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ALGEBRAIC DOMAIN EQUATIONS FOR SPECIFICATIONS

CONTAINING INEQUATIONAL AXIOMS

from

Gerd  K r ü t z e r





A b s t r a c t

Algebraic domain equations (ade’s) provide a means for implicitly

o r  recursively specifying p a r a m e t e r i z e d  da ta  types .  A unique

semantics is available provided the respective ade ' s  are defined
Over a ca t ego ry  of specifications’which_are solely based  on
equational aXioms. We extend this approach by showing that there
é x i s t s  a n  a p p r 0 p r 1 a t e  s e m a n t i c s  even  11‘ the f e s p e c t i v e

specifications contain as well equational as inequational axioms.

Keywords:

Abstract da ta  types ,  parameterization, specifications with
'. inequalities, algebraic domain equations.
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0 .  Introduction

Ehrich and Lipeck introduced in their paper [E/L 81] some sort of

recursive domain equations for the specification of parameterized
abstract da ta  types .  Though they were  dealing with the ’initial-

algebra’-— approach to data  types they pointed out some analogies
to Scott’s theory of 'Domain Equationsf. Since they were working
with algebras rather than with some paritally ordered sets Ehrich

and Lipeck called their work ‘Algebraic Domain Equations'.

They started w i t h  a category of algebraic specifications w i t h

equations called Spec .  Then a parameterized specification is some

injective Sage - morphism p: X + D(X) .  (Here D(X)  indicates that

the f o r m a l  parameter x is fully contained in_the target

specification D). Parameter  pass ing  is defined by the pushout of"
some diagram in Spec. '
Then each parameterized specification defines a forgetful functor'

P: Algn(x) + Aégi? The parameterized data . t y p e  defined by
p: I + D(X)  is the ( s t rong ly )  persistent left—adjoint functor

P : = A l g x  + 315D( I )  w h i c h  sends  each  X - a l g e b r a  t o  i t s  f r e e

extension in M i ß b ( 1 ) °  Here (strong) persistency of P m e a n s  that

for each X—algebra A there holds (|POP|(A) = A) |PoP|(A) e A.-
Now an algebraic domain equation ( ade )  is an equation of the form

x (Bee) um ,
where p‚e: X + D(X) are Sog; - morphisms such that p: X + D(X) is
a parameterized specification.

But all what we have done until now is to give the syntactic

requirements. What is the semantics of such an equation?

Let’s take a short look to a ‘domain equation’ in Scott’s theory

of domains. Let D = K(D)  be a domain equation. Here K(D) is a
domain—expression containting the domain—variable D and the names

of some basic domains all connec t ed  by domain constructors like

’+’ ( sum) ,  ’x’ (p roduc t )  or '+' (function—space). This is the‘
syntactic aspect. Then by using the inverse—limit construction we

proceed in the following way

— we define a domain DO defined by the basic domains connec ted



as in K(D) .

_ we look for a retraction—pair‚(io,Jo)
10: Do + K(Do)
Jo: [(Do) + DO

— { w e  proceed  by iterating (for k>1)

Dk+1 = fi (Dk)
1k+1 := i41k>. icnk) + fi<Dk+1)
Jk+1 := ic): i(Dk+1) + icpk)

- then the solution for D = K(D)  is the so called.inverse limit
. _ “_ _

D", = {<d0,O,.dl,...>|ksfoc1k = 
Jk (dk+1)}

Now the solution or the sematics of the above domain equation i s

a fixedpoint of the endofunctor 1:939  + 929. _
And thus the argumentation of Ehrich and Lipeck is such  that the

consider the s e m a n t i c s  o f the s o l u t i o n  o f t he a l g e b r a i c  d o m a i n

equation x (p; e) D(X) should be a fixedpoint of some endofunctor.
The only relevant endofunctors which may be constructed from the

data given by X (Ege ) ‘D( I )  are

. P°E‘  “Soon * M M I )
and

EOPz-Alg

The second choice would not make much sense since we intended to

extend our argument——type. But this cannot be achieved by applying

the forgetful functor E which takes each D(I )  algebra to it s X—

reduct.

S o  w e  decide t o  u s e  POE.  But t h e r e  may be a l o t  o f  fixedpoints

fkn'POE. Now in Scott s approach  each  domain equation denoted

Just one d o m a i n  and n o t  a c lass of d o m a i n s .  I n  ana logy  to t h i s

Ehrich and L i p e c k  c h o o s e  as  u n i q u e  s o l u t i o n  f o r  the.algebraic

domain equation I (39,9) D(X)  the initial Q—algebra IQ where (q ‚Q)



is the coequalizer of p,e acco rd ing  to the diagram

p
xgnu) -9 ->  a.

What w e  w a n t  t o  do h e r e  i s  t o  l o o k  w h e t h e r  algebraic d o m a i n

equations can be used  for other sorts of specifications namely

those which contain inequalities in their axiom sets. For example

Hornung [H/R ? ]  uses specifications with positive conditional

equations and simple inequalities and gives an initial and

terminal semantics of parameterized abstract data types. Milner

[Mi 77] and Möller [Mö 82] use inequalities in the framework of‘
partially odered algebras. '

We shall proceed  in the following way: _

I n  Chapter I w e  shall recall t he  m a i n  concepts o f  algebraic

domain equations as far as they are needed for our purposes. V

In Chapter II we shall present some results about the category of

specifications w i t h  inequalities as  t h e y  are  introduced in

Hornung's paper [H/R ?].‚ '
I n  C h a p t e r  I I I  w e  g i v e  t h e  context in w h i c h  algebraic domain

equations can be applied to specifications with inequalities.



I. ALGEBRAIC DOMAIN EQUATIONS

Algebraic d o m a i n  equations a s  w e  u S e  t h e m  h e r e  a r e  defined b y

using parameterized specifications. We have  already outlined the

general frameWork in the introduction. Thus in the current
chapter we shall give the formal background. The basic results

presented here are given for the category Spas (specifications

with'equatiohal axioms); the extension to specifications with

inequalities will be given in Chapter II.

1.1 Specifications and ADT’s

Following t h e  w e l l  k n o w n  results o f  the ADJ — g r o u p  w e  t a k e  a

specification S to be a triple '
S = <S ,£ ,E>

where S is the set of 59335
z is the set of Operations

and R is the set of equations (axioms).

The pair ; := €s,z> is called the signature of this
specification. . . '

The Signature belongs to a Syntactical level in the sense that it

'determines the £9£m_of the specified data type. Each algebra A
' which is supposed to be a model for this specification must have

a carrier-set AS for each sort ses and an Operation

o: A s l x n ' x A s n  + A S  f o r  e a c h  o s E s l , . „ , s n , S '

The s e t  E o f  e q u a t i o n s  consists o f  p a i r s  <L,R>  w h e r e  L,R a r e

terms built from Operations (of the signature) and variables

-(from an S - Sorted variable — Set X). In the categorical view we
want to choose a category whose objects are specifications. But

w e  still need t o  s a y  w h i C h  m o r p h i S m s  s h o u l d  c o n n e c t  v a r i o u s

specifications.

Thus we first say What a signature morphism is.

I.1.1 Definition

Let E = <s,z> and 3‘ = <s ’ , z ’ >  be two signatures.



Then a signature-morphism is a pair f = < f s o r t » f o p >  with

(1) a sort—mapping fsort: S + S’
and

(11) an operation mapping fop: z + z'
such  that if a e z s l ‚ . . . , s n , s  then

f ' o p W )  € £fsort(sl),...,fsort(sn),fsort(s)

With this definition we can build the category of signatures as

o b j e c t s  and s i g n a t u r e  m o r p h i s m s  as m o r p h i s m s .  We d e n o t e  this

category by Sig. .. ' .
We_are now able to define specification- morphisms which inia

s e n s e  t a k e  c a r e  of a p r o p e r  translation  of e quations f r o m  one

specification to another. So we come along with the following. ‘

Let S = <S ,£ ‚E>  and S’ = <S’ ,Z ’ ,E ’>  be specifications.

Then a specification—morphism

f : S + S’
is a signature—morphism f=<f sop t , fop>  such that

VeeE.f(e) e E’

In this sense a Specification-morphism corresponds to the theory—

morphism as in [B/G 80].
£k>'we g e t  t h e  c a t e g o r y  with specifications a s  objects and

s p e c i f i c a t i o n — m o r p h i s m s  as morphisms„ T h i s  ca t ego ry  i s  a v ery

important one and as already pointed out, w e denote it by spep.

Now some technical results about this category, which we shall

u s e  l a t e r  on. T h e s e  r e s u l t s  c a n  b e  found i n  the paper o f  Ehrich

and Lipeck [E/L 81] and thus detailed proofs will be omitted.

Most of these results have to do with the cocompleteness—property

of 5999. Cocompleteness as w e  need i t  here means that for any

family (SilieI) of specifications in aagg there is a unique
object C in  §=p_;_e__p and a family of S_‚p__gg-morphisms ci: S i  + 0 such

that the following diagram commutes



Informally speaking this means  that whenever w e  have
_ specifications S o ,  31 , . "  connec t ed  by specification m o r p h i s m s
f i :  8 1  + S i + 1  we can determine a unique specification c in which
all specifications 8 1  can be ’embedded’ (without loss of
'informationf)‘hy specification morphisms oi: 3 1  + C. Furhtermore

this 'embedding' respects the connection between the.
specifications Si, S i + 1  due to the commutativity property of the

diagram above .  '
This means VieI.ci+10f1 = c1 ,
The importance of the cocompleteness of gggg lies in the fact

that for (SilieI) there is a unique specification C which in a
sense ’contains‘ all the structure carried by (SilieI).
Now the results:

1.1.3 Theorem [E/L 81]

fing; has coequalizers.

This means that for any pair of Spec-morphisms

f ‚g :  S + S' there exists. a unique specification C and a unique

morphism h: S’ + C with hOf = hog .
0 and h are such that for any specification 0' and morphism

. h': S’ + C" with h'of_= h’og  there exists a unique morphism

. I r :  C'+ G’ such  that h‘ = rOh. ' '

1.1;H Thoerem [E/L 81]

Sag; has coproducts.

This means that for any family (SilieI) of specifications there
exists a unique obJect c and a_ramily of (caproduct-injections)



ik: S k  +'C. These are such that for any obJect D and any family
(dk ‘ sk  + D | c )  there always exists a unique gpeg—morphism

h: 'c + D such that vkel. heik = dk.

1 . 1 . 5  Theorem

§pgg is cocomplete. .

This is a consequence  of the preceeding two theorems.

For further discussion it is useful to show the construction

of coequalizers and coproducts in.5nac. _ ' _ .

T h e  c 0 p r o d u c t - o f  t w o  s p e c i f i c a t i o n s  S = <S ,E ,E>  a n d

S’ = <SÖJY,E5> is simply the triple built from the disjoint

union of the components of S and 'S'. We denote it by

S + S' := <S+S’ ,E+I : ’ ,E+E’>  (’+’ means  disjoint union).

Given the two specifications S and S’ as' above. Furthermore let

f,g: S + S"be specification—morphisms. Then the coequalizer of f

and g is built in the following way: ' . '
First take ggS') to be the least equivalence relation on S'

generated by the set {<f sop t ( s ) , ggop t (8 )> I seS}  _

Then take 3(FU to be the least equivalence relation generated by
the set {<fop(o),gop(o)>|oe£} which respects _F_t_(S'). This means :

By fifis’) the set S' is divided into equivalence classes. Then

g i v e  each  equivalence class a u n i q u e n e w  n a m e .  This leads t o  a

n e w  s ort—set S". L e t  o e: 2 3 1  . Then the s o r t s  sl,...‚sn,s„. an 3
are mapped to the new sorts, (i’m Sz') denoted by. [fsort(31)]""’
[ f s o p t ( s n ) ] ’ [ f s o r t ( s ) ]  for the respective equivalence classes of“

B(S ' ) - )
We had a l r eady  o e z s l , . „ , s n , 8 °  The corresponding coequalizer—

operation falls into the equivalence class [fop(o)] belonging to

the new operation set Z [fsort(sl)]’°"w[fsort(sn)]sort(S)L
To get the new operation—set Z" w e  have t o  rename the equivalence

classes gene ra t ed  by 50?) with unique new operation names. The

equation—set E’ i s  then renamed acco rd ing  t o  the previous

renaming of sort- and operation-sets.



The coequalizer morphism h (in 1.1.3) is then simply defined by

(1) sort-mapping h s o r t

Vs'eS’. h s o r t ( 3 ' )  := [s']

(11) operation-mapping
Vo‚*375s1'...sn'‚s"- h o p ( ° ' )  == [ 0 ’ ]

Now one can easily verify hOf = hog.

1.2 Algebras :  Models for Specifications

Specifications are the syntactical description for adtfih They

determine in a sense  the 'formf of adt’s. On the semantical level

W e have to consider models for specifications. Here the ADJ-group

uses  he t e rogeneous  a lgeb ra s .  W e  shall shortly review their"

interpretation by g i v i n g  the m o s t  i m p o r t a n t  d e f i n i t i o n s  and

theorems (without proof) as far as we need  them here. For more

detailed information consult for example [ADJ 82].
Let Spec—= <S ,£ ,E>  be a Specification with signature £ = <s,z>.

1.2.1 Definition'

A z-algebra A is given by: .

(1) a 933 AS for each scrt ses

( U As is called the carrier—set)
s e S  ' _ _ .

(11) a mapping oA: AsixA82x„.xAsn—+ As for each

operation a e z s l , . . ' . , s n , s

1.2.2 Definition '

Let A, B be g - a lgeb ra s  (the respective carriers will be

denoted by the name of the algebrasl)..A_£- algebra-homomorphism
i s  a mapping h :  A + B such  that

“ 08281  “ 8 1 , 0 o o , a n  e A s l x o o o x A s n o, . . . , sn ,s
h(UA(a l ,ooo ,an) )  = O B ( h ( a l ) , o c o ‚ h ( a n ) )

The category w i t h  g-algebras a s  objects and g-algebra—

homomorphisms as morphisms is denoted glgz.

10



1.2.3 Definition

A gg te rm.1s  defined by

(i) each  constant c e 3 x , s  is a Erterm (of sort s)
(A denotes the empty  word ! )  _

(ii) Let t1,...,tn be g—terms of sorts sl,...,sn and

a e z e l , . . . , s n , s °  Then c(t1,...‚tn) is a g-term of sort s.

gfalgebras can be interrelated with certain structure-preserving

mappings, called E—algebra-homomorphisms. _

But geterms may not always give what we need. Thus we introduce

terms with variables.

Let X := U XS-be a countable set of variables.
seS

Then we define geterms which.(eventually) contain variables from

X. These terms will be denoted £(X)—terms.

1.2.4 . D e f i n i t i o n

The following terms are considered t o  be E(X)-terms.

(i) Each Ä—term is a £(X)-term
(11) Each variable xexs is a “X)—termof sort s".
(iii)Let tl‚...,t be EZ:-terms of sorts sl,...,sn and

Then o(t1,.„,tn) is a £(X)-term.
n

o e E .sl‚.„„sn‚s

T e r m s  c a n  b e  u s e d  t o  c o n s t r u c t  c a r r i e r - e l e m e n t s  o f  so—called

term—algebras. These term—algebras have an interesting property

w h i c h  m a k e s  t h e m  a d e q u a t e  candidates. f o r  u n i g u e  m o d e l s  f o r

specifications: They are initial in 5183.

1 . 2 . 5  Definition

A Ä — a l g e b r a  A i s  i n i t i a l  in g l g z ,  if f o r  e a c h  Ä — a l g e b r a  B

there exists a unigue gealgebra-homomorphism hB: A + B.

Now w e  have t o  give a description of the term—algebra determined

by 3.

11



1.2.6 Definition

The term—algebra TZ determined by the signature 3 is defined by
the following conditions:

(1) The carrier set for a sort seS is the set of i—terms of

sort s.

(11) Let a e E s l , . . . ‚ s n , s  and 1:1‚...,tn be g-terms of

sorts s1,...,sn,s. Then “T: i s  defined by
U T Z ( t 1 " " ’ t n )  := O(t1,...,tn).

1.2.7 Theorem

T; is initial in glgz.

1.2.7 Definition

Let ; (X)  be the signature with variables from definition 1.2.4.
Then_the algebra T£(X) is defined by the following conditions:

(i) T2(X)s is the set of all E(X)—terms as in definition IJLH

(for each sort seS).
(11 )  Let t1‚...‚tn be terms from TZ(X)S(1),.„,T£(X)S(n) and

_° 3 z s l , . . . ‚ s n , s '
Then _

°TE(X)(t1""’tn) := o(t1‚...‚tn) _
According t o  this d e f i n i t i o n  TZ(X)  i s  a E — a l g e b r a  n a m e l y  t h e

£323 Efalgebra generated by the set X.

Terms of T£(X) can be evaluated in a Efalgebra A if we assign to

each variable“ an element of A..

1.2.8 Definition

Let TE(X) be the free E-algebra generated by X and A be a

E—algebra.

Then an assignment from elements of A to X is a mapping
e: x + A

with e := (es: XS + AslseS)

12



Such  an assignment determines the so-called evaluation—mapping

for £(X)-terms in a E—algebra A. '

1.2.9 Theorem

Let e be an assignment and A be a ggalgebra.
Let the evaluation—mapping @: Tg(x) + A with
‘6 = _(§S:TZ(X)S + AslseS) be defined by

(i) VxeXS. Gs(x) = es(x)
(11 )  Let t1‚...‚tn be elements of T}:(X)sl,...‚T£(X)srl and

° 5 z:sl,...‚sn„s- Then '
ä(o(t1,...,tn)) := aA(esl(t1),...‚esn(tn)).

Then 6: TZ(X) + A is a E—homomorphism.

T h i s  t h e o r e m  s h o w s  that interpretations of t e r m s  f i t  i n t o  the

algebraic f ramework ,  because  they  are Ä—algebra homomorphisms.

N o w  w e  m u s t  s a y  what e q u a t i o n s  a r e  considered t o t n a a n d  what i t

means t o  say: an equation is satisfied in an a lgeb ra .

1.2.10 Definition

A géequation i s  a p a i r  E=<L‚R>  w i t h  L,R @ T H X ) s  f o r  a s ort

seS.

1.2.11 Definition

Let E = <L,R> be a grequation of sort 3 3 3  and A be a Egalgebra.

Then A satisfies E if for all assignments 9: X + A the eva-
luation 6: TT(X) + A gives

escL) = es(R).

This definition means that an equation is valid in an a lgeb ra ,  if

all interpretations of left— and right—hand sides of E in A have
the same value as result. '
Let A be a g—algebra. Then a congruence  relation 5 on A is a
family E == (58 g AsxAslseS) suCh that each a s  is an equivalence

13



on As and respects the operations in the sense that if

a e z s l ‚ „ . ‚ s n , s  and a1,....,an s A s l x fl - x A s n  then

oA( [a1 ] , . . . , [ an ] )  = [oA(a1‚...,an)].
“([a] denotes the equivalence-class of a).

Let S = <S ,£ ,E>  be a specification. Then we define a congruence

relation on TX by us ing  the equations E and assignments

o: X + T2 ( X  is the variable set of E) in the following way:

1.2.12 Definition

The congruence  r e l a t i o n  on T Z  generated by E i s  a f a m i l y

=E— = E , s  & TES x T28 IseS) of least congruences  defined by 5E , s '

(1) Let E = <L,R> be an equation in E of sort S. Then

. s(L) EE,S 6(R) '
(11 )  L e t  O 8 2 8 1 , . H , S H , S  a n d  t 1 , t i  8 T Z S i  ( i=1 ,ouun)

Then

O<t1 ,ooo , tn )  EE,S  U ( t i i o o o , t fi )

( 111 )  V t e T Z s .  tEE,S  t n

(iv) Ut‚t‘eTzS. t 
EE,S  t => t EE t

’ " =(v) Vt,t ,t eTES. ( t 'E , s

The congruence—classes [t]
[ t ]EE , s  := {t'aTZS | t

S,

t &t EE‚S  t") => t EE,S  t"

for t e T E S  are built by

5 E ‚ s  t,} '
Then we can build the quotient—term algebra TZ/EE in the

following way:

1.2.13 Definition

L e t  £3 =

algebra TE/gE is defined by

For each ses the carrier—set 
T E / 5 E ‚ s  is the set

== { [ t 1 2 E  | t 3 s}
(1)

Tz/EE,s

Let a € £sl,...‚sn‚s
Then

(ii)

“TX/EE ([tlls-°°a[tn])

<S ,£ ,E> .be  a specification. Then the Q u o t i e n t — t e r m —

and t i  8 T 2 8 1  ( 1  = l , . . . , n ) .

: =  [ O ( t 1 , . . . , t n ) ]

14



1.2.1" Theorem

Let S = <S ,} : ,E ->  b e  a specification and Til/EE t h e  quotient-

termalgebra defined by S.

Then.T£/:E is initial inIALg£ ,E  ( and  is uniquley determined up

to isomorphisml).

S o  w e  a r e  prepa red  t o  say what an adt is considered t o  be i n  the

ADJ-philosophy:

1.2.15 Definition

Let S =  <S,  E ,E> be a specification.

Then by the abs t r ac t  da t a  type specified by 8 vH; m e a n  the

isomorphism-class of the quotient—termalgebra TZ/sE.

I.3 Parameterized Specifications and Parameterized Data  Types

We now show hOW"new’ da ta  types can be constructed from ’old’

O n e s  i n  t h e  ADJ-approach  b y  u s i n g  t h e  ’ p a r a m e t e r i z a t i o n -

technique. On the syntactical level parameterization means that

we start with a formal parameter specification 1 and ’embed’ it

into a resulting specification D via an inJective Sage—morphim

p: X + 5„ _ '

The formal parameter has very little structure such that there is

a (eventually) large class of specifications in gggg which

will f‘it this structure and can therefore serve as actual

s y n t a c t i c a l  p a r a m e t e r s .  P a r a m e t e r i z a t i o n  m e a n s  t h a t  o n e

specification is built from one or more parameter-specifications

by eventually extending the structure provided by the parameters

w i t h  n e w  s o r t s  , n e w  operations  and n e w  equations. T h i s  i s  s o  f ar

the syntactical view.

On the semantical level parameterization means transformation of

a lgeb ra s  of one ca t ego ry  into algebras of another (resultant)

category together with transformation of algebra-homomorphisms.

15



T h i s  should b e  d o n e  i n  s u c h  a w a y  that the structure o f  t h e

parameter—algebra will not be lost. This means  that by a certain

'reduction' o f  the resultant a lgeb ra  w e  g e t  an a l g e b r a  t h a t  h a s

the same  structure as the parameter-algebra. The transformation

of ’old’ structures ( ca t ego ry  of parameter a lgeb ra s )  into ’new’

( ex t ended )  structures ( ca t ego ry  (fl? parameterized a lgeb ra s )  will

be carried out by functors ( acco rd ing  t o  the category-theoretical

viewpoint used  in the ADJ-approach ) .  Analogously the 'reduction'

will be carried out by so-called forgetful functors. These

functors ?forget'ixla.sense all of the additional structure of

the resultant a lgeb ra s  and ’concentrate' only on the structure of

the ‘old’ parameter a lgeb ra .

According t o  the phiIOSOphy that a n ' a d t  s h o u l d  b e  u n i q u e l y

determined the resultant (parameterized) algebra is the ’free’m

extension of the parameter algebra. ’Fr'ee extension’ means that

the elements of the 'old' carriers AS (for the parameter algebra)

become  by transformation (with the respective functor) elements

of the new carrier B p ( s )  (if B is the resultant a lgeb ra  and

p: X + 1) t h e  p a r a m e t e r i z e d  specification b e l o n g i n g  t o  t h e

transformation). '
The following definitions and theorems formalize the above  ideas.

The results are taken from [E/L 81].

‘ Remark: In the sequel if p: 1 + D is a §p§§-morphism,  then

. Ifls) := psopt(S) (ses) and p(o):==pop(0) ( “ E i s l ‚ „ , s n , s ) '

1 . 3 . 1  Definition"

A parameterized specification is an inlective gpgg-morphism

p: X +_D _
X is called the formal parameter of p.

In the-sequel we u s e  a' special kind of parameterized

specifications, namely (strongly) persistent specifications. This

property is mainly connec t ed  with the transformation (of data

types) specified b y  the p a r a m e t e r i z e d  specifications. The

16



t r a n s f o r m a t i o n  i s  expressed b y u s i n g  C e r t a i n  f u n c t o r s  b e t w e e n

categories of a lgebras .  So  w e  introduce h e r e  the f u n c t o r s  w i t h

which we are conce rned  in parameterization namely forgetful and

(strongly)  persistent functors.

FMmafln I f  e :  X + D  i s — a  B a g s — m o r p h i s m  t h e n  t h e  r e s p e c t i v e

. persistent functor belonging to e will be denoted by the

(upper case letter) E and the respective forgetful

functor will be denoted by E.

1.3.2 Definition

Let e: I + D be a gpgg-morphism and B be a D—algebra. Furthermore
let sig(l),sig(D) and sorts(IJ‚sorts(D) denote the signatures and

sorts of the specifications X and D.

Then the forgetful functor E: glg” + Algx sends each D—

algebra B to the I—algebra A defined by '
. ( i )  Vsssorts(X). AS := Be(s )

(ii) Each  operation a e 3 1 8 ( x ) s 1 , . . . , s n ‚ s  is defined by the

image-operation under e . "  .

aA: A s l x ' " X A s n  + A s  i s  defined t o  b e  t h e  o p e r a t i o n

e o p ( ° ) B :  B e ( s 1 ) x ° " x B e ( s n )  + B e ( S )

The a lgeb ra  A is called the sig(I)—reduct of B.

(111) Let B, B' be D-algebras and h: B + B’ be a D-algebra-

homomorphism. .

Let A, A’ be the respective sig(X)-reducts of B and B’
defined by E.

Then E transforms h into anII—algebra—homomorphism
55: A +b.A' by

Vsesorts(X). gs := h e ( s )

In the f o l l o w i n g  d i s c u s s i o n  we  d e n o t e  the o b j e c t  part of a

ca t ego ry  C by lgl and the morphism part by /g/. If A,B e [gl
then Q(A,B) denotes the set of all morphisms from A to B.
Furthermore if ;, Q are categories and. F: 9 + @ is a functor

then we shall denote its object part by I F I :  IQ] + ID] and its

17



morphism part by /F / :  /Q/ + /D/.
N o w  w e  t u r n  t o  t h e  d e f i n i t i o n  o f  persistent f u n c t o r s  b e t w e e n

categories of a lgeb ra s .  Persistent functors are used to construct

parameterized data types from parameter data types. They perform

this transformation in such a way that'they ’remember’ the

s t r u c t u r e  o f  t h e  p a r a m e t e r - a l g e b r a .  T h e  s t r u c t u r e  o f  t h e

'remembered' algebra can then be rediscovered by application of a

forgetful functor.

1.3.3 Definition

Let p,e: x + D be gpeg—morphisms.

Then a persistent functor P (determined by p) is a functor

P: Algx + AlSD .
such that _

VAelgnIJEoPHA) 2-: A (’s? means isomorphy “and.-

’d’denotes the composition o f  functors)
. P  is strongly persistent iff

VAelg;gx | . [EoP|(A) =

New w e  can-see what it means to say that a persistent functor

’remembers' the structure of its argument (or parameter)—a1gebra

namely

IE 0 P|(A) & A
OI"

rs o P M )  = A.
_We see that vua can always rediscover the structure of the

argument and thus n o  relevant ’information' i s  lost_by

application of_ a persistent functor. '
What i s  _left f o r  the m o m e n t  i s  t o  g i v e  the r e s p e c t i v e  w o r k i n g

definitions f o r  parameterized data types ( p d t  s )  and the

semantics of a parameterized specification.

F o r  short: a p d t  o r  d a t a  t y p e  constructor consists n a m e l y  of a

persistent functor and forgetful functor. The standard—semantics

of a parameterized specification i s  given by a persistent functor
P f r e e :  ALEX + glgD which transforms each  X—algeb ra  into its free
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extension and by the forgetful functor P: glgn +.glgx.'

Constructing the free extension of an X—algebra A by application

of ‘a  persistent functor Pfree: iAlgx +=ALgD with lreelßk):= A’
means :

The old carriers As (sesorts(Xfl) are bijectively transformed

to the ’new’ carriers 1113(3) (neither new elements are added

to A5 in Aé(s)run°'old' elements are mapped onto the same

image).

and

n e w  carriers, new operations and new equations are eventually

added in A’. ‘ '
T h e s e  a r e  the k e y  i d e a s  contained-1n the f o l l o w i n g  sequence  of

definitions and theorems.

I.3.u' Definition

As a working definition for pdt's we choose

A p a r a m e t e r i z e d  d a t a  t y p e  c o n s i s t s  o f  a p a r a m e t e r i z e d

specification

p: I + D' _
and the (strongly) persistent functor P f r e e :  Aigx;+ Aigß that

takes each  X—algebra A to its free extension over A with respect

to p such that '
Iropfreec) s A '(|P°Pfreel(A) = A)

1.3.5 Definition

Let p: X + D be a parameterized specification.

Then by the standard—semantics of p we mean the pair ( p ’ P f r e e ) °

1.3.6 Definition

Let p: X + D be a parameterized specification.

The p is called (strongly) persistent if its underlying standard—

semantics has this property.
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We shall proceed by clarifying parameter-passing in gpeg and by

building i n s t a n c e s  of pdt’s. The rest of the chapter c o n t a i n s

some  category—theoretical results on the relation between $999

and t h e  ca t ego ry  of Spec -mode l s ,  the a lgeb ra s ,  w h i c h  a r e

contained in (ja; ( ca t ego ry  of categories with functors as

morphisms).

A s  a parameterized specification i s  intended t o  b e  u s e d  a s  a

method of systematically constructing new specifications from old

ones we have t o  indicate what parameter passing means .

In general we bind an actual ksyntactical)—parameter to the

f o r m a l  p a r a m e t e r  i n  p :  X + D by a m o r p h i s m  f :  X + A and t h e n

complete the resulting d iag ram

x --B-> D
.f+

A

by giving it a unique meaning a s  the pushout of the diagram

1 -—E—> D
f+ +f’

A __BL_> B

(where f’Op = p 'Of )

1 .3 .7  -Definition

Let p: X + D be a parameterized specification.

Then an actual syntactical parameter is a pair ( f ,A)  such  that

f :  I + A i s  a ßpgg-morphism.

1,3.8 Definition

_Let ( f ;A)  be an a c t u a l  s y n t a c t i c a l  p a r a m e t e r  for'pu X + D. Then

the result of parameter passing ( A  for X )  is the pushout of the

diagram

x —-9——> D
r+ +f'
_ A __B;_> D'
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The preceding definition means  that the result of parameter-

passing is determined by the equivalence of

(1) embedding X into D and then replacing the formal part in D
by the actual parameter A via using f

and

(ii) substituting A for 1 via f and then embedd ing  A into D (by
changing D to D'). .

Again by the requirement that the meaning of_parameter— passing

s h o u l d  b e  t h e  pushout o f  t h e  a b o v e  diagram w e  k n o w - t h a t  the

result is uniquely determined. The parameter-passing—mechanism on

t h e  syntactical l e v e l  corresponds i n  a s ense  t o  the f o l l o w i n g

mechanism on the semantical level.

Let ( f ,A)  be a n  actual parameter f o r  the parameterized

specification p: X + D.

Then by using the standard—semantics ( P ‚ P f r e e )  we indicated that

each  I — a l g e b r a  w i l l  b e  t r a n s f o r m e d  i n t o  a D — a l g e b r a  ( f r e e —

extension) by using the (strongly) persistent functor P f r e e °  Now

we take an A—algebra and then transform it into a D'—algebra by

using the standard—semantics of p': g + D', namely (p’,Pf~pee)
which sends  the actual A—algebra t o  its free extension in AlgD"

1.3.9 Definition

Let p: X +-l) be a parameterized Specification with actual

p a r a m e t e r  ( f ,A) .  L e t  t h e  r e s u l t  o f  p a r a m e t e r  passing b e  the

pushout of the following diagramm:

x ‘——B-—> D
f +  + f '

A __E£_>  D'

Then an actual parameter for (p,Pfree) is a triple (f‚A‚A) where
( f ,A)  is the actual parameter for p and A is an A-algebra. The
result of parameter-passing is indicated to be the commutativity

of the following diagram. .
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A181 - - - - - - - - - -  > A189
F + ' +F’
AlgA _E_££99___>  AlgD‚

Remark: If P f r e e  is (strongly) persistent then Pf-free is.

(technical result in [E/L 81])

We adopt the following convention for the structure of gggmal—

parameter-specifications.

1.3.10 Convention

L e t  p: x + D be‘a p a r a m e t e r i z e d  specification.

Then the f o r m a l  p a r a m e t e r  x i s  one o f  the f o l l o w i n g  specifi—

cations (alternatives are enclosed in brackets { }):

_sorts: X
o nszl {E: + X} ( X  eventually contains a constant)

j éx: Xxx + BOOL
9993: x 5 x  x = true

x ä x  x’ = x " a x x

((x Exx’ & x’ Exx") => x Exx") = true

F u r t h e r m o r e  w e  shall g i v e  each  p a r a m e t e r i z e d  s p e c i f i c a t i o n  a

unique name. This will help u s to  identify various specifications

b y  t h e i r  n a m e s  a n d t o  u s e  t h e m  a s  p a r a m e t e r s  i n  o t h e r

parameterized specifications. Thus if p: x + D is a parameterized

specification with simple parameter.x we identify the resulting

specification by the (unique) name P. The equation

P = K(Xl‚„41n) where K is a constructor (that is a combination
o f  the p a r a m e t e r s  x l ‚ . „ , x n  v i a  Operations s u c h  as"-|-'a ’ x fi

means ,  that w e  name the resulting specification by P. The formal

parameter will be deno ted  by the keyword  formal.

We make the following convention:
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I.3.11 Convention

Let p :  I + D be a parameterized specification.

Then the equation P = K(I )  denotes the following specification:

sorts: P ...

formal X

ggggz 5: + P}
p :  PxP + BOOL

. other .

F
H

. opera— .

. tions .

“formal {E: + x}
5x: Xxx + BOOL

(D :! U) "U I
l
l

"Ö
. 

\ 
r
c l
l

cr P'
s C (D

formal x 5 x  x

((x Ex xf & x’ a x") => xax x") = true

I n  the case of more than one formal parameter eng.

P = K(x1 , . „ ‚xn)  this concept can be easily extended by using a

tuple of parameterized specifications (pi: x1 + D ]  1=1 , . . . , n )  and
then defining 953 Snag—morphism by this triple.
What w e  still need is t o  extend the parameter-passing concept in

the case vnunl the parameters are themselves parameterized

specifications f o r  p a r a m e t e r i z e d  d a t a  types. I n  t h i s  c a s e  the

following definitions will be used:

1 . 3 . 1 1  Definition

L e t  p: X + D b e  a p a r a m e t e r i z e d  specification w i t h  a c t u a l

parameter ( f ,A) .  Let p: Y + A be a parameterized specification.

Let the result of pass ing  ( f ,A)  for I be the pushout of the

following d iag ram
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x ——P--> D
f+ +f’

Y __B__>  A __E;_> D'

T hen t h e  result o f  pass ing  p: Y + A f o r  I v i a  f i s  g i v e n  b y

2;_2-

1.3.12 Definition

Let ( P ‚ P f r e e )  be (strongly) persistent s t anda rd—seman t i c s  for
p: x + D and ( f ‚A‚A)  be an actual parameter. Furthermore let

(p ,§ f r ee )  be a (strongly) persistent standard—semantics for

p: ! + A.
Then the result of parameter passing i s  the (strongly) persistent

parameterized data type given by

(P ' °P:  P f r e e ° fi f r e e ) '

N o w _ w e  give some examples for parameterized Specifications using

the conventions 1.3.10 and 1.3.11.

Example 1

P = x 1 x x 2 x  o o  . ‚(In (HEN)

sorts: P, BOOL '

formal X1,...,Xn

222g: Ep: PXP + BOOL
<...>: Xlx ... xxn + P
[1]: P + X1 (1 = 1 , . . . , n )  _

formal EXi: Xixxi + BOOL ( 1  = 1 , . . . , n )

e ns: p ap p = true sp is an

p “="p P' = P' E p  P equivalence

((p E p  p‘ & p' E
[1 ]<x1 , . . . , xn>  x1 ( 1  = 1,...,n) _

-<x1,...,x > sp <xi‚...,x;l> = (xl E x l  X i  &...&n
x n  E x n  x n )

P") => P 5p p") = true relation on P

H

formel x1 E x i  xi

X 1  5 x 1  X i  x 1  = X i  5 X 1  1 = 1 , 0 . . ‚ n

((xi Ex'i & x 1  Exi x3) => x 1  Ex1 x!) = true
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Example 2

p = xlxx2x ... xxn + 1 (n—fold product with constant)

sorts: P ,  BOOL

f o r m a l  X1, . . . ,Xn

0 ns: ? :  + P
E p :  PxP + BOOL

( o o — > : _ X I X  f o .  x x n  + P

[ 1 ]  P + X 1  ( 1  = 1 ,ooo ,n )

formal E i :  + X1 ( 1  = l,...,n)

E X i :  X i x x i  “* BOOL

eqns: p a p  p = true

P 3 p  P = P E p  D

((p 2p p' & p’ Ep p") => p s p") = true
<x1 , . . . , xh>  ep E = false
E E p  ( X 1 , . . . , X n >  = f a l s e

[1] 5 = 3'51

formal x1 'x1 X1 true
x i  E x i  X i  : X i  E x i  x i  ( i  1 , . . . , n )

' : ' ' : " = : " :((x1 "xi_xi & x1 “xi x1 > x1 "x1 x ) true

Remark

In the following sections we shall omit the '

o f  the specification that i s  the_0perations

equations stating the equivalence property of

Now some examples for parameter passing.

equivalencef—part

a n d  t h e
;

’ - I
.

We use the following specification NAT for 'natural numbers’:

§2£E§= NAT, BOOL

w :  o: + NAT '
suc: NAT + NAT
ENAT: NATXNAT + BOOL

e ns: O E N A T  0 = true
0 ENAT suc(n) false
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suc (n )  E N A T  0 = false

suc (n )  E N A T  SUC(N’ )  = n E N A T  n ’

(This is a quite redundant  specification of NAT but it is useful

in showing pa rame te r—pass ing ! )

Let's turn to our next example:

We want t o  build Q = NATXIAT .

So we take the specification from Example 1 with

P = X 1  x x 2  and the two=ßgeg-morphisms p1 ,p2  characterized by:

p l :  X1 + NAT, EX] .  + ENAT,  i 1  -)- 0

p2: x2 + NAT,

specification

5x2 * ENAT’ X2 * ° .. -
W e  take the t u p l e  p = <p1,p2>.to lead t o  the p a r a m e t e r i z e d .

p: Xlxxz + NATXNAT

The resulting specification i s  g iven  by:

sorts: Q ,  NAT, BOOL

oEns: &: + Q
EQ: QXQ + BOOL

< > :  NATXNAT + Q

[1]: Q
[2]: Q

292i: E ‘ E Q  é
[11(6)
[21(5)
<n1 ,n i>

+ NAT

+ NAT

N A T — o g n s '

= o
= o
EQ ‘nz’né> = (n1 ENAT n2 & ni ENAT né)

. equations for NAT .

We can now use this specification for building

- Q  X Q * (NAT x NAT) * (NAT x NAT)
Q + 1 & (NAT x NAT) + 1
e t c .
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I.H Algebraic Domain Equations over Speg

We have  pointed out in the introduction that an algebraic domain

equation is a pair of Spec-morphisms

x (Bee) DU).

Now we need  two functors P: Alsx + Alan and
E: ALgD + A;gx to define the endofunctor POE: Alan + Alan and
then look for fixedpoints. '

As certain fixedpoints of POE should give mean ing  to ‘ recursive
‚ d o m a i n  equations in an algebraic frameWork it should be obvious

that these 'equations' should be defined by'a pair of Spec—

morphisms p,e: X + D. Here p_1s a parameterized specification and

e is used to define the forgetful functor E:‚AlgD + Alex. The
f o l l o w i n g  sequence of definitions and t h e o r e m s  f o r m a l i z e s  the

ideas we have given in the introduction. Detailed proofs will be

omitted and can be found elsewhere ([E/L 81] ,  [K 83]).

-I.4.1. Definition

Let X and D be specifications.

An algebraic domain equation (ade), denoted by
x (PgeT D

consiSts of a pair of Spee—morphisms

p,e: X + D

w h e r e  p i s z a ( s t r o n g ly0 persistent parameterized specification

and e describes a forgetful functor.

Remarks: (1) The double-arrow(=’>T in I (p ’e )D  is used to indicate

that p‚e are directed from I to D.

(ii) By IJL2. we know that gagh_$pggrmorphism defines a

forgetful functor. As Ju; have indicated in

convention 153.11. each parameterized specification

' should use unique names (for sort, constants,

equality). Then for e it suffices to map the formal

parameter components to the (new) components in the

resulting specification which have unique names.
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So if the formal parameter is denoted by X and the

target specification by P then

e (X)  := P

e ( i )  := E
e(sx) := Ep

We have two endofunctors described by p and e, namely

EoP; Alex + Alex
and _

POE: 318D + Algp _
W e  shall use t h i s  later on but the t w o  f u n c t o r s  are related i n

the following way:

I luflz .  Lemma

Let A @ Iglgxl. Then the following assumption holds:
If A is fixedpoint of EoP then |P|(A) is a fixedpoint of POE
and

if B is a fixedpoint of PoE then |E|(B) is a fixedpoint of
EOP.

I.H.3. Lemma

B is a fixed pointof Po'Ejiff |E|(_B) & [15|(B) and there exists
an_x_algebra A such that |Pl(A)'s'B. -

The next theorem is very important. It states (informally spoken)

that each  fixedpoint of POE has a certain (syntactically
determined) form and that w e  can restrict the search for

fixedpoints to a subcategory of AlgD. The argumentation is the

following:

Let x (£3,597 D be an ade. We know by 1.1.3. that each pair of
morphisms in Shanghas a coequalizer. This coequalizer leads to a

renaming of sorts, operations and equations in the specification

D a s  s h o w n  i n  the construction o f  coequalizers i s  fine; ( t h e

section f o l l o w i n g  t h e o r e m  1.15%). S o  w e  k n o w  that (p,e) h a s  a



coequalizer in Spgg.  This coequalizer consists of a unique speci-

fication Q and a unique Sage—morphism q: D + Q (see theorem
1.1.3.). ‘
Let coeq(p,e)=(q,Q) denote this relation formallyu-Now it turns

out that if‘ Belauggpl is a fixedpoint of POE then there exists
an Q—algebra C such that |Q | (C) ' §  B. That means that we may

restrict_our_search for fixedpoints of POE to coequalizer—

a lgeb ra s  (A lgq) .  And here in coequalizer.algebras an identifica—

tion (renamihg) between p- and e-components of-D has been  made .

Now we turn to the theorem. '

I.".H. Theorem

Let I ( 239 )  D be an ade and let (q ,Q)  = coeq(p,e)„

If B is a fixedpoint of POE then there exists a unigue

Q—algebra C such that B |Ö|(C).
Proof outline:

Our argumentation here i s  the following:

(i) (q ,Q)  = coeq(p,e). Now the functor a lg :  Spa; + Gag-‚OP sends

each Snag-morphism r: S + T" _to the forgetful functor
R := alg-r:=AlgR + glgs. als transforms coequalizers in

3939 to egualizers in Gag. If (q ,Q)  = coeq (p , e )  in Spec

then (Q„An)  = eq(P,E) in fig; (where eq() denotes the

I
l
l

equalizer).

Thus for each Q-algebra C IPOÖ|(C) = |EOÖ|(C) holds.
(equalizer-propertyl).

(ii) Since B is a fixed-point of PoE’ we know that
| P | (B)  % |E|(B).IBut we can even construct a D-algebra
B’ s B such that |P|(B’)  == IEHB’) .  This looks similar to
the equalizer property IPoQ[(C) = |EoÖ|(C).

(iii) What is still missing is an a lgeb ra  Celglgol suchthat

B’ s |Q | (C) .  We show how we can construct a suitable Q-
algebra C out of B’ such that this prOperty holds.

Then we shall have B s B’ s |Ö | (C)  and we are ready.
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I.H.5 Corollary

B is a fixedpoint of POE iff the following conditions hold:

(a) B | P | (A)  for a X—algebra A
(b) B IQI(C) for a Q—algebra CI

I
!

Each fixedpoint B of POE.has the property | P | (B)  % |E|(B).
This means that all the carriers Bp(s ) ,  B e ( s )  (seSx) are

isomorphic and may therefore be identified. This identification

is Just what the coequalizer of p and e l e a d s  to. Moreover the

identification process via coequalizers in 5999 yields a unique

ca t ego ry  ALQQ w h i c h  consists i n  a s e n s e  o f  a l l  D é a l g e b r a s  i n

which isomorphic P and E—parts are identified. Motivated by the

introduction and by Theorem.1 muH we consider solutions_of ade's.

I (p,;
>e) D to be Q—algebras ((q,Q)=coeq(p‚e)) which have “the

fixedpoint property for POE, when they are reduced by Ö.

I.".ö. Definition

Let I (3 )29 )  D be an ade and (q ,Q)  = coeq (p , e ) .  Then a solution

of x (gge )  D is a Q—algebra c, such that
|o|(c) & |PoE|(|ö|(C))

( IÖIC is a fixedpoint of POE!)

Now according to this definition there may be a variety of Q;

a lgeb ra s  C which are solutions of X ”(p‚e) D. EMU; when we

started w e  had i n  m i n d  t o  u s e  a d e  8 f o r  i m p l i c i t  Specifications

of parameterized data types._There ade s should define an (up to

isomorphism) unique data type. So the question is: Is there a

' uniquely determined Q-algebra C which is a solution for

x (P»e) D? Indeed.
The initial Q-algebra  denoted by IQ is uniquely determined and is

a solution of x (P:?) D!

The following theorems and definitions show the development of

this resulih We proceed by using an analogon to Scott's inverse
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limit construction.

I .M.7 .  Therorem

Let II(£ge) D be an ade and iet I D  deno te  the initial D-algebra.

Furthermore let io: I D  + |P0E|(ID) be the unique'initial homo—

morphism and let 1 k + 1 = =  /P©E/(1k).Then the colimit D-algebra of

the diagram

“ID —30-—> |P0E|(ID) —¥1——> |PoE|2(ID) —— . . . .

\ \

is a fixedpoint of EOP.

Ramnmn B y  T h e r o e m  I .M.H.  t h e r e  e x i s t s  a u n i q u e  ( u p  t o

isomorphism) Q—algebra Ae |§ ;go |  such  that

C E IQICA).

PRHV‘We want to prove that the initial Q—algebra IQ is a solution

of x (£96 )  D. I shall outline the argumentation.

(1) From the fixedpoint property w e  know: if Belgggln is a

fixed-point of PoE then |E|(B) & 1P|(B). According to
this _ '
fact we get a ca t ego ry  lgg with:

obgects: The class of all pairs (8 ,8 )  where B is a
fixedpoint of POE and ß: IEICB) + IF|(B) is the
isomorphism for [EIB % |F|(B).

morphisms: f :  (B1 ,B l )  + (B2‚82 )  where 15': B 1  + B 2  is a n
glgD—morphism such thatIP|(f)OB1 = 820|E|(f).

Note that lgg i s  a full subcategory  of g ;gD.  We can

c o n s i d e r  Lag t o  be the c a t e g o r y  of a l l  fixedpoints of

POE.

(ii) Theorem I.H.H shows that for each fixedpoint B of POE we
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(111)

can construct a B’ e Alßp such that B e B’ and

IEHB’) = IP] (B’ ) .
This fact leads to the ca t ego ry  Egg with:

obJects: all pairs (B’,id|El(B‚)) from ;gg.

morphisms: all f: (Bl,id|E|(Bl))'+ (B2,idlE|(B2))
such that_

/E / ( f )  = /F/(f). (because  /F/(f).id P/(f)

/E/(f)
ido/E/(F)

On the other hand since Q: glgq + élSD is an equalizer of E
and ?, the characterizing property of the m o r p h i s m s  and

objects in Eau (where lE|(B) = | P | (B)  and /E / (F )  = /P / (F ) )
is similar to Q’s characteristic property namely

EOQ = PoQ. '
These observations culminate in the assumption that Egg

9.9.9 Algq are isomorphic‘as categories (provided the range

of Ö is restricted.)

We had ((cnlneN0)‚C) as the colimit of diagram 1 in Theorem

1.”.7. The object C was isomorphic to |POE|(C).
. L e t  y: IPOE[ (C )  + C be t h i s  i s o m o r p h i s m .  Then t h e  pair_

(C , /P / (Y) )  is initial in Iso. Since Iso and Egg are

equivalent as categories there exists a D-algebra C’

isomorphic to c such that (C’,id|E|(C»)) is an obJec t  of
ggg„.Equivalence of ;gg and gay imply that initiality of

(C , /P / (Y) )  is respected. Isomorphy of Egg and=AggQ then
implies that I Q  is a solution of 19,3321) since isomorphy

respects initiality. Thus the argumentation is closed.

Now we state the main theorem.

1.11.8; Theorem

Let X (gge )  D be an ade where (q ,Q)  = coeq(p,e). Then the initial

Q—algebra IQ is a solution.
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II. SPECIFICATIONS WITH INEQUALITIES

Hornung [H/R ?] uses specifications with inequalities and gives
an initial and a terminal semantics for parameterized da ta  types.

W e  s h a l l  u s e  t h e s e  s p e c i f i c a t i o n s  i n  t h e  c o n n e c t i o n  w i t h

algebraic domain equations. In this chapter  we shall define the
respective category and we shall outline some properties of this

ca t ego ry  w h i c h  a r e  needed  t o  d e f i n e  algebraic d o m a i n  d o m a i n

equations.

I I . 1  Definition

Let g = <S,>:> be a “signature. .

 A g—inequality is a pair <t,t'> with t,t' e-TE(X). We write

t#tf.

I I . 2  Definition

Let 5 be as above.
A positive conditional.§7equation i s  a tuple of pairs

<<t11’t12>’<t21’t22>""’<tn1’tn2>‚<tn+11’tn+12>>

I t  w i l l  b e  w r i t t e n  a s

t11=t12 & t21=t22 & ... & tn1=tn2 => t

(t1J e TE(X)Si (i=l,...,n+l, J=l,2))

Now we shall define the category of specifications which contain

tn+11= n+12

e q u a l i t i e s  a n d  i n e q u a l i t i e s  i n  t h e i r  a x i o m - p a r t .  W h a t  i s

important here is that we have to take care of the definition of

our specification-morphisms. It doesn't suffice to use the

'normalf gpggrmorphisms in our context since inequalities appear

i n  t h e  a x i o m  p a r t  of the respective specifications. W e  have t o

send equalities t o  equalities and inequalites to inequalities.

II.3 Definition

The ca t ego ry  of specifications with equalities and inequalities

denoted by gpegl i s  defined by:
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|spggilz specifications s = <s‚z,E> with E = EQ u NE such that
EQ isaiset of positive conditional equations as given

1n.II.2 and

NE is a set of inequalities as given in 11.1

f > s u c h/ §pgg ; / :  f: S + S' is a signature morphism f = ( f s o r t ’  op

that

v e s EQ. f(e) 8 EQ'
v e' 8 NE. f ( e ’ )  e NE’
(for s = <S,Z,EQ u NE>, s’ = <s',z’,EQ' u NE'>)

F o r  m o r e  technical r ea sons  w e  introduce three relations on T:

which are gene ra t ed  by EQ and NE. .  '

"11.3.1 Definition

(1) Let s = <s,2,E> s lßpggll with E = EQ u NE.
Then pEQ‘E'Tza is the least (under inclusion) g-congruence

'on TZ such that

i f  V 11=P1  &ooo& l n = r  = >  1 1:1“n n+ 8 EQn + 1

then V(o(li ), o(r'1 )) e pEQ => (a(lm1)‚o(r
i= 1

' - A 2 =(for all a c Subs t z (x ) ,  ( l i ’ r i )  e T2(x)Si ( 1  1 . . .n ) ) .

(This means that if all premises be long  to the congruence  the

n+l)) € pEQ

so does the conclusion for any correct substitution)

(11) 0N is the least (unde r  inclusion) relation <n1'TE which
satisfies . ’

Vses' m u m )  &: T£(x)s V—aeSubstE(x).(l,r)eNE =>
(a(l)‚o(r))epN

(111).pNE is the least (under inclusion) relation on T: such  that

(a) pN ° pNE
(b) pNE is symmetric

(c) (r, s) e pEQ & (s, t )  6 ”NE => (r, t )  6 ”NE
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N e x t  w e  i n t r o d u c e  t h e  s e t  o f  d i s t i n g u i s h i n g  s o r t s  o f  a

specification in 39991.

II.3.2 Definition

Let S = <S‚Z ,E>  be a specification in Spggls .

The set of distinguishing sorts deno ted  by DIS is defined by
DIS := { seSI 4 t,t’ € T23. (t,t’) e pNE}

Now w e  shall use IJLS t o  define specifications with some special

properties namely cons i s t ency ,  completeness and simplicity.

A specification is consistent, if there are no terms t‚t'eTzS
which are as well ggual (t‚t'epEQ) as unequal (t,t'epNE).

Completeness means that each pair of terms (t,t')eTxg belongs

either to pEQ or to pNE (for s e DIS). _
F u r t h e r m o r e  s i m p l i c i t y  means  that f o r  e a c h  e q u a t i o n  a l l  the

premises are terms of distinguishing sorts.

-II.3.3 Definition

Let S = <S,E,E> e lgpgggl.
(1) S is consistent: <=> pEQ n pNE = D
(11) 3 is 2952l239= <=> V seDIs. °EQ.s u pNE.s = Tag

(111) 3 is simple: <=> 3: 11=r1&...&1n=rn => 1n+1=rn+1 e EQ.

deDIS

A s  w e  a l r e a d y  pointed o u t  i n  chapter'I the concept of  algebraic

d o m a i n  e u q a t i o n s  d e p e n d s < n 1 t h e  assumption.thattflmeunderlying

category of specifications is cocomplete. In order to show that

ade's c a n  be d e f i n e d  o v e r  &peg; w e  have t o  p r o v e  that this

category is again cocomplete. This task is done in the following

sequence of assumptions about Specl.
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II.” Lemma

gpgg ;  has coproducts.

Proof:

The disjoint union of specifications (named  as triples of sets)

is the ooproduct.

II.5 Lemma

gpgg ;  has coequalizers.

Let S = <_S ,2 ,E>,  S’ = <S" ,£ ’ ,E ’>  (E=EQ u NE, E’=EQ’ u NE’) be two

specifications in M .  Futhermore let f , g :  S + S’ be t w o

m o r p h i s m s  relating  S andJSfl .Then  the coequalizer—construction

f o l l o w s  the uSual construction i n  393; ( e q u a t i o n a l l y  defined

specifications). Since we have already given an explicit outline

of coequalizers in gpgg we mention only briefly what t o  do: '

“ ( a )  Define the relation 
R s o r t : = { < f s o r t ( s ) ’ g s o r t ( s ) > |  seS} 9. s’xs’

R o p  := {<fop(a),gop(o)>| sex }  2 z ' x z '  and define the least

equivalences “(Rsort) g 3’2, A(Rop)  g 2’2 defined by these

relations.

(b) Rename  each  equivalence—class in S’ by a unique new sort—

n a m e ,  The r e s u l t i n g  s o r t — s e t  w i l l  be d e n o t e d  by §. I n  a

s i m i l a r  w a y  r e n a m e  e a c h  equivalence—class  i n  Z’tnra.unique

new operation name. The resulting operation—set will be

denoted by £. _ ' '

( c )By  ( b )  vu; h a v e  d e f i n e d  z 1 _ s i g n a t u r e — m o r p h 1 s m

q’: <S’ ,I : ’> .  + '<S" ,£"> .  Now q ’  i s  u s e d - t o  define the

specification-morphiSm q in which is the coequalizer of f and

g. Let DIS (DIS’) be the sets of distinguishing sorts in S

(S ‘ ) .
Now f (DIS)g  DIS’ and gCDIS) & DIS'. Furthermore f(EQ)gEQ’,
g(EQ) 2 EQ' and f(NE) g NE', g(NE) _<_:_ NE’.

Therefore w e  can be s u r e  that w e  s h a l l  not identify e q u a l i t i e s
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and inequalities when w e  translate the axioms in E’ by q’ and

thus having q. The r e s u l t i n g  a x i o m — s e t  w i l l  be  denoted by

€ = Eé u NE w i t h  E5 n NE = fl. The s e t  of distinguishing

sorts in the new specification will be denoted by DIS.

T h u s  the n e w  specification i s  Q := <§,£,‘E‘.> and q :  S’ +. Q i s
the c o e q u a l i z e r  of f and g. q i s  a Sigma-morphism since i t

t r a n s f o r m s  d i s t i n g u i s h i n g  s o r t s  i n t o  distinguishing sor t s ,

equalities to equalities, inequalities into inequalities.

II.6 Lemma

fipggl i s  oocomplete.

Proof:

Consequence  of II.H and II.5.

I n  D e f i n i t i o n  I133.3 w e  have  p o i n t e d  o u t  some  i m p o r t a n t ‘

properties of specifications, n a m e l y  consistenoy, completeness

and simplicity. > .

In the sequel the following questions will be important: Imagine

that S ,S '  e Lgpggll are specifications which are (a) consistent,
(b) complete or (c) simple. Suppose f‚g: 3 + 3' are two Spec i -

morphisms. Can we guarantee that the coequalizer-object in

is again ( a )  consistent, (b) complete or ( 0 )  simple?

The answer is: we can guarantee those properties to  hold for the

coequalizer—object!

I n  the following lemmata these answers are worked out in detail.

II.? Lemma

Let s = <s,z.E>‚ s’ = <S",Z’,E'> e lgggggl. be specifications and
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let f , g :  S + S’ be two gpggg—morphisms.

Furthermore let the pair (q ,Q)  denote the coequalizer of f and g

(with Q = <S ,Z ,E>  as in the proo f  of II.5) according to the

diagram

If S and S’ are consistent then Q is.

Proof:

We have to show that pEQ n pfiE = fl.
By consistency of S and S’ we have  pEQ n p N E  = Q = pEQ» n p N E ‚

and furthermore since f and g are gpggl—morphisms:

f(pEQ) n f (pNE)  = g = 8(DEQ) n 3(DNE)

N o w  t h e  o n l y  w a y  t o  gene ra t e  i n c o n s i s t e n c y  w o u l d  b e  t h e

application of q.

But Since q is a SpggI-morphism we have

v e'eEo'. q(e) e Eo_
ahd- ' ' ' ‘ _

V ef e NE”. q(e') e NE .
B B t  q s ends  DIS'-terms to Dis-terms and non DIS'-terms.to non—

DIS-terms. Thus is must be the case  that

pEQ n pfiE = fi and Q is consistent..

II.8 Lemma

Let f‚g: s + s’ and (q,Q) be as in II.7.
If S and 3’ are complete then Q is.

33.92.11:
That S and S’ are complete specifications means  that

(1) v seDIS. pEQ’s u pNE s = n
and .

(11) v s’eDIS'. pEQ»‚S» u pNE» S» = Tz 'g ‚
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Now we have to show that

v eeDis. pEÖ,g u pNfi‚s = T£23'
This i s  equivalent t o

(*) V S'EDIS'. 
q<pEQ'‚S ' )  u Q ( p N E ' . S ' )  = T £ q ( s ' )

Now for each  S'eDIS' - ( f s o r t m I S )  u g so r t (DIS) )  the assumpt’ion

( * )  i s  c l e a r l y  s a t i s f i e d .  B u t  a g a i n  f o r  each

s’eDIS’ n ( f s o r t ( D I S )  u gsop t (DIS) )  the assumption (*) holds

since q is surJective.

II.9 Lemma

Let f‚g: S + S’ and (q ,Q)  be as in II.7.
If s,s’ are simple then Q is. '

Proof:

S i m p l i c i t y  means  that a l l  t e r m s  in the  p r e m i s e s  of  EÖ have t o  b e

of distinguishing sorts Dis .  But this is obvious due to the fact

that q transforms DIS’ to Dis. Therefore terms of dstinguishing

_sorts in TT’ are translated into terms of distinguishing sorts in

T E .  Thus Q is simple.” .

II.10 Corollary

Let f‚g: S + S’ and (q ,Q)  be as in II.?. If S‚S'.are consistent,
complete and simple then Q is.

Proof: .
Obvious from II.? - II.10.

Specifications are syntactic entities which are used to define

d a t a  types. I n  t h e  a l g e b r a i c  approach  da t a  types a r e  v i e w e d  a s

h e t e r o g e n o u s  a l g e b r a s .  I n . : n o r m a l  e q u a t i o n a l l y '  d e f i n e d

specifications the m o d e l s  a r e  t h o s e  a lgeb ra s  w h i c h  satisfy the

equations. In the case of:ggggl where specifications may contain

e q u a l i t i e s  and i n e q u a l i t i e s  w e  have  t o  e n s u r e  that t w o  t e r m s

(t‚t')epNE (which are different in the term-algebra T2) will not

be identified in the respective model A e.g. tA # tÄ. (Here
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tmtfi are the interpretations of t , t "  in the a lgeb ra  A).

Thus w e  use a slightly different definitionfor the ca t ego ry  of

S—models (S  e [39931]).

I I . 1 1  Definition

Let S = <S‚E ,E> be a specification in SpggL. Then the ca t ego ry  of

S—algebras  £133 is defined by
lgigsl : all gfalgebras A with

(1) A satisfies the equations in EQ = E — NE
(11) V t,t'aTZ. (t,t')epNE => tA * t i

/§;gs/ : all Eghomomorphisms on lgggsl .

For consistent specifications the respective ca t ego ry  of models

i s  always non—empty and contains an initial object.

II.12 Lemma

Let S =_<S,2,E> be a specification in §ggg;. If S is consistent

then glas is nonempty and TZ/pEQ is the initial object in glgs.

Proof: see [H/R ?]

F o r  t h e  f o l l o w i n g  d i s c u s s i o n  w e  c o n s i d e r  a s l i g h t l y  m o d i f i e d

notion o f  parameterized d a t a  t y p e s . ] 1 : i s  m o d i f i e d  i n  t h e  s e n s e

that we take directly into account free (initial) extensions of

argument a lgeb ra s  as results of applying da ta  type constructors.

II.13 Convention

In the following discussion let s = <sgz,E>,'31 = <Sl,£1;E1> and
3’ = <S ' ,E ‘ ‚E '>  be SpegI-obJects such that . ' _

S n Sl= z n £1= E n El = a and S' := S + 81 := <S+Sl,£+£1,E+°E1>

(where '+' denotes the disJoint union)

According t o  this c o n v e n t i o n  w e  a r e  a b l e  t o  s a y  w h a t  w e  m e a n  b y
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parametérized specification.

II.1h Definition

Let 3 ,31 ,3 ’  be as in 11 .13  where El does  not contain

inequalities. .
Then a parameterized specification is an injective Snßßlrmorphism

p: 8 + S’. '

This is similar to the definition used in [E/L 81]‚‘For°ourl
purposes it suffices to turn to a special case of 11.1M namely
thatp: S + 8; is the inclusion-morphism between S and S’ (S' is
an extension of S);_ ' ' ‘

11 .15  Definition (alternative to 11 .1ü )

G i v e n  t h e  p r e m i s e s  o f  11 .13  w e  d e f i n e  a p a r a m e t e r i z e d

specification p: S + S’ t o  be the i n c l u s i o n — m o r p h i s m  b e t w e e n  S

and 3’.

11 .16  Definition

L e t  S ,S l ,S ’  be g i v e n  a s  i n  11 .13  L e t  p: S + S ’  be a
parameterized Specification.
Then by a parameteriäed data type (specified by p) we mean a
(strongly) persistent functor P: glgs + g;g3 .  such  that

v Aeg;gs. |POP|(A) & A (IPOPI(A) = A)

11.17 Definition

Given the premises in 11.16 with the parameterized specification

p: s + s’. g
Then by the standard semantics of p we mean  a pair (p,P) where
P: 1193 + ALQS '  is a_functor as given in 11.16 (p,P) is
(strongly) pers i s t en t ,  if P is.
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II.18 Definition

Let S = <S ,} : ,E> ,  81 = S + <Sl ,£1 ,E1>  be consistent specifications

in 39991. Let A e IA lSs I .

5E1 ,A  i s  the smallest z + 2 1  congruence  on T(z+21)  such  that

( b )  V 1 1 = P 1 & 1 2 = r 2 & o o o & l n % p  = >  l n + 1 = P n + 1 6 E 1  V O G S U b S t z ( X ) o

  Üi. o(1 => 0 ( 1

i=1
1) EE1,A °<r1> n+1) EE1,A “(Pn+1)

II.19 Definition

_ Let S = <S,E ,E> and S" = <S" ,£" ,E '>  be consistent specifications

“with S g S', E g E', E g E'.

Hi_ 8' is an i-extension of'äs iff TEfi/EEQalz TE/aEQ (this
m e a n s  t h a t  n o  n e w  e l e m e n t s  a n d  n e w  i d e n t i f i e r s  a r e

introduCed by extending TE/EEQJ

II.20 Theorem

Let s = <s,z,E>, 31.== <Sl,£1,El>, s’ = <s‘,r3Er> =
<S+Sl,2+£1;E+El> be consistent specifications 1n=§gggl such  that

p: 8 + S’ i s  a parameteriäed'specification.'

Let P: g;gs + g;gs.  be the following functor

(1) vnelg;gs . IPI(A) := Tz’/aE1
(11) VA,Be|§;gs| Uhegggs(A,B)./P/(h): |P|(A) + |P|(B)

Then |P|(TEEEQ) = TE'/EEQ' and S’ is an i-extension of 8.

Proof ([H/R ?] 3.2.3 and 3.2.u).
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III. CONSISTENT SPECIFICATIONS AND ALGEBRAIC

DOMAIN EQUATIONS

As a 'minimal' additional requirement for our further discussion

we require our Specifications t o  be conSistent. Thus it cannot be

the case  that two terms in our term—algebra TE are as well equal

a s  unequal. W e  t u r n  o u r  a t t e n t i o n  t o  a subcategory  o f  Spec;

namely the category of consistent specifications.

Thus we make the following definition. '

I I I . 1  Definition and Lemma

. L e t  gggggg (consistent specifications with inequalities) be

defined by: '

Iggggggl: all specifications S = <S,Z,EQ u NE> (e IS;;_e__g;CI) such
that p E Q  11 ONE = g '

(consistent specifications)‘

/§p_e_gl_l;g/: all f:s + S" (e /S=ge_c_;/) with S = <S‚z ,EQ u_ NE>,
S’ = <S’ ,E ’ ,EQ’  u NE’> such  that

—1 ' = _ ,f s o r t  (DIS ) DIS (biJective) and f(pNE) - pNE

P r o o f :

(i) ggecICis a category since for each -S e |$__gecIC| there

clear-1y exists an identity morphism ids: S + S and for two

morphisms

f: S + S’, g: S’ + S"
( S  = <S ,E ,EQ u NE>, S’ , z ' ‚EQ '  u NE3>‚
S "  = <S"‚Z" ‚EQ"  u NE">)  there exists the composition

morphism gOf:  S + S" since

( *) gsort_l(DIS") = DIS’ and fsort_l(DIS’) = DIS
( g s o r t o f s o r t ) _ 1 ( D I S " )  = f s o r t — l o g s o r t - l m l s " )

= fsort'l(DIS’) = DIS
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and

(**)  8(ONE’) = pNE" and f(pNE) = pNE»

=> g0f(pNE) = g( °NE’ )

= PNE"
——-—_

(11) We still have  to show t ha t  iggggg is a subca t ego ry  of ggggg,

but by definition of Spgglg we have

(*) lapgglgl g Ignggil
and

(**) /SpecIC/ g /SpecI/

Now what we want to show is that algebraic domain equations can

be defined over SpecIQ and that they  have aga in  a unique_solution

defined by means of a coequaliyer—algebra.

Thus we first say what an algebraic domain equation is in gpgglg:

III.1.1 Definition

___—

p,‘e:' s + s‘ '(written) s (g.—e) s‘
where p: 8 + 8‘ is a parameterized specification and n;gs+g;gs;

the respective strongly persistent functor. The m o r p h i s m  e
defines aga in  the forgetful functor aIg-e: ns. + gigs.

As Ehrich and Lipeck indicated in [E/L 82] an approach to ade's

which uses  a n o t h e r  ca t ego ry  o f  specifications t h a n  Sag; m u s t

satisfy the following requirements:

R I ;  The respecitive category of specifications must be

cocomplete. _ ' ' .

R2: Each spécification S in the respective category of specifi—_
cations must be such that g;gs has an initial object.

R3: Let f: S + S’ be a gpeclc morphism. Then the respective
forgetful—functor
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aIg-fz glas» + Alss
has a left-adjoint.

RI: The functor
81g :  Speclc + GatoP

respects coequalizers and pushouts (that is aIg respects

colimits)

We proceed  by showing that requirements R 1  - Rh.a re  satisfied by

o u r  construction  o f  S p ecIC  and that the application.of_ade’s<n1

consistent specifications with inequalities works well.

I I I . 2  Lemma

Proof:

By Lemma II.6 we know that §pggl is cocOmplete.
But s i n c e  Speglß is  a subca t ego ry  o f  &};c w e  conclude  that again

Speglg is cocomplete.

Now we look for our second  requirement R 2 .

III.3 Lemma

Then &;38 has an initial object.

Proof:

This assumption is exactly Lemma.IIgl2. Let's now turn to the

second half of our requirements which deal with preperties of the

functor aIg: gpecIC + CatOP which is defined by

III.” Definition
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v s e Ispgll-lalsl(3) == £433
V f:S + S e /Sp§£IDJ.aIg-f: A136; + Algs

is the forgetful functor which takes each  E'JY-algebra A’ to

it’s Z‚E—reduct in Algs.

(s = <s,z,E>, s‘ = <S’,Z’,E’>).

Now we have to show that for each f: S + 8' (which is a
parameterized specification) (f s /SpeeIG/) the forgetful functor

aIg-f: ÄLES' + Algs has a left—adJoint. It suffices to show

that there exists a funct‘or F ;  glgs + ‚5135. which takes each  S -

algebra A to it's free i-extension lFl_(A) (as given by the
construction in Theorem II.20). Since F is determined by f we

shall often use free—f instead of F.

111.5 Lemma '

Let f: S + S' be a (strongly) persistent parameterized specifi-
' cation in Spgglg.

The_the forgetful functor.

a1g-f: Alsg» + gigs
has a left adJoint

F':= free-f: glgs + Algs'

Define F_==  [free-fl: gigs + 3133» as given by 11.20.
. T h a t _ m e a n s  that each S-algebra A is sent to it's free i-extension

1h 5133,-
Now for each A e Iglgsl there exists a homomorphism
hA: A + Ialg—f0F|(A)

(clearly due to Theorem II.20 we have that IaIg-f0F|(A) E‘A)
Now given.A,B e lélßsl and h: A->E3(E-homomorphism) we define
the morphism-part of F

/F/(h): | F | (A)  + |F | (B)
such that the following diagram commutes

H6



A -9A—-> IaIg-fIOIFI(A) IFI(A)
|
I

hBOh /a1g-f/0/F/(h) ‚', /F/<h)
IaIg—f|0|F|(B) |F | (B)

(Clearly the definition is unique according to the fact that hBoh

i s  well defined.

Thus

F3 gigs * 5185'
is a left—adJoint of aIg—f.

N o w  let's t u r n  t o  o u r  l a s t  r e q u i r e m e n t — n a m e l y  that

a Ig :  Spgnlß +‚QAEOP-respects colimits; We show this by proving

that alg sends coequalizers in SnagLß‚to equalizers in GBIOP and

by i n d i c a t i n g  t h a t  p u s h o u t s  i n  &nel a r e  s e n t  t o  pullbacks i n

CBSOP.

III.6 Lemma

_ _ _ —

coeq(f‚g) =: (q ‚Q) .

This situation is represented by diagram D1

q
s S’ - - ->  Q

8

equalizers in CatOP. This means that the diagram D 2  must be an

equalizer-diagram in gggoP.

w



D2

aIg-f aIg—q

5%53 , ‚. 53:53" "—-_ Älgq
als-e

introduce any n e w  inequalities i n t o  it's t arget specification.

( T h e  inequalities i n  t h e  source m a y  only b e  r e n a m e d  b y  t h e

respective morphims.) Thus according t o  diagram D 2  the respective

relations pNE’  pNE‘  and ONE"  are all isomorphic.

(Here pNE is generated by the inequalities in 8
O N E ’  is gene ra t ed  by the inequalities in S'

pNEn is generated by the inequalities in Q )

Thus the inequalities will not cause  troubles in our analysis.

Now for proving that diagram D2 be longs  to an equalizer—situation

i n  C§§9P.we h a v e  t o  o b s e r v e  w h a t  the f o r g e t f u l  f u n c t o r s  aIg—q,

a Igég ,  a Ig—f  d o  w i t h  t h e  c a r r i e r — s e t s  o f  a l g e b r a s  i n  t h e

respective‚source—categories.

_(i) 'alg—g;
Let C be a Q—algebra-and let B be a S'—aigebra such that

B = laIg—ql(C) ' _
(*) Then we have for each s’ e sorts(S') with

S'-# { f s o r t ( s ) |  s e sorts(S)} u { S s o r t ( 3 ) |  sesorts(8)}
the fact-that

B S :  : =  C S ,

_(**) For each s' e sorts(S') with

- 5’ 5| { f S O P t ( S ) |  s e sorts(S)} u {gso r t ( s ) l  sesorts(S)}

we have

BS ' - ;=  CS Where

S := [ f s o r t ( s ) ’ g s o r t ( s ) ]  _
according t o  the coequalizer construction for f , g .

(ii) aIg—f ,  a Ig -g :  _
Now let A, A" e l ggs l  with a := [ aIg—f[(B) and

148'
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Let f1: R + sl and f2: R + 32 be morphisms in.§penl9

A’ := laIg—g[(B). According to (1) we have
H s e sorts(S). A = B

Therefore

laIg-fIOIaIg-ql(0)

s := sort(s) gsort(s) _

laIg-f|(B)
laIg—g|(B) _
IaIe-s|°laIs—ql(0)

a s  r e q u i r e d  f o r  t h e  equalizer-property o f  D2. M oreover

( A n , a I g - Q )  i s  uniquely determined by construction.

I t  f o l l o w s  that (g ;g0 , a Ig—q)  i s  the e q u a l i z e r  f o r  diagram

D2.

I I I . 7  Lemma

Then aIg respects the pushout of f1 , f2 -

P r o o f :

S i n c e  S p e c I C  i s  c o c o m p l e t e  the pushout of f 1 ,  f 2  exists i n

f 1

R --—4> s1

f 2  g 1

32 “?"-> T

We have to show that diagram Dll corresponds  to a pullback
situation in QQLOP.
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DI:

algafl

AlsR <--— -----  §l831

aIg-f2 aIg—gl

A1832 < --------  Algr
als—82

Again by definition of SpecIC we have that 3 ,31 ,32 ,1 '  have

isomorphic sets of inequalities. Thus this w i l l  not cause  further

troubles. _

But then it is clear that w e  may restrict o u r  a t t e n t i o n  t o  the

'functor

als: Spec + GatoP
( w h i c h  is used  by Ehrich and L i p e c k  i n  t h e i r  o r i g i n a l  w o r k  on

ade‘s).

And m o r e o v e r  w e  know that alg respects pushout. Thus w e  may

conclude that aIg does .

Now we-come to our main result, namely that ade’s are defineable

over Spgglg and that they have again a unique solution defined by

means of a coequalizer-algebra.

III.8 Theorem

Let S (Pgfi )  S’ be an algebraic domain equation as defined in

II.1.1. Then this equation has a unique solution namely

|Ö|(IQ) '
(where_(Q‚Q) = c o e q ( p ‚ e ) )

Proof: _

The proof is a consequence of the proceeding lemmata.
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