evse0me

2 Pl

| 3 — I
I Y

d Kriitzer

i

Ger
MEMD SFKI-84-04

Containirg Inequational Axioms

a
Q
=
i)
T
o
W
g
nm,..
Sd
@]
o
g
O
-~
3J
[
p |
o
=]
o
o
m
8
S
©
j=}
.
<

AUBWIBE) A\ CL LIBINBISISSIEY 0G/9-0
6908 UoEiis0d OWaIWw
ulaIne|siasiey| 1BlisiaAlun k=
YIIBUWLIOMU| yolaiagyoed -:um
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Abstract

Algebraic domain equations (ade’s) provide a means for implicitly
or recursively specifying parameterlized data types. A unique
semantics 1s available provided the respective ade’s are defined
over a category of specifications which are solely based on
equational axioms. We extend thils approach by showing that there
exists an appropriate semantics even 1f the bespective
specifications contain as well equational as inequational axioms.
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0. Introduction

Ehrich and Lipeck introduced in thelr paper [E/L 81] some sort of
recursive domain equatlons for the specification of parameterized
abstract data types. Though they were dealing with the “initial-
algebra® - approach to data types they pointed out some analogies
to Scott’s theory of “Domain Equations®. Since they were working
with algebras rather than with some paritally ordered sets Ehrich
and Lipeck called thelr work “Algebraic Domain Equations”.
They started with a category of algebraic specifications with
equations called Spgeg. Then a parameterized specification is some
injective Spee¢ - morphism p: X » D(X). (Here D(X) indicates that
the formal parameter X 1s fully contained in the target
specification D). Parameter passing 1s defined by the pushout of
some diagram in Speg.
Then each parameterized specification defines a forgetful functor
P: AlgD(X) > Algy. The parameterized data type defined by
p: X » D(X) 1is the (strongly) persistent left-adjoint functor
P: Algxy * ALED(I) which sends each X-algebra to 1ts free
extension in Algp(x). Here (strong) persistency of P means that
for each X-algebra A there holds (|PoP|(A) = A) |FoP|(A) = A.
Now an algebraic domain equation (ade) is an equation of the form
x (P;8) p(x)
where p,e: X » D(X) are Speg - morphisms such that p: X + D(X) 1is
a parameterized specification.
But all what we have done until now 1is to give the syntactic
requirements. What 1s the semantics of such an equation?
Let’s take a short look to a “domain equation’ in Scott’s theory
of domains. Let D = K(D) be a domain equation. Here K(D) 1is a
domaln-expression containting the domain-variable D and the names
of some baslic domains all connected by domain constructors like
“+° (sum), °“x° (product) or “+° (function-space). This is the
syntactic aspect. Then by using the inverse-limit construction we
proceed 1n the following way

- we define a domaln Dy defined by the basic domains connected



as in K(D).

- we look for a retraction-pair (ig,Jo)
19p: Do » K(Dg)
Jo: K(Dg) + Do

- we proceed by iterating (for k>1)
Dk+1 = i(Dk)
141 = K(1): K(D) » K(Dyyq)
Je1 = RG): K(Dyyy) > K(Dy)

— then the solution for D = K(D) is the so called inverse limit

D, = {<d0,d1,...>|kxf0dk = g (dy1)}

Now the solution or the sematics of the above domaln equation is
a fixedpoint of the endofunctor i: £PO +» CPO.
And thus the argumentation of Ehrich and Lipeck 1is such that the
consider the semantics of the solution of the algebraic domailn
equation X (Ege) D(X) should be a fixedpoint of some endofunctor.
The only relevant endofunctors which may be constructed from the
data given by X (P3®) p(X) are

PoR: Algp(x) * A€Dp(X)

and

EoP: Algy * Algy.
The second choice would not make much sense since we Intended to
extend our argument-type. But this cannot be achieved by applying
the fobgetful functor E which takes each D(X) algebra to it’s X-
reduct.
So we decide to use PoE. But there may be a lot of fixedpoints
for PoE. Now in Scott’s approach each domain equation denoted
just one domain and not a class of domains. In analogy to this

Ehrich and Lipeck choose as unilique solution for the algebraic
domain equation X Qg;e) D(X) the initial Q-algebra IQ where (q,Q)



is the coequalizer of p,e according to the diagram

1Y
X:;“D(X) -34-> Q.

What we want to do here 1s to look whether algebraic domailn
equations can be used for other sorts of specifications namely
those which contain inequalities in thelr axlom sets. For example
Hornung [H/R ?] uses specifications with positive conditional
equations and simple 1nequalities and gives an 1nitial and
terminal semantics of parameterized abstract data types. Milner
[M1 77] and M8ller [M® 82| use inequalities in the framework of
partially odered algebras.

We shall proceed in the following way:

In Chapter I we shall recall the maln concepts of algebralilc
domain equations as far as they are needed for our purposes.

In Chapter II we shall present some results about the category of
specifications with 1nequalities as they are introduced 1in
Hornung’s paper [H/R ?].

In Chapter III we give the context in which algebralc domain
equations can be applied to specifications with inequalities.



I. ALGEBRAIC DOMAIN EQUATIONS

Algebralc domain equations as we use them here are defined by
using parameterized specifications. We have already outlined the
general framework in the introduction. Thus 1n the current
chapter we shall give the formal background. The basic results
presented here are given for the category Spae (specifications
with equational axioms); the extension to specifications with
inequalities will be given in Chapter II.

P 4 Specifications and ADT s

Following the well known results of the ADJ - group we take a
specification S to be a triple '
S = <S,L,E>
where S8 1s the set of sorts
I is the set of operations
and F is the set of equations (axloms).
The pair I := <S8,I> 1s called the signature of this

specification.

The signature belongs to a syntactical level in the sense that it
determines the form of the specifled data type. Each algebra A
which 1s supposed to be a model for thils specification must have
a carrier-set Ag for each sort seS and an operation

0: Ag1XessxAgy > Ag for each o ¢ 251,...,5n,8"

The set E of equations consists of pairs <L,R> where L,R are
terms bulilt from operations (of the signature) and variables
(from an S - sorted variable - set X). In the categorical view we
want to choose a category whose objects are specifications. But
we still need to say which morphisms should connect various

specifications.
Thus we first say what a signature morphism is.

I.1l.1 Definition

Let £ = <S,I> and £° = <8%,1"> be two slignatures.



Then a signature-morphism 1is a pair f=<fsortsfop> with

(1) a sort-mapping fgopt: S *+ S°

and
(11) an operation mapping fop: I » I°
such that 1f o e Ig1 ,..,sn,s then
fop(o) € Zfsort(sl),...,fsort(sn),fsort(s)

With this definitlion we can bulld the category of slgnatures as
objects and signature morphlisms as morphisms. We denote this
category by Sig.

We are now able to define specification- morphisms which 1in a

sense take care of a proper translation of equations from one
specification to another. So we come along with the followilng

I.1.2 Definition

Let S = <S,z,F> and 8" = <S8°,I°,E’> be specifications.
Then a specification-morphism
f : S+ 8
is a signature-morphism f=<fgoprt,fop> such that
V¥eeE.f(e) € E°

In thils sense a specification-morphism corresponds to the theory-
morphism as in [B/G 80].

So we gét the category with specifications as objects and
specification-morphisms as morphisms. Thils category is a very
important one and as already polnted out, we denote 1t by Spec.
Now some technical results about thls category, which we shall
use later on. These results can be found in the paper of Ehrich
and Lipeck [E/L 81] and thus detailed proofs will be omitted.
Most of these results have to do with the cocompleteness-property
of Spec. Cocompleteness as we need 1t here means that for any
family (SiliaI) of specifications in Spegc there 1is a unique
object C in Spec and a family of Spec-morphisms Cy: Si + € such

that the following diagram commutes



Informally speaking this means that whenever we have
specificatlions SO, S1,... connected by specification morphisms
fiy: 84 * Sy4;1 we can determine a unique specification C in which
all specifications S84 can be “embedded” (without loss of
“information”) by specification morphisms ci: S; » C. Furhtermore
this ‘embedding” respects the connection between the
specifications Si, Sj4] due to the commutativity property of the
dlagram above.

This means ¥iel.cy410fy = ¢y
The importance of the cocompleteness of 3pec lles in the fact

that for (SilieI) there is a unique specification C which in a
sense “contains® all the structure carried by (Sji|ieI).

Now the results:

I.1.3 Theorem [E/L 81]

Spec has coequalizers.

This means that for any palr of Spec-morphisms

f,g: S + 8° there exists a unique specification C and a unique
morphism h: 8 + C with hof = hog.

C and h are such that for any specification C° and morphism

h*: 8 + C€° with h'of = h’og there exlists a unique morphism
r: € » €° such that h* = roh,

I.1.4  Thoerem [E/L 81]

Spegc has coproducts.
This means that for any family (SilieI) of specifications there
exists a unique object C and a famlly of (coproduct-injectlons)



1g: Sy + C. These are such that for any object D and any family
(dk:Sk + D |ksK) there always exists a unique Speg-morphism
h: € » D such that ¥keI. hoiy = dy.

I.1.5 Theorem

Spec 1s cocomplete.
This is a consequence of the preceeding two theorems.

For further discussion it 1s useful to show the construction
of coequalizers and coproducts in Spec.

The coproduct of two specifications S8 = <S,I,E> and
S° = <8°,I°,E’> 1is simply the triple bullt from the disjoint
union of the components of S and S°. We denote 1t by

S + 8 := <S+S°,L+I°,E+E’> (“+° means disjoint union).

Given the two specifications S and 8° as above. Furthermore let
f,g: 8 » 8" be specification-morphisms. Then the coequalizer of f
and g 1s built in the following way:

First take R(S”) to be the least equivalence relation on 8’
generated by the set {<fgort(s),8sort(s)>|seS}

Then take R(L”) to be the least equlivalence relation generated by
the set {<fop(0),8op(0)>|0oel} which respects R(S"). This means:
By R(S°) the set S 1s divided into equivalence classes. Then
give each equivalence class a unique new name. This leads to a

new sort-set S". Let o € & . Then the sorts sy,...,sq,s

8l,eee,8n,8
are mapped to the new sorts (in S") denoted by [fsopt(sl)],-u,
[fsort(sn)h[fsort(s)] for the respective equivalence classes of
R(S).)

We had already o e Ig1,,..,
operation falls into the equivalence class [fop(o)] belonging to

sn,s* The corresponding coequalizer-

the new operation set I’ [fgopt(S1)lseces[Fsopt(Spy)]s(Fsopt(s)]:
To get the new operatlion-set I" we have to rename the equivalence
classes generated by R(Z") with unique new operation names. The
equation-set E° 1s then renamed according to the previous
renaming of sort- and operation-sets.



The coequalizer morphism h (in I.1.3) 1is then simply defined by
(1) sort-mapping hggypt
¥s“eS’. hgopt(s’) := [s7]
(11) operation-mapping

¥o’elg1”,..sn”,s”« hop(o”) = [o”]
Now one can easlly verify hof = hog.

I.2 Algebras: Models for Specifications

Specifications are the syntactical description for adt’s. They
determine 1n a sense the “form” of adt’s. On the semantical level
we have to consider models for specifications. Here the ADJ-group
uses heterogeneous algebras. We shall shortly review thelr
interpretation by giving the most important definitions and
theorems (without proof) as far as we need them here. For more
detalled information consult for example [ADJ 82].

Let Spec = <S,r,E> be a specification with signature I = <S,I>.

I.2.1 Definition

A r-algebra A 1s given by:
(1) a set Ag for each sort seS

( U Ag 1s called the carrier-set)
seS

(11) a mapping op: AgyxAgoxe.exAgy > Ag for each
operation o € £S1,.4.,80,8

I.2.2 Definition

Let A, B be I - algebras (the respective carriers willl be
denoted by the name of the algebras!). A I- algebra-homomorphism

is a mapping h: A + B such that

Voezsl Val,u.,an € Aslx”'xAsn‘

yese SN, 8
h(UA(al,o-o,an)) = OB(h(al),oo-,h(an))
The category with L-algebras as obJects and I-algebra-

homomorphisms as morphisms 1s denoted A;gz.
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I.2.3 Definition

A I-term 1s defined by
(1) each constant ¢ e Iy g 1s a I-term (of sort s)
(» denotes the empty word!)
(11) Let ti,...,tp be I-terms of sorts sj,...,sp and
o€ Lg1,,,.,sn,s Then o(ty,...,tp) 1s a I-term of sort s.
I-algebras can be interrelated with certaln structure-preserving

mappings, called £-algebra-homomorphisms.
But I-terms may not always glve what we need. Thus we introduce

terms wilth variables.

Let X := U Xg be a countable set of variables.
SeS

Then we define I-terms which (eventually) contalin variables from
X. These terms will be denoted L(X)-terms.

I.2.4 Definition

The following terms are consldered to be I(X)-terms.

(1) Each I-term is a I(X)-term

(11) Each variable xeXg is a I(X)-term of sort s.

(1i1) Let t1seee,t, be I-terms of sorts sq,...,sp, and
o € Ig1,...,sn,s" Then °(t1""’tn) 1s a I(X)-term.

Terms can be used to construct carrler-elements of so-called

term-algebras. These term-algebras have an interesting property

which makes them adequate candidates for unique models for
specifications: They are initial in Algz.

I.2.5 Definition

A L-algebra A is initial in Alg,, if for each I-algebra B
there exists a unique r-algebra-homomorphism hg: A + B.

Now we have to give a description of the term-algebra determined
by L.

11



I.2.6 Definition

The term-algebra Ti determined by the signature I 1s defined by

the following conditlions:

(1) The carrier set for a sort seS 1s the set of I-terms of
sort s.

(11) Let o e Ig1,...,sn,s and tj,...,t, Dbe I-terms of
sorts sy,...,8,,8. Then opy 1s defined by

CTz(tl,--o,tn) = U(tl,oo.,tn)o

I.2.7 Theorem

Tz is 1initial in Alg..

I.2.7 Definition

Let I(X) be the signature with variables from definition I.2.4.
Then the algebra T(X) is defined by the following conditions:
(1) TI(X)s is the set of all I(X)-terms as in definition I.2.4
(for each sort seS).
(11) Let tjy,...,t, be terms from TZ(X)S(I),".,TZ(X)S(n) and
o € Lg],...,8n,s°
Then
°TZ(X)(t1""’tn) 1= c(tl,...,tn) |
According to this definition TI(X) is a I-algebra namely the
free gfalgebra generated by the set X.
Terms of TI(X) can be evaluated in a I-algebra A if we asslgn to
each variable an element of A.

I.2.8 Definition

Let TI(X) be the free I-algebra generated by X and A be a

L-algebra.

Then an assignment from elements of A to X 1s a mappilng
6: X + A

with 0 := (0g: Xg + Ag|seS)

12



Such an assignment determines the so-called evaluation-mapping

for L(X)-terms in a I-algebra A.

I.2.9 Theorem

Let © be an assignment and A be a I-algebra.

Let the evaluation-mapping ®: Tg(x) » A with

5 = (B5:TL(X)g * AglseS) be defined by

(1) ¥xeXg. Gs(x) = 04(x)

(11) Let ty,.-s,t,, be elements of TZ(X)sl,...,TZ(X)Srl and

o€ 2s],,..,sn,s+ lhen
8(a(t1seeesty)) = op(O  (t),eee,0 (L)),

Then ®: TI(X) + A 1s a I-homomorphism.

This theorem shows that interpretations of terms fit into the

algebralic framework, because they are I-algebra homomorphisms.
Now we must say what equations are considered to be and what it
means to say: an equation 1s satisfied in an algebra.

I.2.10 Definition

A t-equation is a pair E=<L,R> with L,R ¢ TI(X)g for a sort
SeS.

I.2.11 Definition

Let E = <L,R> be a I-equatlon of sort seS and A be a I-algebra.
Then A satisfles E if for all assignments ©0: X + A the eva-
luation 8: T(X) » A gives

§S(L) = 0g(R).

This definition means that an equation 1is valid in an algebra, if
all interpretations of left- and right-hand sides of E in A have
the same value as result.

Let A be a r-algebra. Then a congruence relation = on A 1s a

family = := (= ¢ ASXAslseS) such that each =5 1s an equivalence

1]
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on Ag and respects the operations in the sense that if

g € zsl,u.,sn,s and aj,..s,8p € Agyx...xAgy then
oA([al],...,[an]) = [oA(al,...,an)].

([a] denotes the equivalence-class of a).

Let S = <S,L,E> be a specification. Then we deflne a congruence

relation on T by using the equations E and asslgnments

©: X » TT (X is the variable set of E) in the following way:

I.2.12 Defilnition

The congruence relation on TI generated by E is a family
=5 (EE,S c Tf, x TIg [seS) of least congruences defined by =g 4.
(1) Let E = <L,R> be an equation in E of sort S. Then
G(L) EE,S 5(R)
(11) Let g € ZSl,...’Sn’S and ti,ti € Tzsi (i=1,ooo’n)
with t

Then

1 *E,st ti-

o(t1see0s5tp) *E,s o(ti,...,tﬁ)
(111) ¥teTIg. t=p g t
(1v) ¥t,t’eTig. t =g ¢ t7 => t°
(v) Vt,t’,t"eTZs. (tEE,s t &t

E,s t
E,s t") => t EE,S "

[t

The congruence-classes [t] for t e TIg are built by

[t]EE,s = {t7eTrg | ¢ =g,s t7}
Then we can build the quotlent-term algebra Ti/-p in the
following way:

I.2.13 Definition

Let S = <S,I,E> be a specification. Then the quotient-term-
algebra TI/:-gp 1s defined by
(1)  For each seS the carrier-set Ti/zg s 1s the set
TL/zg,s = {[tlzg | t e TIg)
(11) Let o € Ig1,...,sn,s and ty e Tigy (L =1,...,n).
Then
o7y /=E ([tl],...,[tn]) 3= [O(tl,...,tn)]

14



T.2.14 Theorem

Let 8 = <S,L,E> be a specification and TI/-p the quotlent-
termalgebra defined by S.

Then TL/zg 1s 1initial 1n=MLgZ,E (and 1s uniquley determined up
to isomorphism!). .

So we are prepared to say what an adt 1s considered to be in the
ADJ-philosophy:

I.2.15 Definition

Let S = <S,L,E> be a specification.
Then by the abstract data type specified by S we mean the
1somorphism-class of the quotient-termalgebra TIL/:=g.

I.3 Parameterlized Specifications and Parameterized Data Types

We now show how ‘new” data types can be constructed from “o0ld’
ones in the ADJ-approach by using the “parameterization-

technique. On the syntactical level parameterization means that
we start with a formal parameter specification X and “embed” it
into a resulting specification D via an 1injective Spee-morphim
p: X » 7

The formal parameter has very little structure such that there is
a (eventually) large class of specifications in Spec which

will fit this structure and can therefore serve as actual
syntactical parameters. Parameterization means that one
specification is bullt from one or more parameter-specifications
by eventually extending the structure provided by the parameters
with new sorts , new operations and new equations. This is so far
the syntactical view.

On the semantical level parameterization means transformation of

algebras of one category into algebras of another (resultant)
category together with transformation of algebra-homomorphisms.

15



This should be done in such a way that the structure of the
parameter-algebra will not be lost. Thls means that by a certaln
‘reduction” of the resultant algebra we get an algebra that has
the same structure as the parameter-algebra. The transformatilon
of ‘0ld” structures (category of parameter algebras) into ‘new’
(extended) structures (category of parameterized algebras) will
be carried out by functors (according to the category-theoretical
viewpoint used in the ADJ-approach). Analogously the “reduction’
will be carried out by so-called forgetful functors. These
functors “forget” in a sense all of the additional structure of
the resultant algebras and ‘concentrate’ only on the structure of
the “0ld” parameter algebra.

According to the phlilosophy that an adt should be uniquely
determined the resultant (parameterized) algebra 1s the “free’-
extension of the parameter algebra. “Free extenslon” means that
the elements of the “0ld” carriers Ag (for the parameter algebra)

become by transformation (with the respecﬁive functor) elements
of the new carrier Bp(s) (if B 1s the resultant algebra and
p: X » D the parameterized specification belonging to the

transformation).
The following definitions and theorems formalize the above ideas.

The results are taken from [E/L 81].

Remark: In the sequel 1f p: X » D 1s a Spec-morphism, then
p(s) := pPgopt(s) (seS) and p(o) := pop(O) (06231,..,sn,s)'

I.3.1 Definition

A parameterized specification is an injective Spec-morphism
p: X+ D
X is called the formal parameter of p.

In the sequel we use a special kind of parameterlzed
specifications, namely (strongly) persistent specifications. This
property 1s mainly connected with the transformation (of data
types) specified by the parameterized specifications. The

16



transformation 1s expressed by using certaln functors between
categories of algebras. So we introduce here the functors with
which we are concerned in parameterization namely forgetful and
(strongly) persistent functors.

Remark: If e: X+D 1is a Spec-morphism then the respective
persistent functor belonging to e will be denoted by the
(upper case 1letter) E and the respective forgetful
functor will be denoted by E. ‘

I.3.2 Definition

Let e: X » D be a Spec-morphism and B be a D-algebra. Furthermore
let sig(X),sig(D) and sorts(X),sorts(D) denote the signatures and
sorts of the specifications X and D.
Then the forgetful functor E: AlgD > A;gx sends each D-
algebra B to the X-algebra A defined by
(1)  ¥sesorts(X). Ag := Bg(g)
(11) Each operation o e sig(X)gi1,...,sn,s 1s defined by the
image-operation under e.
opt AgyXeeexAgny Ag is defined to be the operation
eop(o)B: Be(sl)x"'xBe(sn) > Be(s)
The algebra A is called the sig(X)-reduct of B.
(1i1) Let B, B° be D-algebras and h: B » B° be a D-algebra-
homomorphism. |
Let A, A° be the respective sig(X)-reducts of B and B’
defined by E.
Then E transforms h into an X-algebra-homomorphism
g: A » A° by
¥sesorts(X). gs = hg(g)

In the followlng discussion we denote the object part of a
category C by |C| and the morphism part by /C/. If A,B e |C|
then C(A,B) denotes the set of all morphisms from A to B.
Furthermore if ¢, D are categories and F: ¢ + D is a functor
then we shall denote 1ts object part by |F|: [C| » |R|] and its

17



morphism part by /F/: /¢/ + /D/.

Now we turn to the definition of persistent functors between
categorlies of algebras. Persistent functors are used to construct
parameterized data types from parameter data types. They perform
this transformation 1in such a way that they ‘remember” the
structure of the parameter-algebra. The structure of the
‘remembered” algebra can then be rediscovered by application of a

forgetful functor.

I.3.3 Definition

Let p,e: X » D be Spec-morphlsms.
Then a persistent functor P (determined by p) is a functor

P: Algyxy * Algp
such that
FoP|(A) = A (“=” means 1somorphy and

VAEIA%SxI'
‘0” denotes the composition of functors)

P 1s strongly persistent iff
VAe|Algy| . |EoP[(A) = A

Now we can see what it means to say that a persistent functor

‘remembers’ the structure of 1its argument (or parameter)-algebra

namely

|E o P|(A) = A
or

|E o P|(A) = A.

We see that we can always rediscover the structure of the
argument and thus no relevant “information” 1is lost by
application of a persistent functor.

What is left for the moment 1s to give the respective workilng
definitioﬁs for parametérized data types (pdt°s) and the
semantics of a parameterized specification.

For short: a pdt or data type constructor consists namely of a
persistent functor and forgetful functor. The standard-semantics

of a parameterized specification 1s given by a persistent functor

Pfree: ALgx +> AlgD which transforms each X-algebra into its free

18



extension and by the forgetful functor P: AlgD + A;gx.
Constructing the free extension of an X-algebra A by application
of a persistent functor Pppee: AlgY * Akgp With |Prpee|(A) := A
means:

The old carriers Ag (sesorts(X)) are bljectively transformed

to the “new” carriers Aj(s) (neither new elements are added
to Ag in Aﬁ(s) nor ‘0ld° elements are mapped onto the same
image).
and
new carriers, new operations and new equations are eventually
added in A-°.
These are the key 1deas contailned in the following sequence of
definitions and theorems.

I.3.4 Definition

As a working definition for pdt’s we choose
A parameterized data type consists of a parameterized

specification
p: X+ D ,
and the (strongly) persistent functor Prree: 4AdZx *» Algp that
takes each X-algebra A to 1its free extension over A with respect
to p such that
|PoPrreel (A) = A (|PoPrpeel (A) = A)

I.3.5 Definition

Let p: X » D be a parameterized specification.
Then by the standard-semantics of p we mean the pair (p,Pppee).

I.3.6 Definition

l.et p: X » D be a parameterized specification.
The p 1s called (strongly) persistent if 1ts underlying standard-

semantics has this property.

19



We shall proceed by clarifylng parameter-passing in Spec and by

building i1nstances of pdt°s. The rest of the chapter contains
some category-theoretical results on the relation between Speg
and the category of Speg-models, the algebras, which are
contained 1n Cat (category of categories with functors as
morphisms).

As a parameterized specification 1s intended to be used as a
method of systematically constructing new specifications from old
ones we have to indicate what parameter passing means.

In general we bind an actual (syntactical) parameter to the
formal parameter in p: X » D by a morphism f: X » A and then
complete the resulting dlagram

X -2 D
f+
A
by giving it a unique meaning as the pushout of the diagram
X -2
fv ¥
A e D s’ B

(where f“op = p“of)

I.3.7 Definition

Let p: X » D be a parameterized specification.
Then an actual syntactical parameter 1s a pair (f,A) such that
f: X » A is a Spec-morphism.

I.3.8 Definition

Let (f,A) be an actual syntactical parameter for p: X » D. Then
the result of parameter passing (A for X) 1s the pushout of the

diagram
x --B-o»>0p
r+ £
A --P2_> p°
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The preceding definition means that the result of parameter-

passing 1s determined by the equivalence of

(1) embedding X into D and then replacing the formal part in D
by the actual parameter A via using f

and

(11) substituting A for X via f and then embedding A into D (by
changing D to D”).

Agaln by the requirement that the meaning of parameter- passing
should be the pushout of the above dlagram we know that the
result 1s uniquely determined. The parameter-passing-mechanism on
the syntactical level corresponds in a sense to the following
mechanism on the semantical level.

Let (f,A) be an actual parameter for the parameterized
specification p: X + D.

Then by using the standard-semantics (p,Prpee) We 1indicated that
each X-algebra will be transformed into a D-algebra (free-
extension) by using the (strongly) persistent functor Prpees NoOw
we take an A-algebra and then transform it into a D°-algebra by
using the standard-semantics of p“: A + D°, namely (p”,Pfpee)
which sends the actual A-algebra to its free extension in g;gD..

I.3.9 Definition

Let p: X » D be a parameterized specification with actual
parameter (f,A). Let the result of parameter passing be the
pushout of the followlng diagramm:

Then an actual parameter for (p,Prpee) 18 a triple (f,A,A) where
(f,A) 1s the actual parameter for p and A is an A-algebra. The
result of parameter-passing 1s indicated to be the commutativity
of the followling diagram.
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algy -ERE€S > g
Pt AP’
Alg _2_22‘29___> AlgD,

Remark: If Ppn.e 1s (strongly) persistent then P’-free 1is.
(technical result in [E/L 81])

We adopt the following convention for the structure of formal-

parameter-specifications.

I.3.10 Convention

Let p: X + D be a parameterized specification.
Then the formal parameter X 1s one of the following specifi-
cations (alternatives are enclosed in brackets { }):

sorts: X

opns: {x: » X} (X eventually contains a constant)
Zx: XxX + BOOL

eqns: X zx X = true
- . _ s
X =x X X :xx
((x =¢Xx" & X7 z4x") => x =,x") = true

Furthermore we shall give each parameterized specification a
unique name. This will help us to 1identify various specifications

by their names and to use them as parameters 1in other
parameterized specifications. Thus if p: X + D 1s a parameterized
specification with simple parameter X we 1identify the resulting
specification by the (unique) name P. The equation
P = K(X;,...Xp) where K is a constructor (that 1is a combination
of the parameters Xj,...,X, vlia operations such as '+'3‘x’)

means, that we name the resulting specification by P. The formal
parameter will be denoted by the keyword formal.
We make the following conventlon:
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I.3.11 Convention

Let p: X + D be a parameterized specification.
Then the equation P = K(X) denotes the following specification:
sorts: P ...
formal X
+ P}
p: PxP + BOOL
. other .

gol}

opns: {

. opera- .

. tions .

formal {x: » x}
=¢: XxX » BOOL

formal x =4 X

X =4 X =x" =, X

((x =4 X" & x7 =, x") => XZ, x") = true
In the case of more than one formal parameter e.g.
P = K(xl,.u,xn) this concept can be easily extended by using a
tuple of parameterized specifications (py: Xy » D| 1i=1,...,n) and
then defining one Spege-morphlsm by this triple.
What we still need 1is to extend the parameter-passing concept 1in
the case when the parameters are themselves parameterized
specifications for parameterized data types. In this case the

following definitions will be used:

I.3.11 Definition

Let p: X » D be a parameterized specification with actual
parameter (f,A). Let p: Y » A be a parameterized specification.
Let the result of passing (f,A) for X be the pushout of the
following dlagram
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X b= D
£+ +f°
y --B_» A --Pz» p-
Then the result of passing p: Y » A for X via f is glven by

’,

P op.

I.3.12 Definition

Let (p,Prpee) Dbe (strongly) persistent standard-semantics for
p: X » D and (f,A,A) be an actual parameter. Furthermore let
(p,ﬁfpee) be a (strongly) persistent standard-semantics for
p: Y > A.
Then the result of parameter passing is the (strongly) persistent
parameterized data type given by

(p°op, Pfreeoﬁfree)'
Now we give some examples for parameterized specifications using
the conventions I.3.10 and I.3.11.

Example 1

P = XIXX2X o0 o XXn (HSN)

sorts: P, BOOL

fOl"mal Xl,ooo’xn
opns: Ep: PxP » BOOL

<"f>: XqX oee XXn + P
[1]: P> Xy (1 =1,...,n)
formal =yxy: XyxXy » BOOL (1 =1,...,n)

eqgns: p Ep p = true Ep is an
P Ep, P° =D =, D equivalence
((p 3, p° & p° = p") => p Zp P") = true relation on P
[1]<x1,...,xn> = Xy (1 =1,¢0.,n)
’<X1,...,Xn> Ep <X1,..o,Xn> = (Xl Exl xl &oco&

Xn xn Xﬁ)
formal x1 Exi Xy
xi Exi xi xi=X1§X1 1=1,-¢o,n

((xg 2geq & X3 2xq X§) =2 X3 3y xf) = true
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Example 2

P =
sorts: P, BOOL
formal Xj,.¢.,Xp
opns: P: » P
Zp: PxP » BOOL
<-o->:_Xlx coo.xXn"P
[1]: P> Xy (L =1,...,n)
formal Xy: *» Xy (1 =1,...,n)
=1 Xixxi + BOOL
eqns: p Ep p = true
P spP =P =P
- . s - " = = "
((p z=pP" & D p P ) =>p =, p")
<XpseeesXp> E,p = false
5 Ep <X1,n.o,xn> = false
[1] 3 = ii
formal Xy Exi Xy = true
Xy Zxq X T X5 g Xy (1= 1.
- , d = " =
((xy 2pq X3 & x5 2y X)) = x4
Remark

XyxXox oo xXp + 1 (n-fold product with constant)

.,n)

“x1 xi)

In the following sections we shall omit the “equivalence’-part

of the specification that 1s the operations ‘=
equations stating the equlvalence property of “=7.

Now some examples for parameter passing.

“ and the

d ,

We use the following specification NAT for “natural numbers”:

sorts: NAT, BOOL
opns: 0: » NAT

suc: NAT + NAT

‘_—'NAT: NATxNAT + BOOL
eqns: O =yaT O = true

0 =yam suc(n) = false
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suc(n) =ypm O = false
suc(n) =yap SUC(N®) = n =yap n”
(This 1s a quite redundant specification of NAT but 1t is useful
in showing parameter-passing!)
Let”s turn to our next example:
We want to bulld Q = NATxNAT.
So we take the specification from Example 1 with
P = X; xX, and the two Spec-morphlsms py,po characterized by:
py: Xy > NAT, =y; > =ypam, x1 * O
po: X5 > NAT, =,5 * =yaq, X5 0
We take the tuple p = <P;,Pp> to lead to the parameterized
specification
p: X1xX, * NATxNAT
The resulting specification 1s given by:

sorts: Q, NAT, BOOL
opns:  @: » Q
=Q: QxQ »+ BOOL
<>: NATxNAT » Q
[1]: Q » NAT
[2]: Q@ » NAT

. NAT-opns
eqns: g =g q
[1](3) = 0
[2](q) = O

<ny,ni> =g <np,n5> = (ny Eypp Np & N Eypp 03)

. equations for NAT .

We can now use this specificatlion for building
Q x Q & (NAT x NAT) x (NAT x NAT)
Q+1 (NAT x NAT) + 1

etc.

114
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I.4 Algebraic Domalin Equations over Spec

We have pointed out in the introduction that an algebraic domailn

equation is a pair of Spee-morphisms
x (P;8) p(x).

Now we need two functors P: Algy + ALgp and

E: ALgD > Algx to define the endofunctor PoE: ALgD > AlgD and
then look for fixedpoints.

As certaln fixedpolints of PoE should give meaning to “recursive
domailn equations” in an algebralc framework it should be obvious
that these “equations”® should be defined by a palr of Spec-

morphisms p,e: X » D. Here p 1s a parameterized specification and
e 1s used to define the forgetful functor E: A;gn > A;gx. The

following sequence of definitions and theorems formalizes the
ideas we have given in the introduction. Detalled proofs will be
omitted and can be found elsewhere ([E/L 81], [K 83]).

Tellsls Definition

Let X and D be specifications.

An algebraic domain equation (ade), denoted by
x (P;e) p

consists of a pair of Speg-morphisms
p,e: X + D

where p 1s a (strongly) persistent parameterized specification

and e describes a forgetful functor.

Remarks: (1) The double-ar'row(=’>) inX (E’)e)D 1s used to indicate
that p,e are directed from X to D.

(1i1) By I.3.2. we know that each Spec-morphism defines a

forgetful functor. As we have 1indicated 1n

convention I.3.11. each parameterized specification
should use unique names (for sort, constants,
equality). Then for e it suffices to map the formal
parameter components to the (new) components in the
resulting specification which have unique names.
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So if the formal parameter is denoted by X and the
target specification by P then

e(X) =P
e(X) := D
e(zx) := Ip

We have two endofunctors described by p and e, namely
EoP: Algxy » Algx
and _
PoE: Algp + Algp
We shall use this later on but the two functors are related 1in
the followlng way:

Talle2s Lemma

Let A e [Algy
If A is fixedpoint of EoP then |P|(A) is a fixedpoint of PoE
and
if B is a fixedpoint of PoE then |E|(B) 1is a fixedpoint of
EoP.

. Then the following assumption holds:

I.4.3. Lemma

B is a fixed point of PoE iff |E|(B) = |P|(B) and there exists
an X-algebra ‘A such that |P|(A) = B.

The next theorem 1is very important. It states (informally spoken)
that each fixedpoint of PoE has a certain (syntactically
determined) form and that we can restrict the search for
fixedpoints to a subcategory of Algp. The argumentation 1s the
following:

Let X (R3®) D be an ade. We know by I.1.3. that each pair of
morphisms 1n Spec has a coequalizer. This coequalizer leads to a

renaming of sorts, operations and equations 1in the specification
D as shown in the construction of coequalizers 1is Spec (the
section following theorem I.1l.5.). So we know that (p,e) has a
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coequalizer in Speg. Thls coequalizer consists of a unique speci-
fication Q and a unique Spe¢-morphism q: D +» Q (see theorem
IsLsBs)s |

Let coeq(p,e)=(q,Q) denote this relation formally. Now it turns
out that if Be|Algp| 1s a fixedpoint of PoE then there exists

an Q-algebra C such that |Q|(C) = B. That means that we may

restrict our search for fixedpoints of PoE to coequalizer-

algebras (AlgqQ). And here 1in coequalizer algebras an identifica-
tion (renaming) between p- and e-components of D has been made.

Now we turn to the theorem.

I.4.4. Theorem

Let X <g;e) D be an ade and let (q,Q) = coeq(p,e).
If B is a fixedpoint of PoE then there exists a unique
Q-algebra C such that B =z |Q|(C).

Proof outline:

Our argumentation here 1s the following:

(1) (q,Q) = coeq(p,e). Now the functor alg: Speg * CatoP sends
each QJpeg-morphism r: S » T to the forgetful functor
R := alg-r: Algg * Algg. alg transforms coequalizers in
Spegc to equalizers in Cat. If (q,Q) = coeq(p,e) in Speg
then (Q,A;gq) = eq(P,E) in Cat (where eq() denotes the

equalizer).
Thus for each Q-algebra C |PoQ|(C) = |EoQ|(C) holds.
(equalizer-property!).

(11) Since B 1s a fixed-point of PoE we know that
[P|(B) = |E|(B). But we can even construct a D-algebra
B = B such that |P|(B*) = |E|(B"). This looks similar to
the equalizer property |PoQ|(C) = |EoQ|(C).

(11i) What 1s still missing 1s an algebra CEIA;QQI suchthat
B° 2z |Q](C). We show how we can construct a sultable Q-
algebra C out of B° such that this property holds.

Then we shall have B = B” = |Q|(C) and we are ready.
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I.4.5 Corollary

B is a fixedpoint of PoE iff the following conditions hold:

(a) B = |P|(A) for a X-algebra A
(b) B = |Q]|(C) for a Q-algebra C
Each fixedpoint B of PoE has the property |P|(B) = |E|(B).

This means that all the carrilers Bp(s): Be(s) (SESx) are
isomorphic and may therefore be 1dentiflied. This 1dentificatlion
is just what the coequalizer of p and e leads to. Moreover the
identification process via coequalizers in Speec ylelds a unique
category ALgQ which consists 1n a sense of all D-algebras in
which isomorphic P and E-parts are identified. Motivated by the
introduction and by Theorem I.4.4. we conslder solutions of ade’s
X (25?) D to be Q-algebras ((q,Q)=coeq(p,e)) which have the
fixedpoint property for PoE, when they are reduced by Q.

I.4.6. Definition

Let X ‘gge) D be an ade and (q,Q) = coeq(p,e). Then a solution
of X (g;e> D is a Q-algebra C, such that

|Q| (c) = |PoE|(]|qQ](C))
(|Q|C 1s a fixedpoint of PoE!)

Now according to this definition there may be a variety of Q-
algebras C which are solutlions of X {pse¢) p. But when we
started we had in mind to use ade’s for implicit specifications
of parametérized data types. There ade’s should define an (up to
isomorphism) unique data type. So the question 1s: Is there a
uniquely determined Q-algebra C which 1s a solution for

x (P;e) D? Indeead:

The initial Q-algebra denoted by IQ is uniquely determined and 1is
a solution of X (péf) D!

The following theorems and definitions show the development of

this result. We proceed by using an analogon to Scott’s inverse
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l1imit construction.

T84T Therorem

Let X (P®) D be an ade and let Iy denote the initial D-algebra.
Furthermore let 1g: Ip > |PoE|(Ip) be the unique initial homo-
morphism and let 1iy41:= /PoE/(iy).Then the colimit D-algebra of
the dlagram

Ip -20--> |PoE|(Ip) -t1--> |PoE|2(Ip) - ....

~ )
0 \;C,//’/

is a fixedpoint of EoP.

Remark: By Theroem I.4.l4. there exists a unique (up to
isomorphism) Q-algebra AelA;gQ| such that

c = |Q](a).

Now we want to prove that the initial Q-algebra Ig is a solution
of X (E;e) D. I shall outline the argumentation.

(1) From the fixedpoint property we know: if leg;gln is a
fixed-point of PoE then |[E|(B) = |P|(B). According to
this
fact we get a category Iso with:
objects: The class of all pairs (B,B) where B is a

fixedpoint of PoE and 8: |E|(B) » |PF|(B) 1s the
isomorphism for |E|B = |P|(B).
morphisms: f: (Bl,Bl) > (B2,B2) where f: B; » B, is an
Algp-morphism such that |P|(f)oB; = B,o|E[(f).
Note that Iso is a full subcategory of Algp. We can
consider Isq to be the category of all fixedpolnts of
PoE.

(11) Theorem I.U.4 shows that for each fixedpoint B of PoE we
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(111)

R

can construct a B® e Algp such that B = B” and
|E|(B") = |P|(B").
This fact leads to the category Equ with:
objects: all pairs (B’,idlEl(B')) from Iso.
morphisms: all f: (Bl’idIEl(Bl)) > (B2’idlE|(B2))
such that
/B/(f) = /B/(f). (because /P/(f).1d = B/ (f)
/E/(£)
i1do/E/ (F)

On the other hand since Q: ALgQ * Algp 1s an equalizer of E
and P, the characterizing property of the morphisms and
objects in Equ (where |E|(B) = |P|(B) and /E/(F) = /P/(F))
is similar to Q°s characteristic property namely

EoQ = PoQ.

These observations culminate 1in the assumption that Egu
and éng are isomorphic as categories (provided the range
of Q is restricted.)

We had ((cy|neNy),C) as the colimit of diagram 1 in Theorem
I.4.7. The object C was isomorphic to |PoE|(C).

Let y: |PoE|(C) » C be this isomorphism. Then the pair
(C,/P/(y)) 1is initial in JIso. Since Iso and Equ are
equivalent as categories there exists a D-algebra C°

isomorphic to C such that (C"idlEI(C’)) is an object of
Equ. Equivalence of Iso and Fgu imply that initiality of

(C,/P/(y)) 1s respected. Isomorphy of Egu and A;gq then
implies that IQ is a solution of I(=p=’f>) D since 1somorphy
respects initiality. Thus the argumentation is closed.

Now we state the maln theorem.

I.4.8.

Theorem

Let X (E;e) D be an ade where (q,Q) = coeq(p,e). Then the initial
Q-algebra IQ is a solutilon.
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II. SPECIFICATIONS WITH INEQUALITIES

Hornung [H/R ?] uses specifications with inequalities and gives
an initial and a terminal semantics for parameterized data types.
We shall use these specifications in the connection with
algebraic domaln equations. In this chapter we shall define the
respective category and we shall outlline some properties of this
category which are needed to define algebralic domain domailn

equations.

II.1 Definition

Let £ = <S,I> be a signature.
A I-inequality 1s a pair <t,t’> with t,t” e TI(X). We write
t#t’.

II.2 Definition

Let I be as above.

A positive conditional I-equation 1s a tuple of pairs
<<t

11251279015 00> s e e o<ty tpn> <ty Ene1o>>
It will be written as

£117F10 & Tpp%tpp & e B 1,50, = 0
(b4 € TE(X) gy (1=1,...,041, §=1,2))

Now we shall define the category of specifications which contain

t

n+ll” "n+12

equalities and i1nequalitles in their axiom-part. What 1s
important here 1s that we have to takevcare of the definition of
our specification-morphisms. It doesn’t suffice to use the
‘normal” Spec~-morphisms 1in our context since inequalities appear
in the axiom part of the respective specifications. We have to
send equalitlies to equalities and lnequalites to 1inequalities.

IT.3 Definition

The category of specifications with equalities and inequalities
denoted by Specl 1s defined by:
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| SpecI|: specifications S = <S,I,E> with E = EQ u NE such that
EQ 1s a set of positive conditlional equations as given
in II.2 and
NE is a set of inequalities as given in II.1

/Specl/: f: S » 8 i1s a signature morphism f = <fsort’fop> such
that
¥V e e EQ. f(e) e EQ°
¥ e’ € NE. f(e”) € NE*
(for 8 = <S,L,EQ u NE>, 8° = <S°,I°,EQ” u NE’>)

For more technical reasons we introduce three relations on T
which are generated by EQ and NE.

IT.3.1 Definition

(1) Let 8 = <S,I,E> ¢ |SpecI| with E = EQ u NE.
Then PEQ & T22 is the least (under inclusion) L-congruence
on T such that
1f V ll=r'1 &.oo& 1n=1"n => 1n+1=r'n+l € EQ

n .
then V(o(li),o(ri)) € Prg => (o(1

i=1
2 =
(for all o € Substz(x), (li,ri) € Tz(x)Si (i=1...n)).
(This means that if all premises belong to the congruence the

),o(r.

n+1 n+1)) € Pgg

so does the conclusion for any correct substitution)

(i1) py 1s the least (under inclusion) relation on T: which

satisfies
¥ seS ¥(l,r) e TI(x)g VceSubstz(x)Jl,r)eNE = b
(0(1),o(r))epN

(111) pyg 1s the least (under inclusion) relation on TI such that

(a) oN & PNE
(b) PNE is symmetric

(e) (I",S) € PEQ & (S,t) € PNE => (I",t) € pNE
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Next we 1ntroduce the set of distingulishing sorts of a
specification in Spegl.

ITI.3.2 Definition

Let 8 = <3,I,E> be a specification in Specl.
The set of distingulshing sorts denoted by DIS 1is defined by
DIS := { seS| 4 t,t* e Tig. (t,t") e pNE}

Now we shall use I.l.5 to define specifications with some specilal
propertles namely consistency, completeness and simplicity.

A specification 1s consistent, 1f there are no terms t,t"eTIg

which are as well egual (t,t’epEQ) as unequal (t,t"epyp).
Completeness means that each pair of terms (t,t’)eng belongs
either to PEq OF to pyg (for s € DIS).

Furthermore simplicity means that for each equation all the

premlises are terms of dilstinguishing sorts.

IT.3.3 Definition

Let S = <S,I,E> ¢ |Specl
(1) S is consistent: <=> pgg n pyg = ¥
(11) S 1s complete: <=> ¥ seDIS. PEQ.s U pNE.s = ng

(111) S is simple: <=> hig 11=P1&-u&1n=rn => 1n+1=rn+1 e EQ.

deDIS

As we already pointed out in chapter I the concept of algebraic
domain eugations depends on the assumption that the underlying

category of specifications 1is cocomplete. In order to show that
ade’s can be defined over Spegcl we have to prove that this

category 1s agaln cocomplete. This task 1s done in the following
sequence of assumptlons about Specl.
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II.4 Lemma

SpecI has coproducts.
Proof:
The disjolnt union of specifications (named as triples of sets)

is the coproduct.

II.5 Lemma

Specl has coequalizers.

Proof':

Let S = <S,z,E>, 8 = <38°,£°,E°> (E=EQ u NE, E"=EQ” u NE”) be two
specifications in Sperl. Futhermore let f,g: S ~» S° be two
morphisms relating S and S8°. Then the coequalizer-construction
follows the usual construction in Speg¢ (equationally defined
specifications). Since we have already given an explicit outline
of coequalizers in Spec we mention only briefly what to do:

(a) Define the relation Rsort:={<fsort(s)’gsort(s)>I seS} ¢ S"x8°
= {<fop(o),gop(o)>| cel} ¢ I“xI” and define the least

sort) € 572, A(Ryp) ¢ £°2 defined by these

equivalences A(R

relations.

(b) Rename each equivalence-class in S° by a unlque new sort-
name. The résulting sort-set will be denoted by é. In a
similar way rename each equivalence-class in I’ by a unique
new operation name. The resulting operation-set will be
denoted by 5. ,

(¢) By (b) we have defined a signature-morphism
q’: <87°,L’> » <3",i">, Now q° 1s used to define ¢the
specification-morphism q in which 1is the coequalizer of f and
g. Let DIS (DIS”) be the sets of distingulshing sorts in S
(S7).

Now f(DIS)c DIS” and g(DIS) ¢ DIS’. Furthermore f(EQ)cEQ’,
g(EQ) ¢ EQ” and f(NE) c NE°, g(NE) c NE°.

Therefore we can be sure that we shall not identify equalities
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and inequalities when we translate the axioms in E° by q° and
thus having q. The resulting axiom-set will be denoted by
E = EQ u NE with EQ n NE = @. The set of distinguishing

sorts 1n the new specification will be denoted by DiS.

Thus the new specification 1s Q := <§,§,§> and q: S° + Q 1is
the coequalizer of f and g. q 1s a Spael-morphism since it
transforms distingulishing sorts 1into distinguishing sorts,

equalities to equalities, lnequalities into inequalities.

II.6 Lemma

pecl 1s cocomplete.

[192]

Proof:
Consequence of II.l4 and II.5.

In Definition II.3.3 we have pointed out some 1important
properties of specificatlons, namely consistency, completeness
and simplicity.

In the sequel the following questions will be important: Imagine
that S,S" ¢ |SpecI| are specifications which are (a) consistent,
(b) complete or (c) simple. Suppose f,g: S8 + 8 are two Spegci-
morphisms. Can we guarantee that the coequalizer-object in

S S° -=->Q

is again (a) consistent, (b) complete or (c) simple?

The answer 1s: we can guarantee those properties to hold for the
coequallizer-object!

In the following lemmata these answers are worked out in detall.

ITI.7 Lemma

Let S = <S,z.E>, 8" = <S°,£",E°> ¢ |SpecIl| be specifications and

37



let f,g: 8 » 8° be two Specl-morphisms.
Furthermore let the pair (q,Q) denote the coequalizer of f and g

(with Q = <S,IZ,E> as in the proof of II.5) according to the
dlagram

If S and 8° are consistent then Q 1s.

Proof':
We have to show that pfig n efg = 9.
By consistency of 8 and 8° we have PEQ n ey = g = PRQ” N PNE”
and furthermore since f and g are Spggl-morphisms:
f(ogg) n floyg) = @ = 8(pgg) 1 &loyg)
Now the only way to generate 1inconsistency would be the
application of q.
But since q is a Spegl-morphism we have
¥ e’¢cEQ°. q(e) € Eé
and
¥ e’ € NE°. q(e”) ¢ Né
BBt q sends DIS“-terms to DiS—terms and non DIS“-terms to non-

DIS-terms. Thus 1s must be the case that
pfiq D pﬁE = @ and Q 1s consistent.

I1.8 Lemma

Let £,g: S » S° and (q,Q) be as in II.7.
If S and 8° are complete then Q 1is.

Proof:

That 8 and 8° are complete specifications means that
- 2

(1) ¥ seDIS. pEQ,S u pNE’s = TZS

and

P », - ’2
(11) ¥ s“eDIS’. PEQ’,s” u PNE*,s” = Tt &*

38



Now we have to show that

¥ 8eDIS. ogy 3 U onf,s = TEog
This 1s equivalent to
(*) ¥ s7eDIS’. q(pr”,s”) W a(pNE~.5") = TE§(s")
Now for each S“eDIS® - (fsort(DIS) u gsort(DIS)) the assumption
(#¥) 1s clearly satisfied. But agaliln for each
s’eDIS” n (fgopt(DIS) u ggopt(DIS)) the assumption (*) holds

since q 1s surjective.

IT.9 Lemma

Let f,g: 8 » S8 and (q,Q) be as in II.7.
If S,8° are simple then Q is.

Proof:

Simplicity means that all terms in the premises of E(S have to be

of distinguishing sorts DiS. But this 1s obvious due to the fact

that q transforms DIS® to DiS. Therefore terms of dstinguishing

sorts in Tr® are translated into terms of distingulishing sorts in
TE. Thus Q is simple.

IT.10 Corollary

Let f,g: S + 8" and (q,Q) be as in II.7. If S,S” are consistent,
complete and simple then Q 1is.

Proof :

Obvious from II.7 - II.1lO0.

Specifications are syntactic entities which are used to define
data types. In the algebralc approach data types are viewed as
heterogenous algebras. In normal equatlonally defined
specifications the models are those algebras which satisfy the
equations. In the case of Specl where specifications may contain
equalities and 1lnequalitles we have to ensure that two terms
(t,t)epyg (which are different in the term-algebra TI) will not
be 1dentified in the respective model A e.g. tA ¥ tA. (Here
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tp,ts are the interpretations of t,t” in the algebra A).
Thus we use a slightly different definition for the category of
S-models (S ¢ |SpeeI|).

ITI.11 Definition

Let 8 = <S,Z,E> be a specification in Specl. Then the category of
S-algebras Algg 1s defined by
|Algg| : all I-algebras A with
(1) A satisfies the equations in EQ = E - NE
(11) ¥ t,t T, (t,t')epNE => t, # t}
/Algg/ : all I-homomorphisms on |Algg

For consistent specifications the respective category of models

is always non-empty and contains an initial obJect.

II.12 Lemma

then g;gs 1s nonempty and TZ/pE is the initial object in A;gs.

Q

Proof: see [H/R ?]

For the following discussion we consider a slightly modified
notion of parameterized data types. It is modified in the sense
that we take directly into account free (initial) extensions of
argument algebras as results of applylng data type constructors.

II.13 Convention

In the following discussion let S = <S,IL,E>, S1 = <S1,X1,E1> and
8" = <3°,t°,E°> be Spegl-objects such that

SnSl=:fntl=En&El =@ and 8 := S + S1 := <S+S1,I+I1,E+El>
(where “+° denotes the disjoint union)

According to this convention we are able to say what we mean by
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parametéerized specification.

IT.14 Definition

Let S,81,8S° be as 1in II.13 where E1 does not contailn
inequalities.
Then a parameterized specification is an injective Specl-morphism

p: S » 8.

This 1s similar to the definition used in [E/L 81]. For our
purposes 1t suffices to turn to a special case of II.14 namely
that p: S » 8 is the inclusion-morphism between S and S° (S’ is
an extension of 8).

IT.15 Definition (alternative to II.1ll)

Given the premises of 1II.13 we define a parameterized
specification p: S + 8° to be the inclusion-morphism between S
and S°.

II.16 Definition

Let 8,S1,S° be given as in II.13 Let p: S + S8° be a
parameterlized specification.

Then by a parameterized data type (specified by p) we mean a
(strongly) persistent functor P: A;gs > A;gs— such that

¥ Aeplgg. |PoP|(A) = A (|PoP[(A) = A)

II.17 Definition

Given the premises in II.16 with the parameterized specification
p: S+ S°.

Then by the standard semantics of p we mean a pair (p,P) where
P: ALGg *» ALGg- 1s a functor as given in II.16 (p,P) is
(strongly) persistent, if P is.

41



IT.18 Definition

Let S = <S,t,E>, S1 = S + <S1,Z1,E1> be consistent specifications
in Specl. Let A ¢ |Algg

ZE1,A is the smallest I + £l congruence on T(z+X1l) such that

(a) =5 ¢ =gy,p
(b) ¥lj=rjkly=rok...&lp=r, => 1 .,=r . eE; ¥oeSubsty y,.

n n
e olly) Fgy g 0ry) = 0lhyg) Ry a o (rnry)

JI.19 Definition

Let S = <S,L,E> and 8 = <S8°,1"°,E"> be consistent specifications
with S ¢ 8", £ ¢ I, E ¢c E”.

n

8° 1s an 1i-extenslon of § 1iff TI"/:-gq*|;: Ti/zgq (this
means that no new elements and new identifiers are
introduced by extending TI/:zgqQ.)

II.20 Theorem

Let S = <S,,E>, S1 = <S81,I1,El>, S8 = <S°,Lf",E"> =
<S+S1,z+rL1,E+E1> be conslistent specifications in Specl such that

p: S+ 8 1is a parameteriied specification.
Let P: Algs +> A;gs, be the following functor

(1) VAelg;gs . |P|(A) := TZ*/251 4
(11) ¥A,Be|Algg| ¥heAlgg(A,B)./P/(h): [P[(A) » [P|(B)
Then |P|(TI_po) = T¢*/.gg- and S” is an i-extension of S.

Proof ([H/R ?] 3.2.3 and 3.2.l4).
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IITI. CONSISTENT SPECIFICATIONS AND ALGEBRAIC
DOMAIN EQUATIONS

As a ‘minimal”® additional requirement for our further discussion
we requlire our specifications to be consistent. Thus 1t cannot be
the case that two terms 1n our term-algebra TI are as well equal
as unequal. We turn our attention to a subcategory of Speel
namely the category of consistent specifications.

Thus we make the following definition.

III.1 Definition and Lemma

Let SpeclIC (consistent specifications with inequalities) be

defined by:

|SpecIC|: all specifications S = <S,Z,EQ u NE> (e |SpecIC|) such

that pEQ n DNE =0
(consistent specifications)

/SpeclC/: all f:8 » 8° (e /Specl/) with S = <S,I,EQ u NE>,
S = <3°,2°,EQ” u NE’“> such that

-1 A% w i
foopt "(DIS?) = DIS (bijective) and f(oyp) = oyg-

(1) SpecICis a category since for each S e |SpecIC| there

clearly exlsts an ldentity morphism idg: S » S and for two
morphlisms
f: $+ 8", g: 8 » S"
(S = <3,£,EQ u NE>, S8°,2°,EQ” u NE’>,
S" = <S",I",EQ" u NE">) there exists the composition
morphism gof: S8 + S" since

(*) gsopt L(DIS") = DIS® and fgopt L (DIS®) = DIS
)~1(DIS™) fsor't—l°gsor't.l(DIS")

= fgopt L(DIS”) = DIS

(gsortofsort
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and
(®%) S(DNE’) = PNE" and f(pNE) = PNE”
=> gof(pNE) = S(pNE')

= PNE"

(11) We still have to show that SpecIC is a subcategory of Specl,
but by definition of SpeclIC we have
(*) |specIC| c |SpecI]
and
(*¥*) /SpeclC/

o

/Speel/

Now what we want to show 1s that algebralc domaln equations can
be defined over SpeglC and that they have again a unique solution

defined by means of a coequaliyer-algebra.

III.1.1 Definition

p,e: S + 8° (written) S (E;e) S’
where p: S » 8 1s a parameterized specification and P;A;gs+Aigs»

the respective strongly persistent functor. The morphism e
defines again the forgetful functor alg-e: ALQS, *> A;gs.

As Ehrich and Lipeck indicated in [E/L 82] an approach to ade’s
which uses another category of specificatlions than Spec must
satisfy the following requirements:

Rl: The respecitive category of specifications must be

cocamplete.

R2: Each specification S in the respective category of specifi-
cations must be such that Algg has an initial object.

R3: Let f: S » 8° be a SpecIC morphism. Then the respective
forgetful-functor
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alg-f: Algg- > Algg
has a left-adjoint.

RA: The functor
alg: Speecll » CatoP
respects coequalizers and pushouts (that is alg respects
colimits)

We proceed by showing that requirements R1 - RB are satisfied by
our construction of SpecIC and that the application of ade’s on
conslistent specifications with inequalities works well.

IIT.2 Lemma

Proof:
By Lemma II.6 we know that Specl is cocomplete.

But since Specll 1s a subcategory of Specl we conclude that again
SpecllC 1s cocomplete.

Now we look for our second requirement R2.

III.3 Lemma

Let 8 = <S,I,EQ u NE> ¢ |SpecIC]|

Then Q;gs has an initial object.

Proof':

This assumption 1s exactly Lemma II.1l2. Let’s now turn to the
second half of our requirements which deal with properties of the
functor alg: SpegIC +» CatoP which 1s defined by

III.4 Definition
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¥ S e [SpecICl.|alg|(8) := Algg

¥ £:8 » S ¢ /Specll/.alg-f: Algg- + Algg
is the forgetful functor which takes each I°,E°-algebra A’ to
it’s r,E-reduct in Algg.
(8 = <S,2,E>, 8" = <8°,L",E">).

Now we have to show that for each f: 8 +» 8° (which 1is a
parameterized specification) (f e /SpeelG/) the forgetful functor
alg-f: A;53' +> Algs has a left-adjoint. It suffices to show

that there exists a functor F: Algg »> A;gs, which takes each S-

algebra A to 1it°s free i-extension |F|(A) (as given by the

construction in Theorem II1.20). Since F is determined by f we
shall often use free-f instead of F.

IIT.5 Lemma

Let f: S » S” be a (strongly) persistent parameterized specifi-
The the forgetful functor

alg-f: Algg- > Algg
has a left adjoint

F := free-f: élgs > Algg-

Proof:
Define F := |free-f|: Algg » Algg- as glven by II.20.

That means that each S-algebra A is sent to 1t’s free i-extension
in Algg--

Now for each A ¢ Iglgs| there exists a homomorphism
hp: A » |alg-foF|(A)
(clearly due to Theorem II.20 we have that |alg-foF|(A) =z A)
Now given A,B ¢ ]ngSI and h: A + B (:-homomorphism) we define
the morphism-part of F
/F/(h): |F|(A) » |F|(B)
such that the following diagram commutes
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A -Ba-—> |atg-f|o|F| () |P| ()
|
]
hgoh /alg-f/o/F/(h) + /F/(n)
|atg-f|o|F|(B) | |7 | (B)

(Clearly the definition 1s unique according to the fact that hpoh
is well defined.
Thus
F: Algg + Algg’
is a left-adjoint of alg-f.

Now let’s turn to our last requirement namely that
alg: Speell » LCAToP respects colimits. We show this by proving
that alg sends coequalizers in Speckl to equalizers 1n LafoP and
by indicating that pushouts in SpeclC are sent to pullbacks 1in
CatoP.

II1.6 Lemma

coeq(f,g) =: (q,Q).
This situation is represented by diagram D1

q
s S° ——> Q

g
Now we must show that alg sends coequalizers in SpecIC to

equalizers in CatoP. This means that the diagram D2 must be an
equalizer-diagram in CatoP.
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D2

- ,Algg- &——— Algq
alg-g

1=

igg

introduce any new inequalities into it°s target specification.
(The inequalities in the source may only be renamed by the
respective morphims.) Thus according to diagram D2 the respective
relations pyn, pyg- and pygn are all isomorphic.
(Here PNE 1s generated by the inequalities in S

PNE- 1s generated by the inequalities in S°

pNE" 1s generated by the inequalities in Q)
Thus the inequalities will not cause troubles 1In our analysis.
Now for proving that diagram D2 belongs to an equalizer-situation
in CatoP we have to observe what the forgetful functors alg-q,
alg-g, alg-f do with the carrier-sets of algebras in the
respective source-categories.

(1) alg-q:
Let C be a Q-algebra and let B be a S‘—aigebra such that
B = |alg-q|(C)
(*) Then we have for each s® € sorts(S°) with
s ¢ {fgopt(s)]| s e sorts(8)} u {ggopg(s)| sesorts(S)}
the fact -that
BSA = CS’

(**) For each s” € sorts(S”) with
s” €| {fgort(s)] s e sorts(S)} u {ggypt(s)| sesorts(8)}
we have
Bg- := Cg where
8 = [fsort(s)’gsort(s)]
according to the coequalizer construction for f,g.

(11) alg-f, alg-g:
Now let A, A" e |Algg| with a := | alg-f|(B) and
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A := |alg-g|(B). According to (1) we have

¥ 5 € sorts(S). AS 1= stort(s) = Bgsort(s) =3 Aé.
Therefore
|atg-f|o|alg-q| (C) = |alg-f]|(B)

= |alg-g| (B)

I

|atg-g|o|alg-q](C)

as required for the equalizer-property of D2. Moreover
(Ang,aIg-q) is uniquely determined by construction.

It follows that (Algq,alg—q) is the equalizer for diagram

D2.

III.7 Lemma

Let fl: R ~» S1 and f2: R ~» 82 be morphlsms in J .

Then alg respects the pushout of fl,f2-

Proof:

Since SpeclIC 1s cocomplete the pushout of f f2 exists 1in

1
R -——--> S,

S, ——--> T
&>

We have to show that diagram DA corresponds to a pullback
situation in CatoP.
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DA :

alg-f4
Algg <==-—---- Algsy
alg-f, alg-g,
Alggp <-------- Algyp
alg-go

Again by definition of SpecIC we have that R’S1»32»T have
isomorphic sets of inequalities. Thus this will not cause further
troubles.

But then it 1is clear that we may restrict our attention to the
functor

alg: Spee *» CatoP

(which is used by Ehrich and Lipeck 1in thelr original work on
ade’s).

And moreover we khow that alg respects pushout. Thus we may

conclude that alg does.

Now we come to our main result, namely that ade’s are defineable
over SpecIC and that they have again a unique solution defined by

means of a coequalizer-algebra.

III.8 Theorem

Let S (pgg) S° be an algebraic domain equation as defined in
ITI.1.1. Then this equatlion has a unique solution namely

Q (IQ)

(where (q,Q) = coeq(p,e))

Proof:
The proof 1s a consequence of the proceeding lemmata.
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