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Unification in the Datastructure M ultisets

Abstract:

In a forthcoming paper A. Herold and J. Siekmann generalize "pure"
AC-unification ([ST 751, [LS 761) to terms containing additional function
symbols (see also [ST 81], [FA 841). Generalized AC-unification thus attains
practical relevance for a broad range of applications. Pure AC-unification is
used as a basic mechanism and it is this key role that has motivated our
research.

We have improved upon earlier approaches by basing (pure)
AC—unification on a firm theoretical basis and presenting algorithms which
fully exploit the properties of the underlying mathematical structure.

In particular, the high degree of parallelism for AC—unification will become
apparent. Our algorithms have been designed for parallel hardware but
still yield significant improvements over earlier algorithms when used in
sequential mode.





Introduction

The unification of terms built from variables. constants and an associative
and commutative function symbol (AC-unification), has been treated by
Stickel [ST 74]. [ST 75]. Livesey and Siekmann [LS 76]. [SI 78] in the year
197S,-using different approaches.

Algorithmic improvements as well as theoretical completions have been
reported in a number of articles [FT 83], [FT 851, [HS 85], [HU 79], [ST 81].
The theory has only recently been extended to terms containing additional
function symbols [FA 84]. [HS 85]. [ST 81].

The notion of AC-unification and unification of multisets refer to equivalent
structures. For in a free term algebra built from variables. constants and a
two-place function symbol we consider the following congruence relation:
Terms which differ in a number of associative and commutative
manipulations, are collected in a congruence class. The multiset formed by
the leaves of a term can be identified with the congruence class containing
this term.

Apart from the well established Robinson unification [R0 65]
AC-unification is presently certainly the most important special unification
algorithm. Some of its applications are automatic theorem proving, rewrite
systems, program verification, the theory of abstract data types and logic
programming. Using AC-unification algorithms it is possible to extend
PROLOG to statements having the form of relations between multisets.
Using an explicit extraction of the mathematical structures upon which
AC-unification is based, we shall provide a compact and solid theoretical
foundation for the unification process. This theoretical framework will
prove to be useful for the design of efficient algorithms.

In the same spirit - mutatis mutandis - other unification problems can be
treated. In order to prove correctness and completeness of AC-unification
we need to argue in a free commutative semigroup H. Arguing in this
semigroup is sometimes rather clumsy. The reason is basically the same as
the reason that the equation y + l = 2 has to be solved more cautiously
over N than over Z This trivial example should motivate our approach: we
embed H in a rational vectorspace V and think of substitutions not as
endomorphisms of H, but as vectorspace endmorphisms of V. Now we can
use the machinery of linear algebra. Since the unification of two terms is a
local problem we confine ourselves to finite dimensional vectorspaces. Here '
linear mappings and in particular substitutions, can be described by
matrices. The choice of a basis which is particularly appropriate for a given
linear mapping is "visually" reflected by the form of the corresponding
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matrix.

A critical comparison of the two approaches cited above, can be based upon
this interpretation of unifiers as specific matrices. Furthermore without
any difficulty we recognize the equivalence between the AC-unification
problem and the following nu mbertheoretical problem: Decide whether
certain homogenous and nonhomogeneous linear diophantine equations can
be solved overiN and determine "minimal" solution sets.

Linear algebra is particularly well suited for a proper discussion of the
solutions of these equations. The solution sets we try to find, can be
interpreted geometrically, which will be helpful in the design of fast
algorithms.
In this paper we present a parallel algorithm which searches some finite
dimensional grid. Improved sequential search strategies can easily be
incorporated. Measurements which try to determine the computational
effects of these algorithms are in progress. Additionally we discuss the
decision problem for AC-unification. Two terms containing only variables
can always be unified. In case both terms contain variables and (possibly)
constants the decision problem can be solved computing the god of integers
which depend on the given terms. Very efficient algorithms are available
to handle this computation [Br 70]. In case one of the terms is
variable-free the decision problem is NP-complete [KNB 85].

The terminology we employ is the usual. Apart from some basic knowledge
of the rudiments of universal algebra the mathematical prerequisites are
restricted to linear algebra.
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For oountable sets X (variables) and C (constants) with XnC=zwe
consider the free abelian monoid 1“ generated by X u C We denote the
semigroup multiplication by +, and abbreviate(.. . ( f l  +f2 )+f_„ )...„+f )
(l'. e f) by:;Z f .  0 denotes the identity of 1’ which is assumed to be not an
element of C. The theory [GR 79] ensures the existence of f and shows that
f is determined up to isomorphisms by X u C A typical element f e ? has
the form f=  l‘x + f  with f Hiaix f= =2n ic iand  x i eX ,  ceC,

m 1-1
ai, nielNo. The sums l‘x , fc generate (free) submonoids FX ‚cf o f f  and f
is the direct sum of these sub monoids.

A familiar example or such structures is the semigroup NoxlNo. The

generating set X u C corresponds here to the set ( (1.0) , (0,1) }.
No xIN0 is most naturally embedded into the rational vectorspace 0x  0 .

consisting of the elements of the canonical grid in 02 with nonnegative
integers as components.

Analogously we may embed 1’ into a rational vectorspace v.
v consists of all finite sums E 0111*  5 pi ci with xI e X. cI e C, q„ pie 0.
Such sums are added and multiplied by rationals 1n the obvious way.
A basis of v i s  given by an ordering of the (countable) set X u C.
To the decomposition f == ?, + fc corresponds a decomposition

v - vx + 11., , vx, ve being the subspaces of u generated by KC
respectively.
Since 1-“ is free , any mapping from X u C to F can be uniquely extended to a
semigroup endomorphisms of f and conversely any semigroup
endomorphism of F is deter mined by its effect on X u (‘.

1W A substitution 6 of f is an endomorphism of F which fixes C
pointwise and moves only finitly many elements of X.

X u C (more precisely, an ordering of Xu C) is a basis of v, any mapping
from X u C to 9 can be extended uniquely to a vectorspace endomorphism
of v. This applies in particular to any substitution 6 and yields an
endomorphism 8 of v. Conversely. any vectorspace endomorphism of v
which acts trivially on C and almost all elements of X and maps the
remaining elements of X onto bio-linear combinations of variables and

constants, is the extension or some substitution.





he AC - nificati o e

2.1 Definition: For elements fr  f2 of f' a unifier of { f r  f2 }  is a
substitution 6 with6 (fl ) = 6 ( f2 ) .

We can compare unifiers 6,1’ of { f r  f2 } by setting 6 s t iff there exists a

substitution l such that equality 6 =11 holds for all variables occuring in
f l  and f2 . 0nUZ(  { f l , f 2 } ) , the  setofall  unifiersof{f1,f2 } ,we  have an

equivalence relation z given by 6 == 1.’ ill 6 .<. ‘l’ and r s 6 .Tbe relation s
induces a partial ordering in UZ ( { f „ f2 } ) l x and here we can talk about

maximal elements.

2 .2  Definition:

i) A most general unifier 6 of ( f„  f2 }  is a unifier, which induces in

UZ ( { f r  f2 } ) / =: a maximal element.

ii) pUZHfI, f2 } )  is a minimal set of unifiers (“ fr  f2 } ,  which

induces inUZvs /z  allmaximal elements.

Note that the axiomatic definition of uUZ ( { f1, f2 } ) as in [PL 72] , [SI 84]
produces the same set of most general unifiers. ME ( { f ‚. f2 } ) is uniquely
determined up to equivalence.

Now the AC- unification problem poses three questions:

3; Given elements fr f2 in f, can the existence of a unifier of { fP  t z }

be decided?
& Can the cardinality of pH: ( { f ‚. f2 } ) be calculated?
_(_:_‚_Can uUZ ( ( fl,  f2 ) ) be computed?

A positive answer to these questions has (among others) the following
implication:

A theorem prover, which works on terms, containing a two - place
associative and commutative functionsymbol, is refutation complete
[PL 72 ] .





3 .  fichlem geguction

The following manipulations of fr f2 do not change pUE. However they

simplify the problem, henoe in the sequel we will always assume that these
simplifications have been done already.
Let f' = h i !  + „Enici' f2==tyk+  Edam d beelementsoff.

111

We shall consider three types of problem reductions:

a)

b)

c)

We compute dx:-gcd{ai.bkllsisn, l sks s }  for dx =1 ,the
elements fr  f2 remain unchanged. For dx t l  we compute

dcwgcdlnrmellsism. l s e sw}  , d:=gcd{dx,dc} and
replacel‘i by l ld  f i ( l s i 52 ) .
Of course a is a unifier of ll“, tz}  if and only if a unifies
{ 1/d r„ l/d f,}.
(Note: In order to solve problem A of the AC-unification problems we

_ have to compute dx. Hence this work has to be done anyway.)

A reduction like in a)  restricts searchspaces to be defined lateron.
Passing from fi to l /d  fi is a trivial operation in the vectorspace v

but needs arguments if done in the semigroup EF.

Assume that the decomposition of f | ,  [2 respectively contains

variables 110 and Vko with Im - Yko . Then we substract a maximal

multiple rxi0 from f1 and f2 such that l‘I - rxm , f2 — um still do

not have negative coefficients. Treating constants occuring in l". [z,
the same way we may assume f„ l‘2 to have no common factors.

Without loss of generality we may assume that for a unifier 0 of
”92f } the term 6 ( fl ) contains only constants from
{0rdl1_1_mlse<wl1andois the ident i tyon
X \ {xryk l l s i sm l sks s } .
For otherwise there exists some xio (1 5 ins n) such that skin)
contains a constant c from C\ (c,. d. I l s i s m ,l s e s w}. Now
consider the unilier 6'





6(1) for x at ‘io

with 6(1) =
I fOfI ‘ f - ‘ I io

where t is the element of 5’ which is derived from skin) by replacing
all occurences of c in oki“) by a variable u ( It being a variable not
contained in f I ).

Let A be the substitution

1 for x t u
with M!) =

c n x x = u

We have 6 == A 6' and therefore we may replace 6 in uUZ ( ( f„  f2 } )
by 6'. Similarly we can justify the second assumption about 6.

4 .  Loc ' ntion and Transform tio o the - ic "on
Prob e ' to ine r e

In this chapter we shall associate with any unifier 6 of { f‚. f2 ) - normed
according to 3 c) - a matrix R( 6 ). 6 and R( 6 )  mutually determine
each other and all information needed for the solution of the
AC - unification prbblem can readily be obtained from R ( 6 ).

Let 6 be a unifier of { f r  f2 ) and assume f l ,  f2 to be given by some linear

combination of variables and constants as in 3 .  We define a set W as
fOflOWS:

If 6 ( f l )  does not contain variables, we set W =ß .  Otherwise let

W =={ u1 ‚..., ur }  be a finite subset of X containing all variables occuring in

6 ( f1 ) (but possibly more variables). Let A == { al at } be the constants

occuring in f1 and f2 and let { xl In } . {yl  V. } be the variables of
f ‚.  f2 respectively.
v, denotes the (finitedimensional) subspace of v with basis
{ xl 1n , y1 yl . a1 at ) and u is the subspace of v with basis





{u1  u„a l  a l } . 8 (v ‚  ) cuandSact s  (see 3 . c ) t r iv ia l l yonX\Xnv . .

Hence BIV : v e + 11 determines 3 (and 6) completely.
I

1.1 ßggglü

According to its definition W may contain variables not occuring in
o ( f1 ) . Henoe we may always assume that for unifiers aI , 62 of
{f ' , f2} ,e51|v. .o2 we are both mappings from v, t ou .

With respect to the given basis of 9, and u the linear map a l l ) .  is
described by some matrix R ( o ) with nonnegative integers as entries. We
recall:
the image of the i - th basis vector of v, is a linear combination of the
basis of u. The j - th coefficient of this linear combination defines the
entry at position ( i . i ) of R ( o ) .  Therefore we have

am

With respect to the given basis of v, , u respectively the matrix
R ( 6 )has the form

Rx(6) 0 }r
R(o) -  ]

Rc(o )  I } t
H—J w—‚J

n+s  I.

with submatrices Rx( o ) . Re ( o ) of the indicated size. 0 . I denote
suitable all zero - and identity matrices.

Note: All matrices used in the following have only nonnegative integers as
entries.

The matrices Rx ( o ) . Rc ( a ) describe special AC - unification problems.

a) By definition a substitution T fixes C pointwise. Hence 1' induces an
endomorphism ‘f'on Va: owe a: v,‘ . { r„ f2 } induces in I)" (identified
with v) an AC - unification problem { 1:3; } . We have





„uz((r„r2n;_puzu'rj‚'r;n.
If es has been associated the matrix R (6  ) , B'will be associated the
matrix R , (  c ) .

b) Let dh , )  , o ' ( y i )  ( l s i sn ‚ l s j s s )  be the terms
constructed from 6 (1 i  ) , u ( yi ) by eliminating all variables. The
substitution 6' defined by

o'(x i )  forx---xi
. o ' (x ) -  6'(Yi) for : -y .

1 otherwise

unifies { fr f2 } and will be associated to the matrix Rc( o ).

Hence a is characterized by two special unifiers. As we shall see later
on these unifiers cannot be chosen independently.

By definition fI ,f2 and
f1 - l'2 = ( a1 an , -b1 -b. , nl  ‚..., nII , -m1 -m' )T  (“) are

vectors in ve_ We set a === (a1 all . -bl -b‚ )T  and formulate
the following useful lemma:

Mm

(")

The following statements are equivalent:
i) a l l “  ) -  6 ( f2 )  i.e.oe uUZHfPl‘zH
ii) fI - l2 eltern €“),
iii) The rows of the matrix RX( 6 ) are orthogonal to a,

the scalarproduct of the first row of Rel 6 )  with a equals
-n1 and . . .

the scalarproduct of the last row of Rc ( o ) with a equals m'.

T denotes the traum-him of matrices.





Proof:

We only have to show the equivalence of ii) and iii).

Rx( 6 ) 0
8 | v, ( r,— fg) = R(6) ( fr rg) = ( a, -b‚ , n, -m‚ ) T

‘ Rc ( 6 ) 1
Now simple matrix multiplication shows the stated equivalence.

We now have to translate extremallity of 6 (with respect to s ) into an
equivalent notion in linear algebra.

Siam;

Let 6I be another unifier of {l‘I . l  . By‘ 3 c) and remark 4.1 we may
assume, that 3 I v, is a linear mapping from v, to u .  By lemma 4.2 81 w, is

described by a matrix R ( 61 ), whose structure is restricted by Lemma 4.3
iii). Let esl s 6 i.e. 5:  =1  6 with a suitable substitution 1. But then we

alsohave 63w, J im.  am.

With respect to the given basis of u we associate with l |”. the matrix

RAM 0 }r
R(A)=

Ron)  ! I t
_,» ___;

r t

with suitably chosen sub matrices.
Multiplying the matrices in R(o‚) - nm - R(6) blockwise we obtain:

5 ,1  Lemma:

For unifiers es1 , 6  of { l", f2 } and a substitutionx we have (SI-'16 if and only

if the submatrices of the matrices M asI ), R( 6 ), R( A ) are connected by the
following two equations:

Rxloi) = Rum . R,!(G) and Re (A) - Ua) = -Rc(o) + ließ,).

- ‘0 -





By lemma 4.3 iii) the rows of Rx( csI ) , Rx( c ) and Rel o1 ). Rc( o ) are vectors
of N°" 5 OW" These vectors lie on a hyperplane Ho containing 0 or on
parallel hyperplanes Ho + v with v = v(ni) or v - v(mi) ( 1 s i s m, l s i s w).
The vectors vx  ( ni) are determined by 'vlnila = -—ni and v( mi) is
determined by v( mi )-=aami .

The componentwise partial order of 0‘“ is inherited to N°" 0 Ho,
N'“ n ( Ho + v ). We anticipate results of the next chapter which state that
Nm" n 1-10 and INFN n (Ho + v) have only finitely many minimal elements
with respect to componentwise order (9. [CP 611). We let 3 == (hi,...‚htl
BW) == {h‚(  v)....‚ hflfll  v ) }  respectively be these finite sets. Now the
main result about AC—unification can be formulated.

5.2 Theorem:

For elements fI ,f2 in f the set uU): ( { f l  ‚f2 } ) is finite. Let 6 be a most
general unifier of { f 1 , f 2 }  . Then - passing to an equivalent unifier if
necessary - R ( o ) is determined as follows:

1) Rule) is the kx(n+s) matrix whose i-th row is the vector hi

fromBllsisk).
ii) Rc(o)isatx(n+s)matrixwhosei—throw(lsismlisavector

f rom3(v (n i ) )andwhose  e - throwl l se s savec tor from
3(v (m. ) ) .

Conversely any unifier o with associated matrix R ( o ) which satisfies i). ii)
is anelementopZH f1 . f2 } ) .

21:0.i

The finiteness of uU! ( { f l  . r2 } )  is a consequence of i). ii) and the
finiteness of the sets 3 , B ( v ) respectively.
a) We show, that - up to equivalence - the matrix Rx(6) which

belongs to 6 is given by i).
By remark a) following lemma 4._1__ it_suffices to proof 5.2 i)  for the
related AC - unification problem { f | ,l'2 }.
According to lemma 4.3 iii) the matrix given in 5.2 i) defines a unifier





61 of { T; ‚_I'; }. Let 62 be some most general unifier of { T; ‚T, } with

associated matrix 1gb: ). Again by 4.3 iii) the rows z.( 1 s i s r ) of
Rx ( 52 ) have the form 11 3E} i i  hi . (Here we use implicitly that the
minimal elements of N“ ‘ 'n  Ho form a basis of the semigroup
IN " ‘ ' n Ho). The coefficients aii define an r x k - matrix L. But then for
a suitable substitution A we have L . Rx ( l ) .
From the definition of L we derive Kiozb  i l i -  Vale!  ) Le.
62 s 61. By hypothesis 62 is a most general unifier of { f l  , f2 } hence oI

is most general. The arbitrary choice of 62 implies a) and thus 5.2 i).
Passing if necessary to an equivalent unifier we may assume for the
rest of the proof that r = 1: and lg ( 6 ) is given by 5.2 i).

b) We show that - up to equivalence - the matrix Rc( 6 )  associated
with o is one of the matrices given in 5.2 ii).
Let us assume the first row hwl  of Rß (a )  is not contained in
3(v  (nl )). Then Wu":  

m+2“. a..ihi with some element w_“ in
13(v(nI )). We choose - accordingto4.3iii) - aunifieruI o f i fv fz }
such that Rx ( esl )= R" ( c ) ( R‘ ( o ) given by a) ). Furthermore we
take wllllin as the first row of Rc ( esl ) and choose the remaining rows
of Re ( 6l  ) equal to those of Itc ( 6 ). Consider the t x k - matrix

Fa”  a“: .
O 0

Mn:

0 o J

- 12 . .





c)

We compute

[Ziaiihi

=M-Rx(6 ‚ )= -R‚ (6 ‚ )+Rc(e ) .

. 0 J

I 0
Let the substitution A be defined by R ( A ) == [ ] .

M I

ThenwehaveR(6)= R(A)- RlesI )i.e. 656'.
Applying this process to the remaining rows of Re ( 6 ) we finally

obtain a unifier 62 such that R ( 62 ) is given by 5.2 i). 11) and 6 s 62. By
hypothesis 6 is most general, hence 62 is most general and b) has been
proved.

Any matrix R ( es ) given by 5.2 i), ii) defines a most general unifier of
”v f2 }.
For otherwise let ‘l’ be a most general unifier of { fr l ‘z}  with o s t .
Using a)  and b )  we may replace ‘l’ by an equivalent unifier 1" such
that R ( ‘r' ) satisfies 5.2 i). ii). From e s 1" we derive the existence of a
matrix

a, ( A) o
R( A ) = such that

neu) 1

R„(o)= Rx(l)-R„(t')= R„(1)-Rx(o)and
Rc(A)-Rx(t')= -Rc(r')+ Rc(6) -
Rc ( A ) .  Rx ( 1" )is  a matrix with nonnegative integers as entries.
- Re ( ‘r’ )+ Rc ( e ) i s  a matrix with nonnegative integers as entries iff
Rc( t ' ) -  Rc(o ) . (Here we use the minimality of the vectors inthe
sets 3 (v )  constituting the rows of Rclt'H. Hence R( t ' ) -  RH)
and c) has been proved. a), b) and c) prove the theorem.

-13 -





At this point we can compare the approaches of Livesey and Siekmann
[LS 76], on the one hand and Stickel [ST 73]. [ST 81]. HU 79]. [FA 84] on
the other hand.

The first method computes solutions of the homogeneous and
nonhomogenous equations defined in 4.3 iii) (via scalar products). These
solutions constitute the sets 3, NV) respectively. By theorem 5.2 these
computations are necessary and sufficient for a complete determination of
pU£({f‚. f2”. Hence the method cannot be improved theoretically. (of
course efficient practical improvements are possible).
Stickel treats constants as variables being subject to later considerations.
Now the matrix R(6) carries nontrivial matrices at the positions were in
lemma 4.2 trivial matrices have been placed.
This redundancy has to be eliminated later on by costly matching
Operations. The f act, that two terms cannot be unified will be detected at
the very end of the procedure. In comparison the splitting of the problem
given by 5.2 i.), ii) allows an immediate and fast test for unifiability as we
shall see in the next chapter.

6 or’ i of AC— ' ‘cati

In this chapter we contribute to the computational problems related to
ACE-unification. We shall discuss the decision problem and search strategies

. for finding the minimal solutions of homogeneous (nonhomogeneous) linear
diophantine equations (over N ).

6 . ]  [he decision problem

By theorem 5.2 the decision problem is equivalent to the problem of
deciding whether a homogeneous (nonhomogenous) linear diophantine
equation possesses solutions over No. For the homogeneous equations the

problem is trivial; hence we may confine ourselves to the nonhomogeneous
case.
We firstly assume that both of the elements f„ !“2 to be unified contains

variables i.e.

f l  = za ix  ?a ci. f z -Z4.3" V: +5131. d with natural numbers al, br arm
"1

With a = (a,...„an, - b„...,-b‚) we have - according to 4.3 iii - to check, if
the equations

(" )az=b(be{ -n l ,mt l l s  i s m ,1sksw})





can be solved over IN.

By elementary number theoretical results these equations are solvable
over Z iff g = gcd {a1,...,an, - b1....,—b8} divides the integers ni, mt
(1 s i s m, l $ 1: s w). We show, that under our hypothesis these conditions
are necessary and sufficient conditions for the decision problem. The
euclidean algorithm, which computers g, produces a solution
2' = (z"...„z'nmJ (z'‘ e 2) of the equation
(“ ) a z’ = g .
Multiplying z' with -ni/g, mi/g respectively yields integer valued solutions
2‘”, z‘” of ("). From these we construct solutions of (*) over 1N. Let us
assume z‘"l (the first component of 2‘“) is negativ and consider the
equation a1 21 - bizml - 0. A nontrivial solution (w, w') of this equation
with nonnegative integers w, w’ defines a solution q1 == (w, o,...,w', o,...,o) (w‘
as n+1 -st component) of the homogeneous equation associated with ("). Let
r be a natural number such that r w z xml. Then r q1 + ‚(il is a solution of
(*) (for b - ‘31) with nonnegative first component. Furthermore, for every

. nonnegative component of z“’, the corresponding component of rq1 + zm is
nonnegative. iterating this procedure we obtain a solution of M. = --ni over
1N. Analogously, the other equations of (") can be solved over N. Hence we
have proved:

§ . l .  Lemma:
If both of the elements fr  f2 of 1’ contain variables, then { f ‚ .  f2} can be
unified iff the god of the coefficients of the variables in fI - f2 divides the
coefficients of all constants in f1 — f2 .

Computer algebra provides efficient methods for the computation of the
gcd of a finite set of integers. A fast algorithm has been reported by
Bradley [Br 70 l. In case f1 or f2 are variable free the decision problem is
NP-complete. The construction used in lemma 6.1 does not apply, since the
special homogeneous equations we used there have only trivial solutions.
Hence only search decides if f„ f2 can be unified. Soon, reasons for the
exponential search effort will become apparent. We collect these
observations as follows:

{tum

lf fI or f2 are variable free we have to search in order to solve the

corresponding decision problem. ln this case the decision problem is
NP-complete.





O . _ ' ' " " _ | ‚„
! _ -. >»  . I . ‘..' ‚ | .  H . .  . I I .  . _ l  . ,  " ” . J .  !0_

io ant' a i  s over

By theorem 5.2 i) an AC-unification algorithm has to produce the minimal
solutions (over N) of some linear homogeneous diophantine equation. The
exponential search effort (8. Lemma 6.2) forms a natural barrier for
sequential strategies. We therefore propose parallel procedures with
substantial speedup under the realistic assumption of limited 'teirmdepth
The equatio n to be discussed is given by i.: a111‘ _}: biyi==0  (trivial cases
are not considered. )
Huet [HT 78) has shown, that all minimal solutions of this equation are con-
tained in a square "" Q := [O,b}ll x [0,al' 1: 0°" with a - max {3111 s i s n}
and b = max (bill s i s m). Huet provides an algorithm which searches
lexicographically in Q for minimal solutions.
Other algorithms have been reported [FT 83]. We believe that
modifications of the Smith-Normalform (a construction which simulates the
GauB—Algorithm for rings) eventually will result in algebraic solution
strategies.
in the following we assume the existence of an algorithm a which searches
lexicographically in Q for minimal solutions. This algorithm will be applied
simultaneously to certain subsquares of Q.
The following preparation will prove to be useful:
Let S={1‚. ,n..1u {1... ..m) "" and P(S)- {Tc 5| T n {1.. .n..1 c c and

' Tn{1,.. . ,ml tfl }
We have |P(S)|= 2'”"— 2"— 2II + 1.
A set TeP(S) splits into sets T1-  'l'2 with T1“ To  {1.. ..,n} and T2 =Tn  (1.....m}.
ByN(S) we abbreviate the equation ?: “1‘1“" 2“b iy ja

so ,  more general for
Td3(S) (T) denotes the equation E a. xi "121-biy i  - 0.
As for (5) any of these equations (T) determines a square as the set of all
solutions of (T). Let 0., denote the embedding of this square into 0 : -  QS.

("  FrommonbyaaquareQnmeantheaetofuctm'a inQarithnonnagatiaainteau'aaa
components.

(1") The numbera l .....n ‚und 1..... n stand for variables in a linear equation. with positive.
respectively negative coefficients. in order to avoid overloaded notation we agree to consider
the two aeta defining S aa disjoint.
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1%) is a subset of the boolean lattice HS) (the powerset of 5). This lattice
admits layers. The zeroth layer is the empty set, the first layer are the one—
element subsets of S etc. This structure inherits to P(S)= HS) and allows
parallel search in Q as follows.
Let R,T be elements of the i--th layer of P(S) and let u ,v be vectors in ()“,Q.r

respectively which are neither elements of 03. nor 01. with R CR and T CT.
We show that u,v do not compare with respect to the componentwise
ordering of 0“". From this we conclude that the algorithms (1, applied
simultaneously to OR \ U QIr , Q'r \ U Q1. , respectively does not produce a

R'cl T'C‘l'

minimal solution of S twice.
By reasons of symmetry we may assume RI and TI as different sets. Let

R\ RnT = (ip-„J.), T \ RnT = (i,...„l. The components of u are nonzero in
positions i.....‚ir and equal zero in positions j',...,jr . A dualized statement

holds for v. Hence u and v do not compare.

Where should Ct start while searching QR (R in the i-th layer of PIE”?
If we assume search in layers a has to search only the portion on \ U Q‘.

It cn

of On. The lexicographically smallest vector in this set is the vector with l

in all positions corresponding to R and zero elsewhere. This vector is the
st 2 r tingpoint for a while completing search in QR .

If d processors are available for search, we can apply these processors in
parallel to d squares QRk ( lsksd). The effort needed by one of these

processors while searching in OR: is given by the measurements at, bk of

the square QR: . In order to distribute work uniformly over all (1

processors, the Rt. should be chosen such that the size of the squares RI

differ as little as possible. This can be done by sorting the QRr We just put

a suitable ordering upon the set of all pairs (ab) where (mb) are the
measurements of a square Qll with an element R of the i-th layer of P(S).
If 0i finds a solution of (S) in 0n\ U QR. this solution need not be considered

[ren

in case smaller solutions have been found previously. Smaller solutions are
to be found exclusively in squares or with R' = R. Hence in addition to

parallelity in search we have parallelity in comparison with previously
found solutions.
The speedup by parallel use of at can roughly be estimated as follows:
Using d processors for parallel search the minimal solutions of Q will be

. . . ]? -





found approximately in the same time as sequential use of at needs to
investigate the d -  th part of Q.
We have mentioned the exponential character of the search. Since all
subsquares QR have to be visited by a, the size of P(S) is a measure for the
complexity of the search. Since IP(S) | - -22"" - 2" -  2"+1 ,  P(S) grows
exponentially with the number of variables in the equation (S).

6 ,3  Parallel Search for Minimal Solutions of Linear
WW

Similarly as in b)  we can parallelize search for minimal solutions of

2 aix1 ~2b’y i - c  ( ce2 \ {0} )
( S )

2 ai xi= c

The rational solutions of (8) form an affine hyperplane in 0°" . As in 6.2
we assume the existence of an algorithm ß which searches lexicographically
in squares for minimal solutions of (S).

Such an algorithm can be constructed from the previously used algorithm
0: as follows:

' We turn the equation (8) 2 a lx  -£b 'y ‚==c into the homogeneous
equation (5') 2 “111' ‚z.;ib yi -  c zwith 1311141 .“  cm and z = ymlorfor
c > 0. (Similarly we proceed for (S): 2 :1i 11‘ c).

Without loss of generality we may assume z== XM. Minimal solutions of 8'
are to be found in the square 03‘ == [0,bP“ x [0,a]II with a ==
max{ai‚cllsisn} b == maxlbi llsjsm}. 11' (xi... xn,l,y,,...,yn) is a minimal
solution of (S') then (XP.... In,y„...‚ya) is a minimal solution of (8).
Conversely let u- (x,...., x'n,y1....,y.) be a minimal solution of (S) and assume
u'-(x1,..., xn,l,yl,...,yu) is not a minimal solution of (S'). But then there exists
a solution v= “{  10°,0, y‚'‚...,y_‘) with xi‘sxi and Y"SY' ( l  s i sn .
1 s i s m). The vector v‘- ( ‘n '  xn , y,‘,...‚y_) solves the homogeneous
equation associated with (5). Hence u-v‘ is a solution of (S) with
nonnegative integer components and u-v'< u, a contradiction. Therefore 11‘ is
a minimal solution of (S') and we have:





The minimal solutions of (5) correspond bijectively to the minimal solutions
of (3) with l as n+l-st component. Searching lexicographically with at the
portion of (Jg., where the n+l-st  component equals 1, we obtain an
algorithm B with the desired properties.

Now we proceed as in the homogeneous case. (Again we may assume c < 0)
Let S = {1....,n}c {1....,m} and P(S) =-P(S)UP({1....,n}). For TelP(S) we denote
by (T) the corresponding nonhomogeneous equation and by (T ') the
associated "homogenized" equation. Let 01" (I) be the points of QT. carrying
a l as n+1 —st component. As in the homogeneous case using the layers or
P(S) we may parallelize the search for minimal solutions 111 OS“).
The setm corresponds to the set of subsquares which are scanned by the
algorithm. By the following argument this set still can be pruned without
affecting the completeness of the algorithm.
Let T be in WS"? \ P({l,...,n}) then with a slight modification of lemma 6.1
we have:
GT,“) is empty, iff the god of the components of the homogeneous equation
(T') does not divide c. In this case T can be eliminated from IP(S) without
affecting the completeness of the algorithm.
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