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ABSTRACT.
A many—sorted first order calculus. called ERP, whose well formed formulas

are sorted (typed) clauses and whose inference rules are factorization,
resolution, paramodulation and weakening is extended to a many sorted
calculus ZZRP"l with polymorphic functions (overloading) . I t  is assumed that
the sort structure is a finite partially ordered set with a greatest element. I t
is shown, that this extended calculus is sound and complete, provided the
functional reflexivity axioms are present. I t  is also shown, that unification of
terms containing polymorphic functions is in general finitary, i.e. the set of
most general unifiers may contain more than one element, but at most
finitely many.
We give a natural condition for the signature (the sort structure), such that
the set of most general unifiers is always at most a singleton provided this
condition holds.
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Introduction.
The advantages of a many—sorted calculus in automated reasoning systems

are well known [Hay7l, Hen72, Wa83, GM84, GMBS, C083, CD83, Ob62] . These
advantages were also noticed in logical programming (MOM, Mi84l=

In a many-sorted calculus we obtain a shorter refutation of a smaller set of
shorter clauses, as compared to the unsorted version.
Our interest is in using a many sorted calculus in a resolution based
Automated Theorem Proving-system (ATP). The most desirable properties of
such a calculus are: '
l .) The unsorted problem and the corresponding

sorted problem are equivalent, i.e. the unsorted clause set is unsatisfiable,
iff the sorted version i s  unsatisfiable.

2.) The calculus i s  complete, i.e. there is a derivation of the empty clause, iff
the clause set is unsatisfiable.

3.) The search space in the sorted version of a problem is smaller than the search
space of the unsorted version (provided the problem has a sort structure).

4.) The many-sorted calculus has as much expressive power as possible.

5.) The calculus ”should be based on standard resolution and paramodulation

[WR73] possibly augmented by a modified unification algorithm. Hence
standard reductions like purity, subsumption, tautology deletion,
replacement resolution and incompatibility of unifiers [KM84, R064l can
still be used. Furthermore resolution based strategies such as Unit
resolution and Set-of-support should be applicable.

The ZRP-calculus of C.Walther [Wa83] essentially satisfies these requirements, but _
can be improved by the additional incorporation of polymorphic functions
(overloading [M084] ). This new extended calculus is called ZRP“.

In ZRP“ it is possible for example to have a function symbol + (sum) denoting the
addition of (complex) numbers with the implicitly stated property, that
syntactically, the sum of integers is an integer, the sum of reals is a real and the
sum of Gaussian numbers is a Gaussian number. However we do not allow to use
the same symbol "+" for say the addition of vectors, since we have the technical
restriction, that for every argument position in every function there exists a
greatest sort for that argument. Using "+" for numbers and vectors would imply
that es.  l+(0‚0) is well sorted, which does not make sense.
Without this restriction, the £RP*-calculus is not complete in general. (This

however could be remedied if either ill-sorted terms are allowed during equality

deductions or an extended parallel paramodulation rule is used).
The results presented in this paper concern unification of polymorphic terms and

completeness of the ZRP*-calculus. In particular it is shown, that the complete and

minimal set of most general unifiers for two polymorphic terms is always finite.
Some authors present sort structures, such that the union, the intersection and the

complement of sorts are well defined [C083, CD83]. If such information is used in a
deduction, the rules of the ZRP*-calculus are not sufficient and extra rules would
be necessary to ensure completeness. But such extra rules have in general the very
unpleasant side effect that the reductions and strategies of a resolution based
calculus are no longer applicable.
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l .  fiasig' Notions of the ERW-cglculus.
The ZRP*-calculus is an extension of the ZRP-calculus [Wa83] by polymorphic

functions.
In the ZRP-calculus the sort of a term is fully determined by it's outermost

function symbol. In contrast, the sort of a term in the ZRP*—calculus depends
dynamically on the sorts of the arguments of the outer most function symbol.

The following definition of a signature is close to [GM84], but extended to
polymorphic functions.
We use in this definition a set of n+l-tuples for the type information of an n—ary
function. The first 11 symbols of a tuple give the sort of the arguments and the
(n+1 )th symbol gives the sort of the corresponding value. E.g. for the sum (+) of
complex numbers we have:
+ = COMPLEX x COMPLEX a COMPLEX a

COMPLEX x INT —> COMPLEX ;
lNTx INT—> INT ;

This is denoted as a set of triples {(COMPLEX,COMPLEX.COMPLEX)..
(COMPLEXJNTCOMPLEX). (INT ‚INT ,INT) . . .}.

Lamm A W SIG is a triple (SMP). where
l )  S is the finite set of sorts. s is a partial ordering on 8 with the greatest

element T.  5 is extended to tuples of sorts in the usual way
(componentwise s).

2) I? is the set of function symbols]? - U IFW ‚where IFW is a set of
function symbols of arity n with ß s W : 5n+l  .
If l s fl, then W satisfies the following conditions:

- The sort of constants is unique. Le. W = 8 implies IWI - l .
- For signatures W of functions, which are not constant:
a) W contains a unique greatest element (SW „SW 2" . . 'SW,n+l)-

b) For every ($1.52,. . . . 5n+1)  e W and every (T1,...J'n) e S“.
(T1....,Tn) ; (S]....‚Sn) implies that there exists a unique sort
Tn+l  s Sn+l  such that (T1, . . . Ind)  e W.
Le. for every f e I? the related function
f“ = {(51 ,...,Sn) I (S 1 ....,Sn) $ (SW,1v"-vSW.n)} 4 S, where
NS]  .....Sn) = Sn+1,iff(sl .....Sm! ) e w, is well defined and monotone.

3) IP is the set of predicate symbols. IPD is the set of predicates with

domain D, where D e S“. We have IP - U IPD.
4) For every sort 5 e 8,  there exists a constant c of sort Sc s 5. That means,

that every sort is strict or SIG is sensible in the sense of [H080]. EI



We use the following additional notation and abbreviations:
SO“) = W. iff f 6 FW;

3003) * V.  iff P E IPV '

(C denotes the set of all constants,

(C5 denotes the set of all constants of sort S.

V denotes the set of all variables.
VS is the (infinite) set of variables of sort S.

'RHS=={T€3 |T$R  andS} .

If the set of ranges of a function f , _i.e. the set {‘5n+ lKSl'm'Sml)‘ SO(f )} has
more than one element. then f is called a polymomnicfunction. If no
polymorphic function is in 1?, then SIG corresponds to a signature of the '
ZRP- calculus [Wa83].
In an actual implementation, it is not necessary to specify the whole
signature of a function explicitely. It is  sufficient to give enough information
to compute the signature of a function uniquely. For functions, which are not
polymorphic, the specification of the maximal domain and maximal range
suffices.

The following is the standard definition of a heterogeneous algebra (see 9 ..g

[HOSOD with the additional proviso that the subsort relation 1s represented
as the subset relation;

W Let SIG - (S, IF, IP) be a signature. The pair (A, SIG) is called an
W iff
i) A is a nonempty set.
ii) For every sort S e S ,  there is a subset SA of A such that for all R,S e S:

R s 5 => RA ; SA. Furthermore TA = A for the top sort T .

iii) For c e (:5 there exists an element CA 6 A, such that CA e SA.

iv) For f 5 IP\ (C = f A:  An a A is a mapping. such that for every

(S] .....511+! )e  50(f ) and every ai e 55“, i=l,...,n‚ we have.

fA(a l  ‚. . .‚an) € Sn+lA'  Ü

By the definition of a signature, we have that SA # 0 for every S e 5,  since
every sort contains a constant.
Note that this def1n1ton is independent from the set of predicates IP.

' We extend the usual notion of a homomorphism to a SIG-homomorphism, ,
which renew. the sort structure;



1.3 Definition Let (A .516) and (B.SIG) be two algebras of type SIG. Then a
mappinrtp A-aBBiscalledaSJG-hmphmiff
i) q)(SA )EQ’(SB )forB.allSeS
ii) @(IA (al ..... an)) =fB(cp(a1) ..... cp(an)) for allfe IF and all aie Sf,iA‚i=l‚.„.n

where (Sf, ] ,...,SLn) is the greatest element of 50“). El

Obviously, the composition of two SIG-homomorphism is again a
SIG—homomorphism.
Let 'l' =- T( IFA!) be the set of all terms (including ill—sorted terms); i.e. T is
the least set with V s T, C e “1“, and f(t1,...,tn) e T for all f e I? and all ti e T.

The sort of a term is defined similar to [Wa83], but adapted to polymorphic
functions:

im Let SIG- (8 ,1? )  be a signature.
The sort of a tera; 1, namely [t], is defined by the partial mappingL .=l T + 8:

f S if I E vs  Of 16  CS

[t] - { Sn+l  i f t -  f(tl,...,tn) and ([11].--- .hn]-Sn+1)6 SO(f)
l undefined else. D

W Let S -- {N, NZ, 2}. where N denotes the nonnegative integers,
including 0, NZ denotes the positive integers and Z - {0}. Then N ; NZ and
N z Z. The function + has the following signature:
SO(+) - { (N,N,N):  (N,NZ,NZ): (NZ,N,NZ); (Z,N,N): (NLN): (Z,NZ,NZ): (NZZ.NZ): (ZZZ):
(NZ.NZ.NZ) }.
Then for example [0+0] - Z and [0+1] - NZ.

The set of all Wm called 'S'l'. is defined as the domain of [...],
i.e the set of elements. where [...] is not undefined.

As usual, (UST, SIG) is an algebra of type SIG with the following
(termbuilding) operations: .
i) s '“ = {t e 'e m «.: 5}.
ii) r '“ (tl ,...,tn) = [(I] ‚...‚tn) ‚ir ti e UST for i=l,...‚n
(UST, SIG) is called the W of type SIG [Gr79]. The set of
well-sorted terms without variables is denoted by 'S'l'gr. The algebra

('STgr, SIG) is thew [Gr79] of type SIG or the Herbrand

Universe [CL71,Lo78] . This terminology is justified by the following
lemmas:



LiLsmmn. (UST. SIG)  is free= '
Let SIG = (8, P. P )  be a signature and let (A516) be an algebra.
Let ‘1’0 =V —> A be a partial mapping, such that wo! 6 RIA. Further let V0  be

the domain of “’0-
Then there exists a SIG-homomorphism w: '81' a A, such that "‘IVO = wo.

Moreover if V = V0, then xp is unique.
213.01 Define a mapping qt: V » A with ml V0 = woin the following way:

For every sort S, take a fixed element ds 5 SA and define um == ds, if x e VSWO.

For a term t = fltl  ..... tn) we define w recursively as wt = fAlwtl.....t,utn). To show,
that this homomorphic extension of V0 is a SIG-homomorphism w with

ml V0" ‘"0 it suffices to show, that MS ‚ST )9  5A for all sorts 5.
Proof by induction:
Base case. For x 6 VS, we have wx e SA by assumption and by

construction of up. For c e Cs. we have wc = cA e SA by defintion 1.2.

Monster). Let t = f(t1,...,tn)e S '“. Then ti e 'S'l' for i=1,...,n .
With Si =- [til we have (51,...,Sn,8) e SO(f ). From the definiton of an
algebra and from the definition of ( 'ST,SIG) it follows, that
f A(\ytl , . . . ,qrtn) e SA. Hence un - fA(urt1‚...mn) 6 SA. Cl

1.6 Lemma. ('STgrSIG) is an initial algebra of type SIG, Le. for every algebra
(A‚SIG) there exists a unique SIG-homomorphism q): 'S'l'gr -» A.
Proof. We define a mapping q): 'S'l'gl. -+ A:

i) (pc - cA for constants c.
ii) (pf(tl,...,tn) = fA(<ptl,...,cptn) for terms t e 'S'l'gr.
The same arguments as in the proof of Lemma 1.5 show, that this mapping is a
SIG-homomorphism. Since every SIG-homomorphism must satisfy the
conditions i) and ii) it follows by induction, that q) is unique. El

In the following we abbreviate ( 'STSIG) to '3'! and ( 'S'l' gl.,SIG) to ‚Hm. if
no confusion arises.

1.7 grim 'tion. A mapping es: 181“ -+ 'S'l' is called a SIG-substitution, iff it is a
SIG—endomorphism on ‚ST, which is identical almost everywhere. EI

Let 2 denote the set of all SIG—substitutions.



w o is a SIG-substitution, iff the following conditions hold:
i) 6C = cfor a l l ceC.
ii) of(tl ..... tn)) = flotl.....otn) for all t - f(t1 .....tn) (5 'ST.
iii) [ct] s [t] for all t e 'S'l'.
iv) DOMlo) = {x 6 VI ox s x} is finite.

M ":o": Let 6 e 2 .  Definition 1.3 ii) implies i) and ii) of 1.8. For a
SIG-endomorphism c on '81' we have ö(S'ST )9  5'8'1' for every
S e 5.  Hence 1.8 iii) holds. Condition iv) follows from the fact that o is
identical almost everywhere.

"=": Let conditions i) - iv) be satisfied. We have to show that 6 is a
SIG—endomorphism. 1.8 iii) implies 6(5'81'): S'S'l' for every
S e S.. hence 1.3 i) is satisfied.
For ti with [ti] s Sfi'  where (Sf lv°°'Sf‚n+ ] )  is the greatest element of SO“),
we have f(tl....,tn)e 'ST. Now 1.8 i) + ii) implies 1.3 ii). D

The following proposition takes us back to the standard definition of 2
(see e.g. [Wa83. He83l) localizing the test for a to be a SIG-substitution.

1.9 Brogosition, Let es: 'S'l' -+ '81' be a mapping satisfying conditions 1.8 i), ii)
and iv) and [ox] s [I ]  for all x e V.

Then 6 e Z.
ELQQL By structural induction. EI

Atoms are expressions Plt l .....tn) . where P is a predicate symbol and the ti's are

well-sorted terms such that [ti]  5 Si for i-l‚...,n if SO(P) =- (51....511). A means an

expression +A or -A, where A is an atom. We denote the corresponding sets with

L and A. A clause is a set of literals, which stands for the disjunction of it's literals
with variables quantified over their domain (Le. over the domain, which
corresponds to the sort of this variable).
A ground atom, literal or clause is one without variables. We denote this with the
subscript “gr". Instances of atoms, literals and clauses are the images under a
SIG-substitution. where the appliction is defined by o(tP(t1,...,tn)) = tP(otl , . . . ,otn) .

Equality of our object language "a" is a distinguished binary predicate with
domainsorts 50(5) = (T,T). A model that interprets a as the intended equality
relation is called an E— model [L078].

We define an [5— model for a many-sorted logic as in [GM84], i.e='

1.10 Definition. Let SIG=(8, P, P)  be a signature. LetCS be a SIG-sorted clause set
and let D be a set (the carrier set). The triple (D,SIG,R) is called an E- model of CS,
iff the following conditions hold:
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i) (D516) is an algebra of type SIG.
ii) R is a set of relations over D. For every P 6 P, there is exactly one relation PD

of the same arity.
iii) For every clause C 6 CS and every SIG-homomorphism cp: 'S'l' —+ D. there

exists a literal sgn P(tl ,...,tn) e CS , such that

sgn = + and (ml  .....tn )e  PD or

sgn = - and (otl  .....(?t PD.

I.e. for every assignment of values in D to variables in C, the resulting
disjunction of literals is true if interpreted in (D,SIG,R).

iv) = is interpreted as the identity relation on D.
Le. t l  : t2 is true interpreted by a SIG-homomorphism q), iff q)(tl) = @(tz)

(or equivalently oh 1 ) 2D cp(t2) is valid). El

141311111211- We give an example for E-models=
8 = {T‚NAT,EVEN‚ODD} where T 2 NAT ; EVENDDD.
C = {c0 , CE} with [co] = ODD and [C5] = EVEN.

l' = {x}, where 500!) = { (NAT,NAT,NAT), (EVEN,NAT,EVEN), (0DD‚NAT,NAT)‚
(NATEVENJEVEN). (NAT,0DD,NAT). (EVEN.EVBN‚BVBN).
(EVEN‚0DD,EVEN). (0DD‚EVEN‚EVEN). (0DD,0DD‚0DD) }.

P - {a}
CS = ( ((nylxz) = (xx(y*z)) ), where x,y,z e VNAT-

To construct an E- model (D‚SIG.R) of CS. we make the following defintions:
- D == NAT, the natural numbers.
-— ;D is the identity relation on NAT.
- COD =- 1, CED = 2,

— EVEND = {nl n e NAT and 11 is even }
- ODDD ={nlneNAT andnis odd}
— xD is the ordinary product on NAT.
Now for every SIG-homomorphism q): '8'!‘ —> D we have:

(Mia-(vun =- cpx cpy oz and
tp((xxy)az) = :91 cpy cpz

Obviously (D,SIG,R) is an Emodel for CS.

It is easy to see, that the following model constitutes an E-model of CS as well:
Let D =- {0). .D (0,0) - o. co” = CH!) = o. EVEND= ODDD = D.



It is a well—known fact, that ground terms are sufficient for building an E-model
(the Herbrand or Skolem-model), Le. we can re move such elements from D, which
are not images of ground terms.
Further more, if the equality sign is not in P, we can choose 'S'l'gr as the carrier

of an E— model (Herbrand sets).
Therefore we define an equivalent notion of an E-model for a many-sorted
calculus, namely the HB-model (Herbrand E-model [L078,CL71 ]). The difference
to an B-model is purely technical. In later proofs we use both definitions. The
HE—model has the advantage, that we can work with a fixed set of ground literals,
which we cannot do in an arbitrary B-model, whereas the E-model has the
advantage. that the substutivity for equality holds without restriction. which is
not the case in (many-sorted) HIS-models.

We use position vectors (occurrences in [H080]) to select or substitute subterms
of a given term or literal.
t lpos denotes the subterm at position pos.

tlpos +- 3] denotes the term constructed from t by replacing the subterm at
position pos with s.

LLZJEflniilQn. Let SIG be a signature and let CS be a SIG-sorted clause set.
M is aW iff the following conditions hold:
i )  M is a maximal set of well-sorted ground literals. not containing

complementary literals.
ii) For every t e  'S'l'gr, t = t e M.
iii) If s a t e M, L e M, Llpos  = s for an appropriate position pos and

L[pos +— t] is a well-sorted literal, then Llpos 4- t ]  e M.
iv) Every ground instance of every clause C in CS contains a literal, which is in M.

A clause set is said to be18115321215 if an B-model exists for CS, respectively
m if no E-model for CS exists. The following theorem shows. that
E-(un)satisfiable means exactly the same as HE-(un)satisfiable, since B-models
and HIS—models are equivalent.

1.1 Theorem. Let SIG = (8, P, P)  be a signature and let (3 be a SIG—sorted clause
set. Then:

CS has an HE-model =; C5 has an E-model.
gear .
"=>": Let M be an HE—model of CS. Then the relation ~, where 3 ~ t, iff s = t e M.

is a congruence relation on 18T”:

- from the defintion of an HE— model it follows, that ~ is an equivalence
relation. ,

- Let si ~ ti , i-l,...,n ,for ground terms si,“ and let f(sl,...,sn) and

fit l .....tn) be well-sorted.We have to show, that fls l ‚...,a ~f(t l ,...,tn).

IO



As SO(f ) has a greatest element, repeated application of the
substitution rule (substituting Si  for ti) on f(t1....,tn) = f(t1....,tn)
yields well-sorted literals and finally f(tl,...,tn) :- f(sl,...,sn)e M.
Hence f(tl ..... tn) ~ f (sl ..... sn). The same arguments show. that
iP ( s l , . . . , sn )  is in M , if tP ( t l , . . . , t n )  is in M.

Now we constru'ct an E-model for CS:
Let D == 'STgr / ~ and let the representations of constants, sorts and
functions be defined canonically. (i.e. fD(tl/~,..., ‘n’”) = f(tl,...,tn)/~ and
SD= { tl» I te'STgr and [t] ss }. )
For t1,...,tn 6 1811's,. . let PD(tl /~....,tn/~) be valid, ur P(t1,...,tn) e M.
This i s  well def ined, since ~ is a congruence relation. '
The algebra D of type SIG and the defined relation constitute an E- model:
We show, that for every SIG—homomorphism (p, every clause is valid.
Let cp: 'ST -+ D be a SIG-homomorphism and let C be a clause in CS.
Let “0  - {11....,xm}. There exist ground terms ti , i-l,...,n such that
qui = til-v and [ti] 5 [li].  Consider the ground SIG-substitution

o = {xi e— ti | i=l‚...‚n }. There exists a literal L of 5C, which is in M, since M
is a HIS—model. We have qJC - 6C/~, hence L/~ is valid. Thus QC is valid.-

Let (D,SIG,R) be an E-model of CS. We can assume, that MWST”) - D for
every SIG—homomorphism q). We construct a HE- model M in the following
way: Let ‘PO‘ 'S'l'gr —+ D be the unique SIG-homomorphism. M is defined
as the set of all well—sorted ground literals, which are true with respect
10 Qio.

We show all properties for an HE-model (see 1.12):
i) and ii) are trivial.
iii) Let s = t e M, L e M, Llpos  - s and let L[pos <- t ]  be a well—sorted

literal.
We have tpo(s) = cpo(t). Hence cp0(L) = %(Llpos <— t ]  ) , since ‘PO is a

„ SlG—homomorphism. Now L e M implies L[pos 4— t) e M.
iv) Let C e CS, and let a be a ground SIG—substitution.

90-6 is a SIG-homomorphism, hence (po-6 (C) is valid in (D,SIG,R). This
means, that there exists a literal L in C, such that (po-6 (L) is valid.

By definition of M. ML) is in M, hence iv) is satisfied. D

I I



' i a t '  ' ZRP".

In this chapter it is shown, that the unification of terms containing
polymorphic functions is of type finitary [Si84], that is. for any pair of given
terms in ZRP“, there exists a minimal and finite set of most general unifiers
(mgu). We give an example to demonstrate that the set of mgu's can become
exponentially large. An algorithm SUNIFY is presented, which computes a
complete and finite set of man's for a given pair of polymorphic terms.

LLB ' I I '  El l i"  [EI  I ' I

We use the following notation:
DOMlo) ={e l6nx} .
COD(o) ={exlxeDOM(e)}.
V (01....‚0n) =- the set of variables occuring in the objects 01,....,0n
VCOD (a) = V ( COD (a) ).
e denotes the identical substitution.
E” = {6 e 2 le-e = e }, i.e. the set of idempotent SlG-subsititutions.
<s-t> - denotes the problem to unify the terms s and t. '

The definitions and lemmata, which we need for polymorphic terms, are adapted
from [He83, 8184, Fa83, Hu76], which treat unification of unsorted terms. For
unification of sorted terms see also [Wa84].

The next two lemmas are taken from [He83] and can easiliy be generalized to
polymorphic terms.

mm a e 2 .  Then:
6 € 2" «==> DOM(6) n VCOD(6) =- 6

2J_.Z_Lg_mma._Let 6,1 e 2’“. Then:
DOeln  VCODlo) =12) => a-r e 8*.

„13 Definition. A SIG- substitution 9 e S" is a W iff the
following conditions hold:
i) COD(9) E V.
ii) Vx,y e V: x,y e DOM(9) A x s y = 9x as 9y,

i.e. g is infective on DOM(9).
iii) Vx e V: [ox] = [x]. i.e. 9 is type conform.

2.1 ‚4 Definition. Let s,t e UST.
1) s s. t , iff there exists a A E S ,  such that s = At.
ii) S..—‚t , i f f s s tandts s .

12



Note that s. is a reflexive and transitive relation on 'S'l' and that % is an
equivalenoe relation.

We generalize these relations to SIG-substitutions:
www We V and let 6,1 e t ]
i) ea t  [W]  , i f f ex=rx  for a l l e .
ii) 6 s T [W]  . iff there exists a A e 2.  such that o = 1-1 [W].
iii) Gast [W]  , i f fo sr  [W]  andrso  [W].

Obviously .<. [W]  is a reflexive and transitive relation on SIG-substitutions and
ns [W]  is an equivalence relation.

W A SIG—substitution g is a Minn, iff
there exists a SIG-substitution ;“, such that g-g‘ =- r. .

In  the following lemma we state without proof some facts about permutations:

W Let g be a permutation. Then:
i) £“ is a permutation.
ii) (f)" = ;
iii) DOM(§) = VCOD(£). El

Every renaming substitution 9 corresponds to a permutation @ ‚where @ is
defined as follows:

[ 9(x) if x e DOM(9)
äh)  =- i y if x e VCOD(9) and y e DOM(9) is the unique variable with 9y = x

l x else

© is  well defined since 9 is idempotent.
Obviously @@ = s and 9 - 9 [DOM(9)].
For example i fg  = {u «- v} . thené = {u +- v,  v +- u}.

2.1.§ Lemma. Let st 6 'ST and let W s V.
Then 3 == t, iff there exists a permutation; such that s = gt.
Emi; ":=": is trivial.
"=>": The proof in [Hu76] can be generalized to polymorphic terms.

2.1.9 Lemma. Let 6,1 e !: and let W s; V.
Then 6 = t [W], iff there exists a permutation; such that o = get [W].
Proof. "<=": is trivial.
"=>": Follows from 2.1.8 if we take the terms 3 = h(cx1,...,oxn) and

t = hlrxl,...,un), where W = (x 1 ‚...‚xnl. EI
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2.1.19 Lemma. Let W 9 V and let 6,'r e £ .
For a renaming substitution 9, the following holds:
i) If DOM(9) = V(t(W)), then:

651" [W]  ==> ösgor [W] .
u) If DOM(9) = V(6(W)). then:

651' [W]  ==> 9-6.<.1' [W] .
iii) If DOM(9) - V(6(W)). then:

62:1  [W]  ===; goozt [W] .
PM
i) "=": Let 6 s. r [W]. Then 6 = A-t [W]  for some A e S .  We have

6 = AoO°9~T [W] (9-9 = e)
= A-Qogor [W]  ( DOM(9) = V(t(W)) and 9 = Q [DOM(9)] ).

Hence 6 s 9-1 [W] .
"€:": trivial

ii) "==>": trivial.
"<=“: From 96 = A-r [W]  for some A e 2 we have:

6 - Q—Q-e - 9-9-6 [W], since DOM(9) - V(6(W)) and 9 -§  [DOM(9)] .
Now 6 = Qogoo - Q-Aot [W]  implies 6 s r [W].

iii) Combination of i) and ii). El

W Let s,t e 'S'l' and let 6 e 8” .
Then 6 is called a W iff 6s = 6t.

In general there will be more than one unifier for a given pair of terms 3 and t.
hence we have to consider sets of unifiers. In order to simplify proofs, it is often
convenient, that the following technical conditions are satisfied for such sets. This
can always be achieved by applying appropriate renaming substitutions.

1W Let U s 2 be a set of SIG-substitutions and let W G V.
We say W iff the following conditions hold:

i) V 6 e U: DOM(6) = W.
ii) V6eU= VCOD(6)nW=@
iii) V 6,1' 6 U: 6 s r => VCOD(6) n VCODlr) = 9 El

Note that the conditions of 2.1 . 12 imply, that U = 2*.
A set of unifiers generated by an actual unification algorithm is not separated in
general. (see e.g [R061 He83l)

Since two polymorphic terms may have more than one most general unifier, we
define a set of most general unifiers as the minimal set of solutions of <s=t> in
(781516):  '
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2.1.13 Defim'tion. Let s,te'S'l' and let W5 Vwith V l s i l s  W.
A www defined as a
subset  of t“ ,  which is separated on W and satisfies the following conditions:
i) V6 6 CUEls, t): 68==6t  (correctness)
ii) V6 e S: ö s -= 61 => (3 6 e CUZ(s‚t)= & s 6 [WD (completeness).
The set of most general unifiers is called minimal if in addition:
iii) V6.1 e CUEls,t)= 6 s r [W]  = 6 = r (minimality)
A minimal set of most general unifiers for s and t is denoted as uUZIsil. El

There may exist more than one set uUZ(s.t) for a given pair s,t 6 'ST. but if so.
they are equivalent under permutations [Fa83, Hu76].

zum Let W 9 V
For every finite U s: £ there exists an U ; 2" and a mapping cp: U —+ U such that
the following conditions hold:
i) cp: U -> U is a bijection.
ii) 113(6): 6 [W]
iii) U' is separated on W.
BLQQL For every 6 e U we take a renaming g,ö with D0M(96) = V(6(W)). It is
possible to choose 96 in such a way. that VCOD(96) n VC0D(9.r) = 9 for dilferent

6.1 e U. Now we define cp: U a U' as 43(6) - 96-6 and U' is defined as MU).

Lemma 2.1.10 implies 9606 =: 6 [W]  . U’ is separated by construction. El

We define a weakening substitution (coercing) [Wa84,CD83. GM85] essentially
like a renaming substitution, except that it maps variables to variables of lesser
sorts. During the computation of most general unifiers, weakening substitutions
are used to solve the unification problem <x=t>, where [ I ]  is not a subsort of [ t ]

WLeteeZ" .  We save is amakeningsuhstimmnifl‘
i) COD(6) €. V.
ii) Vx,y e D0M(6)= x t y =} 6x :|: 6y , i.e. 6 is iniective on DOM(6).
iii) Vxe V: [6115. [1].

The set of all weakening substitutions is called “ .

wm W ; V and let 61' e UZ.
If W ; DOM“) then =

es t  [W]  «===» VIEW [6115 [u].
Proof. '"-==» There exists a A e fi ,  such that Gel-1“ [W] .  Hence we have

[ ex ] :  [bu] = [ll-lull s [u].
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"4:": We define a A e 2 ,  such that 6 = lot [W]:
Ay === 6x, i f fy  = TX for some x e W. n and ex are variables and all
u are different for x e W. since {(W) nW = fl and T is iniective on
W. From [6115 In l and  from the fact that A moves at most
finitely many variables, we conclude that A e 2 .  El

If U is a set of unifiers, we are in general only interested in a minimal subset of
U, i e. a subset, which contains one representative for every maximal element
of U. Thus we define:

W Let U be a set ordered by a reflexive and transitive relation
5 . Then MAXS (U) is a set which satisfies the following conditions:

i) MAXS (U); U.
ii) V ueU=3ve  MAXs (U): usv .

iii) V u,v e MAX$(U)= u s v => u = v. D

Such a set exists if either U is finite or every chain c 1 < 02 < is finite , since
the relation is reflexive and transitive, but  is not unique in general. The
cardinality of MAX$ (U) is uniquely determined, since it equals the number of

equivalence classes of maximal elements of U.
For example we have uUZ(s.t) = MAXlfl CUZ(s.t)) El

The set of most general weakening substitutions for a given term is defined in
a similar fashion to the definition of uUZ. Note that t may be a term that is
ill-sorted.

WMHENFV) ,  .V( t ) sWsVandle tSeS .

The = ‚ uWZsm. isasetof

weakening substitutions, which is separated on W and satisfies the following
conditions:
i) Va e pWZS(t)= [at] s S (correctness)
ii) V6 5 2: [6t] $. S => 36 e uWESh): 6 s. a [W]. (completeness)
iii) Vox e uwzsü): o s ‘l’ [W]  => a = r. (minimality)

This definition is of course useful only for terms, which are not well-sorted or for
terms, whose outermost function symbol is polymorphic, since otherwise [at] - [t]
for any a. If the signature contains only one sort, then uWESh) = {9}, where 9 is
a renaming of W. The same holds if S ‚>: [t].
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2.1.19 Theorem. Let t e 'S'l' and let S e S.
If there exists a B e I. such that [8t] 5 S, then uwzslt) exists, it is not empty and
it is always finite.
Erooij. Let U0 == {6 I 6 e 8" and [6t] s S} and let W =- Wt). For every (admissable)

combination of sort assignments to variables in W choose one 6 e UO ‚which

makes this assignment. Let U1 be the set of all 6 thus chosen. U1 contains a
60 which makes the same assignments as 8. The number of different

combinations of sort assignments to variables in W is finite. Hence U 1 is not

empty and finite. Lemma 2.1.14 gives a set UZ which is separated on W. Now

the set MAXSIW](U2) satisfies all properties of uWZSh), hence we define
uWZSM == MAXSIWIwZ)‘  El

W Let x e V. t e 'S'l'. such that x and t are S-unifiable.
Then uUZ(x,t) exists. is not empty and finite.

Epcot. Let S = [x] and let W = {x} u V(t). Then the set pW£5(t) is not empty
and finite by theorem 2.1.19. We have
uUZ(x.t) = { (x +— 61}°(6|v(t)) I 6 e qslt) }. D

The following example de monstrates. that for a unification problem <s-t>, the
minimal set of most general unifiers can grow exponentially.

QM; Consider the sort structure 8 = {N,NZZ), where N. NZ and Z have
the same meaning as in the example of chapter l .  Let x e VNZ and

xi E VN. The signature of the function ""»: (product) is:
SO(*) - {(N.N,N), (NZ,N,N). (N,NZ,N), (Z,N‚Z). (NZZ). (Z,NZ.Z). (NZZZ). (ZZZ).
(NZ.NZ,NZ)}. The unification problem at - (xl+x2)=r *(XZn—l*x2n)’ produces 2n
unifiers, since for every factor there are two independent solutions
{ 12i_ 1+- 

VZ i - l }  and {IZi «— yZi}, where [Vi] == NZ. These solutions have to be
combined independently. []
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2. "c to  l 't  or 1 o ' cTer  s .

W Let s.t e 'S'l' with s == t. We compare s and t symbolwise
from left to right. The pair of well for med subterms. starting with the
first symbols. which disagree, is called the W of s
and t [R065].

The following unification algorithm SUN IFY for polymorphic terms takes two
terms as input and returns a finite set of mgu's, if a unifier exists (empty
otherwise). A similar algorithm for terms in a many-sorted signature without
polymorphic functions is given in [Wa83].

The polymorphic unification algorithm is defined as:

WM: SUNIFY ='ST x '8'! + POW (2")
INPUT: s.t 6 'ST.

UOLD == {9}. where 9 is a renaming of V( 8.1). such that (9} is separated

on “8.0.
MEWS * at for some oe  UOLD )m:

UNEW == o.
MALL. 5 € UOLD DQ=

LEes - et IEEE UNI-3W =- UNEW u {6}.
ELSE DQ Let (d,e) be the first disagreement pair for (63,61)

1E d or e is a variable [HEN
UNBW =“ UNBW U {136 IT € pUfidß) }

ELSE UNBW =- UNBW- ( e s  and at are not unifiable )
EEE

EL) (M)
Make UNI—JW to be separated on W - V(s,t).
UOLD == Um-

532 (WHILE)
RETURN MAXSIW] (vom). El

This algorithm exploits the existence and the properties of pUZ(x,t).
Lemma 2.1.14 justifies the separation of UNEW on W; Le. to restrict the

substitutions a in UNEW to V(s,t) and afterwards to rename all variables in 6(W).

W The algorithm SUNlI-‘Y terminates for every pair (at) of
well—sorted terms. _

Prmf, Every 6 5 ”NEW, which satisfies as = at, is transmitted (unchanged) to the
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next UNEW° Hence it suffices to consider substitutions o e UNEW with os  # at.

In the EQBALL -—loop=
If neither d nor e is a variable, then 6 is removed from the set UNEW'

Otherwise the number of variables in Vireosxoot) is exactly
IV(os,et)I — 1. Hence for every 6 e UNEW the number of successive steps
until either an inherited substitution is removed or a unifier for s,t is
bounded bylV(os,ot)l . Thus the algorithm halts. [3

2.2.4 Theorem. Let s,t be SIG—unifiable.
Then the algorithm SUN IFY returns a set of mgu's= uU£(s,t).

131991; The returned set is separated on W - VAR(s,t).
i) correctness: follows from the WHILE —condition.
iii) mimmalitx: follows from the fact, that the returned set is minimized

(see 2.1.17).
ii) W Let 9 e 2 .  such that es - Bt

We show by induction. that the following statement remains true
during the WHILE—loop:

E28336  UOLD=BSOIW1

W. 9 s 9 [W]  holds before the MILE-loop due to Lemma 2.1.10.
Mm. Assume that WPR is true before the Emu-loop.
gas“: If es  = at then 6 e UNEW'

Cam: If es t 6t , then let (d.e) be the first disagreement pair of (63,61).
There exists a A e 2,  such that 9 = Ace [W]  and DOMQ) s Vc).
A unifies es  and 6t, hence Ad = le. Either d or e is a variable, since the first
symbols disagree.
By Corollary 2.1.20 there exists a r e uUZ(d,e) such that A $ 7 [V(d,e)].
We have DOM(A) n r(V(d,e)) - 9. since VCODlt) consists of new variables.
There exists a u e 2 with DOM(u) G VCOD(T) such that A = por [V(d,e)].
Furthermore we have A = pox-t [V(6W)l=
For x e V(d,e)=

p-Aou =
p-rx = ( DOMUU n f(V(d‚e)) = 6 )
Ax (A = p-‘t [V(d,e)l. )

For x a V(d,e)=
u-Aorx = u-Ax ( DOM“) = (V(d‚e) ).
Case l: x e DOM(l)=

p-u - Ax ( vconu) n pomp) = a )
Case 2: x s DOMlA):

p-Ax -= px = x = Ax ( x ( DOMUU ; DOM(p) 5 VCOD(t) and
( VCOD('t) consists of new variables )

Finally, 8 = 1-6 = u-A-r-a [W]  , hence 8 s 1-6 [W].
too is in UNEW' hence WPR is true after the WH ILE—loop.
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The technical manipulation to make the set UNEW being separated on

W does not affect the the validity of WPR (see Lemma 2.1.14).
The transitivity of s [W]  guarantees that there exists a
6 e MAXSlW]  (UOLD) such that B s 6 [W]. E]

W The minimizing step of SUNIFY is necessary for the .
minimality of the returned unifier set:
Let S := {T,A‚B} with T z A 2 B.
Let f ,g,h be functions with the signatures:
SO(f ) = {(A,A‚A); (A‚B,B); (B,A,B); (B‚B‚B) }
80(3) - {(A.A,A); (A.B,A); (B,A,A); (B‚B,B) }
SO(h) - {(A,A,A); (A,B,A); (B,A,A); (B‚B‚A) )
Let s - h(f(x y) g(x y)) and let t - h(u v) with

x,y 6 VA and u‚v e VB.

We unifiy s and t using the algorithm SUNIFYz
First we get:
u and f (x y ) is the first disagreement pair. There are two most general
unifiers of u and f(x y).
UI  - { {x +- 11, u +-f(xl y) } i  {y+—yl‚ u «f(x y1 ) }  }where x ly l  e VB-

In the next step the first disagreement pairs for the two unifiers in UI

are (v. 8(11 y)) and (v, g(x V1 )) . respectively.
Weget=
UZ - {  {14-11,y<—y2. u«-f(xl yz).v«—g(xl yz)}:

{x +- 12, y +- y l '  u <— f(12 yl), v +- g(12 V1)  } }where 12.y2 e VB.
The two unifiers in U2 are equivalent (== [{x,y,u‚v)l).

20



We say <8‚s> is a semilattice. iff for every R.S e S with R n S t @ there exists a
unique T e S such that: T 5 R5 and for every T' e S: T‘ 5 R5 => T‘ .<. T.
Le. an infimum of R and S exists, provided these two sorts have a common
subsort. This property implies that a supremum of two sorts exists.

We denote the unique greatest element of R n S as R A S and the supremum of
R and S (which always exists) as R v S.
Furthermore in a semilattice a set of sorts {51.....Sn} has a unique inlimum (or
greatest lower bound, g.l.b;), if a lower bound exists and a unique supremum
(least upper bound, l.u.b.),
We could extend the semilattice <S..<.> into a complete lattice by adding a least
element (but we don't ).

W Let SIG= (S F. P )  be a signature
We say SIG is a W iff the following conditions hold:

i) <S.s> is a semilattioe
ii) For all f e P and all 3 e S, the set M(f‚S) == “Sir-"5nd ) e 800‘) | Sn+l  s S}

is either empty or contains a unique greatest element. El

2.2.7 Theorem. Let SIG be a-unification unique signature.
Then for every st 6 UST: uU2(s,t) is at most a singleton.

M If ss lt)  is at most a singleton for all t e  UST. then the properties of

SUNIFY (Lemma 2.2.3 and theorem 2.2.4) imply that pUZ(s,t) is at most a
singleton. Thus we show. that 11W25(t) is at most a singleton for all t and S.

We prove this by induction on the term structure of t:
Base case: If t is a constant. then either uWZS(t) = {s} or = @.

If t i s  a variable, then two cases are possible:
Case 1: S n [t] t @: pwzsm == {{t e- z}} where z is a variable with

[z] - S A [t]
Case 2: S n [t] - @: Then pWESü) - ß.

Wm We show this by contradiction.
Let t = fltl,...,tn) and let 61, 62 e pWZslt) with 61 t 62.
If [611] = [5l for all x e W = Wt), then 51  z 52  [W]  by Lemma 2.1.16.
Hence there exists a variable x0 e W such that [6110] # [62110].
We construct SIG—substitutions r and r '  by:

[61y  i fy  t 10

W = i
L: if y = ‘0  ; z is a new variable and [z] = [6110] v [5210].

[6110] v [6210] exists and is unique, since <S‚<_=> is a finite semilattioe.

We have 51  s r' [W]  by Lemma 2.1.16.
Let ‘l' be a renamed variant of r' such that {nal , oz} is separated on W.
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Then obviously 61 $ 1 [W].
Case 1 [z] > [6110].

Then 61 < t [W] .  We have [It]  $ 3, since 61 is a maximal element in the
set of all substitutions, which weaken t to 5.
Hence there exists an index i and a term ti e “ !  ,...,tn}, such that [ni] > Si
where (S 1 '---'sn+l) is the greatest element of MG‚S).
The facts [ölti] 5 Si  and [özti] 5 Si  imply that for the unique
Ai e „wzsiup we have 61 5 li  [Wi ]  and 62 < Ai [Wi], where
Wi = V(ti). This A- exists and is unique by the induction hypothesis.|
The variable 10 must be in W- because otherwise [“ i ]  == [6 l t i ] .

We have [ l i lo]  z [61x0] and {lilo} z [62101,hence [kino] 2 [no].
We conclude that [Ajy] a [w] for all y e Wi '  This yields the
contradiction [ni] s Si ‘  Hence case 1 is not possible. I

9333.1 [2] = [6120] . Interchanging the substitutions ° ]  and 62 we obtain
that the case [2] > [6110118 also not possible. Hence [6110] = [z] = [6210]-
This oontradicts the properties of the variable x0 stated above.

All cases are exhausted, so the theorem is proved. Ü

Since the condition 2.2.6 ii) is true in the ZRP—calculus of [Wa83]. we have the
following corrollary, which is a generalization of a Theorem 7.4 in [W383]. (see
also [Wa84]) :

W: Let <S.s> be a semilattice. Then for every pair of terms st in
the Blip-calculus: pUZ(s,t) is at most a singleton. D

The condition for <S,s> to be a semilattice is not critical. It is always possible to
complete the sort structure, such that the completion is a semilattice and the
(un)satisfiability of the corresponding clause set is not affected (see chapter 2.4)
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P ' "e iZ" .

Paramodulation [WR73] with tl 2 t2 on a literal L is defined as follows: Let t3
ccour at position pos in L and let 6 be a most general unifier of ‘1  and t3. Then

a new literal L’ ‚the paramodulant, is deduced by replacing 6t3 with otz. We

have L' = oLIpos +- t2]. A minimal set of most general unifiers for the
paramodulation with t l  & t2 on L at position pos is the set uU2(t1,L|pos).

In a many—sorted calculus, the problem arises, that the paramodulant,
generated by  such unifiers may not be  well—sorted, but  an instance of this
paramodulant can be  well-sorted.

In [Wa83]  a weakening rule is introduced to solve this problem. we propose
another solution and define paramodulation by a set of unifiers, which is most
general in the set of unifiers for t l  and L | pos and generate a well-sorted

paramodulant. This process is defined as S—paramodulation. It includes
implicitely the weakening rule of [Wa83].

2.3.1 Mfinition. Let L be a well-sorted literal and let t1 : t2 be an equality

literal with tl ,  t2 e 'ST. Let pos be a position within L and let s - Llpos '

The setaaramndulatiounifiersfoLLmanntz . namely
@@s is a subset  of 2 .  which satisfies the following conditions:

V6 6 pm 1 , t2 ,L ,pos )=  es - 611 and 6L[pos +— 6t2] is well-sorted.

Let W = V(L,tl,t2). Then 112211112n is defined as a minimal and
complete subset of PZ(t1,t2,L,pos), which is separated on W.

Le. uPZ(t1,t2,L,pos).- MAX5[W](  PZ(tl,t2,L,pos) ).

The next example demonstrates. that the property of a paramodulant
BLIpos +— Btzl to be well-sorted can be influenced by terms of L outside the

position pos. Furthermore substitutions in ppm, .t2,L.pos) may not be most

general unifiers of t l  and Lipos-

um Let 8 = {T-‚A‚B,C,D} with T z A z B 2 C 2 D.
Let f,g,h be functions with
500‘) = {(B,B‚A); (B‚C,A); (C‚B‚A); (C,C‚A); ; (D,D,B) }.
SO(g) = {(B,B,A); (B,C,B)i (C,B,Bl. (C,C,B). }.
5001) = {(A,A,A); (A,B,B); (B,A,B); (B,B,B)i }.
The first triple is the maximal domain and range of f,g,h.
Let P e P be a predicate with SO(P) = B.
Let L = Plh(g(xB x5) KB)) and let tl a t2 be the literal YB = f(yB YB)

where IB'YB e VB-
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We have [ h(g(xB 13) 13)] = B , hence L is a well—sorted literal.

We paramodulate t ]  into the second argument of h in L.

With the substitution 6 - {VB .— 13} we obtain the paramodulant

(6L)[pos +- 6t2] - P(h(3(xB :3)  f(13 IB”). which is not well-sorted. since

[h(g(xB IB) NIB 13”]  = A and A > B.

If we try to weaken f (IB IB) with a ‘1‘, such that tf(xB IB ) fits at position

pos, we get I - (15 +— ID}. But the substitution r '  - {xB «— xc} suffices to

make the paramodulant well-sorted. since [hlglxc xc) f(xc xc))l = B.

Lim. For all L, pos, t ]  I: t2 ‚which constitute a paramodulation

problem in SIG. the set uPZ(t1.t2.L,pos) exists and is finite.

ELQQL

i)

ii)

Let U0 == {ti-Tl 1’ e pU£(L| pas-11) and o e uWZTUTLHpos <— 112]) }
i.e. all compositions eat of substitutions 6,1' such that { is  a most general
unifier of L I pos and t l  , and 6 is a most general weakening substitution.

such that the instance of the paramodulant , namely 6(1’L[pos <— f tz l )  is a

well-sorted literal.
By theorems 2.1.19 and 2.2.4 the sets uWZTHLIpos +- ttzl) and
pU£(L|pos,t1) exist and are finite. After application of some renamings

and after restricting the compositions to W = V(L,t1 .12). we can assume,

that U0 is separated on W.

We show, that the requirements of Definition 2.3.1 are satisfied for the
set U - MAXSlwlwo) - uPt1,t2,L,pos)

W For all 6 = auf e UO we have 6(L'pos) =- ötl . since

f(L | pos) = n , .  Furthermore 6L[pos «— 6t2] is a well—sorted literal, since

6L[pos +— ötzl = so‘tLlpos +- e‘rtzl = o(tL[pos +— 112] ).

completeness: Let B e E such that 8(L I pas) =- at l and BLlpos <- Btzl is

well-sorted.
By Theorem 2.2.4, there exists a ‘l’ e uUZlL' pov 1)  with 8 s ‘l' [W]. hence
we have 9 = 11—1 [W].  We have BLIpos e— Btzl = 11(‘rLIpos 4- t tzl) .

From Theorem 2.1.19 it follows, that there exists a
a e uW‘LTltLlpos e- ‘rtzll such that Al 5 o [Vlt].

Thus *1 = Azno [V(tW)] for some A2 e Z and so:

8 = 11-1 = Are-r [W]. The transitivity of s [W] now shows that there
exists a u e U, such that B s 11 [W].

iii) mm. is trivial D
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W. For a signature SIG, which is unification unique, the set
uP£(tl,t2,L,pos) is at most a singleton for all t1,t2,L,pos.

M Follows from 2.2.7 and 2.3.3. D

In ZRP’“, the definition of paramodulation is modified: the set “U2(t1.L|pos)

is replaced by the set uPZ(t1;t2,L,pos). In the next chapter it is shown, that

(sorted) resolution together with sorted paramodulation are the deduction
rules of a complete calculus.
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WW “mo Se ' attice.

In this section it is shown that every sort structure <S‚s> can be embedded
into a se milattice. This embedding does not affect the (un)satisfiability of a
clause set, i.e. the first part of the definition of a unification unique signature
(Def 2.2.6) can always be satisfied by adding some sorts to S.

In other words the expressive power of the ZRV-calculus respectively the
ZRP—calculus [Wa83] is not changed, if only semilattice sort structures are
ad missable. For the ZRP-calculus, this implies that the mgu—sets are always at
most singletons. This is of great practical importance, since it allows to change
the sort strucure before the clause set is handed over to an automated
reasoning system.

Mm Let <S.$> and <S‘‚s'> be sort structures with a greatest
element each.
<S,s> is W <S'‚s'>‚ iff there exists a mapping tv: 8 + S '  such
that the following conditions hold:

1) cp is iniective.
ii) For every R‚S e S: R s S =:— c s" (95
iii) VS' e S '  (3 R,Se S: c $“ S” { tpS El

Condition iii) implies. that qrr - T’ and that if R5 5 S have no common subsort,
then the same holds for c and p8.

Mum; Let <S.s> be a sort structure with a greatest element 5. Then
there exists a sort structure <S'.s'> such that <S‚s> is embedded into
<S'‚s'> and <8’‚s'> is a semilattice.

M For S e 8 ,  let cps =- {R e SI R s S}. We define 8’ as the following set:
8 '  = ( M I M s @ and M = cpsl n n cpsn for some Si  e 8}. i.e. S“ is the set

cps extended by all possible intersections, which are not empty. This
definition is similar to the definition of the lattice of ideals in lattices
[Gt-79]. Obviously 8 '  is finite.
We let the relation 5' on 8‘ be the subset ordering. To show that <S’,s'>
is a se milattice, it suffices to show that for all R’ ‚S' e 3' a greatest lower
bound exists, if lower bounds of R'‚S' exist at all. R' n S '  is the greatest
lower bound, if it is not empty.
We prove, that <S‚s> that is embedded into <8'‚s'>=
i) cp is injective, since (pR = (ps implies, that R e c and S e cps, hence by

the rule of antisymmetry: R = 5.
ii) For R,S e 3, R s 5 implies that qJR ; (ps, hence qJR s’ (ps-

26



iii) cpT =- S is the greatest element of S'. Let S' e S'. 5' is not empty. so
take some S e S’. We have 5' =- (981 n n qisn for some Si e 8.
Now S e 8’ implies that S 5 Si  for i=l,...‚n . hence 03 s S' and so

(PS 5“ S’ 5 S. El

2.4 ‚3 mfinition Let SIG= (S, P P) and SIG'-= (S' 1", P') be signatures.
We say SIG is embedded into SIQ' , iff the following holds:

i) S E S F= F'. P=  P
ii) <S,s> is embedded in <S’.s’> with a mapping (p which is the identity on S.
iii) [t] - [t]' for all t e 'S'l'.
iv) '8'): r. '8'!" and for all S e S: VS,  == VS. i.e. The subalgebra of '8'!" which

is generated by all f e F and all variables with sorts in S equals 'S'l'.

Mina. Let SIG == (S. P. P )  be a signature and let <S',.<.' > be a semilattice
such that 6.9 is embedded into <S'..<.'> with a mapping q) which is the
identity on 8.
Then there exists a signature SIG' - (S'. P'. P') such that SIG is
embedded in SIG'.

13ml; We define 1" == P. 1" == P.
For c e C. let [cl‘ == [c].
For x e V, let I ! )  === [I].
For functions f e P. SO'(f) is defined as the set:
r [ (51  „ . . . ,Sn+1  ) $ (S f ‚1 '" - 'S f ‚n+ l  ) where (S f ,1"" ' s f ‚n+ l  ) is  ]

{(Sl'‚...‚Sn+l') Ithe maximum element of 80(f). Sn+lr  is the g.l.b. of }
L | {SITH'II (SI . . . . , Sn+1  ) € 50“) and (51 ,511 )  $ (SI . . . . ‚Sn)  ) J

The only nontrivial conditions in Definition 1.1 are that for every
function f= f“ is a monotone function defined on
{(Sl'‚. . . ,Sn') | (Sl'‚...‚Sn') $ (S f . l"" ' s f .n )  } and that SIG'iS sensible.

Let (51 .1  ',....Sl'n') 5 (52 ,1 ,  .....Sz'n‘) . Sl ‚n+ l '  is the g.l.b. of the set
{S11+ l l  

(S i r -"Sm 
l )  e SO(f ) and (52 ,1 'v - - -v52 ,n ' )  s (Sl‚...,Sn) } .

whereas 32 ,n+1 '  is the g.l.b. of the set
{Sf1+ ll (51 .....S11+ 1 ) e SO(f) and (5111...,82'11') $ (51.....Sn) }.

We have S l ‚m 1 '  s. 52,11,r 1 '  , since the first set is a subset of the latter.

SIG’ is sensible since for every 8' e 8 '  there exists a S e S with S :; S'.
Hence there exists a c e C with [c] s S s S'. We have shown that SIG' is a
signature according to Definition 1.1. SO(f) E SO'(f ) holds for every f E l',
hence it] = [t]' for all t e IST. The fact that the greatest elements of
500“) and SO'(f) are equal and the relation [t] = [t]' for t e  IST imply
condition iv) of Definition 2.4.3. EI
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We give an example for embedded signatures:
2.5.5 Example. The following transformation is a completion of a

sort—structure resulting in a se milattice:

__—

! '

‚_
__

‚3
7'

-—
|

For a polymorphic function f with 500‘) = { (T,T). (AA). (B, B). (C,C) (D, D) }
we obtain SO’(f ) = { (T‚T)‚ (A,A), (B, B),(E,E), (C,C) (D, D) }, since B is the g.l.b.
of {A, B,T} = {SI (51,8) € SO(f) and E s 81 }. El

2.5.9 Ingorem. For a given clause set CS and a signature SIG, let SIG' be a
signature such that SIG is embedded into SIG' and <S'.:=.' > i s  a semilattioe.
Then: CS hasan E-model w.r.t SIG «===» CS has an E—model w.r.t. 816'.

Brent. “:= Let (D‚SIG‚RD) be an E-model of cs w.r.t SIG.
We construct an E-model (E,SIG',RE) w.r.t SIG':
Let E =- D; RB RD. rE fD.

Let 5'E=- {dl d e 39 for all s e s with S' 5. S} . i.e. S'E is the intersection
of all related subsets in D for greater sorts.
Lemma 2.4.2 shows, that 5’3 s 9 for all S" € S'.
Now let (:15 = '81" «> E be a SIG-homomorphism. We define a SIG-homo—
morphism oD = vsr » D w.r.t. SIG by 4)”: == 95! for all x e Vtsct
Lemma 1.5 yields, that on exists. For all clauses C 6 CS we have

cC = tpEC. Thus qJEC is valid for all clauses C. Hence (B.SIG’,RE) is an
E—model for CS (w.r.t SIG').

„€. Let (5.5103113) be an B—model of cs w.r.t 816'. We can construct an
E- model (D,SIG,RD) in the same way as above by setting
D := E, RD == RE, rD == rE, SD == 55 EI
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I n  this chapter the soundness and completeness of the ZRW—calculus and the
Sortensatz are shown. The proof technique for the soundness and completeness
results are taken from [WR73] and are appropriately modified to fit our sort
structure.

The functional reflexivity axioms are necessary for the completeness of the
ZRP*-calculus, in contrast to the RP-calculus (without sorts) where they are
superfluous [Ri78, Bra7S]. In the ZRP—calculus this is an open problem [Wa83].

I. - C

I t  is a well—known fact, that every formula in a first order predicate calculus
can be transformed into a set of clauses. The skolemization, which removes
existential quantifiers from the input formula and replaces the quantified
variable by a skolem function is the same as in [Wa83]. Note that the generated
skolem functions are not polymorphic.
The deduction rules of the ZRP“-calculus are tailored for clause sets.

um The inference rules of the ZRP“ -calculus are S-resolution,
S-factoring and S—paramodulation.
i) sw. Let C u {L} and D u {—L'} be variable disjoint clauses and

let L and L' be two atoms with the same predicate symbol. Let 6 be
an SlG—mgu of L and L'.
Then 6C u 6D is an S-resolvent of the two clauses.

ii) 3mm. Let C be a clause and let 6 be a SIG—mgu of two or more
literals of C.
Then 6C is an S-factor of C.

iii) SW. Let C u {L} and D = {s = t} be two variable disjoint
clauses. Let pos be a position within L and let L lpos  - to. Let a be a

most general paramodulation unifer for L,pos and s a t.
Then 6C u 6D 0 {eLipos +- etl} is the S-paramodulant of the two
clauses. [:1

Note that there may not exist an S—resolvent (an S-f actor, an S-paramodulant)
for two given clauses although an ordinary resolvent does exist. In the
following we drop the 8 -  in S-resolvent ,S—factor, S—paramodulant if no
confusion arises.
We assume that resolvents, factors and paramodulants are renamed before
they are added to the original clause set.

3.1.2 Lemma. Let CS be a clause set and let D be a factor, resolvent or
paramodulant of clauses in CS.
Then: CS is satisfiable ==> CS u {D} is satisfiable.
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Ergo; The proof for the unsorted case is easily adapted to the many-sorted
case. El

LLiDsLmiugn TheMQticnaLLeflexixiluxinms are the fallowing axioms:
i) x sx  w i theT .
ii) f(xl ..... xn) a f(xl ..... In) for every f e F \ C, where [xi] - S“ and

(Sf l , . . . ‚S f  n+1) is the greatest element of 50“)
and all variables I i  are different. E]

A clauses set, which allows the deduction of all functional reflexivity axioms, is
called WM

If the functional reflexivity axioms are present, then it is possible to deduce
instances of clauses by paramodulation with these axioms:

For every instance 6C0 of a clause C0 there exist substitutions GFR and 60 ,
such that ( 60 . GFRXIO - eco. The instance 5FRC0 is deducable from C0 and the
functional reflexivity axioms and has the same term positions as eco. The
substitution 60  does not change the term depth.

However in practical applications the functional reflexivity axioms are not
used. since 1) they increase the search space enormously and ii) the
subsumption rule would delete all of them but  the axiom x s x.
The instances described above would also be deleted by the subsumption rule.

The next lemma is independent of the rest of this paragraph. i t  shows. that
the presence of the functional reflexivity axioms makes the relation ~ on terms
to be a congruence relation. where s ~ t. iff s a t is  an instance of a deducable
unit equation. This may be f alse. if the functional reflexivity axioms are absent.
The difficulties in proving the completeness of paramodulation arise from this
fact.

W. Let CS be a functionally reflexive clause set. Let ~ be the
relation on '8'1'8r defined as:
3 ~ t , iff there exist 3' and t’ e 'S'l' and a a e 2 such that

CS}— s ' s t '  andul s ' s t ' )  = (851).
Then ~ is a congruence relation.

ELQQL From the axiom x a x and the paramodulation rule, we obtain that «- is
an equivalence relation.
We show that ~ is a congruence relation:
Let r be  a function with n arguments and let si ~ ti , i=l,...,n and
siv‘i e 'STBr. We have to show that f(sl,...,sn) “- f( t l  ,...,tn) if both terms
are well-sorted.

30



There exist si', ti’ and oi“. such that CS |— si' = ti' and
oil si” = ti’) = (si a ti) for i=1,...,n. Multiple paramodulation with the

axiom flxl ..... In)  ; f(xl‚...‚xn) yields CS l— flsl‘,....sn’) a f(tl',...,tn’ ).
We can assume that the substitutions 6i are variable disjoint. Let

6 == 51 .  
nen .  Then oflsl',...,sn') = f(sl,...,sn) and

6f(t1’,...,tn’) = f(t1,...,tn). [3

3,1,5 Example. This example  shows, that the paramodulation rule  is not
complete, if the functional reflexivity axioms are absent.

Let S = {T‚A‚B‚C,D,E} , T 2 A.B,C,D,E.
Let a,b,c,d be constants of sort A,B,C,D respectively.
Let P e P, with SO(P) = E
Letfe i th  [E  if(RsAandSsC)or(RsBandS.<.D)

IflxR,xs)I = {
L T else

The clause set  CS is:
{ { a ä b}; {c a d}; {P(f(a CD}; {-P(f(b dm.

This clause set is unsatisfiable.
Paramodulation is not possible, since [f(b c)] = [f(a d)] = T. There is no
deduction of the empty clause in ZRP". If the functional reflexivity axioms are
present, then f(a c) a f (b d) can be deduced from the axioms
{(x y) E [(x y); a a b ; c a d by two paramodulations. D

We conjecture. that a "parallel" paramodUaltion rule instead Of normal
paramodulation avoids the functional reflexivity axioms.

MW Let SIG be  a signature and let CS be  a clause set.  An
interpretation I of CS is  a set of well sorted ground literals, such that for
each well—sorted atom A. either +A or -A  is in I. EI

The interpretation I is an HE—model of CS, iff Cgr n I s 6 for every ground

instance of every clause C e CS.

3.1.7 Theorem. (Maximal Model Theorem [WR73] ).
Let CS be  a clause set and let I be  an interpretation of CS.
If CS has an HE— model, then there exists an HE— model M with the following
property:

For every literal L e M n I there exists a clause C e CS, which has a
ground instance C8!“ such that Cm. n M = {L}. El
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1W. (Lifting of factors. Lemma l of [WR73]).
Let CS be a clause set, A 6 CS and t e 2 such that A' = IA  is a ground
instance of A.
Then there exists a factor FA of A and a u e 2 .  such that:
i) A' = pI-‘A.
ii) F A and A' have the same number of literals.

BLQQL The SIG-substitution ‘l' partitiones A in congruence classes. if the relation
is L] ~ 1,2, iff TL] = rLz.  By Theorem 2.2.4 a set of SlG-mgu's exists. which
simultaneously unify the literals in every congruence class. There exists an
element 8 out of this set and a u e 2 with r -= we [V(A)].
Let FA == BA. Then 11F A = uoBA = TA = A' and the number of literals in
F A and A'  are the same.  El

W. (Lifting of paramodulation, special case, Lemma 2 of “HMS”
Let A ‚B be  ground instances of the clauses A and B. which are in the clause
set CS and let D be a paramodulant of A and B ,  i..e
D"=(A \ { s  E tDUlB  \L  )u{L[q<— ll}.
Further assume that the literal s '  a t '  i s  in A' and that L '  is a literal in B'.
Let q be a position vector and let r 'a  L’ I q . Let L be a literal in B and u e !
such that r = L I q exists and that 113 = B’ and 11L = L'.
Then there exists a clause D having D' as an instance such that D is a
paramodulant of some factors FA1FB of A and B respectively.

Bum. From Lemma 3.1.8 we conclude that factors FA, FB of A and B

exist and that there exist 9, t e 2 with IF  A = A’, {FB = B', 8A = FA1 OB = FB

and ‘l’ does not change the number of literals in F A' FB.
We assume  without loss of generality that s‘ is the argument involved.
There exists  a literal s a t in A. such that
fills s t) = s’ s t‘ and 183 = s‘ = rBr. Now Theorem 2.3.3 states that there
exists a most general SIG—unifier 6 for paramodulation and a A e 2 with:

r = 1-6 [V(FA,FB)], 643 = (as-tr and the paramodulant
D = olFA \ {83 a BU) U {MF A \ BU} u { (c-BLllq c- o-Btll
of F A and FB is well—sorted.

Note that BL I q exists because L I q exists. Now we have AI) = D'. D

11.10 Lgmma.(Lifting of paramodulation, general case, Lemma 2 of [WR73D
Let CS be a functionally reflexive clause set, closed under both
paramodulation and factoring. If A' and B' are ground instances of A and B.
which are in  CS, and if D' i s  a paramodulam of A'  and B' , then there exists
a clause D in CS having D' as an instance.
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Proof. Let s '  = t '  e A', L' e B' and let q be a position such that r '  = L' |<!“ The

paramodulation i s  on the te rms  5’ and r ' .  Let L be a literal in B and
u e 2 .  such that uB =- B' and 11L - L’.
Case 1. q exists. Then Lemma 3.1.9 is applicable.

Ca______s_____e2: q does not exist. We have u = “0 ., “FR, where “mm) is

deducable by  paramodulation with the functional reflexivity axioms
and PFR(B) |q  exists. Now Lemma 3.1 9 is applicable. []

In  the following Theorems the lifting lemmas above play a central role. We
remark that the application of such lifting lemmas requires that (renamed)
copies of clauses are available for resolution and paramodulation.

QMM. The many-sorted calculus ER“ with resolution and
factorization as inference rules i s  sound and complete.
19 .  H- ER!!! «===» F::

ELQQL (cf. [WR73]). The only modification of the proof given there is to
replace mgu by a set of SlG-mgu's. Cl

Wm. Let SIG be the signature of a functionally reflexive clause set '
and let CS” be the closure of CS under paramodulation and factorization.
If no HIE—model of CS’“ exists. then CS’“ has no H-model (where equality is
interpreted as a normal predicate).

Proof. Assume by contraposition that CS“ has an H-model.  Let I be  the set of a
well-sorted atoms

and let M be the maximal model of CS" (see Theorem 3.1.7). We show,
that M is an HIS—model of CS’“:

Since {x a x} 6 CS’“, we have t :  t e M for all ground terms t. Let
t l  : t2  6 M. L e M and pos a position vector. such that 11 = L lpos  and

Llpos +- t2] is a well-sorted literal. By Theorem 3.1.7 there exist clauses
‘C ,D  e CS“ and corresponding ground clauses (331-n with

Cgr n M = {t1 :- tz} and Der n M - {L}. The paramgodulant of Cgr and Der

is P8,. = (Cm. \ {tl 2 t2}) U (Der \ (L)) u {Llpos <— tzl}. By Lemma 3.1.10
there exist a clause P e CS’“ such that pgr is an instance of P. M is a

H—model of CS", hence M n Pgr a: ß Obviously M n par = {Llpos <- 121}.
We have shown, that M is an HE- model of CS". D
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W. The ZRP-calculus is sound and complete, if the functional
reflexivity axioms are present. Le.

F— s* ‘n‘ !=

Prgmj. [WR73] Soundness is trivial.
Completeness: Let CS be  a clause set and let CS" be the closure under
paramodulation, resolution and factoring. Let the functional reflexivity
axioms be in (35*. If (38* has no HE—model, then by Theorem 3.1.12 the set
(38* has no H-model. Hence by Theorem 3.1.1 1 the empty clause is in CS".
The empty clause is the last line of a finite deduction of clauses in CS. Hence
a refutation can be found. Ü
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i n  this paragraph the important "Sorten"-theorem (Sortensatz [Wa83.0b62]) is
shown to hold for the polymorphic ZRP*-calculus. The Sortensatz provides the
essential link between a sorted clause set and its unsorted version.

3.2.1 Definiton. Let SIG be a signature for the clause set CS.
We define csrel u A: , the relativized clause set of CS as:

i) The relativized signature SIGre l  has only one sort. For every 8 e S. there
is a unary predicate PS e P which is not in P.rel  .

ii) The set csrel is the set of relativized clauses:
csrel =- {Crel'  C 6 CS}. where Crel - -Psl(x l ) v v -Psn(xn) v C
for a C 6 CS. {11....,xn} -- WC) and Si = [ i .

iii) The set of sort axioms A: consists of:
—Psl(x) v P52(x) for all 51  ‚32  e S with 51  s Sz.
PT(x)
-P5l(xl ) v v -Psn(xn) v P51140111"... xn) for every ($1,...,Sn+1) e SO(f).El

1121111932111. (Sortensatz).
Let SIG be a signature and let CS be a SIG-sorted clause set. Then:es is satisfiable em. csrel u A2 is satisfiable.

5% "=>": Let (D.SIG,R) be an E-tnodei of CS.
We have to construct an E- model for CSrel u A: w.r.t .  SIGre l -

Let E == D and fE == r0 for all r e P. Rrel == R u {PSEI s e S}, where PSE(d) is
valid, iff d e SD.
(13,516,131, Rrel)  is an E—model for CSrel u AZ:
Let of; = 'srrel —> B be a SIG—homomorphism.
We show, that all clauses are true under 915‘

i) Crel‘ Either one of (pg-135411)) is true, or all (pE “pSi(‘i) are false. In
the second case, there exists a SIG—homomorphism ‘PD with
only) = @5011), i=1,...,n since t-(xi) e Sin. But then (pk-(C) = @@
evaluates to true since (D,SIG,R) is an E- model of CS.

ii) Let 51  s 52: then SID ; 520. Hence for every d e E: either d d SID or
de 520, hence «mammal v 1252(1)) is true.

iii)“ qJElPTUD is true.
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iv) The axiom "PStul ) v v —Psn(xn) v P5n+‚(f(xl‚.„, In” for every
( sh - "Sm l ) e SO(f ) is true under ‘PE , since TD is a mapping
fD= S l  )( Sun—> Sn+lD'

"= Let (E 'S IGre l '  Rre l )  be an B-model for csrel u AZ.
We have to define an B—model for CS.
Let D B and rD == rE for all r e F. For 5 e s. let 5” == {dl 93%) is valid}.
We verify the conditions of the definition of an algebra w.r.t. SIG:
a) We have TD == D.
b) Let S], 82 e S with 51  s. $2. Then -Ps‚(x) v P32(x) is valid in

(E 'S IGre l '  R re l ) -  Hence for d e SID, we have that P32°(d) is true and

so d e 82D.

c) The condition for constants holds trivially.
d) Let f e F \ C and let (Sl‚...,Sn) e 80(1‘ ). Then

-PS‚(11 ) v v —Psn(xn) v Psn„(f(xl‚.„, xn)) is true in (E,SIGrel, RM)-

For elements d i  6 Sin, PS“, ‚D(f(dl,.„, dn” is true, henoe
rm, ..... an) 6 SMD. a

Let R RM \ (PSD! s e 8).
Then (D,SIG,R) is an B—model of C.
The last property to show is that all clauses are true under all
SlG—homomorphisms.
Let c = '81' -+ D be a SIG—homomorphism and let C be a clause.

Then a SIG-homomorphism (pH = 'srrel —> E exists with (ppm = p(1) for all
x e V. ‘93 evaluates all literals Psüi) of Cm] to false. hence ml.;(C) is true.
Therefore C is true under cpE. EI
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l I l l '  H!“  E |_

1.1 Example. This example is taken from Smullyan: "What is the name of this
book?" [SM78]. which appears to be a gold mine for theorem proving examples.
During a course on automated theorem proving last fall at the Universitiy of
Kaiserslautern, our students had to translate these puzzles into first order

predicate logic and to solve them with our theorem prover (Markgraf Karl '
Ref utation Procedure, MKRP) [KM84,NN86]. One of these problems (Problem
47) reads as follows:
"When Alice entered the forest of f urgetf ulness, she did not forget
everything, only certain things. She often forgot her name. and the most
likely to forget was the day of the week. Now, the lion and the unicorn were
frequent visitors to this forest. These two are strange creatures. The lion lies

on Mondays, Tuesdays and Wednesdays and tells the truth on the other
days of the week. The unicorn, on the other hand lies on Thursdays. Fridays
and Saturdays. but tells the truth on the other days of the week.
One day Alice met the lion and the unicorn resting under a tree. They made
the following statements:

Lion: Yesterday was one of my lying days.
Unicorn: Yesterday was one of my lying days.

From these state ments, Alice who was a bright girl, was able to deduce the
day of the week. What was it?"

We use the predicates M0(x), TU(x). . 30(1) for saying that x is a Monday.
Tuesday etc. Furthermore we need the binary predicate MEMB, indicating
set membership and a 3-ary predicate LA. LA(x y z) is true if 1 says at day
y that he lies at day z; ldays(x) denotes the set of lying days of x. The
remaining symbols are self explaining. All one-character symbols like u,x,y,z
are regarded as universally quantified variables.
Axiomatization of the days of the week:
M0(x) w(TU(x)  v WE(x) v TH(x) v FR(x) v SA(x) v 8l)  )
TU(x) 1(WE(x)  v TH(x) v FRlx) v SMI) v SU(x) v M0(x) )
WE(x) fi (TH(x)  v FR(x) v SA(x) v SU(x) v M0(x) v TU(x) )
THU) 1(FR1X)  v SMI)  v SU1X) v M011) V TU(X) V W311) )
FR(x) -:(SA(x) v SU(x) v Mom v Tl) v WElx) v THlx) )
SMI) 1(3U(X)V M0(I) v TU(x) v WB(I) v TH(I) v FR(X) )
SU(x) wlMolx )  v TU(x) v WB(x) v TH(x) v FR(x) v SM!) )33

31
13

33

Axiomatization of the function yesterday:
M0(yesterday(x)) Tl)
TU(yesterday(x)) WE(x)
WE(yesterday(I)) THlx)
TH(yesterday(x)) FR(1)
FR(yesterday(x)) SM!)
SA(yesterday(x)) Sl)
SU(yesterday(x)) M0(x)
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Axiomatization of the function ldays:
MEMl ldays(lion)) © M0(x) v TU(x) v WE(x)
MBMB(x ldayslunicornli =. TH(x) v FR(x) v SM!)

Axiomatization of the predicate LA:
wMEMBU ldays(u))A LA(u x y) => MEMB(y ldays(u))
1MEMl ldaysluii A wLA(u x y) = wMEMBly ldays(u))
MEMB(x ldays(u)) A LA(u x y) => aMEMBiy ldays(u))
MEMB(x ldays(u)) A wLMu x y) => MEMB(y ldays(u))

Theorem:
3x LA(lion x yesterday(x)) A LA(unicorn x yesterday(x))

The MKRP theorem proving system found a proof for this unsorted version
after 183  resolution steps, among them 81  unnecessary steps, hence the
final proof was 102 steps long. This proof contains a lot of trivial steps
corresponding to common sense reasoning (like: if today is Monday, it is
not Tuesday etc.).
Later the sort structure and the signature of the problem at hand was

generated automatically by a translator module which accepts an unsorted
clause set as input and produces the equivalent many-sorted version
together with the corresponding signature [Sch85.0585].

The sort structure and the signature contain all the relevant information
about the relationship of unary predicates (like our days) and the
domain-rangesort relation of functions. The sort structure of the subsorts
of DAYS in our example is equivalent to the lattice of subsets of
{Mo, Tu, We, Th, Fr, Sa, Su} without the empty set, ordered by the subset
order. Hence there are 127 ( - 274 )  sorts. The function "yesterday" is a
polymorphic function with 127  domain-sort relations. For example:
yesterday ({Mo, We” =- {Su‚ Tu}.

The unification algorithm exploits this information and produces only
unifiers, which respect the sort relations, Le. {x +- t} is syntactically correct,
if and only if the sort of the term t is less or equal the sort of the variable
x. We give an example for unification: the unifier of x=So+Tu and
yesterday(y=Mo+Tu) is {x «- yesterday(y1= Mo) ; y <- y 1 Mo }.

The MKRP theorem—proving system has proved the theorem in the sorted
version immediately without any unnecessary steps. The length of the
proof is 6 .  As the following protocol shows, the final substitution into the
theorem clause was {I +- y=Th}. Thus the ATP has found the answer,
Thursday, in a very straight forward and humanlike way. Here is the proof
protocol:
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Cl A111:Mo MEMB (x ldays(1ion))
C2 All x=Tu MEMB (x ldays(lion))
C3 All x=We MEMB (x ldays(1ion))
C4 All x:Th MEMB (x ldays(unicorn))
C5 All x=Fr MEMB (x ldays(unicorn))
C6 All x:Sa MEMB (x 1days(unicorn))
C7 All x,y=Days u=Animal

MBMB(x ldays(u)) «LAW 1 y) MEMB (y ldays(u))
C8 A111,y:Days u:Anima1

MEMB(x ldays(u)) LA(u x y) wMBMB(y1days(u))
C9 All x,y=Days u=Animal

wMEMBü 1days(u)) -LA(u x y) 1MBMB(yldays(u) )

C10 All x,y=Days u=Animal
wMEMBu ldays(u)) LA(u x y) MEMB1yldays(u))

C11 All x=Th+Fr+Sa+Su 1MEMB(x ldaysüion”
C12 All x=Tu+We+Su+Mo wMEMBh 1days(unicorn))
Th All x:Days wLA(lion x yesterday(x)) wLMunicorn x yesterdaykn

m

64,1 & C10,l + R1: All x=Th y=Days LA(unioorn x y)
MEMBW ldays(unioorn))

Rl,2 & C12‚l + R2: All x=Th y=Tu+We+Su+Mo LA(unioorn x y)
C3.l & C8,3 + R3: All x=Days y=We MEMB(x ldays(lion)) LA(lion ! y)
R3.l & C11,] -> R4: All x=Th+Fr+Sa+Su y=We LAüion ! y)
R4‚l & um + R5: All x=Th 1LA(unicorn x yesterday(x))
RSJ & R2,l -> R6: D
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Conclusion

A polymorphic calculus is more expressive than a monomorphic one: one
function symbol essentially denotes several Operations. An alternative
formulation with additional equalities and different function symbols surely
produces a greater search space.

The ERP*—calculus allows to express this information and to use it directly in
the inference mechanism. In other words, the £RP“—calculus has all the
advantages of a many-sorted calculus. but with an improved expressive power.

Polymorphic unification is implemented in the MKRP theorem proving system
and shows remarkable improvements in particular in combination with a sort
generating algorithm [Sch85] (see Example 4.1), which automatically
transforms a given problem into it's polymorphic. many-sorted version.

The paramodulation rule. which is used in the £RP‘—calculus. shows some
deficiencies: the functional reflexivity axioms are necessary for completeness
and also there has to be a greatest element in the signature of a function.
Moreover. the presence of the functional reflexivity axioms and the
subsumption rule are incompatible. Hence some other type of equational
reasoning such as rewriting. demodulation. E-resolution or equality-nets
[WR67‚L080‚KM841‚ may be more appropriate in an automated theorem prover
based on ERP“.
The ZRP*—calculus could advantageously be used as the basis of a typed PROLOG
with overloading, where the present (Robinson) unification algorithm would be
replaced by the algorithm proposed in this paper.
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