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Abstract

In this thesis, we study two different algorithms using Monte-Carlo methods for solving

backward stochastic differential equations. In the first chapter, we present a new algorithm

where the backward stochastic differential equation is discretized to a dynamic program-

ming equation alternating between a multi-step forward approach on segments of the time

grid and a one-step scheme between segments. Conditional expectations are computed

via least squares regression on function spaces. We optimize the length of the segments

in dependence on the dimension and smoothness of the backward stochastic differential

equation and compute the complexity needed to achieve a desired accuracy in the limit as

the number of time points in the discretization goes to infinity.

In the second chapter, we consider a discretized backward stochastic differential equation

in form of a dynamic programming equation and study an algorithm for constructing lower

bounds for its value at time zero. The algorithm uses a pre-computed approximate solution

of this equation to sample a control process which is used to derive the lower bound for

the solution. We derive asymptotic error bounds and compute the complexity required to

achieve a desired accuracy in dependence on the input approximation.

The results of both algorithms are illustrated by numerical examples.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit zwei Algorithmen zur Lösung von rückwärtsstochastis-

chen Differentialgleichungen mit Hilfe von Monte-Carlo Methoden. Im ersten Kapitel wird

ein neuer Algorithmus vorgestellt, der auf einem Diskretisierungsverfahren beruht, welches

zwischen einer Mehr-Schritt Darstellung auf Zeitsegmenten und einem Ein-Schritt Ver-

fahren zwischen den Segmenten alterniert. Auftretende bedingte Erwartungswerte werden

dabei als Projektionen auf endlich dimensionale Funktionenräume berechnet. Die Wahl

der Segmentlänge wird in Abhängigkeit der Glattheit und der Dimension der Differen-

tialgleichung optimiert und es wird der asymptotische Rechenaufwand ermittelt, welcher

notwendig ist um eine vorgegebene Genauigkeit zu erzielen.

Im zweiten Kapitel wird ein Algorithmus zur Konstruktion von unteren Schranken der Lö-

sung rückwärtsstochastischer Differentialgleichungen zum Startzeitpunkt untersucht. Hier-

für wird mit Hilfe einer vorab berechneten Approximation der Lösung ein Kontrollprozess

simuliert mit dessen Hilfe schließlich die Schranke berechnet wird. Es werden asymptotische

Fehlerschranken sowie der erforderliche Rechenaufwand zur Erzielung einer vorgegebenen

Genauigkeit hergeleitet.

Die theoretischen Ergebnisse bezüglich der beiden Algorithmen werden mit numerischen

Beispielen illustriert.
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Introduction

Linear backward stochastic differential equations (short BSDEs) were first introduced by

Bismut (1973) as an instrument for stochastic control problems and were later generalized

by Pardoux and Peng (1990) into a non-linear setting. They have numerous applications

with the largest field of interest being applications in financial mathematics where option

pricing problems using replication arguments can be expressed as backward stochastic dif-

ferential equation, see e.g. El Karoui et al. (1997) or the early examples in Bergman (1995)

and Avellaneda et al. (1995).

Due to this application BSDEs especially became a huge focus of research after the financial

crisis which lead to peak interest in pricing problems in more sophisticated market models

and exotic options, which could be expressed as non-linear BSDEs. Those include for ex-

ample option pricing with credit valuation adjustment (see e.g. Brigo and Pallavicini, 2007,

Crépey et al., 2013, Crépey et al., 2014), funding costs (see e.g. Crépey et al., 2013, Crépey

et al., 2014, Laurent et al., 2014), model uncertainty (see e.g. Guyon and Henry-Labordere,

2010), collateralization (see e.g. Nie and Rutkowski, 2016) and transaction costs (see e.g.

Guyon and Henry-Labordere, 2010).

Questions regarding the existence and uniqueness of solutions in the standard setting were

addressed early on (see Pardoux and Peng, 1990); however, finding a closed-form is not

possible in general. Therefore solutions have to be approximated by numerical methods.

Early attempts for this were mainly based on techniques for partial differential equations,

which are directly linked to BSDEs by the non-linear Feynman-Kac formula, like the meth-

ods in Ma et al. (1994) and Douglas Jr et al. (1996). However, those methods are only

feasible for low-dimensional problems as they rely on a space discretization. More recent

methods, therefore, tackled the stochastic problem directly. For this purpose, the usual

first step is a discretization of the BSDE on a finite time grid. The resulting discretization

error is well-studied. For example, we refer for a typical backward Euler-type discretization

under standard assumptions to Bouchard and Touzi (2004) and Zhang et al. (2004), where

it is shown that the time discretization error converges like ∆
1
2 or to Gobet and Labart

(2007) where it is shown that the rate of convergence even improves to ∆1 under stronger

regularity assumptions in the case of forward-backward stochastic differential equations,

where ∆ denotes the step length of the time partition of the discretization.
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While some algorithms, outgoing from such a time-discretized BSDE, work forward in time,

like for example those in Bender and Denk (2007) and Bender and Moseler (2010) using

Picard iterations, most algorithms approximate the solution backward in time. The main

difficulty then is the nesting of conditional expectations, as the solution at any given time

depends on the conditional expectation of the solution at the next time step, which again

is given in terms of a conditional expectation and so on. Hence, one needs a way to ap-

proximate these conditional expectations such that they can be evaluated multiple times

without exploding costs. For this purpose, numerous methods were studied, including

Malliavin Monte-Carlo (see e.g. Bouchard and Touzi, 2004), quantization methods (Bally

et al., 2003), cubature on Wiener space (see e.g. Crisan and Manolarakis, 2012), sparse

grid methods (see e.g. Zhang et al., 2013) and least squares Monte-Carlo (see e.g. Lemor

et al., 2006, Gobet and Turkedjiev, 2016 or Bender and Denk, 2007), on which we will

focus in the first part of this thesis. Those methods are not limited to low dimensions like

PDE methods but still suffer from exploding costs as the dimension of the problem grows

large. Those methods are best suited for intermediate dimensions, while for very high-

dimensional problems, the recently developed deep learning methods (see e.g. Han et al.,

2017, Germain et al., 2022, Huré et al., 2020, Han et al., 2018) or multi-level Picard itera-

tions (see e.g. E et al., 2021, E et al., 2019, Hutzenthaler and Kruse, 2020) are better suited.

In this thesis, we study two different algorithms for solving BSDEs using Monte-Carlo

methods. In the first chapter, we build on the main ideas of the work of Lemor et al.

(2006) and Gobet and Turkedjiev (2016) and derive a new algorithm with the goal of a

faster convergence speed in relation to the computation costs. In Lemor et al. (2006), the

authors start with a discrete-time BSDE in the form of a dynamic programming equation,

where the solution (Y, Z) is expressed via conditional expectations of the solution one step

ahead. They assume that the pair (Y, Z) is given by deterministic but unknown functions

of a Markovian explanatory process X, such that the conditional expectations in the dy-

namic programming equation can be viewed as a solution to a least squares problem. An

approximation of (Y, Z) is then constructed backward in time by replacing the conditional

expectations in the dynamic programming equation with empirical least square projections

on finite-dimensional function spaces using simulations of X. When optimizing the param-

eters of the algorithm to achieve a given theoretical accuracy with minimal complexity in

the limit, as the number of time points N tends to infinity, the dominating costs come from

the approximation of the Y part of the solution, as an error propagation occurs between

the time steps.

The algorithm presented by Gobet and Turkedjiev (2016) works similarly with the differ-

ence that they start with a dynamic programming equation where the solution (Y, Z) is

at any time point expressed through the conditional expectations of all their future values

up to the terminal time. This, for once, leads to higher simulation costs, as one needs
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to simulate whole paths of the process X but on the other hand, it improves convergence

properties since the approximation error of the Y part averages out over the time steps.

Through this effect, when optimizing the algorithm again to achieve a given theoretical

accuracy, the costs for the approximation of the Z part become dominating. The results

of Gobet and Turkedjiev (2016) show a faster convergence of their algorithm than derived

in Lemor et al. (2006); however, both algorithms differ in the simulation scheme as Gobet

and Turkedjiev (2016) re-simulate the process X in each time step of the algorithm. This

is not done in Lemor et al. (2006) with the consequence of a dominating dependency error

between the time steps.

In the first chapter of this thesis, we aim to further improve the two algorithms by using a

multi-step scheme. Rather than always simulating to the terminal condition we simulate

in segments and optimize the length of these segments to balance the costs for the approxi-

mation of Y and Z. This is in a similar spirit to the work of Egloff (2005), who interpolated

between the one step Tsitsiklis–Van Roy algorithm (see Tsitsiklis and Van Roy, 1999) and

the multi-step Longstaff–Schwartz algorithm (see Longstaff and Schwartz, 2001) for pricing

Bermudan options. More precisely, we intend to achieve a reduction in complexity by using

the better error propagation in the Y part of the solution through a multi-step scheme on

the one hand and, on the other hand, avoid additional simulation costs of the process X by

capping the used path length. This is achieved by separating the time interval into segments

of a fixed length which can be controlled by a parameter of the algorithm. Then, in each

segment, only simulations of X until the end of the corresponding segment are used. The

algorithms from Lemor et al. (2006) and Gobet and Turkedjiev (2016) themselves can be

reconstructed by choosing segments of length one or only one segment covering the whole

time horizon. In this view, our algorithm interpolates between the two mentioned above.

In comparison to Gobet and Turkedjiev (2016), we include the discretization error in our

analysis by starting with a decoupled forward-backward stochastic differential equation in

continuous time, i.e., we assume that the explanatory process X is given by the solution

of a stochastic differential equation. We assume most components to be bounded; how-

ever, those assumptions could be relaxed with minor changes to the usual Lipschitz growth

conditions. We provide a complete error analysis and optimize the algorithm parameters,

including the segment length, to achieve a given convergence rate of the mean squared error

in relation to the used time steps in the discretization with minimal costs. Results will

show that the complexity can always be reduced by choosing the optimal segment length

in comparison to using the algorithm of Gobet and Turkedjiev (2016), where the reduction

is proportional to the lower simulation costs of the process X. To this end, we assume

that X can be sampled on the discrete time grid. Besides this constraint, our algorithm is

model-free just like the one in Gobet and Turkedjiev (2016). An outline of this part of the

thesis is at the beginning of Chapter 1.
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In the second chapter of this thesis, we study an algorithm for obtaining lower bounds

for BSDEs with convex driver, which allows the construction of confidence intervals when

paired with a second algorithm for calculating upper bounds. This is the well-known

primal-dual methodology that was first proposed by Rogers (2002), Haugh and Kogan

(2004) and Andersen and Broadie (2004) for pricing Bermudan options. There, to find the

fair price of an option, one has to stop a stochastic process such that its value is maximized

over the finite set of possible stopping times. Hence, any (possible non-optimal) stopping

strategy results in a lower bound for the fair price. For the construction of an upper bound,

a dual method was proposed by Haugh and Kogan (2004) and Rogers (2002), where the

stopping problem can be considered pathwise. This approach uses information about the

future, which has to be compensated by subtracting a martingale increment to obtain a

tight bound. Here taking the minimum over the set of martingales leads again to the true

price. In practice, an input approximation of an associated dynamic programming equation

is used to replace conditional expectations and derive a stopping strategy for the primal

lower bound and the martingale increments for the dual upper bound.

This methodology was generalized to general stochastic control problems in discrete time

by Rogers (2007) and Brown et al. (2010) and later by Bender et al. (2017b) to backward

dynamic programming equations associated with time discretization schemes of BSDEs

with convex driver. Also, algorithms that allow the iterative improvements of constructed

confidence intervals are available, like those proposed in Kolodko and Schoenmakers (2006)

for optimal stopping problems or Bender et al. (2017a) for monotone and convex dynamic

programming equations.

In the second chapter of this thesis, we introduce a version of the primal algorithm much

like in Bender et al. (2017b) for the construction of lower bounds for a discretized BSDE

in the form of a dynamic programming equation, which is equivalent to an optimal control

problem. Instead of pairing the algorithm with a dual algorithm and constructing confi-

dence intervals, we solely focus on a detailed error analysis of the primal algorithm. Such

results are in the literature available in the special case of optimal stopping for Bermu-

dan option pricing (see e.g. Belomestny, 2011 and Belomestny et al., 2015). Chapter 2

hence generalizes these results from an optimal stopping problem to the case of convex dy-

namic programming equations. We assume that input approximations of the conditional

expectations can be constructed, which allows the simulation of samples of the optimal

control process and by that a Monte-Carlo approximation of the solution of the dynamic

programming equation. To obtain the (asymptotic) behavior of the mean squared error of

the approximation, we pose slightly stronger integrability assumptions on the components

compared to Bender et al. (2017b) and assume that the input approximations converge

in a Lp sense with a specific rate. Under these assumptions, we can show that the mean

squared error of the lower bound converges at least with the same speed as the input

approximation, and a faster convergence is possible in some settings. We then optimize
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the parameters of the algorithm and analyze how to balance the costs between the input

approximations and the algorithm itself in order to achieve a given accuracy with minimal

computation costs like in Belomestny et al. (2015) for Bermudan option pricing. A short

outline of this part can be found at the beginning of the second chapter.
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Chapter 1

Segment-wise dynamic programming

algorithm for BSDEs

In this chapter, we introduce a new algorithm for solving backward stochastic differential

equations which we will call segment-wise dynamic programming algorithm. The algorithm

is based on those presented in Lemor et al. (2006) and Gobet and Turkedjiev (2016) and

interpolates between these two intending to reduce the complexity of its predecessors. The

motivating idea of how to achieve the reduction in complexity is explained in Section

1.1 where we also present the framework in which we analyze the segment-wise dynamic

programming algorithm. The algorithm is then introduced in Section 1.2 in detail, such

that the grade of interpolation between the algorithms of Lemor et al. (2006) and Gobet

and Turkedjiev (2016) can be controlled by a parameter α ∈ [0, 1], and those algorithms

themselves can be reconstructed by the choices α = 0 and α = 1 respectively. In Section

1.3 we state bounds for the quadratic error of the approximation with the segment-wise

dynamic programming algorithm in dependency of the parameter α. This allows us to

analyze how to optimally choose this parameter to minimize the complexity, which is

described in the same section. The results will show that it is always optimal to choose

α between zero and one in typical situations and hence our algorithm in fact improves

its predecessors. Those results are illustrated in a numerical example in Section 1.4 while

Section 1.5 is devoted to a complete and detailed error analysis of the algorithm, where

the bounds stated in Section 1.3 are derived.

1.1 Setup and motivation

Let (Ω,F,F, P ) be a filtered probability where the filtration is generated by a D-dimensional

Brownian motion W . Throughout this chapter, we consider a system of a decoupled

stochastic differential equation (short SDE) and a backward stochastic differential equation
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(short BSDE) of the following form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

X0 = x0,

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt,

YT = ξ(XT ).

Such systems are called forward-backward stochastic differential equations (short FBSDEs).

We suppose that the initial value x0 ∈ RD and the terminal time T > 0 are deterministic

and impose the following standing assumptions on the coefficients of the system throughout

the chapter.

Assumptions 1.1.1.

(Aξ) The function ξ : RD → R is bounded by some constant Cξ.

(AL) The functions b : [0, T ] × RD → RD, σ : [0, T ] × RD → RD×D and f : [0, T ] ×
RD × R × RD → R are measurable, 1

2
-Hölder-continuous in the first variable and

Lipschitz-continuous in the other variables, i.e., there exist constants LX and Lf such

that

|b(t, x)− b(t′, x′)|+ |σ(t, x)− σ(t′, x′)| ≤ LX

(
|t− t′|

1
2 + |x− x′|

)
|f(t, x, y, z)− f(t′, x′, y′, z′)| ≤ Lf

(
|t− t′|

1
2 + |x− x′|+ |y − y′|+ |z − z′|

)
for all x, x′ ∈ RD, t, t′ ∈ [0, T ], y, y′ ∈ R, z, z′ ∈ RD.

(Af ) The function f is uniformly bounded by a constant Cf , i.e.,

f(t, x, y, z) ≤ Cf

for all t ∈ [0, T ], x ∈ RD, y ∈ R, z ∈ RD.

Assumption (AL) is standard for FBSDEs and yields important characteristics of the pro-

cesses X, Y and Z. For once, the assumption on b and σ ensures the existence of a unique

strong solution X of the SDE and that this solution satisfies E[supt∈[0,T ] |Xt|2] < ∞ (see

e.g. Karatzas and Shreve, 2012). Then, paired with the assumptions on f and ξ the so-

lution of the BSDE can be expressed by deterministic functions of the SDE solution X,

i.e., there exist deterministic functions y : [0, T ]×RD → R and z : [0, T ]×RD → RD such

that y(t,Xt) = Yt and z(t,Xt) = Zt (see e.g. El Karoui et al., 1997). The boundedness

conditions on f and ξ are posed for convenience only and could be relaxed with minor

changes in the error analysis.
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We now define the equidistant time grid

π := {ti = i∆; i = 0, . . . , N}

with step width ∆ = T/N for a fixed N ∈ N. We denote the increments of the Brownian

motion W on this time grid with ∆Wi, i.e., ∆Wi := Wti −Wti−1
, and define the functions

qNi (x) := E
[
Yti+1
|Xti = x

]
,

zNi (x) := E

[
∆Wi+1

∆
Yti+1

∣∣∣∣Xti = x

]
for all i ∈ {0, . . . , N − 1}. Then, under the standing assumptions, it holds that

lim
N→∞

(
max

i=0,...,N−1
E
[
|qNi (Xti)− Yti |2

]
+

N−1∑
i=0

E

[∫ ti+1

ti

|zNi (Xti)− Zs|2ds
])

= 0,

where the rate of convergence depends on the regularity of Z, see e.g. Zhang (2001). The

functions qNi and zNi can, therefore, be interpreted as time-discretized versions of the BSDE

solution (Y, Z). To obtain an implementable approximation scheme for qNi and zNi , fix any

function

τ : {0, . . . , N − 2} → {1, . . . , N − 1}

satisfying τ(i) ≥ i+1 for all i ∈ {0, . . . , N−2}. Then the tower property of the conditional

expectation and the Markov property of X yield for any i ∈ {0, . . . , N − 2}

qNi (x) = E[Yti+1
|Xti = x]

= E

[
Ytτ(i)+1

+

∫ tτ(i)+1

ti+1

f(t,Xt, Yt, Zt)dt−
∫ tτ(i)+1

ti+1

ZtdWt

∣∣∣∣Xti = x

]

= E

qNτ(i)(Xτ(i)) +

τ(i)∑
j=i+1

∫ tj+1

tj

f(t,Xt, Yt, Zt)dt

∣∣∣∣∣∣Xti = x


≈ E

qNτ(i)(Xτ(i)) +

τ(i)∑
j=i+1

∆f
(
tj, Xtj , q

N
j (Xtj), z

N
j (Xtj)

)∣∣∣∣∣∣Xti = x


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and similarly

zNi (x) = E

[
∆Wi+1

∆
Yti+1

∣∣∣∣Xti = x

]
= E

[
∆Wi+1

∆

(
Ytτ(i)+1

+

∫ tτ(i)+1

ti+1

f(t,Xt, Yt, Zt)dt−
∫ tτ(i)+1

ti+1

ZtdWt

)∣∣∣∣Xti = x

]

= E

∆Wi+1

∆

qNτ(i)(Xτ(i)) +

τ(i)∑
j=i+1

∫ tj+1

tj

f(t,Xt, Yt, Zt)dt

∣∣∣∣∣∣Xti = x


≈ E

∆Wi+1

∆

qNτ(i)(Xτ(i)) +

τ(i)∑
j=i+1

∆f
(
tj, Xtj , q

N
j (Xtj), z

N
j (Xtj)

)∣∣∣∣∣∣Xti = x

 .
This motivates the time discretization scheme

QN
N−1 := E

[
ξ(XtN )

∣∣FtN−1

]
ZN
N−1 := E

[
∆WN

∆
ξ(XtN )

∣∣∣∣FtN−1

]

QN
i := E

QN
τ(i) +

τ(i)∑
j=i+1

∆f
(
tj, Xtj , Q

N
j , Z

N
j

)∣∣∣∣∣∣Fti
 , i = N − 2, . . . , 0

ZN
i := E

∆Wi+1

∆

QN
τ(i) +

τ(i)∑
j=i+1

∆f
(
tj, Xtj , Q

N
j , Z

N
j

)∣∣∣∣∣∣Fti
 , i = N − 2, . . . , 0.

(1.1)

By the tower property of the conditional expectation, this definition of QN
i and ZN

i does

not depend on the choice of τ . However, the appearing conditional expectations can not

be calculated in closed form in general. Hence, when attempting to solve the BSDE, one

has to replace the conditional expectations with some approximation operator resulting in

different schemes depending on the choice of τ . As our results will show, the choice of τ

then influences both, the computational costs as well as the convergence properties.

The most natural choices for τ would be for once setting τ(i) = i+1 or τ(i) = N−1 for all

i ∈ {0, . . . , N − 2}. The first results in the classical one-step scheme of Lemor et al. (2006)

(to which we further refer to as ODP), the latter in the multi-step forward scheme (MDP

for short) by Gobet and Turkedjiev (2016). To understand the idea of the segment-wise

dynamic programming algorithm that will be introduced in the next section, it is worth

reviewing these two schemes and comparing the resulting algorithms.

Both algorithms work recursively backward in time by constructing estimates of the func-

tions qNi and zNi through approximating the conditional expectations in the correspond-

ing time discretization scheme via empirical orthogonal projections on finite-dimensional

function spaces, where the components QN
j , Z

N
j with j > i on the right-hand side of the
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discretization scheme are replaced by the approximations found in the previous step of the

recursion. As a result of the different schemes, the approximation of the ODP algorithm

depends at each time point ti only on the approximations at the time ti+1 while in the MDP

scheme, the approximation at each step ti depends on all the previously constructed ones,

i.e., those at the time points from ti+1 up to tN−1. Since the approximations of qNi and zNi
have to be evaluated, one has to simulate in each step of the MDP algorithm segments of

the form (Xti , Xti+1
, . . . , XtN ) while it suffices in the ODP algorithm to simulate values of X

at just the current and the following time point. This obviously leads to higher simulation

costs in the MDP scheme. However, since the algorithms recursively reuse the obtained

approximations of qNi and zNi an error propagation between the time steps occurs. Results

show that from this perspective, the MDP scheme is advantageous as errors average out

over time, leading to better convergence properties (see Gobet and Turkedjiev, 2016).

The idea of the segment-wise approach, which will be introduced in the next chapter, is to

interpolate between the two extreme cases of the ODP and the MDP scheme in order to

balance these two aspects, the computation costs and convergence properties.

1.2 Segment-wise dynamic programming algorithm

In this section, we present the segment-wise dynamic programming algorithm (short SDP)

in detail. First, a specific family of functions τα is introduced to obtain the time discretiza-

tion scheme that interpolates between the ones from the ODP scheme and the MDP scheme

via (1.1). Then the algorithm is described in detail based on this discretization scheme.

For any α ∈ [0, 1], consider the time grid

πα := {(∆ndNαe) ∧ (T −∆);n ∈ N}

with step width dNαe (up to a possibly smaller size in the last step), that consists of

dN1−αe time points at most. Based on these time grids define the functions

τα : {0, 1, . . . , N − 2} → {1, . . . , N − 1}

as

τα(i) := min{j > i : j∆ ∈ πα}.

For a fixed α, the choice τ = τα in (1.1) then defines a discretization scheme where the time

grid π is separated in segments consisting of dNαe points by the coarser time grid πα. The

resulting discretization scheme corresponds to an MDP scheme on each of these segments

paired with a single step of an ODP scheme between consecutive segments connecting

them. Moreover choosing α = 0 or α = 1 results in the classical ODP or MDP scheme

11



respectively.

Now for a fixed α ∈ [0, 1] the SDP algorithm works as follows.

Algorithm 1.2.1.

• Choose basis functions

pkq,i : RD → R, k = 1, . . . , Kq,i

pkz,i : RD → RD, k = 1, . . . , Kz,i

for each i ∈ {0, . . . , N − 1} such that

N−1∑
i=0

Kq,i∑
k=1

E
[
|pkq,i(Xti)|2

]
+

N−1∑
i=0

Kz,i∑
k=1

E
[
|pkz,i(Xti)|2

]
<∞.

Here the number of basis functions Kq,i, Kz,i ∈ N may depend on the time point ti.

We denote the function spaces spanned by these basis functions with Kq,i and Kz,i

respectively, i.e.,

Kq,i := span
(
p1
q,i, . . . , p

Kq,i
q,i

)
Kz,i := span

(
p1
z,i, . . . , p

Kz,i
z,i

)
.

The algorithm will approximate qNi by empirical orthogonal projections on the sub-

spaces Kq,i and zNi by projections on Kz,i.

• Initialize the algorithm by setting

ΞN,M
N−1(xN) := ξ(xN)

for all (xN) ∈ RD. Then, assuming ΞN,M
i is already constructed, perform the following

backward incursion for i = N − 1, N − 2, . . . , 0:

1*) If i = N − 1: Choose MN−1 ∈ N, then simulate MN−1 independent copies(
X

[N−1,m,N ]
tN−1

, X
[N−1,m,N ]
tN

,∆W
[N−1,m,N ]
N

)
m=1,...,MN−1

of the segment (XtN−1
, XtN ,∆WN) and set

X [N−1,m,N ] := X
[N−1,m,N ]
tN

.

12



1) If i < N − 1: Choose a Mi ∈ N, then simulate Mi independent copies(
X

[i,m,N ]
ti , . . . , X

[i,m,N ]
tτα(i)

,∆W
[i,m,N ]
i+1

)
m=1,...,Mi

of the segment (Xti , . . . , Xτα(i),∆Wi+1) and set

X [i,m,N ] :=
(
X

[i,m,N ]
ti+1

, . . . , X
[i,m,N ]
tτα(i)

)
.

2) Find solutions to the linear least-squares regression problems

ϕq
N,M

i = argmin
ψ∈Kq,i

(
1

M

Mi∑
m=1

∣∣∣ψ (X [i,m,N ]
ti

)
− ΞN,M

i

(
X [i,m,N ]

)∣∣∣2)

and

ϕz
N,M

i = argmin
ψ∈Kz,i

 1

M

Mi∑
m=1

∣∣∣∣∣ψ (X [i,m,N ]
ti

)
−

∆W
[i,m,N ]
i+1

∆
ΞN,M
i

(
X [i,m,N ]

)∣∣∣∣∣
2
 .

3) Define approximations qN,Mi and zN,Mi of the functions qNi and zNi via

qN,Mi := TCq,i ◦ ϕ
qN,M

i , zN,Mi := TCz,i ◦ ϕz
N,M

i

where Cq,i := Cξ + (T − ti+1)Cf and Cz,i :=
Cq,i
∆

are positive constants and Tc is

the truncation function defined as

Tc(x) := sign(x) min{|x|, c}

for any constant c > 0 (acting componentwise on ϕz
N,M

).

4) If i ≥ 1, set

ΞN,M
i−1 (xi, . . . , xτα(i−1)) := qN,Mτα(i−1)(xτα(i−1)) +

τα(i−1)∑
j=i

∆f
(
tj, xj, q

N,M
j (xj), z

N,M
j (xj)

)
as preparation for the next iteration.

The solutions to the empirical least squares problems can be computed numerically using

a singular value decomposition. Hence, the algorithm is fully implementable as long as the

segments (Xti , . . . , Xtτα(i)
) can be simulated. Then, in the typical situation, for example

X = W , the average costs for the simulation of one segment (Xti , . . . , Xtτα(i)
) are of order

O(Nα). For α < 1 this leads to smaller computation costs through simulations as the MDP

scheme, where the average costs for simulating one set (Xti , . . . , XtN ) are of order O(N).
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When X can not be sampled perfectly, it would, in principle, be possible to replace X

with some approximation scheme with minor changes in the error analysis. The problem

is, however, to approximate X in a way that sustains the gain in computation costs com-

pared to the MDP scheme, which would not be the case in the simplest approach when

approximating X with a naive Euler scheme starting at the time 0. In theory, one could

approximate Xti with some high-order approximation scheme and use an Euler scheme

inside the segment (Xti , . . . , Xtτα(i)
) and preserve at least some gain in computation costs.

However, we restrict the theoretical analysis to the assumption that the values of X can

be sampled directly on the time grid π.

1.3 Convergence rates and complexity

In this section, we state error bounds for the quadratic error of the SDP algorithm in

dependency of the number of time steps N in the time discretization. We argue how these

bounds show the (asymptotic) convergence rate of our approximations for N → ∞, i.e.,

when making the time discretization finer. We then analyze how to optimally choose the

parameters of the algorithm and state the complexity in terms of the used time steps N

and in dependency of the discretization scheme through the parameter α. The results will

show that the optimal α is always in the open interval (0, 1), and hence the SDP algorithm

presented in Section 1.2 is advantageous when compared to the MDP and ODP schemes.

We do this once under the standing assumptions and once under additional regularity as-

sumptions resulting in an even faster rate of convergence.

Under both sets of assumptions, a first bound for the total quadratic error of the approxi-

mation is given in the following theorem:

Theorem 1.3.1. Under the standing assumptions, it holds

max
0≤i≤N−1

E
[
|qN,Mi (Xti)− qNi (Xti)|2

]
+

N−1∑
i=0

∆E
[
|zN,Mi (Xti)− zNi (Xti)|2

]
≤ cmax

i∈I

(
N1−α inf

ψ∈Kq,i
E
[
|ψ(Xti)− qNi (Xti)|2

]
+N2−2αKq,i

Mi

+N2−2αKq,i log(Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i
E
[
|ψ(Xti)− qNi (Xti)|2

]
+ inf

ψ∈Kz,i
E
[
|ψ(Xti)− zNi (Xti)|2

]
+
Kq,i

Mi

+N
Kz,i

Mi

+
Kq,i log(Mi)

Mi

+N
Kz,i log(Mi)

Mi

)
+ cNRN
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where I := {i : ti ∈ πα}, c is a positive constant not depending on N and

RN :=
N−1∑
i=1

E

[(∫ ti+1

ti

E
[
f (s,Xs, Ys, Zs)− f

(
ti, Xti , q

N
i (Xti), z

N
i (Xti)

)∣∣Xti−1

]
ds

)2
]
.

We can think of this bound as a composition of terms due to three different error sources.

The appearing expectations occur due to the projection on finite-dimensional subspaces

and we will therefore refer to those as projection errors. They can be controlled through

the choice of basis functions where more basis functions result in a lower projection error.

The term RN only depends on the true BSDE solution and the chosen time grid (through

the discretized functions qNi and zNi ), but not on the approximation obtained with the

algorithm. It can be interpreted as part of the time discretization error. The remaining

terms are statistical error terms that occur due to the use of simulations of the process X.

Those can be controlled by the number of used simulations. However, more simulations

are required when more basis functions are used.

The bound shows the influence of the parameter α, as the projection and statistical error

terms regarding qN appear once at all time steps and once on the time steps of the coarser

time grid π with different factors that are decreasing in α. Although bigger values for

α seem favorable from this perspective, increasing α also results in higher computation

costs through the required simulation of X on larger segments. Hence, when choosing α a

trade-off between convergence properties and computation costs has to be considered. We

shall argue in the optimization that the optimal value of α in typical situations is in the

open interval (0, 1).

For α = 1 the terms in the first bracket are dominated by the remaining terms, and we

essentially reproduce the error analysis of the MDP scheme in Gobet and Turkedjiev (2016)

with some slight differences in representation: Here, the projection error is formulated in

terms of the true continuous time solution (Y, Z) of the BSDE via the functions qNi and

zNi while it is stated in terms of the backward Euler discretization scheme for BSDEs in

Gobet and Turkedjiev (2016). Secondly, the factor RN is absent in the error analysis of

the MDP scheme since the discretization error is not included in the analysis there.

On the other hand, when choosing α = 0, one ends up with an error analysis for the ODP

scheme with independent re-simulation at every time point. This differs from the error

analysis in Lemor et al. (2006), as there only one cloud of simulations is used at all time

points which results in a dominating interdependency error. Hence, the bound obtained

with Theorem 1.3.1 for α = 0 also allows a better comparison of the ODP and MDP

algorithms.

Possible bounds for the term RN in dependence of N are of order N−2 or N−3, depending

on the assumptions on ξ, X and the regularity of the BSDE as illustrated by the following

theorems.
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Theorem 1.3.2. Under the standing assumptions, the total quadratic error of the approxi-

mation is bounded by

max
0≤i≤N−1

E
[
|qN,Mi (Xti)− y(ti, Xti)|2

]
+

N−1∑
i=0

E

[∫ ti+1

ti

|zN,Mi (Xti)− z(s,Xs)|2ds
]

≤ cmax
i∈I

(
N1−α inf

ψ∈Kq,i
E
[
|ψ(Xti)− qNi (Xti)|2

]
+N2−2αKq,i

Mi

+N2−2αKq,i log(Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i
E
[
|ψ(Xti)− qNi (Xti)|2

]
+ inf

ψ∈Kz,i
E
[
|ψ(Xti)− zNi (Xti)|2

]
+
Kq,i

Mi

+N
Kz,i

Mi

+
Kq,i log(Mi)

Mi

+N
Kz,i log(Mi)

Mi

)
+ cN−1

where I := {i : ti ∈ πα} and c is a positive constant not depending on N . Furthermore,

assuming that z is 1
2
-Hölder continuous in t and Lipschitz continuous in x, it holds

max
0≤i≤N−1

E
[
|qN,Mi (Xti)− y(ti, Xti)|2

]
+

N−1∑
i=0

E

[∫ ti+1

ti

|zN,Mi (Xti)− z(s,Xs)|2ds
]

≤ cmax
i∈I

(
N1−α inf

ψ∈Kq,i
E
[
|ψ(Xti)− y(ti, Xti)|2

]
+N2−2αKq,i

Mi

+N2−2αKq,i log(Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i
E
[
|ψ(Xti)− y(ti, Xti)|2

]
+ inf

ψ∈Kz,i
E
[
|ψ(Xti)− z(ti, Xti)|2

]
+
Kq,i

Mi

+N
Kz,i

Mi

+
Kq,i log(Mi)

Mi

+N
Kz,i log(Mi)

Mi

)
+ cN−1,

i.e., we can express the projection error in terms of the functions y and z.

Theorem 1.3.2 shows that the convergence rate under the standing assumptions is limited by

N−1 at best due to the discretization error. Under additional assumptions, this limitation

can be lifted to N−2 as follows.

Theorem 1.3.3. Additionally to the standing assumptions, suppose that X = W , and that f

and y are respectively twice and s+ 1 times continuous differentiable with bounded deriva-
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tives each for an s ≥ 2. Then the total error of our approximation is bounded by

max
0≤i≤N−1

E
[
|qN,Mi (Wti)− y(ti,Wti)|2

]
+

N−1∑
i=0

∆E
[
|zN,Mi (Wti)− z(ti,Wti)|2

]
≤ cmax

i∈I

(
N1−α inf

ψ∈Kq,i
E
[
|ψ(Wti)− qNi (Wti)|2

]
+N2−2αKq,i

Mi

+N2−2αKq,i log(Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i
E
[
|ψ(Wti)− qNi (Wti)|2

]
+ inf

ψ∈Kz,i
E
[
|ψ(Wti)− zNi (Wti)|2

]
+
Kq,i

Mi

+N
Kz,i

Mi

+
Kq,i log(Mi)

Mi

+N
Kz,i log(Mi)

Mi

)
+ cN−2

where I := {i : ti ∈ πα} and c is a positive constant not depending on N . Furthermore, qN

and zN are bounded and respectively s+ 1 times and s times continuous differentiable with

bounded derivatives.

Compared to the more general assumptions in Theorem 1.3.2, it is unfortunately not pos-

sible to express the approximation error in terms of the continuous-time functions y and z

without worsening the limiting error term N−2. Note however that the second statement

of Theorem 1.3.3 shows that smoothness properties of y and z carry over to the discretized

versions qN and zN , which will suffice for the analysis of the projection error.

Before we prove the theorems presented above in Section 1.5, we analyze how to optimal

choose α and derive the resulting complexity of the algorithm.

As Theorems 1.3.2 and 1.3.3 show, the achievable convergence rate is limited by N−2θ for

θ = 1
2

under the general setting of Theorem 1.3.2 or θ = 1 in the setting of Theorem 1.3.3,

where a higher regularity of the BSDE is required. We therefore analyse how to optimally

choose the parameters of the algorithm to achieve this convergence rate with the smallest

computation costs possible.

As argued before, the projection error can be controlled by the choice of approximation

spaces Kq,i, Kz,i. Using more basis functions and hence a higher dimensional approxima-

tion space reduces the approximation error but, in return increases the statistical error

terms leading to a higher number of required simulations Mi needed to bound these error

terms.

For simplicity we assume that we use the same approximation space Kz for the approxi-

mation of zN in each time step. Due to the additional projection error on the coarser time

grid πα we differ between the time points in and outside of πα for the approximation of qN .

We assume that the same approximation space Kq is used for all time points ti ∈ πα while

we use a possibly different approximation space Kq on all other time points. Analogously

we assume that we use Mi = M simulations at each time point ti not in the coarser time

grid π and Mi = M simulations otherwise. As already mentioned, we assume that one
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segment (Xi, . . . , Xτα(i)) of a path of X can be simulated at the cost of Nα. Under these

assumptions, assuming we can evaluate the driver and the basis functions at cost 1, the

performed simulations and evaluations during the algorithm lead to costs of order

NNαM +NαN1−αM.

As basis functions we take local polynomials on hypercubes which we choose disjoint such

that their union contains the set {x ∈ RD : |x| < Cb} for a constant Cb > 0. We suppose

that the edge length of the hypercube is δq for the approximation of qN on the time grid

πα, δq for the approximation of qN on all other time points and δz for the approximation

of zN . Assuming that y and z are respectively s+ 1 and s times continuous differentiable

with bounded derivatives we set the degree of the polynomials as s for the approximation

of qN and s−1 for zN . Note that this allows us to express the approximation error in terms

of y and z in the setting of Theorem 1.3.2. In the setting of Theorem 1.3.3 the following

argumentation holds true analogously when replacing y and z with their discretized versions

qN and zN . We denote the set of polynomials of degree less than or equal to l with Pl.

Then a Taylor expansion on each hypercube gives us

inf
ψ∈Kq

E
[
|ψ(Xti)− y(ti, Xti)|2

]
≤ E

[
|y(ti, Xti)|21|Xti |>Cb

]
+
∑
H∈Hq

min
ψ∈Ps

E
[
|ψ(Xti)− y(ti, Xti)|21Xti∈H

]
≤ ‖y(ti, .)‖2

∞P (|Xti| > Cb) + c‖y(ti, .)
(s+1)‖2

∞(δs+1
q )2 (1.2)

for the approximation of qN at all time points not in π, where we denote the set of used

hypercubes with Hq and take the polynomials to be equal to the first (s+ 1) terms of the

Taylor expansion. Under the assumption that sup0≤i≤N E[e$|Xti |] <∞ for some $ > 0, it

follows by the Markov inequality that the choice Cb = 2θ$−1 log(N + 1) ensures that the

first term in (1.2) is of order N−2θ. The same holds for the second term when choosing the

edge length of the hypercubes as δq = cN−
θ
s+1 . Therefore we can assume that it suffices to

choose Kq of the order ND θ
s+1 logD(N + 1) to ensure that

inf
ψ∈Kq

E[|ψ(Xi)− y(ti, Xti)|2] ∈ O(N−2θ).

Following the same argumentation, we set

Kq = cND
θ+ 1−α

2
s+1 logD(N + 1), Kz = cND θ

s logD(N + 1)
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for a positive constant c to ensure

N1−α inf
ψ∈Kq

E
[
|ψ(Xi)− y(ti, Xti)|2

]
∈ O(N−2θ), inf

ψ∈Kz
E
[
|ψ(Xi)− z(ti, Xti)|2

]
∈ O(N−2θ)

where the change from s+ 1 to s in the number of basis functions in the approximation of

zN occurs due to the lower smoothness of zN and Kq and Kz denote the number of basis

functions of the space Kq and Kz respectively.

Given the size of the approximation spaces we hence have to choose M of the order

N2θ max{Kq, NKz} = N1+2θKz

and M of the order

N2θ max{N2−2αKq, NKz}

in order to bound the statistical error terms asymptotically by a multiple of N−2θ as

long as the driver is not independent of Z. Then, in dependence of α, the total order of

computation costs of the algorithm is given by

C = max{N1+αM,NM} =: max{Cπ,Cπ}.

Here Cπ is increasing in α and Cπ is non-increasing in α and both coincide for

α = αopt =
1
2
− θ

s
+ s+1

D

1
2

+ 3(s+1)
D

,

which therefore is optimal and always in the open interval (0, 1) for ϑ = 1
2
, s ≥ 1 and

ϑ = 1, s ≥ 2. The resulting computation costs are of the order

C = NNαoptM = N
2+2θ+D θ

s
+

1
2−

θ
s+ s+1

D
1
2 +

3(s+1)
D

= N
3+2θ+D θ

s
−
θ
s+

2(s+1)
D

1
2 +

3(s+1)
D .

In comparison, if we would choose α = 1 in our optimization, we would get computation

costs of order

C = cN3+2θ+D θ
s ,

as stated analogously in Gobet and Turkedjiev (2016). Hence, by using the presented SDP
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algorithm with the optimal choice of α we can improve the calculation costs by a factor

N1−αopt = N
θ/s+2(s+1)/D
1/2+3(s+1)/D = N

2
3

+
θ/s−1/3

1/2+3(s+1)/D

which corresponds to the lower simulation costs of a segment of length Nαopt compared to

a segment of length N . If qN only fulfils the minimal requirement needed for our analysis,

i.e., qN ∈ C2 in the case θ = 1/2 and qN ∈ C3 in the case θ = 1 the gain in complexity is

of the factor N27/39 and N39/57 respectively in dimension 1 and further increasing in higher

dimensions. Depending on the dimension, the gain in complexity is decreasing with the

smoothness s up to some point and then increases again. In the limit, assuming that qN , zN

are smooth functions, i.e., qN , zN ∈ C∞, this would lead to a gain in computation time of

N
2
3 for any dimension. However the SDP algorithm suffers, just like the ODP and MDP,

from the typical ”curse of dimensionality” through exploding costs in the limit D →∞.

1.4 Numerical example

In this section, we run both the MDP and the SDP algorithm for the same BSDE and

compare the approximations in order to illustrate our theoretical results.

For this purpose, we define for each x ∈ RD and all t ∈ [0, 0.2] the function

ϕ(t, x) := exp

(
−

D∑
d=1

|x(d) − t|0.3
)

D∑
d=1

(
x(d) − t

)2

and for d = 1, . . . , D

φd(t, x) := exp

(
−

D∑
d=1

|x(d) − T |0.3
)(

x(d) − t
) (

2− 0.3|x(d) − t|0.3
) D∑
e=1,e6=d

(
x(d) − t

)2
.

We then consider the BSDE driven by a Brownian motion X = W with terminal time

T = 0.2, the terminal condition

ξ(WT ) = ϕ(T,WT )

and driver

f(t, x, y, z) := |z| − |∇ϕ(t, x)| − (∂t +
1

2
4)ϕ(t, x).
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It can be easily checked by the Ito-formula that the analytic solution to this BSDE is given

by

Yt = ϕ(t,Wt)

Z
(d)
t =

∂

∂x(d)
ϕ(t,Wt) = φd(t,Wt) d = 1, . . . , D.

First, note that ϕ is bounded and twice continuously differentiable with bounded deriva-

tives. Furthermore, the terminal condition is bounded and the driver is Lipschitz continuous

in all variables but unbounded in z. However, assumption (Af ) holds true if we restrict

the definition space of the driver to the image of ∇ϕ since ∇ϕ is bounded. Since the

approximations will be truncated during the algorithm, this is possible without additional

error. Hence, all assumptions of the theoretical analysis are fulfilled.

For a comparison between the MDP algorithm and the SDP algorithm, we want to compare

the asymptotic rates, in which the squared error of the approximation decreases, and the

computation time in relation to the used time steps N increases in both algorithms. For

this purpose, we ran both algorithms for an increasing number of time points N , 50 times

each. We do this in the dimensions D = 1 and D = 2 and measure the computation time

and quadratic errors. For each value of N , we calibrated the algorithms according to the

theoretical results such that the quadratic error should decrease like N−1, but deviated

slightly from the theoretical optimization in the following way:

First, instead of using the same approximation spaces Kz and Kq at all time points, we

utilize that the Brownian motion (Wt)t∈[0,T ] is less likely to take bigger values for small t

and reduce the outer bound of the hypercubes in each step towards the starting time 0.

In accordance with this, we also use different numbers of simulations at each time point.

Additionally, we not only re-simulate in each time step but also for the approximation of

Zt and Yt and only used the required number for each instead of the maximum of both

at that time step. Note that this may influence the total computation costs but does not

change the asymptotic rate in which the computation costs increase in relation to the used

time steps N .

Measuring of the errors:

We measured the quadratic error of both algorithms for the approximation of qNi and

zNi separately and considered the average error over all the time steps. Additionally, we

measured the approximation error of Y at time zero since we are most interested in the

approximation there in typical applications. We measured those errors in the form of the
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terms

Cy,av :=
1

N

N−1∑
i=1

∑
H∈Hq,i

∣∣qM,N
i (ΘH)− y(ti,ΘH)

∣∣2P(Xti ∈ H
)

Cy,0 :=
∣∣qM,N

0 (0)− y(0, 0)
∣∣2

Cz,av :=
1

N

N−1∑
i=0

∑
H∈Hz,i

∣∣zM,N
i (ΘH)− z(ti,ΘH)

∣∣2P(Xti ∈ H
)

where ΘH is the componentwise middle point of the hypercube H, and Hq,i and Hz,i are

the sets of hypercubes used at time ti for the approximation of qNi and zNi respectively. We

further refer to the values Cy,av and Cz,av as average quadratic error over the time steps for

the approximation and analog to Cy,0 as quadratic error at time 0. Those approximately

correspond to the error terms in Theorem 1.3.3 as the cube length and the time steps in

the discretization get smaller but allow us to avoid the additional numerical solution of

multidimensional integrals for each time point and hypercube.

Calibration in dimension 1:

We use piecewise linear functions for the approximation of qNi and piecewise constant func-

tions for the one of zNi in both algorithms. At each time, we set the outer bound of the

hypercubes as a multiple of the standard deviation of the Brownian motion at that time.

More precisely, we chose Cb,i := (2 log(N) + 2)
√
ti at the time ti. The edge lengths of the

hypercubes were set to δz =
√
T/N

1
2 and δQ =

√
T/N

1
4 in the MDP algorithm. This choice

leads to Kz,i = dCb,i/δze = cN
1
2 Basis functions for the approximation of zN at time ti

and KQ,i = d2Cb,i/δye = cN
1
4 for qN as derived as optimal under the choice α = 1 in the

theory. We re-simulate the sample paths at each time step as well as for the approxima-

tion of Q and Z where we use Mq,i = 10NKq,i = cN1+ 1
4 simulations for Q at time ti and

Mz,i = 10N2Kz,i = cN2+ 1
2 simulations for Z.

Note that only the required basis functions and simulations used for the approximation of

qNi at time points ti ∈ π depend on the choice of α. Hence, following the notation used in

the optimization, we chose the parameters δz, Kz,i ,Mz,i, δq, Kq,i and Mq,i for ti 6∈ π in the

SDP algorithm equal to those in the MDP algorithm. In this situation, according to our

calculations in Section 1.3, the optimal alpha is given by α = 4/13. For the time points

in π we hence have to choose δq =
√
T/N−

1
2

+α
4 what leads to Kq,i = cN

1
2

+α
4 = cN

11
26 .

As number of simulations for the approximation of Q in these time points we choose

Mq,i = 10N3−2αKq,i = cN3− 5
26 .

Results in dimension 1:

The results for the averaged error terms are visualized in Figure 1.1, where we plotted

the log-log rates of the quadratic error terms in relation to the number of time points N

along with the best-fitted linear regression line. All error terms approximately achieve the

expected rate of N−1 in both algorithms or outperform them. While the results for the
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Figure 1.1: Averaged quadratic error in relation to N in dimension d = 1

approximation of Z averaged over the time steps are very similar in both algorithms, the

results for the averaged error in the approximation of Y differ more.

First, we can notice that the results of the MDP algorithm have a higher variance, which

probably occurs since we use the whole sample path of the Brownian motion X in each time

step, such that the approximations are influenced by the higher variance of the Brownian

motion when sampled over a longer time interval when compared to the simulations of the

SDP algorithm.

The second thing to notice here is that the SDP algorithm over-performs in the approxi-

mation of Y with a rate of N−1.5 instead of the expected N−1. This effect even increases

in the quadratic error term of Y at the time t = 0 (illustrated in Figure 1.2), where the

error decreases like N−2. A possible explanation for this effect at time 0 could be that

the approximations used for constructing qM0 already had a small bias, such that the ap-

proximation error of qM0 mostly depends on the variance. Then qM0 will have a smaller

variance in the SDP algorithm than in the MDP algorithm (due to the dependency on

fewer previously constructed approximations) such that more samples as needed are used.

The average computation time required for one run of the algorithms is also plotted in

Figure 1.2 in relation to the used time steps N , again in log-log rates. Along with the

measured computation time, we plotted the expected rate at which the computation time

should increase with N and attached it at the last measured point. First, we can see that,

for larger N , the SDP algorithm is faster than the MDP algorithm. In both algorithms

the computation costs increase a bit faster than expected for small values of N , but also

seem to approach the expected rate more and more for bigger N . This is no surprise,

as the computation costs are influenced by several log-factors that were neglected in the

optimization:

First, we neglected a cost factor of log(N+1) from the increasing number of basis functions

used. Additionally, at each time, the sample paths have to be sorted into the hypercubes.
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Figure 1.2: Quadratic Error of the Y -approximation at time 0 and computation time in relation
to N in dimension d = 1

This results in additional costs of order log(N)D that were neglected in the optimization.

These factors still weigh in for the relatively small number of time points N = 18 that we

used at most. This effect is seen in both algorithms.

Calibration in dimension 2:

We did the same simulations also in dimension 2 to illustrate the results. While we bounded

the hypercubes in each dimension as before and chose again piecewise linear functions for

the approximation of Y and piecewise constant functions for the one of Z, the optimal

choice of the parameters slightly differs.

First, we chose δz =
√
T/N

1
2 and δq =

√
T/N

1
4 for the MDP algorithm what leads to

Kz,i ∈ O(dRi/δzeD) = O(N1) and Kq,i = dRi/δq ∈ O(eD) = O(N
1
2 ) at time ti. Again we

re-simulate the sample paths for each approximation and use Mq,i = 10NKq,i = cN1+ 1
2

simulations for Q at time ti and Mz,i = 10N2Kz,i = cN3 simulations for Z.

The optimal parameters δz, Kz,i and Mz,i for the SDP algorithm are the same as in the

MDP algorithm and so are δq and Kq,i and Mq,i for ti 6∈ π. The time grid π is now de-

fined for α = 2
7
. For the time points in π we choose δq = 1.5

√
T/N−

1
2

+α
4 what leads to

Kq,i ∈ O(N1+α
2 ). As number of simulations for the approximation of Q in these time points

we choose Mq,i = 10N3−2αKq,i = cN4− 5
2
α.

Results in dimension 2:

The resulting averaged error terms are plotted in Figure 1.3 in relation to the used time

steps N along with the best fit linear regression line, again in log-log rates. Most observa-

tions are similar to those in dimension 1. Firstly, the rate of N−1 is achieved in all error

terms, and both algorithms perform similarly in the approximation of Z

Also, analog to the results in dimension one, we can observe the results of the algorithms

differ more in the approximation of Y . Here the SDP algorithm again performs much
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Figure 1.3: Averaged quadratic error in relation to N in dimension d = 2

better than the MDP algorithm and outperforms the theoretically expected rate of N−1 in

the approximation of Y , both at time 0 and on average over the time points. At time 0,

this difference is even bigger than in dimension 1.

Also, the results regarding the computation time (plotted in Figure 1.4) are similar to

those in dimension 1. Again, the required time in both algorithms increases slightly faster

than expected for small N , which can be explained, as mentioned in the one-dimensional

case, due to log-factors that were neglected in the optimization and weigh in even more

heavily in higher dimensions. Nonetheless, with a higher number of time points N , the

rates approach the expected rate more and more such that we can assume convergence at

the expected rate for larger numbers of time points N . Again we can observe that the

computation time increases in the SDP algorithm, as suggested by the theoretical results,

with a slower rate than in the MDP algorithm, such that the SDP algorithm hence becomes

faster than the MDP for larger numbers of time points.

Summarizing, we can say that the observations confirm the ones from dimension d = 1.

Both algorithms achieve a similar convergence rate in the error terms, while the approxima-

tions of the SDP algorithm have a smaller variance. Also, when increasing the number of

time steps N to achieve more accurate approximations, the SDP algorithm becomes faster

when compared to the MDP algorithm. Hence we can say that the SDP algorithm in fact

outperforms the MDP algorithm when using a higher number of time points N . There-

fore, the SDP algorithm has clear advantages, especially when we are interested in highly

accurate approximations which require a large number of steps in the time discretization.
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Figure 1.4: Quadratic Error of the Y -approximation at time 0 and computation time in relation
to N in dimension d = 2

1.5 Error analysis

In this section, we present a complete and detailed error analysis of the SDP algorithm. In

the first subsection, we introduce additional notation used in the proofs and present some

key tools for the error analysis. The following subsections are then dedicated to the deriva-

tion of error bounds for the approximation of qN and zN respectively. We will establish a

sort of recursion formula for both parts, allowing us to bound the quadratic error at the

time ti by the one at time ti+1 plus an additional driver-dependent term. This illustrates

the error propagation between the time steps. We will then derive global bounds for the

quadratic error for both approximations before we analyze the driver-dependent terms ap-

pearing in both recursions further in Subsection 1.5.4. Finally, in the last subsection, we

combine the obtained bounds to derive the result presented in Theorem 1.3.1 and proof

the two Theorems 1.3.2 and 1.3.3 by bounding the discretization error under the different

assumptions.

1.5.1 Preliminaries and key-tools

In this section, we lay the groundwork for the error analysis by introducing additional

objects and presenting key tools for the analysis. The proof of the lemmas in this section

is postponed to the appendix.

First, recall the definition of the functions qNi and zNi . By setting

ΞN
N−1(xN−1) := ξ(xN)

ΞN
i (xi) := qNτα(i)(xτα(i)) +

∫ tτα(i)+1

ti+1

f(s, xs, Ys, Zs), ds i ∈ {0, . . . , N − 2}
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for any xi := (xs)ti≤s≤T ∈ RD[ti,T ] it holds

qNi (x) = E
[
ΞN
i ((Xs)ti≤s≤T )

∣∣Xti = x
]

and

zNi (x) = E

[
∆Wi+1

∆
ΞN
i ((Xs)ti≤s≤T )

∣∣∣∣Xti = x

]
.

Note that ΞN
i differs from ΞN,M

i in two ways: in the functions ΞN,M
i , the true solution (Y, Z)

of the BSDE is replaced by approximations of the algorithm and the integral is discretized.

In order to make use of properties of the least squares projection, we need the analogs of

the least squares solutions ϕq
N,M

and ϕz
N,M

based on the functions ΞN . Since those depend

on the whole path of X rather than just the values on the time grid π additional fictional

simulations are required for the theoretical error analysis which motivates the following

definition:

Definition 1.5.1. For i ∈ {0, . . . , N − 1}, let Si := {∆W [i,m]
i+1 , X

[i,m] : m = 1, . . . ,M} be

a cloud of independent random variables defined on the probability space (ΩM ,FM , PM)

with X [i,m] = (X
[i,m]
s )ti≤s≤T such that X [i,m] is distributed like a segment of the SDE

solution X. Furthermore, we assume that these simulations match the ones used in the

SDP algorithm on the time grid π, i.e., ∆W
[i,m]
i+1 = ∆W

[i,m,N ]
i+1 and X

[i,m]
tj = X

[i,m,N ]
tj for all

i ∈ {0, . . . , N − 1}, j ≥ i and m ∈ {1, . . . ,Mi}. Then, for every ω ∈ ΩM , let νMi (ω, .) be

the measure on
(
(RD)[ti,T ] × RD,B

(
(RD)[ti,T ] × RD

))
defined by

νMi (ω, x) :=
1

Mi

Mi∑
m=1

δ(
∆W

[i,m]
i+1 (ω),X[i,m](ω)

)(x)

where δc(.) is the Dirac-measure on c.

The calculations in this chapter are done on the probability space (ΩM ,FM , PM), where we

suppose that there exists a D-dimensional Brownian motion W on (ΩM ,FM , PM), which

is independent of all simulations and hence also a copy X of the SDE solution independent

of the simulations.

Given these additional random variables, we denote with ϕq
N

i and ϕz
N

i the solutions of the

least-squares problems

ϕq
N

i := argmin
ψ∈Kq,i

(
1

M

M∑
m=1

∣∣∣ψ (X [i,m]
ti

)
− ΞN

i

(
X [i,m]

)∣∣∣2)
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and

ϕz
N

i := argmin
ψ∈Kz,i

 1

M

Mi∑
m=1

∣∣∣∣∣ψ (X [i,m]
ti

)
−

∆W
[i,m]
i+1

∆
ΞN
i

(
X [i,m]

)∣∣∣∣∣
2
 .

Remark 1.5.2. Recall the functions ϕq
N,M

i and ϕz
N,M

i from the SDP algorithm. Since it

holds by definition of the ghost sample that X
[i,m]
π := (X

[i,m]
tj )ti<tj∈π = X [i,m,N ], we have

ϕq
N,M

i = argmin
ψ∈Kq,i

(
1

M

M∑
m=1

∣∣∣ψ (X [i,m]
ti

)
− ΞN,M

i

(
X [i,m]
π

)∣∣∣2)

and

ϕz
N,M

i = argmin
ψ∈Kz,i

 1

M

Mi∑
m=1

∣∣∣∣∣ψ (X [i,m]
ti

)
−

∆W
[i,m]
i+1

∆
ΞN,M
i

(
X [i,m]
π

)∣∣∣∣∣
2
 ,

i.e., for any fixed outcomes of the simulations X [i,m], both pairs of functions ϕq
N,M

i and

ϕz
N,M

i , and ϕq
N

i and ϕz
N

i solve a least squares problem with respect to the same measure

νMi (ω, .).

This allows us to utilize the following lemma, which is a key tool in the error analysis. It

matches essentially Proposition 4.12 in Gobet and Turkedjiev (2016) where the domain of

the function Ξ is generalized in order to cover our setting.

Lemma 1.5.3. For each ω ∈ ΩM , let (A,A, ν(ω, .)) be a measurable space with

ν(ω, .) =
1

M

M∑
m=1

δχ[m](ω)

for i.i.d random variables χ[1] . . . , χ[M ] : ΩM → A. Furthermore, let K be a linear function

space spanned by Rl-valued basis functions {pk(.), 1 ≤ k ≤ K} with
∑K

k=1E
[
|pk(χ[m])|2

]
<

∞ for all m. For any FM ⊗ A-measurable, Rl-valued random variable Ξ with Ξ(ω, .) ∈
L2 (A, ν(ω, .)) for PM -a.e. ω, set

ϕ(ω, .) := arginf
ψ∈K

1

M

M∑
m=1

∣∣ψ (χ[m](ω)
)
− Ξ

(
ω, χ[m](ω)

)∣∣2 .
Then:

(i) The mapping Ξ 7→ ϕ is linear.
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(ii) It holds

‖ϕ‖L2(A,ν(ω,.)) ≤ ‖Ξ‖L2(A,ν(ω,.))

where we denote with ‖.‖L2((A,ν(ω,.)) the L2-norm with respect to the measure ν(ω, .).

(iii) Suppose there is a sub-σ-fields G of FM such that
(
pk(χ[1]), . . . , pk(χ[M ])

)
is G-measurable

for each k = 1, . . . , K. Then

E [ϕ|G] (ω, .) = argmin
ψ∈K

1

M

M∑
i=1

∣∣ψ (χ[m](ω)
)
− ΞG

(
χ[m](ω)

)∣∣2
where ΞG(x) := E [Ξ(x)|G].

(iv) In the situation of (iii), suppose that G is given by σ(g(χ[m])m=1,...,M) for a A-measurable

function

g : A→ Rl′ .

Furthermore, assume that there is a sub-σ-field H independent of σ((χ[m])m=1...,M)

such that Ξ is H ⊗A-measurable and that the conditional variance

E
[∣∣Ξ (χ[m]

)
− E

[
Ξ
(
χ[m]

)∣∣G ∨H
]∣∣2∣∣∣G ∨H

]
is PM -almost surely uniformly bounded by some constant σ2 for all m ∈ {1, . . . ,M}.
Then

E
[
‖ϕ− E [ϕ|G ∨H] ‖2

L2(A,ν(ω,.))

∣∣∣G ∨H
]
≤ σ2 K

M
.

While Lemma 1.5.3 and the objects defined so far help us to utilize projection properties,

we still need tools to handle the dependency on the different sets of simulations used in the

algorithm. For this purpose, we first consider the following norms allowing us to distinguish

between the dependence on simulations or the actual law of the true SDE solution X more

clearly:

Definition 1.5.4. Let ϕ : ΩM × RD → Rl be FM × B(RD)-measurable. For each i =

0, . . . , N − 1, define the random norms ‖.‖i,∞ and ‖.‖i,M via

‖ϕ‖2
i,∞ :=

∫
RD
|ϕ(x)|2PXti (dx), ‖ϕ‖2

i,M :=
1

M

M∑
m=1

∣∣∣ϕ(X [i,m]
ti

)∣∣∣2
where PXti denotes the distribution of Xti .
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Note that we are interested in the error with respect to the law of the SDE solution X, i.e.,

in the difference between the approximations qN,Mi and zN,Mi , and the functions qNi and zNi
respectively in the ‖.‖i,∞-norm. The following lemma allows us to lead this difference back

to the one in the ‖.‖i,M -norm that appears naturally in the error analysis due to the use of

simulations. It is an adapted version of Proposition 4.10 in Gobet and Turkedjiev (2016)

where the analogue result is shown for ε = 1 instead of ε ∈ (0, 1].

Lemma 1.5.5. It holds for all i = 0, . . . , N − 1 and any ε ∈ (0, 1] that

E
[
‖qN,Mi − qNi ‖2

i,∞

]
≤ (1 + ε)E

[
‖qN,Mi − qNi ‖2

i,M

]
+
C1Kq,i log(C2Mi)

Miε

E
[
‖zN,Mi − zNi ‖2

i,∞

]
≤ (1 + ε)E

[
‖zN,Mi − zNi ‖2

i,M

]
+

DC1Kz,i log(C2Mi)

∆Miε

for positive constants C1, C2 independent of ε, ∆, and Mi.

Finally, the following lemma allows us to reduce the dependency on a sampled path of X

to only the value of the sample at one time point ti. A proof can be found in Chapter 5 of

Kallenberg (1997).

Lemma 1.5.6. Let G and H be independent sub-σ-fields of FM . For l ≥ 1 let F : ΩM×RD →
Rl be bounded and G × B(RD)-measurable and U : ΩM → RD be H-measurable. Then

E[F (U)|H] = j(U) where j(x) = E[F (x)] for all x ∈ RD.

To see how we can utilize this lemma, note that each sample X [i,m] satisfies

X
[i,m]
ti+s = X

[i,m]
ti +

∫ ti+s

ti

b(l, Xl)dl +

∫ ti+s

ti

σ(l, Xl)dW
[i,m]
l

for a Brownian motion W [i,m]. Substituting the time variable and setting W̃u = W
[i,m]
u+ti −

W
[i,m]
ti leads to

X
[i,m]
ti+s = X

[i,m]
ti +

∫ s

0

b(u+ ti, Xu+ti)du+

∫ t−s

0

σ(u+ ti, Xu+ti)dW̃u

which shows that the sample X [i,m] is the solution to a forward SDE starting in ti with

initial value X
[i,m]
ti with respect to the Brownian motion W̃u. Hence, we can express the path

X [i,m] as a deterministic function h of X
[i,m]
ti and (W̃u)ti≤u≤T only, i.e., we can write X

[i,m]
s =

h(s,X
[i,m]
ti , (W̃u)0≤u≤s−ti) for any s ≥ ti. Since the Brownian motion W̃ is independent of
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σ(X
[i,m]
ti ), we can then use Lemma 1.5.6 on the function

F (xti) =

∫ tτ(i)+1

ti+1

f
(
s, h(s, xti , (W̃u)0≤u≤s−ti), Ys, Zs

)
ds

−∆

τ(i)∑
j=i+1

f
(
tj, h(tj, xti , (W̃u)0≤u≤tj−ti), q

N,M
j

(
h(tj, xti , (W̃u)0≤u≤tj−ti)

)
,

zN,Mj

(
h(tj, xti , (W̃u)0≤u≤tj−ti))

))
and get

E
[
ΞN
i

(
X [i,m]

)
− ΞN,M

i

(
X [i,m]

)∣∣∣σ(Sj : j > i) ∨ σ
(
X

[i,m]
ti

)]
= E

[
ΞN
i

(
X ti

)
− ΞN,M

i

(
X ti

)∣∣∣σ(Sj : j > i), Xti = X
[i,m]
ti

]
(1.3)

where we set X ti
= (Xs)s∈[ti,T ]. Completely analogously, it holds

E

[
∆W

[i,m]
i+1

∆

(
ΞN
i (X [i,m])− ΞN,M

i (X [i,m])
)∣∣∣∣∣σ(Sj : j > i) ∨ σ

(
X

[i,m]
ti

)]

= E

[
∆W

[i,m]
i+1

∆

(
ΞN
i (X ti

)− ΞN,M
i (X ti

)
)∣∣∣∣∣σ(Sj : j > i), Xti = X

[i,m]
ti

]
. (1.4)

Hence, Lemma 1.5.6 allows us to reduce the dependency on a sample path to a conditional

expectation according to the actual law of X given the value of the sample path at the

current time.

We close this section with some abbreviations for the notation: Throughout the rest of

this chapter, we denote with FMi := σ(Sk : k > i) ∨ σ(X
[i,m]
ti : m = 1, . . . ,Mi) the σ-

field generated by the simulations used up to the time k (backwards starting from N)

for a fixed N ∈ N. With Fi := σ((Ws)0≤s≤ti) we denote the σ-field generated by the

Brownian motion which is independent of the simulations. The conditional expectations

given those σ-fields we denote with EM
i [.] = E[.|FMi ] and Ei[.] := E[.|Fi]. Additionally,

we shorten the notation of the driver f by dropping clearly indicated function arguments

through the notation f(t, x, g, g′) := f(t, x, g(x), g′(x)) for any functions g, g′ : RD → Rl

and f(t, x, gt, g
′
t) := f(t, x, (g(t, x), g′(t, x)) for any functions g, g′ : [0, T ]× RD → Rl.

With these considerations we are ready for the derivation of the error bounds.
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1.5.2 Error of the Q approximation

In this section, we analyze the expected quadratic error of the approximation of qN in the

form of the terms

E
[
‖qN,Mi − qNi ‖2

i,M

]
.

We first establish a bound on the error propagation between the time steps, allowing us to

express the expected difference of this term by the one in the next time step. Afterward, we

derive a local error bound for the term as well as a bound for the global error by bounding

the maximum of the quadratic error terms over all time points ti ∈ π. The first part of the

proof, in which we establish the error propagation, is inspired by the error analysis of the

MDP scheme in Gobet and Turkedjiev (2016).

Error propagation: First, note that

EM
i

[
ΞN
i

(
X [i,m]

)]
= EM

i

[
qNτα(i)

(
X

[i,m]
tτα(i)

)
+

∫ tτα(i)+1

ti+1

f
(
s,X [i,m]

s , Ys, Zs
)
ds

]
= E

[
qNτα(i)

(
Xtτα(i)

)
+

∫ tτα(i)+1

ti+1

f (s,Xs, Ys, Zs) ds

∣∣∣∣Xti = X
[i,m]
ti

]
= qNi

(
X

[i,m]
ti

)
.

Hence, it holds by Lemma 1.5.3 (iii) that EM
i [ϕq

N

i ] is the least squares projection of qNi on

the subspace Kq,i with respect to the measure νMi , i.e., it holds

EM
i

[
ϕq

N

i

]
= arginf

ψ∈Kq,i

(
1

M

M∑
i=1

∣∣∣ψ (X [i,m]
ti

)
− qNi

(
X

[i,m]
ti

)∣∣∣2) .
Therefore, by the properties of least square projections, qNi − EM

i [ϕq
N

i ] is orthogonal on

EM
i [ϕq

N

i ]− ψq
N,M

i with respect to νMi . Additionally, note that, since ξ and f are bounded

due to the assumptions (Aξ) and (Af ), it follows by a simple backward recursion that

|qNi (x)| ≤ Cq,i = Cξ + (T − ti+1)Cf ≤ Cq := Cξ + TCf
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for all x ∈ RD. We conclude that TCq,i(q
N
i (x)) = qNi (x) and obtain:

E
[
‖qNi (.)− qN,Mi (.)‖2

i,M

]
= E

[∥∥∥TCq,i (qNi (.)
)
− TCq,i

(
ϕq

N,M

i (.)
)∥∥∥2

i,M

]
≤ E

[∥∥∥qNi (.)− EM
i

[
ϕq

N

i (.)
]

+ EM
i

[
ϕq

N

i (.)
]
− ϕq

N,M

i (.)
∥∥∥2

i,M

]
= E

[∥∥∥qNi (.)− EM
i

[
ϕq

N

i (.)
]∥∥∥2

i,M

]
+ E

[∥∥∥EM
i

[
ϕq

N

i (.)
]
− ϕq

N,M

i (.)
∥∥∥2

i,M

]
≤ E

[∥∥∥qNi (.)− EM
i

[
ϕq

N

i (.)
]∥∥∥2

i,M

]
+ (1 + κ)E

[∥∥∥EM
i

[
ϕq

N,M

i (.)− ϕq
N

i (.)
]∥∥∥2

i,M

]
+ (1 + κ−1)E

[∥∥∥EM
i

[
ϕq

N,M

i (.)
]
− ϕq

N,M

i (.)
∥∥∥2

i,M

]
where κ is an arbitrary positive constant. We handle the appearing summands separately:

As argued before, it holds

EM
i

[
ϕq

N

i (.)
]

= arginf
ψ∈Kq,i

‖qNi (.)− ψ(.)‖2
i,M .

Hence,

E

[∥∥∥qNi (.)− EM
i

[
ϕq

N

i (.)
]∥∥∥2

i,M

]
= E

[
inf

ψ∈Kq,i

∥∥qNi (.)− ψ(.)
∥∥2

i,M

]
≤ inf

ψ∈Kq,i

1

M

M∑
i=1

E
[∣∣qNi (X [i,m]

ti

)
− ψ

(
X

[i,m]
ti

) ∣∣2]
= inf

ψ∈Kq,i
E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2] .
This term describes the best approximation error due to the projection on the subspace

Kq,i and is part of the final error representation.

For the next term, note that ΞN,M
i is bounded by Cq,i under assumptions (Aξ) and (Af ),

since the approximations qN,Mi are (due to the truncation in the algorithm). Additionally,

for each i, the function ΞN,M
i is built using only the simulations in the sets Sk for k > i.

Hence, it follows directly by Lemma 1.5.3 (iv) with H = σ(Sk, k > i) and g(X [i,m]) = X
[i,m]
ti

that

E

[∥∥∥EM
i

[
ϕq

N,M

i (.)
]
− ϕq

N,M

i (.)
∥∥∥2

i,M

]
≤ C2

q,i

Kq,i

Mi

.
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Since, as argued before, the functions qNi are bounded by Cq,i as well, we can apply a

similar argument to the functions ΞN
i . Those are again built using only the simulations in

Sk for k > i. Setting ξqi (x) := E[ΞN,M
i (X ti

)−ΞN
i (X ti

)|Xti = x,FM0 ], we have by (1.3) that

EM
i

[
ΞN,M
i (X [i,m])− ΞN

i (X [i,m])
]

= ξqi (X
[i,m]
i ).

Then Lemma 1.5.3 (i) and (iii) imply that

EM
i

[
ϕq

N,M

i (.)− ϕq
N

i (.)
]

= arginf
ψ∈Kq,i

(
1

M

M∑
i=1

∣∣∣ψ (X [i,m]
ti

)
− ξqi

(
X

[i,m]
ti

) ∣∣∣2) .
Hence, by Lemma 1.5.3 (ii) it holds

E
[∥∥EM

i

[
ϕq

N,M

i (.)− ϕq
N

i (.)
] ∥∥2

i,M

]
≤ E

[∥∥ξqi (.)∥∥2

i,M

]
= E

[
ξqi (Xti)

2] .
Plugging in the estimates derived so far we have:

E
[∥∥qNi (.)− qN,Mi (.)

∥∥2

i,M

]
≤ inf

ψ∈Kq,i
E
[(
qNi (Xti)− ψ(Xti)

)2
]

+ (1 + κ−1)C2
q,i

Kq,i

Mi

+ (1 + κ)E
[
ξqi (Xti)

2
]
.

(1.5)

To further estimate E[ξqi (Xti)
2], we have to distinguish between the time points. If the

time points ti and ti+1 are in the same segment defined by πα, i.e., at time points ti such

that ti+1 6∈ πα, it holds τα(i) = τα(i+ 1) by our choice of τα and hence:

ΞN,M
i

(
X ti

)
= qN,Mτα(i)

(
Xtτα(i)

)
+

τα(i)∑
j=i+1

∆f
(
tj, Xtj , q

N,M
j , zN,Mj

)
= ΞN,M

i+1

(
X ti+1

)
+ ∆f

(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
and

ΞN
i

(
X ti

)
= qNτα(i)

(
Xtτα(i)

)
+

∫ tτα(i)+1

ti+1

f (t,Xt, Yt, Zt) dt

= ΞN
i+1

(
X ti+1

)
+

∫ ti+2

ti+1

f (t,Xt, Yt, Zt) dt.
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This allows us to estimate E[ξqi (Xti)
2] as:

E
[
ξqi (Xti)

2
]

= E

[
E
[
qNτα(i)

(
Xtτα(i)

)
− qN,Mτα(i)

(
Xtτα(i)

)
+

τα(i)∑
j=i+1

∫ tj+1

tj

f (s,Xs, Ys, Zs)− f
(
tj, Xtj , q

N,M
j , zN,Mj

)
ds
∣∣∣FM0 , Xti

]2
]

≤ (1 + Γ∆)E

[
E
[
E
[
ΞN
i+1(X ti+1

)− ΞN,M
i+1 (X ti+1

)
∣∣∣FM0 , Xti , Xti+1

]∣∣∣FM0 , Xti

]2
]

+ (1 +
1

Γ∆
)E

[
E
[ ∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2
]

≤ (1 + Γ∆)E
[(
ξqi+1(Xti+1

)
)2
]

+ (1 +
1

Γ∆
)E

[
E
[ ∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2
]
.

Here we first used Hölder’s inequality with some constant Γ > 0 that will be specified later

and the tower property of the conditional expectation in the first inequality. Then in the

second step, we used Jensen’s inequality, the Markov property of X and once more the

tower property of the conditional expectation. The calculation shows that the expected

error term E[ξqi (Xi)
2] is bounded by the one in the next time step and a driver-dependent

term.

At time points at the end of a segment, i.e., for time points ti such that ti+1 ∈ πα, the

function ΞN,M
i and ΞN,M

i+1 are defined on different segments and hence the first inequality

in the calculations above does not hold true in this case. However, to get a similar bound,
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we can once more use Hölder’s inequality and a zero addition to get

E
[
(ξqi (Xti))

2
]

= E

[
E
[
qNτα(i)

(
Xtτα(i)

)
− qN,Mτα(i)

(
Xtτα(i)

)
+

∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2
]

≤ (1 + Γ∆)E
[∥∥qNi+1 − q

N,M
i+1

∥∥2

i+1,∞

]
+ (1 +

1

Γ∆
)E

[
E
[ ∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2
]

≤ (1 + Γ∆)(1 + κ)(1 + ε)E
[(
ξqi+1(Xti+1

)
)2
]

+ (1 +
1

Γ∆
)E

[
E
[ ∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds
∣∣∣FM0 , Xti

]2
]

+ (1 + Γ∆)
(
E
[∥∥qNi+1 − q

N,M
i+1

∥∥2

i+1,∞

]
− (1 + κ)(1 + ε)E

[(
ξqi+1(Xti+1

)
)2
])

+

with positive constants κ and ε, which we will specify later. Again we have bounded the

error term E[ξqi (Xti)
2] by the one at the next time point and a driver-dependent term, but

now with an additional error term that depends on the approximation of qN at the time

point ti+1. This additional error term could be expected since the SDP algorithm works on

the segment containing ti like the MDP scheme where the correct terminal condition of the

BSDE restricted to the corresponding time segment has been replaced by the approximation

qNτα(i) at the time point τα(i) = ti+1.

Local and global bounds:

Iterating this step leads to the following local and global bounds for the quadratic error of

the approximation of qN , that are stated in terms of the expectations E[ξqi (Xi)
2] for later

use. To obtain a corresponding bound for the terms E[‖qNi − q
N,M
i ‖2

i,M ], one can simply

follow the arguments that lead to (1.5) and apply the lemma afterwards.

Lemma 1.5.7. For a positive constant Γ, set λi := (1 + Γ∆)i(1 + Nα−1)2|{j≤i:tj∈πα}| for
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i ∈ {0, . . . , N}. It then holds under the standing assumptions that

E
[
(ξqi (Xti))

2
]

≤ λiE
[
(ξqi (Xti))

2
]

≤ (1 +
1

∆Γ
)
N−2∑
j=i

λjE

E [∫ tj+2

tj+1

f (s,Xs, Ys, Zs)− f
(
tj+1, Xtj+1

, qN,Mj+1 , z
N,M
j+1

)
ds

∣∣∣∣∣FM0 , Xtj

]2


+ dN1−αeλN sup
j∈I

(
E
[∥∥qNj − qN,Mj

∥∥2

j,∞

]
− (1 +Nα−1)2E

[(
ξqj (Xtj)

)2
])

+

for all i ∈ {0, . . . , N − 2} and

max
0≤i≤N−1

E
[
(ξqi (Xti))

2
]

≤
N−2∑
j=0

(1 +
1

∆Γ
)λjE

E [∫ tj+2

tj+1

f (s,Xs, Ys, Zs)− f
(
tj+1, Xtj+1

, qN,Mj+1 , z
N,M
j+1

)
ds

∣∣∣∣∣FM0 , Xtj

]2


+ dN1−αeλN max
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,j
E
[∣∣qNj (Xtj)− ψ(Xtj)

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)
+
N1−αC1Kq,j log(C2Mj)

Mj

)
.

where I := {i : ti ∈ πα}.

Proof. Iterating the previous calculations where we choose κ = ε = Nα−1 yields

E
[
(ξqi (Xti))

2
]
≤ λiE

[
(ξqi (Xti))

2
]

≤ λi+1E
[(
ξqi+1(Xti+1

)
)2
]

+ λi(1 +
1

∆Γ
)E

[
E

[∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds

∣∣∣∣FM0 , Xti

]2
]

+ λi+1

(
E
[∥∥qNi+1 − q

N,M
i+1

∥∥2

i+1,∞

]
− (1 +Nα−1)2E

[(
ξqi+1(Xti+1

)
)2
])

+
1I(i+ 1)

≤ λN−1E
[(
ξqN−1(XtN−1

)
)2
]

+ (1 +
1

∆Γ
)
N−2∑
j=i

λjE

E [∫ tj+2

tj+1

f (s,Xs, Ys, Zs)− f
(
tj+1, Xtj+1

, qN,Mj+1 , z
N,M
j+1

)
ds

∣∣∣∣∣FM0 , Xtj

]2


+ dN1−αeλN max
j∈I

(
E
[∥∥qNj − qN,Mj

∥∥2

j,∞

]
− (1 +Nα−1)2E

[(
ξqj (Xtj)

)2
])

+
.

Then we have by definition E[ξqN−1(XtN−1
)2] = 0 since ΞN,M

N−1 = ΞN
N−1 and the recursion
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terminates. This already proofs the first statement of Lemma 1.5.7. Additionally, using

Lemma 1.5.5 with ε = Nα−1 and the inequality (1.5) for κ = Nα−1 we have for any j:(
E
[∥∥qNj − qN,Mj

∥∥2

j,∞

]
− (1 +Nα−1)2E

[(
ξqj (Xtj)

)2
])

+

≤

(
(1 +Nα−1)E

[∥∥qNj − qN,Mj

∥∥2

j,M

]
+
N1−αC1Kq,j log(C2Mj)

Mj

− (1 +Nα−1)2E
[(
ξqj (Xtj)

)2
])

+

≤
(

(1 +Nα−1)

(
inf

ψ∈Kq,j
E
[∣∣qNj (Xtj)− ψ(Xtj)

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

+(1 +Nα−1)E
[(
ξqj (Xtj)

)2
])

+
N1−αC1Kq,j log(C2Mj)

εMj

− (1 +Nα−1)2E
[(
ξqj (Xtj)

)2
])

+

≤ (1 +Nα−1)

(
inf

ψ∈Kq,j
E
[∣∣qNj (Xtj)− ψ(Xtj)

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)
+
N1−αC1Kq,j log(C2Mj)

Mj

.

(1.6)

The second statement of Lemma 1.5.7 then follows by plugging in the estimate above in

the first statement and taking the maximum over all time points.

1.5.3 Error of the Z approximation

Analogously to the previous section, we now analyze the quadratic error of the approxi-

mation of zN via the terms E[‖zNi − z
N,M
i ‖2

i,M ]. Again, we first establish a bound on the

error propagation between the time steps before deriving global bounds.

Error propagation: While the later steps require changes, we can get an analog of the

inequality (1.5) by applying the same arguments as before. It holds that

EM
i

[
∆W

[i,m]
i+1

∆
ΞN
i

(
X [i,m]

)]
= zNi

(
X

[i,m]
ti

)
and therefore, we have by by Lemma 1.5.3 (iii)

EM
i

[
ϕz

N

i

]
= arginf

ψ∈Kz,i

(
1

M

M∑
i=1

∣∣∣ψ (X [i,m]
ti

)
−

∆W
[i,m]
i+1

∆
zNi

(
X

[i,m]
ti

) ∣∣∣2) . (1.7)

We conclude that zNi −EM
i [ϕz

N

i ] is orthogonal on EM
i [ϕz

N

i ]−ϕzN,Mi with respect to ‖.‖i,M .

Additionally, since |ΞN
i | ≤ Cq,i due to assumptions (Aξ) and (Af ), it holds

∣∣zN,(d)
i (x)

∣∣ ≤ Cz,i =
Cq,i
∆
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for each component z
N,(d)
i , d = 1, . . . ,D of zNi , x ∈ RD and i ∈ {0, . . . , N − 1}. With that,

we obtain for an arbitrary κ > 0 that

∆E
[∥∥zNi − zN,Mi

∥∥2

i,M

]
= ∆E

[∥∥TCz,i (zNi (.)
)
− TCz,i

(
ϕz

N,M

i (.)
)∥∥2

i,M

]
≤ ∆E

[∥∥zNi (.)− EM
i

[
ϕz

N

i (.)
]

+ EM
i

[
ϕz

N

i (.)
]
− ϕzN,Mi (.)

∥∥2

i,M

]
= ∆

(
E
[∥∥zNi (.)− EM

i

[
ϕz

N

i (.)
] ∥∥2

i,M

]
+ E

[∥∥EM
i

[
ϕz

N

i (.)
]
− ϕzN,Mi (.)

∥∥2

i,M

])
≤ ∆

(
E
[∥∥zNi (.)− EM

i

[
ϕz

N

i (.)
] ∥∥2

i,M

]
+ (1 + κ−1) + E

[∥∥EM
i

[
ϕz

N,M

i (.)
]
− ϕzN,Mi (.)

∥∥2

i,M

]
+(1 + κ)E

[∥∥EM
i

[
ϕz

N,M

i (.)− ϕzNi (.)
] ∥∥2

i,M

])
.

Once more we handle the appearing terms separately:

First, analog as for the corresponding term in in the previous section, it follows due to

equation (1.7) that

E[‖zNi (.)− EM
i [ϕz

N

i (.)]‖2
i,M ] ≤ inf

ψ∈Kz,i
E[|ψ(Xti)− zNi (Xti)|2],

which describes the best approximation error of zN using the basis functions and is part

of the final error representation.

For the next term, note again that ΞN,M
i is bounded by Cq,i for all i ∈ {0, . . . , N − 1}. We

conclude that

EM
i

∣∣∣∣∣∆W
[i,m]
i+1

∆
ΞN,M
i (X [i,m])− EM

i

[
∆W

[i,m]
i+1

∆
ΞN,M
i (X [i,m])

] ∣∣∣∣∣
2
 ≤ EM

i

[∣∣∣∆W [i,m]
i+1

∆
ΞN,M
i (X [i,m])

∣∣∣2]

≤
DC2

q,i

∆
.

Then, since ΞN,M
i is built using only simulations of the clouds Sk for k > i, it follows by

Lemma 1.5.3 (iv) that E[‖EM
i [ϕz

N,M

i ]− ϕzN,Mi ‖2
i,M ] is bounded by C2

q,i
DKz,i
∆Mi

.

For the last term, we have by (1.4) that

EM
i

[
∆W

[i,m]
i+1

∆

(
ΞN,M
i (X [i,m])− ΞN

i (X [i,m])
)]

= ξzi (X
[i,m]
ti )

with

ξzi (x) = E

[
∆Wi+1

∆

(
ΞN
i (X ti

)− ΞN,M
i (X ti

)
)∣∣∣∣Xti = x,FM0

]
.
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Then, by Lemma 1.5.3 (i) and (iii), it follows that

EM
i

[
ϕz

N,M

i (.)− ϕzNi (.)
]

= arginf
ψ∈Kz,i

(
1

M

M∑
i=1

∣∣∣ψ (X [i,m]
ti

)
− ξzi

(
X

[i,m]
ti

) ∣∣∣2) .
Hence, by Lemma 1.5.3 (ii) we have

E
[∥∥EM

i

[
ψz

N,M

i − ψzNi
] ∥∥2

i,M

]
≤ E

[∥∥ξzi ∥∥2

i,M

]
= E

[
(ξzi (Xti))

2] .
Plugging in the estimates obtained so far we have

∆E
[∥∥zNi − zN,Mi

∥∥2

i,M

]
≤ ∆

(
inf

ψ∈Kz,i
E
[∣∣ψ (Xti)− zNi (Xti)

∣∣2]
+(1 + κ−1)C2

q,i

DKz,i

∆Mi

+ (1 + κ)E
[
(ξzi (Xti))

2]) . (1.8)

Now using the tower property and a zero addition, we get

∆E
[
(ξzi (Xti))

2] = ∆E

[
E

[
∆Wi+1

∆

(
ΞN,M
i (X ti

)− ΞN
i (X ti

)
)∣∣∣∣FM0 , Xti

]2
]

= ∆E

[
E

[
∆Wi+1

∆
E
[
ΞN,M
i (X ti

)− ΞN
i (X ti

)
∣∣∣FM0 ,Fti+1

]∣∣∣∣FM0 , Xti

]2
]

= ∆E

[
E

[
∆Wi+1

∆

(
E
[
ΞN,M
i (X ti

)− ΞN
i (X ti

)
∣∣∣FM0 ,Fti+1

]
−E

[
ΞN,M
i (X ti

)− ΞN
i (X ti

)
∣∣∣FM0 , Xti

])∣∣∣FM0 , Xti

]2
]

≤ DE
[
E
[(
E
[
ΞN,M
i (X ti

)− ΞN
i (X ti

)
∣∣∣FM0 ,Fti+1

]
−E

[
ΞN,M
i (X ti

)− ΞN
i (X ti

)
∣∣∣FM0 , Xti

])2
∣∣∣∣FM0 , Xti

]]
≤ DE

[
E

[
E
[
ΞN,M
i (X ti

)− ΞN
i (X ti

)
∣∣∣FM0 ,Fti+1

]2
∣∣∣∣FM0 , Xti

]
− DE

[
ΞN,M
i (X ti

)− ΞN
i (X ti

)
∣∣∣FM0 , Xti

]2
]
.

For the next step we have to distinguish between the time points again. If ti and ti+1 are

in the same segment, i.e., at all time points ti such that ti+1 6∈ πα, it holds τα(i) = τα(i+1)
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and we get for a Γ > 0 which will be specified later that

∆E
[
(ξzi (Xti))

2]
≤ DE

E
qτα(i)(Xtτα(i)

)− qN,Mτα(i)(Xtτα(i)
) +

τα(i)∑
j=i+1

∫ tj+1

tj

f(s,Xs, Ys, Zs)

−f
(
tj, Xtj , q

N,M
j , zN,Mj

)
ds
∣∣∣FM0 ,Fti+1

]2
]
−DE

[
E
[
ΞN,M
i (X i)− ΞN

i (X i)
∣∣∣FM0 , Xti

]2
]

≤ (1 + Γ∆)DE
[(
ξqi+1(Xti+1

)
)2
]

+ D(1 +
1

∆Γ
)E

[
E

[∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1
, qN,Mi+1 , z

N,M
i+1 )ds

∣∣∣∣FM0 , Xti

]2
]

−DE
[
(ξqi (Xti))

2
]
.

Like in the derivation of the error of the approximation of qN , the last inequality in the

calculations above does not hold true when considering E[ξzi (Xti)
2] at time points ti at

the end of a segment, i.e., ti such that ti+1 ∈ πα. However, by adding and subtracting a

multiple of E[(ξqi+1(Xti+1
))2], we again get the similar bound

∆E
[
(ξzi (Xti))

2]
≤ D(1 + Γ∆)(1 + κ)(1 + ε)E

[(
ξqi+1(Xti+1

)
)2
]

+ D(1 +
1

∆Γ
)E

[
E

[∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1
, qN,Mi+1 , z

N,M
i+1 )ds

∣∣∣∣FM0 , Xti

]2
]

−DE
[
(ξqi (Xti))

2
]

+ D(1 + Γ∆)
(
E
[∥∥qNi+1 − q

N,M
i+1

∥∥2

i+1,∞

]
− (1 + κ)(1 + ε)E

[(
ξqi+1(Xti+1

)
)2
])

+

for these time points, with an additional error term that depends on the approximation of

qN at the next time point ti+1. As argued in the analysis of the approximation of qN , this

term results from the single use of an ODP step in the discretization scheme that is used

to connect two time segments.

Next we want to derive a global error bound for the approximation of zN . Since zN

appears in the discretization scheme only as argument of the driver, we state this term as

an averaged sum over the time steps rather than the maximum.

Lemma 1.5.8. Let Γ be a positive constants and set λi := (1 + Γ∆)i((1 +Nα−1)2|{j≤i:tj∈πα}|
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for i ∈ {0, . . . , N − 1}. Then

N−1∑
i=0

∆λiE
[
(ξzi (Xti))

2]
≤ D

N−2∑
i=0

λi(1 +
1

∆Γ
)E

[
E

[∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1
, qN,Mi+1 , z

N,M
i+1 )ds

∣∣∣∣FM0 , Xti

]2
]

+ λNDdN1−αemax
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,j
E
[∣∣ψ(Xtj − qNi (Xtj)

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)
+
N1−αC1Kq,j log(C2Mj)

Mj

)
.

Proof. First, note that E[(ξzN−1(XtN−1
))2] = 0 by definition since ΞN,M

N−1 = ΞN
N−1. Then,

by plugging in the estimate for ∆E[(ξzi (Xti))
2] from the analysis of the error propagation

where we choose ε = κ = Nα−1 for all i and summing up we get

N−2∑
i=0

∆λiE
[
(ξzi (Xti))

2]
≤ D

N−2∑
i=0

(
λi+1E

[(
ξqi+1(Xti+1

)
)2
]

+ λi(1 +
1

∆Γ
)E

[
E

[∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1
, qN,Mi+1 , z

N,M
i+1 )ds

∣∣∣∣FM0 , Xti

]2
]

− λiE
[
(ξqi (Xti))

2
]

+ λi(1 + Γ∆)
(
E
[∥∥qNi+1 − q

N,M
i+1

∥∥2

i+1,∞

]
− (1 +Nα−1)2E

[(
ξqi+1(Xti+1

)
)2
])

+
1I(i+ 1)

)

≤ D

N−2∑
i=0

λi(1 +
1

∆Γ
)E

[
E

[∫ ti+2

ti+1

f(s,Xs, Ys, Zs)− f(ti+1, Xti+1
, qN,Mi+1 , z

N,M
i+1 )ds

∣∣∣∣FM0 , Xti

]2
]

+ DλNdN1−αe sup
j∈I

(
inf

ψ∈Kq,j
E
[∣∣ψ(Xtj − qNj (Xtj)

∣∣2]− (1 +Nα−1)2E
[(
ξqj (Xtj)

)2
])

+

.

Plugging in the estimate for E[‖qNi − q
N,M
i ‖2

i,∞] from (1.6) derived in the proof of Lemma

1.5.7 finishes the proof.
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1.5.4 Bounds for the driver-dependent terms

In this section, we derive a bound for the sum of the terms

E

[
E

[∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds

∣∣∣∣FM , Xti

]2
]

over the time steps that appears in the bounds of Lemma 1.5.7 and 1.5.8 both. For this

purpose, note that for any i ∈ {0, . . . , N − 1}, it holds by Fubini’s theorem

E

[
E

[∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds

∣∣∣∣FM0 , Xti

]2
]

≤ E

[(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1

, qNi+1, z
N
i+1

)]
+ E

[
f
(
ti+1, Xti+1

, qNi+1, z
N
i+1

)
− f

(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)∣∣∣FM0 , Xti

]
ds

)2
]

≤ 2E

[(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1

, qNi+1, z
N
i+1

)]
ds

)2
]

+ 2∆2E

[
E
[
f
(
ti+1, Xti+1

, qNi+1, z
N
i+1

)
− f

(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)∣∣∣FM0 , Xti

]2
]
.

Then, by the Lipschitz assumption on f we get

E

[
E
[
f
(
ti+1, Xti+1

, qNi+1, z
N
i+1

)
− f

(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)∣∣∣FM0 , Xti

]2
]

≤ +2L2
fE

[
E
[∣∣qNi+1(Xti+1

)− qN,Mi+1 (Xti+1
)
∣∣∣∣∣FM0 , Xti

]2

+E
[∣∣zNi+1(Xti+1

)− zN,Mi+1 (Xti+1
)
∣∣∣∣∣FM0 , Xti

]2
]

= 2L2
f

(
E
[∥∥qNi+1 − q

N,M
i+1

∥∥2

i,∞

]
+ E

[∥∥zNi+1 − z
N,M
i+1

∥∥2

i,∞

])
.
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Hence it holds

N−2∑
i=0

λiE

[
E

[∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds

∣∣∣∣FM0 , Xti

]2
]

≤
N−2∑
i=0

λi2E

[(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1

, qNi+1, z
N
i+1

)]
ds

)2
]

+
N−2∑
i=0

λi4∆2L2
f

(
E
[∥∥qNi+1 − q

N,M
i+1

∥∥2

i,∞

]
+ E

[∥∥zNi+1 − z
N,M
i+1

∥∥2

i,∞

])
≤

N−2∑
i=0

λi2E

[(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1

, qNi+1, z
N
i+1

)]
ds

)2
]

+ 4∆L2
fT max

0≤i≤N−1
λiE

[∥∥qNi+1 − q
N,M
i+1

∥∥2

i,∞

]
+ 4∆L2

f

N−1∑
i=1

λi∆E
[∥∥zNi+1 − z

N,M
i+1

∥∥2

i,∞

]
≤ 2λNR

N + 4∆L2
fT max

0≤i≤N−1
λiE

[∥∥qNi+1 − q
N,M
i+1

∥∥2

i,∞

]
+ 4∆L2

f

N−1∑
i=1

λi∆E
[∥∥zNi+1 − z

N,M
i+1

∥∥2

i,∞

]
with

RN :=
N−2∑
i=0

E

[(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1

, qNi+1, z
N
i+1

)]
ds

)2
]

as defined in Theorem 1.3.1. The term RN does not depend on our approximation of the

BSDE but only on the real solution Y, Z, the semi-continuous versions qN , zN and the

solution of the forward SDE X. It can be bounded in different ways depending on the

regularity of these functions, which leads to the different bounds of the total quadratic

error in Theorem 1.3.2 and 1.3.3. The different bounds will be derived at the end of the

next section.

1.5.5 Final error bounds

Using the bounds derived throughout this section, we are now ready to proof Theorem

1.3.1.

Proof. Proof of Theorem 1.3.1:

In the following calculations, c denotes a positive constant that does not depend on N and
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may change from line to line. First, we can write the quadratic error as

max
0≤i≤N−1

E
[∣∣qNi (Xti)− q

N,M
i (Xti)

∣∣2]+
N−1∑
i=0

∆E
[∣∣zN(Xti)− z

N,M
i (Xti)

∣∣2]
≤ max

0≤i≤N−1
λiE

[∣∣qNi (Xti)− q
N,M
i (Xti)

∣∣2]+
N−2∑
i=0

∆λiE
[∣∣zN(Xti)− z

N,M
i (Xti)

∣∣2]
= max

0≤i≤N−1
λiE

[∥∥qNi − qN,Mi

∥∥2

i,∞

]
+

N−1∑
i=0

∆λiE
[∥∥zNi − zN,Mi

∥∥2

i,∞

]
.

We can now estimate this term by Lemma 1.5.5 with ε = 1 as

max
0≤i≤N−1

λiE
[∥∥qNi − qN,Mi

∥∥2

i,∞

]
+

N−1∑
i=0

∆λiE
[∥∥zNi − zN,Mi

∥∥2

i,∞

]
≤ max

0≤i≤N−1

(
2λiE

[∥∥qNi − qN,Mi

∥∥2

i,M

]
+ λi

C1Kq,i log(C2Mi)

Mi

)
+

N−2∑
i=0

2∆λiE
[∥∥zNi − zN,Mi

∥∥2

i,M

]
+ ∆λi

C1Kz,i log(C2Mi)

∆Mi

.

By the inequalities (1.5) and (1.8) we then get with the choice κ = 1

max
0≤i≤N−1

λiE
[∥∥qNi − qN,Mi

∥∥2

i,∞

]
+

N−1∑
i=0

∆λiE
[∥∥zNi − zN,Mi

∥∥2

i,∞

]
≤ λN max

0≤i≤N−1

(
4
Cq,iKq,i

Mi

+ 2 inf
ψ∈Kq,i

E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+
C1Kq,i log(C2Mi)

Mi

)
+

N−1∑
i=0

∆λi

(
4
C2
q,iKz,i

∆Mi

+ 2 inf
ψ∈Kz,i

E
[∣∣zNi (Xti)− ψ(Xti)

∣∣2]+
C1Kz,i log(C2Mi)

∆Mi

)

+ 4

(
max

0≤i≤N−1
λiE

[
(ξqi (Xti))

2
]

+
N−1∑
i=0

∆λiE
[
(ξzi (Xti))

2]) .
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Now the bounds in Lemma 1.5.7 and Lemma 1.5.8 yield

max
0≤i≤N−1

λiE
[
(ξqi (Xti))

2
]

+
N−1∑
i=0

∆λiE
[
(ξzi (Xti))

2]
≤

N−2∑
i=0

(1 +
1

∆Γ
)λiE

[
E

[∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds

∣∣∣∣FM0 , Xti

]2
]

+ dN1−αeλN max
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i
E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,iKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)

+ D

N−2∑
i=0

λi(1 +
1

∆Γ
)E

[
E

[∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds

∣∣∣∣FM0 , Xti

]2
]

+ λNDdN1−αemax
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i
E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,iKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)

=
N−2∑
i=0

(1 + D)(1 +
1

∆Γ
)λiE

[
E

[∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds

∣∣∣∣FM0 , Xti

]2
]

+ (1 + D)dN1−αeλN max
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i
E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,iKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)
.
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By plugging in the bounds derived in Section 1.5.4, we can estimate this term further as

max
0≤i≤N−1

λiE
[
(ξqi (Xti))

2
]

+
N−1∑
i=0

∆λiE
[
(ξzi (Xti))

2]
≤

N−2∑
i=0

(1 + D)(1 +
1

∆Γ
)λiE

[
E

[∫ ti+2

ti+1

f (s,Xs, Ys, Zs)− f
(
ti+1, Xti+1

, qN,Mi+1 , z
N,M
i+1

)
ds

∣∣∣∣FM0 , Xti

]2
]

+ (1 + D)dN1−αeλN max
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i
E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,iKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)

≤
[
(∆ +

1

Γ
)(1 + D)

]
4(T ∨ 1)L2

f

(
max

0≤i≤N−1
λiE

[∥∥qNi − qN,Mi

∥∥2

i,∞

]
+

N−2∑
i=0

∆λiE
[∥∥zNi − zN,Mi

∥∥2

i,∞

])

+

[
(∆ +

1

Γ
)(1 + D)

]
∆−1λNR

N

+ dN1−αeλN(1 + D) max
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i
E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)
.

Now, assuming thatN and Γ are sufficiently large such that [(∆+ 1
Γ
)(1+D)]16L2(T∨1) ≤ 1

2
,
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we have

max
0≤i≤N−1

E
[∥∥qNi − qN,Mi

∥∥2

i,∞

]
λi +

N−1∑
i=0

λiE
[∥∥zNi − zN,Mi

∥∥2

i,∞

]
∆

≤ 1

2

(
max

0≤i≤N−1
E
[∥∥qNi − qN,Mi

∥∥2

i,∞

]
λi +

N−1∑
i=0

λiE
[∥∥zNi − zN,Mi

∥∥2

i,∞

]
∆

)

+ cλNdN1−αemax
j∈I

(
(1 +Nα−1)

(
inf

ψ∈Kq,i
E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+ (1 +N1−α)
C2
q,jKq,j

Mj

)

+
N1−αC1Kq,j log(C2Mj)

Mj

)

+ cλN max
0≤i≤N−1

(
inf

ψ∈Kq,i
E
[∣∣qNi (Xti)− ψ(Xti)

∣∣2]+
Kq,i

Mi

+
Kq,i log(Mi)

Mi

+ inf
ψ∈Kz,i

E
[∣∣zNi (Xti)− ψ(Xti)

∣∣2]+
Kz,i

∆Mi

+
Kz,i log(Mi)

∆Mi

)
+ c∆−1λNR

N .

Considering that λN is bounded by a constant independent of N , since

λN =

(
1 +

TΓ

N

)N (
1 +Nα−1

)2dN1−αe

≤ eTΓN−1Ne2dN1−αeNα−1

= eTΓ+4,

this implies

max
0≤i≤N−1

E
[∣∣qNi (Xti)− q

N,M
i (Xti)

∣∣2]+
N−2∑
i=0

∆E
[∣∣zNi (Xti)− z

N,M
i (Xti)

∣∣2]
≤ cmax

i∈I

(
N1−α inf

ψ∈Kq,i
E
[∣∣ψ(Xti)− qNi (Xti)

∣∣2]+N2−2αKq,i

Mi

+N2−2αKq,i log(C2Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i
E
[∣∣ψ(Xti)− qNi (Xti)

∣∣2]+ inf
ψ∈Kz,i

E
[∣∣ψ(Xti)− zNi (Xti)

∣∣2]
+
Kq,i

Mi

+N
Kz,i

Mi

+
Kq,i log(C2Mi)

Mi

+N
Kz,i log(C2Mi)

Mi

)
+ cNRN

what finishes the proof.

It remains to derive the results of Theorem 1.3.2 and Theorem 1.3.3 from this error repre-

sentation. The remaining estimates needed for this depend only on the true BSDE solution
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rather than the approximation obtained with the algorithm and we hence have to distin-

guish depending on the regularity assumptions.

Proof. Proof of Theorem 1.3.2:

We first have to show that

max
0≤i≤N−1

E
[
|qN,Mi (Xti)− y(ti, Xti)|2

]
+

N−1∑
i=0

E

[∫ ti+1

ti

|zN,Mi (Xti)− z(s,Xs)|2ds
]

≤ cmax
i∈I

(
N1−α inf

ψ∈Kq,i
E
[
|ψ(Xti)− qNi (Xti)|2

]
+N2−2αKq,i

Mi

+N2−2αKq,i log(Mi)

Mi

)
+ c max

0≤i≤N−1

(
inf

ψ∈Kq,i
E
[
|ψ(Xti)− qNi (Xti)|2

]
+ inf

ψ∈Kz,i
E
[
|ψ(Xti)− zNi (Xti)|2

]
+
Kq,i

Mi

+N
Kz,i

Mi

+
Kq,i log(Mi)

Mi

+N
Kz,i log(Mi)

Mi

)
+ cN−1

under the standing assumptions. Since

max
0≤i≤N−1

E
[∣∣qN,Mi (Xti)− y(ti, Xti)

∣∣2]+
N−1∑
i=0

E

[∫ ti+1

ti

∣∣zN,Mi (Xti)− z(s,Xs)
∣∣2ds]

≤ 2

(
max

0≤i≤N−1
E
[∣∣qN,Mi (Xti)− qNi (Xti)

∣∣2]+ max
0≤i≤N−1

E
[∣∣qNi (Xti)− y(ti, Xti)

∣∣2]
+

N−1∑
i=0

∆E
[∣∣zN,Mi (Xti)− zNi (Xti)

∣∣2ds]+
N−1∑
i=0

E

[∫ ti+1

ti

∣∣zNi (Xti)− z(s,Xs)
∣∣2ds]),

this follows directly from Theorem 1.3.1 if we can prove the bounds

max
0≤i≤N−1

E
[∣∣qNi (Xti)− y(ti, Xti)

∣∣2]+
N−1∑
i=0

E

[∫ ti+1

ti

∣∣zNi (Xti)− z(s,Xs)
∣∣2ds] ≤ c∆

and RN ≤ c∆2. We start with the bound for RN and use Hölder’s inequality to get

RN =
N−2∑
i=0

E

[(∫ ti+2

ti+1

Ei
[
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1

, qNi+1, z
N
i+1

)]
ds

)2
]

≤
N−2∑
i=0

∆E

[∫ ti+2

ti+1

Ei

[(
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1

, qNi+1, z
N
i+1

))2
]
ds

]
.
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Then, due to the Lipschitz continuity (respectively Hölder continuity in t) of f , it holds

RN ≤
N−2∑
i=0

∆E

[∫ ti+2

ti+1

Ei

[(
f (s,Xs, Ys, Zs)− f

(
ti+1, Xti+1

, qNi+1, z
N
i+1

))2
]
ds

]

≤
N−2∑
i=0

∆E

[∫ ti+2

ti+1

Ei

[
L2
f

(
|s− ti+1|

1
2 + |Xs −Xti+1

|+ |Ys − qNi+1(Xti+1
)|

+ |Zs − zNi+1(Xti+1
)|
)2
]
ds

]

≤
N−2∑
i=0

4L2
f∆E

[∫ ti+2

ti+1

|s− ti+1|+ Ei
[
(Xs −Xti+1

)2
]

+ Ei
[
(Ys − qNi+1(Xti+1

))2
]

+ Ei
[
(Zs − zNi+1(Xti+1

))2
]
ds

]

and we consider the terms in the integrand separately for an arbitrary s ∈ [ti+1, ti+2]:

By choice of the time grid, it obviously holds that |s−ti+1| ≤ ∆ and, under the assumptions

on b and σ, it follows that Ei[(Xs − Xti+1
)2] ≤ c(s − ti+1) ≤ c∆ (see e.g. Kloeden and

Platen, 1992). Then, by the definition of qNi+1 and a zero addition, we get:

Ei

[(
Ys − qNi+1(Xi+1)

)2
]

= Ei

[(
Ys − Yti+1

+ Yti+1
+ Ei+1

[
Yti+2

])2
]

≤ 4 max
0≤i≤N−1

sup
s∈[ti+1,ti+2]

Ei

[(
Ys − Yti+1

)2
]
.

(1.9)

To estimate the difference Zs−zNi+1(Xti+1
), we define for each i ∈ {0, . . . , N−1} the random

variable

Z̃i :=
1

∆
Ei

[∫ ti+1

ti

Zsds

]
,
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which can be used to express the quadratic difference as

Ei

[(
Zs − zNi+1(Xti+1

)
)2
]

= Ei

[(
Zs − Ei+1

[
∆Wi+2

∆
Yti+2

])2
]

= Ei

[(
Zs − Ei+1

[
∆Wi+2

∆

(
Yti+1

−
∫ ti+2

ti+1

f(l, Xl, Yl, Zl)dl +

∫ ti+2

ti+1

ZldWl

)])2
]

= Ei

[(
Zs −

1

∆
Ei+1

[∫ ti+2

ti+1

Zldl

]
+

1

∆
Ei

[
∆Wi+2

∫ ti+2

ti+1

f(l, Xl, Yl, Zl)dl

])2
]

≤ 2Ei

[∣∣Zs − Z̃i+1

∣∣2]+ 2Ei

[(
1

∆
Ei+1

[
∆W 2

i+2

] 1
2 Ei+1

[
(Cf∆)2

] 1
2

)2
]

≤ 2Ei

[∣∣Zs − Z̃i+1

∣∣2]+ c∆.

(1.10)

Here, the second equality follows by the Itô-isometry and the measurablility of Yti+1
, the

following inequality due to the boundedness of f and Hölder’s inequality. Plugging in the

obtained bounds we have

RN ≤
N−2∑
i=0

4L2
f∆E

[∫ ti+2

ti+1

|s− ti+1|+ Ei

[(
Xs −Xti+1

)2
]

+ Ei

[(
Ys − qNi+1(Xti+1

)
)2
]

+ Ei

[(
Zs − zi+1(Xti+1

)
)2
]
ds

]

≤
N−2∑
i=0

4L2
f∆E

[∫ ti+2

ti+1

∆ + c∆ + 4 max
0≤j≤N−1

sup
l∈[tj+1,tj+2]

E
[(
Yl − Ytj+1

)2
]

+ 2Ei

[(
Zs − Z̃i+1

)2
]

+ c∆ds

]

≤
N−2∑
i=0

4L2
f∆E

[
∆

(
c∆ + 4 max

0≤j≤N−1
sup

l∈[tj+1,tj+2]

E
[(
Yl − Ytj+1

)2
])

+ 2

∫ ti+2

ti+1

Ei

[(
Zs − Z̃i+1

)2
]
ds

]

≤ T4L2
f

(
c∆2 + ∆4 max

0≤j≤N−1
sup

l∈[tj+1,tj+2]

E
[(
Yl − Ytj+1

)2
])

+ 8L2
f∆

N−2∑
i=0

∫ ti+2

ti+1

E

[(
Zs − Z̃i+1

)2
]
ds.
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Then, using the the L2-regularity of BSDEs (see Zhang, 2001), which states

max
0≤i≤N

sup
ti≤s≤ti+1

E
[∣∣Ys − Yti∣∣2]+

N−1∑
i=0

E

[∫ ti+1

ti

∣∣Zs − Z̃i∣∣2ds] ≤ c∆,

it follows

RN ≤ T4L2
f

(
c∆2 + 4∆ max

0≤j≤N−1
sup

l∈[tj+1,tj+2]

E
[(
Yl − Ytj+1

)2
])

+ 8L2
f∆

N−2∑
i=0

∫ ti+2

ti+1

E

[(
Zs − Z̃i+1

)2
]
ds

≤ c∆2,

what proves the bound for RN . Note that the inequalities (1.10) and (1.9) together with

the L2 regularity of BSDEs (see Zhang, 2001) in particular also imply that

max
0≤i≤N−1

E
[∣∣qNi (Xti)− Yti

∣∣2]+
N−1∑
i=0

E

[∫ ti+1

ti

∣∣zNi (Xti)− Zs
∣∣2ds]

≤ 4 max
0≤i≤N−1

sup
l∈[tj+1,tj+2]

E
[∣∣Yl − Yti∣∣2]

+
N−1∑
i=0

2E

[∫ ti+1

ti

∣∣Zs − Z̃i(Xti)
∣∣2 + c∆ds

]
≤ c∆,

which shows the second bound.

For the additional statement of Theorem 1.3.2, note that

N1−αE
[
|ψ(Xti)− qNi (Xti)|2

]
≤ 2N1−α (E [|ψ(Xti)− y(ti, Xti)|2

]
+ E

[
|y(ti, Xti)− qNi (Xti)|2

])
and analogously

E
[
|ψ(Xti)− zNi (Xti)|2

]
≤ 2

(
E
[
|ψ(Xti)− z(ti, Xti)|2

]
+ E

[
|z(ti, Xti)− zNi (Xti)|2

])
for all ψ ∈ Kq,i or ψ ∈ Kz,i respectively. Hence it suffices to show that the bounds

E
[
|qNi (Xti)− y(ti, Xti)|2

]
≤ ∆2, E

[
|zNi (Xti)− z(ti, Xti)|2

]
≤ ∆

hold true for each i ∈ {0, . . . , N−1}, whenever z is Lipschitz continuous in x and 1
2
-Hölder

continuous in t. For the bound regarding y, we directly get by the definition of qNi and the
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boundedness assumption on f that

E
[∣∣qNi (Xti)− y(ti, Xti)

∣∣2]
= E

[∣∣∣∣Ei [y(ti, Xti)−
∫ ti+1

ti

f(t,Xt, Yt, Zt)dt+

∫ ti+1

ti

ZtdWt

]
− y(ti, Xti)

∣∣∣∣2
]

≤ E

[∣∣∣∣∫ ti+1

ti

Cfdt

∣∣∣∣2
]

≤ c∆2.

For the bound concerning z, we get by inequality (1.10)

E
[∣∣zNi (Xti)− z(ti, Xti)

∣∣2] ≤ 2E

[∣∣∣z(ti, Xti)− Z̃i+1

∣∣∣2]+ c∆

= 2E

[∣∣∣∣ 1

∆
Ei

[∫ ti+1

ti

z(ti, Xti)− z(l, Xl)dl

]∣∣∣∣2
]

+ c∆

≤ 2

∆2
E

[
Ei

[∫ ti+1

ti

|z(ti, Xti)− z(l, Xl)| dl
]2
]

+ c∆

≤ 2

∆

∫ ti+1

ti

E

[
Ei

[
Lz(|ti − l|

1
2 + |Xti −Xl|)dl

]2
]

+ c∆

≤ 2

∆

∫ ti+1

ti

E
[
c∆

1
2dl
]2

+ c∆

≤ c∆

where we used Hölder’s inequality in the first step, the continuity assumptions on z along

with Fubini’s theorem in the second inequality and denote the Lipschitz constant of z with

Lz.

The remainder of this section is dedicated to the proof of Theorem 1.3.3, which shows

that an asymptotic convergence rate of order N−2 is possible under stronger regularity

assumptions on the components.

Proof. Proof of Theorem 1.3.3:
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Similar to the proof of Theorem 1.3.2, we have

max
0≤i≤N−1

E
[∣∣qN,Mi (Wti)− y(ti,Wti)

∣∣2]+
N−1∑
i=0

∆E
[∣∣z(ti,Wti)− z

N,M
i (Wti)

∣∣2ds]
≤ 2

(
max

0≤i≤N−1
E
[∣∣qN,Mi (Wti)− qNi (Wti)

∣∣2]+ max
0≤i≤N−1

E
[∣∣qNi (Wti)− y(ti,Wti)

∣∣2]
+

N−1∑
i=0

∆E
[∣∣z(ti,Wti)− zNi (Wti)

∣∣2ds]+
N−1∑
i=0

∆E
[∣∣zN,Mi (Ws)− zNi (Wti)

∣∣2ds])

and it suffices to prove the bounds

max
0≤i≤N−1

E
[∣∣qNi (Wti)− y(ti,Wti)

∣∣2]+
N−1∑
i=0

∆E
[∣∣z(ti,Wti)− zNi (Wti)

∣∣2] ≤ c∆2 (1.11)

and RN ≤ c∆3 for the first statement of Theorem 1.3.3. We focus on the bound on RN

and derive the bounds in (1.11) along the way. It suffices to show that∣∣∣Ei [f (s,Ws, Ys, Zs)− f
(
ti,Wti , q

N
i , z

N
i

)] ∣∣∣ ≤ c∆ (1.12)

for any ti ∈ π and s ∈ [ti, ti+1], since then

RN =
N−1∑
i=0

E

[(∫ ti+1

ti

Ei
[
f (s,Ws, Ys, Zs)− f

(
ti,Wti , q

N
i , z

N
i

)]
ds

)2
]

≤
N−1∑
i=0

E

[(∫ ti+1

ti

c∆ds

)2
]

≤ c∆3.

In order to prove (1.12), we set for arbitrary but fixed ti ∈ π and s ∈ [ti, ti+1]

a :=
(
ti,W

(1)
ti , . . . ,W

(D)
ti , qNi (Wti), z

N,(1)
i (Wti), . . . , z

N,(D)
i (Wti)

)T
ã :=

(
s,W (1)

s , . . . ,W (D)
s , Ys, Z

(1)
s , . . . , Z(D)

s

)T
.

Then, a Taylor expansion of f yields

Ei
[
f (s,Ws, Ys, Zs)− f

(
ti,Wti , q

N
i , z

N
i

)]
= Ei

[
∇f(a)T (a− ã) +

1

2

∫ 1

0

(1−Θ)(a− ã)T Hessf (a+ Θ(ã− a))(a− ã)dΘ

]
,

where ∇f denotes the gradient and Hessf the Hessian matrix of f . Using that f has

54



bounded derivatives and a is Fi-measurable we obtain

Ei
[
f (s,Ws, Ys, Zs)− f

(
ti,Wti , q

N
i , z

N
i

)]
≤ ∇f(a)TEi [(a− ã)] +

1

2
sup

Θ∈[0,1]

∣∣Ei [(a− ã)THf (a+ Θ(ã− a))(a− ã)
]∣∣

≤ Cf

2D+2∑
l=1

∣∣Ei [a(l) − ã(l)
] ∣∣+

1

2
CfEi

[
2D+2∑
l,k=1

∣∣a(l) − ã(l)
∣∣∣∣a(k) − ã(k)

∣∣]

≤ Cf

2D+2∑
l=1

∣∣Ei [a(l) − ã(l)
] ∣∣+

1

2
Cf

2D+2∑
l,k=1

Ei

[∣∣a(l) − ã(l)
∣∣2] 1

2
Ei

[∣∣a(k) − ã(k)
∣∣2] 1

2

and it suffices to show that it holds |Ei[(a(l) − ã(l))p]| ≤ c∆ for l ∈ {1, . . . , 2D + 2}
and p ∈ {1, 2}. This is trivial for l = 1, . . . ,D + 1, since W is a Brownian motion

and the step width of the time grid is ∆. For the remaining values of l, we either have

a(l)− ã(l) = y(s,Ws)− qNi (Wti) or a(l)− ã(l) = z(d)(s,Ws)− zN,(d)
i (Wti) for a d ∈ {1, . . . ,D}.

We first consider the terms y(s,Ws)− qNi (Wti).

By the definition of qNi , we get for p ∈ {1, 2} with Hölder’s inequality that

Ei
[(
y(s,Ws)− qNi (Wti)

)p]
= Ei

[(
y(s,Ws)− Ei

[
y(ti+1,Wti+1

)
])p]

= Ei

[(
y(s,Ws)− Ei

[
y(ti,Wti)−

∫ ti+1

ti

f(l,Wl, Yl, Zl)dl +

∫ ti+1

ti

ZldWl

])p]
= Ei

[(
y(s,Ws)− Ei

[
y(ti,Wti)−

∫ ti+1

ti

f(l,Wl, Yl, Zl)dl

])p]
= pEi [(y(s,Ws)− y(ti,Wti))

p] + pEi

[(∫ ti+1

ti

f(l,Wl, Yl, Zl)dl

)p]
≤ pEi [(y(s,Ws)− y(ti,Wti))

p] + p∆pCp
f

where we used that f is uniformly bounded by Cf in the last step. Note that for s = ti,

this shows in particular that

Ei

[(
y(s,Ws)− qNi (Wti)

)2
]
≤ c∆2

which is the first part of the bound in (1.11). We now set ãy := (s,W
(1)
s , . . . ,W

(D)
s )T and
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ay := (ti,W
(1)
ti , . . . ,W

(D)
ti )T . Then, for p = 2, a Taylor expansion on y yields

Ei
[
(y(s,Ws)− y(ti,Wti))

2] = Ei

[(∫ 1

0

(1−Θ)∇y(ay + Θ(ãy − ay))(ay − ãy)dΘ

)2
]

≤ Ei

( sup
Θ∈[0,1]

∇y(ay + Θ(ãy − ay))(ay − ãy)

)2


≤ C2
yEi

[
|ay − ãy|2

]
≤ c∆.

Here we used that the derivatives of y are bounded by a constant Cy and that it holds for

the entries of ay − ãy

Ei
[
|a(d)
y − ã(d)

y |2
]

=

{
Ei [|s− ti|2] d = 1

Ei

[
W

(d−1)
s −W (d−1)

ti |2
]

d > 1

≤

{
∆2 d = 1

∆ d > 1
,

since W is a Brownian motion. In the case p = 1, we have to continue the Taylor expansion

an additional step and get similarly:

Ei [(y(s,Ws)− y(ti,Wti))]

= Ei

[
∇y(ay)

T (ay − ãy) +
1

2

∫ 1

0

(1−Θ)(ay − ãy)T Hessy(ay + Θ(ãy − ay))(ay − ãy)dΘ

]
≤ Ei

[
∇y(ay)

T (ay − ãy)
]

+
1

2
Ei

[
sup

Θ∈[0,1]

(ay − ãy)T Hessy(ay + Θ(ãy − ay))(ay − ãy)

]
.

Now ∇y(ay) is Fi-measurable and Ei[(ay− ãy)] = (s− ti, 0, . . . , 0)T , since Ws−Wti is inde-

pendent of Fti and has expectation 0. Additionally, using that y has bounded derivatives,

we conclude

Ei [(y(s,Ws)− y(ti,Wti))] ≤ Cy∆ +
1

2

1+D∑
d,l=1

CfEi
[
|(a(d)

y − ã(d)
y )|2

] 1
2 Ei

[
|(a(l)

y − ã(l)
y )|2

] 1
2

≤ c∆.

It remains to show that Ei[
(
z(d)(s,Ws)− zNi (Wti)

(d)
)p

] is bounded by a multiple of ∆ for

p ∈ {0, 1}. For this, we first rewrite the d− th component of zNi by a Taylor expansion on
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y as

z
N,(d)
i = Ei

[
∆W

(d)
i+1

∆
y(ti+1,Wti+1

)

]

= Ei

[
∆W

(d)
i+1

∆

(
y(ti,Wti) +

D∑
e=1

∂

∂x(e)
y(ti,Wti)(∆W

(e)
i+1) +

∂

∂t
y(ti,Wti)∆

+
1

2

D∑
e,l=1

∂2

∂x(e)∂x(l)
y(ti,Wti)(∆W

(e)
i+1)(∆W

(l)
i+1) +

1

2

D∑
e=1

∂2

∂t∂x(e)
y(ti,Wti)(∆W

(e)
i+1)∆

+
1

2

∂2

∂2t
y(ti,Wti)∆

2 +
1

6

∫ 1

0

(1−Θ)

(
∂3

∂3t
y(ti + Θ∆,Wti + Θ∆Wi+1)∆3

+
D∑

e,l,k=1

∂3

∂x(e)∂x(l)∂x(k)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
i+1)(∆W

(l)
i+1)(∆W

(k)
i+1)

+
D∑

e,l=1

∂3

∂t∂x(e)∂x(l)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
i+1)(∆W

(l)
i+1)∆

+
D∑
e=1

∂3

∂2t∂x(e)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
i+1)∆2

)
dΘ

)]
.

Since the derivatives of y are Fi-measurable when evaluated in (ti,Wti) and the components

of Wti+1
−Wti are independent with mean 0 each, most terms in the right hand side of the
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equality above vanish and we get

z
N,(d)
i = Ei

[
∆W

(d)
i+1

∆

∂

∂x(d)
y(ti,Wti)∆W

(d)
i+1

]

+
1

2
Ei

[
∆W

(d)
i+1

∆

∂2

∂t∂x(d)
y(ti,Wti)∆W

(d)
i+1∆

]

+
1

6
Ei

[
∆W

(d)
i+1

∆

∫ 1

0

(1−Θ)

(
∂3

∂3t
y(ti + Θ∆,Wti + Θ∆Wi+1)∆3

+
D∑

e,l,k=1

∂3

∂x(e)∂x(l)∂x(k)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
i+1)(∆W

(l)
i+1)(∆W

(k)
i+1)

+
D∑

e,l=1

∂3

∂t∂x(e)∂x(l)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
i+1)(∆W

(l)
i+1)∆

+
D∑
e=1

∂3

∂2t∂x(e)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
i+1)∆2

)
dΘ

]
=

∂

∂x(d)
y(ti,Wti) +RT

where we set

RT :=
1

2

∂2

∂t∂x(d)
y(ti,Wti)∆ +

1

6
Ei

[
∆W

(d)
i+1

∆

∫ 1

0

(1−Θ)

(
∂3

∂3t
y(ti + Θ∆,Wti + Θ∆Wi+1)∆3

+
D∑

e,l,k=1

∂3

∂x(e)∂x(l)∂x(k)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
ti+1

)(∆W
(l)
ti+1

)(∆W
(k)
ti+1

)

+
D∑

e,l=1

∂3

∂t∂x(e)∂x(l)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
i+1)(∆W

(l)
i+1)∆

+
D∑
e=1

∂3

∂2t∂x(e)
y(ti + Θ∆,Wti + Θ∆Wi+1)(∆W

(e)
i+1)∆2

)
dΘ

]
.
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Now since the derivatives of y are bounded by assumption, we get

|RT | ≤ cCy

(
∆ + ∆2Ei

[
|∆W (d)

i+1|
]

+
D∑

e,l,k=1

1

∆
Ei

[
|W (d)

ti+1
−W (d)

ti ||W
(e)
ti+1
−W (e)

ti ||W
(l)
ti+1
−W (l)

ti ||W
(k)
ti+1
−W (k)

ti |
]

+
D∑

e,l=1

Ei

[
|W (d)

ti+1
−W (d)

ti ||W
(e)
ti+1
−W (e)

ti ||W
(l)
ti+1
−W (l)

ti |
]

+
D∑
e=1

∆Ei

[
|W (d)

ti+1
−W (d)

ti ||W
(e)
ti+1
−W (e)

ti |
])

≤ c
(

∆ + ∆
5
2 + D3∆ + D2∆

3
2 + D∆2

)
≤ c∆.

Then, since z(s,Ws) = ∇xy(s,Ws), where ∇xy denotes the vector of first degree partial

derivatives of y with respect to x(1), . . . , x(D), it follows

Ei

[(
z(d)(s,Ws)− zN,(d)

i

)p]
= Ei

[(
∂

∂x(d)
y(s,Ws)−

∂

∂x(d)
y(ti,Wti)−RT

)p]
≤ pEi

[(
∂

∂x(d)
y(s,Ws)−

∂

∂x(d)
y(ti,Wti)

)p]
+ pEi [|R|p]

≤ pEi

[(
∂

∂x(d)
y(s,Ws)−

∂

∂x(d)
y(ti,Wti)

)p]
+ c∆p.

(1.13)

The term Ei[
∂

∂x(d)y(s,Ws)− ∂
∂x(d)y(ti,Wti))

p] is for p ∈ {1, 2} bounded by c∆ for a constant c

not depending on ∆, which follows by the same calculations used for the term Ei[(y(s,Ws)−
y(ti,Wti))

p] where we have to replace y by its first partial derivative ∂
∂x(d)y. Note that the

Taylor expansion than uses the derivatives of y up to degree 3, which still all exist are

bounded by assumption. This finishes the proof of (1.12) and hence the bound on RN
i .

Also, note that (1.13) for s = ti shows in particular that

Ei

[(
z(d)(ti,Wti)− z

N,(d)
i

)p]
≤ c∆

which completes the proof of the bound in (1.11).

It remains to show that, whenever y bounded and s+ 1 times differentiable with bounded

derivatives, the functions qNi and zNi are bounded as well and are respectively s + 1 and

s times differentiable with bounded derivatives. For this, we can simply use that the
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components of ∆Wi+1 are independent and Gaussian-distributed with mean 0 and variance

∆ each. Hence we have

qNi (x) = Ei
[
y(ti+1,Wti+1

)
∣∣Wti = x

]
= Ei [y(ti+1,∆Wi+1 +Wti)|Wti = x]

=

∫
RD

y(ti+1, x̃+ x)
1

(
√

2π∆)D
e−

1
2

∑D
d=1

(x̃i)
2

∆ l(dx̃).

Then, since y is differentiable in x with bounded derivative, we can partial differentiate

under the integral and get

∂

∂x(d)
qNi (x) =

∫
RD

∂

∂x(d)
y(ti+1, x̃+ x)

1

(
√

2π∆)D
e−

1
2

∑D
d=1

(x̃i)
2

∆ l(dx̃)

= E

[
∂

∂x(d)
y(ti,Wti+1

)

∣∣∣∣Wti = x

]
for each d ∈ {1, . . . ,D}, which shows that qNi is continuous differentiable with bounded

derivative. The same argumentation can be applied for the higher order derivatives.

Next, we consider the first coordinate of zNi as the derivatives of the others follow analo-

gously. By the definition of zNi and Fubini’s law, we have

z
N,(1)
i (x) = Ei

[
∆W

(1)
i+1

∆
y(ti+1,Wti+1

)

∣∣∣∣∣Wti = x

]

=

∫
R
. . .

∫
R

D∏
d=2

1√
2π∆

e−
(x̃(d))

2

2∆

∫
R

x̃(1)

∆

1√
2π∆

e−
(x̃(1))

2

2∆ y(ti+1, x+ x̃)dx̃(1)dx̃(2) . . . dx̃(D).

Since y is bounded by assumption, integration by parts leads to

z
N,(1)
i (x) =

∫
R
. . .

∫
R

D∏
d=2

1√
2π∆

e−
(x̃(d))

2

2∆

∫
R

1√
2π∆

e−
(x̃(1))

2

2∆
∂

∂x(1)
y(ti+1, x+ x̃)dx̃(1)dx̃(2) . . . dx̃(D)

= Ei

[
∂

∂x(1)
y(ti+1, x+ x̃)

∣∣∣∣Wti = x

]
=

∂

∂x(1)
qN(x).

Hence the statement for zNi follows by the one for qNi .
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Chapter 2

Convergence rates lower bounds for

BSDEs with convex driver

In this section, we analyze an algorithm for constructing lower bounds for BSDEs with a

convex driver. Here the algorithm itself is not new, as it was already presented in a similar

form in Belomestny et al. (2014) or Bender et al. (2017b). Usually, it is paired with a

second algorithm that returns an upper bound which allows the construction of confidence

intervals for the true solution. While this method is well researched in the special case of

Bermudan option pricing (see e.g. Andersen and Broadie, 2004, Belomestny et al., 2014,

Belomestny, 2011), where it was initially introduced, results regarding convergence rates

in the general case are still lacking. The aim of this chapter is a detailed error analysis in

order to provide such results in a general setting.

In Section 2.1, we introduce the setting under which we perform the analysis. Here we

start with a dynamic programming equation linked to a time discretization of a BSDE

with a convex driver and review how this equation can be presented as a maximization

problem. Then in Section 2.2, we present the algorithm for solving this maximization

problem approximately, which returns lower bounds for the true solution. Here we also

state the rate of convergence of the algorithm, which is the main result of this chapter.

Section 2.3 is then dedicated to the proof of this result which we accomplish by a complete

error analysis where we derive bounds for the bias and the variance of the approximation.

We illustrate our results in a numerical example in Section 2.4, where we test the algorithm

with an option pricing problem under credit value adjustment.

This is continued work from the Master thesis ”Multi-Level-Monte-Carlo für nicht-lineare

Optionsbewertungsprobleme”(Meyer, 2017). There, most components of the equation were

assumed to be bounded. The focus was on a multi-level approach in a setting where the

maximization problem was controlled by a process with only two different states, much

similar to the work of Belomestny et al. (2015) focused on Bermudan option pricing. In

this chapter, in comparison, we refrain from a multi-level approximation. We focus only on
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a detailed error analysis but consider a much more general class of dynamic programming

equations with weaker integrability assumptions instead of bounded coefficients and allow

a much more general class of control processes.

Notation:

Since we focus on a discrete time setting in this chapter, the notation may vary slightly

from the one used in Chapter 1. We try, however, to keep the notation mostly consistent

and denote similar objects analog to their corresponding terms in the continuous time

setting in Chapter 1.

2.1 Main setting

Let (Ω,F,F, P ) be a filtered probablilty space in discrete time. Furthermore, let X be a

D-dimensional Markovian Process in discrete time defined by

X0 := x0

Xj := h (Xj−1, Bj) j = 1, . . . , J

for a deterministic function h : RD × RD → RD and initial value x0 ∈ RD. We suppose

that the process B is at any time j given by

Bj :=
(

∆W
(1)
j , . . . ,∆W

(D)
j

)
for independent Gaussian random variables ∆W

(d)
j , d = 1, . . . , D with mean zero and

variance ∆ each, such that W
(d)
j is Fj-measurable and independent of Fj−1. Throughout

this chapter, we then consider dynamic programming equations of the form

YJ := ξ(XJ)

Yj := E [Yj+1|Fj] + ∆fj (Xj, E [βj+1Yj+1|Fj]) , j = J − 1, . . . , 0
(2.1)

for measurable functions ξ : RD → R and fj : RD × RD+1 → R, where the process β is

defined as

βj :=

1,

[
∆W

(1)
j

]
ς
√

∆

∆
, . . . ,

[
∆W

(D)
j

]
ς
√

∆

∆


T

j = 1, . . . , J

and [.]ς
√

∆ : R→ [−ς
√

∆, ς
√

∆] is the truncation function defined by

[x]ς
√

∆ = sign(x) min
{
ς
√

∆, |x|
}
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for a constant ς > 0.

Remark 2.1.1. Equations of this type not only appear in numerous stochastic control

problems but are also directly linked to BSDEs in the following way:

Consider a forward-backward stochastic differential equation with terminal time T , driven

by a D-dimensional Brownian motion W of the form

X0 = x0

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt,Yt,Zt)dt− ZtdWt

YT = ξ(XT )

and an equidistant time grid π = {t0 = 0, t1 = ∆, . . . , tJ = T} with step width ∆. By the

usual steps in discretizing the BSDE, we can write

Yti = E
[
Yti |σ

(
(Ws)s≤ti

)]
= E

[
Yti+1

+

∫ ti+1

ti

f(s,Xs,Ys,Zs)ds

∣∣∣∣σ ((Ws)s≤ti
)]

≈ E
[
Yti+1

∣∣σ((Ws)s≤ti)
]

+ ∆f
(
ti,Xti , E

[
Yti+1

∣∣σ ((Ws)s≤ti
)]
,Zti

)
or, similarly without the conditional expectation

Yti ≈ Yti+1
+ ∆f(ti,Xti ,Yti ,Zti)− Zti(Wti+1

−Wti). (2.2)

Multiplying both sides in (2.2) with the Brownian increment and taking conditional ex-

pectation afterward leads to

Zti ≈ E

[
Wti+1

−Wti

∆
Yti+1

∣∣∣∣σ ((Ws)s≤ti
)]

and we obtain the discretization scheme

YJ := ξ(XT )

Yj := E
[
Yj+1

∣∣σ ((Ws)s≤ti
)]

+ ∆f
(
tj,Xtj , E

[
Yj+1

∣∣σ ((Ws)s≤ti
)]
, Zj
)

j = 0, . . . , J − 1

Zj := E

[
Wti+1

−Wti

∆
Yj+1

∣∣∣∣σ ((Ws)s≤ti
)]

j = 0, . . . , J − 1.

Here, similarly to Chapter 1, it holds under appropriate assumptions on the components
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that

lim
N→∞

(
max

i=0,...,N−1
E
[
|Yi − Yt|2

]
+

N−1∑
i=0

E

[∫ ti+1

ti

|Zi − Zs|ds2

])
= 0,

see e.g. Zhang (2001). Then, by truncating the Brownian increments in the definition of

Zj and setting

f̃j(x, y) := f(tj, x, y
(1), (y(2), . . . , y(D+1))T )

for x ∈ RD and y ∈ RD+1 and

β̃j+1 :=

1,

[
W

(1)
ti+1
−W

(1)
ti

]
ς
√

∆

∆
, . . . ,

[
W

(D)
ti+1
−W

(D)
ti

]
ς
√

∆

∆


T

,

we can rewrite the discretization scheme in the form of the dynamic programming equation

(2.1) as

YJ = ξ(XJ)

Yj = E
[
Yj+1

∣∣σ ((Ws)s≤ti
)]

+ ∆f̃j

(
Xtj , E

[
β̃j+1Yj+1

∣∣∣σ ((Ws)s≤ti
)])

.
(2.3)

By these considerations, we can interpret ∆ as the step length of an equidistant time grid

on the interval [0, T ] for T = J∆ and Bj as the increment of a D-dimensional Brownian

motion between two time points in the grid.

Throughout this chapter the following assumptions are in charge:

Assumptions 2.1.2. Standing assumptions

(Ac) For each x ∈ RD and j ∈ {0, . . . , J − 1}, the map y 7→ fj(x, y) is convex.

(Af ) The functions fj are uniformly Lipschitz continuous with constant Lf and it holds

J−1∑
j=0

E[|fj(Xj, 0)|2+ε] <∞

for some ε > 0.

(Aξ) The function ξ : RD → R is deterministic and it holds

E[|ξ(XJ)|2+ε] <∞

for some ε > 0.

(AM) The parameter ∆ is sufficiently small such that 1 ≥ Lf
√

∆2 + ς2D∆.
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When viewed as discretization of a BSDE, the Lipschitz continuity of the functions fj
results from the usual conditions for BSDEs. Paired with the integrability conditions on ξ

and fj, this especially ensures that the P -almost surely unique solution to (2.1) satisfies

J−1∑
j=0

E
[
|Yj|2+ε

]
<∞

where the integrability follows easily by a backward induction using Minkowski’s inequality

and the Lipschitz continuity of the functions fj. Assumption (AM) can be thought of a

monotony assumption, as it ensures the following comparison principle.

Corollary 2.1.3. Let Y and Ỹ be Fj+1-measurable random variables such that Y ≥ Ỹ P -

almost surely. Then

E
[
Y
∣∣Fj]+ ∆fj

(
Xj, E

[
βj+1, Y

∣∣Fj]) ≥ E
[
Ỹ
∣∣Fj]+ ∆fj

(
Xj, E

[
βj+1Ỹ

∣∣Fj]).
Proof. By the Lipschitz continuity of the functions fj, Hölder’s inequality and assumption

(AM), we have

E[Y |Fj]− E[Ỹ |Fj] + ∆
(
fj(Xj, E[βj+1, Y |Fj])− fj(Xj, E[βj+1, Ỹ |Fj]

)
≥ Ej[Y − Ỹ |Fj]−∆Lf

∣∣∣E[βj+1, Y |Fj]− E[βj+1, Ỹ |Fj]
∣∣∣

≥ E[(Y − Ỹ )|Fj]−∆LfE[|βj+1|(Y − Ỹ )|Fj]

≥ E[(Y − Ỹ )|Fj]

(
1−∆Lf

√
1 + ς2

D

∆

)
= E[(Y − Ỹ )|Fj]

(
1− Lf

√
∆2 + ς2D∆

)
≥ 0

where we used that Y − Ỹ ≥ 0 P -almost surely.

The convexity assumption is crucial for the algorithm we will present in the next section.

It does not seem to be too restrictive since equations of the form (2.3) were mainly studied

due to their application in financial mathematics, where numerous non-linear option pricing

problems can be related to (2.1) such that the convexity assumption holds true. In the

following, we give some examples of such option pricing problems.

Example 2.1.4.

(i) American/Bermudan option pricing:

The simplest framework that fits in the setting and lead to equations of the form (2.1)

in the first place (see e.g. Andersen and Broadie, 2004 and Haugh and Kogan, 2004)

is the pricing of American options. Consider a standard Black-Scholes market with
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one stock X given by

dXt = rXt + σXtdWt

under the risk-free measure, where r is the interest rate in the market, σ the volatility

of the stock and W is a Brownian motion. It is well known that the value function of

an American option on X is then given by

Yt(x) = max
t≤τ≤T

E[g(τ,Xτ )|Xt = x]

where the maximum runs over all F-stopping times τ and g is the discounted payoff

function in case of execution of the option (see e.g. Haugh and Kogan, 2004). Then

typically, the value function is approximated by the one of a Bermudan option with

the possible exercise dates t1, . . . tJ for large J , which leads to

Ytj(x) ≈ sup
τ∈TJ

E[g(Xτ )|Xtj = x].

Here TJ is the set of all F-stopping times taking values in {t0, t1, . . . , tJ}. Then making

use of the finite possible exercise dates, we can approximate the price process as

Yj = max{gj(Xj, E[Yj+1|Xj]}
= E[Yj+1|Xj] + ∆fj(Xj, E[βj+1Yj+1])

with Xj := Xtj , fj(x, y) := 1
∆

maxρ∈{0,1} ρ(g(x)− y(1)) and β defined as in (2.1).

(ii) Option pricing with credit value adjustment:

A second example is option pricing in a model with a default risk of the trading

partner. Consider a BSDE of the form

dYt = rYt − (λ(R− 1)Yt)−dt+ ZTdW̃t, YT = g(XT )

for constants λ > 0, r ≥ 0, R ∈ [0, 1] and a Lipschitz continuous function g : R→ R.

Once again we suppose that X is a (possibly multidimensional) Black-Scholes model,

i.e., the components of X are given by

dX
(d)
t = X

(d)
t µdt+ X

(d)
t σdW

(d)
t

where W(d) is the d-th component of a D-dimensional Brownian motion. Then

−(Yt)t∈[0,T ] describes the price process of an option with payoff-function −g at the

maturity T with credit value adjustment, assuming that default of the trading partner

did not occur prior to time t and that default occurs at the first jump of a Poisson

process with intensity λ (see e.g. Crépey, 2015, Duffie et al., 1996). Here r is the
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risk-free interest rate, σ the volatility of the stocks and R is the recovery rate in case

of default. By discretizing the BSDE as described in Remark 2.1.1 we obtain

YT ≈ YJ = g(XT )

Ytj ≈ Yj := Ej[Yj+1] + ∆(−rEj[Yj+1] + (λ(R− 1)Ej[Yj+1])−)

which is in the form of (2.1) with fj(x, y) = maxρ∈{−r,−(r+λ(1−R))} ρy
(1). The formula-

tion in terms of the negated price process is necessary to obtain convex functions fj.

This example will be covered in more detail in Section 2.4 as it is used as a numerical

example to illustrate the theoretical results.

(iii) Option pricing under funding costs:

As a final example, we consider option pricing under funding costs in a financial mar-

ket with the different interest rates Rl for lending money and Rb for borrowing money.

Suppose there are D risky stocks (X(1), . . . ,X(D)) which are modeled independently

with the same drift µ and volatility σ as a solution of the SDEs

dX
(d)
t = X

(d)
t µdt+ X

(d)
t σdW

(d)
t

where W(d) is the d-th component of a D-dimensional Brownian motion. Consider an

option on those D stocks with square-integrable payoff g(XT ) at maturity T . Then,

the value process Y and a replicant portfolio Z for the claim g(XT ) are given by the

solution (Y,Z) of the BSDE

YT = g(XT )

dYt = −f(t,Yt,Zt)dt+ ZtdWt

with

f(t, y, z) = −Rly − µ−Rl

σ

D∑
d=1

zd + (Rb −Rl)

(
y −

D∑
d=1

1

σ
zd

)
−

,

see e.g. Bergman (1995) and El Karoui et al. (1997). Here Y models the price of the

portfolio and Z the amount of money held in the D stocks. Discretizing the BSDE

on an equidistant time grid leads to

YT = YJ = g(XJ)

Ytj ≈ Yj = Ej[Yj+1] + ∆
(
−RleT1E[βj+1Yj+1]

−
D+1∑
d=2

µ−Rl

σ
eTdE[βj+1Yj+1] + (Rb −Rl)

(
e1 −

D+1∑
d=2

ed
σ

)T

E[βj+1Yj+1])−

)
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where we denote the i− th canonical basis vector in RD+1 with ei and set

βj+1 :=

1,

[
W

(1)
ti+1
−W

(1)
ti

]
ς
√

∆

∆
, . . . ,

[
W

(D)
ti+1
−W

(D)
ti

]
ς
√

∆

∆


T

for j = 0, . . . , J . Through rewriting the negative part, we get the representation

YJ = g(XJ)

Yj = Ej[Yj+1] + ∆fj(x,Ej[βj+1Yj+1])

with f(x, y) := max{ρTy, ρ̃Ty} and

ρ :=

(
−Rl,−µ−R

l

σ
, . . . ,−µ−R

l

σ

)T
,

ρ̃ :=

(
−Rb,−µ−R

b

σ
, . . . ,−µ−R

b

σ

)T
.

In all the examples above, the functions fj(x, .) are not just convex but can, for fixed x,

even be written as the pointwise maximum of a finite set of affine functions. Motivated

by this, we will consider (2.1) once under the standing assumptions defined above and

once additionally in the more restrictive setting where we replace assumption (Ac) with

the following stronger assumption.

Assumptions 2.1.5. Special case

(AS) For every j = 0, . . . , J − 1, the function fj is given by

fj(x, y) = max
k∈K

kTy + kT bj(x) + aj(x)

for a finite set K = {k1, . . . , kκ} ⊂ RD+1 and deterministic, bounded functions bj :

RD → RD+1 and aj : RD → R.

The algorithm we will present in the next chapter is based on an alternative representation

of Y in the form of an optimization problem using the convex conjugates of the functions

fj, which are defined pointwise for each x ∈ RD as

f#
j (x, ρ) = sup

y∈RD+1

ρTy − fj(x, y)

where we restrict these functions on their effective domain

D
(j,x)
f :=

{
ρ ∈ RD+1 : f#

j (x, ρ) <∞
}
.
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Using the convex conjugates the following alternative representation of Y can be derived.

Theorem 2.1.6. Under the standing assumptions it holds for all j ∈ 0, . . . , J

Yj = sup
ρ∈D

f#

E

[
ξ
J−1∏
i=j

(
∆ρTi βi+1 + 1

)
−

J−1∑
l=j

∆f#
l (Xl, ρl)

l−1∏
i=j

(
∆ρTi βi+1 + 1

)∣∣∣∣∣Fj
]

(2.4)

where Df# is the set of all F-adapted processes ρ = (ρ0, . . . , ρJ−1) such that

J−1∑
i=0

E
[
|f#
i (Xi, ρi)|2+ε

]
<∞.

Furthermore, there exists a process ρ∗ ∈ Df# that maximizes (2.4).

A proof under weaker assumptions (which translate to a weaker integrability of the convex

conjugates) can be found in Bender et al. (2017b). We state the analog proof again as it

illustrates important features of the representation. We will split up the proof and first

show one key argument in a general formulation which will be particularly useful later on.

Lemma 2.1.7. Let g : Ω×Rd → R be G×B(Rd)-measurable for a σ-field G on Ω such that

the map y 7→ g(ω, y) is convex and Lipschitz continuous for all ω ∈ Ω and E[|g(0)|p] ≤ ∞
for a p > 1. Furthermore, let C be G-measurable, Rd-valued random variable in Lp(Ω,G, P ).

Then there exists a G-measurable, Rd-valued random variable ρ such that

g(ω,C) = ρTC − g#(ω, ρ)

and it holds E[|g#(ρ)|p] <∞.

Proof. Let C be an arbitrary Rd-valued random variable in Lp(Ω,G, P ). Since g(ω, .) is

convex and Lipschitz continuous for all ω ∈ Ω and hence closed, it follows by the Fenchel-

Moreau theorem that

(g#)#(ω, .) = g(ω, .)

pointwise for all ω ∈ Ω. Hence we have for any G-measurable, Rd-valued random variable

ρ̃ that

g(ω,C) = sup
r∈Rd

rTC − g#(ω, r) ≥ ρ̃TC − g#(ω, ρ̃) (2.5)

pointwise for all ω ∈ Ω. On the other hand, it holds due to the Lipschitz continuity of g

that

g(ω,C)− g(ω,C + C̃) ≤ |g(ω,C)− g(ω,C + C̃)| ≤ L|C̃|,
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which implies

g(ω,C + C̃) ≥ g(ω,C)− L|C̃|

for all Rd-valued random variables C̃ ∈ Lp(Ω,G, P ). It follows from Theorem 7.10 in

Cheridito et al. (2015) that there exists a G-measurable subgradient of g at C, i.e., a

random variable ρ such that

g(ω,C + C̃)− g(ω,C) ≥ ρT C̃

for all G-measurable, Rd-valued random variables C̃. In particular, it holds for any r ∈ Rd

and C̃ := r − C that

ρTC − g(ω,C) ≥ ρT r − g(ω, r).

Now taking the supremum over all r ∈ Rd, we conclude

ρTC − g#(ω, ρ) ≥ g(ω,C)

and equality follows by (2.5). For the integrability condition, note that we have by the

Lipschitz continuity of g that

E
[
|g#(ρ)|p

] 1
p = E

[
|ρTC − g(C)|p

] 1
p

≤ E
[
|ρTC|p

] 1
p + E [|g(0)− g(C)|p]

1
p + E [|g(0)|p]

1
p

≤ 2LE [|C|p]
1
p + E [|g(0)|p]

1
p <∞

by Minkowski’s inequality and the integrability assumptions on g and C. Here we used that

|ρ| ≤ L for each ρ in the effective domain of g#, where we denote the Lipschitz constant of

g with L. This fact is proven later on in Lemma 2.3.1. Note that this shows in particular

that ρ(ω) is for P -almost every ω an element of the effective domain of g#, i.e., it holds

g#(ω, ρ) <∞ P -almost surely.

Proof. Proof of Theorem 2.1.6

Define for each ρ ∈ Df# the discrete time processes (Θ(ρ)j)j=0,...,J and (Ŷj(ρ))j=0,...,J as

ΘJ(ρ) = ξ(XJ)

Θj(ρ) = ξ(XJ)
J−1∏
i=j

(
∆ρTi βi+1 + 1

)
−

J−1∑
l=j

∆f#
l (Xl, ρl)

l−1∏
i=j

(
∆ρTi βi+1 + 1

)
j = 0, . . . , J − 1

Ŷj(ρ) = E [Θj(ρ)|Fj] j = 0, . . . , J.
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Then, by the tower property of the conditional expectation and the Fenchel-Moreau theo-

rem, we have for any j ∈ {0, . . . , J − 1}

Ŷj(ρ) = E [Θj(ρ)|Fj]

= E

[
ξ(XJ)

J−1∏
i=j

(
∆ρTi βi+1 + 1

)
−

J−1∑
l=j

∆f#
l (Xl, ρl)

l−1∏
i=j

(
∆ρTi βi+1 + 1

)∣∣∣∣∣Fj
]

= E [Θj+1(ρ)|Fj] + ∆ρTj E [βj+1Θj+1(ρ)|Fj]−∆f#
j (Xj, ρj)

= E
[
Ŷj+1(ρ)

∣∣∣Fj]+ ∆ρTj E
[
βj+1Ŷj+1(ρ)

∣∣∣Fj]−∆f#
j (Xj, ρj)

≤ E
[
Ŷj+1(ρ)

∣∣∣Fj]+ ∆fj

(
Xj, E

[
βj+1Ŷj+1(ρ)

∣∣∣Fj]) .
(2.6)

On the other hand, it follows for the true solution Y of (2.1) recursively backward in time by

Lemma 2.1.7 that there exists a process ρ∗ = (ρ∗0, . . . , ρ
∗
J−1) such that ρ∗j is Fj-measurable

and solves the equation

(ρ∗j)
TE [βj+1Yj+1|Fj]− f#

j (Xj, ρ
∗
j) = fj (Xj, E [βj+1, Yj+1|Fj]) .

The,n since ŶJ = ξ(XJ) = YJ for all ρ ∈ Df# , this yields recursively backward in time that

Yj = Ŷj(ρ
∗) = E

[
ξ
J−1∏
i=j

(
∆(ρ∗i )

Tβi+1 + 1
)
−

J−1∑
l=j

∆f#
l (Xl, ρ

∗
l )

l−1∏
i=j

(
∆(ρ∗i )

Tβi+1 + 1
)∣∣∣∣∣Fj

]

= sup
ρ∈D

f#

E

[
ξ
J−1∏
i=j

(
∆ρTi βi+1 + 1

)
−

J−1∑
l=j

∆f#
l (Xl, ρl)

l−1∏
i=j

(
∆ρTi βi+1 + 1

)∣∣∣∣∣Fj
]

for all j ∈ {0, . . . , J − 1} where ρ∗ ∈ Df# follows from Lemma 2.1.7.

Note that for any ρ ∈ Df# , we can define the process Ŷ (ρ) as a low biased approximation

of Y due to (2.6) and the comparison principle in Corollary 2.1.3. Furthermore, the proof

shows that at any time j, a control ρj is optimal if and only if it is a solution to the equation

ρTj E [βj+1Yj+1|Fj]− f#
j (Xj, ρj))E [Yj+1|Fj] = fj (Xj, E [βj+1Yj+1|Fj])

where Lemma 2.1.7 guarantees the existence and that we can choose the solution Fj-

measurable. Throughout the rest of this chapter, we denote with ρ∗ such an adapted

optimal control process, i.e., a process that maximizes (2.4).
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2.2 Algorithm and complexity

In this section, we state an algorithm for constructing a lower biased approximation for Y

using the representation in Theorem 2.1.6 and state the complexity of this algorithm once

under the standing assumptions and once under the additional assumption (AS). Those

rates are the main result of this chapter and will be derived in detail in the next section.

We note again that the algorithm was already presented by Bender et al. (2017b) and the

contribution of this chapter is the detailed error analysis and derivation of convergence

rates which, to our best knowledge, has only been done for the special case of American

option pricing so far.

The idea of the algorithm is to first construct approximations ρ̂ of the optimal control

process ρ∗ and use these to derive approximations Ŷ (ρ̂) for Y . As shown in the previous

section, in dependence on ω, the value ρ∗j is given by a solution to the equation

ρTj E [βj+1Yj+1|Fj]− f#
j (Xj, ρj) = fj (Xj, E [βj+1, Yj+1|Fj]) .

Assuming that the functions fj and f#
j can be evaluated, this allows us to calculate ρ∗

for given values of the conditional expectation E[βj+1Yj+1|Fj]. However, since the condi-

tional expectations can, in general, not be calculated in a closed form, they have to be

approximated. For this purpose, note that there exist deterministic functions Cj and yj
such that

Yj = yj(Xj), j = 0, . . . , J

E [βj+1Yj+1|Fj] = Cj(Xj), j = 0, . . . , J − 1,

which can be shown by first setting yJ := ξ. Then, assuming that Yj = yj(Xj) for a fixed

j ∈ {1, . . . , J}, we get by the factorization lemma that

E [βjYj|Fj−1] = E [βjyj(Xj)|Fj−1]

= E [βjyj(h(Xj−1, Bj))|Fj−1]

= E [βjyj(h(x,Bj)|Fj−1]
∣∣
x=Xj−1

=: Cj−1(Xj−1)

where we used the definition of X and that βj and Bj are independent of Fj−1 per definition.

Similarly, we get

Yj−1 = E [Yj|Fj−1] + ∆fj (Xj−1, E [βjYj|Fj−1])

= E [yj(h(x,Bj))|Fj−1]
∣∣
x=Xj−1

+ ∆fj (Xj−1, Cj−1(Xj−1)) =: yj−1(Xj−1).

Combined with Lemma 2.1.7 this especially implies that the optimal control ρ∗ is already

adapted to the filtration generated by the process X, i.e., ρ∗j is σ(Xj)-measurable. The
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conditional expectations E[βjYj|Fj−1] can then be approximated by replacing the functions

Cj by some approximation operator CM,j and evaluate them using simulations of the process

X. In the algorithm, we assume that we can construct ”suitable” input approximations

CM,j using simulations of the process X as well, where we specify later on what properties

of these approximations we classify as ”suitable”. Under this assumption, we analyze the

following algorithm, like it was introduced by Bender et al. (2017b) in a similar setting or

by Belomestny (2011) in the special case of pricing Bermudan style options:

Algorithm 2.2.1.

• For an M ∈ N, construct approximation operators CM,j(.) for j = 0, . . . , J − 1 with

a suitable algorithm using M independent ”training paths”(
X̂

[m]
0 , . . . , X̂

[m]
J

)
m=1,...,M

.

Here the distribution of these random variables may vary depending on the chosen

algorithm.

• For an N ∈ N, simulate N new independent copies

B
[n]
1 , . . . , B

[n]
J

of the process (Bj)j=1,...,J which impose samples(
X

[n]
0 , . . . X

[n]
J

)
n=1,...,N

and (
β

[n]
1 , . . . , β

[n]
J

)
n=1,...,N

of the processes (Xj)j∈{0,...,J} and (βj)j∈{1,...,J} to which we further refer to as ”evalu-

ation paths”. Then, given those simulations, set ρ
[n]
j = ρ

[n]
j (X

[n]
j ) as a solution to the

equation

ρTj CM,j

(
X

[n]
j

)
− f#

j

(
X

[n]
j , ρj

)
= fj

(
X

[n]
j , CM,j

(
X

[n]
j

))
for n = 1, . . . , N and j = 0, . . . , J − 1.

• Calculate

Y N,M
0 :=

1

N

N∑
n=1

Θ0

(
ρ[n]
)
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with

Θ0

(
ρ[n]
)

:= ξ
(
X

[n]
J

) J−1∏
j=0

(
∆
(
ρ

[n]
j

)T
β

[n]
j+1 + 1

)

−
J−1∑
j=0

∆f#
j

(
X

[n]
j , ρ

[n]
j

) j−1∏
l=0

(
∆
(
ρ

[n]
l

)T
β

[n]
l+1 + 1

)
as approximation for Y0.

There are several methods for obtaining the input approximations in the first step of the

algorithm available in the literature, for example the mesh method (see Broadie et al.,

2004) regression based methods like least squares Monte-Carlo (see e.g. Lemor et al., 2006

or Bender and Denk, 2007), quantization methods (see e.g. Bally et al., 2003) or Malliavin

Monte-Carlo (see e.g. Bouchard and Touzi, 2004). Since the input approximation is not the

focus of this chapter, we will not go into detail here, but we will briefly describe how input

approximations can be obtained with the mesh method in the appendix to this chapter for

the sake of completeness.

For now, we suppose that the input approximations in the first step of the algorithm are

given and discuss the remaining steps of the algorithm. For any fixed outcome of the

training paths such that CM,j(Xj) is integrable for each j, there exists a solution ρMj to the

equation

(ρMj )TCM,j(Xj)− f#
j (Xj, ρ

M
j ) = fj (Xj, CM,j(Xj)) ,

which is σ((X̂
[m]
j )m=1,...,M ;j=0,...,J) ∨ σ(Xj)-measurable by Lemma 2.1.7. Hence the approx-

imation operators CM,j impose an approximate distribution ρMj := ρMj (Xj) of ρ∗j for all

j ∈ {0, . . . , J}. Assuming that the evaluation paths are independent of the training path,

the values ρ
[n]
j for n = 1, . . . , N in the second step of the algorithm are then copies of

ρMj (Xj) which are sampled via the evaluation paths and are conditionally independent

given the outcome of the training paths. The same logic applies to the random variables

Θ0(ρ[n]) in the last step of the algorithm and hence, conditioned on the training paths,

the approximation Y N,M
0 is the empiric mean of conditionally independent and identically

distributed random variables and will therefore converge to their expectation, i.e.,

Y N,M
0 → E

[
Θ0

(
ρM
)∣∣∣σ((X̂

[m]
j )m=1,...,M ;j=0,...,J)

]
in the limit as N goes to infinity. Since Y0 = E [Θ0 (ρ∗)|F0], the quality of the approxi-

mation then depends on the sample size N and the difference between ρM and ρ∗, which

is determined by the input approximations. Convergence properties of the algorithm will

therefore depend on the input approximations. For our analysis, we hence extend the
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standing assumptions and assume for the rest of this chapter that the following conditions

hold true.

Assumptions 2.2.2. Extension to the standing assumptions:

(B1) For each j ∈ {0, . . . , J}, the σ-fields

H := σ
(

(X̂
[m]
j )m=1,...,M ;j=0,...,J

)
Gj := σ

((
B

[n]
i

)
i=1,...,j;n=1,...,N

)
F̃j = σ

(
(Bi)i=1,...,j

)
are independent and the filtration is given by

Fj = σ
(
H ∪ Gj ∪ F̃j

)
j = 0, . . . , J.

(B2) It holds for a pair (p, q) ∈ (1,∞)× [1,∞) that(
J−1∑
j=0

∆E
[
E [|CM,j(Xj)− Cj(Xj)|p|F0]

q
p

]) 1
q

≤ KB2(p, q)M−µ

for positive constants µ and KB2(p, q). Furthermore, it holds

max
j∈{0,...,J−1}

E[|CM,j(Xj)|2(1+ε)] ≤ K ′B2

for a constant K ′B2
independent of M .

(B3) The costs of constructing the approximations CM,j on the M training paths are of

order M1+χ1 for a constant χ1 > 0. The costs of evaluating the approximations CM,j

in a point x ∈ RD+1 not on the training paths is of order Mχ2 for a constant χ2 > 0.

To further utilize the additional information about the functions fj in the special case

where assumption (As) holds true, we assume that the following condition holds true in

that case.

Extension to the special case:

(B4) There exist constants KB4 , α > 0 such that

P

(∣∣∣∣∣(ki − kl)|ki − kl|

T

(Cj(Xj) + bj(Xj))

∣∣∣∣∣ ≤ δ

)
≤ KB4δ

α

for any δ > 0 , j = 0, . . . , J − 1 and ki 6= kl ∈ K.
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Condition (B1) formally describes the measurability of all the used simulations. In partic-

ular, we assume that the training paths are independent of the evaluation paths and X.

Condition (B2) describes a convergence rate of the approximation operators CM,j towards

the functions Cj in relation to the used evaluation paths, while condition (B3) bounds the

required computation costs for constructing and evaluating those approximation operators.

We will show in the error analysis that the optimal control ρ∗ can only take values in K

under assumption (AS) and that ρj = ki is optimal if

kiCj(Xj) + bj(Xj) > klCj(Xj) + bj(Xj)

for all kl 6= ki ∈ K. Hence the set

E := {(j, x) : ∃ki 6= kl ∈ K : (ki − kl)T (Cj(x) + bj(x)) = 0}

describes the boundary region between two different values of the optimal control ρ∗. Con-

dition (B4) hence characterizes the probability of X taking values close to this critical

decision region. Similar conditions were considered in statistical classification problems

(see e.g. Mammen and Tsybakov, 1999) and later adapted to the pricing of Bermudan op-

tions by Belomestny (2011). For smooth functions Cj and bj with non-vanishing derivatives

in the vicinity of E, the condition holds true for α = 1, see e.g. Mammen and Tsybakov

(1999) and Belomestny (2011). For other examples of problems with different values of

α ∈ [1,∞), we refer to Belomestny (2011).

When choosing the number of training and evaluation paths, one has to consider a trade-off

between the computation time and the accuracy of the approximation. For a fast conver-

gence of the approximation, we therefore analyze how to optimally choose the number of

paths N and M in relation to each other. More precisely, we analyze how to choose those

paramters to bound the mean squared error

E

[(
Y0 − Y N,M

0

)2
]

(asymptotically) by a constant ε > 0 with smallest computation time possible. By condition

(B3), the computation costs for a fixed number of paths N and M are given by

Mχ1+1 +Mχ2N,

so we are interested in

C(ε) := min
M,N∈N

{
Mχ1+1 +Mχ2N : E

[(
Y0 − Y N,M

0

)2
]
≤ cε

}
for some constant c > 0 not depending on ε. Through the error analysis in the next section,
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we derive the following rates for C(ε), which are the main result of this chapter.

Theorem 2.2.3. Under the standing assumptions, suppose we can choose (p, q) = (p, 2) in

assumption (B2) for a p > 1. Then

C(ε) ∈ O
(
ε−max{χ1+1

2µ
,1+

χ2
2µ}
)
.

If condition (AS) and (B4) hold true and we can choose (p, q) = (p, 2(1 + α
ϑ
)) for some

p > 1 and ϑ ∈ (p+α
p−1

,∞) in assumption (B2), the complexity improves to

C(ε) ∈ O

ε−1 max

{
χ1+1

2µ(1+α
ϑ)

;1+
χ2

2µ(1+α
ϑ)

} .

Remark 2.2.4.

(i) In the case of a discretized BSDE, the constants only depend on the step width ∆ in

the form ∆J , i.e., the time horizon of the BSDE. Hence, the rate is independent of

the time grid and holds for arbitrary fine partitions of the time horizon.

(ii) Our results are consistent with previous ones, since in the special case of Bermudan

option pricing (compare Example 2.1.4. (i)), the setting can be simplified by choosing

β ≡ 1 and ρj ∈ {0, 1} one-dimensional. Then, assuming that Assumption (B2) holds

for any p > 1, which is implied by assumption (AQ) in Belomestny et al. (2015), we

can choose ϑ = 1 in (B2) in the limit for p → ∞ and reproduce the order of the

complexity proven in Belomestny et al. (2015) for this example.

2.3 Error analysis

In this section, we provide a detailed error analysis of the algorithm presented in the

previous section to prove Theorem 2.2.3. For this purpose, we first derive bounds on the

bias and variance of the approximation, once under the standing assumptions only and

once in the more restrictive setting where assumptions (AS) and (B4) hold true. We then

use these bounds for the proof of Theorem 2.2.3 by utilizing the usual decomposition of

the mean squared error into the squared bias and variance. For a slighter notation, we will

omit the dependency of Xj in the functions fj and their convex conjugates from now on

when no simulations are plugged in. Furthermore we from now on notate the conditional

expectation given Fj with Ej[.].

We start by proving the following two standard lemmas which will be used in the analysis

of the bias and the variance of the approximation. The first of the two shows that the

effective domain of the convex conjugates is a subset of {x ∈ RD : |x| ≤ L} which gives us

a bound for the possible values of the control process ρ∗.
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Lemma 2.3.1. Let f : RD+1 → R be a convex and Lipschitz continuous function with

Lipschitz constant L. It then holds that

f#(ρ) =∞

for all ρ ∈ RD+1 with |ρ| > L.

Proof. Let ρ ∈ RD+1 be arbitrary with |ρ| > L and set c := |ρ| − L > 0. By the Lipschitz

continuity of f , it holds for all y ∈ RD+1

ρTy − f(y) + f(0) ≥ ρTy − |f(y)− f(0)|
≥ ρTy − L|y|.

Hence by the definition of the convex conjugates and the choice yn = nρ for n ∈ N, we get

f#(ρ) + f(0) = sup
y∈RD+1

ρTy − f(y) + f(0)

≥ sup
y∈RD+1

ρTy − L|y|

≥ lim
n→∞

ρTyn − L|yn|

= lim
n→∞

n|ρ|(|ρ| − L) =∞.

Next we consider the term

Γj(ρ) :=

j−1∏
i=0

(
1 + ∆ρTi βi+1

)
for j ∈ {0, . . . , J − 1} and any process ρ ∈ Df# , which is part of the definition of the

function Ŷ (ρ). Using the results of Lemma 2.3.1, we can derive a bound on the absolute

moments of this term.

Lemma 2.3.2. Let ρ be an arbitrary process in Df#. It then holds for any j ∈ {0, . . . , J}
and r > 1 under the standing assumptions that

E0 [|Γj(ρ)|r]
1
r ≤ KΓ(r) := eJ∆Lf (1+ 1

2
rDLf ).

Proof. First note that, since the functions fj are Lipschitz continuous with Lipschitz con-

stant Lf , it holds that |ρi| ≤ Lf for each i ∈ {0, . . . , J} by Lemma 2.3.1. Furthermore,

due to assumption (AM), it holds that |∆ρTi βi+1| ≤ 1 and hence each factor in Γj(ρ) is

non-negative and we can omit the absolute value. By the definition of Γj and β and the
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tower property of the conditional expectation, we hence get

E0 [|Γj(ρ)|r] = E0

[
j−1∏
i=0

(
1 + ∆ρ

(1)
i +

D∑
d=1

ρ
(d+1)
i

[
∆W

(d)
i+1

]
ς
√

∆

)r]

≤ E0

[
j−1∏
i=0

er∆ρ
(1)
i e

r
∑D
d=1 ρ

(d+1)
i

[
∆W

(d)
i+1

]
ς
√

∆

]

≤ eJ∆Lf rE0

[
j−1∏
i=0

e
r
∑D
d=1 ρ

(d+1)
i

[
∆W

(d)
i+1

]
ς
√

∆

]

= eJ∆Lf rE0

[
j−2∏
i=0

e
r
∑D
d=1 ρ

(d+1)
i

[
∆W

(d)
i+1

]
ς
√

∆Ej−1

[
e
r
∑D
d=1 ρ

(d+1)
j−1

[
∆W

(d)
j

]
ς
√

∆

]]
. (2.7)

Using the characterization of the exponential function as power series in the inner condi-

tional expectation leads to

Ej−1

[
e
r
∑D
d=1 ρ

(d+1)
j−1

[
∆W

(d)
j

]
ς
√

∆

]
=

D∏
d=1

Ej−1

[
e
rρ

(d+1)
j−1

[
∆W

(d)
j

]
ς
√

∆

]

=
D∏
d=1

∞∑
l=0

(rρ
(d+1)
j−1 )l

l!
Ej−1

[[
∆W

(d)
j

]l
ς
√

∆

]
,

where we used that the components of (∆W
(d)
j )d=1,...,D are independent and that ρj−1 is

Fj−1-measurable. It then holds for all even l ∈ N that

Ej−1

[[
∆W

(d)
j

]l
ς
√

∆

]
≤ Ej−1

[(
∆W

(d)
j

)l]
since [∆W

(d)
j ]l

ς
√

∆
is P -almost surely positive and hence can be increased by dropping the

truncation. On the other hand, for any odd l ∈ N, we have

Ej−1

[[
∆W

(d)
j

]l
ς
√

∆

]
= 0 = Ej−1

[(
∆W

(d)
j

)l]
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since ∆W
(d)
j is Gaussian with mean zero. We conclude

Ej−1

[
e
r
∑D
d=1 ρ

(d+1)
j−1

[
∆W

(d)
j

]
ς
√

∆

]
≤

D∏
d=1

∞∑
l=0

r(ρ
(d+1)
j−1 )l

l!
Ej−1

[(
∆W

(d)
j

)l]
.

=
D∏
d=1

Ej−1

[
erρ

(d+1)
j−1 ∆W

(d)
j

]
≤ e

1
2
r2|ρj−1|2∆

≤ e
1
2
r2L2

f∆

since e∆W
(d)
j is log-normal distributed and ρj−1 is Fj−1-measurable and bounded by Lf .

The remaining Brownian increments in (2.7) can be bound recursively following the same

steps, which leads to

E0

[∣∣Γj(ρM)
∣∣r] 1

r ≤

(
eJ∆Lf r

j−2∏
i=0

e
1
2
Dr2L2

f∆

) 1
r

≤ eJ∆Lf (1+ 1
2
rDLf )

and finishes the proof.

2.3.1 Bounds for the bias of the approximation

With the preliminaries in the beginning of this section, we are now ready to derive a bound

for the bias under the standing assumptions.

Theorem 2.3.3. Under the standing assumptions, it holds

E
[
Y0 − Y N,M

0

]
≤ KΓ

(
p

p− 1

)
2Lf

J∑
j=0

∆E
[
E0 [|Cj,M − Cj|p]

1
p

]
≤ K4.1(p)KB2(p, 1)M−µ

with K4.1(p) = 2LfKΓ( p
p−1

).

Proof. To prove the first inequality, first recall the processes Ŷ (ρ) defined as

Ŷj(ρ) := Ej

[
ξ
J−1∏
i=j

(
∆ρTi βi+1 + 1

)
−

J−1∑
l=j

∆f#
l (ρl)

l−1∏
i=j

(
∆ρTi βi+1 + 1

)]
= Ej

[
Ŷj+1(ρ)

]
+ ∆ρTj Ej

[
βj+1Ŷj+1(ρ)

]
−∆f#

j (ρj). (2.8)

Note that the samples ((X
[n]
j , β

[n]
j )j=0,...,J)n=1,...,N are independent and identically distributed

random variables distributed like (Xj, βj)j=0,...,J . Hence, conditionally on the training
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paths, the values ρ
[n]
j = ρ̂j(X

[n]
j ) are independent copies of the random variable ρMj (Xj)

because ρMj is random depending on the training paths only. We write short ρMj := ρMj (Xj)

and ρM := (ρM0 , . . . , ρ
M
J−1). By construction, ρM is element of Df# . Conditioning on F0,

which holds all the information about the training paths, yields

E0

[
Y N,M

0

]
= E0

[
1

N

N∑
n=1

Θ0

(
ρ[n]
)]

= E0

[
Θ0

(
ρM
)]

= E0

[
Ŷ0

(
ρM
)]
.

On the other hand, following the arguments in Section 2.1, it holds Y0 = Ŷ (ρ∗). Hence we

get with equation (2.8) that

E0

[
Y0 − Y N,M

0

]
= E0

[
Ŷ0 (ρ∗)− Ŷ0

(
ρM
)]

= E0

[(
1 + ∆ (ρ∗0)T β1

)
Ŷ1 (ρ∗)−

(
1 + ∆

(
ρM0
)T
β1

)
Ŷ1

(
ρM
)
−∆f#

0 (ρ∗0) + ∆f#
0

(
ρM0
)]

= E0

[(
1 + ∆

(
ρM0
)T
β1

)(
Ŷ1 (ρ∗)− Ŷ1

(
ρM
))
−∆

(
f#

0 (ρ∗0)− f#
0

(
ρM0
))
−∆

(
ρM0 − ρ∗0

)T
β1Ŷ1 (ρ∗)

]
= E0

[(
1 + ∆

(
ρM0
)T
β1

)(
Ŷ1 (ρ∗)− Ŷ1

(
ρM
))]

− E0

[
∆
(
f#

0 (ρ∗0)− f#
0

(
ρM0
))]
−∆

(
ρM0 − ρ∗0

)T
E0

[
β1Ŷ1 (ρ∗)

]
Iterating this step yields

E0

[
Y0 − Y N,M

0

]
= E0

[
J−1∑
j=0

Γj
(
ρM
)

∆
(
f#
j

(
ρMj
)
− f#

j

(
ρ∗j
)
−
(
ρMj − ρ∗j

)T
Ej

[
βj+1Ŷj+1 (ρ∗)

])]

= E0

[
J−1∑
j=0

Γj
(
ρM
)

∆
(
f#
j

(
ρMj
)
− f#

j

(
ρ∗j
)
−
(
ρMj − ρ∗j

)T
Cj(Xj)

)]
,

where the recursion ends, since ŶJ(ρ∗) = ŶJ(ρM) by definition. Now, since f is closed, it

holds

fj (Cj(Xj)) =
(
ρ∗j
)T
Cj(Xj)− f#

j

(
ρ∗j
)

and respectively

fj (Cj,M(Xj)) =
(
ρMj
)T
Cj,M(Xj)− f#

j

(
ρMj
)

by construction of ρMj and the Fenchel-Moreau theorem. Paired with a zero addition, this
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yields

E0

[
Y0 − Y N,M

0

]
= E0

[ J−1∑
j=0

Γj
(
ρM
)

∆
( (
ρMj
)T

(Cj,M(Xj)− Cj(Xj)− Cj,M(Xj)) + fj (Cj(Xj)) + f#
j

(
ρM
) )]

= E0

[ J−1∑
j=0

Γj
(
ρM
)

∆
( (
ρMj
)T

(Cj,M(Xj)− Cj(Xj)) + fj (Cj(Xj))− fj (Cj,M(Xj))
)]
.

We can estimate this term further due to the Lipschitz continuity of the functions fj and

Hölder’s inequality as

E0

[
Y0 − Y0(ρM)

]
≤

J−1∑
j=1

∆E0

[ ∣∣Γj(ρM)
∣∣ p
p−1

] p−1
p
E0

[ ∣∣∣(ρMj )T (Cj,M − Cj)− fj (Cj,M) + fj (Cj)
∣∣∣p ] 1

p

≤
J−1∑
j=1

∆E0

[ ∣∣Γj (ρM)∣∣ p
p−1

] p−1
p
E0

[ (∣∣∣(ρMj )T (Cj,M − Cj)
∣∣∣+ Lf |Cj,M − Cj|

)p ] 1
p
.

Then, since ρMj ∈ D
j
f and f is Lipschitz continuous with constant Lf , Lemma 2.3.1 implies

that |ρMj | ≤ Lf for each j and hence

E0

[ (∣∣∣(ρMj )T (Cj,M − Cj)
∣∣∣+ Lf |Cj,M − Cj|

)p ] 1
p ≤ 2LfE0 [|Cj,M − Cj|p]

1
p .

Together with the bound for E0

[
|Γj(ρM)|

p
p−1

]
in Lemma 2.3.2, we get

E0

[
Y0 − Y N,M

0

]
≤ KΓ

(
p

p− 1

)
2Lf

J−1∑
j=0

∆E0 [|Cj,M − Cj|p]
1
p .

The statement of the theorem then follows by taking expectation and using assumption

(B2) where we assume w.l.o.g. that condition (B2) holds true for the pair (p, 1).

Theorem 2.3.3 shows that the bias is of the same order as the one of the input approxi-

mation. However, we get a low biased estimator. If we calculate the input approximations

with some method that gives an approximation with a positive bias, like the mesh method,

this allows us to construct confidence intervals for Y .

We can even improve the bounds for the bias in the special case when assumption (AS) is

satisfied. Then, the special structure of the function fj allows us to restrict the choice of

the approximate control process ρM to adapted processes taking values in K only and we
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can state the convex conjugates for these values explicitly as shown in the following lemma.

Lemma 2.3.4. Suppose that assumption (AS) holds true, i.e., the functions fj are given by

fj(x, y) := max
k∈K

yTk + bj(x)Tk + aj(x)

for deterministic bounded functions bj and aj and a finite set K = {k1, . . . , kκ} ⊂ RD+1.

Then:

(i) It holds pointwise for all x ∈ RD, that f#
j (x, k) = −bTj (x)k − aj(x) for all k ∈ K.

(ii) It holds

sup
ρ∈RD+1

ρTC − f#
j (X̃, ρ) = max

k∈K
kTC − f#

j (X̃, k)

for all Fj-measurable random variables C and X̃ taking values in RD+1 and RD re-

spectively, where the equality holds pointwise for all ω ∈ Ω.

Proof. For the first statement, fix a ki ∈ K and a x ∈ RD. Then, for any z ∈ RD+1, set

k̃(z) := argmax
k∈K

kT z + kT bj(x)− aj(x).

We then have

k̃T (z)z + k̃T (z)bj(x) + aj(x) ≥ kTi z + kTi bj(x) + aj(x)

which is equivalent to

(k̃(z)− ki)T z ≥ (ki − k̃(z))T bj(x).

We conclude

kiz − fj(x, z) = kTi z − k̃T (z)z − k̃T (z)bj(x)− aj(x)

= (ki − k̃(z))T z − k̃T (z)bj(x)− aj(x)

≤ (k̃(z)− ki − k̃(z))T bj(x)− aj(x)

= −kTi bj(x)− aj(x)

where equality holds for all z ∈ RD+1 for which

k̃(z) = ki.

Hence, taking the supremum over all z ∈ RD+1 in the inequality above shows that

f#
j (x, ki) = −kTi bj(x)− aj(x)
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for all ki ∈ K and x ∈ RD.

For the second statement, we have by the Fenchel-Moreau theorem that

sup
ρ∈RD+1

ρTC − f#
j (X̃, ρ) = fj(X̃, C).

On the other hand, it holds pointwise for each ω ∈ Ω that

fj(X̃, C) = kTC + kT bj(X̃) + aj(X̃)

for a k = k(ω) ∈ K. Hence, by the first statement, setting ρ(ω) := k(ω) pointwise for all

ω ∈ Ω, we have

sup
ρ∈RD+1

ρTC − f#
j (X̃, ρ) = fj(X̃, C) = max

k∈K
kTC − f#

j (X̃, k)

what finishes the proof. This especially shows that it suffices to replace the supremum in

(2.4) by the maximum over all adapted processes ρ which take values only in the set K.

The restriction of the possible values of ρ together with assumption (B4) allows us to

improve the bound on the Bias of our approximation as follows.

Theorem 2.3.5. Suppose that condition (AS) and (B4) hold true in additional to the stand-

ing assumptions where we assume that condition (B2) holds for a pair (p, q) with p > 1

and q = 1 + α
ϑ

for some ϑ ∈ (p+α
p−1

,∞). Then

E
[
Y0 − Y N,M

0

]
≤ K4.2(p, q)

J∑
j=0

E[E0[|Cj,M − Cj|p]
q
p ] ≤ K4.2(p, q)KB2(p, q)M−µq

for a positive constant K4.2(p, q) not depending on ∆, M and N .

Proof. By Lemma 2.3.4, we can restrict the approximation of ρ∗ to all processes ρ ∈ Df#

taking values in K only. Additionally, for each ρj ∈ K, the convex conjugate f#
j is given

by

f#
j (ρj) = −ρTj bj − aj.

Following the first steps of the proof of Theorem 2.3.3, we get

E0

[
Y0 − Y N,M

0

]
≤ E0

[
J−1∑
j=0

Γ0

(
ρM
)

∆
(
f#
j

(
ρMj
)
− f#

j

(
ρ∗j
)
−
(
ρMj − ρ∗j

)T
Cj(Xj)

)]

= E0

[
J−1∑
j=0

Γj
(
ρM
)

∆
((
ρ∗j − ρMj

)T
(Cj(Xj) + bj)

)]
.
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Now choose an arbitrary ε ∈ (0, p − 1 − α+p
ϑ

) and set r = (p−ε)ϑ
p+α+ϑ

. Note that by the

assumptions on p and ϑ, the set (0, p − 1 − α+p
ϑ

) is non-empty and it holds r > 1. Hence

we can use Hölder’s inequality and get

E0

[
J−1∑
j=0

Γj
(
ρM
)

∆
((
ρ∗j − ρMj

)T
(Cj(Xj) + bj)

)]

≤
J−1∑
j=0

∆E0

[∣∣Γj (ρM)∣∣ r
r−1

] r−1
r
E0

[ ∣∣∣(ρ∗j − ρMj )T (Cj(Xj) + bj)
∣∣∣r ] 1

r

≤ KΓ

(
r

r − 1

) J−1∑
j=0

∆E0

[ ∣∣∣(ρ∗j − ρMj )T (Cj(Xj) + bj)
∣∣∣r ] 1

r

where we used the bound from Lemma 2.3.2 in the last step. Now let γj be a positive,

F0-measurable random variable which we will specify later on and set

Zj :=

{
(ρ∗j−ρMj )T

|ρ∗j−ρMj |
(Cj + bj) ρ∗j 6= ρMj

0 ρ∗j = ρM
.

We can then split up the appearing conditional expectation in

E0

[∣∣∣(ρ∗j − ρMj )T (Cj + bj)
∣∣∣r] 1

r

= E0

[∣∣∣(ρ∗j − ρMj )T (Cj + bj)
∣∣∣r 1{ρ∗j 6=ρMj }] 1

r

≤ E0

[∣∣ρ∗j − ρMj ∣∣r
(
1{|Zj |≤γj}1{ρ∗j 6=ρMj } +

∞∑
l=1

1{2l−1γj<|Zj |≤2lγj}1{ρ∗j 6=ρMj }

)
|Zj|r

] 1
r

.

It now holds by construction that (ρMj )T (Cj,M + bj) ≥ ρT (Cj,M + bj) for all ρ ∈ K, in

particular for ρ = ρ∗. We conclude for all ω in the set {ρ∗j 6= ρMj }, that

Zj ≤ Zj −
(ρ∗j − ρMj )T (Cj,M + bj)

|ρMj − ρ∗j |
≤ |Cj − Cj,M |

and consequently {
Zj > 2lγj

}
∩
{
ρ∗j 6= ρMj

}
⊂
{
|Cj − Cj,M | > 2lγj

}
.

Note that, since p− ε− r > (p− ε)− (p−ε)ϑ
ϑ

= 0, it holds 1 < p+α
p−r−ε =: s, such that Hölder’s
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inequality yields

E0

[∣∣∣(ρ∗j − ρMj )T (Cj + bj)
∣∣∣r] 1

r

≤ E0

[∣∣ρ∗j − ρMj ∣∣r
(
1{|Zj |≤γj}1{ρ∗j 6=ρMj } +

∞∑
l=1

1{2l−1γj<|Cj−Cj,M |}1{|Zj |≤2lγj}1{ρ∗j 6=ρMj }

)
|Zj|r

] 1
r

≤ 2Lfγj

(
P0

(
{|Zj| ≤ γj} ∩

{
ρ∗j 6= ρMj

})
+
∞∑
l=1

2lrP0

({
|Zj| ≤ 2lγj

}
∩
{
ρ∗j 6= ρMj

}) 1
s P0

({
|Cj − Cj,M | > 2l−1γj

}) s−1
s

) 1
r

.

Here we used again that |ρ∗j | and |ρMj | are bounded by Lf and denote with P0 the conditional

probability on the σ-field F0. We can now estimate the probabilites of the sets {|Zj| ≤
2lγj} ∩ {ρ∗j 6= ρMj } using assumptions (B4) and the independence of Cj + bj of F0 by

P0

({
|Zj| ≤ 2lγj

}
∩
{
ρ∗j 6= ρMj

})
≤

∑
k1 6=k2∈K

P0

({∣∣∣∣(k1 − k2)T

|k1 − k2|
(Cj + bj)

∣∣∣∣ ≤ 2lγj

})

=
∑

k1 6=k2∈K

P

({∣∣∣∣(k1 − k2)T

|k1 − k2|
(Cj + bj)

∣∣∣∣ ≤ x

})∣∣∣∣∣
x=2lγj

≤ |K|2KB4

(
2lγj

)α
for all l ∈ N0. Then, since

P0

(
{|Zj| ≤ γj} ∩

{
ρ∗j 6= ρMj

})
≤
(
P0

(
{|Zj| ≤ γj} ∩

{
ρ∗j 6= ρMj

})) 1
s ,

we get

E0

[∣∣∣(ρ∗j − ρMj )T (Cj + bj)
∣∣∣r] 1

r

≤ 2Lfγj

(
|K|

2
sK

1
s
B4
γ
α
s
j +

∞∑
l=1

|K|
2
sK

1
s
B4

(2lγj)
α
s 2lrP0

({
|Cj − Cj,M | > 2l−1γj

}) s−1
s

) 1
r

≤ 2Lf |K|
2
srK

1
sr
B4
γ

1+ α
sr

j

(
1 +

∞∑
l=1

2l(r+
α
s )P0

({
|Cj − Cj,M | > 2l−1γj

}) s−1
s

) 1
r

.
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By using Hölder’s inequality once more, we can bound the series in the term above as

∞∑
l=1

2l(r+
α
s )P0

({
|Cj − Cj,M | > 2l−1γj

}) s−1
s

=
∞∑
l=1

2−lε2l(r+
α
s

+ε)P0

({
|Cj − Cj,M | > 2l−1γj

}) s−1
s

≤

(
∞∑
l=1

2−lεs

) 1
s
(
∞∑
l=1

2l2l(r+
α
s

+ε) s
s−1
−lP0

({
4|Cj − Cj,M |

γj
> 2l+1

})) s−1
s

≤
(

1

1− 2−sε

) 1
s

(
∞∑
l=1

∫ 2l+1

2l
x(r+α

s
+ε) s

s−1
−1P0

({
4|Cj − Cj,M |

γj
> x

)
dx

}) s−1
s

≤
(

1

1− 2−sε

) 1
s
(∫ ∞

0

x(r+α
s

+ε) s
s−1
−1 (1− Fχ(x)) dx

) s−1
s

,

where Fχ denotes the distribution function of
4|Cj−Cj,M |

γj
. Now by construction it holds

(r +
α

s
+ ε)

s

s− 1
= (

r + α + ε

s
+
s− 1

s
(r + ε))

s

s− 1

= (r + α + ε)
p− r − ε
α + r + ε

+ ε+ r = p

and, since E0[|Cj,M − Cj|p] exists by assumption (B2), integration by parts yields

∞∑
l=1

2l(r+
α
s )P0

({
|Cj − Cj,M | > 2l−1γj

}) s−1
s

≤
(

1

1− 2−sε

) 1
s

(
s− 1(

r + α
s

+ ε
)
s
E0

[(
4|Cj − Cj,M |

γj

)(r+α
s

+ε) s
s−1

]) s−1
s

=

(
1

1− 2−sε

) 1
s

 4(r+α
s

+ε) s
s−1(

r + α
s

+ ε
)

s
s−1

E0

[
|Cj − Cj,M |(r+

α
s

+ε) s
s−1

] 1

γ
(r+α

s
+ε) s

s−1

j

 s−1
s

.
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By choosing γj = E0[|Cj,M − Cj|p]
1
p , we therefore get

E0

[
Y0 − Y N,M

0

]
≤

J−1∑
j=0

∆KΓ

(
r

r − 1

)
2Lfγ

1+ α
sr

j |K|
2
srK

1
sr
B4

(
1 +

(
1

1− 2−sε

) 1
s
(

4p

p

) s−1
s

) 1
r

= KΓ

(
r

r − 1

)
2Lf |K|

2
ϑK

1
ϑ
B4

(
1 +

(
1

1− 2−sε

) 1
s
(

4p

p

) s−1
s

) 1
r J−1∑
j=0

∆E0 [|Cj − Cj,M |p]
1+ a

ϑ
p ,

where we used that

1

sr
=
p− ε− r
p+ α

1

r
=
p− ε
p+ α

p+ α + ϑ

(p− ε)ϑ
− 1

p+ α
=

1

ϑ
.

Then taking expectation and using assumption (B2) yields

E
[
Y0 − Y N,M

0

]
≤ K4.2(p, q)KB2(p, q)M−µ(1+ a

ϑ
)

where we set

K4.2(p, q) := KΓ

(
r

r − 1

)
2Lf |K|

2
srK

1
sr
B4

(
1 +

(
1

1− 2−sε

) 1
s
(

4p

p

) s−1
s

) 1
r

with constants s, ε, r depending on p, α and ϑ.

Remark 2.3.6. The results show that in the general case, the bias of our approximation

is at least of the same order as the one of the input approximation. Under assumptions

(AS) and (B4) we can improve the convergence rate from M−µ to M−µα
ϑ , where α depends

on the concrete BSDE and ϑ depends on the norm in which we can control the input

approximation. In the limit, for α→ 0 in Theorem 2.3.5, i.e., if we can not utilize condition

(B4) we end up with the rate of Theorem 2.3.3 and the improvement due to the finite

possible values of ρ vanishes. In this sense, the results are stable.

2.3.2 Bounds for the variance of the approximation

In this section, we derive the following bounds for the variance of the approximation.

Theorem 2.3.7. (i) Under the standing assumptions, suppose we can choose (p, q) =

(p, 2) for a p > 1 in assumption (B2). It then holds

V ar
(
Y N,M

0

)
≤ K4.4

N
+K2

4.1(p)J∆KB2(p, q)M−2µ
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with a positive constant K4.4 not depending on N and M .

(ii) If additionally assumptions (AS) and (B4) hold true and we can choose (p, q) =

(p, 2(1 + α
ϑ
)) for a p > 1 and a ϑ ∈ (p+α

p−1
,∞) in assumption (B2), the bound in (i)

can be improved to

V ar
(
Y N,M

0

)
≤ K4.4

N
+K2

4.2(p, 1 +
α

ϑ
)J∆KB2(p, q)M−2(1+α

ϑ
)µ.

Proof. We prove both bounds simultaneously. Even though the processes ρ[n], n = 1, . . . , N

are calculated using independent simulations of evaluation paths, they still depend on the

same set of training paths. Hence they are just conditionally independent given the outcome

of the training paths. Therefore, we split up the variance in

V ar
(
Y N,M

0

)
= V ar

(
E0

[
Y N,M

0

])
+ E

[
V ar

(
Y N,M

0

∣∣∣F0

)]
(2.9)

using the law of total variance. Then, since Y0 is deterministic, we have

V ar
(
E0

[
Y N,M

0

])
= V ar

(
E0

[
Y N,M

0

]
− Y0

)
≤ E

[∣∣∣E0

[
Y N,M

0 − Y0

]∣∣∣2] .
Depending on the setting, we now get direclty from the proof of Theorem 4.1 or Theorem

4.2 respectively that

E

[∣∣∣E0

[
Y N,M

0 − Y0

]∣∣∣2] ≤ E

(KBias

J−1∑
j=0

∆E0 [|Cj,M − Cj|p]
q
2p

)2


with KBias = K4.1(p) and q = 2 under the standing assumption and KBias = K4.2(p, 1 + α
ϑ
)

and q = 2 + 2α
ϑ

in the setting of (ii). Hölder’s inequality and assumption (B2) then yield

in both cases

E

[∣∣∣E0

[
Y N,M

0 − Y0

]∣∣∣2] ≤ K2
BiasJ∆

J−1∑
j=0

∆E
[
E0 [|Cj,M − Cj|p]

q
p

]
≤ K2

BiasKB2(p, q)M−qµJ∆,
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which is part of the final bound. We can estimate the second term in (2.9) by

E
[
V ar

(
Y N,M

0

∣∣∣F0

)]
= E

[
V ar

(
1

N

N∑
i=1

Θ0

(
ρn,M

)∣∣∣∣∣F0

)]
=

1

N
E
[
V ar

(
Θ0

(
ρM
)∣∣F0

)]
≤ 1

N
E
[
E0

[
Θ0

(
ρM
)2
]]

=
1

N
E

E0

(ΓJ
(
ρM
)
ξ −

J−1∑
j=0

∆f#
j

(
ρMj
)

Γj
(
ρM
))2


≤ 2

N
E
[
E0

[∣∣ΓJ (ρM) ξ∣∣2]]+
2

N
E

E0

(J−1∑
j=0

∆f#
j

(
ρMj
)

Γj
(
ρM
))2


≤ 2

N
E
[
E0

[∣∣ΓJ (ρM) ξ∣∣2]]+
2

N
∆J

J−1∑
i=0

∆E

[
E0

[∣∣∣f#
j

(
ρMj
)

Γj
(
ρM
)∣∣∣2]] .

Then by Hölder’s inequality, it holds

2

N
E
[
E0

[∣∣ΓJ (ρM) ξ∣∣2]] ≤ 2

N
E

[
E0

[∣∣ΓJ (ρM)∣∣ 2(1+ε)
ε

] ε
1+ε

]
E
[
E0

[
|ξ|2+2ε] 1

1+ε

]
≤ 2

N
K2

Γ

(
2 + 2ε

ε

)
Kξ

where we set Kξ := E[|ξ|2+2ε]
1

1+ε , which is finite by assumption (Aξ). Again, by Hölder’s

inequality and since

f#
j

(
ρM
)

= CM,jρ
M
j − fj (CM,j) ,

we get

2

N
∆J

J−1∑
i=0

∆E

[
E0

[∣∣∣f#
j

(
ρMj
)

Γj
(
ρM
)∣∣∣2]]

≤ 2

N
∆J

J−1∑
i=0

∆E

[
E0

[∣∣∣f#
j

(
ρMj
)∣∣∣2(1+ε)

] 1
1+ε

E0

[∣∣Γj (ρM)∣∣ 2(1+ε)
ε

] ε
1+ε

]

≤ 2

N
∆JK2

Γ

(
2 + 2ε

ε

) J−1∑
i=0

∆E

[
E0

[∣∣CT
M,jρ

M
j − fj(CM,j) + fj(0)− fj(0)

∣∣2(1+ε)
] 1

1+ε

]
where we used a zero addition in the last step. We can estimate the appearing expectation
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further as

E

[
E0

[∣∣CT
M,jρ

M
j − fj(CM,j) + fj(0)− fj(0)

∣∣2(1+ε)
] 1

1+ε

]
≤ E

[
E0

[(∣∣CT
M,jρ

M
j

∣∣+ |fj(CM,j)− fj(0)|+ |fj(0)|
)2(1+ε)

] 1
1+ε

]
≤ 3

1+2ε
1+ε

(
E

[
E0

[∣∣ρMj CM,j

∣∣2(1+ε)
] 1

1+ε

]
+ E

[
E0

[
|fj(CM,j)− fj(0)|2(1+ε)

] 1
1+ε

]

+ E

[
E0

[
|fj(0)|2(1+ε)

] 1
1+ε

])

≤ 3
1+2ε
1+ε

(
2L2

fK
′ 1
1+ε

B2 + Cf

)
,

where we used the Lipschitz continuity of fj, assumptions (Af ) and (B2), and that |ρM | ≤ L

in the last inequality. Here we denote with Cf := maxj E[E0[|fj(0)|2+2ε]
1

1+ε ]. This yields

E
[
V ar

(
Y N,M

0

∣∣∣F0

)]
≤ 2

N
K2

Γ

(
2 + 2ε

ε

)
Kξ

+
2

N
∆JK2

Γ

(
2 + 2ε

ε

) J−1∑
i=0

∆3
1+2ε
1+ε

(
2L2

fK
′ 1
1+ε

B2 + Cf

)
=

2

N
K2

Γ

(
2 + 2ε

ε

)(
Kξ + J2∆23

1+2ε
1+ε

(
2L2

fK
′ 1
1+ε

B2 + Cf

))
=:

1

N
K4.4

with K4.4 := 2K2
Γ

(
2+2ε
ε

)(
Kξ + J2∆23

1+2ε
1+ε

(
2L2

fK
′ 1
1+ε

B2 + Cf

))
.

2.3.3 Complexity

In this section, we use the obtained bounds on the bias and the variance of the approxi-

mation to prove Theorem 2.2.3. With the usual decomposition of the mean squared error

E

[(
Y0 − Y N,M

0

)2
]

= E
[
Y0 − Y N,M

0

]2

+ V ar
(
Y N,M

0

)
,

the following corollary, which bounds the mean squared error for any fixed number of

evaluation and training paths, follows directly from previous results:

Corollary 2.3.8. Under the standing assumptions, suppose we can choose (p, q) = (p, 2) for
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a p > 1 in (B2). Then

E

[(
Y0 − Y N,M

0

)2
]
≤ c

(
N−1 +M−2µ

)
.

If additionally conditions (AS) and (B4) hold true and we can choose (p, q) = (p, 2(1 + α
ϑ
)

in (B2) for a p > 1 and a ϑ ∈ (p+α
p−1

,∞) this bound can be improved to

E

[(
Y0 − Y N,M

0

)2
]
≤ c

(
N−1 +M−2µ(1+α

ϑ)
)
.

With this bound we are ready to prove Theorem 2.2.3:

Proof. Proof of Theorem 2.2.3:

We prove the rates under the standing assumptions and under the additional assumptions

(AS) and (B4) simultaneously. By the results of Corollary 2.3.8 and condition (B3), it

suffices to solve the optimization problem

M1+χ1 +NMχ2 → min

M−2µq ≤ ε

c

N−1 ≤ ε

c

for any ε > 0 and a constant c > 0 not depending on ε, where q = 1 under the standing

assumptions and q = 1 + α
ϑ

for the improved rate under condition (AS) and (B4). Hence,

the optimal choice for the number of training and evaluation paths in dependence of ε is

given by

M(ε) = cε−
1

2qµ

N(ε) = cε−1.

for a constant c > 0 independent of ε. The complexity stated in the theorem then follows

in both cases directly by assumption (B3).

2.4 Numerical example

In this section, we illustrate our results in a concrete numerical example. We consider a

BSDE of the form

dYt = rYt − (λ(R− 1)Yt)−dt+ ZTdW̃t, YT = g( max
d=1,...,5

X
(d)
T )
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for constants λ > 0, r ≥ 0, R ∈ [0, 1] and a Lipschitz continuous function g : R→ R. Here

W̃ is a five-dimensional Brownian Motion and X
(d)
t , d = 1, . . . 5 are independent, identically

distributed geometric Brownian motions with drift r and volatility σ > 0 with the same

initial value x0 > 0, i.e.,

X
(d)
t = x

(d)
0 exp{σW̃ (d)

t + (r − σ2/2)t}.

This example covers an option pricing problem with credit valuation adjustment: Consider

two trading partners A and B which trade options with maturity T on the five stocks

modeled by X̃, where r is the risk-free interest rate in the market, σ is the volatility of the

stocks, and we assume that party B has a risk of default, which occurs when a Poisson-

process with intensity λ jumps for the first time. In case of default of party B before the

maturity of the options, the momentary value of the options is calculated and A receives a

fixed percentage R, the recovery rate, of this value from B (if the value is positive) or has

to pay out B (if the current value is negative). If no default of B happens, A receives the

payoff −g at maturity. Then, the fair option price at time 0 is given by −Y0. Note that the

algorithm will give us a low biased approximation for Y0. Hence −Y N,M
0 will be an upper

bound for the option price. The expression in terms of the negated price is necessary to

obtain convex functions fj when discretizing the BSDE.

Given a time grid 0 = t0 < t1 . . . < tJ = T with equidistant steps, a natural time dis-

cretization for Yt in the form of (2.1) is given by

YT ≈ YJ = g( max
d=1,...,5

X
(d)
J )

Ytj ≈ Yj = Ej[Yj+1] + ∆(−rEj[Yj+1] + (λ(R− 1)Ej[Yj+1])−)

=: Ej[Yj+1] + ∆fj(Ej[Yj+1]),

where ∆ = tj − tj−1. Here we use the slight simplification of the setting by setting β ≡ 1,

which is possible since the driver of the BSDE does not depend on Z. This simplification

affects only the constants in the error analysis and does not change the asymptotic conver-

gence rates. In addition to all standing assumptions, this problem also satisfies condition

(AS) with K = {−r;−(r + λ(1−R))} and (bj) = (aj) ≡ 0.

To test and illustrate the theoretical results, we will calculate approximations for Y0 mul-

tiple times for an increasing number of training and evaluations paths M and N and

calculate the rate at which the mean squared error of the approximation decreases in re-

lation to the required computation time. We will calculate the input approximations with

the mesh method as described in the appendix to this chapter and suppose that condition

(B1)-(B4) holds true with the parameters χ1 = χ2 = α = 1 in Assumption (B3) and

(B4) (see remark in the appendix and the discussion of Assumption (B4) in Section 2.2).

Since results for the convergence rate of the mesh method are only available in the special

93



case of Bermudan option pricing (see e.g. Agarwal and Juneja, 2013), we suppose that

the same rates apply in our setting and choose µ = 1
2

in assumption (B2). Moreover we

use the model parameters r = 0.02, σ = 0.2, T = 2, X0 = (X1
0 , . . . , X

5
0 ) = (100, . . . , 100),

λ = 0.02, R = 0.5 and a time grid with 20 equidistant steps, i.e., ∆ = 0.05. As a payoff

function, we consider

−h(x) := 2(x− 115)+ − (x− 95)+,

which indicates a call spread option. This option was already investigated by Belomestny

et al. (2014), who calculated a confidence interval for the option price. We assume that

the center of this confidence interval (8.7275) is a good proxy to the true value and use it

for the calculation of the mean squared error of our approximations.

We calculate the input approximation with the six different numbers of training paths M

Figure 2.1: Results of Monte Carlo approximation (optimized and plain) and Mesh estimator
with 20 time steps.

in {512 × 2i; i = 0, . . . , 5}. Then these input approximations are used to run the Monte-

Carlo algorithm from Section 2.2, where we choose the number of evaluation paths N in

the optimal relation to M . Since we want to confirm both rates in Theorem 2.2.3, we first

neglect that the control ρ∗ takes only values from a finite set and choose N = 10 ×M .

Additional, we run the algorithm with N = 1
256
×M2 evaluation paths, which is the optimal
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relation between M and N in the setting for the second rate in Theorem 2.2.3 under a limit

value consideration where we assume that we can choose p arbitrarily large in Assumption

(B2), which allows us to choose ϑ approximately as one. We do this using the same input

approximation but new simulations of the evaluation paths. We do these calculations

(including the calculation of the input approximation) 20 times for each value of M and

calculate the mean squared error over the different iterations for each value.

In Figure 2.1, the relation of the mean squared error to the required computation time is

plotted in log-log rates. Note that the runtime for the Monte Carlo algorithms includes

the required time for constructing the input approximation. In the first calibration of the

Monte Carlo algorithm (notated as ”MC”), we measured, as suggested by the theoretical

results, the same rate of −0.45 as for the mesh method, which matches approximately the

expected rate of −0.5. Although the estimates of both converge with the same rate, the

mean squared error from the Monte Carlo approximation is much smaller, which is a result

of the smaller variance of the Monte Carlo estimates. For the second calibration of the

Monte Carlo algorithm (denoted as ”MC-opt”), which takes the finite possible values of

ρ∗ into account, our simulations could confirm the improvement of the convergence rate.

We measured a rate of −0.7, which approximately matches the expected rate of −2
3

in

the optimal case when condition (B2) holds for every pair (p, q). Hence, both theoretical

convergence rates could be confirmed by the numerical example.
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Appendix A

Appendix to Chapter 1

Proof of Lemma 1.5.3

We essentially follow the proof in Gobet and Turkedjiev (2016) with slight changes in

representation. Since K is finite-dimensional, there exists for each ω ∈ Ω a set of orthonor-

mal (with respect to the L2-norm induces by ν(ω, .)) basis function pω1 , . . . , p
ω
K̃
∈ K with

K̃ ≤ K. We then set

p̃i(ω, .) := pωi (.)

for all i ∈ {1, . . . , K̃}. Then each Ξ(ω, .) ∈ L2 (A,A, ν(ω, .)) has a (ν(ω, .)-almost surely

unique) best approximation in K with respect to ν(ω, .) which is given by

ϕ(ω, .) :=
K̃∑
k=1

p̃k(ω, .)

(
1

M

M∑
m=1

p̃k
(
ω, χ[m](ω)

)T
Ξ
(
ω, χ[m](ω)

))
.

The linearity of the mapping Ξ 7→ ϕ then follows directly from the linearity of the vector

multiplication. Furthermore, by the properties of the best approximation, ϕ(ω, .)−Ξ(ω, .)

is orthogonal on each element ϕ̃ ∈ K with respect to ν(ω, .). Hence denoting the L2- norm

with respect to ν(ω, .) with ‖.‖, it holds

‖Ξ(ω, .)‖2 = ‖ϕ(ω, .)− Ξ(ω, .) + ϕ(ω, .)‖2 ≤ ‖ϕ(ω, .)− Ξ(ω, .)‖2 + ‖ϕ(ω, .)‖2.

The contraction property in (ii) then follows directly from the inequality above since the

norm is non-negative.

For the proof of (iii), note that ΞG is an element of L2(A,A, ν(ω, .)) and hence has a best
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solution in K which is given by

K̃∑
k=1

p̃k(ω, .)

(
1

M

M∑
m=1

p̃k
(
ω, χ[m](ω)

)T
ΞG

(
χ[m](ω)

))
.

On the other hand, p̃k(χ
[m]) is G-measurable for all k by assumption and hence

E[ϕ|G](ω, .) = E

 K̃∑
k=1

p̃k

(
1

M

M∑
m=1

p̃(χ[m])T ,Ξ(χ[m])

)∣∣∣∣∣∣G
 (ω, .)

=
K̃∑
k=1

p̃k(ω, .)

(
1

M

M∑
m=1

p̃Tk
(
ω, χ[m])(ω)

)T
E
[
Ξ(χ[m])

∣∣G] (ω)

)

=
K̃∑
k=1

p̃k(.)

(
1

M

M∑
m=1

p̃k
(
ω, χ[m](ω)

)T
ΞG(χ[m](ω))

)

and the required equality holds true.

For the proof of (iv), note that

ϕ− E[ϕ|G ∨H] =
K̃∑
k=

p̃k
1

M

M∑
m=1

p̃k(χ
[m])T

(
Ξ(χ[m])− ΞG∨H(χ[m])

)
.

Hence, we have by the orthogonality of the basis functions that

‖ϕ(ω, .)− E[ϕ|G ∨H](ω, .)‖2

=
K̃∑
k=1

1

M2

M∑
m=1

M∑
n=1

p̃Tk (χ[m])(Ξ(χ[m])− E[Ξ(χ[m])|G ∨H])(Ξ(χ[n])− E[Ξ(χ[n])|G ∨H])T p̃k(χ
[n])

=
1

M2

M∑
m,n=1

Tr
(
p̃(χ[m])p̃T (χ[n])(Ξ(χ[n])− E[Ξ(χ[n])|G ∨H])(Ξ(χ[m])− E[Ξ(χ[m])|G ∨H])T

)
≤ 1

M2

M∑
m,n=1

Tr
(
p̃(χ[m])p̃T (χ[n])

)
Tr
(
(Ξ(χ[n])− E[Ξ(χ[n])|G ∨H])(Ξ(χ[m])− E[Ξ(χ[m])|G ∨H])T

)
,

where we denote with p̃ the l × K̃-matrix of functions (p̃1, . . . , p̃K̃). Then, since Ξ(.) is

H-measurable and the random variables χ[m], m = 1, . . .M are independent, it holds for

m 6= n that (Ξ(χ[m])−E[Ξ(χ[m])|G∨H]) and (Ξ(χ[n])−E[Ξ(χ[n])|G∨H]) are conditionally
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independent given G ∨H. Hence, taking conditional expectation yields

E[|ϕ− E[ϕ|G ∨H]|2|G ∨H]

≤ 1

M2

M∑
m=1

Tr
(
p̃(χ[m])p̃T (χ[m])

)
E
[
|Ξ(χ[m])− E[Ξ(χ[m])|G ∨H]|2

∣∣G ∨H
]

≤ σ2

M2

M∑
m=1

Tr
(
p̃(χ[m])p̃T (χ[m])

)
=
K̃σ2

M
≤ Kσ2

M

where we used that the functions p̃k, k = 1, . . . , K̃ are orthonormal.

Proof of Lemma 1.5.5

In this section we prove Lemma 1.5.5. For that, we first prove for a slightly changed version

of Theorem 11.6 in Györfi et al. (2006), which was also used in Gobet and Turkedjiev

(2016) in the same form. The proof contains so-called covering numbers which are defined

as follows.

Definition A.1. Let ε > 0 and G be a set of functions mapping RD into R and x =

(x1, . . . , xM) be a set of (possibly random) points in RD. Then every collection of functions

g1, . . . , gn : RD → R such that for each g ∈ G there exists a j = j(g) ∈ {1, . . . , n} with

1

M

M∑
i=1

|g(xi)− gj(xi)| < ε

is called an ε-cover of G with respect to the empirical L1-norm ‖g‖M := 1
M

∑M
i=1 |g(xi)| of

size n.

The ε-covering number N(ε,G, x) of G is then defined as the size of the smallest ε-cover of

G.

With the formal definition of the covering numbers, we can now state the variation of

Theorem 11.6 in Györfi et al. (2006) that we will use for the proof of Lemma 1.5.5, just

like in Gobet and Turkedjiev (2016).

Theorem A.2. Let B ≥ 1, α > 0, ε ∈ (0, 1) and let G be a set of functions mapping RD

into the set [0, B]. Furthermore, let χ, χ1, . . . , χn be independent and identically distributed

RD-valued random variables. Then, indicating the set of random variables (χ1, . . . , χn)

with χn, it holds for any ε ∈ (0, 1) and α > 0

P

(
sup
g∈G

Eg − 1
n

∑n
i=1 g(χi)

α + 1
n

∑n
i=1 g(χi) + Eg

> ε

)
≤ 4E

[
N1

(εα
8
,G, χn

)]
exp

(
−ε

2αn

B

6

169

)
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where we write short Eg(χ) :=
∫
g(x)P ◦ χ−1(dx) for any measurable function g : RD →

[0, B].

Proof. Let χ̃n := {χ̃1, . . . , χ̃n} be a second set of independent identically distributed ran-

dom variables, independent of χn, such that χ̃i is distributed like χ. Then, for any fixed

g ∈ G, if the inequalities

Eg − 1

n

n∑
i=1

g (χi) > ε

(
α +

1

n

n∑
i=1

g (χi) + Eg

)

and

Eg − 1

n

n∑
i=1

g (χ̃i) ≤
ε

4

(
α + Eg +

1

n

n∑
i=1

g (χ̃i)

)

hold true, it follows that

1

n

n∑
i=1

g (χ̃i)−
1

n

n∑
i=1

g (χi) > −
ε

4

(
α +

1

n

n∑
i=1

g (χ̃i) + Eg

)
+ ε

(
α +

1

n

n∑
i=1

g (χi) + Eg

)

⇔ 1

n

n∑
i=1

g (χ̃i)−
1

n

n∑
i=1

g (χi) > α
(
ε− ε

4

)
+ ε

1

n

n∑
i=1

g (χi)−
ε

4

1

n

n∑
i=1

g (χ̃i) +
(
ε− ε

4

)
Eg

⇔
(

1 +
5

8
ε

)(
1

n

n∑
i=1

g (χ̃i)−
1

n

n∑
i=1

g (χi)

)
>

3

8
ε

(
1

n

n∑
i=1

g (χi) +
1

n

n∑
i=1

g (χ̃i) + 2α

)
+

3

4
εEg

⇒ 1

n

n∑
i=1

g (χ̃i)−
1

n

n∑
i=1

g (χi) >
3

13
ε

(
1

n

n∑
i=1

g (χi) +
1

n

n∑
i=1

g (χ̃i) + 2α

)

since 13
8
> 1 + 5

8
ε and g is non-negative. Hence the intersection of the sets{

Eg − 1

n

n∑
i=1

g (χi) > ε

(
α +

1

n

n∑
i=1

g (χi) + Eg

)}

and {
Eg − 1

n

n∑
i=1

g (χ̃i) ≤
ε

4

(
α + Eg +

1

n

n∑
i=1

g (χ̃i)

)}
is a subset of{

1

n

n∑
i=1

g (χ̃i)−
1

n

n∑
i=1

g (χi) >
3

13
ε

(
1

n

n∑
i=1

g (χi) +
1

n

n∑
i=1

g (χ̃i) + 2α

)}
.

Now define the function g∗ pointwise for each ω as a function in G satisfying Eg −
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1
n

∑n
i=1 g(χi) > ε(α+ 1

n

∑n
i=1 g(χi) +Eg), if such a function exists, and a random function

in G otherwise. Note that g∗ depends on the set χni only. Using the conclusions on the sets

above, we get

P

(
∃g ∈ G :

1

n

n∑
i=1

g(χ̃i)−
1

n

n∑
i=1

g(χi) >
3

13
ε

(
2α +

1

n

n∑
i=1

g(χi) +
1

n

n∑
i=1

g(χ̃i)

))

≥P

(
1

n

n∑
i=1

g∗(χ̃i)−
1

n

n∑
i=1

g∗(χi) >
3

13
ε

(
2α +

1

n

n∑
i=1

g∗(χi) +
1

n

n∑
i=1

g∗(χ̃i)

))

≥P

({
E[g∗|χn]− 1

n

n∑
i=1

g∗(χi) > ε

(
α +

1

n

n∑
i=1

g∗(χi) + E[g∗|χn]

)}

∩

{
E[g∗|χn]− 1

n

n∑
i=1

g∗(χ̃i) ≤
ε

4

(
α + E[g∗|χn] +

1

n

n∑
i=1

g∗(χ̃i)

)})

=E

[
1{E[g∗|χn]− 1

n

∑n
i=1 g

∗(χi)>ε(α+ 1
n

∑n
i=1 g

∗(χi)+E[g∗|χn])}

× P

(
E[g∗|χn]− 1

n

n∑
i=1

g∗(χ̃i) ≤
ε

4

(
α + E[g∗|χn] +

1

n

n∑
i=1

g∗(χ̃i)

)∣∣∣∣∣χn1
)]

(A.1)

where we used the tower property in the last step to introduce the conditional expectation

given the set χn and that the indicator function on the right hand side is σ(χn)-measurable.

It now follows directly from Lemma 11.2 in Györfi et al. (2006) that

P

(
E[g∗|χn]− 1

n

n∑
i=1

g∗(χ̃i) >
ε

4

(
α + E[g∗|χn] +

1

n

n∑
i=1

g∗(χ̃i)

)∣∣∣∣∣χn1
)
≤ 4B

ε2αn
, (A.2)

which essentially follows from Tchebycheff’s inequality using that the functions g are non-

negative. Hence, for n > 8B
ε2α

, we have by (A.2) and (A.1) that

P

(
∃g ∈ G :

Eg − 1
n

∑n
i=1 g(χi)

α + 1
n

∑n
i=1 g(χi) + Eg

> ε

)
= P

(
E[g∗|χn]− 1

n

n∑
i=1

g∗(χi) > ε

(
α +

1

n

n∑
i=1

g∗(χi) + E[g∗|χn]

))

≤ 2P

(
∃g ∈ G :

1

n

n∑
i=1

g(χ̃i)−
1

n

n∑
i=1

g(χi) >
3

13
ε

(
2α +

1

n

n∑
i=1

g(χi) +
1

n

n∑
i=1

g(χ̃i)

))
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and it suffices to show that

P

(
∃g ∈ G :

1

n

n∑
i=1

g(χ̃i)−
1

n

n∑
i=1

g(χi) >
3

13
ε

(
2α +

1

n

n∑
i=1

g(χi) +
1

n

n∑
i=1

g(χ̃i)

))

≤ 2E
[
N1

(εα
8
,G, χn

)]
exp

(
−ε

2αn

B

6

169

)
(A.3)

in this case. For n ≤ 8B
αε2

, the statement of the theorem is trivial since then the right-hand

side is bigger than one.

For the proof of (A.3), let U1, . . . , Un be independent and uniformly {−1, 1}-distributed

random variables that are independent of χ1, . . . , χn, χ̃1, . . . , χ̃n. Since χi and χ̃i have the

same distribution, it holds that g(χi) − g(χ̃i) is distributed like Ui(g(χi) − g(χ̃i)) for any

i ∈ {1, . . . , n}. We conclude

P

(
∃g ∈ G :

1

n

n∑
i=1

g(χi)− g(χ̃i) >
3

13
ε

(
2α +

1

n

n∑
i=1

g(χi) +
1

n

n∑
i=1

g(χ̃i)

))

=P

(
∃g ∈ G :

1

n

n∑
i=1

Ui (g(χi)− g(χ̃i)) >
3

13
ε

(
2α +

1

n

n∑
i=1

g(χi) +
1

n

n∑
i=1

g(χ̃i)

))

≤P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(χi) >
3

13
ε

(
α +

1

n

n∑
i=1

g(χi)

))

+ P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(χ̃i) < −
3

13
ε

(
α +

1

n

n∑
i=1

g(χ̃i)

))

=2P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(χi) >
3

13
ε

(
α +

1

n

n∑
i=1

g(χi)

))
.

Here the inequality holds since the set on the left-hand side is a subset of the conclusion of

the sets on the right-hand side of the inequality. The last equality then follows since −Ui
has the same distribution as Ui by construction.

We now consider this probability for an arbitrary fixed outcome zn = (z1, . . . , zn) ∈ RD×n

of the random variables χn, i.e., we consider

P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(χi) >
3

13
ε

(
α +

1

n

n∑
i=1

g(χi)

)∣∣∣∣∣χn = zn

)

= P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(zi) >
3

13
ε

(
α +

1

n

n∑
i=1

g(zi)

))
.

For a δ > 0, which we specify later, let Gδ be an L1-δ-cover of G on the set zn, i.e., for all
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g ∈ G, we find an g′ ∈ Gδ such that

1

n

n∑
i=1

|g(zi)− g′(zi)| < δ.

Then, by a zero addition, we get

1

n

n∑
i=1

Uig(zi) =
1

n

n∑
i=1

Uig
′(zi) +

1

n

n∑
i=1

Ui (g(zi)− g′(zi))

≤ 1

n

n∑
i=1

Uig
′(zi) +

1

n

n∑
i=1

|g(zi)− g′(zi)|

<
1

n

n∑
i=1

Uig
′(zi) + δ

and

1

n

n∑
i=1

g(zi) =
1

n

n∑
i=1

g′(zi)−
1

n

n∑
i=1

g′(zi) + g(zi)

≥ 1

n

n∑
i=1

g′(zi)−
1

n

n∑
i=1

|g′(zi) + g(zi)|

>
1

n

n∑
i=1

g′(zi)− δ.

Hence it holds

P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(zi) >
3

13
ε

(
α +

1

n

n∑
i=1

g(zi)

))

≤P

(
∃g ∈ Gδ :

1

n

n∑
i=1

Uig(zi) + δ >
3

13
ε

(
α +

1

n

n∑
i=1

g(zi)− δ

))

≤|Gδ|max
g∈Gδ

P

(
1

n

n∑
i=1

Uig(zi) >
3

13
εα− δ − 3

13
εδ +

3ε

13n

n∑
i=1

g(zi)

)
.

Now choose δ = εα
8

and suppose that Gδ is of minimal size. Then we have

3

13
εα− δ − ε 3

13
δ ≥ εα

(
24

104
− 13

104
− 3

104

)
=

1

13
εα
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and hence get

P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(zi) >
3

13
ε

(
α +

1

n

n∑
i=1

g(zi)

))

≤ N1

(εα
8
,G, zn1

)
max
g∈Gδ

P

(
1

n

n∑
i=1

Uig(zi) >
εα

13
+

3ε

13n

n∑
i=1

g(zi)

)
.

It follows by Hoeffding’s inequality that

P

(
1

n

n∑
i=1

Uig(zi) >
εα

13
+

3ε

13n

n∑
i=1

g(zi)

)
≤ exp

(
−

2n2( εα
13

+ 3
13
ε 1
n

∑n
i=1 g(zi))

2

4
∑n

i=1 g(zi)2

)
= exp

(
−
ε29(αn

3
+
∑n

i=1 g(zi))
2

169× 2B
∑n

i=1 g(zi)

)
.

Using that (a+y)2

a
≥ 4y for all a, y > 0, we obtain

exp

(
−
ε29(αn

3
+
∑n

i=1 g(zi))
2

169× 2B
∑n

i=1 g(zi)

)
≤ exp

(
−6αε2n

169B

)
.

Then, denoting the distribution of the random set χn with Pχn , it holds

P

(
sup
g∈G

Eg − 1
n

∑n
i=1 g(χi)

α + 1
n

∑n
i=1 g(χi) + Eg

> ε

)
≤ 4P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(χi) >
3

13
ε

(
α +

1

n

n∑
i=1

g(χi)

)∣∣∣∣∣Zn = zn

)

= 4

∫
RD×N

P

(
∃g ∈ G :

1

n

n∑
i=1

Uig(zi) >
3

13
ε

(
α +

1

n

n∑
i=1

g(zi)

))
dPχn(dzn)

≤ 4

∫
RD×N

N1

(εα
8
,G, zn1

)
exp

(
−6αε2n

169B

)
dFχn(dzn)

= 4E
[
N1

(εα
8
,G, χn

)]
exp

(
−6αε2n

169B

)
what finishes the proof of Theorem A.2.

We will now use Theorem A.2 to prove Lemma 1.5.5. For this purpose, let K be a linear

vector space of functions mapping RD into R and let υ : RD → R be a function satisfying

|υ(x)| ≤ Cυ for all x ∈ Rd. We then consider the set of functions G := {|TCυ(ψ(x))−υ(x)|2 :

ψ ∈ K}. By construction, the functions in G take values in the set [0, 4C2
υ ]. Using again

the notation Eg :=
∫
g(x)PXti (dx) and g := 1

Mi

∑Mi

i=1 g(X
[i,m]
ti ) for any function g ∈ G, we
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conclude for any β > 0 that

P

(
sup
g∈G

Eg − (1 + ε)g > β

)
=P

(
∃g ∈ G :

2

2 + ε
Eg − 2 + 2ε

2 + ε
g >

2β

2 + ε

)
=P

(
∃g ∈ G : Eg − ε

2 + ε
Eg − g − ε

2 + ε
g >

2β

2 + ε

)
=P

(
∃g ∈ G : Eg − g > ε

2 + ε

(
Eg + g +

2β

ε

))
=P

(
∃g ∈ G :

Eg − g
Eg + g + 2β

ε

>
ε

2 + ε

)
.

Hence Theorem A.2 yields the bound

P

(
sup
g∈G

Eg − (1 + ε)g > β

)
≤4E

[
N1

(
β

4(2 + ε)
,G, XMi

i

)]
exp

(
− 3βεMi

(2 + ε)2169C2
υ

)
.

Note that TCυ(ψ(x)) − υ(x) ∈ [−2Cυ, 2Cυ] for every ψ ∈ K and the function |.|2 :

[−2Cυ, 2Cυ] → R, x 7→ x2 is Lipschitz continuous with Lipschitz constant 4Cυ. Hence

it follows for the set of functions TCυK := {TCυ(ψ) : ψ ∈ K} that

|(ψ1(x)− υ(x))2 − (ψ2(x)− υ(x))2| ≤ 4Cυ|ψ1(x)− ψ2(x)|

for all ψ1, ψ2 ∈ TCυK and x ∈ RD. Consequently, it holds

N1

(
β

4(2 + ε)
,G, XMi

i

)
≤ N1

(
β

16Cυ(2 + ε)
,TCυK, X

Mi
i

)
.

By Lemma 9.2, Theroem 9.4 and Theorem 9.5 in Györfi, we get

N1

(
β

16Cυ(2 + ε)
,TCυK, X

Mi
i

)
≤ 3

(
64eC2

υ(2 + ε)

β
log

(
96eC2

υ(2 + ε)

β

))K+1

whenever β < 8C2
υ(2 + ε) where K is the vector space dimension of K. Then, since for all
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x ≥ 4

2ex log(3ex) = 2ex log (3ex− 12e+ 12e) = 2ex(log(12e) + log

(
1 +

3ex− 12e

12e

)
≤ 2ex

(
log(12e) +

3ex

12e

)
≤ 2ex

(
x log(12)

4
+
x

4

)
≤ ex2

(
log(12) + 1

2

)
≤ (3x)2 ,

it holds

P

(
sup
g∈G

Eg − (1 + ε)g > β

)
≤12

(
96eC2

υ(2 + ε)

β

)2(K+1)

exp

(
− 3βεMi

(2 + ε)2169C2
υ

)
whenever β ≤ 8C2

υ(2 + ε). On the other hand, P (supg∈GEg − (1 + ε)g > β) = 0 for

β > 4C2
υ(2 + ε), since g is bounded by 4C2

ν . Now set a = 96eC2
υ(2 + ε), b = 3ε

169(2+ε)2C2
υ

and

suppose β0 ≥ a
Mi(1+ab)

. Then

E

[
sup
g∈G

Eg − (1 + ε)g

]
≤β0 +

∫ ∞
β0

12

(
a

β

)2(K+1)

exp(−bMiβ)dβ

≤β0 +
12

bMi

(Mi(1 + ab))2(K+1) exp(−bMiβ0).

With the choice β0 = 1
bMi

log(12((1 + ab)Mi)
2(K+1)), which satisfies the restiction above

(see Gobet and Turkedjiev, 2016), this implies

E

[
sup
g∈G

Eg − (1 + ε)g

]
≤ 1

bMi

(1 + log(12) + 2(K + 1) log((1 + ab)Mi))

=
2(K + 1)

bMi

log

(
(1 + ab) exp

(
1

2(K + 1)
(1 + log(12))

)
Mi

)
≤(2 + ε)2169C2

ν2(K + 1)

3εMi

log

((
1 +

288eε

169(2 + ε)

)
exp

(
1

4
(1 + log(12))

)
Mi

)
.

Now for statement of Lemma 1.5.5 concerning qNi , we get from the calculations above by
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choosing K = Kq,i and υ = qNi that

E
[
‖qNi − q

N,M
i ‖2

i,∞

]
≤ (1 + ε)E

[
‖qNi − q

N,M
i ‖2

i,Mi

]
+ E

[(
‖qNi − q

N,M
i ‖2

i,∞ − (1 + ε)‖qNi − q
N,M
i ‖2

i,Mi

)
+

]
≤ E

[
sup
ψ∈Kq,i

Eψ − (1 + ε)ψ

]
+ (1 + ε)E

[
‖qNi − q

N,M
i ‖2

i,Mi

]
≤

(2 + ε)2169C2
q,i2(Kq,i + 1)

3εMi

log

((
1 +

288eε

169(2 + ε)

)
exp

(
1

4
(1 + log(12))

)
Mi

)
+ (1 + ε)E

[
‖qNi − q

N,M
i ‖2

i,Mi

]
≤

1014C2
q,i(Kq,i + 1)

εMi

log

(
288e

507
exp

(
1

4
(1 + log(12)

)
Mi

)
+ (1 + ε)E

[
‖qNi − q

N,M
i ‖2

i,Mi

]
≤ C1(Kq,i + 1)

εMi

log(C2Mi) + (1 + ε)E
[
‖qNi − q

N,M
i ‖2

i,Mi

]
with

C1 := 1014C2
q ,

C2 :=
288e

507
exp

(
1

4
(1 + log(12)

)
.

For the bound concerning zNi , note that

E
[
‖zNi − z

N,M
i ‖2

i,∞

]
=

D∑
i=1

E
[
‖zN,(d)

i − zN,M,(d)
i ‖2

i,∞

]
and the same arguments can be used for each component by replacing Cq,i by Cz =

Cq,i√
∆

.

Thisleads to the additional factor ∆−1 in the bound concerning zNi .
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Appendix B

Appendix to Chapter 2

Mesh method for constructing input approximations

In the following, we describe how the input approximations used in Algorithm 2.2.1 can

be obtained with the mesh method, which was proposed by Broadie et al. (2004) for the

pricing of American style derivatives. The idea, however, can be extended in order to

cover more general stochastic control problems and the setting in Chapter 2. We first

briefly describe the idea of the mesh method in general and then state an algorithm for the

implementation used for the numerical example in Chapter 2.

Recall the functions Cj defined as

Cj(x) = E[βj+1Yj+1|Xj = x]

where

βj = (1, Bj) Xj = hj(Bj, Xj−1)

for independent D-dimensional Gaussian random variables Bj and the representation of Y

as

YJ = ξ(XJ)

Yj = sup
ρ∈Djf

(
Ej[Yj+1] + Ej[∆ρ

TYj+1 − f#
j (Xj, ρ)]

)
j = 0, . . . , J − 1.

We suppose that the function hj(x, .) is for each x ∈ RD invertible and notate the inverse

function with h−1
j,x. Under this constraint, we can write the process β at any time point ti
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as a function of Xi and Xi+1, i.e., by defining β̃j : RD × RD → RD+1 as

β̃
(1)
j (x, y) = 1

β̃
(d)
j (x, y) = [h−1

x (y)]
(d−1)

ς
√

∆
d = 2, . . . , D + 1,

we have βj = β̃(Xj, Xj+1). The central idea of the mesh method is then to simulate

nodes (X̂
[m]
j )j=0,...J ;m=1,...,M in RD, which are fixed throughout the algorithm and do not

necessarily have to be distributed like the SDE solution X. Then, for each pair of nodes

(X̂
[m]
j , X̂

[n]
j+1) with m,n ∈ {1, . . . ,M} and j ∈ {0, . . . , J−1}, a specific weight w(X̂

[m]
j , X̂

[n]
j+1)

is calculated, which we will specify later on. Given the mesh nodes and the weights, the

values of the approximation operators CM,j on the nodes are then constructed recursively

backward in time as the weighted average

CM,J−1(X̂
[m]
J−1) =

1

M

M∑
l=1

β̃J(X̂
[m]
J−1, X̂

[l]
J )ξJ(X̂

[l]
J )w(X̂

[m]
J−1, X̂

[l]
J )

CM,j(X̂
[m]
j ) =

1

M

M∑
l=1

βj+1(X̂
[m]
j , X̂

[l]
j+1) sup

ρ∈Djf

(
(e1 + ρ)TCM,j+1(X̂

[l]
j+1)−∆f#

j+1(X̂
[l]
j+1, ρ)

)
× w(X̂

[m]
j , X̂

[l]
j+1), j = 1, . . . , J − 2, (B.1)

where e1 denotes the first canonical basis vector in RD+1. The weight function w can

be thought of as a normalization factor which is needed to model the right transition

probabilities between the mesh nodes in consecutive time steps. This function has to be

chosen in dependence of the distribution of the simulated nodes X̂ such that at each time

step, the approximations CM,j of Cj on the mesh nodes are unbiased under the constraint

that the CM,j+1 = Cj+1, i.e., such that

E

 1

M

M∑
l=1

sup
ρ∈Dj+1

f

(
β̃j+1(X̂

[m]
j , X̂

[l]
j+1)(∆ρ+ e1)Cj+1 −∆f#

j+1(X̂
[l]
j+1, ρ)

)
w(X̂

[m]
j , X̂

[l]
j+1)

∣∣∣∣∣∣(X̂ [k]
j )k=1,...,M


= Cj(X̂

[m]
j ).

Note again that due to Lemma 2.1.7, at each time step j and for any mesh node X
[m]
j ,

there exists a ρ̂
[m]
j+1 that maximizes the right hand side of (B.1), which is given by a solution

to the equation

ρTj+1CM,j+1(X̂
[m]
j+1)− f#

j+1(X̂
[m]
j+1, ρj+1) = fj+1(X̂

[m]
j+1, CM,j+1(X̂

[m]
j+1)).
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Hence the values CM,j(X̂
[m]) on the Mesh nodes induce samples ρ̂

[m]
j of the control process

ρ and (B.1) is equivalent to

CM,j(X̂
[m]
j )

=
1

M

M∑
l=1

βj+1(X̂
[m]
j , X̂

[l]
j+1)

(
(e1 + ρ̂

[l]
j+1)TCM,j+1(X̂

[l]
j+1)−∆f#

j+1(X̂
[l]
j+1, ρ̂

[l]
j+1)

)
w(X̂

[m]
j , X̂

[l]
j+1).

Here the values of ρ̂
[m]
j only depend on the mesh nodes at the time j and the the approx-

imation operator CM,j evaluated in those mehs nodes. Thus, given the values CM,j(X̂
[m])

on the mesh nodes, we can define the approximation operators CM,j on any point x ∈ RD

not on the mesh nodes as

CM,J−1(x) =
1

M

M∑
l=1

β̃J(x, X̂
[l]
J )ξJ(X̂

[l]
J )w(x, X̂

[l]
J )

CM,j(x) =
1

M

M∑
l=1

(
β̃j+1(x, X̂

[l]
j+1)(∆ρ̂

[l]
j+1 + e1)CM,j+1(X̂

[l]
j −∆f#

j+1(X̂
[l]
j+1, ρ̂

[l]
j+1)

)
w(x, X̂

[l]
j+1).

The canonical approach for choosing the distribution of the mesh nodes X̂ would be to

simulate the nodes X̂ according to the distribution of the SDE solution X. With this

choice, one should define the mesh weights w(x, y) as the conditional density of X for the

transition of x to y in consecutive time steps. Theoretical results, however, show that this

choice leads to an exploding variance of the terms CM,j(X̂
[m]
j ) for an increasing number

of nodes M , see e.g. Broadie et al. (2004). Therefore, we use a different approach for

the calculation of the input approximations in Chapter 2. The idea is to simulate X̂
[m]
j+1

by choosing a random predecessor of the nodes X̂
[m]
j , m = 1, . . . ,M , i.e., a X̂

[r]
j for a

random r ∈ {1, . . . ,M} and then simulates X̂
[l]
j+1 according to the conditional density of

the real SDE solution given Xj = X̂
[r]
j . Choosing the weights accordingly then results in

the following algorithm used for the numerical experiment in Chapter 2.

Algorithm B.1 (Input approximation via mesh method).

(1) Simulate training paths (X̂
[m]
j )j=1,...,J for m = 1, . . . ,M by setting X̂

[m]
0 = X0. Then,

given the values of X̂
[m]
j for m = 1, . . . ,M , set

X̂
[m]
j+1 = hj(X̂

[r]
j ,∆Ŵ

[m]
j+1)

where ∆Ŵ
[m]
j+1 is a D-dimensional Gaussian distributed random variable with inde-

pendent components with mean 0 and variance ∆ each and r is discrete uniformly

distributed on the set {1, . . . ,M}, which is re-sampled for each node.
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(2) Calculate

CM,J−1(X̂
[m]
J−1) :=

1

M

M∑
l=1

(
β̃J(X̂

[m]
J−1, X̂

[l]
J )ξ(X̂

[l]
J )
) MdX(J, X̂

[m]
J−1, X̂

[l]
J )∑M

k=1 dX(J, X̂
[k]
J−1, X̂

[l]
J )

where dX(j, x, .) is the conditional density of Xj given Xj−1 = x.

Then, recursive backward in time given the values of CM,j(X̂
[m]
j ), calculate ρ̂

[m]
j as a

solution of the equation

ρTj CM,j(X̂
[m]
j )− f#

j (X̂
[m]
j , ρj) = fj(X̂

[m]
j , CM,j(X̂

[m]
j ))

and set

CM,j−1(X̂
[m]
j−1) =

1

M

M∑
l=1

(
β̃j(X̂

[m]
j−1, X̂

[l]
j )(∆ρ̂

[l]
j + e1)TCM,j(X̂

[l]
j )−∆f#

j (X̂
[l]
j , ρ̂

[l]
j )

×
MdX(j, X̂

[m]
j−1, X̂

[l]
j )∑M

k=1 dX(j, X̂
[k]
j−1, X̂

[l]
j )

)
,

where e1 denotes the first basis vector in RD+1.

(3) To evaluate the functions CM,j in any point x not on the mesh grid, set

CM,J−1(x) :=
1

M

M∑
m=1

(
β̃J(x, X̂

[m]
J )ξ(X̂

[m]
J )
) MdX(J, x, X̂

[m]
J )∑M

l=1 dX(J − 1, X̂
[l]
J , X̂

[m]
J )

at time J − 1 and

CM,j−1(x) =
1

M

M∑
m=1

(
β̃j(x, X̂

[m]
j )(∆ρ̂

[m]
j + e1)TCM,j(X̂

[m]
j )−∆f#

j (X̂
[m]
j , ρ̂

[m]
j )

×
MdX(j, x, X̂

[l]
j )∑M

l=1 dX(j, X̂
[l]
j−1, X̂

[m]
j )

)
.

at any time point j ∈ {0, . . . , J − 2} and all x ∈ RD.

Remark B.0.1. For the construction of the approximation operators on a mesh node X
[m]
j ,

we have to calculate the averaged sum over all M nodes in the following time and calculate

the mesh weight for each of these nodes, which leads to costs of order M . Hence, the costs

for constructing the approximation operators on all mesh nodes are of order M2. Analogue,

for evaluating the operators in any point x ∈ RD not on the mesh nodes, one has again

to calculated the averaged sum over the M mesh points in the corresponding time point

which again leads to computation costs of order M .
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For additional results regarding the mesh method, we refer to Broadie et al. (2004), where

the method was introduced for American option pricing, or Agarwal and Juneja (2013),

where results regarding the convergence of the estimators can be found in the setting of

Bermudan option pricing.

113



114



Bibliography

A. Agarwal and S. Juneja. Comparing optimal convergence rate of stochastic mesh and least

squares method for Bermudan option pricing. In 2013 Winter Simulations Conference

(WSC), pages 701–712. IEEE, 2013.

L. Andersen and M. Broadie. Primal-dual simulation algorithm for pricing multidimen-

sional American options. Management Science, 50(9):1222–1234, 2004.

M. Avellaneda, A. Levy, and A. Parás. Pricing and hedging derivative securities in markets

with uncertain volatilities. Applied Mathematical Finance, 2(2):73–88, 1995.

V. Bally, G. Pages, et al. A quantization algorithm for solving multidimensional discrete-

time optimal stopping problems. Bernoulli, 9(6):1003–1049, 2003.

D. Belomestny. Pricing Bermudan options by nonparametric regression: Optimal rates of

convergence for lower estimates. Finance and Stochastics, 15(4):655–683, 2011.

D. Belomestny, C. Bender, F. Dickmann, and N. Schweizer. Solving stochastic dynamic

programs by convex optimization and simulation. In Extraction of Quantifiable Infor-

mation from Complex Systems, pages 1–23. Springer, 2014.

D. Belomestny, F. Dickmann, and T. Nagapetyan. Pricing Bermudan options via multilevel

approximation methods. SIAM Journal on Financial Mathematics, 6(1):448–466, 2015.

C. Bender and R. Denk. A forward scheme for backward SDEs. Stochastic processes and

their applications, 117(12):1793–1812, 2007.

C. Bender and T. Moseler. Importance sampling for backward SDEs. Stochastic Analysis

and Applications, 28(2):226–253, 2010.

C. Bender, C. Gaertner, and N. Schweizer. Iterative improvement of lower and upper

bounds for backward SDEs. SIAM Journal on Scientific Computing, 39(2):B442–B466,

2017a.

C. Bender, N. Schweizer, and J. Zhuo. A primal-dual algorithm for BSDEs. Mathematical

Finance, 27(3):866–901, 2017b.

115



Y. Z. Bergman. Option pricing with differential interest rates. The Review of Financial

Studies, 8(2):475–500, 1995.

J.-M. Bismut. Conjugate convex functions in optimal stochastic control. Journal of Math-

ematical Analysis and Applications, 44(2):384–404, 1973.

B. Bouchard and N. Touzi. Discrete-time approximation and Monte-Carlo simulation of

backward stochastic differential equations. Stochastic Processes and their applications,

111(2):175–206, 2004.

D. Brigo and A. Pallavicini. Counterparty risk pricing under correlation between de-

fault and interest rates. In Numerical methods for finance, pages 79–98. Chapman and

Hall/CRC, 2007.

M. Broadie, P. Glasserman, et al. A stochastic mesh method for pricing high-dimensional

American options. Journal of Computational Finance, 7:35–72, 2004.

D. B. Brown, J. E. Smith, and P. Sun. Information relaxations and duality in stochastic

dynamic programs. Operations research, 58(4-part-1):785–801, 2010.

P. Cheridito, M. Kupper, and N. Vogelpoth. Conditional analysis on Rd. In Set Optimiza-

tion and Applications-The State of the Art, pages 179–211. Springer, 2015.
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