m e - E (s M) (c ;) : Ob) be
def ined by:

V C i € C i : h1 (C ;_) : = [C 1]

Let (OBI, CPI , arityl) : = I (sM) : (082, 0P2 , arity2
z (o (M ‚ R)) .
V o1 € (sM)+2 with arity1(opname-Z(5M)(ol)) = (ob l

) : =

op", oh) and 02 e (Q(M‚ R))éz with arity2(0pname—Z(Q(M‚
R)) (oz) = (f(obl) ... f (ob „) ‚ f(ob)) and opname-Z(Q(M,
R)) (oz) = f (o p n ame-E(sM)(ol)) .

V c; € C; with obname-Z (sM) (C i) = Obi: i € (n) .
h i (01 (C1 f ‚ . . , CH))

: [01 (C1_I . . . , CH)] d e f h i

: 02 (EC1] I . . . - I [CH]) d e f 0 2

= 02 (h1 (C1) ’ I l l , hn (Cn)) d e f h i

Remargs: a) Note that in (1 .3) (f , g) is appLicabLe since (f ,
5) o (f , g) = (f , g)

b) ResuLt (2) hoLds for every factorization by a
homomorphism.

With this resuLt we are abLe to provide a sufficient quaLity
measure for our refinement scenario in S E E s . We summarize the
most important structures graphicaLLy.

November 1985

102 4 .5 . Other Approaches to Object Correc tness

4 .4 . -8 F id . [reaL iza t ion scenar io]
Let (S , M , R) denote a reaL iza t ion .

(f , g)
I(ETA(S)) —————> mim —

(f : §> signatures

note, M)) -—
1‘

0 (R: M)

i s ; h ;
aLgebras

CTA(S) < sM
% Pf i T

I MaLg(M) -

S R M] objects

The Lowest LeveL (Look ing a t 4 .4 . -8 as bot tom-up d i rec ted
graph) represents our s ta r t ing s i tua t ion in SEEs: spec i f i -
ca t ion and moduLe are g iven ; a re -co i s cons t ruc ted by the
add i t ion of R tha t impL ies mappings r f ; and a s igna ture
morphism (f r : 9 ,) (L ink omi t ted) . MaLg(M) i s res t r i c ted to sM
to cons ider onLy reLevant (fo r the ve r i f i ca t ion i ssue)
car r i e rs . This res t r i c t ion comes w i th a s igna ture morphism
tha t has to be i somorph ic to (f ry g ,) (p rac t i caLLy ‚ the - wi th
respec t to R - appropr ia te subaLgebra 5M 6 sub (E (CTA(S)) ;
MaLg(M)) i s chosen fo r the ve r i f i ca t ion) . I f the ve r i f i ca t ion
cond i t ions hoLd (i . e . the re -co (S , M: R) becomes a
reaL iza t ion) ; the r f ; can be used to fac to r i ze sM y ieLd ing
0 (R , M) , an isomorph ic aLgebra to CTA(S) - Q tR , M) i s semant i -
caLLy the ' essent iaL chunk ' of the M semant ics , and of M . I t s
isomorphy impL ies in tended er ror f ree ref inement o f S in to M .
The s igna ture morphisms behave in the ind ica ted manner . The
not ions and resuLts o f th is sec t ion a re appL ied in a concre te
method fo r the ver i f ica t ion o f re f inements . I t i s g iven in
sec . 5 .

4 .5 . Other Approaches to Object Correctness

The probLem of ass ign ing a sa t i s fac to ry semant ics to the im-
pLementa t ion i ssue in SEEs has been recogn ized in va r ious
pubL ica t ions . Even i f no t SEE appL ica t ion was the p r imary goaL
of the proposaLs aLmost every au thor cLa ims tha t h is soLut ion
wiLL do i t weLL. In the foLLowing we br ie fLy Look a t d i f fe rent
approaches hav ing our SEE scenar io as deveLoped in sec t ions 1
and 2 i n mind.

Therefore theor ies fo r the abs t rac t impLementa t ion a re not

November 1985

4 .5 . Other Approaches to Object Correctness 19;

considered (i . e . impLementa t ion of aLgebra ic spec i f icat ions by
aLgebra ic spec i f i ca t ions) aL though by fa r the most research
ac t iv i t y was and is concent ra ted on th is i ssue . One reason fo r
th is L ies in our judgement in the eLegant and power fuL
mathemat icaL mechanisms tha t a re bes t appL icabLe i f the con-
s idered s t ruc tures a re as mathemat icaL as poss ibLe - a
requ i rement tha t the harder i s to meet the more concre te the
s t ruc ture to modeL is . Approaches o f the ADJ group (EADJ 78] ,
[ADJ 79]) : Ehr ig e t aL . (EEKP 78]) , Ehr ich ([EL 80]), KLaeren
([KLa 82]), Poigne (EPoi 83]), SaneLLa/Wirsing [SH 82]; or
Beie rLe and Voss (EBV 853) : among o the rs , f aLL in th is
ca tegory . Never theLess these approaches have s t rongLy in -
fLuenced the e f for ts fo r a cor rec tness no t ion fo r reaL iza t ions

= concre te impLementa t ions) , and aLL sugges t ions beLow make
more o r Less d i rec t access to the i r no t ions and resuLts .

(a) ALgebra ic Spec i f i ca t ions as Programming Language Semgnt ics

Pa i r [Pa i 80] studies the ad jus tment o f an in i t i aL aLgebra
semant ics fo r a programming Language and uses th is concept to
show compiLer cor rec tness . For th is purpose he de f ines an
abs t rac t da ta Type TL fo r a Language L . TL conta ins

sor ts : - fo r each p r im i t i ve type p o f L there i s a cor -
responding sor t p * in TL , which is the se t of vaLues
of p

— fo r each pr imi t ive type p of L there ex is ts a sor t
p+ which i s the se t of expressions of p

- a sor t 'S tmt ' o f s ta tements
- sor ts fo r s ta tes ; iden t i f i e rs , decLara t ions , LabeLs

e tc .
opera t ions : - each pr imi t ive opera t ion of L has an assoc ia ted

opera t ion in TL
- opera t ions tha t s imuLate the behav iour o f

p rogram cons t ruc ts (conca t : Stmt x S tmt ——>
S t m t)

- an opera t ion ' appLy ' fo r execut ing s ta tements
in a s ta te

- an opera t ion ' evaL ' tha t evaLua tes express ions
in a s ta te

- a number of aux iL ia ry func t ions used to def ine
the e f fec t o f the p rogramming Language con-
s t ruc ts .

ax ioms: - aLL opera t ions are def ined by more o r Less compLex
ax ioms o f evaL .

The connec t ion be tween the program cons t ruc ts and the i r
abs t rac t t e rms is g iven by a ' syn tac t icaL abs t rac t ion ' func -
t ion sa tha t i s de f ined on the grammar and appL ied to the syn -
tac t i c t ree of a p rogram.

In most of the sor ts and opera t ions in t roduced one can see a
s t rong in ten t ion to modeL the Language semant ics in a cLose
reLa t ionsh ip to a denota t ionaL semant ics (DS) : t hough no
f ixpo in t theory i s ac tuaLLy used . Bu t modeLLing s to res ,
env i ronments , bLocks t ruc tures e tc . en forces a compar ison: and
here the inc reas ing compLex i ty of the def in ing ax ioms seemed

November 1985

104 4 .5 . O ther Approaches to Object Correc tness

to be not advantageous in most cases versus corresponding
semant ics func t ion cLauses in a DS (e .g . s ta tes a re ' t e rms ' of
subsequent ass ignments o f vaLues to iden t i f i e rs than a mgpginq
between se ts) .

The resuLt i s a fuLL descr ip t ion of a programming Language
semant ics as the in i t i aL aLgebra semant ics o f a s ingLe
abs t rac t da ta type T . . Thus , i f a Language conta ins a moduLe -
L ike cons t ruc t , by the method i t wouLd cor respond to some
abs t rac t sor ts and opera t ions in TL and a programming sys tem
tha t i s dev ised to check compat ib iL i ty of a g iven abs t rac t
ob jec t ob w i th a moduLe ob jec t mod de f ined in L couLd proceed
as foLLows:

a) compute the semant ics o f mod in the quot ien t t e rm aLgebra
Q' r t L 1 '

b) compiLe the semant ics o f ob (an aLgebra)
c) show the i r i somorphy

Thus fuLLy semant icaL p reserva t ion wouLd be guaran teed .
But in generaL and espec iaLLy in our env i ronment th is method
comes w i th p robLems:

- i f no th ing more about the semant ics o f a moduLe is sa id , the
onLy cho ice wiLL be a congruence cLass of 07“ , (nameLy tha t
cLass tha t conta ins the te rm assoc ia ted to the moduLe
def in i t ion) . Then an isomorphism be tween terms and aLgebras
g ives no sense (c . f . sec . 4 .1 .) .

- I f the semant ics of a moduLe is a subaLgebra S of GT.L , an
aLgebra i somorph ism has to be cons t ruc ted by the sys tem - a
fo rmidabLe task tha t i s not reaL is t i c a t the moment.

(b) Denota t ionaL Semant ics fo r Programming Languages based on
ALdebra T rans format ions

Ganz inger [Gan 82] connec ts an aLgebra ic semant ics of a spec i -
f i ca t ion w i th an aLgebra ic semant ics of a moduLe in a s impLe
Language by def in ing a denota t ionaL semant ics fo r the Language
tha t uses aLgebra cLasses as domains . Type de f in i t ions (mod-
uLes) a re cons idered as in [Hoa 72] as cons is t ing o f a L is t o f
procedure o r func t ion decLara t ions , a se t of representa t ion
var iabLes and an in i t i aL i za t ion , and a program is regarded as
a L is t of t ypede f in i t ions .

The cLass icaL method to def ine s ta tes as mappings Id ——>
VaLues and envi ronments as mappings Id ——> Opera t iondenota t ion
is subs t i tu ted by giving environments as aLgebra ic spec i f i -
ca t ions u = (S , E : E) Es , 2 : se ts of t ype /opera t ion iden t i -
f i e rs , E se t of ax ioms of the opera to rs] and s ta tes be ing
aLgebras in the ca tegory ALgEu] genera ted by the env i ronment
spec i f i ca t ion . Then fo r exampLe type iden t i f i e rs and var iabLe
ident i f ie rs (nuLLary opera t ion symboLs) in -u are suppL ied w i th
concre te vaLues in each s ta te (ca r r i e rse t , concre te opera t ion)
and execut ing a Language - s ta tement w iLL mean a mapp ing

s between the s ta te aLgebras .

To ge t su i tabLe domains : the ca tegor ies ALgEu] are (par t i aLLy)

Mnuomhah 1OR§

4 .5 . O the r Approaches t o Ob jec t Correc tness 105

ordered t o become a compLe te Lattice and con t i nuous func to rs
be tween t he ca tego r i es a re de f i ned t ha t cor respond t o t he f r ee
(cons t ruc t i on) f unc to r F and t he f o rge t f uL f unc to r U of [ADJ
7883: he re be ing used i n t he de f i n i t i on o f enr ichments and
res t r i c t i ons o f Spec i f i ca t i ons . The ma in s tep t hen i s t o
def ine on programming Language cons t ruc t s C t he functions

EEG] : U ——> U (U = Env i ronmen ts)
and

TuEC] : ALgEu] -—> ALgEEECJu]

i . e . an env i ronment t rans fo rm ing f unc t i on E and a s t a te t rans-
f o rma t i on Tu f o r u € U.

For (moduLe) t ype de f in i t i ons t d EE td I (u) i s an ex tended
aLgeb ra i c spec i f i ca t i on u ' i n wh ich t he ope ra t i on - and type
names i n t r oduced i n t he t ype de f i n i t i on and some spec iaL ope r -
a t i ons a re added t o u , whe reas TuE t (A) i s a f r ee aLgeb ra
cons t ruc t i on gene ra ted on (t he s ta te aLgeb ra) A and t he ope r -
a t i on symboLs i n t r oduced i n t d . The resuL t i ng aLgeb ra ge t s i t s
ope ra t i ons f r om the appL i ca t i on of Tu top] t o each ope ra t i on
de f in i t i on of t d , t ha t i t seL f i s a modeL o f op as an a rgumen t -
resuL t r eLa t i on on t he . ca r r i e r s assoc ia ted w i th t he pa ramete r -
and vaLue t ypes o f t he ope ra t i on op .

S ta r t i ng w i th an env i ronmen t PRE o f t he p rede f ined t ypes of
t he Language t he me thodoLogy ex tends t he i n i t i aL PRE - aLgeb ra
by use r de f i ned t ypes v i a TPREEtypede fJ . Co r rec tness o f a
p rog ram P w i th r espec t t o a spec i f i ca t i on SPEC couLd be
de f i ned as

A I ppe (i n i t i aL PRE - aLgebra) in
TPREEPJ(A) : = Ispgc (initiaL SPEC - aLgeb ra) .

Be ing used i n ou r sys tem, an aLgo r i t hm fo r check ing the co r -
rec tness o f a r eaL i za t i on of a spec i f i ca t i on couLd Look L i ke :

1) Compute the i n i t i aL aLgeb ra o f t he p rede f ined t ypes of t he
used programming Language .

2) Gene ra te t he f r ee cons t ruc t i on ove r the i n i t i aL PRE —
aLgeb ra and t he t ypes and ope ra t i ons i n t r oduced by t he
moduLe de f i n i t i on .

3) F ind an i somorph i sm be tween t h i s f r ee cons t ruc t i on and the
canon i caL t e rm aLgeb ra (t he seman t i caL aLgeb ra o f t he
spec i f i ca t i on) .

The f eas ib i L t y of such a co r rec tness proof seems to be h ighLy
un reaL i s t i c i n a mechan i caL sys tem because o f sens i t i ve t asks
as i n i t i aL aLgeb ra cons t ruc t i on , f r ee cons t ruc t i on and
isomorph ism gene ra t i on , wh i ch a re aL ready on t heo re t i caL LeveL
need soph i s i t i ca ted ma thema t i cs t ha t canno t be rep roduced by
today ' s p roo f sys tems . Add i t i onaLLy , t he f ac t t ha t aLgo r i t hm ic
spec i f i ca t i ons con ta i n more conc re te i n fo rma t i on abou t
ca r r i e r s and ope ra t i ons t han pu reLy aLgeb ra i c spec i f i ca t i ons
has no t been t aken i n to accoun t i n t h i s app roach .

Neve r theLess t h i s L i nk be tween aLgeb ra i c spec i f i ca t i ons and

November 1985

106 4 .5 . Other Approaches to Objec t Cor rec tness

proceduraL programming Languages has g iven some adv ice to the
semant ics of ModPascaL.

(c) Te rminaL ALqebra Semant ics fo r ModuLes

SchuLz [Sch 82] has deveLoped a method fo r reaL iz ing abs t rac t
data types tha t i s based on a t e rminaL aLgebra semant ics .
Genera t ing contex ts (t e rms o f sor t 8 ' w i th exac tLy one var ia -
bLe o f sor t 8) , appLy ing them to aLL appropr ia te te rms o f the
Herbrand - universe o f the spec i f i ca t ion and ident i f ing those
which a re und is t ingu ishabte by equa t ionaL reason ing in aLL
contex ts , g ives a fo rmaL iza t ion of the idea tha t onLy the out—
side v is ibLe behav iour o f a moduLe is impor tan t fo r i t s
semant ics .

Th is congruence generat ion i s aLso appL ied to an aLgebra ex -
t rac ted f rom a moduLe de f in i t ion in a spec i f ic Language tha t
is supposed to reaL ize the abs t rac t spec i f i ca t ion . Cor rec tness
is then def ined as the isomorphy o f the assoc ia ted te rminaL
aLgebras and a method is g iven tha t cons t ruc ts a se t of "ve r i -
f i ca t ion cond i t ions" fo r each concre te opera t ion o f the mod-
uLe , whose fuLLf iLLment impL ies the i somorphy .

Taking th is approach over to our sys tem ignores two important
fac ts :
- the semant ics of an aLgor i thmic spec i f i ca t ion i s a canon icaL

t e rm aLgebra whose car r i e rs conta in eLements , wh ich by
def in i t ion must not be iden t i f i ed w i th any o ther . Thus
es tabL ish ing a t e rminaL congruence reLa t ion i s con t ra ry to
the fac t o f be ing canon icaL .

- The opera t ions in spec i f i ca t ions are not de f ined by
equat ions but by func t ionaL recurs ive schemes. Their behav-
iour has to be modeLLed in the aLgebra der ived f rom the mod-
uLe de f in i t ion . The p roposed method cannot handLe th is .

(d) Trgnsformat ion RuLes as Opera t ion Semant ics

The C IP pro jec t ([Bau 81]) a imed a t goa ts s imiLar to our
scenario: a SEE that provides for most act iv i t ies semanticaL
founda t ions which enabLe and suppor t ve r i f i ca t ion i ssues .

In the i r environment Laut [Lau 80] s ta r ts wi th ' computa t ion
s t ruc tures ' (aLgebras 's w i th f in i teLy genera ted car r i e rs and a
se t of func t ions wh ich toge ther sa t i s fy the ax ioms of the
spec i f i ca t ion) of an aLgebra ic spec i f i ca t ion and de f ines an
assoc ia ted moduLe to the computa t ion s t ruc ture . The opera t ions
of the moduLe a re assumed to sa t i s fy denota t ionaL t rans -
fo rmat ions as

caLL mod .op (x1 , . . . , x ")

x1 := op (x1 ‚ . . . : x")

(what means tha t the e f fec t of the moduLe opera t ion caLL can
be modeLLed as an ass ignment o f the vaLue o f an invocat ion o f
the ' abs t rac t ' func t ion to i t s f i rs t argument as sugges ted in

November 1985

5 . A Proof Method 1 0 7

[Hoa 72]). with this semantics of procedure caLLs he shows
tha t the axioms of the aLgebraic specification are aLso satis-
fied by the moduLe operations. Because of the use of a predi-
cate transformer semantics and the restriction t o assignments
this t a s k reduces t o t he comprehensabte and weLL-known process
of generating weakest preconditions for assignments.

UnfortunateLy: no Language construct is considered whose in-
stantiations are capabLe of possessing a n internaL state and
are passed t o other objects or are s t o r e d . A L s o the tranfor-
mation r u L e s f o r the different types of arities of t h e
abstract operations make no difference between program
variabLes and term variabLes and they add assignments to a
functionaL Language. Therefore onLy LittLe information can be
derived from this approach w . r . t . our environment.

5 . A Proof Method

A very important characteristic of correctness criteria in
generaL is the degree of mechanization that can be achieved in
order to proof their vaLidity. If for exampLe nearLy no
mechanic support is obtainabLe the integration of the criteria
i n a SEE w o u L d be s e n s e L e s s . On the other hand it f o L L o w s from
research in this area and aLready impLemented soLutions, that
fuLL mechanization i s currentLy impossibLe - due to Limi-
tations of existing proof systems. As a consequence a semi-
automatic procedure is a most LikeLy candidate: and in the
foLLowing we present a proof method for reaLizations (PMR)
t h a t i n v o L v e s user-dependant, method-dependant and system-
dependant substeps: where the Last two modes are performed
a u t o m a t i c a L L y . we f i r s t L y introduce the substeps i n s e c . 5 . 1 :
point out Limitations in sec. 5.2., and then assembLe the sub-
steps to a method for the proof of the reaLization property
(PMR) appLicabLe in SEEs (sect. 5.3.)

5 . 1 . Basic Steps

In our scenario the check of the reaLization property is to
mechanize a s far as possibLe. In other words: the vaLidity of
a set of equations (homomorphy equations) in a certain theory
has to be shown. RoughLy there are five steps:

(1) generation of a set HEQ of homomorphy equations from a
given re-co (S: M , R)

(2) invoLvation of hierarchy information (o f S, M and R) into
HEQ

(3) formuLation of an induction proof task
(4) transferring proof tasks t o proof systems, and
(5) administrating resuLts in the SEE.

November 1985

108 5 .1 .1 . HEQ Generation

5 .1 .1 . HEQ_Genera t i on

Th is s tep i s p r ima r i Ly o f syn tac t i caL na tu re . Given a re - co
(S IM IR) t he s tanda rd homomorphy equations can be gene ra ted
au toma t i caLLy . We d i s t i ngu i sh two cases dependan t on t he used
fo rmaL Language f o r HEQ:
I HEQ i s muL t i - f o rmaL
I HEQ i s s i ngLe - fo rmaL
where t he t e rms muL t i - and s ingLe- fo rmaL re fe r t o s i t ua t i ons
t ha t HEO con ta ins occu rences o f t e rms o f mo re t han one f o rmaL
sys tem resp . exac tLy one f o rmaL sys tem. We make t h i s d i s t i nc -
t i on more p rec i se beLow.

5 .1 .1 .1 . MuL t i - f o rmaL i sm

Since S; M and R a re ob jec t s of the SEE da ta base and the re -
f o re possess co r rec tness f Lags t he se t HEQ may be cons t ruc ted
au toma t i caLLy f r om the i n fo rma t ion con ta i ned i n t he ob jec t s
(see i n t he append i x f o r an exampLe) . The gene raL f o rm o f
t hese equa t i ons i s :

(*) S—Op(r f 1 (a rg l) ‚ . . . ‚ r f „ (a rg „)) = r f (M-op (a rg1 , . . . za rgn))

where S -op : M-op deno te ope ra t i ons o f S and M tha t a re con -
nec ted by the s i gna tu re morph i sm induced by R
r f deno tes t he rep - f unc t i on o f R
r f ; deno tes rep - f unc t i ons o f used rep -ob jec t s o f R : i

€ (n) .
a rg ; deno te appropr ia te a rgument exp ress ions o f

ModPascaL .

The proof o f HEQ bears some p robLems . I n gene raL : t he t heo ry
i n wh ich the equa t i ons a re f o rmaL i zed i s no t p red i ca te
caLcuLus o r some o the r s t anda rd Log i c , and t he re fo re s tanda rd
techn iques do no t appLy . I n gene raL , t he f o rma t sys tems a re :

S-op : ASPIK ope ra t i on , aLgo r i t hm icaLLy de f i ned .
m-op : ModPascaL ope ra t i on , de f i ned by an impera t i ve

p rog ram.
r f , r f ; : ca r r i e r mappings of r ep -ob jec t s , de f ined i n a

m ixed ASPIK/ModPascaL mode .
a rg i : ModPascaL va r i abLes and exp ress ions , tak ing

vaLues ou t o f a seman t i caL ca r r i e r .
We caLL the above s i t ua t i on muL t i - f o rmaL s i nce seve raL
f o rmaL i sms a re used t o exp ress HEQ.

A t f i r s t gLance t hese d i f ferent i tems may be un i ted by the i r
aLgeb ra i c mean ing : ASPIK as weLL as ModPascaL ope ra t i ons a re
assoc ia ted t o aLgeb ra Ope ra t i ons : and t he ca r r i e r mapp ing i s
eas iLy embedded . Bu t t he seman t i cs i s de f i ned deno ta t i onaL :
and the mean ings o f ope ra t i ons a re cons t ruc ted v i a Leas t f i xed
po in t s o f assoc ia ted f unc t i onaLs . Th is does no t aLLow
reason ing i n s tanda rd Log i c , s i nce f i xed po in t s canno t be ex -
p ressed i n f i r s t o rder Log i caL f o rmuLas . To be abLe t o proof
p ropos i t i ons unde r t h i s p recond i t i ons one has t o empLoy
me thods and t ooLs capabLe o f deaL ing w i t h deno ta t i onaL

Nnunmhnr 1 O R' ;

5 .1 .1 . HEQ Generation 1 0 9

semantics (e.g. LCF [GMW 793).

I n that case equation (*) above w o u L d become

MES-op(rf1(arg1);...rrfn(argn))fl§6 E MErf(M-op(arg1:...z
argn))fl§s

for states (§ .6) in which the occuring operation identifiers
are defined; an unfoLding of M yieLds to

s(§(S-op)¢1)(EErf1(arg1)]§sz...,EErfn(argn)]§6) =
6(g(rf)+1)(MEM-op(argl‚...‚arg„)3€6)

¢==$

(* *) s(g(S-op)+1)(s(g(rf1)w1)(EEarglflgs)‚...‚
s(§(rfn)¢1)(EEargnfl§6)) =

6(£(rf)+1)((s(€(M—op)$1)(EEarglfigs‚...‚EEarg„]£6)))

(first component seLection of EEarg13§s is omitted).

I t is obvious that a proof of the vaLidity of (**) for given
(§ . s) € S t a t e goes beyond the scope of the currentLy most

easiLy avaiLabLe first order theorem provers; more appropriate
systems are not designed for this appLication and this use in-
side a SEE. This couLd caLL in question our approach since we
appearentLy have t o pa y our empLoyment of denotationaL

semantics with unmechanizabiLity of associated proof tasks.

A first answer t o this objection may point a t the temporaL

character of this situation. Since the theory behind denota-
tionaL semantics is weLL-deveLopped and severaL proof tech-
niques are known (e.g. fixpoint induction: fixpoint compu-
tation; c.f. [Man 74]) , a proof system suited to our needs
couLd be very weLL impLemented. with speciaL emphasis on us.-
biLity in SEEs. Here we wiLL not further investigate this
aLternative.

More important is another soLution that is based on the fact
that under certain circumstances the set HEQ can be generated

by using a singLe formaLism. BeLow we make concrete this idea
(s e c . 5 .1 .1 .2 .) .

I t shouLd be emphasized that this compLications do not in-
fLuence our principaL conviction that denotationaL semantics
i s best-suited to describe SEE Language semantics. The exact-
ness and uniqueness of this formaLism makes disambiguities im-
possibLe, and it gives every SEE user a soLid framework for
his software deveLopment indepentLy from the necessity of
verification.

5 .1 .1 .2 . SinqLe FormaLism

We now present a soLution to the muLti-formaLism probLem. The
set HEQ is automaticaLLy generated in the form given in the
previous section. but then modified untiL the equations are
written in a s i n g L e f o r m a L i s m : as properties of an ASPIK

November 1985

1 1 0 5 .1 .1 . HEQ Generation

specification.

A very important fact is that this process is t o t aLLy mechani-
caL: if some pre-conditions are satisfied (essentiaLLy object-
associated properties that are administrated in the data base
of the SEE and therefore are e a s i L y a c c e s s a b L e and c h e c k a b L e) ,
then the modifications of HEQ take pLace according to a given
aLgorithm without u s e r i n t e r a c t i o n . The denotationaL semantics
probLems can be disregarded; it onLy remains to make sure that
the empLoyed descriptions for the Languages a s a w h o L e
coincide; i.e. that

I the equationaL (first order) descriptions used for ASPIK
specifications and the denotationaL semantics for ASPIK are
equivaLent

o the proof theory used for ModPascaL i s equivaLent t o the
denotationaL semantics

o the denotationaL semantics for rep-objects is a weLL-defined
extension of the ASPIK and ModPascaL semantics.

This is a voLuminous task, but it has to be performed
soLitariLy and independentLy from a given SEE scenario, e.g.
by the SEE designer. It then provides an exact base for SEE
Languages / objects and SEE verification theories (an ex-
empLary treatment of equivaLence of various Language defini-
tions can be found in [Don 76]). For our treatment we assume
that the three equivaLences above are shown.

An aLgorithm TR for transformation of singLe—formaLism HEQ
(short: SHEQ) out of muLti-formaLism HEQ (MHEQ) is infLuenced
by the fact that despite of the probLems arising from the
ASPIK semantics there are proof tasks of the abstract LeveL
that can be decided within standard Logic. The reason is that
sometimes it i s not necessary to compute the aLgebra operation
behind a n aLgorithmic d efi nit ion. I n s t e a d , one c a n t a k e t h e
definition directLy t o perform induction proofs with a n appro—
priate mechanicaL theorem prover. S i n c e t he d a t a i n v o L v e d are
eLements of carriers of canonicaL term aLgebras every induc-
tion is weLL—founded (structuraL induction). For exampLe, one
semanticaL property of a spec object of ALG i s the consistency
of the aLgorithmic definitions with the preperties. They can
be checked by structuraL induction proofs of every property by
using the aLgorithmic definitions. (Note, that termination has
to be considered separateLy.)

TR is based on this fact, and it tries to express SHEQ as
ASPIK equations; the occuring function symboLs are then
defined aLgorithmicaLLy in some specification t o be con-
structed (see sec. 5.1.3.). Therefore the ModPascaL portions
of MHEO have to be eLiminated and substituted by TR.

The rep-function (= carrier mapping) caLLs in HEQ are treated
more tricky: since the rep-function definition i s a mixture of
ModPascaL and ASPIK ; a n anaLogous eLimination and substitution
of ModPascaL parts is performed in the definition. That yieLds
to a pure ASPIK operation body, and caLLs of an aLgorithmi-

l u v - u h . -

5 .1 .1 . HEQ Generation 111

caLLy def ined ASPIK operation. With this detour the occurences
of rep-functions in MHEQ are integrated in an ASPIK formaLism
(w e have: in f a c t , cr eat ed a new rep-function by this process

which we wiLL caLL Lifting; therefore a new rep-function iden-

tifier wiLL be used in SHEQ). Note that Lifting has to be

semantics-preserving; see the formaL definition 5.1.1.2.-2 be-

L o w .

But how to eLiminate the ModPascaL parts of properties and

carrier mapping definition? Otherwise AS wouLd not be weLL-

defined!

The idea is to exchange ModPascaL constructs by 'semanticaL
equivaLent' ASPIK constructs to get a pure ASPIK specification
AS to which the method i s appLicabLe. Since every ModPascaL

operation is associated to a defining moduLe (o r enrichment),
the semanticaL equivaLence is primariLy defined on o b j e c t s . I t

is advantageous to base this notion on reaLizations.

5.1.1.2.-1 Def. EsemanticaL equivaLent]
Let S € Spec: M € (MOD u ENR) .
Then S and M are caLLed semanticaLLv equivaLent I if there ex-

ists R € Repob j with
(1) (S I M I R) is r e a L i z a t i o n
(2) The signature morphism of R is bijective

!

Notation: SE(S‚ M) s tands for 'S is semanticaLLy equivaLent to
M ' .
SE(S ‚ M, R) additionaLLy seLec t s a rep-object.

The new requirement imposed on reaLizations ensures the ex-

changabiLity of ModPascaL operations by ASPIK Operations. I n -

jectivity is not sufficient since it wouLd be uncLear how to
treat additionaL moduLe operations that occur in the MHEQ or
in the carrier mapping definition.

A first approximation of TR for semanticaL equivaLent objects
is:

There are three actions:
A) repLace a occurrence of a ModPascaL Operation identifier by

the uniqueLy associated ASPIK identifier
B) r e p L a c e the occurrence of a ModPascaL variabLe a s f o L L o w s :

since the variabLe i s of a fixed type, and since this type
is uniqueLy associated to an ASPIK sort, a new variabLe of
that sort has t o be generated and substituted in p L a c e of

the ModPascaL variabLe.
C) repLace the occurence of a rep-function identifier as

foLLows: appLy steps A and B to the rep-function defini-
tion; estabLish the resuLt (the 'Lifted' rep-function) as a
new operation identifier; substitute this identifier for
the occurrence of the rep-function identifier.

If TR is appLied to a set of syntactic structures, the steps
A , B , C are performed.

November 1985

1 1 2 5 .1 .1 . HEQ Generation

We write TR(S) for the resuLt of the appLication of TR to a
structure S .

with this definition of TR the Lifting of_a repfunction can be
decLared. To guarantee appLicabiLity of step c) we assume a
s e t of primitive rep-functions with appropriate Lifted ver-
s i o n s .

5 .1 .1 .2 . -2 Def. [Lifting]
Let S and M be semanticaLLy equivaLent with R .
Let rf denote the rep-function of R .
Then the Lifting rfL of rf is defined by rfL : = TR(rf).

For a given MHEO. TR(MHEQ) yieLds in a tupLe consisting of
o a modified MHEQ. that is nearLy pure ASPIK ; we denote this

set by 'MHEQ' .
o Lifted versions of the rep-functions.

The main point is that TR is onLy appLicabLe for semanticaL
equivaLent objects i.e. if SE(S ‚ M) hoLds ; but S and M of a
given re-co (S IM IR) do not yet have t ha t p rope r t y and there—
fore step A above wiLL onLy be appLicabLe for the definition
of some used rep-function (which has occurrences of Operations
of semanticaLLy equivaLent objects); but it does not modify
MHEO!

Therefore we introduce an intermediate step that wiLL overcome
this probLem with ModPascaL constructs in MHEQ (note that we
we need to consider onLy this case; in the case of the rep-
function definition of R it is enforced by syntax and
semantics of rep-objects that onLy constructs of objects occur
which are used by M (the moduLe/enrichment invoLved in the
connecting c L a u s e of t h e r e p - o b j e c t) . I n other words: no
pubLic operations of M occur in the rep—function definition.)
The case of MHEQ is sLightLy different. Every equation
embodies eXpLicitLy a pubLic operation of M. and no operation
of used o b j e c t s . I n this case a substitution-Like exchange of
ModPascaL by ASPIK is impossibLe and senseLessz since the
vaLidity of the equation is used to impLy just this inter-
changabiLity.

A soLution is offered by the foLLowing considerations: in the
homomorphy equation c a s e : we are f i n a L L y interested in the
effect of a m oduLe operation c a L L , where effect means either
the induced s t a t e change or the represented v a L u e . To deter-
mine the effect we couLd use our denotationaL semantics func—
tion for ModPascaL: w e c o u L d compute MEdpcaLLflge and sub—
stitute the resuLt in MHEG for 0pcaLL. But this is sLightLy
orthogonaL to our above described intention:

. MEOpcaLLIgs i s based on an aLgebra function defined by an
appropriate ModPascaL operation definition opdef and
MEopdef]. UnfortunateLy, if we wouLd substitute opcaLL by

. . . I - - I nfi l -

5 .1 .1 . HEQ Generation 113

MEopcaLne in MHEQ‚ we wouLd exchange ModPascaL by a pure
mathematicaL formaLism, and getting no step c L o s e r to our

goaL of gag formaLism! Beside that we wouLd torpedo our
decision for a n ASPIK formaLism.

o If we w o u L d not o n L y ~ s u b s t i t u t e but simuLtaneousLy evaLuate

the M terms, we might be more Lucky . But evaLuation of

denotationaL semantics cLauses invoLves sophisticated: not
avaiLabLe machinery (c.f. the remark on this topic in sec.
5.1.1.1.). As a resuLt we wouLd not increase the degree of
mechanization in our SEE.

We propose another way apart of denotationaL semantics terms
that uses a symboLic evaLuation step (sec. 5 .1 .1 .2 .1 .) ‚ but is
not free of probLems (sec. 5 .1 .1 .2 .2 .) .

5 .1 .1 .2 .1 . SvmboLic EvaLua t i on

I n this section we outLine how symboLic evaLuation can be used
to achieve a symboLic representation of the effect of a
ModPascaL Operation caLL.

Consider the design of moduLe types in ModPascaL. A mandatory
component of these constructs are LocaL variabLes. Every set

of gLobaL variabLes of a moduLe operation definition has to be
a subset of this LocaL variabLe set.

Let L i , i € (n) denote the types of the LocaL variabLes of a

moduLe M , and (v 1 , . . . , vn) € (L1 x ... x L") a vector of
vaLues of LocaL variabLes. Every (v l , . . . , v“) is aLso caLLed
a n internaL state of the moduLe incarnation (s i n c e this is
just the information that the denotationaL semantics of
ModPascaL assigns t o a variabLe of type M).

Then every moduLe operation caLL either
- seLects information from an internaL state, or
- modifies an internaL state.

or pictoriaLLy:

mod-op-caLL
(V1 , 0 - .) V ") > (V I . , . . . , Vn ')

mod—op-caLL

v a L

where vaL denotes an expression over (v l , . . . , v ") , and the
v;': i e (n) are vaLues of LocaL variabLes after execution the
operation caLL.

Now the main point is that in speciaL cases the v;' and vaL
can be computed by symboLic evaLuation in a way that no pubLic
operations of M occurs - due to the semanticaL restrictions
imposed on moduLe operation definitions. Then we can sub-
stitute ModPascaL operation c a L L s by equivaLent (vectors o f)
expressions of the LocaL variabLes of M which do not contain

November 1985

114 5 .1 .1 . HEO Generat ion

occur rences of any pubL i c operation of M . Together w i t h some
h ie ra rchy assumptions of sec . 5 .1 .2 . we t hen a re abLe t o
mechan i caLLy gene ra te s i ngLe f o rmaL i sm HEQ and t o der i ve p roo f
t asks su i t abLe f o r mechan i caL f i r s t o rde r t heo rem p rove rs (see
sec . 5 .1 .3 . beLow) .

There fo re we de f ine a new ac t i on fo r ou r t r ans fo rma t i on aLgo r -
i t hm and caLL t he resuL t i ng se t o f ac t i ons TR-SYM:

TR-SYM (aLgo r i t hm fo r gene ra t i on o f SHEO by symboL i c
evaLua t i on)

TR-SYM cons i s t s o f f ou r ac t i ons :
A) repLace an occu r rence o f a ModPascaL Ope ra t i on i den t i -

f i e r by t he un iqueLy assoc ia ted ASPIK iden t i f i e r
B) repLace t he occu r rence o f a ModPascaL va r i abLe as

f oLLows : s i nce t he va r i abLe i s o f a f i xed t ype : and
s ince th is t ype i s un iqueLy assoc ia ted t o an ASPIK so r t :
a new va r i abLe o f t ha t so r t has t o be gene ra ted and sub -
s t i t u t ed i n pLace o f t he ModPascaL va r i abLe .

C) r epLace t he occu r rence o f a r ep~ func t i on i den t i f i e r as
f oLLows : appLy s teps A and B t o t he rep - f unc t i on de f i n i -
t i on ; es tabL i sh t he resuL t (t he ' L i f t ed ' r ep - f unc t i on)
as a new ope ra t i on i den t i f i e r ; subs t i t u t e t h i s i den t i—
f i e r f o r t he occu r rence o f t he rep - f unc t i on i den t i f i e r .

S) evaLua te eve ry caLL o f a pubL i c ope ra t i on o f M symboL i -
caLLy by p roduc ing a vec to r o f exp ress ions o f t he LocaL
va r i abLes o f M tha t r ep resen ts t he e f f ec t o f t he ope ra -
t i on caLL ; subs t i t u t e t he vec to r f o r t he ope ra t i on caLL .

The appL i ca t i on o f TR-SYM to a syn tac t i c s t r uc tu re (MHEQ
o r r ep - f unc t i on de f i n i t i on) means :

1) pe r fo rm S
2) pe r f o rm A ; B and C

The resuL t o f an appL i ca t i on o f TR-SYM to a se t MHEQ i s a t u -
pLe (SHEQ: r f L) w i th
o SHEQ: the mod i f i ed se t MHEQ; f o rmaL i sm i s (pu re) ASPIK
o r f L : a L i f t ed ve rs i on o f r ep - f unc t i ons .

(see aLso the append ix f o r an i LLus t ra t i ve exampLe .)

An impor tan t cond i t i on f o r the soundness o f t h i s aLgor i t hm i s
t ha t t he symboL i c evaLua t i on co inc i des w i th ou r deno ta t i onaL
seman t i cs f o r ModPascaL . Bu t aga in : t h i s i s a once -and -neve r -
aga in t ask wh i ch has t o be pe r f o rmed by t he des igne r o f a SEE;
we sk ip i t he re .

5 .1 .1 .2 ,2 . Cu r ren t L im i t a t i ons

The usab iL i t y o f symboL i c evaLua t i on t o exp ress the e f fec t o f
ModPascaL cons t ruc t s - i n MHEQ depends on t he L im i t a t i ons t ha t
come w i t h t h i s t echn ique . Bes ide numerous t echn i caL p robLems
rang ing f r om i n teg ra t i on o f such a sys tem i n to t he con tex t o f

November 1985

5 .1 .2 . I nvoLva t i on of Hierarchy Information 115

ASPIK and ModPascaL up to administration of traversaLs,
unfoLdings/foLdings of definitions etc. and preserving of con-
sistency of the evaLuation process, there are aLso severe
theoreticaL difficuLties.

For e x a m p L e , iterative structures c a u s e probLems since the

nUmber of repetitions is unknown in generaL. Then two soLu-
tions are thinkabLe: either
- counters are introduced that bound the traversaLs through a

Loop and that aLLow to reLate variabLe vaLues of different
t r a v e r s a L s : o r

- Loop invariants are introduced; then probLems arise weLL-
known from cLassicaL Hoare verification: How to get in-
variants? Are they strong enough? e t c . , and one L o o s e s much

of the benefits of aLgebraic verification concepts.

Since both a L t e r n a t i v e s have far-reaching consequences on the

proof method we do not invoLve one of them in the current
paper and restrict ourseLves t o what is possibLe in our
current framework. If situations with iterative structures
occur; we wiLL not appLy symboLic evaLuation but present an
equation Like (**) in sec. 5 .1 .1 .1 . to the user. Then he has
interactiveLy decide the vaLidity of the equation, and then
the system carries on with his answer (see the appendix for an
exampLe). With this Limitations it is obvious that the cLass
of operations and moduLes suitabLe for symboLic execution is
not Large enough t o be s u c c e s s f u L L y empLoyed i n practicaL e x -

periences, and essentiaL extensions are necessary. Neverthe-
Less , in the (unexpected frequent) cases where our technique
is nevertheLess appLicabLe, it mechanizes compLeteLy the
generation of prooftasks suitabLe for automatic theorem
provers and in the consequence the check of correctness of a
reaLization, a fact that i s highLy vaLuabLe for the acceptance
and performance of a software deveLopment system dedicated t o

verification issues.

5 . 1 . 2 . Invo Lv ation of Hierarchy Information

Up to now a basic property of a L L components of a re-co
(S IM IR) has not been considered: each object is hierarchicaL
i n that sense that i t is b a s e d on a L r e a d y defined objects. Now
the idea is to make assumptions concerning the hierarchies
that aLLow u s to consider onLy the top-eLements in our cor-
rectness c h e c k s . This w o u L d free u s from the necessity of
resoLving aLL use-reLations before making correctness checks;
the then generated three 'overaLL' objects wouLd be of
enormous compLexity in generaL and not very weLL suited to
mechanicaL treatment. (Note that (a) use-reLations are of pure
syntacticaL nature (structuring), (b) hierarchies are
cycLefree, therefore resoLution is possibLe, and (c) the
vaLidity of formuLae is not affected by merging / separating
formuLae sets.)

The first assumption deaLs with predefined structures of
ModPascaL (t y p e s , type g e n e r a t o r s) .
Let T : = { B O O L E A N } INTEGER; CHAR; STRING} and

November 1985

116 5 .1 .2 . I nvoLva t i on of Hierarchy Information

T6 := (a r ray , record: f iLe , se t , (enumera t ion) , (sub -
range>}

(REAL omitted; the b racke ted eLements o f Tc denote the obvious
type cons t ruc tors .)

Now we assume tha t every eLement o f (T u TC) has a counte rpar t
i n ASPIK ’ i . e . tha t there i s a se t S (T) of aLgor i thmic spec i -
f i ca t ions and a se t SC(TC) of aLgor i thmic spec i f i ca t ion con-
s t ruc te rs such tha t ASPIK and ModPascaL s t ruc tures a re
un iqueLy assoc ia ted .

The second assumpt ion says tha t the assoc ia ted ob jec ts a re
semant icaL equ ivaLent , i . e . there a re rep -ob jec ts fo r every
ModPascaL-ASPIK ob jec t pa i r such tha t 5 .1 .1 .2 . - 1 i s sa t i s f i ed .

Both assumpt ions are eas iLy sa t i s fyabLe s ince they do not in -
cLude user -de f ined ob jec ts ; the ins taLLa t ion of appropr ia te
ob jec ts as sys tem components i s a soL i ta ry task .

The third assumpt ion ex tends the f i rs t two to aLL ob jec ts
(p roperLy) used by any user -de f ined ModPascaL ob jec t M of the
re -co : every used s t ruc ture o f M ' has an assoc ia ted aLgor -
i thmic ASPIK spec i f i ca t ion 8 ' , such tha t S ' and M' a re seman-
t i caL equ ivaLent .

The four th and f inaL assumpt ion der ived f rom the h ie ra rchy
proper ty deaLs w i th the LocaL ob jec ts of M . Every LocaL ob jec t
L i s aLso assumed to be connec ted to a spec i f i ca t ion SL such
tha t the semant icaL equ ivaLence hoLds . Bu t s ince L i s not ex -
pL ic i tLy used by M . we cannot cons ider the usuaL h ierarchy re -
Lat ion . To modeL the s i tua t ion we in t roduce a use -LocaL re -
La t ion tha t hoLds be tween a moduLe and i t s LocaL ob jec ts . The
hierarchy no t ion fo r ModPascaL ob jec ts i s ex tended to aLLow
both use - and use -LocaL- reLa t ions . We use U (ob) to denote the
used ob jec ts of 0b : and UL(ob) to denote the used LocaL
ob jec ts o f ob .

To preserve cons is tency , an anaLogous mod i f i ca t ion i s per -
fo rmed on the ASPIK LeveL fo r those spec i f i ca t ions tha t a re
semant icaL equ ivaLent to a moduLe. (No te tha t ' use -LocaL ' i s
equ ivaLent to 'use ' in the case of spec i f i ca t ion h ie ra rch ies) .

Note tha t the Las t two assumpt ions can be reduced to the f i rs t
two: every user -de f ined ModPascaL ob jec t i s bu iL t f rom eLe -
ments of T u TC; so by s t ruc turaL decompos i t ion the assump-
t ions on used and used-LocaL ob jec ts may be reduced to the
assumpt ions for T u TC . ALSO: in the case of t ype genera to rs
the pos tuLa tes above can be der ived f rom the semant icaL
equ ivaLence o f the base types . Bu t the re is no way to repLace
the assumpt ions fo r the La t te r .

November 1985

5 .1 .2 . InvoLvation of Hierarchy In format ion 117

PictoriaLLy: we have for a re-co (S:M:R) the foLLowing
hierarchies and assumptions:

3 M
l I

l l | l
31 Sm M1 M

l I I | l l
BOOL BOOLEAN

(fl

“
"
-
3

| use -LocaL |

1
l I l
s'1 ... s'K M' w e

1 I l I | J
BOOL BOOLEAN

Fig. 5 .1 .2 . -1 : Object hierarchies

For the proof that S e Spec and M € (MOD u ENR) are semanti-
c a L L y equivaLent we proceed a s f o L L o w s :
(a) SuppLy R € Repobj
(b) S h o w ; t ha t (S I M I R) i s r e a L i z a t i o n

(c) Show the bijectivity of the signature morphism of R

Let R € Repob j be given.
To decide (b) : we construct an inductive proof of the con—
sistency of the artificiaL specification AS. The induction is
L e a n e d t o the hierarchicaL structures that are induced by S
and M via their use—reLations.

The assumptions in this situation are:
I Every M; is semanticaL equivaLent to some S 5 ; i e (n) , j e

(m)
o Every M'; is semanticaL equivaLent to some S';: i e (L) , j e

(K)
. ALL other eLements in the M hierarchies are semanticaL

equivaLent t o some ob ject s of t h e associated S hierarchies.

Note that these assumptions aLone do not impLy isomorphic

November 1985

118 5 .1 .3 . FormaLism of the Induction Proof Task

hierarch ies .

5 .1 .3 . FormuLation of the Induction Proof Tag;

As pointed ou t we wiLL use our modi f ied se t SHEG and the
L i f ted rep- funct ion r fL to const ruc t an a r t i f i c iaL spec i f i -
ca t ion ob jec t AS ' (S ‚M) fo r given re -co (S IM IR) w i th

I p roper t i es : SHEQ
. operation: r fL

AS ' (S ‚M) i s weLL-de f ined : because aLL used ModPascaL ob jects
M; are semant icaLLy equ ivaLent to ASPIK ob jec ts S i , we can ex -
change occur rences of opera t ions of M; by opera t ions of 8 ;
w i thout caus ing harm. ALso , moduLe var iabLes may be t rans -
fo rmed in spec var iabLes . And th i rd , fo r aLL LocaL ob jec ts M ' ;
o f M there a re semant icaLLy equ ivaLent specs . In the case ,
when symboLic execut ion i s appL icabLe th is can be used to
remove f rom MHEQ the express ions tha t were subs t i tu ted fo r the
pubL ic opera t ion occur rences . The express ions over LocaL
var iabLes tha t were genera ted by symboLic execut ion of oper -
a t ion def in i t ions in order to ca tch the e f fec t o f an opera t ion
caLL a re t rans formabLe in to ASPIK express ions by exchang ing
semant icaLLy equ ivaLent opera t ions and var iabLes . From th is i t
foLLows: both opera t ions and proper t ies of AS conta in no
ModPascaL cons t ruc t (i . e . AS € Spec) .

Graph icaLLy we can const ruc t AS ' (S ‚M) with the not ions of the
prev ious sec t ion :

AS ' (S :M)

S; S'" S ' ; S 'K

F"! ["—l FL! F"!
l I " I !

BOOL

5 .1 .3 . -1 Fig.: AS' (S ‚M) h ierarchy

S ince we want to have r fL as s ingLe funct ion of AS ' tS ’M) and
r fL is defined on 8 '1 , i € (K) , then the above objects are

Mnuamhor 1085

5 .1 .3 . FormaLism of the Induction Proof Task 119

necessa ry . I f so r t s a re amb iguousLy deno ted by ob jec t names :
t hen the f unc t i onaL i t y of r f L i s

9 .1 x . . . X 8 . “ © S

New the properties o f AS ' (S ‚M) (=SHEQ) just say t ha t r fL i s a
homomorph ism. I f we can show the i r vaL id i t y we are nea rLy
r eady : we onLy have t o de r i ve f r om the homomorphy o f r f L t he
homomorphy o f r f t o sa t i s f y ou r de f i n i t i on o f r eaL i za t i on . Bu t
t h i s i s a t r i v i aL s tep : s i nce we gene ra ted r f L f r om rf by sub -
s t i t u t i ng seman t i caL equ i vaLen t Ope ra t i ons , da ta and
va r i abLes , eve ry p repos i t i on f o r r f L hoLds d i r ec tLy f o r r f .
There fo re i t i s su f f i c i en t t o show homomorphy f o r r f L .

Up t o now AS ' (S :M) contains onLy the de f i n i t i on o f r f L bu t no
de f in i t i on of used rep—func t i ons (wh i ch might occu r i n SHEQ as
weLL as i n t he r f and r f L de f i n i t i on) . To i ncLude aLL po ten-
t i aL necessa ry de f i n i t i ons we cons t ruc t a h i e ra r chy o f AS—
ob jec t s .

This i s aLways poss ibLe i f we i nvoLve the h ie ra rchy in fo r -
ma t i on o f S and M , acco rd ing t o the p rev ious sec t i on .
Espec iaLLy , we assume tha t we have seman t i caL equ i vaLen t
h ie ra rch ies f o r S and M i . e . SE(U(S) , U (M)) and SE(UL(S) ,
UL (M)) hoLd . Under t h i s assump t i on f o r eve ry S ' € (U (S) v
UL(S)) and M ' € (U (M) v UL(M)) t he ob jec t AS ' (S ' ‚ M ') i s con -
s t ruc tabLe . S ince AS ' -ob jec t s f o rm aLso a h ie ra rchy (s ta r t i ng
w i t h AS ' (BOOL, BOOLEAN)) we have t he f oLLow ing s i t ua t i on :

AS ' (S ‚M)

[
AS' (S ‚M1) AS' (Sm:Mm) AS ' (S ' ,M'l) AS' (S 'K ‚M '„)

‚__Lj
' I ' I I

I
AS'(BOOL:BOOLEAN)

5 .1 .3 . -2 F iq : AS-ob jec t s (i somorph i c h ie ra rch ies f o r S ‚M)

We wiLL use the f oLLow ing

Nota t i on : AS(S ‚ M) deno tes an a r t i f i c iaL spec i f i ca t ion con-
s t ruc ted as AS'(S‚ M) , bu t U (AS(S ‚ M)) contains onLy
S and o the r AS-ob jec t s .

November 1985

120 5 .1 .3 . FormaLism of the Induction Proof Task

Note that AS(S ‚ M) contains definitions of aLL (Lifted) rep-
functions; it therefore w i L L be used in proof scenarios.

To show properties of an ASPIK specification vaLid; there are
two aLternatives:
o deduce them from v a L i d (o t h e r) properties
. show them consistent with aLgorithmic definitions of the

occuring operations.

Deduction as weLL as consistency check invoLve support from
mechanicaL theorem provers. 80 both possibiLities are of
simiLar compLexity. But since AS(S ‚M) is aLgorithmic we take
the consistency check to prove SHEQ.
I n order to show consistency of an aLgorihmic specification
one has to proceed a L o n g the f o L L o w i n g aLgorithm CON:

gg_ input: aLgorithmic, specterm-free,
zero/one-sorted specification S

output: true, if aLgorithmic definitions satisfy
the properties P(S) of S

faLse otherwise

(1) 31 S contains no properties, gngn CONtS):=true
(2) for every property p of P(S) .

for aLL variabLes v; of sort 8 ; occuring in P:
i € {1...u}.
gg; ec;; denote the set of eLementary (=no arguments)

constructors of sort 8 ; ,
1 € (n) ; j € (Q i) : q ; € N in

333 cg; denote the non-eLementary constructors
Of SOPt S i r 1 € (n) : j € (P i) ! Pi € N Än

(2 .1) gg; EC : = { (ec1 ;1 ‚ . . . ‚ e c „ ; „)
jK € (q „) ‚ K € (n))

denote the set of vectors of eLementary
constructors in

for every (e1 ‚ . . . ‚ e „) € E C .
p [(v1 ‚ . . . ‚ v „)+fl (e1 ‚ . . . ‚ e „)] hoLds

(2 -2) % C : = { (C13 (1 ‚ r . . . : C „ ; ‚ „ ‚)

jK e (r k) , K € (n) }
denote the set of vectors of constructors in

kg; ct; denote a constructer term of sort S i :
i e (n) in

for every (e l ‚ . . . ‚ e „) e C .
ii p[(v1I...,vn)+fi(ct1,...:ctn)] hoLds
then p[(v1‚...‚v„)+*(el<ct1‚...‚ct„‚

C t ' l l . . . : C t ' a > r
e „ < C t 1 : . . . l C t „ l C t ' l l . . . r C t ' a >)]

hoLds
Where @ ; (C t l l u u n - I C t n I C t ' 1 1 - - - I C t ' a >

denotes the constructor term buiLd
from 9 3 : C t ; (1 ‚ l . . - C t ; (b ‚ l c t ' ; „ 1 ‚ r . - . :
c t ' ; (c „ according to the arity
of e s , with

ct'; constructor term of some sort,
i € (a) : a € N

L I A - aan—Innv— 4 0 ° C

5 .1 .3 . Fo rmaL i sm o f t he Induction Proo f Task 121

{ i l l - nn l i b } b {1 l . . . l n } l

(‚ f i l l - . . l j c } b { 1 ‚ . . . : a }

(3) I f bo th (2 .1) and (2 .2) hoLd , t hen CON(S) : = t rue ;
otherwise CON(S) := f aLse

Remarks : a) The s teps (2 .1) and (2 .2) t oge the r f o rm a s t r uc -
t u raL induction scheme tha t can be d i r ec tLy used
by t he p roo f sys tem.

b) (2 .1) can be shown by s impLe appL i ca t i on o f oper -
a t i on de f i n i t i ons (e .g . by use of an i n te rp re te r
f o r ASP IK) . Since EC i s f i n i t e , a poss ibLe way i s
t o check mechan i caLLy eve ry aL te rna t i ve .

c) (2 .2) r ep resen ts t he induction s tep : s ince the c t ;
se t s a re coun tabLe (bu t weLL - founded) , t he onLy
way t o show the impL i ca t i on i s t o use an induction
p roo f sys tem tha t may t ake Lemmata e t c . f r om un -
f oLd ing o f ope ra t i on de f in i t i ons o r f r om proper ty
se t s o f ' Lower ' , aL ready cons i s ten t specs .

I

I n the case o f AS(S,M) a second induc t ive scheme i s impL i c i t Ly
empLoyed as a r esuL t o f ou r assump t i ons . The used and used -
LocaL ob jec t s M ' o f M a re assumed to be seman t i caLLy equ i va -
Len t t o some spec i f i ca t i ons S ' . I n t h i s v i ew we have a
h ie ra rchy o f a r t i f i c i aL spec i f i ca t i ons (s ta r t i ng w i th
AS(BOOL,BOOLEAN)) t ha t a re aLL assumed to be cons i s ten t excep t
a t he t op -eLemen t AS(S ,M)
e S
. used objects S ' o f S such that no used ob jec t M ' o f M i s

seman t i caLLy equ i vaLen t t o S ' .

The cons i s tency o f S i s no t de r i vabLe f r om a seman t i caLLy
equ i vaLence , s i nce t he La t t e r i s j us t t he goaL o f t hese con -
s i de ra t i ons ! I f cons i s tency o f S i s needed i t has t o be shown
expL i c i t Ly . The same hoLds f o r ob jec t s 8 ' above .
I f add i t i onaL requ i remen ts a re imposed on t he h i e ra r ch ies
(" i somorph i c s t r uc tu re ") , t hen t he t h i r d k i nd o f unknown con -
s i s tency above w iLL no t occu r . I f i n t h i s case t he cons i s tency
o f S i s shown sepa ra teLy , aLL p rope r t i es o f aLL used spec i f i -
ca t i ons o f AS(S ,M) may be empLoyed i n s tep (2 .2) o f CON: ap -
pL ied to AS(S:M).

I t shouLd be ment ioned t ha t t he cons t ruc t i on of a r t i f i c i aL
spec i f i ca t i ons AS(S ,M) f o r M be ing ModPascaL p rede f ined type
i s no t unp robLema t i c . Th is i s due t o t he f ac t t ha t (1) t he
modeL o f ModPascaL s tanda rd t ypes has t o r esoLve cycLes (see
sec . 4 o f EOLt 8433) , and (2) r ep - f unc t i ons a re gene raLLy
based on LocaL va r i abLes ; i n t he case o f s t anda rd t ypes t he re
a re no such va r i abLes !

The f i r s t po in t i s ma inLy o f t echn i caL na tu re : i f t he cor rec t
h ie ra r chy o f ModPascaL ob jec t s i s used , onLy t he degree o f
compLex i t y w iLL i nc rease .

November 1985

1 2 2 5 .1 .4 . T rans fe r of Proof Tasks

The second probLem can onLy be soLved in a speciaL treatment
of rep-objects and rep-functions for ModPascaL standard t y p e s .
For exampLe one couLd aLLow a missing rep-function definition
in that case, and if carrier eLements of the ModPascaL struc-
ture occur one immediateLy switches over to the associated
ASPIK structure and its carrier eLements.
Independent of the choosen soLution the necessary consequence
is that empLoyed aLgorithms and u s e d proof systems have t o be
advised t o handLe correctLy the standard object s i t u a t i o n .

Though we are conscious about the technicaL and theoreticat
probLems arising we do not go into further detaiL and postpone
a more comprehensive discussion.

We summarize the induction proof task:
Given the situation of figure 5 .1 .3 . -2 :
(a) Require isomorphic hierarchies for S and M
(D) Show CON(S) = true
(c) Show CON(AS(S ‚M)) = true
=> rfL is homomorphism

. . . - Lemma
Let S € Spec, M e (MOD u ENR) ‚ R e Repobj.
Let AS(S :M) be as above such that AS(S ‚M) e Spec.
Then it is equivaLent:

(SIMIR) is reaLization c==> AS(S ‚M) is consistent
u

Remarks: a) AS(S ‚M) € Spec impLies pure ASPIK properties (and
therefore previous appLicabiLity of symboLic ex-
ecution).

b) The equivaLence is expLoited to check re-co's. The
consistency of AS(S ,M) may be shown by standard
methods empLoyed for non-artificiaL ASPIK specs,
different from CON.

n

5 .1 .4 . Transfer of Proof Tasks

Once proof tasks suitabLe for mechanicaL theorem provers have
been generated: a transfer to some a v a i L a b L e proof system has
to be initiated. Since in generaL provers are designed to sup-
port one specific proof type (induction, rewriting, equaLity
reasoning), it shouLd be cLear from the proof task which sys-
tem has t o be u s e d .

Since we are interested in consistency proofs by induction
(c . f . s e c . 5 . 1 . 3 .) , one c o u L d a u t o m a t i c a L L y transfer generated
proof tasks. Independentty form the target system one wiLL
have to transform the ASPIK equations into the accepted input
Language. To get reLiabLe resuLts it has t o be guaranteed that
the transformation of proof tasks is semanticaLLy correct 1.9.
one has to perform another once-and-never-again t a s k con-

sisting in the check of 'semanticaL equivaLence' of proof task
representation. We assume that this has been done for our
scenario.

Mnuamhah 1 0 2 €

5 .2 . PMR 123

There i s no scheme for deciding: which equat ions beside those
of AS(S ‚M) (e .g . aLL equa t ions of the h ie ra rchy?) shouLd be
phys icaLLy a t tached to the p roo f task . There a re cases in wh ich
nearLy every equa t ion i s necessary fo r a success fuL p roo f ;
sometimes the p resence o f redundant equa t ions d ramat icaLLy
decreases e f f ic iency o r even makes a proof imposs ibLe . We
assume an appropr ia te soLut ion o f th is probLem.

5 .1 .5 . Administration

I n SEES: every so f tware deveLopment wiLL come wi th consideraw
bLe number of p roof t asks ; fo r exampLe: if spec i f i ca t ion
h ie ra rch ies a re reaL ized in ModPascaL then fo r every ob jec t
the re i s a separa te p roo f t ask . There has to be a sa t i s fac to ry
soLut ion to the representa t ion probLem of proof t asks and to
the admin is t ra t ion o f aLready ach ieved in te rmed ia te resuLts .
In par t i cuLar :
a proof t asks shouLd become ob jec ts by the i r own , w i th

reLa t ions to da ta (spec i f i ca t ions , moduLes) and tooLs .
o proof t asks conta in the i r cur ren t s ta te (p roved or no t) .
I vaL id formuLae a re marked i f a p roof sys tem or the sof tware

eng ineer vaL ida ted them.
. pend ing proof t asks induce a Lock on invoLved ob jec ts tha t

hinders des t ruc t ive access .
o the re a re induc t ive schemes which aLLow to incorpora te

aLready vaL id fo rmuLae in to a proof t ask conven ien t ty .
I t he re i s a p ropaga t ion aLgor i thm tha t upda tes vaL id i ty o f

proof t asks i f des t ruc t ive ac t ions (as ed i t ing of cor rec t
ob jec ts) have occured .

ALL these fea tu res have to be t ighLy coupLed to the user in—
t e r face to aLLow e f f i c ien t p rocess ing of p roof t asks . We
assume a SEE w i th comparabLe capab iL i t i es .

5 .2 . PMR

we now put toge ther the s ingLe subtasks descr ibed in sec . 5 .1 .
The resuLt i s an aLgor i thm tha t gu ides the sof tware engineer
and the SEE in o rder to show the reaL iza t ion p roper ty . We do
not expL ic i tLy d is t ingu ish whether s ingLe s teps a re per formed
manuaLLy or mechan icaLLy; th is aspec t was covered in the
prev ious sec t ion .

The method fo r the p roo f o f the reaL iza t ion proper ty (PMR)
then i s de f ined as foLLows:

PMR

Let (S , M , R) denote a re -co .
Let SE(U(S) : UCM) ; U (R)) and SE(UL(S) : UL (M) ‚ UL (R)) hoLd .

(1) Le t SM denote the s ignature morphism induced by R .
I f SM is not b i j ec t i ve , s top wi th fa iLure .

(2) Genera te MHEQ

November 1985

124 5 .2 . PMR

(3) Check i f symboL ic evaLua t i on i s appL i cabLe .
I f no t , b ranch t o (6) .
O the rw i se : SHEQ := TR_SYM (MHEQ)$1

r f L : = TR_SYM (MHEQJTZ
(4) Genera te AS(S ‚ M)
(5) Check , i f CON(AS(S‚ M)) hoLds .

I f i t i s t he case : s t op with success
Othe rw i se : s t op w i t h f a i Lu re

(6) Compute MHEQ w i th seman t i caL ope ra to r s .
Look f o r ex te rnaL dec i s i on abou t t he vaL id i t y o f
MHEQ eLemen ts .
B ranch t o (4)

Remarks a) The used and used -LocaL ob jec t s a re assumed to be
aL ready seman t i caL equ i vaLen t .

b) The b i j ec t i v i t y o f SM i s no t necessa ry i f S and M
a re t he f i naL ob jec t s o f t he so f twa re deveLopmen t .
I n t he o the r case t h i s cond i t i on ensu res t ha t
ob jec t s us i ng M can be t r ea ted w i t h PMR (see a) .
The ma in po in t i s t ha t f o r eve ry conc re te ope ra t i on
t he re has t o be an abs t rac t coun te rpa r t i n o rde r t o
per form techn i caL s teps as L i f t i ng o r SHEQ gener—
at i on . Toge the r w i t h t he s i gna tu re morph ism
proper ty th i s i nduces b i j ec t i v i t y .

c) No te t ha t a f t e r s t ep 6 i t i s i n f ac t poss ibLe t o
genera te AS(S , M) , s i nce b i j ec t i v i t y of SM i s
assumed. The se t MHEG i s mod i f ied by subs t i t u t i on
o f ModPascaL cons t ruc t s by ASPIK cons t ruc t s , w . r . t .
SM.

d) S top w i th success means : (S ; M , R) i s a
reaL i za t i on , o r SE(S , M) hoLds . The nega t i on " s top
w i th f a i Lu re " does no t po in t t o a un ique sou rce
tha t causes the non -p rovab iL i t y : e i t he r
- SM assoc ia tes ob jec t s /ope ra t i ons wrong o r i n -

adequa teLy , o r
- S was i nadequa teLy o r wrongLy de f ined , o r
- M does no t wha t i s spec i f i es i n S .
A t ho rough anaLys i s of aLL poss ib i L i t i es has t o
f oLLow. .

This aLgo r i t hm g ives a rough overv iew on PMR. The de ta i Ls a re
skipped (9 .9 . how to t rea t 'm i xed ' cases , when fo r some oper-
a t i ons o f a moduLe symboL i c evaLua t i on i s poss ibLe ; bu t no t
f o r o the rs) .

A sys tem where PMR i s impLemented aLLows the in te rac t i ve check
of cond i t i ons t ha t impLy the co r rec tness of a r eaL i za t iOn .
Moreove r , i n some cases i t i s poss ibLe t o mechan i ze t he proo f
compLe teLy . Th is f ac t con t r i bu tes eno rmousLy t o t he accep tance
and appL i cab iL i t y o f the so f twa re deveLopmen t sys tem s i nce no
spec iaL i s t s a re needed t o ve r i f y p roo f t asks .
I t shouLd be recaLLed t ha t t he embedd ing o f PMR (as every
ve r i f i ca t i on me thod) r equ i res a comprehens i ve and
soph i s t i ca ted ob jec t adm in i s t r a t i on sys tem tha t gene ra tes , i n -
spec t s , man ipuLa tes , o r p ropaga tes seman t i c p rope r t i es o f t he

November 1985

6 . Summary 125

kind "is-reaLization". Cons is tency issues have to be soLved
arising from destructive operations as e.g. editing or erasing
of o b j e c t s .

6 . Summary

This paper presents an overview on a soLution of the impLemen-
tation verification task arising in muLti-LeveL and muLti-
Language software deveLopment environments. The situation is
considered, when

o aLgebraic specifications for the abstract description, and
o moduLe constructs for the concrete description

of non-concurrent behaviour are u s e d . For both description
LeveLs the exempLary Languages ASPIK and ModPascaL are
formaLLy introduced. ASPIK is an aLgebraic specification Lan-
guage supporting hierarchicaL design of software; it provides
verifiabLe notions for inter-object reLations as 'refinement'
or 'impLementation', and offers a f L e x i b L e object
parameterization c o n c e p t . ModPascaL extends standard PascaL by

a moduLe construct and a type parameterization concept based
on signature morphisms.

To connect a moduLe M and a specification 8 the concep t of
representation object (rep-object) is introduced and suppLied
with a formaL s e m a n t i c s . Rep-objects a L L o w the user t o define

a) a signature morphism between the specification and the
mod uL e: and

b) a carrier mapping between the semanticaL aLgebras of the
two o b j e c t s .

The most important point is that - in contrast to 'abstract'
approaches of e.g. EEKP 78] , [E L 80]; or [sw 821 - rep-objects
modeL a reLation between objects of different Language LeveLs
(appLicative and proceduraL). There are numerous difficuLties
induced by such a scenario, and to get started a satisfactory
soLution was found onLy by introduction of confinements: S is
a singLe-sorted, specterm-free constructive spec (hierarchy);
M contains no instantiate type definitions; i.e. not arbitrary
ModPascaL or ASPIK objects are considered in the reLation in-
duced by rep-objects. The notion of reaLization context ruLes
o u t unadmissabLe o b j e c t s .

If one can specify a representation object R that Links 8 and
M by a syntacticaL and a semanticaL mapping such that a
homomorphism between the semanticaL aLgebras of S and M is in-
duced, then a correct reaLization of 8 through M is achieved.

Under specific conditions the proof of the homomorphism
property is mechanizabLe so that tedious and expert-dependent
formaL derivations are reduced. we present a comprehensive
method for the treatment of these cases that aLso expLoits the
hierarchicaL structure of specifications and moduLes for in-
ductive argumentation. The method is demonstrated by an

November 1985

126 6 . Summary

eLementa ry exampLe .

The concepts and the proof method have aLready been success -
fuLLy empLoyed in the ISDV-Sys tem where the reaL iza t ion check
is onLy one of severaL ver i f i ca t ion t asks i n order to de te r -
mine cons is tency o f requi rement spec i f i ca t ion and impera t ive
program. There , the mechan icaL tooLs fo r p rov ing p roper t i es
are an au tomat ic theorem prover and a rewr i te ruLe Labora tory .

Wi th in the ISDV sys tem, severaL case s tud ies on reaL worLd
probLems were success fuLLy Launched e .g . a f inanc iaL ac -
count ing probLem (EOLt 85bJ) .

Curren t and fu tu re research incLudes :

o ReLaxa t ion of the requ i rements ' ze ro /one - sor tness ' and
' cons t ruc t iv i t y ' imposed on spec i f i ca t ion ob jec ts .
As inev i tabLe consequences the moduLe concept o f ModPascaL
has to be mod i f i ed , and car r ie r mappings def ined by rep-
ob jec ts have to be cons idered be tween se ts o f aLgebras (in -
s tead of two cons t ruc t iveLy def ined aLgebras) .

I I nvoLva t ion of spec - te rms and ins tant ia t ions l i ns tan t ia te
types in reaL iza t ion contex ts .
Th is seems to be a more techn icaL i ssue because the con-
s t ruc ts denote semant icaLLy ord inary spec i f i ca t ions resp .
moduLes /enr ichments , such tha t the base case i s appL icabLe .

. FeasibiLity s tudy i f these concepts a re adaptabLe to the de -
veLopment of so f tware fo r non-sequent iaL sys tems .
I n f ac t there i s an ESPRIT pro jec t (GRASPIN) tha t i s par -
t i aLLy ded ica ted to a soLut ion o f th is p robLem; and there i s
a cLose coLLabora t ion be tween the au thor and the GRASPIN
team on th is top ic .

Mnuomhar ‘ 1 O RR'

7. Refigrencgg

7 . References 1 2 7

The f oLLow ing abbreviations are used:

CACM Communications of the Association for Computing
Machinery

DOD Department of Defense
IJCAI InternationaL Joint Conference of ArtificiaL In-

teLLigence
LNCS Lecture Notes on Computer Science
SIGPLAN SpeciaL Interest Group on Programming Languages

[ADJ 78]

[ADJ 79]

[Bac 78]

[B a k 80]

[B a u 81]

[B G 77]

[B R 85]

[B V 83]

[B V 85]

November 1985

Goguen ‚ J.A.‚ Thatcher, J.w.‚ Wagner , E .G . : An
initiaL aLgebra approach to the specification,
correctness, and impLementation of abstract data
types: in: Current Trends in Programming
MethodoLogy, VoL.4, Data Structuring (ed. R .
Yeh), Prentice-HaLL: 1978 : pp. 80 -144 .

Thatcher, J.w.‚ Wagner , E .G . ‚ Wright, J .B . : Da ta
Type Specification: Parameterization and the
Power of Specification Techniques. IBM Res. Rpt.
RC 7757 : TJw R e s . Center, Yorktown; 1979 .

Backus, J . : Can Programming be Liberated from the
von-Neuman s t y L e ? A functionaL s t y L e and its
aLgebra of programs. CACM, 21: 8, 1978 .

Bakker, J . de: MathematicaL Theory of Program
C o r r e c t n e s s . Prentice H a L L , London, 1980 .

Bauer, F.L. et aL . : Report on a Wide-Spectrum
Language for Program Specification and DeveLop-
men t . TU Mun ich , Report TUM-I8104: 1981 .

BurstaLL, R . M., Goguen ‚ J . A.: Putting Theories
Together to Make Specifications. Proc. 5th IJCAI;

pp .1045 — 1058, 1977.

BreiLing‚ M.: Rainau‚ U.: An Object
Administration System and a Representation Object
Programming System. Master thesis (i n German).
University of KaisersLautern, 1985 .

BeierLep C., Voss , A.: Parameterization - by -
use for HierarchicaLLy Structured Objects.
University of KaisersLautern, Memo SEKI-83-08:
1983 .

BeierLe: C., Voss , A.: ALgebraic Specifications
in an Integrated Software DeveLopment and Verifi-
cation System. University of KaisersLautern,

.EDij 74]

[Don 77]

[EKP 78]

[EL 80]

[FLo 67]

[Gan 82]

EGHM 79]

[HKR 80]

[Hoa 69]

[KLa 823

[Lic 85]

[Ma 74]

[OL t 84a]

7 . -Re fe rences

1985 .

D i j k s t r a ; E .w . : A S impLe Ax iomat ic Basis f o r
Programming Language Cons t ruc t s . I ndaga t i ones
Mathema t i cae : 36 (1974) , 1 -15 .

Donahue , J . : On the Semant i cs of "Da ta Type " .
Techn i caL Repor t TR 77—311: CorneLL Un ive rs i t y ,
1977 .

Eh r i g , H . : K reowsk i : H . J . : Padawitz‚ P. :
S tepw ise Spec i f i ca t i on and ImpLemen ta t i on o f
Abs t rac t Da ta Types . P roceed ings 5 th ICALP ,
Spr inger LNCS: 62 (1978) : 205 -226 .

Ehr ich, H . , Lipek‚ U. : ALgebra ic Domain
Equa t i ons . Un ive rs i t y o f Dor tmund, Repor t 125 ,
1981 .

FLoyd , R .w . : Ass ign ingMeanings t o P rog rams . I n :
J .T . Schwar tz (ed .) : P roc . Sympos ium on AppL ied
Mathema t i cs , AMS: 19 -37 ! 1967 .

Ganzinger‚ H. : Deno ta t i onaL Semant ics f o r Lan-
guages w i t h ModuLes . TU Muenchen : I ns t . f ue r I n -
f o rma t i k 1982 .

Gordon , M . : M iLne r : R . : Wadswor th , C . : Ed inburgh
LCF . Sp r inge r ; 1979 .

Hupbach : U . L . , Kaphengs t , H . , ReicheL‚ H. : Ini-
tiaL ALgeb ra i c Spec i f i ca t ions of Abs t rac t Da ta
Types , Pa ramete r i zed Da ta Types and ALgo r i t hms .
VEB Robo t ron , Zen t rum fue r Fo rschung und Techn i k ;
D resden : 1980 .

Haare , C.A .R . : An Ax iomat ic Basis fo r Computer
Programming. CACM: 12 : 576 -580 , 1969 .

KLae ren , H . : A Cons t ruc t i ve Method fo r Abs t rac t
ALgeb ra i c So f tware Spec i f i ca t i on . Schr i f t en zu r
In fo rmat ik und angewandten Mathematik, Ber i ch t
N r .78 , RWTH Aachen : 1982 . [Lau 80]
Lau t , A . : Sa fe P rocedu raL ‘ ImpLemen ta t i ons o f
ALgeb ra i c Types . I n fo rma t i on P rocess ing Le t t e r s ,
pp . 147—151 : 1980 .

Lichter, H. : An Interactive ans Syn tax-o r ien ted
Inpu t sys tem fo r ALgeb ra i c and ALgo r i t hm ic Spec i -
f i ca t i ons . Mas te r Thes is (i n Ge rman) , Un ive rs i t y
of Ka i se rsLau te rn , 1985 .

Hanna : 2 . : Ma thema t i caL Theory o f Compu ta t i on .
MacGraw-H iLL , New Yo rk , 1974 .

OL tho f f : w . : ModPascaL Repo r t . Un ivers i ty of

November 1985

[OLt 84b]

[OLt 85]

EOLt 85a]

[OLt 85b]

[P81 80]

[Poi 83]

[RL 85]

[Roe 76]

[Sch 82]

[Sch 85]

[Spa 85]

[STA 79]

[SW 82]

[Neg 72]

November 1985

7 . References 1

IG

Ka ise rsLau te rn ‚ Memo SEKI -84 -O9 ‚ 1984 .

OLthof f , w . : Semantics of ModPascaL. University
of Ka isersLaute rn , Memo SEKI -84 -1D: 1984 .

OLthof f ; w . : An Overview on ModPascaL. SIGPLAN
Not ices , VoL . 20 (10) pp . 60 -71 ‚ 1985 .

OL tho f f ‚ w. : The ReaL iza t ion LeveL . In te rnaL
Repor t . Univers i ty of Ka isersLaute rn , 1985 .

DLthof f , w . : Spec i f ica t ion and Ver i f ica t ion of a
ReaL-Wor td Book-Keep ing ProbLem wi th SPESY: A
Case Study . I n te rnaL Repor t . Un ivers i ty o f
KaisersLaute rn , 1985

Pai r C . : Abs t rac t Da ta Types and ALgebra ic
Semant ics of Programming Languages . Report 80 - R
- 011 , Cent re de Recherche en In fo rmat ique Nancy .

Poigne , A . , Voss , J . : Programs over ALgebra ic
Spec i f i ca t ions . On the ImpLementa t ion of Abst rac t
Da ta Types . Repor t 171 ; Univers i ty of Dor tmund:
1983 .

Bre iL ing ’ M . : ECKL I G.) OLthOf f l w . ; Rainau‚ U. :
Schmitt, M. : Heiss, P. : The RL-Handbook. In te rnaL
Repor t . Un ivers i ty of Ka isersLaute rn : 1985 .

Roever , w .P . de : Recurs ive Program Schemes:
Semant ics and Proof Theory . Ma themat isch Cen t rum,
Ams te rdam, 1976 .

SchuLz ‚ H. : Eine Methode zur kor rek ten ImpLe -
ment ie rung von Da ten typen durch ModuLe.
D ipLomarbe i t , Uni Bonn 1982 .

Schmitt, M. : Ex tens ion of the ModPascaL
PrecompiLer (in German) . Univers i ty of
KaisersLaute rn , 1985 .

Spang , H . : ImpLementa t ion of a Component of
SPESY. Working paper (in German) , Univers i ty of
Ka isersLaute rn , 1985 .

Stan ford Ver i f i ca t ion Group: Stanford PascaL
Ver i f ie r User ManuaL. Comp. Sc ience Dept .
S tan ford Un ivers i ty , STAN-CS-79 -731r 1979 .

SaneLLa , D . ; wirsing‚ M. : ImpLementation of
Paramete r i zed Spec i f i ca t ions . P roc . 9 th ICALP
1982 , LNCS VoL . 140 , pp 473 - 488 , 1982 .

Wegner ; P. : The V ienna Def in i t ion Language . Com-
puting Surveys ‚ VoL .4 ‚ No. 1 , March 1972 .

130 Appendix

Appendix

Th is appendix t r ies to serve two purposes :
- i LLus t ra t ion of the ob jec ts (spec i f i ca t ions : moduLes, rep-

ob jec ts) t ha t are eLements of the Languages and of the
scenar io we have inves t iga ted ; we present exampLes;

- i LLus t ra t ion of concepts and aLgor i thms of our approach in a
'm ic ro ' so f tware deveLopment p ro jec t w i th demands o f ver i f i -
ca t ion .

Since th is paper i s intended to descr ibe the theore t i caL
foundat ions of the approach, the chosen exampLe is ra ther t iny
and s impLe . A cLoser - to—reaL i ty appL ica t ion can be found in
[OLt 85b] .

Our exampLe is the famous s tack , and we give def in i t ions of i t
in ASPIK and ModPascaL. In order to ver i fy a t rans i t ion f rom
the ASPIK s tack to the ModPascaL s tack , we de f ine a rep -ob jec t
and check , if the reaL iza t ion proper ty hoLds .

A s tack may be spec i f ied in ASPIK as foLLows:

spec STACK
_L_J_S___Q ELEM: NAT
sor ts s tack
gg; push : s t ack eLem ——> s tack , pop: s tack -—> s tack :

top : s tack ——> eLem, empty : ——> s tack
props aLL s : s tack ELL 9 : eLem

[P1] pop(push(s ,e)) == 3
[P2] top (push(s ,e)) == 9
[PB] top (empty) “ " er ror
[P4] pop(empty) e r ro r

sgec -bodx
const ruc tgrs empty , push
aux iL ia r ies s i ze : s tack —-> na t
def ine -aux iL ia r ies s i ze (s) := case s i s

*push(s l , e1) = s ize (s l)+1
esac

gsfinefissrriers
is -s tack (s) := case s is

*empty : t rue
*push(s l , e1) : if s i ze (s l) < 10

t hen t rue eLse faLse

(D SBC
def ine-gonst ructors

empty := *empty
pushts ,e) := if s i ze (s) < 10 then *push(s ,e)

eLse error
define-ops

pop(s) := case s is *empty: error
*push(s l , e l) : s1 esac

top (s) := case s is *empty : error
*push(s1 :e l) : e1 esac

November 1985

Appendix 131

endsgec

This specification exhibits most of the syntax of specs.
Starred items denote carrier eLements; ELEM, NAT and BOOL are
assumed a s aLready defined.

I t shouLd be recaLLed that the semantics of the axiomatic part
of STACK (the spec header) consists of the category of un-
bounded stack aLgebras, whereas the aLgorithmic part (the spec
body) restricts the semantics to the category of stack
aLgebras 'of a t most size 10 ' . A s a w h o L e , STACK possesses the
second meaning.

A stack may be defined in ModPascaL as foLLows:

tyge MSTACK =
moduLe u s e MELEM, MINTEGER;

pubLiC procedure mpush(e: MELEM);
procedure mpop;
f u n c t i o n mtop: MELEM;
initiaL mempty;

LocaL type A = arrayE1:10] of MELEM;
Egg a :A ‚ izMINTEGER; LocaLend ;

procedure mpush;
begin if i < 1 0

then begin i : = i+1; aEi] : = 9 end
e L s e error end

procedure mpop;
begin if i=0 then error

eLsg i : = i—1 end
function mtop;

begin if i = 0 then error eLse mtop : = ati]
sag

initiaL mempty;
begin i : = 0 end;

This definition shows a ModPascaL version of bounded stack.
MELEM and MINTEGER are assumed a s aLready defined. PubLic
operation arities omit a first parameter of type MSTACK; this
parameter is s u p pLied by the speciaL syntax of moduLe Oper-
ation caLLs.

The aLgebra carrier introduced by MSTACK is the cartesian
product (A x MINTEGER) i.e. tupLes of array-integer vaLues.
The semanticaL operations behind mpush: mpop, etc. take these
t u p L e s a s arguments and y i e L d new t u p L e s o r s e L e c t components.

We now want t o specify a connection of both objects that
0 maps the sort s t a c k of STACK t o the cartesian product sort

of MSTACK and the STACK operations to their obvious con-
terparts in MSTACK (signature morphism) -

I maps array-integer tupLes (aIi) to STACK terms such that
onLy significant vaLues are associated to non-erroneous

November 1985

132 Appendix

terms (carrier mapping)

This is achieved by the rep-object RSTACK:

Egg RSTACK
connectind STACK, MSTACK;
ggg RELEM;
925 push = mpush

POP = mpop
top = mtop
emp ty = mempty

repfct R STACK(a,i) =
if i=0 then empty eLse
ii 1s i s10 then push (RSTACK(a ‚ i - 1) ‚

RELEM(a [i]))
e L s e e r r o r . s t a c k

repend

Remarks: a) RELEM is an aLready defined rep-object for the
obvious connection (a L thou gh rep-object names are

arbitrary in generaL).
b) The repfct RSTACK is ambiguousLy denoted by the

rep-objects name. .
c) The conditions of the if-cLauses are pure ModPas-

caL, the then- or eLse-branches are either pure

ASPIK expressions or structures mixed of ASPIK
portions, ModPascaL portions, and recursive RSTACK
c a L L s .

n

We now appLy PMR to check if the re-co (STACK, MSTACK, RSTACK)

is a reaLization.

(1)

(2)

(3)

The signature morphism is bijective; the sort mapping is
impLicitLy contained in RSTACK (stack => cartesian

product type).
The homomorphy equations MHEQ are:

EH1] RSTACK(M.mpush(E))
[HZ] RSTACK(M.mpop)
[H3] RSTACK(mempty)
[H4] RELEM(M.mtop)

push(RSTACK(M), RELEM))
pop(RSTACK(M))
empty
t o p (R S T A C K (M))

The dot notation in e.g. M.push(E) is equivaLent to

mpush(M:E). The variabLes M and E range over the concrete

(cartesian product) carriers of MSTACK and MELEM.

SymboLic execution is appLicabLe to aLL equations of MHEQ.

The LocaL variabLe types of STACK are ARRAY and INTEGER.

The internaL state of a stack incarnation i s therefore

represented by a vector (aii) where a.and i are the LocaL

variabLes of STACK. We get the foLLowing formuLae and ex-
pressions as effect of the operations: A

. SymboLic representation of a stack object before ex-

November 1985

Appendix 133

ecut ion of a procedure : (api)
. SymboLic representa t ion of a s tack component ob ject

be fore execut ion o f a func t ion : (c)
Then we have
for mpush:
[S1] (i < 1 0) =9 ({a r i re } r i+1)
E82] 1 (i<10) =9 (unde f ,unde f)

fo r mpOp:
[S3] (i =0) =9 (unde f ;unde f)
E34] 1 (120) =9 (ar i—1)

for mempty:
[SS] (8 :0)

fo r mtop:
[S6] 1 (i=0) =9 (aE iJ)
[8?] (i =0) =9 (unde f)

Notat ionaL remark: {ap ipe} denotes the array a af ter
ass ign ing e to the i - th component . 'Unde f ' and 'unde f ' -
vec tors a re the symboLic representa t ion of e r roneous
evaLuat ions .

The appL ica t ion of TR-SYM y ieLd a se t SHEQ and a L i f ted
rep - func t ion RSTACKL.

We compute SHEQ i n two s teps :
- subst i tu t ion of the resuLts of the symboLic evaLuat ion

(SHEQ-1)
- subst i tu t ion of renaming ModPascaL const ruc ts (bu iL t

f rom used or LocaL ob jec ts of STACK) and o f RSTACK
occur rences (SHEQ-Z) .

SHEQ- :
The subs t i tu t ion i s done in [H1] - [H4] for the opera t ion
caLLs mpush, mpop, mtop and mempty: accord ing to [S1] -
[8?] .
[A1] (i <10) =9

RSTACK (({a l i xE} : i + 1)) :

push (RSTACK((a ‚ i)) ‚ RELEM(E))
[AZ] 1 (i<10) =?

RSTACK((unde f ‚ unde f)) = push (RSTACK((a : i)) ‚RELEM(E))
[A3] (i =0) =9

RSTACK((unde f runde f))
[A4] 1(130) =$

RSTACK((a , i - 1)) = pop (RSTACK((a ‚ i)))
[A5] RSTACK((a‚O)) = empty
[A6] 1 (i=0) =?

RELEM((aE i]))
[A7] (i =0) =>

RELEM((unde f)) = top (RSTACK((a ; i)))

pop(RSTACK((a ; i)))

top (RSTACK((a r i)))

RSTACK L:

The re fo rmuLat ion of RSTACK is based on semant icaLLy
equ ivaLent specs fo r the ModPascaL a r ray and INTEGER

November 1985

134 Appendix

t ypes . We assume the obvious specs w i th the obvious oper -
a t ions .

RSTACKL: ar ray x i n teger -=9 s tack

where a r ray : in teger and s tack denote car r ie rs o f CTAs;

RSTACKL(a: i) : = if equaL . in teger (i , ze ro) t hen empty eLse
if be tween (succ (ze ro) ; i : succ10 (ze ro))

then push (RSTACKL(a ‚m inus (i x1)) ,
RELEML(read (a , i)))

eLse e r ro r . s tack

Note , tha t RSTACKL is a pure ASPIK opera t ion .

SHEQ-z :
We modify [A1] - [A7] by repLac ing remain ing ModPascaL
through ASPIK and carr ier mapping caLLs th rough the i r
re fo rmuLated vers ion (RSTACK ' : RELEM') .

[B1] Less (i ; succ10 (ze ro)) =?
RSTACK'(assign(a‚i‚e)‚ pLus (i ‚ 1)) =

push<RSTACK ' (a ‚ i) : RELEM' (e))
E82] not(Less(i‚ succ10 (ze ro))) =:

RSTACK 'Ce r ro r . a r ray ‚ er ror . in teger) =
push(RSTACK' (a ; i) ; RELEM' te))

EBS] equaL.integer(i‚zero) =;
RSTACK ' (e r ro r . a r ray ‚ er ror . in teger) =

pop(RSTACK' (a ; i))
EBA] nottequaL.integer(i‚zero)) =9

RSTACK'(a, minus(i ,1)) = pop(RSTACK'(a‚ i))
[BS] RSTACK ' (a ‚ ze ro) = emp ty
[Bo] not(equaL.integer(i‚zero)) =9

RELEM' (Pead(a : i)) = t op (RSTACK ' (a ‚ i))
[B7] equaL.integer(i‚zero) =?

RELEM' (e r ro r .eLem) => t op (RSTACK ' (a ‚ i))

(4) The a r t i f i c iaL spec AS(STACK,MSTACK) i s :

spec AS(STACK:MSTACK)
gäg STACK: AS(ARRAY:MARRAY) : AS(INTEGER:MINTEGER)
g9; RSTACKL: ar ray x i n teger z: s tack
props [* [B1] — [B7] * !
spec -body
def ine -ops RSTACKL(a , i) : = ii equaL . in teger (i , ze ro)

then empty eLse
ii be tween<succ (ze ro) ,

i : succ10 (ze ro))
then

push (RSTACKL(a ‚m inus (i ‚ 1)) ,
RELEML(read (a ; i))) ‘

eLse e r ro r .s tack
§pgcend

Remarg: The AS-objects are necessary Since they conta in

November i 985

Appendix 1 3

definitions of RELEML and RARRAYL. We omit detaiLs here.

(5) The object AS(STACK,MSTACK) has to be submitted to an
automatic theorem prover. There, the consistency of [81]
to [B7] with the aLgorithmic definitions has to be checked
by induction proof.
I n our case we yieLd the resuLt: (SIMIR) is reaLization:
and the success is propagated in the SEE according to sec.

5 .1 .5 !

We shortLy scetch a situation; in which we currentLy branch to
(6) in PMR (i.e. symboLic execution i s not appLicabLe):

(6) Assume a specification GUEUE of q u e u e s . I t encLoses an

operation dequeue that removes the front eLement from a

queue. QUEUE is aLso programmed as moduLe MGUEUE with
(among others) operation mdequeue. MQUEUE is represented
anaLogousLy t o MSTACK by array-integer t u p L e s . Inserting

an eLement in the queue is done by assigning it to an un-
used array eLement and increasing of the integer pointer.
Mdequeue shifts the whoLe array one step Left and
decreases the integer pointer:

mdequeue(q) : = if i=0 then error eLse
begin j: INTEGER; j : = 1 ;

whiLe j<i gg begin
aJ = a+1] ;
d := 3+1; eng

i : = i-1 gag

The occurrence of the whiLe construct infLuences the ap-
pLicabiLity of symboLic execution; we then generate the
equation

MERGUEUE(Q.mdequeue)fl§e
E MEdequeue(RQUEUE)fl§s

and ask the user for the vaLidity of this homomorphy
equation; his answer is processed as if a proof system
wouLd have been u s e d (i . e . the actions of s e c . 5 .1 .5 . are
performed).

November 1985

