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Unification in equational theories, i.e. solving of equations in varieties. is a basic
operation in Computational Logic. in Artificial Intelligence (AI) and in many
applications of Computer Science. In particular the unification of terms in the
presence of an associative and commutative f unction, i.e. solving of equations in
Abelian Semigroups. turned out to be of practical relevance for Term Rewriting
Systems, Automated Theorem Provers and many AI-programming languages.
The observation that unification under associativity and commutativity reduces
to the solution of certain linear diophantine equations is the basis for a
complete and minimal unification algorithm. The set of most general unifiers is
closely related to the notion of a basis for the linear solution space of these
equations.

These results are extended to unification in free term algebras combined
with Abelian Semigroups.
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Unification Maury is concerned with problems of the following kind: Let f
and g be function symbols, a and b constants and let x and y be variables and
consider two lint order terms built from these symbols, for example:

tl = f(x g(a b))

t2 = f(g(y b) x)

The problem is whether or net there exist terms which can be substituted for
the variables x and y such that the two terms thus obtained from ‘n and t2
become equal: in the example gla b) and a are two such terms. We shall write

e,-lx:—g(ab),y:-a)

for such a unifying substitution: 51  is a uni/Fer of tI and t2 since e'tI-e'tz.
In addition to the above mm pine]:- there is also the problem of
finding a unificflian maria. which enumerates the unifiers for a given
pair t1 and t2.
Consider a variation of the above problem, which arises when we assume that f
is commutative:

(C) [(x y) = fly x)

Now es1 is still a unifying substitution and moreover 62 = {V+-a} is also a unifier
for tI and t2 since

5211“  fix g(a I:)))--c f(s(a b) x) - 5212-

But oz is lore general than a,. since csI is an instance of e2 obtained as the
cal-positron A - e2 with A =- {x :- g(a b)); hence a unification algorithm only
needs to compute 52-

In some cases there is a single and essentially unique least upper bound on the
generality lattice of unifiers, called the los: [am:] Uli/ia:
Under commutativity however, there are pairs of terms which have more than
one most general unifier, but they always have at most finitely In}: This is
in contrast for example to the above situation of free terms , where every pair





has at most are most general unifying substitution.
The problem becomes entirely different when we assume that the function
denoted by f is associative:

(A) f(x f(y in = rm: y) z)
In that case ° !  is still a unifying substitution, but

63 = (x «- f(a(a b) sh b)). y «- a)

is also a unifier:

cat, = f(f(8(a b) 8(a b)) 8(a b))=A f(8(a b) f(s(a b) 8(a b))) = 0312.

But 64 - (x <— f(g(a b) f(s(a b) 8(a b))). y e- a) is again a unifying substitution and
by iteration of this process it is not difficult to see that there are infinitely
nur unifiers. all of which are most general.
Finally. if we assume that both axioms (A) and (C) hold for f then the situation
changes yet again and for any pair of terms there are at most finitely nur
um! um” nlfier: under (A) nd ra which is the subject of this
paper.
Central to unification theory are the notions of a nt ar 10.11 "um
unirien pm" (traditionally: the set of base vectors spanning the solution
space) and the Met-m; ar Mint!” problem based on uUZ:

(i) a theory T is unitary if uUZ always exists and has at most one
element.

(ii) a theory T is [1111117 if uU}: always exists and is finite;
(iii) a theory T is Mininry if uUZ always exists and uUZ is infinite for at

least one pair of terms:
(iv) a theory T is of url/w otherwise.

We denote a Mic-tum problem under a theory T by

<s=t>r

The field of unification theory, term rewriting systems and applications are
surveyed in [H0 80] [Si 84] and most recently in [Si 86].





1.1 W

Terms under associativity and commutativity closely rese mble the
datastructure multisets (sets which may contain multiple occurrences of the
same element), which is used in the matching of patterns (pattern directed
invocation) in many programming languages of Artificial Intelligence (AI) (e  ..g
[Hw 72], [RD 721). This pattern matching problem for multisets (often called
basin the Ill-literature) was investigated by M. _ Stickel in [St 75]. [St 76]
who observed thatthis prOblem can be reduced to the problem of solving
homogeneous linear diophantine equations over the positive integers (N  ) with
the additional proviso that only positin- linear combinations of the solution
set are admissible. His results were finally published in [St 81].
Certain equational axioms may force an automated Mm. pmrer [Lo 78]
[CL 73][W0 84] to go astray. G. Plotkin [P1 72] showed how to build these

_ troublesome axioms into the unification algorithm of a resolution [R0 65 ]  and
paramodulation [RW 69]  based theorem prover. Building upon this work,
Livesey and Siek mann (L5 76] [LS 78-] investigated the axioms of associativity
(A) and commutativity (C), since they so frequently occur in applications of
automated theorem proving. Independently of M. Stickel they also observed
the close relationship between the AC-unification problem and the solving of
linear diophantine equations. They proposed however a very different
reduction (among other differences a reduction to Management:: linear
diophantine equations) which. appears to have some advantages over the
combinatorics of the Variable-abstraction" process in the STICKEL algorithm.
These results were never properly published, since an important problem
remained open: the extension of the AC—unification algorithm to. the whole class
of first order terms. The suggestions for such an extension in (St 76]  as well as
the naive sketch of an extension proposed in [L8 76]  turned out to be missing a
crucial point m"W": the subformulas of a term to be AC—unified can become
longer, Le. have more symbols. than the original term (see section 3.3 for an
example) and hence the termination of the extended AC—unification procedure
became a major problem, which remained open for many years. It was finally
positively solved by F. Pages [Pa 83]  [Fe 84] [Fe 85] using an ingenious
complexity measure on AC-terms.
G. Huet [Hu 78]  , A. Fortenbacher [F0 83]. D. Lankford [La 85]  and W. Büttner
[Bil 85 ]  give efficient methods to solve homogeneous linear equations where
only positive linear combinations are ad missible, a problem originally
investigated in [G 1873]. This is an important component of every
AC—unification algorithm. A comparison of the algorithms of Huet and
Fortenbacher and an extension of these algorithms to the case of

lawyer]: Thia problem m firat brought to our attention by Bob Boyer. now at University of Tom. in a
private communication (while "Inning ILS 78)). We gratefully acknowledge thia crucial hint a well
aa hla many helpful “nennen:.





inhomogeneous equations can be found in [GH 85].
JM. Hullot [Ht 80], F. Pages [Fa 84] and Fortenbacher [F0 83] [F0 85] discuss
computational improvements of the original STICKR-algorithm. Recently
another approach to AC-unification was pr0posed in [Ki 85].
6.3. Peterson and M.B. Stickel [PS 81 ]  present a generalisation of the
KNUTH-BENDIX completion algorithm for term rewriting systems [KB 70] based
inter alia on AC—unification The practical advantage of a special purpose
AC-unification algorithm is particularily well demonstrated for term rewriting
systems in [St 84].
Apart from interest in a practical and fast algorithm, which computes the set of
unifiers there is the main theoretical observation that the set of most general
unifiers is always finite for AC-unification problems. This fact was
independently discovered in [St 75] and [L8 76]. However. since the set of
most general unifiers (mgu) corresponds to the set of nonnegative solutions of
certain linear diophantine equations. the finiteness of the set of mgu's follows
immediately from a theorem of Dickson [Di 13] as demonstrated in section 2.2.

This paper improves on the original work of [L5 76]  [L8 78 ]  and also extends
the algorithm to the whole class of first order terms using a modification of the
PAGE-complexity measure in the proof of termination.

MW

Unification theory rests upon the notions of universal algebra (see e.g. [Gr 79]
[BS 81]) with the familiar concept of an algebra A = (A. P) where A is the
mic! and ! is a family of operators given with their arities. For a given
mama relation 9 the quotient algebra modulo 9 is written as
A„ = (A„, r).
Assuming that there is at least one constant (operator of arity 0) in P and a
denumerable set of variables V , we define T. the set of first order terms, over
l' and V. as the least set with (i) V s 'l'. and if arity“) - 0 for f e  ! then f e  T
and (ii) if t1 tn e T and arity(f) = n then l‘(tI tn) e T.
Let Wa) be the set of variables occuring in term 's; a term 9 is gland if
V(s) -9 .
As usual f denotes the algebra with carrier 'l' and the operators are the term
constructors corresponding to each operator of P. I' is called the absolutely free
(term) algebra, Le. it just gives an algebraic structure to 'l'. If the carrier is
ground it is called the initial algebra [GT 78]  or Herbrand Universe [Lo 78].
A substium‘ao e: 'l' -» T is is an endomorphism on ! . which is identical
almost everywhere on V and hence can be represented as a finite set of pairs
5 = { xl «- tI ane- tn}. The restriction ulv of a substitution 5 to a set of

6





variables is defined as olvx = ox if x e V and 0l  = 1 otherwise.

2 is the set of substitutions on 1' and a the identity. The application of a
substitution 6 to a term t e 'l' is written as at. The composition of substitutions
is defined as the usual composition of mappings = (o - th  = o (tt) for ta  1'.

Define now: = {x e V: o x + ! }  (domain of 6)
Cone ={ox=xeDOMo} (codomainofc)
VCODo =- VlCODrs) (variables in codomain of o )

If VCODo = B then a is a mud substitution.
A set of substitutions £ : Z is said to be um an Favorite-Z : W in the
following two conditions are satisfied '

(i) DOMo-W fora l l eez
(ii) VCODenZ-ß fora l l eez

For substitutions based on some W we have DOMo n VCODo - fl, which is
equivalent to the idempotence of o, i.e. coo - e.  We shall use this property in the
proofs later on.
An „zum s - t is a pair of terms. For a set of equations T, the equation!
um presented by T (in short: the equational theory T) is defined as the

finest congruence -T on 'l' containing all pairs es - at for s - t in T and o int .

(i.e. the 2-invariant congruence relation generated by T).
Two terms s,t are T-equal if 8 =1. t. We extend T—equality in 'I' to the set of
substitutions Z by:

6:71: iff Ve  man .

If T-equality of substitutions is restricted to a set of variables W we write

6 ---.,t [W] iff V e run-Tu

and says and 1’ are Focal/in l
A substitution 1 is Jar-0:030:11 than 6 on W (or s i: l r-nmm d' 1'
on W):

osTt  [W]  iff B le i  6=TÄT [W].

Two substitutions 6,1 are called T-equivalent on W

o 31.! [W]  iff o sfr [W]  and ‘l' 51.6 [W].





Given two terms s,t and an equational theory T a unification problem for T is
denoted as

( := -h . ] .

We say < s = t >... is T-unifiable iff there exists a substitution 6 e ! such that
as =1. at and we call a a T-unifier of s and t. For the set of all T-unifiers of s and

t we write U£T(s, t). Without loss of generality we assume unifiers 6 of s and t
to be idempotent (if not we can always find an equivalent one which is). For a
given unification problem < s = t "r! it is unnecessary to compute the whole set
of unifiers [12,“, t), which is always recursively enumerable for a decidable
theory T, but rather a smaller set useful in representing UST. Therefore we

define cU2r(s, t), the «to-plot: nt d' uni/Fon an nd t on W - Wu) ass

(1) wire U22.r (correcteness)
(ii) V ö e U2T El 6 e cU2T= & 5,6 [W] (completeness)

The m tar-art um” uni/kr: pUZT(s, t) is defined by (i). (ii) and

(iii) V o, r e pUZT: a s1. t [W] implies a - 6 (minimality).

For technical reasons we have the require ment as defined above: For a set of
variables Z with W s 2.

(iv) uUZ!T (resp. CUET) is based on W away from 2

If conditions (i) - (iv) are fulfilled we say pUZT is a an of no." "mu

”117m: away no. 2 [PL72].

The set uUZT does not always exist [FH 83] [Sc 86]; if it does then it is unique
up to the equivalence "1' (see [Hu 76] [FH 83]). For that reason it is sufficient to
generate just one uUiZ.r as a representative of the equivalence class MET)"-

Sometimes it turned out to be useful to extend the relation s.]. [W]  used in the
definition of completeness and minimality to s., [X] with W : x a Z.. This
procedure is justified by the so called "Fortsetzungslemma" (extension lemma)
and will often be used in the completeness proofs of our algorithms:





1.2 m 1: For two idempotent substitutions 9: -  92 let 2 and WEZ be
sets of variables be with DOME2 = W and VCODaZ =3 .

Then Bl s1. 62 [W]  iff 9 '  s, 82 [2.1

Hanf? Let V = Z\W be the extension of the validity domain. By assumption
there exists kw with 91 "‘r H92 [W]. Since VCODB2 n Z = ß we can find kw such
that for all 16  V Aw: =1.  Define "v ={xe -  l l xe  V}=B ‚ l v  and let A ’Avlw-

Then for x e W we have 1921 ‘r Avlwezx = lvelx = 911 = l  by definition of AV
and kw and the idempotence of B,. For x e V 1821 = Avl‘ßzx ‘rk = l  since
1“,! = !  for xe  V and DOMGznV =B. Henoe 9 |  2., 182IVUW =2].
i.e. BI s.r 82 [2]. The other direction is trivial. I

Another technical lemma about composition of substitutions from the right
useful in some proofs later on is:

1.2 Lg"; 2: For idempotent substitutions 6. 6,  { and a set of variables V
with DOMt =6(V) and VCODT o ( GW) u VCODo u V ) = 6:

DOMto = V u DOMo _ and
ifö :.r t [6(V)] then do 51. te [DOMte].

Haar?- With the previous lemma we get 6 s., ‘l’ [6(V u DOMoll and hence
be s., 1'6 [V  u DOMc] and DOMto = V u DOMo.





2.- n: um . sLIANINoms

' Let a family of operators P,; consist of denumerably many constants C (O-ary

functions, written as a b c :11 b2 ), one distinguished constant l e  C (the

unit) and one binary function symbol zu. Let V be a. denumerable set of
variables (as before denoted by. x y z xl y2 ).
Let T„ be the set of terms. over F, and V (in infix notation) and I; the
corresponding term algebra. With the equational theory '

AC1 - {by - ya, n1  - x, (:=—y)“ - nlysz) }

define an as the Z-invariant congruence relation generated by AC! in I; In

this section we are interested in solving equations in the quotient algebra
LA“! modulo 'ACI' i.e. the interest is in ACl-unil‘ication problems < s - t >“!
where s, t 6 Ti.
For ease of presentation we drop the 3’3 and the parentheses in this section and
represent the elements of T„ as strings over c u V.
An ACI-unification problem < s - t >Ac1 ‘is said to be normalized to
< s' = t' > Am iff the common symbols in s and t are eliminated pair by pair and
s', t' either do not contain the unit 1. If one of the strings becomes empty it is
set to l .

- Since the semigroup of abelian strings is isomorphic to the free commutative
monoid and free monoids are left and right reducable the set of unifiers
UZAc1(s, t) is the same as UEACIG‘, t'). Hence we always assume that
ACl-unification problems are normalized.

2 .1  I] " i tion Al ithm

To introduce the algorithm from the point of View of an intelligent human with
a blackboard and chalk we use the following example:

(El) < xxxyyaabew = wzcdel >M1

where x,y,z,w e V and a.b,c,d,e,l e c.
A more convenient notation for the normalized problem is:

< x3y2a2b = zed ’Acr

10





(El) has among others 6 = (x «- ab-cd, y «- a3bcd, z «— a"b5c“d“} as a unifier. Also -
the following infinite chain of substitutions unifies (E1 )=

an = {x «- abcd, y «- anbcd, z +- a5*2°b‘c*d4} fOr n— = 1, 2, 3, .

A However for this chain of unifiers there exists an upper bound:

m-{(y«—ucd)(z«-13u2a2bcd)} ,  with a«:__m ö=mlw1rorn 1,2..3.

where u is a new variable not in W = layzazbewyzdel ).
' The reader may want to construct the corresponding in with

6-  [WlforW-  {x, y,z,w}n 'AC! Ä'n ömax

for himself, since this demonstrates the main observation of this paper: the
composition of substitutions corresponds to the addition of integers.

2.1.1. irst

Returning to example (E l )  we ask for the general form of a most general
unifying substitution 6: firstly 6 will only move the variables already occurring
in the two strings, in this case Ly and 2 respectively. Hence it will have the
general form:

6={1  «try -5 ,2443}  forcertaintie'l'x, i=  1 ,2 ,  3.-

Secondly 6 will only substitute constants already occurring in the unification
problem (since otherwise it can not be most general). And finally 6 may
substitute variables already occurring in the two strings and/or it may
substitute 'new‘ variables.
For simplicity let 6 introduce only 'new' variables. i.e. uUZ is the set of most
general unifiers away from 2 as defined in section 1.2. Hence a unifier for (El)
has the general form:

6 ={  x «— u“n vmzl ann b°21 ens: am,
(EZ) y <— umu v'“22 ann b“22 c“32 dnqz,

z «- unis v”23 a“13 bnzs c"33 d”43 }

for appropriate mu, n“I e No (assuming 30 = l), where u, v are new variables.
The unification prOblem is now reduced to the problem of finding appropriate
values for the m“, nit. Before presenting a method of how to find such values

11





there is the question of how many new variables are needed: in the above
example just two'new variables u and v are sufficient. The general answer is,
that we need as many new variables as the dimension (number of independent

' solution vectors) of the solution space for the corresponding homogeneous
equation system, to be presented below.
In order to determine appropriate values for the mit, nur we observe the
following: for each symbol lb: number ar “rumba: of an symbol in
it, 10:! be lb: une :: the number— af mane-nae: in it:
This fact completely determines the mit, an since we can now set up a

' diophantine equation for each symbol:

for u: 3 mn  + 2 in,2 = mm
for v: 3 m.“ + 2 m22 = mas

fora: 311„+21!112 '+2 =n13
(E3) for b: 3 n21 + 2 n22 + l = 1123 for m“, hike No

fore: 3n31+2n32‘ =n33 +1 '
for d: 3n,“  +2n42 sn43  +1

That is for each variable we obtain a homogeneous equation and for each
constant an inhomogeneous one. But note that the homogeneous part is the
same for all equations. The following values for the mit, nik are an example for
a solution of the above equation system:

for u: ml,-1, mus-1, mß-S, sayxu-(IJJ)
for v: m21 = l, m22 = 0, “‘23 = 3, say x„ = (1,0,3)

(B4) for a: nH = 0, 1112 = 1, n13 = 4, sayx,= (0,1,4)
for b: 1121 == l, 1122 = 0, 1123 in 4, say x1, = (1,0,4)
for c: n31=1, n33 =1, n33=4, sayxc=(1,l,4)
for d: n,“ = 0, 1142 = 2, n43 = 3, say )(,| = (0,2,3).

Substituting these values into (E2) above, we obtain an actual unifier:

. 6 = ( x «- uvbc, y «- uacdz, z «— u5v-”a“b“c“d3 )

How do we obtain all unifiers and how do we obtain the most general ones? In
section 2.2 it is shown that every solution of a linear homogeneous diophantine
equation in "a is a positive linear combination of certain base vectors

12





spanning the solution space for this homogeneous equation. It is also shown
that every solution of an inhomogeneous linear diophantine equation in No is a
combination of a special solution which is minimal in some sense and a solution
for the bomogene'Ous part. " '
The base vectors spanning the solution space for the homogeneous equations in

' (Estate ' .

(Es) m, = (o,1‚2)= (m", mu. m”)
_ mg = ( 1.0.3) = (mm. mas.» mas)

and a special solution for each inhomogeneous equation is:

for a: it‘s (0,0,2)- (n“, “121313)
for b: “n„ = (0,0,1) = (am, n22. n23)

(as) for 1:: ac 40.1.1)» (113,,1132, 1133)
for d: “a = (0,1,1 ) = (n“, “42' n43)

By taking for each constant one special solution we can construct a non
general uni/Far 6: taking the vectors n., oh, no, nd, as well as two new
variables Zr 22 and substituting the appropriate values of the mik and “11: into
(EZ) we obtain =

o =( x 4- 22, y <— zlcd, z «— zzzlazbcd }.
Why is the previously constructed unifier 6 an instance of a? As mentioned
above the solutions (E4) can be represented using the base solutions (ES) and
the special solutions (E6):

x„= 1 1111+ 1 mgr-(1,1,5)
x‚- 0m1+1m2-(1‚0‚3)
xi: “N lml+0m2=(0,1‚4)

(E7) xh=nb+ 0m‚+1m‚=(1,0‚4)
xer- “(:" 0m1+1m2=(1‚1‚4)
xd= nd+ 1m‚+0m2=(0‚2‚3)

Now just as the particular solutions at“ to "a are obtained from the ml, m2,
n. ‚..., nd the particular unifier ö is obtained from c as:

6=A-s[{xyz}l
with A = { zl «- uad, z2 e- uvbc }, where A can be computed directly from the
linear combination of vectors in (E7).

13





Hence any unifier can beobtained from a most general unifier in just the same
way as any solution of the equation system (E3) is obtained from some special
solutions of the inhomogeneous equations and [mm the basis solutions of the
under-lying homogeneous equations. However, One cannot simulate the
subtraction of vectors by composition of substitutions, and also negative
powers of constants are not defined. Thus we have to solve the equations in
positive integers and only positive linear combinations of these vectors are
allowed. This leads to the following algebraic problems:

(P l )  Given a linear diophantine homogeneous equation system, does there exist
' _a fin/Ye base of independent positive solution vectors such that every

solution to this equation system is a positive linear combination of the
base vectors? ' ‘

And secondly:

(P2) Can the positive Solutions to an inhomogeneous equation system be
obtained as a positive -' linear combination of me special solution with the
set of base vectors for the corresponding homogeneous equation?

In section 2.2 it is shewn that the answer is essentially positive: the only
complications are that we need a larger (as compared to the solutions in the
rational numbers Q), but still finite set of base vectors for (Pl) and we have to
consider more than one special solution ( but still only finitely many) in order to
solve (P2).

ILLW

Following the outline of the previous paragraph, we shall now give a fomai
presentation of the algorithm. The input is an AC1 - unification problem
represented as:

P P P _ P
(GI )  (V1 1 V2 2 u .  VK K (3q . . .  c lq l  ""' VK"!  K' I ' l  . . .  VMPM c l+1q l ‘ l  „ -  cl-l >Ac1

where {vl VM} s V, {c‘ &} ;. c and pi, qt e H.
The output of the algorithm is a finite set of unifiers each of which is
represented as a matrix ( mit,  nit) of non negative integers as follows. Let N be

the dimension of the solution space of the homogeneous equation and let
u1uN be the new variables to be substituted. A unifier for (61)  is then
represented as:

H





' mu mm mm

"2 I mm m22 man

| .
I .
I .

“n ' mm “M mm

cz I 1121 1122 “zu
| .
I .

. I . . .
°L I “L1 11L2 nm

Note that this is just the matrix of (EZ) such that each column represents a
component of the unifier: ‘ '

6 = { vi «- ul'u uflmm clan aLi ,  1 s i s M}

The following two auxiliary functions DIOHOM and DlOINHOM set up and solve
a homogeneous ' and an inhomogeneous equation respectively. They are
separated out since they are the fundamental algorithms for our unification
process whose efficiency may be improved independently (see [GH 851).
The homogeneous equation arising from (GI) (say for ui) is

(G3HOM) 91m“ * p2  mi2  " * Puma: = Pm miK+I * * pMmiM

and the inhomogeneous equation (say for ci, l s i s- L and w.l.o.g. I s i )  is:

(G3INHOM) plni1 + pzni2 + + pxnix = pm“, 
+1+  + pMniM + qi.

15





‘ ION DIOHOM

lNPLflj: An AC! - Problem like (Gl ).

STEP 1: Compute the homogeneous equation as in (GBHOM)
£121: Solve (GSHOM) by the currently most efficient algorithm

(see section 2.2).

OUTPUT: The set of independent M - dimensional base
vectors (m„ m2 mw} spanning the solution space
or {ll} if (GSHOM) - has only the trivial solution -

m DIOHOM.

The next function computes the set of minimal solutions of an inhomogeneous
equation as described in section 22: instead. of just one we need several special
solutions of the inhOmogeneous equation.

man DIOINHOM

IEEE; 1. An AC1 - Problem like (GI).
2 .  A constant ci with l :=. i s L

' SIEP 1: Compute the inhomogeneous equation as in (G3INHOM) for cI

51532; Solve (GSINHOM) by the currently most efficient algorithm
(see section 2.2).

m The set of minimal M-dimensional solutions SCi = {n, ,...,nt)
or 9 if (G3INHOM) has no solutions

@ DlOlNHOM.

This gives the final algorithm:
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mm AC1 ‘UNIFY

IEEU'I': . An ACL—Problem like (GI).

STEP'O: Gl == NORMALIZEIGl)
STEP 1: (m„ m2 ,...,m„} = monomer)

_ m gr L=o then IIUZOmCONSTRUCTIm, ,...‚m.„)
else _wi PRODUCT ;. DIOINHOM(GI‚ c1) x ): DIOINHOM(GI , 0.)

am uUZ„= = 9;
Legen. (n,. n2 ,...,nL) 6 PRODUCT gg

aux”: ===uU‘z.‘o u {C0NSTRUCI‘(m1 ‚..., m“, n' nLD
&

OfllfPU‘I‘: The set of most general unifiers “UE“

m _ AC1 41mm.

The AC1 -unil‘ication algorithm uses two auxiliary functions: the function x,
WHICH Complnes the carteSian DI'OGUCI Of 1WD 3913, and the function CONSTRUCT.

Function CONSTRUC'I' takes N + L vectors as input.
_ [m1]

l . l
. I l

transforms them into the matrix I n, I (see GZ) and then computes the
I . I
Luz J

Usual "set of pairs" - representation of a unifier.
Of course we still have to show that the name 1117220 of the output set is
justified, Le. that indeed we are computing the most general set of uniliers.
While this is the subject of paragraph 2.3 we shall first look at another
example.

2.1.3. Minnie
Let azyac == hzzchMl be an ACI-Problem, which we shall follow through the
algorithm AC1 -UNIFY.
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. STEP 0= cxzya = bsm is the normalized form '

' ;TE l: The homogeneous equation is
2m„ * mlz  ' mlä  " 0‘

The solution space is spannedby
, m, = (0, l ,  l )
mg = (1, O, 2)

STE; z: There are two constants, hence L - 2.
The equations are

afnn-nagn l  for a

Znfl+nflen§3  = 2. for b
S - { ( 0 „ _ 0 1 ) }

S„={(l‚..00) (O.,.20)) hence
PRODUCT: S b

={((0 ‚0„1)(1,0,0))((0„01),(0„20))}

515113; Since there are two elements in PRODUCT, i. e. N = L, we have two . €
matrices (m„ m2, n,; 112) and (m,,m2,n,',n2'), where (111,- ng) and
(n‚'‚ nz') are the elements in PRODUCT. The actual values of the
transformed matrices are (note that we need two new variables u and
V):

_n;_ l  _ _lx_ul_'
ulO 1 l lml ‘ um i l lmI
vnoznm2 ' vl102|m2
a |001 |n1  a lOOl ln , ‘
b |100 |u2  b |020 |n , '

This gives the two unifiers uUEIo ={61,62}With=

o‚={x<-v‚b‚ y+—u„ Zeu‘vfia}
_ 2 262-{14-V2, ye-uzb , ztz-uzv2 a} .

2.2 Linear Bguations over N.

Before we prove correctness, completeness and minimality cl" “UE”, the set of
unifiers returned by ACl-UNIFY, we will first have to show that the algorithms
DIOHOM and DIOINHOM are welldefined. '
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Given an inhomogeneous linear diophantine equation

(En) all ,  + + an!ll 7- b _ ai, b el  for l s i s n

and the corresponding homogeneous equation

(Eu) aixi+...+anxn=0 _ air-:Zfor l s i sn

I _ we are interested in finding all positive integer solutions of (Eb)

sb = {q  = (y, ‚...‚ynH aly1 + +anya = b and yi a» 0 )

respectively all nontrivial positiye integer solutions of (so)

so =_- {g = (yI Yu) | a‚y‚'+ + anyll = o and Vi z o } \ {(o 0)}.

„ Let Gll be the set-of all solutibns of (Bo) in 2 then 60 is a subgroup of G =!“ the
. free Abelian group on n generators. Then Sa = Go n (F \ ll) where F = N“ is the

free Abelian semigroup on n generators and II the unit in F. Hence by Corollary
9.19 in [CP 6715" (if non-empty) is a finitely generated subsemigroup of F. The
basis of So is the set of all minimal elements in so with respect to the order

": ( ‘1  ‚...,ln) s u :  (yI My“)  iff sips yi for 1 s ign .

The set M of minimal elements of a set S with respect to s is defined such that
for all s e S there exists m e M with m s s and for all m e M if there exists 3 e S
withss  mthenm=s .
Let B ={b1 ,...,bt} be the basis of So then S0 = { x l x=  bill] + + bkllll , hi 2 0 ).
Hence we have the following result which was first shown in [G 1873]:

2.2 [AM 1: The set of positive integer solutions 80 of a homogeneous
linear diaphantine equation is positively generated by the
finite set of minimal (with respect to s ) elements of So-

In order to obtain the solutions for the inhomogeneous equation (En) let Mn be
the set of the minimal solutions of (Eh) with respect to s . By Theorem 9.18 of
[CP 67] which is a consequence of a theorem of Dickson [Di 13] we have the
important result that Mb is finite.
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In  summary, the following theorem shows how to compute 5b in principle:

2.2 füge; 2: The set of positive integer solutions Sh of an inhomogeneous
linear didphantine equation is

Sb ={tjlu=xb+xowithxbe Mb andxoeSoUfll} }.

M I t i s  easy to see that xb + "o is in Sb. Conversely let I; e Sn then if I; is in

Mb we are done with x =ll. Suppose 1; is not in Mb then there exists by

definition sq, in Mb with xb $ 1}. Therefore we have |; - x„ z ll and hence

u-xrxoesoorwwxo- ' — I

As computation is not done "in principle" there is the important problem to find
the most efficient algorithm computing B and Mb. Currently three algorithms

_ ' are known which cempute the basis of the solutions of a homogeneous equation
[Hu 78][Fo 83]  and [La 85]. In [61-] 85]  the algorithms of Huet and Fortenbacher
are compared and extended to compute the minimal set Mb for an

inhomogeneous equation as well.

2.3- Correctness. Completeness and Minimum:

We shall show that pUZn, the output of ACl-UNIFY, is indeed the intended set

of most general unifiers pUZAc‚(s‚ t).

2.3. Themen 1: ACl-UNIFY terminates.

Hoar} This is trivial, provided the two functions DIOHOM and DlOINHOM
terminate and always return a finite set, which was shown in the previous
paragraph. I

2.3. I'm-are. 2: pUEo is correct.

Proof?- Let o = { vi <— u'mn unmui ein“ aLi, 1 s i :=. M } be a substitution in
uUZo. As in 2.1.2 (61) assume

(i) s = V'Pt v292 VKPK c141 €q
(11) t = vlml’lm VMPM cm‘lm cL‘lL

We have to show that o unifies s and t, to. in as and at there occur the same
number of new variables un, 1 s. n s N and constants ci, 1 s i s L. Define *(p‚q)
as the number of occurrences of the term p in the term q. Now for l s n $ N we
have
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g .

#(uwos) é Z pi mni . from (i)
. ‚_l

M
= Z pi mni ' from (ii) and the fact that it is
i - m _ _ . a solution of (GSHOM)

= unmet).
Similarly we have for l s. i s L (wies. i s I)

x

l-(ci, as) =- Z pi" nii + qi   from (i)
i - t

M

= z pinii 7 from (ii) and the fact that it is
i '  " * ‘ , a solution of (GSINHOM)

» -l(ci‚ et). ' ' ‘ ' ’

Hence a \ is a correct unifier, since it substitutes exactly the same number or
symbols into each side or the AC1 -problem. I _

2.3. um. 3: uUE.‘0 is a complete set of unifiers.

Eva/I- Let the given AC1 -unil‘ication problem be of the form:

p p p q = 9(3.1) “’n 1v2 2 „VK lcc1 1...cl‘ll v1m lm vPMcM‘lm „.cL‘luAm

as in (GI) and for simplicity assume it is normalized. Let 6 be an arbitrary
unifier for (3.1) and let W ={v1,v2 ,...,VM}. W.l.o.g. we assume that
VCODö n W . E and DOME. g W. Let s l ,  s2 sH be the symbols in CODö difi'erent
from the constants cI cL.

We represent 6 = {vi <- 31'4“ sums CINIi cLNLi, l s i s  M} in matrix form:
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IVl  v2 VM I'

’1 I M11 M12 ".- “11.1"”:
82 I M21 M22 Mm "*"?

' I  . I
_ . I . . .- I(3.3) s“ I Mm Mm: m„

cl I Nu . N12 Nm I ="!  .
c2 I N21 “zu I =N2

I . I
. I . . . I

CL I NLl Nu: Nm I =NL

We want to show that there. exists 6 e uUE:ß and some. 1. e 2 such that
6 .---MI A . o [W]. The homogeneous equation for (3.1) is:

K M

i - I  i -  lm

and the inhomogeneous equation for each ci , 1 s i $ L and i s I, is

x M

i -  I i -K+l

As 6 is a unifier for (3.1) the number of occurrences of each symbol in 63 is the
same as in 6t; Le. the vectors H„ H2, . . . ‚HH solve equation (3.4). Similarily the
vectors Ni, 1 s i s L, solve equation (3.5) for each ci.
Hence by 2.2 Theorem 1 the vectors Hi can be represented as:

(3.6) "n == ammI + am"!2 + + am“?! 1 s h s H, for some alli 6 No

where { ml, . . . ‚m„ } are the vectors computed by DIOHOM.
By 2.2 Theorem 2 the vectors Hi can be represented as:

(37 )  "i .. bum!  + |);s + + hmm" + “i 1 s.. i s L, for some bit 5 No

where ni is an element in Scl as computed in DIOINHOM.
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_ Define _ n„=(_ah„a„,;„,a„) for 1 ==t
' man“, biz-‚..., um) for 1 sis],

Let o e uUZ:0 be ' the substitution corresponding to the matrix
a = '(mI mm",  n„ nz ‚...,nL), which must be computed in STEP 3. Define A as the
substitution corresponding to the matrix 1‘:- (a„ u2 a“, bl ,...,bL).

*: .  I uI u2 “n c :  . Ivt v2 VM

‘1 | an  ' am “1 | m“ mm
| . . _ ' . I .

. | . . . . I . .
su l  am am “u ' mm mun

cl  ' bu  but c l .  n“ “m
l. | . .  . | .

. l . . . | . .
“1.—I bu bu: - CL. nu “m

We now compute the composition of A and o:
' A-e = (u1 ‚...„n„ b‘ ,...‚bL) - (mI ‚...„‚m" n, mu.) by definition

= {uk <— sf": sH‘Ht clbn 031: I 1 s k s N}
: - {vi <- u1mti unmui c1911 ati I 1 s i s M}

= {vi «- slati spam c191: cLFLiI l s i 5 M} [W]

where am ‘ mliahl  * m2iah2 * * mNiahN

-Mhi  . f or l s i sMJs t ;

and pii= ml ib i l  *lmzibiz * * muibiu “5%
= ii f or l s i sMAss

2.3. am 4: ‘ uni:a is a minimal set of unifiers.

had:- Le_t o, ‘l' e “U20 with unfi t  [ W ]. Let (ml ,...,m„‚n‚ ,...,nL) and
(m1 m„‚n‚' ‚...,nf) be the matrices corresponding to c and ‘l'. Since
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“Hm“ [W] there is a constant (:.-1 é i sL ,  such tha tnnisui'. Suppose by
contradiction there exists A e 2 such that e =111:1""'[ [W] '

Chi..- ll‘ e 'amxw then n i s - {1142  a im for someai eNo

H&M-Let DOMo- DOMt-{-v_1,...V,V„}and w....10g DOMA-n VCODt=={u„..  . ,ufll'
-and far! s i ‚<. Mwe  have. where *(c. 11113 the numberwofoccurrenoesol‘c mist .

11(c., avi) = “c.,  Arvi-J
u .

= Me... ”1 )“ :  *(c. Aukl'Muki)
. _ k-l _ _

'with _ 1110i, avi") =- nü' - ' ' i = 1 M

Meptvi) =nii' _ _ _ j= 1 M
Means )  =15 _ _ _ k = l ‚...‚N .
“Up“? am“ 5 ' .k = 1 N_‚ j =1 M

and ni = (ni1 ,.....nm) '
“1' " (ni1"""niM')

mk=(m„‚.‚..mm) k=1,....‚N

Substituting these values yields_ _ "

ni =ni‘ +2  limb
m

But now n; sn i  and ni *ni', which is a contradiction since DIOINHOM only
computes a minimal set (see paragraph 2. 2). I

2.4  AC—Unirication without :11 Identity Element

lf_ the Abelian semigroup does not have an identity element we compute the
AC-unil‘iers as follows: first we apply the previous algorithm and- afterwards
the AC—unil‘iers are derived from the ACI—unil‘iers by a" trivial process ' oi“
variable elimination.
Since every AC—unil‘ier is trivially an AC1 -un1l'1er we have the following
obvious relationship where C(CODo) is the set of constants, occurring in the
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codomain of c, s andt are normalized and different from 1.

  2.4 kg; l=_ c e LEM“; Hand 1 ¢C(CODc) iff ceUZAch, t)

The set pUZAC is in general larger than “USA“, i.e. lpUzml s IpUZAcI. In order

to obtain a set of most general AC-unil‘iers from pUZAm, welhave to consider all

AC1 —instances of the AC1 -mgu's, which are not AC-instances. These are easy to
obtain: in the AC1 —case variables can be substituted by the identity 1, Le. in
fact after normalization variables "can be eliminated in the AC1—case, but not in
the AC-case. Hence we systematically erase the variables in the ccdomain of
the AC1 ~unifiers and add these to the set pUZAc

uUZAc(s, t) = { t  HAM)" with 1 it CODT, o & pUZAm(s‚ t)
' "and 1: {zu +1 xi“:— m. '

where {xii lin} is a subset of VCDDc and (Au)m is the substitution derived
from 16 by eliminating all 1': and restricting the domain to W = W3, t).

2. 4 [__—nm. l :  pUZAC(s, t) as defined above is a correct, complete and
minimal set of AC-Um‘fiers cf s and t.

Hm!!- aarrectmss- Let r e pUZAc(s‚ t) then r = (AG)". Since a is an ACl-unifier
Ad is an ACl-unifier. Hence with 2.4 Lemma 1 ‘l' is an AC-unifier since r416)"
is normalized and 1 a com.
Que/arenas.- Let 8 be an AC-unifier of s and t then 9 is an AC! -unifier by
2.4 Lemma 1 and. hence there exist a a e pUEAC‚(s‚ t )  and an appropriate

normalized A with DOMA s VCODc such that B =ACI m [W] where W = “3, t).
Seperate 1 into A, and 12 such that A = 1112 with { l }  = CODA2 and l .; com,. But
then T 4126)" is an AC—unifier of s and t since! is an AC1 -unifier and l s COD‘l’.
Now I e pUZAcß, t) by definition of pUEAc and finally B =“: Alt [W] since
1 a com,. ,
gay/‚wma {1,1'2 e pUEAcß, t )  with r ]  SAC T2, then with 51,52 € pU2m(s, t)

't1 = Glas,)", II = 0262)" and t ,  =“ At, [W]. Therefore we have
Ä151 =Am AA252 [W1 ' ’
an l.- aI #62: As in 2.3 Theorem 4 we construct a contradiction to the
minimality of the solutions of the inhomogeneous equations.
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cm.-2.- 1:1I =c2=c= Then we. have . ' 1,6 “11111112“ [W] with
Al ={xi11- 1 lint— 1}. Representing A‘c in matrix form means that we replace
the rows il '1. in the matrix representation. am byll; But since ll is only
trivially representable ' i . e .   l l= 0m1+ ._+ Omz, we can compute AA2 by the same
methods as in the completeness proof of 2.3 Theorem 3. But this yields that
AI =AA2 and since 1 c CODA we have A ----A2 and A =  £ Therefore we have TL= 1'2.

. .

As a point of reference we define the algorithm AC—UN—IFY for AC-prcblems
without an identity as:

FUNCTION AC—UNIFY

mpg: = ' An AC—Problem < s =11“c

sm o: 1111:„„ ==_AC1—UNIFY(3, t) _ .
STEP 1: pUEAcls, t) = {I l'r=(Ac)N with 1 « CODt, “es-e pUZAmls, t)

and A =' an «+ 1 xi“ 1—1)}

OUTPUT: the set of most general AC—unifiers Ill-EMU, t)_

m AC—UNIFY.

_ As a final demonstration consider again the example of paragraph 2.1.3 but
taken as an AC-problem:

2y _ 2

In  2 .1 .3  we obtained

pUEAm={{n-v1b, ye-ul, 24-q  2a}

{nn/2, yeuzbz.‘ zf—uz'vlzzan.

Using the above definition for pUZAC we obtain

{Ic—b, ye-ul, "zen-‚a.) - (i.e.{vl 4-1))
{ 1 «v2. y e— uzbz. 2+- _uzvzza}
{ I <— V2‚ y <— b2, z 4—- V22a } } (Le. {U2 «---1}).
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2.5 A Cogguisg with the STIfl Algorithm

The example in 2.1.3 and" 2.4 is used also by Mark Stickel [ST 81]  to
demonstrate his algorithm. It shows the improvement by our method: the

‘ relative simplicity by which the unifiers are computed and particularly the
direct relationship between the minimal integer solutions and the most general
unifiers.‘ In order to unify _< xzya.= bzz > AC according to [ST 81] the
generalization to < vizvzv3 = vézv5 ’Ac (the variable abstraction) with
6 = {v, e- 1, v2 <- y, v3 e- a, v4 <— b, v5 e-z]  has to be computed. Then the (pure
variable) equation corresponding to this generalized problem has to be solved,
which results in 69  unifiers. After that an expensive compatiblity operation is
performed between‘these 69 unifiers and & resulting in the deletion of 65 of
these unifiers and only four most general unifiers are left over as the final
solution. ' . .
In comparison we first compute the two most general ACl-unifiers for this
example directly and without any additional search. From these two
AC! -unifiers the four AC-unifiers are derived.
The theoretical analysis of the two algorithms in terms of matrices

‘ (representing certain linear mappings) in [Bü 85]  clearly exhibits the additional
computation to be performed in the Stickel algorithm. It is also shown in
[Bü 85 ]  that our algorithm is'optimal in the sense that it cannot be improved
theoretically.
An additional practical advantage of our approach is that the homogeneous
equation is in general much 3.1049! in the number of variables, which leads

_ potentionally to exponential savings: the complexity of the algorithms to solve
linear diophantine equations [Hu 78][Fo 83]  grows exponentially in the number
of variables. The second effect of smaller homogeneous equations is that we
have fewer solutions and hence the number of partitions is smaller which have
to be computed for deriving all AC-unifiers from the ACl-unifers. The
enumeration of the partitions in the Stickel algorithm was later improved
however by Hullot [Ht 80] and Fortenbacher (F0 85].
Finally we have shown that our algorithm is minimal, whereas it is open
whether or not this is the case for the Stickel algorithm. Fortenbacher claims in
[F0 85 ]  that his version of the Stickel algorithm is minimal.
The disadvantage of our approach is that we have to solve inhomogeneous
ooontion: as well as the homogeneous one which could potentially outweigh
all of the above advantages. It  would be but another instance of the wellknown
fact that an algorithm with the theoretically least complexity is not always the
most desirable practically. While a theoretical analysis of this problem is still
pending it is demonstrated in [GH 85] that solving the inhomogeneous
equations nnd the homogeneous equation in our case is in fact already faster
(compared in runtime for a selection of typical problems) than solving the
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(larger) homogeneous equation alone in the Stickel case.
A. ‚final advantage of the algorithm presented here is that it solves the
unification problem for an AC! -theory as well as for an AC-th’eory . In
applicatiOns the AC-operator more often then not has a unit (Commutative
Monoids, Abelia'n Groups, etc.), hence we would immediately obtain fewer
ACl—unil‘iers. ' ' ' ' '
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3.  _ ?. .? ";_°_._____ l ‚__ .. _; ' ’ ill-?! ill. _-__ L .? ii. _ ‚. t z „ l . !  Jib

The. previous unification algorithm is now extended to handle terms composed
of several different AC—function symbols _ as well as uninterpreted function

' ASymbcls. More precisely let. the family of operators l' consist of a set C” of
denumerable many-constants, of a finite set PM: of binary function symbols fi,
1 s is n, and a finite 'set of uninterpreted function symbols Pn- With V the set
of variables as before let'l' be the set of terms built up from these symbols and
let l' be the corresponding term algebra. Using the equational theory

AC = {fi l l  37) = fi(y x), fin fily :)) = fil fi“ y) z) I fi (5 PM,  1 ; is n}

we define =M:-  as the S-invariant congruence relation generated by AC in I.’ In
- this section we are interested in solving equations in the quotient algebra
. IL“, is. the interest is'in AC-unification problems < s - t >AC for 3, t e 'l'.
An AC-unification algorithm for these problems is presented below. The
essentialfidea is as follows: for the given AC—terms the subterms not starting
with an AC-function symbol are temporarily replaced by new constants. thus
reducing the case at hand to a problem for the AC-algorithm of the previous
section. The replaced subterms are then taken care of in a recursive call of the
same process.
Using a modification of the PAGES complexity measure [Fa 84 ]  we shall show
that this process terminates and produces a complete and correct set of
AC—unifiers which however is not minimal in general.

3.1 W
To simplify the notation we write "+" or "an" for the AC-function symbols ti and
informally represent a term +(tI +(t2 +(tn_I tn)...” by its flattened (Le. n-ary
instead of binary) version +(tI tn). We assume in the sequel that all terms
and subterms are totally flattened with respect to their leading AC-function
symbol.
For a given term t -  g(t1 tn) the term tr 1 s k s n, is called an immediate
„bier. of t and t is the interline super-ter- of tk; the [nam
function symbol hdlt) of t is g. If t is a constant or a variable then hdlt) - t.
A subterm r is dien in t if it is not a constant or variable, and if it does not
start with an AC-function symbol or with a different leading AC-function
symbol than its immediate superterm. By abuse of notation we consider s to be
alien in s, provided s c V u C. For a set of terms 5 we denote the set of all alien
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subterms of S with

'ALlENlS) = { s | s i s  an alien subterm of some term in S }.

Similarly let Il-A-LIEMS) be the setof the immediate alien subterms in S. We
assume that for s, t in ALIENS) (in I-ALIEN(S)) we have s *Ac t; i.e. we only
take one representative of _ each equivalence class. Obviously if r is an alien
subterm of s then or is an alien subterm of as for every substitution 6. We use
this fact implicitly in the termination proofs
A term t is called rpm-e if it only contains an AC-function x, constants and
variables, i..e t e Tut} u ca V)
For a given term we want to replace all its immediate'alien subterms by new
constants in order to use the unification algorithm of the previous section. For
that reason we define the ”constant attraction of a term 3 as follows: let

' I-ALIEN(s) "= {s' &} then "we call u = [ sl «ac1 st «==cIE ] a subterm
replacement where the ci are distinct constants that do not occur anywhere in
3. Define s =us, the constant abstraction of s, as the simultaneous replacement
of all subterms that are T-equal to si by (L'-for 1 s i s it. For example for the
term 9 = +( g(g(x)) xix a) :(a x) a !  y), where +' and a: are AC—function symbols
and g is an uninterpreted function symbol, we have
ALIEl) --- { s, 313(1)). 3(1), x(x  a) }, I—ALIEN(s) = (313(1)). „(x  a) },
a = [ g(g(x)) = 01,1:(1 a) ::=_c2 ] and s =us = +(c1 c2 c2 a x y). Now consider the
inVerse subterm replacement a". = [ c1 «1:8I ck <= s t  ]. If we treat the
constants cl ck in a" as “.'specill variable: ”there is no need to formally
distinguish between the subterm replacement a" and the substitution
a={c ‚c - s ‚  Meg-s t }  (since both are homomorphism, one moving some
constants and the other moving some variables). We then have as = aus  ===M s.

Once we have solved the unification problem for the constant abstraction of the
two terms using the previous AC—unit‘ication algorithm, we have to apply it
recursively to all subterms that have been "abstracted away". Hence we define
the set of all potentially unifiable subproblems SP of s. t e T as the set of all
pairs in I-ALIEN(s. t):

SPis, t )  = { (s‘. t') l s'. t' e l-ALIEN(s‚ t). hdis') =- hd(t’). s' * t' }.

Using this terminology the general AC—unification algorithm G-AC-UNIFY can
now be stated as follows: we extend the traditional Robinson unification algo-
rithm [Ro 651 by a call to G—AC—UNIFY, the general AC—unification algorithm to
be presented below which in term uses the algorithm AC—UNIFY of section 2.4.
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m lie-ROBINSON

1111111: A unification problem < s = t “>“ where s,t e 'l'"
- ' and w.l.o.g.- 3 is smaller than t

SELL l “Act  mar-«{2}
arm: grant aid menu: s t s )  then FAIL else UZR=={{s<—t}}
im}: M hdls) * hd(t) 131; FAIL
51:91 man .hd(s‘)_- name!“ mg U2ll =- G—AC-UNIFYls, t)
51m: else. lg; s = hlsI ‚;. su) and t == h(.tl tn) in

' U22n =- { 8 }
[min  1 ,...,n da

subuniriers == 6
[mise US, do
_ subunifiers =- subunifiers u. AC-ROBINSOMesi, öti)'6
m
UZR == subunifiers

@.

_OQIIEUT: The set of unifiers U243, t) away from W a Vls, t)

EEDQE AC-ROBINSON

The following main AC—algorithm uses an operation called the merge am of two
substitutions. Essentially the merge is a most general common instance of the
two substitutions 6 and a and is defined in 3.2 along with some properties of t.
For a set of substitutions Z we abbreviate {6-6 I a e E } by 2-6 and {am  | 6 e Z }
by Sam.

31





mg}! G-AC-UNIFY

mam - An-AC—Problem < .s = t >“ with hd(s) = hd(t) e PAC; s, t e 'l'

5129: g go_t_ hd(s) - hd(t) e PM: then FAIL
51m: ][ I-ALIEN(s, t )  = $ mm U26“ =-- AC—UNIFYls. t)
mg: le_t g. _t_ be the constant abstraction and a be the

corresponding substitution with as = s and at = t
in ' ' . .

_ [EG-AC == AC-UNl-FYGJ }) x (!

SIEPJ um (s'. t') € SMS. 1) do .
mg 6' e AC—ROBINSON (s', t') do

[EG—AC == U26 AC u G-AC-UNIFY(6's‚ c'tJ-o‘
m- _

m

QLLIBLEE ' The set of AC-unifiers- UZGAgs. t) away from W ; Vls, t)

m _ . G—AC-UNIFY

We do not explicitly consider the details of basing the unifiers on V(s, t) away
from some set of variables W a WS; 0, since it would only complicate the
notation. The proofs demonstrating that the unifiers are based on Vts. t)  away
from W are not difficult and we always assume that G-AC—UNIFYls, t) and
'AC-ROBINSOMs, t )  return a set of unifiers ‚muy/“ra. ’ and that the domain
of the unifiers is WS, t).

In the previous algorithm we used an operation often called the merge of
substitutions or unification of substitutions: two substitutions 6,1’ are
AC-unifiable iff there exists a substitution A such that 16 'Ac M.  Then A is called
an AC-unifier of 6 and r; Define the sets (Eula, r), CUEAC(6‚ T) and the set of
most general unifiers uUZAcb. t )  away from W a We, { )  as before (for terms).
If uUZAc(6. 1‘) =- {Ä}. the substitution err === Äö ==“ it is called a name of 6 and
1'.
In the special situation of the algorithm G-AC—UNIFY the following restrictions
hold: given an AC-unifier r - {xI « t l  Inn,.) computed by AC—UNIFY(s, t)
for some terms 8 and t containing no alien subterms, and a substitution

32





01:- {c1 «r , . . .  . .cn  era )  reversing the subterm replacement of a constant

abstraction we have

(1) mm: n non: = a
. (ii) ' VCODa'n vcom = a.

The last equation. holds since VCODt' only contains special variables and
variables not occurring in s and t, whereas VCODct : V(s‚ t). Under these
circumstances I|1U£Ac('f‚ at)! - 1 and there is a particularly efficient way to
compute the merge which we shall now present. First we reduce the unification
of substitutions to unification of termlists. i.e. o unifies two termlists (sl  sa)
and (!1 tn) iff asi 'Ac 6ti for l s i s n and the notion of a set of most general
unifiers for two termlists carries over in the usual way.

32  m 1: 'Fora. andt as above
U2M(ct,-'t)-=UZ2M((Il ‚...‚xm‚c'‚... wc) ( t ,  tmxI ..  ..‚ru )).

W Let AeUZAck),  i.e. Act-Ac M. For l i e  DOMt we have
hi axon:i =Ac-Aui =Ati for l s i s m and for c i e  DOMOL Ac] =A‘rci ==“ Adel =Ari
for 1 s j :=. n. Hence A is a unifier of the termlists.
Conversely let 9 be a unifier of the termlists then for IE DOMt (Le. : - li)
8011i ml) : i  =1t = t  and for x e DOMct lie I = c )  Btci =6c.=We:

seaci .  Hence
for all x we have Bax 'Ac Bu, thus 8 e UZAcüx, t). _ I

This . lemma immediately implies that
uUZAclu 1')= }IIEACUII . .. c l  . . c ) “1- r, . rn)) .
For the equational theory AC and a variable x we have pUEAclx, t) - fl if
x e Vlt) and „nach, t) = {{x +- t)} otherwise. Hence the most general unifier of
the termlists in 3.2 Lemma 1 (if it exists) is just the composition of {11i <- ti) and
{Cie-ri}. We therefore define to s t  and Ti ”gift—1 with ai = “I"Ti-Iri} for
1 s j s n.

3.2 Lg.“ 2: (i) If the termlists (It1 rarel ,...„cn ) and ( t1 .,. ., twr1 rn)
are AC-unifiable then rn  is their single most general

unifier.
(ii) If the termlists (::1 ,. “Awe, ‚. ..,cn ) and ( I , .‚. ., tax, ‚. ..,rII )

are not AC-unifiable then there exists i, l s i s n, with
ole W1} 1 r'i)
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Emli— We show (i) by induction on i: let 9 be a unifier then B<_AC f i IV]  with
VBVUI  IreI ,....,cn,tl ,. ..,tn..r1 r“). . '
fine step: Since B unifies the termlists we have 91i a“ liti =B'ui. Hence
as“  To =r[{x1,...,x_}l. Using "Fortsetzungslemma"_ (1.2 Lemma 1) we get

" B 5AC Ta [V]
Induction step Since 8 SAC I i IV ]  by induction hypothesis there exixts Ai such
that 9 ”no.1i1'1”] _But then lie“=litici+1=Ac9g‚1=Ac&i+‚=Acliriri„ (since
ticin - CM) 1.e. Ai . un11‘1es cM and firm. Hence 1:M ll “til-M) and
IJUEAC(°M.T‚1'‚„)=(6„‚} with 6M = (CH e t i rw}  and Ä1-‘äautölwwi—d'"lfm"—

Using 1.2 Lemma 2 we have 8 =“ Air is.“ °i+1fi “ ( e l .‚. "3+?“  ‚...,rMH and
' again by 1.2 Lemma 1 we finally getfl sAcu! „tu Ti  1 [V] .

Hence In exists and is the single. .essantially unique, most general unifier of the
termlists. . I

. To summarize this paragraph we have: if the substitutions r and a are
AC—unifiable then In is the single most general unifier of 1' and at with

- rmct =- tact =- tar =- tn. If the substitutions 1' and or are not 'AC—unifiable then there

exists i, 1 s i s n with (LI 6 WtHri). That means that there is no need to perform
a full AC-unification in order to compute the merge of 1' and on, but it suffices to
compose the oiand to check if there are no cycles (Ci 6 WtHriD.

3.3 We

Given the unification problem

< 412 y an n)) - +(z gta b) eta b”  >1c

where + is an AC—function symbol. 3 is an uninterpreted function symbol and a.
b are two constants. The immediate alien subterms for s = +(x2 Y El! ul) and
t = +(z g(a b) 8(a b)) are I—ALIEN(s, t) = { 8(x u), g(a b) }. The only subproblem is
therefore (8'. t') = (Bü u). 801 b)) with the most general unifier 5' = {x +- a, u +- b}.
The constant abstractions of s and t are 3 -= +(x2 y c , )  and t = +(z cz?) with
01-- {cl e—gü u), c2 c-gla b)}. The set of most general unifiers for s; and _t_ (see
2. 4) is:
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uUZAcu. t) = {(x +— +(zl c2). y <— :2, z <- +(z1 :22 cl ))
. {n—cz, yeuz, ze-+(u22 cl)}

{I s- V„ Y «- +(V._,c22 ), z *- +(v1v2 20.102)}

{x aw], y <— +(c22). z «— +(w cl c2” }.

Merging these unifiers with or we get:

uUZAcls. Um = {
{ ! (- +(z1 g(a b)), y <— i2, 2 &- +(z1 222 g( 4-(2l g(a b)) 23 )), u (- 23 },

{x <- g(a b), y #- uz, 2 <— +(u22 g( g(a b) ua)), u <- u3 }.

‘ _ { x «v„ y «- +(v2 gta b) g(a b)). z <- +(v1v22 g(a b)g(v1v3)), u "Va }. ~
{ x &- wl, y «—_t+(g(a b) g(a b)), z +- +(wl g(a b) g(w1 ws), u «- w3 } }

Theonly unifier of (s'. t") is '6 = {x (-a, u «- b} and hence es = %(a2 Y 8(a b)) and
ot = +(z g(a b) g(a I)”. The set of most general AC—unifiers is
' uUZ'Acßs, at) =- {fr T2} with fu  “== {y «- +(xI g(a b)), z +- +(x1 az)} and
tz = {y <- g(a b). 2 <— +(a2)). Hence

rte = {x <- a, y «- +(xI g(_a b)). z <- +(xI az), u <- b}
T26 =(! <— a,y<—g(a b), Ze-+( az), u eb}

are two additional most general AC—unifiers of s and 1. Hence we have finally:

pUZÄgs, t) - pUZAC(g.1)xa u {ge, 125}.

“3.4 Isminntion

Termination of the algorithms G-AC—UNIFY and AC-ROBINSON is shown by
Noetherian induction on a slightly modified form of the complexity measure of ]"

F. Pages [Fa 84], which we shall now define. Let r be a subterm of a term s then
0p(r, s). the set of the leading function symbols of all immediate superterms of
r m s, is:

0p(r, s) = { hd(s') I there exists a subterm s’ in s which is
an immediate superterm of r}.

Let 0p(r, S), the set of leading function symbols of a term s in a set of terms 8,
be U{0p(r, s) | s e 8} For a set of terms 5 let
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V‚(S) _= { x | x 6 WS) and |0p(z‚ S)! > 1 }

be the set of ‚m:-ed variables, i.e. those variables which occur immediately
under at least two different function symbols. We omit the parentheses in
0p(r. {s,t}) resp. in V.({s.t})' and write Op(r; s, t) reSp. Vs(s, t). Given a
unification problem < s = t >M the complexity of that problem is defined as

ms, t) - (v. t) with v - we, m and r - IALIBN(s. m.

Taking the lexicographic ordering on the complexities we obtain a Noetherian
ordering. For example with s = +(x y g(x n)) and t = +(z g(a b) gla b)) we have
Oplxt s, t) = (+. s}. V„(S. t) = {x}. ALIEN“. t) = {s, t .  3(1- u). zu b)} and hence
C(s, t) - (1, 4). Note that constants are alien subterms in Fages' complexity
definition but not in ours.

3.4 Lg.“ 1: If s', t' e ALIBN(s‚ t) are proper subterms of 3 and t then
C(s', t’) < c(s, t).

Had?- Let C(s, t) =- (v,1') and C(s',t')=(v',1"). Since “8', t ' ) :  We, t) and
0p(x. s’. t') ; Unix; 8. t) we have V‚(s'. t') sV‚(s‚ t) and hence v' 5 v. If v' =v we
have to show that t '  < r .  Consider the mapping @: ALIEN(s'‚ t')—r ALIEN(s, t).
For r'e ALIEN(s',t') define ¢(r') =- r e  ALIEN(s, t) with r “M r'. Then @ is an
inclusion and since at least 3 or t is not contained in ALIEN(s', t') we have 1" < ‘l'.

I

In order to prove the termination of our main algorithm we have to show that
the unifiers produced by the algorithm decrease the complexity of the original
terms, i.e. if o unifies some immediate alien subterms of s and t then
clos, st) < cls. t).
We say a substitution 6 is monotone for s and t iff clos. et) 5 (Ms. t) and
strictly monotone for s and tiff Bios, et) < cls. t). In the following lemmata
we show the monotony of certain substitutions.
We call a substitution @ alien for s and t iff o = {x e r }  with 15  V(s, t),
r e ALIBN(s, t) and x 4 Vlr).

3.4 m 2: If a substitution 6 is alien for two terms 3 and t then 6 is
monotone for s and t.

Hmfi Let c(6s,6t)-(v„‚t„), O(s‚t)-(v‚t) and e-{n—r}. Since
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V H(os,ot)sV (s, t lwe  havev sv .
' If v < v we are done. If v =v  we want to show that ‘l’ s 1’. We construct an

injective mapping ‘1' from ALIENlos ot) to ALIEN(s, t) with
..'l’(p) = p‘ e ALIEl. t) and op“ =“ p. For p = r we define ‘l’(r) == r with or = r since
r e ALIEN(s‚ t) and x 4 Wfl.. For p a: r in ALIEN,(es et) there exists an
p'. e ALIEl, t) with op‘ =“ p, we define ‘l’(pl=='p Hence we have ‘l’(p)==‘p with
°P "AC P-
The injectivity of ‘l‘ is easy to see: q, =‘l’(p‚)= ‘l’(p2)- (12 implies
p1:-AC sql1 «11112:»:M p2 and by definition 01‘ ALIEN p1= p2 (note that for s' and t'
in ALIEN(s,- t) we have: if s' “Act. then -'.t) Hence

’IALIENms, an r., s r = IALIEN(s, tn. ' ' n

For some function symbol f e l’ a substitution 6 is called f-pure for s and t
iff DOMo': Wat). VCODonWs, t) =3  and the following two- conditions are
satisfied

. feOp(x,s ,t)  forallxeDOMoand

rung ,  i f f e l ’g
.

exisax-pure term i nne ! “  (i.e.CODo§T({a=}uC.V)).

If there are no ambiguities, we simply speak of pure substitutions and pure
terms.

3.4 m 3: If a substitution 6 is f—pure for two terms s and t then 6 is
monotone for s and t.

hoof?- Let C(os, at) - (va, te), B(s‚ t) - (v, t )  and 6 be f-pure for s and t. We shall
construct an injective mapping 0 from Vales, ot) to V„(s. I). Let x e Vslo s, st): if
x c VCODo then x e “(s, t) and we choose M1) = 1. Note that x g DOMo. For
x e VCODo consider the setof variables VI = {y I x e V(6y)}. Suppose that for all

y e Vl 6y :1- x, which contradicts the definition for f e ’21- Let f = x e PAC and 6 be
pure then 1 occurs only under a: in es and et (x c Ws, t)). which is a
contradiction to x e V‚(s‚ t). Now consider the set V2 = {y e V1 Icy = I}. But then
there exists y e V2 n Vsls, t) and we can choose 43(1) - y. Otherwise again all y
would only occur under f in s and t which contradicts x e V‚(e s, 6t). Hence we
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have 6y = x for all x with M:.) = y. The iniectivity of d! is easy to see:
yI -¢(x1)~ M12): y2 implies xI =6y, =6Y2 =- x2. Hence vd; v.
If v d v the proof is done If v d '”  the mapping 41 is biiec-tive and there exists

the inverse 0" from V (s, t) to V (68, 6t) with @"(x) =6x = y We want to show
that t s ‘l’. Again we construct 'a mapping ‘? from ALIEN(6s, st) to ALIEN(s, t)
with ‘P(p)===‘p and 69 AC 9--
_By the bijectivity of 4! for all x e mm: with 6x e V we have x it V (s t). Let p be
in ALIEN(6s.6t) then p is not introduced by 6 since for all x with 6x¢V

' 7 0p(x. s' t)_- {f} and hd(6x)- f or ex is an uninterpreted constant. Hence there
must exist a subterm p’ e ALIEN(s, t)  with ep“ a“ p and we define 'i’(p)--'.p
The iniectivity of 'l' is again easy to see: q1 =‘b(p‚)= ¢(p2)= (12 implies

‘ p' =“ ßql ===q.AC p2 and _as above . pl spz .  Hence _ we have
IAL'IEN(63. 6t)| =- to s t = lALIEN(s,-t)l.' - I

‚ In  the termination proof we shall often use the fact that- a substitution which is
pure or alien for s‘ and t' is pure or alien for s and t as well if s' and t' are alien

. subterms of s and t:

3 .4m 4: Let s' t' eALIENis, t).
I f6 i s  alienfor s' andt'  thenois  alienfor s andt .
If 6 is a pure substitution for s and t' and VC0D(6) n V(s. t)= ß
then 6 is pure for s and t.

The proof is obvious. The next lemma is the key for the termination proof.

3.4 m 5: Let 6 be a pure or alien substitution for s and t and let
s', t' e ALIEN(s, t )  be proper and distinct subterms of s or t. If 6
unifies s' and t' then 6 is strictly monotone.

lav-caff- By the 3.4 Lemma 2 and 3.4 Lemma 3 we have C(6s. 6t) s B(s, t).
Suppose C(6s, 6t) -l3(_s, t), 1.6. the mapping ‘1’ from ALIEN(6s, st) to ALIEN(s, t)
constructed in the above proofs is bijective. Hence the inverse W" exists with
‘1’"(p) - q and 6p 'Ac q. But then ‘1’“(s') -- ‘1’"(t') since 6 unifies s' and t' which
contradicts the biiectivity of v-'. I

Since in the algorithm the substitutions are built up by composition of alien or
pure substitutions we say a substitutions is ap-compound for the problem
< s = t >T (or short for s and t )  ifl‘ it is a composition. of alien or pure
substitutions, ie. 6 mas“ 6-1 where 6i is pure or alien for 6i_I als  and
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0554 „out for. Zs i s  n and o,  is pure or alien for s and t. By an induction
argument we have:

3 4 m 6: (i) If 6 is an ap-compound substitution for s and t then 6 is
_ _ monotone for s and t.

(ii) If in addition 6 unifies two distinct and proper subterms
s', t' e ALIBN(s, t) then s is strictly monotone for s and t.

As an extension of 3.4 Lemma {we have if 6 is ap-compound for s' and t' then
s is ap-compound for s and t provided the newly introduced variables are

. away from Vls, t). We use this fact implicitly in the proofs below.
To summarize we introduced monotone substitutions and showed that alien
and pure substitutions (the elements of the generated unifiers) and their
composition are monotone. Note that the algorithm AC-UNIFY of section 2 only
generate ‚.:-pure substitutions for nut-pure terms.
We now shew that the merge ua is ap-compound for s and t, where ‘l' is a
unifier of the constant abstractions of s and t and or is the corresponding

abstraction reverser=

3.4 Leu; 7= Let T be a unifier of s and t. where s and 1 are the constant
abstractions of s and t. and as "Ac s, at "Ac t'. The merge tact is
then ap-compound for s and t.

Hoar.- By 3.2 Lemma 2 we have no: =1“ with To =( ,  t i  wir“ and
. 61"  {1:i “Ti-1‘1} for l s i s n where 01 - {cI s - r I  ca era}  and ‘l’ is a unifier of

the pure terms 5 and t. We show by induction: ei is ap-oompound for {Ms  and
(Mt. First it is easy to see that To is pure for s and t. Since ci occurs in VCOD‘ru
and hence in VCODIH it must occur in {Hs  or in t .  As ri is an alien
subterm of ' s and t ri is in ALIEN(ti_,s,'ri_1t). With ci tl WTHr) si is alien for
{Hs  and („t .  - I

In order to show that G-AC—UNIFY and AC-ROBINSON terminate, we use ( a
stronger) induction argument on 8(8, t), the complexity of the input problem.
For each STEP and each recursive call we show:

0 the generated substitutions are ap—compound
. c(s', t') < B(s, t), where s, t are the original terms and s', t' the subterms

of the recursive call. Hence the induction hypothesis applies.
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3.4 um. 1: For all s, t e 'l_'= AC-ROBINSON(s, t) terminates.

Haar: In STEP 1 - STEP 3 we are done sincetermination is obvious and the
returned substitutions are ap-compound for s and t except for the case that
boths and t are variables. _
STEP4 is shown in 3.4 Theorem 2. below.
STEP 5 is shown by induction on the loop index i with 1 s i s n.
5336514912: If sI and t1 are compound terms then s„ t' e ALIEN(s‚ t). By
3.4 Lemma 1 8(s1, t1)< c(s, t) and hence by Noetherian induction
AC-ROBINSONks‘. st!) terminates and the unifiers öl  returned by
AC-ROBINSOlr t , )  are ap-oompound for ‘s1 and t i  and hence for s and t.

If s1 or tI is not a compound term then AC-ROBINSOMSI. t,) terminates with
FAIL or the returned substitution 61 is alien or h-pure for s and t.

Induction Step: Again we distinguish the cases where the terms fi i '  “WM

and 6 i"61t i+1  are compound or not. If sie 96‘ s“  or ei- oo i tM is not
compound then AC—ROBINSOMoi- oc l sm.  sic oel tm)  terminates with PAIL
or the returned substitution 6M is alien or h-pure for ei .  °°1si+1 and
oi- oc l tM and hence it is ap—compound for ei- oe ' s  and ei- 0611.

Now let the terms sic «alsM and ei- oesItM be compound. Since ei- -6I is
ap-oompound for s and t we have with 3.4 Lemma!  and 3.4 Lemmaj
C(fii-...-61Sid.6i-......ofiitidhflfii-...-618.6i-$10588,“ and hence
AC-ROBINSOMoi- m'fi t s i+ i ' ° i"m’61tm. )  terminates and yields only

' substitutions am which are ap—oompound for e i -  orsisM and s ie  oesitM and

hence they are ap—compound for ei- ...-6's and 6i0...-6It. To summarize
am - oe ,  is ap-compound for s and t. I

3.4 WZ:  For two terms s and t with the same leading AC-function
symbol G-AC-UNIFY(s. t) terminates.

Amar? In STEP 1 termination follows from 2.4 Theorem! and the uniliers
produced by AC-UNIFY(s. t) are ap-compound for s and t.
In STEP 2 s and _t_ are the constant abstractions for s and t with
I-ALIEN(s, l.) - B. Hence AC-UNIFY(s. t) terminates by 2.4 Theorem 1 and by
3.4 Lemma 7 we know that for I returned by AC-UNIFY(§, 1) um is
ap—compound for s and t.
STEPS: For (3', t')eSP(s, t) we have by 3.4 Lemmal l3(s',t')<c(s,t). Hence
AC—ROBINSON(s'. t“) terminates. It yields only substitutions 6' which are
ap-compound for s and t. But since 6' unifies s' and t' we have by
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3.4 Lemma 6 (ii) C(o's. c't) < B(s., t). Therefore by the induction hypothesis
G-AC—UNIFY(o's, c't) (o's and o't both start with the same function symbol as s
and t) terminates and produces only substitutions e" which are ap-compound
for 0': and o't. Hence '6 = 636' is ap-compound for s and t. I

All proofs of this chapter are by induction on the recursion depth of the
unification algorithm, which is a Noetherian order as shown'1n the last chapter.
The set of substitutions returned by the AC-unification algorithms is a correct
set of unifiers of s and t :  -

3.5 um; 1: The set UZGMIs, t) returned by G-AC-UNIFY(s, t) is a correct
' set of unifiers for every s,t e T.

' Roar? Consider each stepin G-AC-UNIFY in turn:
STEP 1: The theorem follows from 2.4 Theorem 1 (correctness for the
Variable-constant-case).
STEP 2: Let g, 1 be the constant abstractidns of s and t with as 'Ac s and
at =“ t. By 2.4 Theorem 1 let 0 be a correct AC-unifier of s and 1. Since
Enact - Ac: “AC 19 for some A we have (using the idempotence of B and a):

(antea ter -=16  “ac emu:-Achen-  loci-o: “Jenni-ct
Hence (9s 'Ac (Haw-01s

‘Ac (Bum-Os
'Ac (Band)-BL by assumption
sac (em-a;
'Ac (Bad”. .

STEP3= Let (s'. t‘) be a subproblem of s and t. By induction hypothesis let 6' be a
correct unifier of s' and t' and 6" be a correct AC-unifier of 6's and 6't. Then for
6 =- 6”-6' e U26 AC we have

es  - (6"-6')s
- 6"(6’ s )
1111: 6"(6' t) by hypothesis
= 6 t I

3. 5 um. 2: The set UZR(s. t) returned by AC-ROBINSON 1s a correct set of
AC-unifiers for every 3 ,t e T.

W STEP 1 - STEP 3: Correctness is obvious.
STEP 4: This is shown in the above theorem.
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STEP 5: Let 6 e UZIIls, t) then 6 =6II- o6-I. By induction hypothesis we know
that 6I is a miller 61‘ 6I_ 1° ... - 6 I s I  and 6I_I- ‚".. -6I tI . Hence-6 is a unifier of 3' and
tI, l s1 sn  andwehave '

es ' = 6h(sI,.. . , a  fors= h(s
. - ' hlosI .....6sII)
_"Ac h(6tI ,...,6tII)
= at I

1,. .„s )asdefinedinSTEPS

The following two theorems show that the algorithms return a complete set of
' unifiers.

3 512m 3: Let 8 be an AC-unifier for the terms 3 and t .  Then there
exists 6 c UZII(s, t)_ (returned by AC-ROBINSON(s, t)) such that

B sAce [V]  with V =- Vls, t).

Prmfi- STEP 1 - STEP 3: The proof is trivial.
STEP 4: This is shown in 3.5 Theorem 4 below.

_ STEP 5: . By induction on i, l s i s n" we show that there exists
_ 6I e6U22R(6M 6IsI,. 6I_I 6ItI) such that B SAC 6I 6I [V]:Hence there exists a

6=  ...6I e U248 t) such thatB 5111c“ [V11-
h:: Step: Since 8 unifies s and t it unifies sl and tI. Hence by Noetherian
induction there exists 6I e U'z'.'“__(sl,.tl ) with 9 sMe1 [VI] where
VI = “s l ,  tI) ; V. Using 1.2 Lemma 1 we have 6 SAC 6I [V].
Induction Step: Let’ B "Ac AI6I..- .6I [V]  by induction hypothesis. Then AI is a
unifier of 6I ...6IsIII and 6I ..6 I t I I I .  By Noetherian induction there exists
.6III e U"z."II(6i ...6IsIII,6 I...6I1.'I;I) such that x.SIACG 1+1 [VM] where
VM -V(6I...6ISIII. 6I.. .6  III I).  By 1.2Lemma1 and 1.2Lemma2 we have

‚AHL --°1-ac Omar .6I [V(sI,.. ., sIII,t-I... .. M)]  Using 1.2Lemma1 again we
finally have9=“hell“ I . .  61 5“ 6I I6I . .  6I [V]  * - I

3.5' am! 4: Let B be an AC—unifier of two terms s and t. Then there exists
6 e [Es-AC“. t) (returned by G-AC-UNIFYls, t)) such that

9 SAC 6 [V]  with V == V(s. t).

Proof STEP 1: If I-ALIENl's, t) = 9, Le. s and t have only variables and
constants as immediate subter ms, completeness follows from 2.4 Theorem 1.
STEP 2: Now I-ALIBN(s, t) * 6 and assume for all (s', t') e SP(s, t) it is 83' *Ac Sf
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(else STEP 3 applies). Then by 3.5 Lemma 3. below there exists a e‘ with
B‘s s“ B't-and- a s“  B'mct [V], where round _t_=ut are the constant
abstractions of s and t and at is the substitutiOn reversing the constant

. abstraction. Again by 2. 4 Theorem 1 there exists B" e “EG—ac“; 1) (returned by
Ac- UNIFY(s. L)) such that

8' SMS" [V]  where 1% Wa. 1).
Using 1.2 Lemma lwe  get

9' sAcB'.‘ [V].
_ With 3.5 Lemma 4 below we have

_ - B SAC 9":01 [V]
and hence there exists 6 == B"»:a. e UEGAJS, t) (returned by G-AC-UNIFY(s. t))
such that B SAC 6 [V].
STEP 3: In this case the subproblems are considered and moreoyer there
exists (3'. t') e SP(s‚ t) with 83'sM:18t By Noetherian induction there exists
6' e [1264383 t') (returned by G- AC—UNIFY(s’, t')) such that

' B sAco' [V'] with V_'- V(s’. t').
In other words there exists A with B =“ A6' [V]  using 1.2 Lemma 1

' But then A is a unifier of 6's and 6t. By Noetherian induction there exists
6" e UZGAcß's, 6'1) (returned by G-AC-UNIFY (6's. dt.)) with

As“  6" [V"] and V" -V(6's. 6'1).
Using 1.2 Lemma 1 and 1.2 Lemma 2 we'obtain

A6'5Ac6”6' [V]
and hence with 6 == 66' there exists 6 e UZGAJS, t) (returned by
G-AC-UNIFY(s, t)) such that

B SAC 6 . [V].  .

While this completes the main result of this paragraph. some technical
lemmata remain to be shown stating the existence of certain substitutions in
STEP 2. Regarding the situation in STEP 2 we have two terms 3 and t starting
with the same AC-function symbol. 9 a unifier of s and t and for all
subproblems (s’. t')e SP(s. t) 11 is Bs'*“ im Let (r1 ,. ‚...1'" }be  the immediate alien
subterms of s and t, al.- (cI <— r1 on e- r n} and
cto = {c' <- Brl cn «— Bra} 4011mm. Since 9ri *Ac (1ri for i * i. l s i, i s n by
assumption let a - [r1 = c1 rn = ca] and “a - [Brl <= c] ,...‚91'‚. <= cn] be the
corresponding subterm replacements. ll 8 == (x1 +- pl zu 4— pm} we then define
9'-(x1<-11‘,pI xns-ugpn}. Furthermore we denote by 3-63 and t -ut the
constant abstractions of s and t and V = V(s, t) is the set of variables in s and t.
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-3.5_ Law 1 :  9(as)=039s and 9(at)=u,9t.

‘ _ M We only show the first equation for all subterms r in s =- us.
Fort -ec  we distinguish the casesr *c  and r=  c. for l s i sn .  For the firstcase

9‘r =009r 1s obvious. For r= c we have 9'ci = 1:1 and there exists a subterm r in s
with r' =M ri and 099r‘=A“cuaßlmn= c.cNOw let r = 1 e V. If 1 4 DOM9‘ = vom then
9'1===1 =91 =u,91 and for 1 e DOMB it is 9111:0091. Since ' there occur no

' immediate alien subterms in g we have for all subterms r of g with r c c u V
9'r - 0,9r. I

3.5 £!!! 2 = For all terms. q not containing cl cn: 911a “ac Bq.

had?- Suppose there exists a läubterm r in q with r ===M 91°i then r is replaced
by “a to c.. Applying 911 to that c we again have 9r.. If 1* Mi9r  we have
anor- r since q does not contain any of the (:i and hence ..“a AC Bq. I

3.5 m 3 = 9' is a unifier of 5 and t such that
9 5.“ 9:01 [V]  with V = V(s‚t).

Rod?- First 9' is a-unifier of s and 1. By 3.5 Lemma 5 and the fact that 9 unifies
s and t we have:

9's - 9103) - 09(9s) 'Ac 09(9t) - 9’(u t) - 9'_t_.
We now show that 01 and 9' are unifiable. Le. the merge exists. Using
3.2 Lemma 1 we define h '  = (1:1 1.1131 cn ) and h2 = (“991 ,...‚|1„;>m,t'l rn)
then

911h2-(9131119p1,..,91:111£,pm901rI ‚..,Burn)
15.4499l ,....9pm,9r1 ‚...‚Brn) by 3,5 Lemma 6
= (91:111 ....,9011m,9c1c1 ,....901¢n)
=901h1.

Hence 901 :=.M 1 [W] where A is a most general unifier of 01 and 9' and W are the
variablesof 01 and 9'. Therefore we have with V s W

9 = 901 SAC Aa = am [V] .  — I

3.511.114: Let 9" be a unifier of s and L with 9'sAc9”[V] and
VCOD9” n V59 .  Then 9"_ and 01 are AC—unifiable and

9 SAC B"»uu [V].
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M We assumewios. that DOME“ -= V (if not define B": -- z for x e V\DOMB“
and z is a new variable which does not occur in the problem)..SinOe 8' 5AC 8" [V]

_ there exists ö with Bf 16395!“ and
(i) oomanvsa and DOMasvcooa".

' Further more using VCODB“ n V = “B .
(2) ' DOMö n Wa) == 6.
We now show that 8” and a are unifiable. Using 3 .2  Lemma!  we define
81=(I‚ „...:c .....a and 32- (B“):l ,...,£i"1tm,rI ‚...,rn). Now we have

f 6_g‚*--g‚ - h, by (1) and (2) (confer for the definition otand 112 the proof of
the last lemma) and 632 uhzby  (2).. Since 111 and 112 are onifiable by 0o 31 and
32 are'unifiable by 00.6 and therefore 9:16;“ 9'30 [V]. Hence with 9:16 - 9 [V]

. we have B SAC 9"q [V]; I
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immun

We presented an AC— unification algorithm, which is not based on the 'variable
abstraction' process of previous algorithms, but exploits an early idea of
[LS 76 ]: the reduction to iugnmneow Diophantine equations.
The algorithm is extended to handle uninterpreted function symbols. While
previous suggestions for such an extension [St 81] [Ht 801 [Fa 83] [Pa 84]
[Fa 85 ]  [F0 83 ]  and [Fo 85 ]  use the same 'variable abstraction‘ process, which
was already at the heart of the STICKEL-algorithm, we propose a method quite
to the contrary. Since the replacement of subterms by variables turned out to
be the culprit (in terms of efficiency) in the basic STICKEL-algorithm we
propose to replace subter ms by 'special' constants for the reduction to proceed.
Such a reduction is possible since our basic algorithm does not require the
variable abstarction process in the first place.
The algorithms are presented with the aim of clarity, not for an actual
implementation.
The extended algorithm is not minimal in general. Minimality can always be
achieved for finitary theories with a decidable matching problem (eliminate in
a second pass all those unifiers that are not instances); however it would be
computationally advantageous to generate one minimal set in the first place. It
is an open problem to find such a minimality condition for our algorithm which
is less complex than the above elimination process. We have certain conditions
which will eliminatethe- proliferation of redundant unifiers to some extend.
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