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ABSTRACT:

Unification in equational theories, i.e. solving of equations in varieties, is a basic
operation in Computational Logic, in Artificial Intelligence (AI) and in many
applications of Computer Science. In particular the unification of terms in the
presence of an associative and commutative function, i.e. solving of equations in
Abelian Semigroups, turned out to be of practical relevance for Term Rewriting
Systems, Automated Theorem Provers and many Al-programming languages.
The observation that unification under associativity and commutativity reduces
to the solution of certain linear diophantine equations is the basis for a
complete and minimal unification algorithm. The set of most general unifiers is
closely related to the notion of a basis for the linear solution space of these
equations.

These results are extended to unification in free term algebras combined
with Abelian Semigroups.
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1. UNIFICATION IN EQUATIONAL THEORIES

Unification theory is concerned with problems of the following kind: Let f
and g be function symbols, a and b constants and let x and y be variables and
consider two first order terms built from these symbols, for example:

t, =f(xg(ab))
t, =f(gly b) x)

The problem is whether or not there exist terms which can be substituted for
the variables x and y such that the two terms thus obtained from i, and t,

become equal: in the example g(a b) and a are two such terms. We shall write

6, ={x<glab),y<a)

for such a unifying substitution: 6, is a wadier of 1, and , since 6,1, -6, 1,.

In addition to the above decision probl/em there is also the problem of
finding a wmification algorithm which enumerates the unifiers for a given
pair t, and t,,.

Consider a variation of the above problem, which arises when we assume that
is commutative:

(C) f(xy) =f(y 1)

Now e, is still a unifying substitution and moreover &, = {y«a} is also a unifier
for t, and t, since

6,t, = f(x g(ab))-.f(g(ab) 1) =6,t,

Bute, is mare gepera/ thane,, since 6, is an instance of 6, obtained as the
composition ) -6, With A = (1 ~g(ab)); hence a unification algorithm only
needs to compute 6,

In some cases there is a single and essentially unique least upper bound on the
generality lattice of unifiers, called the most gensera/ unifier

Under commutativity however, there are pairs of terms which have more than

one most general unifier, but they always have at most fimite/y maay This is
in contrast for example to the above situation of free terms , where every pair






has at most ese most general unifying substitution.
The problem becomes entirely different when we assume that the function
denoted by [ is associative:

(A) f(x f(y z)) = [(f(x y) 2)

In that case 6, is still a unifying substitution, but
6, ={x«f(g(ab) g(ab)),y«a)

is also a unifier:

6,1, = f(f(g(a b) g(a b)) g(a b)) =, f(g(a b) f(g(a b) g(a b))) = &,1,.

Bute, - {x ~ f(g(a b) f(g(a b) g(a b)), y « a} is again a unifying substitution and

by iteration of this process it is not difficult to see that there are /ia/imitely
maany unifiers, all of which are most general.

Finally, if we assume that both axioms (A) and (C) hold for f then the situation
changes yet again and for any pair of terms there are at most /iaffe/y many
most general uailiers wader (A) gad (C)] which is the subject of this
paper.

Central to unification theory are the notions of a sef/ of most general
vnifiers pUZ (iraditionally: the set of base vectors spanning the solution
space) and the Alerarchy af unification problems based on pUZ:

(i) a theory T is unitary if pUL always exists and has at most one
element,;

(ii) atheory T is fimitary if pnUZ always exists and is finite;

(iii) a theory T is /nfinitary if pUT always exists and pUZ is infinite for at
least one pair of terms;

(iv) a theory T is of nul/ary otherwise.

We denote a unification prob/em under a theory T by

<s=t>.r.

The field of unification theory, term rewriting systems and applications are
surveyed in [HO 80] [Si 84] and most recently in [Si 86].






1.1 Associative Commutative Unification.

Terms under associativity and commutativity closely resemble the
datastructure multisets (sets which may contain multiple occurrences of the
same element), which is used in the matching of patterns (pattern directed
invocation) in many programming languages of Artificial Intelligence (AI) (eg.
[Hw 72], [RD 72]). This pattern matching problem for multisets (often called
bags in the Al-literature) was investigated by M. Stickel in [St 75], [St 76],
who observed that this problem can be reduced to the problem of solving
homogeneous linear diophantine equations over the positive integers ( N ) with
the additional proviso that only positive linear combinations of the solution
set are admissible. His results were finally published in [St 81].

Certain equational axioms may force an sulomated theorem prover [Lo 78]
[CL 73){WO 84] to go astray. G. Plotkin [P1 72] showed how to build these
troublesome axioms into the unification algorithm of a resolution [Ro 65] and
paramodulation [RW 69] based theorem prover. Building upon this work,
Livesey and Siekmann [LS 76] [LS 78] investigated the axioms of associativity
(A) and commutativity (C), since they so frequently occur in applications of
automated theorem proving. Independently of M. Stickel they also observed
the close relationship between the AC-unification problem and the solving of
linear diophantine equations. They proposed however a very different
reduction (among other differences a reduction 10 /nbomogeneous linear
diophantine equations) which appears to have some advantages over the
combinatorics of the "variable-abstraction” process in the STICKEL algorithm.
These results were never properly published, since an important problem
remained open: the extension of the AC-unification algorithm to the whole class
of first order terms. The suggestions for such an extension in [St 76] as well as
the naive sketch of an extension proposed in [LS 76] turned out to be missing a
crucial point [Boyerl, {he subformulas of a term to be AC-unified can become
longer, i.e. have more symbols, than the original term (see section 3.3 for an
example) and hence the termination of the extended AC-unification procedure
became a major problem, which remained open for many years. It was finally
positively solved by F. Fages [Fa 83] [Fa 84] [Fa 85] using an ingenious
complexity measure on AC-terms.

G. Huet [Hu 78], A. Fortenbacher [Fo 83], D. Lankford [La 85] and W. Buttner
[BU 85] give efficient methods to solve homogeneous linear equations where
only positive linear combinations are admissible, a problem originally
investigated in [G 1873). This is an important component of every
AC-unification algorithm. A comparison of the algorithms of Huet and
Fortenbacher and an extension of these algorithms to the case of

[Boyer]: This problem was first brought to our attention by Bob Boyer, now at University of Texas, in a

private communication (while refereeing LS 78]). We gratefully acknowledge this crucial hint as well
as his many helpful suggestions.






inhomogeneous equations can be found in [GH 85].

JM. Hullot [Ht 80], F. Fages [Fa 84] and Fortenbacher [Fo 83] [Fo 85] discuss
computational improvements of the original STICKEL-algorithm. Recently
another approach to AC-unification was proposed in [Ki 85].

GE. Peterson and ME. Stickel [PS81] present a generalisation of the
KNUTH-BENDIX completion algorithm for term rewriting systems [KB 70] based
inter alia on AC-unification. The practical advantage of a special purpose
AC-unification algorithm is particularily well demonstrated for term rewriting
systems in [St 84].

Apart from interest in a practical and fast algorithm, which computes the set of
unifiers there is the main theoretical observation that the set of most general
unifiers is always J/imite for AC-unification problems. This fact was
independently discovered in [St 75] and [LS 76]. However, since the set of
most general unifiers (mgu) corresponds to the set of nonnegative solutions of
certain linear diophantine equations, the finiteness of the set of mgu's follows
immediately from a theorem of Dickson [Di 13] as demonstrated in section 2.2.

This paper improves on the original work of [LS 76] [LS 78] and also extends
the algorithm to the whole class of first order terms using a modification of the
FAGES-complexity measure in the proof of termination.

1.2 Definitjons and Notation

Unification theory rests upon the notions of universal algebra (see eg. [Gr 79]
[BS 81]) with the familiar concept of an algebra 4 = (A, ) where A is the
carrier and P is a family of operators given with their arities. For a given
congruence re/stion Q the quotient algebra modulo g9 is written as
A,, =(A - P).

Assuming that there is at least one constant (operator of arity 0) in F and a
denumerable set of variables V , we define T, the set of first order terms, over
P and V, as the least set with (i) V T, and if arity(f) = 0 for feP thenfeT
and (ii) if t,.., 1, € T and arity(f) = n then f{t, .. 1 )e¥.

Let V(s) be the set of variables occuring in term s, a term s is growed if
V(s)-9.

As usual T denotes the algebra with carrier T and the operators are the term
constructors corresponding to each operator of F. I is called the absolutely free
(term) algebra, ie. it just gives an algebraic structure to T. If the carrier is
ground it is called the initial algebra [GT 78] or Herbrand Universe [Lo 78).

A substitution e T - T is is an endomorphism on ¥, which is identical
almost everywhere on V and hence can be represented as a finite set of pairs
6={X « 1.. X« ) The resiriction &|, of a substitution & 10 a set of
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variables is defined as olvx =ox if xe V and elvx = X otherwise.

Z is the set of substitutions on F and ¢ the identity. The application of a
substitution e to a term t € T is written as et. The composition of substitutions
is defined as the usual composition of mappings: (6 - T)t =6 (tt)for teT.

Define DOMe ={xe V:6X+4X) (domain of &)
CODs = { 6X : X € DOMe& } (codomain of &)
VCODe = V(CODs) (variables in codomain of )

If VCODe = @ then & is a grounsd substitution.
A set of substitutions T ¢ & is said to be Sased an W away froml2 W iff the
following two conditions are satisfied

(i) DOMe = W foralleeZ
(ii) VCODenZ =@ foralleeX

For substitutions based on some W we have DOMe n VCODe = @, which is
equivalent to the idempotence of &, i.e. 6-6 =&. We shall use this property in the
proofs later on.

An eguation s -t is a pair of terms. For a set of equations T, the eguational
theary preseanted by T (in short: the equational theory T) is defined as the
finest congruence - on T containing all pairses-etfors-t in Tande in&E.
(i.e. the E-invariant congruence relation generated by T).

Two terms st are T-equal if s =, t. We extend T-equality in T to the set of

substitutions X by:
6~ 1T iff VieV ex=1x.

If T-equality of substitutions is restricted to a set of variables W we write
6=TIW] iff VieW ex- 1

and say & and T are J-egual/in V.
A substitution T is mare general/ thane on W (or & is & Y-instance of T
on W):

<t [W] iff 3XeE o~ At[W]

Two substitutions &,1 are called T-equivalent on W

6=, 1T [W] iff 6 st [Wlandt<;6[W]






Given two terms st and an equational theory T a unification problem for T is
denoted as

<s=t>.|.

We say <8 = 1>, is T-unifiable iff there exists a substitution 6 € Z such that
6s = ot and we calle a T-unifier of s and t. For the set of all T-unifiers of s and
t we write UZT(s, t). Without loss of generality we assume unifiers & of s and t

to be idempotent (if not we can always find an equivalent one which is). For a
given unification problem < s =t >, it is unnecessary to compute the whole set

of unifiers UZT(s. t), which is always recursively enumerable for a decidable
theory T, but rather a smaller set useful in representing Uz, Therefore we
define cUL,(s, 1), the complete set of vailiers of s and t on W - V(s ) as:

(i) cUZ ¢ UZ, (correcteness)
(id) VBeUZ, 3JeeclZ: B8s6[W] (completeness)

The sez of most geaeral unifiers WUZ.(s, 1) is defined by (i), (ii) and
(iii) Ve, teplZ: o<, TI[Wlimpliese -8 (minimality).

For technical reasons we have the requirement as defined above: For a set of
variables Z with We Z

(iv) MUZ, (resp. cUZ,) is based on W away from Z

If conditions (i) - (iv) are fulfilled we say pUZ; is a ses of mosi gemeral
vaifiers away from 1 [PL72]

The set pUZ, does not always exist [FH 83] [Sc 86]; if it does then it is unique
up to the equivalence =, (see [Hu 76] [FH 83]). For that reason it is sufficient to
generate just one pUZ, as a representative of the equivalence class [uUZT].T.

Sometimes it turned out to be useful to extend the relation <, [W] used in the
definition of completeness and minimality to <, [X] with WeXsZ This

procedure is justified by the so called “Fortsetzungslemma" (extension lemma)
and will often be used in the completeness proofs of our algorithms:






12 Lemma 1: For two idempotent substitutions 8,, 8, let Z and W €l be
sets of variables be with DOM@, - W and VCODanZ=ﬂ.
Then 8, < 6,IW] iff 8, < 6,[Z1

Proaf: Let V =7Z\W be the extension of the validity domain. By assumption
there exists Ay, with 8, =, 1,8, [W]. Since VCODB, nZ = @ we can find Ay, such
that for all xe V Ayx =x. Define Ay ={x« B,x|x€V)}=0ly and let A =R A,
Then for x€ W we have AB,X ~y A\A 8,x =1,8.x =0, =8,x by definition of A,
and Ay, and the idempotence of 8,. For 1€ V AB,X =A A B8, A x =8,x since
Ayx=X for xeV and DOMO,nV=0. Hence 8, = A8,[VuW-=1]

ie. 8, s; 8, [Z] The other direction is trivial. )

Another technical lemma about composition of substitutions from the right
useful in some proofs later on is:

1.2 Lemmg 2: For idempotent substitutions d, 6, T and a set of variables V
with DOMt =&(V) and VCODt n (&(V)u VCODs U V ) = @:
DOMte = VuDOMe and
ifd <; tle(V)] then 8 <; ve [DOMrel.

Proaf: With the previous lemma we get § <, t [6(V uDOMe)] and hence
8 <, te [V uDOMe] and DOM1e = V u DOMe.






2. UNIFICATION IN ABELIAN MONOIDS

Let a family of operators P, consist of denumerably many constants € (0-ary
functions, written as abc..a;b,.. ), one distinguished constant 1 eC (the

unit) and one binary function symbol x. Let V be a denumerable set of
variables (as before denoted by xy z ... 1, Y, )

Let T, be the set of terms over F, and V (in infix notation) and 7, the
corresponding term algebra. With the equational theory

AC1 = {xxy = yxx, xx1 = X, (Xxy)xZ = xx(yx2) }

define = Acy s the Z-invariant congruence relation generated by AC1 in 7. In

this section we are interested in solving equations in the quotient algebra

T, /.pcy modulo=, .. ie. the interest is in AC1-unification problems <s =15,

where s, teT,.

For ease of presentation we drop the x's and the parentheses in this section and
represent the elements of T, as stringsover Cu V.

An ACl-unification problem <s=t>,. is said to be normalired to
<8'=t>,., iff the common symbols in s and t are eliminated pair by pair and

s, t' either do not contain the unit 1. If one of the strings becomes empty it is
setto 1.

Since the semigroup of abelian strings is isomorphic to the free commutative
monoid and free monoids are left and right reducable the set of unifiers
UZ,(s,1) is the same as UZ, (s, t). Hence we always assume that

AC1-unification problems are normalized.

2.1 The Unification Algorithm

To introduce the algorithm from the point of view of an intelligent human with
a blackboard and chalk we use the following example:

(E1) < X1Yyyasbew = wzedel 5,

wherexyzweVandabcde,ieC.
A more convenient notation for the normalized problem is:

«xy?a?b = zed>, .

10






(E1) has among others & = (X « abcd, y « a’bed, z « a!'b8%d4) as a unifier. Also
the following infinite chain of substitutions unifies (E1):

8 ={xcabed, y «aed, z a>28cd*) forn=1,2,3, ..

However for this chain of unifiers there exists an upper bound:

80, = { (¥  ucd) (z « xu?a?bed) ), with 8 <, 8, [Wlforn=123,.

where u is a new variable not in W = V(x3y2a’bew,wzde1).
The reader may want to construct the corresponding A, With

8, =actAp® Opay [W1fOr W ={x,v,2 w}

for himself, since this demonstrates the main observation of this paper: the
composition of substitutions corresponds to the addition of integers.

2.1.1. First demonstration of the Main Idea

Returning to example (E.1) we ask for the general form of a most general
unifying substitution &: firstly & will only move the variables already occurring
in the two strings, in this case 1,y and z respectively. Hence it will have the
general form:

o=(x «—tl,ye-tz,24-t3} foroertaintie'l'*, i=1,23.

Secondly & will only substitute constants already occurring in the unification
problem (since otherwise it can not be most general). And finally & may
substitute variables already occurring in the two strings and/or it may
substitute 'new’ variables.

For simplicity let & introduce only 'new' variables; i.e. pUZ is the set of most
general unifiers away from Z as defined in section 1.2. Hence a unifier for (E1)
has the general form:

0 ={ x « u™11 v™21 a"11 b"21 c"31 d"41,
(E2) y « u™12 v®22 a"12b"22 ¢"32 d"42,
Z « u™13 v™23 a™13 b"23 ¢"33 d%43 }

for appropriate m,,, n,, € N, (assuming s’ = 1), where u, v are new variables.

The unification problem is now reduced to the problem of finding appropriate
values for the m, , n., . Before presenting a method of how to find such values

i1






there is the question of how many new variables are needed: in the above
example just two new variables u and v are sufficient. The general answer is,
that we need as many new variables as the dimension (number of independent
solution vectors) of the solution space for the corresponding homogeneous
equation system, to be presented below.

In order to determine appropriate values for the m,, n, we observe the

following: for each symbol zhe number of occurrences of that symbol in
a1 , Must be the same 2s the number of occurrences in 91 2

This fact completely determines the m,, n, since we can now set up a
diophantine equation for each symbol:

for u: 3m,+2m, =M,
for v: Jm, +2m, = My,
for a: 3n, +2n, +2 =n,
(E3) for b: 3n, +2n,, +1 = n,, form,,n, eN,
for ¢ 3n, +2n,, =Dy +1
for d: 3ng +2n,, =N, +1

That is for each variable we obtain a homogeneous equation and for each
constant an inhomogeneous one. But note that the homogeneous part is the
same for all equations. The following values for the m, . n, are an example for

a solution of the above equation system:

foru: m,, =1, m,=1 m;,=5 sayx =(115)

21 =1, m,,=0, m,, =3 sayx, =(1,03)

(E4) fora: =n;,=0, n,=1 n,=4, sayx,=(014)
forb: mn, =1, ny)=0, ny=-4, sayx =(1,04)
forc: 0, =1, Ny =1 n,=4 sayx =(1,14)
ford: ng=0, ng,=2, n,=3 sayxs=(023)

for v: m

Substituting these values into (E2) above, we obtain an actual unifier:

8 = { X « uvbe, y « uacd?, z « udviaipicid3d )

How do we obtain &4 unifiers and how do we obtain the most general ones? In
section 2.2 it is shown that every solution of a linear homogeneous diophantine
equation in No is a positive linear combination of certain base vectors

12






spanning the solution space for this homogeneous equation. It is also shown
that every solution of an inhomogeneous linear diophantine equation in No isa

combination of a special solution which is minimal in some sense and a solution
for the homogeneous part.

The base vectors spanning the solution space for the homogeneous equations in
(E3) are:

(ES) m, =(0,1,2) = (m,, m,» m,,)
m, =(1,0,3) = (m,,, m,,, m,,)

and a special solution for each inhomogeneous equation is:

for a: n. = (0,0,2) = (n11, n12; n]3)
for b: 1, =(0,0,1) = (n,, 0y, ny,)
(E6) forc: m,=(0,1,1) = (ny,, 0y, ng4)

fOl‘ d‘ ﬂd = (0,1,1 ) = (nﬂ, nqzs n43)

By taking for each constant one special solution we can construct a mosi
general unifier ¢ laking the vectors n, n,, n, n, as well as two new

variables Z,2, and substituting the appropriate values of the m,, and n, into
(E2) we obtain :
6={xe2,yezed ze zzz1a2bcd )

Why is the previously constructed unifier & an instance of 6? As mentioned
above the solutions (E4) can be represented using the base solutions (ES) and
the special solutions (E6):

X, = im +1m,=(1,15)
X, = Om,+1m,=(1,03)
x,= N+ 1m1+0m2=(0,1,4)
(E7) Xp= thy+ Omy+1m,=(1,04)
X, = M+ 0m1+1mz=(1,1,4)
%g = Mg+ 1my+0m,=(02,3)

Now just as the particular solutions x, to X, are obtained from the m, m,
n, ..., ", the particular unifier 8 is obtained from & as:

6=A-6[{xyz}]
with A = { Z, « uad, z, « uvbc }, where A can be computed directly from the

linear combination of vectors in (E7).

13






Hence any unifier can be obtained from a most general unifier in just the same
way as any solution of the equation system (E3) is obtained from some special
solutions of the inhomogeneous equations and from the basis solutions of the
underlying homogeneous equations. However, one cannot simulate the
subtraction of vectors by composition of substitutions, and also negative
powers of constants are not defined. Thus we have to solve the equations in
positive integers and only positive linear combinations of these vectors are
allowed. This leads to the following algebraic problems:

(P1) Given a linear diophantine homogeneous equation system, does there exist
a finite base of independent positive solution vectors such that every
solution to this equation system is a posil/ve linear combination of the
base vectors?

And secondly:

(P2) Can the positive solutions to an inhomogeneous equation system be
obtained as a posilive linear combination of ane special solution with the
set of base vectors for the corresponding homogeneous equation?

In section 2.2 it is shown that the answer is essentially positive: the only
complications are that we need a larger (as compared to the solutions in the

rational numbers Q), but still finite set of base vectors for (P1) and we have to

consider more than one special solution (but still only finitely many) in order to
solve (P2).

2.1.2.The AC1 - Algorithm

Following the outline of the previous paragraph, we shall now give a fomal
presentation of the algorithm. The input is an AC1 - unification problem
represented as:

(61) wPiv,P2 vPre . cli=v, Prer vyPMe, U1 ¢,

where (v, ,.., v} eV, {c, ..., q}esCandp, g eN.

The output of the algorithm is a finite set of unifiers each of which is
represented as a matrix ( m,,, nik) of non negative integers as follows. Let N be

the dimension of the solution space of the homogeneous equation and let
U, ,.., Uy be the new variables to be substituted. A unifier for (G1) is then

represented as:

14






y | myymy, M
u, | my my, m,y

|

|

) | )

uy |omy my, L omyy
(G2) e, |, n, . 1
¢, | ny ny Dom

|

|

o
¢ oy myy, . mpy

Note that this is just the matrix of (E2) such that each column represents a
component of the unifier:

) ={vi cu ™. uy™Nic™i.. i 1<isM }

The following two auxiliary functions DIOHOM and DIOINHOM set up and solve
a homogeneous and an inhomogeneous equation respectively. They are
separated out since they are the fundamental algorithms for our unification
process whose efficiency may be improved independently (see [GH 85]).

The homogeneous equation arising from (G1) (say for ui) is

(G3HOM) Py, + P+ o+ PyMyy = PByyy Myg g * -+ Pylyy
and the inhomogeneous equation (say for c; 1<j<Landwlog.I<j)is:

(G3INHOM) pln“ + pzni2 + ..+ pKniK = pK#lniKH + .+ pMniM + qi,

15






FUNCTION DIOHOM
INPUT: An AC1 - Problem like (G1).
STEP 1: Compute the homogeneous equation as in (G3HOM)
STEP 2: Solve (G3HOM) by the currently most efficient algorithm

(see section 2.2).

OUTPUT: The set of independent M - dimensional base
vectors {m,, m, ..., m,) spanning the solution space

or {0} if (G3HOM) has only the trivial solution
ENDOF DIOHOM.
The next function computes the set of minimal solutions of an inhomogeneous

equation as described in section 2.2: instead of just one we need several special
solutions of the inhomogeneous equation.

FUNCTION DIOINHOM

INPUT: 1. An AC1 - Problem like (G1).
2. A constant G with1<j=<L

STEP 1: Compute the inhomogeneous equation as in (G3INHOM) for ¢

STEP 2: Solve (G3INHOM) by the currently most efficient algorithm
(see section 2.2).

QUTPUT: The set of minimal M-dimensional solutions S, = {1 ..., )
or @ if (G3INHOM) has no solutions

ENDOF DIOINHOM.

This gives the final algorithm:

16






FUNCTION  AC1-UNIFY
INPUT: An AC1-Problem like (G1).

STEP 0: G1 := NORMALIZE(G1)
STEP 1: {m,, m, .., my) = DIOHOM(G1)

STEP2: if L=0 then WUZ, = CONSTRUCT(m, ,..,my)

else
STEP 3:  PRODUCT := DIOINHOM(G1, ¢,) x ... x DIODINHOM(G1, ¢;)
STEP 4  pUZy =8,

forall (n,, n, ,..,n;) € PRODUCT do
RUZ: = pUZ, v {CONSTRUCT(m, ..., my, 0y ,...0 )}
od

OUTPUT: The set of most general unifiers pUz,

ENDOF AC1-UNIFY.

The AC1-unification algorithm uses two auxiliary functions: the function x,
which computes the Cartesian product of two sets, and the function CONSTRUCT.
Function CONSTRUCT takes N + L vectors as input,

[m)
.o
| myl
transforms them into the matrix | n, | (see G2) and then computes the
.|
In, )
usual "set of pairs” - representation of a unifier.
Of course we still have to show that the name WUZ, of the output set is

justified, i.e. that indeed we are computing the most general set of unifiers.
While this is the subject of paragraph 2.3 we shall first look at another
example.

2.1.3. Another Example

Let <xyac = b%zc1>, ., be an AC1-Problem, which we shall follow through the
algorithm AC1-UNIFY.
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i3
(=]

«a?ya = b2z, , is the normalized form
The homogeneous equation is

2m" tm,-m,= 0,

The solution space is spanned by
m,=(0,1,1)
m,=(1,0,2)

There are two constants, hence L = 2.

The equations are

2n,, + N, - Ny, = 2 for b
S, ={(0,0,1))
S, ={(1,0,0),(0,2,0) }, hence
PRODUCT = S_ xS,
={((0,0,1),(1,0,0) ),((0,0,1),(0,2,0) ) }

\72]
—
&
[N

v
-1
K
Sl

STEP 3: Since there are two elements in PRODUCT, i. e. N = L, we have two
matrices (m,, m,, n,, n,) and (m,, m,, n," n,), where (n,, n,) and
(n,',n;) are the elements in PRODUCT. The actual values of the
transformed matrices are (note that we need two new variables u and

v):
_lxyz | _lxyz]
ulo 11 |m, ulo 1 1|m,
vit1 02 |m, vit 0 2im,
al0 01 In, al001|n
blit 00 In, bl0 2 0in,

This gives the two unifiers pUZ = {e,, 8,} with:

- 2
6,={xevb, yeu, zeuvia)

= 2 2
8,={XeV, yeubs zeuv,ia)

2 2

2.2 Linear Equations over N.

Before we prove correctness, completeness and minimality of WUZ,, the set of

unifiers returned by AC1-UNIFY, we will first have to show that the algorithms
DIOHOM and DIOINHOM are welldefined.
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Given an inhomogeneous linear diophantine equation

(E,) ax +.+ax =b a,beZlfori<ic<n

and the corresponding homogeneous equation

(Ep) ax +.+ax =0 g elfor1<icn

we are interested in finding all positive integer solutions of (E,)
Sy ={y=(y,,.y )l a,y,+..+ay =b and y,20)

respectively all nontrivial positive integer solutions of (E,)
So={y=1y,,..y)! a,y,+..+2ay =0 and y,20}\{(0,.., 0)}.

Let G, be the set of all solutions of (E;) in Z then G, is a subgroup of G =2" the
free Abelian group on n generators. Then S, = Gy n (F \ 0) where F = N" is the

free Abelian semigroup on n generators and 0 the unit in F. Hence by Corollary
9.19 in [CP 671§, (if non-empty) is a finitely generated subsemigroup of F. The

basis of So is the set of all minimal elements in S, with respect to the order

x = (x x) < y=(y,,.,y,) iff x, <y for1cicn

1 %

The set M of minimal elements of a set S with respect to < is defined such that
for all se S there exists m e M with m < s and for all m e M if there exists se S
withs<mthenm=38.

Let B ={b, ,..,B,} be the basis of 5, then S;={x|x=bb, +..+bhb b 20}

Hence we have the following result which was first shown in [G 1873}

2.2 Theorem 1: The set of positive integer solutions So of a homogeneous

linear diophantine equation is positively generated by the
finite set of minimal (with respect to < ) elements of So.

In order to obtain the solutions for the inhomogeneous equation (Eb) let M, be
the set of the minimal solutions of (E,) with respect to <. By Theorem 9.18 of

[CP 67] which is a consequence of a theorem of Dickson [Di 13] we have the
important result that M, is finite.
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In summary, the following theorem shows how to compute Sb in principle:

2.2 Theorem 2: The set of positive integer solutions 5, of an inhomogeneous

linear diophantine equation is
S, = {yly=x +xy with x, € M, and xg € Syu {0} ).

Proaf: 1t is easy 1o see that x, + X, is in S,. Conversely let ye S, then if yis in
M, we are done with x=0. Suppose y is not in M, then there exists by
definition x, in M, with x, <y Therefore we have y-x, >0 and hence

Y - Xy, =Xg €5 OF Y =Xy + Xo. n

As computation is not done “in principle” there is the important problem to find
the most efficient algorithm computing B and Mb. Currently three algorithms

are known which compute the basis of the solutions of a homogeneous equation
[Hu 78][Fo 83] and [La 85]. In [GH 85] the algorithms of Huet and Fortenbacher
are compared and extended to compute the minimal set M, for an

inhomogeneous equation as well.

2.3. Correciness, Completeness and Minimality

We shall show that pUZo, the output of AC1-UNIFY, is indeed the intended set
of most general unifiers pUZ, . (s, 1).

2.3. Theorem 1: AC1-UNIFY terminates.

Proaf: This is trivial, provided the two functions DIOHOM and DIOINHOM
terminate and always return a Jinie set, which was shown in the previous
paragraph. [ ]

2.3. Thearem 2: RUZ, is correct.

Proaf: Lete ={v, uimu uNmNi c,nn CLnLi, 1 <i< M }be a substitution in
MUZ,. Asin 2.1.2 (G1) assume

(i) s=vPiv,P2_v.Pxch ..l

(ii) t=vy, PRe1 . vyPMe, Te1 L

We have to show that & unifies s and t, i.e. in 68 and &t there occur the same
number of new variables u , 1 <n <N and constants c;, 1 <i<L. Define #(p,q)

as the number of occurrences of the term p in the term q. Now for 1 < n <N we
have

20






K
#u es) = Z p; m, from (i)
ji-1

M
-2, pm, from (i) and the fact that it is
j=Ks1 a solution of (G3HOM)
= #(u - et).
Similarly we havefor 1<i<L (wlog. i<I)
K
#c, es) = Z p; 0y + q; from (i)
j=1
M
= B, 1 from (ii) and the fact that it is
i=K+1 a solution of (G3INHOM)
= #c;, t).

Hence & is a correct unifier, since it substitutes exactly the same number of
symbols into each side of the AC1-problem. [ |

2.3. Iheorem 3: WUZ,is a complete set of unifiers.

FProaf: Let the given AC1-unification problem be of the form:

PLv. P P iG=v, P
(3.1) <vP1vP2 viPke 91 o=V, PRt vyPMe TG,

as in (G1) and for simplicity assume it is normalized. Let & be an arbitrary
unifier for (3.1) and let W={v,v,,. v, Wlog we assume that

VCODd n W =@ and DOMd € W. Let 8;, 85 ,-, S be the symbols in CODS different
from the constants ¢, ..., q.
We represent & = {v,« s Mi1 . SHMHi ¢, Mi .. CLNLi, 1 <i < M) in matrix form:
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|v1 v, VM|

$; | My, M,, My 1=,
$; | My, My, My [=1,
| . |
N oo
(3.3) sy | M, Mgy | =My
| . I
. i |
6 I Ny N o Ny I =Ny

We want to show that there exists ¢ € pUZ, and some A € Z such that
8 =, A +6 [W] The homogeneous equation for (3.1) is:

ACt
K M
(34 2 p% = 2. By,
j=1 j=Kel
and the inhomogeneous equation for each ¢, 1<i<Landix<] is
K M
j=1 ji=K+1

As 8 is a unifier for (3.1) the number of occurrences of each symbol in &s is the
same as in 8t; i.e. the vectors M;, M,, . . ., M, solve equation (3.4). Similarily the

vectors N;, 1 < i < L, solve equation (3.5) for each c,.
Hence by 2.2 Theorem 1 the vectors M, can be represented as:

(36) My=a m+a . my+  +a my 1<h<H,forsomea eN,

where { m,, ..., my } are the vectors computed by DIOHOM.
By 2.2 Theorem 2 the vectors N, can be represented as:

(37)  N;=b,ym,+b my+_ +b,my+n, 1<isL, for someb, eN,
where n; is an element in S, as computed in DIOINHOM.

22






Define oy=(a,8,,. a,) for1<hs<H

b, =(b,,, b, .., by) for1<is<L

Let esepUx, be the substitution corresponding to the matrix
6=(m,,. myn,n,, . n) Which must be computed in STEP 3. Define A as the
substitution corresponding to the matrix A = (3,,8,,..,0y,b, ... B ).

A= lu u, .. u, 6= v, v, ..V

M
8, | 8, - Ay u, | m, .. M,
| . i .
| . i .
Syl 8y oy uy l my, o omyy
¢ I by . by ¢ lmy .ongy
| . . .
N . A )
cLI bLl Y bm cLl nLI sse nLM

We now compute the composition of A and &:
"Aee =@ ,...04b,. . B)(my . myn, _ n) by definition
={u sk s Mecbie gl 1<k<N)
. {vi < u i ... u\®Ni ¢, Mi ... ¢, OLi |1<i<M)
={v,¢8,%i .. 8,%pi c,Pi..chLil1<i<M) iwl

Where Q. =m,.a,+mya.+. ¢ Mmya,
'Mhi for1<i<M;1<h<H,

and Bji= my;b;y + mybyy ¢+ my;by + 0y

=N, for1<i<M;1<j<L

2.3. Theorem 4: MUZ, is a minimal set of unifiers.

Proaf: let o, 1epUL) with e %, TIW] Let (m;,. mymn, . . n) and
(my... myn' . n') be the matrices corresponding to & and t. Since
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6%,.,TI[W] there is a constant ¢, 1 <i<L, such that n +n,. Suppose by
contradiction there exists A € Z such that 6 =, . A - T [W]

N
Clgim: 1f =, A-1T then n; =n; +’Z a,m; for some aeN,
i-1
Proaf: Let DOMe = DOM1 = {v, ,.., v} and w.log. DOMA = VCODr - {u, ...y}
and for1 < j < M we have, where #(c,, ti) is the number of occurrences of c, in L
#c,, evi) = #c,, Mvi)

N
= #c, rvi)+z #(c,, Au ) #(u,, wi)
k-1
with #(c . 6Vi) = n, ji=1,..M
#(c,, ‘l’Vi) = nii' j=1,..M
#(c,Au) =8 k=1,.,N
#(u, wi) =m, . k=1, Nj=1,.M
and n =(n, ... ny)
n =(n,,., 0y
m,=(m,, .. m.) k=1,...,N
Substituting these values yields
N
moen s S m
k-1

But now n,/<n, and n, +n;, which is a contradiction since DIOINHOM only
computes a minimal set (see paragraph 2.2). ]

2.4 AC-Unification without an Identity Element

If the Abelian semigroup does not have an identity element we compute the
AC-unifiers as follows: first we apply the previous algorithm and afterwards
the AC-unifiers are derived from the AC1-unifiers by a trivial process of
variable elimination.

Since every AC-unifier is trivially an AC1i-unifier we have the following
obvious relationship where C(CODe&) is the set of constants, occurring in the
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codomain of &, s and t are normalized and different from 1.

24 Lemma 1: 6eUZ, (s t)and 1 ¢ C(CODe) iff eeUZ,(s, 1)

The set UZ, . is in general larger than pUZ, ., ie. WUZ, . | < |WUE, | In order
to obtain a set of most general AC-unifiers from pUZ, .., we have to consider all

AC1-instances of the AC1-mgu's, which are not AC-instances. These are easy to
obtain: in the AC1-case variables can be substituted by the identity 1, ie. in
fact after normalization variables can be eliminated in the AC1-case, but not in
the AC-case. Hence we systematically erase the variables in the codomain of
the AC1-unifiers and add these to the set pUZ,

WUZ, (s, 1) = {1 | t=(ke),; with 1 ¢ CODT, 6 € pUZAC,(s, t)
andA = {x;, «1,.,x; « 1)}

where (X; xm} is a subset of VCODs and (Aes)N is the substitution derived

ll 3°°°3
from Ae by eliminating all 1's and restricting the domain to W = V(s ).

2.4 Theorem 1: pUz, (s,t) as defined above is a correct, complete and
minimal set of AC-unifiers of s and t.

Proaf: Correctness: Let T € pUZ, (s, t) then T = (A8),,. Since & is an AC1-unifier
A6 is an AC1-unifier. Hence with 2.4 Lemma 1 T is an AC-unifier since T=(Re),,

is normalized and 1 ¢ CODt.
Compleleness: Let 8 be an AC-unifier of s and t then 8 is an AC1-unifier by
24Lemmal and hence there exist a eepUZ, (s, t) and an appropriate

normalized A with DOMA € VCODe such that 8 =, ., As [W] where W = V(s, t).
Seperate A into A, and A, such that A =A A, with {1} = CODA, and 1 ¢ CODA,. But
then 1 = (A,8), is an AC-unifier of s and t since 1 is an AC1-unifier and 1 ¢ CODt.
Now teuUZ, (s, 1) by definition of pUZ,. and finally 8=, A 1 [W] since
1 ¢ CODA,.

Minimality-Let 1,7, € pUEAC(s, t) with Ty $pc Ty then with e, 6, € pUZAC‘(s, t)
1,=0R6)1,=R,08,)y and 1,=,.At,[W]l Therefore we have
A8, =rc1 A8, [W]

Case I: 6,+6,; As in 2.3 Theorem 4 we construct a contradiction to the
minimality of the solutions of the inhomogeneous equations.
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Case 2: 6,-6,=-06: Then  we have A6 =0 AR 0 [wl with
A, = {xi1 1, X« 1}). Representing A,s in matrix form means that we replace
the rows i, ,..,i in the matrix representation of & by 0. But since 0 is only
trivially representable, ie. 0 = Om, + .. + O0m,, we can compute AA, by the same

methods as in the completeness proof of 2.3 Theorem 3. But this yields that
A, =AA, and since 1 ¢ CODA we have A, =1, and A =¢. Therefore we have T, =Ty

. I
As a point of reference we define the algorithm AC-UNIFY for AC-problems
without an identity as:

FUNCTION AC-UNIFY

INPUT: An AC-Problem <s=1> AC

STEP0: UL, = AC1-UNIFY(s, t)
STEP1: pUZ, (s, 1) = {1 |1=(ke)y with 1 ¢ CODT, &€ pUZ, (s, 1)
and A = {x;; « 1,.., % « 1}}

OUTPUT: the set of most general AC-unifiers pUS Ac(s, t)

ENDOF AC-UNIFY.

As a final demonstration consider again the example of paragraph 2.1.3 but
taken as an AC-problem:

_ w2
< xzya = b“Z> AC
In 2.1.3 we obtained

PUE, o ={ {xevb, yeu, zeuv?2a)
(xev, yeuhd? zfuzvzza}).

Using the above definition for pUZ, . we obtain
U, ={ {xevb, yeu, zeuvi2a)
(xeb, vyeu, zecua) (ie. {v, « 1))

(xev, yeup? zcu,v,%)
(xev, yeb? zev)a) } (e (uy« 1)),
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2.5 A Comparison with the STICKEL Algorithm

The example in 2.1.3 and 2.4 is used also by Mark Stickel [ST 81] to
demonstrate his algorithm. It shows the improvement by our method: the
relative simplicity by which the unifiers are computed and particularly the
direct relationship between the minimal integer solutions and the most general
unifiers. In order to unify <x%ya=b%z>,. according to [ST81] the

generalization to <V, 2v Vs =V, v5 >ac (the variable abstraction) with

d={v,ex,vyey, Ve, Ve b, Vg« z} has to be computed. Then the (pure

variable) equation corresponding to this generalized problem has to be solved,
which results in 69 unifiers. After that an expensive compatiblity operation is
performed between these 69 unifiers and 8 resulting in the deletion of 65 of
these unifiers and only four most general unifiers are left over as the final
solution.

In comparison we first compute the two most general AC1-unifiers for this
example directly and without any additional search. From these two
AC1-unifiers the four AC-unifiers are derived.

The theoretical analysis of the two algorithms in terms of matrices
(representing certain linear mappings) in [Bi 85] clearly exhibits the additional
computation to be performed in the Stickel algorithm. It is also shown in
[Bii 85] that our algorithm is optimal in the sense that it cannot be improved
theoretically.

An additional practical advantage of our approach is that the homogeneous
equation is in general much smal/er in the number of variables, which leads
potentionally to exponential savings: the complexity of the algorithms to solve
linear diophantine equations [Hu 78][Fo 83] grows exponentially in the number
of variables. The second effect of smaller homogeneous equations is that we
have fewer solutions and hence the number of partitions is smaller which have
to be computed for deriving all AC-unifiers from the AC1-unifers. The
enumeration of the partitions in the Stickel algorithm was later improved
however by Hullot [Ht 80] and Fortenbacher [Fo 85].

Finally we have shown that our algorithm is minimal, whereas it is open
whether or not this is the case for the Stickel algorithm. Fortenbacher claims in
[Fo 85] that his version of the Stickel algorithm is minimal.

The disadvantage of our approach is that we have to solve inbhomogeneous
egualions as well as the homogeneous one which could potentially outweigh
all of the above advantages. It would be but another instance of the wellknown
fact that an algorithm with the theoretically least complexity is not always the
most desirable practically. While a theoretical analysis of this problem is still
pending it is demonstrated in [GH 85] that solving the inhomogeneous
equations aad the homogeneous equation in our case is in fact already faster
(compared in runtime for a selection of typical problems) than solving the
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(larger) homogeneous equation alone in the Stickel case.

A final advantage of the algorithm presented here is that it solves the
unification problem for an AC1-theory as well as for an AC-theory . In
applications the AC-operator more often then not has a unit (Commutative
Monoids, Abelian Groups, etc.), hence we would immediately obtain fewer
AC1-unifiers.
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The previous unification algorithm is now extended to handle terms composed
of several different AC-function symbols as well as uninterpreted function
symbols. More precisely let the family of operators F consist of a set (:,J of

denumerable many constants, of a finite set F, . of binary function symbols f,,
1 <iz n, and a linite set of uninterpreted function symbols F, With V the set

of variables as before let T be the set of terms built up from these symbols and
let I be the corresponding term algebra. Using the equational theory

AC={f(xy)=f(yx), f(x f(y2))=[(f(xy)2z)| f,e P, ,1<isn}

we define =, . as the Z-invariant congruence relation generated by ACin J’ In

this section we are interested in solving equations in the quotient algebra
T,_, ie. the interest is in AC-unification problems <s=t>,.fors, teT.

An AC-unification algorithm for these problems is presented below. The
essential idea is as follows: for the given AC-terms the subterms not starting
with an AC-function symbol are temporarily replaced by new constants, thus
reducing the case at hand to a problem for the AC-algorithm of the previous
section. The replaced subterms are then taken care of in a recursive call of the
same process.

Using a modification of the FAGES complexity measure [Fa 84] we shall show
that this process terminates and produces a complete and correct set of
AC-unifiers which however is not minimal in general.

3.1 The Geperal AC-Unification Algorithm

To simplify the notation we write "+ or "x" for the AC-function symbols f; and
informally represent a term +(t, +(t, .. +(t_, t )..)) by its flattened (ie. n-ary
instead of binary) version +(tl tn). We assume in the sequel that all terms

and subterms are totally flattened with respect to their leading AC-function
symbol.

For a given term t = g(t1 tn) the term i, 1 <k <n, is called an /mmediate
subterm of t and t is the /immediate superterm of t: the /feading
function symbol hd(t) of t is g. If t is a constant or a variable then hd(t) - t.
A subterm r is #//em in t if it is not a constant or variable, and if it does not
start with an AC-function symbol or with a different leading AC-function
symbol than its immediate superterm. By abuse of notation we consider s to be
alien in s, provided s ¢ Y u C. For a set of terms S we denote the set of all alien
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subterms of S with
ALIEN(S) = { s | s is an alien subterm of some term in S }.

Similarly let I-ALIEN(S) be the set of the immediate alien subterms in S. We
assume that for s, tin ALIEN(S) (in I-ALIEN(S)) we have s+, t; ie. we only

take one representative of each equivalence class.. Obviously if r is an alien
subterm of s then &r is an alien subterm of &s for every substitution 6. We use
this fact implicitly in the termination proofs.

A term t is called =-pure if it only contains an AC-function x, constants and
variables, ie. te T({x} uC,, V).

For a given term we want to replace all its immediate alien subterms by new
constants in order to use the unification algorithm of the previous section. For
that reason we define the constant absitraction of a term s as follows: let
I-ALIEN(s) = {s, ,..,s,} then we call @=[s «c,,. g «c, ] a subterm
replacement where the c, are distinct constants that do not occur anywhere in
s. Define s =ms, the constant abstraction of s, as the simultaneous replacement
of all subterms that are T-equal to s, by ¢, for 1 <isk. For example for the
term s = +( g(g(x)) «(x a) «(a x) a x y), where + and x are AC-function symbols
and 8 is an uninterpreted function symbol, we have

ALIEN(s) = { s, g(g(x)), g(x),x(x a) }, I-ALIEN(s) = { g(g(x)), «(x a) },
e=[g(g(x))«c,x(xa)=c,] and s=-as=-+(c,c,c,axy). Now consider the
inverse subterm replacement @! = C, &8y, G ESy ] If we treat the
constants ¢, ,..., G in o-! as “special variables “there is no need to formally
distinguish between the subterm replacement a-! and the substitution
a = I R } (since both are homomorphisms, one moving some
constants and the other moving some variables). We then have as =aas = AC S

Once we have solved the unification problem for the constant abstraction of the
two terms using the previous AC-unification algorithm, we have to apply it
recursively to all subterms that have been "abstracted away”. Hence we define
the set of all potentially unifiable subproblems SP of s,te T as the set of all
pairs in [-ALIENC(s, t):

SP(s, t) ={ (s, t) IS, t e I-ALIEN(s, t), hd(s') = hd(t),s' = t' }.
Using this terminology the general AC-unification algorithm G-AC-UNIFY can
now be stated as follows: we extend the traditional Robinson unification algo-

rithm [Ro 65] by a call to G-AC-UNIFY, the general AC-unification algorithm to
be presented below which in term uses the algorithm AC-UNIFY of section 2.4.

30






FUNCTION  AC-ROBINSON

INPUT: A unification problem <s=1>,. wheresteT
and w.log. s is smaller than t

STEP 1: if S =pct then UZ, :-{¢}

STEP 2: elseil seV thenif se V(s) then FAIL else UZ;:={{s<t}}
STEP 3: elseif hd(s)+ hd(t) then FAIL
STEP 4: elseif hd(s) - hd(t) P, then UE, =~ G-AC-UNIFY(s, )
STEP 5: else let s=h(s, ..s)andt=h(t, ..t )in
Uz, = {¢}
for i=1,.,ndo
subunifiers := @
forall e€ Uz; do
subunifiers - subunifiers v AC-ROBINSON(es;, 6t,)-6

od
UZR = subunifiers

od

OUTPUT: The set of unifiers UZ (s, t) away from W 2 ¥(s, t)

ENDOF AC-ROBINSON

The following main AC-algorithm uses an operation called the merge exat of two
substitutions. Essentially the merge is a most general common instance of the
two substitutions 6 and a and is defined in 3.2 along with some properties of x.
For a set of substitutions Z we abbreviate {66 |6 € X } by .8 and {exxt |6 € X }
by Zst.
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ION G-AC-UNIFY

INPUT An AC-Problem <s =t>, . with hd(s) = hd(t)eF, s, teT

STEP 1: if I-ALIEN(s,t) =@ then UZg ac= AC-UNIFY(s, t)
STEP 2: let 8.1 be the constant abstiraction and a be the

corresponding substitution withas=sandat =t
in

US, , = AC-UNIFY(s, 1) = @
STEP 3: forall (s.t) € SP(s,t) do
forall & € AC-ROBINSON (s, t) do
UZ; sc= UZg oY G-AC-UNIFY(e's, 6')-6’
od

od

STEPO: if not hd(s)-hd(t)ePF,. then FAIL

QUTPUT The set of AC-unifiers UZ; , (s, t) away from W 2 V(s, t)
ENDOF G-AC-UNIFY

We do not explicitly consider the details of basing the unifiers on V(s, t) away
from some set of variables W 2 V(s, t), since it would only complicate the

notation. The proofs demonstrating that the unifiers are based on V(s, t) away
from W are not difficuit and we always assume that G-AC-UNIFY(s, t) and
AC-ROBINSON(s, t) return a set of unifiers sway from W and that the domain
of the unifiers is V(s, t).

3.2 The Merge of Two Substitutions

In the previous algorithm we used an operation often called the merge of
substitutions or unification of substitutions: two substitutions &, 1 are
AC-unifiable iff there exists a substitution A such that Ae =AC At. Then A is called

an AC-unifier of & and t. Define the sets UZ, (e, 1), cUZ, (6, T) and the set of
most general unifiers pUZ, (e, 1) away from W 2 V(s, 1) as before (for terms).

If pUZ, (6, T) = (A}, the substitution 6T = A6 =, AT is called a merge of 6 and

T.
In the special situation of the algorithm G-AC-UNIFY the following restrictions
hold: given an AC-unifier 1 = {x; «t,,..,x «t_} computed by AC-UNIFY(s,t)

for some terms s and t containing no alien subterms, and a substitution
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o= {c‘ “ry,..C € rn} reversing the subterm replacement of a constant
abstraction we have

(i) DOMa n DOMt = @
(ii) VCODa n VCODT = 9.

The last equation holds since VCODt only contains special variables and
variables not occurring in s and t, whereas VCODa ¢ V(s, t). Under these
circumstances pUZ Ac(r, o)l -1 and there is a particularly efficient way to

compute the merge which we shall now present. First we reduce the unification
of substitutions to unification of termlists, i.e. 6 unifies two termlists (sl . 8, )

and (tl s T ) iff s, =, 6t; for 1 <i<n and the notion of a set of most general
unifiers for two termlists carries over in the usual way.

32 Lemma 1: For o and T as above

UZAC(a. )=z Ac((1:l D BN N | A Y rn)).

Proof: Let AeUZAc(a 1), ie. Aa =pcAt. For x.eDOMt we have
x loul Ac* M for 1 <i<m and for c € DOMa Ac krc Acmc Ar

ror 1<jsn Hence A is a unifier of the termhsts
Conversely let 8 be a unifier of the termlists then for x ¢ DOMrt (ie. x=-x)

Bax, =6x, =, .6t =61x, and for X € DOMa (ie.x = c) ch Bc =AC Br —Bac Hence
for all x we have Box -, . 8tx, thus8 e UZ,, (a, r) l

This lemma immediately implies that
WUZ, (o, 1) = pUZ, ((X ooy XC4 0 € (8 b By s £ ).

For the equational theory AC and a variable x we have pUZ, (x,t) -0 if
x€ V(1) and pUZ, (x, t) = {{x « t}} otherwise. Hence the most general unifier of
the termlists in 3.2 Lemma 1 (if it exists) is just the composition of {x, « t.} and
{ci « ri}. We therefore define 7,=1 and =61, with 6, = {c' « THrl} for
1<jzn

32 Lemmsg 2: (i) If the termlists (x, .., x,.C; ,...C) and (t, .., g v Tp)
are AC-unifiable then T, is their single most general
unifier.

(ii) If the termlists (x, ..., X;.C; ,..,¢)) and (t, .., t r ... )

are not AC-unifiable then there exists j, 1 <j<n, with
¢ € V(r'_,r,).
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Proaf: We show (i) by induction on j: let 8 be a unifier then 8 <, ! [V] with
V=V, X060 s €ty sy UF g e, £)-

Dase step: Since B unifies the termlists we have 6x, =, .6t =6tx. Hence
8<,c7p=1L{x,,., 1)) Using "Fortsetzungslemma” (1.2 Lemma 1) we get
8s,.7 [Vl

Induction step: Since B <, . ,[V] by mducuon hypothesis there exixts l such

that 6 =, l’t’[V] But then Ac

iSi+1 = ATi1 =ac 8.1 =ac Ojes “ac AT (sm"e
T.c ) ie. A; unifies ¢, and Ty,

i%e1 ™ Gt fjs- Hence G, ¢ V(Tl 1+l) and
HUZ, (. 10 q) = 6,4} With 6, = (G,  «7r;,,) and A, <, 06, [V(c, . 1,5, )L
Using 1.2 Lemma 2 we have 8=, A1, 5,0 6,7, [V(c, .., )] and
again by 1.2 Lemma 1 we finally get8<, .6 i1 = Tot [Vl

Hence T, exists and is the single, essantially unique, most general unifier of the
termlists. ]

,‘13 rl 900y l*l

To summarize this paragraph we have: if the substitutions T and a are
AC-unifiable then L is the single most general unifier of T and a with

e = 1,2 = 7,1 =1, If the substitutions T and « are not AC-unifiable then there
exists j, 1 <j < n with c € V('(Hri). That means that there is no need to perform

a full AC-unification in order to compute the merge of T and «, but it suffices to
compose the 6,and to check if there are no cycles (ci € V(ri_,ri)).

3.3 An Example

Given the unification problem

<+x2yg(xu)) - +«(zglab)glab)) Sar

where + is an AC-function symbol, g is an uninterpreted function symbol and a,
b are two constants. The immediate alien subterms for s = +(x2 y g(x u)) and
t =+(zg(ab)g(ab)) are I-ALIEN(s, t) = { g(x u), g(a b) }. The only subproblem is
therefore (s, t') = (g(x u), g(a b)) with the most general unifier 6' = {x « a, u « b).
The constant abstractions of s and t are § = +(x?y ¢,) and 1= +(z c22) with
a = {c, «g(x u),c, «glab)). The set of most general unifiers for s and t (see

2.4) is:
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PUZ, (s, V) = ({xe+(z, c)), ¥ 2y ze+(zyz2¢,)),
(xec, yeu, ze+u2e,)),
(X ev,, ve+vy6?), ze+(vvy2ec)),
Xew, ye +(c22), ze+(w,cc,)})

Merging these unifiers with a we get:

RUZ, (s, xax = {
(xe+(z,8(ab)), yez, 2e+(z,2,28(+(z, 8(ab)) 2,)), ue2z4),
{xeglab), yeu, z<+u,2g(glab) uy)), ueu,l,
{(xev,, ye+v,g(ab)glab)), z+v,v,28(ab)g(v,v,)), uev,),
{xew,, ye+glab)glab)), z«+(w, glab)g(w, w,), uew,})

The only unifier of (s, t) is 6 = {x « a, u « b} and hence s = +(a® y g(a b)) and
et=+(zglab)g(ab)). The set of most general AC-unifiers is
BUZ, (es,6t) = {r,,1,}  With 1, ={y«+x, g(ab)), z«+x, a%)}  and

1, ={y «g(ab), z« +(a?)). Hence

1,6 ={xca,ye+x gab)), z+x, 2%, ueb)
1,8={xcayeglab), z«+(a?) ueb)

are two additional most general AC-unifiers of s and t. Hence we have finally:

pUZ; (s, 1) = pUZ, (s, Dxa v {1,6,1,6).

3.4 Termination

Termination of the algorithms G-AC-UNIFY and AC-ROBINSON is shown by
Noetherian induction on a slightly modified form of the complexity measure of
F. Fages [Fa 84], which we shall now define. Let r be a subterm of a term s then
Op(r, s), the set of the leading function symbols of all immediate superterms of
r in s, is:

Op(r, s) = { hd(s') | there exists a subterm s’ in s which is
an immediate superterm of r)}.
Let Op(r, S), the set of leading function symbols of a term s in a set of terms S,

be LXOp(r, s) | s € S} For a set of terms S let
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V,(S)={xIxeV(S)and [Op(x, S)I > 1)

be the set of shsred variszbles, ie. those variables which occur immediately
under at least two different function symbols. We omit the parentheses in
Op(r, {s,t})) resp. in V ({s,t})) and write Op(r;s,t) resp. V (s,t). Given a

unification problem < s =t >, . the complexity of that problem is defined as
e(s,t)=(v,v) with v -V (s, t)l and 7 - JALIEN(s, t)l.

Taking the lexicographic ordering on the complexities we obtain a Noetherian
ordering. For example with s = +(x y g(x u)) and t = +(zg(a b) g(a b)) we have
Op(x; s, t) = {+,8), V(s t)={x}, ALIEN(s,t)={s,t,g(xu),g(ab)} and hence

C(s,t) = (1, 4). Note that constants are alien subterms in Fages' complexity
definition but not in ours.

3.4 Leamma 1: If s, t' e ALIEN(s, t) are proper subterms of s and t then
e(s', t) < C(s, t).

Proaf: Let C(s,t)=(v,7) and €(s,t)=(v, 7). Since V(s,t)eV(s,t) and
Op(x: s, t) e Op(x; s, t) we have V(s t) e V (s, t) and hence v' s v. If V' =v we

have to show that t' < 1. Consider the mapping &: ALIEN(s', t') — ALIEN(s, t).
For r'e ALIEN(s', t') define &(r') :=- r € ALIEN(s, t) with r =acf- Then & is an

inclusion and since at least s or t is not contained in ALIEN(S', t') we have T’ < 1.
]

In order to prove the termination of our main algorithm we have to show that
the unifiers produced by the algorithm decrease the complexity of the original
terms, ie. if & unifies some immediate alien subterms of s and t then
C(es, 6t) < C(s, t).

We say a substitution 6 is monotone for s and t iff C(es, 6t) < C(s, t) and
strictly monotone for s and t iff C(es, 6t) < C(s, t). In the following lemmata
we show the monotony of certain substitutions.

We call a substitution ¢ alien for s and t iff 6 = {x «r} with xe V(s,t),

r € ALIEN(s, t) and x ¢ V(r).

34 Lemma 2: If a substitution 6 is alien for two terms s and t then 6 is
monotone for s and t.

Proof: Let Cles,et)=W,, 1), C(s,t)-01) and e={xer) Since
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V,(es, ot) € V (s, t) we have v, s v.
If Vv, <V we are done. If v, =V we want to show that Tg ST We construct an

injective mapping ¥ from ALIEN(es,eét) to ALIEN(s,t) with
¥(p) = p' € ALIEN(s, t) and &p' =,c D- For p = r we define ¥Y(r) = r with er = r since

re ALIEN(s,t) and x¢ V(r). For p+r in ALIEN(es,6t) there exists an
p' € ALIEN(s, t) with ep’ =, . p; We define ¥(p) = p'. Hence we have ¥(p) = p' with

6D =,.D.

The M;niectivity of ¥ is easy to see: q,=¥(p,)=-¥(p,)=-q, implies
Py =ac 69y =64y =5c P; and by definition of ALIEN P, =D, (note that for s and t'
in  ALIEN(s,t) we have: if s'=,.t then '=t). Hence
IALIEN(es, t)l =T, < T = JALIEN(s, t)l. ]

For some function symbol f € F a substitution & is called f-pure for s and t
iff DOMe € V(s,t), VCODe n V(s,t) =@ and the following two conditions are
satisfied

e feOp(x;s t) for all x e DOMs and

{eerUCE iffePy,
o
6x is a x-pure term iff=xeP, . (ie.CODe € T({x}uC, V)).

If there are no ambiguities, we simply speak of pure substitutions and pure
terms. "

3.4 Lemma 3: If a substitution 6 is f-pure for two terms s and t then 6 is
monotone for s and t.

Proaf: LetCles, 6t) = (vs, 1,), (s, t) - (, 1) and 6 be f-pure for s and t. We shall
construct an injective mapping ¢ from V (65, 6t) to V (s, t). Let x e V (65, 61): if
x ¢ VCODe then xeV (s,t) and we choose &(x) = x. Note that x ¢ DOMs. For
X € VCODe consider the set of variables V, = {y | x € V(ey)}. Suppose that for all
y € V, &y + X, which contradicts the definition for fe Py Letf = xe P, .ande be

pure then x occurs only under x in es and et (x¢ V(s,t)), which is a
contradiction to x € V (s, t). Now consider the set V, = {y e V, ley = x). But then

there exists ye V,n V (s, t) and we can choose &(x) - y. Otherwise again all y
would only occur under f in s and t which contradicts x € Vs(s s, 6t). Hence we
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have ey =x for all x with &(x)=y. The injectivity of & is easy to see:
y, = #(x,) = #(x,) = y, implies x, = ey, =ey, = x,. Hence v 5.

If Vi V the proof is done. If Vo V the mapping & is bijective and there exists
the inverse ¢! from V o(s, ) to V (65, 6t) With ¢1(x) = 6x = y. We want to show
that 1, < 1. Again we construct a mapping ¥ from ALIEN(es, 6t) to ALIEN(s, t)
with ‘l’(p) - p'andep =, p.

By the bijectivity of ¢ for all x e DOMs thh 6x¢ V we have x ¢ V (s, t). Let p be
in ALIEN(es, 6t) then p is not introduced by 6 since for all x with ex¢ V

Op(x, s, t) = {f} and hd(ex) = f or 6x is an uninterpreted constant. Hence there
must exist a subterm p'e ALIEN(s, t) with 6p’ =, . p and we define ¥(p) = p.

The injectivity of ¥ is again easy to see: q, -®(p,)-®(p,) - q, implies
Py =pc 89 =84, =pc P and as above P, = P, Hence we have
|IALIEN(es, t)] = 1, < T = [ALIEN(s, t)I. ]

In the termination proof we shall often use the fact that a substitution which is
pure or alien for s’ and t' is pure or alien for s and t as well if s' and t' are alien
subterms of s and t:

34 Lemma 4: Let s,t e ALIEN(s, t).
If & is alien for s' and t' then 6 is alien for s and t.
If & is a pure substitution for s’ and t' and VCOD(e) n V(s, t) = &
then 6 is pure for s and t.

The proof is obvious. The next lemma is the key for the termination proof.

34 Lemma 5: Let 6 be a pure or alien substitution for s and t and let
s', t'e ALIEN(s, t) be proper and distinct subterms of sor t. If &
unifies s' and t' then 6 is strictly monotone.

Proof- By the 34Lemma2 and 3.4Lemma3 we have C(es,6t) <Cf(s,t).
Suppose C(es, 6t) =C(s, t), i.e. the mapping ¥ from ALIEN(es, 6t) to ALIEN(s, t)
constructed in the above proofs is bijective. Hence the inverse ¥-! exists with
¥1(p) - q and &p =, q. But then ¥~!(s) - ¥~(t') since & unifies s’ and t' which
contradicts the bijectivity of ¥-!. n

Since in the algorithm the substitutions are built up by composition of alien or
pure substitutions we say a substitution & is ap-compound for the problem
<8=1>; (or short for s and t) iff it is a composition of alien or pure

substitutions, ie. 6 =6 6 , ..6, Where 6, is pure or alien for e, , ..6,s and

38






6, ,.-6,t for 2<i<n and &, is pure or alien for s and t. By an induction
argument we have:

34 Lemma 6: (i) If 6 is an ap-compound substitution for s and t then 6 is
monotone for s and t.
(ii) If in addition & unifies two distinct and proper subterms
§', t'e ALIEN(s, t) then 6 is strictly monotone for s and t.

As an extension of 3.4 Lemma 4 we have if & is ap-compound for s' and t' then
6 is ap-compound for s and t provided the newly introduced variables are
away from V(s, t). We use this fact implicitly in the proofs below.

To summarize: we introduced monotone substitutions and showed that alien
and pure substitutions (the elements of the generated unifiers) and their
composition are monotone. Note that the algorithm AC-UNIFY of section 2 only
generate x-pure substitutions for x-pure terms.

We now show that the merge T« is ap-compound for s and t, where 1 is a
unifier of the constant abstractions of s and t and « is the corresponding
abstraction reverser:

34 Lemma 7: Let v be a unifier of s and t, where s and t are the constant
abstractions of s and t, and as “ac SOl =gct The merge T is

then ap-compound for s and t.

Proof: By 32LemmaZ we have tx=71, With 7,=1, T, =6,1. , and
6, = {¢ 1, 4r;) for 1 <i<n where o ={c, «r .., ¢, < r,} and T is a unifier of
the pure terms § and L. We show by induction: 6, is ap-compound for T ;-1S and
T;_4t. First it is easy to see that 1 is pure for s and t. Since ¢; occurs in VCODT,,
and hence in VCODt, , it must occur in T, s or in T,.¢L. As r; is an alien
subterm of s and t r; is in ALIEN(t, s, 1, ,t). With ¢, ¢ V(t, ;r) 6, is alien for

T,48and 7, _,t. ]

In order to show that G-AC-UNIFY and AC-ROBINSON terminate, we use (a
stronger) induction argument on C(s, t), the complexity of the input problem.
For each STEP and each recursive call we show:

o the generated substitutions are ap-compound

e C(s,t) <C(s, t), where s, t are the original terms and ', t' the subterms
of the recursive call. Hence the induction hypothesis applies.
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3.4 Jheorem 1: For all s, t e T: AC-ROBINSON(s, t) terminates.

Proof: In STEP 1 - STEP 3 we are done since termination is obvious and the
returned substitutions are ap-compound for s and t except for the case that
both s and t are variables.

STEP 4 is shown in 3.4 Theorem 2, below.

STEP 5 is shown by induction on the loop index i with 1 <i<n.

Base Step: 1If 8, and t, are compound terms then st € ALIEN(s, t). By

34Lemmal €(s;,t)<C(s,t) and hence by Noetherian induction
AC-ROBINSON(es,, st,) terminates and the unifiers 6, returned by
AC-ROBINSON(s,, t,) are ap-compound for s, and t, and hence for s and t.

If s, or t, is not a compound term then AC-ROBINSON(s,, t,) terminates with
FAIL or the returned substitution 6, is alien or h-pure for s and t.

Induction Step: Again we distinguish the cases where the terms 6, ... -6,s;

and 6,-..-6,t, . are compound or not. If 6;- .. «6;s; , or 6;-.. -6, , is not

compound then AC-ROBINSON(6,+ ... <6,s,,,.6,° ... +6,t. ) terminates with FAIL

or the returned substitution e, , is alien or h-pure for 6,-...6,s, , and
6, .. +6,t, . and hence it is ap-compound for &;- ... +6,8 and 6, ... «6,1.

171
Now let the termse,- .. -6,s. , and &,- ... -6,t, , be compound. Since 6, ... -6, is

ap-compound for s and t we have with 3.4Lemma1 and 3.4 Lemma)

C(6;° .. *6,5,,,,6;* .. *6,L, ) <C(6;*..+6,5,6,-..-6,1)<C(s,t) and  hence

AC—ROBINSON(eio e 68,1, 6;° ... -6ltm) terminates and vyields only

substitutions &, , which are ap-compound for 6, ... «6,s, ; and 6, ... +6,1, , and
hence they are ap-compound for 8¢ ... °6,S and 6;- ... -6,t. To summarize

6,,(° - *6, is ap-compound for s and t. .

3.4 Theorem?: For two terms s and t with the same leading AC-function
symbol G-AC-UNIFY(s, t) terminates.

Proof: In STEP 1 termination follows from 2.4 Theorem1 and the unifiers
produced by AC-UNIFY(s, t) are ap-compound for s and t.

In STEP2 s and t are the constant abstractions for s and t with
I-ALIEN(s, t) - @. Hence AC-UNIFY(s, t) terminates by 2.4 Theorem 1 and by
3.4 Lemma 7 we know that for 1 returned by AC-UNIFY(s, t) Tt is
ap-compound for s and t.

STEP 3: For (s',t)eSP(s,t) we have by 3.4 Lemma 1 €(s't)<C(s,t). Hence
AC-ROBINSON(s', t') terminates. It yields only substitutions 6 which are
ap-compound for s and t. But since & unifies s and t we have by
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3.4 Lemma 6 (ii) C(s's,&'t) < C(s,t). Therefore by the induction hypothesis
G-AC-UNIFY(s's, &'t) (6's and &'t both start with the same function symbol as s
and t) terminates and produces only substitutions ¢" which are ap-compound
for ¢'s and &'t. Hence & = ¢"-¢' is ap-compound for s and t. ]

3.5 Correctness and Completeness

All proofs of this chapter are by induction on the recursion depth of the
unification algorithm, which is a Noetherian order as shown in the last chapter.
The set of substitutions returned by the AC-unification algorithms is a correct
set of unifiersof sand t: ‘

3.5 Theorem 1: The set UZ; , (s, t) returned by G-AC-UNIFY(s, t) is a correct
set of unifiers for every steT.

Proaf: Consider each step in G-AC-UNIFY in turn:

STEP 1: The theorem follows from 2.4 Theorem 1 (correctness for the
variable-constant-case).

STEP 2: Let s, t be the constant abstractions of s and t with ag =ac § and

at=,.t. By 24 Theorem 1 let 8 be a correct AC-unifier of § and t. Since
Bxa - Aat -, . A8 for some A we have (using the idempotence of 8 and a):
(Bx0)eB =, - AeBeB = A0 =, Bxl =, - AsQ = AeQUeX =, . (BxX)ec
Hence (Bsat)s -, (Bxat)-as
=ac (Bx):Bs
=5c (Bx00)-01 by assumption
=pc (@)t

STEP3: Let (s, t') be a subproblem of s and t. By induction hypothesis let &' be a
correct unifier of ' and t' and 6" be a correct AC-unifier of 6's and &'t. Then for

6 =61+ € UZG_Acwe have

6S - (¢"6")s
- 6'(e's)
=ac 6(6't) by hypothesis
= 6l [

3.5 Iheorem 2: The set UZ(s, t) returned by AC-ROBINSON is a correct set of
' AC-unifiers for every s;te T.

Proaf: STEP 1 - STEP 3: Correctness is obvious.
STEP 4: This is shown in the above theorem.
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STEP 5: Let 6 € UZ,(s, t) then & =6 - ... -6,. By induction hypothesis we know
that e, is a unifier of 6, ;- .. +6,8,and e, . .. +6,t,. Hence & is a unifier of s, and
t, 1 <i=<n, and we have:

6s = esh(s1 sn) fors = h(s1 sn) as defined in STEP S
= hes, ,..,es))
=,c hlet ... et)
= et ]

The following two theorems show that the algorithms return a complete set of
unifiers.
3.5 Theorem 3: Let 8 be an AC-unifier for the terms s and t . Then there

exists 6 € UZR(s. t) (returned by AC-ROBINSON(s, t)) such that
8s,.6 [Vl withV =V(s,t).

Proof: STEP1 - STEP 3:  The proof is trivial.

STEP 4: This is shown in 3.5 Theorem 4 below.

STEP5: By induction on i, 1sisn we show that there exists
6, € UZ (6, ,..6,5, 6, , ..6,t) such thatB s, e, ..6, [V]. Hence there exists a
6=6 .6 €UZ(st)suchthatbs<, .6 [V]

Base Step- Since B unifies s and t it unifies s, and t,. Hence by Noetherian
induction there exists 6, eUX(s,,t,) with 8<,.6, [V,] where
V,=V(s;,1,)¢ V. Using 1.2 Lemma 1 we have8<, .6, [V].

Induction Step: LetB -, Ls, .. 6, [V] by induction hypothesis. Then 1, is a
unifier of e,..6,s, , and e,..6,t. .. By Noetherian induction there exists
6,,,€UZle, .65, .. 6,..6,t ) such that A <,.e, [V, 1 where
V., =V, ..65,,6 .6t ) By 1.2Lemmal and 1.2Lemma2 we have
Ao, ..06,<,.6, .6 .6 [V(s .5, .t ..t )] Using 1.2 Lemma 1 again we
finally haveB =, .16, ..6,5,.6, .6, ..6 [V] »

3.5 ZTheorem 4: Let B be an AC-unifier of two terms s and t. Then there exists
6eUZ; , (s t) (returned by G-AC-UNIFY(s,t)) such that

8s,.6 [V] withV =V(s,1).

Proaf: STEP 1: If I-ALIEN(s,t)=#, ie. s and t have only variables and
constants as immediate subterms, completeness follows from 2.4 Theorem 1.
STEP 2: Now I-ALIEN(s, t) + @ and assume for all (s', t') € SP(s, t) it is 8s’ *,c 0t
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(else STEP 3 applies). Then by 3.5 Lemma 3 below there exists a 8 with
Bs=,c0tand B8<,. 6 [V] where s=-asand L=ot are the constant

abstractions of s and t and a is the substitution reversing the constant
abstraction. Again by 2.4 Theorem 1 there exists 8" e UZ,_, (s, U (returned by

AC-UNIFY(s, )) such that
8's,.0" [V] whereV-V(s t).
Using 1.2 Lemma 1 we get
8s,.6 [Vl
With 3.5 Lemma 4 below we have
85,0 [V]
and hence there exists & :=8"xat € UZ; , (s, t) (returned by G-AC-UNIFY(s, t))
such that8s,.6 [V].

STEP 3: In this case the subproblems are considered and moreover there
exists (s, t)eSP(s,t) with 8s'=,.0t. By Noetherian induction there exists

6 € UZ;_, (s t) (returned by G-AC-UNIFY(s| t')) such that
8<,c ¢ [V] with V' =V(s,t).
In other words there exists A with8 =, . A¢' [V]using 1.2 Lemma 1.

But then A is a unifier of 6's and &'t. By Noetherian induction there exists
6" ¢ UZ; , [(6's, 6't) (returned by G-AC-UNIFY (¢'s, 61)) with

Ag,c6" [V'] and V' = V(e's, 61).
Using 1.2 Lemma 1 and 1.2 Lemma 2 we obtain
A6 <, 66 [V]
and hence with 6:=6'¢’ there exists e6eUZ; , (s t) (returned by

G-AC-UNIFY(s, t)) such that
8s,.6 [V] »

While this completes the main result of this paragraph, some technical
lemmata remain to be shown stating the existence of certain substitutions in
STEP 2. Regarding the situation in STEP 2 we have two terms s and t starting
with the same AC-function symbol, 8 a unifier of s and t and for all
subproblems (s, t') € SP(s, t) it is@s’ +, .0t Let {r, ..., r, } be the immediate alien

subterms of ) and t, a=-{cer,.,cer} and
ag={c, «0Br, .. c «Br}=6aly,,, Since BOr;+,. Br’ for i+j,1<i,jsn by
assumption let @ = [r, «c,,..,r «c ] and @ag=[0r, « c,,...0r & c ] be the
corresponding subterm replacements. If 8 = {x, « p, ..., X« p_} We then define
0 - {x, « 8gp, ..., X « Bgp ). Furthermore we denote by s -as and t -at the
constant abstractions of s and t and V = V(s, t) is the set of variables in s and t.
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35 Lemma 1: B(as)-afs and 0Oat) -aht.

Proof: We only show the first equation for all subtermsr in s =as.
For r € C we distinguish the casesr + c,andr=c, for 1 < i< n. For the first case

B'r = ngBr is obvious. For r = ¢, we have B, = ¢, and there exists a subterm r'in s
withr' =, .r, and agfr' =, .agfr, =c. Now letr =xe V. If x ¢ DOM@' = DOMB then
8x-x=0x-0,8x and for xe DOMB it is Bux -oBx. Since there occur no

immediate alien subterms in 8 we have for all subterms r of s withr¢Cu 'V
B = ogfr. .

35 Lemma 2 : For all terms q not containing c, ,..., C : Bameq =, . 6q.

Proof: Suppose there exists a subterm r in q with r = AC 9:'i then r is replaced
by oy to c. Applying B to that c, we again have 6r,. If r *,c 0r; we have
aagr = r since q does not contain any of the ¢; and hence Bamgq =, . 6q. =

35 Lemma 3 : O is a unifier of s and t such that
8 <, 0= [V] with V=V(s,1).

Proof: First 0 is a unifier of s and t. By 3.5 Lemma 5 and the fact that 8 unifies
s and t we have:

s -8(ns) -ay(Bs) -, .a,(6t) -B(at) -01.
We now show that o and 8' are unifiable, i.e. the merge exists. Using
3.2 Lemma 1 we define h, =(x,,.., X C,,.,C)and h, = (5, DR Y BN S r)
then

Bath, - (ﬂom,,p1 .-, 80BgP, BOtr, ,...,Boarn)

=ac 6D, ....0p_,06r ...0Or ) by 3.5 Lemma 6
= Bax, ,..,Bax , Bac, ,..,6ac,)
= Bath,.

Hence Bat < AC A [W] where A is a most general unifier of o and 8' and W are the

variables of o and 8'. Therefore we have with Ve W
B =8x <, Ao = Bt ivl n

35S Lemma 4: Let 0" be a unifier of s and t with 6 $act [V] and

VCOD8"'nV=0. Then 8" and o are AC-unifiable and
8s,c o= [V]
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Proal: We assume w.log. that DOM8" = V (if not define 8"x = z for x e V\DOMS"
and z is a new variable which does not occur in the problem). Since 8' < AC 0" [V]

there exists 8 with 8' = ACBB" [V]and

(1) DOM8dnV =0 and DOM®&e VCODE".
Furthermore using VCOD8" n V = @
(2) DOMd n V() = @.

We now show that 8" and o are unifiable. Using 3.2 Lemma 1 we define
g,=(x1 vors XG4 ,...,cn) and g8,=@,,..01r ,.r) Now we have

88, = 8, = b, by (1) and (2) (confer for the definition of h,and h, the proof of
the last lemma) and bg, = h, by (2). Since h, and h, are unifiable by Bx g, and
8, are unifiable by 88 and therefore 8o <, . 8"+t [V]. Hence with 8a5 -8 [V]
we have 8 <, . 0 [V]. ]
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4. Conclusion

We presented an AC-unification algorithm, which is not based on the ‘variable
abstraction' process of previous algorithms, but exploits an early idea of
[LS 76]: the reduction to inhomogeneous Diophantine equations.

The algorithm is extended to handle uninterpreted function symbols. While
previous suggestions for such an extension [St 81] [Ht 80] [Fa 83] [Fa 84]
[Fa 85] [Fo 83] and [Fo 85] use the same ‘variable abstraction' process, which
was already at the heart of the STICKEL-algorithm, we propose a method quite
to the contrary. Since the replacement of subterms by variables turned out to
be the culprit (in terms of efficiency) in the basic STICKEL-algorithm we
propose to replace subterms by 'special’ constants for the reduction to proceed.
Such a reduction is possible since our basic algorithm does not require the
variable abstarction process in the first place.

The algorithms are presented with the aim of clarity, not for an actual
implementation.

The extended algorithm is not minimal in general. Minimality can always be
achieved for finitary theories with a decidable matching problem (eliminate in
a second pass all those unifiers that are not instances); however it would be
computationally advantageous to generate one minimal set in the first place. It
is an open problem to find such a minimality condition for our algorithm which
is less complex than the above elimination process. We have certain conditions
which will eliminate the proliferation of redundant unifiers to some extend.
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