c
nVZ smﬁ) —
33 [

Schmidt-Schauf
SEKI-85-II-KL

M.
MEMO

I
=
I
=
w0
£
—
=
&)
e
<
O
[a)
25
B
&,
O
@
N~
=z
[
=

POLYMORPHIC FUNCTIONS BASED
ON RESOLUTION AND PARAMODULATION

A

Auewar) 1sap Aueuwuay) 1sap
aynispey 00S2-d uwisne|siasiey 0529-d OENE -
08€9 Yyoefisod 6¥0€ yoepsod -:um
| Yrewoul any jninsu) Jlewou] yalelsqyoe

aynJsjiey 1BlISIaAIUN - uJaINe|SIasiey] 1elISIaAIuN

Interner Bericht 1985

) : . :
M.EWIRI' T ulsti

Manfred Schmidt-Schauss
Fachbereich Informatik
Universitiat Kaiserslautern

ABSTRACT.

A many-sorted first order calculus, called ZRP, whose well formed formulas
are sorted (typed) clauses and whose inference rules are factorization,
resolution, paramodulation and weakening is extended to a many sorted
calculus ZRP* with polymorphic functions (overloading) . It is assumed that
the sort structure is a finite partially ordered set with a greatest element. It
is shown, that this extended calculus is sound and complete, provided the
functional reflexivity axioms are present. It is also shown, that unification of
terms containing polymorphic functions is in general finitary, i.e. the set of
most general unifiers may contain more than one element, but at most
finitely many.

We give a natural condition for the signature (the sort structure), such that
the set of most general unifiers is always at most a singleton provided this
condition holds.

ents.
Introduction
1. Basic Notions of the ZRP*-calculus
2. Unification in ZRP*.

2.1 Basic Notions for Unification of Polymorphic Terms.
2.2 A Unification Algorithm for Polymorphic Terms

2.3 Paramodulation Unifiers.

2.4 Embedding of <8,s> into a Semilattice.

3. Theoretical Properties of the ZRP*-calculus

3.1 Completeness of the ZRP*-calculus
3.2 The Sortensatz

4. The Lion & Unicorn Example.
Conclusion

Acknowledgements
References

Introduction.

The advantages of a many-sorted calculus in automated reasoning systems
are well known [Hay71, Hen72, Wa83, GM84, GM85, Co83, CD83, Ob62] . These
advantages were also noticed in logical programming [MO84, Mi84]:

In a many-sorted calculus we obtain a shorter refutation of a smaller set of
shorter clauses, as compared to the unsorted version.

Our interest is in using a many sorted calculus in a resolution based
Automated Theorem Proving-system (ATP). The most desirable properties of
such a calculus are:

1.) The unsorted problem and the corresponding

sorted problem are equivalent, i.e. the unsorted clause set is unsatisfiable,
iff the sorted version is unsatisfiable.

2.) The calculus is complete, i.e. there is a derivation of the empty clause, iff
the clause set is unsatisfiable.

3.) The search space in the sorted version of a problem is smaller than the search
space of the unsorted version (provided the problem has a sort structure).

4.) The many-sorted calculus has as much expressive power as possible.

S.) The calculus should be based on standard resolution and paramodulation
[WR73] possibly augmented by a modified unification algorithm. Hence
standard reductions like purity, subsumption, tautology deletion,
replacement resolution and incompatibility of unifiers [KM84, Ro64] can
still be used. Further more resolution based strategies such as Unit
resolution and Set-of -support should be applicable.

The ERP-calculus of C.Walther [Wa83] essentially satisfies these requirements, but

can be improved by the additional incorporation of polymorphic functions

(overloading [MO84]). This new extended calculus is called ZRP*.

In ZRP* it is possible for example to have a function symbol + (sum) denoting the
addition of (complex) numbers with the implicitly stated property, that
syntactically, the sum of integers is an integer, the sum of reals is a real and the
sum of Gaussian numbers is a Gaussian number. However we do not allow to use
the same symbol "+" for say the addition of vectors, since we have the technical
restriction, that for every argument position in every function there exists a
greatest sort for that argument. Using "+" for numbers and vectors would imply
that e.g. 1+(0,0) is well sorted, which does not make sense.

Without this restriction, the SRP*-calculus is not complete in general. (This
however could be remedied if either ill-sorted terms are allowed during equality
deductions or an extended parallel paramodulation rule is used).

The results presented in this paper concern unification of polymorphic terms and
completeness of the ZRP*-calculus. In particular it is shown, that the complete and
minimal set of most general unifiers for two polymorphic terms is always finite.
Some authors present sort structures, such that the union, the intersection and the
complement of sorts are well defined [Co83, CD83]. If such information is used in a
deduction, the rules of the ZRP*-calculus are not sufficient and extra rules would
be necessary to ensure completeness. But such extra rules have in general the very
unpleasent side effect that the reductions and strategies of a resolution based
calculus are no longer applicable.

>

1. Basic Notions of the ZRP*-calculus.
The TRP*-calculus is an extension of the ZRP-calculus [Wa83] by poly morphic
functions.

In the ZRP-calculus the sort of a term is fully determined by it's outer most
function symbol. In contrast, the sort of a term in the ZRP*-calculus depends
dynamically on the sorts of the arguments of the outermost function symbol.

The following definition of a signature is close to [GM84], but extended to
polymorphic functions.

We use in this definition a set of n+1-tuples for the type infor mation of an n-ary
function. The first n symbols of a tuple give the sort of the arguments and the
(n+1)tR symbol gives the sort of the corresponding value. Eg. for the sum (+) of
complex numbers we have:
+: COMPLEX x COMPLEX -» COMPLEX ;

COMPLEX x INT - COMPLEX ;

INT x INT - INT ; ...
This is denoted as a set of triples {(COMPLEX,COMPLEX,COMPLEX),,
(COMPLEX,INT,COMPLEX), (INT,INT,INT) .. }.

L1 Definition.: A polymorphic signature SIG is a triple (SIFIP), where

1) 8 is the finite set of sorts, < is a partial ordering on $ with the greatest
element T. < is extended to tuples of sorts in the usual way
(componentwise <).

2) [is the set of function symbols.[F = U Py , where Py is a set of

function symbols of arity n with @ + W ¢ $™*1
If IFW + @, then W satisfies the following conditions:

- The sort of constants is unique. ie. W ¢ 8 implies (W] = 1.
- For signatures W of functions, which are not constant:
a) W contains a unique greatest element (Sy 1Sy 2. - - Sw n+1).

(Ty...Ty) = (84,..5,) implies that there exists a unique sort
Tpeq $Spsq Such that (T, ... Ty ()eW.

ie for every f e [P the related function
f*: {(Sl,,Sn) | (Sl ,...,Sn) < (Sw'l,...,SW'n)} - §, where

3) D is the set of predicate symbols. Pp) is the set of predicates with
domain D, where D e $™. We have P - U Pp,

4) For every sort S e $, there exists a constant ¢ of sort Sc < S. That means,
that every sort is strict or SIG is sensible in the sense of [H080]. [

We use the following additional notation and abbreviations:
SO(f) =W, iff f € Py

SO(P) - V, iff P € Py.

€ denotes the set of all constants,
@5 denotes the set of all constants of sort S.

VY denotes the set of all variables.
Vg isthe (infinite) set of variables of sort S.

RNnS:=(Te8IT<R andT<S})

If the set of ranges of a function [, i.e. the set {S,,{I(S....8,1) € SO([)) has

more than one element, then f is called a polymorphic function. If no
polymorphic function is in [F, then SIG corresponds to a signature of the

ZRP-calculus [Wa83].

In an actual implementation, it is not necessary to specify the whole
signature of a function explicitely. It is sufficient to give enough infor mation
to compute the signature of a function uniquely. For functions, which are not
polymorphic, the specification of the maximal domain and maximal range
suffices.

The following is the standard definition of a heterogeneous algebra (see eg.
[HO801]) with the additional proviso that the subsort relation is represented
as the subset relation.:

1.2 Definition. Let SIG - (8, B, P) be a signature. The pair (A, SIG) is called an
algebra of type SIG, iff

i) A is a nonempty set.

ii) For every sort S € 8, there is a subset SA of A such that for all RS € $:
R<sS = RA ¢ A Furthermore A - A for the top sort T.

iii) For ce (CS there exists an element cA € A, such that cAesh

iv) For f e P\ € : fA: AP A is a mapping, such that for every
(S1.--Sq.1) € SO(f) and every a; € SiA, i=1,..,n, we have
fA(al,...,an)e Sn+1A. O |

By the definition of a signature, we have that sA 4 @ for every S € 8, since
every sort contains a constant.
Note that this definiton is independent from the set of predicates [P.

We extend the usual notion of a homomorphism to a SIG-homomorphism,
which respects the sort structure:

1.3 Definition. Let (A,SIG) and (B,SIG) be two algebras of type SIG. Then a

mappin .E P:A- B is called a SIG-homomorphism, iff
i) (p(S)Cq)(S) for allSe$

ii) q)(r (ag...a,)) -fB (p(ay).... p(a,)) for all f € IF and all aieSf'iA, i=1,..n
where (Sf,lv---'Sf,n) is the greatest element of SO(f). [J

Obviously, the composition of two SIG-homomorphism is again a
SIG-homomorphism.

Let T = T(IPV) be the set of all terms (including ill-sorted terms), ie. T is
the least set with ¥V ¢ T, Ce T, and f(ty,..t1) e T foralife Pand all tj € T

The sort of a term is defined similar to [Wa83], but adapted to polymorphic
functions:

1.4 Definition. Let SIG- (S, F, P) be a signature.

The_sort of a term t, namely [t], is defined by the partial mapping [..}: T - 8:
[S ifte Vg orteCg

[t { S, ift=fty,..ty)and ([t()..[t;]S,,) € SO(f)
L undefined else. [J

Example. Let $ = {N, NZ, Z}, where N denotes the nonnegative integers,
including 0, NZ denotes the positive integers and Z = {0). Then N > NZ and

N 2 Z. The function + has the following signature:

SO(+) = {(N,N)N), (N,NZNZ); (NZNNZ); (ZNN); (NZN); (ZNZNZ), (NLZNL), (ZL1);
(NZNZNZ) }.

Then for example [0+0] =Z and [0+1] = NZ.

The set of all well-sorted terms. called WST, is defined as the domain of [..],
i.e the set of elements, where [...] is not undefined.

As usual, (W8T, SIG) is an algebra of type SIG with the following
(termbuilding) operations:

i) sWST_(1c wsTI 1] <S).

i) r WST (ty,nty) = F(L,ty) L if ;€ W8T fori=1,..n

(WST, SIG) is called the free term-algebra of type SIG [Gr79]. The set of
well-sorted terms without variables is denoted by 'STgr. The algebra
('STgr, SIG) is the initial algebra [Gr79] of type SIG or the Herbrand

Universe [CL71,Lo78]. This terminology is justified by the following
lemmas:

1.5 Lemma. (W8T, SIG) is free:
Let SIG = (8, B, P) be a signature and let (A,SIG) be an algebra.
Letyg : V » A be a partial mapping, such that ygx e [x]A. Further let ¥y be

the domain of y.
Then there exists a SIG-homomorphism y: WST - A, such that ¥|Vo = Yo
Moreover if V = V5, then y is unique.
Proof. Define a mapping y: ¥ - A with ¥| Vo= ypin the following way:
For every sort S, take a fixed element ds e SA and define yx := ds, fxe VS\VO.

that this homomorphic extension of y, is a SIG-homomorphism y with
¥| Vo~ Yo it suffices to show, that y(S WST Je SA for all sorts S.

Proof by induction:
Base case. For x € VS, we have yx € A by assumption and by

construction of y. For ¢ € CS, we have yc = cAeshA by defintion 1.2.

With S; - [t;] we have (S,...5,,) € SO(f). From the definiton of an
algebra and from the definition of (WST SIG) it follows, that

1.6 Lemma. ('STgr,SIG) is an initial algebra of type SIG, i.e. for every algebra
(A,SIG) there exists a unique SIG-homomorphism ¢: 'Sl'gr - A.
Proof. We define a mapping @: 'STgr - A:

i) c - cA for constants c.

The same arguments as in the proof of Lemma 1.5 show, that this mapping is a
SIG-homomorphism. Since every SIG-homomorphism must satisfy the
conditions i) and ii) it follows by induction, that ¢ is unique. [J

In the following we abbreviate (W8T SIG) to W8T and (WST
no confusion arises.

or-S1G) to WST . if

1.7 Definition. A mapping 6: WST - WST is called a SIG-substitution, iff it is a
SIG-endomorphism on W8T, which is identical almost everywhere. [J

Let £ denote the set of all SIG-substitutions.

1.8 Lemma. & is a SIG-substitution, iff the following conditions hold:
i) ec=cforallceC.
ii) ef(ty..ty) =1(6ty,.6t) for allt=1(t,. t,)e WST.

iii) [et] < [t] for all t e WST.
iv) DOM(e) = {x € Yl &x # x} is finite.

Proof. "»": Let 6 ¢ £. Definition 1.3 ii) implies i) and ii) of 1.8. For a
SIG-endomorphism & on WST we have O(S'ST e sWST for every
S e S. Hence 1.8 iii) holds. Condition iv) follows from the fact that 6 is

identical almost everywhere.
“«": Let conditions i) - iv) be satisfied. We have to show that 6 is a

SIG-endomorphism. 1.8 iii) implies G(S'ST) c sWST o every
Se$. hence 1.3 1) is satisfied.
For t; with [t;] < St j» Where (S {.-+Sf n+1) is the greatest element of So(f),

The following proposition takes us back to the standard definition of &
(see eg. [Wa83, He83]) localizing the test for & to be a SIG-substitution.

1.9 Proposition. Let 6: WST - WST be a mapping satisfying conditions 1.8 i), ii)
and iv) and [ex] < [x] for allx e V.

TheneeE.
Proof. By structural induction. (O

Atoms are expressions P(t Lreee tn) . where P is a predicate symbol and the t;’s are
well-sorted terms such that [t;] < S; for i=1,...n if SO(P) = (§; -9q)- A literal is an

expression +A or -A, where A is an atom. We denote the corresponding sets with
L and A. A clause is a set of literals, which stands for the disjunction of it’s literals
with variables quantified over their domain (i.e. over the domain, which
corresponds to the sort of this variable).

A ground atom, literal or clause is one without variables. We denote this with the
subscript “gr". Instances of atoms, literals and clauses are the images under a
SIG-substitution. where the appliction is defined by 6(:P(ty,...1,)) = +Plety,...8lp,).

Equality of our object language "=" is a distinguished binary predicate with
domainsorts SO(=) = (T,T). A model that interprets = as the intended equality
relation is called an E-model [Lo78].

We define an E-model for a many-sorted logic as in [GM84], i.e:

1.10 Definition. Let SIG=($, B, P) be a signature. Let CS be a SIG-sorted clause set
and let D be a set (the carrier set). The triple (DSIGR) is called an E-model of CS,
iff the following conditions hold:

B8

i) (DSIG) is an algebra of type SIG.

ii) Ris a set of relations over D. For every P € P, there is exactly one relation pD
of the same arity.

iii) For every clause C € CS and every SIG-homomorphism ¢: WST - D, there
exists a literal sgn P(ty,..t;) € CS, such that

sgn =+ and (gty,..pt)€ PP or
sgn = - and (pt,...pt
I.e. for every assignment of values in D to variables in C, the resulting
disjunction of literals is true if interpreted in (DSIGR).

iv) = is interpreted as the identity relation on D.
Le.ty = t, is true interpreted by a SIG-homomorphism @, iff p(ty) = olty)

(or equivalently @(t;) =D (1) is valid). O

1.11 Example. We give an example for E-models:
$ = (T .NAT,EVEN,0DD} where T 2 NAT 2 EVEN,0DD.
C - {cy . cg} with [cy] = ODD and [cg] = EVEN.

F = {x}, where SO(x) = { (NAT,NAT NAT), (EVEN,NAT EVEN), (ODD,NAT NAT),
(NAT.EVEN.EVEN), (NAT,ODD,NAT), (EVEN,EVENEVEN),
(EVEN,ODD,EVEN), (ODD,EVEN,EVEN), (ODD,0DD,0DD) }.

P-{=)

CS = { ((xxy)xz) = (xx(yxz)) }, where 3.y, z€ VypT-

To construct an E-model (D,SIG,R) of CS, we make the following defintions:
- D := NAT, the natural numbers.
- =Dis the identity relation on NAT.

N COD =1 CED -2

- EVEND - {n] ne NAT and n is even)

- 0DDP - (nlneNAT and n is odd)

- sDisthe ordinary product on NAT.

Now for every SIG-homomorphism @: WST - D we have:
p(xx(y»z)) = px @y @z and

o((xxy)xz) = @x @y @z
Obviously (D,SIG,R) is an E.model for CS.

It is easy to see, that the following model constitutes an E-model of CS as well:
Let D= {0}, »0 (0,0) -0, ¢oP-cgP -0, EVEND- opDP-D.

It is a well-known fact, that ground terms are sufficient for building an E-model
(the Herbrand or Skolem-model), i.e. we can remove such elements from D, which
are not images of ground terms.

Furthermore, if the equality sign is not in P, we can choose 'S'l'gr as the carrier

of an E-model (Herbrand sets).

Therefore we define an equivalent notion of an E-model for a many-sorted
calculus, namely the HE-model (Herbrand E-model [LO78,CL71]). The difference
to an E-model is purely technical. In later proofs we use both definitions. The
HE-model has the advantage, that we can work with a fixed set of ground literals,
which we cannot do in an arbitrary BE-model, whereas the E-model has the
advantage, that the substutivity for equality holds without restriction, which is
not the case in (many-sorted) HE-models.

We use position vectors (occurrences in [HO80]) to select or substitute subterms
of a given term or literal.
llpos denotes the subterm at position pos.

tlpos « s] denotes the term constructed from t by replacing the subterm at
position pos with s.

1.12 Definition. Let SIG be a signature and let CS be a SIG-sorted clause set.

M is a_HE-model for CS, iff the following conditions hold:

i) M is a maximal set of well-sorted ground literals, not containing
complementary literals.

ii) For everyte 'S'l'gr, t=t e M.

iii) If s=t € M,LeM, Llpos = s for an appropriate position pos and
Llpos « t] is a well-sorted literal, then LIpos « t] e M.

iv) Bvery ground instance of every clause C in CS contains a literal, which is in M.

A clause set is said to be_satisfiable, if an E-model exists for CS, respectively
unsatisfiable, if no E-model for CS exists. The following theorem shows, that
E-(un)satisfiable means exactly the same as HE-(un)satisfiable, since E-models
and HE-models are equivalent.

1.13 Theorem. Let SIG = (§, B, P) be a signature and let CS be a SIG-sorted clause
set. Then:
CS has an HE-model < CS has an E-model.

Proof.
"3": Let M be an HE-model of CS. Then the relation ~, where s~ t,iff s=te M,

is a congruence relation on W8T .

- from the defintion of an HE-model it follows, that ~ is an equivalence

relation. /
- Letsj~t;,i=1,..n, for ground terms s;t; and let r(sl,...,sn) and

f(ty...ty) be well-sorted. We have to show, that f(sy,...s,) ~f(t,..1p).

.....

10

As SO(f) has a greatest element, repeated application of the
substitution rule (substituting s; for t;) on f(ty,..t))="1 (T

yields well-sorted literals and finally f(ty,..t)= f(s,..s,) e M.
Hence f (tl tn) ~f (sl sn). The same arguments show, that
*P(sy,..5,) isin M , if P(1y,..1y) isin M.

Now we construct an E-model for CS:
Let D := 'STgr / ~ and let the representations of constants, sorts and

This is well defined, since ~ is a congruence relation.

The algebra D of type SIG and the defined relation constitute an E-model:
We show, that for every SIG-homomorphism @, every clause is valid.

Let ¢: WST - D be a SIG-homomorphism and let C be a clause in CS.

Let V(C) - {x{,...x). There exist ground terms t;, i-1,..,n such that

¢x; = t;/~ and [t;] < [x;]. Consider the ground SIG-substitution

6 = (x; « t; | i=1,..n). There exists a literal L of 6C, which is in M, since M

is a HE-model. We have ¢C - 6C/~, hence L/~ is valid. Thus ¢C is valid.m

Let (D,SIGR) be an E-model of CS. We can assume, that Q)('S'fgr) - D for

every SIG-homomorphism ¢. We construct a HE-model M in the following
way: Let @ 'STgl. - D be the unique SIG-homomorphism. M is defined
as the set of all well-sorted ground literals, which are true with respect

10 @g.

We show all properties for an HE-model (see 1.12):

i) and ii) are trivial.

iii) Lets=t eM,LeM, Llpos - s and let L[pos « t] be a well-sorted

literal.
We have @g(s) = po(t). Hence @g(L) = @q(LIpos « t]), since gy is a

~ SIG-homomorphism. Now L € M implies L[pos « t]e M.
iv) Let Ce CS, and let & be a ground SIG-substitution.
Pg°o is a SIG-homomorphism, hence @y-6 (C) is valid in (D,SIGR). This

means, that there exists a literal L in C, such that -8 (L) is valid.
By definition of M, &(L) is in M, hence iv) is satisfied. [

11

2. Unification in ZRP*.

In this chapter it is shown, that the unification of terms containing
polymorphic functions is of type finitary [Si84], that is, for any pair of given
terms in ZRP*, there exists a minimal and finite set of most general unifiers
(mgu). We give an example to demonstrate that the set of mgu’s can become
exponentially large. An algorithm $UNIFY is presented, which computes a
complete and finite set of mgu’s for a given pair of polymorphic terms.

2.1 Basic Notions for Unification of Polymorphic Terms.
We use the following notation:
DOM () ={xeViex+x)
COD (s) ={ex|x e DOM (8)).
Y (0., On) = the set of variables occuring in the objects 0y,...0p
VCOD (&) =V (COD (s)).
£ denotes the identical substitution.
) g ={e ¥ |66 =6), ie. the set of idempotent SIG-subsititutions.
<S=t> denotes the problem to unify the terms s and t.

The definitions and lemmata, which we need for polymorphic terms, are adapted
from [He83, Si84, Fa83, Hu76], which treat unification of unsorted terms. For
unification of sorted terms see also [Wa84].

The next two lemmas are taken from [He83] and can easiliy be generalized to
polymorphic terms.

2.1.1 Lemma. Lete eX. Then:
6c®* < DOM(s)n VCOD(s) = @

2.1.2Lemma LetsteE* Then:
DOM(t)n VCOD(8) =@ = 6.1 € E*

2.1.3 Definition. A SIG-substitution ¢ ¢ £* is a renaming substitution, iff the
following conditions hold:
i) COD(g)e V.
ii) Vi,yeV:xyeDOM(g) » X2y = QX % 0y,
i.e. g is injective on DOM(q).
i) vx e V: [gx] = [x] ie.gis type conform.

2.1.4 Definition. Let ste WST.
i) s<t, iff there exists a A € &, such that s = At.
ii) s=1 , iffs<tandt<s.

12

Note that < is a reflexive and transitive relation on W8T and that = is an
equivalence relation.

We generalize these relations to SIG-substitutions:

2.1.5 Definijtion. Let W V and let 61 €E.

i) 6=1 [W], iffex =1x forallxe W.

ii) <t [W] , iff there exists aA ¢ &, such that 6 = A.t [W]
iii) et [W] , iffe<t [W] andt<se [WL

Obviously < [W1 is a reflexive and transitive relation on SIG-substitutions and
= [W] is an equivalence relation.

2.1.6 Definition. A SIG-substitution { is a permutation, iff
there exists a SIG-substitution {~, such that §£ =-¢.

In the following lemma we state without proof some facts about per mutations:

2.1.7 Lemma. Let { be a permutation. Then:
i) ¢ isa permutation.

i) €7) =¢

iii) DOM({) = VCOD(¢). O

Every renaming substitution ¢ corresponds to a permutation § , where @ is
defined as follows:
[o(x) if x e DOM(g)
x) =4 vy if x € VCOD(g) and y € DOM(g) is the unique variable with gy = x
L x else

¢ is well defined since g is idempotent.
Obviously §9=¢ and g=§¢ [DOM(g)].
For example if 9 = {u « v} ,then§ ={u+«v,ve«u}

218 Lemma Letste WST and let We V.

Thens=1, iff there exists a permutation § such that s = £t.
Proof. "™ is trivial.

"™ The proof in [Hu76] can be generalized to polymorphic terms.

219 Lemma lLetasteX andlet WeV.

Thene =1 [W] iff there exists a permutation{ such that & =f.t [W]
Proof. "™ is trivial.

"»": Follows from 2.1.8 if we take the terms s = h(sx, 6¥) and

t= h(txl ,,,,, rxn), where W = {xl xn). O

2.1.10 Lemma. Let We V and lets T € E.
For a renaming substitution g, the following holds:
i) If DOM(g) = V(1(W)), then:
65T [W] & 6591 [W].
ii) If DOM(g) = V(6(W)), then:
6<1T [W] < g6<1t [W].
iii) If DOM(q) = V(s(W)), then:
61 [W] = goe=1 [W].

Proof.
i) "3:Lete<t [W] Thene =A-t [W]for some A € E. We have
6 =A§eQeT [W] (9 =€)
= Ae@eg-T1 [W] (DOM(g) = V(t(W)) and ¢ = § [DOM(g)1).
Hence 6 <g-1 [W].
“«": trivial
it) "=": trivial.
"<": From g-6 = A« [W] for some A € £ we have:
6 = §+0-6 = 9-0-6 [W1], since DOM(g) - V(6(W)) and ¢ ~ § [DOM(9)] .
Now 6 = 9:ge6 = §eA-t [W] impliese st [W].
iii) Combination of i) and ii). [J

2.1.11 Definition. Let s,t ¢ WST and let6 € Z* .
Then 6 is called a SIG-unifier of sand t iff 6s = 6L

In general there will be more than one unifier for a given pair of terms s and t,
hence we have to consider sets of unifiers. In order to simplify proofs, it is often
convenient, that the following technical conditions are satisfied for such sets. This
can always be achieved by applying appropriate renaming substitutions.

2.1.12 Definition. Let Us £ be a set of SIG-substitutions and let W V.
We say U js separated on W iff the following conditions hold:

i) Veel: DOM(s) = W.

ii) VeeU: VCOD(e) n W =@

iii) VeteU: %1 = VCOD(8)n VCOD(T) =9 O

Note that the conditions of 2.1.12 imply, that Uc E*.
A set of unifiers generated by an actual unification algorithm is not separated in
general. (see e.g [Ro65, He83])

Since two polymorphic terms may have more than one most general unifier, we
define a set of most general unifiers as the minimal set of solutions of «<s=1>in

(WST, SIG):

14

2.1.13 Definition. Let s;t € WST and let W ¢ V with V(s,t)c W.

A complete set of most general unifiers for s and 1. CUX(s.t) is defined as a
subset of £*, which is separated on W and satlsnes the following conditions:
i) VeeCUZ(st):6s =6t (correctness)

ii) V6eX:8s=0t > (Q36eCUZ(st): d<6 (WD (completeness).

The set of most general unifiers is called minimal, if in addition:

iii) Ve,1 € CUZ(st): 6 <T[W] =26 =1 (minimality)

A minimal set of most general unifiers for s and t is denoted as pUZ(s,1). []

There may exist more than one set pUZ(s,t) for a given pair s,t ¢ WST, but if so,
they are equivalent under per mutations [Fa83, Hu76].

2.1.14Lemma LetWe V.

For every finite U< £ there exists an U ¢ £* and a mapping ¢: U- U" such that
the following conditions hold:

i) @:U-U isabijection.

ii) ple)=ze [W]

iii) U’ is separated on W.

Proof. For every 6 € U we take a renaming g5 with DOM(g,) = V(e(W)). It is

possible to choose g, in such a way, that VCOD(g,) n VCOD(g,) = @ for different
6,7 € U. Now we define ¢: U~ U as p(6) = 956 and U’ is defined as p(U).
Lemma 2.1.10 implies 956 =6 [W].U isseparated by construction. []

We define a weakening substitution (coercing) [Wa84,CD83, GM85] essentially

like a renaming substitution, except that it maps variables to variables of lesser
sorts. During the computation of most general unifiers, weakening substitutions
are used to solve the unification problem <x=t>, where [x] is not a subsort of [t]

2.1.15. Definition. Let 6 € £*. We say 6 is a weakening substitution, iff
i) COD(s)s V.

ii) VxyeDOM(6): x+y = 6x+6y, ie. o isinjective on DOM(e).
iii) v e V: [ex] < [x].

The set of all weakening substitutions is called W&.

2.1.16 Lemma. Let We V and let 6,1 € WE.

If W € DOM(1) then :
6<TI[W] = VieW: [ex]< [tx]

Proof. "»": There exists a A € E, such that & = .t [W]. Hence we have
[ex] = [A.tx] = [As(TX)] < [rx]

15

"«": We define a A € &, such that & = A.-1 [W]:
Ay := 6X, iff y = X for some x € W. 1x and 6X are variables and all
1x are different for x € W, since 1(W) nW = @ and 1 is injective on
W.From [6x] < [tx] and from the fact that A moves at most
finitely many variables, we conclude thatA e E. [J

If U is a set of unifiers, we are in general only interested in a minimal subset of
U, i e. a subset, which contains one representative for every maximal element
of U. Thus we define:

2.1.17 Definition. Let U be a set ordered by a reflexive and transitive relation
<. Then MAX (U) is a set which satisfies the following conditions:

i) MAX (U)e U
iil) VueU:3ve MAXS(U)= u<v.
iii) Vuve MAX_(Ukusv = u=v.0

Such a set exists if either U is finite or every chaine <6, < .. is finite , since

the relation is reflexive and transitive, but is not unique in general. The
cardinality of MAX, (U) is uniquely determined, since it equals the number of

equivalence classes of maximal elements of U.
For example we have pUZ(s,t) = MAX CUZ(st)) O

The set of most general weakening substitutions for a given term is defined in
a similar fashion to the definition of yUZ. Note that t may be a term that is
ill-sorted.

2.1.18 Definition. Let te T(F.V), V(t)s Wec Vand letSeS.
The set of most general weakening substitutions for t and S. uWZS(t), is a set of

weakening substitutions, which is separated on W and satisfies the following
conditions:

i) VeeuWzg(t): [et]<S (correctness)
ii) Voe E: [Bt]<S =3 € pWig(t):d<o [W]l (completeness)
iii) Vo1 € pWZg(t): 6 <T[W]l = 6 =1. (minimality)

This definition is of course useful only for terms, which are not well-sorted or for
terms, whose outer most function symbol is polymorphic, since otherwise [et] = [t]
for any e. If the signature contains only one sort, then pWZ¢(t) = {g), where @ is

a renaming of W. The same holds if S 2 [t].

16

2.1.19 Theorem. Let t e W8T and letS€ 8.
If there exists a8 € &, such that [Bt] < S, then uWZ¢(t) exists, it is not empty and

it is always finite.
Proof. Let Uy := {6 |6 € £* and [6t] < S} and let W := Y(t). For every (admissable)

combination of sort assignments to variables in W choose one 6 € Uy , which

makes this assignment. Let U be the set of alle thus chosen. Uy contains a
80 which makes the same assignments as 8. The number of different
combinations of sort assignments to variables in W is finite. Hence U is not
empty and finite. Lemma 2.1.14 gives a set U2 which is separated on W. Now
the set MAXS[W](UZ) satisfies all properties of pWZg(t), hence we define
pWZS(t) = MAxs[W](UZ)- U

2.1.20 Corrollary. Let x € V, t ¢ WST, such that x and t are $-unifiable.
Then pUZ(x.t) exists, is not empty and finite.
Proof. Let S = [x] and let W = {x} u V(t). Then the set pWZ(t) is not empty

and finite by theorem 2.1.19. We have
pUZ(xt) = {{x « 6l}°(6|v(t)) | 6 € uWZg(1)). O

The following example demonstrates, that for a unification problem <s=t>, the
minimal set of most general unifiers can grow exponentially.

2.1.21 Example. Consider the sort structure § = (NNZZ}, where N, NZ and Z have
the same meaning as in the example of chapter 1. Letx e VNZ and

x; € V. The signature of the function "x” (product) is:

SO(x) = {(N,N,N), (NZNN), (NNZN), (ZNZ), (NZZ), (LNZZ), (NLZZ), (ZLZ),
(NZNZNLZ)}. The unification problem <x = (x{+Xp)x ... (X, 1*Xpp)> produces 2n

unifiers, since for every factor there are two independent solutions
(Xpi-1¢ ¥2j-1} and {xp; « y;} where [y;] - NZ. These solutions have to be

combined independently. [

17

2.2 A Unification Algorithm for Polymorphic Terms.

2.2.1 Definition. Let s,t € W8T with s + t. We compare s and t symbolwise
from left to right. The pair of well formed subterms, starting with the

first symbols, which disagree, is called the first disagreement pair of s
and t [Ro65S1.

The following unification algorithm SUNIFY for polymorphic terms takes two
terms as input and returns a finite set of mgu’s, if a unifier exists (empty
otherwise). A similar algorithm for terms in a many-sorted signature without
polymorphic functions is given in [Wa83].

The polymorphic unification algorithm is defined as:

2.2.2 Definition.: SUNIFY : WST x WST - POW (£*)
INPUT: s,t ¢ WST.
UoLp = {8}, whereg is a renaming of V(s,t), such that {9} is separated
on V(st).
WHILE (s # ot for some & € Uy py) DO:

UNEW = 0.
FOR ALL 6 € Ugy,p DO:
IF 65 = 6t THEN UNEW = UNEW v {6}).

ELSE DO Let (d.e) be the first disagreement pair for (6s, 6t)
IF dor e is a variable THEN
UNEW 1= UNBW (V) {T-ﬁ I TE€ pUZ(d,e) }

ELSE Uygw = UNgw- (6s and 6t are not unifiable)

END.
END (FOR ALL)

Make Uypyy to be separated on W - V(s;t).

UoLD = UNEW:
END (WHILE)
RETURN MAXslwl (UOLD)']

This algorithm exploits the existence and the properties of pUZ(x,t).
Lemma 2.1.14 justifies the separation of Uygy on W; ie. to restrict the

substitutions & in Uygyw 10 V(st) and afterwards to rename all variables in 6(W).

2.2.3 Lemma. The aigorithm $UNIFY terminates for every pair (s,L) of

well-sorted terms.
Proof. Every & € Uygy. Which satisfies s = et, is transmitled (unchanged) to the

18

next UNBW- Hence it suffices to consider substitutions & e UNEW with 6s # ot.

In the FOR ALL -loop:
If neither d nor e is a variable, then 6 is removed from the set UNEW'
Otherwise the number of variables in V(1-6s,1-6t) is exactly

|V(eset)]| - 1. Hence for every e Ungw the number of successive steps

until either an inherited substitution is removed or a unifier for st is
bounded by |V(ss6t)|. Thus the algorithm halts. O

2.2.4 Theorem. Let s,t be SIG-unifiable.
Then the algorithm SUNIFY returns a set of mgu’s: pUZ(s,1).
Proof. The returned set is separated on W = VAR(s,t).
i) correctpess: follows from the WHILE -condition.
iii) minimality: follows from the fact, that the returned set is minimized
(see 2.1.17).
ii) completeness: Let 8 € £, such that 8s - 8t
We show by induction, that the following statement remains true
during the WHILE-loop:
maﬂEUOLDBSOI:W]
Base case. 8 <9 [W] holds before the WHILE-loop due to Lemma 2.1.10.
Induction step. Assume that WPR is true before the WHILE-loop.
Case 1: Ifes = st thens e UNBW'

Case 2: If 65 # 61, then let (d,e) be the first disagreement pair of (6s6t).
There exists a A € £, such that 8 = A-6 [W] and DOM(A) € V(6W).
A unifies 6s and 6t, hence Ad = Ae. Either d or e is a variable, since the first
symbols disagree.
By Corollary 2.1.20 there exists a T € pUZ(d,e) such that A s t [V(d.e)].
We have DOM(A) n t(V(d.e)) - @, since VCOD(t) consists of new variables.
There exists a p € & with DOM(u) ¢ VCOD(t) such that A = p.t [V(d.e)].
Furthermore we have A = peA-T [V(eW)]:
For x € V(d,e):

MeAeTX =
PeTX = (DOM(A) n T(V(d,e)) =9)
AX (A=pt [V(dell)
For x ¢ V(d.e):
MeAoTX = PeAX (DOM(t) = (V(d,e)).
Case 1: x e DOM(A):
MeAX = AX (VCOD(A) » DOM(p) =@)

Case 2: x ¢ DOM(A):
peAX =px =x =Ax (x¢ DOM(A); DOM(p) e VCOD(t) and
(VCOD(t) consists of new variables)
Finally, 8 = A« = peA-1-6 [W], hence 8 < 1.6 [W].
1+6 18 in UNEW- hence WPR is true after the WHILE-loop.

19

The technical manipulation to make the set UNgw being separated on

W does not affect the the validity of WPR (see Lemma 2.1.14).
The transitivity of < [W] guarantees that there exists a
6 € MAX w7y (Ugpp) such that 8<6 [W] O

2.2.5 Example. The minimizing step of SUNIFY is necessary for the
minimality of the returned unifier set:
LetS :={T . AB}withT 2> A 2 B.
Let f,g,h be functions with the signatures:
SO(f) = {(A,A,A); (A,BB); (B,A,B); (BB,B) }
SO(g) - {(A,A,A); (AB,A); (B,AA), (BB,B) }
SO(h) = {(A,A,A); (A,B,A); (B,A,A), (BB,A))
Let s = h(f(x y) g(x y)) and let t = h(u v) with
xyeV, anduve Vg

We unifiy s and t using the algorithm SUNIFY:

First we get:

u and f(x y) is the first disagreement pair. There are two most general
unifiers of u and f(x y).

Up-{xexjuefxyy)}i {yeypueflx y;))} Ywherex;y e Vg

In the next step the first disagreement pairs for the two unifiers in Uy
are (v, g(x; y))and (v, 8(x yy)), respectively.

We get:
Up-{ (xexpyeypueflxyyy)veslxyyy))s

Texpyeypueflxyy()veglryyy))) wherex,y, e Vg
The two unifiers in U, are equivalent (= [{x,y,u,v}]).

20

We say <8,s> is a semilattice, iff for every RS € 8 with R n S ¢ @ there exists a
unique T € 8 such that: T < RS and forevery T'e8: T sRS = T <T.
l.e. an infimum of R and § exists, provided these two sorts have a common
subsort. This property implies that a supremum of two sorts exists.

We denote the unique greatest element of Rn'S as Ra S and the supremum of
R and S (which always exists) asRv S.
Furthermore in a semilattice a set of sorts {Sl Sn} has a unique infimum (or

greatest lower bound, g.1.b.), if a lower bound exists and a unique supremum
(least upper bound, L.u.b.),

We could extend the semilattice <§,<> into a complete lattice by adding a least
element (but we don't).

2.2.6 Definition. Let SIG= (S, B, P) be a signature.

We say SIG is a unification unique signature, iff the following conditions hold:
i) <8.¢> is a semilattice
ii) For allf e and all S € §, the set M(f.S) == {(S,...S,, 1) € SO) | S,, | < S}

is either empty or contains a unique greatest element. [J

2.2.7 Theorem. Let SIG be a unification unique signature.
Then for every s,;t ¢ WST: pUZ(s,t) is at most a singleton.
Proof. If pWZS(t) is at most a singleton for all t ¢ W8T, then the properties of

SUNIFY (Lemma 2.2.3 and theorem 2.2.4) imply that pUZ(st) is at most a
singleton. Thus we show, that pWZg(t) is at most a singleton for all t and S.

We prove this by induction on the term structure of t:
Base case: If t is a constant, then either pWZS(t) ={e}or = 0.

If t is a variable, then two cases are possible:
Case I: Snt]+@ pWZg(t) = {{t « z}} where z is a variable with

[z] =S a [t]
Case 2: Sn [t] - @ Then pWZ(t) - &.

Inductjon step. We show this by contradiction.
Lett=f(ty,.t;) and let 6,6, € WWZg(t) with 6, # 6.

If [61x] = [eox]for all x € W = V(1), then6; =65 [W] by Lemma 2.1.16.
Hence there exists a variable x; € W such that [6110] # [eszxol.
We construct SIG-substitutions T and 1" by:

[y ifysxg
Ty= |
Lz if y = Xy ; z is a new variable and [z] = [¢x]v [851j]

l6,xg]v [e,1,] exists and is unique, since <§,<> is a finite semilattice.
We have) <tU [W]lby Lemma 2.1.16.
Let 1 be a renamed variant of 1" such that {t,csl,az} is separated on W.

21

Then obviously 6 <7 [W1.
Case 1 [z]>[6xg).
Thene| <« T [W]. We have [1t] § S, since 6 is 2 maximal element in the

set of all substitutions, which weakent to S.
Hence there exists an index j and a term L€ {t{....t5}, such that [“i] > Si

where (S{,..S;.) is the greatest element of M(f,S).
The facts [Gltj] < S]- and [621i] < Si imply that for the unique
Aj € uWZSi(ti) we have 6 < Ai [Wi] and 6, « ki [Wi]’ where
W]- = V(tl-). This kl- exists and is unique by the induction hypothesis.
The variable x must be in W; because otherwise [tt;] - [61;]
We have [AixO] 2 [61xp] and [Aixol 2 [65%], hence [ijol 2 [txg).
We conclude that [kiy] 2 [tylforallye Wi‘ This yields the
contradiction [rtl-] < Sj. Hence case | is not possible. m

Case 2. [z] = [6x(] . Interchanging the substitutions 6| and 6, we obtain
that the case [z] > [6x,] is also not possible. Hence [6X(] = [z] = [6,%(].
This contradicts the properties of the variable X stated above.

All cases are exhausted, so the theorem is proved. [J

Since the condition 2.2.6 ii) is true in the ZRP-calculus of [Wa83], we have the
following corrollary, which is a generalization of a Theorem 7.4 in [Wa83], (see
also [Wa84]) :

2.2.8 Corrollary: Let <8,s> be a semilattice. Then for every pair of terms s,t in
the ZRP-calculus: pUZ(s,t) is at most a singleton. [J

The condition for <§,<> to be a semilattice is not critical. It is always possible to

complete the sort structure, such that the completion is a semilattice and the
(un)satisfiability of the corresponding clause set is not affected (see chapter 2.4)

22

2.3 Paramodulation Unifiers in ZRP*.

Paramodulation [WR73] with t; = t, on a literal L is defined as follows: Let i3
ccour at position pos in L and let 6 be a most general unifier of 4 and t3. Then
a new literal L" ,the paramodulant, is deduced by replacing 613 with 61,. We
have L' = eL[pos « 12]. A minimal set of most general unifiers for the
paramodulation with ty =tyonlL atposition pos isthe set pUZ(tl,L | pos)-

In a many-sorted calculus, the problem arises, that the paramodulant,
generated by such unifiers may not be well-sorted, but an instance of this
paramodulant can be well-sorted.

In [Wa83] a weakening rule is introduced to solve this problem. we propose
another solution and define paramodulation by a set of unifiers, which is most
general in the set of unifiers for ty and Llpos and generate a well-sorted

paramodulant. This process is defined as $-paramodulation. It includes
implicitely the weakening rule of [Wa83].

2.3.1 Definition. Let L be a well-sorted literal and let t = t, be an equality
literal with t{, 1, e W8T. Let pos be a position within L and let s - LIDOS'
The set of paramodulation unifiers for L. pos and iy =1, , namely
PZ(t;.t5.L.pos), is a subset of &, which satisfies the following conditions:
Ve € PZ(1t,.L,pos): es -6t and 6L[pos « 6t,] is well-sorted.

Let W = V(L,tl.tz). Then LLP_Z_(Ll.szL-I&Sl is defined as a minimal and
complete subset of PZ(ty,t,,L,pos), which is separated on W.
Le. pPZ(ty,t, L pos) - MAXle](PZ(t{.tyL,pos)).

The next example demonstrates, that the property of a paramodulant
BL[pos « Btzl to be well-sorted can be influenced by terms of L outside the

position pos. Furthermore substitutions in uPE(tl .tz.L,pos) may not be most

general unifiers of t{ and Llpos-

232 Example Let$ ={T ABCD}withT2A2B2C2D.
Let f,g,h be functions with
SO(f) = {((B,B,A), (B,C,A), (CB,A); (CCA); ...; (DDB) }.
SO(g) = {(B,B,A), (B,CB), (CBB); (CCB), ... }.
SO(h) = {(A,A,A), (A,B,B), (B,AB), (BBB); ... }.
The first triple is the maximal domain and range of f.g,h.
Let Pe P be a predicate with SO(P) = B.
Let L = P(h(g(xg xg) xg)) and let t; = t, be the literal yg = f(yg yg)

where xg,Yg € Vg
23

We have [h(g(xg xg) xg)] =B, hence L is a well-sorted literal.

We paramodulate t, into the second argument of h in L.

With the substitution 6 = {yg « Xg} We obtain the paramodulant

(6L)[pos « 6t,] = P(h(g(xg xg) f(xg x8))), Which is not well-sorted, since
[h(g(xg xg) f(xg 1g))] = A and A > B.

If we try to weaken f(xg xpg) with a 7, such that tf (xg xp) fits at position
pos, we get T = {xg « Xp)). But the substitution 1" - {xg « 1) suffices to
make the paramodulant well-sorted, since [h(g(x¢ x¢) f(x¢ xc))1 = B.

2.3.3 Theorem. For all L, pos, t| = t5 , which constitute a paramodulation

problem in SIG, the set pPZ(tl,tz,L,pos) exists and is finite.

Proof.

i)

ii)

Let Uy = {e-Tl T € “UZ(LIpos-‘l) and 6 € kWWE_((tL)[pos « 115]) }

i.e. all compositions 6-1 of substitutions 6,1 such that T is a most general
unifier of L | pos and t{ ,and 6 is a most general weakening substitution,

such that the instance of the paramodulant , namely 6(tL[pos « 1t,]) is a

well-sorted literal.
By theorems 2.1.19 and 2.2.4 the sets yWZ_(tL[pos « tt,]) and

pUZ(Llpos.tl) exist and are finite. After application of some renamings
and after restricting the compositions to W = V(L.tl,tz), we can assume,
that Uy, is separated on w.

We show, that the requirements of Definition 2.3.1 are satisfied for the
set U - MAXle](UO) - sz(tl.tz,L,pOS)

correctness: For all 8 = 6-1 € Uy we have 6(L|pos) = Bty , since

(L | pos) = 1t. Furthermore 8L[pos « 8t,] is a well-sorted literal, since
8L[pos « 6t2] = 6+.1L[pos « 6'rt2] = 6(tL[pos « rt2]).

completeness: Let 8 € & such that 8(L | pos) - 81y and BL[pos « Bt,] s

well-sorted.
By Theorem 2.2.4, there exists a T € pUZ(Llpos,t 1)with 8 <t [W], hence

we have 8 =A«t [W] We have BL[pos « Bt,] = A (tLIpos « 11,]).

From Theorem 2.1.19 it follows, that there exists a
6 € \WZ.(TL[pos « Tt,]) such that A, <& [V(TW)].

Thus A = A5+6 [V(tW)] for some A, €Z and so:
8= A7 = 2;-6-1 [W]. The transitivity of < [W1 now shows that there
existsape U suchthat B<pu [W]

iii) minimality: is trivial [

24

2.3.4 Corrollary. For a signature SIG, which is unification unique, the set
pPZ(tl 1oL, pos) is at most a singleton for all t t,.L,pos.

Proof. Follows from 2.2.7 and 2.3.3. [J

In ZRP*, the definition of paramodulation is modified: the set “Uz(tl.l*lpos)
is replaced by the set pPZ(t{,t5,L,pos). In the next chapter it is shown, that

(sorted) resolution together with sorted paramodulation are the deduction
rules of a complete calculus.

25

2.4 Embedding of <8,<> into a Semilattice.

In this section it is shown that every sort structure <8,<> can be embedded
into a semilattice. This embedding does not affect the (un)satisfiability of a
clause set, 1.e. the first part of the definition of a unification unique signature
(Def 2.2.6) can always be satisfied by adding some sorts to S.

In other words the expressive power of the ZRP*-calculus respectively the
ZRP-calculus [Wa83] is not changed, if only semilattice sort structures are
admissable. For the ZRP-calculus, this implies that the mgu-sets are always at
most singletons. This is of great practical importance, since it allows to change
the sort strucure before the clause set is handed over to an automated
reasoning system.

2.4.1 Definition. Let <S,s> and <§',<> be sort structures with a greatest
element each.
<§,<> is embedded into <8',s", iff there exists a mapping ¢: $ - 8 such
that the following conditions hold:

i) @ is injective.

ii) ForeveryRSeS: R<S = ¢@R< ¢S

iii) ¥S'e $ (ARSeS: pR< S < ¢S [

Condition iii) implies, that T = T° and that if RS € § have no common subsort,
then the same holds for R and S.

2.4.2 Lemma. Let <8,s> be a sort structure with a greatest element S. Then
there exists a sort structure <8',<"> such that <8,<> is embedded into
<§°,s"> and <8 <> is a semilattice.

Proof. For S€ 8, let ¢S:- {ReSIR <S}). We define 8§ as the following set:

8 =-(MIMs+@and M =9S; n..n@S, for some S; €8}, i.e. § is the set

¢S extended by all possible intersections, which are not empty. This

definition is similar to the definition of the lattice of ideals in lattices

[Gr79]. Obviously §' s finite.

We let the relation < on 8 be the subset ordering. To show that <8 <>

is a semilattice, it suffices to show that for all R',S" € § a greatest lower

bound exists, if lower bounds of R',S exist at all. R" n §’ is the greatest

lower bound, if it is not empty.

We prove, that <8 <> that is embedded into <8 <>

i) ¢ is injective, since R = @S implies, that R e R and S e ¢S, hence by
the rule of antisymmetry: R = S.

ii) ForRS €8, R <S implies that gR € @S, hence @R < ¢S.

26

iii) T = 8 is the greatest element of 8. Let S € 8". § is not empty, so
take some S € S". We have S’ = @S| n ... n ¢S, for some S; € §.

Now S € S" implies that S < Sjfor i=1,..n, hence ¢S €8S and so
¢S < $<8.0

2.4.3 Definition. Let SIG = (§, R, P) and SIG = (§', F', P') be signatures.
We say SIG is embedded into SIG, iff the following holds:
i) $c¢<S BE-F P-P
ii) «§,<> is embedded in <8 <> with a mapping ¢ which is the identity on 8.
iii) [t] = [t] for all t ¢ WST.
iv) WST ¢ WST and for all S€8: Vg’ = Vg, ie. The subalgebra of WST which

is generated by all f ¢ B and all variables with sorts in 8 equals WST.

2.4.4 Lemma. Let SIG = (§, F, P) be a signature and let <§ <> be a semilattice
such that <§,<> is embedded into <§',<> with a mapping ¢ which is the
identity on S.

Then there exists a signature SIG = (8§, B, P') such that SIG is
embedded in SIG".

Proof. We defineF =R P = P.

For ceC, let [c] == [c].
ForxeV,let [x] :=[x].
For functions f € F, SO'(f) is defined as the set:

r |(Sl' Sn+1') < (Sf,l""'sf,n+l) where (Sf,l""'sf,ml) 18]
{(S{'..8q4+1") |the maximum element of SO(f). S, istheg.Lb. of
L | Spo! (SySpe1) €SO(f) and (S;",..5,) < (8;...8,)} J

The only nontrivial conditions in Definition 1.1 are that for every
function f: f* is a monotone function defined on

We have S n+1' < 52 n+el o since the first set is a subset of the latter.

SIG' is sensible since for every S € § there existsaSe$ withS<§".
Hence there exists a ce € with [c] < S <S°. We have shown that SIG" is a
signature according to Definition 1.1. SO(f) € SO'(f) holds for every f e B,
hence [t] =[t] for all t e W8T. The fact that the greatest elements of
SO(f) and SO'(f) are equal and the relation [t] = [t]" for te WST imply
condition iv) of Definition 2.4.3. [

27

We give an example for embedded signatures:
2.4.5 Example. The following transformation is a completion of a
sort-structure resulting in a semilattice:

r - .

For a polymorphic function f with SO(f) = { (T,7), (A,A), (B, B), (CC) (D, D) }
we obtain SO'(f) = { (7, 7), (A,A), (B, B),(EE), (CC) (D, D) }, since E is the g.Lb.
of {A,BT)={SI(S;S)eSO(f) and Ex S }. O

2.4.6 Theorem. For a given clause set CS and a signature SIG, let SIG" be a
signature such that SIG is embedded into SIG" and <§8',<"> is a semilattice.
Then: CS has an E-model w.r.t SIG < CS has an E-model w.r.t.SIG".

Proof. =" Let (DSIGRD) be an E-model of CS w.r.t SIG.

We construct an E-model (ESIG' RE) w.r.t SIG™
LetE«-D,RE.-RD,fE . ¢D

LetSE- (dldesPforall SeSwithS <S},ie. S'E is the intersection
of all related subsets in D for greater sorts.

Lemma 2.4.2 shows, that SEs@ forallSes.

Now let cpE : WST - E be a SIG-homomorphism. We define a SIG-homo-
morphism pP : WST »D w.r.t. SIG by oPx = oEx for all x € V(SC).
Lemma 1.5 yields, that q)D exists. For all clauses C € CS we have

q)DC = cpEC. Thus cpEC is valid for all clauses C. Hence (ESIG' RE) is an
E-model for CS (w.r.t SIG').

“&": Let (E,SIG',RE) be an E-model of CS w.r.t SIG'. We can construct an
E-model (D,SIG,RD) in the same way as above by setting
D:=ERP = RE D .- ¢E sD .. sB.

28

T i rti the *_calculus.

In this chapter the soundness and completeness of the ZRP*-calculus and the
Sortensatz are shown. The proof technique for the soundness and completeness
results are taken from [WR73] and are appropriately modified to fit our sort
structure.

The functional reflexivity axioms are necessary for the completeness of the
ZRP*-calculus, in contrast to the RP-calculus (without sorts) where they are
superfluous [Ri78, Bra75]. In the ZRP-calculus this is an open problem [Wa83].

eteness of -calc

It is a well-known fact, that every formula in a first order predicate calculus
can be transformed into a set of clauses. The skolemization, which removes
existential quantifiers from the input formula and replaces the quantified
variable by a skolem function is the same as in [Wa83]. Note that the generated
skolem functions are not polymorphic.

The deduction rules of the ZRP*-calculus are tailored for clause sets.

3.1.1 Definition. The inference rules of the ZRP*-calculus are §-resolution,

S-factoring and S-paramodulation.

i) S-resolution. Let Cu{L} and Du {-L'} be variable disjoint clauses and
let L and L™ be two atoms with the same predicate symbol. Let 6 be
an SIG-mgu of L and L".
Then 6C u 6D is an S-resolvent of the two clauses.

ii) S-factoring. Let C be a clause and let 6 be a SIG-mgu of two or more
literals of C.
Then 6C is an §-factor of C.

iii) S-paramodulation. Let Cu (L} and D = {s = t} be two variable disjoint
clauses. Let pos be a position within L and let Llpos -ty Letebea

‘most general paramodulation unifer for L,pos and s = t.
Then 6CueD u {eL[pos « 6t]} is the §-paramodulant of the two
clauses. [J

Note that there may not exist an §-resolvent (an §-factor, an §-paramodulant)
for two given clauses although an ordinary resolvent does exist. In the
following we drop the 8- in 8-resolvent , 8-factor, §-paramodulant if no

confusion arises.
We assume that resolvents, factors and paramodulants are renamed before
they are added to the original clause set.

3.1.2 Lemma. Let CS be a clause set and let D be a factor, resolvent or
paramodulant of clauses in CS.
Then: CS is satisfiable & CS u {D} is satisfiable.

29

Proof. The proof for the unsorted case is easily adapted to the many-sorted
case. [J

3.1.3 Definition. The functional reflexivity axioms are the following axioms:

i) x=x with x e V.

(S {-S¢ e 1) is the greatest element of SO(f)
and all variables x; are different. 0

A clauses set, which allows the deduction of all functional reflexivity axioms, is

called functionally reflexive.

If the functional reflexivity axioms are present, then it is possible to deduce
instances of clauses by paramodulation with these axioms:
For every instance 6Cy of a clause Cp there exist substitutions 6gg and 6,

such that (6 « 6pg)Cq = 6Cp. The instance 6ppCy is deducable from Cg and the
functional reflexivity axioms and has the same term positions as 6Cq. The
substitution 6 does not change the term depth.

However in practical applications the functional reflexivity axioms are not
used, since i) they increase the search space enormously and ii) the
subsumption rule would delete all of them but the axiom X = .

The instances described above would also be deleted by the subsumption rule.

The next lemma is independent of the rest of this paragraph. It shows, that
the presence of the functional reflexivity axioms makes the relation ~ on terms
to be a congruence relation, where s ~ t, iff s = t is an instance of a deducable
unit equation. This may be false, if the functional reflexivity axioms are absent.
The difficulties in proving the completeness of paramodulation arise from this
fact.

3.1.4 Lemma. Let CS be a functionally reflexive clause set. Let ~ be the
relation on 'Sl'gr defined as:

s ~1,iff there exist s’ and t" ¢ W8T and a e € E such that
S s=tande(s=t") = (s=1)
Then ~ is a congruence relation.
Proof. From the axiom ¥ = ¥ and the paramodulation rule, we obtain that ~ is
an equivalence relation.
We show that ~ is a congruence relation:
Let f be a function with n arguments and let 8;j~1,i=1,..nand

sl € 'STgr. We have to show that f(s,...s,) ~ [(t,..1,) if both terms
are well-sorted.

30

There exist s;, t;" and &;, such that S— s;" =1, and

oi(si=1t) = (s;= t;) for i=1,..,n. Multiple paramodulation with the
axiom f(xy,..x,) = f(xy,... X,) vields CS f(sy .5)=ty ..t).
We can assume that the substitutions 6, are variable disjoint. Let

n) = [(sy,..s) and

3.1.5 Example. This example shows, that the paramodulation rule is not
complete, if the functional reflexivity axioms are absent.

LetS - {Tv,ABCDE}, T2 ABCDE.
Let a,b,c,d be constants of sort A,B,CD respectively.
Let Pe P, with SO(P) = E

Let f € F with [E if(RsAandS<Clor(Rs<BandS<D)
[f(zgxg)l = 4
LT else

The clause set CS is:

{ { a=b); {c=d}); {P(f(a c))); {-P(f(b d))}.
This clause set is unsatisfiable.
Paramodulation is not possible, since [f(b c)] = [f(a d)] = T. There is no
deduction of the empty clause in ZRP*. If the functional reflexivity axioms are
present, then f(a c) = f(b d) can be deduced from the axioms
fxy)=f(xy),a=b;c=d by two paramodulations. (]

We conjecture, that a "paralle!” paramodualtion rule instead of normal
paramodulation avoids the functional reflexivity axioms.

3.1.6 Definition. Let SIG be a signature and let CS be a clause set. An
interpretation I of CS is a set of well sorted ground literals, such that for
each well-sorted atom A, either +Aor -Aisin [.

The interpretation I is an HE-mode! of CS, iff Cgr n [¢ @ for every ground
instance of every clause Ce CS.

3.1.7 Theorem. (Maximal Model Theorem [WR73]).
Let CS be a clause set and let I be an interpretation of CS.
If CS has an HE-model, then there exists an HE-model M with the following
property:
For every literal L ¢ M n I there exists a clause C e CS, which has a
ground instance Cgr such that Cgr nM={L) O

31

3.1.8 Lemma. (Lifting of factors. Lemma 1 of [WR73]).

Let CS be a clause set, A € CS and T € such that A" = TA is a ground
instance of A.

Then there exists a factor F AOf AandapekZ, such that:

i) A =pF A

i) FA and A" have the same number of literals.

Proof. The SIG-substitution T partitiones A in congruence classes, if the relation
isLy~Lyiff 1L = TL,. By Theorem 2.2.4 a set of SIG-mgu’s exists, which
simultaneously unify the literals in every congruence class. There exists an
element 8 out of this set and a p e E with 1 = p-8 [V(A)].

Let Fp :=6A. Then pF) = u-BA = TA = A" and the number of literals in

FA and A" are the same. [

3.1.9 Lemma. (Lifting of paramodulation, special case, Lemma 2 of [WR73]).
Let A" B be ground instances of the clauses A and B, which are in the clause
set CS, and let D" be a paramodulant of A" and B, i.e.
D=(A\{s=t}u(B \L)u{Llgqe t]}.
Further assume that the literal s"= t" isin A" and that L is a literal in B".
Let q be a position vector and let r'= L’ lq- LetLbealiteralinBand peX

such thatr = L|q exists and that pB =B and pL = L".

Then there exists a clause D having D’ as an instance such that D is a
paramodulant of some factors F A FB of A and B respectively.

Proof, From Lemma 3.1.8 we conclude that factors FA, FB of AandB
exist and that there exist 8, T e £ with '(FA = A, rFB =B, 0A = FA, 0B = FB
and 1 does not change the number of literals in F o FB.

We assume without loss of generality that s” is the argument involved.
There exists a literal s=t in A, such that

B(s=1t) = s’=1t and10s = s = 168r. Now Theorem 2.3.3 states that there
exists a most general SIG-unifier & for paramodulation and a A ¢ £ with:

T = A6 [V(F, Fg)], 6-1s = 6-1r and the paramodulant
D=o(F, \ {8s=6t}) u{s(F, \BL)} v { (6-BL)q « e-BL])
of F and Fg is well-sorted.

Note that Bqu exists because Ll q exists. Now we have AD =D". [J

3.1.10 Lemma (Lifting of paramodulation, general case, Lemma 2 of [WR73])
Let CS be a functionally reflexive clause set, closed under both
paramodulation and factoring. If A" and B" are ground instances of A and B,
which are in CS, and if D" is a paramodulant of A" and B" , then there exists
a clause D in CS having D’ as an instance.

32

Proof. Let s’ =t € A", L € B" and let q be a position such thatr’ =L’ lq The

paramodulation is on the terms s” and r". Let L be a literal in B and
e, such that uB =B and pL = L".

Case 1. qu exists. Then Lemma 3.1.9 is applicable.

Case 2: L'q does not exist. We have j = g - ppp , where ppp(B)is

deducable by paramodulation with the functional reflexivity axioms
and “FR(B)Iq exists. Now Lemma 3.1.9 is applicable. [J

In the following Theorems the lifting lemmas above play a central role. We
remark that the application of such lifting lemmas requires that (renamed)
copies of clauses are available for resolution and paramodulation.

3.1.11 Theorem. The many-sorted calculus ZR* with resolution and
factorization as inference rules is sound and complete.

ie. — TR* e T =
Proof. (cf. [WR73]). The only modification of the proof given there is to
replace mgu by a set of SIG-mgu’s. (J

3.1.12 Theorem. Let SIG be the signature of a functionally reflexive clause set
and let CS* be the closure of CS under paramodulation and factorization.
If no HE-model of CS* exists, then CS* has no H-model (where equality is
interpreted as a normal predicate).
Proof. Assume by contraposition that CS* has an H-model. Let I be the set of a
well-sorted atoms
and let M be the maximal model of CS* (see Theorem 3.1.7). We show,
that M is an HE-model of CS*:
Since {x = x} € CS*, we have t=1t € M for all ground terms t. Let
ty=ty € M. L € M and pos a position vector, such that t; = Llpos and

Llpos « ty]is a well-sorted literal. By Theorem 3.1.7 there exist clauses
C,D e CS* and corresponding ground clauses Cgr- Dgr with

Cgr nM-{t;=t,} and Dgr n M = {L}. The paramodulant of Cgr and Dgr
is Pgp = (Cop \ {1y = t9}) U (Dge \ (LY v {L[pos « t,]). By Lemma 3.1.10
there exist a clause P e CS* such that pgr is an instance of P. M is a
H-mode! of CS*, hence M n Py, + @. Obviously Mn Py, = {Llpos « 71}

We have shown, that M is an HE-model of CS*. [

33

3.1.13 Theorem. The ZRP*-calculus is sound and complete, if the functional
reflexivity axioms are present, i.e.

F—Rpr = F

Proof. [WR73] Soundness is trivial.
Completeness: Let CS be a clause set and let CS* be the closure under
paramodulation, resolution and factoring. Let the functional reflexivity
axioms be in CS*. If CS* has no HE-model, then by Theorem 3.1.12 the set
CS* has no H-model. Hence by Theorem 3.1.11 the empty clause is in CS*.
The empty clause is the last line of a finite deduction of clauses in CS. Hence
a refutation can be found. (J

34

3.2 The Sortensatz,

In this paragraph the important "Sorten"-theorem (Sortensatz [Wa83,0b62]) is
shown to hold for the poly morphic ERP*-calculus. The Sortensatz provides the
essential link between a sorted clause set and its unsorted version.

3.2.1 Definiton. Let SIG be a signature for the clause set CS.
We define CSpep v AZ , the relativized clause set of CS as:

i) The relativized signature SIG,o has only one sort. For every S € §, there
1S a unary predicate PgeP.o . which is not in P.

ii) The set CSpef is the set of relativized clauses:
CSpef = (Creyl C € CS}), where Cret = “Pgy(x)v..v-Pg (x,) v C

iii) The set of sort axioms A% consists of:
-Pg,(x) v Pg,(x) for all S{ .S, €S with §;sS,.

P_(x)

3.2.2 Theorem. (Sortensatz).

Let SIG be a signature and let CS be a SIG-sorted clause set. Then:
CS is satisfiable <= Csrel v Az is satisfiable.

Proof. =™ Let (D,SIGR) be an E-model of CS.
We have to construct an E-model for Csrel v Az w.rt. SIGrel.

Let E+= D and 5 = D for all f e P. R ¢; = R u (PgE| S € §), where PgE(d) is

valid, iff d e SD.
(E,SIGrel, Rrel) is an E-model for Csrel v Az=

Let pp : WST o - E be a SIG-homomorphism.

We show, that all clauses are true under g

1) Cpgy Either one of @p(-Pg.(x;)) is true, or all g -Pg;(x;) are false. In
the second case, there exists a SIG-homomorphism Pp With

evaluates to true since (D,SIGR) is an E-model of CS.
ii) LetS; <S,:then SID c SZD. Hence for every d € E: either d ¢ SID or

de SZD, hence gg(Pg, (x) v Pg,(x)) is true.
iii) pg(PL(x)) is true.

35

D,g.D D,g D
f 'Sl x...xSn "Sn*rl :
<" Let (ESIGpg, Rg;) be an E-model for CS o u AZ.

We have to define an E-model for CS.
Let D= Eand fD = fE for all f e F. For S €8, let S = (dl PgP(d) is valid)

We verify the conditions of the definition of an algebra w.r.t. SIG:

a) We have T0:=D.

b) Let S1.57 €8 with Sy =S, Then -Pg (x) v PSz(x) 18 valid in
(E'SIGrel- Rrel)' Hence for d € SID, we have that PSzo(d) is true and
sode SZD.

c) The condition for constants holds trivially.
d) LetfeF\Cand let(S...S,) € SO(f). Then

Pg (xy)v..v-Pg (x) vPg (f(x... x,))is true in (ESIG ¢ Rpap)-
For elements d; € SiD, PSMD(f(dl dn)) is true, hence
f(dy....dy) €Sy, (0. O

Let R =R g \ (PP S € 8).

Then (D,SIGR) is an E-model of C.

The last property to show is that all clauses are true under all
SIG-homomorphisms.

Let opy: WST - D be a SIG-homomorphism and let C be a clause.

Then a SIG-homomorphism pg : WST o - E exists with @p(x) = g(x) for all
x€ V. g evaluates all literals Pg(x;) of Cp.¢ to false, hence pg(C) is true.
Therefore C is true under @g. [J

36

4. The Lion & Unicorn Example.

4.1 Example. This example is taken from Smullyan: "What is the name of this
book?" [SM78], which appears to be a goldmine for theorem proving examples.
During a course on automated theorem proving last fall at the Universitiy of
Kaiserslautern, our students had to translate these puzzles into first order
predicate logic and to solve them with our theorem prover (Markgraf Karl
Refutation Procedure, MKRP) [KM84,NN86]. One of these problems (Problem
47) reads as follows:
"When Alice entered the forest of furgetfulness, she did not forget
everything, only certain things. She often forgot her name, and the most
likely to forget was the day of the week. Now, the lion and the unicorn were
frequent visitors to this forest. These two are strange creatures. The lion lies
on Mondays, Tuesdays and Wednesdays and tells the truth on the other
days of the week. The unicorn, on the other hand lies on Thursdays, Fridays
and Saturdays, but tells the truth on the other days of the week.
One day Alice met the lion and the unicorn resting under a tree. They made
the following statements:

Lion: Yesterday was one of my lying days.

Unicorn: Yesterday was one of my lying days.
From these statements, Alice who was a bright girl, was able to deduce the
day of the week. What was it?"

We use the predicates MO(x), TU(x), ..., SO(x) for saying that x is a Monday,
Tuesday etc. Furthermore we need the binary predicate MEMSB, indicating
set membership and a 3-ary predicate LA. LA(x y z) is true if x says at day
y that he lies at day z; Idays(x) denotes the set of lying days of x. The
remaining symbols are self explaining. All one-character symbols like uxy,z
are regarded as universally quantified variables.
Axiomatization of the days of the week:
~(TU(x) v WE(x) v TH(x) v FR(x) v SA(x) v SU(x))

MO(x) e
TU(Gx) e ~(WE(x)v TH(x) v FR(x) v SA(x) v SU(x) v MO(x))
WE(x) & ~(TH(x) v FR(x) v SA(x) v SU(x) v MO(x) v TU(x))
TH(x) e ~(FR(x) v SA(x)v SU(x) v MO(x) v TU(x) v WE(x))
FR(x) & ~(SA(x)v SU(x)v MO(x) v TU(x) v WE(x) v TH(x))
SA(x) e -(SU(x)v MO(x) v TU(x) v WE(x) v TH(x) v FR(x))
SU(x) & ~(MO(x)v TU(x) v WE(x) v TH(x) v FR(x) v SA(x))
Axiomatization of the function yesterday:

MO(yesterday(x)) = Tu(x)

TU(yesterday(x)) = WE(x)

WE(yesterday(x)) & TH(x)

TH(yesterday(x)) < FR(x)

FR(yesterday(x)) = SA(x)

SA(yesterday(x)) = Su(x)

SU(yesterday(x)) & MO(x)

37

Axiomatization of the function ldays:
MEMB(x Idays(lion)) = MO(x) v TU(x) v WE(x)
MEMB(x Idays(unicorn)) & TH(x) v FR(x) v SA(x)

Axiomatization of the predicate LA:

~MEMB(x Idays(u)) A LA(uxy) > MEMB(y Idays(u))
“MEMB(x Idays(u)) A ~LA(u x y) = ~MEMB(y Idays(u))
MEMB(x Idays(u)) » LA(uxy) =-MEMBI(y Idays(u))
MEMB(x Idays(u)) a -LA(uxy) = MEMB(y Idays(u))

Theorem:
3x LA(lion x yesterday(x)) » LA(unicorn x yesterday(x))

The MKRP theorem proving system found a proof for this unsorted version
after 183 resolution steps, among them 81 unnecessary steps, hence the
final proof was 102 steps long. This proof contains a lot of trivial steps
corresponding to common sense reasoning (like: if today is Monday, it is
not Tuesday etc.).

Later the sort structure and the signature of the problem at hand was
generated automatically by a translator module which accepts an unsorted
clause set as input and produces the equivalent many-sorted version
together with the corresponding signature [Sch85,0585].

The sort structure and the signature contain all the relevant information
about the relationship of unary predicates (like our days) and the
domain-rangesort relation of functions. The sort structure of the subsorts
of DAYS in our example is equivalent to the lattice of subsets of
{Mo, Tu, We, Th, Fr, Sa, Su} without the empty set, ordered by the subset
order. Hence there are 127 (=27-1) sorts. The function "yesterday” is a
polymorphic function with 127 domain-sort relations. For example:
yesterday ({Mo, We}) = {Su, Tu}.

The unification algorithm exploits this information and produces only
unifiers, which respect the sort relations, i.e. {x « t} is syntactically correct,
if and only if the sort of the term t is less or equal the sort of the variable
X. We give an example for unification: the unifier of x:So+Tu and
yesterday(y:Mo+Tu) is {x « yesterday(y;: Mo) ; y « y;:Mo }.

The MKRP theorem-proving system has proved the theorem in the sorted
version immediately without any unnecessary steps. The length of the
proof is 6. As the following protocol shows, the final substitution into the
theorem clause was {x « y:Th). Thus the ATP has found the answer,
Thursday, in a very straight forward and humanlike way. Here is the proof
protocol:

36

Cl Allx:Mo MEMB (x Idays(lion))
C2 AllxTu MEMB (x Idays(lion))
C3 Allx:-We MEMB (x Idays(lion))
C4 AllxTh MEMB (x Idays(unicorn))
C5 Allx:Fr MEMB (x Idays(unicorn))
C6 Allx:Sa MEMB (x Idays(unicorn))
C7 All x,y:Days u:Animal

MEMB(x idays(u)) -LA(u x y) MEMB (y Idays(u))
C8 All x,y:Days u:Animal

MEMB(x Idays(u)) LA(u xy) ~MEMB(y Idays(u))
C9 All x,y:Days u:Animal

-MEMB(x Idays(u)) ~LA(u x y) ~MEMB(y Idays(u))
C10 All x,y:Days u:Animal

-MEMB(x Idays(u)) LA(u x y) MEMB(y Idays(u))
Cl1 Al x:Th+Fr+Sa+Su ~MEMB(x Idays(lion))
C12 All x:Tu+We+Su+Mo ~MEMB(x 1days(unicorn))
Th All x:Days -LA(lion x yesterday(x)) -LA(unicorn x yesterday(x))
Proof:
C4,1 & C10,1 > RI1: All x:Thy:Days LA(unicornxy)

MEMB(y Idays(unicorn))

R1,2&C12,1 > R2: All x:Th y:Tu+We+Su+Mo LA(unicorn xy)
C3,1 &C8,3 - R3: Allx:Daysy:We MEMB(x Idays(lion)) LA(lion xy)
R3,1 & Ci11,1 » R4: All x:Th+Fr+Sa+Suy:We LA(lionxy)
R4,1 & Th,1 -» RS: All x:Th -LA(unicorn x yesterday(x))
RS5,1 & R2,1 - Ré: (8]

39

Conclusion

A polymorphic calculus is more expressive than a monomorphic one: one
function symbol essentially denotes several operations. An alternative
formulation with additional equalities and different function symbols surely
produces a greater search space.

The ZRP*-calculus allows to express this information and to use it directly in
the inference mechanism. In other words, the ZRP*-calculus has all the
advantages of a many-sorted calculus, but with an improved expressive power.

Polymorphic unification is implemented in the MKRP theorem proving system
and shows remarkable improvements in particular in combination with a sort
generating algorithm [Sch85] (see Example 4.1), which automatically
transforms a given problem into it's polymorphic, many-sorted version.

The paramodulation rule, which is used in the ZRP*-calculus, shows some
deficiencies: the functional reflexivity axioms are necessary for completeness
and also there has to be a greatest element in the signature of a function.
Moreover, the presence of the functional reflexivity axioms and the
subsumption rule are incompatible. Hence some other type of equational
reasoning such as rewriting, demodulation, E-resolution or equality-nets
[WR67,Lo80,KM84], may be more appropriate in an automated theorem prover
based on ZRP*.

The ZRP*-calculus could advantageously be used as the basis of a typed PROLOG
with overloading, where the present (Robinson) unification algorithm would be
replaced by the algorithm proposed in this paper.

Acknowledge ments.
I would like to thank: my colleagues H.J. Ohlbach, A. Herold H.J. Birckert,

N. Eisinger and Ch. Walther for their support and for their helpful
discussions during the preparation of this paper; special thanks go to
supervisor]. Siekmann, who encouraged me to write this paper and read all
drafts of this paper.

References

Bra75 Brand, D.
Proving Theorems with the Modification Method. STAM Journal of
Computing 4, (1975)

CL73 Chang, C.-L., Lee, RC.
Symbolic Logic and Mechanical Theorem Proving. Academic Press
(1973)

CD83 Cunningham, R], Dick, A.].].,
Rewrite Systems on a Lattice of Types. Rep. No. DOC 83/7, Imperial
College, London SW7 (1983)

Co83 Cohn, AG.
Improving the Expressiveness of Many- sorted Logic. AAAI-83,
Washington (1983)

Fa83 Fages, F.
Formes canonique dans les algébres booleénnes et application a la
démonstration automatique en logique de premier ordre. Thése du
3€Me cycle, Paris, (1983)

GM84 Goguen,].A., Meseguer, J.
Equality, Types, Modules and Generics for Logic Programming,
Journal of Logic Programming, (1984)

GM85 Goguen, J.A., Meseguer,].
Order Sorted Algebra I. Partial and Overloaded Operators, Errrors
and Inheritance. SRI Report (1985)

Gr79 Gritzer, G.
Universal algebra, Springer Verlag, (1979)

Hay71 Hayes, P.
A Logic of Actions. Machine Intelligence 6, Metamathematics Unit,
University of Edinburgh (1971)

Hen72 Henschen, L.].
N-Sorted Logic for Automated Theorem Proving in Higher-Order
Logic. Proc. ACM Conference, Boston (1972)

Hu76 Huet, G.
Resolution d’equations dans des languages d'ordere {,2,...0 ;
These d’'Etat, Univ. de Paris, VII, (1976)

HO80 Huet, G, Oppen, DC,
Equations and Rewrite Rules, SRI Technical Report CSL-111, (1980)

41

KM84 Karl Mark G Raph,
The Markgraf Karl Refutation Procedure, Memo-SEKI-MK-84-01,
(1984)

Lo78 Loveland, D.
Automated Theorem Proving, North Holland, (1978)

Mi84 Mishra, P.
Towards a Theory of types in PROLOG. Int. Symp. on Logic
Programming (1984)

MO84 Mycroft, A., O'Keefe, R.
A Polymorphic Type System for PROLOG. Artificial Intelligence 23
(1984)

NN86 The computer generated solutions for the whole book are to appear
as a SEKI-research report, Univ. Kaiserslautern.

0b62 Oberschelp, A.
Untersuchungen zur mehrsortigen Quantorenlogik. Mathematische
Annalen 145 (1962)

0585 Ohlbach, H.J., Schmidt-Schauss, M.; Problem corner JAR (1985)

Ro65 Robinson, J.A. A Machine-Oriented Logic
Based on the Resolution Principle. JACM 12 (1965)

Sch85 Schmidt-Schauss, M.
Mechanical Generation of Sorts in Clause Sets. Interner Bericht.
Institut fur Informatik, Kaiserslautern (forthcoming)

Si84 Siekmann, J. H.
Universal Unification. 72 Int CADE, Napa, California (1984)

Sm78 Smullyan, RM.
What is the Name of this Book? Prentice Hall
(1978)

Wa83 Walther, C.
A Many-Sorted Calculus Based on Resolution and Paramodulation.
Proc. of the 80 [JCAI Karlsruhe, (1983)

Wa84 Walther, C.
Unification in Many-Sorted Theories. Proc. of the gth ECAI, PISA,
(1984)

WR73 Wos, L. Robipson, G.
Mazximal Models and Refutation Completeness: Semidecision
Procedures in Automatic Theorem Proving. In "Wordproblems”
(W.W. Boone, F.B. Cannonito, R.C. Lyndon, eds.), North-Holland
(1973)

42

