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Semantics of ModPascal

Walter OLthoff

Dept. of Computer Science
University of KaisersLautern
P.0O. Box 3049
6750 KaiserslLautern
Federal Republic of Germany

Abstract

A denotational semantics is given for the programming lLanguage
ModPascal, an object oriented procedural Language. It employs
concepts of abstract data type theory: heterogenous order
altgebras with strict operations cescribe the semantics of
types and of a complete program, and the parameterization
concept of ModPascal is based on explicit actualization by
signature morphisms. This allows to treat standard Language
objects and user=-defined objects in a uniform and sound way.
Additionally, the semantic cdomain structure is able to support
equivalence proofs in the transition from applicative
Languages to ModPascal as it 1is necessary in software
development environments.

Keywords: Denotational Semantics. Semantics of Types. Abstract
Data Types. Parameterization of Types. Software
Engineering Environments.
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ModPascal 1. Introduction Page 1

1. Introduction

1.1. The ModPascal Environment

The procedural programming Language ModPascal was developed as
part of the Integrated Software Development- and Verification
System (ISDV-System., [BGGORV 831). This system employs
software engineering techniques along the
"verify=-while-develop" paradigm: newLy introduced structures
are verified against formal specifications as soon as possible
so that errorneous or inadequate design 1is detected earlLy
before it causes greater cdamage (=cost of system redesign).
This technique is wused to Link the very first formal
specification, the intermecdiate specification structures and
the final ModPascal program by assigning proof tasks
(correctness criteria) to all refinement steps. Then, the
validity of all proof tasks impties that the ModPascal program
meets the requirements imposed by the first formal
specification - a proposition that is highly valuable for
almost all software developments.

The applied method involves different Levels of abstraction
and provides concepts and tools for a verifiable transition
from abstract to concrete structures. In figure 1-1 a rough
overview of the various Levels is given together with an also
rough classification, and the verification tasks are Located.

algebraic abstract <
specifications
verification
algorithmic intermediate
specifications <—
verification
programming concrete -
Language objects \

Fig. 1=1: ISDV=-System scenario

The formal specifications are given in the applicative
specification Language ASPIK (L[BV 831) that is strongly based
on algebraic specifications (LADJ 78], L[EKP 78]). ASPIK
supports incremental, hierarchical software design and offers
a number of powerful description features. It is the Llanguage
of the 'abstract' and ‘'intermediate' Levels of program
development in the ISDV=-System; the Language of the ‘'concrete'
Level 1is ModPascal. As a consequence, both Languages offer
constructs that are semantically equivalent (e.g. ASPIK
specifications - ModPascal modules/enrichments) lbut exploit
the advantages of applicative/procedural Languages resp.
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ModPascal 1.1. _The ModPascal Environment Page 2

ModPascal is an extension of Pascal [ISO 7185] in a way that
preserves the full set of features of Pascal. The extension
has been influenced by two facts:

e In software engineering résearch algebraic specifications
have become widely recognized as a representation
independant description method for data types (abstract data
types). Algebraic specifications allow modularization and
sometimes hierarchization of problem domains and they
constitute referential transparency on the specification
Level (see e.g. [ADJ 781, [EKP 78], [GHM 78], [BV 831).

e Existing software engineering environments still Lack a
satisfactory solution to filL the gap between the
specification and the final programming Languages (e.g. [Sil
801). Often, it is an incompatibiltlity of Language constructs
and undertaid semantics that causes the problems.

As a consequence ModPascal has been designed to meet
requirements imposed by both theory of algebraic
specifications and software engineering environments.

There are four new kinds of objects that make ModPascal differ
from Pascal: modul.es.» enrichmentss instantiations and
instantiate types. The term 'type' ih its usual (Pascal) sense
is not applicable to the first three of these constructs since
they model more or different information than array., record
etc.

For an intuitive introduction to the new concepts see [OLt
841, section 1. In dependence of this modifications and
enLargements of the Pascal type set- also modifications on
variable declarations. assignments. and operation calls are
necessary., and their semantics as well as the semantics of the
objects have to be defined.

The Language definition of ModPascal is divided into two
Levels: syntax and static semantics of all additional
constructs to Standard Pascal are given in [OLt 841, including
those portions of Standard Pascal that are mandatory for every
semantic description (e.g. assignments. operation calLls); the
dynamic semantics is defined in this paper.

We use the technique of denotational semantics. Then, the new
idea is to provide an appropriate domain of algebras as target
of the meaning assignment for object definitions (types.,
modules, enrichments)., such that operations and value sets of
a structure are combined. In this settingr, the Pascal
predefined types as well as the types dgenerated by type
constructors as array., record are given algebras as meanings.
The description of the semantics is focussed onto this
embedding problLem of algebra domains. Other necessary topics
of a complete and detailed Language semantics (e.g. block
structuring, Jjumps) are suppresseds, since adequate description
techniques are well=-known (environment changes»

December 84 ModPascal=-Semantics



ModPascal 1.2. Notations Page 3

continuations) ., and their involvement would considerably
increase complexity of semantic clauses.

Another important domain provides the meaning for
instantiation objects, a kind of signature morphisms (see sec.
2.2.1.) 1in concrete procedural Languages. Instantiations can
be viewed at as mappings between identifiers, and their main
purpose 1is to realize the object parameterization concept of
ModPascal (see sections 3.6. and 3.?7.). There, it 1s necessary
to express the connection between ‘formal' and ‘'actual'
parameter obgjects in form of :instantiation definitions, and
their semantics is captured by ithe introduction of a domain of

special identifier mappings.

For a convieniant description of the MedPascai semantics, here
the grammar of [OLt 84] is reformulated in Vienna Definition
Language (VDL., [Weg 72]1). Upon this. the definmition of the
syntactic domains is based. Syntactic domains, semantic
domains, and semantic functions are introduced in section 2.
Section 3 defines the meaning of all ModPascal-specific
constructs and some Standard Pascal constructs. Section 4
itluminates the semantical questions arising from the fact
that the verification context mentioned above makes it
necessary to precompile portions of ModPascal code to Pascal.

1.2. Notations

N denotes the set of natural numbers.

For a natural numbér n, (n) dendtes the set {1 ..., N}, and
n] := (n) v {02.

For vectors v = (Vyrs ever V)7s (V37 wawr Vv,)¥1 or vii denotes
the i=th component v; of v.

For a set s, (P(s) denotes the pvower set of s.
3 denotes the unique existential quantification.

For a mapping m: A —> B defined by m:¢ (A x B), the
substitution mla & a;] denotes (m \ {(a, m(a))>) v {(a, a;)2.

Four operators are used for functional akstraction:

- AX . term: Bounds free occurrences of X in term. This
abstraction is equivalent t0 a definition:
F(x) = term of a function F

- X « cond :
Bounds x in cond and quialifies the x as unique to
fullfill cond. Equivetent to: 3 x . (cond =
true). If no unique x exists, t evaluates to 1.
Example: n := (i « (i+1=5) = (n=4)

- fix f . term:
Bounds free occurrences of f in term and denotes
the Least fixpoint of the functional equation F =
termlF] where termlF]l 1s a term with free
occurrences of F.

December 84 ModPascal=-Semantics



ModPascal 2. Domains Page &

Example: fix f . (An . if n = 0 then 1 else

n*¥f(n-1))
denotes the Least fixpoint of the functional
equation F(n) = if n = 0 then 1 gtse n*F(n=1).,

that is the standard faculty function.

- M X . cond :
bounds x in cbhd and qualifies x as one possible
value that satisfies cond. Equivalent to: 3 x .
(cond = true). If no valLue exists that satisfies
cond, 1 evaluates to L.
Example: nh := M » . (x*x = 9) => n € {3, -32)

If indexed items occur themseives in index positions, the
indices are juxtaposed in parenthesis.

Example: X, —> Yx(n ), ™2 Zyixin s>
Xi; =2 Yiam
2. Domains

To state the semantics of McdPascal we employ the technique of
denotational semantics ([Sto 771, [Gor 79]1). We have to define
syntactic domains, semantic domains and functions mapping
syntactic constructs to their meaning in & semantic domain.

2-1. Syntactic Démains

A convenient way to describe the syntax of ModPascal is by
vienna Definition Language (VDL., [Weg 72]1). We briefly sketch
some basic concepts that are important for our purposes, and
then state the ModPascalL grammar of [OLt 84] in VDL.

2.1.1. VDL

VDL supports the idea of abstract syntax in that sense, that
no familiar lLanguage symbols as ‘begin® or ‘'end' (i.e. the
terminal voéabulary) occur in a VDL uescription. Instead, all
objects (syntactic entities) are coliected in sets, and there
are selectors that allow manipulation of them. Objects are
separated into two kinds:

- elemantary vbjects: objects witn nc components and therefore
. no selectors,
- composite objects : objects which may be composed of objects

by censtruction operators. The
componéents may be elementary or
composite objjectss and each is

selectable by a unique selector.

Notation: {o,, 0,)} denotes a set of elementary objects.
(s;: Cys s,: C,) denotes a set of composite objects
with selectors s;,» s, and component object sets C, -
c:-

Composite objects represent tiree structures in which the arcs
are Labelled by selectors, the teaf nodes are elementary

December 84& ModPascal-Semantics



ModPascal 2.1-1. VDL Page 5

objects and alLlL other nodes are composite objects.

There is a distinguished elementary obgject, the so-called nutl
object L which is different from every other elementary
object. The null object is used to denote empty domains or
erroneous maniidulations on domains.

Def. 2.1.1-=-1 [selector applicationl

Let C = (8;: Cy+ e.as S,: C,) denote & composite ObJject. Let s
denote a selector, and Let ¢ € C with ¢ = (¢;+ vwar C, ).

Then (s c) is called selector appligation with

(s c) :=cagse s = s;- 1 € (n) ¥ c;
otherwise L
n
Notation: (s" ¢) := (s (5 (S .e. (S C) au. ) [N times, n > 0]
(s? &) :=¢

Selectors may be composed, too. If (s,: €;) and C; £ (s,: C,»
s;: Cs) are composite objects then sis; 1is a composite
selector. If x € (s,: C;) then S35, can be applied to x to
select the cs;=-componrent.

Notation: If S,S..; e¢.. S, denotes & composite selector, then
(s, (6, ( .u. (s X) ...) denotes the application
to a composite objéect x.

Def. 2.1.1--2. [admissability]

Let s := s, ... s, denote a composite selector, € a set of
composite obgjects.
1) The application of s to c € C, i.e.
(s, (s,_;7 ( auals; C) ..a)
is admissabler if
Vien «s; (si.; ( cva(sy €) auaa) # 1,
s is also talled admissable selector for c.
2) AD(c) := {s| s is admissable selector for c)

n
The folLlowing conventions and operators are used:
1) We assume alLl object sets to be flat domains (see
definition 2.2.1.-3).

2) Syntactic Domains are denoted PRy identifiers starting with
capital Letter. Selectors and syntactic domains may occur
postfixed by 'L' (for 'list'). This dimplLies the following
List structure: \

DomainL = (first: Domain. rest: DomainlL)

If Domain = Dom1 v Dom?
then DomainL = DomiL v Dom2L

An operator Length: DomainL —> N that returns the number
of List elements is defined for every domain. Length(lL) =
0.

3) The L=versien of a domain is not explicitely mentioned in
the abstract syntax of ModPascal.

December 84 ModPascal-Semantics
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Special case: DomLL = (first: DomainL. rest: DomainLL)

4) The general assignment operator is u:
For d € D: d

o

pld; s,:

S S,
Ld, old,
new,) := d' : qi
Sy \52
/ \
new, olLd,

5) The general construction operator is U :

Ho (8, :

57/-\52

\

D

17 S2:He(S3: D3s s,.: D,)) describegs the domain:

D, -
53/ \ia
/
D] DJ,

2.1.2. Abstract Syntax dof ModPascalk

Program
Prog_head
ID

Block

Lab

Const
Const_val
INT

Sign

ObgJj
Type_def
Type

Stand_type
Stand_type_gen

Scalar_type

(prog_head: Prog_headiy block: Block)
(prog_id: Id, prog, params: IdL)
{alphanumeric strings?

(LabL:LabL, constl: ConstL., objlL: ObJiL.,
varb:VarL, sub_proglL: Sub_proglL, stmtL: StmtL)
{0, caur 99992

(const_id: Ids const_val: Const_val)

Id v INT v (sign: Sign, id: Id)
{integer numberl

{+, =)

Type_def v Enrich_def v Inst_def
(type_id: Id, type: Type)

Id v Stand_type v Stand _type_gen v
Non_standard_type_gen

{INTEGER, BOOLEAN, REAL, CHAR)}

= Scalar_type v Subrange_type v Array_type v
Record_type v Set_type v File_type v Pointer_type

= (idL: IdL)

Subrange_type

Lower: Const:y upper: Const)

= (
Array_type = (indexlL: Simple_typeL., comp: Type)
SimplLe_type

Record_type

Scalar,_type v Subrange_type v 1d

= (fixedL: Fixed_partl., variant_partL:
Variant_partL)

Decembe ~

84

ModPascal-Semantics



ModPascal 2.1.2. Abstract Syntax of ModPascal Page 7

Fixed_part = (idL: IdL., type: Type)

variant_part
= (tag: Tag., variantlk: VariantlL)

Tag = (tagid: Id, typeid: Id) v (typeid : Id)

Variant = (constL: COnstL, fixedL: Fixed_partl..
variant_partl: Variant_partL)

Set_type = (simple_type: SimpLe_type)

File_type = (type: Type)

Pointer_type
= (type: Type)
Non_standard_type_gen
= Module_type v Instantiate_type
Module_type
= (useél: IdL, publicL: PublicL., Local: Local.,
operationL : Operationlk)

Public = PrOc_head v Func_head v Init_head

Proc_head = (proc_id: Id, paramL: ParamL)

Param = (idL: IdL., type: ID)

Func_head = (func_id: Id, param.: ParamL, result: Id)

Init_head = (init_id: Id, paramlL: ParamlL)

Local = (Local_typelL: Local_typelL, Local_varL: VarlL,
Local_operationL: Local_operationL)

Local_type = Simple_type v Array_type v Record_type v Set_type
v File_type v Pointer_type

var = (didL: IdL, type: Typer, init: Init_stmt)

Init_stmt = Term

Term = Siiiple_term v Op_deésignater

SimplLe_term
(op_id: Op_ids act_paramlL: ExprL)

Op_id Id v {x, /, DIV, MOD, AND, *, =, OR, =, <>, <, >,
<=, >=, IN}

Expr = Id v Term v S_term

S_teri = (sign: Sign, term: Term?

Op_designator

(var_id: Id, op_idL: IdL., act_paraml: ExprL)

Local_operation
Proc_head v ~unt_head

Operation = Proc_spec v Func_spec v Init_sgpec

Proc_spec = (proc_id: Id- body: BlLock)

Func_spec = (func_id: Id. body: Block)

Init_spec = (init_id: Id, body: Block)

Instantiate_type

= (base_type: Id, objectl: IdL)

Enrich_def = (enr_id: Id, uselL: Idl.. addL: AddL, operationL:
CperationL)

Add = (add_id: Id, publicl: Publicl)

Inst_def = (inst_id: Id, usel: Idl, obj_actlL: Obj_actL.,
type_actlL: Type_actl+, Op_actlL: Op_actl)

Obgj_act = (old: Ids new: Id)

Type_act = (old: Ids, new: Id)

Op_act = (old: Idr new: Id)

Sub_prog = Proc_dcl v Func_d¢célL

Proc_dcl = (pro¢_id: Id., paramlL: ParamlL, body: Block)

Func_dcl = (func_id: Icd, paraml: ParamL., result: Id, body:
BlLock)

Stmt = (lLab: Lab:s Simple_stmt: Simple_stmt) v (Lab: Lab.,

December 84 ModPascal-Semantics
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struc_stmt: Struc_stmt)

Simple_stmt
= Assg_stmt v Proc_stmt v Goto_stmt
Assg_stmt = (assg_var: Assg_var., expr: Expr)
Assg_var = Id v Comp_var v Ref_var v Op_desigrator
Comp_var = (array_var: 1Id, exprlL: ExprlL) v Field_designator

Field_designator ,

(comp_var: Assg_var, field_id:\1d) v
(op_designator: Op_designator) v (ref_var: Id.,
fiela_id: Ia)

Proc_stmt = Term

Goto_stmt = (Lab: Lab)

Struc_stmt = StmtL v Cond_stmt v Rep_stmt v With_stmt

Cond_stmt = (if: Expr., then: Stmt:, else: Stmt) v (case_expr:
Expr, caselL: Casel)

Case = (didLt IdL, stmt: Stmt)

Rep_stmt = While v Repeat v For

While = (while_expr: Exprs stmtlL: Stmgl)

Repeat = (stmtlL: StmtL, until: Expr)

For = (for_var: 1d, Lower: Expr-. upper: Expr.,
direction: {UP, DOWNY, stmtlL: StmtL)

With = (didL: IdL, stmtl: Stmtl)

2.2. Semantic DChmains

2.2-1- The .Domain AlLg

Obgjects in ModPascal will be asgociated 0 algebras. To
preserve applLicability of denotational semantics techniques.,
we require special algebra domains.

Furthermore, we use a general ctonstruction from universal
algebra to denote algebra domains by signatures.

Def. 2.2.1.-1 [signaturel
Let OB denote a set of object names, OP a set of notation

names, i.e. OB € Id, OP ¢ ld. The tuplLe ¥ = (OB, OP) is called
signature, if

1) 3 arity : OP —> (OB* x OB}
2) Let OP.,, := {op € OP | arity(op) = ($,t)) in
a) oP = U OP.,.
ge0B*
t€oB
b) N OP,,, = ¢
s€0B*
teoB

For arity(op) = (srt), s is called scurce, and t target of op.
£ € OB* denotes the empty source. n

Remark: The arity function assigns functionalities to
operation names, i.e. if arity(op) = (s, t) with s =
Si ea. S,s then op is name for an operation from S; X
«es X S, to t.

December 84 ModPascal-Semantics



ModPascal 2.2.7. The Domain AlLg Page 9

An important notion to Link signatures is the signature
morphism.

Def. 2.2.1.-2 [signature morphisml

Let £; = (0B;» OP;), i € {1, 2} denote signatures.
Let f: 0B, —> 0B, and g: OP, -——> OP, denote mappings-
Then the teiple (f, @) is called signhature morphism if
V op € OP, .
Let (ob; ... Ob,» Ob,,,) := arity, (op) in
arity, (glop)) = (f(oh;) ... Flob,)r f(ob,4,))
where afrity; denotes the arity function of Z;, i € {1, 2}.

]

Signature morphisms become important espeCially for
instantiation object semantics (see sec. 3.6.).
Def. 2.2.1.=-3 [fLat domainl
Let S denote a set. Then (S, , €) is$ called a flLat domain
if 1) L. ¢ S denotes the bottom eleéement of S.

S, := S v {'Ls}

2) C ¢ (S, x S,) is a partial order with
XCVY: & X=4L4, or X =Y R

Notation: If no ambiguities are possible, we denote the flLat
domain S, simply as S and the bottom elLement L, as
'L-

Def. 2.2.1.-4 [strictl _
Let C;7 ..., C, denbte flat domainss, and n € (m). A function

.F: c1 X --.X Gn —“_> Cn+1 X rﬂ!i): cm
is called strict, if .
f(C1’ ---Icn) = (Lcn+1l “nawd Lcm) L —— 3 A € (n) L] Ci = LCi
|

Remark: There is an arity operation for strict functions.
};ﬁf: Cl X nas X Cn —_> Cr’l’; X aea X Cm
then aritY(f) = (C1Cz -~ en C"' C"+1 c“+2 =a=n Cm)'

Def. 2.2.1.=5 [order aigebral
Let C denote & non-empty s$eét of flLat domains, F a set of

strict functions f: C; X ...X €, —> C,,, with C; € C, i €
(N+1). Then (C, F) is called an grder alqebra.
The eLements of C are calléd carriersgts or carriers. -]

Def. 2.2.1.-6 [T-algebra, interpretationl
Let ¥ = (0B, OP) denote a signature.
An order alLgebra A = (C, F) is called a f-alLgebra, if there
are mappings
Hy: OB —> C
Hp: OP —> F
that associate obgject names +o flat domains and operation
names to strict functions.
The tuple (H,, H,) is called (F-signature) interpretation for

A_.

December 84 ModPascal~-Semantics
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Def. 2.2.1.-7 [naming operations]
Let A = (C, F) denote an order al@ebra, and Id an unbound set

of identifiers.

Then obname-A: C -—> Id and opname-A: F —2> Id

associates uniqué names to carrier sets and operations of A.
obnames(A) := {ekh| 3 c € C . obn = obname=-A(c)}

opnames(A) := fopn| I f € F . opn = opname-A(f)2}

Def. 2.2.1.-8 [associated signaturel

Let A = (C, F) denote an order algebkra.

Then the signature I (A) = (OB(A)., OP(A)) defined by
1) OB(A) := obnames(A)
2) OP(A) := opnames(A)

is called the asso¢iated signature to A.
]

Remark: Let ¥ = (OB, OP) be a signature, A = (C, F) a
f-algebra with interpretatior (H,, H,)
¥ is the associated signature to Ar if and only if
1) ¥V ob € 0B . ob = obname=A(H; (ob))
2) YV op € QP . op = ophame=A(H, (op)).
This is always possible by appropriate choices of
obname~A and opname-A.

These syntactical operations will be used in sec. 3.6.

Def- 2-2-1 --9 [ALg[Z]I ALg]
Let £ = (0B, OP) denote a signature.

Then
ALglzl := {A| A is_r-algebra} v {L:}
Alg := + {ALg[T1]| T is signaturel
(+ denotes the direct sum of domains). ]

The definition of the domain AlLg as coalesced sum of I-sorted
algebra domains is no%t unprobLematic. It would allow algebras
that possess as carriers “the sét of all sets". Since this is
a well-known Pparadoxon-generating construction, we assume a
meta=-structure called universum U whose elLements are sets.
There are axioms that make the "set of all sets™ underivable
in U. Then, all carriers of elLements A € AlLg are assumed to be
elements of U.

Def. 2.2.1.=-10 [TOI]
For each alLgebra A € AlLg, the ‘typg-of-interest' operator TOI
\

is defined as follows:
TOICA) := (C, F) wheére
1) C € C denot@s a distinguished ¢arrier set .
2) F ¢ F dehotes all operations having € in their arities.
i.0. VT £ F o Lot (C; o.n Cor Coyy) = arity(f) in
33i¢ (nt1) . c =

orn

TOI will be used to partition carriers and functions into
those that are currently new defined (({, F)) and those that
have already been defined ((C \ {CX>» F \ F)).

Often, the distinguished carrier Set is ambiguouslLy denoted by
the algebras naffe, i.e. TOI(A) = (A, F).

December 84 ModPascal=Semantics



ModPascal 2.2.2. Standard Algebras Page 11

In some cases the TOI operator will. evaluate to (L, L) if the
algebra under consideration should explicitly be characterized
in this way. This does not mean that there are no carriers or
functions but that none of them is qualified as ‘of=-interest’'
(see also enrichment objects, sec. 3.5.).

The next definition deals with technical operations on order
algebra's.

Def. 2.2-.1:=11 [Union, Differencel
Let ¥, = (OB,, OP,), Iy = (0B,, OPp) denote signatures.

Let A = (C-A, F=-A) € ALgly_.1, B = (CG=B, F~B) € AlLglI,]
and signhature interpretations Hy, = {(Hay;» Haz2)s Hs = (Hpy»r
Hp,)
The union of A and B, denoted A v Br and the difference of A
and B, denoted by A\B., are given by:
if 1) V ob € (0B, n OBp) . Hgy (Ob) = H,,(ob)
2) Y op € (OP, n OPn) . Hy, lop) = Hy, (op)
3) Yc€ (C=AnC-B) . 2 o0b€ (0B, v OBp) . Hay (0D
Hw, (0b) = ¢
) v f € (F=A n F=B) . 3 op € (OP, n OPy) « Haz(op)
Hbz(op) = f
en A v B := (C-A v C~B, F=A v F-B)
L

BE .

(additionally) 5) V op € OP, .
Lot (s ... 8,, 8) := arity(op) in
9 (s; € OBz \ OBy, 1 € (n) or s € 0B, \ OBy) 3nd
1(Hy, (S;) € C=A \ C=B, i € (n) QF Ha, (S) € C~A \ C=B)
en A\ B := (C-A \ C-B, F-A \ F=B)
L

b

5

If A v B is defined, then A v B € AlLgly, v Ipl, where I, v Iy
:= (0B, v OBp,r OP, v OPp) &and arity-~I,vip, 'is derived from
arity-y, and arity=-I,. This holds analogcusly for A \ B.

n
This definition ensures that signature interpretations behave
such that union and difference of signatures and of algebras
are compatible. Sinceé the set union identifies identical
carriersets, no multiple representation can occur. 1f, on the
other hand, one is interested in multiple occurrences of
special carrier set, one has to use a tagging mechanism to
distinguish between set elemenrts of different occurrences.

2-2:2s Standard Algebras
In ModPascal there are four predefined standard types:

BOOLEAN, INTEGER., REAL+ CHAR. We define standard algebras that
will be associated t¢ standard types (see sec. 3.3.1.).

(1) BOOLEAN

(0OB=-B, OP=-B) with

{boolean?

{true., false., and, or-, not, =, <>,
=, >=, <, >}

Signature: I-B :
O0B-B
OP-B

Wnu
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arity-B: OP-B —> (OP~B* x OP=B)
(e.g.: arityland) = (boolLean boolean., boolean)
arity(true) = (£, booLean))
hen BOOL=ALg := (C-B, F-B) € AlLgLr-Bl] with
{B-vaL}, B=val = {TRUE, FALSE, L}
{true, false, and, or, not, =, <>, <=, >=, >, <}
where true 1= TRUE
and(x, y) := if x than vy else FALSE.
LI )

etc.

TOI(BOOL=-ALg) := B-VAL

Remarks: a) The functions of F-B are ambiguously denoted by
the function names of OP-B.
b) BOOL-AlLg does not ¢ontain an order operation as it
is obligatory for enumeration types
(ModPascal /Pascai view BOOLEAN as instance of an
enumeration type).

(2) INTEGER

(0OB-1, OP-I) with
{integer., bhooleanl
{succ, pred, +, -, *x, div, mod, abs, odd-
sqrs =, <> <=, >=, <, D)
v OP-B
arity-I: OP-I \ OP-B —> (0OB-I* x OB-I)
(e.g.: arity=I(succ) = (integer., integer)
arity~1(<>) = (integer integer., boolean)
Then INT=AlLg := (C-I, F-I) € ALglyr-1] with
c-I = {I-vValL, B=val), 1I=-valL = {-maxint, .auas =1,0 » 17 ...
+maxint, + 2
F-I = {succ, pred, +, =, *, divs mod, abs, odd, sqr. =,
<>, <=, >z, <, >}

Signature: ¥-I :
0B-1
OP-1

v F-B
where succ(x) := if x=0 then 1 elseif x=1 then ...
+(x, y) := Af X = 0 tkhen vy
elzeif x > 0 then succ(+(pred(x).-y))
else pred(+isucc(x)-,y))
etc.
TOI(INT-ALG) := I-VAL

Remarks: a) The functions of F-I \ F~B are ambiguouslLy denoted

by the function names of OP-I\OP-B.

b) Maxint is the implementation dependent boundary
value for integer number representation.

c) The functions of F=I \ F-B are not the familLiar
Integer functions since they are assumed to obey
machine arithmetic rules.

d) Type conversions ‘coercions) are disregarded.

NDaecemher 84 ModPascal=Semantics



ModPascal 2.2.2. Standard Algebras Page 13

(3) REAL

Signature: I-R := (OB-R, OP-R} with
0B=R {realL, integer, boolean)
OP-R {-, +, %, [, abs, sqart, sqr, sin, cos.,
arctan, exp, Ln, trunc, round}
v OP-I
arity-R: OP-R \ OP-I —> (0B=-R* x OB-R)
(e.g.: arity-~R(sqrt) = (real, real)
arity-R(round) = (realL., integer)) .
Then REAL-ALg := (C=R, F=R) € AL@Q[r-R] with
C-R = {R-ValL., I-ValL., B-vall}, R=ValL = {x| x is floating
point numberl
\F=R = {=, +, *, /, abs, sqr, sart, sin, cos, arctan, exp.
Ln, trunc, round}

v F=1
where sgr(x) := X * X
trunc(x) := {fractional part of floating
point number xX
etc.

TOI(REAL-ALg) := R=VAL

Remarks: a) The functions of F=-R \ F-I are ambiguously denoted
by the function names of OP-R\OP-I.

b) The floating point number representation (mantisse
and characteristic size) is implLementation
dependent.

c) The functions of F-R \ F-I are not the familiar
REAL functions since they are assumed to obey
floating point arithmetic rules.

(4) CHAR
Signature: ¥-C := (0B-C, OP-C) with
0B=-C = {char., integer, booleanl
OP-C = {pred, succ, ord, chr, =, <>,
>=, <=, <, >}
v OP-I
arity-C: OP-C \ OP-1 —> (O0B-C* x OB-C)
(e.g.: arity-C(chr) = (char, integer)
arity-C(<=) = (char char, boolLean))
Then CHAR-ALg := (C=C, F-C) € ALgLL~C] with
c-c = {C-valL, I-vVal, B=val}, C=Val = {character set}
F-C = {pred, succs, ord, chr, =, <>, <=, >=, <, >}
v F-I
where <(x, y) = ord(x) < ord(y)
ord(x) := if x = a then 1 gtseif x = b ...
etc.
TOI(CHAR=ALg) := C-VAL

Remarks: a) The functions of F=C \ F-I are ambiguously denhoted
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by the function names of OP-C\OP-I.
b) The character set and 1its order function are
implementation dependend.

(5) PRE

Signature: ¥-P := (0OB-P, OP-P) with
OB-P = 0B-B v 0B~1 v OB~-R v OB=C
OP=-P = OP-B v OP~I v OP-R v OP=C

arity=-C: <combination of the arity functions of
the basing signatures>

Then PRE=ALg := (C=P., F-P) € ALglZ~P] with
c-P = {B-valL, I-Val. R=Val., C-vall

F-P = {F-B v F-I v F~R v F-C>

TOI(PRE=-ALQ) := (L, 1)

Remarks: a) The algebra PRE-ALg is a combination of standard
algebras. It is equivalent to the (algebra) union
of BOOL-ALg, INT-Alg, REAL-ALg and CHAR-AlLg.

b) Since no new data is introduced in PRE=~ALg -~ the
carrier sets are alLready defined ~, there is no
type-of-interest. This phenomenon is generalized
in the enrichment object (see sec. 3.5.).

2.2.3. Further Domains

Usually, the semantic domains provide the mean to express the
intended semantics of a programming Language construct. In the
case of data types and data type generators there were onlLy
few proposals in the past how to include their semantics in a
denotational description ([Ten 761, [Gor 79]1). This was mainlLy
due to the fact that a well=-formalized and reasonably wide
accepted answer to "what is a data type" had not been given.

So our suggestion to describe data types by algebras is
derived from resulLts of abstract data type research ([ADJ 781,
[EkKP 78], [CIP 81]) during the Last ten years. In this
environment., data types are introduced by algebraic
specifications, that consist of signatures (names of data sets
and names of operations) and of sets of equations that define
a behaviour of operations. Then a unique semantic Links the
specification to a single algebra, the data type.

This didea applied to the types and type generators of
conventional Languages requires some prerequisites:

e An appropriate domain has to be defined to serve as semantic
domain of type definitions.

e If types are algebras, then the Language inheritant types as
BOOLEAN, INTEGER etc. cannot be Looked at onLy as a set of
values, but as structures including operations as 'and',
‘or' or '+', '<' wyhich in general are hided in the compiler.
Therefore it should be clear which operations are associated
to a given type.
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s

® A complete ModPascal program with type definitions.,
operation declarations, variable declarations and statement
part can also be viewed at as an algebra: the type
definitions represent already algebras., the operation
declarations are new operations of a 'program algebra', and
the variable declarations together with the statementpart
may be seen as a single (unnamed) operation applicable to an
initial state and resulLting in a final state. The support of
this main=-program-algebra view is particularlLy important if
in verification contexts programs are Linked to other
structures that themselves are based on algebraic semantics.

Concerning the first point above., the domain AlLg was
constructed as a collection of alLlL interesting alLgebras. (for
reason of the cautious formulation ‘'interesting's see the
remark after definition 2.2.1.-9). The second point is covered
by the explicit definitions of alLgebras in the preceding
section and the definitions of sec. 3.3.1. and sec. 3.3.2.
These structures were composed according to the Pascal
standard of [IS0O 7185]1. The third point is dedicated to the
special section 2.2.4.

If, as in our caser the Language involves additional new
constructs they also should fit into the algebra semantic
frame. But since module types., enrichments., instantiate types
and instantiations are derived structures of abstract data
type theory this requirement is trivially met.

2.2:3.1. The non-AlLgq Domains

Although the standard types of ModPascal are modelled by
algebras with the expected carriers, it is often conveniant in
already very technical clauses to access directly to boolean
and integer values. Therefore the domains D_BOOL and D_INT
were added.

In the following onlLy flLat domains are defined.

Notation: (A —> B) denotes the domain of strict monoton
functions from A to B.

D_BOOL
= {true, false}: The boolean values.

e

INT .
{ veer =2, =1, 0+ 1, 2, ...2: The integer values.

'

{id] id € €A, ..er Zs 0s eear 93* A first(id) ¢ {0/ ...~
92): Identifier are strings of Letters and digits, starting
with a Letter.

Loc

= {an unbound domain of Locations): If Locations are
interpreted as main memory addresses, Loc could be seen as
integer subset. But every interpretation into
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distinguishable elements will work.

AlgaQual
= {MAIN, BOOLEAN-, INTEGER, REAL., CHAR, SCALAR, SUBRANGE.,

ARRAY, RECORD, FILE, SET, POINTER, MODULE, ENRICHMENT2}: The
algebra qualifications indicate the basing ModPascal type of
an algebra. MAIN refers to the main program algebra.

ObQual
= {LAB» CONST, VAR, PROC, FUNC., INIT, INST)} + AlgQual: The

obJject qualifications indicate either the basing ModPascal
feature of an item or the basing ModPascal type.

ValLQual

= {CI C = TOI(A)¥1 for A € ALg): ALL carriersets of interest
for algebras in AlLg. ValQual may be seen as a factorization
of AlLg.

OpDen
= + (vVvalLQualL" —> vaLQual™):

Function between n-ary and

NnsmEN

m-ary cartesian products of ValQual. A generalization of
functions of algebras of Alg.

val
= D_BOOL + D_INT + Id + AlLg + ValQual + OpDen

The following domains are not necessarily flLat.

= (Loc —> Val): Links Locations and values

nv
= (Id —> (Loc X ObQual x ValQualL)): Each identifier id € Id

is connected to a triple. The second and third components
describe properties of id.

State
= Env X Store : Characterization of a state as tuple. See also
the memory model in 2.2.3.2.

= (State —> State): State transformation that are induced by
programming Language constructs will be described with T €
Trans.

ETrans ;
= (State —> (State x Val)): AnalogouslLy Trans, but with

values out of Val.
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D_BOOL = {true, falsel}

D_INT = {ueuer =1, 0, 17 o..2

Id = {idl id € {As cewr Zr 0s wuer 92Y A first(id) ¢

{0, cour 922

Alg = + {ALg[z]]| £ is signature?

Loc = {unbound domains of Locations} -

ALgQual = {MAIN, BOOLEAN, INTEGER., REAL, CHAR, SCALAR-»
SUBRANGE, ARRAY-, RECORD, FILE., SET, POINTER.
MODULE, ENRICHMENT>

ObQual. = AlLgQual + {LAB, PROC, FUNC, VAR, INITY

valQual = {C | € = TOI(A)Y1 for A € AL}

val = D_BOOL + D_INT + Id + AlLg + ValQual + OpDen

Store = Loc —> Val

Env = Id —> (Loc x ObQual x ValLQual)

State = Env X Store

Trans State —> State

ETrans = State —> (State x Val)

OpDen vaL" x valL™

"

i

In the following we assume that the syntactic domain ID and
the semantic domain Id are identical.

2.2.3-.2. The memory model

In the semantic clauses a two-Level memory model is used. The
first Level, represented by the domain Env of environments.
Links didentifier to a vector of values. One of them is a
Location of a (virtual) memory., in which the associated value
is stored. This represents the second Level of the memory
model, and it is formed by the domain Store.

Using & € Env, 6 € Store we have:
id ——> (Location, ..es a..)
g
&

<value>

For the different kinds of object qualifications the following
memory schemes are used:

e(id)¥2 € AlLgQual:

id —> (Loc, obg, V € ValLQual)

A € AlLg

with TOI(AYV1 =V
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e(idd)V2 = VAR:

id —> (Loc,» VAR, V € ValQual)

v eV
with TOI(A)¥1 = V
e(id)¥2 € {PROC, FUNC}:
id —> (Loc, PROC/FUNC, L)

v
D € OpDen

2.2.4. The Main Program Algebra

The semantic clauses of sec. 3. state the meaning of type
definitions, procedure and function declarations, and so on.
Each clLause that describes the introduction of a new item
includes an updating of a so=called main program algebra (MPA)
that 1is accessable 1in every € € Env under the reserved
standard identifier 'main'.

MPA serves as a vehicle to express the effect of a program by
algebraic means. The incduced state transformation is
formulated as an algebra operation where the argument sets are
determined by algebra carriers.

The construction of MPA is incremental: initially ‘'main' is
bound to the algebra PRE € AlLg (see sec. 2.2.2.) to model the
set of predefined objects of ModPascal at the beginning of
every computation. Skipping Label and constant declLarations of
a program P at this point, the object definitions of (objectL
P) = the type/enrichment/instantiation=-part of [OLt 841 - are
elLaborated firstLy. In the ModPascal semantics, each type or
enrichment definition Leads to an algebra A that is stored
under the definition identifier. SimultaneouslLy, the set of
visiblLe objects is enLarged by the current definition., and
this fact is taken into account by uniting the main program
atgebra of the current state (€, &) with the new algebra:

e(main){y1 := &(main)¥1 v A

The instantiation object definitions are treated not in that
way since they represent a kind of meta-objects: instead of
mapping carrier elements to carrier elements they map carriers
to carriers and operations to operations (see sec. 3.6.).
Because this would extend the MPA concept without giving
profit in some of the intended MPA applications (see below) we
disregard the embedding of instantiation objects in MPA.

The procedure and function declarations of (subproglL P) are
mapped to algebra functions F by the ModPascal semantics. The
carriers of the source (2 the parameter types of the
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declLarations) have to be visible at the declLaration point. But
this is equivalent to require each source set to be contained
in (main)¥1. Therefore the addition of F to the current main
program algebra operations is well-defined, and this action is
performed for each declaration in (subprogL P):

e(main)¥1 := €(maind¥1 v (g, {FF)

In parallel, the meaning of an operation declaration is also
stored under the operation identifier (see sec. 2.2.3.2.).
This is true too for operations introduced in module type or
enrichment definitions. The redundancy offers some conveniance
in the formulLation of semantic clauses, but has no theoretical
benefit.

The stetement List (stmtL P) 1is viewed at as a specific
procedure body, where the variables of (varL P) represent the
Local variables and where - for simplicity - input/output
behaviour is disregarded. Then the usual treatment of
procedure declarations is performed, the resulting algebra
operation S is stored under the reserved standard identifier
'stmtproc' and adcded to the main program algebra:

e(main)¥1 = €(main {1 v (g, S)

In some sence ‘'stmtproc' is the only operation of a ModPascal
program. If every function or procedure declaration would be
embedded in a module type or enrichment definition such that
all parameter types are used by the definition - that is to
associate every operation with an object =, then the main
program would consist only of object definitions and the onLy
operation ‘'stmtproc'. This view also includes a hierarchical
structure Lying on all program objects. In the following a
special structure of 'main' is not assumed.

Before describing the benefits of the main program algebra
concept it should be briefly mentioned that LabelL and constant
definitions fit into this framework. Labels are just special
constants., and constants themselves can be modelled as
no-argument functions yielding the constant value. Because
constants are of a specific type, there is an algebra that can
be enLarged by the associated no-argument function, and by
this €(main)¥1 is enlLarged.

The main program algebra construction is very heLpful in the
verification of (concrete) ModPascal programs against
(abstract) specifications (see [OLt 85]). Especially algebraic
specifications are a concise and mathematically sound method
of describing what a program should do, and the theory of
abstract data types is based upon them. If verification tasks
are performed in this setting, one profits from the following
points:

e The semantics of the concrete program and the abstract
specification are both algebras. Instead of checking
verification conditions on program texts., algebraic
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structures and methods can be used easily since onLy one
formal system is involved. Furthermore, universal algebra
comes with a much broader set of possible correctness
criteria (e.g. homomorphisms., isomorphisms., generating sets)
than conventional Hoare-style Logic (derivability).

® The object view on types has an analogon in algebraic
specifications: each describes a specific set of data and
operations. But without the main program algebra it would be
impossible to provide an appropriate meaning to the
statement part of a program, and therefore program and
specification would become incomparable.

® Main program algebras allow to treat programs as obJjects.
There is no difference between the semantics of a module and
of a progr, such that the features as ‘'hierarchization of
programs' or ‘separate compilLation' could be provided with a
clear formalL semantics.

® For applications in special verification contexts it is
necessary to precompile ModPascal code to Pascal code (see
sec. L.) . To get a conveniant notion of semantical
preservation in this process, the main program algebra is
used as an important idea. It helps to express conditions
for the states resulting from the elaboration of the
ModPascal as well as of the Pascal construct.

The exploitation of these facts would go far beyond the
intention of this paper. In section 4. onlLy the precompilation
aspect is examined. For our purposes it is sufficient to have
an informal idea of the main program algebra and its
justification. In [OLt 85] this concept is applied.

2.2-.5. Environment and Data Base

Before giving the semantic clauses for ModPascal we will
shortly scetch some practical problems that arise if the
currently available dimplementation of ModPascal is used. As
described in the dintroduction ModPascal is back=-end of a
verifiable software development process supported by the ISDV.
There is a ModPascal Programming System (MPPS) inside the ISDV
consisting of an editor., a ModPascal-to-Pascal precompiler., a
Pascal compiler and an execution device. ALL components refer
to a data base (DB) in which ModPascal, objects (modules.,
enrichments., instantiations, standard types» wss) are
administrated. Thus, modelling the behaviour of ModPascal by
using the two Level memory model described  above includes
modelling the behaviour of DB in MPPS. ' ’

To illustrate this we give a short example. MPPS distinguishes
different users each of them having a separate section of
objects in the DB. If new objects are entered, there are two
ways of involving other obgjects into the current one: either
they are defined explLicitlLy in the current input., so that they
are directly visible (declaration-before-use paradigm), or
they are referred to via the DB. In the Last case the system
checks if the access to the desired objects is allowed. The
permission of using obgjects 1is qualified by different
categories. Any user has unlimited access to his own objects.,
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but can also use, read or read/write objects of other users.,
or use system objects (for details, see [RL 841). So, if the
access to the referenced object of DB is allowed, it is
incorporated in the current computation.

The semantic domain Env is an abstraction of the DB. Since
€(id) € (Loc x ObQual x ValQual), there are no object specific
access rights in the modelL, and 1in fact, the concept of
multi-user and separate object spaces is disregarded. But this
is not a sericus disadvantage, because it could be easy taken
into ocur modelL by adding appropriate domains and modifying the
semantic clauses bpelow. In the special case of semantic
clauses for instantiate type definition, this model extension
is actually performed (see sec. 3.7.).

The decision not to bother with data organization questions in
the ModPascal semantics removes a degree of complexity and
enables a more succint description of how things are intended

to work.
2.3. Semantic Functions

2.3.1. Main Functions

The syntactic and semantic domains are Linked by the following
functions:

(a) M: Constr —> State —> State

where Constr = Program + Prog_head + Block + Lab + ... is the
sum of all syntactic domains.

Notation: ElLements of Constr will be enclosed in doublLe
brackets [ and 1. Elements (2, &) of State wilLl be
supplied to M with guxtaposed components.

Example: MIclts

M Ltinks an initial state prior execution of a programming
Language construct to a final state after execution of this

construct. M is defined by the semantic clauses of sec. 3.
which are etLaborated to an appropriate Level of detail.

M is applicable to every c € Constr except the cases Listed
below:

C € _Expr:

(b) E: Expr —> State —> (State —> Val)
and MIcltes => Elclts

C € _(Stand_type v Stand _type den):

(c) Mt: (Stand_type v Stand_type_gen) —> State —> (0ObQual x
ValQual x ALg)
and MLclte => Mtlcles
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c € ModulLe type:

(d) Mm: Module_type —> State
—> ((0bQual x VaLQual x ALg) x State)
and MLclte => MmIclts

C € Enrich_def:

(e) Me: Enrich_def —> State —> State
and MIclte = Melclts

C € Instantiate _type:

(f) Mi: Instantiate_type —> State —> ((ObQual x ValQual X
ALg) x State)
and MILclee => MilcIte

2.3.2. Auxiliary Functions

The following functions are used as auxiliary functions in
sec. 3.

newloc

newloc geots a currently unused Location of an environment.
newloc: Env —> Loc
newloc(€) := q Loc . V id € Id . B(id)¥1 # Loc

§eégchggf

searchdef Looks for the algebra to which an operation is
associated; it returns the algebra identifier.

searchdef: Id —> State —> Id

searchdef(opid)Ee :=

Let id := L id, € Id . €(id;)¥2 € ALgQual and
Let (C, F) := e((idy)¥1) in
opid € opnames(F) in
id

(v returns L4, if no unique id, exists with the required
property)

standard

indicates whether an identifier denotes a standard object., and
provides its initialization valLue in the positive case.
standard: Id —> (D_Bool x Val)

standard(id) :=
if id = BOOL —> (true, false) gLse
if id = INT —> (true, 0) eLse

eLse (false, L)
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3. Semantic ClLauses

The semantic clauses of this section are stated in a way that

avoids too much complexity induced by a treatment of all

important aspects of a Language description. There are the
following restrictions and modifications:

e Not every syntactical construct of 2.1.2. is supplied with a

semantical clause. Very often there are only minor changes
in the ModPascal semantics for Standard Pascal constructs.,
such that descriptions as [Ten 76] may suffice for an
understanding. Also, it is not the topic of this paper to
describe for example the ‘repeat' construct.
We will concentrate the definition of clauses on those
constructs that make ModPascal differ from Pascal and those
Pascal constructs with major deviations from their usual
semantics.

e Nothing will said about scoping., type checking or coercions.

e Since we omit Jjumps and expression error handling, the need
of continuations and expression continuations does not
arise. We refer to [Ten 76] or [Sto 77] for an appropriate
treatment of the respective ModPascal constructs.

® The dynamic behaviour induced by environment changes is not
modelled here. One effect of such an action is a changed
semantics of identifiers because another scope is enforced
by the new environment. This should take over to the
algebraic semantics and it would mean to install a new
program algebra with possibly new interpretations of its
function symbols. More general., environment changes
correspond to algebra changes., and beside the boring
technical issues we do not want to develop a theory of it
here.

1. _Procedures d nctions

3.1.1- _Declarations

In ModPascal, procedures as well as functions may have
side-effects on the embedding environment. The side-effect can
be formalized in the state change of glLobal variables, under
respection of domain structure of value sets of variables. The
semantics of procedure and function declarations then is based
upon the side-effect formalization associated to the operation
body.

The provision of a clear formalism is the first task of this
section.

Types will be associated with algebras, and variables of a
type will take values in a specific carrier set associated to
the alLgebra of the type (the TOI). Then., if the effect of an
operation call is described in the state change of its global
variables, this can be modelled as an assignment of new TOI
values to the variables. More precise: Let op denote an
operator with global variables gL, s ..., gL, of types Ty7s eue.r
T.. Let A; denote the semantical algebra behind T;, and V; :=
TOI(A;)» 1 € (N). Then the values of gL; in a given state (%.
6) (i.e. 6(8(gL;)¥1)) are elLements of Vi, i € (n). Under the
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assumption that the glLobal variable set of op remains constant
during operation execution, the pairs (vec,, vec,) describe
the operations behaviour, where vec; denotes the vector of
global variable values before execution, and vec, after. Since
vec;» i € {1, 2} are n~-tuples of V; X ... X V,, they describe
the semantic relation associated to op, and in the case of
deterministic Languages, this relation is a function.

With this in mind there is a technique to Link the ModPascal

operation declaration to a semantic function of an appropriate

order algebra (that at Least contains V;, 1 € (n) among its
carrier sets):

1) Generate pairs (vec,, vec,) that are intended to describe
the operations behaviour. Let Semop denote the set of alLl
generated pairs.

2) If Semop denotes not a strict function: make it strict by
exchanging strictness=-violating pairs through
strictness-preserving ones.

3) Take an algebra in which Semop is defined, i.e. for i € (n)
V; is a carrier set. :

ad1) In our setting, the pair-generating mechanism is ¢the
semantic function M. We consider its values for a source
and target state, and from there we derive values of
global variablLes of the construct that caused the state
change. This process is done for alLl possible values of
global variables in the source state. In other words.,
this means that the elaboration of M on operation
declarations is reformulated in terms of algebra
functions. This reformutation involves a recursive
process since ModPascal operation declarations may be
recursive such that fixpoints have to be taken as the
solution of the reformulation task (see e.g. Sem_1.,
Sem_2, Sem_15 and Sem_16 below).
Pictorially., we have

(vec;) = = = = = = => (vec,)

M
(e, &) > (8, 6;)

where - = => denotes Semop.

ad?2) To achieve strictness, two ways are possible: the faulty
construct is redefined by the programmer., or the
semantics is automatically manipulated in order to regain
strictness. Even if the second choice is unpleasant for
its unvisible redefining, the processes defined below
take it.

ad3) The semantic algebra will not be constructed for a single
operation declLaration. Instead of, MPA will serve as
structure for the embedding of Semop. Since ModPascal
follows the '‘declLaration~-before-use' paradigm. the
definedness requirement for V; will be satisfied for
synhtactic correct programs.

It should be emphasized that this view of the sementics of
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operations (as algebra functions) has not been much developed
in the denotationalL semantics Literature. One of the reasons
probably was the Lack of a satisfactory concept of types in
semantic domains (e.g. [Don 77], [Rey 74]) until abstract data
type theory come up in the second half of the 1970s. The model
developed here tries to union both concepts.

The following definitions will in the first instance
distinguish between procedures and functions. In the case of
procedures onlLy state changes are considered, in the case of
functions state changes and the computation of a result value
(despite the fact that Later function calls will have to obey
the side-effect-freeness condition 3.2.1.-2» here the general
approach is taken, that is also more close to the (Mod)Pascal
reality). The definitions of the technical operators Re, R~/
Re*s, Re*, p[_1, ([ 1, p¢[_1, R are intended to achieve steps
1) and 2) above in the ModPascal environment. Their
differences Llie in the syntactic domains they are defined

upon:

Re : Pro:-edure declarations

Re : Function declarations

R, * : Strictness generating version of R,

Ry * : Stricthess generating version of Ry

p[_]1 : Sets of (mutually recursive) procedure declarations

f[_1 : Sets of (mutually recursive) function declarations

prl_] : Sets of (mutually recursive) procedure and function
declarations

R : A switch operator which branches for arbitrary sets
of operation declarations to the appropriate
operator

These operators are applLied in the semantic clauses Sem_1.,
sem_2»,» Sem_15 and Sem_16 below.

Def’ }-I-I--I- [mpl mr]
Let 6L, :={idy, ..., dd,> ¢ Id, GL, :={idy;'s ..., id,'> ¢
Id.

For id €(GL, v GL,) and ¥ € Env, a value set V)¢ is associated
to id if

1) g(id)¥2 = VAR \
2) B(id)¥3 = Vi
Let V(GL;» GL,) = Vigy X wwe X Vg, X Vi 1 X wwe X Vig ,n7
where €(id;) *# L, e(id;") # L, i€ (N, je& (m.
Let V := <{V(GL,,» GL,)| 6L, ¢ Id, 6L, ¢ XId} (Set of n-ary

cartesian products). Let V. denote a value set.

1) Rp: Trans x Env x 2¥ x 2¥ —> V with
Re (T, €, GLy», GL,) := the Least relation on V(GL,,GL,)
defined by
(1) Vv id € (6L; v Gl,) . B(id)¥3 = Vi
(2) ¥V 6 € Store .
Let (fr &) := T8, &) in

tet x; := E(g(idi)¢1)l i€ (n) in
Let y; := 6(8(id' V1), 1 € (m) in

(X1 7 waer Xp2 Y17 anse Yu) € Ra(T»r 8- GL,» GL,)
is called store transformation (w.r.t. GL,», GL, and T).
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2) Rr: ETrans x Env x 2" x 2" x vaL —> V x val
R (Esr €, GLy s GL,» V,.) := the Least relation on (V(GL,; ,GL,)
X V,.) defined by
(2) ¥V 6 € Store .

Lket r e Vv, in

et ((8, 6), r) := E(E, &) in

Let x; := (@ (ddd¥1), 1 € (N) in
Ltet y; = E(e(dd" (V1) i € (m) ip

(X137 wnar Xno Y12 nanwer Yor ) € R-(Er €r GLy» Gly»r V,.)
is called store transformation with resultt (w.r.t. Gl,;.
GLzI E)- n

Notation: If no ambiguities are possible R, denotes the store
transformation and R the store transformation with

resulLt.
Fact 3.1.1.-2.: Rp-» R are functions. n

The quantities of the definition could be interpreted as
follows:

- GL,,» GL, : set of program variables on which the effects
of the execution of +the operation body are
investigated

- Vi value set for program variablLe id

value set for a function result

the state transformation induced by the
procedure body

E € ETrans : the state transformation induced by the
function body and an evaluated result

-V,
- T € Trans

In some sense, R, /Ry are restrictions of T/E, since for GL; =
GL, = Id, R, and T as well as R and E are identicalL for fixed
environments € if onlLy variable values are regarded.

From R, /R it is easy to generate a relation on carriers of
algebras. For examplLe, for R, it holds that

Re(Tsr 8€» GLy»s GLp,) € Vigg X eweX Vigy X Vig'y X awe Vid'm
and each Vg directly corresponds to some algebra A € AlLglz]
with TOI(AYV1 = Vig. In other words, if R./®Ry turn out to be
strict functions, an order algebra A = (C, F) may be
constructed with R, € F / Ry € F.

Def- 3!1-1--3- [fkp*l RF*J
Let Rp (T, €, GL;~» GL,) and Ry (E,» 8, GLy» GL,» V,) be defined
as in definition 3.1.1.-1.
1) Rp*(T, €, GL;» GL,) is defined by:
V(Xy 7 auar Xp2 Y172 anese Yo) € Ra(Tsr €5 GL;» GL,;) .
1) vie (n) . x; # Lvig;
=D (X172 waar Xnor Y12 aens Y,) € RF*(TI €, GL» GL,)
2) 3ie (n . x; = -LVM;
=D Xy 7 eeet Xpr IVig (4 wauwr Vi ) € Ra*(T, 8, GL,»
GLp).
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2) Re*(E, 8, GL,» GL,» V,.) is defined by:

V(X1l anarl x"l YI’ LR 4 Ym’ P) € RF(E' gl GLll GL:I Vr)'

1) vie(n . x; # Lvig;
=D (X172 asns Xn7 Yi? sesr Ynr ) € Rr*(El 8, GL,.,
GlLy» V,.) '

2) 3 i€ (n « x; = LVm;
=D (X1+ eunr Xpr LVie {2 auwar LVig s LVr) € Rr*(E, €,
GL;I GL:I V,.). -

Definition 3.1.1.=3. shows how to augment R, /R to make them
strict. But frequently R, = Rpe* / R = Re*, di.e. the store
transformations are already strict.

A very important extension of R.*/®R.* is the case of sets of
state transitions. This models the situation that the state
change is caused by more than one function, and it covers also
mutual dependencies between the elements of the state
transition set.

Def. 3.1.1.=4 [extended state transitionl
1) Let {Ty+ «u.r T,} € Trans, n € N. Then
pL_1: P{(Trans) —> Trans
denotes the extended P-state transition defined by
PL{Ty 7 caur T,2186 :=
- (', 6') Aif A k € N, (8;» 6;) € State, i € (k) .
Lek (8., &,) (
(§'» 6" in

Vie(k=1) .3 3€ (n) .
(§;+11 6;41) = T;(§;; 6;)

L otherwise

2) Let {Ey» ...» E,} € ETrans, n € N. Then
r[_1: P(ETrans) —> ETrans
denotes the extended F-state transition defined by
F[{Eli “an’ E,,}]ge =
—((8'» 6')s 0") if 3 kK € N, (B;, 6;) € State.,
e; € VaL, i € (k) .
Let (8,, &,) := (8» 6€)s (By»r &) :=
- (', '), 0 := 0" in
' Vied(k=1) .5 je(n .
(§iv17 6141) = E; (817 6041 30Dd
e' = Ej (gg_ll SK_,_)WZ

— L otherwise
3) Let {ET, 7 «wavr ET,> € (Trans + ETrans), n € N. Then
pr[_1: P(Trans + ETrans) —> (Trans + ETrans)

denotes the extended PF-state transition defined by
pr[{ETll csw’ ETn}]ge i =
(', ') if I k € N, (8;, &;) € State, i € (k) .
Let (8,, 6,4) = (B, 6)s (Bysr &) := (B', &) ;n
vie(k=1) .53je (n .
case ET; € Trans: (B 4,7- 6i4+1) = ET;(8;» 6;)
cgse ET; € ETrans: (8i,17 &;+1) = ET;(8;, 6;)V1
and ET,_, € Trans
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+((e', 8"), ©') if 3 k€ N, (B;, 6;) € State, e; € ValL,
ie (k) .
Let (Bo»r 65) = (84 6)sr (8o §K) : (€', '),
e, := e
vie(k=1) . 53je (n) .
case ET; € Trans: (8;4,,7» 6;{41) = ET; (8~ 6&;)
case ET; € ETrans: (€ ;,,7, 6;4+41) = ET;(8;» &;)V¥1
and ET, ., € ETrans

in

AAAA

L L otherwise n
Notation: The curled brackets in pl...] and ([...] are
omitted.

p[Tyr euesr T,1/¢[Eyr <..,r, E,] describe a composition of a
finite sequence of state transitions. if defined. Each
intermediate state 1is application argument to exactlLy one
state transition. The appropriate selection can be thought as
determined by the predecessing state. In the case of [E; s ...~
E,] the intermediate states can be thought as providing
Locations to store evaluated results if necessary.

With this definition Rp *(x [Ty, ..., T,1, &, GLy» GL,) or
Re*(r[Ey» <uwr E\1, Ts GlLyr GlL,.» V,.) evaluate to the
associated store transformation (with resuLt).

These technical operations are now combined into a single
function.

Def. 3.1.1.=5 [extended store transitionl
Let V be defined as in 3.1.1.-1
Let TR := (P(ETrans +Trans)
IV := (2% x 2 ¥ + (2¥ x 2¥ x val)
RES := (V + (V x val))
Then the extended store transformation R: TR x Env x IV —>
RES is defined by

R(tr, 8- iv) &=
case iv = (GLy,» GL,) € (2" x 2 ¥):
gg“s”e‘ tr {T} € TPanS: mr*(Tl gl GLII GLz)
case tr ={T;7 auur T,> ¢ Trans:
- Re*(p LTy s wuur T,1, B, GL» GL,)
{ET, 7 ewur ET 27 ¢¢[ETy+ ..., ET,]1 € Trans:
Rp*CppLETy 7 wawr ET,1s €, GLy,» GL,)

otherwise L1
case iv = (GL,» Gl,» V,.) € (29 x 2 x val):

case tr

case tr = {EY € ETrans: R-*(E, €, GL;» GL,» V,)
case tr = {E;» ..., E 2 € ETrans:
Re*(e[Ey s vwuesr EJs 8r Glys Glys V)
case tr = {ETy s .a.r ET, 2~ prLET, 7 «uasr ET,] € ETrans:
mr*(pr[ETll -e el ET“]l g' GLII GL:I V,.»)
otherwise L
gotherwise +

We are now ready to state the semantics of procedure
declarations and function declarations. Both are., dependant of
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global variables and formal parameters, that are visible in
the operation body, and results are delivered via glLobal
variables. In the case of functions, also a value is computed.
We distinguish the following sets:

GL(op) : set of all (direct and indirect) global variables
of op. _

FP(op) : set of all formal parameters of op.

D(op) : GL(op) w FP(op)

These sets will be supplLied to the store transformations ®,*.,
Re*. In a given state, all variables are associated to a fixed
algebra and therefore to a fixed value set. The store
transformations then generate functions from the cartesian
product of D(op) to the cartesian product of GL(op).

Sem_1: Procedure declaration

MLp: Proc_dclLIgs :=

Let id := (proc_id p), bdy := (body p).»
Loc := newloc(®) in

Let ST := Ffix T . Ag,6; .
MIbdyl &, [id & (Loc, PROC,

RF*(TI ¢, D(p)., GL(p)))]S;

where (8,., &,) contains parameters
€ (paramL p) after calling and
passing to the body in

Let R := R.*(ST, &, D(1), GL(L)) in
Let &, := glid ¢t (Loc, PROC, ¢)1.,
6, := 6lLoc = R,
tlalydv1 &« eg(e(algiv1)
v (g, R)1) in
(ggl 63)

The store transformation of the procedure body is computed and
assigned to the procedure identifier. Also the main program
algebra is updated.

Sem_2: Function declaration

MLf: Func_dclIge :=

Let id := (func_id f), bdy := (body f).,
Loc := newloc(®) in

V. := €(resulLt f)V3 in

ST := fix E « AP, 6; .

MEde] (Y [id & (Loc, FUNC-

Re ¥(Es» 2., D(Ff), GL(F), V,))]e,
where (g,, 6,) contains parameters €
(paramlL f) after calling and
passing to the body in

—
D
3

|

—
D
o+

|

Let R := RF*(STI €, V(Ff), GL(F)» V,.)) in
Let ©, := €lid €4 (Loc, FUNC, #)1.,
6, := 6lLtoc & R,
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Clalg)V1 & e(®(atg)v1)
v (¢, RYD) in
(gz’ 6:)

The result set of the function is computed and passed to the
store transformation generation. The outcome is assigned to
the function identifier, and the main program algebra is
updated.

3.1.2. Calls

To describe the meaning of a procedure or a function
invocation the store transformations R, */Rr* are applied. This
reflects the fact that the meaning of a procedure or function
call can be expressed in value changes of some glLobal
variables.

Def. 3.1.2.=1. [application store transformationl
Let Rp*(T, €, GLy» GL,) and R *(E, €, GL,» GL,» V,) be defined
as in 3.1.1.-1./3.
Then the application of the store transformation to states.,
i.e.
(2" x 2¥) —> State —> State (Rp *)
(29 x 2" x val) —> State —> (State x Val) (R *)
is defined by:
1) Rp*(T, 8, GLy» GL,) (B, &) :=
Let @ := L V € Rp*(T, €, GLy, GL,) . (Y i€ (n) .
e(8(id{) V1) = Wil in
Let ' := eglB(id; ")¥1 <— Wn+3i)l, je€ (m) in

(€, ')
2) Re*(E, 85 GLy» GLy»r V,)(B, &) :=
Let @ := L V € Re*(E, B, Gly» Gly»r, V,.) . (V 1 € (N) .

e(e(id V1) = W1 in
Let &' := &8 (id; ¥1 <— W(n+P1, j € (m in
Lot r := Vi(n+m+1) jin
((8r 8')r r) "

Definition 3.1.2.=1. states the dynamic behaviour of store
transformations. At first the appropriate elLement of R* is
chosen by Looking at the argument positions, and then the
resultt is installed in the store component of the state as a
copy of the resulLt positions of the choosen elements.

Analogously the applications are defined, if sets of state
transitions are supplied to R */R.*. The cases of extended
P-state transition (Rp*(,[T,, ..., T,1, €, GL,,» GL,)E&).,
extended F-state transition Rr*(,[Ey,» ..., E,l, 8, GLy» GL,+
V,.)€e) and extended PF-state transition (R(p¢[ET,» ..., ET,1))
can also be treated as a selection of appropriate vector
components and their installation in a specific state, and
this technical actions are performed by appropriate switching
to Rr*lmp* inSide R:
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Def. 3.1.2.=2 [applLication R]

Let R be defined as in definition 3.1.1.-5.
Then the applLication of the extended store transformation R to
states is defined by:
R: (TR X Env X Id) —> State —> (State + (State x Val)) with
R(tr, €., iviBe :=

case iv = (GlL,» GL,) € (2¥ x 2 ):

case tr = {T)} € Trans: R-*(T, €, GL,, GL,)ECs
case tr = {Ty» weuer T,} € Trans:
Rp*(p Ty s wuar T,1, 8, GL,» GL,)Es
cese tr = {ET; 7+ ea.s ET,2s p[ETy+ o..» ET,1 € Trans:
Re*CpplET,» -.., ET,1, B, GL;, GL,)Es&
otherwise L

case iv = (Gly» Gl,», V,.) € (21 x 2M x val):

case tr = {E) € ETrans: R *(iZ, 8, GL,» GL,» V. )E6
case tr = {E;» ...» E,> € ETrans:

Re *(¢[Ey 7 «eu.r E Js 8s GLy» GL,» V,.)EE
case tr = {ETy s «e-» ET,2>» ¢-[ETy» ..., ET,] € ETrans:

RF*(PF[ETI' s uuwld ETn]’ gl GLII GLzI Vr)gs
otherwise 1

otherwise 1

This makes the meaning of operation declarations usable when
the meaning of operation calls are computed.

In this semantic description of ModPascal we do not state
semantic clauses that treat parameter evaluation and passing
mechanisms (see the introcuction for reasons of this
confinement). Instead of we make assumptions that allow a
convenient description of those effects that are of interest
in our context. Speaking roughlLy, the assumptions concern the
elaboration of expressions and consist mainly of the
non-occurrence of sicde=-effects in expression evaluations. For
the non-Pascal partion of ModPascal this is quite realistic
because functions of modules are defined in a way that allows
easily to capsulate the occurring side effects on dlLobal
variables (see sec. 4 and [OLt 84]). But Standard Pascal
functions make more trouble in general since no restrictions
are imposed on them concerning side effects (sometimes Pascal
functions are called "procedures with value"). In the
following semantic clauses we abstract from side effects and
assume expressions of actual parameter Lists of operation
calls of benign character.

Assumpticn_3.1.2.-2.:
Let s:S denote a structure with (act_paramL s) defined.

Let (ey+ waare,) := (act_paramL s).

Let ((8;» 6;)r, r;) := Efe;I8s, i € (n) for given (€, e) €
State.

Then we assume £; = &; and e; = 6; for i,3j € (n). x
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Sem_3: Procedure call

Proc_stmt = Term
Term = Simple_term v Op_designator

MCs: Simple_termlte :=

Let id :=(op_id s)s» (@y+ ..., e,) := (act_paramL s) in
Let ob := searchdef(id)®e ;in
if pot (ob #* LlENV and g(id)¥2 = PROG) then error gLse
else Let (8,, 6;) := the state after elaboration of

calling and passing mechanisms for
(ell canr ©,) ;‘7\!\1
Let R := 6, (8, (id)¥1) in

L-\g\&(gal 62) = R(gll 61)&0

(gzl 52)
MLop: Op_designatorlfs :=
Let Vig := (var_id op), opid := (first (op_idL op))-
(€174 eeer ©,) := (first (act_paramL op)) in

Let (Loc, obgr, vqg) := B(Vw)
if not (obg € AlLgQual) then error gLse
,l;g& (C, F) := 6(§(V;d)¢41) Q,J:!
if pot (opid € opnames(F)) then error gLse
Let (€,, &,) := the state after elLaboration of
calling and passing mechanisms for
(€17 euur e,) ;LQ
case t(opid)¥2 = PROC :
Let R := &, (8, (opid)¥1) in
Let (8,, &,) := R(E,-, &,), where
references to id; € GL(opid) are
substituted by references to
&, (B, (Vid ¥ 1) 0 in
if (rest(op_idL op) = ¢ then
(8, , &;)
else Let op' := plop;
: op_idL: (rest(op_idL op)).
act_paramlL: (rest(act_paramL op)))

AAAArA

MLop'Ie., 6,
case t(opid)¥2 = FUNC
Let R := 6, (8, (opid)¥1) in
Let ((€,, 6,), r) := R(E,, &,), where
references to id; € GL(opid)
are substituted by references

to &, (B, (Vigdv1)di in
if (rest(op_idL op)) = ¢ then error
else
Let op' := plop; var_id: r.

op_idL: (rest(op_idL op)).
act_paramlL: (rest(act_paramL op)))

MLop'Ig, 6,

In the case of simple terms = no dot notation occurs) the
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store transformation is applied directly. If opdesignators
constitute a procedure call the sequence is elaborated
step-by-step, and the resulLt is onLy non-erroneous if the
secquence ends with procedure invocation. Intermediate
structures are composed via the up-operator (see sec. 2.1.).

The correctness checks for operation call sequences (i.e. obq
€ AlgQual and opid € opnames(F)) have to be seen in connection

with the static semantics for sequences as given in [OLt 84].

Sem_4: Function call

(Function call = expression)
Expr = Id v Term v S_Term
Term = Simple_Term v Op_designator

Efid: Idles := if e(id)V2 = VAR then e(e(id){¥1 elLse error

ECt: Simple_Termlte :=
Let opid := (op_id t), (€3, ...r e,) := (act_paramL t) ip
Let (8,, 6;) := the state after ELe;l8e and passing
the result to the function body in

if not (elCopid)¥2 = FUNC) then error eLse

Let R := &, (8, (opid){1) in
Let ((8,, 6,), r) := R(B,, 6,) in

((8y7s 6,), )

ELop: Op_designatorlfs :=

Let Vig := (var_id op), opid ::= (first (op_idL op)).,
(€17 wuer e,) := (first (act_paramlL op)) in
Let (Loc, obq, vq) := B (Vi)
if not (obgq € AlgQual) then error gLse
Let (C, F) := s(C (Vi) V1) in
if pot (opid € opnames(F)) then error glLse
Let (8,, &,) := the state after elaboration of
calling and passing mechanisms for
(€17 eaur ©,) in

case gT(opid){V2 = PROC :
Let R := &, (8, (opid)V¥1) in
Let (8,, 6,) := R(8,, 6,), where
references to id; € GL(opid) are
substituted by references to
6, (8 (Vi) ¥ 1) ¥d i
if (rest(op_idL op)) = ¢ then
error
else taek op' :=
p(op; op_idL:(rest(op_idL op)).
act_paramL: (rest(act_paramlL op)))
in
ELop'lg.s,
case Blopid){2 = FUNC :
Let R := e, (&, (opid) V1) in
Let ((8,, 6,)r, r) := R(8,,» &6;), where
references to id; € GL(opid)
are substituted by references
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to &, (B, (Vid¥1)di in
if (rest(op_idlL op) = ¢ then
((8rr 6,)r )
elLse
Let op' := plop; var_id: r.,
op_idL: (rest(op_idL op))-
act_paramL: (rest(act_parambL op)))
in
Efop'lR. s,

ECs: S_Termlts :=
tet signum := (signum s)., t :

= (term s) in
Ltet ((8,, &), r) := ELCtILs in

Let r, := "signum r" in

((§1I 61)’ rl)

The signum operator assigns a "+' or '=' to a term.

The function call clause 1is equivalent to the expression
clause. Again, the store transformation is applied directly if
simple terms occur. Otherwise a sequence of operation calls is
evaluated step by step, and the result is a state-value pair
if the sequence ends with a function invocation. Intermediate
structures are composed via the U operator (see sec. 2.1.).

The correctness checks for operation call sequences (i.e. obq
€ AlgQual and opid € opnames(F)) have to be seen in connection
with the static semantics as given in [OLt 841].

3.2. Variable Declarations and Assignments

3.2-1. VariablLe Declarations

Variables are always declared having values in specific value
sets of algebras (TOI). The initialization is done implicitly
(standard objects) or explicitlLy (modules).

Sem_5: Variable Declaration
MCv: Varlfe :=
Ltet (idy, aauasr id,) := (idL V), t = (type V).,
int := (int v) in
Let vV := 2(t)¥2 in
Lot Loc; := newloc(®;_,), i € (N), &, = ¢ in
if standard(V) {1
;ngn ,l,\g,g §,,,,1 := §,,[id; € (LOC;I ts, §n(t)¢3)ll
6,41 := 6,[Loc; &~ standard(W)¥2], i € (N)in
(8hv17 €h41)
else Let ©,.,, :=¢,[loc; & (Loc;,» t, &, (£IV31,
6.,+1 = 6,Lloc; & valL(ildl, i € (n)
where valL(i) := Let {Llvy/, cuar Lv,2> :=
Local variables
of t in
Lot (€', ') :=

December 84 ModPascal -Semantics



ModPascal 3.2.2. Assignments Page 35

MCintI(e,, &,) in
(8" (B ' (LVyI¥1r auar 8'(E'(LV,IV1))
in
(Bns17 6,41

This semantic clause also covers implicit type definitions in
variable declarations. In that case standard type identifiers
are generated.

3.2.2. Assignments

ModPascal extends Pascal the assignment statement in that
arbitrary module function calls may occur as Left-hand-side
structures. Also extended dot notation may be used.

Sem_6: Assignments

MLa: Assg_stmtlgs :=

Let v := (assg_var a), e := (expr a) in
case € 1d : '
,!zm,t-. ((§1I 61)’ r‘) = E[93§6 'i!:l
Let &, := &,[8, (V{1 & rl, in
(§1I 62)

case v € Comp_var = (array_var: Id, exprL: ExprL) v
Field_designator :

case v € (array_ var: Id, exprL: ExprL) :

Let aid := (array_var V), (€, ..., ©,) := (exprL V) in
Let (e, eses ©,') := the evaluated index expressions
in

Let ((8,, 6,), r) := ELelts in
Let €, := &,[8,(aiddi(e;'s wcuur €,") &~ prl in
(€, » 61)

case v € Field_designator :
case v € (comp_var: Assg_var, field_ 1d- Id) :
Let Vi« denote the record variablLe extractable from
(comp_var v) in
Let fid := (field_id w) in
Let ((8,, &), r) := ELelltes in
Al;,g“t 62 i = 61 [gl(Vld)Wfi‘j L VJ ;n
(§1I Gz)

case v € (ref_var: Ref_var, field_id: Id) :
Let rid := (ref_var v), fid := (field_id v) in
Let Loc := s(E(rid)Vv1) in
Let ((€,, 6,), r) := ELells in
Ltet 6, := 6;[Loc =~ rl in
(gl’ 61)

Op_designator :

17 610, ry) = EOVIEs  in
€,»s 6,)s r,) := Eleld; s, in
let Loc := 8(ry)¥1  in
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LLoc &« rl in

Lot 65 = 6

2
(gzl 6_;)

Remark: In Sem_7 assumption 3.1.2.-2 on the side effects on
expressions is also involved.

3.3. Type Definitions

We distinguish between the various kinds of type definitions
according to their degree of freedom of user supplied parts:

- Standard types are predefined. Their semantics is fixed.

- Standard type generators generate partially predefined
algebras. The partiality of the definition concerns either
carriers or/and operations. The missing parts are supplied
by the users type definition.

- Nonstandard type generators generate algebras for which
complete definition has to be supplied by the user.

The semantic concept of algebra is emplLoyed for each type
definition.

Sem_7: Type Definition

MIt: Typedeflfes :=

Let tid := (type_id t), tpe := (type t) in
if tpe € Id then
Let Loc := newloc(®) in

Let €, := tltid « (lLoc, B(tpe)¥2, E(tpe)¥3)] in
Let 6, := elloc « e(g(tpeli1).-
e(main)¥1 & s(8(main)¥1) v (8 (tpe)¥1)1in
(gll 61)
else
(case tpe € Module_type :
Let ((obqgr v, @), (8, 6,)) := MmItpelle jin
Let (2, &) := (8,, 6,) in
case tpe € Instantiate_type:
Let ((obqgs v, @), (B,, 6,)) := Milltpelte in

Let (8, 6) := (€, 6,) i0
otherwise Let (obq,r v, a) := MItpelte in)
Let Loc := newloc(g§) in
Let &, := ¢ltid & (Loc, obqg,r V)] in
Let 6, := elLoc &« a.,
e(main)¥1 & s(e(main)¥1 v al in
(%, 6,)

To evaluate non-standard type definitions the semantic
functions Mm and Mi are used. The reason is that the
operations of the new structure are installed not onlLy in the
algebra but also in the environment (i.e. E(id) is defined for
module operations id). To enablLe this the defining environment
has to be passed to the type definition clause.
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3.3.1. Standard Tvypes

The standard types of ModPascal are BOOLEAN, INTEGER, REAL.
and CHAR. The semantics of each is implementation dependant.
We define their meaning via the standard algebras of 2.2.2.

Sem_8: Standard Types

MtIBOOLEANIEs := (BOOLEAN, TOI(BOOL-Alg)., BOOL-ALQ)
MtLINTEGERIEs := (INTEGER, TOI(INT=Alg), INT=ALQ)
MtIREALIg s (REAL TOI(REAL-ALY)» REAL=ALQ)

nn

MtLCHARIg s (CHAR, TOI(CHAR-ALg)», CHAR-ALQ)

Since they are predefined and Language-inheritant., the
semantics of standard types is state independant.

3.3.2. Standard Tvype Generators

The standard type generators of ModPascal are patterns, which
expose a semantic fragment that has to be completed by user
supplied dinformation. The kind of information is generator
dependant. Standard type generators are the following: scalar.,
subrange, array., record, set, file, pointer.

(a) Scalar Types

The semantic algebra for scalars includes standard operations
as 'succ', 'pred' or '<=' and INT-AlLg. The missing information
is a value set, and it is supplied in the type definition. The
algebra pattern is:

Sc-AlLg

Signature ¥-Sc := (OB=-Sc, OP-Sc) with
0B=-Sc := {scalar, integer., booleanl
0P=-Sc := {pred, succ, ord, chr., <, >, <=, >=,
<>, =} v OP-I
arity=Sc : OP=-Sc \ OP~I —> (OB=Sc* x OB=Sc)
(e.g. arity-Sc(<=) := (scalar scalar., boolean))

Then SC=AlLg := (C=Sc, F-Sc) € ALglrI-Scl with

C-Sc := {Sc-val, I-valL., B=Val}, Sc=-valL := {<user>>
F=Sc := {pred, succ, ord, chr, <, >, <=, >=, =, <>}
v F-I
where ord(x) := <user>
etc.
TOI(SC-ALg) - = Sc=Vval

Remark: The functions of F=Sc \ F-I1 are ambiguouslLy denoted by
the function names of OP=-S5c \ OP-I.

This semantic algebra pattern is updated in the elaboration of
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the scalar type definition. The indication <user> in the
Sc-Alg pattern defines the points at which the information
extracted from the user supplied type definition is built in.

Sem_9: Scalar type

MtLsc: Scalar_typelts :

Let (idy s weasr id,) := (idL sc) in
if 3 i€ (n) . g(idy) = L then error gLlse

Let Sc-val := {idy» ..., id,, L2 in
Let ord: Sc-ValL —> I=-Val with ord(id;) = i in
(SCALAR, Sc=val., Sc=ALg)

Remark: ALL id; are installed in (8, &) with value "id;" (the

string):
Let Loc; := newtoc(g), Loc; * Loc;, i,3 € (n) in
Let €&, := glid; &« (Loc;, CONST, 11, i € (n) in
Let 6, := slloc; &« "id;"l, i € (n) in

(8, » 61)

(b) Subrange Types

Subrange types can be declared upon INTEGER or scalar types.
Semantically, the carriers of INT-ALg/Sc-Alg are modified (the
TOI is restricted), and the operations have to respect the nhew

boundaries of their arguments.

Sub~-Alg

case Subrange of INTEGER :
Then SUB-ALg := (C-SUB, F~SUB) € ALglzI-I] with
c-SUB := {SUB=val, B-Val), SUB~Val := {<user>}
F-SUB := F-I but functions evaluate to Ll if arguments
or result are out of range

case Subrange of scalar type :
Then SUB=-ALg := (C-SUB, F-SUB) € AlgLr-Sc]l with
C-SUB := {SUB-ValL, B=-Val}, SUB-ValL := {<user>}
F=SUB := F=Sc but functions evaluate to 1 if arguments
or result are out of range

TOI(SUB=ALg) := SUB=-Val

Remark: Both variants of SUB=Alg are based on the associated
signatures I-I and I-Sc resp. and therefore are
contained in AlLgLlr-I1] and ALglI-Scl resp.

Sem_10: Subrange Type

MtIst: Subrange_typelle :=

Let L := (Lower st), u := (upper st) in
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case L, u € I-val :
Af not (L < W then error else

case L, u € Sc-val :
if pot (L < W) the Q error else

Let SUB-VatL Lr L¥1, weuwr u=1, Ul iﬂ
Let F-SUB : | £ € F=I, but f evaluates to 1, if
arguments or result ¢ SUB-vVal} in

(SUBRANGE., SUB-Val., SUB-ALg)

=<
{f

Let {Vys .anr v,2> :=4v| v € Sc=vValL, v; = L, v, = U}
with ord(v;) = OPd(V;_1)+1I ied{2, ...- n} jip

Let SUB=Val := {v;» ...r V,} 40
Let F-SUB := {f| f € F~Sc, but f evaluates to L,

if arguments or resulLt ¢ SUB-Val) in
(SUBRANGE, SUB-Val., SUB-ALQ)

Remark: Although subranges copy most of the structure of their

basing type, they are viewed as constituting an own
algebra. As a consequencer subrange type variables are
type inconsistent with their basing type operations.
This dis contrary to the coercions performed in Pascal
at this point.

(c) Array Types

The array algebra pattern Lacks two informations: the index
type(s) and the component type. The index type(s) (scalars or
subranges) constitute selector operations of the algebra.
Since components occur, assignment operations are needed.

Ar-Alg
Signature I=-Ar := (OB-Ar., OP-Ar) with
OB-Ar := {array, component, index;, ..., index,2
OP-Ar := {read, assign}> v OP-Co v OP~I; v ...
v OP-I,
arity-Ar: {read, assign)> —> (OB=-Ar* x OB=-Ar)
(e.g. arity=-Ar(read) := (array index; ... index, -
compoment) )
Then Ar=ALq := (c=Ar, F-Ar) € AlLglzI-Arl] with
c-Ar := {Ar-val, Co=-ValL, In;=Val, ..., In,-Vall
Ar=val := {(X,, «..r X,)| X; € Co-val}
Co-valL := {<user>Y), In,~-Val := {<user>2.,
cess In,=-Val := {<user>>
F=Ar := {read, assign’ v F=Co v F=INn; v ...
v F=In,
where read(a,i;, ..., i,) := <component

TOI(Ar=AlLg) := Ar-val

selected by i,/ «uur i, in a>

etc.

R

emarks:

a) The functions read/assign are ambiguouslLy denoted
by the function names read/assign of OP-Ar.
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b) Co-AlLg, In, -Alg, ..., In,-AlLg are the algebras for
the component and index types resp.

c) C-Ar contains additional value sets, if C-Co.,
C-INny, w..r C=In, do so. Then I-Ar is extended.,
too.

Sem_11: Array type

MtLa: Array_typelts :=

Let (ity, ..., it,) := (indexL @), ct := (comp a) in
Ltet In;-Alg := (MCit;I€e)V3, i € (n) in
Let Co=-Alg := (MLctlee) i3 in

(ARRAY, Ar-ValL., Ar-ALg)

Remark: If it;, i € (n) are type identifier of already defined
types, then M is applied.

(d) Record Types

The record algebra has to be completed with the indication of
the component selectors and types. If variant parts occur the
access to components is dependant of values of access control
selectors.

Re-AlLg

(0B-Re, OP=Re) with
= (record, field,, ..., field,)
= {assign;» ..., assign,-, read;» <..»,
read,} v OP=F; v .«. v OP-F,
arity=-Re: OP-Re \ (COP=-F, v ... v OP-F,) —>
(0B-Re* x OB=-Re)

Signhature: X-Re :
OB-Re
OP-Re

(e.g. arity-Re(read,) := (record, field,))
Then Re=-AlLg := (C-Re, F-Re) € AlLglI-Rel w;th
C-Re := {Re-Val, Co,~-Val, ...- Co,=Vall)
Re=Val := {(Xy s ea.r %,)| X; € Co;=-vVaL, i € (N2
Co, =val := {<user>}, ..., Co,=Val := {<user>}
F-Re := {assign,» ..., assign,, read,, ..., read,>
v F=Co; v .u. v F=Co,
where read; (r) := <if the rvi component is a

fixed type or if the variant
selector has appropriate
value, then ryi, otherwise 1>

etc.

TOI(Re-ALg) := Re-Val
Remarks: a) The functions read; /assign; are ambiguously
denoted by the function names read;/assign; of

OP-Re.
b) Co;=Alg are the algebras of the field types.
c) C-Re contains additional value sets, if C-Co; does
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so. Then ¥-Re is extended, too.

d) Variants are treated as ordinary field types. OnlLy
the access functions reflect their activeness
resp. inactiveness.

Sem_12: Record types

MtLr: Record_typellfs := .
Let (fpy s waar fp,) := (fixed_partL r).
(VP17 eaers VP,) := (variant_partL r) in
e (fidill Y4 fid;nm) 1= (ddL ;)
ft; := (type fpi), i € (n) in
Let tg; := (tag vpi), (V{17 =e» Vime? :=(variantL vp;)
ie (m) ip
Let cL;; := (constL v{;)»
vt; 1= Yo (fixedL: (fixedL v;;).»
(variant_partL: (variant_partL v;;)).,
i € (Ns, J € (my) in
Let (RECORD, Re-Val;;, Re-AlLg;;) := Mtlvt;;Igs.,
{Re-Val;;,» Co;;;=Vals, ...~ Co;;Km-VaL} = (RQ‘ALQ;;)¢1

{assign;;1+ «-., @ssign;; g7 read;;1s «=«- read;;cunt
= (Re-ALg“)wl'Z \ (F—Co;;l V mas F-COin(;,)I
iem, Je€ (m) iﬂ
n m;
Let z, := I ni, z, := Y C(i, J)s, z = zy+2,
J=1 i=1  J=1
where E(i, 3j) = a: <=> Re=Val;; ={(X;s weur Xa)|
Xy € Co=Val;;y~» k € (&) in

nMm3

u=-1
Let C1 = (1<t<z, and t= I ni+w, w € (Nn,))
i=1
i-1 m; J=1
C2 = (z,<t<z @and t = ¥ I B(xsy) + ¥ EB(i,y)+k
X=1y=1 y=1 in
(MEft,Jee)¥2 if C1 holds
Let Co.-valL := [ in
Co; ;¢ -Val if C2 holds

Let F-Re := {assign;;v- read;;,]| i € (m, 3 € (m).,
k € (i, 3>
m; E(ilj)
u U F=Co{ ;¢ in
1 3=1 k=1

case tg; € (tagid: Id, typeid: Id)

Let tgid; := (tagid tg;), tgtp; := (typeid tg;)
Let Co.,;=valL := (MLtgtp;Jce) V2 in

if pot (cL;; ¢ Co,.;—=Val) then error gLse

F-Re := F=Re v {assign,,;., read,, ) where

<assign, /read,, z, < a < z are modified:

Let a satisfy €2 in

if read,, (r) € clL;; then
<normal evaluation>
else error > in

(RECORD, Re=-Val., Re=ALg)
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case tg; € (typeid: Id) :
(RECORD, Re-Val., Re-AlLgQ)

Remarks: a) Sem_12 generates a structure for Re-Val that
enclLoses a component position for alLl field types
(in appropriate number and independant of
definition inside a variant) as well as for alLl
tag field types (Co,,;-ValL). This emphasizes the
semantic dimportance of tag types which is
generaliy treated superficially ([ISO 71851, [SIEM
831).

b) The semantics of records makes hnhested structures
'flat' by providing separate access operations for
every occurring field.

c) Occurring variants are treated different depending
on their tag field: checks of activeness are onlLy
performed, if a tag field selector is defined.
Some Implementations create the active instance of
free variants (no tag field selLector) after the
first occurrence of a selector evaluation
belonging to the variant. Lateron., no other
variants are activatable.

(e) Set Types
The set algebra has to be compieted onLy by indication of a
base scalar or subrange type.

Set-AlLg

Signature r=Set := (0OB-Set, OP=Set) with
oB-Set := {set., component., boolean)
OP-Set := {+, =, *x, =, <>, <=, >=, INY
v OP-Co v OP-B
arity-Set: OP-Set \ (OP-Co v OP=-B) —> (OB=-Set* x

OB-Set)
(e.g. arity=-Set(IN) = (component set, boolean))

Then Set=AlLg := (C-Set, F-Set) € ALglr-Setl] with

C-Set := {Set~-val, Co-Vval., B-vVall

Set=-val := (P(Co=-Val)., Co=VAL := {<user>}

F-Set := {+, =, %, =, <>, <=, >=, IN> v F=Co v F=-B

where +(s, t) := {x|] x € s or x € t2}
etc.

TOI(Set-AlLg) := Set-Val

Remarks: a) The functions in F=Set \ (F=Co v F=B) are
ambiguously denoted by the function names of

OP-Set \ (OP-Co v OP=-B).
b) The restriction on the component type to be scalar
or subrange type is due to the fact that sets are
represented as bit vectors of at most machine word
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|
size in many implementations. This again imposes a
maximal cardinality on the component type.

Sem_13: Set types

MtEs: Set_typelts :=
cAS9 s € Scalar_type
Let (SCALAR, Sc-Val., Sc=AlQ)

:= MtLsIte in

Let Co=-valL := Sc=val, F=Co := F=Sc in
(SET, Set-Val, Set=ALg)
case s € Subrange_type :
Let (SUBRANGE, Sub=Val., Sub=-AlLg) := MtlsIgs in
Let Co-valL := Sub=vVal, F=Co := F=Sub in

(SET, Set-ValL., Set=ALg)
case s € Id :

tet (T, T-vaL, T=AlLQ)

(B(s)¥2, B(S)¥3, 6(8(SI¥1))

if T = SCALAR then
Let Co-valL := Sc-val, F-Co := F=Sc
i (SET, Set-valL, Set-AlLg)
elseif T = SUBRANGE then Let Co=-valL := Sub=Val.,
F-Co := F=SUB

(SET, Set=ValL, Set=ALgQ)
else error

Remarks:

a) The first two cases
component types.
The implementation dependant cardinality of Co=Val

is disregarded.

reflect dimplicit types as

b)

(f) File Types
The file algebra
components.

is

fixed up to the indication of the file

Fi-ALg

Signature: I=Fi := (0B~Fi, OP-Fi) with
OB~-Fi := {file, component, boolean}

OP=-Fi {put, get, reset, rewrite, eof
v OP=-Co v OP-B
arity-Fi: OP-Fi \ (0OP-Co v OP-B) —>

(OB-Fi* x OB=Fi)
(filte, file))

(e.g. arity=Fi(reset)

Then Fi=-Alg := (C=Fi, F-Fi) € ALglr=-Fil with
C-Fi := {Fi-valL, Co-Val., B-Vall}
Fi-val := {(Xy 7+ cuur X,)7» Cr bs j)l X; € Co~Val.,
irj€ (N, Nn € N, ¢ € Co~vVaL, b € B-vall}
Co=val := {<user>}
F=-Fi := {put, get, reset, rewrite, eof)

v F=Co v F=B
where put(f.,c)

<if f is in generation mode.,
then c is appended.,
otherwise 1 >
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etc.
TOI(Fi-AlLg) := Fi-Vval

Remarks: a) File incarnations are viewed as quadruples: the
sequence of elements, a special file communication
component, an indicator for the current mode, and
a pointer to the actual position during inspection
mode.

b) The special filLe communication component play the
role of the file variable. It is modified or
examined by the file operations. The explicit
modification by assignment has to be modelled by
addition of an assignment operation and a new
carrier 'state' that keeps track of side-effects
of operations (see (d) and remark b) of Sem_14).

Sem_14: File types

MtLft: FilLe_typelfe :=

Let t := (type ft) in
Let Co-val := (MLtIeedV2 in

(FILE, Fi-val, Fi-ALgQ)

Remarks: a) Since onLy type identifier are allowed for
component types, L(t){2 alLso selects Co-Val. '
b) Assignment to the file variablLe can be described

as follows:
Let f denote a filLe, and f¥ the file variable.

MIfy := explts :=
Let (ssr cr b, J) := (V1 m
Let c' := ELlexplte in
Let 6, := gl (F)V1 & (s, c'» b, 3] in
(g’ 61)

(q) Pointer Types

Pointer types pLay a special role in ModPascal (and Pascal).
They are the only structures whose incarnations refer by
definition to hardware properties (memory addresses and
contents). ALso they allow different incarnations point to the
same memory cell such that an dimplicit value change of a
pointer type variable is possible even if no assignment to it
occurs.

This behaviour could be modelled in algebraic terms, but only
with great struggles. Since alLl side-effects of the above kind
can be administrated in 'states', onlLy a new (abstract) sort
'state' has to be added to alLlL signatures., operation arities
and algebras. Then the algebraic description would show state
transformation properties simiLar to a donotational semantics.
This introduces complexity in the pointer type description.,
and for consistency reasons, in the whole treatment up to now,
since alLl structures have to be reformulLated.
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This task is skipped in this paper, partly because onlLy
tedious work 1is associated to it that does not provide new
insights into ModPascal characteristic features., partlLy
because algebraic descriptions involving 'state' sorts are not
of great interest of current abstract data type theory
research (they are too 'concrete'). Nevertheless, this should
be understood only as postponement, and a comprehensive and
complete semantics of ModPascal will include pointer type
semantics.

3.3.3. Non=-Standard Type Generators

There are two non=-standard type generators in ModPascal:
module types (sec. 3.4.) and instantiate types (sec. 3.7.).
They differ from standard types in that all information
necessary to build their semantic algebra is extracted from
the type definition, i.e. there is no semantic frame with
holes to be filled.

3.4, ModulLe types

A module type definition introduces types as well as
operations in arbitrary number. This fact forbids an analogous
formalization of the semantics as for standard object
definitions.

Module operation declLarations differ from ordinary operation
declarations in

® operation header and body are dispart
® occurrences of global variables are restricted to the
Local variable set of the module
® occurrences of module operation calls are resticted to
visible objects, where visibility is induced by the
use=-relation of the module type definition (see also [OLt
841)
\
A module type object possesses a module state. It consists of
the values of Local variables, and is only accessable by the
operations defined in the associated definition. Procedures
modify the state, functions extract information from it
without changes, and initials supply first values.

Sem_15: Module type

MtEIm: Module_typelfs :=
Let (Uy A wuer Uy) = (usel m) .,

(Pr7s auwer Pp) = (publicl m).,

(Lty» wuear Lte) := (Local_typelL (LocalL m)).,

(LVy s auar Lvg) = (Local_varL (Local m)).,

(LOy#» waar LOe) := (Local_operationL (Local m)).,
(

(017 ausr 0¢) := (oOperationL m)

in

Ltet U := U e(B(u V) in
ie(a)

,L,,g,g(goa 6,) := (8, &) in
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Let Loc; := newlLoc(¥;) _
where (case p; € Proc_head :

Lot opid; := (proc_id p;)», obgq; := PROC in
case p; € Func_head : :
Let opid; := (func_id p;), obg; := FUNC.,
res; := (resuLt p;) in
case p; € Init_head :
Lot opid; := (init_id p;), obqgq; := INIT jin
s, 1 € (b))
Ci+1 := Cilopid; & (Loc;, obq;- if obgq; = FUNC
then res;
eLse 1)1,
6i+y = 6lLloc; & ll, i € () in
Let (8o, 69) 1= (8pos ) ;ﬂ

Let Loc; := newlLoc(®;), i € (c)
where €is,, := E;[(typeid Lt;) & (Loc;~»
(MtL(type Lt )IC; &)V,
(MtEL(type Lt )IE;s;)V2)],
6i+7 = 6;[Loc; & (MtI(type LE DI e6;)V3],

i€ (e) in
m(gol 60) : = (gcl Sc) ,in
m (gii'l’ 6i+1) ' = MELVimngil i € (d) m
Let LV := U (didL Lv;) in
ie(d) .
ket (8o~ 6,) := (8Bqr 6&4) A0
Let Loc; := newloc(¥;) an
where (case Lo; € Proc_head :
Let opid; := (proc_id Lo;), obq; := PROC ip
€ase Lo; € Func_nhead :
Ltekt opid; := (func_id Lo;)., obqg; := FUNC,
res; := (result Lo;) in
» 1€ (@)
Livy := B;Lobid; & (Loc;, obqg;, if obq; = FUNC
thean res;
ekse L)1,
€i41 := 6[Lloc; & L1, i € (e) in
Lot (8o, 684) = (8oor o) in
let LV := U (didL Lvy) ‘ in

ie(d)
(case o; € Proc_spec :
Let opid; := (proc_id 0;), (plys «..r plg):=(paramL oi)f

D; := (LV v U (ddL pL;)) x LV n
Je(g)
case o; € Func_spec :
Let opid; := (func_id 0;), (plys wue.sr plg):=(paraml 0;).,
D; := (LV v U (ddL pL;)) x LV x 8lopid )3 in
Jjecg)

cas89 oy € Init_spec :
Let opid; := (init_id oy)s (plys .eer plg):=(paraml o;).,
D; := (LV v U (ddL pL;’J) x LV
Jje(q)
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, 1 € (F))
(STy7 weer STe) = FiX Ty s eeesr T¢ o A8;6;, .
(ME(body o0, )18, [opid, &t (E(opid;)¥1, Elopid, V2, L)]
e, [C(opidi)¥1 & R({Ty 7+ wausr Teds, 8y, DI,
MI(body 0¢)I8, [opids & (E(opidel¥1, Clopidedi2, L)1
&, [C(opided V1 & R({Ty s cuur T¢ds 8- Df)q’

55

Lokt opdef;

:= R(ST{» 8;r D)r 1. € (F)
tet (8., 6,) :=

(8o Lopid; & (¢(opid;)¥1, Elopid;)i2, 1]
6o L6, (§o (opid;)¥1) €& opdef;1).,

i€ (f) in
Let M-valL := X {8, (id){¢3| id € Lv? in
Let M=F := {&, (&, (opidd¥1)| i € (FH2 in

Let M=ALg := ({M=vald}, M=F) v U v {&, (typeid Lt;)¥1]|
ie (&)} in

((MODULE, M-val, M-AL@), (€,., &,))

Remarks: a) The explicit binding of module operations in
environments has onLy technical reasons

(application of the fixpoint operator). It would
suffice to dinstall  them directly as algebra
functions; see also Sem_3 and Sem_4.

b) The resulting algebra is built on the union of the
used ones and equipped with the carrier generated
from the cartesian product of the Local variable
TOI's and with all public and Local operations.

c) The semantics of the operations are computed by

- parallel fixpoint abstraction. By using the
operator R the fixpoint is an algebra function
defined on TOI's of Local variable and parameter
types. The state (2,, ;) 1is assumed to contain
the appropriatelLy called and passed formal
parameter values.

d) Beside the module algebra, a resulLting state is
passed to save all parts of the definition. This
makes conveniant access 1in semantic clauses
possible that are based on modules (e.g.
enrichments, instantiations).

e) TOI(m) := M-Val

3.5. Enrichments

Enrichments are very similiar to module types in that they
introduce operations that are onLy invokable on specific
instances of structures. Therefore operations introduced in an
enrichment definition are called under the same rulLes. The
main differences to module type definitions are:

® enrichments do not introduce a new type (algebra); as a
consequence no variables may be declared of enrichment
structures

® operations introduced by an enrichment are uniquely
connected to one or more modulLes.
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Enrichments may be seen as an enlLargement of sets of
operations of already defined algebras. Thus the programmer is
enabled to modify an existing structure according to his needs
without redefining and renaming. The enlLarged structure is
made visiblLe through its occurrence in the use clause of a
module or an enrichment, and the enrichment operations can be
called inside the scope of the using structure.

In Sem_16 the syntactical operator

AO: Public x Enrich_def —> Id
is used. AO maps a public operation header p € (publicL a), a
€ (addL e), e € Enrich_def to that object identifier that is
enlarged by the occurrence of p in its associated addpart of
e:

AO(p, ©) := L id € Id .

,L,,&E {ala “nw’ 15,,} := (addL e) w
3 1€ (n) . id = (add_id a;) and
p € (publicL aj)

Sem_16: Enrichment definition

Mele: Enrich_deflts :

Let eid := (enr_id e), (U s ener Uy) := (usel @),
(8,7 weer a,) := (addL e).,
(07 wuaer 0-) := (operationL e) in
Let aid; := (add_id a;)-, i € (b) }J_]
Let (pi17 auer Pivw) = (p'JbLiCL a;), i€ (b) w
Lot (Boor 6oo) = (B, &) in
Let Loc;; := newtLoc(8;;)

where
(case p;i; € Proc_head :
Let opid;; := (proc_id p;;), obg;; := PROC.,

AO(opid;;» €) := aid; Al
case pi; € Func_head
Let opid;; := (func_id p;;)r obq;; := FUNC,
AO(opid;;» @) := aid;, res;;:= (resulLt p;;)in
Gase pPi; € Init_head :
Llet opid;,- HES (ihit_id Pi;)s oObq;; := INIT,
AD(opid;;» ) := aid; in
s 1€ (b), € (b))
Ci.;+1 := 8i;Lopid;; & (Loc;;» obq;;-~

if obq;; = FUNC
then res;; eLse 1)1
6;,;+1 := e6lloc;; & 11, i € (L), J € (b;) ,&n

Let (8¢r 60) := (Spbeb,” Soncbn,) _ AN )
Let (B;,,~ €;4+1) := ML(paramL 0;)I8;e6;- i € (c) In

Let (gol 60) : = (gcl 6c) ;;\n
(case o; € Proc_spec :

Lek opida HES (pr‘oc_id 0;)s
(PLy 7 waar Plg) = (paramL o).
LV; := Local variables of AD(opid;).
D; := (LV; v U (didL pL;)) x LV; in
Je(g)
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cgse o0; € Funhc_spec
Let opid; := (func_id o;).
(Ply» wwesr plg) := (paramL o;).,
LV; := Local variablLes of AD(opid;).,
D; := (LV; v U (didL pL;)) x LV; x 8o (opid{)¥3 in
Je(qg)
case o; € Init_spec
Let opid; := (init_id o;)-
(PLy7s ewer plg) := (paramL o0;).
LV; := Local variables of AD(opid;).
D; := (LV; v U (didL pL;)) x LV;
Jje(g)

g.

s, 1 € (c))

m (st’ owel STC) 2= fi)( Tll LN 4 TC - Ag;s:_ -
(MIbody o0,)1¢, [opid, ¢+ (€(opid;)¥1, €lopid,li2, L)]
61[§(0p1d1)¢1 L] R({Tll - wl Tc}’ gl’ Dl)]I
MILbody o0.)I¢,[opid. ¢ (E(opid.dV1, Elopide)¥2, 1)1
51[§(0pidc)¢1 « R({Tll LRI 4 Tc}l gl’ Dc)].)

0

Let opdef; := R(ST;» 8;:» D;)~ i€ (¢) i
Let (8,, &) := (8,Lopid; & (E(opid;)¥1, Elopid;)V2, 1]

6o Le, (8 (opid;)V1) € opdef;l).,

ie (¢) in
Let U := U 6,8, (u)V1) in

ie(a)

Let E-F := {6, (8, (opid ¥ | i € (&)Y in

Loc := newloc(®,) in
A :=Uv (g, E-F) in
€, := B,[eid « (lLoc, ENRICHMENT, L)1 in
€, :=6,[Loc & A,
e(main) V1 & s(E(main)¥1) v Al in

—
D
+

|

—
D
(a3

|

-
D
o+

|

(gzl 6:)

Remarks: a) The semantics exclude the case of enrichments of
standard types with initial operations (see also
[oLt 841).

b) The installation of the new object 1in the
resulting state and the updating of the main
program algebra is done by Me explicitlLy.

c) Enrichments do not possess a type-of-interest.,
since they are enlargements of several obgjects
with several types-of-interest. Therefore the
t(eid) {3 component is assigned to L.

3.6. Instantiations

The instantiation construct of ModPascal is employed by a
powerfull parameterization mechanism for types and
enrichments. Together with the instantiate type definition
(see sec. 3.7.) which is used to generate the structure
described by instantiation objects it 1is possible to
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parameterize each type in a very flexible way. It is not
necessary to declLare substructures of a type as formal
parameters that have to be actualized (generics of ADA require
this LADA 801); every substructure is a Legal formalL
parameter, and not earlier than in the dinstantiate type
definition itself it is realized which substructures are
parameters that have to be actualized, and which are not.

To avoid misunderstandings the ModPascal parameterization
concept for types does not enable dynamic parameterization.
i.e. run-time parameterization. This LlLacks support of nearly
every existing Pascal compiler (see also sec. 4.), and a
comfortable static parameterization feature covers already
many practical applications.

3.6.1. Hierarchical Structures and Morphisms

Up to now we had no necessity to take hierarchical structures
on sets of ModPascal objects into consideration. For examplLe
the use List of a modulLe definition induces a hierarchy on
module and enrichment objects. The context=-sensitive
conditions attached to the cortectness of such a hierarchy are
given in [OLt 84]. We did not include them here since

e they were mostlLy of pure syntactical nature and possessed no
state dependant character

e the semantics of the hierarchical structure was computable
nevertheless.

The second point is due to the fact that the meaning of the
use List of a module is the (algebra) union of the meaning of
the List elements (algebras), and algebra union is Just a
technical process (see sec. 2.2.1.).

Instantiations may also be composed in  hierarchies. The
hierarchy conditions are the same as for modules or
enrichments (as described in [OLt 84]1). The semantics of an
instantiation object = a signature morphism - has to include
the semantics of its used objects. To compute this semantics
we need a more specific definition of signature morphism that
reflects the hierarchical structure of source and target sets
(modules, enrichments), and an operator to unite the single
elements of the use clause of an instantiation obJject.
Therefore hierarchical structures will be considered in
sections 3.6. and 3.7.

Based on the remarks on the relation between § € Env and the
ModPascal data base (sec. 2.2.5.) we will first modify our
memory model so that representations of an object will include
information about those obgjects that use it (sec. 3.6.1.1.)-
then define hierarchical structures (sec. 3.6.1.2.), signature
morphisms respecting hierarchical structures (sec. 3.6.1.3.)
and finally the semantics of an instantiation obgject
definition (sec. 3.6.1.4.). ‘

3.6-1.1. Extended Domains
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To be ablLe to modelL hierarchies appropriately, we modify our
set of domains:

Env = (Id —> (Loc X ObQual x ValLQual x 2))
Map = P(Id x Id)
Ar = Id* x Id

vatQual = {C| C-TOI(A)¥1 for A € ALQG} + Ar
val = D_BOOL + D_INT + Id + Alg + ValQual + OpDen + Map

Environments now include a fourth component that is designed
to keep a set of objects which are used by the current one.
This component is also defined for standard objects.

The domain Map provides the semantics for instantiation
object: mappings between objects and operations.

The domain Ar (arities) serves as a technical domain to
express the functionality of an operation. It is enclosed in
vValQual, since this component is currently undefined for
operatior: representations in environments (i.e. if g(id)V2 €
{FUNC, PROC, INIT} then B(id)¥3 = L). From now on it 1is
assumed that g(id)¥3 of operation identifier id contains a
tupte (idy ... id,, id,,;), where id;, ..., 1id, represent the
names of the operations parameter objects and id,.,; the name
of its target object. This information is thought to be
installed during the elaboration of the operation definition.

val 1is extended to express the meaning of instantiation
objects in & € Store.

3.6.1-.2. Object Hierarchies

In this section we introduce the notion of an object hierarchy
that is adjoined to the hierarchy notion of [RL 84]. We start
with technical prerequisites, where Obj denotes the syntactic
domain of 2.1.2. We give the definitions without reference to
any state on a pure syntactical Level. The obvious extentions
to dynamic behaviour is sketched at the end of the section.

Def. 3.6.1.2--1 [object relationsl]
(a) Let ob € 0Obj. Then
U(ob) := (usel ob)
denotes the set of used objects.
Remark: For standard obgjects the selector uselL is
implicitly defined.
(b) Let OB € Obj. Then

u(oB) := U U(ob)
obc OB
(c) Let ob € Obhj. Then
R,(ob) := {(ob, ob,)| ob, € U(ob)>

denotes the use relation induced by ob.
(d) Let ob € 0Obj. Then
R, (ob) denotes the Least relation with
1) (ob,» ob,) € R,(0ob) => (ob,, ob,) € R,(ob)
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(e)

(f)

(g)

(h)

(i)

(3)

_ 2) (ob,» ob,) € R,(0b) = R,(0b,) € R,(ob)
R, 1s called the closure of R
Let ob € Obj. Then

Ulob) := {ob| 3(ob,» ob,) € R,(ob) . (ob = ob, Or ob =
ob,)>
Let OB € Obgj. Then
R,(OB) := U R,(ob)
ob€0OB
Let Ob ¢ Ohj. Then
R,(OB) := U R, (ob)
obh€0B
Let OB ¢ Ob3j. Then
J(oB) := 4 Ulob)
ob€0B
Let ob € 0Obj. Then
(publicL ob) if ob € Type
OPS(ob) := { U (publicl. a) if ob € Enrich_def
a€ (addL ob)
L otherwise

denotes the set of newly introduced operations (with

functionalities).

Remark: For standard objects the selector publicL is
implicitly defined.

Let CB € Obj. Then

OPS(CB) := U OPS(ob)
ob€0B
x
Def. 3.6.1.2.-2 [PRI Se” ppl §n]
Let OB ¢ Obj.
1) A function Pg: OB —> (P(0B) defined by
s if Vv (ob,, ob,) € R,(0B) .
Per(oOb) := { ob, ¥ ob
{Obll “sar Ob,,} ;!;f‘ {(Obll ob)s waar (Ob, ob)>
€ R, (O0B)
is called predecessor function.
2) A function S.: OB —> (P(0B) defined by
¢ if Vv (ob,» ob,) € R,(0B) .
Sel(ob) := { ob, # ob
{oby s euer 0Ob,) if {(ob, 0Ob;), ..., (Obs Ob,)2>
¢ R, (OB)
is called successor function.
3) A function P.: 0B —> (P(0B) defined by
if Pe(ob) = ¢
Pe(oOb) := {
VR(Obl) V sea v VR(Ob") v Ve (ob) AJ;;f‘
Ve(ob) = {ob;s ...r 0b,}
is called closure predecessor function.
4) A function P.: 0B —> (P(OB) defined by
] if Se(ob) = ¢
S.(ob) := {
§R(Ob1) V sas Vv §p(0b") v Seg(ob) if‘
Se(ob) = {oby;» ..., Ob,)
is called closure successor_ function.
n
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Def. 3.6.1.2.=3 [cycle, cyclLefreel
Lot OB C Obj, C ¢ R,(OB),» C = {(ob,» Ob; *)s ..usr (0Ob,» ob,")].

C is called cycle of R, (OB), if
1 vie1l, ..., nNn=1> . (0b;s, € Selob;') and ob, €

Ske(ob, '))
2) is minimal with 1) _
cy(oB) := {c| ¢ is cycle of R,(0OB)2}.

R.(OB) is called cyclefree, if CY(OB) = §.

Defe 3.6.1.2-=4 [cbain]
Let OB C Objsr C € R (0B)» C = {(oby;» Ob; ")s ...sr (Ob,, Ob,")2.

C is called chain of R, (OB) if
1) vied{ls cuur N-1) . Ob;,; = Ob;'
2) Y i,jge (n) . (i1 % j=> ob; * ob; and ob; * ob;' and
ob;"' # ob; apnd ob;' # ob; ")
CH(OB) := {c| € is chain of R.(0B)2>.

Remarks: a) Chains are prestructures of cycles, i.e. to every
cycle there is associated a set of chains.
b) Condition 2) is equivalent to: "no cycles occur".
c) For ob € Obj . CH(ob) := CH({ob})

Def. 3.6.1.2.=-5 [hierarchyl
Let OB € Obj.

R, (OB) is called hierarchy, if
1) R,(OB) is cyclefree
2) V ob, rob, € U(R,(OB)) .
(Pe(Oby) = Pn(0b,) = ¢ => ob, = ob,)

n
Remarks: a) TOP(OB) := .t ob € OB . Pgl(ob) = ¢ denotes the
unique top element of the hierarchy R,(OB). For ob
€ Obj . TOP(ob) := ob
b) Hierarchies can be represented by acyclic directed
graphs.

The definitions of this section can be extended to include
state dependancy. In this case we assume a unique association
between the syntactic object ob € Obj and its equally named
semantic counterpart contained in a given state (£, 6). Also
selectors and environment components are assumed to be
uniquely associated.

Extension 3.6.1.3.-6
Let ob € Obj, and (£, &) € State.

Then t(ob) is defined with appropriate properties.
(a) U(obh)ts := C(ob)i{é4

(b) U(oB)Es U U(ob)tes
obe0B
(c) R ,(ob)ee := {(ob, ob,)| ob, € U(ob)Ee)

Analogously the operations R,(ob)ts., Ulob)ts, R,(OB)E&.,
R,(OB)Cs, OPS(ob)Ees, and OPS(0OB)ts are defined by exchanging
the state-invariant operators by their state depending
version. P.(ob)te, P.(ok)Ce, S.(0b)E&, S.(o0b)Ee are the state
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dependant predecessor and successor functions, CY(OB)Ee& the
state dependant set of cycles of OB, and the hierarchy

definition takes over in the same fashion to the dynamic case.
n

3.6.1.3. Hierarchy respecting signature morphisms

In the definition of signature morphism above (definition
2:2.1.-2) no care 1is taken to ensure preservation of
structures Lying on the source or target of the obgject
mapping. But this 1is highly unwanted if signature morphisms
are applied to hierarchies of ModPascal objects. Then
morphisms introducing cycles or unconnected graphs are useless
since their involLvement in an instantiate type definition
Leads to incorrect programs.

A second effect of clashed hierarchies is that the upwards
interface of ohjects (the set of all objects and operations
provided by an object to another one that uses it) may become
inconsistent, i.e. it contains operations of objects that miss
completely or are incompatible in the resuiLting hierarchy.
Since each object may incorporate all items of the upwards
interface of dits used obgjects this means that non=hierarchy
respecting morphisms = when applied in an instantiate type
definition = <can violate interface conditions and therefore
generate erroneous ModPascal code.

To recognize these effects as early as possible, we use the
concept cf hierarchy respecting signature morphisms.

Notation: Let SM = (f, g) denoite a signature morphism.
Let R¢r Ry denote the relations associated to f, g.
Source(R;) := {a| (a- b) € R}/,

Target(R;) := {b| (a- b) € R:>» 1 € {f, g}
Source(SM) := (Source(Rs), Source(Rg))
Target(SM) := (Target(R¢), Target(Rg))

Def. 3.6.1.3.=1 [hrl
Let SM = (f, g) denote a signature morphism.
Let OB, := Source(SM)y1, OB, := Target(sM){1, R; := R,(0B;), i
€ {1,2}, where U is a unique relation on 0B, and OB, .
lLet ¥V ob € U(R,;) \ 0B; . f(ob) = ob
Let R, denote a hierarchy.
SM is called hierarchy respecting (hr) if
¥ C € CH(OB,)» C = {(ob,,» o0b,)- (ob,» Ob3)s acer (Ob, _,»
ob,)Y.
1) ¥V ob € S.(ob,) . (f(ob) = ob or f(ob) € S,(f(ob;)))
2) Vi€ (n-1) . V ob € Sg(ob;,;) «
(f(ob) = ob or f(ob) € S,(f(ob;))

Remarks: a) The first condition guarantees that the successor
structure of an obhject is maintained and that the
upwards interface remains consistent. The second
condition ensures this for the hierarchy spanned
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by the obgject.
b) The hr property depends onlLy on the object mapping
f.

Fact 3.6.1.3.-2 Let SM be hr, OB := Source(SM){1, and F(OB) :=

{f(ob)| ob € 0BY. Then R,(F(OB)) is a hierarchy.
"

The next technical definition is used for abbrevation in sec.
3.6.2.

Def. §l6-ll§--§ [SM?]
If A = (f, @) denotes a tuple of mappings analogous to those

of the signature morphism definition, then the predicate SM?

is defined by
{ true if A denotes a hr signature morphism

SM?(A) :=

false otherwise
- |

Signature morphisms can be wunited if their obJect and
operation mappings are compatible.

In the next definition we assume the situation:

fa fa,
081 1 — OBI 2 OBZ 1 —D OB; 2
0P1 1 _-> °P1 2 OPZ 1 > OP: 2
o da
SM1 SM?2
SM; is based on the sighatures I;; = (OB;;» OP;;), 1,3 €
{1,2>.

Def. 3.6.1-.3.-4 [SM, + SM,] .
Let SM; = (f;: OB;;, —> OB;,» gi: OP;; —> OP;,), i € {1,22
denote signature morphisms.
Then the combination of SM, and SM, (denoted by SM; + SM, =
(f: OBg —> 0B, g: 0Py —> OP,) is defined if

a) Vob € (0B;; A 0B;,) . f,(0ob) = f, (ob)

b) ¥V op € (0P, n OP;,) . g, (op) g, (op) holds.

Then
OBS HE 0311 A OBQII OBT . = OBJ_; \Y 03231 oPg = 0P11 v OPz;'
OPr = oplz v OPZ!’ 'f:(Ob) = 'f[(Ob) if Ob € OBIEI i € {1’
2Y, glop) := @ (op) 3f op € OP,;,» 1 € {1, 2>
n
Notation: SM; + ...+ SM, := (SM; + (SM, + (... +(SM,_, + SM,)
SR |
Remark: SM; + SM, := L if the requirements of the definition

are not met.

If two signature morphisms are hr, their combination may Loose
this property because source and target are simply united by
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set wunion. This process can destroy uniqueness of the
TOP-object of the source object hierarchy or introduce cycles
if the R, operator is based on different use-relations for an
object. In this cases the preconditions for hr are not met.

The next corrollary states conditions under which the hr
property is preserved.

Corrollary 3.6.1.3.=
Let SM; = (f;» gi), 1 € {1, 2} denote a hr signature morphism.
Let S; := Source(SM{)¥1,» T; := Target(sM)¥1, i € {1, 22
denote sources and targets of the object mappings.
Let SM; + SM, = (f, @) denote the combination of f; and f,.
If (1) YVob € (S; vS, vT;, v T,) . Ulob) is unique
(2) Ro(S; v S,) is a hierarchy
Then S; + S, is hr.
Proof: Since every element of S; A S, is mapped identically by
f, and f,, the hr property of SM; + SM, follows from

the hr property of SM; and SM, and (1), (2) directly.
x

3.6.2. Instantiation Definition

An instantiation definition introduces a hr signature
morphism. This morphism can be used in an instantiate type
definition to generate a new object hierarchy or in other
instantiation definitions.

An instantiation definition consists of at most four parts:

- a use clause

- an object actualization clause

- a type actualization clause

- an operation actualization clause

The use clause allows the inclusion of already defined
signature morphisms. The object and type actualization parts
are distinguished because modules as well as enrichments may
be actualized, and in the Latter case the add objects of the
enrichments are explicitlLy mentioned in the type
actualization. Obgject and type actualization are combined to
the signature morphism obgject mapping, while the operation
actualization constitutes the operation mapping.

Sem_17: Instantiation Definition

MLi: Inst_deflts :=

Let in__id t= (inst_id 1)s (Iy7 saer I,) := (uselL i),
(Oby 7 eaar Obp) := (ob_actl 1),
(ty7 aaar te) := (type_actlL i),

(OPy 7 =assr Opg) := (op_actl i) in
Let (fr @) := 6(B(I)¥1) + ... + 6(8(I0W)1) i
if pot (SM?((f, @))) then &+

oLse
Let F := {((old 0{)» (new 0;)) (b)Y v

ie
{(Cold t;)s (new t{))| 1 € (D> in
Let G := {((olLd op;)» (new op;))| i € ()} in

NARPAA
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if not (SM?((F, G))) then i elLse

SM := (f, @) + (F » G) in

not (SM?2(SM)) then L else

et Loc := newloc(®) ip

elin_id ¢ (Loc, INST, L1, L)1

sllLoc & sM] in

Let 6, := 6;[6,(E; (main){1) & 6, (8, (main)Vv1) v
({source(SM), target(sM)}, {SM}»)] in

R
-
nuu

Remarks: a) SM? is the predicate to indicate signature
morphism property of 1its argument (see seoc.
3-6-1-3-)-

b) The arity operator for a signature morphism is
defined in (¥, &) € State as follows:

{ e(id) V4 if gid)v2 € {PROC,

FUNC, INITY
L otherwise
With this definition of arity the predicate SM? is
computable for identifiers bound in environments ¢
€ Env. For the general solution to the problem of
application of syntactical operators to elements
of semantic domains see definition 3.7.4.-1.

c) For consistency and for verification contexts (see

[oLt 851), an algebra of the form above is added
to 'main’'.
Instantiation definitions enlLarge the main program
algebra, although they are not involLved in one
verification context that represents one primary
application area of the main program algebra (MPA)
concept: the transition from ModPascal to Pascal
(see soec. 3.7.). In this context the enLargement
of MPA 1is disregarded since instantiations are
pure ModPascal objects, i.e. they have no
counterpart in Pascal via the precompiling
process. Their semantics can be described as some
kind of ‘'meta-functions' of algebras since their
obgject mapping maps carrier sets to carrier sets
(and not elements of carrier sets to elements of
carrier sets).

3.7. Instantiate Tvypes

The instantiate type definition provides the ModPascal
parameterization mechanism. Parameters are alLl obgjects
occurring in the source hierarchy of the instantiation except
of the top object and the standard object BOOLEAN.
Instantiations are applied to an object hierarchy to vyield a
new hierarchy with possibly implicitly generated objects. This
will be always the case if the instantiation does not affect
hierarchy Levels that Lay one upon the other and therefore the
intermediate structures are based on objects that are already
actualized. The necessity of implicit object generation may be
visualized best by an examploe.

arity(id)te :=
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Example 3-1
Consider the module hierarchy

and the instantiation

instantiation I is M, by Ms;
operations op. = ops ; instend ;

and the instantiate type definition that employs I:
type M; = instantiate M; by I ;

The primary effect of this definition is the substitution of
M. by Ms in the M; hierarchy. But then Ms; 1is no Longer
appropriate since it uses M, in its object definition and has
possibly occurrences ot M, operations. So M; is generated as a
copy of Ms; with exchanged use List and substituted operation
calls. Now the same argument is applicable to M, ., resulting in
M,» and finally to M, to vyield to M, as outcome of the
instantiate type definition.

The resulting hierarchy
My

n

W

e NN €—

w

includes the two implicitly generated objects M, and M;. ]

In the following we will firstlLy extend the data structures on
which the semantic clauses for instantiate type definitions
will be based (sec. 3.7.1.). Then auxitiary functions will be
introduced to manipulate syntactic objects (sec. 3.7.2.).
Thereafter a syntactic process for marking an obgject hierarchy
with substitution flags is defined, and a generation algorithm
working on marked hierarchies is presented (sec. 3.7.3.).
Finally, the embedding of this definitions in the semantic
clauses for the instantiate type definition is given in sec.

3.?.4-
3.7.1- Extended Data Structures

To express the semantic of an instantiate type definition more
concise we modify our data structure for the syntactic domain
Obj.
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Obj = Type_def_struct v Enrich_cef_struct v Inst_def
Type_def_struct = (type_id: Id., type: Type., map: Map.,
new: ObJj)
Map = P(Id x Id)
Enrich_def_struct = (enr_id: Id, enr: Enr., map: Map-
new: O0Ob3j)

The domains Type, Enr, Map, Id are unchanged.

The extension of the syntactic domains Type_def and Enr_def
allows to define the algorithms that are employed in the
instantiate type definition semantics on the syntactic
entities.

The syntactic domain Map represents mappings between objects
where object identifiers are taken as unique references to
them and the uniqueness is valid for sets OB of objects.

.7e2- Auxiliary Functions

In this section we introduce some functions on syntactic
domains that are used in the subsequent definitions.

We assume the operator U defined for all objects ob € ObJj such
that the derived operators R,» R,» U are meaningfulLl (see
definition 3.6.1.2.-1).

The first definition characterizes Lists of objects.

Def. 3.7.2-.~1 [admissible objectlist]
Let obL € ObgjlL.
obL is called admissible if

gither (first obL) = L

or Let m := min{n| (first(rest"™ obL)) = 1} in
Let ob; := (first(rest'’ obl)), i € (N in
Let OB; = {obys «casr Ob; 12, i € (n) in

vob € U(ob;) . (ob € Stand_type gr

ob € 0B;, 1 € (n))
]

Remark: Admissability corresponds to 'declaration-before=-use'.

To convert sets of objects into Lists of objects, a specific
operator is defined next.

Def. 3.7.2.-2 L[SEQ]

Let OB € Obj, OB = (0by 7+ aear Ob,2.

Let (i;+ ..., 1,) denote an arbitrary permutation of (1, ...,
n) such that obL := p,(first: <{ob;.; ,},» rest: H,(first
{ob;(2,}7 «ear rest: o (first: (ob;.,,¥Y, rest: 1) ...) with
obL € OblL.

Then the operator SEQ: (P(0bj) —> ObL is defined by

obL if oblL is admissable

SEQ(OB) := {
Lo otherwise
n

December 84 ModPascal=-Semantics



ModPascal 3.7.2. Auxiliary Functions Page 60

Remark: SEQ is defined if and onlLy if a permutation (i,, ...-
i,) exists that generates an admissable object sequence.

The effect of mappings defined by instantiations is captured
on the syntactical Level by substitutions of source objects
through target objects and by substitution of source object
operations through target object operations.

The next definition gives the syntactical operator for this
process.

Def. 3.7.2.=3 [Subl

Let OB € Obj, D := U(R,(0B)).
Let f: D —> Obj denote a mapping.
Let 0B, := {f(ob)| ob € D>.

Let g: OPS(D) —> OPS(0B,) dencte a mapping.
Then the substitution Sub(0B) according to f and g in 0B is

defined by

1) VYob € 0B .

SF(ob) := {s| s € AD(ob) and (s ob) € Id and

S =S, ... 5; and s, € {type_id, enr_id}
SG(ob) := {s| s € AD(ob) and (s ob) € Id and

S = S, == S; and

s, € {proc_id, func_id, init_id?

2) Yob € OB .
Let {s;, wu.r s, = SF(0Ob) in
Let ob; := p( ...(ulob; s;: {f(s, ob)});
S; 5 {f(s; ob)}); «ass);
s.: {f(s, ob)}) in

Ltet {s;"s waur sg'> := SG(ob) inN
Let ob, := p( ...(uloby; s;': {g(s; ' ob)}); ...;
s.': {g(s;' o)D) in
S; (ob) := ob
3) Sub(O0B) := {Sl(ob)i ob € 0B>
Notation: OB<f, g> := Sub(OB) according to f and g.

Remarks: a) The substitution is defined on a purely
syntactical Level, idi.e. onLy identifier (object
and operation names) are substituted.

b) Application of the (state dependant) substitution

operation see ....
c) If f =L or g =1 then 0OB<f, g> := OB.

The next definition introduces measures for hierarchies and
objects occurring there.

Def. 3.7.2.=4 [depth, heightl

Let ob € (Module_type v Enrich_def), such that R,(ob) is
hierarchical.

Let OB(ob) := U(R,(ob)).
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1) The function depth: 0B(ob) —> N is defined by:
1 if ob = ob,
depth(ob,) := {
m Aif m = min{n| 3 C € CH(ob),»
cC = {(Obll 0b,)7r caur
(ob, _110b")}l
ob, = obs, ob, = oby2

2) The function height: (Module_type v Enrich_def) —> N is
defined by:
1 if |oB(ob)| = 1
height(ob) := {
n if n = max{depth(ob,)]| ob, € 0B(ob)}

FAnA

Remarks: a) Depth denotes the Length of the 'shortest' way
from the TOP to an element ob, of the hierarchy.
Depth(ob,) = 1 is equivalent to ob, = TOP(0B(ob)).
b) Hight denotes the Lenght of the 'Longest' way from
the TOP to an element of the hierarchy spanned by
ob.

The next operator checks if an object set and a mapping are
compatible, di.e. if the mapping is applicable to the obgject
set.

Def. 3.7.2.=5 [Comp?]
Let OBJECT := (Type_def_struct v Enr_def_struct)

Then the operator
Comp?: (P(OBJECT) x Map —> D_BOOL
is defined by:
Comp? (0B, M) = true
: & 1) SM?(M) = true
2) source(M) ¢ OB
3) R,(OB) is hierarchical
4) M(TOP(R,(0OB))) = 1
n

Remarks: a) Conditions 1) - 3) require that the supplied
mapping 1is - a signature morphism whose source
objects are contained in a hierarchical object
set. This fact will be used in Sem_17.

b) Condition 4) excludes the case that the top
elLement of an object hierarchy is modified by a
signature morphism. By this, the parameterization
of obgjects is restricted to the non-top elements
of hierarchies.

3.7.3- Marking and Generation

In this section the application of a signature morphism to a
specific object set 1s defined as a syntactical tree
transformation process. Two steps are distinguished:

® marking the object hierarchy with those substitutions that
have to be performed at each node
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e performing the substitutions and generating of objects.

The next definitions introduce a hierarchy traversal and
marking algorithm and an object generation algorithm.

We interprete the structures in Type_def_struct and
Enrich_def_struct as follows:

t € Type_def_struct: (type_id t), (type t) as usual
(map t): a set of identifier pairs
(old, new) indicating the
substitution old €& new in

(type t)
(new t): indicates that (type_id t)
and (type t) are

substituted by (type_id
(new t)) and (type (new
t)). If (map t) + L, the
corresponding substitution
is performed on (type (new
t)).

e € Enrich_def_struct: (enr_id e)., (enr e) as usual.

(map e): a set of identifier pairs
(old, new) indicating the
substitution old & new in
(enr e).

(new e): indicates that (enr_id e)
and (enr e) are substituted
by (enr_id (new e)) and
(enr (new e)). If (map e) *
i, the corresponding
substitution is performed
on (enr (new e)).

Def. 3.7.3.-1 [MARK]
Let OBJECT := (Type_def_struct v Enr_def_struct)
Let OB, » OB, ¢ OBJECT, R,(0OB,) hierarchical and
f: OB, —> OB, a mapping.
Let V ob € (0OB; v OB,) . ((map ob) = (new ob) = 1),

1) The operator
MARK: (P(OBJECT) x Map —> (P(OBJECT)

is defined by
MARK(OB, » f) := Let

ARRAAA

n o= height (TOP(OB, )) in
MARK1(OB, » f- n)

2) The operator
MARK1: P(OBJECT) x Map x N —> (P(OBJECT)
is defined by
MAFPK1(0B, , f» n) :=
if n = 1 then OB, eLlse
Let {on; s ..., onaY := {ob| ob € 0B, and
depth(ob) = n} in

Let ZO = OBI ;LQ
et Z;,, := (case f(ob;) #* ob; :

Let {obys .u.r ObyY := Pgelob;) in
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Let Z := Z; \ {Obll Y Obblobi} iﬂ
Let 2" := Z
v {ob;'| ob; € Type_def_struct
and
ob; ' = Ho(type_id: (type_id ob;).,
type: (type ob;).,
map: (map ob;) v
{(Ob;' f(Obi)}l
new: (new ob;))
and
J € (b))
v {ob;| ob; € Enr_def_struct
and
ob; ' = Holenr_id: (enr_id ob;).,
enr: (enr ob;).,
map: (map ob;) v
{(Ob;l f(Ob;)}l
new: (new ob;))
and
J € (b))}

v Ho (sel,: (sel; ob;).,
sel,: (sel, ob;).,
map: (map ob;) v
{(ob; » f(Obi)}l
new: {f(ob;)))
where (case ob; € Type_def_struct:

selL, := type_id, sel, := type
caseg ob; € Enr_def_struct
sel, := enr_id, sel, := enr)
0

zl

case f(ob;) = ob; : Z;,

ie (a)) in
MARK1(Z,» f» n=1)

a) Each element in the hierarchy is marked with the
substitutions that have to be performed on it. The
marking is performed bottom=up and by exchanging
objects through appropriate constructed new ones.

b) The cardinality of OB, is nhot changed.

c) The case f(TOP(OB,;)) #* TOP(OB;) is disregarded
since this does not correspond to parameterization
of types. In that the operator is assumed to
evaluate errorneous.

Remarks

To remove marks from the map component of an obgject, the
operator DEMARK can be applied.
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Def. 3.7.3.-2 [DEMARK]
Let OBJECT := (Type_def_struct v Enr_def_struct).

Let OB, , OB, € OBJECT.
Then operator

DEMARK: OBJECT x OBJECT —> OBJECT
is defined by

DEMARK(OB, » OB,) :=

{Obll «wal Ob,,} = 081 'in

f, := (map ob{), 1 € (N) in

Fi {(ob', f;(ob"))| ob' € OB, ~ f;(ob') # L},

ie (n) in

ob;"' := Ho(sel;: (sel, ob;), sel,: (sel, ob;).,
map: (map ob;) \ F;.,
new: (new ob;))

where (caseg ob; € Type_def_struct :

Let
Let
Let
Let

sel, := type_id, sel, := type.,
case ob; € Enr_def_struct :
sel, := enr_id, sel, := enr).,
ie(n) in
Let z, := 0B, jin
Let Z; := Zi_-; \ {ob;> v {ob;'), i € (N m
z

Remark: DEMARK removes all occurrences of obgjects of its
second argument set from the map component of the objects of
its first argument set.

The next operator 1is helpfull to express the substitution
induced by the map=-component of an object.

Def. 3.7.3.-3 [S-MAPI]
Let OBJECT := (Type_def_struct v Enr_def_struct).

Let ob € OBJECT.
Then the operator
S-MAP: OBJECT x Map —> (Map x Map)
is defined by
S-MAP(ob, g) =
if (map ob) = L then 1 eLse

Let F = {(ob;» ob;*)]| i € (M2 := (map ob), n € N in
Let G = {(op;- glop;))]| i € (m)» op; € OPS(ob;),
ob; € source(F).,
g(op;) € OPS(target(F))Y>, m € N
D
(F, G)

Remark: G ¢ (OPS(source(F)) x OPS (target(F))) together with F
does not necessarily describe a signature morphism by
this definition. This property has to be assured
separately.
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Def. 3.7.3.=4 [GENERATE]
Let OBJECT be defined as above.

Let OB ¢ OBJECT, R,(OB) hierarchical, g € Map such that
Source(g) ¢ OPS(0B).
1) The operator
GENERATE: (P(OBJECT) x Map — (P(OBJECT)
is defined by
GENERATE(OB, @) := Let n := height(TOP(OB)) in
GENERATE1 (0B, g- n)

2) The operator
GENERATE1: (P(OBJECT) x Map x N —> (P(OBJECT)
is defined by
GENERATE1(OB, g, nN) := if n = 1 then OB gLtse
Let {oh; s «..r 0N, := {ob| ob € 0B and depth(ob) = n}

in
Let Z, := 0B in
Let Z:,, := (case (map on;) = (new on;) = L : Z;
case (map on;) # L, (new on;) = L :
Let on;' := He(sel;: (sel; on;).,
sel,: (selL, on;)<S=MAP(on;, g)>,
map: {1}, new: {1} in
Let Z := DEMARK(Z; » {on;}) in _
Let Z' := MARK(Z, {(on;, on; ")} \ R,(on;)
v RU(OH;')) in
Zl
case (map on;) = L, (new on;) #* L :
Let Z' := Z; \ {on;> v {(new ony)> ipn
Zl
‘\
case (map on;) # L, (new on;) * L :

Let on;' := He(sel,: (sel; (new ony)).,
sel,: (sel, (new on;))
<S=MAP(oONn;» g)>~,
map: (1>, new: {1 in
Let Z := DEMARK(Z;, {on;}) in
Let Z' := MARK(Z, {(on;, on; "2 \ R,(on;)
v ﬁu(on;')) ;ﬂ

|

AR~

Z'
where (case on; € Type_def_struct:
sei, := type_id, sel, := type
€ase on; € Enr_def_struct
sol, := enr_id, sel, := enr).,

ie (a)) jin
GENERATE1(Z,, g, N=1)

Remarks: a) New objects are constructed whenever (map on;) #
L. This means that didentifiers are substituted
according to S=MAP(on;, g). The incorporation of
the new construct requires a re-marking of the
hierarchy. The case (new on;) * L1 is already
covered by the MARK operator., and the
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incorporation of (new on;) does not require a
re-marking.

b) ApplLication of GENERATE extends the object set in
general. The hierarchical structure is preserved
since subtrees are exchanged against subtrees and
the TOP-element is Left wunchanged, i.e. (new
TOP(OB)) = L.

c) The effect of GENERATE on ob € (0B \ U(R,(ob)))
need not to be made explicit since the depth and
height operator are based on Pp(ob) such that the
'‘intermediate' obgjects are included in {on;, ...-,
oNngY.

3.7-4. Instantiate Type Definition

Before we state the semantic clauses for instantiate type
definitions we will solve a technical problLem. Many operators
introduced up to now were based on the syntactic domains of
the ModPascal semantics, and this was sufficient since no
interactions to elements of semantic domains had to be
expressed. The onLy and undangerous intersections of
syntactical and semantical domains happend in the cases of Id.,
BOOL and INT.

The important point now is that syntactical operators as e.gd.
U (= the use relation operator) are not applicable, if their
syntactic argument is exchanged by its semantics: in a state
(¢, &) that involves the meaning MmImodl of a module type
object mod it is not possible to extract the set of used
objects of mod in the current semantic domain structure. AlL
information about them has been merged together by Mm, and
currently the onLy way to get them is by Looking at the
syntactic object mod (where U(mod) is defined).

In the case of instantiate type definition semantics, much of
the information gathered by syntactical operators should be
accessable to the semantic operations (e.g. obgject hierarchy
information, signature morphism properties, compatibitity.,
substitution). The first step towards a connection of
syntactical and semantical operators were done in 3.6.%1.1.
where additional components of semantic domains were
introduced such that for example use relations could be
modelled on the semantical Level. But processing in this way
would inevitably increase the complexity of the semantic
domain structure, and finally each syntactic domain would have
a semantic counterpart. A modelling of this kind is
characterized by a very high degree of (unwanted) redundancy.

In the next definition a general mechanism is provided to
overcome the deficiencies of Level-separated operators. It
Links semantic objects to their syntactical definition
uniquely and therefore represents an inverse meaning function.
As a result, syntactic operators can be invoked on semantical
objects by exchanging the arguments.

December 84 ModPascal-Semantics



ModPascal 3.7.4. Instantiate Type Definition Page 67

Dof. 3,7-4.=1 [Retrievel
Let (£, &) € State and id € Id with e(2(id)V1) * L and B(id)V?2

€ AlLgQual.
Let OBJECT := (Type_def_struct v Enr_def_struct).

Then the operator
Retrieve: Id —> State —> (OBJECT x State)

is defined by:

Retrieve(id)€e :=
Lt (ob, (E,, &6,)) € (OBJECT x State) .
Let (gzl 62) = Mﬂ:obmglsl &.D

€, =€ and s, = 6 gnd (ob_id ob) = id
-]

Remarks: a) The selector ob_id represents type_id or enr_id
depending on ob.

B) The injectivity of Mm/Me/Mt needs not to be
assumed since the definition of retrieve is not
constructive (i=-operator). Also, every ModPascal
program is Listed sequential, and the syntactic
object that causes the next state transition is
directly derivable.

c) From the definition, it follows:

V id € Id, ob € OBJECT, (€, &) € State .
if id = (ob_id ob) then
if Retrieve(id)tes * L then

Let (€,, 6,) := Retrieve(id)Ee&)V2 in
Let (§zl 62) HE MEOb:ﬂngl m

ob = (Retrieve(id)E€,s,) V1
This constitutes a Llink between semantic and
syntactic domains since identifiers are assumed
unique for syntactic and semantic domains (see

S€C. 2e2e3ala)

Notation: For I ¢ Id, (¥, &) € State .
RetOb(I)te := {(Retrieve(id)ee&)y1| id € 12

For the syntactical operators now it is possible to use them
in semantic clauses. For example, if I ¢ Id
MARK(Retrieve(I)te&, f)
is meaningfull and evaluates to an object set OB ¢ OBJECT.
That could be subject to a transformation into the semantical
Level by
MLSEQ(OB) I¢s.
(SEQ is applied to guarantee syntactical correctness).

Pictorially., we have

Retrieve
I, (8, &) > OB
l MARK/SEQ
I'y (8', 6') < oB*
M
semantics syntax
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After provision of this technical prerequisite, we turn back
to the theme of this section.

The semantics of an instantiate type definition is computed by
performance of the following steps.

a) Check, if the set of instantiation objects constitutes a hr
signature morphism SM.

b) Check, 1if the object hierarchy spanned by the base object
and the hierarchy spanned by the source objects of SM are
compatible.

c) Mark in the base object hierarchy those objects that are
subject to changes by the signature morphism.

d) Generate the new objects and incorporate them in the
current environment except the new base object.

e) Return the modified base object as value for the
instantiate type definition identifier.

Sem_17: Instantiate Type Definition

MmIi: Instantiate_typelles :=

Ltet bid := (base_type 1i)-,

{ill ames in} := (obgectL i) iﬂ

Let Bid := (Retrieve(bid)€s)V1 in
Ltet {I,, wueur I} := RetOb({i;r ..., 1,186 jin
et I := I, + ... +I,, I = (f, @) in
if not (SM?(I)) = true then L else

if not (Comp?(Bid, I)) then Ll else

(ol (ol

—
ct

|

Let Bid, := MARK(U(R,(Bid)), f) in
Let Bid, := GENERATE(Bid,, @)
{oby s e..r 0ob,Yy = Bid, in
Let objlL := SEQ({ob;, ..., 0b,}) in
Let (¢,, 6,) := MLobjLIte in
Let (A, (B,», 6,)) := MLCTOP(Bid,)I8,e, in

(Al (gzl 62))

Remarks: a) The semantics of the base type and the used
instantiation obgjects (hoth are elLements of Id)
are computed from the application state. By means
of the Retrieve operator the associated syntactic
objects are taken to perform the dinstantiation
process (marking- object generation). The
resulting object set is sequentialized and mapped
to the appropriate semantic domain. The resulting
state and the algebra of the TOP-element are
passed.

b) ALL implicitly generated objects are installed. An
appropriate naming procedure is assumed.
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4. Precompilation

L.l. The Verification Environment

As pointed out in the introduction, ModPascal was developed as
part of the I1ISDV-System that supports verifiability of
software. This is realized by providing methods and tools for
stepwise refinement from requirements specifications over
applicative ASPIK structures to imperative ModPascal code and
by methods and (semiautomatic) tools for verification of the

refinement steps.

The final refinement step in this setting is the transition
from algorithmic ASPIK specifications to ModPascal module type
and enrichment definitions. One has to assure that, for
example, a module 'does the same' as a specification. Since
both objects are independantly specified/programmed this task
is nontrivial., and without further confinements even
unsolvable, because it is equivalent to the (undecidable)
probLem of showing that two arbitrary Turing machines behave
identically. In fitling the prosaic term 'does the same' with
a formal content one has to solve the following tasks:

e Definition of semantical criterium that assures the
correctness of the transition in a mathematical formalism.

e Specifying a method to (hopefully automatic) check in a
concrete case if the correctness criterium is valid.

The ISDV-System provides a satisfactory solution fitting to
the ModPascal/ASPIK environment. A detailed description can be
found in [OLt 851, here we give a brief overview.

The applied correctness criterium is essentially based on the
existence of semantic algebra domains that provide the meaning
for modules and specifications, and on the notion of algebra
homomorphism. If the semantic algebra of the specification is
found to be a homomorphic image of the semantic algebra of the
module then the transition is called correct; both objects do
the same. This seems to be a weak condition, but in the
ModPascal /ASPIK environment the existence of a homomorphism
implies an isomorphism, and so the desired 'strong' criterium
is achieved. Isomorphisms as correctness criterion 1is often
used in abstract data type theory (e.g. correctness of
extensions or implementations; see [EKP 781).

The main problLem is that the check of the validity is based on
a set of equations that are most unitikely to be processed even
by semi-automatic proof systems: they enclose ModPascal
constructs as well as ASPIK terms and between, there are
semantic functions as defined in section 3. Since this fact
makes the correctness check of the ASPIK/ModPascal transition
a human-bound task efforts were made to recognize and treat
special situations in which mechanical support is possible.
These situations are characterized by the structures occurring
in the ModPascal object involLved in the transition. If they do
not Leave an 'clementary' Level, they can be transformed via
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symbolic evaluation in expression vectors that directly
correspond to ASPIK terms. In that case the set of equations
could be (semantically equivalent) expressed as pure
ASPIK=-equations, and then the check of wvalidity would onlLy
have to deal with ASPIK structures. This does not imply the
(semi-automatic) solvability of the equations, but it removes
a degree of complexity from them.

In the ISDV~-System there 1is a semi-automatic toolL that
generates for a given specification and a given module a set
of equations that are possibly simplified to pure ASPIK
equations. In the Latter case the check of validity 1is
initiated by passing them to one of the proof systems
connected to the ISDV-System (e.g. MKRF [BES 811, RRLAB [Tho

841).

The precompitation problem arises at the point when the
original set of equations is checked for ‘elementary'’
structure and the symbolic evalLuation is performed. For both
tasks software tools were available at the beginning of the
ModPascal development, but they recognized onlLy Standard
Pascal. The solution to this problem was to precompile the
ModPascal code into Standard Pascal code and then apply the
desired tools. The necessary precondition was that the
precompilation will not disturbe the special semantic
structures associated with ModPascal constructs. This 1is
non-trivial since semantical preservation is in general not a
property of precompilation; onlLy together with subsequent
compilation with a 'verified' compiler this will hold.

In another view, the precompiler solution was preferable since
the quantity of conformity of ModPascal and Standard Pascal
greatly exceeds the quantity of differences, and Standard
Pascal compilers are widely available. But again, because of
the application of ModPascal in a system for verifiable
software, one has to formally assure that precompilation 1is
semantics preserving.

These issues justify the current section. We will specify the
transformations performed for single constructs and show, that
under the definitions of sections 2. and 3. isomorphic code is
generated. A description of the more technical aspects may be
found in [Eck 841 and I[Sch 85]. The application in the
generation of equation sets is documented in [Wei 851].

L.2. The Transformation

4.2.1- The Operator PRE

In this section we define an operator PRE that is applied to
precompile ModPascal to Pascal. We refer to the abstract
syntax of ModPascal of sec. 2.1.2.

Notations: Constr, denotes the domain of alLl correct Standard
Pascal programs
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Constr, denotes the domain of all correct ModPascal
programs (= domain Program of 2.1.2.)

Since ModPascal extends Standard Pascal., it holds:
Constr,, ¢ Constr,

With Sel,» Sel, we denote the set of possiblLe selLectors for
objects of Constr, and Constr, resp. Again SelL, ¢ Sel, holds.
Then Constr, = {0 € Constr,| 9(3 s € (SelL, \ Selp) . (s o) #
L2

The explicit definitions of Sel,, Sel, are omitted here. They
can be derived directlLy from 2.1.2. and an analogous abstract
syntax for Standard Pascal.

In the following we view at Constr, and Constr, as the
coalesced sum of all syntactic domains they are build upon
(i.e. Constr, = Program + Prog._head + ID + Block + Lab + ...).
This allows to define the operator PRE with a single arity.,
but makes it applicable to every substructure of the above
domains.

Def. 4.2.1.=-1 [PRE]

Let Constr,., Constr, be as above.

Then the syntactical operator
PRE: Constr, —> Constr,

is defined by: ,

1) ¥V o € Constrp . PRE(0O) := o

2) V t € Type_def .
if t € Constry then [—> 1)] elLse
if (type t) € Module_type then
PRE(t) := po(s;: TypelL, s,: Func_dclLL)
if (type t) € Instantiate_type then
Let {u;» ..ur u,> := U(R,(base_type (type t))) in
PRE(t) := Mo (s,: {PRE(base_type (type t))}.,
Sy ¢ {PRE(ul)}p amw 7
s,: {PRE(u,)})

3) Vi€ Inst_def . PRE(i) := 1L

4) ¥V p € Proc_stmt .
if p € Constr, then [—> 1)1
else PRE(p) := Ho(s,: Assg_stmtL)

5) Vv € Var .
if v € constry then [—> 1)1
else PRE(vV) := po(s;: Vars, s,: Assg_stmtlL)

6) V o € Op_designator .
if o € Proc_stmt then [—> 4)1]
else PRE(0) := {o(s,: Simple_term)

7) V e € Enrich_def .
PRE(e) := Ho(s;: Func_dcll)
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8) i) PRE possesses a homomorphism property for ObjL:
V oL € ObjL .
PRE(H, (s, : (first olL), s,: (rest oL))) =
Ho (s;: PRE((first olL)), s,: PRE((rest oL)))
ii) PRE possesses a homomorphism property for VarlL:
VvV vL € VarL .
PRE(M, (s, : (first vL), s,: (rest vL))) =
Ho (s;: PRE((first vl)), s,: PRE((rest vL)))

Remarks: a) This definitions of PRE does not reflect any
context=-sensitive conditions. It d1is Jjust the
relation between the abstract domains associated
to programming Language constructs. An algorithmic
definition is given below (see sec. 4.2.2).

b) Standard Pascal structures are mapped identically.

c) By PRE, modules are transformed in a sequence of
type definitions and function declarations. For
sequences of module definitions, the PRE image
would violLate the Pascal-syntactic Law that type
definition part and subprogram declaration part
have to be disjunct. Therefore requirement 8) i)
is necessary. Also., PRE disparts variable
declLarations for module variables consisting of
the variable indication and an initial assignment
of value (see example 4.2.2.-3). Since variablLe
declaration part and statement part are dispart in
Pascal, PRE has to fullfill requirement 8) ii).

d) ModPascal procedure statements as well as
operation designators may consist of several
(subsequent) procedure and function calls
('extended dot notation', see sec. 3.2.4. of [OLt
841). This fact is reflected by requirement 4 that
converts procedure statements in statement Lists.
For function calls (requirement 6) simple terms
are sufficient where the sequentiality is
transformable to nesting depth.

e) Instantiation definitions could be modelled in
Pascal, but onlLy with great struggles. Since there
are no existing Pascal compilers that are capable
of handling them inside a (precompiled)
instantiate type definition, they are disregarded
here.

f) The treatment of dinstantiate type definitions
involves implicitlLy the obgject generation
algorithm described in sec. 3.7.3. Since the
generated sequence of obgject definitions is
stepwise transformable (according to requirement
8)), PRE(t) for t € Instantiate_type is derivable
from the PRE values for each sequence element.

Definitions 4.2.1.-1 shows that the precompilation task
consists mainLy of syntactical manipulations. OnlLy in the case
of instantiate type definitions context sensitive conditions
are required. The alLgorithms that realize PRE and the
impLementation are documented in [Eck 84]. We will iltustrate
PRE by examples.
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L.2.2. Concrete Definition

In the fcllowing we apply PRE to concrete syntactic constructs
since ambiguities are not possible. The examples ilLlustrate
the processing of the currently implemented ModPascal

precompiler.

Example 4.2.2.-1: Module procedure call (4.2.1.-~1, case &)
Let "public procedure P(X;: Xir ..ar X,: X,)" denote a public
procedure of a module M, and V a Variable of type M.
Then, if
ViP(Y1 7 euar V,)
denotes a call of P, PRE("V.P(Y; /s .uar Y,)") is defined as
V := MBP(VsY31 7 wauar VY,)

In other words, module procedures become functions with
extended functionality and new operation identifier (see
example 4.2.2.-4), and procedure statements are transformend
into assignments to the module variable.

In the case of extended dot notation (see sec. 3.2.4. of [OLt
841) an appropriate sequence of assignment statements
(possible with automatically generated intermediate variables
for function occurrences in the operation designator) 1is
produced. ALL assignment variables are simple (module)
variables. For example, "V.0P; (a, b).0OP,{(c, d)" is equivalent
to "V.0P; (ar b); V.OP,(c, d)". The PRE-image is "V := ME&OP, (V.

ar b); V := MROP,(V, c» d)" (if OP,, OP, are procedures). We
skip the details of the transformation algorithm (see [Eck
841). n

Example 4.2.2.-2: Module function call (4.2.1.-1, case 6)
Let "public function F(x;: Xy;7s easar X,: X,): Z" denote a
public function of a module M, and V a Variable of type M.
Then, if
V.F(Yll caer Yo
denotes a call of Fr PRE("V.F(Yi/s wuar ¥,)") is defined as
MEF(V,sYy 72 auar VY,)

In other words., module functions become functions with
extended functionality and new operation identifier (see also

example 4.2.2.-4). x

Exampte 4.2.2.=3: Initial operation call (4.2.1.-1, cases 5»
8)

Let "public initial I(X,: X;7 ewer X,: X,)" denote an initial

operation of a module M.

Then, if
ViMBI(Y1 7 waar y")
denotes a call of I inside a variable declaration.,

PRE("V.MEI(Y, s vaar Y,)") is defined as
v: M; ase, V : = M&I(y1' LA 4 y“)

That means, that variable declaration and initial value supply
are disconnected and assemblLed according to Pascal syntax. The
generated assignment constructs are inserted as the starting
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statements of the next nested statement part. The initial
operation is renamed and converted into a function. n

Example 4.2.2.=4: Module type definitions (4.2.1.-1, cases 1.,
8i)

Since the concept for transforming modulLes is very central and

important, we give a more detailed example of a module type

definition for QUEUE, where TASK denotes the kind of 'queued'

objects, and PRIO is an operation of TASK:

type QUEUE = module
use TASK; 1)
public procedure ENTER(T:TASK); (2)
procedure LEAVE;
function NEXT : TASK;
function ISEMPTY : BOOLEAN;
initial EMPTYQUEUE;
Local type T = array [1..100]1 of TASK; (3)
procedure SHIFT(AR: T, 1:INTEGER);
var A:T, PTR:INTEGER;
Localend;

procedure ENTER; (4)
var i:INTEGER;
beqin i:=PTR;
if i=100 then QUEUERERRORPROCEDURE
else
while i>1 do
if T.PRIO>ALi].PRIO
then i:=i-1
SHIFT(AIi),’
ALil:=T;
PTR: =PTR+1;

end;

procedure LEAVE; (* omitted =*)
procedure SHIFT; (* omitted *)
function NEXT; (* omitted %)
function ISEMPTY; (* omitted *)
initial EMPTYQUEUE; (* omitted *)

modend;

Then PRE("type QUEUE = ... modend") is defined as follows:
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type QUEUERT = array [1..100]1 of TASK;
type QUEUE = record A: QUEUERT; PTR: INTEGER end;
function QUEUERENTER(M1: QUEUE, T: TASK): QUEUE; FORWARD;

function Q@
function Q
function Q
functicn Q
function @

F
function @

e
function @
function @
function @

function Q
function @

begin ... [exception handlingl ... end;

function QUEUE&ZERRORFUNCTION(M1: QUEUE): QUEUE;
beqin ... [exception handlingl ... end;
function QUEUERENTER;
var i: INTEGER;

begin i := M1.PTR;

UEUERLEAVE(M1: QUEUE): QUEUE; FORWARD;
UEUE&ENEXT(M1: QUEUE): TASK; FORWARD;
UEUERISEMPTY(M1: QUEUE): BOOLEAN; FORWARD;
UEUE&REMPTYQUEUE: QUEUE; FORWARD;

UEUE&SHIFT(M1: QUEUE; AR: T, I: INTEGER): QUEUE;
ORWARD;

UEUE&ERRORPROCEDURE(M1: QUEUE): QUEUE;

if i = 100 then M1 :=
QUEUE §&ERRORPROCEDURE (M1)
else white i > 1 do if T.PRIO < M1.A[il

then i := i-1
QUEUERSHIFT(M1, M1.A, 1i);
M1.A[1i] := T;
M1.PTR := M1.PTR + 1;
nd;

UEUERLEAVE; (* omitted *)
UEUEZNEXT; (* omitted *)
UEUERISEMPTY; (* omitted *)
UEUEREMPTYQUEUE; (* omitted *)
UEUEQSHIFT; (% omitted *)

Remarks: a)

b)

c)

The module definition is translated into a
sequence of (standard) type definitions and a
sequence of function declarations. It is obvious.,
that in the case of several module type
definitions., their PRE-image has to be rearranged.,
according to the Pascal syntax (requirement § of
definition 4.2.1.-1).

In the sequence of type definitions there occurs
every Local type of the module, with a unique type
identifier. Additional., the set of Local variables
is contracted in a record definition, named by the
module identifier. This record represents the data
on which the module operations are performed; it
is called the module record.

only functions occur. This is due to the fact.,
that there are Limitations for the use of global
variables in ModPascal module operations. The set
of atlowed ¢lobal variables is restricted to the
set of Local variables of the module. Since these
are now structured together in one record type-
every operation of a module (procedure, function.,
initial) is convertable to show functional
behaviour as follows:
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e add the module record to the functionality of
every operation

e substitute in the operations body every
occurrence of a Local variable by the associated
record field variable.

® substitute in the operations body every
occurrence of a module operation call by the
associated PRE-image.

Then the operations will get a module record

argument as actual parameter., modify it and return

either this new object or a selected component.,

i.e. they can be viewed as (mathematical)

functions. By this, one is able to simulate the

behaviour of modulo operations very closely.

d) For initial operations, the treatment is slightly
different. Their functionality remains unchanged.,
since they are intended to ‘'initialize' a new
module incarnation, and therefore they should not
be supplied with an actual parameter that is of
just that structure. (Otherwise initial would not
mean 'really' initial).

e) No difference is made between public and Local
operations since these distinctions make no sense
in non=-object=oriented environments.

f) Functions are firstLy introduced by
'forward'-declarations. This models the mutual
recursion of operations possible in a module type
definition.

g) The function didentifiers are made unique by
prefixing with the associated module identifier.

h) There are special error operations (despite
bewildering names., both are functions). They are
associated to every module, and their PRE-image is
a piece of Pascal code, that at call time prints
values of the module record fields and branches to
the program end. If more sophisticated error
handlLing is needed, it has to be programmed by the

user.
- |

Example 4.2.2.-5: Enrichment definition (4.2.1.-1, case 7)
We use the objects QUEUE and TASK introduced in the example
before as basis of an explanatory enrichment definition.

enrichment E~QUEUE use QUEUE is

add TASK
procedure MERGE(T:TASK);
QUEUE
function LENGTH(I:INT):INT;
procedure SWAP;
addend;

procedure MERGE;

hbeqin (* omitted *) end;
function LENGTH;

begin (* omitted *) end;
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nrocedure SWAP;
begin (* omitted *) end;

enrend;

Then PRE("enrichment E-QUEUE ... enrend") is defined as
follows:

function TASKEMERGE(M1: TASK; T: TASK): TASK; FORWARD;
function TASK&LENGTH(M1: QUEUE; I: INT): INT; FORWARD;
functicn TASK&SWAP(M1: QUEUE): QUEUE; FORWARD;
function TASK&MERGE; (* omitted x*)

function TASK&LENGTH (* omitted =x) ;

function TASK&SWAP; (% omitted *)

Remarks: a) The enrichment defintion is translated into a
sequence of function definitions. It is obvious
that in the case of a sequence of several
different object definitions their PRE-images have
to be rearranged according to the Pascal syntax
(see requirement 8, definition 4.2.1.-1).

b) Remarks c) - h) of example:  4.2.2.-4 apply

analogousLy.
]

Example 4.2.2.=6: Instantiate type definition (4.2.1.-1, case
2)

As pointed out in remark e) of 4.2.2.-1, instantiate types

effort a special treatment that involves some semantical

algorithms. :

Let I, ..., I, denote instantiation definitions and B a

(lhase) object.

Then, if
type B' = instantiate B by I, «uar I,;
denotes an instantiate type definition, PRE("type B' = ...;")

is defined as:

Let OB(B) := U(R,(B))., and OB'(B) denote the set of
(possibly) modified objects, if the signature morphism
induced by I, + ... + I, is applied (= the result of
GENERATE) in

PRE(OB'(B))
(where B' is associated properly to the modified B)

In other words., the PRE-image of an instantiate type
definition is the PRE-image of the modified hierarchy behind
the base type.

Remark : We do not go into further details, since this kind of
objects does not tie in the scope of applications that need

precompilation as precondition (see sec. 4.1.).
]
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The Last remark applies in full extend to instantiation
definitions too. As a consequence, the currently implemented
precompiler disregards them.

L.3. Semantical Preservation

The goal of this section is to show, that the application of
the semantic function M to a ModPascal construct and to its
PRE-image yields disomorphic results. More, the isomorphism
will consist just of those renamings described in the previous
section. The consequence of this semantical equivalence is
that whenever Pascal instead of ModPascal is needed it may be
exchanged by 1its PRE-image., and dinsights gained from
precompiled code take directly over to the associated
ModPascal constructs.

In the following we refer to the concrete definition of PRE as
given in the examples of sec. 4.2.2. The renaming process that
prefixes all items of a structure (module, enrichment) with
the structure identifier is disregarded because this
contributes onlLy to the trivialL isomorphism.

(a) Module procedure call
Let p € Proc_stmt, p ¢ Constrp. Let p; := PRE(p). Let (8, &) €
State.

p_€ Simple_term:

i) MIplee is the application of the store transformation of
(op_id p) to (€, ) (after evaluation of parameters).
The state change (8, ) —> MIplte is visible only in
the value change of variables of GL(searchdef((op_id
p))Es&), the Local variables of the associated module
(see Sem_3).

ii) MEp,Jte = MELW,(ass_var: (ass_var p;), expr: (expr
p;))lte. The converted procedure call now is the singlLe
term (expr p;), a function invocation. According to
L.2.2.» the result type is the associate modulLe record
type for searchdef(ob_id)Es, i.e. the function call
yields an incarnation of a record over the Local
variables (see Sem_4). Now, the assignment to (ass_var
p,) describes the state change on variables of the
module record type.

Then we have

MIpJd
i: (¢, ) —> (8, , &,) (changes of Local
variable values)
MIp, 1
ii: , §) ——————> (8,, 6,) (changes of record

variable values)

The states (¢,, e,) and (¢,, &,) are isomorphic, since from
i) and ii) it follows:

Let ob := searchdef(op_id)8s in

Ltet {Lvys «u.r Lv,Y := Local variables of ob in
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and

Let MT denote the module record type with fields Lv,.

sealt LV,, "J‘-\n

Let m := (ass_var p,), type(m) = MT in

Gl(gl(LV‘)w“) = sa(gz(m))wil i € (h)

Vid € Id . if id ¢ {msr Lvy s waasr Lv,Y then
e, (id) = B, (id) = B(id)

p_€ 0Op designator:

i)

ii)

MLplges is the application of several store
transformations (possiblLy with result). They are
concatenated in Sem_3 to yield a result state on (var_id
p). Since intermediate function calls do not contribute
to the state change (no side-effects, see assumption
3.1.2.=-2), we get a state transition from (%, &) to
MLpltes which is visible onlLy on the value of those
object variables that are referenced by the operation
designator. Let V, denote the set of this variables.
(Note that V, is only dynamically determinable.)

P, denotes a sequence of assignment statements, where
the assignment variables are either (var_id p) or
(automatically generated) intermediate variables. Every
sequence member involLves a function call that returns a
value of the module record type or a component thereof.
Therefore each assignment can be treated in analogy to
the case p € SimplLe_term. The state change is then
reflected by the change of values of alLl Left-hand=-side
variablLes of the sequence. The set of this variables is

V, := {(assg_var st)| 3 i € [length(p,)] . st =
(first(rest' p;J))>.
Then we have

MCpI

i: (¢, §) —> (€,, 6,) (changes of Local

valriables of aLl v € V,)

MIp, 1

ii: (¢, ) ——> (€,, &,) (changes of (record)

variable values of
all v € V,)

The states (€,, 6,) and (€,, 6,) are isomorphic since from

i)
1)
2)
3)

and ii) it follows:

Ivil = [va| _

Vv, €V; o« 3 v, €V, . 6,8, (v;)¥1) = 6,(8,(v,)¥1)
Vide Id . id ¢ (V; v V,) = g(id) = g, (id) = §, (id)

(b) ModulLe function call

Let f € Expr, f ¢ Constr, . Let f, := PRE(f)
Let (8, &) € State.

f € Simple_term

i)

ELfl€s is the application of the store transformation
with result of (ob_id f) to (€, ). Assumption 3.1.2.-2
allows to disregard side-effects. Therefore no state
changes occur. The result is a structure component of a
module, and is delivered by (ELfIlEe){2. The computation
is based on accesses to the Local variables Lv;, .., Lv,
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of ob := searchdef(f)ts.

ii) f, differs from f in the extended functionality and the
substituted occurrences of Local variable accesses. Let
n denote the new formal parameter of the module record
type on which the substitutions are defined. Again, no
side-effects occur, and the state remains unchanged.

Since states are not affected, it remains to commpare the

selected components. Because Lv; corresponds to vii, we have
(B (LvI¥1) = gy N¥i, 1 € (n.

From the fact that E is deterministic it follows that
(ECFfIeerv2 = (ELFf, Jeed) 2

f_€ Op designator

i) ELfJee corresponds to the application of several store
transformations with result, where intermediate pure
store transformations may also occur (see Sem_4). The
state change caused by the Latter makes (8, &) and
(ECFI8e) V1 uncomparable. The resulting component
structure is dependent of the access to Local variables
of occurring modules and of the induced state change.

ii) The PRE-image of f 1is an expression. Since every
operation was transformed into a function (except it was
already), no state change occurs, and the dependance on
module record values is constructable from the first
argument of every function.

Then we have
‘\

ELCFI
i: (¢, 6) ———> ((8,, 6,), r;) (LocalL variable
accesses
determine r,)
ELF, 1

ii: (¢, 6) ———> ((€,, &,), r,) (modulLe record
variable accesses
determine r,)

The state modification (¢, &) —> (€,, 6,) can be skipped
since the ModPascal semantics assumes side-effect freeness
in the case of expression evaluation (see sec. 3.1.2.-2).
Every change in the Local variable values caused by f
corresponds to change of a modutLe record component caused by
f, such that

6, (B, (LvI¥1) = 6, (E, MmNV, 1 € (n) -
where m denotes the associated module record variablLe for
Lv; and n the number of components.
But then r, and r, are selected in an isomorphic state.
therefore ry = r,.

f € S Term
This case can be reduced to one of the above by substitution
of the signum by an appropriate function call.
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(c) Initial operation calLl

Let v € Var, v ¢ Constr,.
Let v, := PRE(V), (8, 6) € State.

i) MEvIEs installs (idL v) in the environment and assigns an
initial value that is a vector of the Local variables
after the invocation of (init v)., which corresponds to a
module procedure calLl (see Sem_5).

ii) v, onlLy separates the tasks: first all variablLe
declarations are performed. Then the initializations are
elaborated as the primary assignment statements of the
following statement part.

Then we have

MLvI
i: (¢, 6) ———> (8, , 6,) (simultaneous installation of
variables and values)
MIv, 1
ii: (e, 6) ——> (¢,, 6,) (separate installation of

variables and values)
Since this initialtization of different variables is
side~effect free, it follLows that
(g].' 61) =(§zl 62)

(d) M € Module tvype

As described in sec. 4.2., module type definitions are
transformed into a sequence of function declarations and type
definitions. This design is Jjustified by the following facts:
e Types and operations are also discernible in module type
definitions. The syntactic structure works as a bracket.
e The proLiferation of Local types does no harm since the
restrictive use imposed by the context-sensitive ModPascal
semantics is not Liberated by the transformation process.
® The introduction of module records is just a reformulation
of the vector of Local variables.
® Module operations show function-Like behaviour even if they
are procedures. This is due to the confinement for every
module operation definition that the set of gLobal variables
has an upper bound in the set of Local variables. With the
introduction of modute records that enclose a slLot for every
Local variable and the synchronous extension of operation
functionalities by such a formal parameter type., aLtL
possible side-effects can be captured, and the precompiled
operations yield values either of the
- module record type, if they were procedures or initials.,
or of a

- component type, if they were functions. In that case., the
component type is identical to the result type of the
ModPascal definition.

Especially the Last point gives the semantical Jjustification
to precompile all module operations into side-effect free
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functions. Even if efficiency considerations will not coincide
with this renunciation of procedures it is a preferable
soLlution when Looking at the application areas of ModPascal.
Its use inside the ISDV-System (see sec. 1) 1in verification
tasks with applicative Languages (see sec. 4.1.) profits from
functional modelling. Also, the elements of the domain AlLg (=
algebras) emplLoy functions, a fact which allows the direct
representation of ModPascal function declarations.

Let t € Type_def, m := (type t), m € Module_type.
Let t; := PRE(t), (8, &) € State.

i) MLtIee is a state modification in which three main tasks
are perforned (see Sem_15):
- new introduced items (public and Local operations, types
or variables) are installed in the environment
- the semantic algebra associated to the module type
definition is build up and installed.
- the main program algebra is updated
Since the second task is sufficient to describe the
semantics of modules, it should bhe pointed out that the
instaltation of all introduced items 1is only done for
technical reasons because semantical clauses are easier to
state. (MmImlEed)V2 1is passed to M that installs the
algekra as value of (type_id t) and updates MPA (main
program algebra; see sec. 2.2.4.). The induced state
change is visible in the enLarged environment (MEtIge) {1
compared to ¢ (i.e. {id| id € 1d- e(id) = L1,
(MECtIeed) V1) (id) # L)) and in the MPA extension (M-Val-
M=F) (see Sem_15). The intermediate state in which the
elaboration of the Local type definitions is initiated is
(8ps 6p)s, while it is terminated in (€., &.) (see Sem_15).
ii) MIt,I¢e is a sequence C;; C,; a..; C, Of Standard Pascal
constructs. Therefore the elaboration of every construct
involLves
- installation of the new item (type, function) in the
environment
- updating of MPA.
The resulting state differs from (8, ) in the enLarged
environment and in the MPA extension caused by every
construct of the sequence. The sequence starts with Local
type doefinitions C;; «a.; C;» i € [N]J. Let (o, 64) :=
MEcy; ...; c;I86, i.e. the state after elaboration of the
Local type definitions of t,.

Then we have:

MIt]
i: (¢, ) ——> (8, , 6,) (environment enLargement and
MPA modification)
MICt, 3
ii: (¢, ) ————> (B,, 6,) (environment enLargement and
MPA modification)
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Since

- for every LlLocal type definition in t there is a type
definition in t,

- for every operation definition o_def in t there is a
function declaration t, such that MLo_deflts =
MLf_deflg's "'~

- the cartesian product of the Local variable types is
taken as the TOI of t by M, which again is identical to
the TOI of the module record that is generated by PRE in

t,
- MPA 1is enlarged by the same objects (in different
sequences)

the states (&,, &,) and (8,, &,) are isomorphic:
Let I denote the set of new introduced item identifier in t

a0
Let I' denote the PRE-image of I, |I'| = |I| in
Let mid := (type_id t), mid € I in '
Let {Ltvys ..., Lv,> := denote the Local variables of m in
Let Opid := {i € 1| &, (i)¥2 € {PROC, FUNC, INITY} in

a) V id € I, id #* mid .
a1) &, (id)y2 € obQual \ {VAR) or
(8, (id)¥2 = VAR and id ¢ {Lvy s cuar LV, D))
= J id' € Id' . g, (id) = g, (id")
a2) &, (dd)¥2 = VAR and id € {Llvy /s ...r Lv,2
=> i € (n) . TOI(E, (id){3) = (E, (mid)y2)V¥i

b) &, (mid)¥3 = §, (mid)V¥3

c) For (Bp, 6p)r (B.r 6.)s (Bhr 6,) as above:
c1) €. (Bc(maind¥1) \ &€, (main) 1) =
6o (Bo (maind¥1) \ &(8(main) 1)
c2) 6, (8, (mainN¥1) = &, (&, (main) V1)

This result is mainly based on the previous considerations on
module procedure, function and initial calls. It states the
semantical equivalence of t and t, by comparison of singlLe
items that cause state changes.

(e) e € Enrich_def

Enrichments differ from modules in that they do not introduce
new data but only new operations (for already given modules).
This makes the same justifications applicable as for modules
(see (d)) as the operation translation is concerned; therefore
aLlL enrichment operations are transformed to functions without
changing semantics.

Let e € Enrich_def, e, := PRE(e), (8, &) € State.

i) MIelte is a state change that involves the installation of
aLl operations of atLl addparts of the enrichment. A
semantical algebra is computed and associated to the
enrichment identifier. Also MPA is actualized by this data
(see Sem_16).

ii) MLe, Jte represents the elaboration of a sequence of
function definitions. Each sequence element is installed
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in the state and enlLarges the MPA (see Sem_2).

Then we have:

MLel
i: (¢, ) ——> (¥, , 6;) (operation and enrichment obgject
installation, MPA enlLargement)
MLe, 1
ii:- (¢, ¢) ——> (€, , 6,) (function installation.,
MPA enlLarcement)

Since
- for every enrichment operation there exists exactly one
precompiled operation definition (which is semantical
equivalent)
- the enlLargement of MPA is identical
the states (8,, 6,) and (8,, 6,) are isomorphic up to the fact
that for eid := (enr_id e), it holds that &, (eid) #* L pbut
e,(eid) = 1L (see remark beslow):
Let {opy s .wusr 0p,Y := (oOperationL e).,
oid; := (op_id op;), i € (n) in
Let eid := (enr_id e) in
a) vie(n . 6,8, (0id{)¥1) = 6, (8, (0id){2)
b) &, (8; (main)¥1) \ &(Z(main)¥1) =
€, (€, (main)¥1) \ &(8(main){1)

Remark: The enrichment object of ModPascal is characterized as
an ‘'onlLy=-use' object: it is not possible to generate
incarnations of it via variable declarations.
Enrichments may onlLy occur in the use-clause of module
type definitions where they extend the operation set
of visible module objects. This fact makes it
superfluous to install an enrichment-lLike variable in
(§21 62)-

(f) i € Instantiate_type

The precompilation of an instantiate type definition can be
reduced to the precompilation of the generated object sets.
Since the kind of these objects is either module or
enrichment, cases (d) and (e) apply. But considering the
verification context of sec. &4.1. instantiate type definitions
pLay onLy a minor role, because the effect and transtLation of
generic type generators are not treated. Therefore the details
of semantics preservation of instantiate type definitions are
skipped here.

(q) i € Inst _def

Instantiation definition are similary characterized as
instantiate type definitions (see (f)). Therefore they are
disregarded here.
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S5 _Summary

In this paper the procedural programming Language ModPascal is
supplied by a denotational semantics. To capture the meaning
of the module-, enrichment- and instantiation concept.,
specific domains were introduced:

e a domain ALg consisting of algebras; elements of AlLg are
associated to allL type definitions and to enrichment
definitions

® a domain Map; elLements of Map are associated to
instantiation definitions that are used to realize the
ModPascal parameterization concept.

This approach embeds main ideas of abstract data type theory:

Types are included in a more appropriate form than denoting
them by sets: since algebras enclose data and operations., the
module concept of ModPascal 1is supplied with a semantics
derived from abstract data type theory. Also the important
problLem of admissability of operation calls on specific data
is easily solved: if the operation is not among the operations
that are contained in the algebra associated to a variable's
type, then the call is not admissable. Or in other words: data
may only be changed or accessed by explicitly defined
operations (the 'module paradigm').

For the first time enrichments (of modules) are introduced in
a procedural Language. The ModPascal semantics also supplies
them with an algebraic meaning by constructing an algebra that
enclLoses the basing structure as well as the augmenting items.

Operatiors in ModPascal programs are mapped to algebra
functions = independent of a procedure, function or initial
declaration. This is possible since the effect of an operation
invocation is modelled by considering the state change onLy on
the global variables occurring in the operations body.

The parameterization concept involves signature morphisms
(instantiation definitions) that represent an association of
'‘formal and actual' type and operation names. In the domain
Map elements are mappings that fulfill the requirement of a
signature morphism such that direct application in the
generation of an instance of & (parameterized) object is
possible. Together with the semantics of instantiate type
definitions (a hierarchy of modulLes and enrichments)., this is
a formalization of the very flexible parameterization concept
ModPascal provides.

The main purpose of the development of ModPascal was a
provision of an adequate imperative Language inside the ISDV
scenario, that allows the definition and check of correctness
criteria between applicative and procedural specification
Levels (see [OLt 851). With the semantical framework defined
here one 1is able to overcome the following (standard)
problems:
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e incompatibility of domains: objects of the applicative Level
are algebraic specifications that are associated to
(initial) algebra semantics (see [ADJ 78], [BV 83]). Now
objects of the procedural LlLevel (modulLes, enrichments, types
in general) find their semantical value also in an algebraic
domain. Therefore comparison of obgjects can be reduced to
comparison of algebras.

® state-oriented semantics vs. functional evaluation: the
effect of operation invocations were modelled as state
changes. This made them incomparable with models usually
employed for terms build of operations of algebraic
specifications (function carriers). Now operations are
associated to algebra operations of appropriate algebras.,
and it is possible to involve easily operations of different
Levels in the same context.

® correctness criterion: up to now most correctness criteria
(e.g. total/partial correctness) were based on constructs
involving predicate calculus formulas (Hoare=-style
verification). There, the assertion Language was the main
bottleneck that Limited the expressive power of the concept.
Now the correctnhess criteria can be based on well-known
algebraic properties and features as algebra homomorphisms
or isomorphisms. Then the relations between objects are of
similar kind than it is frequently proposed in abstract data
type theory. :

® Loss of expressive power: many applicative Languages provide
constructs that Lack an appropriate counterpart in
procedural Languages. Therefore a transition might be
problLematic if these constructs occur. With the module,
enrichment., instantiation and instantiation types of
ModPascal this gap is narrowed.
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