LA ")

\AMﬂIJHUSqIIIJS “L A\V

o it i

0
e 33 D))

A \
L

WalLter OLthoff

m
&=
(-]
2
L]
(-
-
&
[}
"
[]
.
-]
-]
=

Memo SEKI-84-09

AUBWLLIBE) 'MW 'L UIBINE(SIaSIEY 0829-0
UJBINEB|SISSIEY JBHSIAAIUN - m — H j_ — m “
3IBWIOU| Ydiaiaqyoey -gmm

ModPascal Report

wWalter OLthoff

FB Informatik
University of KaiserslLautern
PF 3049
6750 KaiserslLautern
Federal Republic of Germai.y

Abstract

The object oriented programming Language ModPascal and its
programming environment are introduced. ModPascal extends
Standard Pascal by constructs that have shown usefullness in
abstract data type - theory: module types., enrichments.,
instantiations and instantiate types. In fact, ModPascal has
been designed as procedural counterpart of a specification
Language based on abstract data types, and its semantics also
employs algebraic structures. ModPascal programs may be
edited., compiled and executed by using the ModPascal
Programming System that inclLudes a multi-user data base for
ModPascal objects.

Keywords: Obgject oriented programming Languages.
Parameterization of types. Software engineering
environments. Abstract data types.

Contents:

0-

1.

Introduction

Object Oriented Programming in ModPascal
1.1. Module Type Definition

1.2. Enrichment Definition

1.3. Instantiations and Instantiate Types

Data Management System
2.1. ModPascal and DMS
2.2. DMS Visibility
2.3. Prefixing

Language Defirition
3.1. Overview
3.2. Modules
T.2.1. Syntax
T 2 2. Static Semantics
3.2.3. Variable Declarations
3.2.4. Operation Calls
3.2.4.1. Syntax
3.2.4.2. Static Semantics
3.2.5. Error Operations
3.3. Enrichments
3.3.1. Syntax
3.3.2. Static Semantics
3.4. Instantiations and Instantiate Type Definitions
3.4.1. Syntax of Instantiations
3.4.2. Static Semantics of Instantiations
3.4.3. Syntax of Instantiate Type Definition
3.4.4. Static Semantics of Instantiate Type
Definition
3.5. ModPascalL Grammar

Standard Types and Standard Type Generators
4.1. Introduction
4L.2. DMS=Structures for Standard Objects
4.2.1. Standard Types
L.2.2. Standard Type Generators
4.3. Mixed Constructs

Programming in ModPascal

5.1. Main Programs

5.2. ModPascal Programming System
5.3. Precompiling

Summary

References

-

(o0 e W SV |

10
10

11
11
12
12
13
22
23
24
24
26
27
27
27
32
33
33
37

37
39

L6
L6
48
48
50
52

55
55
56
-¥4
58

59

ModPascal 0. Introduction Page 1

0. Introduction

The procedural programming Language ModPascal was developed as
part of the Integrated Software Development- and Verification
System (ISDV-System., [BGGORV 831). This system emplLoys
software engineering techniques along the
vwerify-while-develop"™ paradigm: newly introduced structures
are verified against formal specifications as soon as possible
so0 that errorneous or inadequate design is detected earlLy
before it causes greater damage (=cost of system redesign).
This technique is used to Link the very first formal
specification, the intermediate specification structures and
the final ModPascal program by assigning prooftasks
(correctness criteria) to aLL refinement steps. Then, the
validity of all prooftasks implLies that the ModPascal program
meets the requirements imposed by the first formal
specification - a proposition that 1is highly valuable for
almost all software developments.

The applied method involves different Levels of abstraction
and provides concepts and tools for a -rifiable transition
from abstract to concrete structures. In figure N=1 a rough
overview of the various Levels is given together with a also
rough classification, and the verification tasks are Located.

algebraic abstract <—
specifications
verification
algorithmic intermediate
specifications <—
verification
programming concrete —_
Language objects v

Fig. 0-1: ISDV-System scenario

The formal specifications are given in the applicative
specification Language ASPIK ([BV 83]) that is strongly based
on algebraic specifications ([ADJ 781, [EKP 78]). ASPIK
supports incremental., hierarchical software design and offers
a number of powerful description features. It is the Llanguage
of the 'abstract' and ‘'intermediate' Levels of program
development in the ISDV-System; the Language of the ‘'concrote’
Level 1is ModPascal. As a consequence, both Languages offer
constructs that are semantically equivalent (e.g. ASPIK
specifications - ModPascal modules/enrichments) but exploit
the advantages of applicative/procedural Languages resp.

Sctober 84 ModPascal-Report

ModPascal 0. Introduction Page 2?2

During the specification and programming process a number of
objects are generated and have to be administrated. This
includes as well elementary tasks Like storage alLlocation.,
Link generation or manipultation, checking of object name
conventions or access rights, as more pretentious tasks Like
providing all ISDV subsystems with appropriate input when
demanded. This data administration is done by two components
of the ISDV-System:

- the file system (FS) for ASPIK objects, and
- the data management system (DMS) for ModPascal and ModPascat
related objects.

ASPIK
< > FS |{—>| applications
objects systems
e (e.g. editors.,
compilers.,
interpreters.,
provers.,
input units)
ModPascal
related < >] DMS | < >
objects

Fig. 2-1: ISDV-System structure

The application systems represent the kernel software. They
include input units for interactive, syntax-oriented input of
object definitions, editors, a compiler, an interpreter or
mechanical proof systems.

One important application system is the ModPascal Programming
System (MPPS) which allows to enter and manipulate obgjects and
programs written in ModPascal. MPPS is closely related to DMS.,
and for this paper it is sufficient to consider onLy these
subsystems of the ISDV-System (sec. 2.1. (DMS) and 5.2.
(MPPS)). An overview of the ‘'concrete' Level can be found in
[OoLt 84cl.

In section 1 the main features of ModPascal that are new
compared with Standard Pascal are introduced via short
examples. Section 2 gives necessary concepts of DMS such that
the connections between Language and environment becomes
visible. The main section 3 deals with the syntax and static
semantics of ModPascal but confines itself to the not-Standard
Pascal features. Section & shows how objects of Standard
Pascal are embedded in the ModPascal environment, section 5
treats practical tasks as portability of Standard Pascal
programs, and finatly section 6 gives an overview on the
precompiling concept applied to execute ModPascal programs.

October 84 ModPascal -Report

ModPascal 1. Object Oriented Programming Page 3

1. Object Oriented Programming in ModPascal

The virtues of object-oriented Languages and programming
styles have been explored and discussed in many publications.
Though it might be necessary to repeat them again and again in
order to change inveterate cryptic programming practices., they
are suppressed here. Instead, the Language ModPascal is
introduced, and in doing this some of the advantages of obgJject
oriented thinking will inevitably be mentioned.

ModPascal 1is an extension of PascalL [ISO 7185] in a way that
preserves the full set of features of Pascal. The extension
has been inflLuenced by two facts:

e In software engineering research algebraic specifications
have become widely recognized as a representation
independant description method for data types (abstract data
types). Algebraic specifications allow modularization and
sometimes hierarchization of problem domains and they
constitute referential transparency on the specification
LevelL (see e.g. [ADJ 781, [EKP 781, [GHM 78], [BV 831).

@ Existing software engineering environments still Lack a
satisfactory soLution to fitl the gap between the
specification and the final programming !anguages (e.g. [Sil
80]). Often, it is an incompatibility of Language constructs
and undertaid semantics that causes the problems.

As a consequence ModPascal has been designed to meet
requirements imposed by both theory of algebraic
specifications and software engineering environments.
Concerning the Latter source of requirements., the reason of
its emphasis is, that ModPascal was developed as part of an
integrated software development and verfication system [BGGORV
83] that follows the stepwise-refinement and
verify-while-develop paradigms. Therefore, many components of
the current ModPascal support system are embedded in that
environment and reported experience with the Language has been
gathered there. But it should be pointed out that ModPascal is
an imperative, problemoriented programming Language (as Pascal
is) for wide application, beside its current use in specific
software engineering environment.

There are four new kinds of objects that make ModPascal differ
from Pascal: modules., enrichments., instantiations and
instantiate types. The term ‘type' in its usual (Pascal) sense
is not applicable to the first three of these constructs since
they model more or different information than array, record
etc.

To get a feeling of the new structures we will introduce them
informally via short examplLes. The complete definition for
modutes, enrichments, instantiations and instantiate types
will be given in chapters 3,4,5 resp.

October 84 ModPascal -Report

ModPascal 1-1-. Mc wle Tyr- D*inition

Page

1.1. ModulLe Type Definition

Example 1-1: Queue

type QUEUE module
use TASK;
public procedure ENTER(T:TASK);
procedure LEAVE;
function NEXT :
function ISEMPTY :
initial EMPTYQUEUE;
LocalL type T = a ray [1..100] of TASK;
procedure SHIFT(AR: T, I:INTEGER);
var A: T, PTR:INTEGER;

~1ang:

TASK;
BOOLEAN;

L

procedure ENTER;
var i:INTEGER;

begin i:=PTR;

elLse
while i>1 do
if T.PRIO>ALil.PRIO
then i:=i-1
SHIFT(A,1i);
ALil:=T;
PTR: =PTR+1;

end;

LEAVE;
begin SHIFT(A,0) end;

procedure

procedure SHIFT; (* omitted *)
function NEXT;
begin NEXT:= A[L1] end;

function ISEMPTY;
begin if PTR <> O
then ISEMPTY := FALSE
else ISEMPTY := TRUE

()
Q.

n

4

’

initial EMPTYQUEUE;
var 1:INTEGER; T:TASK#NEW;
beqin for i:=1 to 100 do
ALi] := T;
PTR : 0,

Q

en

modend;

if i=100 then QUEUE&ERRORPROCEDURE

1)
(2)

(3)

(4)

October 84

ModPascal -Report

ModPascal 1.1. Module Type Definition Page 5

ExampLle 1-1 introduces the modulLe type definition. TASK is
assumed to be an already defined (module) object with (at
Least) operations PRIO and NEW. A module type definition
mainly consists of four parts: a Listing of all used objects
of this definition (1), an introduction of all operations that
will be tied together by this definition (2), definition of
Local items that serve to ease programming in part & of the
module type definition (3), and explicit definitions of the
operations introduced in part 2 (4).

This combination of dinformation has condensed out of (at
Least) two influences of abstract data type theory:

e abstract data types do not describe a specific set but a
tuple (set, operations) where the operations are exciLusively
defined on the set. Moreover, they are the onLy allowed
operations to be performed on 'set'. The programming
Language construct therefore reflects this fact in
introducing onLy those operations of part 2 as admissable
QUEUE=-operations.

® an abstract type can be incarnated, i.e. variables of it may
be used in abstract programs. Most module concepts do not
meet this obvious requirement (eg. Ada packages, Modula
modules). They restrict themselves to <upport solely the
combination of procedures, functions, types and variables in
a specific syntactic clause, and separate conipr.<iion of
module header and module body. On the contrary, ModPascal
modules allow variable declarations.

From the possibility of using objects it follows immediately.
that precautions have to be taken to allow module type
definitions which do not explicitly contain declarations of
used objects in the surrounding program text. For this purpose
a data base has been created that can be referenced and
updated by each user of the system. It comprehends as well the
Standard Pascal types and type generators as all user defined
objects. The data management system administrates alLl obgjects
in connection with the ModPascal programming system.

October 84 ModPascal -Report

ModPascal 1.2. Enrichment Definition Page 6

1.2. Enrichment Definition

Example 1-2: QUEUE-ENRICHMENT

enrichment E-QUEUE use QUEUE is (1)
add TASK (2)
procedure MERGE(T: TASK);
QUEUE

function LENGTH(I:INT):INT;
procedure SWAP;

addend;

procedure MERGE; (3)
begin ... end;

function LENGTH;
beqin ... end;

procedure SWAP;
bedqin ... end;

enrenc,

ExamplLe 1-2 gives a glLimpse of enrichment objects. Enrichments
are well-known structures in abstract data type (ADT) theory.
They are a special case of (algebraic) abstract data type
definitions because they do not introduce any new value set
but onLy operations on existing ones. For that reason.,
enrichments cannot be Linked to type definitions since types
are defined as set-introducing structures. Consequently, the
enrichment-construct has been added to ModPascal. Firstly, it
consists of the enrichment identifier and a List of used
objectnames (1). To guarantee type uniqueness and type
correctness, operations are introduced according to module
types (2). In part 2 the procedure MERGE is associated to the
module TASK. (TASK is transitively wused via QUEUE). This
mechanism ensures that whenever the enrichment E-QUEUE is
visible the operation MERGE may be performed onlLy on
TASK-variables. At Last, the full definition of all operations
is given (3).

Enrichments may be Looked at as a somewhat strange concept.
But what they provide is just the above mentioned combination
of operations (comp. Ada packages, Modula modules) working on
given sets. They establish an extension of the (operation-)
name space spanned by the used objects. Additionally, they
model a well=known structure of ADT=-theory that has proved its
adequacy and specification power in many software developments
based on abstract data types.

1.3. Instantiations and Instantiate Types

The remaining two structures provided by ModPascal in addition
of Pascal are the instantiation construct and the instantiate
type definition. In procedural programming Languages it 1is
familiar to instantiate operation definitions: each procedure

October 84 ModPascal -Report

ModPascal _ 1.3. Instantiations/Instantiate Types Page 7

call is an instance of the corresponding procedure definition
with formal parameters substituted by dinformation that is
eLaborated from the actual parameters of the call. The
correctness of operation calls is checked on several Levels.,
and depends on criteria such as visibility rules or parameter
passing mechanisms that are specific to each Language.

But this kind of instantiation is confined to operations.
ModPascal allows for a more general concept to instantiate
module types. What parts of a module are possible subjects to
actualization? To answer, it 1is helpful to consider the
question on standard types as arrays, records etc.. Given a
type definition
type A = array [1..10] of INTEGER.,

the exchange of the component type INTEGER by for example REAL
is desirable, which results in a new type A' with REAL
components. Since A 'uses' INTEGER (each array can be seen as
module) » a first approximation to instantiations of modules is
to altow aLl used objects of a module to be actualized. This
includes also the not directlLy used objects; Looking at the
tree spanned by the use relation of a module object.,
instantiations can be visualized as exchcrnaing one arbitrary
proper subtree by another.

/\ /\
MO M1 -—> Mo My
/ VA
M, M, M, Ms

Recalling the array example the compatibility of INTEGER and
REAL (in whatever sense) may be asked for. Since arrays are
predefined so are their operations (component selection.,
assignment). But d1in arbitrary modules the operations are
user-defined and may contain occurrences of operations of the
used objects. Now, if some used object is actualized by
another, the resulting module would have operation calls of
ill defined operations: the defining module is invisible.
Therefore., occurences of operations of modules being
actualized have to be replaced by occurrences of operations of
the actualizing module during the instantiation process. To
guarantee that the replLacement can be done in alLl cases, a
unique association between all old and new operations has to
be given (speaking in terms of abstract data type theory, a
signhature morphism between the 'formal' parameter object and
the ‘'actual' parameter object has to be stated). The most
important constraints on these associations are compatibility
of parametertypes of old and new operations and compatibility
to other actualizations (one instantiation may actualize two
or more objects).

In ModPascal two tasks have been separated in the

October 84 ModPascal -Report

ModPascal 1.3. Tnstantiations/Instantiate Types Page 8

instantiation of obgjects:

= In the instantiation definition the programmer has to
specify how objects and operations are associated to other
objects and operations. Also, he may incorporate already
defined instantiations via a use clause. The instantiation
definition represents a new object type in ModPascal.

= In the instantiate type definition the replacement of
those items associated is actually done. The association
has to be specified in a List of dinstantiation object
identifiers, and it 1is applied to a given module or
enrichment object. The result of the instantiate type
definition is again . module or enrichment object.

Therefore, an instantiation definition that never occurs in an
instantiat.c vy definition, will cause no side effects on
generation of ohjects except generation of ditself. In the
other case it might be possible that hierarchies of objects
have to be generated in evaluating instantiate type
definitions.

Example 1-3: QUEUE Instantiation

instantiation TASKINT (1.1)
is TASK by INTEGER; (1.2)
operations PRIO = IDENTITY (1.3)

instend;

type Q' = instantiate QUEUE by TASKINT; (2)

In example 1-3, an instantiation TASKINT is defined and its
application inside an instantiate type definition is shown.
TASKINT establishes the signature morphism saying 'exchange
all occurrences of TASK by INTEGER (1.2) and alLl occurences of
(the onLy) TASK operation PRIO by the INTEGER operation
IDENTITY (1.3)'. It is also possible to specify use clauses
and type clauses in instantiation definitions. If other
instantiations would have been used they had to be respected
by the current signature morphism especially if their sources
are hierachically Linked objects (see 3.4.2.). If enrichments
are involved, a types clause has to be formulLated to specify
the type mapping for each type occurring in the enrichment.

The generation of a new object is actually done within the
evaLtuation of an instantiate type definition (2). QUEUE, the
object to be instantiated, is modified according to the
morphism defined 1in TASKINT. The result 1is a new object
(-hierarchy., possibly) Q' that resembles QUEUE up to TASKINT
substitutions. Q' is accessable in the subsequent program text
Like objects defined by ordinary type definitions.

Standard types Like array may also be instantiated using
TASKINT. The resulLting array type will range over INTEGER

October 84 ModPascal ~Report

ModPascal 2. Data Management System Page 9

values instead of TASK values.

It should be emphazised that instantiations and instantiate
type definitions are more than an extension of
parameterization of operations to parameterization of types
resp. modulLes. The set of parameters that have to be
actualized in an operation calLl is fixed by the operation
definition and is also mandatory. The set of 'parameters' of a
module is only implicitely given: the objects contained in the
closure of its use relation. Each subset constitutes a
possiblLe set of ‘'formal parameters' that may be actualized in
an instantiation. This concept models a part of the
'‘parameterization=by=-use’ feature of ASPIK [BvV 831 in
ModPascal. For the relations between ASPIK and ModPascal see
[RL 851, [SPESY 85] and [OLt 84b].

2. Data Management System (DMS)

2.1. ModPascal and DMS

The DMS represents the object administration system of the
concrete Level of the ISDV-System (see figure 0-1). It
includes the data base for ModPascal orjects, access and
manipulation operations as well as information :*rieval
functions. Also the DMS provides the connection to the data
manangement system of the abstract Level of the ISDV-System.,
the file system (FS).

To be more precise we anticipate some information section 5
has been dedicated to: programming in ModPascal in the
ISDV=-System. The ModPascal programming system supports the
user by offering tools for editing, compilation and testing of
ModPascal programs. OnLy via MPPS it is possible to enter
objects necessary for other ISDV-System components (e.g.
proving systems that try to prove correctness criteria in
which ASPIK specifications and ModPascal modules are
involved).

Passing a program through MPPS involves references to the DMS
such that no side effect- and context free relation between
input and output can be stated in general. The reason for this
is the fact that DMS controls a data base of ModPascal obgjects
that 1s not fixed. Each reference to DMS 1in different
applications of MPPS may be responded on different states of
the data base and such yielding different resulLts.

If, for example, a single module type definition is entered.,
MPPS checks:

e if there already exists a module definition in the data base
with the same name.

e if all used objects of the current definition exist in the
data base and if their correctness is guaranteed.

e if nNno cyclic use-hierarchy is dgenerated by the current
module definition.

e if the current module definition is syntactically correct.

e if data base dependent semantic restrictions are respected.

October 84 ModPascal =-Report

ModPascal 2.2. DMS=-Visibility Page 10

If no check fails, the module definition is added to the data
base so that it will be accessable to future modulLe type
definitions. Therefore, ModPascal programs having onlLy a few
Lines of code may enclLose a Large set of invisible objects of
the data base. The advantages of this concept are obvious:
once an object definition is entered it can be used in various
contexts (e.g. different users) without redefining it again.
Also separate compilation is extremely supported since objects
communicate only via fixed interface functions so that changes
in object-Local representations do not affect other objects.
Input objects in the sense of MPPS are either single object
definitions (modules, enrichments, instantiation types) or
'progs’'. The Latter contain either a List of object
definitions or an ordir.ury ModPascal program. Each structure
of a prog is treated separately by MPPS, and a single object
input is simul.ated: whenever an object definition is
recognize. romp' otely, it will be installed in the DMS data
base before the subsequent part of the prog is examined. This
makes semantic checks uniform for prog's and non-prog's. In
section 5. the use of prog's is illustrated.

It should be pointed out that MPPS is also applicable without
DMS (see sec. 5.), but the current implLementation employed in
the ISDV-System makes no use of this possibility.

2.2. DMS-Visibility

According to the clLose reLation between MPPS and DMS, accesses
of MPPS to DMS-objects have to be carried out along
appropriate rules. So it is obvious that objects of the data
base should not be accessable by allL users, or that protection
mechanisms ('read=-only access') should qualify the access.
This is captured by the concept of DMS-visibility.

Def 2.3.-1 [DMS-visiblel

A DMS=-object OB is called DMS=-visible to user U if either
a) OB is owned by U
b) there is another user U who ownes OB, and U has (at
Least) read-access to OB
c) 0B is a system object. n

The DMS=-visibility is used to define the context sensitive
conditions for the correctness of ModPascal objects in sec.3.

2=3. Prefixing

The DMS is drawn up as a multi-user data base that allows
cross references to objects of any user. Therefore name
conflicts can occur., if for example operations are named equal
in different modules that are both visible in some context. In
MPPS (see also sec. 5.2.) the following conventions have been
set up to avoid ambiguities:

October 84 ModPascal -Report

ModPascal 3. Language Definition Page 11

® each object name can be prefixed by a user identification.,
separated by '8&'

® each operation name can be prefixed by either an obgject
name, separated by '&', or by a user identification and an
object name., separated by '&'s resp.

e if objects/operations of other users are involved/applied.,
then the appropriate user identification has to be taken as
prefix
Exception: Standard types as BOOL, INTEGER, REAL., CHAR (see

sec. 4.) need not be prefixed by the system
standard prefix SYS.

Typical identifier built according to these rulLes are
USERRQUEUE or SYS&TASKEPRIO. For internal purposes of MPPS.,
all identifiers are extended to their full qualification. If
this 1is not possible in a unique way, an error message is
generated.

3. Lanquage Definition

3.1- Overview

ModPascal has been developed to support the hier w chicals
verifiable design of programs. Pascal has been choosen as
basis for a Language extension because many ideas of
structured programming have influenced its design, and it
supplies the programmer with a set of Language constructs that
is regarded as standard for a procedural, non-concurrent
Language. Additionally, Pascal has gained wide recognition in
industrial software develLopments and its choice as target
Language of the ISDV-System will dincrease the systems
acceptance and applicability concerning industrial problem
domains.

ModPascal comprehends Pascal as defined in [ISO 7185].
Therefore all written Pascal programs following that standard
will be accepted by MPPS, and already done program work may be
incorporated via DMS. Furthermore, ModPascal allows

module type definitions

enrichment definitions
instantiation definitions
instantiate type definitions
variable declarations of module type
invocation of module operations

In Standard Pascal, each program consists of a ‘'program
heading' and a ‘'block’', and each 'block’ contains a
'type-definition-part' (the quoted entities represent
nonterminals of the Pascal grammar given in [ISO 7185]). 1In
ModPascal programs may also employ module types, enrichments.
instantiations and instantiate type definitions so the
'‘type/enrichment/ instantiation-definition-part' (nonterminatl
of the ModPascal grammar; see 3.5.) has to be introduced.

October 84 ModPascal ~Report

ModPascal 3.2. Modules Page 12

Using EBNF the grammatical description is:

<type/enrichment/instantiation=-definition=-part> ::=
{<type/enrichment/instantiation-definition>}*
<type/enrichment/instantiation-definition> ::=
<type-definition> | <enrichment-definition>]|
<instantiation-definition>

and refining <type-definition>

<structured-type> ::= <module-type> | <instantiate-type> |
<unpacked-structured-type>
PACKED <unpacked=structured=type>

In the ‘type/enrichment/instantiation-definition-part’ the
object definitions may be given in arbitrary order if they
ohey Sta.n . ascal rules as "declaration-before-use" or
rultes for pointer type definitions. As pointed out in the
introduction and section 1. the set of visible obgjects
encloses not onLy the objects defined . in the
‘type/enrichment/instantiation=definition=part' but also those
being refered to via the DMS. For the correcthess of the
'type/enrichment/instantiation- definition-part' it is crucial
that the referenced objects of the data base are correct;
otherwise a semantic error occurs. The conditions for module
type, enrichment and instantiation definitions are given in
seC. 3.2., 3.3. and 3.4. The 'variable-declaration-part' is
extended to handle module type variable declarations (see sec.
3.2.3.)» and those portions of the
procedure-and-function-declaration part that concern procedure
and function calls are modified to catch invocations of modulLe
operations (see sec. 3.2.4.).

The rest of Pascal is Left unchanged. The full ModPascal

grammar is given in sec. 3.5. For the underlLaid semantics of
ModPascal see [OLt 84al.

3.2. Modules
2.1 Syntax

Modules are introduced as special feature of the Standard
Pascal type definition scheme:

<type=-definition> ::= <identifier> = <type>
<type> ::= <simplLe-type> | <structured-type>
<pointer-type>

<structured=type> ::= <unpacked=structured-type>
PACKED <unpacked-structured-type>
<instantiate-type> | <modulLe-type>

<module=type> ::= MODULE <usepart> <publicpart>

<Localpart> {<modproc/modfuncpart>} <initpart> MODEND

<usepart> ::= USE <uselist>

<uselist> ::= <identifier-List>

<publicpart> ::= PUBLIC <publiclist>

October 84 ModPascal -Report

ModPascal 3.2.2. Static Semantics of Modules Page 13

<publiclist> ::= <publicoperationdcL> |
<publicoperationdcl> ; <publiclist>
<publicoperationdcl> ::= <procedureheading>
<functionheading> | <initialheading>
<localpart> ::= LOCAL {<localtypedefpart>}<LocalvardcLpart>
{<lLocaloperationspart>} LOCALEND ;
<lLocaltypedefpart> ::= <type definition part>
<lLocatvardclpart> ::= <variable-declLaration-part>
<Localoperationspart> ::= <lLocaloperationlList> ;
<lLocaloperationlist> ::= <lLocaloperationheader> | :
<Localoperationheader> ; <LocaloperationlList>
<Localoperationheader> ::= <procedure-heading>
<function-heading>
<modproc/modfuncdclpart> ::= <modproc/modfuncdcllist> ;
<modproc/modfuncdcllist> ::= <modproc-or=-modfuncdclL>
<modproc=-or-modfuncdcl> ; <modproc/modfuncdcllist>
<modproc-or-modfuncdcl> ::= <modprocdclL> | <modfuncdcl>
<modprocdcl> ::= PROCEDURE <identifier> ; <block>
<modfuncdcl> ::= FUNCTION <identifier> ; <block>
<initpart> ::= <initdcllist> ;
<initdecllist> ::= <initdcl> | <initdcl> ; <initdcllist>
<initdcl> ::= INITIAL <identifier> ; <bic~k>

(For the entire ModPascal syntax., see sec. 3.5.)

3I.2.2-. Static Semantics of Modules

The semantic correctness of a module type definition is
determined by the correctness of its constituting parts and

its interface correctness:

CMO:
module type definition correct &

publicpart correct

Localpart correct
modproc/modfuncdclpart correct
initpart correct

interface correct

> > > >

CM1: usepart correct

The usepart of a module type definition defines a relLation R,
between the current object and the used ones. This relation
can be extended to its closure R, that reflects alLl direct and
indirect used obgjects.

Def 3.2.2.=-1 [R,]

Let M be a module type definition with used objects U={u,.,

October 84 ModPascal =Report

ModPascal 3.2.2. Static Semantics of Modules Page 14

ceer U,}. Then

RU(M) = {(MIUI)' sseal (M’u")}
denotes the use-relation induced by M. If U is empty, then
R,(M) is the empty set. n

Def 3.2.2.-2 [R,]

Let M be a module type definition with R,(M) as above.
Then R, (M) denotes the Least relLation with

a) if (a,b) € R, (M), then (a,b) € R,(M)

b) if (arb) € R, (M), then R,(b) ¢ R,(M)

R,(M) is called the clLosure of R, (M) .]
Modutes may not use themselves; that forces R, to be
cyclefree:

Def 3.2.2.-3 [cycle, cyclefreel

A cycle C of R,(M) is defined by
a) C ¢ Ry(M)
b) Let |C] = ns C = {(uysuy s weusr C(u,»u,)X
then vi € {1, asaar N=12.(U; " = U;4,) and (u; = u, ")

c) C is minimal with respect to b)

CY(R,(M)) denotes the set of cycles of R,(M). R, (M) is called
cyclefree if CY(R,(M)) is empty. n

CM1:

usepart correct <&

all used objects in R, are DMS-visible and correct
A~ R, 1s cyclefree

CM2: publicpart correct

The publicpart of a module type definition introduces onLy the
headings (= operation names, formal parameters and formal
parameter types) of those operations that are public, i.e.
operations that can be invoked from other objects. There are
no other items (e.g types, variablLes) in the public clause.

The publicpart comprises three kinds of headings: procedure-.,
function- and initial-headings. The definition of at Least one
initial operation is mandatory since they are necessary for
initialization of module variables. Comparing the structure of
the operation headings in the publicpart, the main difference
lies in the involvation of an implicit formal parameter of the
current module type. When called, public operations transform
the state of a specific module variable (procedures)., extract

October 84 ModPascal -Report

ModPascal 3.2.2. Static Semantics of Modules Page 15

information of the state of a specific module variable
(functions) or assign initial values to a specific variable
(initials). In the case of procedures and functions the formal
parameter on which the operation is performed is not mentioned
in the operation heading. Whenever the operation is called it
has to be supplied with an appropriate variable of the current
module type which is distinguished from other possible formal
parameters of the current module type by syntactic means and
which is the specific variable on which the operation is
performed (see sec. 3.2.4.). In the case of initials, the
treatment is slLightly different (see sec. 3.2.3. and 3.2.4.).

The conditions for parameter Lists below impLy that no
function or procedure parameter type may be declared in
parameterlists of public operations of a module type
definition, although other occurrences (e.d. inside the
operation definition blocks, or main program (see sec. 5.1.))
are allowed in ModPascal. The reason is, that interfaces of
objects should contain objects too, and not only operations.

CM2:
publicpart correct <

all procedure headings correct
~ all function headings correct
A all initial headings correct
A at Least one initial heading occurs

CM21: procedure heading correct

Def 3.2.2.-4 [UM), U'(M)]

Let M be a modulLe type definition with closure use relation
Ro (M) .
Then _
U(M) := {a] 3(ob, ,0b,) € R,(M).(0ob,=a v ob,=a))
is called the set of used objects of M .
Note: M € U(M).

The set
U'(M) := {ob] ob € U(M) ~ ob is modulLe type}
is called the set of used modules of M. n

U'(M) enclLoses all those objects which allow declaration of
variables.

ALL parameter types of the procedure heading have to be
contained in U'(M).

October 84 ModPascal -Report

ModPascal 3.2.2. Static Semantics of Modules Page 16

CM21:
Procedure heading correct <&
the procedure identifier is unique in the module type

definition
A all parameter types are contained in U'(M)

CM22 : function heading correct

CM22:
function heading correct <<

the function identifier is unique in the module type
definition

a all parameter types are contained in U'(M)

~ the result type is contained in U'(M) \ {M}

CM23: initial heading correct

CM23:

initial heading correct <

the initial identifier is unique in the module type
definition
A all parameter types are contained in U(M) \ {M)

CM3: Localpart correct

The Localpart introduces types, variables, functions and
procedures whose scope is restricted to the current module
type definition. The onlLy allowed occurrence of Local items is
inside the operation definitions of the modfunc/modproc- and
the initpart. The Localvardclpart is mandatory because the
underlaid semantics of modules depend stronglLy on it.

CM3:
Localpart correct <

Localtypedefpart correct
~ Localvardclpart correct

October 84 ModPascal -Report

ModPascal 3.2.2. Static Semantics of Modules Page 17

~ Localoperationpart correct
~ at Least one Local variable is declared

CM31: Localtypedefpart correct

To enforce modular programming in hierarchical structures, the
onlLy allowed nesting mechanism for modules is by occurrence in
use-clauses. Therefore, modulLe type definitions are the
"smallest™ modular Language constructs in ModPascal (in
analogy to algebraic specifications in abstract data type
theory) and they do not permit Local module type definitions.
The spectrum of admissablLe type definitions in the
Localtypedefpart is spanned only by Standard Pascal types and
type generators (see sec. 4.).

CM31:
Localtypedefpart correct <

no module type definition occurs

~ introduced type identifiers are unique in the
environment of the modul type definition

A~ all employed types are introduced either in
the current Localtypedefpart or are contained
in UM \ {M)

CM32: Localvardclpart correct

For semantical reasons, the Local variables are extremly
important to assign an appropriate meaning to a module type
definition. The variable declarations follow the extended
scheme as given in sec. 3.2.5., i.e. declarations of variables
of arbitrary explicit type and declaration of variables of
implicit, non-module types. The reason to forbid implicit
module types is the same as given in CM31.

CM32:
Localvardclpart correct <=
alLl variables are either contained in

U'(M) \ {M> or are implicit non-module types
~ all variables are unique

October 84 ModPascal -Report

ModPascal 3.2.2. Static Semantics of Modules Page 18

CM33: Localoperationpart correct

SimiLar to the public part, the Localoperationpart introduces
onLy operation definitions., but without implLicit formal
parameters of the current module type, since Local operations
cannot be called on module variables.

CM33:
Localoperationpart correct <

all function headings are correct
~ all procedure headings are correct

CM331: function heading correct

CM331:
function heading correct <
all parameter types and result types are

either in U'(M) or are Local types
a the function identifier is unique

CM332: procedure heading correct

CM332:
procedure heading correct <&
all parameter types are either contained in U'(M)

or are Local types
~ the procedure identifier is unique

CM4: modproc/modfuncdctipart correct

Up to now all operations have onLy been introduced by giving
their headings. In the modproc/modfuncdclpart the bodies of
just these public and Local procedures and functions are
defined.

October 84 ModPascal =-Report

ModPascal 3.2.2. Static Semantics of Modules Page 19

CM4:

modproc/modfuncdclpart correct &=

for each public and each Local operation there is
exactly one body declaration

A no other body declaration occurs

~ all modprocdclL are correct

A~ all modfuncdclL are correct

CM41: modprocdcl correct

A modprocdclL does not repeat the formal parameters and their
types. It introduces either the body of a publLic or a Local
procedure. In the publLic case it allows for a Standard Pascal
block=structure with some modifications due to the fact that
module type variables and operations on ther may occur in the
procedure body. Public operation calls and occurrences of
Locally declared items are allowed in a modprocuc.. The
distinction on which module variables operations are performed
is made by syntactic measures. Standard object operations (see
sec.4.) are treated specially. In the Local case additionally
no invokation of the Local operation on a specific module
variable i1is allowed, since Locals generalLly refer to the
variable of the original public operation call.

The Pascal correcthness conditions are omitted.

CM41:

modprocdcl correct

global variables are restricted to the Local vari-
able set of the current modulLe type definition

A~ each call of a publLic operation of the current
module in prefix notation refers to that modulLe
variable on which the original procedure call is
performed

A all Local operations are called in prefix notation

A visible items are alLl public and Local items of the
current definition without initials., all public
items in objects contained in U(M) and all formal
parameters

A operations of standard types occur in the notation
that is given by Standard Pascal

A initial operation calls occur onlLy in varlabLe
declarations.

October 84 ModPascal -Report

ModPascal 3.2.2. Static Semantics of Modules Page 20

CM42: modfuncdcl correct

A modfuncdcl does not repeat the types of the formalL
parameters and the result type. It introduces either the body
of a publLic or a Local function. In the public case it allows
for a Standard Pascal block structure with some modifications
due to the fact that module type variables and operations on
them may occur in the function body. PublLic operation calls
and occurrences of Locally declLared items are allowed in a
modfuncdcl. The distinction on which module variables
operations are performed 1is made by syntactic measures.
Standard object operations (see sec.4.) are treated specially.
In the Local case additionally no invokation of the Local
operation on a specific module variable is allowed, since
Locals generally refer to the variable of the original public
operation call.

If the function body does modify the Local variable values.,
this causes no side effects to the environment. By the
ModPascal semantics this manipulation is kept Locally in the
body elaboration, and the generated executable code uses
appropriate value parameter (see sec. 2. in [RL 85] and [OLt
84al).

The remaining Pascal correctness conditions are omitted.

modfuncdcl correct <&

global variables are restricted to the Local vari-
able set of the current module type definition

~ visiblLe items are alLl public and Local items without
initials of the current modulLe type definition.,
public items contained in U(M) \ {M} and all formal
parameters

A each call of an operation of the current module
type definition in prefix notation refers to that
module variable on which the original function call
is performed

A~ all Local operations occur in prefix notation

A operations of standard types occur in the notation
that is defined by Standard Pascal

~ initial operation calls occur only in variable
declarations

CM5: initpart correct

The initpart defines operation bodies for Jjust those initial
operations whose headings have been given in the public part

October 84 ModPascal -Report

ModPascal 3.2.2. Static Semantics of ModulLes Page 21

of the current module.

CMS5:
initpart correct &

for each initial operation there is exactly one
initdctl

A no other initdcl occurs

A~ all initdcls are correct

CM51: initdcl correct

An initdcl does not repeat the formal parameters and their
types. It allowes for a Standard Pascal blLock structure with
modifications due to the fact that module type variables and
operations on them may occur in the initdcl. Calls of public
operations of the current module type dJafinition are not
allowed (this includes invokations of other initials oF the
current module type definition). Local items are as well
visible as public items of U(M). Since initials can onlLy be
called in variable declarations (see sec.3.2.3.), the variable
on which the dinitial operation is performed is taken from
there. Standard object operations are treated specially (see
sec. 4.).

The Pascal correctness conditions are omitted.

initdclL correct &

global variables are restricted to the Local vari-
able set of the current module type definition

A visible items are alLl Local items of the current
module, all public items in U(M) and alLl formal
parameters

A Local items occur in prefix notation

~ operations of Standard Pascal types occur in their
usual notation

A initial operation calls occur onLy in variable
declarations

October 84 ModPascal =Report

ModPascal 3.2.3. Variable DeclLarations Page 22

CMé: interface correct

The interface correctness of a module encloses conditions on
the correct occurrence of object identifier and on the correct
call inside operation definitions of operations imported from
other modules. For the Latter, interface correctness is
closely related to correctness of module operation calls (see
sec. 3.2.4.).

Because of the semantics of the use clause of a module, the
set of admissable imported type identifiers occurring inside
operation definitions is restricted to the set U(M) of used
objects of M. In the case of used enrichments, this set
contains the addpart type identifier (see 3.3.). OnlLy visible
operations may be invoked; these are the public and Local
operations of the current module and the public operations of
all used objects. Each call has to satisfy the conventions in
number and types of actual parameters that have been imposed
by the operations definition.

interface correct <<

all types occurring without definition in operation
bodies have to be contained in the use closure

~ all operation calls occurring without operation
definition in operation bodies have to be either
defined in the current module or visible public
operations of some used object

A the arities of the calls coincide with the arities
of associated definitions

3.2.3, Variable Declarations

The object oriented design of ModPascal considers each type of
the Language as an autonomous object. This is clear for module
type definitions, but it also enclLoses the Pascal standard
types Like BOOLEAN, INTEGER etc. or standard type generators
Like array, record etc. For convenience, in ModPascal the
standard objects are treated identically to Pascal. Therefore
type definitions, variable dectarations and operations on
instances of these types have been Left unchanged (see sec. 4.
for the involvement of standard objects).

The user=defined, non-standard types are the module types
(enrichment do not define a new type). Every module is
considered to have an internal state, that is exclusively
changeable/accessable by the public operations of it. Module
incarnations may be generated via variable declarations. To
provide a modulLe variablLe with an dinitial state., the
<module-variable-declaration> construct has been introduced in
ModPascal:

October 84 ModPascal-Report

ModPascal 3.2.4. Operation Calls Page 23

<general-variable-declaration> ::= <standard-variable-decla-
ration> | <modulLe-variablLe-declLaration>
<module=variablLe-declLaration> ::= <identifier-List>

<module-identifier> # <initial=-operation-call>

The <identifier-List> gives a set of variablLe identifiers that
serve to denote the incarnations. The <module-identifier>
indicates the module type to be incarnated. The mandatory
<initial-operation=call> invokes one of the initial operations
of <module-identifier> to assign an initial state to each
module variable of <identifier=-List>.

CV1:
module variable declaration correct <

the module type is DMS-visible and correct
A the initial operation is public in the module type

Initial operations are onLy allowed in variable declarations -
Otherwise, at any point of a program elaboration a modulLe
variable might be ‘'reset' to an initial state - a possibility
that is highlLy unwanted if modules and abstract data types and
their relations are considered. As pointed out in the
introduction, ModPascal has been designed as part of an
integrated software development and verification system, in
which abstract data types are used intensively. Therefore
ModPascal forbids initial operation calls outside module
variable declarations.

Example 3-1
A QUEUE variable (see Example 1-1) may be declared by

var Q:QUEUE # EMPTYQUEUE ;

3.2-4-. Operation Calls

To emphasize the object orientedness of ModPascal., special
notations and features have been introduced for working with
module incarnations

® extended dot notation for module operations
® Left-hand-side module function occurrences in assignments

October 84 ModPascal -Report

ModPascal 3.2.4. Operation Calls Page 24

3-2.4.1. Syntax

a) <procedure-statement> :

= <operation-designator>
<operation-designator> ::

:= <designator-List> | <operation-
designator> . <designator-List>
<designator=-List> ::= <identifier>
<identifier> (<act=-parm=-List>)

b) <expression> ::= ... | <factor>
<factor> ::= ... | <operation-designator>
c) <assignment-statement> ::= <assign-structure> :=
<expression>
<assign=-structure> ::= <compound=-variable>

<referenced=-variable>
<operation-designator>

(For the complLete ModPascal grammar, see sec. 3.5.)

3.2.4.2. Static Semantics of Operation Calls

Admissable operation calls in ModPascal may be either Standard
Pascal operation calls or module operation calls. The former
folLlow the same syntactic and semantic conditions as in
Pascal, while the Latter are based on specific notations and
semantics.
The general invocation form for module operations is the
so-called 'dot notation':

<identifier> . <operation-calLl>,
where <identifier> has to be a variable of a module type.
Additionally the <operation-call> has to contain an invokation
of a public operation of the module type of <identifier>.

The effect of the invocation depends on the operations type:

e if the <operation-call> contains a module procedure call.,
then the module incarnation <identifier> is modified by the
body of the procedure.

e if the <operation-call> contains a modulLe function calLl.,
then the module incarnation <identifier> is Left unchanged;
only information of the functions value type is extracted.

This coincides with the view of procedures as 'state
transforming operations' and functions as 'state observing
operations'.

Example 3-=2
From Example 1-1 we get calls

q.ENTER(T) (1)
q.LEAVE (2)
q.NEXT (3)
(1) ,(2) modify q, (3) extracts information. xn

Beside the general invocation form, ModPascal provides an

October 84 ModPascal -Report

ModPascal 3.2.4. Operation Calls Page 25

‘extended dot notation'. This covers cases when operation catll
sequences on the same module incarnation or calls on component
modules of a given incarnation have to be programmed. Instead
of repeating the relLevant module variabLe or assigning a
component module to auxiliary variables before executing the
operation of interest, the operation calls may be sequenced by
using the ‘dot' as delimiter:

<variable=-identifier> . <operation-call;> <operation-
calLl,>

'‘dot' 1is Left associative; so the sequence is elaborated by
first applying <variable=identifier>.<operation-call, >,
according to the general invocation forms. The resulLt is
passed to <operation-call,>:
@ <variable=identifier>, if a procedure had been invoked in
<operation-call, >
® a component of <variable-identifier>, if a function had
been invoked in <operation=-call, >
Then <operation-call,> is elaborated, and so on.
At each step it has to be checked, whether incarnation and
operation are compatible. That is, if the operation is public
operation in the incarnations module type.
If an operation call in extended dot notation occurz -+ the
Left-hand=-side of an assignment, then <operation-calLl,> has to
be a function call. Since dot notation is restricted to
structured type operations this ensures that always an
appropriate substructure of an existing object is evaluated.

Example 3=3

a) q.ENTER(T,);q.ENTER(T,); q.ENTER(T,)
may be expressed as
q.ENTER(T,) .ENTER(T,) .ENTER(T,)
b) T := q.NEXT; ... ; T.PRIO ...
may be expressed as
eas q.NEXT.PRIO ...
c) q.ENTER(T,) .NEXT := T,
denotes an assignment with Left-hand=-side consisting of a
dot notated functional expression.
n

Extended dot notation may also be used for mixed sequences of
module procedure and module function calls. But one should be
aware, that even if the whole construct evalLuates to an
expression, it might have had side effects coming from
intermediate modulLe procedure calls.

Remark: Extended dot notation also inclLudes access functions
on the standard type generators array., record, file.,
set of Pascal:

October 84 ModPascal -Report

ModPascal 3.2.5. Error Operations Page 26

Let
A = array [1..10]1 of INT
R = record f1:A, f2:A end
QUEUE(R) denotes the module of examplLe 1-1, but
using R
q= QUEUE(R) # EMPTYQUEUE;
then

q-ENTER(r) .NEXT.f1L5]
is an admissable expression.
(for standard objects see sec.4.)

C0C1:

module operation call correct:

the variable on which the operation is called is of
module type
a) [dot notationl:

A~ the operation is public in that module
b) [extended dot notationl:

A by elaboration of the sequence of calls from Left to
right, it holds: each operation is public in the
preceding module resp. resulting structure

A the operations actual parameter types and their
number coincide with the formal parametertypes and
their number in the operation definition

3.2.5. Error Operations

A ModPascal module object posseses an internal state that is
expressed by the values of its Local variables. To specify
undefinedness the programmer may use standard error operations
that include also exception handling processes Like error
propagation. An undefined module object is a modulLe object
where the value of every Local variable is undefined. To each
module type definition with type identifier M two operations
are implicitely generated:

M&ERRORPROCEDURE

M&ERRORFUNCTION
Both are invokable without parameters, and their object types
(procedure, function) are indicated by their names. If an
error operation is called the normal evaluation process is
interrupted. If an expression contains an error function call.,
then an error object of the expression type is generated as
expression value. If a statement List contains an error
procedure call then the value of the module variable on which
the error procedure is invoked is set to the undefined module
object.

Error operations are public operations of the associated
module type definition and obey the same rules as given 1in
3.2.2.

October 84 ModPascal -Report

ModPascal 3.3. Enrichments Page 27

Example 3-4

a) The publLic procedure ENTER of example 1-1 contains an
application of an error procedure.
b) Let var Q: QUEUE#EMPTYQUEUE denote a variable declaration.
Then
Q@ := QUEUEZERRORFUNCTION
is an application of the QUEUE error function.

3.3. Enrichments

Enrichments introduce new operations for previously defined
modules. They allow programmers to augment module operation
sets in specific environments.

Enrichments have been introduced in ModPascal to allow
programmers the specification of objects that solely introduce
operations instead of operations and data (as modules do).
This corresponds to abstract data type theory where algebraic
specifications may have empty sort clauses (see ASPIK ([BV
831) or [ADJ 78]). Therefore, it is not possible to declLare
variables of enrichment type since no set of values is defined
by the enrichment definition. Enrichments may be used, and
they extend the set of public operations for already uefined
modules. As a conseqguencer, on a variable of a module type the
operations of the enrichment may be executed if the enrichment
is wvisible and if the operation is associated to that modulLe
(see below).

2.3.1. _Syntax

An enrichment definition may occur in the
<type/enrichment/instantiation=-part>.

<enrichment-definition>::= ENRICHMENT <enrichment-identi-
fier> USE <object=List> IS
<addpart> ADDEND
<operation-definition-part> ENREND
<object-List>::= <identifier> | <identifier> , <object-List>
<addpart>::= <addition> | <addition> <addpart>
<addition>::= ADD <identifier> <public-List>
<operation-definition-part>::= <operation-definition> |
<operation-definition> <operation=-definition=List>
<operation-definition>::= <modprocdclL> | modfuncdclL> |
<initdcl>

Remark: 1) For <public=-List>, <modprocdclL>, <modfuncdcl>.,
<initdcl> refinement., see 3.2.1.
2) For the entire ModPascal syntax, see 3.5.

3.3.2-. Static Semantics

The correctness of an enrichment definition is determined by
the correctness of its constituting parts and its interface
correctness.

October 84 ModPascal ~Report

ModPascal 3.3.2. Static Semantics Page 28

CEQ:
enrichment definition correct <

usepart correct
A addpart correct
A operation-definition-part correct
~ interface correct

CE1: usepart correct

The usepart of an enrichment definition contains all objects
(modules., enrichments) that are used by the current
definition. The publLic items of the used objects may occur in
the current definition. The correctness of the usepart depends
on simiLar criteria as useparts of modules (DMS=-visibility and
cyclefreeness). The definitions 3.2.2.-1,2,3 (R, Ry »
cyclefreeness) take over analogouslLy for the use-clause of
enrichments.

CE1:

usepart correct &

all obgjects in R, are DMS-visible and correct
~ R, is cyclLefree

CE2: addpart correct

The enrichment definiton does not introduce a new type.
Therefore, all operations defined by an enrichment are not
implicitely associated with some modulLe type (as it is true
for operations defined by a module type definition). On the
other hand, there has to be a unique association of each
operation to some module type since

@ ModPascal is strongly typed; for example, evaluating a
functional expression requires information of parameter and
value types;

® the enrichment operations will be invoked on specific module
incarnations, and to check the correctness of the module
operation call it is necessary to know the associated module
type operation (see also sec. 3.2.4.).

The addpart of an enrichment provides the means to assign a
specific module to a set of newly introduced operations in
form of a List 'additions'.

If no addition is specified the enrichment definition 1is
semantically equivalent to its usepart.

October 84 ModPascal -Report

ModPascal 3.3.2. Static Semantics Page 29

addpart correct <

all additions are correct

CE21: addition correct

An addition extends the set of public operations of a specific
module object. This object has to be contained in the use
closure of the enrichment definition. In the addition., onLy
headings of operations are given, whereas the operation bodies
are defined in the operation definiton part. This separation
is analogous to module type definitions.

The nonempty List of function, procedure and initial headings
represent the public part of an addition. Again, each heading
involves an implLicit first formal parameter of that type to
which the addition is dedicated. When invoked., public
operations transform the state of a specific module variable
(procedures), extract information from the ctate of a specific
module variable (functions) or assign initial values to a
specific variable (initials). This variable of interest i1is the
actual value of the above mentioned implicit formal parameter.,
and a special invocation form ('dot-notation') was introduced
to emphasize this concept of action (see sec. 3.2.4., for
initials 3.2.3.).

CE?21:
addition correct <<

the object of addition is contained in R, and of
module type

the public List is nonempty

alLlL procedure headings are correct

all function headings are correct

all initial headings are correct

> > >

CE211: procedure heading correct
For the correctness conditions, definitions 3.2.2.-4 and
3.2.2.-5 take analogouslLy over for an enrichment definition E.

A procedure heading is correct if the procedure identifier is
unique as well in the union of additions of E as in the module
type definition to which it is associated by the addition. The
first condition reflects the fact., that an enrichment
operation may be used in the definition of an arbitrary other
operation. Even if strong typing of ModPascal would allow for
name conflict resolution, overlLoading of enrichment identifier
was disregarded, since abstract data types of the ModPascal
environment do not support ambiguous identifier (see [SPESY
851). AlLso alLl parameter types have to be contained in U'(E).

October 84 ModPascal -Report

ModPascal 3.3.2. Static Semantics Page 30

CE211:
procedure heading correct <>
the procedure identifier is unique in the enrichment

and the associated module type definition
A all parameter types are contained in U'(E)

CE212: function heading correct

CE212:
function heading correct &<
the function identifier is unique in the enrichment

and the associated module type definition
~ all parameter types are contained in U'(E)

CE213: initial heading correct

CE213:
initial heading correct <=

the initial identifier is unique in the enrichment
and the associated module type definition

A all parameter types are contained in U'(E)

A Nno parameter type is the associated module type

CE3: operation definition part correct

In the operation definition part all operations., upto now only
introduced by headings, have to be compLeted in arbitrary
order by giving the body definitions. The correctness is
derived from the constituting parts of the operation
definition part.

CE3:

operation definition part correct &

for each introduced operation of the addpart there
is exactLy one body definition

no other body definitions occur

all module procedure declarations are correct

all module function declarations are correct

all initial declarations are correct

> > > 2

October 84 ModPascal -Report

ModPascal 3.3.2. Static Semantics : Page 31

CE31: modprocdclt correct

The correctness conditions for modprocdclL inside an enrichment
are very similar to those for modprocdcL inside module type
definitions. The set of Locally declared items is now the set
of Locally declared items of the addition object, and the set
of visiblLe items also includes all operations of the current
enrichment.

CE31:

modprocdcl correct

CM41 (with obvious substitutions for
the enrichment case)

~ all operations of the enrichment are visible inside
the procedure body

CE32: modfuncdcl correct

The correctness conditions for modfuncdcl inside an enrichment
are very similar to those for modfuncdcl iiizide module type
definitions. The set of Locally declLared items is now the set
of Locally declLared items of the addition object, and the set
of visible items also includes allL operations of the current
enrichment.

CE32:

modfuncdcl correct <&

CM42 (with obvious substitutions for
the enrichment case)

~ all operations of the enrichment are visible inside
the function body

CE33: initdcl correct

The correctness conditions for initdclL inside an enrichment
are very simiLtar to those for initdcl inside module type
definitions. The set of Locally declared items is now the set
of Locally declared items of the addition object, and the set
of visiblLe items also includes all operations of the current
enrichment, except of those associated to the addition object.

CE33:

initdcl correct &

CM51 (with obvious substitutions for
the enrichment case)

A~ all operations of other additions of the enrichment
are visible inside the initial body

October 84 ModPascal -Report

ModPascal 3.4. Instantiations/Instantiate Types Page 32

CE4: interface correct

The interface correctness of an enrichment encloses conditions
on the correct occurrence of object identifier, and the
correct call inside operation definitions of operations
imported from other additions or objects. Interface
correctness is closely related to the correctness of module
operation calLls (see sec. 3.2.4.). According to the semantics
of the wusepart of an enrichment, the set of admissable
imported type identifiers occurring inside operation
definitions is restricted to objects of the closure set of the
use relation of the enrichment (as generated by definition
3.2.2.=5 for enrichments). This set contains also the addition
types of the current enrichment.

OnlLy visible operations may be invoked, that are the public
and Local operations of the current addition type, all
enrichment operations of the current enrichment, and aLl
publLic operations of the used objects. If some used object is
itself an enrichment, then its public operations are all
operations defined by it.

Each operation call has to satisfy the conventions in number
and type of actual parameters that have been imposed by the
operations definition. ~

CE4:

interface correct <<

alLl types occurring without definition in operation
bodies have to be contained in the use closure

A~ all operation calls occurring without
definition of operation bodies have to be either
defined in the current enrichment or visible public
operation of some used object

A~ the arities of the calls coincide with the arities
of associated definitions

3.4. Instantiations and Instantiate Types

The instantiation concept provided by ModPascal may be
characterized as a static actualization of arbitrary
substructures of object hierarchies by user defined
actualizations. The concept is partioned into the
instantiation construct and the instantiate type definition.
The former establishes a new kind of objects in a procedural
programming Language: mappings between program identifiers.,
possibly hierarchically structured. The Latter may be seen as
type generators Like arrays or records, but the generation is
directed by user defined instantiations. Result type of an
instantiate type definition is always an already existing but
possibly modified type.

October 84 ModPascal =-Report

ModPascal 3.4.1. _Syntax of Instantiations Page 33

3.4.1. Syntax of Instantiations

As described in sec. 3.1. instantiations occur in a ModPascal
program within a common object definition part
(<type/enrichment/ instantiation-definition-part>), where the
different kinds of object definitions may be given in
arbitrary sequence (as Long as declaration-before-use is
respected) . The syntactical structure of instantiations is :

<instantiation=definition> ::= INSTANTIATION <instanti-
ation-header> <instantiation-body> ENDINST ;
<instantiation-header> ::= <identifier>
<instantiation-body> ::= <usepart> | <actualizationpart> |
<usepart> <actualizationpart>
<use=-part> ::= USE <object-List> ;
<object-List> ::= <object-identifier> | <object-List> .
<obgject-identifier>
<actualizationpart> ::= IS <actualization>
<actualization> ::= <object-actualization> {<type-actualiza-
tion>} <operation-actualization>
<object=actualization> ::= <object=-actualization-List> ;
<object=-actualization=-List> ::= <o=-actuali.~tion-clLause>
<object-actualization-List> , <o=-actualization-clause>
<o=-actualization=clLause> ::= <object=-identifier> BY
<object=-identifier>
<type=-actualization> ::= TYPES <type-actualization-List>
<type=-actualization=-List> ::= <t-actualization-clause>
<type=-actualization=-List> , <t=-actualization=-clause>

<t-actualization-clause> ::= <object-identifier> = <object=
<identifier>
<operation-actualization> ::= OPERATIONS <operation-actu-

alization=tList> ;
<operation-actualization-List> ::=<op-actualization-clause>|
<operation-actualization-List> .,
{op=-actualization-clause>
<op=-actualization=-clause> ::= <operation-identifier> =
<operation-identifier>

(For the complete ModPascal syntax, see sec. 3.5.)

3.4.2. Static Semantics of Instantiations

An instantiation definition is correct, if its constituting
parts are correct, and if the instantiatian header introduces
an obgject identifier that is unique with respect to
DMS=-visible object identifier (see Def. 2.3.1.).

The instantiation body contains either a usepart., an
actualizationpart or both. In the first case, onlLy a new name
is dintroduced for a collection of existing instantiation
objects, 1in the second case a signhature morphism (see below)
is stated that is not based on any other object, and the third
case represents the hierarchical definition of an
instantiation based on existing instantiation objects.

October 84 ModPascal -Report

ModPascal 3.4.2. Static Semantics/Instantiations Page 34

CI1
instantiation definition correct <<
at lLeast a usepart or an actualizationpart occurs

A usepart correct
~ actualizationpart correct

CI?2 : usepart correct

Via the use clause of an instantiation, the programmer may
refer to already defined instantiations and is enabled to
incorporate them in the current instantiation definition. The
correctness of the usepart depends on similar criteria as
useparts of modules and enrichments (DMS=-visibility and
cylefreeness). The definitions 3.2.2.-1,-2,-3 (R~ R »
cyclefreeness) take over for the use clause of instantiations.
In addition, the set of usable objects is restricted to
instantiation objects.

Instantiations define a mapping between objects and a mapping
between operations. On this the concept of signature morphism
is based.

Def 3.4.2.-1 [arity, signature morphisml
Let 0B, , OB, be sets of object names (modules, enrichments).,
and OP; denote the set of public operations of objects in OB;»
ie {1,2>.
1) A mapping A; : OP; > OB;* (nonempty strings over 0B;) is
called arity (i € {1,2}).
If A(op)=ob,o0b;...0b,r» then ob,...ob,_; are called the
source of op, and ob, the target of op.
2) A tuple (f,g) of mappings f:0B,—>0B,., g:0P,—>0P, is
called signature morphism, if
Vop € OP, with A, (op)=ob; ...0b, . A,(g(op))=f(ob,;)...f(ob,)

Remark : The arity of an operation is the string consisting of
aLlL parameter type and value type names. The
signature morphism property says, that the mapping
between operation names preserves the arity and is
compatible with the mapping between objects.

The usepart of an instantiation object generates a closure of
instantiation objects. By this also a 'closure' of signature
morphisms is generated that itself represents a signature
morphism.

Especially. this signature morphism has to respect the
hierarchical structure Lying on its set of source objects
(modules, enrichments). Hierarchy in this context means a
closure use relation R, induced by the use relation of an
object, and it corresponds to the notation of a directed
acyclic graph (see [OLt 84al for ModPascal hierarchies).

October 84 ModPascal-Report

ModPascal 3.4.2. Static Semantics/Instantiations Page 35

Then the condition for signature morphisms means that whenever
an object ob is mapped to another object ob* alLlL its
predecessors in the hierarchy will be modified to contain
occurrences of ob* solely. This restriction takes also over to
arities of operations: if arity(op)=ob, obob, —>ob, and
ob—>o0b* holds, then the modified arity is ob, ob*ob, —>ob, »
and the conservation of the second arity is examined in the
check of the sighature morphism property of the instantiation.

(The checking algorithm is described in [RL 851).

CI2:
usepart correct &

LL objects are DMS=visible and correct
« 1s cyclefree

ob € closure(ob) .type(ob)=INST

« describes a signhature morphism

Tl DI

A
N
la)

CI3 : actualizationpart correct

The actualization part consists of object=-, type- and
operation- actualization. The type actualization may be
omitted if all involved objects of the actualization are of
module type. Otherwise (if enrichments occur) the type
actualization serves to associate the objects occurring in the
enrichment to new objects of the actualizing enrichment.

The actualization part together with the usepart has to define
a signature morphism. The correctness of the usepart implies
this property for the used instantiations, so that onlLy the
newly introduced mappings have to be checked for signature
morphism property and consistency with used instantiations.
The obgJject-, type- and operation—-actualizations are given as
associations "id; by id,%¥ (objects) or "id, = id," (types:,
operations) where the Left-hand-side represents the actualized
and the right-hand-side the actualizing items.

CI3:

actualization correct <<

object actualization correct
A type actualization correct
~ operation actualization correct
~ the signature morphism property holds

CI31 : object actualization correct

The obgject actualization associates either DMS-visible modules
or enrichments. Cross association (of module with enrichment)
is not allowed since enrichments do not possess a unique type.

October 84 ModPascal -Report

ModPascal 3.4.2. Static Semantics/Instantiations Page 36

object actualization correct &

onlLy module or enrichment type objects occur
A objects are associated to objects of the same type
~ all occuring objects are DMS=-visible

CI32 : type actualization correct

The type actualization is a List of equations involving object
names that have to be read as "substitute the Left-hand-side
of the equation by the right-hand-side"™. OnLy module objects
may occur since enrichments do not introduce resp. possess an
own type (value set).

The set of types to be actualized (the Left hand sides of the
equations) has to be a subset of the set of types of the
actualized enrichments of the object actualization. If the
subset is proper, all missing types are assumed to be
actualized identically.

The set of actualizing types has to be a subset of the set of
types of the actualizing enrichments of the obgject
actualization.

CI32:
type actualization correct <<=

only visible module types occur

A actualized and actualizing types have to be types
of corresponding actualized and actualizing
enrichments of the object actualization

CI33 : operation actualization correct

In the operation actualization, all public operations of
actualized objects occurring. in the object or type
actualization have to be associated with public operations of
actualizing objects. If an operation is omitted it is assumed
to be actualized identically.

The given actualization has to define a signature morphism on
operations. Therefore., the arities of the associated
operations have to be checked using the object and type
actualtization of the current instantiation definition and the
signature morphism of the used instantiations (for the check
algorithm, see [RL 851).

October 84 ModPascal -Report

ModPascal 3.4.3. Syntax Instantiate Type Def. Page 37

CI33:
operation actualization correct &

only public operations of the actualized objects
are associated with public operations of the
actualizing objects

A~ the arities of associated operations obey the
signature morphism property

3.4.3. Syntax of Instantiate Type Definition

The instantiate type definition can be given inside the
<type/enrichment/instantiation-definition-part> as variant of
the type definition (see sec 3.5.)

<instantiate=-type> ::= instantiate <old=-object=-identifier>
by <object-List>
<object=List> ::= <instantiation-identifie: >

<object-List> , <instantiation=identifier>

3.4.4. Static Semantics of Instantiate Type Definition

The instantiate type definition provides the means to apply an
instantiation (=signhature morphism) to a specific object
(including its hierarchy). As result, a new object (with
possibly altered hierarchy) is created, in which all
modifications are performed that are induced by the
instantiation objects of the <object=List>. <object-lList> must
be nonempty, and each instantiation object has to define a
signature morphism. Furthermore, all instantiations together
have to describe a signature morphism (this 1is checked in
analogy to the correctness check of the usepart of an
instantiation definition; see CI2).

OnLy module or enrichment types may be instantiated by the
instantiate type definition, and the signature morphism will
only work correctly, if all its source objects are contained
in the hierarchy generated by <old-object-identifier>.

In generating an instantiated hierarchy of objects it might be
necessary to create new objects according to the signature
morphism requirement. The reason is, that objects might be
actualized (= substituted) by the signature morphism that are
Located somewhere in the hierarchy of <oldobject-identifier>.
In geheralt the actualized object has one or more predecessor
objects that use it (directly or indirectlLy). Now the
substitution means for each predecessor object that a modified
set of used objects i1is generated., and that possible
occurrences of operation calls of the associated operations of
the actualized object have to be substituted by associated
operations of the actualizing object. Therefore each

October 8& ModPascal-Report

ModPascal 3.4.4. Stat. Sem. Instantiate Type Def. Page 38

predecessor object is possibly modified itself. This process
is transitive: the predecessors of each predecessor of the
actualized obgject now use a modified object, so that they
themselves have to be modified (at Least exchange of elements
of the wuse-List)., and so on.In a chain reaction the
actualization of an object may Lead to a completely different
(but automatically generatable) hierarchy of objects.

Example 3-5
Consider the module hierarchy

and the instantiation

instantiation I is M. by M; ;
operations op., = ops ; instend ;

and the instantiate type definition that employs I:
type M, = instantiate M, by I ;

The primary effect of this definition is the substitution of
M, by Ms; 1in the M, hierarchy. But then M3 is no Longer
appropriate since it uses M, in its object definition and has
possibly occurrences of M, operations. So M; is generated
(name conventions are implemented in a similar manner) as a
copy of M; with exchanged use List and substituted operation
calls. Now the same argument is applicable to M, , resulLting in
Fi,» and finally to M, to vyield to #, as outcome of the
instantiate type definition. 5t

The treatment of implicit generated objects with respect to
the data base is dependent on user options. It is possible to
include them in the user specific data base (if further use is
intended), to hide them in the system managers data base (to
keep data bases free from 'technical' objects) or to declare
them as temporary objects that together with the explicit
generated objects will he deleted at the end of the session if
only testing is intended.

The details of the implicit object generation algorithm can be
found in [OLt 84al and [RL 85].

October 84 ModPascal~-Report

ModPascal

3.5. ModPascal Grammar Page 39

CIT1:

instantiate type definition correct &

<olLd=object~identifier> is either a module or
enrichment type
~ the elements of <old-object-List> are correct in-
stantiations and they describe a signature morphism
A all source objects of the sighature morphism are
contained in the hierarchy spanned by <olLd-object-
identifier>

3.5. ModPascal Grammar

This section documents the complete grammar of the Language.
The ModPascal programs are first precompiled into Pascal and
then compiled into executable code. The precompiler (see [ECK
84]1) has been implemented using a parser generating system for

LALR(1) grammars.
production have
accepted Language
The nhonterminals
<string> are not

Therefore, some modifications on the form of
been done to reach LALP(1) property. The
is not affected by the charnges.

<id>, <unsigned=-integer>, <unsignea-:.real>.,
refined; they are recognized by the scanner

of the precompiler.

<program>
<program-heading>

<identifier>

{program-parameters>

<identifier=List>

<block>

<label~-declLaration-part>

<lab=List>
<Lab>

<constant-definition-part>

<constant=definition=List>

<constant=definition> 5

<constant>

<unsigned-number>

<program-heading> <block> .
::= PROGRAM <identifier> (
<{program-parameters>) ;
<id>
<identifier-List>
:= <identifier> /
<identifier-=List> .,
<identifier>
<Label-declaration-part>
<constant-definition=part>
<type/enrichment/
instantiation-part>
<variable-declaration-part>
<subprogram-declarations>
<statement-part>
LABEL <bLab-List> ;
<tah> / <lLab=List> , <lLab>
<unsigned-integer>
:= CONST <constant-
definition-List> / <empty>
:= <constant=-definition>
/ <constant-definition>
<constant-definition-List>
<identifier> = <constant> ;
<unsigned-number> / <sign>
<unsigned-number> /
<identifier> / <sign>
<identifier>
<unsigned-integer> /

I un

e oer e an
o unu

{]

nn

October 84

ModPascal -Report

ModPascal

3.5.

ModPascal Grammar

Page 40

<sign>
<empty>

i

<unsigned-real>
+ / -

<type/enrichment/instantiation-part>

<type/enrichment/
instantiation-definition> /
<type/enrichment/instantiation-
definition> <type/enrichment/
instantiation-part> / <empty>

<type/enrichment/instantiation-definition>

<type=definition=-part>
<type-definition-List>

<type=definition>
{ttype>

<simple-type>
<{scalar-type>

<{subrange-type>
<structured-type>

<unpacked-structured-type>

<array-type>
<index-type-List>
<index-type>
<component-type>
<record-type>
<field=-List>
<fixed-part>
<record-section-List>

<record=section>

<field=-id-lList>
<variant-part>

nuu

H

nou muun

<type-definition=-part> /
<enrichment-definition> /
<instantiation-definition>

TYPE <type-definition-List> ;
<type-definition> /
<type=-definition-List> ;
<type-definition>

<identifier> = <ttype>
<simple-type> /
<structured-type> /
<pointer-type>

<scalar-type> / <subrange-type>
/ <identifier>

(<identifier-List>)
<constant> .. <constant>
<unpacked-structured-type> /
<instantiate-type> /
<module-type> / PACKED
<unpacked-structured-type>
<array-type> / <record-type> /
<set-type> / <file-type>

ARRAY [<index=-type=-List> 1 OF
<component-type>

<index-type> [/ <index-type> »
<index-type-List>

<simple-type>

<ttype>

RECORD <field-List> END
<fixed=part> / <fixed=-part> ;
<variant=-part> / <variant-part>
<record-section-List>
<record=-section> /
<record-section-List> ;
<record-section>
<field-id-List> :
<empty>
<identifier-List>
CASE <tag-field-identifier> OF
<variant-List>

<ttype> /

<tag-field-identifier> ::= <identifier> : <identifier> /
<identifier>

<variant-List> ::= <variant> / <variant-List> ;
<variant>

<variant> ::= <case-label=-List> : (
<field=List>) / <empty>

<case-lLabel=List> ::= <case=Label> /

October 84 ModPascal -Report

ModPascal 3.5. ModPascal Grammar Page 41
<case-lLabel=List> .,
{case=Label>

<case-Label> ::= <Lconstant>

<{set-type> ::= SET OF <base-=type>

<base=-type> ::= <simplLe=-type>

<file-type> ::= FILE OF <ttype>

<instantiate-type> ::= INSTANTIATE

<olLd=-object-identifier>
<i_obgject-List>

<instantiation-identifier> :

<module=-type>

<usepart>

<uselist>

<publicpart>
<publiclist>
<publicproc=func-List>

<publicoperationdclL>
<procedure-heading>

<procparms>

<formparmsection-List>

<formparmsection>

<parametergroup>

<function-heading>
<funcparms>

<resulLt-type>
<initial-heading>

<initparams>
<lLocalpart>

<lLocaltypedefpart>

{Localvardcipart>

<variable-declaration-part>

wn

<old-object=-identifier> BY
<i_object-List>

<identifier>
<instantiation-identifier> /
<i_object-List> .,
<instantiation-identifier>
<identifier>

MODULE <usepart> <publicpart>
<lLocalpart> [<modproc /
modfuncpart>] <initpart> MODEND
USE <uselist> ; / <empty>
<identifier-List> .
PUBLIC <publiclist> ;
<publicproc-func-List>
<publicoperaiiondcl> /
<publicoperationdcl>
<publiclist> ;
<procedure-heading> /
<function-heading> /
<initial-heading>
PROCEDURE <procparms>
<identifier> / <identifier> (
<formparmsection-List>)
<formparmsection> /
<formparmsection> ;
<formparmsection=-List>
<parametergroup> / VAR
<parametergroup> / FUNCTION
<parametergroup> / PROCEDURE
<identifier-List>
<identifier-List> :
<identifier>

FUNCTION <funcparms>
<identifier> <resuLt=-type> /
<identifier> (
<formparmsection-List>)
<resulLt=type>

<identifier>

INITIAL <identifier>
<initparams>

<procparams>

LOCAL <localtypedefpart>
<lLocalvardclLpart>
[<Localoperationpart>] LOCALEND

/ <empty>

<type-definition-part> /
<empty>
<variable-cdeclaration-part>

October 84

ModPascal -Report

ModPascal 3.5. ModPascal Grammar Page 42

<vardcl-lList>
<general-variable-declaration>
/ <vardclL=List>;
<general-variable-declaration>
<general-variable-declaration>
:: = <standard-variable-declaration>
/ <module=-variable-declaration>
<standard-variable-declaration>
::= <variable-declaration>
<variable=-declaration> ::= <vardcl-kopf> <ttype>
<vardcl-kopf> ::= <identifier-List> :
<module-variable-declaration>
::= <identifier-List>
<module=-identifier> #
<initial-operation-call>
<identifier>
<identifier> / <identifier> (
<act-parm=-List>)
<act-parm-List> ::= <act=-parm> / <act-parm-List> .,
<act-parm>
<act-parm> ::= <expression> / <variable>
<expression> ::= <simple-expression> /
<simple-expression>
<relational=-operator>
<simple-expression>
= <term> / <simple-expression>
<adding=-operator> <term> /
<sign> <term>
= <factor> / <term>
<multiplying-operator> <factor>
= <variable> /
<unsigned—-constant> /
<function-designhator-part> /
<sett> / (<expression>) / NOT
<factor>
:= <componhent-variable> /
<referenced=-variable> /
<identifier>
: = <indexed-variable> /
<fieltd-designator>

<vardcl-List>

<module=-identifier>
<initial=-operation=-calLl>

s se

W

<simple=-expresssion>

<term>

<factor> :

<variable>

<component-variable>

<indexed=-variablLe> ::= <array-variable> [
<expression=List> 1]
<array-variable> <variable>

i

<expression> /
<expression-List> -
<expression>
<field-designator> ::= <component-variable> .
<identifier> / <identifier> .
<identifier> /
<referenced-variable> .

<expression-List>

<identifier>
<referenced-variable> ::= <pointer-variable> a
<pointer-variable> ::= <variable>

<unsigned-number> / <string> /
<identifier> / NIL
<operation-designator>

<unsigned-constant>

1

<function-designator-part>

October 84 ModPascal -Report

ModPascal 3.5.

ModPascal Grammar

Page 43

<operation-designator>

<designator-List>
<act-List>

<sett>
<element=-List>
<elementlist>

<element>

<multplying-operator>
<adding-operator>
<relational=operator>
<Localoperationpart>
<lLocaloperationList>

<lLocaloperationheader>
<modproc/modfuncpart>
<modproc/modfuncdcllist>
<modproc-or-modfuncdcl>
<modprocdcl>
<modfuncdcl>

<initpart>

<initdcllist>

<initdcl>

<pointertype>
<enrichment-definition>

<enrichment-identifier>

<e=-object-List>

<addpart>

<addition>

<operation-definition=-part>

<operation-definition>

<instantiation=-definition>

<instantiation-header>

<designator=-List> /
<operation-designator> .
<designator-List>
<identifier> / <act-List>
<identifier> (<act=-parm=-List>
)

[<element-List> 1]
<elementlist> / <empty>
<element> / <elementlist> .,
<element>

<expression> / <expression> ..

<expression>

* f [/ / DIV / MOD / AND

+ / -/ OR

<> / =/ </ >/ &=/ >= [IN

<LocaloperationlList> ;
<lLocaloperationheader> /
<lLocaloperationheader> ;
<lLocaloperationlList>
<procedure-heading> /
<function-heading>
<modproc/modfuncdcllist> ;
<modproc-or-modfuncdcl> /
<modproc/modfuncdcllisc., ,
<modproc=-or-modfuncdcl>
<modprocdcl> / <modfuncdcl>
PROCEDURE <identifier> ;
<block>

FUNCTION <identifier> ;
<initdcllist> ;
<initdcl> / <initdcllist> ;
<initdcl>

INITIAL <identifier> ;
8 <identifier>
ENRICHMENT <enrichment-identi-
fier> USE <e-object-List> IS
<addpart> ADDEND
<operation-definition-part>
ENREND

<identifier>
<enrichment-identifier> |
<enrichment-identifier>,
<e=object=-List>

<addition> | <addition>
<addpart>

ADD <identifier> <publiclist>

<block>

<block>

<operation-definition> |
<operation-definition>
<operation-definition-part>
<modprocdcl> | <modfuncdcl>
<initdcl>

INSTANTIATION <instanti-
ation-header>
<instantiation-body> ENDINST ;
<identifier>

October 84

ModPascal -Report

ModPascal

3.5,

ModPascal Grammar

Page 44

<instantiation-body>

<actualizationpart>
<actualization>

<object=-actuatization>
<object-actualization-List>

<o-actualization-clause>

<object-identifier>
<type-actualization>

<type-actualization-List>

<t-actualization-clLause>

<operation-actualization>

it H

<operation-actualization-List>

<op-actualization-clLause>

<operation-identifier>

<subprogram-declarations>

<sub-declaration=-part>
<sub=-declaration>

<proc-declaration>
<func-declaration>
<statementpart>
<compound-statement>
<statement-sequence>
<statement>

<unlabelled-statement>

<simplLe-statement>

<assignment-statement>

<assign-structure>

<procedure-=statement>
<goto-statement>

(LI | O I I 1}

1

<usepart> | <actualizationpart>
<usepart> <actualizationpart>
IS <actualization>
<object-actualization>
{<type=-actualization>>
<operation-actualization>
<obhject-actualization-List> ;

<o-actualization-clause> |
<object=-actualization=-List> »
<o=-actualization-clause>
<object-identifier> BY
<object=identifier>
<identifier>

TYPES <type-actualization-List>
<t=actualization-clLause>
<type-actualization-List> .,
<t-actualization-clause>
<object=identifier> = <object-
<identifier>

OPERATIONS <operation-actu-
alization-List> ;

<op~actualization-clause>]
<operation-actualization-List>
s <op-actualization-clause>
<operation=-identifier> =
<operation-identifier>
<identifier>
<sub=-declaration-part>
<subprogram-declarations> /
<empty>

<sub-declaration> ;
<proc=declaration> /
<func-declaration>
<procedure~-heading> ; <block>
<function-heading> ; <block>
<compound-statement> / <empty>
BEGIN <statement-sequence> END
<statement> /
<statement-sequence> ;
<statement>
<untabelled-statement> / <Lab>
: <unlLabelled-statement>
<simple-statement> /
<structured-statement>
<assignment-statement> /
<procedure-statement> /
<goto-statement> / <empty>
<assign-structure> :=
<expression>
<component-variable> /
<referenced-variable> /
<operation-designator>
<operation-designator>

GOTO <Lab>

October 84

ModPascal -Report

ModPascal

3.5.

ModPascal Grammar

Page 45

<structured-statement>

<conditional-statement>

<if-statement>

{case-statement>

<case=-List>

<case=List-element>

<repetetive=-statement>

<while=-statement>
<repeat-statement>
<statement-List>
<for-statement>
<control-variable>

<for-List>

<initial-value>
<final-value>
<with=-statement>

<record-variable-List>

<record-variable>

Wi n

]

<compound=-statement> /
<conditional-statement> /
<repetetive-statement> /
<with=-statement>
<if-statement> /
<{case-statement>

IF <expression> THEN
<statement> / IF <expression>
THEN <statement> ELSE
<statement>

CASE <expression> OF
<case=List> END
<case-List-element> /
<case-lList—-element> ;
<case-list>
<case~-Label=-List> :
/ <empty>
<yhite-statement> /
<repeat-statement> /
<for-statement>
WHILE <expression> DO
<statement>

REPEAT <statement-List> UNTIL
<expression>

<statement> / <statement=-List>
; <statement>

FOR <controlL=-variable>
<for=List> DO <statement>
<identifier>

<initiat-value> TO
<final=-vatue> / <initial-value>
DOWNTO <final=-value>
<expression>

<expression>

WITH <record=variable=List> DO
<statement>

<record=-variable> /
<record-variable=-List> ;
<record-variable>

<identifier>

<statement>

October 84

ModPascal -Report

ModPascal 4. Stand. Types/Type Generators Page 46

4. Standard Types and Standard Type Generators

4.1. Introduction

Since ModPascal extends Pascal the question arises how to
treat the Pascal standard types (BOOLEAN, INTEGER, REAL., CHAR)
and type generators (ARRAY, RECORD, FILE, SET, POINTER.,
ENUMERATION, SUBRANGE) 1in an object oriented environment.
Should they be redefined to fit into the module definition
frame, with the effect of redefining also familiar functions
and notations?

From a theoretical point of view there is no difference
between standard objects and non standard objects as modules
or enrichments. To each of them the same semantic structure
(algebra) is assigned. This becomes clear if one realizes that
for example the type identifier INTEGER in Pascal/ModPascat
does not onLy denote the set {...,-1,0,1,...)} but also
provides the appropriate arguments for the '+' operator. If
coercions are disregarded (although fitting for society., they
obscure programs similar to goto's)., then '+' 1is onlLy
applicable to INTEGER values - a fact that is at Least
sufficient to group the set and the operator more closelLy, for
examplLe in an algebra. This is true also for '=', 'div', 'x',
'faculty' etc., and also Pascal/ModPascal BOOLEAN (operators:
"AND', 'OR', 'NOT' etc.), REAL ('+', '=',..., 'sin', 'cos'
etc.) and CHAR (implLementation dependent. but dincluding
subrange operations as predecessor, successor, '<', '>=' etc.)
describe semantically the same type of structure as module
type definitions, that is an algebra.

The standard type generators differ onLy stightly. For
instance, an 'array [1..10] of INTEGER' describes as value set
10-tuples of INTEGER values, and operations only applicable to
arrays are assignment (':=') and selection ('_[_1'). Records,
files.» sets, with restrictions pointer, enumeration and
subrange types can all together be associated with algebras.
so that a module type definition would not be senseless.

But Looking at the definition scheme for modules (sec. 3.) one
has to provide a set of Local variables that are wused to
describe the value set of the associated algebra (cartesian
product of Local variable types). In general., this is
impossible even unnatural in the case of standard type
generators. For examplLe the above mentioned array object could
be defined by a ModPascal module type definition by using ten
Local variables of type INTEGER. But for standard types even
this clLumsy way of definition fails. There 1is no way to
represent, for example, INTEGER values 1in a module type
definition by Local variables of other type than INTEGER = and
that means being circultar. The reason is that standard type
generators possess at Least one component or parameter type
and the representation in a modulLe type definition may easily
be taken as an appropriate vector of component type variables.
In this view, standard types are basic and are not definable
by module type definitions.

October 84 ModPascal -Report

ModPascal 4.1. Introduction Page 47

Even if this fact is sufficient enough to treat standard
objects of ModPascal apart from modules, another difficulty
should be mentioned. ALL objects administrated by the DMS form
some kind of hierarcny, since this is highly valuable for
incremental software development and verification. In general.,
the hierarchy is built upon a use relation. Being hierarchical
implies: no cycles occur. But Looking at INTEGER and BOOLEAN
of ModPascal., the former type encloses predicate operations as
'<'" (less) which evalLuate to a boolean value and therefore
'"INTEGER uses BOOLEAN'. On the other hand, in Pascal BOOLEAN
is considered as instance of a two value enumeration type
(false,true) ([ISO 71851), and it involLves all operations
normatty found for enumeration types. So there is an ord(er)
operation that evaluate to an INTEGER number indicating the
position of an item in the defining sequence (e.g. ord(true) =
2). But this means 'BOOLEAN uses INTEGER' and a cycle is
introduced. The solution of this problem with respect to the
DMS is described in sec. 4.2.

From allL this it comes out to treat the standard types and the
standard type generators in two Levels:

e the Language definition introduces the standard obiects of
ModPascal identically to those of Pascal. No moduLe type
definition 1is employed, so that the Pascal type set is a
proper subset of the ModPascal type set. This guarantees
portability of programs and avoids irritation of programmers
that are confronted with artificial definitions of familiar
types;

® the ModPascal environment (DMS and MPPS) installs predefined
objects for the standard types and predefined object
generators for standard type generators. These obJjects
represent the semantic structure of types and types defined
by the generators, and they contain for example Lists of
operations and their functionalities associated to the type.
Also special objects are predefined that enable
decomposition of cyclic structures.

This design has consequences as well for the semantics of
ModPascal programs as for the algorithms of the ModPascal
precompiler that check correctness. Firstly, the semantics of
a ModPascal object becomes context sensitive in that sense
that the current state of the data base of DMS is essential
for semantic computations. Deleting or manipulating obJjects
might have side effects on the correctness of some other
objects. SecondlLy the unchanged syntax of standard obgjects
together with a new module-Like semantics induces a variety of
syntactic and semantic problems that occur by combining
standard objects with non standard objects (e.g. enrichments
of INTEGER). Both consequences will be tackled in the
following sections.

October 84 ModPascal -Report

ModPascal 4.2. DMS-Structures for Stand. Objects Page 48

4L.?2. DMS=Structures for Standard Obijects

4L.2.1 Standard Types

The set of standard types of ModPascal comprises BOOLEAN.,
INTEGER, REAL and CHAR (= Pascal standard types). Each type
has associated a number of operations that are either
explicitly characterized (in [ISO 7185]1) as belonging to the
type (e.g. the ‘'and' operator belongs to BOOLEAN) or are
implicitly derivable from overloaded general operators (e.g.
the ':=' (assignment) operator or the '=' (equality) operator.,
that may be associated with each standard type). This
association is fixed by the Language definition so that user
defined programs cannot modify standard type structures.

The DMS destinguishes between its users: among them there is
one = the system manager SYS - which has unrestricted access
to all obgects, contrary to the Limitations that are imposed
on ordinary users. SYS ownes also objects, but most of them
possess two important characteristics: they are viewed as
fixed, and all other users do have read-access to them, so
that they can incorporate SYS-objects arbitrarily. This
‘general Library property' of the SYS-object set 1is best
suited to include ModPascal standard types. Therefore they are
defined as SYS-objects and accessable to all users (as Pascal
standard types are available in each Pascal program).

The problem of circularity in the ModPascal standard type
hierarchy (see 4.1.) is solved by introducing two new objects:

® BOOL, which is a restriction of BOOLEAN to its essential
operations 'TRUE' and 'FALSE', and

® INT, which 1is a restriction of INTEGER to its essential
operations 'ZERO', 'PRED' and 'SUCC'.

OnLy the most necessary ingredients of BOOLEAN or INTEGER.,
without which the type is undefinable, were choosen for BOOL
and INT. ALL additional operations - including the trouble
making 'ord' - are defined in 'higher' objects (see [RL 851).
The resutting hierarchy of standard types is as follows:

BOOL

V

INT

V
BOOLEAN
INTEGER CHAR

REAL

BOOL, INT, REAL and CHAR are modules, while BOOLEAN and

October 84 ModPascal -Report

ModPascal 4.2.1. Standard Types Page 49

INTEGER are enrichments (of BOOL, INT resp.). Since BOOL and
BOOLEAN are intendéd to work on the same data set (of boolean:
values = {true, falsel}) both cannot be modules. A module type
definition introduces its own value set, that is by definition
the source on which module operations are exclusivly
invocablLe. In the case of BOOL and BOOLEAN this would Lead to
incompatibility of their operations - 1in contrary to the
intention. Therefore BOOLEAN (and also INTEGER) was introduced
as enrichment which guarentees that the ‘new' operations work
on the same data set (see 3.3.). : ‘

This hierarchical structure of standard objects is implemented
in the DMS. Each object is defined by a set of flags and
properties depending on the object type (module, enrichment.,
standard etc.). For standard types, the following items are
defined:

FLAGS: SYNTAX (indicates syntacticaL correctness; trivially
true)
INTERFACE (context sensitive conditions; true)
USED (existance of using obgjects; true except
BOOL) .

STANDARD (qualifier; true)
PROPERTIES: RIGHTS (access rights).

USE (used obgjects)

USED (using obgjects)

PUBLIC (list of public operations and
functionalities) '

TYPE (either MOD(uLe) or ENR(1chment))
(This Llist of propertles is 1ncdmpLete, see [RL 85]).

These object definitions are 1ntended to guarantee consistency
of sets of user defined objects (e g. modules). If standard
types are referenced by some element of the set, the ModPascal
precompiler will check its existence in the data base (as for
every used. object) and then wilLl perform correctness checks
using the information provided by obgject flag . and object
property values. s e v

Remarks: - L :

1) It should be pointed out that concerning standard types

Pascal compiler checks -coincide with some ModPascal
precompiler checks; but algorithms become uniform for alLl
objects and errors are deleted as earlLy as possible.
The artificial objects BOOL and INT are not ModPascal
standard types so that type .definitions or. variable
declarations may not - incorporate them.. Their onLy
application is their existance in the DMS to allow
cyclLefree hierarchies.

2) In general., enrichment identifiers may not be used as type
identifiers (see sec. 3.3.). In the case of INTEGER and
BOOLEAN there is an exception. They may be used as type
identifiers, and the ModPascal precompiler will recognize
it appropriately.. The reasons for this inconsistency are
compatibility with Standard Pascal., convenience by familiar

October 84 : V | - — ModPascal -Report

ModPascal 4.2.2. Standard Type Generators Page 50

structures, and invisibility of the basing modules BOOL and
INT in ModPascat.)

L.2.2. Standard Type Generators

The set of standard type generators of ModPascal comprises
array, record, file, set, pointer, enumeration, and subrange
types (=Pascal standard type generators). In opposition to
standard types they do not have an initial meaning in the
Language definition, because essential information (e.g. array
size, component type) is missing. This information must be
provided in an explicit type definition by the programmer, so
that the semantics of a standard type generator will become
computable.

Despite of that fact., there are fixed structures for each type
generator. For example, arrays do always come with a selection
operator '[_1' or pointers with a dereferencing operator.
These sets of operation frames (since functionalities are not
fixed) are associated to each standard type generator and they
are complete in that sense that the actualization done in a
type definition does not add or delete operations to or from
them.

Therefore, the DMS makes object patterns available for each
standard type generator. If a type definition occurs, the
parametric parts are actualized, and the resulting
well-defined object is entered into the data base. ALL object
patterns represent module type objects since, on the semantic
Level, (actualized) arrays, records, etc. do not differ from
module type definitions, so that also algebras are assignhed to
them.

The standard type generators could also be ordered in a
'hierarchy' over the standard types, but the hierarchical
retation used below is constructed solely for pedagogical
purposes (since type generators are not types, and thus cannot
be mixed with standard types).

STANDARD TYPES
ENUMERATION_TYPES RECORD FILE POINTER
SUBRANGE_TYPES

ARRAY SET

(possiblLe connections between the standard type generators are
omitted).

The Language definition of Pascal does not include cycles in
the hierarchy of standard type generators, so that no
artificial objects have to be introduced (see 4.2.1.). But it

October 84 ModPascal -Report

ModPascal 4.2.2. Standard Type Generators Page 51

should be emphasized that objects generated by standard object
generators may very well induce cycles. Due to the fact that
the ‘declaration-before=-use' paradigm is ignored in Pascal
pointer type definitions, a cycle is easy constructable:

Example &4-=1

type L = } LISTELEM
type LISTELEM = record f1: COMPONENT;
f2: L end;
which yields in the hierarchy

—

l

LISTELEM

COMPONENT n

Even if this problem 1is solved by the Pascal compiler.,
ModPascal does not allow this type of definition. The reason
is the intended use of the Language as a counterpart of the
algebraic specification Language ASPIK (see sec. 0.) inside a
software development and verification system., and
cyclefreeness of object trees is one of the basing features
there.

In opposite to standard types, the objects generated by
standard type generators are not objects owned by the system
manager SYS. They are assigned to the individual user who has
entered the generating type definition that also contains the
object identifier used by DMS. The obJject description is
similar to standard types and modules, and it comprises (among
others) the following flags and properties:

FLAGS: SYNTAX (indicates syntactical correctness; trivially
true)
INTERFACE (context sensitive conditions; true)
USED (existance of. using obJjects; true except
BOOL)

STANDARD (qualifier; true)
PROPERTIES: RIGHTS (access rights)

USE (used objects)

USED (using objects)

PUBLIC (list of public operations and
functionalities)

TYPE (either MOD(ulLe) or ENR(ichment))
(This lList of properties is incomplete; see [RL 85]1).

Once an object generated in this way is entered in the data

October 84 ModPascal ~Report

ModPascal 4L.3. Mixed Constructs Page 52

base, it may be manipulated in the same way as alLl ModPascal
objects. The great advantage of this uniform treatment is.
that the notational differences between module and non-module
type definitions, dinduced by portability and convenience
considerations, are wiped away. The data base therefore
reflects the semantics of a set of object definitions more
clearly.

Remarks: 1) Sometimes it might be convenient to incorporate
objects generated by object generators onlLy
temporarily. There are modes in MPPS that enable
this .

2) The checks performed by the ModPascal precompiler
on standard type genherators do onlLy involve the
user supplied parts; for the rest correctness is
assumed.

4.3. Mixed Constructs

The inclusion of standard objects in ModPascal was done
without modification of the Pascal syntax although the
semantics were changed. This way is straight forward but there
are a number of problems arising in structures that contain as
well standard Pascal constructs as ModPascal-specific
constructs. Often a sotution 1is possible if syntactic
requirements are relaxed or if additional checking is
performed by the precompiler.

The correctness checks for mixed constructs are performed in
parallel to those of sec. 3.2. and 3.3. So the environmental
information is assumed in the following, where the possible
situations of mixing are depicted:

A) Obgect Definitions
In standard and non-standard object definitions types and
enrichments may occur along three rules:

A1) Obgjects generated by standard object generators may
reference user defined modulLe types in their definition
scheme.

A2) Module type definitions may reference standard objects.,
user defined modules or user defined enrichments in
their useclause.

A3) Enrichment definitions may reference .standard obgjects
or user defined modules in their addparts and standard
objects, user defined modules or enrichments in their
use clause.

These conventions are based on the underlLaid semantics for
ModPascal. There, components of standard objects must have
their own value set (which excludes enrichments in A1), and
adding of operations may onlLy be done for objects with value
set (which excludes enrichments in A3).

By this, correctness conditions CM1 and CE1 are extended.
[BelLow, the object generation by a standard object generator

October 84 ModPascal -Report

ModPascal 4.3. Mixed Constructs Page 53

is refered to as structured type definition; see ModPascal
grammar, sec. 3.5.1]

CMIX1:
structured type definition correct &<

type is correct
A used types are user defined module types

CMIX2:
module type definition correct <=
CMO holds

A used objects are standard objects, user defined
module types and enrichments

CMIX3:
enrichment definition correct <=

CEQ holds

A addparts may be build upon standard objects or
user defined modules

A used objects are standard objects, user defined
modules and enrichments

B) Operation Definitions
Standard object operations are usually predefined and
fixed. OnLy by enrichment of standard objects one is able
to define new standard object operations. Then it holds.,
that
- only functions may be defined for standard objects
- the function body does not contain gLobal variablLes
- the functionality does not inclLude an implicit formal
parameter. .
This Leads to modification of CE21 and CE32 for the standard
object case:

CMIX4:
addition correct <<

the object of addition is contained in R, and of
module type

the public List is non-empty

all function headings are correct

no procedure or initial occur

no implicit parameter is introduced

>3 >

October 84 ModPascal =Report

ModPascal 4.3. Mixed Constructs Page 54

CMIX5:
modfuncdcl correct <<=

CE32 holds
A the function body does not contain glLobal variables

C) Operation Calls

Usually module operations are called in 'dot-notation' (see
sec. 3.2.4.) except occurrences in operation definitions of
their associated module type (see CM41/CM42 in sec.
3.2.24) :

This is not true for standard object operation calls. They
are invoked in their usual prefix. infix or mixfix
notation. Since their association to standard objects is
fixed and unique, the precompiler is able to recognize them
properly.

CaLls of standard object operations that are defined by
enrichments always use prefix notation.

CMIX6:
standard operation call correct <

Pascal conventions are respected

CMIX7:

enrichment defined standard operation call
correct =

the defining enrichment is DMS-visible
A prefix notation is used

D)

E)

Variable Declarations
Variables of standard object types are not initialized.

Prefixing

The standard types need not be prefixed by SYS. Objects
generated by standard obgject generators obey the same
prefixing rulLes than user defined modules or enrichments
(see sec. 2.2.).

October 84 ModPascal ~Report

ModPascal 5. Programming in ModPascal Page 55

5. Programming in ModPascal
5.1. Main Programs

Up to now the main emphasis has been put on singlLe objects and
object types of ModPascal, and how to inclLude them in a data
base of a special purpose programming environment. Obgject
oriented programming is encouraged by the Language as much as
possible but conventional stylLes have to be covered anyway. To
guarantee portability of already written Pascal code
provisions were taken to incorporate programs that are not
object oriented.

In MPPS, the vehiclLe for this are objects of type 'prog'. If
prog objects are entered., the system expects as input ordinary
programs consisting of Label-, type-, variable-, function-
and/or procedure declarations and a statement part (block).

Example 5-=1:

program TEST (input,output);
type M1 = module ... ;

A = array ... ;
instantiation I use ...;
enrichment E Use ...;
type M2 = instantiate ...;
function ... ;
var ... ;

begin

Example 5-1 shows a prog object.]

If object definitions as type definitions., enrichment
definitions or instantiation definitions are recognized they
are subsequently submitted to the data base (if no
contradicting user option dis active). This means that no
explicit connection between the object and its defining prog
is saved, and it simulLates the behaviour of single obgject
input.

The remaining variable declaration, operation definition and
statement part are connected to the prog object making it
similar to module objects. In this view the entire statement
part is seen as a special operation of the prog object, an
implicit declared ‘'statement procedure'. If nested block
structures occur this separation between object and non-object
definition is performed for each block.

If errors occur, the user can correct them by entering the
ModPascal editor (currently a standard file editor). Otherwise
the precompiled object (now connected to a Pascal program) can
be passed to the Pascal compiler which checks Pascal relevant
semantics and generates executablLe code. At Last, in a testing

October 84 ModPascal -Report

ModPascal 5.2. ModPascal Programming System Page 56

environment programs written in ModPascal may be excecuted.

From this it might be directly suggested to impose a tree
structure on progs: hierarchical retations to other progs-
interface operations and internal states are easily derivable
in the parsing process:, and the 'statement procedure’'
generation is just a naming problem. If some prog fails to
meet requirements the user could be advised to correct it.

But this solution is rejected in the MPPS. It would have
reversed the goals of an obgject oriented programming Language
since it enforces a kind of hidden modularization that is onlLy
visible to the system. ALL disadvantages of conventional
programming would take over when modifying or exchanging prog
objects of this style.

Instead progs are treated in the mixed fashion as described
above. Those parts which can easily be transformed to obgject
oriented formalisms are grasped and included while other parts
are disregarded from further use. In the consequence this
Leads programmers to relinquish prog objects in their work and
to use that object definition patterns that are offered by
ModPascal. Application of object oriented techniques then
exhibits the ‘'statement procedure' as a public operation of a
user defined module object, and conventional programs are
expressed by a module (enrichment) obgject hierarchy.

5.2« The ModPascal Programming System (MPPS)

The MPPS provides the user interface for the current
implementation of the ModPascal Language environment. It
comprises

@ an editor for ModPascal object editing.,

@ a precompiler for translating the ModPascal objects to
Pascal programs.,

® a Pascal compiler for generation of executable code, and

® a testing device that allows execution of module operations
in specific module environments.

Besides, there are a number of information commands available
that e.g. List existing or accessable objects, or print them
on screen, or compute interfaces for given objects.

A typical MPPS session starts with editing an object.
Therefore the user has to supply an object name. If it already
exists the system makes sure by request to the user, that he
is willing to overwrite it possibly. If the object is new, an
object type has to be supplied out of the set {MOD, ENR, INST.,
PROG} (standard objects are treated as modules). Then the
editor 1is entered, and the user can type in his definition.
When leaving the editor the object is created in the data base
and the ModPascal code is associated to it.

Now the precompiler is invoked on the edited object. It checks
for syntactic correctness of the obgject and performs aLl

October 84 ModPascal -Report

ModPascal 5.3. Precompiling Page 57

semantic checks that are necessary for the specific ModPascal
portions of the object. Result of the invocation of the
precompiler is an equivalent Pascal program.

If nothing has to be corrected, the precompiled object can be
compiled by a standard Pascal compiler getting either error
messages or executable code that can be used directly in a
specific testing environment or is stored in the data base. If
the obgject is involved in compitation tasks of other objects.,
the generated code will be used there.

5.3. Precompiling

ModPascal source code 1is not compiled to executable code.
Instead, programs are first precompilted to Standard Pascal
code, and then transformed to executable code by a Standard
Pascal CompilLer. The reasons for this proceeding are of
practical nature: the implLementation of a precompiler based on
an existing compiler and runtime system (LSIEM 83]) takes Lless
time in general than the implementation of a complete
compiler. But at Long term, a ModPascal compiler and runtime
system has to be provided.

The most important precondition for the feasibilitvy of the
precompiling step is the expressibility of pure Modrascal
features in Standard Pascal. Additionally, Eeery solution of
this task has to guarantee that the semantics of the involLved
constructs are preserved.

The precompiler emplLoyed by the MPPS meets this requirements.
It transforms, for example, module type definitions into a
sequence of type and function definitions, or operation calls
in dot notation into prefix notation. The scope of actions of
the precompiler inctudes:

® checks of static semantics of ModPascal as described in this
report and elementary Pascal static semantics

® transforming the ModPascal source code into Pascal code

® installing objects occurring in the ModPascal source code in
the data base

The equivalence of source and target code then is assured by
the undertaid semantics of ModPascal and Pascal., and the
precompiler is designed to guarantee the equivalence. The
dotails of the precompiling process are described in [Eck 84]
(the system), [RL 851 (the transformations) and [OLt 84al
(semantical correctness).

October 84 ModPascal -Report

ModPascal 6. Summary Page 58

6. Summary

The main goals the ModPascal development aimed at were defined
by the objectives of the ISDV-System progject. The Language of
the concrete Level should provide structures and concepts that
allow the verification of a refinement step from the
intermediate to the concrete Level. Beside, it should include
the expressive power of an existing and recognized procedural
programming Language such that the acceptance of the whole
system were facilLitated. And finally., it should be a Language
which justifies its existence through the originality of its
concepts alone and not through the fullfillment of the
requirements of its first application environment.

From this starting point the following goals have been
achieved by the development of ModPascal:

a) Design of an object oriented Language with expressive
features for modularization., separate compilation and
hierarchization, based on a widely distributed programming
Language.

b) Convenient parameterization of object hierarchies by
instantiation objects.

c) Provision of an elaborated environment that heavily
supports the object orientedness of the Language (e.g. data
base for alLl object types).

d) The main Language features can be easily connected to
structures of abstract data type theory.

Especially the Last point provides a promising basis for the
unsolved problLem in current software development systems of
how to verify a refinement step that transforms an obgject of
an abstract (applicative) Level 1into an object of concrete
(procedural) environment. Verification in this context means a
mathematical proof of the validity of properties on both
Levels (see [OLt 84al,LOoLt 84bl).

Looking at existing Languages with object oriented structures.,
a common occurrence of a)=-d) cannot be found. Often important
features as incarnabitity of modules (ADA [ADA 801, Moduta=2
[WIR 831), object based hierarchization (Moduta=-2, CLU [LIS
771, EUCLID [Lam 77]) or protection of interface operation
definitions (SIMULA [SIM 67]1) are simply missing, and the
necessary parameterization of types can onLy be found in the
stiff form of the 'generic' construct of ADA. Additionally the
underlaid semantics =~ if explicitly defined - do not emplLoy
special structures that reflect the object orientedness of the
Languages, and by this it will be difficult to incorporate
them in contexts that stress verification concerns.

ModPascal has proven its adequacy for hierarchical modularized
verifiable software design in case studies inclLuding practical
applications as personal data management systems or accounting
systems [OLt 84d].

October 84 ModPascal ~Report

ModPascal 7. References Page 59

Acknowledgement
I would Like to thank my collLeagues from the SEKI-Project at

KaiserslLautern for stimulating discussions. This research was
supported by the Federal Ministry of Research and Technology
under contract IT 8302363.

7. References

LADA 801 The Programming Language ADA. Proposed standard
document, US DoD. Springer., LNCS 106, 1981.

[ADJ 78] Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An
initial algebra approach to the specification.,
correctness, and implLementation of abstract data
types- in: Current Trends in Programming
Methodology, Vol.4, Data Structuring (ed. R.
Yeh), Prentice-Hall, 1978, pp. 80-144.

[BGGORV 83] Beierle, C., GerlLach, M., Goebel, R., OLthoff.,
W., Raulefs, P.,r Voss, A.: Integrated Program
Development and Verification: In: H. L. Hausen
(ed.): Symposium on Scftware Validation.,
North-Holland Publ. Co., Amsterdam 1997

[BV 831 BeierlLe, C.» Voss, A.: Canonical Term Functors
and Parameterization=by=-use for the Specification
of Abstract Data Types. University of
Kaiserstautern, Memo SEKI-83-07, 1983.

[Eck 841] EckLr G.: A Precompiler for ModPascal. Master
Thesis (in German) ., University of KaiserslLautern-
1984.

[EKP 78] Ehrig, H., Kreowski, H. J.» Padawitz, P.:
Stepwise Specification and Implementation of
Abstract Data Types. Proceedings 5th ICALP.
Springer LNCS., 62(1978), 205-226.

[GHM 78] Guttay, I. V., Horowitz, E., Musser, D. R.:
Abstract Data Types and Software Validation. CACM

21(1978), 1048-1064.

[1sO0 71851 International Organization for Standardization:
Programming Languages = Pascal. ISODIS 7185~
1982-08~12.

[Lam 771 Lampson, B. W., Horning, J. J., London, R. L.~
Mitchell, J. G., Popekr, G. L.: Report on the
Programming Language EUCLID. SIGPLAN, Vol. 12(2).,

Feb. 1977
[LIS 771 Liskov, B., Snyder, A., Atkinson, R., Schaffert.,
G.: Abstraction Mechanisms in CLU. CACM 20,

8(77), 564-577.

October 84 ModPascal -Report

ModPascal 7. References Page 60

[OLt 84al OoLthoff, W.: Semantics of ModPascal. University
of Kaiserstautern, Memo SEKI-84-10, 1984.

[OLt 84b] OLthoff, W.: On a Connection of Applicative and
Procedural Languages. Internal Report. University
of KaiserslLautern, 1984

[OoLt 84cl OLthoff, W.: The Realization Level. Internal
Report. University of Kaiserslautern, 1984.

[oLt 84d] OLthoff, W.: Specification and Verification of a
Real=WorlLd Book=-Keeping Problem with SPESY: A
Case Study. Internal Report. University of
KaisersLautern, 1984

[RL 851 Breiling, M., Eckl, G., OLthoff, W., Rainau, U..,
Schmitt, M., Weiss, P.: The RL-Handbook. Internal
Report. University of KaiserslLautern, 1984.

[SIEM 831 Pascal BS2000. User Guide (in German) SIEMENS AG.
Muenchen, 1983.

[siL 801 Silverberg. B. A.: An Overview of the SRI
Hierarchical Development Methodology. In: H.
Huenke (Editor): Software Enginheering
Environments. North=-Hotland, 1981

[SIM 67] DahL 0.J., Nygard, N.: SIMULA Begin. Norwegian
Computing Centre, Oslo, 1967.

[SPESY 851 Schoelles, V.: The Specification System SPESY.
University of Kaiserslautern. (in preperation).

[WIR 83] Wirth, N.: Programming in Modula-2. Springer
1983.

October 84 ModPascal -Report

