\

i)| —))
e 33 D) e

—
é

Procedural and
ApplLicative
Languages

C
Q
Q
3
)
Q
[e1]
C
]
-
)
@]
Q
C
C
Q
[&]
<
C
@]

Walter OLthoff
Memo SEKI-85-05

AuBWLIBD M\ 'L UIBINE|SIBSIEY 05/9-(
670E yoelisod OEHE
UI9)Ne|SISSIeY 1BIISISAIUN =
WIIEWIOU| Yolalagqyoe -V-um

On a Connection between
Procedural and Applicative
Languages

Walter OLthoff

FB Informatik
University of KaiserslLautern
PF 3049
6750 Kaiserslautern
Federal Republic of Germany

Abstract

This paper reports on the connection between proceduralt and
applicative Languages. It presents features, notions and
methods derived from abstract data type theory that in our
judgement are helpful and necessary for multi-lLevel software
engineering environments in general, and especially for the
treatment of verification issues there. Reference is made to
an existing software engineering system and exemplary Lan-
guages of it. A denotational semantics based on algebraic
structures 1is introduced and employed. Since obgject-
orientedness is Looked at as one of the most important
properties of such environments the notion of correctness is
applied to objects and object relations. Finally a realistic
semi-automatic method for the check of correctness criteria is
given, accompanied by remarks on our existing implLementation.

Contents

0. Overview

1. Introduction

1.1.
1.2-
1.3.
1.4.

2. Appli
2-1.
2.2
2.3.
2-4-

3. Langu
3.1-
3.2.

3.3.

3.4-

Software Engineering Environments
Hoare-style Verification
Algebraic Verification

The ISDV-System

cative and Procedural Languages
Classification

The Connection ProblLem

The Applicative PL ASPIK

The Procedural PL ModPascal

age Semantics

Abstract Syntax

3.1.1. Specifications and Maps
3.1.2. ModPascal
Context-sensitive Conditions
3.2-1. ASPIK

3.2.2. ModPascal

Semantic Domains and Semantic Functions
3.3.1. Domains

3.3.2. Functions

3.3.3. Memory Model

Semantic ClLauses

3.4.1. ASPIK

I.4.2. MocdPascal

L. Connection and Correctness

4’-1-
4-2.
4.3-

S A Pro
5.1.

6. Summa

Confinements and Basic Notions
Homomorphisms and Algebras
Representation Objects

4.3.1. Concept

4L.3.2. Abstract Syntax

4.3.3. Context=-Sensitive Conditions
L.3.4. Semantics of Rep=-Obgjects

4.3.5. Connection to Algebra Homomorphisms

Realization Conditions
Other Approaches to Obgject Correctness

of Method

Basic Steps

5.1.1. HEQ Generation
5.1.1.1. MuLti-formalism
5.17.1.2. Single=formalism

5.1.1.2.1. Symbolic Evaluation
5.1.1.2.2. Current Limitations

5.1.2. Involvation of Hierarchy Information
5.1.3. Formulation of the Induction Proof Task
5.1.4. Transfer of Proof Tasks

5.1.5. Administration

PMR

ry

7. References

Appendix

102

107
107
108
108
109
113
114
115
118
122
123
123

125
127

130

0. Overviev 1

0. Overview

The connection of applicative and procedural Languages is one
of the major issues of a software engineering environment
(SEE) that offers more than one lLanguage to a user. Some
advanced systems include a requirement description Language, a
formal specification Language and an imperative programming
Language. We refer to the entirety of a Language and its sup-
port environment as Level of a SEE. Especially in the Light of
abstract data type (ADT) theory SEEs including an algebraic
specification Level and a conventional programming Language
Level have become prominent: software development starts at
abstract specifications that onlLy consider the ‘'pure' algor-
ithm or the 'pure' information of a task, and then gradually
comes down to concrete programs that finally run on computers.
In this scenario different Languages for the description of
the same thing are used; often these are applicative and
procedural Languages. In this paper questions as consistency
of procedural programs with applicative programs and correct-
ness are tried to be answered.

The first section introduces software engineering environments
in general, and especially the Integrated Software Development
and Verification (ISDV) System ([BGGORV 831, [BOV 851). It
aLso contains a comparison and rating of conventional Hoare-
style verification vs. algebraic verification in the scenario
of a SEE.

Section 2 makes the up to then informal notions of ap-
plLicativeness and procedurality precise and presents
representatives of these categories. The third section then
provides exact definitions of syntax and semantics. Examples
of Language constructs are bundled in an appendix.

The main section 4 introduces so-called rep=-objects and
algebraic foundations that enable the definition of a correct-
ness criterion. Also other approaches to correctness are
reviewed.

In the final section 5 a semi-mechanic method for performing
the correctness check is presented, and its implementation
aspects are discussed.

We close with a summary and outlook to necessary extensions.

1. Introduction

1.1. Software Engineering Environments

Software engineering may be seen as the overall activity of
solving problems by adequate computer programs. Nowadays an
essential part of this activity is performed in specific SEEs.
that provide tools and methods suited for different appli-
cation areas such -that a Lot of cumbersome and efficiency-

November 1985

2 1.1. Software Engineering Environments

reducing tasks do not take place. SEEs in our understanding
are used for programming-in=-the-Large. i.e. the development of
voluminous software products.

One important subclass of SEEs follows the '‘stepwise-
refinement' paradigm in program development: primarily, a
probLem is stated on a totally dinformal Level. using
colloquial speech, understandable both for the client and the
computer scientist (we assume a scenario of this kind in the
sequel). From this starting point, semiformalL requirement
definitions are derived that represent a helpful intermediate
Language with first formalizations. Then formal specifications
with exact semantics are introduced; they abstract from all
implLementation details and describe the problLem by behaviour
information about operations and hierarchical relLations
between subproblems. The stepwise~refinement method then sub=
stitutes ‘'abstract' specifications by ‘'more concrete' ones.,
i.e. design decisions as data types, algorithm definitions or
I/0 actions are added.

This procedure goes through several iterations untilL a problLem
specification is reached that is executable on existing compu-
ters (= a conventional program).

Some SEEs supporting this technique also deal with an issue
that is most important for every development of sensitive
software: since each refinement step is user-defined, how can
it be guaranteed that the refining structure satisfies the
conditions imposed on the original structure? And in the con-
sequence: how can it be guaranteed, that the final program
does what the first formal specification of the problLem
demands? OnlLy few SEEs provide assistance in the development
of verifiable software in this sense (e.g. [SilL 811, [BGGORV
831), although Lack of reliable correctness concepts makes
SEEs inapplicable to many practical situations. One reason for
this deficiency is that verification of complex programs is
impossible if no mechanical support for the check of condi-
tions 1is offered; number, size and character of proof tasks
generated by classical methods do not allow the manual verifi-
cation of even small=-sized programs in acceptable terms. But
powerfulL automatic proof systems capablLe for real-word appli-
cations are difficult to design and currentlLy available onLy
in prototypes although many theoretical issues have been un-
derstood successfully.

In this paper we focus the attention on SEEs for development
of verifiable software that follow the stepwise refinement
paradigm, which in our view represents the most relevant sub-
class of SEEs. We assume different Levels of formal problLem
specification, and user-defined refinement steps that trans-
form structures of one Level into structures of another.

Additionally we assume Levels in which different kinds of Lan-
guages are emplLoyed: an applicative Language for the
'abstract' portion of the software development., and an impera-
tive Language for the final outcome of the process. This sepa-
ration is justified by the fact that aspects as e.g. abstrac-
tion, representation-independence, efficiency, availibility

November 1985

1.2. Hoare=-StylLe Verification 3

etc. are not satisfactory solved by a single (specification or
programming) Language; emphasis of one aspect comes with
negtigence of another. But in our view SEEs should cover them
alLl at some point of program development and profit from each
of them in order to generate verified, efficient software for
existing hardware.

It is obvious that the proof of correctness criteria becomes
more complicated if transitions from the abstract to the con-
crete Level are considered. Now not only substantial changes
have to be examined but also issues caused by the involvation
of different formal systems. For example, a pure applicative
description of something does not care for a state of a compu-
tation; if the description is expressed by imperative con-
structs (as assignments), it dinevitably has to! - We will
dedicate sec. 2 for a clLarification of notions and a com-
prehensive discussion of issues by exemplarily presenting a
concrete SEE in detail.

1.2. Hoare=Stvyle Verification

The notion of correctness of a program is closely connected to
concepts and methods developed by FlLoyd (inductive assertion
method, e.g. [FlLo 67]) and Hoare (axiomatic semantics of
programming lLanguages, e.g. [Hoa 691). The combination of
their dideas is known as Hoare-style verification. (See also.,
among others, [Bak 801, [Roe 761, [Dij 741 for elaborations
and extensions of the approach). In their understanding the
proof of the correctness of a program 1is equivalent to the
proof of predicate calculus formulae which are generated semi-
automaticaly from a program augmented by 'assertions'.

Hoare-stylLe verification is based on the following in-
gredients:

e There is an imperative programming Language PL (as ALGOL.,
PASCAL etc.) for which the notion of state as binding of
variables to values is declared.

® There is an assertion Language AssL which in essential is an
extension of standard predicate calculus by programming Lan-
guage specific constructs and functions. Variables occurring
in terms of AssL are PL variables, i.e. they range over
domains induced by predefined types (as integer., boolean) or
types generated by type constructors (as array, record
etc.). The variables are interpreted identically independent
of their occurrence in terms of AssL or PL.

® Elements of AsslL can be elaborated in some state s by taking
values s(x) for every variable x of E and applying the oper-
ation definitions. The result is a boolean value. An asser-
tion Language construct C together with a state s is called
assertion.

Notation: Cs.

® Hoare semantics for programming Languages are based on
formal systems. A formal system is a tuple (FORM, RULE)
where FORM denotes a Herbrand universe over a given set of

November 1985

A 1.2. Hoare-Style Verification

symbols (the formulae), and RULE a set of rules F, * F, that
allow to syntactically decuce formulLa F, from formula F,; *~
F is called axiom.
For the semantics of PL a set of proof rutes of the form

P17 awws P, ¥ Cy s wuwar C,
is given where the premises P; and conclusions C; are cor-
rectness expressions of the form '{P> constr <{Q@}', P,Q €
AssL, constr € PL. Then a proof theory PT(PL)=(Corr,R) is
defined as a formal system with correctness expressions Corr
as formulae and proof rulLes R as rulLes.

An interpretation I: Corr —> State —> {true, false}
assigns a meaning to correctness expressions:
true if (Ps ==> Qs', constr
I({P} constr {@})s := I transforms s into s')
s, 'reasonong) '='reasoning and assumptions on
false otherwise
PT(PL) is assumed to be sound and complLete with respect to
I. Note that AssL is also connected to a sound and complete
proof theory PT(AsslL) where the rules are standard Logic
deduction ruLes.

8 The effect of every construct of PL is described by rules of
R. Therefore 1in the correctness expressions of the rules
technical constructions such as substitutions of variables.,
introduction or splitting of assertions special notions or
pure implications (P==>Q) are used to formalize the intended
meaning. For examplLe, the rules for assignment frequentlLy
are

- {P <x & o> x := e {P} or

- {P)} x:=@ {P <x & e>)
(dependant of backward or forward reasoning) where P <x &
o> denotes the substitution of alLl free occurrences of x by
e in P. (In fact, this rulLe is an axiom in PT(PL)). Un-
fortunately some features are only covered either with
restricted applicable or unusable complex rules (e.g. side-
effects [/ global variables., procedure and function
declarations and calls, iterative structures). But despite
of these Limitations there is a proof technique that employs
the rules of R in backtracking, subgoaling and unification
steps in order to generate from a given '{P} constr {@}' €
Corr a (set of) AssL formulae (see [STA 79] for an exemplary
implementation) .

With (at Least) these ingredients Hoare=-style verification
works as follows:

1) Suppose there 1is a program prog that is intended to solve
some problLem. The goalL is to formally prove that this is in
fact the case. The first step consists in a formalization
of the intention: the programmer has to to state P,Q € AssL
such that P holds before execution of prog, and Q thereaf-
ter. Note that from this point onLy P and Q are the relLe-
vant benchmarks; there is no 'verification' whether P and Q
meet the intention! (This problem is often brought up by
critics of the approach; but the transition from (im-
material) intention to (material) formalization will never

November 1985

1.2. Hoare=Style Verification 5

be verifiable in the usual sense, independent from the
specific approach. So this objection (sometimes called 'the
immanent bias') is not constructive, and we judge it sense-
Less) .

2) P and Q are also called input and output assertion resp.
and wusually they do not describe properties of operations
of prog but values of variables before and after execution.
Beside the input and output assertion, other assertions
have to be defined by the programmer: for procedure and
function declaration bodies, entry and exit assertions have
to be supplied that describe - simitarily to the input and
output assertion = the behaviour of the operations body.
Both assertions are used in the rules for procedure and
function calls. Also, for each iterative structure (white.,
repeat),» invariant assertions must be stated. Invariants
are true whenever controlL flow passes them. They represent
inner properties of Loops, that are exploited by the
programmer in his algorithm (in prog). Finally., (arbitrary)
free assertions may be stated, dif it is viewed at as a
necessity to get a correctness decision, or to better docu-
ment prog, or other reasons.

3) ALL assertions except the Latter (input, output, entry.,

exit., invariant) are inhserted 1in the prog code at
predescribed positions; free assertions may be inserted
between arbitrary statements. Thereafter, instead of prog
an 'annoted' program prog' with inserted assertions is con-
sidered.
Note that the correctness of the program is checked not
only against the input/output assertion but also against
all entry, exit, dnvariant and free assertions. They alLl
together constitute the formalization of the intention., and
with them numerous possibilities of introduction of im-
manent bias are offered. Additionally, invariants will
seldom allow proofs of correctness if they are not 'strong'
enough i.e. if their extensions cover too few cases.

4) With P(input), Q(output) € AssL, and prog' an annoted
program derived from prog € PL we now consider the correct-
ness expression

cexp := {P)> prog"' {Q>.

Prog' will be called correct w.r.t. P and Q, if I(cexpl)s =
true holds for all states s. This is equivalent to: cexp is
derivable in PT(PL) such that it is sufficient to construct
a derivation of cexp from R.

Rules Like the assignment axiom correspond directly to
(sets of) assertion Language formulae: ==> P <x & e>,
and this holds for every rulLe of R. Therefore a deduction
in PT(PL) 1is equivalent to a set of assertion Language
formulae, the so-called verification conditions (VCs). If
all VCs can be shown valid (i.e. deducablLe in PT(AssL)).,
then Qs' holds; or in other words: I(cexp)s is valid and
prog' is correct.

5) A mechanical theorem prover is employed for the proof of

November 1985

6 1.2. Hoare-Style Verification

the VCs. Additional Lemmata can be inserted in a 'knowledge
base' which already contains axioms and rulLes about AssL.
If the proof attempt fails., then either

- entry/exit assertions were inadequate/wrong, or

- invariants were too weak or wrong-, or

- free assertions were inadequate/wrong, or

- (the most interesting case) prog does not what 1is

specified in P and Q.

The detection of the Last alternative represents the major
goal of program verification efforts: a mathematically
precise proposition about an erroneous programs that
possibly provides hints for malfunctioning code Lines. Un-
fortunately., it is the exceptional case that exactly the
Last alternative is applicable; more often all alternatives
contribute to the unsuccessfull proof attempt, and the
programmer is encouraged to change program or assertions or
both.

Pictorially, Hoare-style verification encloses two Levels:

AssL specification (expressions)
I correctness
PL solution

Here, the classification of SEEs of the introduction above can
already be motivated: AssL i1is an extension of predicate
calculus, a highlLy applicative specification Language, and PL
is by definition imperative. So Hoare-style verification is a
possible (rudimentary) incarnation of SEEs we consider here.

What are the disadvantages of this approach that hinder its
practical application in SEEs?

e Firstly, due to historical reasons, Hoare-style verification

is dedicated to 'reverse software development':
One starts with an already written program in which algor-
ithms are designed along concrete data structures, and
annotes it with its intention. Nowadays people go the other
way around., for various reasons (that are skipped here).

® SecondlLy, the wholLe theory knows onlLy one refinement step
from AssL to PL. This is an unfeasible way for every Larger
software development, since the inherent complexity and
hierarchical structure of a problem has to be covered and
equalized, often an impossible requirement.

@ Third: This approach is not object=-oriented = in contrast to
the widely accepted benefits of this programming style. Con-
structs of AssL and PL are formulLae and programs(fragments) .
and the approach reflects no results of abstract data type
theory (e.g. the grouping of data and operation in one
structure and algebras as basic semantical concept).
Currently, proof rules for objects and object operations are
topics of research, but a successful answer is still open.

November 1985

1.3. ALgebraic Verification 7

e Fourth: No concepts for parameterized structures have been
developed. Together with a missing notion of implementation
two important and necessary features for software develop-
ment in the Large cannot be used.

From all this it comes out that classical Hoare=-style verifi-
cation is bad suited for SEEs for development of reliablLe
software.

1.3. ALgebraic Verification

EmpLoyment of algebras and algebraic structures for verifi-
cation purposes (algebraic verification) represents an
alternative to classical approaches. This way is heavily based
on results of abstract data type (ADT) theory as developed for
example in [ADJ 781, [EKP 78], [ADJ 791, among many others. In
ADT theory the onlLy occurring semantical structures are
algebras and algebra morphisms (or more generally: functors).
and concepts lLike implementation, parameterization or verifi-
cation are based upon them (e.g. correctness of an implemen-
tation is often defined by special algebra homo/isomorphisms) .
In many cases verification is equivalent to correctness
criteria expressed in algebraic terms, and a verified struc-
ture is one that satisfies these criteria.

Algebraic verification then is used in two contexts:
e verification of relations between structures of a specific
Level of a SEE
e verification of relations between structures of two dif-

ferent Levels of a SEE.

As pointed out above, we concentrate ourselves in this paper
on the second application, and more precise: verification of
relations between a structure of an applicative Level of a SEE
and a structure of an imperative Level of a SEE.

A characterization of algebraic verification in this context
involves (at Least) the following features:

® There is an imperative programming Language PL for which the
notion of state as binding of variables to values is

declared.
Also the Language provides constructs for object=-oriented

programming, features for hierarchization of objects, and
concepts for parameterized objects.

® There 1is an algebraic specification Language SL whose basic
structures are algebraic specifications. This guarantees the
possibility of obgject=-oriented programming.
Additionally, the Language allows hierarchical specifi-
cations and provides concepts for combination.,
parameterization, and implementation.

@ The semantics of PL is based on the idea of state trans-
formations caused by PL=constructs. To describe it a tradi-
tional denotational semantics DS(PL) is assumed. From this

November 1985

1.3. Algebraic Verification

an algebraic semantics AS(PL) of PL is derived by:

- association of every pre- or user-defined type definition
with an appropriate algebra

- association of every object definition with an algebra

- association of state transitions caused by operation calls
with algebra operation calls

- association of concepts as parameterization or implemen=
tation with special algebra morphisms and algebras.

The standard semantics has to be enriched by appropriate

domains to achieve this modification. AS(PL) 1is assumed to

describe also issues as side-effects or pointer types-

scoping, typing of expressions, and so on.

For SL semantics, ADT theory provides several choices: ini-
tial, terminal., Loose and variants thereof, and each ap-
proach is praised by its apologists. Since SL is employed in
a SEE we require the following mixture: To postpone
representation decisions as far as possible (i.e. to the fi-
nal refinement steps) the SL semantics has to be as abstract
as possibLe. This can be achieved, if specifications are
supplied with a Loose semantics: then the meaning of such an
object is the set of all models (= algebras, that satisfy
certain conditions) of it. Since in general algebras should
serve as semantics of objects, a Loose semantics Like this
possesses a high degree of abstraction and flexibitity since
no possible model is excluded. Also, specifications may be
compared by Looking at their set of models, and concepts as
refinement., implementation or parameterization can be
described by mappings between such sets.

The stepwise~refinement method dincludes that final struc-
tures are reached on the applicative Level which are no
Longer subject to refinement. For specifications with this
property it is unwanted to have a set of algebras as
semantics but a single unique algebra. The SL semantics we
assume provides this property for certain specification
obhjects.

Since PL and SL are semantically based on algebraic struc-
tures, a refinement situation in a SEE involving a SL speci-
fication and a PL object is just a relation between (sets
of) algebras. Therefore a correctness criterion attached to
this relation should also be expressed in algebraic terms.
For software engineering purposes, one is interested that
refining and refined structures behave equivalently i.e.
there exist homomorphisms or isomorphisms between the asso-
ciated algebras. Even if homomorphy seems to be the weaker
requirement, it is sufficient as correctness criteria for
the SL=-PL refinement (see also the remark after definition
baba=2).

should be clLear that this is an extremely brief and super-

ficial presentation of prerequisites for algebraic verifi-
cation, and that the attention is focussed onLy on ideas that
are helpful in the explanation of Level-transgressing refine-
ments in a SEE. Necessary precise definitions are supplied in
the subsequent sections.

November 1985

1.3. Algebraic Verification 9

With (at Least) these ingredients algebraic verification of
refinement relations Dbetween structures of two different
Levels of a SEE works as follows (see also section &4.):

1)

2)

3)

4)

5)

Suppose there is a specification S that describes a problLem
solution in SL. S is viewed as final, such that only a
refinement into a PL structure has to be done. Note that S
is the formalization of the intended problem solution. From
now on only S is the relevant benchmark; there is no veri-
fication whether S meets the intention (see the remark in
paragraph 1) of section 1.2.).

Let O denote an object of PL, that is intended to represent
the refinement. 0 differs from S in that concrete data
structures are introduced and algorithms are defined oper-
ating on these data structures and all efficiency-
increasing features of PL are exploited.

To be able to connect S and O it is necessary to get more
information: which data in O refines operations of S? The
programmer has to supply the intended associations that
have to respect some basic requirements (e.g. preservation
of operation functionalities).

Referring to data associations additional information is
needed. S as well as 0 are semantically described by unique
algebras A(S) and A(0), and since it is in general impossi-
ble to automatically construct homomorphisms between arbi-
trary algebras, the programmer has to make a suggestion.
From his knowledge of the intention behind the refinement
step and the details of his objects S and 0 he is able to
specify how concrete data realizes abstract data, that is
to define a mapping M: A(0) —> A(S) that applied to a con-
crete carrier element of A(0) vyields an abstract carrier
elLement of A(S).

From the information gathered in steps 2) and 3) it is pos-
sible to formulate a set of (homomorphy) equations. The
general scheme is:

M(O_op(arguments)) = S_op(M(arguments))
where O_op and S_op are associated by step 2). If all
equations can be shown valid, then M is a homomorphism, and
one gets the desired result about S and 0.
It should be noted that the verification is not performed
solely with respect to S but also against the associations
of step 2) and M. ALL items together constitute the inten-
tion behind the refinement, and each of them offers a
possibitity of introduction of immanent bias.

To show a set of equations valid in some theory requires
some mathematical apparatus. Also constraints have to be
considered that come from the hierarchical structure Lying
on obgject sets (e.g. onLy those proofs will succeed if all
substructures of involved objects are ‘correct'). Depending
on the characteristics of the applied proof system (equal-
ity prover, induction prover, etc.) the preconditions and
techniques vary. Therefore we skip details and refer to

November 1985

10 1.3. Algebraic Verification

section 5. where a special constellation and solution are
presented.

If the proof attempt fails, then either

- the associations of step 2) were inadequate/wrong, or

- S was inadequately or wrongly defined., or

- 0 does not what is specified in S.
If one is sure of the Last alternative, algebraic verifi-
cation has paid off: one has a mathematically precise
proposition for an inadequate refinement in which required
properties get Lost. Unfortunately, in general it is un-
clear which alternative causes the failure. Moreover., alLl
alternative possibilities contribute to unsuccessful proof

attempts.

AlLgebraic verification (as described above) can be summarized
and visualized as follows:

sL specification (object hierarchy)
I correctness
PL solution (object hierarchy)

This configuration strongly ressembles to SEE pictograms., and
in fact, this approach can be directly applied in the SEE sub-
class described above.

Compared to Hoare-style verification., all disadvantages Listed

in sec. 1.2. are missing: 'forward software development'.,
multi-step refinement., object-orientedness and
parameterization/impLementation concepts are essential

features and central issues in the algebraic approach. Many
useful concepts of ADT-theory are made accessable to non-
experts that use SEEs build on this foundations.

At first glance, it would be nice to unify both approaches:
extend AssL of sec. 1.2. to SL and use the existing apparatus
for Hoare-style verification:

SL

correctness

AssL

I correctness

PL

November 1985

1.4. The ISDV=-System 11

But as the picture shows, this comes with a new correctness
problLem: SL constructs have to be refined into AssL constructs
(if the Hoare-style verification part is Left unchanged)., and
this is a degree of additional complexity that is highlLy un-
wanted. Moreover., one can doubt if an embedding of an object-
oriented algebraic specification Language 1in a formula-
oriented assertion Language is possible at all.

On the other hand, if one wants to modify AssL and PL to
overcome some of the problems basic research on Hoare Logics
has to be performed: proof rules have to be developed for
object declarations., for object incarnations., for declarations
and calls of operations of objects, for parameterization of
objects, etc.; the assertion Language has to cope with these
extensions; associated proof theories have to be shown sound
and complete, and so on. But the main point is that even after
successful completion of the above agenda., Hoare-style verifi-
cation will still be inadequate. It is still backward software
development, and the basic idea is still to model the state
change caused by PL constructs and then show some assertions
and implications valid. How the single proof tasks correspond
to some property of the specified problem gets Lost because
many formulae are introduced for technical reasons (e.d.
decomposition rules, iteration rules). This is far Less than
offered by the algebraic approach where each proof task can be
Logically assigned to some subproblem. Moreover the proof
tasks are of deeper mathematical quality than predicate
calculus formulae and therefore allow more powerful proposi-
tions about the generated software.

In the following we employ the algebraic verfication approach.

1-.4. The ISDV-System

This section gives an overview on the Integrated Software De-
velopment and Verification = (ISDV=) System ([BGGORV 831). The
1SDV-System is a SEE that meets our confinements; most con-
cepts presented here were originally designhed and implemented
for that system. This system employs software engineering
techniques along the "verify-while-develop"™ paradigm: newly
introduced structures are verified against formal specifi-
cations as soon as possible so that errorneous or inadequate
design is detected early before it causes dreater damage
(=cost of system redesign). This technique is used to Link the
very first formal specification, the intermediate specifi-
cation structures and the final ModPascal program by assigning
prooftasks (correctness criteria) to all refinement steps.
Then, the validity of all prooftasks implies that the ModPas-
cal program meets the requirements imposed by the first formal
specification - a proposition that d1is highly valuable for
almost alLl software developments.

The applied method involves different Levels of abstraction
and provides concepts and tools for a verifiable transition

Novemher 1985

12 1.4.. The ISDV-=System

from abstract to concrete structures. In figure 1.4.-1 a rough
overview of the various levels is given together with a also
rough classification, and the verification tasks are Located.

algebraic abstract <—
specifications
verification
algorithmic intermediate
specifications <—
verification
programming concrete —
Language objects v

1.4.=1 Fig.: ISDV-System scenario

The formal specifications are given in the applicative speci-
fication Language ASPIK ([BV 83]) that is stronglLy based on
algebraic specifications ([LADJ 78], [EKP 78]) but realizes the
'‘Loose-semantics' approach ([BG 771, [HKR 80]). ASPIK supports
incremental, hierarchical software design and offers a number
of powerful description features. It is the Language of the
‘abstract' and ‘'intermediate' Levels of program development in
the ISDV-System; the Language of the ‘'concrete' Level is
ModPascal. As a consequence., both Languages offer constructs
that are semantically equivalent (e.g. ASPIK specifications =
ModPascal modules/enrichments) but exploit the advantages of
applicative/procedural Languages resp.

The abstract specification Level can be characterized by three
sublevels with different degrees of abstraction:

@ the axiomatic Level (AX)
e the algorithmic Level (ALG)
e the intermediate Level (AX/ALG)

AX comprises what is known as '(axiomatic) algebraic specifi-
cations': objects which are defined by indication of a signa-
ture (a set of sort names and a set of operation names with
arity) and a set of PC=1 formulae ('axioms') built from the
symbols of the signature. Every problem specified on AX is a
set of axiomatic specifications., possibly hierarchically con-
nected, where the semantics of operations are described by the
axioms of the specifications. There is, by definition, no in-
formation about control flow or sequentialization in AX speci-
fications; a (more or Less) explicit definition of an oper-
ation can onlLy be received by applying the semantics gener=-
ation mechanism that is associated to one's (axiomatic) speci-
fication Language (initial/terminal algebra semantics, model-
theoretic semantics, rewrite rule semantics or whatever).
Often, the resulLt of such an application is hard to compute

November 1985

1.4. The ISDV~System 13

and hard to use.

On ALG, the demand of representation-independence is slightly
relaxed: operation definitions are still based on terms built
from symbols of the signature (as in axioms of AX obgjects).
but they are stated in an algorithmic manner employing con-
trolflLow constructs as 'if-then-else', ‘'case' branchings or
recursion. The algorithmic definition replaces the axiomatic
definition of an operation, and in generalL it gives rise to a
unique semantics that can be generated by Least fixpoints of
functionals. With an appropriate environment (interpreter).,
specifications of ALG become directly executable, and testing
of ‘'abstract programs' then is the task of evaltuating terms.,
which is feasible by applying the operation definitions asso-
ciated to the operation names occuring in the term.

The intermediate Level AX/ALG consists of those objects that
involve AX- as well as ALG-subobjects.

On all Levels it is possible to refine or implement objects
into other obgjects; the main problem 1is to ensure the
preservation of semantical properties during the establishment
of a refinement or implementation relation.

For example, AX and ALG objects are interwoven with each other

in two aspects:

® Every axiomatically specified object is transformed during
the refinement process into an algorithmically specified
object. This technique borders the increase of complexity of
refinement steps by onlLy allowing modification of operation
(and not simultaneouslLy modification of data).

® There i1is a notion of correctness of a refinement step from
AX to ALG: The algorithmic definition of an operation = up
to now in no way related to the axiomatic definition of the
identically named operation in AX - is required to fullfill
the axioms of the associated AX object. If this can be
guaranteed, both definitions describe (at Least) overlLapping
functions., and the refinement is semantics=-preserving.

The concrete Level has to provide a Language that allow both
enough expressiveness and allow efficient programming on von-
Neumann machines. Expressiveness means that the problem solu-
tion of the abstract Level = as it is visible in the structure
and number of specification objects in AX and ALG - has not be
reinvented, but can be carried over. Therefore it is necessary
to have specification-lLike constructs.

Efficiency considerations are not much emphasized when Looking
at theoretical dissues of software development environments.
But for real=-worlLd applications and acceptance it is in=-
dispensable to be able to 'tune' program code e.g. by
replacing recursion through iterations in order to optimal use
of hardware ressources. Therefore, the imperative Language of
the concrete Level should include major subsets of Languages
Like ADA or Pascal.

For completeness it should also be mentioned that the ISDV-

November 1985

14 2. Applicative and Procedural Languages

system software development scenario also includes tools that
alLlow to enter abstract or concrete programs, to establish
refinements and attach semantical properties to them, to
generate prooftasks that are submitted to connected mechanical
proof systems, and above all a sophisticated object
administration system that does the 'dirty work' of data base
management and of semantical property maintainance for objects
of alLL Levels. The data base contains pre- and user-defined
objects and it helps to avoid ‘'development-from=scratch’'
because it is allowed and encouraged to re-use already defined
objects in different applications. Also Library puroses are
supported by it.

Logically, we have the following system structure of the ISDV-
System:

appltication
obgject systems
ASPIK/ <—> adminis- <—> (editors, com-
ModPascal tration pilLers, inter-
objects <> system <—> preters, provers.
input units)

1.4.-2. Figq.: ISDV=-System structure

One of the proof tasks mentioned above is described in this
paper: the algebraic verification of refinements of algor-
ithmic ASPIK objects into ModPascal modules. Further details
about other proof tasks and the ISDV-System can be found in
[BvV 851, [Sch 85] or [RL 85].

2. Applicative and Procedural Lanquages

The previous section introduced the scenario, in which we are
going to develop our approach. Now we make more precise our
notion of applicative and procedural languages (sec. 2.1.).
Then the main problems of a connection of both formalisms are
presented (sec. 2.2.) and finally two representatives of the
Language families are briefly introduced (sec.s 2.3. and
2.4.); exact definitions are given in sec. 3.

2.1. Classification

In the following we try to partition the set of existing
programming Languages (PL's). This takes its justification
from the fact, that almost every application area of computer
science has developed a preference for a specific set of PL's:
economy and buisiness Located tasks are programmed in e.g.
COBOL, numerical applications are preferablLy written in e.g.
FORTRAN, ALGOL., PASCAL, process automation is supported by
e.g. PEARL, concurrent programming is performed e.g. in ADA.
or artificial intelligence problem solutions are heavily based
on LISP and PROLOG. The benefits of these associations of ap-
plication areas and Languages will not be discussed here since

November 1985

2.1. Classification 15

the classification we are aiming at is more general.

We will distinguish three categories of PL's where the
description of each category is given below:

® applicative PL's

® procedural PL's

@ other PL's

The term applicative PL refers to a Language with at Least the
following properties:
al) There is no concept of global variables.
a2) There are no "assignment-constructs®, and the semantics
is not based on states and state transitions.
a3) The control structure of a program is definablLe onlLy by
means of conditional branching and recursion.
a4) The concept of action (i.e. how things are sequen-
tialized in time) includes onlLy function composition and
function application.
a5) The concept of data consists of a set of so=called
elementary objects and associated functions (see remark
d) below). Note that strong typing 1is not induced
herewith.

The term procedural PL refers to a Language with at Least the
following properties:
p1) There is a concept of global variables (of a program or
operation).
p2) There is an "assignment-construct" which changes effec-
tively the value of an assignable object, and the Lan-
guage semantics 1is based on states and state transi-
tions.
p3) The control structure of a program is definable by means
of conditional branching, iteration., Jjumps, and recur-
sion.
p4) The concept of action is sequences of statements (state
changing actions).
pP5) The concept of data consists of predefined types.,
predefined type generators, functions, and procedures.

PL's that do not fall into one of the above categories are
referred to as other PL's.

This (and every) classification cannot be clean, exhaustive.,
or unique. Already the pretention of exactness and complete-
ness of the Listed properties may raise opposition, and we are
conscious about this. On the other hand, every other proposal
will have to deal with the above criteria more or Less explic-
itlyr, possibly adding or removing specific points, or putting
emphasis on different requirements. For example, approaches to
the semantics of applicative Languages may employ Lambda
calculus, data flLow models or reduction processes, but will
always be 'non-state based'. Obgjections of this kind will not
question the necessity of any classification for our context.
and therefore we will use the introduced terms as intended
without glLancing over their deficiencies.

November 1985

16 2.2. The Connection Problem

To make precise our understanding of procedural and applica=-
tive PL's, we add some remarks.

a) Existing practically used Languages are seldom purely

procedural or purely applicative. For example, it is dif-
ficult to characterize INTERLISP as applicative because
there are asignments, Loops and goto's among the Language
constructs. These features were introduced into the ap-
plLicative PL (PURE) LISP to overcome alleged shortcomings
compared to FORTRAN and to popularize applicative program-
ming.
Procedural PL's on the other hand frequently include
features as functions or recursion (e.g. PASCAL) so that
the adjustment to some PL class becomes questionable. But
despite this classification problem for existing PL's we
witl maintain the categories because they highlight
theoretical problems that occur in multi-Level software de-
velopment environments employing different Language types.

b) On todays machines., programs written in (more or Less) ap-

pLticative PL's are not supported by the hardware architec-
ture. Conventional von=Neumann computers are designhed for
tasks described in procedural PL's, and when using other
kinds of description Languages one is finally forced to
compile one's description into the machine Language. This
also has caused the proliferation of state manipulating
constructs in applicative PL's.
Applicative PL's need appropriate machine support to ex=-
plLoit their theoretical properties and convenience. As Long
as appropriate and powerful hardware is not developed or
available, applicative PL's will increase their involvement
of procedural PL concepts to remain competetive.

c) We classify some existing Languages as follows:
applicative: PURE-LISP, INTERLISP, PROLOG, FPL., APL;
procedural: ALGOL, FORTRAN, ADA, PASCAL., MODULA=-Z2.

d) The term 'functional PL' often refers to Languages that are
applicative PL in our sense, with the modified property a5)
that allows also functions as data objects (alLl LISP
dialects are 'functional').

e) The concept of action for appticative PL's is essentially
the building of expressions and the evaluation of them. In
procedural PL's also expressions may occur but they are
substructures of statements and are onLy usable 1in this
context (i.e. vehicle for the formulLation of a state trans-
ition).

2-.2. The Connection ProblLem

Procedural and applicative PL's have advantages in specific
problLem areas, as indicated above. In general one need not
consider any interactions or relations between them.

In the environment of software development systems emplLoying
various Languages and/or Languages of different kinds the
separate view 1s no Longer possible. Obgjects (pieces of
programming Language code) of some stage of the development
are Linked to other objects of other stages, and one is inter-

November 1985

2.2. The Connection Problem 17

ested to state properties of such Links (e.g. refinement
Links, implementation Links, description Links). If Languages
are changed within a Link between a source object and a target
object, the connection problLem (CP) occurs:

How can some Link property be formalized and how can the
formalized property be verified?

Verification in this sense means to show the somehow defined
validity of a correctness condition.

The situation becomes extremely severe if the Link property
states a kind of semantical preservation, i.e. the source and
target obgject of a Link are intended to be equivalent even if
they are expressed in different Languages. This occurs in gen-
eral in software develLopment systems that start with require-
ment definitions of a problem and end with executable code:
everything remains critical unless the fullfilment of the
requirements by the generated code is not assured.

In the sequel., the CP is examined under the additional assump-
tion that the object descriptions are given on the one side in
an applicative PL, on the other side in a procedural PL. Then.
taking the specific properties of applicative and procedural
PL's as defined in sec. 2.1. dinto account, (at Least) the
following problem areas may be Located that aggravate a con-
nection of the type "semantically equivalent™:

CP1: Side Effect Freeness vs. Global Variables

Typically, data of applicative PL's consists of set(s) of
elementary objects and functions defined on them. The former
can also be viewed at as constants or no-argument functions
delivering itself as value. The Language allows the composi-
tion of expressions from this data such that the value of the
expression is derivable onlLy from the expression and the func-
tion definitions (this property is sometimes called ‘'referen-
tial transparency').

This 1is not true for expressions or other pieces of code in a
procedural PL. Both may involve (a set of) glLobal variables
that will not have an explicit value by the actual parameters
supplied to operation calls of the expression (= piece of
code). Therefore the meaning is only derivable in the context
where the global variable values are known.

CP1 then may be formalized as: Can expressions of an applica=-
tive PL and statements of a procedural PL be compared (in the
sense of "semantically equivalent"), and if so, what are the
conditions?

CP2: Functions vs. Procedures

In fact, this is a subcase of CP1 but an interesting one. If
an applicative PL function and a procedural PL procedure are
considered the glLobal variable and expression/statement ques-
tions are again raised. But Looking at the operation defini-
tions, now can a statement "the function is equivalent to the
procedure” or "... does the same ..." be established in a
formal setting? This problem occurs everywhere in SEEs when
operation definitions are optimized or reformulated on dif-
ferent data structures.

November 1985

18 2.3. The Applicative PL ASPIK

CP3: Object Oriented Semantics

Applicative PL's used in software development environments
often come with compound syntactical structures that enclose
data as well as operations and that alleviate clustering of
tasks into coherent units. Sometimes these units can build
hierarchies such that for a hierarchy element all depending
objects are visible and their contents (data, operations) are
usable in it. Languages with these poperties are often called
object oriented, and there are also a number of procedural
PL's that meet the above description more or Less exactly
(e.g. ADA, CLU). Then, the connection probLem for unit defini-
tions is on the one hand independent of the kind of Language.,
on the other hand it is aggraveted in our software development
context by CP1 und CP2; the problem may be stated as: "is a
unit definition in an applicative PL 'semantically equivalent'
to a unit definition in a procedural PL?" Or more practical:
"is a given unit definition a semantic preserving implemen-
tation of another one?"

Depending on the point of view, more or other connection
problems may be recognized. Whenever the verification aspect
is not stressed, the connection problems are probably solvable
with satisfactory concepts and pragmatic decisions. In the
other case a formalL mathematical framework has to be set up in
which applicative and procedural PL's become comparable and
notions as “semantically equivalent™ or "correct implemen-
tation" can be introduced naturally. Without a formalism of
this kind the software development verification problem ist
not solvable.

2.3. The Applicative PL ASPIK

In this section we give a brief overview on our version of the
applicative PL ASPIK that differs from the version used in the
ISDV-System (see sec. 1.4.). The overview covers onlLy the most
relevant features of the Language. This section introduces
their syntax, whereas a (partial) formal semantic definition
is given in section 3. A full description of ASPIK may be
found in [Lic 85], [Spa 851 and [Sch 851.

The development of ASPIK was heavily influenced by abstract
data type theory. Especially the notion of algebraic specifi-
cations (see e.g. [aADJ 78], L[EKP 78]) had formed the
morphology of the Language. ASPIK distinguishes between three
kinds of obgjects:

e specifications (axiomatic or algorithmic)

® maps (refinement or implementation)

e imps (signature or specification)
Specifications are named syntactic units that allow the
definition of data = the ‘'sorts' of the specification - and
operations; on the other hand maps are named syntactic units
to associate sort and operation names in different specifi-
cations. This association is necessary for the refinement.,
parameterization and implementation concept of ASPIK. Imp
objects are used to realize the ASPIK implementation concept.
They specify certain properties of specifications that are

Nnavemhar 10RK

2.3. The Applicative PL ASPIK 19

said to implLement each other. Specifications, maps, and imps
can be structured hierarchically, i.e. they inclLude special
'use' = slots for indication of all those objects the current
one is built upon. Since the use-relation inheres in a direc-
tion, a hierarchy of ASPIK objects can be visualized by an
acyclic directed graph. The requirement of acyclicity excludes
recursive object definitions from the Language.

For the purpose of this paper it is sufficient to focus the
attention on specifications since onLy the connection of this
object category to a procedural counterpart is examined.
Therefore we will only present an overview on maps and imps.,
but go into details of specification obJjects.

Specification objects consist of a header and a body. If onlLy
the header is defined, the specification is called axiomatic
(or 'Loose'; see [BV 85]1), otherwise algorithmic.

A specification obgject in ASPIK is composed of a number of
mandatory (m) and optional (o) clauses:

specification header (m):
consists of maximally the specification identifier.,
use-, sorts-, ops-, and props-clauses. The header
describes the interface of the object, i.e. the names
of sorts and operations visible to the environment:

specification identifier (m):
a unique name for the entire obgject; also used in some
contexts for prefixing of didentifiers that are in-
troduced in the current definition (cd).

use-clause (m):
a List of objects that are used, i.e. their sorts and
operations may occur in the cd. The objects are either
referenced by a specification identifier or by a speci-
fication term (spec=-term; see below).

sorts-clause (0):
a List of new sort names. The sort names can be used in
the rest of the specification, €.d. to define
functionalities of operations or to indicate the scope
of variables in the prop-clLause.

ops-clause (0):
a List of operation functionalities of the form
op: sort, sort, ... sort, ==> sort,..
The operations are viewed at as interface or public
operations that are visible inside the cd and in all
objects that use the current object. The ops=clause
contains no explicit operation definition.

props-clause (0):
The properties clause consists of axioms which are
predicate calculus formulae that are intended to
describe the behaviour of the operations of the ops-
cLause (Note: no concrete definition is given for oper-
ations, only functionalities). There are no rules how
to specify the intended behaviour; often equations are
used to express the operations semantics axiomaticalliy
(although the term raxiomatic specification’
ambiguously encloses every body=-lLess specification in-

November 1985

20

2.3. The Applicative PL ASPIK

dependent from the form of the props=clLause).
The props=-clause content of a specification serves as a
formal requirement definition for possible algorithmic
operation definitions of those operations introduced in
the ops-clause. Several correctness criteria for speci-
fications are connected to the relLation between
properties and algorithmic operation definitions (see
[BY 85] and below) .
specification body (o0):

consists maximally of the constructors-, auxiliaries-,
define—auxiliaries=-», define-carriers=-., define-
constructor=ops=, private=-ops=-, and define-ops-clause.
In the specification body algorithmic definitions for
newly introduced sorts and operations of the cd are
given. To facilitate this, one can define auxiliary and
private operations which have Limited scope.

constructors (m: the sorts-clause is nhonempty):
a subset of the ops-clause operation didentifiers. The
constructors are the generators of the Herbrand
universe that 1is wused in the definition of carriers.
Each constructor contributes to the Herbrand universe
that is associated with its target sort name. Herbrand
universes are considered for each sort name occurring
in the sorts-clause.

auxiliaries (o):
a List of operation functionalities in the same form as
in the ops-clause. Anh auxiliary operation is intended
to ease the definition of carrier sets in the define-
carrier=-clause. The scope is restricted to the specifi-
cation body.

define-auxiliaries (m: the auxiliaries-clause is
non-empty): gives the concrete definition for alLl
auxiliary operations. Occurrences of conditionals.,
case- and Letschemes, recursion and operation calls are
allowed in auxiliary operation definitions. VisiblLe
items are all used sorts and operations, newly in-
troduced sorts and newly introduced operations.

define-carriers (m: the sorts=clause is non-empty):
for each sort name of the sorts clause, a carrier set
is defined by the extension of a so=-called
characteristic (carrier) predicate. The extension
represents either the complete Herbrand universe.,
spanned by associated constructors, or a subset of it
and 1t includes a special error elLement that is dif-
ferent from aLl other elements. In the subset case
provisions have to be taken to guarantee the well-
definedness of operations (closure property; see be-
Low) .
In the definition of the characteristic predicates, an
operation of the ops clause is unvisible. Used and
auxiliary operations are visible. The carrier predicate
definition consists of an arbitrary operation scheme
(conditional-», case-» Let-scheme or term) that
satisfies the subterm property (occurring terms are
carrier elements) and that evaluates to a boolean
value:

November 1985

2.3. The Applicative PL ASPIK 21

- true: the argument term is carrier element
- false: the argument term is not carrier element

It should be emphasized that the carrier definitions
are a very crucial part of an ASPIK specification since
they determine the data of the abstract type behind the
specification and therefore influence the consistency
of the cd with the intended model as it is described in
the specification header (especially the props=clause;
see sections 3.2.1. and 3.4.1. for the semantics of
specifications).

define-constructor-ops (m: the constructor-clLause is
non-empty): here, the constructors given in the con-
structor clLause only by name are completely defined.
There 1s Limited freedom in the operation definition
since the decisions of the define-carrier-clause have
to be respected. The main point is: if the carrier
definition has specified a term op(a,, ..., a,) as
carrier element., then an invocation of the operation op
on the arguments a,,» .., a, has to evaluate to this
term (note the subtle distinction between terms and in-
vocations of operations that are associated to the
names occuring in the terms). Otherwise the value of a
constructor operation invocation has to be defined such
that closedness is maintained i.e. 1if the carrier
predicate has excluded a constructor term then the
associated constructor operation call has to be defined
yielding an element of the carrier (in the trivial
case: the error element). Constructor operation defini-
tions may depend on characteristic predicate defini-
tions. Visible items are the used operations, the
auxiliaries and the constructors of cd, and the defini-
tion may be based on case-schemes, Let-schemes, con-
ditionals, recursions and operation calls.

private=-ops (0):
introduces functionalities of operations that are in-
tended to be used in the operation definition of public
operations but should not be accessible outside the
specification (hidden operations). They are similar to
auxiliary operations but with different application
area (definition of public operations instead of
definition of carrier predicates). The functionalities
may be built up from used sorts and sorts of cd.

define=-ops (m: ops=- or private-ops clause is non-empty):
all operations up to now onlLy introduced by functional-
ities are defined. Visible items are all wused oper-
ations., all sorts, operations and private operations of
cd. The definition may include occurences of case=- and
Let-schemes, conditionals, recursions and operation
calls.

This brings the overview on ASPIK specification objects to its
end.

2.3.=-1 ExamplLe: Limited Queue specification in ASPIK

=

November 1985

22

2.3. The Applicative PL ASPIK

spec QUEUE;
use INTEGER., BOOLEAN;
sorts queue;
ops emptyqueue: ==> queue;
enter: queue integer --=> queue;
remove: queue --> queue;
first, Last: queue -=-> integer;
props [P1]1 all q: queue all i: integer
remove(enter(q-1i)) == ¢
[P2] aLl g: queue alLl i: integer
Last(enter(g,i)) == 1
[P3]1 alLl ¢g: queue alLl i: integer

q == emptyqueue
==> first(enter(q,1)) == 1
[P4] g =/= emptyqueue
==> first(enter(q,i)) == first(q)
spec body
constructors emptyqueue., enter;
auxiliaries

size: queue ==> integer;
define auxiliaries
size(q) = case q is
*emptyqueue : 0
xenter(q, »i,) : succ(size(q;))
esac

define carriers
is=queue(q) = case q is
*emptyqueue : true
*enter(q, »i,) : Less(size(q;)-,10)
esac

define constructors
emptyqueue
enter(q,1i)

*emptyqueue
if Less(size(q;)-,10)
then *enter(qg,i)

eLse ¢
define ops
remove(q) = case q is
*emptyqueue : error.queue
*enter(q, »i,) : case q; is

*emptyqueue : emptyqueue
*enter(q, »1,) :
enter(remove(q,) »i,)
esac
esa
Last(q) = case q is
*emptyqueue : error.queue
xenter(q, »i;) : i,
esac
first(q) = case q is
remptyqueue : error.queue
*onter(q, »i,) : gcase o, is
*emptyqueue : i,
xonter(qg, »i,) : first(q,)
esac

0

esa

Novemher 10RKS%

2.3. The Applicative PL ASPIK 23

endspec

Remarks a) Empty clauses are skipped
b) INTEGER and BOOLEAN denote the specifications of

the obvious objects.
c) The props-clause should alLso reflect the Limited-

ness of queues; appropriate equations are dis-
regarded to support compactness of the represen-

tation.
d) Succ denotes the successor operation of INTEGER.
e) Starred items denote carrier elements: whilLe

emptyqueue is an operation of QUEUE., *emptyqueue is
an element of the carrier queue of QUEUE.

f) Less denotes the obvious operation of INTEGER.

g) Enter 1is defined to deliver its queue argument un-
changed if the maximal size is reached. FIRST
evaluates to the innermost integer argument., which

in turn is removed by REMOVE.
n

Two topics were spared in the introduction of specifications
above: the subterm property and spec-=terms.

The subterm property is very crucial for the definition of
carriers and constructors. It says that whenever a term t con-
sists of operation symbolL op and argument terms t,, ..., t,-
then it holds: if t is carrier element, then t,, ..., t, are
carrier elements. This property ensures for example the well=-
definedness of the carrier predicate since subterm extractions
do not violate the clLosedness of the predicate, and also
recursive invocations are defined. In the introduction above
the subterm property has been omitted for reasons of clarity.

Spec-terms are a very important feature of ASPIK. They involve
specifications as well as maps or imps. For a precise under-
standing of spec-terms we give a short survey on map and imp
objects in ASPIK which both are intended to establish
relLations between specifications. The essential notion behind
maps is the notion of signature morphism. Signature morphisms
are pairs of mappings between sets of sort names and between
sets of operation names (the sort mapping and the operation
mapping) . The operation mapping has to protect the functional=-
ity associated with an operation name, 3i.e. the target
functionality is the image of the source functionality under
the sort mapping (see also definition 4.2.-2).

A map object definition encloses at most the following
clLauses:

map-header (m):
introduces the name of the map object. The naming con-
ventions for maps enforce the indication of a source
and target specification object as part of the map
object name. The sets of sort names of the source and

November 1985

24 2.3. The Applicative PL ASPIK

of the target object are taken as source and target of
the sort mapping, while the sets of operation names of
the source and target object are taken as source and
target of the operation mapping.

is-clause (m):
possesses two possible entries: refinement or implemen-
tation. This clause serves to characterize the inten-
tion behind a map object:
- refinements restrict the set of models of cd.
- implLementations establish a semantical connection

between the source and the target specification.

base-clLause (0):
the base clause offers the possibility to exclLude
objects of the source object hierarchy from being modi-
fied by the signhature morphism. The sorts and oper-
ations of objects Listed in the base clause are mapped
identically.

use-clause (0):
a List of map object names. Via the use clauses, map
objects may constitute hierarchies and therefore alLlow
the incorporation of already defined map objects in a
new one. Semantically, every used map represents a part
of the signature morphism induced by the map object

definition.
sorts-clause (m: The sorts clause of the source-object is
non-empty): the sorts clause consists of pairs "old =

new" where ‘'old' is a sort name of the source object
sort name set, and 'new' 1is a sort name of the sort
name set of the target object hierarchy. Every old sort
name has to be associated to a new name.
The sort clause represents (a part of) the sort mapping
induced by the map object.

ops-clause (m: the ops clause of the source object is
non=empty): the ops clause consists of pairs "old =
new", where 'old' is an operation name of the operation
name set of the source object, and 'new' 1is an oper-
ation name of the operation name set of the target
object hierarchy. Every old sort name has to be asso-
ciated to a new name under preservation of the
functionality.
The ops=-clause represents (a part of) the operation
mapping induced by the map object.

This brings the overview on ASPIK map obgjects to its end.

2.3.-2 Example: Map object STACK--M1-->QUEUE

Let QUEUE be as in 2.3.-1.

Let STACK denote a specification object of the well=known
structure with sort ‘'stack' and operations ‘push'., 'pop' -
'top' and 'emptystack'.

Let ELEM1 and INTEGER denote used specifications of STACK and
QUEUE rep., and ELEM1=--M0-->INTEGER an already defined map
object.

map STACK==M1-=>QUEUE

November 1985

2-.3. The Applicative PL ASPIK 25

s implementation

ase BOOL

use ELEM--M0-->INTEGER
sorts stack = queue

ops push = enter

pop = remove

top = Last

emptystack = emptyqueue

endmap

M.

|

(o3

C

Remarks: a) The is=clause indicates the existence of (at
Least) one imp object (see below).
b) BOOL is lLeft unchanged by the signature morphism
induced by STACK--M1=-->QUEUE.
c) The explicit definition of ELEM=--MO-->INTEGER is
omitted here.
n
ClLosely connected to map objects are ASPIK imp objects. Since
maps onlLy constitute syntactical relations between ASPIK
specifications this would not suffice to establish ‘deeper'
semantical propositions (as for example the implementation
concept). For this reason maps can be equipped with imp
objects +that provide the necessary information. Since ASPIK
imp objects are still under research and outside the scope of
this paper, we do not go into further details. If map and imp
objects are associated to describe an ASPIK implementation.
they are also called 'implLementation signature' and 'implemen-=
tation specification' resp. to indicate their semantical

purpose.

Comming back to the branching point ‘'spec=terms', we can now
introduce this notion. A spec=term is syntactically a specifi-
cation identifier (the domain) followed by a List of map
object identifiers (e.g. STACK {ELEM1--MO~=->INTEGERY). Seman-
tically, a spec=term describes a specification object that is
derived from the domain hierarchy by exchanging obgjects, oper-
ations and sorts according to the Listed signature morphisms
(e.g. the specification (hierarchy) behind STACK
{ELEM1==M0-=>INTEGERY has all occurrences of object identifier
ELEM1, sort eLem?1 and operations of ELEM1 substituted by
occurrences of object identifier INTEGER., sort integer and IN-
TEGER operations resp.). This use of map objects represents
what is called the parameterization-by-use concept of ASPIK:
specifications are not fixed structures, they show generic
properties. Every (even indirect) used specification is viewed
as a possible 'formal parameter' which might be actualized in-
side a spec-term. An ASPIK spec-term 1is comparablLe with
procedure or function calls in imperative Languages, where
formal parameters are substituted by actual ones. Now this
concept is applied to type=similar structures (specifi-
cations). Spec-terms represent a very convenient and flexible
feature for re-using specifications in various contexts. For
example, 1if there exist map objects ELEM1--MO-=->INTEGER.,
ELEM1=--M1=-->NATURAL_NUMBER» one can easily use different
actualizations of STACK in a new specification in parallel:

November 1985

26 2.4. The Procedural. PL ModPascal

use STACK {ELEM1--M0-->INTEGERY .,
STACK {ELEM1--M1-->NATURAL_NUMBER>

We close this section on the main Language features of ASPIK
with two remarks:

a) ModPascal provides an analogon to maps in form of in-
stantiation definitions, and to spec-terms in form of in-
stantiate types.

b) Most of the introduced portions of ASPIK are implemented.
The software tool SPESY is described in [Sch 85]. A full
Language description may be found in [BV 851.

2.4. The Procedural Programming Langquage ModPascal

This section covers the Pascal=-extension ModPascal ([OLt
84a,bl), the Language of the concrete Level of our assumed
scenario. ModPascal encloses standard Pascal [ISO 7186]l, and
since the Latter Language may be seen as a subset of ADA, a
huge part of ModPascal programs may be directLy expressed in
ADA. The new (and different from ADA) concepts are:

module type definitions
enrichment definitions
instantiation definitions
instantiate type definitions

At first view, module types are similar to packages. But mod-
ules possess an important property that is necessary in a
software development environment as well as for programming
with abstract data types in general: they can be incarnated.,
and variables declared of a module type may be used according
to the same rules that hold for ordinary types. Also, the in-
terface of a module type is designed on theoretically insights
of abstract data type theory and therefore exclLudes ‘'unclLean'
features.

A ModPascal module type definition consists of the following
parts:

modid : Name of the current module.
use : List of modules that are used by modid.
public : Names and arities of new interface procedures.,

functions and initials.

Local : Consists of Local types, Local procedures and
functions, and Local variables. Local items
are only visible in the current module defini-
tion.

operations : ComplLete definition (name., blLock) of alt

public and Local operations.

(The concrete syntax of ModPascal modules is sLightly dif-
ferent; it was abbreviated here. See also example 2.4.-1 be-
Low.)

November 1985

2-.4. The Procedural PL ModPascal 27

ModulLes are assumed to have an internal state. This state may
be changed by the invocation of a module procedure, inspected
by an modute function invocation or initialized by a call of
an initial operation. The mandatory Local variables of a mod-
ule contain the actual state in the actual bindings. There-
fore, 1f one Looks at the (abstract) data type (an algebra)
described by a module definition, its set of carriers contains
as single new element the cartesian product carrier of those
carriers associated to the types of the Local variables, and
its set of operations has as new elements (the semantics of)
all public operations of the current definition. The algebra
constructed in this way is also called the module algebra.

Local types and Local procedures and functions do not have a
comparable dimpact on the module semantics as the Local
variables. The types and operations are thought to ease the
programming process for the public operations. The definition
bLocks 1in the operations part may emplLoy all features of
standard Pascal and all ModPascal extensions except that
nested module type definitions are not allowed. If a program
reguires such a structure it has to be modetled by using of
previously defined modules.

2.4.=-1 ExamplLe

type MSTACK =
moduLe use MELEM, MINTEGER;

public procedure mpush(e: MELEM);

procedure mpop;
function mtop: MELEM;
initial mempty;
Local type A = arrayl[1:10] of MELEM;
var a:A, i1:MINTEGER; Localend;

procedure mpush;
begin if i < 10

then begin i := i+1; alil := e end
elLse error end

procedure mpop;
begin if i=0 then error
else i := i-1 end
function mtop;
begin if i=0 then error elLse mtop := alil end
initial mempty;
beqin i := 0 end;

modend

This example shows a ModPascal version of bounded stack. MELEM
and MINTEGER are assumed as already defined. Public operation
arities omit a first parameter of type MSTACK; this parameter
is supplied by the special syntax of module operation calls.

The algebra carrier introduced by MSTACK is the cartesian
product (A x MINTEGER) i1.e. tuples of array-integer values.

November 1985

28 2.4. The Procedural. PL ModPascal

The semantical operations behind mpush, mpop, etc. take these
tuples as arguments and yield new tuplLes or select components.

Enrichments atllow the extension of already defined modules by
new operations. The main difference to a module type defini-
tion is, that no new data is introduced and the operations of
the enrichment have to be based upon the carriers behind the
enriched modules. Enrichments correspond to specifications of
abstract data type with empty sort clause.

An instantiation object in ModPascal allows the hierarchical
specification of signature morphisms. This is not supported in
any of the existing imperative programming Languages. The set
of new sort names of a modute consists of the one-element-set
{modid) where modid ambiguously denotes the cartesian product
of Local variable types. The set of new operation names of a
module is the set of names of alLl public operations with asso-
ciated arities. Then, the signature morphism induced by an in-=
stantiation obgject Links two moduls together by providing a
mapping between the sort sets and an (arity=-preserving)
mapping between the operation sets.

Instantiation objects are used in instantiate type defini-
tions. An instantiate type is an instance of a modulLe or
enrichment. This instance is generated according to the infor-
mation provided by the instantiate type definition: a base
object (module, enrichment) and a List of dinstantiation
objects. The signature morphism induced by the instantiations
is applied as substitution to the base object (hierarchy).
yielding in the modified base object as instance.

Instantiations and instantiate types represent the ModPascal
parameterization concept for modules (types). By this, it is
not necessary to fix the parameters and non-parameters of a
given module or enrichment. ALL substructures occuring in the
source of the signature morphism are parameters in the appli-
cation at hand; other applications based on other signature
morphisms may select other substructures of the base object.
The task of parameterization of types is Left as flexible as
possible for the programmer., while simultaneously a strong and
theoretically well-founded formalism is introduced. (It should
be noted that this kind of parameterization is also possible
for familiar structures as arrays, records etc.; see [OLt
84a,pl).

OQur investigation of sequential verification will not employ
ModPascal in its complete size (see sec. 4.1.).

November 1985

3. Language Semantics 29

3. _Language Semantics

In this section we describe the semantics of selected con-
structs of our version of ASPIK and ModPascal. We restrict
ourselves to those topics that are of interest in the connec-
tion context between the Languages.

Since connections will be established between specifications
and modules/enrichments, their semantics 1is defined below.
This includes also a definition of ASPIK maps because they may
occur 1in the use-clause of a specification object, and, for
consistency, also a definition of the ModPascal instantiation
and instantiate type features.

An exhaustive presentation of the semantics can be found in
[Bv 85] (ASPIK) and [OLt 84bl (ModPascal).

In section 3.1. an abstract syntax describes the two Language
subsets to be considered in the sequel. The discussion of the
semantics is splitted into two parts: the context-sensitive
conditions and the dynamic semantics. The first part is given
in section 3.2., whereas the second part covers sections 3.3.
(semantic domains) and 3.4. (semantic clauses).

3.1. Abstract Syntax

A convenient way to describe the syntax of the ASPIK and
ModPascal portions of interest is by Vienna Definition Lan-
guage (VDL, [Weg 721). We briefly introduce VDL by repeating
the main notions and features which are used in sec.s 3.1.1.
and 3.1.2.

VDL supports the idea of abstract syntax in that sense, that
no familiar Language symbols as 'begin' or ‘'end' (i.e. the
terminal vocabulary) occur in a VDL description. Instead, all
objects (syntactic entities) are collected in sets, and there
are selectors that allow manipulation of them. Objects are
separated into two kinds:

- elementary objects: objects with no components and therefore
Nno selectors.,

- composite objects : objects which are be composed of objects
by construction operators. The com=-
ponents may be elementary or composite
objects, and each is selectable by a
unique selector.

Notation: {0, - 0,2} denotes a set of elementary objects.

(s,: Cy» sS,: C,) denotes a set of composite objects
with selectors s;, s, and component object sets C; .
Cz-

Composite objects represent tree structures in which the arcs
are Labelled by selectors, the Leaf nodes are elementary
objects and alLl other nodes are composite objects.

There is a distinguished elementary object, the so-called null

November 1985

30 3.1. Abstract Syntax

object L1 which is different from every other elLementary
object. The nulLl object is ambiguously used to denote empty
domains as well as erroneous manipulations on domains.

3.1.-1. Def.: [selector application]
Let C = (s;: Cy 7 wauer S,: C,) denote a composite object. Let s
denote a selector, and Let ¢ € C with ¢ = (€3 s wuauasr C,).
Then (s ¢) is called selector application with
(s ¢) := ¢case s = s;», 1 € (nN) : c;
otherwise L

Notation: (s" c¢) : S (8 (S wew (8 €C) vue) [N times, n > 0]

= (
(s® ¢) := ¢

SelLectors may be composed, too. If (s;: C;) and C; = (s,: C,»
ss: C3) are composite objects then sss; is a composite selec=-
tor. If x € (s;: C;) then sis; can be applied to x to select
the c;~component.

Notation: If s,S,_.; .= S; denotes a composite selector., then
(s, (s,_; (ca. (s; X) a...) denotes the application

to a composite object x.

3.1.=2. Def.: [admissability]
Let s := s, ... s; denote a composite selector, C a set of
composite objects.
1) The application of s to c € C, i.e.
(s, (s,_; (aaa(s; €) o..a)
is admissable, if
Vien .s; (si_; (..a(5; €) ...) # L,
s is also called admissable selector for c.
2) AD(c) := {s| s is admissable selector for c2

The following conventions and operators are used:

1) We assume all object sets to be flLat domains (see [OLt
84bl) .

2) Syntactic Domains are denoted by identifiers starting with
capital Letter. Selectors and syntactic domains may occur
postfixed by 'L' (for 'List'). This implies the following
List structure:

DomainL = (first: Domain, rest: DomainL)

If Domain = Dom1 v Dom?
then DomainL = Domi1L v Dom?2L

3) The L=-version of a domain is not explicitly mentioned in
the abstract syntax of ModPascal.
Special case: DomLL = (first: DomainL., rest: DomainLL)

4) The general assignment operator is u:
For d € D: d

November 1985

3.1.1. Specifications and Maps 31

57/ \ia

olLd, old,

p(d; s;: new,) := d' : d°
5/ \sz
new, old,

5) The general construction operator is p,:
Ho(S,: Dy» S,:lo(S3: D3» s,: D,)) describes the domain:

37/ \iz
D, .
5/ \{4
Ds D.
The assignment and construction operators will be used in
semantic clauses of sec. 3.4.

6) Below, domains of structure
(Domain* x Domain)
will be used. Sometimes it is necessary to transform ele-

ments thereof into Lists:

makelist: (Domain* x Domain) —> DomainL
is defined by
makelist((dy, ..a d,r d)) := p,(first: d,, rest:

Mo (first: d,», rest: pe(...(first: d, -
rest:y, (first:d, rest: L) ...)

7) An operator Length: DomainL —> N that returns the number

of List elements is defined for every domain. Length(l) =
0.

Sometimes it is convenient to convert Lists into sets:
f: DomainL —> (P(Domain)
with
P(A) := {d;| 1 € (Length(d)) and
§1ie€e (d) . d; = (first(rest'(d))?

The operator
concat: DomainL x Domain —> DomainL
is defined as expected:
concat(d, d,) := if (first d) = L then d, elLse
if (rest d) = L) then
Ho (first: d, rest: W, (first: d, .,
rest: 1))
else Mo (first: (first d).
rest: concat((rest d), d,))

AlLso
concatlL: DomainL x DomainL —> DomainL with
concatlL(d, »d,) := if (first d,) = L then d, else

November 1985

32 3.1.1. Specifications and Maps

if (rest d,) = 1
then concat(d, » (first d,)) glLse
concatlL(concat(d, » (first d,)).»
(rest d,))

3.1.1- Specifications and Maps

An ASPIK specification obgject is described syntactically by
the following abstract grammar:

Spec = (sp_head: Sp_head, sp_body: Sp_body)

Sp_head = (spec_id: Id, uselL: Sp_termL, sorts: IdL.
ops: OpL)

Op = (op_id: Id, arity: Arity)

Arity = Id* x Id

Id = {<alphanumeric identifier>>

Sp_body = (cons: IdL, aux: OpL., def_aux: Op_deflL.,
def_car: 0Op_deflL, def_con: Op_deflL.,
priv: OpL., def_ops: Op_deflL)

Op_def = (op_head: Op_head, op_body: Op_body)

Op_head = (op_id: Id, params: IdL)

Op_body = Term v Case v Cond v Let

Term = (op_id: Id, termL: TermL)

Case = (case_var: 1d, cases: CaseslL)

Cases = (tag: Termi, exit: Op_body)

Termi = Term v {OTHERWISE2

Cond = (if: Term., then: Op_body, else: Op_body)

Let = (Let_var: Id, Let_term: Term, Let_body: Op_body)

An ASPIK map object is described by:

Map = (map_id: Map_id, is: Is, base: Sp_termL.
use: IdL, sorts: AssoclL., ops: Assocl)

Map_id = (from: Id, to: Id, map_name: Id)

Is = {refinement, implLementation

Assoc = (old: Id, new: Id)

An ASPIK specification term (specterm) is described by

Id v Spec_term

Sp_term
(spec_1id:I1d, mapL: Map_idL)

Spec_term

Note that the employed concept of an ASPIK specification is
not completely coincident with [BV 85]. There a distinction is
made, if for s € Spec, (sp_body s) is defined or not. In the
former case the specification is called algorithmic, otherwise
axiomatic. Also predicate calculus formulae can be attached to
specifications. For reasons described in sec. 4.1. we onLy
consider = in terms of [BV 851 - algorithmic specifications
without attached predicate calculus formulas.

November 1985

3.1.2. ModPascal 33

3-.1.2. ModPascal
In this section we introduce the abstract syntax of module
type definitions., enrichment definitions., instantiation

definitions and instantiate type definitions. Not every syn-
tactic domain will be refined to full detail; see [OLt 84bl]
for the complete abstract syntax of ModPascal.

A ModPascal module type is defined by:

ModulLe_type
= (useL: IdL, publiclL: PubliclL, Local: Local.,

operationL : OperationL)

Public = Proc_head v Func_head v Init_head

Proc_head = (proc_id: Id, paramL: ParamlL)

Param = (idL: IdL, type: ID)

Func_head = (func_id: Id, paramL: ParamL, result: Id)
Init_head = (init_id: Id, paramL: ParamL)

Local = (Local_typelL: Local_typelL, Local_varlL: VarlL.,

Local_operationL: Local_operationL)

Local_type

= Simple_type v Array_type v Record_type v
Set_type v File_type v Pointer_type
var = (didL: IdL, type: Type, init: Init_stmt)
Local_operation
Proc_head v Func_head
Proc_spec v Func_spec v Init_spec
(proc_id: Id, body: Block)
(func_id: Id, body: Block)
(init_did: Id, body: Block)

Operation
Proc_spec
Func_spec
Init_spec

L I T [R 1}

A ModPascal enrichment is defined by:

Enrich_def = (enr_id: Id, uselL: IdL, addL: AddL.,
operationL: OperationL)
Add = (add_id: Id, publicL: PublicL)

A ModPascal instantiation is defined by:

Inst_def = uselL: IdL, obgj_actL: Obgj_actlL.,
type_actl: Type_actl., op_actlL: Op_actlL)

Obgj_act = (oLd: Id, new: Id)

Type_act = (old: Id, new: Id)

Op_act = (old: Id, new: Id)

A ModPascal instantiate type is defined by:

Instantiate_type = (base_type: Id, obgjectlL: IdL)

November 1985

34

3.2. Context=-sensitive Conditions

3.2. Context=sensitve Conditions

3.2.1. ASPIK

We now state for the most important domains context-sensitive
conditions that define the notion of static correctness for

objects

of the domain. The presentation of the denotational

semantics in sec. 3.4. will assume correct objects.

lLet s €

Spec. Then 1its context-sensitive correctness is

defined as follows:

SP1: s correct :<= (sp_head s) correct

and (sp_body s) correct.

SP11:

sh := (sp_head s) correct :<= (spec_id sh) is

unique in the environment of s and (use sh)
correct and (sorts sh) correct and (ops sh)
correct.

SP111:

uL := (uselL sh) correct :<= Every used specifi-

cation is correct (and visible) and every used
specterm is correct (and visible) and no

cyclic usage of specifications occurs and altl
identifiers provided by the interface I of all
used objects are unique (possibly through
appropriate prefixing) (I. = ({sort namesl.,
{operation namesl})).

SP112:

soL:=(sorts sh) correct : <

Every sort identifier is unique in
I: v (solL., ¢)

SP113:

opL:= (ops sh) correct :

Every operation identifier is unique in
I. v (soL, opL) gnd every arity is correct.

SP1131:

arity correct : <<= V o0 € (ops sh) . Let
(S; S, =w= 8,7 S,41):= (arity o) in
s; € ((IV1 v sol), i € (Nn+1)

t

SP12:

sb: =(sp_body s) correct :&

(cons sb) correct gnd (aux sb) correct gnd
(def_aux sb) correct and (def_car sb) correct
and (def_con sb) correct and (priv sb) correct
and (def_ops sb) correct.

SP121:

coL:=(cons sb) correct :e =
Every identifier is contained in
{id|3i € Length(opL) |
id=(op_id (first (rest'! opL)))2>

SP122:

aul:=(aux sb) correct :<¢> Every operation

November 1985

3.2.1. ASPIK 35

identifier is unique in Ig v (soL, opL v aul)
and SP1131 holds for every o € (aux sb)

SP123: daulL:=(def_aux sb) correct :&
Every operation definition odef € dauL
is correct with admissable identifier set
AIS:=I. v (solL., opL v aul).
For every element of auL there is an operation
definition in daul; no other definitions occur
in daul.

SP1231: opdef € Op_def correct with AIS &
(op_head opdef) is correct with AIS apd
(op_body opdef) correct with AIS v
(g, (params (op_head opdef))).

SP12311: oph:= (op_head opdef) correct with AIS : &
(op_id oph) € AIS{2 \ I {2 and
(params (op_head opdef)) are not contained in AIS

SP12312: opb:=(op_body opdef) correct with AIS : &=
Let z € {Term, Case, Cond, Let} in
case opb € z : opb is z-correct with AIS.

SP123121: opb Term=correct with AIS : <&
(op_id opb) € AIS{2 and every elLement
of (termL opb) is Term=correct with AIS.

SP123122: opb Case-correct with AIS : <&
(case_var opb) € AISV{2 and every
c € (cases opb) is correct.

SP1231221: ¢ € (cases opb) correct :¢==
Let V dernote the new variables of (tag c) in
(tag c) is Term-correct with AIS v
(¢, V) and (exit c) is correct with
AIS v (g, V).

SP123123: opb Cond-correct with AIS : <>
(if opb) is Term=-correct with AIS gnd
(then opb) is correct with AIS and
(else opb) is correct with AIS.

SP123124: opb Let-correct with AIS : 222
(Let_term oph) is Term=-correct with AIS v
is correct with AIS v (g, (Let_var opb)).

SP124: dcaL := (def_car sb) correct :<= For every
s € soL there is a carrier predicate
definition in dcal; no other definitions
occur.
Let caL := {id| 3 i € (Length (dcalL)) .
(op_id (op_head (first (rest'' (dcal))))) = id} in
Every operation definition is correct
with AIS := I¢ v (soL, opL v aulL v cal)

November 1985

36

3.2.1. ASPIK

SP125:

dcolL := (def_con sb) correct :< For every
c € coL there is an operation definition in
dcol; no other definitions occur. Every
operation definition is correct with
AIS := I, v (sol, opL v auL v cal)

SP126:

prL := (priv sb) correct :<4<=> Every operation
identifier is unique in I: v (solL, opL v
aul. v cal). Every arity is correct.

SP127:

dopL := (def_ops sb) correct :&<— For every
operation of (opL v prL) \ coL there is
an operation definition in doplL; no other
definitions occur. Every operation
definition is correct with AIS := I. v
(soL, opL v prib v cal)

Remarks:

a) Specterm correctness (SP 111) is defined below.

b) The interface I¢ of a specification is the valid
name space genherated by all 'sort and operation
identifiers of (transitively) used specifications.
It is also called imported interface, whereas the
exported interface contains additionally the sorts
and (public) operations of the current specifi-
cation.

Let m € Map. Then its context-sensitive correctness is defined
as follows:

MA1: m correct :<> (map_id m) is correct and (base m) is

correct and (use m) is correct and (sorts m)
is correct gand (ops m) is correct

MA11:

mid := (map_id m) correct :<> The specifications
(from mid) and (to mid) are visible and correct
and (map_name mid) is unique in the environment
of m.

MA12:

baL := (base m) correct :<> Every specterm in balL

is correct.

MA13:

uL := (use m) correct :<=> Every used map object is
correct and the union of all mappings induced by
used objects is itself a signature morphism.

MA14:

soL := (sorts m) correct :<=> For every association
a € soL it holds: (old a) is visible sort
identifier in the hierarchy spanned by (from mid)
and (new a) is visible sort identifier in the
hierarchy spanned by (to mid) apnd (new a) as
well as (old a) are not sort identifier of some
specification of bal.

MA15:

opL := (ops m) correct :<4=> For every association

November 1985

3.2.2. ModPascal 37

a € opL it holds: (old a) is visible operation
identifier in the hierarchy spanned by (from mid)
and (new a) is visible operation identifier

in the hierchy spanned by (to mid) and (new a)

as well as (old a) are not operation identifier
of some specification of balL and the
functionaltities of (old a) and (new a) are
compatibte (i.e. the signature morphism property
is satisfied).

Remarks: a) Specterm correctness (MA12) is defined below.

b) Since different used objects may involve the same
object, and therefore sort and operation mappings
are defined on the same source sets it has to be
guaranteed in MA13 that in this case equal argu-
ments vyield equal results (di.e. the function
property of the union of alL used signature
morphisms) .

Let st € Sp_term. Then its context=-sensitive conditions are:

ST1: st correct :<— gcase st € Id : st denotes a correct
specification;
case st € Spec_term : (spec_id st) denotes a
correct specification and (mapL st) is correct
and (mapL st) is applicable to (spec_id st)

ST2: mL := (mapL st) correct :<—> every element of mL is a
correct mapobject and the union of all elements
of mL is a signature morphism

ST3: mL is applicable to (spec_id st) :¢<=> Let mp := the
signhature morphism induced by mL, sh := the

hierarchy spanned by (spec_id st) ip
source(mp) ¢ sh

Remarks: a) The notion of 'union of signature morphisms' (ST2)
stands for union of source and target sets of sort
and operation mappings where the arity operators
for each operation name set are maintained.

3.2.2. ModPascal

In the following context=-sensitive conditions will be given
for the object domains introduced in sec. 3.1.2. The fullL set
of conditions for ModPascal and more details may be found in

[OLt 84al.

Let m € Module_type. Then its context=sensitive correctness is
defined as follows:

November 1985

38

3.2.2. ModPascal

MU1:

m correct :<> (useL m) correct and (pubticL m) I
correct and (Local m) correct and (operationL m) |
correct and m interface correct

MU11:

uslk := (useL m) correct :<= Every used module or
enrichment is visible and correct and no cycles
in the use-relation occur and all identifiers
provided by the interface I, of all used
objects are unique (possibly through appropriate
prefixing) .

MU12:

pul := (publicL m) correct :<— For every element

oph of pul it holds:

case oph € Proc_head : (proc_id oph) and
(parambL oph) contain unique identifiers and
Y i € (Length((paramL oph))) .
(type (first (rest ! (paramL oph)))) €
(I 41 v {m_id})

case oph € Func_head : (func_id oph) and
(paramL oph) and (result oph) contain
unique identifiers and
v i € (Length((paramL oph))) .
(type (first (rest ‘! (paramL oph)))) €
(I¥1 v {m_id»)
and (result oph) € I ¥1

case oph € Init_head : (init_id oph) and
(paramL oph) contain unique identifiers and
Y i € (Length((paramL oph))) .
(type (first (rest ‘' (paramL oph)))) € I, V1

and at Least one initial header occurs.

MU13:

Lp := (Local m) correct :<== (Local_typeL Lp)
correct and (Local_varlk Lp) correct and
Local_operationL Lp) correct and
Length ((Local_varlL Lp)) > 0

MU1 31

: LtL := (Local_typelL Lp) correct :<— no introduced
type is a module type and all type identifiers
are unique and all occurring type identifiers
are either defined in LtL or contained in I V1

MU132

: LvL := (Local_varlL Lp) correct :<=> alLl variable
names are unique and alLl variable types are
either contained in I, V1 or are implicit non-
module types

MU133

: LoL := (Local_operationL Lp) correct :< For every

element oph of LoL it holds:
case oph € Proc_head : (proc_id oph) and

(paramlL oph) contain unique identifiers gnd

VY i € (Length((paramL oph))) .

(type (first (rest ! (paramL oph)))) €

(I.¥1 v {m_id> v {<type identifier of LtL>})
case oph € Func_head : (func_id oph) and

(paramk oph) and (result oph) contain

November 1985

3.2.2. ModPascal 39

unique identifiers gnd

Y 1 € (Length((paramL oph))) .

(type (first (rest ' (paramL oph)))) €

(Io¥1 v {m_id> v {<type identifier of LtL>})
and (result oph) € (I 1 v {m_id} v

{<type identifier of LtL>})

MU14: opL := (operationL m) correct :<=> For each public
and each Local operation heading of pul and LoL
there is exactly one operation definition in opL
and no other definition occurs gnd all operation
definitions of oplL are correct.

MU141: opd € oplL is correct : < Let I, := I, v

({m_id, <local type identifiers>>, {<operation

identifiers of puL and LolL>}), I, := I, \

(g, {<initial operation identifiers of pul>}).,

Lv := {<variable identifier of LvL>2.,

fp := {<formal parameters of opd in puL>2.,

V, :=Lvang

case opd € Proc_spec : (body opd) is correct
with I, and V,

case opd € Func_spec : (body opd) is correct
with I, and V,

case opd € Init_spec : Let I; := I; \
(¢, {<procedure and function identifiers in
pul>}) in

(body opd) correct with I; and V,;
and global variables of (body opd) are
contained in Lv

MU1411: bd := (body opd) correct with I and V :< all
(free) type identifiers of bd are contained in
IV1 and all (free) operation identifiers of
bd are contained in IV2 and atL (free) variable
identifiers are contained in V apd bd is

blLock=correct.

MU14111: (body opd) block=correct :<=> <see [OLt 84al for
the correctness of blocks and remark c¢) below>

Remarks: a) The module identifier m_id is associated to the
embedding type definition domain Type_def (see
[oLt 84bl., sec. 2.1.2). 1Its correctness is
assumed.

b) The interface I, = (0B, OP) of a module M is the
valid name space generated by all module (0B) and
module operation (OP) names of (transitively) used
objects. It 1s also called imported interface,
whereas the exported interface contains
additionally the module name and module operation
names of the current module M.

c) Contrary to the concrete ModPascal syntax of [OLt
84al we here assume no implicit parameters of
procedures., functions and dinitials. Therefore

November 1985

40 3.2.2. ModPascal

(paramL oph) in MU12 selects also the (first-
position) module argument (see also sec. 3.2.2.-,
cM2 in [oOLt 84al).

d) The correctness of bLocks is coincident with Pas-
cal context-sensitive conditions for blocks except
the restrictions that the set of glLobal variables
is restricted to the set of Local variables of the
module and that no nested module type definitions
occuri

Let e € Enrich_def. Then its context-sensitive correctness is
defined as follows:

EN1: e correct :<=> (enr_id e) is unique in the environ-
ment of e and (useL e) is correct and (addL e)
is correct and (operationL e) 1is correct

EN11: uL := (useL m) correct :<—> Every used module or
enrichment is visible and correct apd no cycles
in the use-relation occur gnd all identifiers
provided by the interface I. of all used
objects are unique (possibly through appropriate
prefixing) .

EN12: al := (addL e) correct :<=> all operation
identifiers introduced in alL are distinct and
for all elements ad of aL it holds:

(add_id ad) € {id| id € I¢¥1 ~ id is modulLe
name} and

(publicl ad) is nonempty and

(publicL ad) is correct in the environment of
(add_id ad)

EN121: (publicL ad) correct in (add_id ad) :<+—=
(publLiclL (add_id ad)) v (public ad) is correct
<see MU12>

EN13: oL := (operationL e) is correct :<&= For each
public operation heading of each element ad of aL
there is exactlLy one operation definition in oL
and no other operation definition occurs and
alL operation definitions are correct

EN131: opd € oL is correct :<=> lLet mod := (add_id ad)
where ad denotes the element of aL in which the
associated operation header is defined in
Let I, := I. v (¢, {<operation identifiers
defined in aL>})., Lv := {<lLocal variable
identifier of mod>}, fp := {<formalL parameters of
opd in aL>}, VvV, := Lv v fp in
case opd € Proc_spec QL opd € Func_specC
(body opd) is correct with I, and V,

case opd € Init_spec : Let I, := I, \
(¢, {<procedure and function identifier in
(publicL ad)>}) in

November 1985

3.2.2. ModPascal 41

(body opd) is correct with I, and V;;
and global variables of (body opd) are

AAAAAA

contained in Lv.

EN1311:

(body opd) correct with I and V :4<> <see MU1411>

Remarks: a) The interface I, = (OB, OP) of an enrichment E is

Let i

the valid name space generated by all modulLe (0B)
and module operation (0OP) names of (transitively)
used obgjects. It d1is calted dimported interface
whereas the exported interface contains
additionally the module operation names of the
current enrichment E.

€ Inst_def. Then its context-sensitive correctness is
defined as:

ID1: i correct :<=> (inst_id i) is unique in the

environment of i and (useL i) correct and
(obhj_actlL 1) correct and (type_actlL i) correct
and (op_actlL i) correct and at Least either
the uselist or some actualization List are
nonempty and (uselL i) and the actualizations
together describe a signature mophism (see
remark a) below)

ID11:

ub

= (uselL 1) correct :4> Every used instantiation
is visible and correct and no cycles in the
use-relation occur and the union of alLl used
objects describes a signhature morphism.

ID12:

= (obj_actL i) correct :<— For each element ob
of oL it holds:

(new ob) and (old ob) are either both module or
enrichment identifiers and (new ob) and

(olLd ob) are visiblLe and correct.

ID13:

tL

:= (type_actl i) correct :<— For every element

tp of tL it holds:

(new ob) and (old ob) are both module identifier
and (new obh) and (old ob) are occurring in
enrichments that constitute an object actualiza-
tion element of olL.

ID14:

pL

:= (op_actl i) correct : 222 For every element op

of pL it holds:

(new op) and (olLd op) are public operation names
of objects (new ob) and (old ob) of some element
ob of oL and the associated functionalities

obey the sighature morphism property (see
remark a) below)

Remarks:

a) The concept of signhature morphism is very crucial

November 1985

42 3.2.2. ModPascal

in this context. A first definition is given be-
Low, whereas its Definition: Signature morphism
Let 0B, , OB, be sets of object names (modules.,
enrichments), and OP; denote the set of public
operations of objects in O0B;, i € {1,2>.
1) A mapping A; : OP; —> OB;* (nonempty strings
over OB;) is called arity (i € {1.,2)).
If A(op)=ob;ob, ...0b,» then ob,...ob,_, are
catled the source of op, and ob, the target of

op.
2) A tuple (fr,q) of mappings f:0B, >0B, »
g: 0P, ——>0P, is called signature morphism, if
Yop € OP, with A, (op)=0b; ...0b, .
A, (glop))=f(ob;)...f(ob,)
x

The arity of an operation is the string consisting
of all parameter type and value type names. The
signature morphism property says., that the mapping
between operation names preserves the arity and is
compatible with the mapping between obhjects.

Let i € Instantiate_type. Then its context=-sensitive correct-
ness is defined by:

IT1: i correct :4¢ (base_type i) is a module or
enrichment obgject and (obgjectlL i) is correct
and (objectL i) is applicable to (base_type i)

IT11: oL := (objectL i) correct :<= Every element of oL
is a visible and correct instantiation object
and Let sig denote the union of all instantiation
objects of oL in sig is a signature morphism

IT12: oL is applicable to (base_type 1) :<¢=> all source
objects of sig are contained in the hierarchy
spanned by (base_type i)

Remarks: a) The instantiate type identifier is associated to
the embedding type definition domain Type_def (see
oLt 84bl, sec. 2.1.2.). Its correctness is
assumed.

b) The applicabiltity is defined stronger in sec.
3.7.2. of [OLt 84b]l (operator Comp?) such that
hierarchical conditions are respected. For the
purposes of this paper 1IT12 suffices.

November 1985

3.3. Semantic Domains and Semantic Functions 43

3.3. Semantic Domains and Semantic Functions

The semantic domains introduced in this section are choosen
such that a concise and sufficient description is possible of
both Languages as well as of the correctness concept of sec-
tion 4. Therefore the number of domains is increased compared
to the case of a single lLanguage semantics. On the other hand.,
there are domains that will serve for the semantics definition
of ASPIK and ModPascal., and are also important in sec. 4 (e.g.
the domain ALg of strict algebras). This is intended since it
facilitates the comparison of ASPIK and ModPascal structures.
The set of domains is based on [0OLt 84bl.

Section 3.3.2. deals with semantic functions. Also there are
some additions and modifications compared to [OLt 84bl since
the treatment of ASPIK constructs requires different
functionalities. Details of ModPascal related semantic func-
tions are omitted here; details of the construction of the
central domain AlLg are postponed (serving as target domain for
all object definitions; see sec. 4.2.).

ASPIK, as defined in [BV 831 and [BV 85], was originally sup-
plied with a category-theoretic semantics. For the purpose of
this paper and our modified version of ASPIK the semantics has
been reformulated in terms of a denotational semantics com-
patible with those of ModPascal. This also influenced the set
of employed domains.

3.3.1. Domains

The following semantic domains are used 1in the semantic
clauses of sec. 3.4.:

FLat Domains:

D_BOOL

= {true, false): The boolean values.

D_INT

={ ccar =2, -1, 0, 15 2, ...): The integer values.

1d

= {id| id € €A, c..r Z, 0r .cccr 9DY A first(id) ¢ {0, ...,
9}): Identifiers are strings of Letters and digits, starting
with a Letter.

Map

= Id —> Id: serves as domain for mapping definitions by ASPIK
map=-objects or ModPascal instantiations.

Alg

= + {ALglz]]| ¥ is signature}: The domain of algebras. It is
constructed as the direct sum (or coalesced) sum of signa-
ture dependant algebra domains. Alg 1is not "the set of
sets", but a set of all idinteresting strict algebras to
describe semantics of data types; see sec. 4.2.

November 1985

(A 3.3.1. Domains

Loc

= {an unbound domain of Locations}: If Locations are inter-
preted as main memory addresses, Loc could be seen as in-
teger subset. But every interpretation into distinguishable
elements will work.

ALgQual
= {SPEC, MAIN, BOOLEAN, INTEGER., REAL., CHAR, SCALAR, SUBRANGE.,

ARRAY, RECORD, FILE, SET, POINTER, MODULE, ENRICHMENT}: The
algebra qualifications indicate the basing structure for an
algebra. MAIN refers to the main program algebra.

ObQuatl

= {CTASEL, MODSEL, SORT, REPSEL., ENRSEL, REPOB, LAB, CONST.,
VAR, PROC, FUNC, INIT, INST> + AlgQual: The object qualifi-
cations indicate either the basing ModPascal feature of an
item or the basing ModPascal type.

VaLQual

= {c|] C = TOI(A)¥1 for A € ALg}: ALL carriersets of interest
for algebras in AlLg. ValQual may be seen as a factorization
of ALg (TOI = type of interest; see [OLt 84bl).

Arity
= (Id*¥ x Id): provides arities (functionalities) for ASPIK

operations.

ArDes
= (Id —> Arity): technical; combines operation and arity.

SigMorph
= (Map X Map x ArDes): Signature morphisms. The first two com-

ponents contain the object and operation mapping resp. The
third component is a set of arity associations. An exact
definition is given in sec. 4.3.4.

AClLauseOps
= {cta?, use?, sorts?, p_op_id?, p_op_ar?, constr?, aux_id?.,
aux_op_ar?, car_def?, pr_op_1id?., pr_op_ar?., cons_def?.,

sop_def?)}: The set of predefined identifiers for syntactic
operators on specifictions. They are connected to the notion
of cta-environment (see definition 3.4.1.-1).

MClLauseOps

= {malLg? - muse? » p_proc_1id?., p_func_id?., p_init_id?.,
L_type_id?, L_proc_id?, L_func_id?, L_var_id?, p_proc_ar?.,
p_func_ar?, p_init_ar?, L_proc_ar?, L_func_ar?, L_var_type?.,
map_def?}: The set of predefined identifiers for syntactic
operators on module type definitions. They are connected to
the notion of mod-environment (see definition 3.4.2.-1).

ECLauseOps
= {enr?., euse? ., add_id? ., add_proc_id?., add_func_id? .,

add_init_id?., add_proc_ar?., add_init_ar?. add_func_ar? .,
cop_def?): The set of predefined identifiers for syntactic
operators on enrichment definitions. They are connected to

November 1985

3.3.1. Domains 45

the notion of enr=environment (see definition 3.4.2.-2).

RCLauseOps
= {rob?, ruse?, connect?, operations?, rf_ar?, rf_def?}: The

set of predefined identifiers for syntactic operators on
rep-objects (see sec. 4.3.). They are connected to the no-
tion of rep=environment (see definition 4.3.4.-1).

Not necessarily flLat domains:

Store
= (Loc —> Val): Links Locations and values.

Env
= (Id —> (Loc X 0ObQual x ValQual)): Each identifier id € Id
is connected to a triple. The second and third components

describe properties of id.

State
= Env X Store : Characterization of a state as tuplLe. See also

the memory model in sec. 3.3.3.

Trans

= (State —> State): State transformation that are induced by
programming Language constructs will be described with T €
Trans.

ETrans
= (State —> (State x Val)): Analogously Trans, but with

values out of ValL.

OpDen
= + (ValQual” —> ValQual™): Function between n=-ary and

Nn,mEN
m=ary cartesian products of ValQualL. A generalization of
functions of algebras of AlLg.

Val

= D_BOOL + D_INT + Id + ALg + ValLQual + OpDen

OpDes

= (Id x OpDben): technical; combines operation and denotation.

D_BOOL = {true, falsel
D_INT = {eauwr =1, 0+ 17 ...2
Id = {id| id € {As ceesr Zs 0s cucor 9 A First(id) ¢
{07 wc.osr 93D

Map = Id —> Id
AlLg = + {AlLglzl]| ¥ is signature)
Loc = {unbound domains of Locations}

AlLgQual = {SPEC, MAIN, BOOLEAN, INTEGER, REAL., CHAR.,
SCALAR, SUBRANGE, ARRAY, RECORD., FILE, SET.,
POINTER, MODULE., ENRICHMENTY
ObQual = AlgQual + {CTASEL, MODSEL., REPSEL., ENRSEL., SORT.,
REPOB, LAB, PROC, FUNC, VAR, INIT2}

November 1985

L6 3.3.2. Functions

valQual = {C | C = TOI(A)¥1 for A € ALQEY

ValL = D_BOOL + D_INT + Id + Alg + ValQual + OpDen
Store = Loc —> ValL

Env = Id —> (Loc x ObQual x ValQual)

State Env X Store

Trans State —> State

ETrans = State —> (State x Val)

OpDen = + {vaL" —> valL"™| n, m € N}
Arity = (Id* x Id)

ArDes = (Id —> Arity)

ACLauseOps =

MClLauseOps = (as above)
ECLauseOps =

RClLauseOps =

In the following we assume that the syntactic domain Id and
the semantic domain Id are identical.

2.3.2. Functions

The syntactic and semantic domains are Linked by the following
functions, that are based on the overall domain Constr:
Constr = Spec + Sp_head + Op + ... +
Module_type + Public + ...

(i.e. Constr 1is the coalesced sum of all syntactic domains
used in sec. 3.1. for ASPIK and ModPascal; 1in the ModPascal
caser, all domains of [OLt 84bl] are contained in Constr.
Ambiguously denoted domains D are assumed to be tagged appro-
priately (Dar D)) .

C € Constr:

If no exception for c is Listed below, the semantic function
M: Constr —> State —> State
is applicable.

M Links an initial state prior execution of a Language con-
struct to a state after execution of it. M is defined by the
semantic clauses of sec. 3.4. which are elaborated to an ap-
propriate Level of detail.

Notation: ELements of Constr will be enclLosed in double
brackets [and I. Elements (£, &) of State will be
supplied to M with Jjuxtaposed components.

Example: MIclte

C_€ Expr:

(b) E: Expr —> State —> (State x Val)
and MEcIee => E[lcIts

C € (Stand_type v Stand type _gen):

(c) Mt: (Stand_type v Stand_type_gen) —> State —> (ObQual x
VatQual x ALg)

November 1985

3.3.2. Functions L7

and MLclte => Mtlclte

¢ € Module type:

(d) Mm: Module_type —> State
—> ((ObQual x ValQual x AlLg) x State)
and MILclte => MmIcIts

C € Enrich_def:

(e) Me: Enrich_def —> State —> State
and MEclte = MelclEs

C € Instantiate_type:

(f) Mi: Instantiate_type —> State —> ((0ObQual x ValQual x

ALg) x State)
and MCclee => Milclts

In the semantic clauses for ModPascal also the following
auxiliary functions occur:

newlLoc

newlLoc gets a currently unused Location of an environment.
newltoc: Env —> Loc
newLoc(®) := m Loc . V id € Id . (id)¥1 * Loc

searchdef
searchdef Looks for the algebra to which an operation is asso-

ciated; it returns the algebra identifier.
searchdef: Id —> State —> Id

searchdef (opid)€e :=
Let id := o id, € Id . B(id,)¥2 € AlgQual and
Let (C, F) := e((id,)V¥1) in
opid € opnames(F) in
id

(L. returns L1, if no unique id, exists with the required
property)

standard

indicates whether an identifier denotes a standard object., and

provides its initialization value in the positive case.
standard: Id —> (D_BoolL x Val)

standard(id) :=
if id = BOOL —> (true, false) else
if id = INT —> (true, 0) else

eLse (false, 1)

November 1985

48 3.3.3. Memory Model

3.3.3. Memory Model

Though we are considering an applicative LlLanguage, for reasons
of compatibility an environmental view is taken in the formu-
Lation of semantical clLauses for ASPIK. That means that the
declaration of a spec or the evaluation of a term takes place
in a given argument state; the state is modified in the case
of declaration. This view is no a=priori violation of the
requirements for applicative PLs, as given in sec. 2.1. If the
rules are respected - as we do -, then the state-oriented
model shows the same behaviour as e.g. any purely functional
model that din a different way keeps track of its visible
objects.

our states follow a two=-Level memory model (that was primarily
used for procedural PLs, but fits also for applicative PLs):
The first Level., represented by the domain Env of environ-
ments, Links identifiers to a vector of valLues. One of them is
a Location of a (virtual) memory., in which an associated value
is stored. This represents the second Level of the memory
model, and it is formed by the domain Store.
Using € € Env, 6 € State we have for id € Id:
id =———> (Location, ...)
&
<value>
For modules/enrichments and spec objects we have

obq := 8(id)V¥2 € {MODULE, ENRICHMENT., SPEC}

id ——> (Location, obg, V € ValQual)

A € Alg
(Note the extension of the memory model in sec. 4.3.4.).

3.4. Semantic ClLauses

Before we state the most important semantical equations for
ASPIK and ModPascal., we introduce some notational conventions
frequently occurring Lateron.

Notations

N denotes the set of natural numbers.

For a natural number n-, (n) denotes the set {1, ..., n}, and
n] := (n) v {0}.

For vectors Vv = (Vi s eaesr Vods (Vs eoar v)¥i or vii denotes
the i-th component v; of v.

November 1985

3.4.1. ASPIK L9

For a set s, (P(s) denotes the power set of s.

5 denotes the unique existential quantification.

For a mapping m: A —> B defined by m:¢ (A X B), the substitu-
tion mla & a,] denotes (m \ {(a, m(a))2}) v {(a, a,)2.

Four operators are used for functional abstraction:

- AX . term: Bounds free occurrences of X in term. This
abstraction is equivalent to a definition 'F(x) =
term' of a function F.

- X . cond :
Bounds x in cond and qualifies the X as unique to
fullfill cond. Egquivatent to: 3 x . (cond =
true). If no unique x exists, L evalLuates to L.
Example: n := i . (i+1=5) = (n=4)

- fix f . term:
Bounds free occurrences of f in term and denotes
the Least fixpoint of the functional equation F =
termlF] where termlF]l] dis a term with free
occurrences of F.
Example: fix f . (An . if n = 0 then 1 eLse

nxf(n=1))
denotes the Least fixpoint of the functional
equation F(n) = if n = 0 then 1 eLse n*xF(n=-=1).,

that is the standard faculty function.

- 1M1 X . cond :
bounds x in cond and qualifies x as one possible
value that satisfies cond. Equivalent to: 3 x .
(cond = true). If no value exists that satisfies
cond, m evaluates to L.
Example: N := M1 X . (x¥x = 9) = n € {3, -32})

If indexed items occur themselves in index positions, the in-
dices are juxtaposed in parenthesis.
Example: X, —2> Yx(n) =™ Zy(xcn 1>

Xi; =2 Yyt

3.4.1. ASPIK

As mentioned above, this section is an abbreviated and con-
densed reformulation of the category-theoretic semantics of
ASPIK as given in [BV 85]. For reasons described in sec. 4.1.
we do not treat the semantics of axiomatic specifications; in-
stead of we present a semantics of algorithmic spec objects in
full detail which is not equivalent to [BV 85] but fits into
our purposes. To adapt it to the denotational environment.,
some additional operators and features have to be included.
They cover mostly the involvation of specific syntactic infor-
mation in states and the processing of this information in the
computation of specification semantics.

The first definition of this kind deals with a
characterization of environments ¥ € Env that provide
predefined identifiers that collect information about syn-

November 1985

50 3.4.1. ASPIK

tactic structures of specifications. This information must be
gathered because our application of this semantics in sec. 4
must have access to the syntactic items that generated the
specific meaning. This is similar to familiar issues of im-
perative programming Languages as type checking or scoping-s
which = if modelled in a denotational setting - would require
an analogous proceeding. In general, it would suffice to con-
sider onLy the overall meaning of a spec obgjgect S (an
algebra), and incorporate this in semantic clauses involving
S.

Syntactic dinformation is stored in special slLots of environ-
ments that contain for all visible spec objects relevant
values of specific clauses.

3.4.1.-1 Def. [cta-environment]

Let AClLauseOps € Id with
ACLauseOps = {cta?, use?, sorts?, p_op_id?, pr_op_id?, con-
str?, aux_id?, p_op_ar?., aux_op_ar?, pr_op_ar?.,
car_def?, cons_def?, op_def?2.
Then © € Env is called cta-environment, if for x € ACLauseOps
a) e(x) * L, and
b) e(x)¥2 = CTASEL 5

Remark: Associated to every element el of ACLauseOps is a
(ambiguously denoted) special function el that evalu-
ates to syntactic information if applied to specifi-
cation and operation identifiers:

el = cta?:
Associated operation: cta? : Id —> State —> D_BOOL
e(cta?) = (Loc, CTASEL, L)
s(loc) = {(id, tv) | id € 1Id, tv € D_BOOLY}
cta?(id)ees := &(€(cta?)y1) (id)

el € {use?, sorts?, p op id?., pr op id?, constr?., aux id?}:
Associated operation: elL : Id —> State —> IdL
(el) = (Loc, CTASEL~, L)

g(Loc) = {(ids, (idys wn., id,))| id, id; € Id,
i€ (N, N € NY
el(id)es := s(g(el)¥1) (id)

el € {p op ar?., aux_op_ar?, pr op ar?l:
Associated operation: etL: Id —> Id —> State —> Arity
e(el) = (Loc, CTASEL, L)
s(loc) = {(id, ad)| id € Id, ad € ArDes)
el(id, »id, €6 := &(g(el)¥1) (id,) (id,)

el € {car_def?, cons_def?, op def?}:
Associated operation: el : Id —> State —> Op_defL
t(el) = (Loc, CTASEL., L)
g(loc) = {(ids, (opdys -..- opd,))| id € Id, opd; € Op_def,
i€ (N, n € N>
el(id)es := e(g(el)¥1) (id)

November 1985

3.4.1. ASPIK 51

In a given state (&, &), e&(8(op)¥1) for op € AClLauseOps
denotes a functional relLation that, applied to a specification
identifier, evalLuates to syntactic dinformation about the
specification (for illustration, see definition 3.4.1.-2 be-
Low) .

Notation Let R := {(x,y)] X € X» y € Y} denote a Lefttotal.,
right unique relation on (X x Y). Then R(x) denotes
the application of R to x € X and R(x) y &>
(xry) € R. If R € (X X Y X Z)» then R(x) (y) zZ =
(XIYIZ) € R

"

The next operator is technical. By application of EXT, the
functional relation of an element of AClLauseOps is extended
(i.e. source and target of the associated operation are
enlarged) .

3.4.1.-2 Def. [EXTI]

Let ClLauseVal be defined as above.
Let (€,g) € State with € cta-environment. Let

EXT: Id —> Id —> ClLauseVal —> State —> State

with
EXT (4id, ,id, rcv)8es :=
if not (id, € AClLauseOps) then L elLse
(case id, = cta?:
if not (cv € D_BOOL) then L
case id, € {use?, sorts?, p_op_id?, constr?, aux_id?.,
pr_op_1id?2:
not (cv € IdL) then L1 eLse
Let 6,:= elP(id,)¥1 &« e(e(idy)¥1)uv{(id, rcv)2] in
case id, € {p_op_ar?, aux_op_ar?, pr_op_ar?l}:
if not (cv € ArDesL) then i else)
Let 6, := elB(id;)V1 & e(8(id)V¥1) v ({id,2x{r(cv)) in
case id, € {car_def?., cons_def?, op_def?>:
if not (cv € OpDesL) then L glse

iy

Let 6, := sle(id,)¥1 & (B (idydV1) v ({id,Ix{rlcv))
in
(EIG]_)

n

Remarks a) ? denotes the List transformation (into sets) of
sec. 3.1.

b) EXT is applied in the semantic clauses below during
extraction of syntactic structures. Thereafter it
is possible to refer to these structures via the
state.

If for a given S € Spec all AClLauseOps elements should be
updated in a given state, the operator EXTEND is used:

3.4.1.=-3 Def. [EXTEND]
Let s € Spec, (2, &) € State with & cta-environment.
Then the operator

November 1935

52 3.4.7. ASPIK

EXTEND: Spec —> State —> State
is defined as

EXTEND(s)Ee :=

Let s_id := (spec_id (sp_head s)).,
(Uy 2 weer u,) (use (sp_head s)).»
(S17 wuer S,) (sorts (sp_head s)).»
(017 wwar Op) (ops (sp_head s))»
(@, 7 wuwar a@c) (aux (sp_body s)).»
(Cy7 aawr Cg) := (cons (sp_body s)).,

(Pr 7 saar Pe) := (priv (sp_body s))»

(aud, » ..., audc) := (def_aux (sp_body s)).,
(cad; » ..., cad,) := (def_car (sp_body s)).,
(cod; » --ar COdg) := (def_cons (sp_body S))»
(opdy 7 ew.r Opdi) := (def_ops (sp_body s)) in

EXT(cta?, s_id, true)ts.,

(8,7, 6,) := EXT(use?, s_ids (Uy s euwr U)I)E16,~
(Bs, 63) EXT(sorts?, s_ids (Sys waer S,))8:6, -
(€., 6.) := EXT(p_op_id?, s_id, (oid; | 3 1 € (pb) .
(op_id p;) = oid;, i € (P)))IEs63~

Let (€,, &,)

(s, 65) := EXT(p_op_ar?, s_id,
(ops (sp_head s)))¢.6,
(Egr 6¢) := EXT(pr_op_id?, s_id, (oid; | 3i € (e) .
(op_id p;i) = 0id;{))¢s6s5~
(¢,, 6,) := EXT(pr_op_ar?., s_id,
(priv(sp_body s)))8 464~
(egsr 65) := EXT(aux_id?, s_id, (oid;| 3 i € (c) .
(op_id a;) = oid{))¢.6,~
(Cssr 6,) := EXT(aux_op_ar?, s_id,
(aux (sp_body s)))Es65, AN
tet (Bor 6,) := (Bor 65) N
Let (8,, 6,) := EXT(constr?, s_ids, (Cys .u.r Ca))8o6,~
(8,7, 6,) := EXT(aux_def?, s_id, (aud; s ..., audc))§,s; -
(€5, 635) := EXT(car_def?, s_id, (cad;, ..., cady))§.6,~
(¢., 6,) := EXT(cons_def?, s_id,
(COdy 7 eaanrs COdgl))E 36850,
(s, 85) := EXT(op_def?, s_id, (opd; s .a..sr Opd))I8. 8.
.iﬂ (8s5s» 65)

Remark: EXTEND produces a state in which alLl necessary syn-
tactic information about a spec is stored in slots
defined by elements of ACLauseOps.

3.4.1.-4 Def. [|F]|1
Let S denote a set and BOOL = {true, false} denote the boolean
values. Then, for a function F : S —> BOOL., the extension |F|
of F is defined as

|[F] :=<s|] s € s gnd F(s) = truel. n

The next definition introduces the important notion of a
Herbrand universe in terms of cta-environments. Herbrand
universes are sets of alLl well-formed terms built from given
operation symbols and arities.

November 1985

3.4.1. ASPIK 53

3.4.1.=5 Def. [H]

Let (B,8) € State with €& cta-environment.

Let id € Id with 8(id)¥2 = SPEC, (S; 7 ...s Sp) := sorts?(id)ts
Let (€174 wawr C,) := constr?(id)¥s

Let (S{1 ees Simcis? Sicmcire1,) == p_op_ar?(id, c;)8s, i €
(n) miy € N

Then the Herbrand universe(s) He 3 ,# ssss Hs(a, of id is (are)

defined by:

For J € (a), 1 € (n)

Ho(; , 18 the smallest set with

i) ,\];.f\ m;=0 80d Sicmcir1, = S; wthen Ci € Hg(

ii) .J:.f,. hy € Ho i1 ,7 «=es iy € Hocimein and Sicmciwrs =
S;
then ci(hy s aawr O, (i ,) € Hg;

iii) 'LSta' y € Hs¢i)

The operator
H : Id —> State —> ValL
is defined as
H(id)gs t= (Ho(y ,7 aser H,(a,)
where (€,g8) € State, € cta-environment and

a := Length(sorts?(id)¢fe). n

Remarks a) The H image (an element of VallL) 1is always a
sequence of sets. The case of an empty set as
sequence element is excluded by the context sensi-
tive conditions imposed on specification objects
(see sec. 3.2.1., SP1221, SP124).

b) The <(canconical) Herbrand universe is taken as
(primary) semantics of sorts of specifications
('canonical term algebra'), see SEM_1 below.

We are now ready to state the semantics of an ASPIK specifi-
cation.

Sem_1

MLCs: Speclge :=
(1) Let s_id := (spec_id (sp_head s)).,
(Uy 7 wwar U,) := (use (sp_head s)).,
(S;7 waesr Sp) := (sorts (sp_head s)).,

(017 eanr Op) (ops (sp_head s)).»
(A1 7 aear @) ¢ (aux (sp_body s)).»
(Cy 7 awer Cg) (cons (sp_body s)).»

W uuun

(P17 e=ss Pe) := (priv (sp_body s)).,

(audy » +..r audg) (def_aux (sp_body s)).,
(cady; » ..., cad,) (def_car (sp_body s)).»
(cod; » awa.r codgy) (def_cons (sp_body s)).»

(opd; » «aar Opd) (def_ops (sp_body s)) AN
(2) Let (€,, s,) := EXTEND(s)Ees in
(3) Let U; := ELu;Jee, 1 € (n) in
tet U := U U;» 1 € () in

November 1985

54 3.4.1. ASPIK
(4) Lot (B,, &6,) := (B, €,)s LOCc; := newloc(8;_,)~
B:(s;) := (Loc;, SORT, L)Y, 6, :=6;_,[Loc; & 11,
ie (a) in
Let (Cor 69) 2= (Basr 6,), Loc; := Nnewloc(8;_,)~
€. ((op_id cad;)) := (Loc;, FUNC, L),
6, := 6;_,[Loc; & 11, 1 € (a) in
Let (8o, 64) := (Bas 6,)», Loc; := newloc(8;_,)~
§;((op_id 0;)) == (Loc;» FUNC.~, L),
6, := 6;_,[loc; &t L1, i € (b)Y in
Lot (Bo, 60) := (€h» 6p)s LOC; := newloc(B;_y)~
€. ((op_id a;)) := (Loc;~, FUNC, Ly,
6, := 6;_,Lloc; & L1, i € (c) in
Let (8o, 69) := (8.s &) Loc; := newloc(8;_)~
§;((op_id p‘)) i = (LOCiI FUNC, 1),
g; := &;_y[Loc; & L1, 1 € (e) in
‘L—‘g‘i;(gol 50) : = (gel 6e) ;-VQ
(5) Lot (Hys w..r Hy) := H(s_id)Eo6, AN
m(gl’ 81) = (gol 6°[§0(51)¢1 Lo H1I s e w
8o (s2)¥1 & H,1 _dn
(6) Let (Ays wuwr Ac) 1= FfixX f1 7 2.nr fc . Af6 .
Let oid; := (op_id aud;), i € (c) in
(EC(op_body aud,)IEeLE(oid;IV1 & f,1,
(ECCop_body aud.)I€el€(o0id:)¥1 & f.1) in
Let (8,, &,) := (Cy » 6°E§°((Op_id aud,;) IV & Al s aeas
€o ((op_id aud:))¥1 & A1) in
(7) Let (Cys auur Cp) = FfixX fy1 s wuur fa -« Afs .
Lot cid; := (op_id cad;) . i € (a)
such that cid; corresponds to s; in
(EL(op_body cad,)IEel&(cid;IVv1 & .1,
(ELC(op_body cad,)IEel€(cid,)¥1 « f.1) in
Let (€,» 6,) := (8,, 6,[8, ((op_id cad;)IV1 & Cy»r ...v
€, ((op_id cady))V¥1 & C,l.,
§1(Sl)‘»1 Ll (]Cl v {J-g(1 ,})l LI 4
Br(s0¥1 & ([Co| v {la o, 2 An
(8) Lot (COy s anasr COg) := FfiX 14 auur fa . Afe .
Let oid; := (op_id cod;) ., i€ (d) in
(EC(op_body cod;)IEe[E(oid{)¥1 & f,1.,
(EL (op_body codyg)I€el€(o0idg)¥1 « fql) in
Lot (B3, 65) := (€,», 6,8, ((op_id cod;))V1 & Coyr ...
€, ((op_id codg))¥1 ¢ Cogql) in
(9) Let (0,7 cuwrs Oc) = FiX Fy7 eewr fe -« AfE -
Let oid; := (op_id opd;), i € (k) in
(EL(op_body opd,)I€eL[E(oid; V1 & f,1,
(ELC(op_body opd,)IEsLE(oidi)¥1 « 1) in
Let (8., 6.,) := (85, 63[85((op_id opd;))¥1 & 0,7 ...»
25 ((op_id opd))¥1 & 0,1) in
(10) Let € := {6,(8.(s;) ¥ 1) s waur 6,(8.(50¥1)2
F := (All easrsr Acr Ci7s wuur Cpus COy7 wner COqs wne
Oy # mamp O in
Let Loc := newloc(B.).,
s := B,[sp_id & (Loc, SPEC., L)1,
65 = G‘ELOC «~ (C, F) v Ul in

November 1985

3.4.1. ASPIK 55

(gsl 65)

Remarks: a) No

context-sensitive correctness conditions are

considered (see sec. 3.2.). Also type checking and
scoping are disregarded.
b) The semantics of a specification is constructed as

follows:

1)

(2)

(3)

(4)

(5)

(6

(7)

Identifiers for important components are in-
troduced by abstract syntax selections.
Characteristic predefined (operation) identi-
fiers of a cta=-environment are supplied with
syntactical information. This will be used in
(5) where the operator H is applied to gener-
ate Herbrand universes for the new sorts.

The semantic algebra derived from all used
objects 1is geherated. The case of used
specterm objects is also covered although La-
ter onlLy specterm=free specifications will be
considered (see sec. 4.1.). The algebra U is
well-defined, since 1in the case of construc-
tive hierarchies every used object uniquely
corresponds to a strict algebra A € AlLg, and
the union of algebras then consists of set
union (of carrier and operation sets). Since
all ddentifers are glLobally unique (di.e. in
), unwanted identifications of carrier sets
by the union process can be inhibited by an
appropriate tagging of elements with the
carrier set identifier. (For strict algebras
and algebra union, see also [OLt 84bl, sec.
2.2.1.) .

As a result of the ASPIK=-specific separation
of sort/operation identifier dintroduction
(specification header) and sort/operation
definition (specification body)., at first
slots are established in the environment that
contain minimal information about each identi-
fier.

The Herbrand universe associated to each newly
introduced sort is generated by application of
the operator H (see definition 3.4.1.-5) and
assigned as preliminary meaning to the sort
identifier.

The semantics of the auxiliary operations is
generated by parallel fixpoint computation.
Every operation body is functional (no state
change s) such that E is applicable. The state
(¥,68) 1is assumed to contain information about
actual parameter calling and passing (ASPIK
parameters are called and passed by value).
The resulting monotonous strict functions are
bound to the auxiliary operation identifiers.
AnalogouslLy to (6)., but for the carrier
predicates. Also, their extension - a restric-
tion of the Herbrand universe - is bound to

November 1985

56 3.4.1. ASPIK

associated sort identifiers.
(8) AnalogouslLy to (6), but for constructor oper-

ations.
(9) AnalogousLy to (6), but for aLl remaining
operations (= non-auxiliary., non-carrier

predicates, non=-constructors).

(10) Since E maps operation bodies to strict func-
tions, all operations and sorts can be tied
together 1in a strict algebra that also con-
tains U. This obgject is assigned as semantics
to the specification identifier.

The evaluation of operation bodies by E is defined in Sem_2.
We assume:

Let s € Spec.

Let op denote an operation of s (public., private., auxiliary or

carrier) with op := W, (op_id: Id, params: IdL, op_body:
Op_body) .

Let (€, &) € State such that necessary context information for
op 1s available (i.e. positions (6), (7)., (8, (9) in
Sem_1) .

Let opb := (op_body op).

Sem_2: operation bodies

ECopblges :=
case opb € Term : if (termL opb) = L then e(8(op_id opb){1)
else Let (ty 7, a.ar t,) := (termL opb) in
6(t(op_id opb) V1) (ELt, Je6, ..., ELt, ICs)
case opb € Case : Let cv := (case_var opb).,
(Cy7 wwer c,) = (caseL opb)-,
t; := (tag cy)», ex; := (exit c;)»
i€ (n) in

Let cval := s(8(cw)V1) in
if (5 4 € (n) . t; matches cval)
then Elex; 'lte
where ex;' is ex; with
substitutions introduced by
the matching
etse if (3 ie (n .

t; = 'OTHERWISE"')
then Elex;l¢s
else L

case opb € Cond : if EL(if opb)Its

then EL(then opb)Its
else E[L(else opb)I€s

case opb € Let : Let Lid := (Let_var opb).
Lt := (Let_term opb).,
bdy := (Let_body opb) in
Let Loc := newloc(g).,
e, := elLid & (Loc, VAR, L)1,
€, := elloc &« ELLtIes]l jin
Elbdylg, e,

November 1985

3.4.2. ModPascal 57

Remarks: a) The matching process occurring in the second case
is the usual matching resulting in ground terms
(note- that carriers consists of Herbrand
universes, and variable values are terms of these
carriers).
b) The refinement of Termq1 is omitted.

By this definition the semantics of a specification is com=-
puted as a unique algebra. It is sometimes called the canoni-
cal term algebra.

Concerning the semantics of the remaining ASPIK objects (map-
objects, imp-objects, and spec_terms) we proceed as follows:
we skip imp-objects because they are not relLevant for this
paper and currently under research. Spec_terms in the general
case possess a complex semantics that includes a 'normal-form-
computation' and implicit object generations. They represent
the parameterization concept of ASPIK, in which specifications
with 'parameters’ can be actualized (i.e. obgject
parameterization). But it should be noted that no new kind of
specification is generated by specterms: if all spec=-objects
invotLved in a specterm are describablLe by Sem_1 then the
semantics of a specterm 1is also a canonical term algebra
(hierarchy).

According to the intention of this paper it would be necessary
for completeness to include the parameterization concepts of
ASPIK and ModPascal in the treatment of a connection of ap-
plicative and procedural languages. But from the Last para-
graph it follows that the parameterization case can be reduced
to the situation of specifications and their connection to
modules. In fact, we will Later (sec. &4.%1.) restrict the clLass
of spec-objects to specterm-free specs. It is clear that this
diminishes the expressivity of the Language and makes our con-=
cept Less general, and actually we consider the treatment of
parameterization only as postponed; the next iteration to this
topic will include it. But for the moment we are freed from
many technical burdens., and therefore we skip explicit
semantic definitions of specterms and also of maps (although
the Latter do not cause problLems).

3.4.2. ModPascal

The semantic clauses for ModPascal objects rely heavily upon
the semantics of operation and type declarations. Here we give
only the meanings of the obgjects introduced in sec. 3.1.2.
(module type definitions., enrichment definitions., in-
stantiation definitions and instantiate type definitions). No-
tions, operators, domains., variables, etc. that are not
defined here can be found in [OLt 84bl. In the sequel the full
semantics of ModPascal is assumed.

In addition to the semantics of [OLt 84bl, syntactical oper-
ators are introduced that store information about the syn=-
tactic object. These data is used in the semantic clauses of
section 4; therefore we cannot proceed in the usual way con=

November 1985

58 3.4.2. ModPascal

sisting of generating a meaning from a syntactic obgject, and
then forgetting all details. To deal with this issues, we in-
troduce the notion of a mod=environment in which slLots for
syntactical operators exist that evaluate to the desired in-
formation if applied. Note that mod-environments for ModPascal
are the analogon of cta=-environments for ASPIK (see definition
2.4.17.~1). See also enr-environments, definition 3.4.2.-2.

2eb.?2.~1 Def. [mod=environment]
Let MClLauseOps ¢ Id with

MCLauseOps := {malg?- muse? » p_proc_id? - p_func_id?.,
p_init_id?., L_type_id?., L_proc_id?.,
L_func_id?, L_var_id?, p_proc_ar?, p_func_ar?.,
p_init_ar?., L_func_ar?., L_proc_ar?,

L_var_type?., mop_def?, toi?}
Then €& € Env 1is called mod=environment if for all x €
MCLauseOps
a) g8(x) # L
b) B(x)¥2 = MODSEL n

Remark: Associated to every element eL of MClLauseOps there is
an ambiguouslLy denoted special function el that evalu-
ates to syntactical information if applied to module
and module operation identifiers:

el = malLg?

Associated operation: malLg?: Id —> State —> D_BOOL
€(malg?) = (Loc, MODSEL., L)

e(Loc) = {(id, tv)| id € Id, tv € D_BoOOL}

malLg? (id)Be := s(C(malg?)¥1) (id)

el _€ {muse?, p proc id, p func id?, p init id?, L_func_id?.
L_init_did?, L _var_id?., L_type id?>

Associated operation: el: Id —> State —> IdL

e(el) = (Loc, MODSEL., L)

g(Loc) = {(ids (idys wwer id,))| did, id; € Id, i € (N), N € N>

el(did)®e := e(®(el) V1) (id)

el € {p proc_ar?., p_func_ar?., p_init_ar?., L_func_ar?.,
L_proc_ar?}

Associated operation: el: Id —> State —> Arity

e(el) = (Loc, MODSEL, L)

g(lLoc) = {(ids, ad)| id € Id, ad € ArDes)

el(id,» id,) := e(8lel){1) (id,) (id,)

el = L _var type?

Associated operation: L_var_type?: Id —> State —> Id
e(L_var_type?) = (Loc, MODSEL, 1)

g(Loc) = {(id, » id,))| id; € Id, i € {1, 222>
L_var_type? (id)8e := &(8(L_var_type?){1) (id)

el = mop_ def?

Associated operation: mop_def?: Id —> State —> OperationL

e (mop_def?) = (Loc, MODSEL., L) :

g(loc) = {(ids (Opdysr ..., 0Opd,))| id € Id, opd; € Operation,
i€ (n,né€e N

November 1985

3.4.2. ModPascal 59

mop_def? (id)8s := e&(8(mop_def?){1) (id).

Note that allL identifiers of modules, module operations and

Local variables are assumed to be unique.
- |

Based on mod-environments the operations EXT and EXTEND of
section 3.4.1. are defined analogously except that EXTEND does
not involLve an updating of the toi? slot; since in the case of
modules the type-of-interest is a semantical notion, toi? is
of different (non=syntactical) quality and explicitly set in
the semantic clause for module definitions (Sem_3 below).

A module type definition of a ModPascal program is embedded in
a type definition scheme where a new type identifier is in-
troduced to which the semantics of the definition is asso-
ciated. We assume the identifier mid in Sem_3.

We are now ready to state the semantics of module type defini-
tions:

Sem_3: Module type

usel. m) »
(Pr 7 eceer Pn) publicl m) .,

MtIm: ModulLe_typelfe :=
: (
s (

(Lty» aw.»r Lte) := (Local_typeL (Local m)).,
(

(1) Let (upr c.oar Up)

(LVy 7 euwr Lvg) (Local_varL (LocalL m)).,
(Loy » wwwr LOg) := (Local_operationL (Local m)).,
(017 wawr O¢) := (oOperationL m)

A0
(2) Let (€,, &,) := EXTEND(m)Es& in
(3) Let U := U e@udv1) in
ie(a)
(4) Let (Bo»r &) == (8, -, &) w
Let Loc; := newlLoc(%;)
where (case p; € Proc_head :
Let opid; := (proc_id p;), obqgq; := PROC in
case p; € Func_head :
Let opid; := (func_id p;), obqg; := FUNC.,
res; := (resulLt p;) in
case p; € Init_head
Lot opid; := (init_id p;), obqg; := INIT in
s, 1 € (b))
.., := C;lopid; & (Loc;-, obqg;, if obg; = FUNC
then res;
else L)1,
6.1 := 6lloc; & 11, i € (b) in
(5) Let (Bor 8p) := (8 » Sp) w
Let Loc; := newLoc(®{), i € (c)
where €i:.+., := Bi{[(typeid Lt;) &t (Loc;~»

(MtL(type Lt)€ ;6 V1,
(MtE(type Lti)]§i6i)+2)]'

November 1985

60 3.4.2. ModPascal

i+, := 6;[Loc; &« (MtL(type Lt)I8;6;)¥31,
ie (e) in
(6) m(gol 60) = (§cl Sc) w
Let (Bi417 61410 == MLLv;I¢;e;» 1 € (d) in
Let LV := U (ddL Lv;) in

ie(d)
(7) Lot (8o, 6,) := (B4s 64) in
Let Loc; := newloc(8;) in
where (case Lo; € Proc_head :
Let opid; := (proc_id Lo;), obq; := PROC N
case Lo; € Func_head :
Let opid; := (func_id Lo;), obq; := FUNC.,
res; := (resuLt Lo;) in
s, 1 € (e))
€.,, := &;[obid; &« (Loc;, obqg;, if obg; = FUNC
then res;
else L)1,

i+ = g;[Loc; & L1, i € (o) in
Let (Bor 6) := (Besr Ge) in

(8) (cgse o; € Proc_spec :
Let opid; := (proc_id 0;), (plys ..., plg):=(paramL 0;)~
D; := (LV v U (didL pL;)) x LV in
Jelg)
case o; € Func_spec :
Let opid; := (func_id o;), (plys .u.~ plg):=(paramL o).,
D; := (LV v U (idL pL;)) x LV x ECopidi){3 in
Je(g)

cagse o; € Init_spec

Let opid; := (init_id o0;)s» (plys ..., plg):=(paramL o;)-
D; := (LV v U (didL pL;)) x LV in
Je(g)
s, 1 € (f))
(9) Lot (STy» awer ST¢) 1= FfiX Ty wuwr T o A6, .

(MCbody 0,)J¢, [opid, ¢t (€(opid,)¥1, E(opid;)¥2, L)1

MLbody o0¢)J¢, [opids & (8 (opide)¥1, Elopidedd2, L]

in
Let opdef; := R(ST;» §;» D;{)~ i€ (f) in
Let (€, » 6,) == (§°[0pidi ol (§(opid;)$1' §(0pid;)¢2, 4]
6o, L[6, (8o (opid) V1) & opdef; 1),
ie () in
(10) Let M=valL := X {&, (id)¥3| id € LV in
Let M-F := {&, (&, (opid ¥ | i € () in
Lot M-Alg := ({M-val}, M=F) v U v {g, (typeid Lt)¥1]

g, [B(opidyI¥1 & R({Ty» cuur T¢dsr €10 DY,

61[§(0pidf)$1 Lo ﬁ({Tll eanr TeXs .~ Df)])

i€ ()X in

((MODULE, M-ValL., M-ALQ) ., (§1, 61))

Remarks:

a) No context-sensitive conditions are considered
(see sec. 3.2). Also type checking and scoping are

November 1985

3.4.2. ModPascal 61

disregarded.

b) The semantics of a module type definition is con-
structed as follows:

(1) Identifiers for important components are in-
troduced by abstract syntax selections.

(2) The syntactic information of m is embedded in
the mod-environment; the module identifier
mid is used.

(3) The semantic algebra generated by the used
objects is computed.

(4) Locations for alLl public operation identi-
fiers are reserved and supplied with initial
values. The explicit binding of module oper-
ations in environments has onlLy technical
reasons (application of the fixpoint opera-
tor). It would suffice to dinstall them
directly as algebra functions.

(5) The semantics of Local types is computed and
stored.

(6) The Local variable declarations are
elaborated.

(7) As (4) but for Local operations.

(8) The formalL parameter Lists of operations are
computed; they will be used in (9) to denote
the global., formal and resulLt variables of an
operation.

(9) The semantics of alLl operations are computed
by parallel fixpoint abstraction. By using
the operator ® the fixpoint is an algebra
function defined on TOI's of Local variable
and parameter types. The state (§,, 6,) 1is
assumed to contain the appropriately called
and passed formal parameter values.

(10) The resulting algebra is built on the wunion
of the used ones and equipped with the
carrier generated from the cartesian product
of the Local variable TOI's and with all
public and Local operations.

c) Besides the modulLe algebra, a resulting state is
passed to save all parts of the definition. This
makes convenient access possible 1in semantical
clauses that are based on modules (e.g. enrich-
ments, instantiations).

d) TOoI(m) := M=-Val; also in the embedding type
definition with module identifier mid the type=-of-
interest is delivered to the toi?=-slot of the mod-
environment:
by EXT(toi?, mid, M=valL)®;s,, where (8,, 6,) =
(MCmIee) V2.

We now present to the semantics of enrichments. Enrichments
are also embedded in specific environments.

3.4.2.=-2 Def. [enr-environmentl]
Let EClLauseOps € Id with

ECLauseOps := {enr?., euse? ., add_id?» add_proc_id?.,

November 1985

62 3.4.2. ModPascal

add_func_id?., add_init_did?., add_proc_ar?.,
add_init_ar?, add_func_ar?., eop_def?}
Then € € Env dis called enr-environment if for all x €
ECLauseOps
a) e(x) # L
bh) 8(x)¥2 = ENRSEL n

Remark: Associated to every element el of ECLauseOps 1is an
ambiguouslLy denoted special function el that evaluates to syn-
tactical information if applied to enrichment and enrichment
operation identifiers.

elL=_enr?

Associated operation: enr?: Id —> State — D_BOOL
(enr?) = (Loc, ENRSEL, 1)

g(Loc) = {(id, tv)| id € Id, tv € D_BOOLY}

enr? (id)te := e(€(enr?){1) (id)

el € {euse?, add id?, add proc_id, add_func_id?., add init id?>

Associated operation: elL: Id —> State —> IdL

§(9L) = (Loc, ENRSEL., 1)

g(Loc) = {(id, (idy s ewar id,))] id, id; € Id, i € (M, n € N}
el(id)es := s(E(el){1) (id)

eL € {add _proc_ar?, add_func_ar?, add init ar?}
Associated operation: ebL: Id —> State —> Arity
e(el) = (Loc, ENRSEL, 1)

g(Loc) = {(id, ad)| id € Id, ad € ArDes)

el(did; » id,) := e(€(el){¥1)(id;) (did,)

el = eop_def?

Associated operation: eop_def?: Id —> State —> OpDesL

¢ (eop_def?) = (Loc, ENRSEL., 1)

g(Loc) = {(idr (0opdy» ..., opd,))| id € Id, opd; € OpDes, i €
(N, N € NX

eop_def? (id)te := e(€(eop_def?)¥1) (id)

Note that alLl identifiers are assumed to be unique.]

Based on enr-environments the operators EXT and EXTEND of sec-
tion 3.4.1. are defined analogouslLy.

In Sem_5 the syntactical operator
AO: Public x Enrich_def —> Id
is used. AO maps a public operation header p € (publicL a), a
€ (addL e), e € Enrich_def to that object identifier that is
enLarged by the occurrence of p in its associated addpart of
e:
AO(p, @) := L id € Id .
Let {a,7 ..., @, := (addL e) in
34ie€ (n) .id = (add_id a;) and
p € (publicL a;)

The next clause introduces enrichments.

November 1985

3.4.2. ModPascal 63

Sem_5: Enrichment definition

Melle: Enrich_deflte :=

(1) Let eid := (enr_id e), (U7 euur Uy) := (uselL e),
(817 aunur ap) = (addL e).,
(017 ===r 0.) := (operationL e) in
Let aid; := (add_id a;), 1 € (b) in
Let (Pi17 ewws Pibci) == (publiclL a;), i € (b) gn
(2) Let (&,, &,) := EXTEND(e)ts in
(3) Let (o0~ 6o0) = (81, 6,) in
Let Loc;; := newloc(€;;)
where
(case p;; € Proc_head :
Let opid;; := (proc_id p;;), obq;; := PROC in
case pi; € Func_head
Let opid;; := (func_id p;;)», obqg;; := FUNC.,
res;;:= (result p;;) in
case p;; € Init_head :
Let opid;; := (init_id p;;)», obq;; := INIT in
s 1€ (D), 3 € (b))
8i.;+1 := §i;Lopid;; & (Locy;, obqg;;-

if obqg;; = FUNC
then res;; etse 1)1

6;.;+1 :=6lloc;; & L1, i € (b)Y, J € (b;) in
if not AO(opid;;, e) = aid;-. i€ (b)), Je€ (b;) then L
else
(4) kg& (§°; 60) - = (gbb,b,; be‘b,) D
Lot (Bi,1+, 6i4+1) := ML(paramL 0)I8;6;, 1 € (c) in
(5) ng (8, » 8g) = (8c» &c) in
(case o; € Proc_spec
Let opid; := (proc_id o;)-
(PLy 7 eaasr pPlg) := (paramb o;)»
LV; := Local variables of AD(opid;).
D; := (LV; v U (ddL plL;)) x LV; in
Je(g)
case o; € Func_spec :
Let opid; := (func_id o0;)~
(PLy 7 wwwr plg) := (paramb o0;)~
LV; := Local variablLes of AD(opid;).,
D; := (LV; v U (didL pL;)) x LV; X &, (opid;)¥3 in
Je(g)
cagse o; € Init_spec
Let opid; := (init_id o;)-
(PLy 7 ewnr ply) := (paramk o)~
LV; := Local variables of AD(opid;).
D; := (LV; v U (idL plL;)) x LV; in
JeE(y)

, 1€ (c))

(6) Let (STy s awesr STe) 1= FiX Ty s cawar Te - A6, .
(MCbody o,)I8,[opid, ¢ (€(opid,)¥1, B(opid,)V2, L)]
61[§(0pid1)‘l"| =i [R({Tll LECIE N 4 Tc}l gl’ Dl)]l

November 1985

64 3.4.2. ModPascal
MIbody o.)Ile,[opid. & (¥(opid.d¥1, C(opid. V2, L)]
51 [§(0pidc)¢1 (_‘ 02({1‘1' == nl Tc}l §1I Dc)]l)
in
Let opdef; := R(ST;» €;» D{), i € (c) in
Let (€,, 6,) :=(g,[opid; & (8(opid;)V1, Elopid;d{V2, L]
6oL, (By (opid;d)¥1) & opdef;]).,
i€ (¢) in
(7) Let U := U 6,8, (u)¥v1) in
ie(a)
(8) Let E-F := {e&, (8, (opid)¥1)| i € ()Y in
Let Loc := newloc(E,) in
tet A :=U v (g, E-F) w
Let €, := ¢,[eid & (Loc, ENRICHMENT, L)1 in
6, := 6,[Loc & A,
e(main)¥1 &« e&(8(main) V1) v Al in
(gal 63)
Remarks: a) No context-sensitive conditions are considered

(see sec. 3.2.). Also type checking and scoping
are disregarded. The semantics exclude the case of
enrichments of standard types with initial oper-
ations (see also [OLt 84al).

b) The semantics of an enrichment definition is con-
structed as follows:

(1) Identifiers for important components are in-
troduced by abstract syntax selections.

(2) The syntactic information of e is embedded in
the enr-environment.

(3) Locations for all introduced operation identi-
fiers are reserved and supplied with initial
vaLues.

(4) ALL parameter Lists are evaluated.

(5) The formal parameter Lists of operations are
computed; they will be used in (6) to denote
the glLobal, formal and result variables of an
operation.

(6) The semantics of all operations are computed
by parallel fixpoint abstraction. By using the
operator R the fixpoint is an algebra function
defined on TOI's of Local variablLe and parame-
ter types. The state (g,, 6,) 1is assumed to
contain the appropriately called and passed
formal parameter values.

(7) The semantic algebra generated by alLl used
objects is computed.

(8) The instaltation of the new object in the
resulting state and the updating of the main
program algebra (see [OLt 84bl) is done ex-
pLlicitly.

c) Enrichments do not possess a type-of-interest.,
since they are enlLargements of severalL objects
with several types=-of-interest. Therefore the
(eid)¥3 component is assigned to L.

November 1985

3.4.2. ModPascal 65

Since instantiations and instantiate types represent the
ModPascal object parameterization concept, a similLar remark as
that following Sem_1 is applicable: problems occurring in the
connection of parameterized structures are for the most part
reducable to problems of the unparameterized case. Therefore
parameterization is skipped here, but the treatment is onlLy
postponed. For sake of completeness we give semantical clauses
of ModPascal instantiation objects and instantiate type
definitions although they will be disregarded in section 4.

Instantiation definitions are defined as:

Sem_5: Instantiation Definition

Mlfi: Inst_deflte :=

Let in_id := (inst_id i), (I;, ecaar I,) := (useL i),
(O0by 7 wacar Obp) := (ob_actL i)»
(t17 weesr te) = (type_actL i),
(OP1 7 wwer Opg) := (0Op_actL 1) in

Let (f, @) := €(B(I V1) + ... + 6(B(INDV1) in

if not (SM?((f, @))) then L

else
Let F := {((old 0{), (new o{))| i € (b)Y v

|

{(Cold t{), (new t;)) ie (Y in

Let G := {((old op;), (new op;))| i € ()2 in
if not (SM?((F, G))) then 1 else
Let SM := (f, g) + (F , G) in
if pot (SM?2(sM)) then L else
Let Loc := newloc(®) in
Let &, := glin_id & (Loc, INST, L, L)1
6, := e¢lloc & sM] in
Let 6, := 6,[6, (g, (maind¥1) & 6, (€, (main){1) v
({source(sSM)., target(SM)2}, {SM}»)] in
(8,7, 6,)

Remarks: a) SM? is the predicate to indicate signature
morphism property of its argument (see [OLt 84bl).
c) For consistency and for verification contexts, an
algrebra of the form above (Last Let=-scheme) is
added to 'main' (see [OLt 84bl).

The next clause introduces instantiate type definitions:

Sem_6: Instantiate Type Definition
MmIi: Instantiate_typelts :=
Let bid := (base_type 1),
{ill [in} := (objectL i) ;ﬂ
Let Bid := (Retrieve(bid)®e)¥1 in
Let {I,» .ucor I} := RetOb({i;, ...» i,2)8s in
Let I :=1I, + ... +I1I, ., I =(f, @ in
if not (SM?(I)) = true then L else
if not (Comp?(Bid, I)) then 1 else

November 1985

66 4. Connection and Correctness

Let Bid, := MARK(U(R,(Bid)), f) in
Let Bid, := GENERATE(Bid, , g)-
{obys wu.r Ob, > = Bidz ;‘;vu
Let objL := SEQ({oby;, ..., 0b,}) in
Let (8,., ;) := MLobjLI®e in
Let (A, (8,, &,)) := MLTOP(Bid,)Ie,s, in

(AI (§2I 62))

Remarks: a) The semantics of the base type and the used in-
stantiation objects (both are elements of Id) are
computed from the application state. By means of
the Retrieve operator the associated syntactic
objects are taken to perform the instantiation
process (marking- object generation) . The
resulting object set is sequentialized and mapped
to the appropriate semantic domain. The resulting
state and the algebra of the TOP-element are
passed (for the definition of operators, see [0OLt
84bl) .

b) ALL implicitly generated objects are installed. An
appropriate naming procedure is assumed.

4. Connection and Correctness

We are now going to formulize the situation that was in-
formally described in section 1: we assume a SEE with Level
Languages ASPIK and ModPascal, and a stepwise-refinement
methodology that at Last connects specification obgects with
module objects. The connection will be defined by specific
objects, the representation objects. We assume that all this
information (specification, module, representation) is given

= supplied by the programmer)., and then the central issue is
to show a homomorphy condition that serves as notion of cor-
rectness for this refinement.

Section 4.1. dntroduces basic notions and confinements. Then
foundations of abstract data types (with main emphasis on
homomorphisms and algebras) are briefly reviewed in section
4.2. The syntactic and semantical definitions of represen-
tation objects are given in section 4.3., and realization con-
ditions are introduced as sufficient conditions for correct-
ness in 4.4. We close this section with an overview on other
approaches to object correcthness.

(L.1. Confinements and Basic Notions

The need for the introduction of confinements into our ap-
proach arises from a substantial and a theoretical fact:

substantial: if constructs of applicative and procedural
Languages are going to be connected semantically., then (at
Least) the connection problems CP1 to CP3 of sec. 2.2.
occur. But below this LevelL, also care has to be taken to
respect elementary characteristics of the Language types
(e.g. typing of expressions or scoping of variables). Provi-

November 1985

4.1. Confinements and Basic Notions 67

sions must be made to Limit side-effects dimplLied by these
characteristics.
technical: if we consider both Languages with their full

expressibility many boring issues have to be treated
detailed although they do not contribute to a better insight
in the approach (the topics range from variable renamings
to, for example, rules for connecting call-by=-vatues func-
tions with call=by-reference functions). For clearness of
presentation of this paper the attention is focussed on
centra L em_6: Instantiate Type Definition | | points;
doubtless, a future exhaustive description has to cover the

Languages completely.

To formulate our confinements we introduce some terms and
phrases informally; the precise version follows in sec. 4.4,

4.1-.-1 Terms/Phrases

(a) By external indication (programmer., user of a SEE) two
objects of ASPIK and ModPascal may be characterized as be-
ing 'involved in a (b) An implLementation is a refinement

relation between two ASPIK spec
objects that satisfies some condi-
tions.

(c) A realization is a refinement relation between an ASPIK
spec object and a ModPascal module object that satisfies
some conditions. The term ‘'realization context' is used.,
if the validity of the conditions is uncertain. x

With this terminology we are able to state our restrictions:

R1: Every spec=object involved in a realization
context is algorithmic

For the justification of R1 we have to go into deeper details
of the ASPIK semantics.

The classification of specs into axiomatic and algorithmic
ones is not only a syntactical question (presence/absence of
the specification body). It is used to assign different seman-
tical structures such that axiomatic specs may be
characterized as 'more general' than algorithmic specs. That
term requires precision.

Let an algebraic specification SP be a triple (S, 0, C) con-
sisting of a set S of sort names, a set O of operation names
with operation functionalities, and a set C of constraints
built from the symbolLs of S, 0, and specific predefined
symbols. The tuplLe (S, 0) is also called signature (see sec.
4.2.). It is easy to see that an ASPIK spec is an algebraic
specification in this sense: the sets S and 0 are given by the
sorts= and ops-clause of the spec hierarchy, and the con-
straints are either the definitions of the spec body or con-
tained in the props-clLause (since ASPIK allows predicate

November 1985

68 4L.1. Confinements and Basic Notiocns

calculus as property Language, predefined symbols of con-
straints are. for example, the Logical connectives and
qualifiers).

In the initial approach, the set C of constraints is usually a
set of equations (or at most universal horn clauses); ASPIK is
more powerful din this point. Now, independentlLy from the
specific approach algebras are considered with respect to a
given signature SIG = (S, 0), i.e. algebras that possess
carrier sets associated to the names of S, and operations
associated to the names (and functionalities) of O. The set of
these algebras is the object set of a category ALgLSIGl. An
important subcategory of ALQLSIG] is defined by those algebras
A € ALQLSIG] that satisfy the constraints of C. We denote it
by ALgLSIG, C].

At this point differences among approaches to the semantics of
algebraic specifications become significant: If an axiomatic
spec S induces a signature SIG and constraints C, then the in-
itial algebra approach would seLect as semantics of S the
(isomorphism class of the) initial object in ALg[SIG, Cl. The
initial object is a wunique element of that category, and
therefore the semantics of the specification is rather fixed.
Instead of, ASPIK employs the ‘'Loose' approach. In order to
avoid a characteristic of the initial algebra approach that
forces the programmers attention to one determined object at
the very first steps of software development (as represented
by axiomatic specs) = a fact which in our view essentialy
diminishes the benefits of abstraction -, the ASPIK semantics
chooses the whoLe class ALg[SIG, C] as semantics of S. Then an
axiomatic spec 1is also described by non=-initial algebras;
every element of ALg[SIG, C] can be taken as meaning of S in
arbitrary applications.

The situation changes, if algorithmic specs are considered.
Since they are intended to describe a specific algebra more
concrete, the ASPIK semantics constructs a canonical term
algebra (CTA). Its carriers consist of (subsets of) the
Herbrand universes generated from the etLements of the con-
structor clause. Its operations are derived from allL operation
definitions of the spec, such that violations of closedness
conditions do not take place. Then ALgL[SIG, C] consists only
of the isomorphism class of the CTA; then a trivial con-
sequence 1is that canonical term algebras are initial obgjects
in their categories. In some sense- algorithmic specs
represent a final state in the development and refinement
process: their semantics is (up to isomorphism) a specific
object and there are no other models available. (If neverthe-
Less algorithmic specs are refined into other algorithmic
specs, the term 'implementation' and the ASPIK implLementation
concept are applied).

This brings the interlude on the ASPIK semantics to its end; a
detailed presentation of the material can be found in [BV 85].

How is R1 justified by that definitions? If we allow axiomatic

November 1985

4L.1. Confinements and Basic Notions 69

specs occurring in realLization contexts., we have to

® develop a concept of realization of a set of algebras
(spec semantics) by a single algebra (module/enrichment

semantics) ., or to
® select one possible algebra.

The first alternative is more general., and it has inheritant
deeper theoretical issues as well as clearness decreasing com-
plexity. But the main counter argument is that in SEEs
realization steps of this 'size' (high abstraction to concrete
representation) are unrealistic; software development
processes are more continuous, and alLlL efforts in software
engineering try to avoid transparency reducing refinements of
this kind.

But selection of a specific algebra comes with other problems:
what criterion has to be applied and how good is it? We assume
that this question can be answered satisfactorily, and that
the initial algebra of the appropriate category is choosen
(this criterion is acceptable since many concepts of abstract
data type theory are based on initial algebras, and therefore
resuLts can be applied). If we are going to define the
realization conditions, we have to have a concrete represen-
tation of the initial obgject. Since it is induced 'onlLy' by an
axiomatic spec there is in generat no (constructive) way to
generate such a representation, due to the undecidability of
predicate calculus. In the special case that onlLy equations
are used as properties of specification, then spec the onlLy
representation we have 1is the so-called ‘quotient term
algebra' (QTA): the carriers are congruence classes generated
over the Herbrand universe by the constraint set of the spec.,
and the generations are defined on the congruences.

Then, if proof tasks have to be processed they would have to
deal with congruence classes of terms., not with terms
directly. This is highlLy unwanted, since then

e proof systems have to inclLude the theory of congruences.,

e every derivation has to be checked for independence of the
representative, and

® the connection of the module algebra and the spec algebra
becomes more unnatural by Linking a single concrete
representation (carrier element) to a set of abstract terms;
usually, it is the other way around.

It is not clear to us if satisfactory solutions to this issues
exist for SEEs.

In this Light the advantages of restricting realizations to
algorithmic specifications with CTAs as semantics have to be
seen:

@ carriers and operations of the semantical algebra are con-
structive: the former are given by the Herbrand universes
(or restrictions thereof), the Latter are just the algor-

November 1985

70 4L.1. Confinements and Basic Notions

ithmic operation definitions given by the programmer in the
spec object definition;

e the module algebra carriers and the CTA carriers can be
Linked by associating single representations to single
terms;

® the restrictions imposed on carrier sets of CTA allow to use
structural induction as proof method; therefore

® proof tasks can be treated by existing systems without grea-
ter modifications. This includes that there is a choice
between different proof methods dimplemented by different
systems (theorem provers, induction provers., rewrite rule
derivations), and one possesses a greater flLexibility to
adapt an appropriate method to a given task.

® it is very easy to ‘execute' algorithmic specifications by
interpreters, and by this there is strong support of a
testing tool of a SEE.

The next restriction concerns the sort clLause of an algor-
ithmic specification.

R2: Every spec-object introduces at most one new sort

The reason for this restiction Lies in a principle property of
procedural, strongly typed Languages.

Consider the case of module constructs of ModPascal. UnlLike
similar constructs for object oriented programming Languages
(ADA packages, Modula=-2 modules)., ModPascal modules are in-
carnatable: variables might be declared of a module type and
used in statements and expressions. (Simula classes or CLU
clusters are incarnatable; but both concepts do not fit as im-
perative counterpart to ASPIK). By the declaration, the asso-
ciation variable=-type is fixed in the scope and extent of the
variablLe. Semantically., this is modelled by the fact that the
module algebra possesses one special carrier (the cartesian
product carrier) which supplies module incarnations with
values. Every module definition introduces just one of these
special carriers, and thus may onlLy be used for a refinement
of specifications with one sort.

If a spec S contains (at Least) two different sorts in its
sort-clause, the CTA A(S) has (at Least) two different
carriers. In the specification Language this causes no
problems: there are no spec-variables (i.e. variables taking
their wvalues out of a set of spec names) but only sort
variables., ASPIK terms are connected to a unique sort and not

to a spec.

This is not true in the case of ModPascal (and any imperative
Language with incarnatable module construct): there is the no-
tion of a module type, and variables are declared being
thereof; since only one new data set is introduced by a module
type definition, there is no choice for the value set of
variables. (AdmittedlLy., this design decision could be modified
such that several cartesian product carriers are introduced by

November 1985

4.1. Confinements and Basic Notions 71

a module type definition, but at what a price: either one
would Loose the classical feature of variables as object in-
carnations, or ‘'over-Loading' of variables becomes possible.
In general, it would not be distinguishable for a given con-
struct from which cartesian product carrier a module variablLe
takes its values. This is not a practicable road.)

Having these preconditions in mind it is obvious to impose
restriction R2 on specifications occurring in realization con-
texts. Then there 1is also no difficulty 1in associating
abstract and concrete data as demanded by the technique of
algebraic verification (see secs. 1.3. and 4.4.): there is a
'real' one-to-one mapping between the single abstract and the
single concrete carrier.

It should be emphasized that R2 represents a serious Limi-
tation of the approach: in SEEs, one has to impose an artifi-
cial structure on ones problem solution to meet this require-
ment, and possibly Looses some of the benefits gained by the
application of algebraic specifications. Also there is a (non=-
trivial) subclass of problems that become unspecifiable in
ASPIK if introduction of more than one sort at a time is
forbidden. We therefore try to find (for the subsequent
iterations of the approach) a more satisfactory solution that
treats incarnability and mulLtiple carrier introduction; for
the moment we require R2.

R3: Specterms do not occur

Specterms may occur in the use clause of ASPIK specs. Semanti-
cally, they denote new spec objects that are generated by ap-
plication of the map component to the source spec. In this
sense specifications with specterm occurrences are
isomomorphic to specterm=free specs: if the structures behinds
specterms are installed in the environment as (simple) spec
objects, then these objects (more precise: object names) can
be appropriately substituted for specterms yielding specterm-
free specs.

This fact allows to remove the complexity induced by specterms
in realization contexts. Issues such as normal form compu=-
tation or dimplicit object generation need not be considered
here, since equivalent and more simple objects are available.
Furthermore., specterms are the constructs of the ASPIK
parameterization concept for specifications., and the
properties and correctness criteria of parameterization
realization are not topic of this paper.

R4: Modules and enrichments do not contain instantiate
type definitions

This is the anatogon of R3 for ModPascal objects occurring in

November 1985

72 4L.2. Homomorphisms and Algebras

realization contexts; the same arguments apply.

Remark: The renunciation of specterms implLies the absence of
map- (and imp-) obgjects; the renunciation of in-
stantiate type definitions implies the absence of in-
stantiation definitions.

We summarize our restrictions for objects occurring in
realization contexts as a precision of definition 4.1.-1:

4L.1.-2 Def. [realization, realization contextl
Let S denote an ASPIK spec, M a ModPascal module or enrich-
ment.
Let (S, M, true) denote an unspecified relLation between S and
M, where the boolean value 'true' indicates that no conditions
need hold.
Let C, denote the conditions

R1: S is algorithmic

R2: S is singlLe=sorted

R3: S is specterm-free

R4: M is instantiate_type_definition-free
Let C, denote (up to now) unspecified semantical conditions.

Then the triple (S, M, C,) is called realization context
(re-co) if S and M satisfy C, .

The triplLe (S, M, C, and C,) is called realtization, if S and M
satisfy both C; and C,. x

Remark: The condition set C, will be made concrete in sec.
4.4. It will turn out to be the correctness criteria
for the refinement of specifications into modules.

L.?2. Homomorphisms and Algebras

To allow an exact formulation of our concept we now give
definitions of basic notions of abstract data type theory. We
are able to use them in our context since ASPIK as well as
ModPascal features have been designed in close connection to
this theory., and both employ an algebraic semantics.

4.2.-1 Def. [signaturel

Let OB, OP denote sets of (object and operation) identifiers.
Let arity: OP —> (OB* x OB) be defined.
Then the triple (0B, OP, arity) is called signature.]

Remarks: a) Arity associates a functionality to an operation
name. In general, the functionatity may be multi-
valued, i.e. arity: OP —> (0B* x OB*).

b) A signature introduces onlLy names for items, not
items with a specific meaning.

Notations: Let (OB, OP, arity) denote a signature.

oP,.. := {op| op € OP gnd arity(op) = (s, £)2
For arity(op) = (s, t), s is called sourcer and t

target of op.
£ € OB* denotes the empty source.

November 1985

4{.2. Homomorphisms and Algebras 73

In the following we assume arity as function (exclusion of
overlLoading). Then it follows, that OP = U{oP,, .| s € OB*, t ¢
OB} and N{OP.. .| s € OB*, t € OBY = g.

4.2.-2 Def. [signature morphisml
Let (OB;, OP;, arity;), i € {1, 2) denote signatures.
Then, a pair (f: 0B, —> 0B,, g: OP, —> OP,) of functions is
called signature morphism if it holds:
for all op € OP, with arity, (op) = (ob; ... ob,-, ob) .
arity, (glop)) = (f(ob;) ... flob,), flob)) x

Signature morphisms are arity-preserving functions between
signatures.

The next definitions are needed to associate signatures with
an appropriate semantical domain.

4.2.=3 Def. [fLat domainl

Let S denote a set. Then (S,, ¢) is called a flLat domain
if 1) L, ¢ S denotes the bottom elLement of S.

S, :=S v {'Ls}
2) L ¢ (S, x S,) is a partial order with
X LY : <> X-=.1 or X=Y x

Notation: If no ambiguities are possible, we denote the flat
domain S, simplLy as S and the bottom elLement 1, as
L

4.2.=-4 Def. [strict]
Let C, s ...» C, denote flat domains, and n € (m). A function
f: C; X aueX C, —> Chi1 X «aaX Cp
is called strict, if
f(Cis weercy) = (Le yy s weuwr Ley) &> 3 i€ (N . c; = Lc;
n

Remark: Multi-value functions are considered because sometimes
module operations take them as semantics.

4L.2.-5 Def. [monotonicl
Let f: C; X waw X C, —> Ch4y X .= X C,, be a strict function.
Let X;{» Y; € C;» 1 € (N).
Then f is called monotonic if
X; CTVYir 1€ (N) = f(Xy7 euusr X,) C fly,» ..., y,) holds.

n
4.2.-6 Def. [continuous]
Let f: C; X ooa X C, —> Ch4y X === X C, be a monotonic func-
tion.
Let X; € C; such that for alLl a- b € X; either a T b or b L a
holds.
Then f is called continuous if
FUXy 7 ewar UX,) = LEF(Xy 7 waur X0 | X; € X2
where u denotes the Least upper bound. |

Remark: Since we consider onlLy flat domains the sets X; con-
tain at most two elements.

November 1985

74 4.2. Homomorphisms and Algebras

s0s™ act
Let C;» 1 € {1, 2} denote flLat domains., and

f: ¢, —> C,. Then it is equivalent:
e f is continuous
@ f is strict 9or f is constant. n

This ensures the well-definedness of those functions f we will
Later use as meaning of operation definitions op: if the
strictness of f can be guaranteed, the continuity implies the
existence of a Least fixed point which can be taken as unique
meaning of op.

We now deviate from the usual way and introduce algebras not
over given signatures. Instead we define them explicitly and
derive an associated signatur e in a second step.

meaning.

The reasons for this modification are that ModPascal modules
are associated constructively to algebras (without e.g. term-
generated carriers) and that there is no way to characterize
these algebras in their categories (since no eguations/axioms
are available for modules). We will use the associated
signatures of a given algebra A onlLy to 'forget' specific data
and operations of A, With this prerequisites we can define the
notion of strict algebras. They will be used as semantical
obhjects assigned to specification objects or module type
definitions.

4.2.-9 Def. [strict algebral

Let ¢ = {Cys ..., C,> denote a non-empty set of flLat domains
C,» 1 € (n).

Let F = {<f: Ci(1, X ane X Ci(pm, —> ci(m+1)>l Cic;i» € C and

{iy 7 eeer dpe1> €{17 ..., N2 denote a set of strict con-
tinuous functions.
Then the tuple (C, F) is called strict algebra. The elements

of C are called carriersets or carriers.
n

Strict algebras can be associated to a signature under the
assumption that there exist naming functions.

4.2.=-10 Def. [naming functionsl]
Let A = (C, F) denote an strict algebra, and Id an unbound set
of identifiers.
Then the naming functions
obname-A: C —> Id and opname=A: F —> Id
associate unique names to carrier sets and operations of A.
obnames(A) := {obn| 3 ¢c € C . obn = obname-A(c)2}
opnames(A) := {opn| 3 f € F . opn = opname-A(f)D

4.2.-11 Def. [associated signaturel
Let A = (C, F) denote an strict algebra.
Let arity-A: opnames-A —> (obnames-A* x obnames-A) be defined
by:
(f: C, X amwe X C,, —> C+1) € F and opname=-A(f) = ¥
= arity=-A(f) = (C; ... Cnr Cpsiy)

November 1985

4.2. Homomorphisms and Algebras 75

Then £(A) = (obnames=A, opnames=A, arity-A) is called the
associated signature to A w.r.t. (ob_name=-A, op_name=A).

u
Now we consider strict algebras and arbitrary signatures.

4.2.-12 Def. [r=-algebral

Let ¥ denote a signature.

Let A denote an strict algebra.

Then A 1is called x=AlLgebra if there exists a signature
morphism (f: I¥1 —> (A1, g: IVv2 —> X(A)¥2) such that f
and ¢ are bijective.

n
4.2.-13 Def. [ALglzl, Algl
Let ¥ denote a signature.
Then
ALglrl := {A] A is r-algebra) v {1, 2
ALg := + {ALgL¥l| T is signaturel
(+ denotes the coalesced sum of domains). x

The definition of the domain Alg as coalesced sum of I-sorted
algebra domains is not unproblematic. It would allow algebras
that possess as carriers "the set of all sets". Since this is
a well-known paradoxon=-generating construction, we assume a
meta-structure calted ‘'universum' U whose elements are sets.
There are axioms that make the "set of all sets" underivable
in U. Then, alLl carriers of elements A € AlLg are assumed to be
elLements of U.

We now need a relation between algebras of AlLg. Since asso-
ciated signatures may differ we Look at common subsignatures
and subalgebras.

4L.2.=-14 Def. [subsignaturel
Let ¥ = (OB, OP, arity) denote a signature.

Then s¥ = (0B, OP,, arity,) is called subsignature of ¥ if
0B, ¢ OB, OP, C OP, arity,: OP, —> (O0B,* x 0B,) such that

arity, (op) = arity (op) for atlL op € OP,.

Subsignatures are used to modify algebras: a given strict
algebra i1is reduced to a subalgebra described by a subsigna-
ture; module algebras (the algebras associated to module type
definitions) will be treated in this way.

(L.2.-15 Def. [subalgebral
Let ¥ denote a signature, and A € Alg.
Then the E=subalgebra of A is defined by
(1) A is r-algebra: A
(2) A is not X-algebra:
(2.1) There exists a subsignature si(A) of I(A) such
that a signature morphism (f: V1 —> sI(A)¥1, g:
T2 —> sT(AV2) with f bijective:

(C, 0) where

November 1985

76 4.2. Homomorphisms and Algebras

C := {ca| ca € A¥1 and obname=-A(ca) € s (A)¥1)
0 := {opl| op € AV2 and opname=-A(op) € sr(A){22
(2.2) otherwise: lAaLg

n

Remark: If A is a I-algebra with T¥(A) = ¥ (i.e. the bijective
signature morphism is the identity)., and if ¥, is sub-
sighature of I, then there is always a I, subalgebra
of A.

Notation: The symbol 'C' is ambiguously used to describe the
subsignature relation (I, ¢ £,) as well as the subalgebra re-
Lation (A; € A;).

Note that several I-algebras of a given algebra A may exist
(e.g. if operations of A have the same functionality or
'plenty' carriers occur).

Sub(z, A) denotes the set of all I-subalgebras of A.

We now connect algebras by homomorphisms. Again, we deviate
from the usual path and modify +the notion of algebra
homomorphism in two ways: we assume that source object and
target object are standing in a subalgebra relation, and we
define onlLy partial mappings between the carriers.

The subalgebra assumption was implied by the application of
algebra homomorphisms in representation objects (see sec.
4L.3.); partiality excludes those elements of source obgect
carriers that are mapped to bottom elements. Again, in the ap-
plication Lateron we wilLl not consider these elements (because
they do not contribute to the desired correctness proposi-
tion) .

4L.2.-16 Def. [partial algebra homomorphisml
Let A" € ALgr i€ {11 2}-
Then a family H of mappings <hc.; ,: C; —> C,| C, € Aj¥1, C, €
A;¥1> is called partial aldebra homomorphism., if
(1) There is a X(A,) subalgebra of A,, denoted by sA,. (f,
g): I(Ay) —> I(sA,) denotes the bijective signature
morphism.
(2) For all (h¢(y ,: C, —> C,) € H it holds:
(2.1) C, € (sA)¥1
(2.2) obname=A,(C,) = f(obname=-=A, (C;))
(3) For every ca € (A;)V1 there is (h.., ,: €, —> C,) such
that ca = C; .
(&) For allL op € (A;)V2 with arity-I(A;) (opname=-A, (op)) =
(C; =w. Cns CnL+1) there exists by means of (f, g) op' €
(sA, V2 with arity=r(sA,) (opname-sA, (op"')) = (f
(obname=A;, (C;)) ... f(obname-A; (C.)), f(obname-A,
(Cn+1))) and opname=sh, (op') = g(opname=A; (op)).
Then, for allL ce; € C;r, with h(ce;) * L,, a :=
obname=A, (f(obname-A, (C;))), 1 € (m) and for aLl op €
Ne me1 ,(OP(COL 7 wewr CO,)) = o0p'(he(; ,(CO)r aunr
Ne(m,(COL))

November 1985

L.2. Homomorphisms and AlLgebras 77

Remarks: a) This definition is tailored to many-sorted
algebras as they are contained in ALg. The one-
sorted case is characterized by far Less technical
details.

b) It only makes sense to consider homomorphims

between algebras with appropriate associated
signatures, i.e. isomorphic signatures. Therefore
A, has to be reduced to a subalgebra with this
property and the homomorphism is onlLy defined
between sA, and A, .
This reflects the case that the module object M
occurring in a realization context (S, M, C) has a
- Loosely spoken = richer structure that S i.e.
introduces more data and/or more operations. Then
it is necessary to cut off the overlapping edges.

c) The homomorphism property 1is only considered on
elements of C; that are mapped to non-bottom ele-
ments by he.i,. This dmplies partiality of the
homomorphisms, and it is used Lateron to partition
cartesian product carriers into elements that
should correspond to an abstract carrier element.,
and those that should not (see sec. 4.3.).

d) The interaction between the various syntactical
and semantical operators may be visualized as
following:

arity-r(A;) arity=-r(sA,) arity-I(A,)

[l o [l [
obname=A, opname=sA, obname=A,
opname=A, obname=sA, opname=A,

H
Al e 3 sAz g Az

As definition 4.2.-16 shows there is a close relation between
algebra homomorphisms and signature morphisms. Especially the
subalgebra-generating bijections are of great dimportance: if
I, ¥L, and Sub(f,,A;)*g, then it depends on the choice of the
bijection (and therefore sA, € Sub(gf,,A,)) if homomorphy can
be shown with a given H. This fact may be used to strengthen
the notion of algebra morphism by demanding property (4) for
every element of Sub(x,,A,). For our applications the weak
version suffices.

In general the carriers of two algebras are not isomorphic. In
the context of realizations this means that there is no infor-
mation about a relLation between the specification carriers and
the module carrier. Especially the questions if the data in-
troduced by the module is 'suffient' enough or is ‘'too Large’
(i.e. contains elements of no interest) cannot be answered.

In the case of algebra homomorphisms the situation Looks bet=
ter. Every homomorphism h: S —> T can be used to factorize its

November 1985

78 4.3. Representation Objects

source S to an isomorphic object S'. Then it can be shown that
T is also isomorphic to S'. We formalize these ideas in sec.
4.4. when Looking at realization conditions.

4L.3. Representation Objects

The Last section has introduced a number of concepts as signa-
ture morphism or algebra homomorphism that will be used as
basis of our notion of realization. But up to now we have not
said how the connection of ASPIK specifications and ModPascal
modules/enrichments is given. This section is dedicated to
this task: The concept of a representation object (rep=-object)
is presented in sec. 4.3.1., whereas the subsequent subsec-
tions treat abstract syntax, context=-sensitive conditions and
semantics resp. (secs. 4.3.2. to 4.3.4.).

4.3.1. Concept

A rep-object is a syntactic unit in which information about
the connection between a spec and a module/enrichment is
gathered. This information may be splLitted into:

® information about the relation between operations of the
spec and operations of the module/enrichment (= signature
morphism)

e information about the relation between elLements of spec
carriers and elements of module carriers (= carrier mapp-
ings) .

One could presume that with these ingredients the condition
for algebra homomorphisms are directly satisfied (see defini-
tion 4.2.-16) but this is not true. Since we Look at a very
specific situation (refinement of specifications into
modules/enrichments), rep=objects also include specific modi-
fications.

What information should be given by a programmer who refines a
spec S into a module M?

FirstlLy he should say for every operation of 8 which is the
operation of M that is intended to refine it. Or with other
words: we require the sighature morphism sm going from (the
signature of) S to (the signhature) of M. If sm: M —> S, this
would correspond to a refinement in reverse direction (i.e. an
abstraction step). This is also an important scenario, but
outside the scope of this paper.

Secondly he should say how values are connected. If he designs
the refining structure (the module) he has to consider carrier
elements of CTA(S) and carrier elements of Malg(M) (the module
algebra associated to M; 1its carriers are cartesian products
of those carriers that are associated to the types of the Lo-
cal variables of M; see L[OLt 84bl] for details). There are two
possibilities for such a representation function (rep-

November 1985

4.3.1. Concept 79

function) Rf between CTA(S) and Malg(M):

a) Rf: CTA(S) —> MalLg(M): This implies that abstract data

can be uniquely represented by concrete data. If this is
true, then refining is just renaming., and no sophisticated
semantical criteria are necessary. But this is not the
case in generat.
Problematically also is the treatment of m € Malg(m) with:
for all s € CTA(S) . Rf(s) # m (i.e. the surjectivity of
Rf). This data has no connection to abstract data at all.,
but this property is not visible and module operations may
work well on such arguments. The only solution is to ex-
clude them from the correctness check considerations., what
is equivalent to moving from total to partialL operations.
But then also total functions of S are connected to par-
tial operations of M, and this is not intended in a
refinement (the expressability should not decrease).

b) Rf: Malg(M) —> CTA(S): Here, concrete data (vectors) is

mapped to abstract values (terms). This way allows to
represent a single term in different ways, or to explic-
itLly disregard concrete information if intended. This is
advantageous since refinements are often performed by
modulLes/enrichments with more or Less redundancy (since
the cartesian product carrier is not further restricted.,
or predefined types of the Language offer more operation
and data types than needed). In these cases Rf can be used
to tailor the carriers by ididentification of equivalent
concrete data or by mappinhg redundant data to bottom ele-
ments of the abstract carriers.
The surgjectivity of Rf assuring that all abstract data is
in fact refined is also not guaranteed by this functional-
ity of Rf (especially because Rf is assumed to be given by
the ‘unperfect" programmer) . But under certain
circumstances surjectivity is derivable in our approach
(see sec 4.4.).

The surjectivity of Rf i1is a very important and necessary
property in the SEE context. It ensures that no ‘'abstract'
data is ‘'forgotten' di.e. has no ‘concrete' counterpart.
Otherwise it would be impossible to check the preservation of
specified properties since the data that carries it is
missing. We Look at surjectivity of Rf (or an analLogous func-
tion) as an essential requirement for a correctness notion.

In the following we assume Rf having functionality as in case
b) above. Note that signhature morphism and rep=-function map
into different directions:

November 1985

80 4.3.1. Concept

signature morphism
> module/

specification < enrichment
representation function

representation
representation
object

If we want to employ rep-objects as algebra partial
homomorphisms we have to slightly modify the above definition
L.2.-16 to meet the technical constraints (functionalLities of
signature morphisms and carrier mappings; see sec. 4.4.). But
then rep=-objects may be seen as the syntactic vehicle to
define a family of mappings that is dintended to describe a
partial algebra homomorphism. If this is in fact the case
remains to be shown, with the help of proving tools of the SEE
for example. Depending on the outcome correctness of the
refinement is achieved or not; we discuss this notion in sec.
(A

It should be noted that rep=-objects may form hierarchies. Like
specifications and modules/enrichments, they possess use-
clauses in which other (rep=)objects may occur. The effect is.,
that all used signature morphisms and alLl used rep-functions
are visible and have to be respected in a given rep-object.
This in convenient because it allows to partition the rep-
object design into substructures, and it is more natural since
the involved specification and modules are hierarchical. Un-
fortunately, technical issues become more complex, because
objects and hierarchy relations have to be considered.

The hierarchical structure of all kinds of objects is ex-
pLoitet in the proof method of sec. 5.2. where a bottom-up
procedure is proposed.

In other approaches to the correctness of obJject relations.,
rep-objects in this sense do not occur as independent objects.
There, the necessary information is provided and gathered at
several plLaces, sometimes in the objects and sometimes in the
method (see sec. 4.5.). We believe that this explicit presen-
tation is best suited to the needs of SEEs and it emphasizes
the importance of the rep=-object information by assigning an
own structure to it.

November 1985

L.3.2. Abstract Syntax 81

4.3.2. Abstract Syntax

A rep-object 1is described syntactically by the following
abstract grammar:

Repobj = (rob_id : Id, connect : Connect.,
useL : IdL, operationL : OperationL.,
rep_fct : Rep_fct)
Connect = (source : Id, target : Id)
Operation = (from : Id, to :Id)
Rep_fct = (rf_id : Id, parambL : IdL.
rf_body : Rf_body)
Rf_body = (Let_schemeL : Let_schemel.,
a_term : A_term) v If
Let_scheme = (Let_var : Id, Let_body : Let_body)
Let_body = A_term v StmtL
A_term = (at_id : Id, exprL : ExprL) v (a_id : Id.,
a_termL : A_termL)
Expr = Id v Term v S_term v Const_val
Term = Simple_term v Op_designator
Simple_term = (op_id : Op_id, paramL : ExprL)
Op_id = Id v Pre_id
Op_designator = (var_id : Id, op_idL : IdL., paramb : ExprL)
S_term = (sigh : Sign, term : Simple_term)
Sign = {~, +2
Const_val = Id v INT v (sign : Sign, id : Id)
Stmt = Assignh v Op_designhator
Assign = (as_var : Id, expr : Expr)
If = (if_part : If_part, th_part : Th_part.,
el_part : EL_part)
If_part = (Let_schemelL : Let_schemelL, if : Expr)
Th_part = (Let_schemel : Let_schemel, then : A_term)
EL_part = (else : If v {errork)

The domains Id, Pre_id, INT are not refined here. They
represent alphanumeric identifiers., predefined operation iden-
tifiers of ModPascal., and the integer values.

Note that the domain Rf_body that describes the structure of
the rep_function definition is based upon domains for ASPIK
and ModPascal. This indicates the central, connecting role
representation objects play; their character as bridge-
structure is supported by allowing subsets of the
participating Languages to occur. Although this introduces
more complexity it is inevitable: there is no way to formalize
a connection between obgjects and items without mentioning
them!

An example for rep=-objects in a concrete syntax may be found
in appendix A.

November 1985

82 4.3.3. Context-sensitive Conditions

(L.3.3. Context-sensitive Conditions

We now state for the central domains context-sensitive condi-
tions that define the notion of static correctness for that
domains. The presentation of denotational semantics 1in the
next section will assume correct obgjects.

We will express the conditions as precise as possible. To do
this we use auxiliary operations that are given first.

Shift moves an identifier of an identifier List to its begin-
ning.

4.3.3.~-1 Def. [Shift]
The operator shift: IdL x Id —> IdL is defined by:

shift((idy» ..., id,), id) := if n = 1 then (id,) else
tet, 3 := t k € (n) . for atl i € (k) .
id, * id apd idy = id in

if 3 = L then (idy» ..., id,) else
(idkl idll = anls idk_ll idk.'.ll NN 4 idn)
<4

Objmap extracts the contents of the connect component of a
rep=object hierarchy.

4.3.3.-2 Def. L[objmapl
The operator objmap: Repobj —> P(Id x Id) is defined by
objmap(r) := Let s := (source (connect r))
t := (target (connect r)) in
if (useL r) = L then {(s, t)2> elLse
Let (rys wver r,) := (useL r) jin
{(s, £)> v objmap(r;) v ... v objmap(r,)

A resulting mapping om can be applied to an identifier List by
apply:

4£.3.3.=-3 Def. [applyl
The operator apply: (Id x Id) x IdL —> IdL is defined by:
appLly(om, (id; s eawr id,)) := (om(idy), ..., om(id,))

In condition R0O14213 below a predicate term?: StmtlL —> D_BOOL
is used. Term? holds if its argument - a ModPascal statement
List = is of a special structure that allows to transform it
uniquely into a term. In that process occurrences of ModPascal
variables are substituted from right to Left by operation
calls, where no distinction is made between procedures., func-=
tions or initials.

The stmtL has to have this property., otherwise the surrounding
Let-scheme would be ill-defined (if (semantically) no term is
assigned to the Let=variable). The possibility of having ASPIK
terms as well as ModPascal statement Lists as Let=scheme
bodies gives the programmer of the repobjects the expressibil-
ity of both Languages in the Let=-schemes of rep-objects.

November 1985

4.3.3. Context-sensitive Conditions 83

4.3.3.=4 Def. [term?]
Let (stmt,, ..., stmt,) € StmtL, stmt, a procedure call.
Then the predicate term?: StmtL —> Bool is defined as
term?((stmty » ...r stmt, D)) :=
if conv_Lst((stmty, ..., stmt,_;), conv_call(stmt,)) # Ll
then true glLse false
where
(a) conv_Lst: StmtL X A_term —> A_term
conv_Lst((stmt; » ..., stmt,) term) :=
if n = 0 then term eLse
case stmt, € Assign
if term contains no occurrence of (ass_var stmt,)
then L else
Let term; := term<(ass_var stmt,) ¢
(expr stmt,)> in
conv_Lst((stmty, » ..., stmt, _;)-, term;)
case stmt, € Op_designator :
if term contains no occurrence of (var_id stmt,)
then L else
Let term, := term<(var_id stmt,) &
conv_call(stmt,) in
conv_Llst((stmt; » ..., stmt,_,), termy)
(b) conv_call: Proc_stmt —> A_term
conv_call(p_stmt) :=
case p_stmt € Op_designator :

Let term, := (var_id p_stmt).,
(OPy # wwwr OPy) := (op_idL p_stmt).,
(PLy s wwar pLy) := (paramlL p_stmt) in
Let term; for i € (a) be defined as:

case op; € Id and pL; = L1 :
term; := (op; term;_;)

case op; € Id and pL; = (exXpris ..., expr,)
term; := (op; term;_; expr; ... expr,) in

term,
case p_stmt € Simple_term : p_stmt

Remark: The definitions of conv_Lst and conv_call are based on
the Op_designator feature of ModPascal which allows to
juxtapose several procedure and function calls in a
single construct and which assigns a meaning by Left-
to=-right evaluation of the call sequence; see [OLt
84al and [OLt 84b] for details ('extended dot no-
tation').

The definition of conv_Lst and conv_call are derived
from the equally named operators of [BR 85].

Let r € RepObj. Then its context-sensitive correctness is
defined as follows:

RO1: r correct :<> (rob_id r) is unique in the environ-
ment of r apnd (connect r) is correct and
(uselL r) is correct and (operationL r) is
correct and (rep_fct r) is correct.

November 1985

84

4.3.3. Context-sensitive Conditions

RO11:

cn := (connect r) correct :<— (source cn) is a
correct and visible module or enrichment object
and (target cn) is a correct, visible., specterm=-
free and algorithmic spec object and
case (source cn) is module : (target cn) is

one=sorted
case (source cn) is enrichment : (target cn) is
zero-sorted

RO12:

uL := (uselL r) correct :< Every used rep=-object
is visible and correct and no cyclic usage of
rep-objects occurs and for alLt rob € F(uL) .
(source (connect rob)) € FP(uselL (source cnl)) a
(target (connect rob)) € FP(usel (sp_head (target
cn))) and no object is used by (source cn) or
(target cn) that is not involved in some
rob € »y(uL) and the signature morphisms of
elLements of uL are pairwise compatible

R0O13:

oL := (operationsL r) correct :<—= lLet
(aop; » ---r @op,) := (opsL(sp_head(target cn)))
(COPy 7 wwer COP,) := (publiclL(source cn))
Op_sel := {proc_id, func_id, init_id> in
(a) for all op € oL . Lekt
aop := (from op), cop := (to op) in
§1i€ (n . aop = (op_id aop;) and 3 i € (m) -
4 oid € Op_sel . cop = (oid cop;)
(b) Let aop;, cop; satisfy (a) for op € oL in
Let aopar := shift(makelist((arity aop;))-
target(cn)) in
resob := if (result cop;) * L then
(result cop;) elLse (source cn).,
copar := applyl(objmap(r).,
concat((paramlL cop;) -
resob)) in
for allL i € N . (first(rest'' aopar)) =
(first(rest'! copar))
(c) for all 3 € (n) . 3 i€ (Length oL) . _
(op_id aop;) = (from(first(rest'’ oL)))
(d) Let oL = (0py1 s wawr OpPa) 1N
for all i, j€ (@), 1 # J .
if (from op;) (from op;) then
(to op;) (to op;)

Le

t+

|

[11]

RO14:

rfct := (rep_fct r) correct :&=
case (source cn) is enrichment : rfct = L
case (source cn) is module
(rf_id rfct) = (rob_id r) and (paramL rfct) is
correct and (rf_body rfct) is correct

pL := (paramL rfct) correct :<¢—

Ltet (vdcly; s «.ar vdcl,) :=
(Local_varL(Local(source cn))).»

(Vi s awwr V) := concatL((idL vdclL,).
concatL((idL wvdcly,)sr wnar
concatlL((idL vdcl, _,)», (idL vdclL,)) ...) in

November 1985

4.3.3. Context-sensitive Conditions 85

Let pL = (P11 s ecsar Pa) in

ARRAAA

a=mand v; = p; for i € (m

RO142: rfb := (rf_body rfct) correct :4= case rfb € If :

(if_part rfb) is correct and (th_part rfb) is
correct and (elL_part rfb) is correct gtherwise
(Let_schemeL rfb) is correct and (a_term rfb) is

correct

RO1421: ip := (if_part rfb) correct :<=> (Let_schemel ip)

is correct and (if ip) is correct

R0O14211:

(LtS; 7 -..r Lts,) := (Let_schemelL ip) correct
1< for aLllL i € (n) . Let Lid; :=

(Let_var Lts;), Lbdy; := (Let_body Lts;) in

Lid, #* Lid, for a, b € (n), a ¥ b and Lid; ¢
P(Vy s wuaar v,)) [v; as in RO141]1 and (case Lbdy;
€ A_term: R014212 holds ¢ase Llbdy; € StmtlL:
R0O14213 holds)

RO14212:

at € A_term correct :<¢—> case at € (at_id: Id,
exprL: ExprL) : (at_id at) is visible operation
identifier in the hierarchy spanned by (target
cn) and occurring variables are visible Let-
variables, or contained in (vy, ...- Vv,) of RO141
and every sort of the arity of at is visible
(if at operation) and every expression of (exprL
at) is correct
case at € (a_id: Id, a_termL: A_termL)

[first two conditions of the first casel
and every element of (a_termL at) is correct

RO14213:

stmtlL correct :<= Let stmtL = (stmt,, ...~
stmt,) in stmt;, 1 € (n) is correct and stmt,
is procedure call and term? (stmtlL) holds

RO14214:

stmt € Stmt correct <=

case stmt € Assign : (as_var stmt) is neither
visible Let_variable nor contained in
(Vi7s wwaar V,) of RO141 and (expr stmt) is
correct

case stmt € Op_designator : Lek id :=
(var_id stmt), (Opys «..r Op,) := (op_idL
stmt) s, (plys waws ply) := (parambl stmt).,
LvL := (Local_varL(lLocal(source cn))J), m :=
Length(LvLl) in
Let t; = (type(first(rest'™ LvL))), 1 € (m) in
id is visible module identifier and op; is
contained in the exported interface of some

t;», 1€ (@), J € (n) and op, 1s module

procedure and Let plL; = (expris «...s

expr..i,) in expr; is correct, 1 € (Nny),

Ny € NN

i

R0O14215:

expr € Expr correct :<=> Let t; be defined as
in RO14214 in all occurring operations are

November 1985

86

L.3.3. Context-sensitive Conditions

contained in the exported interface of some t;
and all occurring variablLes are either Let=-
variables or contained in (vys, ..., v,) of RO141

RO1422:

(if ip) correct :<==> R014215 holds gnd (if ip) is
boolean expression and if op € Op_designator with
(OPy # we=s Op,) := (op_idL op) occurs in (if ip)
then op is function call

RO1423:

tp := (th_part rfb) correct :<=> (Let_schemeL tp)
is correct and (then tp) satisfies R014212
and Let s denote the target of (at_id tp) in S is
introduced in (target cn)

RO1424:

ep := (el_part rfh) correct :&» gase op € If
(if_part ep) is correct and (th_part ep) is
correct and (el_part ep) is correct
case ep = {ERROR} : true

Remarks:

a) We ambiguouslLy denote the object and the in-
troduced data by the same identifiers ((source cn)
and (target cn)).

b) The notions of specterm-free, algorithmic, one-
and zero-sorted specs (R0O11) are introduced in
seC. 4.3.7.

c) The correctness of uL dimplies a hierarchical.,
bottom-up correctness. Compatibility of signature
morphisms means that appropriate prefixing is done
if operation identifiers in different specs are
named identical.

d) RO13 is equivatent to: "(operationsL r) is a
signature morphism". The modifications of arities
in RO13 () are performed for the following
reason: an abstract (as well as a concrete) oper-
ation may have two or more arguments of sort
(target cn) ((source cn)). None of them is
specially emphasized. From the view of procedural
PLs, the concrete operation has to be invoked on a
specific incarnation., and onlLy this structure will
be affected by possible modifications whereas
other parameters are called by value. ModPascal
has introduced a standard: the Left-most parameter
type of every module operation is of type (source
cn) .

To compare ASPIK operation arities and ModPascal
operation arities by signature morphisms., the
former are modified: the Left-most occurrence of
(target cn) 1in an operation arity is shifted to
the very LlLeft position of this arity. By this, the
syntactical criteria of the signature morphism
condition will not fail because of ModPascal
standards.

Note that the arrangement of parameter types in
the arity of operations is ‘'syntactic sugar' and
does not inflLuence the mathematical function

November 1985

4L.3.3. Context-sensitive Conditions 87

behind or computational properties.

e) In the case of enrichments, (rep_fct r) is not
defined (RO14). This makes sense., since by defini-
tion enrichments do not introduce any data but
enlarge a set of operations on already existing
data. In this case the object (target cn) has to
be zero-sorted (see R0O11).

f) Parameters of the rep-function are the Local
variables of the module. Note that this is
coincident with the fact that carriers of module
definitions are generated as cartesian products of
the types of the Local variables.

g) Rep-functions are either defined by A_terms or by
nested elements of If.

The A_term elements directly represent values of
the abstract carrier of (target cn). The if-
schemes branch for different values of the Local
variables, and then yield in rep=function recur-
sions or A_terms. Note that A_term is a domain
that contains elements built from

~ ASPIK operation and variable symbols

- ModPascal operation and variable symbols

- Recursive calls of the rep-function and

calls of already defined rep-functions.

A_term elements are the most Low~-Level syntactic
items dn which the connection of the different
Language Levels can be specified and made visible.

h) Let=schemes may introduce variables with binding
to ASPIK terms as well as to ModPascal statement
Lists. The second alternative was introduced to
deal with the following situation:

In a recursive rep=-function call some parameter
(a Local variable) of a modulLe type has to be
modified. This modification is performed by a
module procedure call on this variable.

Now, syntactically it is impossible to write a
statement on a parameter position (where ex-
pressions are expected).

Therefore, this Let=-mechanism together with the
syntactical checks of RO014211,-13,-14~ and
definition 4.3.3.-4 were taken to solve the
problLem.

i) The domain Expr of expressions denotes pure
ModPascal expressions.

J) The standard exit of the if-scheme sequence
representing a rep=-function definition is the
ERROR-elsepart. It indicates that all concrete
data elements up to now not considered are mapped
to the bottom element of (target cn), i.e. that no
abstract representation should exist for these
concrete representations.

November 1985

88 4.3.4. Semantics of Rep-Objects

4L.3.4. Semantics of Rep=0Objects

The dynamic semantics of rep-objects is given on the syntactic
domains of sec. 4.3.1., whereas the semantic domains are those
already introduced in sec. 3.3.1. for ASPIK and ModPascalL. In
addition to the also assumed semantical functions of sec.
3.3.2. we here use a special operator for rep-obgjects.
Finally, we assume the semantic clauses of sec. 3.4. valid.

We extend the domain Constr of alLl domains:
Constr = Spec + Sp_head + Op + ... +
Module_type + Public + ... +
Repobj + Connect + Operation + ...

Beside the general semantics function M : Constr —> State —>
State and its derivatives E,» Mt, Mm, Me, Mi we now introduce
for

C_€ Repobj
Mr : Repobj —> State —> State

and MIclte = Mrlclts.

That means that we assume an environment in which ASPIK specs-
ModPascal modules and rep-objects are admissable, equally
entitled objects - a non=-standard data base system, as for ex-
ampte realized in the ISDV-System (RL-DMS; see [RL 851]1).

For rep-function bodies we apply E since they are purely func-
tional:

c € Rf_body
MLCclts = ELclEs

The memory model given in sec. 3.3.3. is now extended to rep-
objects. Their main semantical components = the signature
morphism and the rep=function = are administrated in different

slLots:
e(id)V2 = REPOB

id —> (lLocation, REPOB, S € SigMorph)
g

-1

op € OpDben
The domain SigMorph is given in definition 4.3.4.- below.

Analogously to the notions of cta-environment., mod=-environment
and enr=-environment we now introduce special environments ac-
cording to rep-objects. The main roequirement is that
prodofined syntactical operators arce accessable that provide
information about the syntactical object that generated a
given meaning. This is necessary because our semantical
domains offer no provision for this information; once a rep-
object meaning is computed, information of origin of didenti-

November 1985

4.3.4L. Semantics of Rep-0Objects 89

fiers or of hierarchical relations is obliterated despite the
fact that it is important Lateron (mainly because set union

has no 'memory').

4.3.4.-1 Def. [rep=-environmentl]

Let RCLauseOps € Id with
RCLauseOps := { rob?, ruse?, connect?., operations?., rf_ar?.,

rf_def?>

Then © € Env is called rep-environment if for all x €
RCLauseOps

a) g(x)+lL

b) T(x)¥2 = REPSEL

Remark: Associated to every element el of RClLauseOps there is
an (ambiguously denoted) special function el that evaluates to
syntactical information if applied to rep=-object identifiers:

el = rob?

Associated operation: rob? : Id —> State —> D_BOOL
e(rob?) = (Loc, ROBSEL., 1)

g(Loc) = {(id,tr)]| id € Id, tr € D_BOOL>

rob? (id)ees := e(g(rob?)¥1) (id)
el = ruse?
Associated operation: ruse? : Id —> State —> IdL

€(ruse?) = (Loc, ROBSEL, 1)
s(lLoc) = {(did, (didy s euan~- id"))l id, id; € Id., i€ (N, N € N
ruse? (id)te := e(€(ruse?){1) (id)

el € {connect?, operations??

Associated operation : el : Id —> State —> (P(Id x Id)

e(el) = (Loc, REPSEL, 1)

c(Loc) = {(ids, €(idy» didy ") s wuesr (id,, id, ")2] id, id;~
id;' € Id., i€ (n, n € N

el(iddee = s(8(el)v1) (id)

el = rf_ar?

Associated operation : rf_ar? : Id —> Id —> State —> Arity
g(rf_ar?) = (Loc, ROBSEL, 1)

s(Loc) = {(id, ad)| id € Id, ad € ArDes?

rf_ar?(id, »id,)86 := s(g(rf_ar?)¥1) (id;) (id,)

el = rf def?
Associated operation : rf_def? : Id —> State —> OpDen

e(rf_def?) = (Loc, ROBSEL., L)
s(Loc) = {(id, opden)| id € Id, opden € Opden}
rf_def(id)8e := (B (rf_def?)¥1) (id)

Based on rep-environments., the operators EXTEND and EXT of
sec. 3.4.1. are defined analogously.

Our classification of environments is used to define those
‘environments in which we want to consider semantical defini-

November 1985

90 4.3.4. Semantics of Rep-Objects

tions and correctness issues: verification (v=) environments:

o L Y Def. [v=-environment]
Set € € Env.
¢ dis called verification (v=) environment, if € is cta-
environment., mod=-environment., enr-environment and rep-
environment.

The domain SigMorph = informally introduced in sec. 3.3.1.-
serves as semantics for signature morphisms defined by rep-
objects (i.e. morphisms between specifications and modules).

4.3.4.-3 Def. [SigMorphl
Let (€,6) € State with € v-environment.
The domain SigMorph of signature morphisms is defined by:
(a) SigMorph ¢ (Map x Map x ArDes) with
for alLl sm € SigMorph .
Lot f:=smi1, g:=sm{2, h:=sm{3 in
(a.1) vid € source(f) . cta?(id)€es = true and
vVid € target(f) . matg?(idi%e = true
(a.2) vid, € source(g) . 3 id, € source(f) .
id, € p_op_1id?(id,)ts and
vid, € target(g) . Jid, € target(f) .
Let S := p_proc_id?(id,) v p_func_id?(id,)
v p_init_1id?(id,) in

id, € S
(a.3) source(h) = source(g) v target(g)
(a.4) vid € source(g) .

Let (dd; ... id,, did,.+1) := h(id).,
(idl' » o= idm‘l idm+1') HE h(g(id))l
n.m € N in
(a.4.1) n=m
(a.4.2) id; € source(f), 1id;' € target(f), i €
(n+1)
(a.4.3) id;' = f(id‘l)l i€ (n+1)

(b) SigMorph is maximal with (a)

Remark This characterization of SigMorph coincides with the
signature morphism definition in 4.2.-2.

4.3.4.-4 Def. [is=-sigmorphl
The predicate

is-sigmorph : (Map x Map X ArDes) —> D_BOOL
is defined by

true if (f, g, h) € SigMorph
is=-sigmorph((f, g, h)) := {
false otherwise
n

It will be important to unite signature morphisms. To define
the union we unite mappings.

4.3.4.=-5 Def. [unionl]
Let M := (Map + ArDes), my» m, € M.

November 19RKS

L.3.4. Semantics of Rep-Obgjects 91

Let + : M x M —> (Id x (Id x Arity)) be defined as
+(my, my) = {(x, m(x))] x € source(m;), ie {1, 232.

Let sm; € SigMorph, sm; = (f;, g;- hy), i€ {1, 2}.
Let sm .= (+(fll -Fz)l +(gl’ 92)' +(hll hz))-

Then sm is called the union of sm; and sm, if
(a) smyi denotes a function, i € (3)
(b) is=sigmorph(sm) = true
n

Notation: If the union of sm;, and sm, is defined we
ambiguously denote it by sm, + sm,.
sm +* .. *+ sm, = (ea. (smy + smp) + ...) + sm,)

L.3.4.-6. Def. [signature classificationsl]
Let M denote a module/enrichment obgject.
Let (€,) € State with & v=-environment such that M is
elaborated in (¥, 6). Let {Uy s «u.r u,> := muse?((mod_id M))¥e
The signature

iXr(Malg(M)) := (...(2(e(8(u)¥1)) + E(e(B(udV1))) + (...

cee) + T(sB (U I¥1)))

is called imported signature of M.

erx (Malg(M)) := T(Malg(M))
is ambiguouslLy denoted exported signature of M
The tuple

new(M) := (er(Malg(M)¥1 \ iX(Malg(M))I¥1-

ey (Malg(M))¥2 \ ir(Maltg(M)){2)

is called the set of new object and operation identifier in-
troduced by M.
Analogous definitions hold for spec objects. n

Remark: The union is always defined because objects (and their
hierarchies) are assumed to be correct.

Now we are ready to state the semantics of rep-objects:

Sem_7 : Rep-Obgjects

MrLr: Repobijlte :=

1) Let rid := (rob_id r)., sob := (from (connect r))
tob := (to (connect r)), (Uys wewr u,) :=
(useL s (Py s waar P := (OperationL r).
(Lys wwwr Ly) := (paramk rf).,
rf := (rep_fct r) in

(2) Let (o, 6,) := EXTEND(r)Ee in

(3) tet sm; := B(u;)V3, 1 € (n) in

Let sm = smy + ... *+ sm, ih

if sm = L then 1 else

(4) Let aop; := (from p;), cop; := (to p;), 1 € (m) in

Let aopar; := p_op_ar?(tob, aop;)te6, iN

Novembher 1985

92 4.3.4. Semantics of Rep-Objects
Let copar; :=
case cop; € p_proc_id?(sob)f,6, :
p_proc_ar?(sob, cop;)
case cop; € p_func_id?(sobl)t,6s,
p_func_ar? (sob, cop;)
case cop; € p_init_id?(sob)t,6,
p_init_ar?(sob, cop;)-
i€ (m) in
Let f denote the mapping f : {sob} —> {tob
f, := +(smi1, f) w
if f, is not a function then 1 else
L,,gi;aopar‘; = (idi.(].) LAY ldl(n(lll’ idiln(i)*l))’
i€ (m) in
Let saopar; := (fy(id; .y ,) eaa fi(idi nci,))”
folidicnci o1 592 1 € (m) w
if saopar; # copar;, i € (m) then L eilse
(5) Let obmap := f, .,
opmap := +(smy2, {(aop;, cop;)| 1 € (M),
armap := +(sm{3, {(aop;, aopar;)| i € (MY v
{(cop;- copar;)| ie (mX) in
(6) if opmap or armap denote not a function then L elLse
Let sigmorph := (obmap, opmap., armap) in
(7) Let rfid := (rf_id rf), rfbody := (rf_body rf) in
Let rfdef := fix f . Ag,e; .
(ECrfbdyle, [rfid & (loc, » FUNC, 1)1
g,[loc & f1){1
where (8,, 6,) is (€,, &,) but contains L; .,
i € (a) evaluated and Loc; :=
newloc(®,) in
(8) Let (8, &) := (B, 8,)» Loc := newLoc(®,) Ain
Let €' := €lrid & (Loc, REPOB, sigmorph)l
g' := glloc &« rfdefl in
(', ')
Remarks: a) The distinction between context-sensitive condi-

tions and dynamic semantics is slightly softened
in Sem_7: the computation of the induced signature
morphism is repeated. This 1is necessary since
signature morphisms are important substructures of
representation objects, and they form the special
domain SigMorph.
No other context-sensitive conditions are re=
checked.

b) The semantics of rep-objects 1is constructed in
v-environments as follows:

(1) Identifier for important components are
introduced by abstract syntax selections.
(2) Characteristic predefined (operation)

identifier of a rep=-environment are sup-
plied with the syntactical information.
This will be used in (3), (4) and (5)
where generation and union of signature
morphisms are performed.

November 1985

4L.3.4. Semantics of Rep=0bgjects 93

Assignment to other predefined identifiers
are ¢given in Sem_38.

3) The union of all used signature morphisms
is generated via the '+'=-operator of
definition 4.3.4.-5. OnLy if the union 1is
defined the rep-object semantics is
declared.

(L)=(p) It is checked if the operation clause
together with the result of (3) con-
stitutes a signature morphism.

«7) The rep=function semantics is computed as
Least fixed point of the functional
derived from the rep=function body.

(8) The new object 1is installed in the
environment.

c) Note that the rep=object semantics does not denote
an algebra.

Rep-function body semantics is given in Sem_8.

We assume:

Let r € Reprobj.

Let rf := (rep_fct r), rid := (rf_id rf).,
(Lys ewer Lp) := (paramL rf), rfbody := (rf_body rf)

Let (¥, &) € State such that necessary syntactical information
about r is available (i.e. position (7) in Sem_7).

Sem_8: Rep-function bodies

(1) ELrfbdy: Rf_bodylfs :=
case rfbdy € If : ELrfbdy: Iflgs
case rfbdy € A_term : ELrfbdy: A_termlfs

(2) E[ifs: IflCe :=

Let (¥,, &,) := MIL(lLet_schemelL(if_part ifs))I€e in
if (EC(if(if_part ifs))I€,e,0¢2 = true then
Let (8,, &,) := ML(Lot_schemeL(th_part ifs))I8e in
(EC(then(th_part ifs))I8,e,) V2
else if (el_part ifs) = {errorl

then L. else El(el_part ifs)Igs

(3) MILts: Let_schemelLlts :=
if (first Lts) = L then 1 elLse
if (rest Lts) = L then MI(first Lts)Ite glse
ML(rest Lts)I(ML(first Lts)IEe)

(4) MOLt: Let_schemelfs :=

Let Lid := (Let_var Lt), Lbdy := (Let_body Lt) in
case Lbdy € A_term
Let Loc := newloc(®) in
Let ©, := €lLid & (Loc, VAR, L)]
6, := elloc &« E[fLbdy: A_termltesl Ain
(gll 61)

case Lhdy € StmtL
if term?(Lbdy) # true then 1 else
Let Lbdy = stmt,; ...; stmt, in

November 1985

94 4.3.5. Connection to AlLgebra Homomorphisms

Let t := conv_Llst((stmt,, ..., stmt, _;)~
conv_call(stmt,)) in

Let Loc := newLoc(®) Ain

[Lid &« (Loc VAR, L)1

[Loc < E[ft: A_termltsl in

—
D
-+
v
=
Hu
[0]

(5) Efat: A_termlts :=
case at € (at_id: Id, exprL: ExprL) :

Let aid := (at_id at).
(€17 wwer ©,) := (exprL at) in
Let ev; := (ELe;IeedV2, i € (n) in

(e, &), s6(8(aid)¥1)(eVy s waar €V,))
case at € (at_id: Id, a_termbL: A_termL) :

Let aid := (at_id at) in
if (a_termbL at) = L then e(g(aid)V1) else
Let (a;+, ou.r a,) := (a_termL at) in
Let av; := (ELa;Jee)V2 in

(¢, 6), s((aidd¥1)(avy, s ..., av,))

(6) ELfex: Exprl : (see Sem_4 of [OLt 84bl)

Remarks: a) Sem_8 lists all important clauses of the rep-
function body semantics computed in a
v-environment; syntactic domains which do not
occur in sec. 4.3.2. can be found in [OLt 84b].

b) Specific remarks:

(1) Switches onlLy.

(2) The sort s of L. corresponds to the sort in-
troduced in the source of the corresponding
rep=object r (i.e. in (from(connect r))).

(3) Letscheme-Lists are elaborated iteratively.

(4) Letschemes install variable=-value bindings in
environments. In the case of statementlists
(c.f. remark h of sec. 4.3.3.) the operators
term?, conv_List and conv_call of definition
4.3.3.-4 are emplLoyed. This allows to compute
the semantics of the statement List on an
equivalent expression.

(5) A_terms are evaluated by application of the
associated function. Note that Efe;] and Ela;]
describe applications of E to ModPascalL (e;)
and ASPIK/rep-function (ay) constructs;
because of our choice of semantical domains
and semantical functions these formulae are
defined and sensefull.

(6) The domain Expr 1is the associated ModPascal
domain.

4L.3.5. Connection to AlLgebra Homomorphisms

Rep-objects inclLude two essential informations: the signature
morphism and the rep-function. Both are installed in
v-environments as result of M. How do the so-described obgjects
retate to algebra homomorphisms of sec. 4.2.7

4.3.5. Connection to AlLgebra Homomorphisms 95

For a direct application of definition 4.2.-16 we must in-
troduce additional requirements for rep-objects to satisfy
conditions (2) and (3) there. They mainlLy ensure that for
every object of the source and target hierarchy there is an

appropriate rep-obgject visible.

4.3.5.-1 Def. [structure respectingl
Let (8, &) denote a v-environment.
Let r € Repobj, and (2,, &,) := MLrl€e such that
e((rob_id rm){V3 + L
Then r is called structure respecting if it holds:
Let A, := ML(from(connect r))Ige.,
A, := ML(to(connect r))Ite in
(1) SUb(E(A,), A,) * ¢
(2) 3 sA, € Sub(z(A;), A,) .
Let (f, g) denote the signature morphism connected
to sA, in
(f, g) = &, ((rob_id r)i3
(3) ¥V s € use?((spec_id(from(connect r)))J)t;s, .
m € muse? ((mod_id(to(connect r)l)J)ie,;s; .
r' € ruse?((rob_id r))¢,s, .
(from(connect r')) = s and (to(connect r'))
(4) ¥ m € muse?((mod_id(to(connect r)))J)¢,s; .
3 s € use? ((spec_id(from(connect r))))e,e, .
3 r' € ruse?((rob_id r))t,s, .
(from(connect r')) = s and (to(connect r'))

Ly L

1]
3

]
3

Remark: Structure respecting is a property of rep-objects that
implies isomorphic hierarchies of specs and
modules/enrichments.

From this we have the following proposition.

4L.5.3.-2 Proposition

A structure respecting rep=object r is a partial algebra
homomorphism if its rep-function satisfies condition (4) of
b.2.-16.

Proof: We show how condition (1) to (3) of &4.2.-16 are im=-

plied.

Let Ay» A,» SA,» (2,), (€,, 6,) be as in definition
4-5-3-—1-

Let (ry ., ce=r r,) := closure(ruse?((rob_id r)J)g,s, (the

clLosure operation generates a List of names of allL
directly or indirectly used objects; see [OLt 84b]).

Let <rf;: C; —> sC;| 1 € (n)> denote a familLy of functions
with rf; := &, (8, (rV1), 1 € (n). Note that rf; = lOpDen
if for id € connect?(r)¥,s, enr?(id)€,e, holds (equivalent
to: sorts?(id)¥,e; = ¢).

Then it follows:

1) : Since r is structure respecting there exists a sub-

algebra sA, of A, with the required signhature morphism
(f, g). The direction of f (source: spec, target:
module/enrichment) is invertible because of its
bijectivity. Therefore in the sequel we assume f mapping

November 1985

96 4.4. Realization Conditions

analogous to the rf;.
(2.1) : It holds: f(obname=A,(C)) = obname-sA,(sC) for C €
{Cy7 wuur C.Ysr sC € {sCy 7 waur sC,} .
sC; ¢ (sA,)¥1 => obname-sA, (sC;) ¢ target(f)
= f is not bijective, in contradiction to the assump-

tion.
(2.2) : Again by the bijectivity of f
(3) : If cp € (A)¥1, but no 1 € (N) exists with c, = c¢;

=> there is a spec S not involved in some rep-object ri
= the object mapping f is not total on the set of visi-
bLe objects, contrary to the assumption.

If additionally (4) is satisfied by <rf;: C; —> sC;| i € (rm>
the proposition follows directly. n

This relation between structure respecting rep-objects and
partial algebra homomorphlsms will be used for the formulation
of our correctness criteria in the next section.

L.L. Realization Conditions

We now return to our treatment of realizations and realization
contexts. Both notions differ only in the additional require-
ments demancded for realizations.

The situation is the following: there are a user-defined spec
object, a module/enrichment object and a rep=-object. The first
two are semantically described by algebras; the rep-object
establishes a signature morphism between them, and under cer-
tain conditions an algebra homomorphlsm. These additional con-
ditions will be embodied in the realization re-definition of
biwl =2

L., .-1 Def. [realization, realization-contextl
Let S denote an ASPIK spec, M a ModPascal module/enrichment
and R a rep-object.
Let C, denote the conditions
is algorithmic, single-sorted, specterm-free
is instantiation type definition free
is defined on S and M
is structure respecting
Let C, denote the condition
- R satisfies (4) of 4.2.-16

DAVXW

Then the triplLe (S, M, R) is called realization, if its com-
ponents satisfy C, and C,. It is called realization=context~
if onlLy C, is satisfied.

By this definition, a user of a software development system
has to proceed in three steps to verify his sequential dimple-
mentation (=realization):

1) Specify the task in constructive, at most one-sorted
specterm-free spec objects. Re=-program it in modules and
enrichments while utilizing efficiency increasing features.

AMAvsAmla~anm 1900CK

t.4. Realization Conditions 97

2) Write a rep=-object in which you try to express the intended
relations syntactically (signature morphism) and semanti-
cally (carrier mapping).

Compute the mapping between the canonical term algebra and
the module algebra induced by the rep-object.

3) According to definition 4.2.-16, show for each operation of
the canonical term algebra., that the homomorphism equations

holds.

In section 5 we will develop a proof method suitable to this
steps.

4L.4t.-2. Def. [correctness, realization conditions]

A module (enrichment) M is said to realize a specification S
correctly, if there exists a rep-object R such that (S, M, R)
is a realization. The homomorphy equations derived from R (the
set C, of 4.4.-1) are called realtization conditions.

Note that this definition of correctness depends not on a
specific rep-object (perhaps several will do it). But it is
obvious that correctness statements for fixed S and M, and for
different R come up with incomparable semantical structures.
Therefore realizations (S,M,R;) and (S,-M,R,) are not exchange-
able in general.

Note also, that there are no Limitations in the number of
reatization (context)s an object may be involved. This is
solely an administration problem which has to be resolved by
the object management of the software development system.

One may argue that the homomorphism property is too weak to
serve as correctness criteria for refinements of this kind. We
do not believe this. If a designher of software can be assured
that his final program behaves in just the way he specified on
the abstract Level, he will be satisfied and not be worrying
about the possibility that it might do more than he intended.
If additionally homomorphy is easier derivable 1in practical
environments than say isomorphy one should not feel un-
comfortable with this alleged weakness.

In section 4.1. the problems arising from non-surjective
carrier mappings were discussed. In the special context of
realizations surgjectivity is delivered for=-free.

L.4.-3. Corrollary

Let (S, M, R) denote a realization with homomorphisms <rf;: C;
—> c;' | 1 € ("> for some n.

Then rf; is surjective, i1 € (n).

Proof: Let (€, &) denote a v=-environment with semantical
embedding of S,» M, and R, such that the homomorphisms of the
premise exist as s(€(r;)V1) for some rep=-objects r;, i € (n).

Let sid := sort_id?((spec_id S))Ee, C. := e(C(sid)¥1).,
{cony;» ..., cony,> := constr?((spec_id S))Fe.,
Cy = toi? ((mod_id M))¢Es.

November 1985

98 L.4. Realization Conditions

Let (rf: C, —> Cg) = L (rf;: C; —> C;"') € <rf;: C; —> C;'
i€ (n>.Cy,=C; and Cqg = C;'

Then it is sufficient to consider the surjectivity of rf since
r is structure respecting.

Let SIG; = (OB;, OP;, arity;), i € {M, S} denote the asso-
ciated signatures to S and M.
Let (fr, @) : SIGs —> SIG, denote the restriction of

e((rob_id))¥3 to SIGs.

(1) Every elLement of C,; is finitly generatable by applications
of con;, 1 € (a)
=> structural induction is applicable

(2) V¥V con € {CONy 7 .uaur CONZY .
aritys(con) = (£, sid) =
con = rf(gtcon))
since rf is homomorphism.

(3) ¥V con € {con; s «..r cOnyY, (aritys(cond)){1 # €& .
Y Sidl “-aw Sidb € OBS*I P €N o
Vt, € C;' (= 6(8(sidIV1)).
Induction hypothesis: t; = rf;(g(t;))
(where g is applied to the constituents of t;)
Induction step: arity.(con) = (sid; ... sid,, sid) =
con(ty s auwr typ) = rflglcon(ty s auar tpl)))
since rf is homomorphism
Every element of C. is target under rf; from this congjecture

folLlows.
n

The surjectivity of the homomorphisms induced by rep-objects
(S, M, R) allows to factorize the module algebra by a con-
gruence induced by the homomorphism. The factor algebra is
isomorphic to CTA(S) and to the relevant subalgebra of M(ALG)
(where relLevant means: with respect to the correctness issue
in SEEs). The development of this results rounds this section
off.

Lob.=4. Def. [=,]
Lot (S, M, R) denote a realization with <rf;: c; —> Cc;" | i €
(n)>.

Then the carrier identification =,.¢; induced by rf; is defined
as:

= ¢ = {(cy» Cz)l C,» C, € C; and rf;(c,) = rfi(c,)>
]
Notation: =, := { =,.¢; | 1 € (N2
[c] = LS, ¢, € S . d(cy» C,) € E ¢ .
C, TcQrc, =c

In the next Lemma the notion of a I-congruence 1is employed
where I denotes a signature. A I=-congruence relation is con-
gruence relation that holds for alLl operations named by ele-

“emmalam e ANnor

L.4. Realization Conditions 99

ments of I.

4.4.=-5. Lemma

Let (S, M, R) denote a realization with <rf;: C; —> C;'] i €
(n)> and with associated subalgebra sM of Malg(M). Let I =
(0B, OP, arity) := X (sM).

Then =, is a I-congruence.

Proof:
(1) =, is equivalence relation

(1.1) =, reflexive: Vc; € C; rf;(c;) = rf;(c;)

<= C; rfi Cioe

(1.2) =, symmetric: VYc;», Cc, € C; . C; E.¢; C,
= rf (c,;) = rf;(c,)
<= rf;(c,) = rf;(cy)
= C;, F.¢i C

1
(1.3) =, transitive: Vc,, C,» Cx € C{ .
C: S5y C, BOd C, =5 Co
= rf,(c;) = rf(c,)
and rf;(c,) = rf;(cs)
= rf;(cy) = rf{(3)
= Cy Erfi. Cx

(2) =, I=-congruence
to show: V op € OP with arity(op) =
(obname-Malg(M)(C; ., ,) ... obname=Malg(M)(C; « ,)~
obname-MalLg(M) (C) »

Chs Ci.;, € {Cy~ ceur Co2rdi;r me {1, o, N}, JE€

(k).

VYV Cic;,72 Cic;," €Cic;,, mei; € {15 cuar n¥r J€ (k)
Cicss Srficinr Cicio'

w

op(Ci(y ,7 we=sr C; « ,) rfm op(C;i (1 ,"7 waur C; ,')

Then we have
Let (¥, &) denote a v-environment with elaborated R in

Let (f, g) := &((rob_id r))¥3 in
v Cicir?e Cics)' € Ci(i yr Me ia' € {1’ caars N, J € (k) .
Cicso Srficio Ci.(i)'

= rf, (0p(Ci(1 ,7 eaar Cicx ,))

f"(op)(r‘f-ul,(c-ul,)' —4 P'F;(K,(C;(K,))

f"(op)(r‘f;(l,(c;‘l,'), —4 r‘fi(k)(ci(x;'))

rf. (op(ci, 1 ,'"7 wear Cicx,"'))

= 0p(Ci 1,7 anar Ci, x y) Zrfm op(citl y'2 eeas Cicx)')
x

In general Malg(M) contains more data and operations than are
of interest (Local types., Local operations). In Sub(Z(CTA(S)).,
MalLg(M)) onlLy those algebras occur that Lack superfluous
items. Since every realization is associated to a specific
algebra out of this set., we take those algebras for
factorization instead of Malg(M).

b.b.-6. Def. [Q(M, R)]
Let (S, M, R) denote a realization with <rf; : C; — C;'| i €
(n)> and associated subalgebra sM, (2, &) € State with ¢

November 1985

100 L.4. Realization Conditions

v-environment and elaborated R.
Let £(sM) := (OB, OP, arity), (f, @) := E((rob_id R)){3
Let [_]1 denote the congruence clLasses generated by =..

Then the quotient algebra Q(M, R) of M by R is defined by:

Q(M, R) := (Cq, Ogq) where
(1) Cq := {Cyin| ob € 0BY
(2) Cop := {L[cl|] ¢ € Cc; and obname-s(sM)(C;) = ob

for some i € (n)2>
(3) ¥V o € (sM)¥2 with arity=-I(sM) (opname-r(sM) (o)) =
(ob; ... Ob,, oOb), Ob;, Ob € OB, i€ (n) .
Y c; € C; with obname-r(sM)(c;) = ob;,» 1 € (n) .
there exists an operation oq defined by
Oq([C1]I R4 [Clj) t = [O(Cll Y4 C“)]
(4) 0q := {0q| 0 € (sM)V22

Remark: This defintion is independent from the choice of the
[Cil.

By definition 4.4.-6 there is an induced signature morphism
(f, @ : £(sM) —> $(Q(R, M)) with

(1) if rf; : C; —> C;{' : Let ob := obname-X(sM)(C;) in
f(ob) = obname=-f(Q(R, M))(C,p) = oOb
(2) if o € (sM)¥2: Let op := opnhame=-I(sM) (o) An

glop) = opname-I(Q(R, M))(ogq) = op

Since the identical morphism does cause no harm in composi-
tions we apply (f, @) also in situations where (f, g) o (f, @)
is correct.

Q(M, R) 1is the semantical obgject that generates the already
mentioned identifications and justifies our notion of correct-
ness:

bobh.~7 Lemma
Let (S, M, R) denote a realization with <rf; : C; —> C;'| i €
(n)>, sM, and Q(M, R).

Then
(1) Q(M, R) is isomorphic to CTA(S).
(2) Q(M,R) is homomorphic to sM.

Proof:
Let (f, g) denote the signature morphism associated to sM.

(1) Let <is;: Cop —> C;'| i € (n) and obname=-r(sM)(C;') = ob>
be defined by
iSl([C;]) := rfi(cy)

(1.1) is; is ingective: V [c,1, [c,] € Cop -
iS;(ECIJ) = iS;([Czj)
&> rf,(c;) = rfilc,) &> [c;]1 = [c,]
(1.2) is; is surjective: rf; is surgjective (c.f. 4.4.-3)
= Vc;'"€C{' .33c; €C; . rfi(cy) =c¢c;"'.
Also ¥ c; € C; . 3 [cl € Coi, - (cy» c;) € [c].
= V c;' € C;' with ¢c;' = rf;(c;) for some c; € C;.

L.4L. Realization Conditions

101

3 [c]l € Cop = (cir c;) € [c] and is;(Lcl) = rf;(c;)

= Ci{ -
(1.3) is; is homomorphism: Let (OB,, OP,, arity,)
¥y(Q(M, R))» (0OB,, OP,», arity,) := Z(CTA(S)).

V o9 € (Q(M, R)IV2 with opname-X(Q(M, R))(oq) = op,

and arity(op,) = (ob; ... ob,, ob)

and o € (sM){2, opname=-¥(sM)(0) = flopname=-I(Q(M.,

R (o) .
YV 0, € (CTA(S))V2 with opname-f(CTA(S))o0,) = op,
and op, = g(op;) and arity, (op,) = (f(ob,)

f(ob,), f(ob)) .
V [c;] € C4ppr c; € Ci» 1 € (nN) .
iS;(Oq([Cljl P 4 [Cn]))

= is; ([o(Cy 7 wwar Cc,01) def. 0q
= rf;(o(Cyr wuur c,)1) def. is;
= 0, (rf (Cy) s wuwar rf,(c,)) rf; homom.
= 0,(dis; ([cy1) s wuur is, (Lc,1)) def. is;
(2) Let <h;: C; —> Cop| 1 € (N, obname=-r(sM)(c;) = ob> be
defined by:
Y c; € C;: hilc;y) := [c;]
Let (0B,, OP,, arity,) := ¥(sM), (OB,, OP,, arity,) :=
Y(Q(M, R)).
Y 0, € (sM){2 with arity, (opname-X(sM)(o0,)) = (ob; ...

ob,- obh) and o, € (Q(M, R))IV2 with arity, (opname=-3(Q(M,
R))(0,) = (f(oby) ... flob,), f(ob)) and opname-r(Q(M,

R))(o0,) = f (opname-r(sM)(o,)) .
YV ¢c; € C; with obname-X(sM)(C;) = ob;, 1 € (n) .
h;(Ol(Clr TR 4 Cn))

= [0,(C17 cuur 0] def h;
= 0,(Lcyls auar L, 1D def o,
= Oz(hl(cl)l T 4 hn(Cn)) def h'_

Remarks: a) Note that in (1.3) (f, g) is applicable since (¥,

a) o (fr @) = (f, @)
h) ResulLt (2) holds for every factorization by
homomorphism.

a

With this result we are able to provide a sufficient quality
measure for our refinement scenario in SEEs. We summarize the

most important structures graphically.

November 1985

102 4L.5. Other Approaches to Object Correctness

L.,L.-8 Fig. [realization scenariol
Let (S, M, R) denote a realization.

(f, g)
Y(CTA(S)) —> Z(EM) g
N
(f, Q) signatures
F(Q(R, M) |
Q(R, M)
iS; h;
algebras
CTA(S) < sM
1 rf, T
T MaL?(M) J
S R M] objects

The Lowest Level (Looking at 4.4.-8 as bottom-up directed
graph) represents our starting situation in SEEs: specifi-
cation and module are given; a re-co is constructed by the
addition of R that dmplies mappings rf; and a signature
morphism (f.», ¢.) (Link omitted). Malg(M) is restricted to sM
to consider onLy relevant (for the verification issue)
carriers. This restriction comes with a signature morphism
that has to be isomorphic to (f., g,.) (practically, the = with
respect to R = appropriate subalgebra sM € sub(Z(CTA(S)).,
Matg(M)) is chosen for the verification). If the verification
conditions hold (i.e. the re-co (S» M., R) becomes a
realization), the rf, can be used to factorize sM vyielding
Q(R, M), an isomorphic algebra to CTA(S). Q(R, M) is semanti-
cally the 'essential chunk' of the M semantics, and of M. Its
isomorphy implies intended errorfree refinement of S into M.
The sighature morphisms behave in the indicated manner. The
notions and results of this section are applied in a concrete
method for the verification of refinements. It is given in
sec. 5.

4L.5. Other Approaches to Obiject Correctness

The problem of assigning a satisfactory semantics to the im-
pLementation dissue in SEEs has been recognized in various
publLications. Even if not SEE application was the primary goal
of the proposals almost every author claims that his solution
will do it well. In the following we briefly Look at different
approaches having our SEE scenario as developed in sections 1
and 2 in mind.

Therefore theories for the abstract implementation are not

Novembher 1985

L.5. Other Approaches to Object Correctness 103

considered (i.e. implementation of algebraic specifications by
algebraic specifications) although by far the most research
activity was and is concentrated on this issue. One reason for
this lies in our Jjudgement 1in the elLegant and powerful
mathematical mechanisms that are best applicable if the con-
sidered structures are as mathematical as possible - a
requirement that the harder is to meet the more concrete the
structure to model is. Approaches of the ADJ group ([ADJ 78],
[ADJ 791), Ehrig et al. (LEKP 781), Ehrich (LEL 801), KlLaeren
([KLa 821), Poigne ([Poi 831), Sanella/Wirsing [SW 821, or
BeierlLe and Voss ([BV 851), among others, fall 1in this
category. Nevertheless these approaches have strongly in-=
flLuenced the efforts for a correctness notion for realizations
(= concrete imptementations)., and all suggestions below make
more or Less direct access to their notions and results.

(a) Algebraic Specifications as Programming Language Semantics

Pair [Pai 801 studies the adjustment of an initial algebra
semantics for a programming lLanguage and uses this concept to
show compiler correctness. For this purpose he defines an
abstract data Type T, for a Language L. T, contains

sorts: - for each primitive type p of L there 1is a cor-
responding sort p* in T, which is the set of values
of p

- for each primitive type p of L there exists a sort
p*t which is the set of expressions of p

- a sort 'Stmt' of statements

- sorts for states, identifiers, declLarations, Labels

etc.
operations: = each primitive operation of L has an associated
operation in T,
- operations that simulate the behaviour of
program constructs (concat : Stmt x Stmt —>
Stmt)
- an operation ‘'apply' for executing statements
in a state
- an operation ‘'eval' that evaluates expressions
in a state
- a number of auxiliary functions used to define
the effect of the programming Language con-
structs.
axioms: - alLlL operations are defined by more or Less complex

axioms of eval.

The connection between the program constructs and their
abstract terms is given by a ‘'syntactical abstraction' func-
tion sa that is defined on the grammar and applied to the syn-
tactic tree of a program.

In most of the sorts and operations introduced one can see a
strong intention to model the Language semantics in a close
relationship to a denotational semantics (DS)., though no
fixpoint theory is actually wused. But modelling stores.,
environments, blockstructures etc. enforces a comparison, and
here the increasing complexity of the defining axioms seemed

November 1985

104 4.5. Other Approaches to Object Correctness

to be not advantageous in most cases versus corresponding
semantlcs function clauses in a DS (e.g. states are 'torms' of
subsequent assignments of values to identifiers than a mapping
between sets).

The resulLt dis a full description of a programming Language
semantics as the initial algebra semantics of a single
abstract data type T.. Thus, if a Language contains a module =
Like constructr by the method it would correspond to some
abstract sorts and operations in T, and a programming system
that 1is devised to check compatibility of a given abstract
object ob with a module object mod defined in L coutd proceed
as follows:

a) compute the semantics of mod in the quotient term algebra

th [

b) compile the semantics of ob (an algebra)

c) show their isomorphy
Thus fully semantical preservation would be guaranteed.
But 1in general and especially in our environment this method
comes with problems:

- if nothing more about the semantics of a module is said, the
onty choice will be a congruence ctass of Q. ., (namely that
clLass that contains the term associated to the module
definition). Then an isomorphism between terms and algebras
gives no sense (c.f. sec. &4.1.).

- If the semantics of a module is a subalgebra S of Q. ., an
algebra disomorphism has to be constructed by the system - a
formidable task that is not realistic at the moment.

(b) Denotational Semantics for Proqramming Languages based on
Algebra Transformations

Ganzinger [Gan 82] connects an algebraic semantics of a speci-
fication with an algebraic semantics of a module in a simplLe
Language by defining a denotational semantics for the Language
that uses algebra classes as domains. Type definitions (mod-
ulLes) are considered as in [Hoa 72] as consisting of a List of
procedure or function declarations, a set of representation
variables and an initialization, and a program is regarded as
a List of typedefinitions.

The classical method to define states as mappings Id —>
values and environments as mappings Id —> Operationdenotation
is substituted by giving environments as algebraic specifi-
cations u = (S, ¥, E) [s, 3: sets of type/operation identi-
fiers, E set of axioms of the operators]l] and states being
algebras in the category AlLglul generated by the environment
specification. Then for example type identifiers and variable
identifiers (nulLlary operation symbols) in u are supplied with
concrete values in each state (carrierset, concrete operation)
and executing a Language = statement will mean a mapping
between the state algebras.

To get suitable domains., the categories ALglul are (partially)

NAavvamhoar 10R%

4.5. Other Approaches to Obgject Correctness 105

ordered to become a complLete Lattice and continuous functors
petween the categories are defined that correspond to the free
(construction) functor F and the forgetful functor U of [ADJ
78al, here being used in the definition of enrichments and
restrictions of specifications. The main step then is to
define on programming Language constructs C the functions

ECcT : U —> U (U = Environments)

and
T.ICT : Atglul —> AtglELCIu]

i.e. an environment transforming function E and a state trans-
formation T, for u € U.

For (module) type definitions td ELtdl(u) dis an extended
algebraic specification u' in which the operation=- and type
names introduced in the type definition and some special oper-
ations are added to u, whereas T,[td]J(A) dis a free algebra
construction generated on (the state algebra) A and the oper-
ation symbols introduced in td. The resulting algebra gets its
operations from the application of T,[opl to each operation
definition of td, that itself is a model of op as an argument-
result relation on the carriers associated with the parameter-
and value types of the operation op.

Starting with an environment PRE of the predefined types of
the Language the methodology extends the initial PRE - algebra
by user defined types via T..c[typedefl. Correctness of a
program P with respect to a specification SPEC could be

defined as

A I..e (initial PRE = algebra) in
Tere [PI(A) := I..cc (initial SPEC - algebra).

Being used in our system, an algorithm for checking the cor-
rectness of a realization of a specification could Look Like:

1) Compute the initial algebra of the predefined types of the
used programming Language.

2) Generate the free construction over the initial PRE =
algebra and the types and operations introduced by the
module definition.

3) Find an isomorphism between this free construction and the
canonical term algebra (the semantical alLgebra of the
specification).

The feasibilty of such a correctness proof seems to be highlLy
unrealistic in a mechanical system because of sensitive tasks
as initial algebra construction. free construction and
isomorphism generation, which are already on theoretical Level
need sophisiticated mathematics that cannot be reproduced by
today's proof systems. Additionally., the fact that algorithmic
specifications contain more concrete information about
carriers and operations than purely algebraic specifications
has not been taken into account in this approach.

Nevertheless this Link between algebraic specifications and

November 1985

106 4.5. Other Approaches to Object Correctness

procedural programming Languages has given some advice to the
semantics of ModPascal.

(c) Terminal AlLgebra Semantics for Modules

Schulz [Sch 82] has developed a method for realizing abstract
data types that is based on a terminal algebra semantics.
Generating contexts (terms of sort S' with exactlLy one varia-
bLe of sort S), applying them to all appropriate terms of the
Herbrand - universe of the specification and identifing those
which are undistinguishable by equational reasoning in atl
contexts, gives a formalization of the idea that only the out-
side visible behaviour of a module 1is dimportant for 1its
semantics.

This congruence generation is also applied to an algebra ex-=
tracted from a module definition in a specific Language that
is supposed to realize the abstract specification. Correctness
is then defined as the isomorphy of the associated terminal
algebras and a method is given that constructs a set of "veri-
fication conditions” for each concrete operation of the mod-
uter whose fullfillment implies the isomorphy.

Taking this approach over to our system ignores two important

facts:

- the semantics of an algorithmic specification is a canonical
term algebra whose carriers contain elements, which by
cdefinition must not be ddentified with any other. Thus
establishing a terminal congruence relation is contrary to
the fact of being canonical.

- The operations in specifications are not defined by
equations but by functional recursive schemes. Their behav-
iour has to be modelLled in the algebra derived from the mod-
ulte definition. The proposed method cannot handlLe this.

(d) Transformation Rules as Operation Semantics

The CIP project ([Bau 81]) aimed at goals similar to our
scenario: a SEE that provides for most activities semantical
founclations which enable and support verification issues.

In their environment Laut [Lau 80] starts with 'computation
structures' (algebras's with finitelLy generated carriers and a
set of functions which together satisfy the axioms of the
specification) of an algebraic specification and defines an
associated module to the computation structure. The operations
of the module are assumed to satisfy denotational trans-
formations as

call mod.op(X; s eeer X,)

Xy 1% OP(Xy 7 waar X,)

(what means that the effect of the module operation call can
be modelled as an assignment of the value of an invocation of
the ‘'abstract' function to its first argument as suggested in

November 1985

5. A Proof Method 107

[Hoa 72]). With this semantics of procedure calls he shows
that the axioms of the algebraic specification are also satis-
fied by the modulLe operations. Because of the use of a predi-
cate transformer semantics and the restriction to assignments
this task reduces to the comprehensable and well-known process
of generating weakest preconditions for assignments.

Unfortunately, no Language construct is considered whose in-
stantiations are capable of possessing an internal state and
are passed to other objects or are stored. Also the tranfor-
mation rutes for the different types of arities of the
abstract operations make no difference between program
variables and term variables and they add assignments to a
functional Language. Therefore only Little information can be
derived from this approach w.r.t. our environment.

5. A Proof Method

A very important characteristic of correctness criteria in
general is the degree of mechanization that can be achieved in
order to proof their wvalidity. If for example nearlLy no
mechanic support is obtainable the integration of the criteria
in a SEE would be senseless. On the other hand it follows from
research in this area and already implemented solutions, that
full mechanization is currently impossible = due to Limi-
tations of existing proof systems. As a consequence a semi-
automatic procedure is a most Llikely candidate, and in the
following we present a proof method for realizations (PMR)
that involves user-dependant, method=-dependant and system-
dependant substeps, where the Last two modes are performed
automatically. We firstlLy introduce the substeps in sec. 5.1,
point out Limitations in sec. 5.2., and then assemble the sub-
steps to a method for the proof of the realization property
(PMR) applicable in SEEs (sect. 5.3.)

5.1. Basic Steps

In our scenario the check of the realization property is to
mechanize as far as possible. In other words: the validity of
a set of equations (homomorphy equations) in a certain theory
has to be shown. RoughlLy there are five steps:

(1) generation of a set HEQ of homomorphy equations from a
given re-co (S, M, R)

(2) involvation of hierarchy information (of S» M and R) into
HEQ

(3) formulation of an induction proof task

(&) transferring proof tasks to proof systems, and

(5) administrating results in the SEE.

November 1985

108 5.1.1. HEQ Generation

5.1.1. HEQ Generation

This step is primarily of syntactical nature. Given a re=co
(S,MsR) the standard homomorphy equations can be generated
automatically. We distinguish two cases dependant on the used
formal Language for HEQ:

@ HEQ is multi-formal

e HEQ is single-formal

where the terms multi- and singlLe-formal refer to situations
that HEQ contains occurences of terms of more than one formal
system resp. exactly one formal system. We make this distinc-
tion more precise below.

5.1.1-1. MulLti=formalism

Since S» M and R are objects of the SEE data base and there-
fore possess correctness flags the set HEQ may be constructed
automatically from the information contained in the obgjects
(see 1n the appendix for an example). The general form of
these equations is:

(%) S=op(rf,(arg,;)s....rf,targ,)) = rf(M-oplarg; ...-arg,))

where S-op, M=op denote operations of S and M that are con-
nected by the signature morphism induced by R
rf denotes the rep-function of R
rf; denotes rep-functions of used rep-objects of R, 1
€ (n).
arg; denote appropriate argument expressions of
ModPascal .

The proof of HEQ bears some problLems. In general., the theory
in which the equations are formalized is not predicate
calculus or some other standard Logic, and therefore standard
techniques do not apply. In general., the formal systems are:

S-op : ASPIK operation, algorithmically defined.

M=op : ModPascal operation, defined by an imperative
program.

rf, rf; : carrier mappings of rep-objects, defined in a
mixed ASPIK/ModPascal mode.

arg; : ModPascal variables and expressions: taking

values out of a semantical carrier.
We call the above situation multi-formal since several

formalisms are used to express HEQ.

At first glance these different items may be united by their
algebraic meaning: ASPIK as well as ModPascal operations are
associated to algebra operations, and the carrier mapping is
easily embedded. But the semantics is defined denotational.
and the meanings of operations are constructed via Least fixed
points of associated functionals. This does not allow
reasoning in standard Logic, since fixed points cannot be ex-
pressed in first order Logical formulas. To be ablLe to proof
propositions under this preconditions one has to employ
methocds and tools capable of dealing with denotational

NeAavvemher 41085

5.1.1. HEQ Generation 109

semantics (e.qg. LCF [GMW 791).

In that case equation (¥) above would become
MLS-op(rf, (arg,)s...,rf, (arg,)) ke = MLrf(M=oplard,; s-..-
arg,))Its

for states (€,s) in which the occuring operation identifiers
are defined; an unfolding of M yields to

6 (8 (S-op) V1) (ELrf, (arg,)I8e&,...,ELrf, (arg,)I8e) =
s((rf)y1) (MCM-op(arg; r...-arg,) I¢s)
>
(*%) (2 (S=0p)¥1) (e (B(rf,) V1) (ECarg, I86) su..~r
s (2(rf, V1) (ELarg,Ite)) =
(2 (rf)¥1) ((e(e(M-op) V1) (ELarg, I8e,...-ELarg, I8s)))

(first component selection of Elfarg;lte is omitted).

It is obvious that a proof of the valLidity of (¥%) for given
(¢e,8) € State dgoes beyond the scope of the currently most
easily availablLe first order theorem provers; more appropriate
systems are not designed for this application and this use in=-
side a SEE. This could call in question our approach since we
appearentlLy have to pay our employment of denotational
semantics with unmechanizability of associated proof tasks.

A first answer to this objection may point at the temporal
character of this situation. Since the theory behind denota-
tional semantics 1s well=-developped and several proof tech-
niques are known (e.g. fixpoint induction, fixpoint compu-
tation; c.f. [Man 741), a proof system suited to our needs
could be very well implLemented, with special emphasis on usa-
bitity in SEEs. Here we will not further investigate this
alternative.

More important is another solution that is based on the fact
that under certain circumstances the set HEQ can be generated
by using a single formalism. Below we make concrete this idea

(sec. 5.7.1.2.).

It should be emphasized that this complications do not in-
flLuence our principal conviction that denotational semantics
is best=-suited to describe SEE language semantics. The exact-
ness and unic¢ueness of this formalism makes disambiguities im-
possible, and it gives every SEE user a solid framework for
his software development indepently from the necessity of
verification.

5.1.1.2. Single Formalism

We now present a solution to the multi-formalism problem. The
set HEQ i1is automatically generated in the form given in the
previous section, but then modified untilL the equations are
written 1in a single formalism: as properties of an ASPIK

November 1985

110 5.1.1. HEQ Generation

specification.

A very important fact is that this process is totally mechani-
cal: if some pre=-conditions are satisfied (essentially object-
associlated properties that are administrated in the data base
of the SEE and therefore are easily accessable and checkable) .,
then the modifications of HEQ take place according to a given
algorithm without user interaction. The denotational semantics
problLems can be disregarded; it onlLy remains to make sure that
the employed descriptions for the Languages as a whole
coincide, i.e. that

® the equational (first order) descriptions used for ASPIK
specifications and the denotational semantics for ASPIK are
equivalent

e the proof theory used for ModPascal is equivalent to the
denotational semantics

e the denotational semantics for rep-objects is a well-defined
extension of the ASPIK and ModPascal semantics.

This is a wvoluminous task, but it has to be performed
solitarily and independentlLy from a given SEE scenhario, e.d.
by the SEE designer. It then provides an exact base for SEE
Languages / objects and SEE verification theories (an ex-
emplary treatment of equivalence of various Language defini-
tions can be found in [Don 761). For our treatment we assume
that the three equivalences above are shown.

An algorithm TR for transformation of single-formatism HEQ
(short: SHEQ) out of multi-formalism HEQ (MHEQ) is influenced
by the fact that despite of the problems arising from the
ASPIK semantics there are proof tasks of the abstract Level
that can be decided within standard Logic. The reason is that
sometimes it is not necessary to compute the algebra operation
hehind an algorithmic definition. Instead., one can take the
definition directly to perform induction proofs with an appro-
priate mechanical theorem prover. Since the data involved are
elements of carriers of canonical term algebras every induc-
tion is welLl=-founded (structural induction). For example, one
semantical property of a spec object of ALG is the consistency
of the algorithmic definitions with the properties. They can
he checked by structural induction proofs of every property by
using the algorithmic definitions. (Note, that termination has
to be considered separately.)

TR is based on this fact, and it tries to express SHEQ as
ASPIK equations; the occuring function symbols are then
defined algorithmically din some specification to be con-
structed (see sec. 5.1.3.). Therefore the ModPascal portions
of MHEQ have to be eliminated and substituted by TR.

The rep=-function (= carrier mapping) calls in HEQ are treated
more tricky: since the rep-function definition is a mixture of
ModPascal and ASPIK, an analogous elimination and substitution
of ModPascal parts is performed in the definition. That yields
to a pure ASPIK operation body, and calls of an algorithmi-

5.1.1. HEQ Generation 111

cally defined ASPIK operation. With this detour the occurences
of rep-functions in MHEQ are integrated in an ASPIK formalism
(we haves, in fact, created a new rep-function by this process
which we will call Lifting; therefore a new rep-function iden=
tifier willL be used in SHEQ). Note that Lifting has to be
semantics-preserving; see the formal definition 5.1.1.2.-2 be-
Low.

But how to elLiminate the ModPascal parts of properties and
carrier mapping definition? Otherwise AS would not be well-

defined!

The idea is to exchange ModPascal constructs by 'semantical
equivalent' ASPIK constructs to get a pure ASPIK specification
AS to which the method is applicablLe. Since every ModPascal
operation is associated to a defining module (or enrichment) »
the semantical equivalence is primarily defined on obJjects. It
is advantageous to base this notion on realizations.

5.1.1-2--1 Def. [semantical equivalent]
Let S € Spec, M € (MOD v ENR).
Then S and M are called semantically equivalent , if there ex-
ists R € Repobj with
(1) (S,M,R) is realization
(2) The signature morphism of R is bijective

Notation: SE(S, M) stands for 'S is semantically equivalent to
M'.
SE(S, M, R) additionally selects a rep=-object.

The new requirement imposed on realtizations ensures the ex-=
changability of ModPascal operations by ASPIK operations. In-
jectivity is not sufficient since it would be unclear how to
treat additional modulLe operations that occur in the MHEQ or
in the carrier mapping definition.

A first approximation of TR for semantical equivalent obgjects
is:

There are three actions:

A) replace a occurrence of a ModPascal operation identifier by
the uniquely associated ASPIK identifier

B) replace the occurrence of a ModPascal variable as follows:
since the variable is of a fixed type, and since this type
is uniquely associated to an ASPIK sort, a new variable of
that sort has to be generated and substituted in place of
the ModPascal variable.

C) replace the occurence of a rep-function identifier as
follows: apply steps A and B to the rep=function defini=-
tion; establish the result (the 'Lifted' rep-function) as a
new operation identifier; substitute this identifier for
the occurrence of the rep=-function identifier.

If TR is applied to a set of syntactic structures, the steps
A, B, C are performed.

November 1985

112 5.1.1. HEQ Generation

We write TR(S) for the result of the application of TR to a
structure S.

With this definition of TR the Lifting of a repfunction can be
declared. To guarantee applicabitity of step c¢) we assume a
set of primitive rep=functions with appropriate Lifted ver-
sions.

5.1-1.2.=2 Def. [Liftingl

Let S and M be semantically equivalent with R.

Let rf denote the rep-function of R.

Then the Lifting rf, of rf is defined by rf, := TR(rf).

For a given MHEQ, TR(MHEQ) yields in a tuple consisting of

e a modified MHEQ, that is nhearly pure ASPIK; we denote this
set by "MHEQ'.

e Lifted versions of the rep-functions.

The main point is that TR is only applicable for semantical
equivalent objects i.e. if SE(S, M) holds; but S and M of a
given re-co (S,M,R) do not yet have that property and there-
fore step A above will onLy be applicable for the definition
of some used rep=function (which has occurrences of operations
of semantically equivalent obgjects)., but it does not modify
MHEQ!

Therefore we introduce an intermediate step that will overcome
this problem with ModPascal constructs in MHEQ (note that we
we need to consider onlLy this case; 1in the case of the rep-
function definition of R it 1is enforced by syntax and
semantics of rep-objects that only constructs of objects occur
which are used by M (the modulLe/enrichment involved in the
connecting clause of the rep=-object). In other words: no
public operations of M occur in the rep-function definition.)
The case of MHEQ d1is slightly different. Every equation
embodies explicitly a public operation of M, and no operation
of used objects. In this case a substitution-Like exchange of
ModPascal by ASPIK 1is impossible and senseless, since the
validity of the equation is used to dimply Just this inter-
changability.

A solution is offered by the following considerations: in the
homemorphy equation case, we are finally interested in the
effect of a module operation call, where effect means either
the induced state change or the represented value. To deter-
mine the effect we could use our denotational semantics func-
tion for ModPascal: we could compute MIopcalllges and sub-
stitute the result in MHEQ for opcall. But this is slightly
orthogonal to our above described intention:

® MLopcalllts is based on an algebra function defined by an
appropriate ModPascal operation definition opdef and
MLopdefl. Unfortunately, if we would substitute opcall by

e woa a A

5.1.1. HEQ Generation 113

MCfopcalllte in MHEQ, we would exchange ModPascal by a pure
mathematical formalism, and getting no step closer to our
goal of one formalism! Beside that we would torpedo our
decision for an ASPIK formalism.

e If we would not only substitute but simultaneously evaluate
the M terms, we might be more Lucky. But evaluation of
denotational semantics clauses involves sophisticated, not
available machinery (c.f. the remark on this topic in sec.
5.1.1.1.). As a result we would not increase the degree of
mechanization in our SEE.

We propose another way apart of denotational semantics terms
that uses a symbolic evaluation step (sec. 5.1.1.2.1.), but is
not free of problLems (sec. 5.1.1.2.2.).

5.1.1.2.1- Symbolic Evaluation

In this section we outline how symbolic evaluation can be used
to achieve a symbolic representation of the effect of a
ModPascal operation call.

Consider the design of module types in ModPascal. A mandatory
component of these constructs are Local variables. Every set
of glLobal variables of a module operation definition has to be

a subset of this Local variable set.

Let L;» 1 € (n) denote the types of the Local variablLes of a
module M, and (vys wawr V,) € (L; X .== X L,) a vector of
values of Local variables. Every (vVys, ..., Vv,) 1is also called
an internal state of the modulLe incarnation (since this 1is
just the information that the denotational semantics of
ModPascal assigns to a variable of type M).

Then every module operation call either
- selects information from an internal state, or
- modifies an internal state.

or pictorially:

mod=op=call
(Vy 7 eaar V) > (Vy'"s aaer V")

mod=op=call
val

where val denotes an expression over (v, » «ser V,)s, and the
v:', 1 € (n) are values of Local variablLes after execution the

operation call.

Now the main point is that in special cases the v;' and val
can be computed by symbolic evaluation in a way that no public
operations of M occurs - due to the semantical restrictions
imposed on module operation definitions. Then we can sub-
stitute ModPascal operation calls by equivalent (vectors of)
expressions of the Local variables of M which do not contain

November 1985

114 5.1.1. HEQ Generation

occurrences of any public operation of M. Together with some
hierarchy assumptions of sec. 5.1.2. we then are able to
mechanically generate single formalism HEQ and to derive proof
tasks suitable for mechanical first order theorem provers (see
sec. 5.1.3. below).

Therefore we define a new action for our transformation algor-
ithm and call the resulLting set of actions TR-SYM:

TR~SYM (algorithm for generation of SHEQ by symbolic
evaluation)

TR-SYM consists of four actions:

A) replace an occurrence of a ModPascal operation identi-
fier by the uniquely associated ASPIK identifier

B) replLace the occurrence of a ModPascal variable as
follows: since the variable is of a fixed type, and
since this type is uniquely associated to an ASPIK sort.,
a new variable of that sort has to be generated and sub-=
stituted in plLace of the ModPascal variable.

C) replace the occurrence of a rep-function identifier as
folLlows: applLy steps A and B to the rep-function defini-
tion; establish the result (the 'Lifted' rep-function)
as a new operation identifier; substitute this identi-
fier for the occurrence of the rep=-function identifier.

S) evaluate every call of a public operation of M symboli-
cally by producing a vector of expressions of the Local
variables of M that represents the effect of the opera-
tion call; substitute the vector for the operation call.

The application of TR-SYM to a syntactic structure (MHEQ
or rep-function definition) means:

1) perform S

2) perform A, B and C

The result of an application of TR=SYM to a set MHEQ is a tu-
pLe (SHEQ, rf,.) with

@ SHEQ: the modified set MHEQ; formalism is (pure) ASPIK

e rf_: a tifted version of rep=functions.

(see also the appendix for an illustrative example.)

An important condition for the soundness of this algorithm is
that the symbolic evaluation coincides with our denotational
semantics for ModPascal. But again: this is a once-and-never-
again task which has to be performed by the designer of a SEE;
we skip it here.

5.1-1«2.2= Current Limitations

The usability of symbolic evaluation to express the effect of
ModPascal constructs in MHEQ depends on the Limitations that
come with this technigque. Beside numerous technical problems
ranging from integration of such a system into the context of

November 1985

5.1.2. Involvation of Hierarchy Information 115

ASPIK and ModPascal up to administration of traversals.,
unfoldings/foldings of definitions etc. and preserving of con-
sistency of the evaluation process, there are also severe
theoretical difficulties.

For example, iterative structures cause problems since the

number of repetitions is unknown in generat. Then two solu-

tions are thinkable: either

- counters are introduced that bound the traversals through a
Loop and that allow to relate variable values of different
traversalts, or

- Loop invariants are introduced; then problems arise well-
known from classical Hoare verification: How to get in-
variants? Are they strong enough? etc., and one Looses much
of the benefits of algebraic verification concepts.

Since both alternatives have far-reaching consequences on the
proof method we do not involve one of them 1in the current
paper and restrict ourselves to what 1is possiblLe in our
current framework. If situations with iterative structures
occur, we will not apply symbolic evaluation but present an
equation Like (*%) in sec. 5.1.1.1. to the user. Then he has
interactively decide the validity of the equation, and then
the system carries on with his answer (see the appendix for an
exampLe). With this Limitations it is obvious that the class
of operations and modules suitablLe for symbolic execution is
not Large enough to be successfully employed in practical ex-
periences, and essential extensions are necessary. Neverthe-
Ltess, 1in the (unexpected frequent) cases where our technique
is nevertheless applicable, it mechanizes completely the
generation of prooftasks suitable for automatic theorem
provers and 1in the consequence the check of correctness of a
realization, a fact that is highly valuable for the acceptance
and performance of a software development system dedicated to
verification issues.

5.1.2. Involvation of Hierarchy Information

Up to now a basic property of all components of a re-co
(S,M,R) has not been considered: each object is hierarchical
in that sense that it is based on already defined objects. Now
the idea is to make assumptions concerning the hierarchies
that allow us to consider onlLy the top-elements in our cor-=
rectness checks. This would free us from the necessity of
resolving all use-relations before making correctness checks;
the then generated three ‘'overall' obgjects woutd be of
enormous complexity 1in general and not very well suited to
mechanical treatment. (Note that (a) use=-relations are of pure
syntactical nature (structuring) - (b) hierarchies are
cyclefree, therefore resolution is possible, and (c) the
validity of formulae is not affected by merging / separating
formulae sets.)

The first assumption deals with predefined structures of
ModPascal (types, type generators).
Let T := {BOOLEAN, INTEGER, CHAR, STRING> and

November 1985

116 5.1.2. InvolLvation of Hierarchy Information

TC := {array, record, file, set, <enumeration>, <sub-
range>2
(REAL omitted; the bracketed elements of TC denote the obvious
type constructors.)

Now we assume that every element of (T v TC) has a counterpart
in ASPIK, i.e. that there is a set S(T) of algorithmic speci-
fications and a set SC(TC) of algorithmic specification con-
structers such that ASPIK and ModPascal structures are
uniquely associated.

The second assumption says that the associated objects are
semantical equivalent, i.e. there are rep-objects for every
ModPascal—-ASPIK object pair such that 5.1.1.2.-1 is satisfied.

Both assumptions are easily satisfyable since they do not in-
clude user-defined objects; the installation of appropriate
objects as system components is a solitary task.

The third assumption extends the first two to all obgjects
(properly) used by any user-defined ModPascal obgject M of the
re-co: every used structure of M' has an associated algor-
ithmic ASPIK specification S', such that S' and M' are seman-
tical equivalent.

The fourth and final assumption derived from the hierarchy
property deals with the Local objects of M. Every LocalL obgect
L is also assumed to be connected to a specification S, such
that the semantical equivalence holds. But since L is not ex-
plicitly used by M, we cannot consider the usual hierarchy re-
Lation. To model the situation we introduce a use-Local re-
Lation that holds between a module and its Local objects. The
hierarchy notion for ModPascal objects is extended to allow
both use- and use=Local-relLations. We use U(obh) to denote the
used objects of ob, and UL(ob) to denote the used Local
objects of ob.

To preserve consistency, an analogous modification is per-
formed on the ASPIK Level for those specifications that are
semantical equivalent to a module. (Note that 'use=-Local' is
equivatent to 'use' in the case of specification hierarchies).

Note that the Last two assumptions can be reduced to the first
two: every user-defined ModPascal object is built from ele-
ments of T v TC; so by structural decomposition the assump-
tions on used and used-Local objects may be reduced to the
assumptions for T v TC. Also, 1in the case of type generators
the postulates above can be derived from the semantical
equivalence of the base types. But there is no way to replace
the assumptions for the Latter.

November 1985

5.1.2. Involvation of Hierarchy Information 117

Pictorially, we have for a re-co (S,M,sR) the following
hierarchies and assumptions:

S M
S; e... S, My veuena M,

e .
| |

BOOL BOOLEAN

]

use-Local I

L e

use I l

| |

BOOL BOOLEAN

l' l' M' A M!
. I . - ‘ - .

Fig. 5.1.2.-1: Object hierarchies

For the proof that S € Spec and M €(MOD v ENR) are semanti-
cally equivalent we proceed as follows:

(a) Supply R € Repobj

(h) Show, that (S,M,R) is realization

(c) Show the bijectivity of the signhature morphism of R

Let R € Repobj be given.
To decide (b)), we construct an inductive proof of the con-

sistency of the artificial specification AS. The induction is
Leaned to the hierarchical structures that are induced by S
and M via their use-relations.

The assumptions in this situation are:

@ Every M; is semantical equivalent to some S;,» 1€ (N, J e
(m)

e Every M'; is semantical equivatent to some S';, i € (L), j €
(K)

® ALL other elements 1in the M hierarchies are semantical
equivalent to some objects of the associated S hierarchies.

Note that these assumptions alone do not dimply disomorphic

November 1985

118 5.1.3. FormalLism of the Induction Proof Task

hierarchies.

5.1.3. FormuLation of the Induction Proof Task

As pointed out we will use our modified set SHEQ and the
Lifted rep-function rf_ to construct an artificial specifi-
cation object AS'(S,M) for given re-co (S,M,R) with

e properties: SHEQ
@ operation: rf,

AS'(S,M) 1is well-defined: because all used ModPascal objects
M; are semantically equivalent to ASPIK objects S;, we can ex-
change occurrences of operations of M; by operations of S;
without causing harm. Also, module variables may be trans-
formed in spec variables. And third, for all Local objects M';
of M there are semantically equivalent specs. In the case-,
when symbolic execution is applicable this can be used to
remove from MHEQ the expressions that were substituted for the
public operation occurrences. The expressions over Local
variables that were generated by symbolic execution of oper-
ation definitions in order to catch the effect of an operation
call are transformable into ASPIK expressions by exchanging
semantically equivalent operations and variables. From this it
follows: both operations and properties of AS contain no
ModPascal construct (i.e. AS € Spec).

Graphically we can construct AS'(S,M) with the notions of the
previous section:

AS'(S,M)

|
[] (_Ll]]
]

l

BOOL

5.1.3.=-1 Fiqgq.: AS'(S,M) hierarchy

Since we want to have rf_ as single function of AS'(S-M) and
rf, is defined on S';, 1 € (K), then the above objects are

Nnavvemher 1085

5.1.3. FormalLism of the Induction Proof Task 119

necessary. If sorts are ambiguously denoted by object names.,
then the functionality of rf_ is

Gy X wea X §' =8

Now the properties of AS'(S,M) (=SHEQ) just say that rf_ is a
homomorphism. If we can show their validity we are nearly
ready: we onlLy have to derive from the homomorphy of rf,_ the
homomorphy of rf to satisfy our definition of realization. But
this is a trivial step: since we generated rf,_ from rf by sub-
stituting semantical equivalent operations., data and
variables, every proposition for rf_ holds directlLy for rf.
Therefore it is sufficient to show homomorphy for rf,..

Up to now AS'(S,M) contains onlLy the definition of rf, but no
definition of used rep-functions (which might occur in SHEQ as
well as in the rf and rf_ definition). To include alLl poten-
tial necessary definitions we construct a hierarchy of AS-
objects.

This is always possible if we involve the hierarchy infor-
mation of S and M, according to the previous section.
Especially, we assume that we have semantical equivalent
hierarchies for S and M i.e. SE(U(S), U(M)) and SE(UL(S).,
UL(M)) hold. Under this assumption for every S' € (U(S)
uL((s)) and M' € (U(M) v UL(M)) the object AS'(S', M') is con-
structable. Since AS'=-obgjects form also a hierarchy (starting
with AS'(BOOL., BOOLEAN)) we have the following situation:

AS'(S,M)

| | |

AS' (S, »M;) AS'(S,-M,) AS'(S",,M';) AS'(S', »M')

T]

AS'(BOOL,BOOLEAN)

5.1.3.-2 Fiqg: AS-objects (isomorphic hierarchies for S,M)

We will use the following

Notation: AS(S, M) denotes an artificial specification con-
structed as AS'(S, M), but U(AS(S, M)) contains onlLy
S and other AS-objects.

November 1985

120 5.1.3. Formalism of the Induction Proof Task

Note that AS(S, M) contains definitions of all (Lifted) rep-
functions; it therefore will be used in proof scenarios.

To show properties of an ASPIK specification valid, there are

two alternatives:

s deduce them from valid (other) properties

e show them consistent with algorithmic definitions of the
occuring operations.

Deduction as well as consistency check involve support from
mechanical theorem provers. So both possibilities are of
similLar complexity. But since AS(S,M) is algorithmic we take
the consistency check to prove SHEQ.

In order to show consistency of an algorihmic specification
one has to proceed along the following algorithm CON:

CON input: algorithmic., specterm=free.,
zero/one=-sorted specification S
output: true, if algorithmic definitions satisfy
the properties P(S) of S
false otherwise

(1) if S contains no properties, then CON(S):=true
(2) for every property p of P(S).
for alLl variables v; of sort S; occuring in P.
i€ {1...ur.
Let ec;; denote the set of elementary (=no arguments)
constructors of sort S;.,
ie (M, jge (gi), g9 € N in
Let c;; denote the non-elementary constructors
of sort S;» 1 € (N, j€ (rds, ry €N in
(2.1) Let EC :={(ecy;17e-ar@Cp;,)
Je € (g)s K € (N)Y
denote the set of vectors of elLementary
constructors in
for every (e;,...re,) € EC.
pPl(V, senarv,) (e ruuere,)] holds
(2.2) ..l:..gvg‘ C:= {(Cli(l y#eenrClsoy))
Jd € (), K € (N>
denote the set of vectors of constructors in
Let ct; denote a constructer term of sort S;.,
i€ (n) in
for every (€, ,...se,) € C.
if PL(Vy reaarv,) (Cty rauarct,)] holds
then pl(vy reearv,) (e, <Cty ruaurct, »
Ct'yrsacarct’ >,
€,<Cty rewusct rsCt'y raarct' >)]
holds
where e;<ct; sanarsct, rCct’'; 7cu.rCct' >
denotes the constructor term build
from e;, Cct; 1 ,7-asCti(p,sCt"; 1 ,7cuar
ct'; .. ,» according to the arity
of e;, with
ct'; constructor term of some sort.,
i€ (a), a €N

Matimmlan~nnm 19000

5.1.3. Formalism of the Induction Proof Task 121

{ill-..lib} b {1ranarn}s
{jll--.rjc} b {11--.18}
(3) If both (2.1) and (2.2) hold, then CON(S) := true;
otherwise CON(S) := false

Remarks: a) The steps (2.1) and (2.2) together form a struc-
tural induction scheme that can be directly used
by the proof system.

h) (2.1) can be shown by simple application of oper-
ation definitions (e.g. by use of an interpreter
for ASPIK). Since EC is finite, a possible way is
to check mechanically every alternative.

c) (2.2) represents the induction step: since the ct;
sets are countable (but well-founded), the only
way to show the implication is to use an induction
proof system that may take Lemmnata etc. from un-
folding of operation definitions or from property

sets of 'Lower', already consistent specs.
-1

In the case of AS(S,M) a second inductive scheme is implicitly
emplLoyed as a result of our assumptions. The used and used-
Local objects M? of M are assumed to be semantically equiva=-
Lent to some specifications S'. In this view we have a
hierarchy of artificial specifications (starting with
AS(BOOL,BOOLEAN)) that are allL assumed to be consistent except
e the top-element AS(S,M)

& S

o used objects S' of S such that no used object M' of M is

semantically equivalent to S'.

The consistency of S is not derivable from a semantically
equivalence, since the Latter is Jjust the goalL of these con-
siderations! If consistency of S is needed it has to be shown
explicitly. The same holds for objects S' above.

If additional requirements are imposed on the hierarchies
("isomorphic structure”)., then the third kind of unknown con-
sistency above will not occur. If in this case the consistency
of S is shown separately, all properties of allL used specifi-
cations of AS(S,M) may be emplLoyed in step (2.2) of CON, ap-
plied to AS(S,M).

It should be mentioned that the construction of artificial
specifications AS(S,M) for M being ModPascal predefined type
is not unproblematic. This is due to the fact that (1) the
model of ModPascal standard types has to resolve cycles (see
sec. & of [OLt 84al), and (2) rep-functions are generally
based on Local variables; 1in the case of standard types there
are no such variables!

The first point is mainly of technical nature: if the correct
hierarchy of ModPascal objects is used, onlLy the degree of
complexity will increase.

November 1985

122 5.1.4. Transfer of Proof Tasks

The second problem can onlLy be solved in a special treatment
of rep-objects and rep-functions for ModPascal standard types.
For examplLe one could allow a missing rep-function definition
in that case, and if carrier elements of the ModPascal struc-
ture occur one immecdiately switches over to the associated
ASPIK structure and its carrier elements.

Independent of the choosen solLution the necessary consequence
is that employed algorithms and used proof systems have to be
advised to handle correctly the standard object situation.
Though we are conscious about the technical and theoretical
problems arising we do not go into further detail and postpone
a more comprehensive discussion.

We summarize the induction proof task:

Given the situation of figure 5.1.3.-2:

(a) Require isomorphic hierarchies for S and M
(b) Show CON(S) = true

(c) Show CON(AS(S,M)) = true

=> rf, 1s homomorphism

5.1.3.=-3 Lemma
Let S € Spec» M € (MOD v ENR), R € Repobj.
Let AS(S,M) be as above such that AS(S-M) € Spec.
Then it is equivalent:
(S,M,R) is realization <> AS(S,M) is consistent

Remarks: a) AS(S,M) € Spec implies pure ASPIK properties (and
therefore previous applicability of symbolic ex-
ecution).

b) The equivalence is exploited to check re=co's. The
consistency of AS(S,M) may be shown by standard
methods emplLoyed for non-artificial ASPIK specs.,

different from CON.
x

5.1.4. Transfer of Proof Tasks

Once proof tasks suitable for mechanical theorem provers have
been generated, a transfer to some available proof system has
to be initiated. Since in general provers are designed to sup-
port one specific proof type (induction, rewriting, equality
reasoning)., it should be clear from the proof task which sys-
tem has to be used.

Since we are interested in consistency proofs by induction
(c.f. sec. 5.1.3.), one could automatically transfer generated
proof tasks. Independently form the target system one will
have to transform the ASPIK equations into the accepted input
Language. To get reliable resuLts it has to be guaranteed that
the transformation of proof tasks is semantically correct i.e.
one has to perform another once-and-never—again task con=
sisting in the check of ‘'semantical equivalence' of proof task
representation. We assume that this has been done for our
scenario.

NnAavveamhoer 1085

5.2. PMR 123

There is no scheme for deciding, which equations beside those
of AS(S,M) (e.g. all equations of the hierarchy?) should be
physically attached to the prooftask. There are cases in which
nearly every equation is necessary for a successful proof;
sometimes the presence of redundant equations dramatically
decreases efficiency or even makes a proof impossible. We
assume an appropriate solution of this problLem.

5.1.5. Administration

In SEEs, every software development will come with considera--

bLe number of proof tasks; for example, if specification

hierarchies are realized in ModPascal then for every object

there is a separate proof task. There has to be a satisfactory

solution to the representation problem of proof tasks and to

the administration of already achieved intermediate results.

In particular:

e proof tasks should become objects by their own, with
relations to data (specifications, modules) and tools.

® proof tasks contain their current state (proved or not).

@ valid formulae are marked if a proof system or the software
engineer validated them.

® pending proof tasks induce a Lock on involLved objects that
hinders destructive access.

@ there are inductive schemes which allow to incorporate
already valid formulae into a proof task conveniently.

® there is a propagation algorithm that updates validity of
proof tasks if destructive actions (as editing of correct
objects) have occured.

ALL these features have to be tighly coupled to the user in-
terface to allow efficient processing of proof tasks. We
assume a SEE with comparable capabilities.

5.2. PMR

We now put together the single subtasks described in sec. 5.1.
The result is an algorithm that guides the software engineer
and the SEE in order to show the realization property. We do
not explicitly distinguish whether single steps are performed
manually or mechanically; this aspect was covered in the
previous section.

The method for the proof of the realization property (PMR)
then is defined as follows:

PMR

Let (S, M, R) denote a re-co.
Let SE(U(S)., UM, U(R)) and SE(UL(S), UL(M), UL(R)) hold.

(1) Let SM denote the signature morphism induced by R.
If SM is not bijective, stop with failure.
(2) Generate MHEQ

November 1985

124 5.2. PMR

(3) Check if symbolic evaluation is applicable.
If not, branch to (6).
Otherwise: SHEQ := TR_SYM (MHEQ) {1

rf. := TR_SYM (MHEQ)V?2

(4) Generate AS(S, M)

(5) Check, if CON(AS(S, M)) holds.
If it is the case: stop with success
Otherwise: stop with failure

(6) Compute MHEQ with semantical operators.
Look for external decision about the validity of
MHEQ elements.
Branch to (&)

Remarks a) The used and used-Local objects are assumed to be
already semantical equivalent.

b) The bijectivity of SM is not necessary if S and M
are the final objects of the software development.
In the other case this condition ensures that
objects wusing M can be treated with PMR (see a).
The main point is that for every concrete operation
there has to be an abstract counterpart in order to
perform technical steps as Lifting or SHEQ gener-
ation. Together with the signhature morphism
property this induces bijectivity.

c) Note that after step 6 it is in fact possible to
generate AS(S, M), since bijectivity of SM is
assumed. The set MHEQ is modified by substitution
of ModPascal constructs by ASPIK constructs, w.r.t.
SM.

d) Stop with success means: (S, M, R) is a
realization, or SE(S, M) holds. The negation "stop
with failure" does not point to a wunique source
that causes the non=-provability: either
- SM associates obgjects/operations wrong or in-

adequately, or
- S was inadequately or wrongly defined, or
- M does not what is specifies in S.
A thorougn analysis of all possibilities has to
follow.

This algorithm gives a rough overview on PMR. The details are
skipped (e.g. how to treat 'mixed' cases, when for some oper-
ations of a module symbolic evaluation is possible, but not
for others).

A system where PMR is implemented allows the interactive check
of conditions that imply the correctness of a realization.
Moreover, in some cases it is possible to mechanize the proof
complLetely. This fact contributes enormously to the acceptance
and applicability of the software development system since no
specialists are needed to verify proof tasks.

It should be recalled that the embedding of PMR (as every
verification method) requires a comprehensive and
sophisticated object administration system that generates., in-
spects, manipulates, or propagates semantic properties of the

November 1985

6. Summary 125

kind "is-realization™. Consistency dissues have to be solved
arising from destructive operations as e.g. editing or erasing
of objects.

6. Summary

This paper presents an overview on a solution of the implLemen-
tation verification task arising in multi-Level and multi-
Language software development environments. The situation is
considered, when

e algebraic specifications for the abstract description, and
® module constructs for the concrete description

of non-concurrent behaviour are used. For both description
Levels the exemplary Languages ASPIK and ModPascal are
formally introduced. ASPIK is an algebraic specification Lan-
guage supporting hierarchical design of software; it provides
verifiable notions for inter-object relations as ‘'refinement'
or '‘implementation'., and offers a flexiblLe object
parameterization concept. ModPascal extends standard Pascal by
a module construct and a type parameterization concept based
on signhature morphisms.

To connect a module M and a specification S the concept of
representation object (rep-obgject) is introduced and supplied
with a formal semantics. Rep-objects allow the user to define

a) a signature morphism between the specification and the
module, and

b) a carrier mapping between the semantical algebras of the
two obgjects.

The most important point is that - in contrast to ‘'abstract'®
approaches of e.g. [EKP 78], [EL 801, or [SW 821 - rep-objects
model a relation between objects of different Language Levels
(applicative and procedural). There are numerous difficulties
induced by such a scenario, and to get started a satisfactory
solution was found only by introduction of confinements: S is
a single=-sorted, specterm-free constructive spec (hierarchy);
M contains no instantiate type definitions; i.e. not arbitrary
ModPascal or ASPIK objects are considered in the relation in-
duced by rep=-objects. The notion of realization context rules
out unadmissable objects.

If one can specify a representation object R that Links S and
M by a syntactical and a semantical mapping such that a
homomorphism between the semantical algebras of S and M is in-
cduced, then a correct realization of S through M is achieved.

Under specific conditions the proof of the homomorphism
property is mechanizable so that tedious and expert-dependent
formal derivations are reduced. We present a comprehensive
method for the treatment of these cases that also exploits the
hierarchical structure of specifications and modules for in-
ductive argumentation. The method is demonstrated by an

November 1985

126 6. Summary

elementary example.

The concepts and the proof method have already been success-
fully employed in the ISDV-System where the realization check
is onLy one of several verification tasks in order to deter-
mine consistency of requirement specification and imperative
program. There., the mechanical tools for proving properties
are an automatic theorem prover and a rewrite rulLe Laboratory.

Within the ISDV system, several case studies on real world
probLems were successfully Launched e.g. a financial ac-
counting problem (LOLt 85bJ).

Current and future research includes:

® Relaxation of the reqgquirements ‘'zero/one =~ sortness' and
‘constructivity' imposed on specification obgjects.
As inevitable consequences the module concept of ModPascal
has to be modified, and carrier mappings defined by rep-
objects have to be considered between sets of algebras (in-
stead of two constructively defined algebras).

e Involvation of spec-terms and instantiations / instantiate
types in realization contexts.
This seems to be a more technical issue because the con-
structs denote semantically ordinary specifications resp.
modules/enrichments, such that the base case is applicable.

® Feasibility study if these concepts are adaptable to the de-
velopment of software for non-sequential systems.
In fact there is an ESPRIT project (GRASPIN) that is par-
tially dedicated to a solution of this problLem, and there is
a close collaboration between the author and the GRASPIN
team on this topic.

NAavvamhar 10RK

7. References 127

7. References

The following abbreviations are used:

CACM Communications of the Association for Computing
Machinery

DoD Department of Defense

IJCAI International Joint Conference of Artificial In-
telligence

LNCS Lecture Notes on Computer Science

SIGPLAN Special Interest Group on Programming Languages

[ADJ 78] Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An
initial algebra approach to the specification.,
correctnhess, and implLementation of abstract data
types.» in: Current Trends in Programming
Methodology, Vol.4, Data Structuring (ed. R.
Yeh), Prentice-Hall, 1978, pp. 80-144.

[ADJ 79] Thatcher, J.W., Wagnher, E.G., Wright, J.B.: Data
Type Specification: Parameterization and the
Power of Specification Techniques. IBM Res. Rpt.
RC 7757, TJW Res. Center., Yorktown, 1979.

[Bac 78] Backus, J.: Can Programming be Liberated from the
von-Neuman style? A functional style and its
algebra of programs. CACM, 21, 8, 1978.

[Bak 801 Bakker, J. de: Mathematical Theory of Program
Correctness. Prentice Hall., London, 1980.

[Bau 811 Bauer, F.L. et al.: Report on a Wide~-Spectrum
Language for Program Specification and Develop-
ment. TU Munich, Report TUM-I8104, 1981.

[BG 77] Burstall, R. M., Goguen, J. A.: Putting Theories
Together to Make Specifications. Proc. 5th IJCAI.,

pp.1045 = 1058, 1977.

[BR 851 Breiling., M.~ Rainau., U.: An Object
Administration System and a Representation Obgect
Programming System. Master thesis (in German).
University of Kaiserslautern, 1985.

[Bv 831] Beierte, C.,» Voss, A.: Parameterization - by -
use for Hierarchically Structured Objects.
University of KaisersLautern, Memo SEKI-83-08.,
1983.

[Bv 851 BeierLe, C.,» Voss, A.: Algebraic Specifications
in an Integrated Software Development and Verifi-
cation System. University of Kaiserslautern.,

November 1985

128

7. References

[Dij 741

[Don 77]

[CEKP 78]

[EL 801

[FLo 67]

[Gan 821

[GHM 791

[HKR 801

[Hoa 691

[KLa 82]

[Lic 851

[Ma 741]

[oLt 84al

1985.

Dijkstrar E.W.: A Simple Axiomatic Basis for
Programming Language Constructs. Indagationes
Mathematicae, 36 (1974), 1-15.

Donahue, J.: On the Semantics of "Data Type".
Technical Report TR 77-311, Cornell University.,
1977.

Ehrigr, H., Kreowski, H. J.. Padawitz. P.:
Stepwise Specification and Implementation of
Abstract Data Types. Proceedings 5th ICALP-.
Springer LNCS., 62(1978), 205-226.

Ehrich., H.- Lipek~ U.: Algebraic Domain
Equations. University of Dortmund, Report 125~
1981.

Floyd, R.W.: AssigningMeanings to Programs. In:
J.T. Schwartz (ed.): Proc. Symposium on Applied
Mathematics, AMS, 19-37, 1967.

Ganzinger, H.: Denotational Semantics for Lan-
guages with Modules. TU Muenchen, Inst. fuer In-
formatik 1982.

Gordon, M., MiLner, R., Wadsworth, C.: Edinburgh
LCF. Springer., 1979.

Hupbach, U. L., Kaphengst, H., Reichel, H.: Ini-
tial Algebraic Specifications of Abstract Data
Types, Parameterized Data Types and AlLgorithnms.
VEB Robotron., Zentrum fuer Forschung und Technik.,
Dresden, 1980.

Hoare, C.A.R.: An Axiomatic Basis for Computer
Programming. CACM, 12, 576-580, 1969.

KLaeren, H.: A Constructive Method for Abstract
Algebraic Software Specification. Schriften zur
Informatik und angewandten Mathematik., Bericht
Nr.78, RWTH Aachen, 1982. [Lau 801

Laut, A.: Safe Procedural Implementations of
Algebraic Types. Information Processing Letters.
pp. 147-151, 1980.

Lichter, H.: An Interactive ans Syntax-oriented
Inputsystem for Algebraic and Algorithmic Speci-
fications. Master Thesis (in German), University

of KaiserstLautern, 1985.

Manna, Z.: Mathematical Theory of Computation.
MacGraw=HilLl, New York, 1974.

OLthoff, W.: ModPascal Report. University of

November 1985

7. References 129

[OoLt 84b]

[oLt 851

[oLt 85al]

[OoLt 85b]

[Pai 801

[Poi 83]

[RL 851

[Roe 761]

[Sch 821

[Sch 85]

[spa 851]

[STA 791

[sw 82]

[Weg 721

Kaiserslautern, Memo SEKI-84-09, 1984.

OLthoff, W.: Semantics of ModPascal. University
of Kaiserslautern, Memo SEKI-84-10, 1984.

OLthoff, W.: An Overview on ModPascal. SIGPLAN
Notices, VolL. 20 (10) pp. 60 -71, 1985.

OLthoff, W.: The Realization Level. Internatl
Report. University of KaiserslLautern, 1985.

OLthoff, W.: Specification and Verification of a
Real-World Book=-Keeping Problem with SPESY: A
Case Study. Internal Report. University of

KaiserslLautern, 1985

Pair C.: Abstract Data Types and Algebraic
Semantics of Programming Languages. Report 80 - R
- 011, Centre de Recherche en Informatique Nancy.

Poigne, A., Voss, J.: Programs over Algebraic
Specifications. On the ImplLementation of Abstract
Data Types. Report 171, University of Dortmund.,

1983.

Breiling, M., Eckl, G., OLthoff, W., Rainau, U..,
Schmitt, M., Weiss, P.: The RL=-Handbook. Internal
Report. University of KaisersLautern, 1985.

Roever ., W.P. de: Recursive Program Schemes:
Semantics and Proof Theory. Mathematisch Centrum.,
Amsterdam, 1976.

Schulz, H.: Eine Methode zur korrekten ImplLe=-
mentierung von Datentypen durch Module.
DiplLomarbeit, Uni Bonn 1982.

Schmitt.» M.a: Extension of the ModPascal
Precompiler (in German) . University of
KaiserslLautern, 1985.

Spang, H.: Implementation of a Component of
SPESY. Working paper (in German), University of
KaiserslLautern, 1985.

Stanford Verification Group: Stanford Pascal
Verifier User Manual. Comp. Science Dept.
Stanford University., STAN=-CS=79-731, 1979.

Sanella- D.,» Wirsingr, M.: Implementation of
Parameterized Specifications. Proc. 9th ICALP
1982, LNCS Vol. 140, pp 473 - 488, 1982.

Wegher, P.: The Vienna Definition Language. Com=
puting Surveys, Vol.4, No. 1, March 1972.

November 1985

130 Appendix

Appendix

This appendix tries to serve two purposes:

- illustration of the objects (specifications, modules, rep-
objects) that are elements of the Languages and of the
scenario we have investigated; we present examples;

- illustration of concepts and algorithms of our approach in a
'‘micro' software development project with demands of verifi-

cation.

Since this paper 1is intended to describe the theoretical
foundations of the approach., the chosen example is rather tiny
and simplLte. A closer-to-reality application can be found in
(oLt 85bl.

our example is the famous stack, and we give definitions of it
in ASPIK and ModPascal. In order to verify a transition from
the ASPIK stack to the ModPascal stack, we define a rep-object
and check, if the realization property holds.

A stack may be specified in ASPIK as follows:

spec STACK

use ELEM, NAT

sorts stack

ops push: stack elem —> stack., pop: stack —> stack.,

top: stack —> elLem, empty: —> stack
props aLl s: stack aLl e: elem
[P1] popl(push(s,e)) == s
[P2] +top(push(s,e)) == e
[P3] top(empty) == error
[P4] poplempty) == error
spec=body

constructors empty, push

auxiliaries size: stack —> nat

define-auxiliaries size(s) := case s is
*empty = 0
*push(s,; re,) = size (s;)+1
esac

define-carriers
is-stack(s) := case s is
*empty: true
*push(s, re,;): if size(s;) < 10
then true else false

esac
define~-constructors
empty := *empty
push(s,e) := if size(s) < 10 then *push(s,e)
eLse error

define-ops
pop(s) := case s is *empty: error
*push(s, ,e,): s; esac
top(s) := case s is *empty: error

*push(s, re,): e, esac

November 1985

Appendix 131

endspec

This specification exhibits most of the syntax of specs.
Starred items denote carrier elements; ELEM, NAT and BOOL are
assumed as already defined.

It should be recalled that the semantics of the axiomatic part
of STACK (the spec header) consists of the category of un-
bounded stack algebras, whereas the algorithmic part (the spec
body) restricts the semantics to the category of stack
algebras 'of at most size 10'. As a whole, STACK possesses the
second meaning.

A stack may be defined in ModPascal as follows:

type MSTACK =
module use MELEM, MINTEGER;

public procedure mpush(e: MELEM);
procedure mpop;
function mtop: MELEM;
initial mempty;

Local type A = arrayl[1:10] of MELEM;
var a:A, 1:MINTEGER; Localend;

procedure mpush;
beqin if i < 10

then begin i := i+1; alil := e end
elLse error end
procedure mpop;
heqin if i=0 then error
else 1 == 4i~1 end
function mtop;
begin if i=0 then error else mtop := alil

end
initial mempty;
beqgqin i := 0 end;

This definition shows a ModPascal version of bounded stack.
MELEM and MINTEGER are assumed as already defined. Public
operation arities omit a first parameter of type MSTACK; this
parameter is supplied by the special syntax of modulLe oper-
ation calls.

The algebra carrier introduced by MSTACK is the cartesian
product (A x MINTEGER) id.e. tuples of array-integer values.
The semantical operations behind mpush., mpop, etc. take these
tuples as arguments and yield new tuples or select components.

We now want to specify a connection of both objects that

e maps the sort stack of STACK to the cartesian product sort
of MSTACK and the STACK operations to their obvious con-
terparts in MSTACK (signature morphism) .

® maps array-integer tuples (a,i) to STACK terms such that
onLy significant values are associated to non=-erroneous

November 1985

132 Appendix

terms (carrier mapping)

This is achieved by the rep-object RSTACK:

rep RSTACK
connecting STACK, MSTACK;
use RELEM;
ops push = mpush
pop = mpop
top = mtop

empty = mempty
repfct RSTACK(a,i) =
if i=0 then empty else
if 1<i<€10 then push (RSTACK(a,i-1) »
RELEM(alil))
elLse error.stack

repend

Remarks: a) RELEM is an already defined rep-object for the

obvious connection (although rep=-object names are
arbitrary in general).

b) The repfct RSTACK is ambiguously denoted by the
rep-objects name.

c) The conditions of the if-clauses are pure ModPas-
cal, the then- or else-branches are either pure
ASPIK expressions or structures mixed of ASPIK
portions, ModPascal portions, and recursive RSTACK

calls.
n

We now apply PMR to check if the re-co (STACK, MSTACK., RSTACK)
is a realization.

(1) The signature morphism is bijective; the sort mapping is

implicitly contained 1in RSTACK (stack = cartesian
product type).

(2) The homomorphy equations MHEQ are:

[H1] RSTACK (M.mpush(E))
[H2] RSTACK(M.mpop)
[H3] RSTACK (mempty)
LH4] RELEM(M.mtop)

push(RSTACK(M) » RELEM))
pPOop (RSTACK(M))

empty

top(RSTACK(M))

The dot notation in e.g. M.push(E) is equivalent to
mpush(M,E). The variables M and E range over the concrete
(cartesian product) carriers of MSTACK and MELEM.

(3) Symbolic execution is applicable to all equations of MHEQ.

The Local variable types of STACK are ARRAY and INTEGER.
The internal state of a stack incarnation is therefore
represented by a vector (a,i) where a and i are the Local
variables of STACK. We get the following formulLae and ex-
pressions as effect of the operations:

e Symbolic representation of a stack object before ex-

November 1985

Appendix 133

ecution of a procedure : (a,i)
® Symbolic representation of a stack component object
before execution of a function : (c)
Then we have
for mpush:
[S1] (ik10) = ({arirer,i+1)
[S2] 7(i<10) => (undef.,undef)

for mpop:
[S3] (i=0) => (undef.,undef)
[S4]1 7(i=0) = (a,i-1)

for mempty:
[S5] (a,0)

for mtop:
[S6] (i=0) = (alil)
[S7] (i=0) => (undef)

Notational remark: <{ari,e) denotes the array a after
assigning e to the i-th component. 'Undef' and ‘undef' -
vectors are the symbolic representation of erroneous
evaluations.

The application of TR-SYM yield a set SHEQ and a Lifted
rep-function RSTACK,_.

We compute SHEQ in two steps:

- substitution of the results of the symbolic evaluation
(SHEQ=1)

- substitution of renaming ModPascal constructs (built
from used or Local objects of STACK) and of RSTACK
occurrences (SHEQ-2).

SHEQ=-1:

The substitution is done in [H1] = [H4] for the operation
calls mpush, mpop, mtop and mempty, according to [S1] =
[s7]1.

[A1] (i<10) =
RSTACK (({a,i,EX», 1"’1)) =
pUsh(RSTACK((a,i)) ,» RELEM(E))
[A2] 7 (i<10) =
RSTACK ((undef ,undef))
[LA3] (i=0) =
RSTACK ((undef rundef))
[A4] 7 (i=0) =
RSTACK((a,i=1)) = pop(RSTACK((a,i)))
[A5] RSTACK((a,0)) = empty
LA6) 7 (i=0) =
RELEM((alil)) = top(RSTACK((a,i)))
[A7] (i=0) =
RELEM((undef)) = top(RSTACK((a,i)))

push(RSTACK((a,1)) RELEM(E))

pop(RSTACK((a,i)))

RSTACK .:
The reformulation of RSTACK is based on semantically
equivalent specs for the ModPascal array and INTEGER

November 1985

134 Appendix

types. We assume the obvious specs with the obvious oper-
ations.

RSTACK,: array x integer = stack
where array, integer and stack denote carriers of CTAs;

RSTACK (a,i) := if equal.integer(irzero) then empty elLse

if between (succ(zero), i, succi10(zero))
then push(RSTACK_ (arminus(i,1)) .,
RELEM, (read(a,i)))

eLse error.stack
Note, that RSTACK_ is a pure ASPIK operation.

SHEQ=2:

We modify [A41] - [A7] by replacing remaining ModPascal
through ASPIK and carrier mapping calls through their
reformulated version (RSTACK', RELEM').

[B1] Less(i,succ10(zero)) =
RSTACK'(assign(a,ire), plus(i,1)) =
push(RSTACK'(a,i), RELEM'(e))
[B2] not(lLess(i, succ10(zero))) =
RSTACK' (error.array, error.integer) =
push(RSTACK'(a,i), RELEM'(e))
[B3] equalL.integer(i,zero) =»
RSTACK' (error.array, error.integer) =
pPOop(RSTACK'(a,i))
[B4] not(equal.integer(i,zero)) =
RSTACK'(a, minus(i,1)) = pop(RSTACK'(a,i))
[B5] RSTACK'(arzero) = empty
[B6] not(equal.integer(i,zero)) =
RELEM' (read(a,1i)) = top(RSTACK'(a,i))
[B7] equal.integer(i,zero) =
RELEM'(error.elem) = top(RSTACK'(a,i))

(4) The artificial spec AS(STACK,MSTACK) is:

spec AS(STACK,MSTACK)

use STACK, AS(ARRAY,MARRAY) ., AS(INTEGER,MINTEGER)
ops RSTACK,: array x integer = stack

props /* [B1] - [B7] %/

spec=body

define-ops RSTACK, (a,i) := if equal.integer(i,zero)
then empty else
between(succ(zero) »

i,succ10(zero))

if

if
then

push(RSTACK, (a,-minus(i 1)),

RELEM, (read(a,i)))
else error.stack

specend

Remark: The AS=objects are necessary since they contain

November 1985

Appendix 135

definitions of RELEM, and RARRAY,. We omit details here.

(5) The object AS(STACK,MSTACK) has to be submitted to an
automatic theorem prover. There, the consistency of [B1]
to [B7] with the algorithmic definitions has to be checked
by induction proof.

In our case we yield the result: (S,M,R) is realization.
and the success is propagated in the SEE according to sec.
5:1s5!

We shortly scetch a situation, in which we currently branch to
(6) in PMR (i.e. symbolic execution is not applicable):

(6) Assume a specification QUEUE of queues. It encloses an
operation dequeue that removes the front element from a
queue. QUEUE i1is also programmed as module MQUEUE with
(among others) operation mdequeue. MQUEUE is represented
analogously to MSTACK by array=-integer tuples. Inserting
an element in the queue is done by assigning it to an un-
used array element and increasing of the integer pointer.
Mdequeue shifts the whole array one step Left and
decreases the integer pointer:

mdequeue(q) := if i=0 then error glse
begin Jj: INTEGER; J := 1;

while J<i do beqin
aljl = alj+1];
J := J¥1,; end
i:= i-1 end
The occurrence of the while construct influences the ap-
plicability of symbolic execution; we then generate the
equation
MICRQUEUE (Q.mdequeue) I€s
= MIdequeue(RQUEUE) I€s
and ask the user for the validity of this homomorphy
equation; his answer is processed as if a proof system
would have been used (i.e. the actions of sec. 5.1.5. are
performed) .

November 1985

