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Abbtaact

This report does not contain much novel material, but collects

the basic notions and the most frequently used lemmata and

theorems of first order unification theory. It is restricted

to the case of free terms (i.e. no defining equations).
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0. Intnoduction

This report was written during the redesign of the unification

module of the Markgraf Karl Refutation Procedure [BESS1], [Oh82]
an Automatic Theorem Prover developed at the University of

Karlsruhe. It collects and summarizes the basic theoretical

notions underlying first-order unification theory investigated

from an algebraic point o f  view. So we will not give any

algorithms to compute unifiers or matchers. The definitions and

lemmata are illustrated by examples and counterexamples.

Substitutions are usually defined as endomorphisms on the free

termalgebra in the literature ([CL73], [Hu76], [L078] and

[R065])and hence substitutions like o = {x+f(x)} or 1 = {x+f(y),

y+g(z), z+h(x)} are legal according to this definition.

But actual unification algorithms should not produce such sub—

stitutions and in fact all known_algorithms don't ([R065], [R071],
[KB70], [Ba73],[Hu76], [MM79], [PW78]).

Example I: Let s = x and t = f(y), then o = {x+f(x), y+x} is a

most general unifier o f  s and t,butaaunificati0n algorithm should

produce T = {x+f(y)}. Note that T = {x+y}°o and o = {y+x}°1

Example 11: Let s = x and t = y, then o = {x+y, z+x} is a most

general unifier of s and t and so are T1 = {x+y} and T2 = {y+x}.

Note that a = {x+z}or1 and r1 = {z+x}°c.

For these and other reasons we require an additional property for

substitutionszthe idempotence, i.e. 000 = a .  Let 2 denote the set

of a l l  substitutions and let S be the set o f  idempotent sub-

stitutions. The restriction to idempotent substitutions has deep

consequences; for example ( 2 ,0 )  i s  a semigroup, but ( 5 ,0 )  i s  not,

since the composition of two idempotent substitutions i s  i.g. not

idempotent. The bijective endomorphisms are not idempotent [Hu76].

I n  Chapter I we introduce terms, substitutions and renaming sub-

stitutions. We state conditions under which the composition of

two idempotent substitutions i s  again idempotent and define a

union of substitutions. I n  Chapter II we define some relations

on terms and substitutions and show that the matching problem

for substitutions can be solved by a corresponding matching

problem for terms.





The existence and some basic properties o f  idempotent most

general unifiers are shown i n  Chapter III. The last chapter

deals with unification of substitutions, where i t  i s  shown that

the definition of this report is equivalent to the definitions

given in [Ch72], [CL73], [c579] and [Ni80]. Our definition is

similar to [Va75]. In addition an example is used to demon—

strate that the definition in [$176] is weaker than ours.

Throughout this paper we use the following standard mathematical

notations:

i d  the identity function

flv function f restricted to a subset M of its domain

f(t)+ t is in the domain of f

f(t)+ t is not in the domain of f

° composition of functions

! negation, e.g. X $  y means not x s  y

M\N . set theoretic difference of M and N

Mc:N M is a subset of N or M is equal N





1. TenmA and SubAtituiionA

1. FLAAILOAdea Tenmb

Let € be the set of conAtanté i.e; nullary functionsymbols,

F the set of 6unction4ymbo£4‚ D the set of uaniabßeé, Q==€tJFlJD
and ann—>11 an arity-function with « (x )  = 0 if x e v  U C.

We write €(Q) for the gaze teamalgebaa over Cl)? with respect
to ”(shortly E) which i s  given a concrete representation by

(i) C, D c z ,  (ii) if f e r ,  a(f) = n and t1,...‚tn€l! then

f(t1...tn) G E L  This definition permits us to use structural

induction.

Let van be a mapping which yields the variables of a set of

t e r m s :

var: ' P(E)  -—* P(D)

¢ i f  t = cezc

{t} —-> { x }  i f  t = x630
n

E v a r u t i h  if t = f(t1...tn)

A ——» L_Jvar({t}) 'if A c E
tEA

For ease o f  notation we will write var(t1,...,tn) instead o f

var({t1,...,tn}).

I n  order t o  formalize the s e l e c t i o n  o f  a subterm i n  a term we

define Aubtenm Aeßectohb [Wa82]. Let ka be a natural number,

then we call the partial function a

a :  € —-» €
t k a  i f  t = f(t1...tn) and nzka

undefined e l s e

an angumenz belecton. SEL denotes the set of all argument

selectors. The identity functions on terms, an argument selector

or a finite composition of argument selectors are called subterm

selectors or AeZectoab for short. Let SEL* denote the set of all

selectors. If tEIE i s  i n  the domain o f  a selector a we write

a(t)+ and a(t)+ i f  i t  i s  not. Selectors are sometimes given a

concrete representation called occurences or positions i n  the

literature [Hu80], [P881], [Ros73], [ 5581 ] .





The following lemma which shows that selectors and substitutions

(confer next section) commute is easy to prove:

Lemma1.1: Let t E E ,  a , B € S E L *  and 0 6 2 .

(i) If a(t)+, then c «(t) = «(at).
(ii) If a(t)+‚ B(t)+ and «(t) = B(t)

then a(ct) = ß(ot).

2. SubAtLtutionA

A substitution 0 i s  an endomorphism (on the free termalgebra €),

which i s  the identity on €, i.e.

c :  I ——» I with

(I.1) clc = i d c

(I.2) a(f(t1...tn)) = f(o(t1)...o(tn))

The set of all substitutions is E and e is the identity function

on z called the empty substitution.

In this paper we are interested i n  a subset of Z ,  the set of

idempotent substitutions Sczz with the additional property

( 1 . 3 )  O'°O‘ = a

where "°" denotes functional composition. A substitution with

o(x)=f(x) for example i s  not idempotent since

ooo(x) = f(f(x)) # f ( x )  = a(x) .

I f  not explicitly stated otherwise, we mean by substitutions

always idempotent substitutions.

The application of a substitution 0 to a term t is denoted by

at and to a set W of terms by 0(W) = {otltEEW}. The following
lemma i s  frequently used throughout this paper:

Lamm LZ: Every substitution.o 6 2  is uniquely determined by

i t s  restriction o n  ” .

Päcofi: We use structural induction. Let tEZC then at = t by

(I.1). Let tEZD then ot is defined by the given restriction.

Let t = f(t1...tn) and ati i s  given by the induction hypothesis.

Then we have at = of(t1...tn) = f(ot1...otn) by (I.2). n





An immediate consequence i s  the following

Coaollang: Let 0,1: 6 2 .  If cl” = rl” then o = T.

In order to show that two substitutions are equal we shall

often use this corollary by showing that they are equal on the

set of variables;

For a substitution 0 € >: we define the domain 06 0 as

DOM(o) ' { x  Eblcx  # x}

the codomain 05 a as

COD(o) o (DOM(c))

and the set of uaniableb intnoduced by a as

VCOD(o) = var(COD(o))

and the set of vaaiabteé 06 a as

DOM(0) u VCOD(o)var(o)

If DOM(a) = {x1,...,xn} is finite, o can be represented as

a = {x1+t1,...,xn+tn}

with the following meaning cxi = ti for i=1 ,...,n and ox = x

else. The bubbei preorder for substitutions 0,1 E S  is defined

as c a r  iff DOM(c) c DOM(o) and ox = TX for all x € D O M ( o ) .

Lemma 1 .3 . -  For 0 6 5 :  DOM(o) n -VCOD(o) = (ö

Paoofi: Suppose x €DOM(o) and x €VCOD(a) . Then there exists

y€DOM(a) and x€var({oy}). Let t = oy and a €SEL*  with a(t)+

and a(t) = x. Then a(oy) = a(t) = x * ox‘ = «(at) = a(oooy) ,
hence a * c o o  which i s  a contradiction. a

Lemma 1 .4 :  Let o 6 5 .  Then for all t E E :

DOM(o) n var({ct}) = ¢

P1006:  (by structural induction on t € T )  .





Buße caAe: If t = c e c  then var({ot}) = $ .  If t = x e v  and
J{€DOM(O)‚ then by Lemma 1 .3  x € VCOD(o) and therefore

DOM(o) n var({at}) = $ .  If x € DOM(a) then ox = x and hence

DOM(a) n var({ot}) = ¢.

Induction Step: Let t = f(t1...tn) and DOM(a) n var({otiH = $
for i=1 ‚ . . . ‚n  by the induction hypothesis. Then i t  i s

DOM(a) n var({ct}) = DOM(o) n var({of(t1...tn)})

DOM(o) n var({f(ot1...otn)})

DOM(o) n n var({oti})
i=1

:!
DOM(c) n var({oti})

o

The next lemma can be used as a different characterization o f

S :  ‘

Lemma. 1 .5 :  Let 062 : ,  then

0 6 5  iff DOM(U) n VCOD(0)  = $

Päooß: (1) The forward direction is shown in Lemma I .3 .
(ii) Let DOM(o) n VCOD(o) = $. Now for every x 6 0

var(ox) c VCOD(o) and hence var(ox) n DOM(o) = $.
Büt then cox = ox and hence 0 6 5 ,  since a is
defined by its restriction on D.

The following lemma i s  concerned with sets of terms and sub-

stitutions

Lemma 1 .6 :  Let C, D he sets of terms and.c e s :

(i) I f  C C D  then o(C) <: 0 (D) ;
(ii) 0 (C)  U 0 (D)  = o(C U D);

(iii) 0 (C)  n 0 (D)  = o(C n D);

(iv) 0(C)  \ 0 (D)  c o(C \ D);

(v) I f  o(C) \ 0 (D)  * o(C \ D), then there exist

t € C ‚  s € D  with t # 5  and a t  = os.





P1006:  (i) Let s €a(c)then s = at with t E C .

Since tED, S =_ ot€o(D).

(ii), (iii) and (iv) are easily shown.

(v) We have 0(C) \ 0(D) %: o(C \ D) by (iv) and the

assumption, i.e. o(C\D) \ (0(C) \o(D)) * ¢-

Hence there exists r € c ( C  \ D )  and r € 0(C) \0(D) and t € C  \ D

with. r = ot. Since r € o ( C )  and r € o(C) \o(D) we have r € o ( D )  ,

i.e. there exists s € D  with r = es and s # t by t é -D .
. El

The composition of substitutions is the usual functional

composition, but unfortunately the composition of two idem-

potent substitutions is in general not idempotent.

Lemma 1.7: The composition cor of two substitutions 0,1 € $

satisfies condition (1.1) and (1.2) but i n  general not

condition (1.3).

P1006:  Let 0,1 6 5 .  Then with c € C  we have O'°T c = o(rc) = co = c,

therefore (1.1); and for t = f(t1...tn)

(001)t 0(Tt) = O(T f(t1...tn)

= 0 f ( T t 1 . . . T t n )

f(O(Tt1)...O(Ttn)) >

f((oor)t1. . . (cor)tn) , therefore (1.2).

A counterexample for condition (1.3): let 0 = {xlf(y Z)},T = { y l b } .
Then oro-rx = f(y z) and (oor)o(oor)x = f(b z) # f(y z) .

' :1

Lemma 1.7 shows, that (5,0) is not a semigroup (since it is not

closed under 0 )  , whereas (2,0) is a semigroup. For ease of

notation we will often omit the "o"-symbol, i.e. we write or for

O' °T .

So we are looking for conditions such that the composition of

two idempotent substitutions i s  again idempotent. To this end

we define for y E D  the set DOM(o,y) = {xEDOM(o)  lyEvar(ox)}cDOM(0)}

of all variables x EDOM(0) such that y i s  a variable i n  ox.





Lemma 1 .8 :  Let er,-r 6 5 .  Then or 6 5  i f f  for all y € V C O D ( o )  nDOM(-r).

(i) TY € v implies DOM(a‚y) c DOM(T) and

(ii) ty € D (i.e. ty = z) implies oz = y or DOM(o,y) c D O M h ) .

Päcoß: (A) First we show by contradiction that or E S  implies (1)

and (ii). Suppose there exists y€VCOD(a) n DOM(-c) such that T y c b
and DOM(o‚y) d: DOMH) or r y e ”  (i.e. ‚ty = z) and oz at y and

DOM(a.y) 4: Dom-c).

Let ty € v and x£EDOM(a,y) and x € DOM(r ) ,  then orx = ox = t with
o x  = t #1: and y € v a r ( t ) ‚  i.e. y€VCOD(c-r) ‚ and cry € ’9 since

1y € ”, i.e. y € DOM(o‚r). Summarizing we get yEEDOM(ar) n VCOD(GT)
which is a contradiction to or £ 5  by Lemma I.5.

Now let ty = z € D, cz # y and x E DOM(o,y) and x € DOM(T). By
the same argument as above y € VCOD(or) and since cry - a z  at y

y € DOM(ar )  which again i s  a contradiction to OT € 8 .

(B) The other direction i s  shown by structural induction on TX

for an arbitrary x E v.

Babe. cube: I .  1 x  = c € €: OTO‘TX - c-rcc = orc = O'TTX = 01):, since

T 6 5 .

I I .  T X  = u € 9 :

I f  u € DOM(a) then orarx - aTou - oru = a t  = GTX.

Now let u € DOM(c) .

€0.49. 1: D O M “ )  n var(ou) cp, i.e. mm = c u  and hencec-ra-rx =

c'rou = o o u  = OU. = c r x .

€0.69. 2: DOM(-r) n var(ou) = W # cp. We again have to distinguish

three c a s e s :

Cube 2 .1 :  There exists y E W  with ty € ». By condition (i) it is
DOM(o,y) c DOM(-r) and hence u € DOM(r) , since y € var(ou) . Now

i f  u = x ,  then 1 x  = x contradicts x € DOM(1 ) ;  and i f  u # x ,  then

u € VCOD(-r) which by Lemma 1.5 is a contradiction to 1 E S .





Cube 2 .2 :  For all y € W  ty € 10 and there exists v e w  such that

TV = z and a z  # V. Hence by (ii) i t  i s  DOM(o,v) c DOM(r) and

as above i t  i s  u .€DOM(r) .  which leads to the same contradiction

as in case 2 .1 .

Cube 2 .3 :  For all y € W  T Y E V  and t y = z  and o z = y .  We show

that a w u  = cu by for a l l  w€var(oru) o-rw = w .  That this i s  a

sufficient argument can be easily proved by induction.

Now let w€var(ou)  . If cOMh)  then c1t = ow = w since

DOM(a) n VCOD(o) = {25 and w€VCOD(o). If w€DOM(-r) then w € W  and

hence arw = w ,  since by assumption r w  = z and o z  = w .  Summarizing

we get ororx = GTOu = c u  = arx, which was to be shown.

Induction Atep: TX = f(t1...tn):

O'TO'TX orc-r-rx . (by T € S)
= 0101 f(t1...tn)

= f (O’TOTt1 . . . . O’TOTtn)

= f(art1 ... ortn) (by induction

hypothesis)

= OT f(t1...tn)

=c1' 1 x  ( b y ' r E S )

=01x

Since the condition o f  Lemma 1.8 i s  very technical, we shall

often use a sufficient condition for or £ 5  which i s  easier to-

check. '

Coaoßzang: Let o,T 6 5 .  I f

(1 .4 )  D O M ( r )  n V C O D ( c )  = Q

then c r  6 5 .

The following two technical lemmata will often be used i n  the

sequel.

L e m m a  1 .9 :  Let 0 , 1  6 5  and c o r  e s  then

( fi r e m a n )  c DOM(o) u DOM(-r)

( i i )  D O M ( o )  c DOM(oo-r)





1O

P1006:  (i) Let x€DOM(co-r), i.e.' aotx * x .  If x€DOM(r) we are
finished and i f  x € DOM(-r) .then orx = a x  * x ,  i.e. >: € DOM(o).

(ii) Let x € D O M ( o ) ‚  i.e. o x  # x .  I f  TX = x then clearly '-

x€DOM(a°T). If TX * x  suppose 01")! = x. But this implies

xEVCOD(a)  which is a contradiction to 0 6 5 .

Lemma 1 .10 :  Let 0 , 1 , 6 6 2 .  I f  a ='r then ae= te  and e o -  er.

Päooß: For all x e v  (eoc)x = 6(0):) = 6(rx) = (6°T)x._ Let
6x = t, then at = It and therefore (ce)x = (re)x. '
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3. Renaming Subbtitutianb

A substitution p € 5 is called a ILenaag Aubbtitutian with
respect-to ¢ #‘V c » iff the following conditions are satisfied.

(1.5) 9 ( 0 )  c D (equivalently COD(p) c v)

(1.6) p is injective on V,
i.e. for all x , y € V  x * y  implies px # py

(1.7) DOM(p) = V '

We write REN(V) for the set o f  all renaming substitutions with

respect to V. For example p = {x1+y1 ,  x2+y2, x3+y3} is in
REN({x1‚x2‚x3}) whereas ; = {x1+y1 ‚  x2+y1. x3+y3} is not.

Let p €REN(V)  . We define the contra/we. pc of the renaming sub-

stitution p by '

p c  x = y iff py = x .

The next lemma shows that pc i s  a renaming substitution.

Lemma 1.11: If p€REN(V) then pCEREN(p(V)).

Paoofi: Condition (1.5) and (1.7) are immediate comsequences of

the definition. I t  remains to be shown that p i s  injective i.e.

for all x,y€p(V) pc x = pc y implies x = y. Letx,y€p(V),i.e.
x = pu and y = pv with u , v € V .  Therefore we have pc x = pcpu  = u ,

pcy = p c  = v and u = v ,  hence x = pu = pv = y .

Lemma 1.12: Let p €REN(V). Then
C C C

oo = 9 and 0 o = o .

Pnoofi (by cases):

Gabe 1: x € v a r ( p ) ‚  i.e. px = x and pcx = x and therefore ppcx  = x

and pcpx  = x .

Gabe. 2: x €COD(p) then x (EV by the idempotence of 9 and there-
fore px = x and pcx = y with py = x. Now p°pcx = p y  = x = px and

pc°px  = pcx.
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Caée 3: x €DOM(p) , then x € pV by the idempotence‘ of pand therefore pcx==x
and px = y and pcy = x. Now ppcx  = px and pcpx = pcy = x = pcx.

Remaäk: There does not exist an inverse of a renaming sub-
stitution, since such an inverse must be injective which

contradicts the idempotence. For example let p = {x+y}tma1px=py
hn:x #y'and let p = {x+y‚ y+x} then p is injective but not
idempotent. '

If we refer to non-idempotent substitutionswe define a variable

renaming as an injective substitution with COD(p) c n and

IDOM(p ) l<m.  Then p i s  a bijective substitution called per-

mutation i n  [Hu76]. For example 9 = {x+y‚ y + z ‚  z+x} i s  a

permutation.
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4. Union 05 Subétitutionb

Since we can represent substitutions as sets (of pairs)

the question arises i f  the union of two substitutions i s

again a substitution.

Two substitutions 0,1 E S  are called union-compatible, iff

for all x€D = Dome) n DOM(1) 0x = 1x. ‘Let

UC = { (0 ,1 ) }  0,1 E S  and 0,1 are union-compatible}

be the set of pairs o f  union-compatible substitutions then

we define

L J :  UC -—» C ——» C

[ ( 0 ,1 )  -» OLJT:  € _» !

with 01.91 x = 0x if x€DOM(0 )
and 0LJ1 x = 1x else.

The following lemma which shows that our definitions are

justified (i.e. OLJT €2)is easy to prove

Lemma 1,12; Let (an) € UC then

(i) 0941 :  C ——-» € i s  i n  2

(ii) DOM(0LJ1)  = DOM(O) U DOM(T)

We are now looking for conditions under which the union of two

substitutions is idempotent.

Lgmma 1 ,14 :  If for ( 0 ,1 )  € UC the following conditions hold
(i) Vx€DOM(0 )  10x = 0 x

(ii) Vx€DOM(1 )  01x = 1x

then OLJT € S .  ‘

Päcofi: By Lemma I.13 it remains to be shown that 0L41 is
idempotent. The proof i s  by structural induction on (OLJT)X .

B a b e  c a b e :  I .  Let ( 0LJ1 )x  = c € € ,  then ( 0LJ1 ) (0LJ1 )x  = ( 0LJ1 )c

c = ( 0LJ1 )x .

II. Let (OLJT)X = y € » then there are two cases:
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CaAe 1: y = x  (a |_”)(a L J T ) X =  (cl—11)}: .

Ca”, 2: y + x : w.1.o.g. suppose x€DOM(a)  , i.e. a (_.ltx = ax = y.
Since 0 E 5  and DOM(a) n VCOD(a) = ¢ we have y¢DOM(o) and hence

(a LJT)  (a UT)X  = (a |_J'r)y = ty = tax and with (i)

Tax = ax = (a U t ) x .

Induction Step: Let (a LJT)X = f(t1...tn) and again w.1.o.g. let

x€DOM(a)  , i.e. (OLJT)X=OX.

(a LJr)ax .

= (o LJT) (a LJt)ox (see Lemma I.15)

= (a LJT) (a u r )  f(t1...tn)
= f((a LJT) (a LJ'r)t1...(a LJT)  (a L.)-dtn)
= f((a I.n)t1...(a LJt)tn) (by induction

(0 LJT) (a LJT)X

hypothesis)

= (a l._.l'r)f(t1...tn)

= (a \.It)ax
= ax , (see Lemma I.15)

= (o U H X

n

Remank: The following conditions are equivalent to (i) and (ii) i n

Lemma 1 .14 .

¢

¢
To complete the proof of Lemma I.14 we have to show

(i) DOM(1:) n VCOD(a) .

(ii) DOM(O) n VCOD(T)

Lemma 1 .15 :  Under the hypothesis of Lemma I .14  the following two

equations hold

Vx € D O M ( a )  ( a  L J t ) a x

VxEDOM( - r )  ( a  LJT)TX

O'X

T X  .

P/wqß: We only show the first equation using again structural

induction on ax.

Babe cube: I .  a x  = c e c ,  then (a L-l'r)ox = (a L J r ) c  = c = ax.

II. a x  = y € v. Again we have two cases:
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Gabe 1: x = y ,  then x € DOM(<5).

Co,/se 2: x # y. As in the proof of the above lemma we have

y € D O M ( a )  and therefore ( a u fl c x  = ( aufly  = t y  = TOX. With

condition (1) of Lemma I.14 we get TO'X = ax.

Induction Atep: Let ax = f(t1...tn) then
( a u fl a x (a LJT)OOX

(a | _J r )a  f(t1...tn)

f((o |_! 1:)cr t1...(0' LJT)O  tn)

H

s f(o t1...a t n )  (by induction

hypothesis)

= 00')!

= ax

The following two lemmata state a connection between union and

composition of substitutions.

Lemma 1 .16 :  For 0 6 5  and A c c ,  A + o  there exists A' ESUB with

A ' c o ,  ( A J ' )  E U C  and a = Ä LJÄ '  = A o k '  = A '  o k .

P’L006: Define A' with A'x = ox for x€DOM(o)\DOM(A) and A'x = x
elsewhere. Since A' c c we have A' € S and (A,A') EUC. The
equation follows from the definition of A'.

1::

Lemma 1 .17 :  I f  the conditions of Lemma 1 .14  are satisfied, we

have

OUT-=01  = T O  .

P/Loaé: It is sufficient to show 0 LJT = (IT , because

a L..” = ‘r L.“; = TO.

If x€DOM(o) n DOM(-r) then we have

(Ju-tx = ox = rx = oox=  m x  .

I f  x € D O M ( o )  \DOMh) ,  then i t  i s

a L. ! ‘cx  = o x  = o r x  , since 1 x  = x .

If x€DOM('c) \DOM(o), then by (ii) of Lemma 1 .14

a LJTX = T X  = 0 1 x

If x€DOM(o) UDOMh), then

c L J 1 x = x = o x = 0 1 x
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II. Matching

In the following we only investigate ßinite sets of terms and

therefore the restriction to substitutions with a finite domain,

i.e. er e s  with IDOM(o) |<» i s  sufficient.

1. Inbtanceb 05 Tenme

Thebubbumption aeiation 5 turned out to be a very important

relation on terms [Hu76], [Pl70], [Re70].

Def. II.1: Let s , t € € .  We define

s s t i f f  ax € S s = At

s I t i f f  s s t and t s s .

We say p is an inAtance of t, t Aubbumeé s or t is make geneaal
than s if s s t and s is equivalent to t if s = t. For example
i f  s = g ( a  b) and t = g ( x  y )  then we have s s t with

A = {x¥a, y+b}. If s = g(x) and t = x then s $ t since
{x+g(x)} € S. If s = f(x y)and t = f(u v) then s s t since

s s t and t s 5 with A1 2

If s = f(x y) and t = f(y x) then 55$:t. Since 5 $ t and
t $ s (A = {x+y, y+x} € 5). This demonstrates that the condition

= {u+x, V+y} and A = {x+u‚ y+v}.

A e s  restricts the set of pairs which are in the "s"-resp. "u"-

relation. But particularly i n  the last case this restriction i s

absolutely essential since i t  prevents the £522 functionsymbol

f to satisfy the commutative axiom f(x y) s f(y x).

Lemma 11 .1 :  5 i s  a reflexive, but not a transitive relation.

Paoofi :  With A = e the reflexivity is trivial. A counterexample

for the transitivity let r = 9(Y), s = x and t = y then r s s
with {x+g(y)} and s s t with {y+x} but r f t.

— u

The next lemma shows that E i s  not an equivalence relation.

Lemma 11 .2 :  : is a reflexive, symmetric but not a transitive

relation.
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PILoofi: Since s S s ,  = is reflexive and since 5 s t and t s s is
equivalent to t s s and s s t, ! is symmetric. The counter—

example for the transitivity is as follows. Let r = f(x y),

s = f(u v), t =  f(y x) t h e n r  a s  a n d s  a t b u t  r3!  t.

The next two lemmata show the connection between the equivalence

relation : and renaming substitutions.

Lemma 11 .3 :  For s , t € E  i f  s = t then there exists a p €REN(V)

with V c: var(s) such that ps = t. ‘

l a ß :  With s = t ,  i.e. s s t and t s there exist G , ? G S  by

definition such that s = {Pt and t = us. Let a =
>

I
A
 

-A
°|var(s) and

T = é l v a r ( t ) '  i.e. DOM(a) c var(s) and DOM(1) : var(t).

We prove that 0 i s  a renaming substitution. Since already 0 6 5

by assumption we only have to show (a) COD(o)<:D and (b) the

injectivity—condition (I.6).

For (a) suppose thereexists x DOM(c) with ox = r and r € D. Let
a € SEL* with a(s)+ and a(s) = x .  Then we have «(es) = r and

(!(-res) = T r  € 1), but TO’S = at = s and therefore c h e s )  = a(s)€ D,

‚ w h i c h  i s  a contradiction.

For (b) let x,y  €DOM(0)  c: var(s) and o x  = oy. Then there exist

a ‚ ß € S E L *  with a(s)+‚ B(s)+‚ a(s) = x and B(s) = y and «(es) =

ox = oy = 8(os) and by Lemma 1.1 (ii) a n u s )  = 8 (105 ) .  Since

TO’S = s' we have a(-ros) = x and 8 (103 )  = y and hence x = y .

|:

Lemma 11 .4 :  For s , t € €  i f  there exists p €REN(V) with p s  = t ,

V c var(s) and p(V) n var(s) = ¢ ,  then s i t .

P1006: Since t s s  by assumptionwe haveto, show s 5 t. By assumption

p ( V )  n var(s) = ¢ and therefore DOM(p) n var(s) = 2). Then

s = o s = o o s = o t  ,

pop, and hence s = t.. . ci.e. s s t Since p
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Summari zing  :

Päopabition 11 .1 :  Let s , t €€ ‚ l  then s i t i f f  s and t are

equal up to a renaming substitution.
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z. Inuancu 05 Subuuuuon:

We define a restricted equality of substitutions.

Def. 11.2: Let w c v and 6,1: es; then
t'EWliff ox = TX for a l l  x E W .0'.

For example let o = {x+f(a b), y+c} and T = {x+f(a b)}then
o = t[{x}]. Next we extend the subsumption relation and the
equivalence relation on terms to substitutions.

Def. II.3: Let W c » and 0,1 6 5 :

(i) o s 1 iff ax £ 3  o = At;we say 0 is a (Atnong)
inßtance of 1 or T is make genena£ than a or r
Aubaumeb 0.

(ii) 0 s r[W] iff ax €SUB o = MIW]; we say a is a
(weak) inbtance of T or 1 is mode geneaal-than
0 with respect to W (w.r.t.W).

(iii) o s r iff a s 1 and 1 s o;we say a and T are
equivalent.

(iv) a a T[W] iff o s r[W] and r s a[W1;we say a and

1 are equivalent w.r.t.W.

‘ We give an example for each relation:

(i) o = {x+f(a b), u+a}‚ r =  {x+f(u b)}, then a s T with A = {u+a}

(ii) a = {x<—f(a b)} T ={x<-f(u b)}, then o=t[{x}] with A={u+a}

(iii) a = {x+y}, T = {y+x} = ac, then o s T because acc = cc = T

and a = 0 0 °  = er

(iv) o = {x+f(u b)}‚'t= {x+f(v,b)}, then o 2 T[{X}] with
A = {u+v} and A' = {V+u} = Ac

Lemma 11.5: Let W c v

(i) s [W] is a reflexive, but not a transitive relation.

(iv) s [ W ]  i s  a reflexive and symmetric, but not a

transitive r e l a t i o n .
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Flood: We only give the counterexamples to the transitivity,

since reflexivity and symmetry are obvious.

S [W]: p = {x+f(g(Y)b)}, a = {x+f(z b)}and r = {x+f(y b)}, then

p s c[{x}] and o s r[{x}], but p $ 1[{x}].

E [W]: p = {z+f(x y)}, a = {z+f(u v)} and T = {z+f(y x)}, then
p z o [ { z } ]  and c: ; T[{Z}]‚ but p $‘r[{z}].

n

Lemma 11 .6 :  Let 0,1653. I f  there exists A E :  with a = A1 then there

exists A' 6 5  w i t h o =  A'T.

P/Loofi: Since 0 = M and 1: E S  we have a = M = H I  = 0”! and c e s .

The proof  of this lemma yields a characterization of the subsumption
relation on substitutions:

Caäoßßang: Let 0,1 E S .  Then

o s T i f f  o = G T  .

Lemma 11 .7 :  "5" i s  a reflexive and transitive relation on sub—

s t i t u t i o n s .

Päooé: With A = 6 the reflexivity i s  immediate. For the transitivity,

suppose p s a and 0 s ? ,  i.e. there exist ( ‚ x  6 5  with p = K0 and o==AT

therefore p = KAI and KA G Z .  By Lemma II.6 there exists u 6 5  with

p = ur and hence p S T.

u

Lemma 11 .8 :  "E" is an equivalence relation on substitutions.

Päooßz Reflexivity and symmetry are obvious. For the transitivity

l e t  p E a and a = T ,  i . e .  p s o and o s p and 0 s T and T s 0 ,  but

then we have p s T and T s p by the transitivity o f  5 and there-

fore p a T .

D

But note that '?" is not an equivalence relation on terms (confer

Lemma II.2).
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The following lemma shows the connection between the subsumption—

relation and the subset-relation o f  substitutions.

Lemma 11 .9 :  Let 0 ,165 .  I f  a c 1 ,  then 1.’ S a.

1 x  forPnoofi: We have to define a A with r = 10. We choose Ax
X€DOM(T) \DOM(a) and Ax = x else.'Obviously A E S  and 'r A a .

u

The following example shows that if r s 0 then not necessarily oc:t:

a = {x<-f(a y)} and T = {x+f(a b), y+b}. .

A lemma which will often be used is the following:

Lemma 11 .10 :  Let.o‚r‚e 6 5. If a s r then oe 5 re but in general
eo * er.

Puoofi: If a s T then there exists x 6 5  with a = xt and by Lemma I.1O
09 = ÄTÖ, i.e. 06 5 16.

A counterexample for the second argument is

{x+f(a b), y+b}‚ T = {x+f(a y)} and

{y+a}, then eo = {x+f(a b), y+b} and
{x+f(a a), y+a}, i.e. 60 $ 91.

O

01
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3. Matching 05 Teämß

The problem of finding a substitution 0 € S for two terms s and t
such that s = at is called a matching pnoblem denoted as <s s t>.
We call a a matched of s and t and we write M(s s t) for the set
of all matchers of s and t.

Def. I I .4 :  For s‚t€t o is a mußt gene/ml. matched of <s s t>

(mgm) iff '

(i) o €M(s s t)

(ii)-VT € M ( s  s t) 1: s 0

For example let s = f(a b) and t = f(x y) , then <s s t> has a mgm

or = {x+a‚- y+b}. The next lemma shows, that every matcher of <s s t>

restriced to var(t) is anvvmgm: .

Lemma 11 .11 :  If o is a matcher of <s s t>, then

(i) DOM(o) n var(s) = ¢ and

(ii) for V = var(t) E = olv is a most general matcher.

P1006: (i) Suppose x€DOM(o) n var(s). If x€var(t), then since
x ¢VCOD(0)  x {var(ot) which is a contradiction to xEvar(s) =var(ot) .
Suppose x €var(t) . Since x ¢VCOD(a)  we have x {var(ct) which again

is a contradiction to x €var(s) .

(ii) Since Et = at = s it is G e m s  s t). Now let r €M(s s t).and
for evey x E D O M G )  , i.e. x€_var(t), there exists a €SEL* with
a(t)+ and a(t) = x. Since s = Et and 5 = rt we have «(s) = aGt) ==3x
and also (1(5) = 01(1t) = rx and therefore Ex = TX for all x€DOM(E).
Hence it is 5 c T and with Lemma II.9 we have 1 s E.

u

Lemma 11 .12 :  If a mgm exists for <s s t> then it is unique.

Päooß: Let :: and 1 be mgm's for <s s t>, then DOM(c) C V  and

DOM(1')CV with V = var(t) . By the proof of Lemma I I .11  we know

o = T and hence o = o = r = T.|v Iv iv Iv „
This lemma shows that the set o f  most general matchers i s  either

empty or a singleton, i n  contrast to set o f  most general unifiers

as shown i n  section I I I .
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4. Matching 05 Subbtitutioné

Similar to the matching o f  terms we define the matching of

substitutions. The problem of finding a substitution A 6 3  for

0,1 6 5  such that a = A1 (a = A1[V] with V c v) is called a

matching p/wblem 50a Aubétitut—éonb, denoted as <a s r> (<<: 5 r,V>).

The solutions are called matchen 06 d and r (w.r.t. V) and the

set of all solutions is M(o s r) (M(a s 'r‚V)).

Lemma 11 .13  Let 0,1- e s

(i) For a l l  A € M ( o  s 1) i t  i s  DOM(A) c DOM(a)

(ii) I f  M(o s 'r)’ # ¢, then there exists A E S  such that

o = A'r with DOM(A) n DOM('r) = ¢. '

l o ß :  (i) DOM(A) c DOM(a) follows from Lemma 1.9 (ii).

(ii) Let u € M(c s T) and define A such that Ax = ux
if x€DOM(u) \ DOM(r) and Ax = x else. Now A 6 5  since 11 6 5  and

A c u. From the definition follows DOM(A) n DOM(-r) = 9). It remains

to be shown that o = Ar, where a = 1n by assumption. Proof by
structural induction on rx:

Babe caße: I .  TX = c : ox = urx = u c  = Ac = Arx.

II. TX = y :  We distinguish three cases:

Caée 1: x # y and y€DOM(u). Then y € DOM(-r) (1' 6 5 )  and there-
fore y€DOM(A) and uy = Ay. Hence ox = u-rx = uy = Ay = A-rx.

CaAe 2: x # y and y { DOM(u). Then y € DOM(A) and we have
o x  = utx = uy = y = Ay = Atx.

Caée  3: x = y. Then x € DOM(1) and Ax = ux and ax = uTx = ux = Ax

= A t x .

Induction 412p:  TX = f(t1 .tn):

ox = urx =
= uTTX

= ut f(t1...tn)

= f(utt1 ...uttn)

= f(A'ct1 Artn) (by induction hypothesis)
= A1: f ( t 1 o u o t n )

= A T T X

= A t x  a
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We are now looking for the connections between the matching of

terms and the matching of substitutions.

Lemma 11 .14 :  For every matching problem <0 s r‚W> with 0,1 6 5
there exists a matching problem <s s t> with s , t €  !: such

that M(s s t) = M(0 s 't‚W);

Pnooß: Let 0,1 ESUB, W ='{v1,...,vn} 51 = 0vi and ti = rvi, and
let h a n-ary functionsymbol not occuring i n  0 and 1 .  Then we

define

s = h(s1...sn) and t = h(t1...tn) .

M ( s  s t ) :  M ( 0  s r ‚W) :  For A € M ( s  s t )  we have

s = h(s1...sn) = At = Ah(t1...tn) = h(At1... Atn)

and therefore _

0v. = s  = A t i = x t v i  f o r i = 1 , . . . , n  . ‚\

1 i

Hence 0 = M I W ] .

M(0 s „ W )  c M(s s t): For A€M(0  s 1'‚W)‚ i.e. a=M[W]

we have 0vi = 51 = Ati = A-rvi for i =  1‚...‚n and hence

s = h(s1...sn) = h(At1...At2) = Ah(t1...tn) = At.

Lemma 11 .15 :  For every matching problem <0 s t> with 0,1 6 5  there

exists a matching-problem <s s t> With s,t € ! such that

(i) M ( 0  s T )  : M ( s  s t )

(ii) {A€M(s,t)IDOM(A) c var(t)} c M ( 0  s 1:) .

PILoofi: (1) Choose s and t like in the proof of Lemma II.14 with

W = DOM(0) U DOM(r) U VCOD(1). Now the proof of M(0 s 1') : M(s s t)

i s  as i n  Lemma 11 .14 .

Part (ii) i s  proved by cases. We have to show, that 0 = M for

A € M ( s  s t )  with DOM(A) : var(t) .

Co,/se. I: x € D O M ( r ) ‚  then there exists i = {1‚...,n} with x = v1

and 0 x  = 0vi = s i  = Ati = Mvi = M x .
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Case 2: x € DOM(-r) and x€VCOD(1:), then there exists i €{1‚...,n}

“ x  = A x .with x = v1 and again o x

Case 5: x € DOM(-r) and x € VCOD(T) and x € DOM(o) then there

exists i € {1...n} with x and ox = M x ."1

Cube. 4: x € W, then x € var(t) and therefore we have o x  = x - A x = A r x :

since DOMO.) c var(t) . - „

RemaILk. If A is a mgm of the above problem <s s t>‚ the condition

DOM(x) c var({t}) is always satisfied by Lemma II.11.

Lgmma 11 .1ég .  Let o n r[W] then there exists p €REN(V) with
V : var(r(W)) such that a = pr.

l o fi z  By Lemma II.14 there exist terms s and‘t with 3 I t .  By

Lemma II.3 there exists a p €REN  (V) such that s = pt and there-

fore o = pT[W] again by Lemma II.14.

Lemma 11 ,12 ;  Let (: = 1 ,  then there exists a p €REN(V) with
V c var(r (W)) such that o = p'l' where

W = D O M ( 0 )  U D O M ( T )  U V C O D ( T ) .

Pnooß: If a = T then there exist M u  6 5  with a = M and ua = 1
and A c o a n d  u :  T - B y  Lemma II.15 we have terms s and t with s = it

and t = us and by Lenuna II.3 there exists a p EREN (V) with '
V c var(t) = var(r(W)) such that s = pt. By Lemma II.15 again we

get the hypothesis o = 191”. '
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III. Unification 06 Team

Let s,t:€€ be two terms. To unißy s and t is to find a substitution

<x€s such that as = at, i n  other words to solve the equation 3 = t.

We write <s = t> for such a problem and o is called a unifiien of 8
and t. The set of all unifiers of s and t is denOted as U(s,t).

Def. 111.1 A most general unifier (mgu) of 5 and t i s  a maximal

element of U(s,t), i.e. every substitution<r€5 with

(1) a € U ( s ‚ t )

(2) 1 S o  for all 1- €U(s‚t)

i s  a mgu.

For example i f  s = f(g(x) h(a x )  and t = f(y h(a b)) then

a = {y+g(b)‚ x+b} is a mgu. We like to remark on the above

definition:

1. As an immediate consequence of Lemma 11 .17  a most general

unifier i s  unique modulo 3 renaming substitution. For instance,

let s = x and t = y then (!= {x+y} and T = {y+x} are both mgu
of s and t.

2. Huet [Hu76] shows the existence o f  a mgu a E Z ,  i.e. a i s  not
necessarily idempotent, i n  two ways. In the first method using

the algebraic structure of I h e  shows that t/I i s  a join-

semilattice and the existence of an mgu i s  equivalent to the

existence of a greatest common instance. His proofs are

strictly algebraic in contrast to [PL70] and [Re70].

I n  order to show the existence of an idempotent mgu we will

however follow the second method of Huet using basic properties

of certain congruences of terms.
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1. Existence 06 an Idempoteni Mait Genenai Unifiien

First we need  some definitions (see [Hu76]) . Let ~ be an

equivalence relation on the set of terms ! and [t]~${t' € Iltnt'}
the equivalence class of a termt, then ~ is called Sinai/te iff
[x lN =' {x} for almost all x€b.4imp£i.$i.ab£e (iz-free in [8882]) iff
f(t1...tn) ~ f(s1.'..sn) implies ti ~ si for 1si$n and cohenent

iff f # 9 implies f(t1...tn) 7" 9‘(s1...sm). We call a finite
simplifiable and coherent equivalence relation a national

equivaience neiaiion.

Let ~ be a rational equivalence relation then we define a

relation »" on E/~ as follows:

[f(t1...tn)]~ ->~ [ t i ] ~  for 1siSn.

Let x(t,~) E :N U {w} be the length of the longest -v-chain
starting with [t]~. Then ~ is said to be acyclic iff x(t,~)<w
for all t € €.

Let ~ be a rational acyclic equivalence relation then for all

x €  v we take as representative of the class [x ]~  an element

3‘56 [X]“ with the following properties

(i) 316 [X]„
(11) ?Eev iff [xIN c v

and define the substitution a ~ €  I: as

3? if SEE»

N

o x e l s e  .
~

An equivalence relation ~ is said to be a congnuence iff si ~ t i '

1sisn, implies f(s1...sn) ~ f(t1.,.tn) . Let c € z be a substitution
then the unifiicaiion cong/Luence No of a defined as ‘

s ”at i f f  o s  = o t

i s  a rational acyclic congruence.

Lgmma 111.1:Let ~ be a rational acyclic equivalence relation,

3 the congruence generated by ~.Then

(1) «„ :e.
~

A~(ii) for all t e !  a~ t t .

For a proof see Lemma 5 .25  and Lemma 5 .26  i n  [Hu76].
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The following i s  the Unification Theorem of Huet (cf. Theorem 16

in [Hu76]):

Theoaem: Let E be a finite set of terms, ~E the smallest

equivalence relation containing the pairs o f  terms

of E. Let ~ be the simplifiable 'closure of ”E' If ~
i s  coherent and acyclic then GN i s  an mgu of E else

E i s  not unifiable.

Lemma 111 .2 :  Let s and t be two unifiable terms then there

exists an idempotent mgu of s and t. '

P4006: Since s and t are unifiable, the equivalence relation ~
in the Unification Theorem is coherent and acyclic‘and there-

fore “.. is a mgu of s and t. By Lemma III.1 (ii) it is o~ t A t
for all t e t ,  by Lemma III.1 (i) ON t „6 t and by definition

a~ a~t = ont. Hence o~ is idempotent,~i.e. ONES.
' . D

The next lemmas show that the domain and the variables of the

codomain of an mgu a € S are a subset of the variables of the

terms to be unified.

Lemma 111 .3 :  Let o 6 3  be an mgu of s and t then DOM(a) c var(s,t).

P4006.- 'Suppose by contradiction that x €DOM(a) and x € var(s‚t) .
Define o' E S b y  a' = ° l v a r ( - s  t)' a t = o ' t

I

and therefore a '  i s  a unifier o f  s and t .  Since a '  c a we have

Now i t  i s  0'3 = as

o s a'. But by assumption 0 is mgu, i.e. o'_s a and hence a I 'a'.

If ox € to it is x = o'x # Aux for all x es which is a contra-
diction to o' s o. If e x e ”  ox =' z and 2 # x  then z € DOM(o)
(since 0 is idempotent) and x = a'x = Aux = A2 and z = o’z= Aaz =
>.z = x which again i s  a contradiction to z # x .

D

Lemma 111 .4  I f  o ESUB be an mgu of s and t then VCOD(o) cvar(s‚t).

P4006:  SuppOse by contradiction that there exists a z €VCOD(a)
and z € var(s‚t) . Define a substitution 9 6 5  with ex = {z+z'}ax
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for x €DOM(0) and ex_= 'x else, where z_' is a variable not occuring
in 0,8 and t. Firstly we show that '.e unifies s and t. Since ‚as =0t
and z € var(s‚t) and all occurences of z in os,0t introduced by 0
are replaced by 2 "  i n  es‚et‚. we have es = et. Now since cr i s  an

mgu we have 9 = eo bythe corollary. of Lemma. II.6. Let y € DOM(0)
with z €var(0y) , then z €var(eory) since z € DOM(0) (0 i s  idempotent),

but 2 € var(ey) by constructiombut this contradicts the fact
ey = r e o y .  '

n

This property is typical for unification. of free terms. ' I n  some

applications as for example T-unification‘the contrary i s

demanded: VCOD(0) n.var(s,t) = (5.

Let D be a set of at least two terms. D is said to be unifiable
iff there exists a substitution 0 € SUB such that 0D i s  a singeton'.
We call 0 a unifier and we “write U(D) for the set of all unifiers
of D .  ' V

Def. I I I . 2  Let D be a set of at least two terms. Then 0 E'SUB

is called a most general unifier (mgu) of D iff

( 1 )  O € U ( D )

(2) T s 0 for all 'r € U(D) .

The following lemma shows that the unification of sets of terms

can be reduced to the unification of two terms._

“Lemma 111 .5  Let D = £51,...,sz} beva unifiable set of at least ’

two terms. Then there exist terms s and t with

U(D) = U(s,t).

P1006: Let h be an n—1-ary functionsymbol not occuring in D
and let s = h(s1,...,s1) and t = h(sz,...,sn). Now i t  i s

0€U(D)  iff o s 1 =  ... = 052 _

iff _ a s  = h(0s1...0s'1) '=h(0sz...0sn) = at

iff a€U(s‚t). '
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The following lemma establishes a connection between most general

matching and most general unification.

Lemma 111 .6  Let s,t be terms. Every most general matcher for

<s s t> i s  a most general unifier for <s- = t>.

PILOO": Obviously every mgm is a unifieré Let a be. an mgm for

<8 5 t > , i.e. s = ct. Since 0 6 3  we have as = act = at.

Now we have to show that a i s  a most general unifier, i.e. 'l.’ s a
for every I €U(s,t) . ' '

For any x e v  if x € DOM(a) then TX = tax.

If x €DOM(o) then x €var(t) by Lemma/11.11 and therefore there

exists a €SEL*4with „um,  a(s)+‚ «(t)
aa(t) '
a(tt)

Summarizing we have T = To‘ and hence T s a .

x and a.(s) = u(at) =
TS and thereforeax. Since 1- €U(s‚t) we have r t

ta(t) = TX and a(rs)"= ta(s) = TO’X, i.e. TX = tax.

Under some restricted conditions on the mgu we state a converse

of the last lemma:

Lemma 111 .7  Let s,t be terms, o a most general unifier for

<s = t>. ‘If O I W  = p €REN(W) with W = DOM(c) nvar(t) such
that COD(p) n var(t) = ¢ ,  then pca i s  a mgm for <s s t>.

Pnoaß: Let p be as above an: a L: { X V — Y 1 " " ’ x k + y k ' x k + 1 + t k + 1 " " I ’ x n ‘ t n }

and :1 = {x1‚...,xk}‚ then p a = {y1+x1,...,yk+xk,xk+1+g t k + 1 " - " '

xn+p tn}. But since COD(p) n var(t) = 9), we have DOM(p a) nvar(t) = ¢
and hence p c o s  = pcot = t ,  i.e. pca i s  a matcher for <s s t>. Since

var(o) n var(s,t) i t  i s  DOM(pca) c var(t1) and hence by Lemma I I .11

pco i s  a mgm for <s s t>. '
|:

The final two lemmata of this chapter are concerned with unification

and renaming substitutions.
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Def. III.3 Let s,t be terms. We say s and t are R-unifiable if
there exists a "renaming substitution p € REN(var(s,t)) such
that s and pt are unifiable.

For instance let s = .x and t = f(x) then s and t are not
unifiable but s and pt are unifiable with p =' {x<-z}, i.e.
s and t a r e  R-unifiable. I f  s and t are unifiable then sand t
are clearly R-unifiable.

Lemma 111 .8 :  Let s , t € €  and var(s) n var(t) = G „  i.e. s and t
are variable disjoint. If s and t are R-unifiable then
they are unifiable.

P1006:  Let var(s) n var_(t) = (6 and p €REN(var(s,t)) such that
s and .pt are unifiable. Let 0 6 3  be a unifier of s and pt and

p' = °lvar(t) . Hence we have p's = s and p't = pt and therefore

ap ' s  = o s  = opt = 0p't, i.e. s and t are unifiable.

The following lemma i s  quite technical.

Lemma 111 .9 :  Let s and t be terms and 0 G S .  'If as and t are

R—unifiable then s and t are R-unifiable.

l o ß :  By definition there exists p € REN(V) with V = var(s,t,0s)
such that a s  and at are unifiable, var(os) n var(p t )  = ¢ and

w.l.o.g. DOM(a) n var(pt) = ¢. Hence opt = pt and there exists

a e s  such that 605 = apt = eapt, i.e. s and t are R-unifiable.‘

Lemma 111 .10 :  Let s1‚sz‚t1-‚t2€E‚ let 0 be an mgu of 31 ,82  and
let T be an mgu of t1‘‚t2. Let the following variable

conditions be satisfied:

(1) var(sz) n var(s1,t1) = ¢,

(ii) var(tz) n_var(s1‚t1) = (5,
(iii) var(sz) n var(tz) = ¢.

Then: 1 3 1 , 5 2  are R-unifiable i f f  a t 1 , t 2  are R-unifiable.
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Paaafi: Since a i s  an mgu o f  51 and 52, we have var(a) = var(s1‚sz)

and by the same argument var(r) c var(t1,t2). Therefore at2 = t2

by (ii) and (111) 152 = s2 by (i) and (iii), var(ot1) n var(t2)==¢

by (ii) and (iii) and var(rs1) n var(sz) = ¢ again by (i) and

(iii). Now r's1‚s2 are R-unifiable iff T51 ,52  are unifiable (Lemma
III.8) iff a and 1 are compatible (by the corollary of Proposition

IV.1) iff at and t2 are unifiable iff at1 and t2 are R-unifiable1

(again by Lemma III.8).





33

IV. Unifiication 05 Subßtitutionß

I n  this chapter we present some results for the unification of

substitutions.

Let 0,1 6 5  then 0 and 1 are called compatible or unißiabße (short:

0 comp 1 )  iff there exists A e s  such that Ad = At. We write

U(0 ,1 )  ={A ESIAo = A1} for the set of all unifiers of 0 and 1.

Def. IV .1 :  Let 0,1 6 5 .  A substitution e i s  called a most general

unifier (mgu) of 0 and 1 iff . '

(i) e €U(0 ‚1 )
(11 )  A s e  . for a11 .A€U(0 ,1 )  .

If e i s  an mgu of 0,1 we call the substitution 60 = 61 a

uniäying compaßition or a meage of 0 and 1 and write

0*1='{e €S|e E M  and A is mgu of 0 and 1}

for the set of all  merges of 0 and 1 .  I n  the corollary of Lemma IV.2

i t  i s  shown that 0 * 1  i s  not empty, i f  0comp'r. Let 0 * 1  always

denote an arbitrary element of‘0 * 1 .

Just as the mgu o f  two terms i s  unique modulo a renaming sub-

stitution the set of all merges o f  two substitutions 0 * 1  contains
. only elements that differ under renaming,in other words:

61 ,92  € 0 * 1  iff 01 I 0 2 .

The *—operation i s  a commutative operation.

As i n  the case of matching o f  substitutions, for each unification

problem of substitutions there exists an equivalent unification

problem of terms.

Lemma IV .1 :  Let 0,1 6 5 .  Then there exist terms s,t:€E with

U(OIT )  = U ( S ‚ t )  .

Päooß: Let W = DOM(a) U DOM(1)
n-ary functionsymbol and let s h(0w1...0wn) and t

Now i f  0 comp 1 then there exists A 6 5  such that A0 = A: and

therefore As = h(Aow1...Aawn) = h(A1w1...Arwn) = At, i.e. s and t

are unifiable.

{w1,...,wn}, let h be a "new"

h(1w1...1wn).
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If s and t are unifiable then there exists A € $  such that

As = At. Now i f  x e w ,  i.e. x = wi for 1sisn, we have Aowi =A-rwi,

and if xQCW, i.e. ax = x = 'rx we have Aux = An: and hence

A0 = A0, i.e. a comp T .

Now A € U ( o , r )  iff A0 = AT iff As = A1 iff A € U ( s , t ) .

Conallang: Let 0,1 63. If a comp 1 then there exists an mgu of
a and T.

Phooß: By the above lemma U(U,T) = U(s‚t) and hence by Lemma III.2

there exists an mgu for s.and t ,  which i s  an mgu for a and 1 .

In order to actually compute a unifying composition of two sub-

stitutions 0,1 we construct a pair of terms whose mgu is the

unifying composition we are looking for. Of course we could just

compute a A on the basis o f  Lemma IV.1 such that A0 = A1 and then

compute 0*1 from A0 which i s  considerably more inefficient then

the method of the following lemma. Moreover in [Ch72], [CL73] and

[N180] a unifying composition i s  defined as an mgu o f  this pair.

of terms. I n  the second part o f  the lemma we show that this

definition i s  compatible with ours.

Lemma 10 .2 :  Let 0,1 6 5 .  Then there exist terms s and t such that

(i) O,T are compatible iff s,t are unifiable

(ii) i f  A i s  a mgu o f  s and t ,  then A i s  a unifying

composition of o and r, i.e. A e c z e r .

Päooß:  Let o = {x1+s1‚...‚xn+sn}‚ T = {y1+t1,...,ym+tm} and let
h a (n+m)—ary functionsymbol not occuring i n  81 or t i “  Define

s = h(x1...xn y1 . . . ym)  and t = h(s1...s2 t1...tm).

(i) If a comp 1, i.e. if there exists a u 6 5  with ua = ur, then
A : =  no = ut i s  an unifier o f  s and t :  With Axi = uoxi = uaoxi =

11051 = A81 and Ayi = wryi = u'r'ryi = |.1'l'ti = Ati, we have
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At A h(x1...xniy1....ym)

='h(Ax’1...Axn i . . ; A y fi )

h(As1...Asn At1...Atm)

= A h(s1...sn t 1 " ' tm )

At, i.e. s and t are unifiable by A.

Now let s and t be unifiable, i.e. there exists a A with

A3 = At. we show by cases that Aax = Arx for a l l z c e v .

Caße 1:3:€D0M(a) n DOM(r), then there exists i,j with 1sisn
and 1sjsm and x = x. = yi such that Ax = Axi = As = o = Aax

and Ax = Ayi = Atj = Aryj = Arx.

Cube 2: x € D O M ( a )  \DOM(1 )  ,. then there exists 1 with 1sisn

and x = x1 and 1 x  = x .  Hence we have Arx = Ax = Axi = Asi =

oi = A u x .

Caée 3: x€DOM(-r) \DOM(o )  like case two.

Caße 4 : :<$DOM(1 )  U DOM(o) ,  i.e. 1x = x = ox and therefore

A r x  = A x  = A a x .

(ii) For the second part we have to show A E c x e t .  Since A i s  a

mgu o f  s and t, we have

(1) Vu>€U(s,t) u S A .

Since a comp T, there exists a 9 £ 5  with 0* 1: = as = 61 and

(2) . VvEUw,H  \ ; s e .

We have shown in (i) that A0 = A1 and c * r  s==o  * ?  t .  By (2)

we have A s e  and hence with Lemma II.1O ‘

(3) Ac s ea .

Using (1) we have

(4) 60 I a * r  s A .

But then if

(5) A = Aa"
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we get

A = A 0 $ 6 0 E 0 ~ k T S A
(5) (3) (4)

and therefore A i 0 * t  , i.e. A € 0 * t  .

We have to show (5) A = A0. If xEDOM(0) then there exists 1‘
with 1sisn, x = x1 and axi = si and hence we have Axi = Asi = o i .

If x¢DOM(0) then Aux = Ax, which finishes the proof.

Conoiia/Lg: If a and T are compatible there always exists a

unifying composition, whiCh i s  idempotent.

P/woß: By Lemma IV.2 a unifying composition i s  an mgu of two

terms and hence by Lemma III.2 there exists an idempotent unify-

ing composition.

Lemma “1 .3 :  Let 0,1 € } .  If 0 comp r, then

O‘*T  z a ( a * t )  = t ( a _ * r )  and

O'*'l' = ( o * r ) c  = ( q * r ) 1  .

P/Looßz Since o comp 'r there exists A 6 5  such that 0 * 1  I A 0  = A 1 ,

i.e. a * T = pAo = p m  with a renaming substitution 9 .  Now we have

o *1' = pAc = pAopAc S cpAo = 6(0 * r )  S a *‘r and similar'ily

G*T=pÄT=pÄTpÄTSTpÄT T (O ' *T )SO‘ *1 . ' .

The second equation i s  trivial: a *1' = pAa = pAac = (0 * 1 ) o  and

0 * 1  = pM: = pl‘r‘r = (O*T )T .

The motivation for this lemma i s  the definition of a unifying

composition of two substitutions in [$176] which is as. follows:

a unifying composition y = o . 'l.’ of two

'substitutions 0 and T is a most general

substitution A such that

(*) Y=Y°=YT=°Y=TY
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i.e. for all substitutions 6 satisfying (*) 6 s y.‘ But this
definition is different from ours. Take e.g. o =‘ {x<-y} and

T = {y+x_} then G E T  = { b u - y } ,  {y+x}}. But y, = c - 1' = {x+z‚y<—z}
where z i s  a variable different-‚from x and y ,  since by (*) We

get yx = yax = yy and w.l.o’.g. we can assume that DOM(y) c{x,y}.

Now suppose yy = y and yx = y then ryx -—7 r y  = )( and yx = y which

contradicts (*) . If yx =_ x and yy = x then oyy = ax = y and
yy = x which again contradicts (*) . Hence we have a - r S a * 1"

and o * T  $ c o r .

The next lemma will be frequently used’in the sequel.

Lemma IV .4 :  Let 6 ,6 ,1  6 5 .

(i) If6 s o  a n d s S u t h e n a c o m p t a n d a s o w t .
(ii) Ifccomp-r, t h e n a v c r s o a n d o i T s T .

(iii) I f a c o m p n a n d o s ö o r t s ö ‚ t h e n a * r 5 6 .

P/L006: (i) If ö s a and 5 s T, then we have by the corollary
of Lemma II.6 6 = 61' = Go and hence (; comp ‘L'. By definition

there exists a x 6 3  such that A0 = A1 = o *1' and 6 s A. Hence

by Lemma II.1O we have 6 = 60 s Ac s c a m ,  i.e. 5 s a-kt by
the transitivity of "s'P of substitutions.

(ii) Since a comp 1- there exists A 6 5  such that o * 1  ! A0 = M ,

h e n c e o * r  s o a n d s ”  s ‘r.

(iii) By definition there again exists x E S  such that o * T I A c = M .

With Lemma II.1O we have Aa s 16 or Ar s MS and hence using again

the transitivity o * T s ö.

Lemma “1.5: Let 6 ,0 ,165 .  If a .<. T and 6 comp a, then 9 comp T

a n d e * o s e * r .

P/Laoßz Since e comp 0 ,  we have using Lemma IV.4 (ii) 6 * 0  s a
and 9 * o  s e. Using the transitivity o f  5 (Lemma II.7) and a s ‘l’

we have e * a  s '1’ and hence with Lemma IV .4  (i) e comp 1.“ and

9 * 6 5 6 * T ‚
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CanollaagtLet 6,0,1 65. If a~s 1 and 9 Comp 0, then a comp 1
’ and e *‘1 I e *1.

Next we want to state that merging substitutions i s  an associative

operation:

Lemma IV.6: Let 0,0,1 e s .  I f  0 comp 1 ,  e comp a ,  e comp 0*1ande*0oanp1

then a * ( 0  * 1 )  s ( e x  0 ) * 1 .  -

Pkodfi: Let 61 = e:*(o*  1) and G r  = (e * 0) * 1 .  By Lemma IV.4 (ii)

we have 6 1  s e and 61 s a * T. By the transitivity of s and using

Lemma IV.4 (ii) we get 6 1  s e and (61 s a and 6 1  s 1). Hence we

have (61 s e and 6 1  s a )  and 6 1  s 1 and using Lemma IV .4  (i)

6 1  1 S T .  Thus 6 1

we show that 6 r  5 6 1  and therefore 6 1  = 6 r .

s e * o  and 6 s(e*0)wr = 6r. In a similar way

CoaoßlaägzLet 6,0,1 e s ,  then o camp T and e comp a ' *1  iff 9 camp 0
and e * 0  comp 1 .

P1006:  By the assumption there exists 6 = 6*(0 * 1 )  and by

Lemma IV.4 (ii) 6 5 6 ,  6 s a and 6 s 1 as i n  the proof of Lemma IV.6.

Then by Lemma IV.4 (i) e comp 0 and 6 s e * 0  and again by Lemma IV.4
(i) e * 0  comp 1. The converse is shown in the same way.

Def. IV.2: A set of substitutions {eil1sisn} with n22 is said to be

compatible or unifiable iff there exists a 0 E S  such that

061 =oek for 1si, ksn, i.e. {ceil1sisn} is a singleton. Let

U({ei[1sisn}) = {aloei = ce 1si, ksn} be the set of all

such substitutions.

k l

J
Lemma IV.7: Let {eil1sisn} be a set of at least two substitutions.

Then there exists a set of terms {sil1sisn} with

U({ei|1sisn}) = U({si|1sisn}).

Päooß: Let W = \ n ;  DOM(6i) = {x1,...,xk} and let h be a ‚ n e w

i=1
functionsymbol. Then we define

si = h(eix1,...,eixk) for 1sisn .

The proof i s  now the same as for Lemma IV.1.





39

Def; IV.3: A unifier c of {eil1sisn} is called a most general

unifier (mgu) iff '

(i) a €U({Oi|1$i$n})

(ii) T s 0 for all.t €U({eil1sisn}).

If 0 is an mgu of {eil1sisn} then 061 is called a unifying
composition or merge of {eil1sisn}. We write

6 1 a  e en={A€5IA s o e 1  and o mgu of {el1sisn}}

for the set of all unifying compositions; which i s  again not empty

if {eil1sisn} is compatible. '

The following lemma i s  the analogue o f  Lemma IV.2.

Lemma IV .8 :  Let {eil1sisn} be a set of at least two substitutions.

(i) There exists terms s and t such that {eil1sisn} is

compatible iff s and t are unifiable.

(ii) If A i s  a mgu of s and t ,  then A i s  a unifying

composition of'{eil1sisn}, i.e. A (-201 ® ® en.

Moog: (i) Let ei = {xiltä‘‚...‚xä It; } for 1sisn, let h be a
new functionsymbol and i l

1 1 2 2 n . n
s = h(x . . . x  x . . . x  . . . x  . . . x  )

1 m1 1 m 2  1 mn

1 1 2 2 n n
t = h ( t  . . . t  ‘ t . . . t  . . . t  . . . t  ) .1 m1 1 m2 1 mn

If {eil1sisn} is compatible, i.e. there exists a 0(55 with

A = 0 6 T = " ' = ° e n '  then A i s  a unifier of s and t; since for

1sisn.and 1sjsmi we have

i _ i ii _  _ _i - o e i x j  - o e i e i x j  — o e i t j  — A t .  .

U
F
-

Let s and t be unifiable with o € S U B .  We have to show

0 6 .  = 0 9  for 1si.<.n-1
1 i + 1

which i s  shown as i n  Lemma I V . 2 .

(ii) The second part of the lemma i s  also proved i n  the same

way as Lemma IV.2.
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Lemma IV .9 :  Let 0 ,1  E S  and s ‚ t € E .  If a comp 1 and as = at

then a * 1 s  = a * 1 t  and 1 s  and 1t' are unifiable.

w a ß :  Since a comp 1 ,  there exists l € }  such that a *1  s lo=lr.

Hence a * 1 = plc, wherep i s  a renaming substitution, and

0 *1s = blos = plot = o *rt. Moreover it is plrs = plus = plat =
plrt, i.e. 1 s  and 1 t  are unifiable.

Lemma. 111.10: Let 0 ,1  6 5 ,  then a s 1 iff a comp 1' and air-r = c.

P/L006: Since o s 1 and o s 0, we get with Lemma IV.4 (i) that a
and 1 are compatible and a s a *1 ' .  By Lemma IV .4  (ii) we have
0*1  S a and therefore o *1  s o .

By Lemma IV.4 (ii) we have a = a *1: s 1 ,  which proves the other

direction.

. u

Coäolßa/Lg: (i) Let s and t be terms and let o 6 3  such that cs  = o t .

I f  1 i s  an mgu of s and t ,  then

O. !O*T  .

(ii) I f a c - r  thencuk-r £1  .

P’L006: (i) Since 1 is an mgu, we have a S 1 and by the above
lemma 0 = o * 1 .

(ii) Since o c 1 we have 1 s o and hence by the above lemma

0*1  : 1 .

Lemma. IV .” :  Let 0 ,163 .  If (; comp 1 and 0*1  c 1 then 0*1  I 1 .

l o fi :  We have 1 s o * 1 and since we have a *‘l’ s 1 (by Lemma
IV.4 (ii)), hence o * r  = 1 .
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Lemma “1.12: Let ages. If
(i) DOM(c) n DOM(r) = $ and

(ii) DOM(r) n VCOD(a) = ¢ ,

.then a comp r and a n  n u r .

P4006:  With (ii) and Lemma I.8 we have or 6 5 .  We show that. or
unifies a and r .  First i t  i s  crr = or. I f  x € D O M ( a ) ,  then

crux = cox = a x  = orx and i f  x ¢ D O M ( a )  , then crux = arx,
(ii) (i) -

i.e. a comp r .  Hence there exists A 6 5  such that or * r  I A0 = Ar

and or s A and with Lemma II.1O we have or == arr 5 M I o * r .

' But by Lemma IV.4 (ii) we have a * r  s a and again with Lemma II.10

o* - r  = 0 * r r  s or. Summarizing we get a n  n o r .

Lemma IV.13: Let o,r E S  and s ‚ t € € .  If a is an mgu of s and t
and a comp r ,  then there exists a e E S  such that er I a * r

and e i s  an mgu of r s  and rt.

P/wofi: By Lemma IV.9 rs and rt are unifiable and let 9 e s  be an

mgu of rs and rt. Next we show Gr 6 5 :  by the corollary of Lemma 1.8

it is sufficient to show that DOM(r) n VCOD(e) = ¢. Let
x € D O M ( r )  n VCOD(6) then by Lemma 1.4 x € var({rs,rt}) and hence,
since a is mgu, x € var(e) which is a contradiction to x€VCOD(e) .

Now or 6 5  i s  a unifier of s and t and therefore er s a and since

er s r using Lemma IV.4 (i) we have-er s a * r .  Since c * r  is a
unifier o f  rs and rt i t  i s  o * r  s e and with'Lemma II.1O a * r  s e t .

Summarizing we have 0*r s er. , n

Camila/Lg: Let 0 ,1 ,6  6 5  and s , t € €  be as in Lemma IV.13. If 1:

is a ground substitution, i.e. VCOD(r) = $, then
a * r  = e u  r, where 9 i s  an mgu of rs and rt.

P/woß:  By Lemma IV.13 we know a * r  = er. In order to see

91 = el.; T i t  i s  sufficient by Lemma 1.17 to show (1)

DOM(r) n DOM(6) = ¢. (2) DOM(6) n VCOD(r) = $ and (3)

DOM(1:) n VCOD(6)  = $.

(1) Suppose by contradiction there exists x €DOM(r) n DOM(e)

then x (E v v a r ( r s , r t )  by Lemma 1.4 and hence since 6 i s  mgu of
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rs and rt, x 61 var(e) which i s  a contradiction to x € D O M ( e )  .

_ (2) DOM(6) n VCOD(r) ¢, since, VCOD(r) = ¢.

(3) DOM(T) n VCOD(0)„ ¢ as in the proof of the above lemma.
1:

Lemma IV .14 :  Let a,r e s  and s,t;€€. If 0 is an mgu of s and t
and e is  a mgu of rs and rt then a comp r and a *r’ z e r .

Päaoß: SinCe er unifies s and t, we have er s o and by '
definition 6r s r. With lemma IV.4 (i) a comp'rand er s c *r.

Let A 6 5  such that a * r  .5 A0 = Ar. Then A i s  a'unifier o f  rs and

rt and therefore A s e and by Lemma II.1O Ar s er, i.e. a * r  5 er.

Hence a *1' £ e r .

Summarizing Lemma IV.13 and Lemma IV .14  we get

Päcgoßitian IV.1:Let o,r E S ,  s,t:EE and let 0 be an mgu of s and
t .

(i) a comp r iff rs and r t  are unifiable.

(ii) If a comp r or rs and rt are unifiable,

then.o * r  5 er where e i s  an mgu of rs

and r t .

The following corollary i s  a specification of the above pro-

position and was used in the proof of Lemma III.10.

Coaoßßahg: Let o,r € S and s,t € !, let 0 be an mgu of 5 and t

and DOM(r) n var(t) = ¢. Then rs and t are unifiable
iff c comp r .

Pnaofi: Since rt = t the proof is trivial.
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v; Concluéion

During the preparation of this report [Ed83 ]  was published, which
shows that the set of equivalence classes of idempotent

substitutions together with an added greatest element i s  a

complete lattice. The definition of a supremum of two classes

of idempotent substitutions is equivalent to our definition

of a unifying composition of two substitutions (cf Lemma IV.4).

The concept of weak unificatiou introduced there is equivalent

to the concept of R-unification.

Finally I would like to emphasize that the purpose of this report

i s  not so much i n  providing new results but i t  should serve as

a reference which collects some basic notions of first-order

unification theory.
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