AUBLLLIBD) W 'L UIBINB|SIasIiEY 0529-Q
B6¥0€ YoBSOd

U1S1Ne|{SIasiey 1B1ISIBAIUN

HIIELWIOU| YyDi848qyoe

OW3IW
IN3S

as Constructor Algebras
Harold Boley

MEMO SEKI-84-06 October 1984

L]
Fx
0
o
|
o
o
+~
o
@
—
o
(&)
G
o
4+
<
@
=
=
<
@
“
T
<t

19370"d - 135






A TREATMENT OF COLLECTION DATA AS CONSTRUCTOR ALGEBRAS

Harold Boley, Universitaet Kalserslautern
Fachbereich Informatik, Postfach 3049, D-6750 Kaiserslautern

Abstract

This paper gives algebraic definitions of various types of nested
variable-length “collections” of elements, usable as data structures.
First of all, however, the paper introduces constructor algebras
through an integer sequences data type. It then begins with the
fundamental CONS algebra of N-tuples and a variant with “negative”
elements, complementing it and subsequent homogeneous algebras by
heterogeneous ones. For such list algebras, the paper postulates axioms
embodying the three “basic properties” [Commutativity, Idempotence,
Associativityl, and uses these to define the remaining seven “basic
collections” ([strings, communes, acommunes, bags, abags, sets, heaps].
Proceeding to "non-basic collections”, it then introduces “adsorption”
properties [("complementary” to absorptionl, which are characteristic
for graphs, and postulates them as axioms in algebras of ordinary
graphs and of directed recursive labelnode hypergraphs [ORLHs].
Finally, it defines the property of “Similpotence” ["weaker” than
Idempotencel and postulates it for DRLHs with contact labelnodes, as
applied in knowledge representation.
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1 INTRODUCTION

The term "collection data” in the title refers to variable-length
compound data characterized solely by the way they combine their
arbitrary-type elements [bags, for example, disregard element order],
i.e. collections are not prestructured by an underlying "field pattern”
(as typical for records and arrays]l. The other technical term,
"constructor algebras”, should be wunderstood as “"algebras whose
operations are data constructors rather than constructors together with
selectors and/or predicates”. Since the latter concept may be less
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obvious, let us first discuss the motivation for using (such] algebras
as data types.

As starting point we take the well-known “types are not sets”
(Morris 1973) argument, paraphrasing it positively as "types are more
than sets”. That is, we are asking what the “"minimum extension” of sets
might be for making them a wuseful type concept. The answer to bhe
explored here can be summarized informally by the following “equation”:

DATA TYPE = SET OF CONSTRUCTOR NESTINGS + SYSTEM OF EQUALITY AXIOMS

set of constructor nestings: The sets which we keep as a base component

are regarded "constructively” in two senses: First, they are
coextensive with recursively enumerable formal languages, normally even
with context-free ones. Second, they contain nestings of data
constructors over a subset of atomic data items.

System of equalityv axioms: The minimum set extension yielding a useful
data type is obtained by postulating a system of equality axioms for

identifying equivalent elements [mainly constructor nestings]l of the
base set.

As an introductory semi-numeric data type example, let wus consider
(non-empty]l integer sequences consisting of arbitrarily many
arbitrary-digit integers. [Although numbers do not belong to the
symbolic collection data types focussed in this paper, their
familiarity facilitates the characterization of constructor algebras.]
Such integer sequences can be written as formal expressions in which
sign applications are used not only for indicating positiveness or
negativeness, but also for embracing non-digit integers (with
parentheses], so as to mark them off from neighbouring integers. 1In
fact, these integer sequences are "more than" the set [context-free
language]l] generated by BNF grammar rules like the following
[terminals are quoted]:

intseq = integer | integer intseq
integer = digit | posint | negint

posint = "+" digit | "+" "(" digseq ")"
negint = "-" digit | "-" “(" digseq ")"
digseq = digit | digit digseq

digit ="0" | ... | "9"

The problem is that certain expressions of this formal language are
equivalent as integer sequences, e.g. the integers +0 and -0, 1 and +1,
+(24) and +(024), as well as -(007) and -(07), hence also integer
sequences like 1+0 and +1-0, +(24)1-(007) and +(024)+1-(07), as well as
+01+(24)-(007) and -0+1+(024)-(07). In general, 1. the =zeroes -0 and
+0, 2. "+"-signed and unsigned digits, and 3. integers only differing
in their number of leading zeroes should be identified; furthermore,
digits signed with and without the use of parentheses -- like -(4) and
-4 -- are regarded as indistinguishable, but this will be simply a
parenthesis-omission convention applied implicitly. (If we bhad
permitted multiple signs, even further equivalences of this sort would
have arisen.] On the other hand, expressions like +(24) and 24 are not
equivalent, the former representing a single two-digit integer and the
latter an integer sequence both of whose integers are digits.
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A useful integer sequences data type should bhave a "built-in”
mechanism for performing the required identifications over the set
generated by the above grammar; the equivalence classes thus created
can then be viewed as new individuals ["the integer sequences”] on a
higher level of abstraction. Now, algebras provide for exactly this.
Only one of their components is a set, called a "carrier”, which may be
finitely generated from an alphabet-like "generating set”, much like a
formal language; another component is a family of operators over the
carrier, which are used in the generation of an entire carrier from its
finite generating subset. The essential additional component, however,
is an axiom system [written as a set of equations] for identifying
elements or <classes of elements of the carrier. In our example, to be
treated more technically in section 2, the axioms

1. -0 = +0

2. +X = X if x is a digit
Ja. +(0x) = +(x)

3b. -(0x) = -(x)

would perform the above-mentioned identifications. [In this algebra
parentheses are merely used for embracing the operands for the
"+"["-"-operators, i.e. they can be omitted from signed digits, so that
the right-hand sides of 3a./3b. become +x and -x if x is a digit.]
Another axiom would establish the associativity of digit and integer
juxtaposition, and further axioms could restrict the signing operations
to digit sequences.

Obviously, this is not an ordinary algebra of integer sequences with
arithmetic and/or string-processing operators; rather it 1is a
constryctor algebra whose operators are [binaryl Jjuxtaposition and
[unary]l "+"/"-"-signing, wused for constructing data elements of type
integer sequence, not for “calculating” with integer sequences.
Therefore the axioms encode equivalences between those constructions
rather than arithmetic/string-processing laws. The effect of the axiom
system 1s that carrier elements like +01+(24)-(007) and -0+1+(024)-(07)
become indistinguishable, as desired for what has now become a useful
[integer sequencel] type concept.

If a formal language is viewed as defining the syntax of a data
type, a constructor algebra also defines this syntax through its
carrier (incidentally, algebraic term generation better reflects the
operator/operand syntax of functional languages than does grammatical
string generationl]; but the algebra augments its carrier syntax with
rudimentary semantics through its axioms: They at least specify which
syntactic constructions are “really identical” (i.e. semantically
equivalent], thus embodying what might be called "synonym semantics”.
We regard this as the minimum requirement for "getting types from

sets”, a minimum which, however, 1is often sufficient. If and when
desired, selectors/predicates and their more elaborate "access
semantics”, as wused in abstract data types [ADTs, further discussed
below], can be added on top of this, for instance in the form of other
axioms [e.g. generalized successor and predecessor operators -- hence
further arithmetic operators -- can be defined, selector-like, on top

of our above constructor algebra example].
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With the help of constructor algebras a uniform axiomatic definition
of mathematical entitites like [finite) integer sequences, bags, sets,
and graphs as explicitly constructed elements {well-formed "formulas”,
"expressions”, or “terms"] of algebraic structures becomes possible.
(While we implicitly use an intuitive concept of recursively enumerable
sets for the carriers of our algebraic meta formalism, we also -- among
many other collections -- give a precise explicit definition of finite
sets as an object formalism.] Furthermore, constructor algebras provide
a computationally convenient way of viewing these entities: The
equational axioms, defining equivalence classes characteristic for each
collection type, can be realized as one-way rewrite rules deriving
normal form representatives [the natural left-to-right reading of our
axiomatic equations will also be the principal rewrite direction of
corresponding rules]. Potentials for parallelism which we will exploit
in algebraic proofs thus carry over to rule computations. Moreover, the
normalization rule applications may occur implicitly, so that programs
can rely on the “self-normalization® of each collection instance
constructed [this is related to "built-in" axioms inside the deductive
machinery of theorem provers (Raulefs et al. 1979)]. In fact, in the
functional programming language FIT -- used among other things for DRLH
processing (Boley 1960) -- the normalization rules are built directly
into the constructor functions of the collections.

This paper grew out of an attempt to conceive collections [in

particular, ORLHs] as <classic finitely generated algebras, thus
formalizing the "self-normalization” idea which FIT adopted from QA%
(Rulifson et al. 1972): It supplements the operational semantics of

FIT's collections with algebraic/axiomatic collection semantics.
However, the present application of algebra to collections may also be
regarded as the identification of a subclass of the data types which
can be formalized with the “initial” ["free"] algebra approach (Goguen
et al. 1978) to abstract data types: Instead of wusing axioms that
specify the equivalence of arbitrary constructor/selector/predicate
compositions, we use axioms that only specify equivalent constructor
nestings. At the outset, we will also assume a second restriction of
the ADT-usual “"heterogeneous” algebras to the mathematically more
wide-spread “homogeneous” algebras; this, however, will lead to the
postulation of axioms which are not "positive conditional”, hence do
not guarantee initiality [({(Thatcher et al. 1979), (Ehrig et al. 1980)].
Hence we will show how to eliminate the [negated] conditions on our
axioms -- by making use of heterogeneous algebras.

While constructors are considered here as "data-defining” algebraic
operators, establishing a data structure layer, selectors and
predicates are considered as “data-utilizing” algebraic operators,
introduced only on the basis of this proper data layer. From a
perspective of abstract data types, we are exploring the hypothesis
that the partitioning of algebras into an underlying constructor
algebra [ADT] and a superimposed selector/predicate algebra [ADT]
provides a better specification methodology than the usual intermixing
of data-defining and data-utilizing algebras [ADTs]. This partitioning
is related, for instance, to the wuse of a basic constructor
"term language” and “"external functions” over it in LCF-formalized
“algorithmic specifications” (lLoeckx 1981), to the distinction of
“generating” and “"defined" operations in SRDL {(Klaeren 1982), and to
the division of ASPIK operation definitions into constructors and other
operations (Beierle & Voss 1983). Our reasons for the partitioning are
the following: First, it corresponds to the intuitive data/program
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separation, which is a useful structuring principle in most situations
[giving back “concrete” data to the programmer]. Second, it permits a
natural division of labour, because the data-defining operations can be
specified, tested, and proved independently of the data-utilizing
operations. Third, the data-definition mechanism need not carry over to
the data-utilization method, i.e. -- 1like (Klaeren 1982) -- we can
restrict the use of equations to the specification of constructor
equivalences, and employ recursive schemata to specify selectors and
predicates [in fact, we normally employ recursive FIT rewrite rules].
Fourth, while the data 1layer must be defined completely, the
superimposed layers can be left open-ended, allowing for repeated new
uses of the same data [as already pointed out in (Boley 1979, View 3)].
Furthermore, our approach permits the introduction of a single
data-defining ADT as the common basis of different data-utilizing ADTs.

What we will be most concerned with in the following 1is the
definition of constructor algebras for various collection data. These
will all build on a fundamental constructor algebra of nested tuples or
lists [for some other algebraic characterizations of tuples see
(Burstall & Landin 1969), (Oppen 1978), and (McCarthy & Talcott 1980)].
In this way we will arrive at an axiomatic characterization of the

differences between -- to take well-known examples -- strings and sets
or directed graphs and undirected multigraphs, pot those between
-- to take the standard ADT examples - stacks and queues,

characterized by their different selection disciplines [in the data
layer we simply regard both as tuples]. More importantly, we use
constructor algebras to characterize a number of less well-known data
structures, in particular DRLHs. However, the diversity of the examples
[ranging from integer sequences to hypergraphs] and the complexity of
some of them [(e.g. DRLHs with contact labelnodes] also illustrates the
generality of the constructor algebra approach, enabling the
formalization of many more data types once they can be viewed as
collections [where the <collection view of some structures, e.g. of
graphs, may not be obvious from the outset].

To summarize a principal goal of this paper, we try to demonstrate
that the data-definition component of a considerable subclass of data
types -- stacks and queues excluded -- captures a non-trivial part of
their specification, indeed often the essential one. For DRLH types, we
can even state that their constructor algebra specification (section
5.3]1 captures the fundamental intuitive concept. Consequently, in this
paper we will not attempt to enrich the DRLH algebras with selectors
and predicates; a number of these and higher operations were defined as
FIT rewrite rules in (Boley 1980). [(By this point the reader may have
noticed that our approach -- though conceivable as a specialization of
algebraic ADTs -- stands in contrast to a central tenet of classical
ADT theory, namely that a data type should be defined soley through its
"external” access behavior; what we view as being often more
characteristic is its “internal” synonym structure. We leave the
question open how many data types are better characterized
"externally”, like -- presumably -- stacks and queues, and how many
“internally”, like ~- presumably -- the collection data in this paper,
and which ones will prove to be more useful in practical programming.]

Since collections are typical data structures for artificial
intelligence [AI] applications, a more general goal of this work is to
contribute to the attempts at cross-fertilization between ADT and Al
languages, begun with languages like CLEAR (Burstall & Goguen 1977),
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CSSA (Boehm et al. 1977), and TELOS (Travis et al. 1977) around 1977,
and then continued, for instance, with HOPE (Burstall et al. 1980), ESP
(Chikayama 1983), PROLOG/KR (Nakashima & Suzuki 1983), HIMIKO (Dogen
1983), LCA (Bellia et al. 1984), EQLOG (Goguen & Meseguer 1984), APE
(Bartels et al. 1981), ASPIK (Beierle & Voss 1983), and FIT (Boley
1983); the 1I1JCAI-83 proceedings exhibit some further ADT/AI relations
((Guiho 1983), (Dilger & Womann 1983), (Reimer & Hahn 1983)].

To be specific, while around 1976 we based "a theory of [knowledgel
representation” -- and the DRLH representation language of 1975-1977 --
on formal languages, so that equivalences between their representation
expressions had to be deferred to a less formalized meta level, we can
now -- via the FIT programming language of 1978-1983 -- base it
on constructor algebras, with equivalences completely formalized on the
object level, thus proceeding from "knowledge representation languages”
to "knowledge representation algebras”. For example, the following ORLH
taken from (Boley 1980) is a generalized semantic network that
represents facts about the city of Antwerp, using relations like HAP
["has as part"] as starting boxes ([labels] of hyperarc arrows visiting
other boxes [nodes]:
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I |
x
R R gy -
rxxxky | x |
————————————————————— x | STREFT * |
| | | | * | x|
| ltttt*t*tt**t**ktt*tt**ttk**t __________ g
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| !t*xxx*t:t**k**x*x**tt***t*** _________ ST
| : | | * | * fexs
____________________ x | * | %
x x xxxxx>| BUILDING **xxx
* * |
x X sassse s e
* * x
* v b3
T T e mmewmssmeneme e secseas s e s
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* | | v
* | ANTWERP | | mmmmmmeeiaas

——— — ——— —— —— — — — — W —— —
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We can describe this diagram as the following compact expression of a
formal language, similar to the DRLH expression in that paper:

(ORLH

(TUPLE BUILDING CATHEDRAL)

(TUPLE CITY ANTWERP)

(TUPLE CONNECT STREET BUILDING BUILDING)

(TUPLE HAP ANTWERP (DRLH ICATHEDRAL (TUPLE GOTHIC CATHEORAL)))
(TUPLE HAP CITY BUILDING)

{TUPLE HAP CITY STREET))

But due to the sets-refining nature of DRLHs, we could also have used
the redundant expression

(DRLH

(TUPLE CITY ANTWERP)

(TUPLE HAP CITY STREET)

BUILDING

(TUPLE HAP CITY BUILDING)

(TUPLE CITY ANTWERP)

(TUPLE HAP ANTWERP (DRLH QCATHEDRAL (TUPLE GOTHIC CATHEDRAL)))
(ORLH (TUPLE GOTHIC CATHEDRAL))

(TUPLE BUILDING CATHEDRAL)

STREET

BUILDING

(TUPLE CONNECT STREET BUILDING BUILDING))

which 1s equivalent to the compact expression because its syntactic
differences [e.g. the order and duplication of DRLH subexpressions,
atomic expressions also occurring in TUPLE expressions of one DRLH] do
not affect the intended semantics. Using formal languages, this
equality had to be regarded as an equivalence relation extraneous to
the knowledge representation language proper. Alternatively, in
functional 1languages 1like LISP or FIT, we can reinterpret the
expressions as collections implemented as calls to a DRLH constructor
function with embedded calls to a TUPLE constructor function, etc.,
such that the redundant function nesting evaluates to the compact one,
which, in turn, evaluates to itself because it is in normal form (Boley
1960). What we propose now is to treat such normalizations as a special
kind of equivalence proof that is made possible by reinterpreting the

expressions as terms of a constructor algebra -- namely of
ALCOS(.1lr,.fr,hr,*lr,mr,cr ,*C,*I,AD,aD,S] in section 5.3, with
generating set A = {ANTWERP, BUILDING, ..., STREET}. The equality of

the algebraic terms corresponding to the previous expressions,

(BUILDING.CATHEDRAL. ')
*(CITY.ANTWERP. ')
* (CONNECT.STREET.BUILDING.BUILDING. °)
*(HAP . ANTWERP ., (QCATHEDRAL* (GOTHIC.CATHEDRAL. ‘)*\). )
*(HAP.CITY.BUILDING. )
*(HAP.CITY.STREET. )
*\



(CITY.ANTWERP. )
% (HAP.CITY.STREET. )
*BUILDING
* (HAP.CITY.BUILDING. ")
x(CITY.ANTWERP. ')
* (HAP . ANTWERP . (9CATHEDRAL* (GOTHIC.CATHEDRAL. )%\ ). ")
x((GOTHIC.CATHEDRAL. ") *\)
* (BUILDING.CATHEDRAL. )
xSTREET
*BUILDING
* (CONNECT.STREET.BUILDING.BUILDING. )
x\

is then part of the knowledge representation algebra itself, which thus
provides a higher 1level of abstraction that frees the "knowledge

engineer” for concentrating on the application domain.

Al-adapted ADTs as explored here and object-oriented representations
on the one hand, together with functional and relational [logicall
programming on the other hand (Boley 1983), should be amenable to an
integration in future Al languages that wextends the present
collections/FIT integration. However, it must be noted that even our
restricted ADT/AI combination is still rather tentative and will
require further mathematical, computational, and [epistemollogical
studies.

2 A CONSTRUCTOR ALGEBRA OF INTEGER SEQUENCES

Let us exemplify the constructor algebra methodology [not the
typical constructor algebra application] by resuming our introductory
discussion of integer sequences, now elaborating them formally. Their
constructor algebra will wuse a generating set A, which generates the
carrier M with three operations "*" [binary concatenation, like
juxtaposition and unlike ordinary multiplicationl, "+" [unary positive
sign], and "-" [unary negative sign]. To provide a value for
exceptional situations, A <contains the distinguished element "1°
(infinityl. The other members of A -- including the distinguished
element "0" [zero)] and at least one more element -- will be interpreted
as digits, i.e. all positional number systems with bases |[A]-1 = 2, 3,

will be permitted for integers. [Our algebra of integer sequences
will thus be more complicated than the wusual abstract data type
sequences-of-integers, which applies a kind of unary number system with
the successor operator playing the role of the digit “1"; on the other
hand, even a small integer like 10 is represented more concisely as
+{(1*(0*(1%0))) or +(1*0*1%0) with our binary system -- not to speak of
our decimal system -- than as s{s(s{s(s{s{s(s(s(s(0)))))))))) or
$85558553s0 with the ADT-usual unary system.]

The three operations of integer sequences are “algebraic”" in the
sense that they are defined for all elements of the carrier M and
denote elements which are again in M [M is closed under "*x", “+", and
"-"). The algebra is a "constructor algebra" because the operations are
constructors in the abstract syntax or VDL sense, i.e. they build
composite objects from given ones, rather than taking objects apart
[selectors] or probing them [predicates]. The "*“ operator constructs a
digit sequence from two digit sequences [either of which may in
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particular be a single digit] or an integer sequence from two integer
sequences [either of which may in particular be a single integer or a
digit sequence]. While a "*"-application like *(a,b) could thus denote
the juxtaposition "ab" of its argument terms [cf. section 1], we let it
denote its own infix notation "a*b"; this stresses the fact that, in
programming terminology, *(a,b) is "not really evaluated”, keeping it
open to all possible evaluation results. Similarly, both the “+° and
"-" operators construct an integer from a digit sequence or from an
integer [thus multiple signs are now allowed] by denoting their own
prefix notation, i.e. +(a) denotes “+a" and -(a) denotes "-a" [the
"erroneous” application of "+"/"-" to non-unitary integer sequences
will be treated later). Algebraically speaking, we have a term or word
algebra construction of a “free” [in the ADT view: "initial”] algebra,
since the applications of all operators to all arguments denote the
applicative terms themselves. This has the general advantage that
-- oversimplifying -- from a free algebra all other algebras with the
same "signature” (i.e. the same generating set and corresponding
operations of the same arities]l are obtainable as special cases.
Furthermore, there is a close affinity between the restriction of
operators to constructors and the initiality property of algebras:
Constructor terms are the ones it 1is most natural to let denote
themselves, and even initial constructor/selector/predicate algebras
stick to them for normal forms.

These self-denoting terms are not as "passive” as it might seem,
because of the axioms introduced over them, permitting, for example, a

term like +(0*b) to "normalize” to the term +b.

As axioms we will not merely allow [unconditional] equations but
also “"conditional equations” of the form eguation if condition [or, as
a usual logical implication, gcondition => eguationl], which are only
applicable if the condition over their variables evaluates to 'true'.

In our case conditions consist of a boolean composition of
1. equalities of the form variable = term, where the term may contain
free variables, interpretable as being “innermost" existentially
quantified [the quantifiers are as close to the variables as possiblel,
and 2. tests for membership in the generating set [possibly MINUS a
distinguished element] of the form yariable IN set. The boolean
operations may include “=" and IN negation, thus providing for
inequalities, "<>", and non-membership tests, NOTIN.

The innermost existential quantifiers pose no specific problems
because a. practically, the existentially quantified variables are
determinable easily by syntactically matching the right-hand-side term
pattern to the term denoted by the left-hand-side variable, and
b. theoretically, they are unnecessary: 1if negated, the innermost
existential quantifiers correspond to prenex normal form universal
quantifiers [since an equation cannot contain any variables thus
quantified in its condition, we will not have to distinguish the "quasi
prenex normal form” FORALL(n1,...,nN)(p(nt1,...,nN)) =» equation from
the “proper prenex normal form" FORALL(n1,...,nN)(p(nt,...,nN) =>
equation)]; if wunnegated, they can be eliminated altogether by
substituting the quantified term for the variable in the equation.
[A general discussion of the use of existential quantifiers in ADTs can
be found in (Broy et al. 1979).]
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Similarly, the IN predicate can be eliminated by replacing the
conditional equation by as many equations as the [finite] cardinality
of set indicates, and in these using the set members individually; 1its
negation, NOTIN, can be eliminated by replacing the conditional
equation by as many conditional equations as there are operators opj in

the algebra, and in these testing variable = opj(nt,...,nNj) [(the newly
introduced free variables ni1, ..., nNj can again be eliminated as

discussed in b. abovel.

While in the present section we will not show the elimination of all
kinds of conditional equations (in particular, of negated conditions],
such an “unconditioning” will be developed as a means for guaranteeing
intitiality, starting in section 3.

After these preliminary remarks we are ready to proceed to our
algebraic definition of integer sequences.

initian:
A generating set [a finite set with |A] ) 3]
7 IN A distinguished element [infinity symbol]

0 IN A distinguished element [zero symbol]

ALINS = (M,*,+,-) algebra with

" _w w_w

M carrier generated by A with "x", "+", 6 *"-

* : MxM->M binary operation [concatenation]
*(ml,m2) = mi*m2

+ : M ->M unary operation [positive signing]
+{m) = em

M->M unary operation [negative signing]
-(m) = -m

We will now postulate an axiom system for this algebra, starting
with axioms for treating exceptional situations [signrestriction,
infinitypropagation, integernestingl, followed by axioms dealing with
the more typical cases {multisign, associativity, signedzero,
plusification, leadingzerol]. For referring to an axiom, we will often
use an acronym (possibly followed by a digit), which is introduced
together with its defining equation [by underscoring the corresponding
characters]. When we refer to axiom ax [not using a digit suffix] we
will mean this single axiom if there are no suffixed axioms for ax, and
mean the whole group of axioms ax1, ..., axN otherwise.

The first group of axioms to be introduced in the ALINS algebra
"restricts” the signing operations "+" and "-" to arguments which can
be wused as integers. More precisely, if a "+"-argument is a
"t"-concatenation one of whose components has an irreversible "-"-sign
in front of an element not equal to "0" [sr3-sr5] or, complementarily,
if a °"-"-argument contains a “+"-sign in front of an "*"-embedded
"*"-concatenation component without any leading "0" [sr8-srt0), then
the entire “+"/"-"-gigned term is identified with the, respectively,
"+"/"-"-signed distinguished element “71". Similarly, non-leading
"+"-components in "+"-arguments [srt1,sr2} and non-leading
"-"-components in “-"-arguments [sr6,sr7) yield "+1" and -1,
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respectively. Formally, the above phrase "one of whose components” Fan
be notated by wusing x = -m' or x = +(m'*m'') in axioms with
“s+"/"-"-arguments of the form mi1*x*m2, because the associativity of "**
will permit m1 and m2 to denote arbitrary prefixes and postfix?s,
respectively, except empty ones [we will not introduce an identity
element for “*"1; hence additional axioms with arguments of the forms
x*m and m*x are called for. In this notation the above term
"non-leading” corresponds to either of the forms mi*x*m2 or m*x. The
above term “irreversible” <can be expressed as a test for whether the
"."_gsigned m' is in the set A MINUS {0} [where "MINUS" denotes gat
differencel or has the form (n1*n2), and hence cannot be negative

itself.

signrestrictionl: +(m*+(m'#*m'‘)) = +7 if m" <> 0 and m’ <> (0*n)
gignrestriction2: +(mi*+(m'*m’'')*m2) = +1 if m" <> 0 and m' <> (0%*n)

"

signrestrictiond: +(-m’ *m) +7 if m' IN A MINUS {0} or m’ (n1*n2)
gignrestrictiong: +(m*-m’) +7 if m' IN A MINUS {0} or m’ (n1%xn2)
signrestriction5: +(mi*-m'*m2) = +7 if m' IN A MINUS {0} or m'=(n1*n2)

signrestrictiong: ~-(m*-m') = -7 if m' IN A MINUS {0} or m" = (n1*n2)
signrestrictiony: -(mi*-m'*m2) = -7 if m' IN A MINUS {0} or m'={(n1%n2)
signrestriction8: -(+{m'*m' " )*m) = -7 if m’ <> 0 and m’' <> (0%*n)
signrestrictiong: -(m*+(m'*m’ ")) = -7 if m <> 0 and m' <> (0%*n)
signrestrictioni0: -(mi1*+(m ' *m' ' )*m2) = -7 if m" <> 0 and m' <> (0*n)

These axioms can be used to explain the working of our conditional
equations:

Suppose we are given the term +(7*+((0*0)*4)). To check whether the
conditional equation srt1 1is applicable to this term, we match the

left-hand side of the equation to it, obtaining the bindings m = 7,
m' = (0*0), and m'’' = 4. Now we can evaluate the conjunctive condition,
obtaining ‘false’ because of the second conjunct: 1. The conjunct
m' <> 0, or equivalently, not(m’ = 0), 1is true since the equality
(0*0) = 0 does not hold [although +(0*%0) = 0 does hold].
2. The variable n in the other «conjunct, m' <> (0*n) [abbreviating
not{m' = (0*n))], 1is wunderstood as being innermost existentially
quantified, i.e. this inequation is shorthand for
not (EXIST(n)(m'=(0%n))) [in prenex normal form it becomes

FORALL(n)(not(m =(0%*n)))] and means that there does not exist an n such
that m" [= (0*0)] is equal to (0*n), which is false because we can
choose n = 0. [This value of the variable n can be found by matching
{0*n) against (0*0), or structurally decomposing (0*0) according to the
pattern (0%*n), thus reducing "(0*n) = (0*0)" to "0=0 and n=0"; cf. the
Equality relation in section 3.] Hence sr1 is not applicable to the
given term. The reason for not permitting applications of sri to terms
like these can be seen by reading the following chain of equations
backward (the a, 1z1, and p axioms are explained below]:

+{(T*+((0*0)*4)) =a=
+(TX+ (OX(0*4))) =1z1:=
P (Tx+(0*4)) =121:=
+{(7*+4) =p-=

F(T%4)
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The unconditioned version of sr1 would collapse the positive integers

+(0%x1), ..., +(7*4), ... to "+1l". 1If, however, we have the term
+(7*+((1%0)*4)) the conditional equation sr1 is applicable, correctly
yielding “+1", because m' = (1*0) and the conditions (1*0) <> 0 and

(1%¥0) <> (0*n) are true. [Although sr1 would again be inapplicable to
+(T7*+((0*1)%4)), since (0*1) <> (0*n) 1is false, this term could be
transformed to the term +(7*+(1%4)), to which sri1 is applicable, since
1 <> (0*n) is true.]

Now suppose we are given the term +(--5%*8). An attempt to apply the
conditional equation sr3 to this term produces the bindings m' : -% and
m = 8, but then fails because both disjuncts of the condition are
false: 1. Although -5 is not equal to 0, it is not a member of A. 2.
The free variables n1 and n2 in m' = (n1*n2) are understood as being
innermost existentially quantified, i.e. this equation is shorthand for
EXIST(n1,n2)(m'=(n1*n2)) [already in prenex normal forml] and means that
m' [= -5] 1is equal to the "*"-concatenation of some terms ni1 and n2,
which is false too. [The match {n1*n2) = -5 fails since -5 cannot be
structurally decomposed into a “*"-term.] In sr3 the existential
quantifier and the IN predicate can be eliminated via ‘or-splitting’,
obtaining two conditional equations, one for each of the disjuncts. The
conditional equation +(-m'*m) = + if EXIST(n1,n2)(m'=(n1*n2)),
resulting from the second disjunct, can then be transformed into an
equation +(-(n1*n2)*m) = +%, in which m' is replaced by the term
(n1*n2), whose variables were existentially quantified. The conditional
equation +(-m"*m) = +7 if m' IN A MINUS {0}, resulting from the first
disjunct, can again be split (for arbitrary A = (7, 0, at, ..., aN}]
into the N+1 equations +(-1*m) = +%, +(-at1*m) = +%, ..., +(-aN*m) = +7.
That sr3 should not be applicable to the given term can be seen as
above by considering [ms2 is explained below] +(--5%8) =ms2= +(+5%8)
=p= +(5%8). If we instead take the term +(-5%8), sr3 is applicable with

.

m = 5 because 0 <> 5 IN A.

Another group of axioms is responsible for passing "+/"-terms, which
are not addressed by the signrestriction axioms, out of integers,
thereby inverting the sign of "1" if an integer is negative.

infinitypropagationi: +(+Z*m) +1
infinitypropagation2: +(m*+7) = +7
Anfinitypropagationld: +(mi1*+2*m2) =z +2

infinitypropagationi: -(+7*m) = -1

infinitypropagation§: -(m*+7) = -1

infinitypropagation§: -(mi*+7*m2) = -1

. Two related axioms handle sign-compatible "left-nestings” of
integers in integers; that is, "+"-signs inside leading "+"-arguments
and irreversible "-"-signs inside leading "-"-arguments are eliminated.

integernestingl: +(+m'*m) = +(m'*m)
integerpesting2: -(-m'*m) = -(m'*m) if m' IN A MINUS {0} or m'=(n1%n2)

A further pair of axioms deals with multiple signs in the obvious
arithmetic manner:

multisignl: -+m
multigign2: --m

"
1
3

+m
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For the other two sign combinations "++" and "+-" no special axioms are
required because of the "plusification” axiom below.

The signrestriction, infinitypropagation, integernesting, and
multisign properties could also have been introduced as part ?f the
operator definitions [written here in an axiom-like pattern notation]:

+ M ->M
+{mr+(m' *m’"}) = +7 if m' <> 0 and m' <> (0*n)

+(mi*-m'*m2) = +1 if m' IN A MINUS {0} or m' = (n1%*n2)
+(+%m) = +]

+(mix+xm2) = ¢
+(+m'*m) = +(m’' *m)
+(m) = +m otherwise
M ->M
~-(m*-m"') = -1 if m' IN A MINUS {0} or m' = (n1*n2)
w(m1;+im:*m")*m2) = =4 ifm" <> 0 and m' <> (0%xn)
-(+1*m) = -1
-(mi*+7%xm2) = -1
~-{-m'*m) = -(m'*m) if m' IN A MINUS {0} or m' = (n1*n2)
~{+m) = -m
=(-m) = +m
-{m) = -m otherwise

However, these operator definitions would obstruct the self-denotation
principle -- e.g. +(3%-2) would denote "+7" rather than "+(3*-2)" and
-(+8) would denote "-8" rather than "-+8" -- and would thus also
prevent the algebra from being 1nitiad. (fhe alyeora would he
non-initial because it would fail to distinguish terms like +(3%-2) and
+/, -+8 and -8, etc., of its signature’'s word algebra ALINS, although
the equality of these pairs of terms would not be derivable from the
axioms.] This disadvantage seems not to be offset by the potential

advantages that

1. only the actually required left-to-right reading of these equations
i1s specified -- e.g. only +(3*-2) = +] and -(+8) = -8, rather than also
+71 = +(3%-2) and -8 = -+8 -- and

2. the application of other axioms cannot interfere with them, because
they correspond to axiom applications to terms "in statu nascendi”.

Therefore we will not wuse such axioms-incorporating operation
definitions further. Regarding 1., it should be noted that in our
equational formulation no problems arise through identities like
+(6%+(1*¥1}) =[=sr1= +] =sr4=)= +(3*-2), derivable via "+1", because
these only mean that all "+"-terms having an integer-useless argument

are “"swallowed” by the equivalence class represented by “+/";
similarly, "-"-terms with useless arguments become "-1".
In other words, since "+"/"-"-calls with arguments not wusable as

integers can be regarded as being "erroneous”, their identification
with "+1"/"-1" can be regarded as "overloading” these signed infinity
symbols with the role of "error elements". In our constructor algebra
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no problems arise from such an overloading, so that no additional error
element, distinct from “+7"/"-7" and all other elements, is called for
here. For our integer sequences, the “+/"/"-/"-overloading only means
that there now are additional possibilities for constructing "+71"/"-1"
and terms containing it. For instance, 1*(+(3%-2)%6) is merely a more
complicated way of constructing 1*(+7*6). Such multiple construction
possibilites also exist for "71"-less terms. For example, -++8 is merely
a redundant way of constructing -8.

Since non-digit integers are regarded as signed strings of digits
and, similarly, non-unitary integer sequences as strings of integers,
an important axiom is the associativity of "*"-concatenation.

associativity: (mi*m2)*m3 = mi*(m2*m3)

As customary, we wuse associativity for omitting parentheses from
strings altogether and reinsert them only if and when [and at the
string positions wherel required for the application of other axioms
(however, an entire “*"-concatenation of digits must be put into
parentheses before signing it with "+" or “-", because otherwise that
sign would apply to the first digit only].

The remaining axioms correspond to those already sketched in the
introduction, which we now formulate with the explicit
"x"-concatenation operator instead of with simple juxtaposition.

signedzero: -0 = +0

plusification: +m = m if m <> n*n’
leadinggerol: +(0*m) = +m if m <> +n and m <> -n’
leadingzero2: -(0*m) = -m if m <> +n and m <> -n'

Note that the plusification condition, m <> n*n', is not only true if m
is a digit [as the condition in the introduction] or "Z", but also if m
itself has another sign [cf. the multisign axioms); for a generating

set with the non-"0" digits at, ..., aN, the conditional plusification
equation could thus be replaced by the wunconditional equations
*0 = 0, +al = at, ..., +aN = aN, +1 =1, +¢+m = +m, and +-m = -m.
The leadingzero condition, m <> +n and m <> -n°', prevents the 1z

transformation of terms which are “/"-reducible by any of the
signrestriction axioms permitting a leading zero [i.e. by all except
sr3 and sr8)], so that equation chains like

+(6%4) =zp= ++(6%4) =1z1= +(0*+(6%4)) =sr1= +1
-4 =p3 +-4 =121z +(0%-4) =sré= +]

+h =ms2= ~--4 =122z -(0%-4) =gsrf6= -7

-(6%4) =mst= -+(B%4) =122= -(0%+(6%4)) =sr9= -1

are pot allowed.

As a first instantiation of the ALINS algebra 1let us consider
integer sequences in the decimal number system, having the generating
set A = {Z, 0, 1, ..., 9}. With all axioms available, we can now
formally prove the integer identities mentioned in the introduction in
the decimal integer sequence algebra generated by A [axioms and
previously derived lemmas used in a proof step will be written inside
the step’'s equality signl:



Lem00: +0 =sz= -0

LemO01: 1 =p= +1

Lem02: +(2%4) =1z1= +(0%(2%4)) =za= +(0%2%4)
Lem03: -(0*0%7) =za= -(0%x(0*7)) =1z2= -(0*7)

Building on these, we can derive the integer sequence identities [the
proofs involve parallel transformations of subterms, as indicated by
"|" separators between axiom and lemma names]:

Lem04: 1%+0 =p|sz= +1*-0
Lem05: +(2%4)*x1%-(0%0%*7) =Lem02|p|Lem03= +(0%2%4)Xx+1%x-(0%7)
Lem06: +0%1%+(2%4)%x-(0%0%7) =sz|p|Lem02|Lem03= -0%+1%+(0*2%4)*-(0%7)

The above +24 = +024 and -007 = ~-07 proofs suggest that the
associativity and leadingzero axioms can be used for several leading
zeroes in an alternating manner for, respectively, pre/postprocessing
the parenthesis structure and eliminating/generating the “0"
immediately after the sign "+" or "-". An example involving three such
alternations 1is the proof of +00040200 = +40200, eliminating three
leading zeroes; fortunately, with our axioms, intermediate (+00040200
<> +0004200] and trailing [+00040200 <> +0004020] zeroes are never
eliminated [(all non-final zeroes could be eliminated if 1lz1 and 1lz2?
were replaced by 0*m = m, i.e. if 0 were a general left identity]:

Lem07: +(0xX0*x0*4%x0*x2%x0%0) = +(4%x0%x2%x0x0)

Proof: +(0X0X0*4x0*x2%0%0) =a=
+(0*(0x0%x4x0%x2%0%0)) =1z1=
0'(0*0*‘*0*2*0*0) =a=
+(0%(D*4*x0x2%0%0)) =1z1=
+(0X4x0%x2%x0%0) =as=
+(0X(4x0%2%0%0)) =1z1=
+(4x0x2%x0%x0)

A final example for equivalences between decimal integer sequences
concerns a sequence of length 6:

LemDB: -~9%- (0%4 )%+ (0X2X-3X5) %4 (THE)*-+B%+(+0%1) = Qr-4¥ %_(ThE)k-g%1
Proof: --9%-(0%4)%+(0%2%-3%5)%+-(7*6)*-+8%+(+0%1) =ms2|lz2|a|p|mst|p:=
+9X- (4 )X+ (0*(2%-3%5) )% (T7*6)%-8%+(0%1) =p|lzt]|lz1=
9X -4 x4 (2%-3X5)X-(7%6)%-8%+1 =sr5]|p=
9k -4 X4+ %X~ (T*G)*-8%1 =p=
QX -4 X k- (TXE)X-g%1

Recall that no axiom is required for parenthesis omissions like -(4) =
-4, so that these can be integrated with other axiom applications as in
+{(0*1) =1z1= +1; also note the harmlessness of first performing
spurious transformations on "erroneous” subexpressions such as
+(0%2*%-3%5) =a= +(0%(2%-3*5)) =1z1= +(2*-3*5) and only then reducing
them to YA ("confluent"” with direct “+1"-reductions 1like
+(0%2%-3*%5) =a= +((0*2)*-3%5) =s5r5= +717.

As another instantiation of the algebra ALINS 1let wus consider
integer sequences in the binary number system, having the minimal
generating set A = {7, 0, 1}. Using the axioms we can proof the
following identities:



Lem09: +(0*1%1) +(1%1)

Proof: +(0*1*x1) =a=
+(0x(1%1)) =1lz1=
+{1%x1)

Lemi0: -(0*0*0%1%0%1)*-(0%0%0) = -(1%¥0%1)*0
Proof: -(0*X0*0*1%0%1)*-(0*0*0) =ala:=
-(0X(0*0X1%0%1))*-(0*%(0*0)) =1z2|lz2=
-(0%0*x1%0*1)*-{0%0) =a|lz2=
(0% (0X1*0%1))*-0 =122]sz=
-(0*1%0%1)%+0 =a|p=
-(0x(1%0%1))%0 =122=
~(1%0%1)%0

The algebra ALINS can be enriched by a successor operation "s" and a
predecessor operation “p" for arbitrary number systems, obtaining the
following algebra ALINS-sp. While normally in ADTs the successor
operation is wused as a constructor, in our formalization of integer

sequences it becomes a selector-like operator.

DefinitionII:

{a, a0, a1, ..., aN} generating set
a 1 distinguished element
a0 = 0 distinguished element

ALINS-sp = (M,*,+,~-,s,p) algebra with

(MD*I+D—) as ALINS

s : M->M unary operation [successor]
sim) = sm

p:M->M unary operation [predecessor]
p(m) = pm

In addition to the axioms of ALINS the following successor and
predecessor axioms are postulated for ALINS-sp (for "s” and "p"
applications readability will be enhanced by retaining the application

parentheses].

successorof+: s(+1) = +]
successorof-1: s{-71) = -1
successorofal: s{al) = at
successorofaN-1: s(aN-1) = aN
SsuccessorofaN: s(aN) = +(at1*a0)
successorofmal: s+{m*xa0) = +(m*at)
successorofmaN-1: s+(m*aN-1) = +(m*aN)

successorofmaN: s+(m*aN) +(s+(m)*a0) if m <> -atl and m <> (al*n)

n

successorof-m: s-(m) -p+(m)

s{m1)*s(m2)

successorofmim?: s(mi*m2)
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predecessorof+]: pl+Z) = +]
predecessorof-1: p(-1) = -1
predecessorofal: pla0) = -al
predecessorofal: plal) = al
predecessorofaN: plaN) = aN-1

predecessorofmpal: p+(m*a0) +(p+{m)*aN) if m <> a0 and m <> (a0*n)

predecessorofmal: p+(m*al) = +(m%xa0)
predecessorofmaN: p+(m*aN) = +(m*aN-1)
predecessorof-m: p-(m) = -s+(m)

11

predecessorofmim2: pi{mi1*m2) p({mi1)*p(m2)

In the following discussion examples will be given for a decimal
ALINS-sp instantiation. The above equations define "s” and "p" for all
carrier elements, even though there are no explicit equations for, say,
"s" and "p" applied to “+"-signed digits: Since the plusification axiom
identifies +al with al for 0 ¢ I K N, the corresponding equations
s(+al) = s(al) and pl(+al) = pl(al) hold implicitly also. In general,
once equivalence classes have been established through a constructor
algebra, we are free to <choose any of their representatives for
defining the higher operators of its enrichments. While for the |A|-1
equivalence classes {+al, all, containing two elements, little is
gained by picking representatives, for the 2 wequivalence classes
{+1, 1, ..., +(6%+{1%1)), ..., +(3*x-2), ...} and {-%, ..., -(6%-(1*1)),

., -(3%+2), ...}, containing infinitely many elements, their wuse is
more interesting: To take one example, the equation s+7, defining s(+7)
as +/, represents an infinity of further equations [derived with our
constructor algebraic equalities]

sl =[=p= s{+]) =s+l=]= +]

s+ (6*+(1%1)) =[=sr1= s(+]) =s+l=]= +1
st(3*-2) =(=8rb= s(+]) =s+fl=1= +]

Incidentally, in the “error” view of terms like +(3%-2) and
+(6*x+(1%1)), the equation s+] can be regarded as handling "erroneous”
arguments to "s". Like the application of spurious leadingzero axioms,
the application of spurious "s” or "p" transformations to such terms is
harmless. For example, the derivation s+(-1*0) =sm0= +(-1*%1) =sr3= +/
is Jjust a “confluent variation” of s+(-1%0) =sr3= s(+7) =s+l= +1.
However, for one situation the "s" and "p" applicability must be
prohibited explicitly. A "s"“/"p" transition between the "erroneous”
term +(-1%*9) and the "non-erroneous” term +(0*0) is only prevented by
the first conjunct of the conditions on the carry-generation-simulating
equations smN and pm0. In one direction, the conjunct m <> -at1 makes
smN iLnapplicable to the term s+(-1*9), thus prohibiting its
transformation to +(0*%0). In the other direction, the conjunct m <> a0
makes pm0 inapplicable to the term +(0*0), prohibiting its
transformation to +(-1%9). The second conjunct m <> (a0*n) of both
conditions prevents the application of smN and pm0 to integers with
[redundant] leading zeroes, since otherwise equalities like
s+((0%-1)%9) = +(0%0) and p+((0*0)*0) = +(-1*9) would be still
derivable.
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For the binary number system, with aN = a1l = 1, the successor ax;oms
s0, ..., sN, sm0, ..., smN and the corresponding predecessor axioms

specialize as follows.

successorofal: s(0) = 1

successorofal: s(1) = +(1%0)

successorofmal: s+(m*x0) = +(m*1)

successorofmal: s+(m*1) = +(s+(m)*0) if m <> -1 and m <> (0*n)

predecessorofal: p(0) -1

predecessorofal: pl(1) = 0
predecessorofmal: p+(m*0) = +(p+(m)*1) if m <> 0 and m <> (0*n)
predecessorofmal: p+(m*1) = +(m*0)

Some "computations” in this algebra are [notice the integernesting
normalization after "carry propagation”]:

Lemt1: s+(1*0) =sm0= +(1*1)
Lem12: s+(1*1) =smi= +(s+(1)%0) =p= +(s1*%0) =si1= +(+(1%0)*0)
=int= «+((1%0)%0) =a= +(1%0*0)
Lem13: s+(1%0%1) =smi1= +(s+(1%0)%0) asmO= +(+(1%1)%X0) =int= +((1%1)*0)
=az +(1%x1%(0)
lLemié: s+(1%1%x1) =smi= +(s+(1*1)%0) =Lem12= +(+(1*0*0)*0)
=int1= +((1*%0*0)*0) =a= +(1%x0*0%0)
LemiS5: p+(1*0) =pm0O= +(pe(1)%1) =zp= +(p1*¥1) =pl=z +(0%1) =1z1= +1
Lem16: p+(1*1) =pmi1= +(1%0)
Lem17: s-(1%0) =s-m= -p+(1*0) =Lemi15= -+1 =msi=z -1
Lem18: s(+(1*0)*-(1%0)) =smm= s+{1%0)*s-(1%0) =Lemi1)Lem1T7= +(1%1)*-1

The algebra ALINS-sp could be further enriched to an algebra with
the usual arithmetic operators generalized to sequences. Alternatively,
the following equations for a length operation "1" on integer sequences
could be used as the key component of another ALINS-sp enrichment:

1({m) = s{al) if m <> n*n’
1l(m1*m2) s(1(m2)) if mt1 <> n*n'

"

Besides these ALINS-sp enrichments, it is also possible to enrich the
original algebra ALINS directly in an alternative manner; as a
groundwork for string processing, the sequence constructor operation
"*"  could be complemented by sequence selector operations such as head
and tail.
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3 FUNDAMENTAL CONSTRUCTOR ALGEBRAS FOR LIST PROCESSING

As a basis for all subsequent development, this section first
introduces an algebraic formalization of lists and then augments it by
allowing negated list elements [used for erasing unnegated ones].

3.1 The CONS Algebra of N-tuples

It is well-known that the data structure of strings -- whose
expansion to integer sequences was discussed in the previous section --
is definable algebraically as a semigroup [in particular, a monoid],
where the binary operation is interpreted simply as the juxtaposition
of two semigroup elements, forming another semigroup element. Since
only the property of associativity is postulated as an axiom for the
semigroup operation, semigroups are often regarded as the most poorly
structured algebras conceivable. Paradoxically however, the data
structure of tuples [lists], richer in structure than strings because
of the ability to have tuples nested in tuples, is definable by an even
more poorly structured [in fact, unstructured] algebra, by dropping the
associativity axiom as well. Clearly, the "paradox” can be resolved by
more careful terminological distinctions: The property of
associativity, increasing the axiomatic structure of an algebra (like
any other postulatel], decreases the syntactic structure of an algebra's
elements [by removing parentheses].

Like the string operation, the binary operation on tuples could be
interpreted as juxtaposition, though with interspersed parentheses. For
example, a*b = ab and (a*b)*(c*(d*e)) = (ab)(c(de)) would then hold for
both strings and tuples; (ab)(cl(de)) = abcde, permitted by
associativity, would however only hold for strings. [As in (Goguen et
al. 1978) the parentheses in expressions like (ab)(c(de)) could be
underlined to emphasize that they are part of the alphabet from which

the "stringified” tuples are constructed.] Later, following the
self-denotation principle of 1initial algebras, the complete infix
function call notation -- even trivializing juxtaposition -- will be

used as the operation result instead: Thus a*b [here preferably written
as *(a,b), to stress that "*" is being called with arguments a and b]
will just denote the term "a*b",.

An obvious generality advantage originating from the associativity
of strings 1is their “variable length”, i.e. the fact that the
originally binary operation can now be interpreted as an N-ary
operation, where N may vary from call to call (the capitalization of
"N" symbolizes this variable arityl. For example, to obtain abcde we
can -- instead of (a*b)*(c*(d*e)), a*(b*(c*(d*e))), or any other
equivalent nesting of four binary "*"-calls -- write 1in short
a*b*c*d*e, and regard this as a single N=5-ary "*"-call in mixfix
notation [corresponding to *(a,b,c,d,e) in prefix notation]. For
strings, in general, the parenthesisless form mi*m2%. .. *mN-1*mN
represents the equivalence <class of all binary bracketings of
mim2...mN-1mN,

Now the question arises whether tuples, instead of being restricted
to pairs [or to fixed-length triples, quadruples, etc.], can also be
interpreted as "variable length” operator applications in spite of
their lack of associativity. This can in fact be done, although in a
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manner differing considerably from the wusual one for strings (an
unusual one will be implicit in section 4.4). For such tuples, in
general, the parentheses-saving form mi*xm2% ... *mN*mN+1 is only allowed
if mN+1 1is a distinguished element, call it """, and in this case
mi*m2%...*mN*  represents the unique right-associating nesting
mi*(m2*...*(mN*")...), and can be interpreted as the N-tuple (m1, m2Z,

., mN). For example, neither (a*b)*{(c*(d*e)) nor a*(bx(cx(d*e)))
could be rewritten into the N-ary parentheses-saving form, but their
"*"-terminated expansions (ax{bx ))*x(cx(d*(e*x ))) and
at(bx(cx(d*(e*x )))) can be abbreviated as (axbx )*crd*e*  and
atb*c*d*e* , and can be interpreted as the 4-tuple ((a, b), ¢, d, e)
and the 5-tuple (a, b, c, d, e), respectively. A single
“listrestriction” axiom will suffice for realizing this variable-length
technique with the usual "one-sorted” algebras [giving variable-length
N-tuples an axiomatic structure comparable to that of stringsl]l, and
even this can be dropped with the help of “generator-separated”
algebras [leaving the tuples no axiomatic structure at alll.

In the programming language LISP such an interpretation of nested
pairs as N-tuples was introduced to implement variable-length lists
using fixed-length memory cells. Curiously, we can not only use it for
this very concrete purpose but also for a very abstract one, namely to
: 1 i able-arit I I . . s i
operators. In fact, the dot of "dotted pairs” in LISP can be regarded
as the algebraic multiplication operator "*", used as an infix version
of the binary CONS prefix function [thus for LISP lists we have "*" =
"." and, of course, " " = "NIL"]. However, there is a subtle difference
between dotted pairs [data structures] and the algebraic infix notation
[operator applications]: While in the dotted pair (x.y) the parentheses
are a proper syntactic constituent [(hence can never be omitted], in the
algebraic operation (x*y) or x*y they are only necessary for grouping
in sublevels [(hence can be omitted from the top-level]. For example,
while (a.NIL).(b.NIL) is not a legitimate dotted pair nesting,
{a.”).(b.") 1is a legitimate nesting of applications of a "."-operator.
For mixed collection nestings [such as sets of tuples] we will also
deviate from LISP's "list monoculture” by allowing several kinds of
CONS-1like multiplication operators, together with several associated
kinds of NIL; although this representation of multiple collections 1is
clearer algebraically, the LISP/QA4/FIT convention of using the first
list element as a tag naming the collection seems at least as apt in
practical programming.

In early versions of the PROLOG language, 1lists were not only
represented by dotted pairs, as in LISP, but were actually replaced by
dotted-pair-like nestings of "."-terms, which could be abbreviated in
the right-associating manner. For example, the LISP list (a b ¢ d e)
was replaced by the nesting a.(b.(c.(d.(e.nil)))), which could be
abbreviated as a.b.c.d.e.nil. However, while the nested pair view of
N-tuples is advantageous for concrete implementation and abstract
mathematical/logical formalization, we do not regard it as a very
high-level programming language feature (Boley 1983), e.g. because of
its asymmetry and its use of a "nil” auxiliary [even in our somewhat
further shortened algebraic form a.b.c.d.e.  the end marker *'" --
although single-character -- would be bothersome in day-to-day
programming]. Thus, our algebraic formalization of «collections should
be taken to jystify variable-length list notation, not to replace it by
[disguised] pair notation.
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We now give the formal definition of the constructor algebra ALCO!
of N-tuples.

Definitiont:

A generating set [a finite set]
IN A distinguished empty element

ALCOT1 = (M,.) algebra with

M carrier generated by A with ".”

MxM->M binary operation
.Amt ,m2) = mi.m2

. . N
listrestriction: mi.m2 = = if m2 <> n.n’ and m2 <

According to the above definition the generating set A must at least
contain the special element “ ", interpretable as the empty tuple
[0-tuple). The listrestriction axiom reduces a result of the binary
operation “." to "'" if its second argument was neither equal to
another product n.n' [a non-empty tuplel nor to " " [the empty tuplel.
Otherwise the "."-result remains a binary term constructed from the two
" ."-arguments. Assuming the generating set A contains besides " " the
elements at, e aN, the conditional equation for ALCO1's
listrestriction axiom could be replaced equivalently by the N
unconditional equations m.at = ~, .,., m.aN = ~

The special element " " -- the only one which must be present in
every A-generated algebra -- is thus chosen as the value lr-equal to
all "erroneous” "."-terms. Alternatively, this value could be returned
directly by "." for an "erroneous” second argument, thus also retaining
the total definition of "." on M x M and avoiding the introduction of
"partial algebras” (a generally applicable method for this would be
introducing another distinguished element (Graetzer 1968), but for our
purpose "* can play the role of both this "error” element and the
empty tuple]. However, as discussed 1in section 2, we prefer the
"self-denotation for all arguments” technique of initial algebras,
axiomatically equating “erroneous” terms with the distinguished element
only afterwards.

If the listrestriction axiom were omitted, the resulting -- even
simpler -- algebra would define binary nestings that could be
interpreted as general LISP s-expressions. This simpler “anarchic
algebra” (obeying no laws] would generate the entire Herbrand universe
of all possible terms constructed as "."-nestings over A = {°, at, Seey
aN}, coextensive with the context-free language generated by the
BNF rule

sym-expr ::= "a1” | ... | "aN" | """ | "(" sym-expr "." sym-expr ")"

Because of the axiomatic restriction of the second "."-argument to what
in LISP terminology may be called "NJL and list-representing dotted
pairs” [while the first argument may also contain non-NIL atomsl, the
carrier produced is not the wentire Herbrand universe which the
generating set originally generates with the binary operator; instead,
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the " "-identification of "erroneous” terms reduces it to the desired
subset, which in LISP terminology could be described as “atoms and
list-representing dotted pairs”, coextensive with the context-free
language generated by the BNF rules [the first rule defines our wusual
version without top-level parentheses]

top-expr ::= "at” | ... | "aN" | """ | syl-expr "." lis-expr
syl-expr ::= "at" | ... | "aN" | lis-expr
lis-expr ::= " " | "(" syl-expr "." lis-expr ")"

The carriers and operations of algebras can be depicted in a diagram
notation as follows [this is inspired by the use of polyadic graphs for
signatures 1in (Goguen et al. 1978), but wuses directed labeled
hypergraphs as put into context in section 5.2): A carrier becomes a
node [drawn as a box] bearing the carrier name, and an operation
becomes a directed 1labeled hyperarc [drawn as an arrow)] labeled with
the operation name and starting at its first argument, cutting its
second argument, ..., cutting its 1last argument, and ending at its
value (resultl]; a distinguished element of a generating set is regarded
as a nullary operator, thus becoming a hyperarc labeled with the
element name and ending at [pointing tol the «corresponding carrier.
Since the “homogeneous algebras” considered until now have only one
carrier [(hence the synonym “one-sorted algebras”"], the corresponding
directed labeled hypergraphs have only one node also. For example,
ALCO1! is depicted thus:

The distinguished element " " has become a directed hyperarc of length
1 [leading from nowhere to the result] and the binary operation "." has
become a directed hyperarc of length 3 [leading from the first argument
via the second argument to the result].

Like distinguished elements, the remaining elements of a gjven
generating set can be reprecented as length-1 hyperarcs, but the
representation of the indefiniteness of our arbitrary generating set
remainders {al1, ..., aN}, as in the second ALCO1 depiction,
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The carrier M generated by this set A with the restricted operation
can be seen as a Herbrand subuniverse, i.e. the limit of the sequence

of sets MO = A, Mt = MO U { ., a.”, b."}, ..., where for general n>0
Mn = Mn-1 U { x.y | x IN Mn-1 and v IN Mn-1 and (y = n.n' or y = ")},
with the set membership condition (y = n.n’ or v = ) embodying the

negated listrestriction axiom.

The table below depicts three notations for M3: The "basic binary form"
column gives an unabbreviated binary term notation; the
"N-ary/paren-sparing” column gives the abbreviated notation
corresponding to the N-ary interpretation; the "LISP list” column gives
the list notation as used in LISP. A tilde [""") in the second and/or
third of these columns means that an entry does not differ from the one
in the first column of the same row.

The "LISP list”™ column down to Mn can be obtained as a set-representing
list by a call (ENUMLST A n NIL) of the following LISP function ENUMLST
[A is a list representing the set A MINUS { }]:
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. (DEN (f at ... aN) b) denotes a function f with formals al and body b
(DEN ; enumerate lists
(ENUMLST ALPH NUM PREV)
(COND

((ZEROP NUM) (CONS NIL (APPEND ALPH PREV)))
(T (ENUMLST
ALPH
(SuUB1 NUM)
(UNIORD
PREV

((LAMBDA (AA)
(MAPCAN " {LAMBDA (D) (MAPCAR ' (LAMRDA (A) (CONS A D)) AA))

(CONS NIL PREV)))
(CONS NIL (APPEND ALPH PREV))))))))

(DEN : order-preserving UNTON

(UNIORD L1 L2)

(COND ((NULL L1) L2)
(T (CONS (CAR L1) (REMOVE (CAR L1) (UNIORD (CDR L1) L2))))))

(DEN : non-destructive MAPCAN

(MAPCAN FN L)
(AND L (APPEND (APPLY FN (LIST (CAR L))) (MAPCAN FN (CDR L)))))

no. | basic binary form | N-ary/paren-sparing | LISP list
e b = prc e s . e
1 | | ~ | NIL orxr ()
2 | a | - |~
3 Vb | - | -~
B ¥ 1 | T 8 S e S o
6| | -~ | (NIL)
5 | a | ~ | (a)
6§ V b. | ~ | (b)
= Ml mmemm e R T v . o
7 l‘('.:).‘ | ~ | C((NIL))
8 | (a.”). | - | ((a))
9 | (b.‘).. | ~ | (b))
10 | .(.._) | C.0L | (NTL NTL)
11 Ia.(‘..) | a. .~ | (a NIL)
12 lb:(_. ) | b. .~ | (b NIL)
13 | ..).( ) | (7.7, | C((NIL) NIL)
14 | (a. ). ( ") | (a.7) | ((a) NIL)
15 | gb. ). 7) | (b.7) | ((b) NIL)
16 | (a.~) | ".a. | (NTL a)
17 | a.(a.’) | a.a. | (a a)
18 | b:(q.") | b.a. | (b a)
19 | { ShtalT) I 7.7). | ((NIL) a)
20 | (a..).(a ) | (a.™). | (ta) a)
21 | !b. ):(a ) | (b.").a | ((b) a)
22 | (b.") | “.b.” | (NIL b)
23 | a.{b.") | a.b.’ | ta b)
24 | b:(g.’) | b.b.’ | (b b)
25 | | .~).(b.') | (7.7 .. | ((NIL) b)
26 | (a.”).(b.") | (a.’).b." | ((a) b)
27 V (b. ).(b.") | (b.7).b | ((b) b)

+ +



28
29
30
N
32
33
k1)
35
36
317
38
39
40
41
42
43
44
45
46
47
48
111
112
113
114
139
140
141
166
167
168
193
194
195
220
221
222
247
248
249
355
356
357
382
383
384
409
410
411
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(CI(NIL)))
(((a)))
(((b)))
((NTL NIL))
({a NIL))
((b NIL))
({(NILINIL))
(((a) NIL))
(({b) NIL))
((NIL a))
({a a))

{({b a))
(((NIL) a))
(((a) a))
({(b) a)}
((NIL b))
({a b))

((b b))
(((NIL) b))
(((a) b))
(((b) b))

{({{b) b) b)
(NTL (NTL))
(a (NIL))
(b (NIL))
(NIL (a))
(a (a))

(b (a))
(NTL (b))
(a (b))

(b (b))

(NTL () NIL)
(a NIL NIL)
(b NIL NIL)

(NTL a NIL)
(a a NIL)
(b a NIL)

(NIL b NIL)
(a b NIL)
(b b NIL)

(NJL NIL a)
(a NIL a)
(b NIL a)
(NIL a a)
(a a a)

(b a a)
(NTL b a)
(a b a)

(b b a)
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1

R R | . . ) | . . .

516 | ((b. ).(b. )).((b." ). {a.")) | ((b.").b. ).(b. ).a | (((b)b)(b)a)

517 | .0 .(b.") R | (NIL NIL b)

518 | a.( .{(b. ")) | a.‘_.b.“ | (a NIL b)

519 | b.( .(b | b. .b | (b NIL b)

U 1:..~ ] 5 s

564 | “.la.(b.")) | “.a.b. | (NIL a b)

545 | a.la.(b.’)) | a.a.b. | (a a b)

546 | b.{a.(b.")) | b.a.b I| (b a b)

AP l:..

571 | “.(b.(b.")) | “.b.b | (NIL b b)

572 | a.(b.(b.")) | a.b.b | ta b b)

573 | b.{(b.(b.")) | b.b.b I| (b b b)

AP B | .. . .

678 V ((b. ).{b. )).((b. ).(b.7)) | ({(b. ).b. ).(b. ).b. | (C(b)b)(b)b)

= H3 ____________________________ Fm e e fom -
| . . |

The following Equality relation [like EQUAL in LISP] recursively
reduces the equality of entire applications of the "."-operator
[in general, of binary multiplication operators] to the equality of its
arguments, until it reaches elements of A, for which it can decide
equality in a trivial manner.

Equality: mt1 = m2 obvious if mt IN A or m2 IN A

mi =m.m =m'"'.m" =m2 <> m=m'' ' and m" =m "’

Example:
(a.”).(b.7) = (a. ).(b.")
(a.”) = (a.”) and (b.") = (b.7)
a = a and E and b = b and ~ =

As a special kind of the "many-sorted algebras” which -- starting in
section 3.2 -- will complement our usual “"one-sorted algebras”, here we
introduce "generator-separated algebras”. In these the [always finitel
"generator” -- as we shall call the generating set minus possible
distinguished elements -- becomes a carrier of its own, separated from

the [usually infinitel “generated” <carrier. This will permit the
operations to map between the two carriers in such a way that certain
operator restriction axioms become unnecessary.

The one-sorted algebra ALCO!1 thereby becomes a generator-separated
algebra ALCO1$ [generator-separated versions of one-sorted algebras and
definitions will be suffixed with a "$"-mark], where the ALCO! carrier
M of atoms and lists is divided into a carrier M/ of non-""" atoms and
a carrier M_ of lists [incl. “""]. At the same time the CONS operation

“ is divided into an operation "./" for constructing atoms onto lists
and an operation "." for constructing lists onto lists; since no terms
are constructed onto non-""" atoms, the listrestriction axiom thus
becomes unnecessary, leaving ALCO1$ as an "anarchic" algebra [in which
no axioms are postulated]. Besides this axiom elimination, the
separation of the generator has the further advantage that the set of
lists can now be introduced without carrying along as a subset the set
of their constituent non-""" atoms.



Definitionit$:

A_ generating set [a singleton set]
IN A_ distinguished empty element

A/ generating set [a generator]

ALCO1S = (M_,M/;.,./) algebra with

M_, M/ carriers generated by A_, A/
with ".", "./" [M/ = A/]
o M_x M_ > M_ binary operation [consing lists to lists]
Am1i,m2) = mi_m2 [m1 IN M_ and m2 IN M_]
o Mox M -y M_ binary operation [consing non-""" atoms to lists]

Am1,m2) = m1./m2 (m1 IN M/ and m2 IN M_l]

The listrestriction axiom has become superfluous, because the second
arguments of both "."-derivates, " and "./", must be elements of M_,
hence either (n.n')-terms or " "

The directed labeled hypergraphs corresponding to
generator-separated algebras have a separate node for the generator
carrier and the usual node for the generated carrier. For example,
ALCO1S can be depicted thus [the elements of the generator A/ -- call
them a1, ..., aN -- are included as hyperarcs, because their role is
essential herel:

kK Xkt
x *
* v v
B . R
T I
xxxxk> | * M_ x |
Iox I
sk s = = & 5 o oo
* x *
* r o, *
* k% %
*
LI
x
al | |
txxkxy | |
I l
l M/ |
aN | ]
xxxtxy | )
! |

Comparing this diagram with the second diagram for ALCO1, it «can be
seen that the original carrier M has become separated into a "given”
carrier M/ and a "derived” carrier M_; in the latter only 1lists of
""-elements could be built, were it not initialized with the non-"""

atoms from M/ [notice that, despite the geometric proportions, M/ 1is
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finite and M_ infinitel. It is likewise possible to see how the
original (MxM)-operation "." has become separated into an initializing
(M/xM_)-operation "./" and a "."-like (M_xM_)-operation "_.".

Example:

}

A t
{a, b}

A/

The two carriers M_ and M/ generated by these sets A_ and A/ with the
unrestricted operations "." and "./" can be seen as heterogeneous
the 1limits of the sequences of sets

Herbrand subuniverses, 1.e.

M_0 = A_, M_1 = M0 U (.7, a./’, b./"}, e and
M/0 = A/, M/1 = M/0, e where for general n>0
M_n z M_(n-1) ] { x,y | x INM_(n-1) and y IN M_(n-1)} U

{ x./y | x IN M/(n-1) and y IN M_(n-1)} and M/n = M/(n-1) [=A/].

The following tables depict three notations for M_2 and M/2. It 1is
worthwhile to compare the operators of " “-list terms like no. 11 with
those of flat-list terms like no. 16 in M_2: Lists of """-elements are
the ones that can be built using only the ", ,"-part of ".", while lists
without sublists result from using only the "./"-part of "."

no. | basic binary form | N-ary/paren-sparing | LISP list

e e R R ek Fmmm e —— - - - o

1 | | ~ | NIL or ()

- M_O ——————————————————————————— D e et i imnion o o o =S

2 | . | ~ | (NIL)

3 | oa.l’ | ~ | (a)

4 Vb./' | - | (b)

L T e L T i i Y RS S e o 59 o -y

5 ] (LT |- | ((NIL))

6 | (a7 | - | ((a))

7 | (b./7 ). | ~ | ((b))

8 Y RS | "o . | (NIL NIL)

] | a./7("° ") | a./ o | (a NIL)

10 | b:/!'h’) | b./ L ] (b NIL)

T I gL(‘&') | o) o | ((NTL) NIL)

12 | (a./.)L(‘L‘) | ta./7 ). o | (ta) NIL)

13 | gb./ )f(‘*') | (b)) L | ((b) NIL)

14 | “la./’) | “.a./’ | (NTL a)

15 | a./(a./") | a./a./ | (a a)

16 | b:/ga./‘) | b./a./ | (b a)

17 ] ("L g*(a./‘) | ("L )al/” ] ((NIL) a)

18 | (a./.)*(a./') | ta./ )ea./” | (ta) a)

19 | (b./ )f(a./") | (b./7),a./" | ((b) a)

20 | “.(b./7) | “.b.t° | (NIL b)

21 | a./(b./") | a./b./” | (a b)

22 | b:/gb./') | b./b./" | (b b)

23 | (7, !*(b./‘) | (7. )b/ | ((NIL) b)

24 | la./7 ) (b./7) | ta./7),b./ | ((a) b)

25 V (b./ ). (b./"7) | (b./ ).b./ | ((b) b)

e M 2 me e e P e
| |



no. | basic binary form | N-ary/paren-sparing | LISP list

e — e ——— = fmmm e m e — e ————— frmmmm -

1 | a |- | ~

2 Vb | ~ | ~

Y g . O fmmm e m

“= M/l eememe e m e m s m e e R

B B fommmmmmm e m e — = $mmmmmm e m -
___________________________ st ot S S S s

In definitiont the finite cardinality of the generating set A also
restricts the number of atoms over which N-tuples are built to the same

finite number. Although this is not a limitation in practice [let |A| =

641 + 6472 + ... + 64132 equal the number of different atoms that can
be composed from a character set like ("A", ..., "2°, "a", ..., "z",
"0", ..., "9", "-", ":"} in, say, a lineprinter linel, nor in theory

(every |A| can be augmented to |A| + 1], the use of large numbers of
individual ‘“symbols” instead of symbol-composed "words"” may appear
unsatisfactory. The following two-level construction, as implicit in
LISP, may be preferred: First, a [countably] infinite number of atoms
is composed from a ([smalll finite set of symbols in the form of symbol
strings. Second, the N-tuples are constructed from these string atoms.
This combination of strings and tuples can be formalized by the
following definition of the constructor algebra ALCO1".

Definitiont':

A generating set [a finite set]

T IN A distinguished empty element

ALCO1' = (M,],.) algebra with

M carrier generated by A with “|", "."

| : M xM->M binary operation [constructing strings]
| {tmt,m2) = m1|m2

MxM->M binary operation [constructing tuples]
.(m1,m2) = m1.m2

Axiomatic operator restriction:

n

if (m1 <> nln’ and m1 NOTIN A MINUS {°})
or (m2 <> n|n' and m2 NOTIN A MINUS {°})

|wordrestriction: m1|m2

.listrestriction: mil.m2 if m2 <> n.n’ and m2 <>

Of course, associativity is also postulated for the "|"-operator.
Jassociativity: (m1|m2)|m3 = mi1]|{(m2|m3)
[If an axiom could be postulated for various operators, its postulation

for a given operator may be disambiguated by prefixing the axiom name
with that operator.]

The wordrestriction axiom prevents the illegal construction of “"atoms"”
with 1list components [inverse to the legal construction of lists from
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atoms] by identifying "erroneous” terms like al’ and
(a.b.c. )|bld]ajle.d. )|b [in LISP-like juxtaposition syntax a and
{a.b.c. )bdaf{e.d. )b] with " ". The w axiom can be transformed to four
unconditional equations, thus illustrating the elimination of the NOTIN
predicate from conditional equations [cf. section 2]:

Or-splitting:
mim2 = ° if m1 <> nln’ and m1 NOTIN A MINUS {}
mifm2 = ° if m2 <> n|n’ and m2 NOTIN A MINUS

—
.
—

NOTIN removal:
mi|m2 if mt ¢ n|n’ and (m1
m1|m2 if m2 <> n|n' and (m2

n.n" or mi

.n° or m2

u "
=]
3
Q
]
3
ey
i

[l
=
>
S
o
-
3
N
u

And/or distribution:

milm2 = ° if (m1 <> n|ln’' and m1 .
or (mt <> n|ln’ and m1 = nln")
or {(m! <> n|n’ and m1 :

mijm2 = ° if (m2 <> n|n’' and m2 = n.n'
or (m2 <> n|n' and m2 = n|n’
or (m2 <> n|n' and m2 = )

Contradiction law:

milm2 = ° if (m1 <> n|n’ and m1 = n.n")

or FALSE

or (m1 <> nln’ and mt = 7)
mi|m2 = ° if (m2 <> n|n’ and m2 = n.n")

or FALSE

or (m2 <> nln

and m2 = )

FAL SE neutral or element:
m1|m2 if (m1 <> nln' and mi
m1|m2 if (m2 <> nln' and m2

or (m1 <> n|n’' and mit
or (m2 <> n|n' and m2

non
33
3 3
non

And commutativity:
m1|m2 oif (m
m1|m2 if (m2

and m1 <> n|n")
and m2 <> n|n’)

n.n’ and m1 <> n|n’) or (m
n.n' and m2 <> n|n') or (m2

"n "

u n
won

<> removal [incl. or associativity]l:

milm2 = ° if (mi=n.n' and (mi=n.n' or (m1=" or mi IN A MINUS { })))
or (mi=" and (mi=" or (mizn.n’ or m1 IN A MINUS {'})))

mi|m2 = ° if (m2=n.n' and (m2zn.n' or (m2=" or m2 IN A MINUS { })))
or {m2=" and (m2=" or (m2=n.n' or m2 IN A MINUS { })))

And/or absorption:

mi|m2 = if mt = n.n' or mt =
ml|m2 = if m2 = n.n' or m2 =
Or-splitting:

mijm2 = ° if m1 = n.n

mijm2 = ° if m1 = °

mi|m2 = if m2 = n.n

m1|m2 if m2

"
"



Substitution:

(n.n")|m2 =
“lm2 = °

mi|j{n.n") =

mi|’ =t "

In the following we will not use the primed version of definitiont,
so that we can avoid another level of complexity that is not essential
in our subsequent development. Should the unprimed versions of later
definitions have to be replaced by primed versions, conditional

equations referring to the set A would have to be modified so as to
refer to both A and "|"-terms. As an alternative to the direct

introduction of string atoms in definitiont’', it would also be possible
to use the strings defined as one of the basic collections in section
4.4, preventing the nesting of tuples into strings by a variant of the
above wordrestriction axiom.

3.2 A List Algebra with Negated Elements

In order to accomodate the algebra ALCO1 of N-tuples to the
generalized Idempotence to be introduced in section 4.2, we augment it
here into an algebra ALCO2 with an additional (auxiliary] wunary
operation, "-", leaving the three Remove axioms governing its behavior
for that section. This new list algebra will permit “negative” elements
[which, however, should not be confused with ordinary negation, as used
in section 2], produced by non-negative elements to remove other
occurrences of themselves. Since terms with a top-level "-"-sign [with
"-" as their "principal” operator] will not be reducible to "-"-less
terms [see below table]l, in the ADT view the "-"-auxiliary can be
regarded as a "hidden” or "private” operation.

pefiniti :
A generating set [a finite set]

"IN A distinguished empty element

ALCO2 = (M,.,-) algebra with

M carrier generated by A with ". ", "-"

MxM->M binary operation
Am1,m2) = m1.m2

-t M->M unary operation
-(m) = -m

. . i ction:
listrestriction: mi.m2 = ° if m2 <> n.n' and m2 <

Although this listrestriction axiom consists of the same conditional
equation as the one postulated for ALCO1, in ALCO2 it is applicable
additionally to terms with "-"-signed second arguments, so that besides
the equagions m.al = * [1 < I < N] one further unconditional equation,
mi.-m2 = °, would be required for making ALCO2's 1listrestriction
unconditional.



Haz_

In our diagram notation ALCO2 can be depicted thus:

XK
* *
* v
RPNV SN R R I VI R S -
N | * JRxxxXXRK KX
kxxxn) | * M | x
| * | ¢xxxxxx kNN
T om0
* *
x x
kK

The new unary operation "-" has become a directed hyperarc of length 2?2
[leading from the single argument to the result].

Example:

A=1{", a, b}

As in section 3, the following table again depicts three notations for
M3. The additional column gives Remove reductions [explained in section

4.2]) of terms which are "."-products with "-"-signed 1left factors to
terms without these negative signs.

no | basic binary form | N-ary/paren-sp. | LISP list | reduction
----- R e et S
1 I | ~ | NIL or () | -

2 | a | - |- | -

3 Vb |~ | - |~

-=-= M0 -----c e e a e m e, — e —————— L R PEERE S w2
4 | . | ~ | (NIL) | ~

5 | a. | ~ | (a) |~

6 | b.~ | ~ | (b) | -

7 | -° | ~ | -NIL or -() | ~

8 | -a |~ |- | -

9 vV -b | - | - |-

—m= MY e e D e T pp—— e ————— o e
10 | (7.0 | ~ | ((NIL)) | -

1 | (a.") | - | (ta)) | -

12 | (b.") | - | (b)) | -

13 | -°.° | ~ | (-NIL) |

14 | -a. | - | (-a) |

15 | -b. | - | (-b) | -

16 | R | . | (NIL NIL) | -

17 | a.(7.7) | a. | (a NIL) | ~

18 : b.{".7) | b. | (b NIL) | -

e . s | l = &« . |

22 | -T.(7.0) | - | (-NIL NIL) |

23 | -a.(7.7) | -a.” | (-a NIL) |

26 | -b.(7.7) | -b." | (-b NIL) | .

25 | ".(a.n) | ".a. | (NIL a) | -

26 | a.(a.”) | a.a. | (a a) | -

27 } b.(a.’) | b.a. | (b a) | ~

e .. | | . .. | .

<R | -".(a.") | - .a. | (-NIL a) | a.

32 | -a.(a.”) | -a.a | (-a a) |
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Instead of generating terms with a principal "."-operator and with a
principal "-"-operator as elements of the same set [carrier], it 1is
also possible to divide these “sorts® of terms into two sets
[carriers], thus generalizing the generator-separated algebras of
section 3.1 and definitively proceeding from homogeneous or one-sorted
algebras to heterogeneous or many-sorted algebras as developed in
(Higgins 1963), (Birkhoff & Lipson 1970), and (Goguen et al. 1978). for
our constructor algebras the general advantage of heterogeneity 1s the
possibility of putting terms with auxiliary top-level constructors
[e.g. the negated terms abovel and terms which are only relevant as
subterms [e.g. the non-""" atoms in section 3.1 and the arcs and
hyperarcs in section 5] into carriers distinct from the carrier
containing the terms with the “interesting” top-level constructors;
also some operator restriction axioms [e.g. listrestriction in ALCO1S
of section 3.1]1 and conditions on axioms become superfluous through the
heterogeneous “sort structure” [the elimination of pegated conditions
is important for guaranteeing initialityl. On the other hand, the
differentiation of several carriers calls for a differentiation of the
operations [e.g. “." and “./" in ALCO1S$], which sometimes may appear
artificial and furthermore necessitates a corresponding increase of
axioms to be postulated for obtaining quotient algebras.

Our heterogeneous version ALC02  of ALCO2 will be two-sorted,
differentiating the original carrier M into a carrier M. for products

and a carrier M- for negated terms. [Heterogeneous versions of
homogeneous algebras, definitions, axioms, and lemmas will be suffixed
with a """ "-mark; names of carriers -- and their generating sets -- will

be suffixed with the name of the principal operation for constructing
their element terms.] This gives rise to a differentiation of the
original multiplication operation into an operation ".'" for
multiplying unnegated with unnegated terms and an operation for
multiplying negated with unnegated terms. [Operation names necessitated
by carrier partitionings will be primed versions of the original
operation names.]

"
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Definition2”:
A. generating set [a finite set]

IN A. distinguished empty element
A- = {} generating set [the empty set]
ALCO2™ = (M. ,M-;.',."",-) algebra with
M., M- carriers generated by A., A-

with *.'*, ", "‘'=, "-"

. M. x M. -> M. binary operation [unnegated multiplication]
mt,m2) = m1. 'm2 [m1 IN M. and m2 IN M.]
U M- X ML o> M. binary operation [negated multiplication]
Cmt ,m2) = mt. ' 'm2 {m1 IN M- and m2 IN M.]
- M. o-> M- unary operation
~(m) = -m [m IN M.]

; ; b o

.'listrestriction™: m1.'m2 = ° if m2 IN A. MINUS {"}

.

. 'listrestriction”™: mi1. ' 'm2 = ° if m2 IN A. MINUS {’}

The conditions of the listrestricition” axioms exploit the fact that m2
must denote a member of M. [rather than of M-], due to the "sorted”
definitions of ".'" and ".''", so that the only remaining possibility
of "erroneous” products is m2 being a member of the generating subset
A. minus the distinguished element " "; without using this space-saving
fact, the axioms would become the rather lengthy conditional equations
IrTr o mi.'m2 = T if m2 <> n.'n’ and m2 <> n. 'n’ and m2 < ° and
CIrT:o m1 . 'm2 = T ifm2 <> n.'n’ and m2 <> n.''n' and m2 <

The directed labeled hypergraphs corresponding to heterogeneous
algebras have as many nodes as there are carriers. For example, ALCO2”
is depicted thus:

XKk %%
* *
* v v
RIS T S b S, B e em o v e o e e
| * x |rxxxxxxxxexxy | |
Axkxx) | * M. * ] | M- |
| ' I l |
e e e e K e e
* * *
* x| x v
XKk KEXEAKE AKX AR AR AR AR KR A Ak ok &

This diagram can be regarded as an expansion of the ALCO02 diagram with
the node M divided into the nodes M. and M- and the "."-arrow divided

correspondingly into the ".'"-arrow and the ".''"-arrow. Notice that
the hyperarc notation clearly indicates the ordering of the arguments,
independently from geometric layout [the ".'""-operation has M- as its

first argument and M. as its second], thus avoiding a problem with
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polyadic edges in (Goguen et al. 1978). [A disadvantage of hyperarcs is
the smaller degree to which their last element [valuel is set off from
the other ones [arguments] pictorially; however, this will turn into an
advantage in general many-sorted relational structures, which do not
have an argument/value distinction.]

Example:
A. = {7, a, b}
A- = {}

The two carriers M. and M- generated by these sets A. and A- with the

restricted operations “.'* and ".''" <can be seen as heterogeneous
Herbrand subuniverses, i.e. the 1limits of the sequences of sets
M.0 = A., M.1 = M.0 u ., a.'’, b." "}, . and
M-0 = A-, M-1 = M-0 U {-", -a, -b}, ..., where for general n>0
M.n = M.(n-1) U { x.'y | x IN M.(n-1) and y IN M.(n-1)

and y = n.'n" or y = n."'n" ory = ")}

Ul x.""y | x INM-{n-1) and yv IN M.(n-1)
and (y = n.'n" ory =n."'n"ory = ")}

and
M-n = M-(n-1) U {-x | x IN M.(n-1)}

with the set membership conditions (y = n.'n’ or v = n."''n or y = )
embodying the negated listrestriction axiom.

The following tables depict three notations and a Remove reduction for
M.2 and M-2. Note that --', --a, and --b do not appear in M-2 because
multiple negations are excluded in ALCO02" by the fact that "-" maps
from M. to M- only, not from M- to M-.



no. | basic binary form

......... o e

1 |

2 | a

3 Vb

cee MLD mmmmmmmmmme-

4 |

5 | a

6 Vb.'

e O B

7 |

8 | (a."")."

9 | {b." ")

10 | -7,

11 | -a.""

12 | -b.

13 | G

14 | a." (7

15 | b.'(

T I

19 |

20 | -a. " (7

21 | -b.""(

22 I

23 | a. (a.’

24 ] b."(a."’

A

28 | -7.""(a.

29 | -a. " "(a.’

30 | -b. " "(a.’

31 | “.'(b.""

32 | a. " (b.""

33 | b. (b

. | . .

37 | -".""(b.

k)] | -a. "(b.’

39 V -b. " (b

--- M2 - -
|

no | basic binary form

_____ B o = e o e o it

0 v

- H_o ____________

1 | -

2 | -a

3 vV -b

S-S M_' ...............

4 | -C° )

5 | -(a.

6 V -(b )

- 37 -

N-ary/paren-sp.

LISP list

((NIL))
((a))
((b))
(-NIL)
(-a)

(-b)

(NIL NIL)
(a NIL)
(b NIL)

(-NIL NIL)
(-a NIL)
(-b NIL)
(NIL a)
{a a)

(b a)
(-NIL a)
(-a a)
(-b a)
(NIL b)
(a b)

(b b)
(-NIL b)
(-a b)
{-b b)

—_—t e e e ¢ — ——— g —  —

reduction
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Many-sorted algebras as considered here can be combined with the
generator-separated algebras as introduced in section 3.1, by
separating the generators of certain sorts from their generated
carriers. For example, the carrier M. of the many-sorted algebra ALCO2”
can be separated into the generator carrier M/ and the generated
carrier M_, leading to a many-sorted generator-separated algebra
ALCO027$, much like the division of the carrier M of the one-sorted
algebra ALCO1 1led to the generator-separated algebra ALCO1S$. This, in
turn, enforces not only a division of the operator ". " into " and
“./", vcorresponding to the division of ".", but also a division of "-"
into a negation operator “-/* for elements in M/ and a negation

operator "-" for elements in M_.

Definition2™$:
A_ generating set [a singleton set]

IN A_ distinguished empty element
A/ generating set [a generator]
A- = {} generating set [the empty set]
ALCO27S = (M_,M/,M-;.,./,. ",=,-/) algebra with
M_, M/, M- carriers generated by A_, A/, A-

with ".", "./", """, "=", "=/" [M/ = A/]

o M_ox M_ -> M_ binary operation [consing lists to lists]
Lmt ,m2) = mi m2 [m1 IN M_ and m2 IN M_]
Ao Mox M -> M binary operation [consing non-""" atoms to lists]

Am1,m2) = m1./m2 [m1 IN M/ and m2 IN M_]

.:: : M- x M_ -> M_ binary operation [consing negatives to lists])
L mi,m2) = m1."'m2 [m1 IN M- and m2 IN M_]

- M_ -> M- unary operation [for negative lists]

=(m) = -m [m IN M_]

-/ : M/ -> M- unary operation [for negative non-""" atoms]
-/{m) = -/m (m IN M/]

The listrestriction™ axioms have become superfluous, because the second
arguments of both ".'"-derivates, and "./", as well as the second
argument of ".''" cannot lie in M/ = A/ but must be elements of M_ [(as
illustrated by the three congruent “inverse-j"-like arrow parts below].

As a diagram ALCO02"$ can be depicted thus (assuming the generator is
A/ = {a1, ..., aN}]:



w
w
]

KKK ' 33 Kk
* * X * x
* v 4 v x* v
R — S EEEE S TR S Firesriae I R nnE e LR L e
| * * 3 lttt****tt)l |
xxxxny | x M_ x x | | M- |
| * % % | | |
P o Rwmwim o = om o Kmmmee | e eeeeeeem e ce - ——————-
* * 1 * °
* . % x x %
xxx x 3332322333 23222222222 x
* &
x ) x
x *
____________________ 4
al | | s
xxxkK) | | -7 *
' '*ttt*tt**kttttttttt**tt*kt**tt*t*t*
| M/ I
aN | |
kxxxk) | |
| |
Sample terms from M_2 corresponding to nos. 20 and 38 in M.2 of the
ALC02” example are, respectively, the basic binary forms -/a. "( _")
and -/a.'"(b./") and their N-ary/paren-sparing short forms, -/a. ' _
and -/a.''b./" .
A version of the meta-level Equality relation introduced in section
3.1 can also be formalized as an object-level algebraic operator, "="
This could have already be done for the "-"-less list algebras in that

section but is introduced here for ALC02"$, because the application of
=" in section 4.2 will additionally call for negative elements.
Instead of the operator "=z" for the generator-separated algebra
ALC027$, the usual “"generic” equality operator could be defined, even

more easily, for the non-generator-separated algebra ALC02", permitting
the comparison of both atoms and lists; again, however, the intended
application of "=" is in ALCO2"$-based algebras, because this operator
will conclude a development largely completed with generator separation
already -- the elimination of conditional axioms.

To reinterpret the equality predicate [relation] as an operator,
“=", the heterogeneous algebra ALC02"$ is first extended by the boolean
carrier Mb {T, F} to the algebra ALC02"S$b. This Mb is then used as
the codomain of the “="-operation, whose domain will be M_ x M_
[therefore "=" can only compare lists, not atoms]. For the "z"-axioms
we will also need an "if then else"-operation over Mb, which we call
"(1" and use in the mixfix notation pltle, meaning "if p then t else e"
[thus the brackets are abused as two infixes separating the three
arguments of the single operator they representl. The application of
" will also necessitate a version "[1" of "[1", which uses elements
in M_, not in Mb, as "then" and "else" parts.

.
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Clearly the "unconditioned” algebra ALCO27"Sb -- with the Mb-valued
operator ":=" being a predicate rather than a constructor -- is no
longer a proper constructor algebra. However, in the ADT view the
entire carrier Mb = {T, F} can be regarded as an auxiliary or "helper”
type (Goguen et al. 1978), with the operations "=", "[1", and "[1",
involving Mb, being “"hidden”, i.e. invisible from the outside. For
boolean-extended algebras which could be obtained similarly from
ALCO3"-ALCO5” in section 5 the same remarks would apply.

Definition2”$b:

A_=1{"} generating set [a singleton set])

A/ = {at1, ..., aN} generating set [a generator]

A- = {} generating set [the empty set]
ALCO27$b = (Mb,M_,M/,M-;[1,[1,=,.../.,. ".=,-/) algebra with
(M_,M/ M-;,,./,."",=.-1) as ALCO27$

Mb finite carrier [a two-element set]
T, F IN Mb boolean elements

(1 : Mb x Mb x Mb -> Mb ternary operation ["if then else” on booleans]
(1 (mt,m2,m3) = mi[m2Im3 (m1, m2, m3 IN Mb]

[1 : Mb x M_ x M_ -> M_ ternary operation ["if then else” on lists]
[1(m1,m2,m3) mi[m2Im3 [m1 IN Mb and m2, m3 IN M_]

= M_ x M_ -> Mb binary operation [list equality]
z(m1,m2) = mizm2 [m1 IN M_ and m2 IN M_]

As a diagram ALC02"$b can be depicted thus [assuming the generator
is A/ = {at1, ..., aN}I1:



19| {1
AKKX * % XKL K
X * * *
* v % X *
X mmmmmee- PR S
x| x % |
x| Mb * % |
x| x ¥ |
X e == b G ad
x " x %
* * x %
x % L & 1
* *
* r
* *
L4 b 4 * LR &4 XXX bR 1
x 4 x * x * x 4 x
v *x % * * v x v x v
K e oK I R — Kemomm P
| x x * * x l****t****)l |
xxxxx) | x % x % M_ % * | | M- |
| x % * * * 13 | | |
R JUURE U Kecskcuusnss P SR Kmimimme et
x % x x * x x x -
x X x % * x * v %
k% = k% xxx & 3232222222222 2 8 x
X *
x ./ *
% x
_________________ 13
al | | x
xxxkxy | | -7 3
I '*t**tt*t**ttt***t****t*tt***
| M/ |
aN | |
txxxk) | |
I I
The axioms below, defining "=", "[]", and "[]1", are postulated for
ALCO27Sb. lLet wus start with the easy ones, the branch axioms for "[]"
and "[]":
[lbranchl: TImlm' = m
(lbranch2: Flmlm' = m'
Llbranchl: TImlm' = m
[lbranch2: FImlm' = m'
To express the equality axioms for z", we will wuse the following
conventions: First, indexes I and ) are written in parentheses after
certain axiom names to indicate how these are parameterized as axiom
schemata. Second, it must be emphasized that the "for" clauses on
eql-eqé -- unlike the usual "if" clauses -- are meant as meta-level
statements: Since it will be wused as part of our "unconditioning”
method, we also have to define "=" itself without resorting to
conditional equations. Third, in order to avoid extensive case
analysis, we let ".'" generically denote "./" if its left argument is a
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non-""" atom and “." otherwise; similarly, in the “for"” clauses we

refer to a reunited generating set A = {a0, at, ..., aN}, where ab=".
To give two examples, eqi(I) will abbreviate the N+1 unconditional

equations

.m= _.m = m=m’
at./m=at./m’ = mzm’
aN./mzaN./m' = mzm’

and eq8 will stand for the N+1 equations

(mi_m2)=" = F
(al./m2)=" = F
(aN./m2)=z" = F

With thése conventions, we can now specify the eight eq axioms:

equalityl(I): {(al.'mi=(al.'m") = m=m’ for al IN A

equality2(I,J): (al.'m)=(a).'m’) = F for al, a)J IN A with al < aJ
equality3(I): {al.'m)=((mt.'m2)_.m’) = F for al IN A

equalitys(I): {(mt. ' m2)_m)=(al.'m") = F for al IN A

equality5: ((m1.'m2)m)=((m3. mé)m’') = ((m1. 'm2)=(m3. mé&))mzm"1¥
equalityb: == T

equalityl: ‘=(m1.'m2) = F

equality8: (m1.'m2)=" = F

Presupposing the generator A/ = {a1, a2, a3}, where al=a, a2:=b,
al=c, some terms of the carriers Mb and M_ of ALC02 $b and their
{1b/[]1b/eq-reductions are the following.

Mb: TIF)T =[1bi1= F
M_: (TIFIT)L 1(at./") =[1b1= FL llat./") =[1b2= (al./")
Mb: (at./ )=(a2./ ) =eq2(1,2)= F
Mb: (at1./ )=(a1./") =eql(1)= "=  =eqb= T
Mb: (a2./((a3./ ). ))=(a2./((a3./ ), (a1./ ))) =eqi(2)=
((a3./7).7)=((a3./ ), (a1./7)) =eq5-=
((a3./ 7 )=(a3./ 1) =(a1./ ))IF =eq1(3)=
("=")0( =(at./ ))IF =eqb=
TE( z(a1./ ))]F =[1b1=
“z(al./’) =eql:=
F
M_: (((a3./(at./ ). ta2./(at./(a3./ ))))=(at1./(a2./(a1./(a3./7)))))
L
(at./(a2./(a1./(a3./7))))

1

zeq4(1)=
Fl(at./(a2./(at1./(a3./7))))]"
=[]b2=

Notice that the 1last but first reduction could be shortened by

introducing the “short-cut” axiom [1b3: mim'Ilm' = m', because, after
the third reduction state, we could then continue without ever reducing
the if" part, ... =eql= ((ad./ )=(a3./ ))(FIF =(]1b3: F. An even more

"

drastic shortening effect for all T-valued "="-terms could be achieved
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by generalizing eq6 to eq6': m=m = T, thus permitting one-step pro9fs
for arbitrarily large equal lists m, e.g. (al./(a2./7))=z(at./(a2./ ))

zeq6’'= T, as wusable to shorten the proof of Lem22 S$b in section 4.2
{the other eq axioms do not thereby become wunnecessary, of course,
because F-valued “="-terms must also be reduced -- our algebras

“don't know" something like "negation by failure"].

4 THE BASIC PROPERTIES AND THE BASIC COLLECTIONS

In this section, we first introduce the basic properties of
Commutativity, Idempotence, and Associativity as axioms into our list
algebra. The initial capital letters are used to indicate that these
notions get their meaning from the N-ary interpretation of the algebra.
Not taking into account this N-ary interpretation, the “capital
initial"” notions differ considerably from the corresponding classic
binary "small initial” notions.

Using the basic properties, we then go on to define the basic
collections as different "quotients” [algebras derived by adding axioms

to given algebras] of the algebra ALCO2 introduced in section 3.2. The
discussion of basic collections will include another possible

representation of [variable-length] strings as nested [fixed-lengthl
terms, complementing the well-known representation of nested terms as
strings with parenthesis characters. [Since both can represent each
other, neither strings nor terms can claim to be "more basic”, and the
traditional “string orientation” in theoretical computer science may be
worth reconsidering in the 1light of the “"term orientation” in
term-rewriting systems, computer algebra, and algebraic ADTs, as well
as in automatic theorem proving, functional/relational list processing,
and other AI techniques.]

4.1 Commutativity

What we interpret as Commutativity on N-tuples, 1is really a new
property on pairs, quite different from classic binary commutativity,
i.e. from

commutativity: mi.m2 = m2.mit

While commutativity is applicable to two subterms connected by the
binary operator, Commutativity is applicable only to three subterms
connected by two occurrences of the operator in a right-associating
manner. Whereas commutativity exchanges the two operands of the single
operator, Commutativity exchanges the first operand of the outer
operator with the first operand of the inner operator, the second inner
operand remaining unchanged.

m2.(m1.m3) if mt <> -n and m2 <> -n°’
m2.m1.m3 if m1 <> -n and m2 <> -n'

Commutativity: m1,.(m2.m3)
shorter: m1.m2.m3

The condition on the Commutativity equation is only needed for its wuse
in algebras like AlLC02, having negated elements: Neither of the
subterms m1 and m2 may have a negative sign, as introduced by
Idempotence and specially treated by the Remove axioms [section 4.2].
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For the many-sorted algebra ALCO2” the following variant of
Commutativity can be used [for the additional generator separation in
ALCO2"$ we get C™$ by just adopting the generic view of ".'" as "./" or
"“,", as exemplified with the eq axioms in section 3.2]:

s ]
Commutativity™: mi1.'(m2.'m3) = m2. {mi. 'm3)
shorter: mi. ' m2. 'm3 = m2. ml. m3

In this heterogeneous formulation the condition mi <> -n and m2 <> -n’
of the homogeneous version has become implicit, because the very use of
the single-primed operator “.'" [rather than the double-primed “. '"]
to the right of mt and m2 forces the values of these variables to be

unnegated.

For the many-sorted algebras ALCO3 -ALCO5  in section 5 we will need
a more general kind of Commutativity, involving two possibly different
binary operators "*'" and “*''" [extending our previous naming
convention to axioms with two equal-right operators, we prefix the
axiom name with both of these operators]:

"% Commutativity™: mi1*'(m2*''m3) = m2*" " (m1x'm3)

shorter: mi*x'm2*' "m3 = m2% ' ‘mi*‘'m3

This kind of Commutativity, *'*'°'C”, generalizes the previous one,
.'C”, because by setting *' = .' and x'' = _' in *'*#''C”, we obtlain

.".'C” [shortenable to .'C” by joining the now identical operators]).

A single C application can exchange adjacent elements only [see
Lem19 below for an example]. Repeated C applications, however, can
exchange elements between which there is an arbitrary number of
intervening elements [see Lem20 below for one intervening element];
more generally, they can produce arbitrary permutations of the
elements.

Examples:
lemi9: a.(b.(c.”)) = a.(c.(b."))
Proof: b.(c. ) =C= c.(b.")
a =aand b.(c.’) = c.(b.")
a.(b.{c.’)) =E= a.(c.(b. ))
Lem20: b.(a.(c.’)) = c.{a.(b."))
Proof: b.(a.(c. )) =C= a.(b.(c."))
a.(b.(c.”)) =Lem19= a.(c.(b. ))
a.lc.(b.’)) =C= c.(a.(b.))

If viewed as transformations on binary trees, commutativity can be
seen to exchange subtrees on the same level, while Commutativity
exchanges subtrees on different levels.
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When visualizing our N-ary interpretation through a “"stretched node”

representation of N-ary trees, however, Commutativity can also be seen
to involve only subtrees on one level [as indicated by the short form

mi.m2.m3 = m2.m1.m3].

1
O
1]
—
—

Therefore, while in the binary interpretation of Commutativity m3
stands for the root of an arbitrarily deep binary subtree remainder,

/I \ / A\

in the N-ary interpretation m3 abbreviates the remainder of a stretched
node from which any number of further branches may fan out:

In most later proofs, instead of first showing the equality of parts
of expressions and then using E explicitly to show the Equality of the
entire expressions, we will -- as is usual -- directly apply properties
like Commutativity to well-formed subexpressions jinside expressions,
thus e.g. making the proof of Lemis immediate, a.(b.(c.’)) =C=
a.(c.(b.’)). Here, C is applied to the well-formed subexpression
b.(c.’ ) with bindings mi1=b, m2=c, and m3=". In the tree view of
expressions, this application can be illustrated thus:
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4.2 Idempotence

Normally, idempotence is defined as replacing an operator with two
identical operands by any one of these operands.

ldempotence: m.m = m

Suppose, then, we define N-ary Idempotence as "Adjacentpotence” as
follows:

mi.m2
mi1.m2

Ad:jacentpotence: mi1.(m1.m2)
shorter: mi.m1.m2

This generalizes binary idempotence in a manner analogous to the way
Commutativity generalizes commutativity, but observe that one
"."-operator always remains under Adjacentpotence, whereas the
"."-operator 1is removed under idempotence. The difference is clearly
seen if there are only two non-""" elements, as in a.a =iz a versus
a.a. =Aj= a. . A definition like Aj would not, however, permit the
idempotent removal of one out of two non-adjacent identical elements
[hence the name “Adjacentpotence”]. Of course, this would not be
necessary for sets, since their additional property of Commutativity
would allow the identical elements to “commute” together before
Adjacentpotence would have to be applied, as e.g. in [we wuse informal
set notationl) {a, b, a} =C= {a, a, b} =Aj= {a, b}. If, instead, we
would like to have more general idempotent data structures, such as
"non-commutative sets” [i.e. ordered sets or communes], idempotence
would have to be capable of removing non-adjacent elements without
relying on their commuting together beforehand. Since we do in fact
want to formalize such data structures, we will introduce a generalized
concept of Idempotence, in this way also ensuring maximum independence
among the basic properties.

For this we will make use of the "-"-operator of ALC02. The
semantics of the negated elements in ALCO2 combines aspects of left
inverse elements in groups and left zero elements in semigroups. Like
an inverse, a negated element can only remove unnegated occurrences of
itself; like a zero it itself remains intact after removal for further
action [R1]. Unlike ordinary inverses and zeroes it can commute with
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those elements to its right which are not its unnegated versions [R2]
until it disappears at the "end marker” element """ [R3]. Altogether,
negated elements may sweep "horizontally through* [N-ary
interpretation] or "diagonally down” [binary interpretation] a
"."-product, cleaning it from all their unnegated versions.

Removel: -mi.(m1.m2) = -mi1.m2

shorter: -mi.mi.m2 = -mi.m2

Remove2: -m1.(m2.m3) = m2.(-m1.m3) if m2 <> mit
shorter: -m1.m2.m3 = m2.-m1.m3 if m2 <> m
Remove3d: -m.’ )

The condition on the R2 equation prevents a . negated element to Jjust
skip an unnegated [in general, once less negated] occurrence of itself.
A negated element may also move from right to left by reading R2 1in
this direction; however, the R2 condition must be fulfilled for that
reading too, i.e. the negated element cannot commute over its unnegated
version in the right-to-left direction either. If it could, the
unnegated element would enter into the removal scope of R1, so that R1
could wrongly remove elements in both directions; even worse, in
combination with a right-to-left reading of R3 [or with Idempotence]
for generating negative elements, every element could be removed, like
the element a below (a "near miss” axiom which cannot be wused for an
equation chain step is written inside an inequality sign):

a. =R3= a.(-a.’)
<R2> -a.(a.’)
=R1= -a.’
=R3:=

For the many-sorted algebra ALC02” the Remove axioms look like this
(for their generic interpretation as R™S$ see the I”$ remarks below]:

Removel™: -m1.''(m1.'m2) = -m1.''m2

shorter: -m1. ‘'mt1. 'm2 = -ml."' ‘'m2

Remove2™: -mi1.''(m2.'m3) = m2. ' (-m1.’' 'm3) if m2 <> mi

shorter: -m1." 'm2.'m3 = m2.'-m1. " 'm3 if m2 <> mit

Removeld™: -m." "'’ =

The heterogeneous axioms R1~ and R2” do not reflect the complete
capabilities of the homogeneous axioms R1 and R2, respectively:

1. While in R1 the variable m1 may denote some term which is negated
itself, in R1~ the m! denotation must be unnegated [m! occurs as a left
".'"-argument]; however, the doubly negated elements with which R1 may
thus redundantly remove singly negated ones cannot occur in ALCO2” in
any case. 2. Only with the additional heterogeneous R2~ variant
-m1."'-m2."'m3 = -m2.''-m1.''m3 could negated elements commute with
other negated elements; however, although this additional capability is
implicit in the homogeneous axiom R2, it is never required, hence is
omitted in the heterogeneous version.

Apparently, the condition m2 <> m! of R2 proved immune against the
homogeneous/heterogeneous transition. The heterogeneous axiom R2™ is
actually the only remaining conditional axiom in the many-sorted
generator-separated versions of our algebras of collection data. To
guarantee initiality it is therefore worthwhile to eliminate the R2"
condition in generator-separated algebras. This is possible by using
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the operators "=" and "[]" introduced in section 3.2. The use of -
is related to the use of explicit "if then else” operators as a means
for avoiding conditional equations in (Goguen et al. 1978). The use of
"=" will become clear in the following description of our elimination

method.

Instead of ensuring equality implicitly with two occurrences of the
variable m1 on the left-hand side of R1~ and ensuring inequality with
the condition m2 <> mi on R2™, these axioms are joined to an axiom
R1+2°Sb, which uses “[]" as its principal right-hand-side operator for
branching on the outcome of an explicit “="-test into an R17-11ke
right-hand side, if the test yields T, and into an R2 -1like right-hand
side, if the test yields F. Since "=" is only applicable to lists, some
supplementary axioms deal with the cases where one [R27$b2, R27$b3] or
both [R17$b, R27$b1] of m!1 and m2 are atoms; the last axiom [R3"$b] 1is

simply a copy of R3™.

The Remove axioms, then, become [we use the conventions stated for

the eq axioms in section 3.2, and furthermore let "-" generically
denote "-/" if its argument is a non-"" T

atom and “-" otherwisel:

Removel $b(1): -al.""(al.'m) = -al."'m for al IN A
shorter: -al.""al. ' m = -al."'m for al IN A
Remove2 Sb1(I,J): -al. "(al).'m) = aJ.'(-al. 'm) for al <> al) both IN A
shorter: -al.""al.'m = a). ' (-al. " "m) for al <> al both IN A
Remove2 " $b2(I): ~al. " "((m1.'m2).m) = (m.'m2)_(-al. ' 'm) for al IN A
shorter: -al." " (mt. 'm2).m = (m1.'m2).-al. " 'm for al IN A
Remove2”$b3(I): -(m1.'m2). "(al.'m) = al. ' (=(m1.'m2)." 'm) for al IN A
shorter: -{m1.'m2). " "al.'m = al."=(m1.'m2). " 'm  for al IN A
Removel+2 Sb: =(m1.'m2)." " ((m3. ' mé),m) =

((m1.'m2)=(m3. ' mé))[(=(m1. ' m2)." 'm)I((m3. 'mé)_ (=(m1. ' m2). "m))
shorter: =(m1.'m2)." " (m3. mé).m =

((m1.'m2)=(m3. 'm&))[(=(m1.'m2). " ‘m)I((m3. mé) ~(m1. m2)." 'm)

Removed S$b: -m. """ =

For the many-sorted algebras ALCO3 -ALCO5  we will need more general

Remove axioms, involving several binary operators “*'", "x'‘'" *"x°'3'",
.. "*'M', along with several negation operators "-'", “"-‘‘'", "-‘3'“

& e g § oyt wa o i i . .
- - N, where *°3 or "% 1s used to construct arbitrarily

negated terms onto other terms. We have adopted the convention that
op'X’' stands for an op occurrence with X primes, so that, for instance,
op'3’ is equivalent to op''‘. As a further convention, an operator op
will denote itself if it has no primed versions and will generically
denote any of its primed versions op’'X' otherwise. With this convention
the axioms can be expressed thus:

e

*Removel™: -mi1*'''(m1*m2) = -mi1x m2

shorter: -mi*" " ‘m1*m2 = -mi*x’" " "m2

*Remove2™ : -m1*'''(m2*m3) = m2*(-mi*' ' 'm3) if m2 <> mi
shorter: -m1*' ' ‘'m2*m3 = m2%-mi1*" " 'm3 if m2 <> mit
*Removel”: -mx‘" " =

Fach of the three axioms is really a scheme using the operators "*" and

-" as place-holders for multiplication and negation operators with any
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required numbers of primes. Of course, on instantiation of an axiom
scheme all of its "*"-occurrences ["-"-occurrences] must be given the
same number of primes, whereas across the operators "*" and "-"  the
numbers of primes may be different. For R2” this permits instantiationi
like -'m1%' " 'm2*"'m3 = m2*x''-'mi*""'m3 if m2 <> m1. Although the R1

scheme permits similar instantiations, only instantiations of the form
(j denotes the same number of primes for "*" and for "-"]
Cytmix  mix 5 m2 = -~ mix" ' 'm2 will have meaningful interpretations,
because m! will only be able to denote the same value both as the
argument of “-" and as the first argument of "*" if both operators
expect the same “sort” in these arguments, as ensured by their

identical number of primes.

The condition m2 <> mi1 could be eliminated here as shown for the
ALCO2" versions of the Remove axioms.

On the basis of the Remove axioms we can now define Idempotence as
simply introducing a negated element to the right of an unnegated

element.

Jdempotence: mi.m2 = mt.(-m1.m2) if m1 <> -n
shorter: mi.m2 = mi.-mt.m2 if m1 <> -n
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