
%
U

. . .U
. . n

w
£

.

@
%

„a

@
.

.
b

b

sh
u

e
ß

_
_

U
Ö

m

December 1983

\\ÜQ

FIT - PROLUG:

Harold Holey

n..
OS.1WCegaU0..

m

A F'unct ional/Relat ional

Memo SEKI—B 3—1 4

>
5

8
m

.>
>

‚„
5

2
3

2
9

0
2

3
.

8
5

-0

es es?
Gius—

E
m

ä
se

m
flm

x
„3

9
s

-
„_

_
_

m
E

ö
—

E
£

2
2

3
5

8
”.

-=
u

m

FIT - PROLOG: A FUNCTIONAL/RELATIONAL LANGUAGE COMPARISON

Harold Boley, Universitaet Kaisers lautern
Fachbere ich Informatik, Postfach 3059 , 0—8750 Kaisers lautern

Abst rac t

The programming languages FIT and PROLOG are compared as examples of
functional and relational programming. respectively. This leads to some

proposals concerning both languages. —
As an introductory tutorial. PROLOG facts. questions. variables.

conjunctions, and rules are reformulated in F IT .
A natural equivalence between functions and relations is exploited

for their interchangeable FIT use. An ESCVAL operator is proposed which
causes relation calls to return values of request variables and thus
permits their function—like nesting. Function calls with request
variables are introduced. showing a sense in which FIT functions are
more general than PROLOG relations. Higher-order functions and

relations are demonstrated to be available i n FIT but not in PROLOG.

PROLOG structures and FIT compounds differ mainly in the fixed arity
of the former and the variable length o f the latter. FIT's compounds

can also be interpreted as function calls that return themselves in

normalized form.
Pattern matching in PROLOG [F IT] treats list heads and tails

asymmetrically [symmetrically] and doesn't [does] allow for
non-deterministic results. While PROLOG generalizes pattern-data
matching to pattern—pattern unification. FIT generalizes it to

adapter—data fitting.
PROLOG's Horn clauses in FIT become implicit fitters: Facts become

special implicit adapters and rules become special implicit
transformers; for PROLOG II constraints. transformers with LOCAL bodies

or invocation adapters with COM[POSE-TRA]F0 expressions can be used.
While PROLOG interprets clauses in textual order. FIT interprets them
in a specificity order which is modifiable by a SECURE operator.
Although PROLOG's cut operator is not used in F IT , a proposal is made
to distinguish the specification of clause ordering [by FIT's SECURE
operator] and the specification of clause abandoning [by an EXCLUSIVE
operator corresponding to 'initial'—restricted cuts]. EXCLUSIVE-marked
COMFO-constrained rules are then used for functional and relational
representations of guarded commands.

A comparison of the list processing capabilities of both languages
exemplifies how FIT's adapters can make relational programming more
concise than PROLOG‘s Horn clauses. The representation of sets as lists
without duplicates leads to difficulties with PROLOG's standard
intersection and union predicates, which can be overcome by
representing them as the self-normalizing CLASS data structure in FIT.

Possible reasons for the poor readability of Warren's PROLOG
serialise predicate are discussed and an alternative F IT function is
formulated which shows the inherent simplicity of this problem.
McDermott's PROLOG quadrat predicate is transformed into a more concise
and readable ESCVAL form. which in turn is transformed into a
corresponding F IT ESCVAL form and into a functional FIT form. Fermat's
equation is formulated relationally. showing that for principal reasons
some relations can not be used in all ways allowed by PROLOG's
notation, a problem that does not arise in a corresponding functional
FIT formulation.

a tgn ts

1 INTRODUCTION 2

2 A TUTORIAL COMPARISON OF F IT AND PROlOG 5
2 .1 Fac ts 5
2 .2 Ques t ions 7
2 .3 Variables 7
2 .4 Conjunc t ions 12
2 .5 Ru les 14

3 FUNCTIONAL AND RELATIONAL PROGRAMMING 19
3 .1 In terchanging Funct ions and Relations 21
3 .2 Funct ion Calls with Request Variables 27
3 .3 Higher -o rder Func t ions and Re la t ions 32

k PROLOG STRUCTURES AND F IT COMPOUNDS 36

5 PATTERN MATCHING AND GENERALIZATIONS 40
5 .1 Basic Match ing : Variables i n Pa t te rns 40
5 .2 F i t t ing : Spec ia l E lements in Pa t te rns or Func t ions in Adapte rs kA
5 .3 Uni f i ca t ion : Variables i n Two Pa t te rns 46

6 HORN CLAUSES AND IMPLICIT FITTERS 49
6 .1 Fac ts 49
8 .2 Rules 51
6 .3 Clauses w i th Const ra in ts 53
6 .4 Clause Order ing 57
6 .5 Cut , SECURE, and EXCLUSIVE 59

7 LIST AND SET PROCESSING 69
7 .1 Elementa ry L is t P rocess ing 70
7 .2 Man ipu la t ing Sets 76

B THREE EXAMPLES 79
8 .1 Warren's SERIALISE A lgor i thm 80
6 .2 McDermott's QUADRAT Program 84
6 .3 Fermat 's Las t Theorem 89

9 REFERENCES 94

l ‚INTRODUCTION

This paper a t tempts to compare in de ta i l the p rogramming languages
F IT and PROLOG. I t d iscusses some o f the i r common and d is t ingu ish ing
f ea tu res and may thus shed some new l igh t on both languages. Hence i t
addresses readers who a re in te res ted in a t l eas t one o f these
languages . The paper can be read as a cons t ruc t ive c r i t ique o f
PROLOG-style p red ica te log ic o r re la t iona l programming from the
s tandpo in t o f F IT -s ty le app l i ca t i ve o r func t iona l p rogramming . I t a lso
shows tha t F IT can be v iewed as an in tegra t ion o f some o f PRDLOG's
re la t iona l f ea tu res w i th a func t iona l L ISP ph i losophy , a t the same t ime
avo id ing the c r i t i c i zed PROLOG fea tures .

More precisely. FIT consists of a kernel. pure F IT , and an

interactive user—interface, impure F IT ; FIT's present implementation is

F IT—1. Pure FIT is regarded in principle as a functional language

because it is based on purely functional features (Henderson 1980) .
augmented mainly by

1. Consistent-assignment variables. needed for patterns, which preserve

functionality much like the well-known single-assignment variables.

2. Implicit adapters, permitting the direct representation of PROLOG
facts and their retrieval using request variables.

Furthermore, since pure F IT -1 is implemented in a purely functional

L ISP subset, this paper can also be viewed as a preparatory step for a

semantic comparison of PROLOG with unaugmented functional languages,

like pure L ISP . completing the implementation—oriented comparisons from

(Warren et al. 1977) to (O'Keefe 1983) . Finally. since PROLOG borrowed
a lot from PLANNER-like languages. this, in turn. would entail an

indirect functional formalization of a subset of PLANNER-like

languages, complementing the logical/relational formalization of this

subset in PROLOG. Actually. FIT—1 itself can be regarded as a direct

functional reorganization of PLANNER, much like “Prolog may be regarded
as a logically reorganized Planner" (Fuchi 1982) .

The function augmentation of implicit adapters. besides allowing the

representation of data base facts, also provides a succinct FIT

notation for relation definitions [cf. section 7]. So, when we

criticize relational programming. this applies to PROLOG as well as to
a relational use of F IT . However. we feel the important thing is that
both functional and relational features are available as possibilities
in F IT . We dispute the contention that relational programming is
'simply a generalization' of functional programming and our critique
centers on the omission o f features like higher-order functions in
PROLOG [cf. section 3 .3] .

For PROLOG critiques from other standpoints see (McDermott 1980)
[PLANNER-like languages]. (Robinson & Sibert 1982) [denotational
semantics], (Kurokawa 1982) [software engineering]. (Bibel 1983)
[unrestricted first-order logic]. (Feigenbaum & McCorduck 1983)
[know ledge engineering]. and (Shapiro 1983) [multi—processing].
Self-contained treatments o f PROLOG and FIT can be found in the
references of this paper. More references can be obtained from
(Fuhlrott 198k) [nearly exhaustive PROLOG bibliography] and the author
[complete FIT bibliography]. A global perspective of PROLOG's role in
artificial intelligence. in particular in relation to that of L ISP . can
be found in (Boley 1982 /83) . which also contains references for all AI
languages mentioned in this paper.

In spite of whatever complaints we may have to make about PROLOG in
these pages, w e d o appreciate the excellent work done under the 'logic
programming' heading [in particular, Kowalski's pioneering logic
studies and the efficiency of Warren's von Neumann PROLOG compiler] and
the impact it has had on the Japanese Fifth—Generation Computer Systems
endeavour. both of which have strongly increased interest in artificial
intelligence in general and in AI languages and machines in particular
[as measured by the success of the book (Feigenbaum & HcCorduck 1983)] .
In our opinion it is still an open question, however. whether PROLOG's
traditional orientation toward efficient implementation on available

sequent ia l computers p rov ides an ideal base language fo r p ro jec ts in
fu tu re non-or thodox para l l e l computer a rch i tec tu res . Wh i le the in i t i a l
i ne f f i c iency o f McCarthy's LISP implementat ion o f LISP subsequently
suggested new machine a rch i tec tu res . the in i t i a l e f f i c iency o f
Colmerauer 's FORTRAN implementat ion o f PROLOG subsequently may make i t
poss ib le to l i ve w i th ex is t ing ones. I t i s perhaps p rec ise ly PROLOG's
ear ly e f f i c iency tha t shows i t s a f f in i ty to von Neumann computers.
ind ica t ing tha t i t cannot be the r igh t non—von Neumann l anguage .

St r iv ing fo r p rec ise te rmino logy . we p re fe r the te rm ' re la t iona l
p rogramming ' ins tead o f the o f ten -used te rm '1og ic p rogramming ' to
charac te r i ze PROLOG's programming methodology. In our f i e ld there i s
some tempta t ion to adopt ' f ash ionab le te rms ' uncr i t i ca l l y and norma l ly
one wou ldn ' t even no t ice a redundancy l i ke "Programming in PROgramming
i n LOGic" i n a book title. But now. even the p r inc ipa l founder o f log ic
programming has admit ted tha t the present d iscuss ion i s marked by the
confus ion o f 1991; programming w i th PROLOG. log ic nxggggmming with
programming languages . and log ic p rogramming w i th Horn c lause
programming (Kowalski 1983) . Below. we summar i ze the ra t iona le fo r our
t e rmino log ica l dec is ion .

F i rs t . we th ink tha t the te rm '1og ic programming' i s l ess su i tab le
because PROLOG's computat iona l mechanisms on ly over lap w i th the
deduct ive mechanisms o f f i r s t -o rder p red ica te ca lcu lus :

1 . PROLOG uses "ex t ra—log ica l f ea tu res" (VanEmden 1980) such as
the cu t opera to r and many o ther bu i l t—in p red ica tes go ing fa r
beyond f i rs t -o rder log ic (McDermot t 1980) : ”But perhaps PROLOG
wi l l t ake the wor ld by s to rm and perhaps log ic p rogramming
wi l l be fo rgo t ten . . . " (VanEmden 1980) .

2 . There a re f i rs t -o rder fo rmulas . such as those invo lv ing
d is junc t ion (Bowen 1982) and nega t ion (A ida e t a l . 1983) .
which a re no t p rovab le w i th PROLOG's Horn c lause p rogramming
but on ly w i th " fu l l f i r s t -o rder log ic programming" (Bowen
1982) .

Second. we th ink tha t the term ' re la t iona l programming' i s more
appropr ia te ma in ly because o f two reasons :

1 . The charac te r is t i c p rogramming language fea tu re o f PROLOG is
the t rans format ion o f re la t ions . even fo r computing
de te rmin is t i c func t ions [fo r which ear l i e r PLANNER-like
languages resor ted to L ISP] .

2 . PROLOG can be regarded as an enrichment o f re la t iona l da ta
base sys tems by deduc t ive re la t ion re t r i eva l .

A l though there a re many d ia lec ts o f PROLOG. the most wel l—known and
wide -spread vers ion i s tha t deve loped in Ed inburgh . and we w i l l base
our comparison on th is . Thus in the fo l low ing the unqua l i f i ed term
'PROLOG' will stand fo r 'Edinburgh PROLOG as descr ibed in (C locks in &

Hel l i sh 1981) ‘ .

At l eas t those PROLOG examples no t quoted from the l i t e ra tu re have
been tes ted . p r inc ipa l l y in DEC-10 Ed inburgh PROLOG and in a few cases
i n micro-PROLOG and LOGLISP. The F IT examples no t in t roduced as s t i l l

unimplemented suggestions have been tes ted in DEC-1o FIT—1, which is
itself r unn ing in UCI LISP.

The following section [2] is a tutorial introduction which may be
skimmed by readers who want to get to the essentials quickly or who
already have some knowledge of PROLOG and F IT . Section 3 contains the

central points of the discussion 'functional vs. relational'. including
relations that return values [ESCVAL operator]. functions with request
variables. and higher—order functions; it anticipates some of the
material treated more extensively in later sections. The short section
& deals with the data structures o f both languages and may be skimmed

by a l l those familiar with LISP. FIT, or PROLOG. Section 5 discusses
pattern matching as needed for f ac t retrieval and rule invocation,

including its unification [PROLOG] and fitting [F IT] generalizations.
Then, section 6 treats clauses [facts and rules] and their constraints
restriction, textual/specificity ordering, and cut/EXCLUSIVE/SECURE
marking. The penultimate section [7] compares list/set processing in
PROLOG and FIT and also demonstrates the use of FIT's adapter-driven
computation for relational programming. Finally. the last section [8]
gives more detailed examples [acknowledging Warren, McDermott, and
Fermat], but also points to a number of further principal issues in
functional/relational programming.

2 A TUTORIAL COMPARISON OF FIT AND PROLOG

This introductory comparison is based on the tutorial introduction
in chapter 1 of the standard PROLOG textbook (Clocksin & Mellish 1981).
It covers all the PROLOG features of this introductory chapter or, as
the authors call it, o f the “basic core o f PROLOG“. Some advanced
PROLOG features are not discussed in this introductory comparison. but
are treated in the remainder of this paper. Although the comparison can
be regarded as an introduction to FIT for readers acquainted with
PROLOG. it is not a general introduction to that language. because it
concentrates on PROLOG—related FIT features. All PROLOG examples are
taken from (Clocksin & Mellish 1981) . sometimes with minor extensions:
the subheadings are cited unchanged from this source.

2.1 Facts

A f ac t like "John likes Mary“ in PROLOG is regarded as a relation,
likes, that holds between two individuals; it is written as
likes1john.mary) and is stored by a "."-terminated statement

likes1john,mary).

[Thus the period is part of the object language. PROLOG, not part of
the meta language, English; to avoid confusion of language levels we
will always omi t meta—language punctuation after object—language
expressions displayed between two blank lines.]

In FIT the fact is regarded as a [predicate] function, LIKES. which is
'true' for the two individuals; it is written as (LIKES JOHN MARY) and
is stored by a unary GLOBAL expression whose argument is a one—element
list containing the f ac t . i.e. by

GLOBAL:((LIKES JOHN HARY))

[The mathematical function/relation notation, f(a1.a2.....aN). for LISP
func t ion ca l l s and, more generally, FIT fitments is r ewr i t t en as a list

with a distinguished first element f. (f a1 a 2 ... aN), which in FIT

for N=1 may be abbreviated to f:a1, i.e. in the example, with f=GLOBAL
and a1=((LIKES JOHN MARY)) . the parentheses are part of the argument

rather than the call notation.)

Whereas in PROLOG ".“ i s just a syntactical terminator, which in this

context serves as a top-level cue to invoke the storing routine, in FIT
GLOBAL is the s tor ing function which can be called from any level.

To create a four-element [n-element] data base in PROLOG one must
write four In] " " - te rmina ted relations like

valuab1e(gold).
femaletjane).
owns(john.gold).
father(john,mary).

while in FIT one may use a four—element [n—element] list argument of a
single GLOBAL expression

GLOBAL:((VALUABLE GOLD)
(FEMALE JANE)
(OWNS JOHN GOLD)
(FATHER JOHN MARY))

as an alternative to four In] corresponding GLOBAL expressions. PROLOG
does not allow the storage of several data base facts as a single
operation [the above PROLOG use of " " can be regarded as a postfix
operator corresponding to the built-in assertz predicate; cf. ASSERT in
PLANNER-like languages]. Instead, each fact must be stored
individually. which has been reported to be a common source of syntax
errors (Clocksin & Mellish 1981). On the other hand, in FIT the use of
GLOBAL's add i t iona l pair of parentheses is not obvious when storing
individual facts but becomes apparent when storing an entire data base.
The deeper reason for this general form of GLOBAL is its use as a
semantic primitive for multiple definition side-effects [for example.
the pattern match (>X >Y :) generates two binding side—effects (>X) and
(>Y), which are represented as GLOBAL:((>X) (>Y)) : cf. section 5.1]. In
order to avoid parenthesis omission errors when storing individual
facts, a simple FIT extension

ASSERTzfgct = GLOBAL:(fact)

could be defined.

Unlike in PROLOG, in F IT facts need not be stored globally but can
also be stored locally, creating 'local data bases‘, by using the LOCAL
instead of the GLOBAL storage operator. as exemplified in the next
subsection and exploited as a module feature in section 7.1.

2.2 Quest ions

Presupposing the above global 'Mary' fac t . a PROLOG question/answer

sequence [to distinguish user quest ions f rom computer answers in such
sequences, the answers will be underlined here and below]

?- 1ikes(john.mary).
1E3

i n FIT becomes

(LIKES JOHN MARY)
W

Thus instead of printing a simple 'yes' or 'true', FIT fo l l ows a
good PLANNER tradition and returns the instantiated form of requested
fac t s [in such simple cases as above, th is i s identical to the
ques t ion; but see the next subsection]. The question in FIT is regarded
as a call of the LIKES predicate function with two arguments. JOHN and
MARY. the only pair of arguments for which that predicate has so far
been defined by a GLOBAL expression. Whi le the PROLOG likes request
just prints its answer 'yes'. the FIT L IKES call returns its answer
(LIKES JOHN MARY) as a function value which can be fur ther processed by
other function calls; for example, the nested call (COR (LIKES JOHN
HARY)) uses a CDR call to return the tail (JOHN MARY) of the resu l t of
the L IKES call. L IKES can be regarded as a predicate func t ion , although
the returned expression (L IKES JOHN MARY) is not equal to the
truth-value "T" for ' t rue ' , because in FIT every expression not
denoting 'false' or 'unknown' is interpreted as being 'true' [this
corresponds to LISP's non—NIL = 'true' convention].

Again presupposing the above 'Hary' fac t . the LOCAL data base
question '

(LOCAL ((VALUABLE SILVER) (LIKES JOHN JANE)!
(LIKES JOHN JANE) (LIKES JOHN MARY) (VALUABLE SILVER))

would re turn

(LIKES JOHN JANE) (LIKES JOHN MARY) (VALUABLE SILVER)

since all these facts are stored, the f i r s t and third locally, the
second globally.

Summarizing the syntax introduced in these f i r s t two subsections.
while PROLOG prefixes questions [with "7-"] and interprets unprefixed
expressions as the assertion of fac t s , FIT pre f ixes assertions [with
'GLOOAL:“] and interprets unprefixed expressions as questions.

2.3 Variables

The PROLOG facts and questions containing variables

likes(john.flowers).
1ikes(john,mary).
likes(paul.mary).

7- likes(john.X).
x=flogggs

?— likes(X.mary).
X= jgnn;
x=gaul;

£2

in pure FIT [he re we assimilate the presenta t ion of non—determinism to
PROLOG's t rea tment] become

GLOBAL:((LIKES JOHN FLOWERS)
(LIKES JOHN MARY)
(LIKES PAUL MARY))

(LIKES JOHN | ?X)
(GLOBAL [()X FLONQBSII I L IKE ; JOHN FLOWER§1I

(LIKES |?X MARY)
L A >X O IK JOHN MAR

MORE A , .

MORE
jg

To distinguish variables from individuals, PROLOG uses a capitalization
convention [inverse to the standard mathematical convention. as
remarked in (Robinson & Sibert 1981) and corrected in LOGLISP] while
FIT marks single-value—accepting variables by a "?" [SHOVEONE] prefix,
multiple—value-accepting variables by a ”>" [SHOVE] prefix, and open

request variables by an additional ”I" [VERTICAL] prefix. As answers to
successful questions containing variables. PROLOG prints variable
bindings 'X=flowers' etc. while pure FIT returns binary GLOBAL
expressions (GLOBAL ((>x FLOWERS)) (LIKES JOHN FLOWERS)) etc. with the
bindings in their first argument [internally. always the more general
">" prefix is used] and the instantiated expression in their second
argument. Like user—initiated GLOBAL expressions these system—generated
ones in impure FIT store their bindings in the data base: all GLOBAL
expressions also return their second argument, which for unary GLOBALs
is the empty imposition [an imposition is a possibly empty sequence of
expressions]. For example. after pure FIT has evaluated (L IKES JOHN
|?X) to (GLOBAL ((>X FLOWERS)) (LIKES JOHN FLOWERS)). impure FIT sets X
to FLOWERS and returns (L IKES JOHN FLOWERS). Thus. while in PROLOG the
bindings are just printed and gone in the next interaction step. in FIT
they are stored in the global data base for later use [the recent
LM-PROLOG (Kahn 1983) also has a facility for saving bindings until the
next interaction step]. As in (Winston & Horn 1981) . the "(' [PULL]
prefix is used in FIT to fetch variable values. e.g.. the value a
variable received as the_resu1t of a previous interaction step. This
allows the incremental interactive construction of answers to compound
questions as in

(L IKES PAUL I?X) ; first give me the entity X that Paul likes
A >X RY K PAU- R

(LIKES JOHN (X) ; second check to see if John a l so likes that entity X
(LIKES JOHN MARY); internal r e fo rmula t i on asking if John likes Mary

1L1£££_l9flN_MA£Ill

By now the naturalness of returning instantiated questions as answers

should have become apparent: We asked FIT to find individuals replacing
t h e variable X in propositional forms thus making them true

propositions, and it returned these true propositions together with
their x—bindings.

If global binding effects are not desired, request variables can be
localized using LOCAL expressions. In a basic LOCAL form the request
variables are listed in the first argument and the question appears in
the second argument. The following question-answering sequence is an
example [X is locally initialized with the empty imposition]:

(LOCAL (>x:) (LIKES PAUL I?X))
iLlK£§_EAnL_flAkll

In an advanced LOCAL form the question itself is written to the left of
a colon separator and an arbitrary expression making use of the request
variables to the right of the " : " . An example is this
question-answering:

(LOCAL (LIKES PAUL I?X)

(APPEND ' (HE LIKES) (L IST (X) ' (AS FAR AS I KNOW)))
(HE LIKES MAR! A5 EAE AS I ENQEI

Returning to the first example of this subsection. the 7carry on'
command use of PROLOG's ":" operator in FIT translates to MORE
commands. PROLOG's ‘no' responses for indicating failures in FIT often
become ju failure signals [jump 'unknown'] rather than the literally
corresponding jF failures [jump 'false'].

e ‘ 0 S

The reason for this is that in FIT the 'closed-world-assumption'
[he re implying that the system knows all about who likes Mary] is
not built in. As another example, consider the FIT query (L IKES FRED
MARY) and the corresponding PROLOG query likes(fred.mary) in the
above respective data bases, in which no 'likes' relationship is
stored for Fred: In FIT it yields jU ['I don ' t know'] , while in
PROLOG it prints 'no' [‘I assume no']. This is because FIT. by
default, regards facts as open-ended information about relations
[e.g.. 'likes']. while PROLOG assumes facts to completely define
these relations. Instead of relying on a universal closed-world
assumption. the FIT user may 'close off' each_predicate individually
if its clauses are to be regarded as 'definitional'. so that the
system will give negative information [j F] only for requests with
that predicate for which no normal clause is successful. In LOGLISP,
the user can also declare a predicate—restricted closed—world
assumption [we may call this a 'closed-predicate specification], but
must d o this by applying the L ISP function NULL to the result of a
call to the LOGLISP procedure ANY (Robinson & S ibe r t 1981) . For
example. the LOGLISP definition

_ 10 -

(NOT (LIKES x y)) <- (NULL (ANY 1 T (LIKES x y)))

wou ld close off the L IKES relation. In FIT a closed-predicate

specification be longs to the completely normal way of defining

predicate functions: A clause with a minimally specific head pattern
defines the predicate to be jF, so t ha t this clause is used if and

only if no other matching one with that predicate remains untried.

For example. the FIT definition

(>(LIKES ?x ?Y) jF)

would also close off the L IKES relation [it sets the 'compound

variable' (LIKES ?X ?Y) to the value jF, which. when typed in.
should normally be quoted like 'jF]. The LOGLISP and FIT sys tems on

the basis of these definitions would know all about who likes whom
but make no assumptions about other relationships. For instance, in
the previous data base this would cause the FIT query (L IKES FRED
MARY) and similar ones like (L IKES FRED B ILL) to yield jF but would

not change a jU yielded by queries with other relations like

(S ISTER_0F FRED MARY). The closed—world assumption can be restricted

even further to predicates with some given fixed arguments. For

example. the FIT definition

(>(LIKES ?X MARY) jF)

would close off the L IKES relation for a second argument equal to

MARY only; the system on the basis of this definition would know all
about who likes Mary but make no assumptions about who likes other
persons. This is sufficient for obtaining jF for the query

(L IKES FRED MARY) . but not for obtaining jF for the similar query

(LIKES FRED BILL) [the system would modestly reply jU]. In general.
FIT allows restricting closed—predicate specifications to exactly
the scope required.

The predicates of 'closed subworlds' [e.g.. Of list processing: cf.
section 7] can be closed off by a single definition

(>(CLOSEDPRED >X) jF)

provided that the second—order predicate CLOSEDPRED is 'true" for
them. [For instance. the second-order definition (CLOSEDPRED MEMBER)
could be used instead of the first—order definition (>(MEMBER ?X ?Y)
jF) for closing off the MEMBER predicate: further CLOSEDPRED
definitions could be used for closing off the other predicates in
this paper.)

Incidentally. it is FIT's three-valued logic which permits a
differentiation of what is known to be true. what is known to be
false. and what is unknown. while PROLOG's two—valued logic leads to
a confusion of the latter two categories. Although the closed-world
assumption gives rise to certain nice formal properties (cf. the
recent paper (Jaffar et g a l . 1983)]. its practical usefulness is
questionable. It enforces a narrow world view in PROLOG-based
systems because what they actually assume is “All that I haven't
heard of cannot be true". Presumably. it would not be prudent to
endow future computer systems with such a built-in illusory
assumption _of omniscience. Another recent critique of the
closed-world assumption of ordinary PROLOG may be found in (Hewitt &

- " -

de Jong 1983) . Ironically. while Hewitt has abandoned his PLANNER
tradition in this respect. Kowalski is still cultivating it
(Kowal sk i 1983) .

Perhaps it was the special syntactical position of predicates in the
mathematical/logical notation R(a1,....aN) for applications/relations.
in contrast to LISP's modern Cambridge Polish prefix notation
(R a1 ... aN). that prevented PROLOG from allowing questions asking for
the predicate. using predicate variables [indeed micro—PROLOG, the only
well—known PROLOG dialect which has some means of asking for
predicates. resorts t o its LISP—like ”internal syntax" (Clark et a1.
1982) for that purpose, as shown below]. Perhaps it was a fear of
losing the semantics of first—order predicate calculus when permitting

implicit request quantifiers ranging over predicates instead of over
individuals on l y . And/or perhaps efficiency considerations were
involved, because such requests cannot make use of a primary predicate
indexing of facts. In FIT's attempt to permit what the user finds
natural we allow such requests. For example. in the above data base we
obtain

(|?x JOHN MARY)
W

The natural—language paraphrase of this question. "Is there some
relationship between John and Mary?”, doesn't sound less natural than
“Is there an entity that likes Mary?", the paraphrase of our previous
request (LIKES |?X MARY). There are no syntactical problems with this
when using Cambridge Polish prefix notation. The direct equivalence
with first-order predicate calculus cannot be maintained anyway because
higher—order constructs like mapping functions are indispensable (cf.
section 3 .2] . The indexing problems are easily solvable on the basis of
current data base technology; indeed already LEAP (Feldman et a1. 1972)
allowed asking for all components o f associative triples and
PLANNER-like languages allow asking for all components of assertion
n—tuples. implemented. e.g.. by means o f "coordinate indexing”
(Rulifson et al. 1972) .

In micro—PROLOG the extra~logical auxiliary dictionary program must
be used for simulating such requests (Clark et al. 1982) :

uh(x (dict x)(x John Mary))
Answer is likes

Moreover, the ”meta—variable” x used here is not a true request
variable for predicates since it must be bound through the dict call by
the time micro—PROLOG evaluates (x John Mary).

The variables used previously are typeless. as they always are in
PROLOG. but only by default in FIT. Typed variables can be specified in
FIT as follows. Every predicate pred may be used as a typed variable
x?pred or x>pred. a valuewaccepting variable with an additional "x"
[XAMINE] prefix. For example. x?FEMALE can only be bound to individuals
for which the predicate FEMALE is true and x>LIKES can only be bound to
pairs of individuals which are in a L IKES relationship.

- 12 -

2 .4 Con junc t ions

In the PROLOG da ta base

l i kes (mary . food) .
l i kes (mary ,w ine) .
l i kes (john .w ine) .
l i kes (john .mary) .

the reques t con junc t ion [the “ . ' i s used as an AND in f i x opera to r]

? - l i kes (john ,mary) . l i kes (mary , john) .

i s p rocessed f rom le f t to r igh t , the f i rs t goa l succeed ing and the
second fa i l ing . so tha t the con junc t ion fa i l s . In the cor respond ing F IT
data base

GLOBAL:((LIKES MARY FOOD)
(L IKES MARY WINE)
(LIKES JOHN NINE)
(L IKES JOHN MARY))

we can use an imp l ic i t l y AND-connected impos i t ion

(LIKES JOHN MARY) (LIKES MARY JOHN)

which a lso fa i l s because the express ion (LIKES MARY JOHN) does.

The ques t ion " Is the re anyth ing tha t Mary and John both l i ke?" ,
exempl i fy ing conjunction—wide request va r iab les . in PROLOG becomes

?— 1 ikes (mary ,X) , l i kes (john ,x)

and is processed us ing back t rack ing as fo l lows:

1 . The f i rs t goa l l i kes (mary .X) matches the f i rs t f ac t
l i kes (mary , food) , b ind ing X to food and mark ing the p lace o f
th is fac t in the da ta base .

2 . The ins tan t ia ted second goa l l i kes (john . food) f a i l s . so
back t rack ing occurs . 1 .9 . X becomes unbound and the prev ious
goa l i s t r i ed aga in , s ta r t ing from a f te r the marked fac t .

3 . The f i rs t goa l l i kes (mary .x) now matches the second fac t
l i kes (mary .w ine) . b ind ing X to w ine and mark ing tha t f ac t ' s
p lace .

&. The ins tan t ia ted second goa l l i kes (john .w ine) matches the
th i rd fac t , mark ing i t s p lace .

5 . Since both goa ls a re sa t i s f i ed 'X=wine' i s p r in ted .

I n F IT the reques t con junc t ion can e i ther be par t i t ioned
in te rac t ive ly as exempl i f i ed in the p rev ious subsec t ion o r i t can be
wr i t ten as the impos i t ion

(LIKES MARY I?X) (LIKES JOHN I?X)

- 1 3 -

which is eva lua ted w i t hou t backtracking t hus :

1. the first goal (L IKES MARY I?X) yields a BREADTH expression

containing all its matching facts [namely the first and second

one], and simultaneously also the second goal (L IKES JOHN I?X)
yields a BREADTH of all its matching facts [namely the third
and fourth one]. altogether yielding the intermediate

imposition of BREAOTH expressions

(BREADTH (GLOBAL ((>X FOOD)) (LIKES MARY FOOD)!
(GLOBAL ((>X H INE)) (LIKES MARY H INE)))

(BREAOTH (GLOBAL ((>X H INE)) (LIKES JOHN HINE))
(GLOBAL ((>X MARY)) (LIKES JOHN MARY)))

2. In combining the BREADTH results of both goals three candidate

results

(GLOBAL ((>X FOOD)) (LIKES MARY F000 ,)
(GLOBAL ((>X WINE)) (LIKES JOHN WINE),

(GLOBAL ((>X FOOD)) (LIKES MARY FOOD),
(GLOBAL ((>X MARY)) (LIKES JOHN MARY))

(GLOBAL ((>X WINEJI (LIKES MARY WINE))
(GLOBAL ((>X MARY)) (LIKES JOHN MARYI)

are rejected because of inconsistent X bindings and only one

‘result,

(GLOBAL ((>X WINE), (LIKES MARY WINE))
(GLOBAL ((>X H INE)) (LIKES JOHN WINEI)

remains. so that the result

(GLOBAL ((>X WINE)) (LIKES MARY WINE) (LIKES JOHN HINE))

is returned.

Thus FIT abolishes depth—oriented, chronological backtracking in
favour of breadth—oriented. non—chronological parallelism. avoiding a
host of p rob lems that plague PROLOG [not just beginning with the "cu t"]
from the start. Backtracking within a sequential conjunction on a
sequential data base is perhaps PROLOG's mos t unfortunate [von Neumann]
deviation from pure logic. Rather than regarding a data base of clauses
[facts and rules] as a set. which. because it is unordered. has the
crucial advantage of modularity, PROLOG regards it as an ordered
collection, pointed to by place-markers which are pushed back and forth
on it as i f it were a SNOBOL string. "Paper-and-pencil simulations“
(Clocksin & Mellish 1981) are required to keep track of what's going
on.

The annoying difficulty with such a sequential data base can be seen
in the example. The order of the four '1ikes' facts (shortened.
1—2—3-4] , i.e. the sequence of typing them in. first seemed to be
immaterial in (Clocksin & Mellish 1981) , as in logic. but now it
becomes apparent that it has a profound impact on backtracking and
efficiency [sometimes even on termination. i.e. total correctness.

. 1 ‘ , .

because depth-first search may diverge into an infinite subtree

a l t hough a solution exists somewhere else in the search tree]: Had we

t yped in the first two facts in reverse orde r [i . e . . 2—1—3-(1 no

backtracking would have occurred at all. A similar reordering of the
last two facts [i.e., 1-2-6-3] would also change backtracking behavior.

However. regroupings [he re . 3-4—1-2] or even interleavings [e.g..

1-3-2-(1 would have no behavioral effect.

Avoiding such “arbitrary sequencing“ (Leavenworth & Sammet 1975) in
space and time. FIT follows predicate calculus in not imposing an

arbitary order onto the data base items. It makes available all facts

matching a question at once. as an explicit conflict set. and uses a

'most specific first' rule for "conflict resolution" (McDermott & Forgy
1978). If, as in the example. all facts are equally specific they form

a BREADTH express ion which can be processed by "OR parallelism”

[(Conery & Kib le r 1981) , (C lark & Taernlund 1982)].

Another sequencing which causes PROLOG to deviate from predicate

calculus is the left-to-right order imposed on conjunctions. Like
LISP's AND this can be used to simulate 'if then' statements and other
desired orderings; it is also available as an option. called ANOTH, in
FIT. However , in the example. as is usually the case, we preferred t o

retain the non-sequenced meaning o f logical conjunction by using

simultaneously evaluating impositions. These can be processed by "AND
parallelism” [(Conery & Kib le r 1981) , (Clark & Taernlund 1982)].

In F IT , if we d o wish to use the bindings of a request variable
produced in a first request inside a second request. we can replace
occurrences of the request variable [711 ; in the second request by
occurrences o f a corresponding PULLTEMPORARY variable "var . where “'"
fetches the value that a variable received in an ongoing evaluation.
For example, instead o f our previous request imposition, we could write

(LIKES MARY |?X) (LIKES JOHN 'X)

Since data flow in FIT is not restricted t o the direction 'left to
right' but may as well proceed 'right to leftf, the request could also
be replaced by

(LIKES MARY “X) (LIKES JOHN |?X)

In order to transcribe PROLOG conjunctions literally into F IT , however.
a left-to-right pass would be used, in which a PROLOG variable not yet
encountered is replaced by a "l?'-variable and one already encountered
by a “" -var iab le .

2.5 Rules

A PROLOG rule like

likes(john.X) :~ likes(x.wine)

in FIT can be rewritten as

() (L IKES JOHN ?X) (LIKES (X WINE),

- 15 _

Tha t i s . i n F IT a ru le has the fo rm o f a va r iab le -va lue assoc ia t ion . I t
i s generated by setting a compound variable l i ke (LIKES JOHN ?X) to a
quoted va lue like ' (L IKES (X N INE) . Typing i n the se t t ing

(>(LIKES JOHN ?X) ' (L IKES (X WINE))

abbrev ia tes (and . in F IT -1 . t emporar i l y expands to]

(GLOBAL ((> (L IKES JOHN ?X) (LIKES <X WINE))) ' (L IKES (X N INE))

which ac tua l l y s to res (>(LIKES JOHN ?X) (LIKES (X N INE)) and re tu rns
(LIKES (X N INE) . .

Using th is ru le toge ther w i th Mary 's l i k ings in the da ta base o f the
prev ious sec t ion . the PROLOG reques t

l i kes (john ,mary)

is matched by the ru le head l i kes (john .X) , binding X to mary and
marking i t s p lace in the da ta base. Then i t s ins tan t ia ted body
l i kes (mary .w ine) i s turned in to another reques t , which i s d i rec t l y
matched by a da ta base fac t so tha t ' yes ' i s p r in ted .

In F IT . ru les a re dea l t w i th s imi la r l y . except tha t the i r
pat te rn—di rec ted invoca t ion i s t rea ted comple te ly w i th in the F IT
formal ism i tse l f . I n te rmed ia te computations l i ke those fo r invoca t ion
match ing may be observed in F IT -1 's t race mode. wh ich we w i l l i nd ica te
as a sequence o f indented express ions [as t races may be sw i tched o f f in
F IT -1 . the I lO—or ien ted reader may ignore indented express ions here and
la te r on] . Thus the cor respond ing ques t ion -answer ing becomes

(LIKES JOHN MARY)
(LOCAL (L IST (LIKES LIKES) (JOHN JOHN) (?X MARY))

(LIKES (X N INE))
(LOCAL ((>X MARY)) (LIKES (X N INE))
(LOCAL (()X MARY)) (LIKES MARY WINE))

(LIKES MARY NINE)

Pat te rn—di rec ted invoca t ion genera tes a LOCAL express ion (c f .
subsec t ion 2 .3] wi th the invoca t ion match in i t s b ind ings [be fore the
" : ”1 and the ru le body as i t s body [a f te r the ' : "1 . Here . the match i s
success fu l , y ie ld ing a s imp le r LOCAL in wh ich X i s bound to MARY. The
body is eva lua ted ins ide th is LOCAL scope and the successfu l resu l t
(L IKES HARY WINE) causes the LOCAL and i t s b ind ing to d isappear .

Note tha t F IT 'overanswers ' the o r ig ina l ques t ion "Does John l i ke
Mary?" in re tu rn ing no t s imp ly ' yes ' bu t an express ion in te rpre tab le as
"Yes because Mary l i kes w ine" . The re tu rned express ion
(L IKES MARY N INE) encodes the reason why the answer to the ques t ion
(LIKES JOHN MARY) i s ' t rue ' . The non-false—and-non-unknown = ' t rue '
convent ion permi ts regard ing the answer expression as a simple ' t rue '
answer and go ing in to the express ion and ana lyz ing the reason fo r i t s
be ing ' t rue ' on ly i f /when des i red .

I f we a lso p resupposed John 's l i k ings in the da ta base o f the
prev ious sec t ion , we cou ld answer the ques t ion w i thout any ru le by
us ing a f ac t . However , s ince PROLOG uses c lauses in tex tua l o rder , i t

-1 '5 -

wou ld on l y app l y the fac t f i r s t i f i t were s tored in f r on t of the ru le :
otherwise i t wou ld s t i l l f i r s t use the ru l e . In FIT . on the other hand .
the order o f de f in i t i ons in s tore i s immater ia l because the de f in i t i ons
match ing a reques t are cons idered in the order o f the i r spec i f i c i ty .
Thus the fac t in any case wou ld be used f i r s t and the ru le s econd . so
tha t we would obta in a DEPTH expres s ion [the ordered counterpar t to
BREADTH]

(DEPTH (LIKES JOHN MARY) suspens ion-genera t ing -our—prev ious -resu l t)

whose f i r s t e l ement shows us tha t John l ikes Mary d i rec t ly and whose
suspended second e l ement , on ly popped up and ac t iva ted by a MORE
reques t . wou ld show us tha t he l ikes her because o f her l ik ing for
wine . a s d i scussed above .

The no ta t ion o f ru le s w i th conjunc t ion bod ie s shou ld be c l ear f rom
the forego ing . For example the PROLOG ru le

l ikes (john .X) : - l ikes (X ,wine) , l ikes (X . food)

in FIT becomes

(>(LIKES JOHN ?X) (LIKES <X WINE) (LIKES <x FOOD))

Fina l ly . l e t u s cons ider ru le s w i th conjunc t ion bod ie s conta in ing
conjunc t ion-wide reques t var iab le s . A PROLOG ru le l ike

s i s t er_o f (X .Y) : -
f emale (X) .
parent s (X .M.F) .
parent s (Y ,M.F) .

can be rewr i t t en in FIT as

(>(SISTER_0F ?X 7Y)
(LOCAL ()MOTH: >FATH:)

(FEMALE (X)
(PARENTS (X |?HOTH |?FATH)
(PARENTS (Y I?MOTH I?FATH)))

F shou ldn ' t be used as a var iab le in FIT because , a s in some LISP' s . i t
i s the cons tant mean ing ' fa l s e ' ; there fore we rep lace F and H by the
more mnemonic FATH and MOTH, respec t ive ly . S ince these Var iab le s are
not ' formal parameters ‘ o f the ru l e . we have to dec lare them LOCAL in
FIT i f we don ' t want them to spread g loba l ly . In PROLOG a l l var iab le s
in ru le bod ie s are t rea ted a l ike . namely a s ' l og i ca l var iab le s ' wh ich .
even i f they spread g loba l ly , cannot co l l ide because they are un ique ly
renamed.

E _ I | l ' E .

The PROLOG des ign dec i s ion to per form such read—time renaming .
however . i s de tr imenta l to in terac t ive programming . When typ ing in a
c lause in terac t ive ly the PROLOG sys tem changes ones mnemonic
var iab le names under ones f ingers in to mean ing le s s ' _ '—pref ixed
numbers . The mean ings in var iab le names cannot be recovered by the
' l i s t ing ' pred ica te which pre t ty -pr in t s them as a lphabet i c ord ina l s
”A”. "B". “C“. . . . denot ing . re spec t ive ly . the f i r s t . s econd . th i rd .

- ” -

variable used in a c lause . For example . when typing i n the above
s is te r_o f ru le exac t ly in the form o f (C locks in & Mel l i sh 1981) .
using the i r mnemonics M and F fo r mother and fa ther . respec t ive ly .
PROLOG fo rces the p rogrammer to reconceptua l i ze th is as

s is te r_o f (A ,8) : -
f ema le (A) ‚
paren ts (A .C ‚D) .
paren ts (B .C ,D) .

One must accept the machine 's abs t rac t isomorphism between these
s is te r_o f ru les and use i t s mean ing less va r iab le names. as i f see ing
which var iab le occur rences a re used fo r inpu t , fo r ou tpu t , and /o r
fo r in te rmed ia te resu l ts weren ' t a l ready hard enough w i th mnemonics .
I f you t race s is te r_o f ca l l s us ing the ' spy ' p red ica te . wha t you see
i s no t even ”A". "8" , "C“ bu t something l i ke “_24" . “_109 ‘ . "_110" .
Cer ta in ly . th is t rea tment o f va r iab les i s no t a h igh - leve l f ea tu re
of PROLOG. When you dump an in te rac t ive ly cons t ruc ted p rogram us ing
the ' t e l l ' and ' l i s t ing ' p red ica tes you, o f course. a lso have the
a lphabe t ic o rd ina ls in your f i l e .

The on ly remedy is to p repare source f i l es w i th an ed i to r gu ts ide
PROLOG and then read ing such f i l es in to PROLOG in the i r en t i re ty .
But tha t i sn ' t in te rac t ive p rogramming: For each l i t t l e change you
have to l eave the PROLOG sys tem. en te r the ed i to r . make the change .
res ta r t PROLOG. and read in the a f fec ted f i l e . Nor does i t so lve a l l
prob lems: You s t i l l have to accomodate to a lphabe t ic o rd ina ls i f you
want to look a t the de f in i t ion o f a c lause dur ing the in te rac t ive
sess ion ; the t races s t i l l use these underscore numbers . There fo re
newer PROLOG deve lopments t ry to cor rec t th is fau l t , acknowledg ing
the fac t tha t th rowing the user ' s va r iab le names ou t o f ma in memory
was too h igh a p r ice fo r ga in ing computer e f f i c iency .

The ' s is te r_o f ' ru le toge ther w i th a da ta base descr ib ing some
fami ly re la t ionsh ips o f Queen V ic to r ia .

ma1e (a lber t) .
ma1e(edward).
f ema le ta l i ce) .
f ema le ‘v ic to r ia) .
pa ren ts (edward ,v ic to r ia .a lber t) .
paren ts (a l i ce .v ic to r ia ,a lber t) .

permi ts PROLOG ques t ions such as

?— s is te r_o f (a l i ce .edward) .

which i s p rocessed thus : The ques t ion i s matched by the ru le head
s is te r_o f (X .Y) . b ind ing X to a l i ce and Y to edward . Then the body
con junc ts fema le (a l i ce) fo l lowed by paren ts (a l i ce .M .F) a re sa t i s f i ed ,
the l a t te r b ind ing M to V ic to r ia and F to a lber t . F ina l l y . the
i ns tan t ia ted goa l pa ren ts tedward ,v ic to r ia .a lber t) succeeds. answering

yes .

Wi th F lT 's ve rs ion o f the 'V ic to r ia ' da ta base

GLOBAL:((MALE ALBERT)
(MALE EDWARD)
(FEMALE ALICE)
(FEMALE VICTORIA)
(PARENTS EDWARD VICTORIA ALBERT)
(PARENTS ALICE VICTORIA ALBERT))

the cor respond ing F IT ques t ion -answer ing p rocess can be t raced to show
the following details:

(SISTER_OF ALICE EDWARD)
(LOCAL (L IST (SISTER_OF SISTER_OF) (?X ALICE) (?Y EDWARD))

(LOCAL ()MOTH: >FATH:)
(FEMALE <x)
(PARENTS <x I?MOTH |?FATM)
(PARENTS (Y I?MOTH I?FATH)))

(LOCAL (>x ALICE >Y EDNARD >MOTH: >FATN:)
(FEMALE <X)
(PARENTS <x I7MOTH |?FATH)
(PARENTS (Y I?MOTH l?FATH))

(LOCAL (>X:ALICE >Y EONARO)MOTH:)FATH:)
(FEMALE ALICE)
(PARENTS ALICE I?MOTH I?FATH)
(PARENTS EONARO I?MOTH |?FATH))

(LOCAL (>X:ALICE >Y:EONARO >MOTH:)FATH:)
(FEMALE ALICE)
(GLOBAL (I>MOTH:VICTORIA I>FATH:ALBERT)

(PARENTS ALICE VICTORIA ALBERT))
(GLOBAL (I>MOTH:VICTORIA I)FATH:ALBERT)

(PARENTS EONARO VICTORIA ALBERT)))
(LOCAL (>x ALICE >Y EONARO)MOTH:)FATH:)

(GLOBAL (I>MOTH:VICTORIA I>FATH=ALBERT)
(FEMALE ALICE)
(PARENTS ALICE VICTORIA ALBERT)
(PARENTS EONARO VICTORIA ALBERT)))

(LOCAL (>x ALICE >Y:EONARO >MOTH:VICTORIA >FATH ALBERT)
(FEMALE ALICE) '
(PARENTS ALICE VICTORIA ALBERT)
(PARENTS EONARB VICTORIA ALBERT))

(EEMALE ALICE)
(PARENIS ALICE VICTORIA ALBERT)
(PARENTS EONARO VICTORIA ALBERT)

Not ice how the invoca t ion -genera ted LOCAL and the exp l i c i t LOCAL body
merge when the invoca t ion match ends success fu l l y . how the two
reques t -genera ted GLOBALS migra te upward and jo in success fu l l y because
of the i r cons is ten t va r iab le b ind ings . and how the GLOBAL b ind ings o f
MOTH and FATH a re t rapped in the LOCAL. Aga in , F IT overanswers the
ques t ion : ins tead o f ' yes ' an impos i t ion o f the t h ree i ns tan t ia ted
subgoa ls i s re tu rned; the i r con junc t ion exp la ins why the answer i s
' t rue ' .

In PROLOG in the prev ious da ta base the ques t ion

?- s is te r_o f (a l i ce .X) .

i s t rea ted s imi la r l y . bu t p r in ts 'X=edward' ins tead o f ' y es ' . However ,

- 1g -

now the sister_of rule allows a possibly unwanted second answer.
'X=a1ice'.

The following t race gives an analysis of how the corresponding

question is answered in F IT :

(SISTER_OF ALICE I?X)
(LOCAL (L IST (SISTER_OF SISTER_0F) (?X ALICE) (?Y I ?X))

(LOCAL (>MOTH: >FATH:)
(FEMALE (X)
(PARENTS <x |?MOTH |?FATH)
(PARENTS (Y |?MOTH I?FATH)))

(LOCAL (>X:ALICE >Y:I?X >MOTH:)FATHz)
(FEMALE (X)
(PARENTS <x |?MOTH |?FATH)
(PARENTS (Y |7MOTH I?FATH))

(LOCAL (>X:ALICE >Y |?x >MOTH: >FATH:)
(FEMALE ALICE)
(PARENTS ALICE |?MOTH |?FATH)
(PARENTS |?x I?MOTH I?FATH))

(LOCAL (>X:ALICE >Y:|?X >MOTH: >FATH:)
(FEMALE ALICE)
(GLOBAL (|>MOTH VICTORIA |>FATH:ALBERT)

(PARENTS ALICE VICTORIA ALBERT))
(BREADTH (GLOBAL (|>x:EDwARD I>MOTH:VICTORIA I>FATH:ALBERT)

(PARENTS EONARO VICTORIA ALBERT))
(GLOBAL (I>X:ALICE I>MOTH:VICTORIA |>FATH:ALBERT)

(PARENTS ALICE VICTORIA ALBERT))))

(BARENIS ALICE XICIQBIA ALEERI)
(BABENIS EDUAED VICIQRIA ALaERI I I

(ELQBAL ((zx ALICE}! (EEHALE ALICE) '
lEABEfll£_ALl££_xl£IQBlA_ALfl££ll
P A RT

Note tha t the accidental use of the name X for both the parameter
variable ? X in the rule head and the request variable |?X in the
ques t i on does not lead to a conflict. This is due to FIT's "|"
[VERTICAL] prefix distinguishing request variables and sparing it from
having to perform PROLOG's above discussed read-time renaming of rule
variables.

The computation result is two GLOBAL expressions, used as elements
of a BREADTH expression. The second GLOBAL contains two identical
instantiations of the 'parents' subgoals of the rule body, showing why
the rule regards ALICE as her own sister.

3 FUNCTIONAL AND RELATIONAL PROGRAMMING

While FIT is principally based on a functional programming style.
PROLOG is based on a relational one. Therefore a comparison between the
two languages entails a comparison of the two programming styles. It is
a natural state of affairs that researchers in functional and
relational programming have tried to explore their respective

..20..

programming disciplines to their ultimate limits. After a period of

enthusiastic statements to the effect tha t 'relations are better than
functions'. even the most articulate advocate of relational programming

now concedes, somewhat cryptically though, that functions can be “more

natural” than relations: ”Although functional notation is more

user—friendly than relational notation. computation by means of rewrite
rules is less versatile than backward reasoning.“ (Kowalski 1983) .
Actually. there is not only a sense in which relations are 'more

general' than functions [cf. section 3 .1] but also a sense in which

funtions are 'more general' than relations [cf. section 3.2]. However,

it now seems clear that both functional and relational programs have

characteristic advantages and disadvantages for specific applications.
Therefore it seems worthwhile to work toward a natural combination of

both methodologies. There are several PROLOG—oriented approaches of
function/relation combination, even if we omit indirect function uses

in PROLOG that are achieved simply through a L ISP interface in the
traditional PLANNER-like manner. The diversity of proposals seems to
indicate that there is no natural PROLOG solution to function/relation
integration:

1. (Egger t & Schorre 1982) require preprocessing which gives rise
to the well-known problems of superimposed levels [e.g. error
messages from the lower level obstruct the higher level's
abstraction effect].

2. (Kornfeld 1983) needs an additional equality theorem for the
use of each relation as a function.

3. (Sato & Sakurai 1983) use syntax and semantics that are very
hard to understand from their English description.

The FPL language (Bellia et a1. 1982) extends a functional language
[TEL] by ”conditional equations and multi-output functions (described
by a relational syntax)" but uses only relations equivalent to
deterministic functions (cf. their f example below].

The natural deduction system of (Hansson et al. 1982) defines functions
by "equalities or conditional equalities" which seem to interact nicely
with the relational constructs (c f . their quick-sort example below].

In FIT we can freely define some algorithms as functions and other
ones as relations and then dynamically use the functions as relations
and the relations as functions. as desired.

In the first subsection we will show in which sense functions and
relations are naturally equivalent and exploit this for their
interchangeable FIT use [i n section 7 we will exemplify how FIT's
adapters can be used for relational programming]. In the second
subsection we will treat characteristic functions as another FIT method
of representing relations and develop the idea of using function calls
with request variables. In the third subsection we will deal with
higher—order functions and relations. not available in PROLOG.

_ 21 _

3 .1 In te rchang ing Func t ions and Relations

3 .1 .1 Mathemat ica l / log ica l Foundations -

I t i s well—known tha t fo r each N -a ry func t ion f [N=0 .1 .2 l

f : A1 x A2 x . . . x AN -) V

there i s an N+1-p lace re la t ion f—P [we use the su f f i x " -P ' [o f ten
abbrev ia ted to 'P ' . as in LISP pred ica tes] to mark re la t ion [o r
predicate] versions/of functions]

f -P g A1 x A2 x . . . x AN x V

such tha t

f (a1 .a2 , aN) = v

i f f

f~P (a1 ,a2 aN .v) ho lds .

There fo re . g iven the func t ion f . the re la t ion f -P can be de f ined
thus :

f -P g A1 x A2 x . . . x AN x V

f -P (a1 ,a2 , aN .v) := f (a1 ,a2 aN)=v

Since such a re la t ion in PROLOG can be used s imi la r l y as a func t ion
by us ing a1 , aN as f i xed arguments and v as an open argument
(which . however. i s no t rea l l y re tu rned as a va lue] . PROLOG re la t ions
are o f ten sa id to be 'more genera l ‘ than func t ions .

Conversely . g iven the re la t ion f -P . the func t ion f and o ther ones
can be de f ined us ing H i lbe r t ' s eps i lon opera to r (H i lbe r t & Bernays
1939 /70) . This i s a 'non—determin is t ic ' ve rs ion o f the jo ta opera to r ,
i . e . eps i lon (x) P1 x) . denotes one o f the ob jec ts x fo r which
P(. . . . x , . . .) ho lds . [f the d i f f e rence between denot ing a va lue and
re tu rn ing a va lue i s neg lec ted , the eps i lon opera to r can be used to
de f ine non—dete rmin is t i c func t ions . A non—dete rmin is t i c func t ion
es tab l i shes a no t necessar i l y un ique cor respondence be tween domain and
range e lements and thus can s t i l l be regarded as a re la t ion
mathemat ica l l y ; i t becomes func t ion - l i ke through the d is t inc t ion o f
domain e lements as input a rguments and range e lements as ou tpu t va lues
such tha t fo r g iven a rguments some va lue i s re tu rned .

For the de f in i t ion o f the de te rmin is t i c func t ion f f rom the re la t ion
f—P the eps i lon opera to r happens to ac t de te rmin is t i ca l l y on ly :

f : A l x A2 x . . . x AN -> V

f (a1 aN) := eps i lon1v) f -P (a1 aN .v)

However, the non-de te rmin is t i c capab i l i t y o f the eps i lon opera tor i s
necessary fo r the de f in i t ion o f N fu r ther [in genera l
non-de te rmin is t i c] func t ions f I [l i l gN l from the f -P re la t ion :

- 22 -

f l : A1 x . . . x AI -1 x AI+1 x . . . x AN x V -> powerse t (A I)

f I (a1 , a I - 1 .a I+1 , aN .v) :=“
eps i lon (a I) f—Pla I a I - 1 .a I . a I+1 , aN .v)

In the above de f in i t ions , the powerset range i s used to explain a
non-de te rmin is t i c func t ion as a mapp ing in to a se t o f subse ts [in pure
F IT . o f BREADTH express ions] , ra ther than in to a se t o f s ing le
e lements ; to accomodate fo r the spec ia l case o f a non-de te rmin is t i c
func t ion tha t re tu rns exac t ly one va lue fo r some a rguments , we iden t i f y
s ing le ton sets w i th the i r s ing le elements [in pure F IT . (BREAOTH e) =
e] : the empty se t represents fa i lu re [in pure F IT , (BREADTH) = jU] . As
in eps i lon expressions. in impure F IT one element o f such a subset i s
se lec ted on re tu rn f rom a ca l l f I I a I , . . . , a I—1 .a I+1 , aN ,v) : un l i ke in
eps i lon express ions . in impure F IT there i s the poss ib i l i t y o f
success ive a t tempts a t re tu rn f rom tha t func t ion ca l l . wh ich enumera te
the rema in ing subse t e lements .

I n genera l . i f we pu t M=N+1 [i . e . M :1 .2 ,3 . . .] . an M-p lace re la t ion
can be used to de f ine M (N -1)—ary func t ions . Some or a l l o f these
func t ions may be non-de te rmin is t i c .

3 .1 .2 F IT De f in i t ions -

I n F IT the de f in i t ion o f a re la t ion f rom a func t ion i s made by a
t r i v ia l EQUAL ca l l tha t implements "=" .

The definition of func t ions from a re la t ion i s made by LOCAL
express ions tha t imp lement an eps i lon opera to r wh ich rea l l y re tu rns
values ra ther than jus t denot ing them [tha t i s , o ther than GUTE (Sato &
Sakurai 1983) . F IT doesn ' t requ i re eps i lon expressions as a language
const ruc t bu t represents them by the much more ve rsa t i l e LOCAL
express ions] . Such LOCALs conta in a re la t ion ca l l w i th one open
var iab le v [marked by a I?~pre f i x] and M-1 f i xed p laces be fore the
co lon and conta in the va r iab le v [marked by a («pre f i x l a f te r the
co lon . Thus

(LOCAL (r p l . . . p I—1 |?v p I+1 . . . pH) : (v)

implements

eps i lon (v) r (p1 p I—1 ,v .p I+1 , . . . , pM) fo r 1$ I$H

In PROLOG ne i ther de f in i t ion i s poss ib le because o f i t s l ack o f
va lue - re tu rn ing func t ions .

Now le t us consider an example. For the b inary func t ion NTH.
re tu rn ing the N th e lement X o f a l i s t L . the re i s the te rnary re la t ion
NTH—P or NTHP, ho ld ing fo r t r ip les (N ,L .X) i f f X occurs as the Nth
L -e lement . In F IT , i f the func t ion NTH is de f ined by something l i ke

(>(NTH 1 (?X #ID)) (X) ; NTH o f N=1 and L=(e lem . . .) i s elem
r INTH SUBI COR); NTH o f o ther N and L i s NTH o f SUB! o f N and CDR o f L

then the re la t ion NTHP can be de f ined by

- 23 . .

(>(NTHP ?N ?L ?X) (EOUAL (NTH (N (L) (X))

Conversely . i f the re la t ion NTHP is de f ined by something l i ke

(NTHP 1 (7x 310) ?X) : NTHP o f N :) . L= (e1em . . .) . and X=e lem is t rue
r(NTHP SUB) CDR ID) ; NTHP o f o the r N. L . and X i s (NTHP SUBtzN CDR:L X)

then the func t ion NTH can be de f ined by

(>(NTH ?N ?L) (LOCAL (NTHP (N (L I?X) : <X))

The same re la t ion NTHP can a lso be used to de f ine two more b inary
func t ions [the fo l low ing NTHP der iva tes , o ther than NTH. don ' t run in
F IT -1 . because genera l func t ion -var iab le un i f i ca t ion f i t t ing i s not
implemented in th is f i rs t ve rs ion o f F IT ; c f . subsect ion 5 .3] :

POSIT ION re tu rns the numer ic pos i t ion N o f a g iven e lement X i n a list

L .

(>(POSITION ?X ?L) (LOCAL (NTHP |?N (L (X) : (N))

NXLISTS re tu rns the l i s ts L wh ich have the e lement X in pos i t ion N .

(>(NXLISTS ?N ?X) (LOCAL (NTHP (N |?L (X) : (L))

Of these NTHP der iva tes . the func t ion NIH i s de te rmin is t i c wh i le the
func t ions POSIT ION and NXLISTS a re non-de te rmin is t i c . POSIT ION
[re tu rn ing the pos i t ion o f an a rb i t ra ry occurrence o f a g iven element
in a g iven l i s t] i s f in i t e ly non—determinist ic . wh i le NXLISTS
[re tu rn ing an a rb i t ra ry l i s t w i th a g iven element in a g iven pos i t ion]
is in f in i te ly non-de te rmin is t i c .

3 .1 .3 Severa l Reques t Var iab les -

The above representa t ion o f eps i lon express ions by LOCAL express ions
on ly makes use o f a ve ry spec ia l k ind o f LOCAL, whose l e f t—impos i t ion
par t i s a re la t ion ca l l con ta in ing one reques t va r iab le |?v and whose
body is a s ing le PULL var iab le <v .

A more general kind of LOCAL. whose l e f t—impos i t ion par t i s a
re la t ion ca l l con ta in ing severa l [S] request va r iab les I?v1 , l?vS
and whose body cons is ts o f some permuta t ion o f cor respond ing PULL
var iab les (v l , (vs . can be used to de f ine mu l t i [S] -va lued
func t ions by abs t rac t ing S arguments from an M—place re la t ion [SgM]. I t
has the fo rm

(LOCAL (r e l . . . eM) : (v) . . . (VS)

where e l i s e i the r a reques t va r iab le |?v [1$ I$M, 1$ j I $SJ o r a f i xed
p lace p1 and fo r each <vK there i s exac t ly one 91 = |?vK [1KS] . This
LOCAL express ion fo rm cor responds to a genera l i zed eps i lon express ion
form w i th S eps i lon var iab les

eps i lon (v1 , . . . , vS) r (e1 , eM)

For example . the NTHP re la t ion can a lso be used to de f ine a 2—valued

_ 2 ‘ _

func t ion POSELEM which non—determin is t i ca l l y r e tu rns some position N
toge ther with the element X i n i t o f a g iven list L .

(>(POSELEM ?L) (LOCAL (NTHP I?N (L I?X) : (N (X))

LOCALs whose bodie s cons is t o f a "0“ [INSTANTIATE] express ion over
the variables v1 vs can be used to ob ta in the ana logue to
"answer" templates in some log ic programming languages. e .g . in LOGLISP
(Robinson & Siber t 1981) and micro-PROLOG (C la rk e t a1 . 1982)
(remember. however, tha t in F IT such 'answers' a re t rue func t ion
va lues . nes tab le ins ide a rb i t ra ry o ther func t ion app l ica t ions in the
ord inary func t iona l manner, whereas in PROLOG d ia lec ts these normal ly
are jus t top - leve l p r in t ou ts] . For example , POSELEMLST is a va r ian t o f
POSELEH which re tu rns one l i s t o f the form
(THE POSITION IS N AND THE ELEMENT IS X) instead of two va lues N and X.

(>(POSELEMLST ?L)
(LOCAL (NTHP |?N (L I?X)

0(THE POSITION IS <N AND THE ELEMENT IS (X)))

Almost -genera l LOCALS whose bodies cons is t o f a rb i t ra ry expressions
over the va r iab les v1 , vS can be used fo r de f in ing func t ions tha t
per fo rm a rb i t ra ry pos t -p rocess ing on the va r iab les abs t rac ted f rom a
re la t ion . For example FIXEDELEM is ano ther va r ia t ion o f POSELEM wh ich
re tu rns T i f f the l i s t L con ta ins a f i xed—poin t—l ike ' f i xed e lement ' .
1 .9 . a pos i t i ve in teger e lement tha t i s equa l to the numer ic pos i t ion
in wh ich i t occurs in L [the 'u" opera to r t rans forms jF to jU , wh ich i s
necessary fo r d iscard ing those non—determinist ic poss ib i l i t i es fo r
which EO y ie lds j F] .

(>(FIXEDELEM ?L) (LOCAL (NTHP l?N (L)?X) : u(EO (N <X)))

For example. (FIXEDELEM ' (2 1 3 5 1)) non—dete rmin is t i ca l l y y ie lds the
LOCAL position—element b ind ings {N=1‚ X=2} . {N=2. X=1} ‚ {N=3‚ X=3} .
{N=4. x=5} . {N=S. X=1}. one of which [character iz ing 3 as a f ixed
element] makes the EO call r e tu rn T .

He regard the qu ick -sor t de f in i t ion in (Hansson e t a1 . 1982) as ano the r
example fo r th is genera l i za t ion o f eps i lon express ions:

qu ick -sor t (N IL)=N IL
qu ick -sor t (x .y)=conc (qu ick -sor t (y1) . x .qu ick -sor t (y2)) <—-

par t i t ion (x .y .y1 ,y2)

I n F IT th is becomes

(>(0UICK-SORT N IL) N IL)
(>(OUICK—SORT (?X ?YOLIST))

(LOCAL (PARTITION (X (Y |?Y1 |?Y2)

(APPEND (QUICK-SORT (Y1) (CONS (X (QUICK-SORT (Y2)))))

Since LOCAL express ions. in add i t ion to the i r genera l i zed eps i lon
expression use . can p lay the ro le o f "LET expressions” (Landin 1965) .
genera l i zed fo r loca l i z ing names o f reques t va r iab les whose va lues a re
to be reused severa l t imes . the f "equat ion“ in (Be l l i a e t a l . 1982) .

- 2 5 -

f(x)=y <-- r(ifl:x;gut:w1,z).h1(z)=w2.h2(z)=w3.g(w1.w2,w3)=y

can be formulated in FIT as [input variables in FIT are <-prefixed.

ggtput variables are l?—prefixed1

(>(F ?X) (LOCAL (R <X |?w1 |?Z) : (G <w1 (H1 (2) (H2 <Z))))

and their NFL-s ty le vers ion

f (x)=g (w1 .h1 (z) .h2 (z)) where r'(x)=<w1,z>

can be expressed in FIT as

(>(F ?X) (LOCAL (?w1 ?Z : (R‘ (X)) : (G <w1 (H1 <2) (H2 <Z))))

Note tha t no additional tuple notion [corresponding to (. . .)] is needed
in FIT because R‘ returns an imposition which can be distributed among
W1 and Z by a ”:"-fitting (cf. section 5 .1] . Thus the rationale for
using a relational syntax given in (Bellia et al. 1982) would not apply
t o F IT .

Completely general LOCALs have an additional colon. separating the

previously used 'then-part' from a new 'else-part'. This permits taking
arbitrary action for relation calls that yield no bindings but a jF.
For example. the above POSELEMLST definition can be modified to a final
variant POSELSE, which returns 2-list-impositions of the form (N

POSITION) (X ELEMENT). containing positions N and elements X of
non—empty lists. and the 2—1ist—imposition (NO POSIT ION) (NO ELEMENT)
for the empty list.

(>(POSELSE ?L)
(LOCAL (NTHP |?N <L l?X)

(L IST (N POSITION)
(L IST <X ELEMENT)

'(NO POSITION)
'(NO ELEMENT)))

Then the call; say, (POSELSE '(A B C)) non—deterministically returns
(1 POSITION) (A ELEMENT), (2 POSITION) (B ELEMENT). or (3 POSITION)
(C ELEMENT). whereas, assuming (> (NTHP ?N NIL ? X) jF) is asserted as
well. the call (POSELSE N IL) returns (NO POSITION) (NO ELEMENT).

3 .1 .4 The ESCVAL Operator »

As a notational convenience we could introduce another prefix
operator "$" [ESCVAL], meaning "escape with yalue". which distinguishes
a request variable such that the value it receives replaces the normal
value of the entire request expression in which it occurs directly
[this should not be confused with the above mentioned "output”
variables as used in (Bellia et al. 1982) which are to be bound through
relation calls]. More precisely. an ESCVAL expression of the form

(r p1 ... pI—1 $l?v pI+1 ... pM)

- 25 -

could be de f ined by our p rev ious LOCAL expre s s ion

(LOCAL (r p l . . . p1-1 |?v p1+1 . . . pH) : <v)

I f . fu r thermore , ESCVAL or LOCAL express ions embedded in reques ts a re
eva luated 'by va lue ' , l i ke F IT 's bu t un l i ke PROLOG's embedded terms,
this wou ld allow the nes t ing o f re la t ion - l i ke express ions, s im i la r to
the nes t ing o f func t ion ca l l s . For example . the L ISP /F IT func t ion
nes t ing

(PLUS (SQUARE 5) (SQUARE 3))

w i th ESCVAL would become

(PLUSP (SOUAREP 5 $ l?S1) (SOUAREP 3 S l782) $ l?P)

which i s more conc ise than the equ iva len t LOCAL fo rm

(LOCAL (PLUSP (LOCAL (SOUAREP 5 |?S I) : (S I)
(LOCAL (SOUAREP 3 I?SZ) : (SZ)
|?P)

(F)

The PROLOG con junc t ion cor respond ing to the func t ion nes t ing . name ly

? - squarep (5 .S I) . squarep (3 .$2) . p lusp (S (,SZ ,P) .

wi th ESCVAL would become

?- p1usp(squarep(5,$$1).squarep(3.552).SP).

ESCVAL express ions can be regarded as genera l i z ing bo th func t ions
and re la t ions because they re tu rn va lues . l i ke func t ions , and a re not
based on a d is t inc t ion o f inpu t and output arguments, l i ke re la t ions . A
la rger example o f ESCVAL uses w i l l be t rea ted in sec t ion 8 .2 .

A more genera l ESCVAL opera to r m igh t p re f i x an a rb i t ra ry express ion
such tha t i t s va lue rep laces tha t o f the d i rec t l y superord ina te
expression: th is would a l low escaping va lues o f reques t va r iab les
occur r ing ind i rec t l y in reques t express ions by p re f i x ing a l l
i n te rmed ia te expressions w i th "$" . More p rec ise ly . a genera l ESCVAL
express ion o f the fo rm

(r p1

p I - I
$(s q1 . . . qJ—1 $ (. . . $I?v . . .) qJ+1 . . . qN)
p I+1

pH)

could be de f ined by the LOCAL express ion

_ 27 _

(LOCAL (r p1

pI—1
(s q1 . . . qJ-1 (. . . l?v . . .) qJ+1 . . . qN)
pl .)

pH)

(v)

3 .2 Func t i on Cal l s with Reques t Var iab le s

3 .2 .1 In terpre t ing Re la t ions a s Charac ter i s t i c Funct ions -

An M—place re la t ion also def ines an add i t iona l M-ary func t ion ,
namely i t s charac ter i s t i c func t ion . S ince . in F IT . re la t ion ca l l s
re turn va lues . th i s func t iona l v i ew o f re la t ions i s impl i c i t in tha t
language ; for example . the FIT re la t ion ca l l [pred ica te func t ion ca l l]

(NTHP 3 ' (A B C D) C)

re turns the ' t rue ' va lue (NTHP 1 (C D) C) . In genera l , a
' fa l s e ' - fa i l ing re la t ion ca l l in FIT y i e lds jF . an 'unknown' - fa i l ing
one y i e lds jU . and a succes s fu l one re turns T or any o ther va lue
unequa l to jF or jU . In PROLOG. re la t ion ca l l s don ' t re turn va lues : for
example . the PROLOG re la t ion ca l l

7 - n thp(3 . [a .b . c .d] . c) .

pr in t s ' ye s ' but doesn‘ t re turn anyth ing .

Suppose some FIT programmer doesn‘ t want compound t ru th -va lues l ike
(NTHP 1 (C D) C) a s used for ques t ion—overanswer ing , wh ich here can be
in terpre ted as ”Yes [C i s the 3rd e l ement o f (A B C 0)] because C i s
the 1 s t e l ement o f (C D)" . This programmer may obta in the a tomic
t ru th -va lue T by rewr i t ing fac t s wh ich are adapters o f the form

(r p1 . . . pM)

as t rans formers o f the form

() (r p1 . . . pH) T)

For example , the NTHP fac t

(NTHP 1 (?X #10) 7X)

can be rewr i t t en as

(>(NTHP 1 (?X #10) ?X) T)

Now the ca l l

(NTHP 3 ' (A B C D) C)

_ 28 .

wou ld re tu rn the a tom T. Similarly. the usual numeric characteristic

func t ions cou ld be modelled directly be defining facts as t r ans fo rmers

that r e tu rn 1 instead of T [and 0 i n s tead of jF].

The important observation is that all these relation—derived
functions in FIT can still be used with request variables. so that.

besides returning values. they also yield variable binding effects. For
example. the call

(NTHP 3 '(A e c D) | ?x)

would return some 'true' value. according to the already discussed

alternatives used to define the NTHP fact. and it would also bind x to
C.

3 .2 .2 Extending Relations to General Functions —

While the values returned by characteristic functions are primarily
truth—values, nothing changes if we use arbitrary values. That is. in

FIT not on l y predicate-like functions but also arbitrary general

functions can be used with request variables.

To demonstrate this. we can start with another predicate function

KNOWS. defined as a transformer fact for JOHN and MARY:

(>(KNOHS JOHN MARY) 1)

If we extend the two—valued characteristic function to a many—valued
probabilistic. possibilistic, or fuzzy function. we can modifiy the
previous fact to something like

(>(KNOHS JOHN MARY) .82‘)

Now a request like (KNOWS JOHN I?X) returns .824 and binds x t o MARY.
Instead of numeric certainty degrees we can also use symbolic ones as
in

()(KNOHS JOHN HARY) QUITE-WELL)

Now a request like (KNOWS JOHN I?X) returns QUITE-HELL and binds X to
MARY. Symbolic values can not only represent degraded truth but also
many other things. such as the person believing the fact as in

()(KNONS JOHN MARY) (OPINIONOF PAUL),

Now a request like (KNOWS JOHN | ?X) returns (OPINIONOF PAUL) and binds
X to MARY.

If the original fact contains variables [understood to be quantified
universally], then the value may be an expression in these variables.
For example, the fact

(NEEDS ?EVERYBODY A-PRODUCT)

cannot only be extended t o a function with a constant value. like

- 2 9 -

(>(NEEDS ?EVERYBODY A—PRODUCT) IN THE EYES OF A-COMPANY)

but also t o a func t ion with a var iab le value. like

(>(NEEDS ?EVERYBODY A-PRODUCT) ESPECIALLY (EVERYBODY WILL NEED IT)

With the l a t t e r definition a reques t like (NEEDS JOHN I?X) re turns
ESPECIALLY JOHN WILL NEED IT and binds X to A-PRODUCT.

In general for each relation definition

(r p1 pM)

and arbitrary value v . which may depend on p1, . . . , pH. there is a
function definition

(r p1 pH) := v

or, in F IT ,

(> (r p1 ... pM) v)

That is. each relation can be extended to a function. Although in
PROLOG r e l a t i on definitions of the above form correspond to facts only,
rule-defined relations must also be 'grounded' in facts. to which.

then. the function—generalization is applicable. The values o f the

ground facts can be calculated and passed back across the rule arrows.
For this. a PROLOG rule definition [in FIT syntaxl'

(>(r p1 ... pM) (r1 ...) ... (r2 ...))

can be replaced by

(>(r p1 ... pM) (combine (r1 ...) ... (r2 . . .)))

where combine is some function combining the values returned by the
conjuncts o f the rule body. For numeric values combine=TIHES or
combinezMIN may be applied, as usual; for symbolic values there are
many combination possibilities. the most trivial being combine=LIST
[combine must fulfill the requirement of strictness. so that jF and jU
signals can escape from its calls].

Since such a function in FIT can be used as a relation [i.e. with
arbitrary fixed and open arguments] by simply ignoring the value
returned as long as it is 'true'. FIT functions can be said to be 'more
general' than relations.

Of course. the M-ary function (>(r p1 ... pM) v) . derived from the
M-ary relation (r p1 ... pH) . can again be represented as an M+1-ary
relation (r p1 ... pM v); for example, (>(KNONS JOHN MARY) (OPINIONOF
PAUL)) thus becomes (KNOWS JOHN MARY (OPINIONOF PAUL)). And of course.
the M+1—ary relation could again be generalized to an M+1—ary function
()(r p1 ... pH v) v ') . e . g . . (KNOHS JOHN MARY (OPINIONOF PAUL)) to
(>(KNONS JOHN MARY (OPINIONOF PAUL)) QUITE-WELL). etc. ad infinitum.
However, this misses the point that relation calls don't exploit the
linguistic dimension of returning useful values although nothing would
prevent them from doing so.

_ 3 0 -

Finally note that relations generalized to functions by means of

ex tend ing definitions. can still be used as functions by means of the
ESCVAL operator [subsection 3 .1 .41 . because this use is def ined by the

LOCAL semantics of ESCVAL: After the func t ion extension (>(r p1 ... pM)

v) the ESCVAL expression (r p1 ... pf-T $(?w pI+T ... pM) expands to

(LOCAL (r p1 ... pI-1 (7w pl+1 ... pH) : (w) . hence throws away the
value v returned by (r p1 ... pI—f |?w pI+1 ... pM) and instead‘returns
the value Of w. For example. after (>(KNOWS JOHN MARY) QUITE—WELL) the
r e q u e s t (KNOWS S I ? “ MARY) v i a (LOCAL (KNOWS I ? ” MARY) : (N) . (LOCAL

(GLOBAL (()” JOHN) ! QUITE-WELL) : (W) . and (LOCAL ((>N JOHN?) (W)
returns JOHN. In o ther words , the programmer need not be aware of what

kind' of ' t rue ’ value an expression would return if used without an
ESCVAL operator; if used with ESCVAL, it always returns the

ESCVAL-marked subexpression.

3 .2 .3 Using Functions like Relations -

We now proceed to three examples of functions not derived from

relations and still usable with request variables, like relations.

A unary function FATHEROF can be defined by a set of individual

settings such as

(>(FATHEROF ATHENA) ZEUS)
(>(FATHEROF APOLLO) ZEUS)
(>(FATHEROF zsus) cnonus)

This FATHEROF function can not on ly be called with a fixed argument as
in (FATHEROF ATHENA) returning ZEUS, but also with a request variable
argument as in (FATHEROF |?X) non—deterministically returning ZEUS and
binding X to ATHENA, returning ZEUS and binding X to APOLLO, or

returning CRONUS and binding X to ZEUS. In general. function calls all
of whose arguments are request variables enumerate the function's range
and bind the variables to the corresponding domain elements. In the
FATHEROF example the call returns all persons known to be fathers and
binds the single request variable argument to their children.

A binary function PARENTS can be defined similarly as

(>(PARENTS ABRAHAM HAGAR) rSHHAEL)
(>(PARENTS ABRAHAM SARAH) ISAAC)

[The persons of th is de f in i t ion were quoted previously to illustrate
various things; in the PROLOG literature the males occur in (Clocksin &
Mellish 1981) and the females were added in (Fuhlrott 1982) .]

This PARENTS function can be called as follows. The child of ABRAHAM
and SARAH is obtained when both arguments are correspondingly fixed as
in (PARENTS ABRAHAM SARAH). returning ISAAC. All children of ABRAHAM
and any woman are obtained when the first argument is fixed to ABRAHAM
and the second is left open as in (PARENTS ABRAHAM I?X) .
non-deterministically returning ISAAC and binding x to SARAH ‘or
returning ISHMAEL and binding X to HAGAR. All children o f HAGAR and any
man are obtained when the second argument is f i xed to HAGAR and the
first is left open as in (PARENTS l?X HAGAR). returning ISHMAEL and
binding X to ABRAHAM. In general. function calls some of whose

- 31 _

arguments are reques t variables and the o ther ones are f i xed enumerate
the func t ion ' s subrange under the f i xed arguments and b ind the
var iab le s to the remain ing domain e l ements . A l l ch i ldren o f any man and
woman are obta ined when both arguments are l e f t open as in (PARENTS I?X
| ?Y) . re turn ing ISAAC and b ind ing X to ABRAHAM and Y to SARAH or
re turn ing ISHMAEL and b ind ing X to ABRAHAM and Y to HAGAR.

In genera l . o f course . the PARENTS func t ion i s non—determin i s t i c even
for f i xed fa thers and mothers . Th i s can be expres sed us ing the “v"
pre f ix [c f . s ec t ion 6 .2] a s in

(V(PARENTS ISAAC REBECCA) ESAU)
(V(PARENTS ISAAC REBECCA) JACOB)

Now even wi th bo th arguments f i xed as in (PARENTS ISAAC REBECCA) we
non-de termin i s t i ca l ly obta in ESAU or JACOB. with the f i r s t argument
f ixed to ISAAC and the s econd l e f t open as in (PARENTS ISAAC I?X) we
al so obta in ESAU or JACOB, in bo th cases x becoming bound to REBECCA.
Reques t s l ike (PARENTS | ?X REBECCA) and (PARENTS | ?X |?Y) behave
s imi lar ly .

A recurs ive func t ion HONOI for in i t i a l i z ing homogeneous ly co lored
towers o f Hang; o f g iven h ight by cons truc t ing them as impos i t i ons o f
the d i sks ava i lab le in the da ta base can be de f ined as

(>(HONOI ?DIAMETER ?COLOR)
(DISK (DIAMETER (COLOR)
(HONOI (SUBI (DIAMETER) <COLOR))

(>(HONOI 0 ?COLOR))
(DISK 1 RED)
(DISK RED)
(DISK RED)
(DISK BLUE)
(DISK BLUE)
(DISK BLUE)N

U
-I

N
U

This func t ion can be ca l l ed wi th f i xed co lor argument a s in (HONOI 3
RED), re turn ing the impos i t i on

(DISK 3 RED) (DISK 2 RED) (DISK 1 RED)

or wi th an open co lor argument a s in (HONOI 3 |?X) . re turn ing the
impos i t i ons

(DISK 3 BLUE) (DISK 2 BLUE) (DISK 1 BLUE)

or

(DISK 3 RED) (DISK 2 RED) (DISK 1 RED)

The second HONOI ca l l chooses a s ing le co lor for a l l d i sks o f a tower .
here b lue or red . Nonhomogeneous ly co lored towers cannot be cons truc ted
because a l l occurrences o f the co lor reques t var iab le | ?X must be bound
cons i s t en t ly . A l though in bo th cases we ca l l ed the HONOI func t ion wi th
f ixed d iameter arguments , i t can a l so be ca l l ed wi th an open d iameter
argument , but then in F IT -1 on ly the d iameter 0 i s chosen and the empty
tower i s cons truc ted .

- 32 -

3 .3 H igher -o rder Func t ions and Rela t ions

3 .3 .1 The Direc t Approach -

Let us begin with expressions cons is t ing o f severa l func t ions . A
nested func t ion ca l l . i n the s implest case having the form

g(h (a))

fo r PROLOG must f i rs t be rewr i t t en as a con junc t ion o f two func t ion
ca l l s communica t ing v ia a t emporary va r iab le x ,

x=h(a) , y=9 (x)

which can then be pu t in to a re la t iona l fo rm

h—P(a.x) . g -P (x .y)

This l eads to a f l a t sys tem o f re la t ion ca l l s w i th many temporary
var iab les whose correspondence i s o f ten d i f f i cu l t to es tab l i sh . On the
o ther hand. F IT 's LISP—like nes t ing form

(g (h a))

l eads to deep ly nes ted func t ion ca l l s w i th many c los ing paren theses . To
avoid unnecessary parentheses in F IT a r igh t -assoc ia t i ve ' app ly ' in f i x
opera to r “ " can be used fo r unary func t ions . s imp ly f ing the above
nes t ing to

g :h :a

PROLOG's need fo r temporary "ob jec t va r iab les" makes i t imposs ib le
to use h igher -o rder func t ions o r “ func t ion - leve l opera to rs" in the
sense o f (Backus 1902) in tha t l anguage . An examp le of wha t cannot be
expressed in PROLOG is a func t ion compos i t ion l i ke

goh

which in Backus' FP. in F IT . and in o ther func t iona l languages can be
passed as an a rgument and re tu rned as a va lue . independent ly o f the
arguments to wh ich i t w i l l be even tua l l y app l i ed . On ly on app l ica t ion
to an a rgument a can the compos i t ion goh be expanded to the nes t ing
g(h (a)) . and on ly then could the above rewr i t ing to the corresponding
re la t iona l PROLOG form beg in .

More genera l l y . PROLOG's res t r i c t ion to f i rs t -o rder p red ica te
ca lcu lus prevents opera t ions on re la t ions . i . e . i t fo rces every th ing
tha t i s sa id to be sa id about ind iv idua ls [Backus‘ ob jec ts] .
Higher -o rder func t ions o r p red ica tes [re la t ions] a re no t ava i l ab le .
Thus a very use fu l dimension o f abs t rac t ion i s no t exp lo i ted in PROLOG.

For example, in F IT we can form the composit ion o f the successor
func t ion g=SUCC and the square func t ion h=SOUARE, SUCCoSOUARE. where
' o i s an in f i x shorthand fo r the h igher -o rder COMPOSE func t ion . which
becomes exp l i c i t i n the unshortened no ta t ion (COMPOSE SUCC SQUARE).
H igher -o rder func t ions can be de f ined in F IT l i ke f i rs t—order
func t ions . For example, a l though COMPOSE is bu i l t i n to FIT—1, i t could
be de f ined in F IT -1 i t se l f by

- 32 -

3 .3 H igher -o rder Func t ions and Rela t ions

3 .3 .1 The Direct Approach -

Le t us begin wi th expressions cons is t ing o f several func t ions . A
nested func t ion ca l l . i n the s imples t case hav ing the form

g(h(a))

fo r PROLOG must f i rs t be rewr i t t en as a con junc t ion o f two func t ion
ca l l s communica t ing v ia a t emporary va r iab le x .

x=h(a) . y=g(x)

which can then be pu t in to a re la t iona l fo rm

h-P (a .x) . g -P (x .y)

This l eads to a f l a t system o f re la t ion ca l l s w i th many temporary
var iab les whose cor respondence i s o f ten d i f f i cu l t to es tab l i sh . On the
other hand. F IT 's LISP—like nes t ing form

(g (h a))

l eads to deep ly nes ted func t ion ca l l s w i th many c los ing paren theses . To
avoid unnecessary parentheses in F IT a r igh t -assoc ia t i ve ' app ly ‘ in f i x
opera to r “ " can be used fo r unary func t ions . s imp ly f ing the above
nes t ing to

g:h :a

PROLOG's need fo r temporary “ob jec t va r iab les“ makes i t imposs ib le
to use h igher—order func t ions o r " func t ion - leve l opera to rs ' in the
sense o f (Backus 1982) in tha t l anguage . An examp le of wha t cannot be
expressed in PROLOG is a func t ion compos i t ion l i ke

goh

which in Backus ' FP . in F IT . and in o ther func t iona l l anguages can be
passed as an a rgument and re tu rned as a va lue . independent ly o f the
arguments to wh ich i t w i l l be even tua l l y app l i ed . On ly on app l ica t ion
to an a rgument a can the compos i t ion goh be expanded to the nes t ing
g(h (a)) , and on ly then could the above rewr i t ing to the corresponding
re la t iona l PROLOG form beg in .

More genera l l y . PROLOG's res t r i c t ion to f i rs t -o rder p red ica te
ca lcu lus p revents opera t ions on re la t ions . i . e . i t fo rces every th ing
tha t i s sa id to be sa id about ind iv idua ls [Backus' ob jec ts] .
Higher -o rder func t ions o r p red ica tes [re la t ions] a re no t ava i l ab le .
Thus a ve ry use fu l d imens ion o f abs t rac t ion i s no t exp lo i ted in PROLOG.

For example, in F IT we can form the composit ion o f the successor
func t ion g=SUCC and the square func t ion h=SnUARE. SUCCoSOUARE. where
“a i s an in f i x shorthand fo r the h igher -o rder COHPOSE func t ion . which
becomes exp l i c i t i n the unshortened no ta t ion (COHPOSE SUCC SQUARE).
H igher -o rder func t ions can be de f ined in F IT l i ke f i rs t -o rder
func t ions . For example, a l though COMPOSE is bu i l t i n to F IT -1 . i t could
be de f ined in F IT -1 i t se l f by

- 32 -

3 .3 H igher -o rder Func t ions and Relations

3 .3 .1 The Direct Approach —

Let us begin with expressions cons is t ing o f severa l func t ions . A
nested func t ion ca l l . i n the s imples t case having the form

g(h(a))

fo r PROLOG must f i rs t be rewr i t t en as a con junc t ion o f two func t ion
ca l l s communica t ing v ia a t emporary va r iab le x .

x=h (a) . y=g (x)

which can then be pu t in to a re la t iona l fo rm

h—P(a.x) . g—P(x.y)

Th is l eads to a f l a t sys tem o f re la t ion ca l l s w i th many temporary
var iab les whose cor respondence i s o f ten d i f f i cu l t to es tab l i sh . On the
other hand. F IT 's LISP—like nes t ing form

(g (h a))

l eads to deep ly nes ted func t ion ca l l s w i th many c los ing paren theses . To
avoid unnecessary parentheses in F IT a r igh t -assoc ia t i ve ' app ly ' in f i x
opera to r ' - ' can be used fo r unary func t ions . s imp ly f ing the above
nes t ing to

g:h :a

PROLOG's need fo r temporary ”ob jec t va r iab les" makes i t imposs ib le
to use h igher—order func t ions o r " func t ion—leve l opera to rs“ in the
sense o f (Backus 1982) in tha t l anguage . An example o f wha t cannot be
expressed in PROLOG is a func t ion compos i t ion l i ke

goh

which in Backus ' FP . in F IT . and in o ther func t iona l l anguages can be
passed as an a rgument and re tu rned as a va lue , independent ly o f the
arguments to which i t w i l l be even tua l l y app l i ed . Only on app l ica t ion
to an a rgument a can the compos i t ion goh be expanded to the nes t ing
g(h (a)) ‚ and on ly then could the above rewr i t ing to the corresponding
re la t iona l PROLOG form beg in .

More genera l l y . PROLOG's res t r i c t ion to f i rs t -o rder p red ica te
ca lcu lus p revents opera t ions on re la t ions . i . e . i t fo rces every th ing
tha t i s sa id to be sa id about ind iv idua ls [Backus' ob jec ts] .
H igher -o rder func t ions o r p red ica tes [re la t ions] a re no t ava i l ab le .
Thus a ve ry use fu l d imens ion o f abs t rac t ion i s no t exp lo i ted in PROLOG.

For example. in F IT we can form the composit ion o f the successor
func t ion g=SUCC and the square func t ion h=SOUARE, SUCCoSOUARE. where
‘o ' i s an in f i x shorthand fo r the h igher -o rder COMPOSE func t ion . which
becomes exp l i c i t i n the unshor tened no ta t ion (COMPOSE SUCC SQUARE).
Higher -o rder func t ions can be de f ined in F IT l i ke f i rs t -o rder
func t ions . For example. a l though COMPOSE is bu i l t i n to F IT -1 , i t could
be de f ined in F IT -1 i t se l f by

_ 33 _

(>((COMPOSE ?G ?H) >X) ((G ((H <X)))

A composition can t hen be used exac t ly like an ord ina ry func t ion . say .
with the argument 3 as in

((COHPOSE SUCC SQUARE) 3)

which r e tu rns 10 . I t can also be used as the paramenter o f the
higher—order "8 ' [REPEAT] func t ion , which app l ies i t s parameter to i t s
a rb i t ra ry number o f arguments. ob ta in ing (REPEAT (COMPOSE SUCC SQUARE))
o r 8(COMPOSE SUCC SQUARE). The ob jec t ¢(COMPOSE SUCC SQUARE) can aga in
be used as an o rd inary func t ion , fo r ins tance w i th the four arguments
O. 1 , 2 . and 3 as in

(#(COMPOSE SUCC SQUARE) 0 1 2 3)

re tu rn ing 1 2 5 10 .

3 .3 .2 Warren's S imu la t ion Method -

As d iscussed above . such compos i t ions cannot be expressed in PROLOG
as i t s tands. Nor i s i t poss ib le to de f ine a higher—order compose
pred ica te . ana logous to F IT 's h igher -o rder COMPOSE func t ion de f in i t ion .
by someth ing l i ke

compose(G,H)(X.Z) :— H(X ,Y) . G (Y .Z) .

wh ich could t hen be i nvoked by

?- compose(succp.squarep)(3.Ans).

The only way ou t i s to imp lement compos i t ions as par t o f a new language
on top o f PROLOG. In o ther words . goh must be used as a da ta ob jec t .
namely as a te rm composetg,h) . For ins tance . (Warren 1982) in t roduces a
pred ica te app ly . wh ich rea l l y i s an in te rpre te r o f a l anguage o f ' t e rm
programs' l i ke compose(g,h) . One de f in ing c lause o f the in te rpre te r
app ly may spec i fy wha t to do w i th such compose s t ruc tures :

apply(compose(G.H) ,X .Z) : - app1y (H .X ,Y) . app l t .Y .Z) .

But now we must a lso spec i fy app ly c lauses fo r every func t ion g and h
tha t i s to be used in the compos i t ion -ex tended PROLOG; e .g . fo r succp
and squarep we have to p rov ide the app ly de f in i t ions

app ly (succp .x1 .X2) :— succp(X1 .X2) .
app ly tsquarep ,x1 ,x2) : - squarep(X1 ,X2) .

a long w i th the o rd inary succp and squarep de f in i t ions

succp(X.Y) : - Y i s X+1.
squarep (X .Y) :— Y i s X*X .

Af te r these p repara t ions we can use app ly fo r compose lsuccp .squarep)
and the argument 3 as in

? - apply(compose(succp.squarep) ,3 ,Ans) .

- 3 ‘ -

which b inds Ans to 10 . However we ge t an e r ro r . i f we t ry the ana logue
of repea t ing the compose te rm over severa l a rguments . by mapp ing i t
over a l i s t o f these arguments w i th the map l is t re la t ion fo r p red ica tes
descr ibed in (C locks in & Mellish 1981) . We must again def ine a special
app l y vers ion fo r mapping, which we ca l l 'mapp ly l i s t ' :

mapp ly l i s t (_ . [] . []) .
mapplyl ist tP. [XlL] . [YIM]) :—

app ly iP .X .Y) .
mapply l i s t (P .L .M) .

Using th is we can eventua l l y s imula te what we want:

? - mapp ly l i s t tcompose(succp .squarep) . [0 .1 .2 .3] .Ans) .

binds Ans to the l i s t [1 .2 .5 .10] .

We don ' t regard th is s imu la t ion o f h igher -o rder func t ions in PROLOG
as a p roper ex tens ion o f tha t l anguage because i t doesn ' t pe rmi t the
d i rec t use o f the o r ig ina l l anguage kerne l [e .g . succp , squarep .
map l is t] f rom the newly de f ined cons t ruc ts . War ren i s rea l l y beg inn ing
to de f ine a new in te rpre te r when he in t roduces apply de f in i t ions ,
a l though he doesn ' t seem to no t ice th is s ta tus o f app ly . He even a rgues
tha t the ' ex tens ion ' can be regarded as “syn tac t ic sugar“ fo r s tandard
f i r s t -o rder log ic ; th is use o f the te rm "syn tac t ic sugar" has
comple te ly los t the o r ig ina l mean ing o f (Land in 1955) . whose LET
ex tens ion does l eave the under ly ing LAMBDA kerne l l anguage un touched .
I n (Warren 1982) i t i s s ta ted tha t fo r the h igher - to—f i rs t -o rder
reduc t ion a c lause

“app ly (foo ,X1 ,Xn) : - go (X1 ‚Xn) .

is suppl ied fo r each p red ica te £99 which needs to be t rea ted as a da ta
ob jec t " , and we have done th is fo r succp and squarep . bu t ac tua l l y th is
means tha t one needs an add i t iona l c lause fo r all p red ica tes one ever
wants to use as a rguments o f h igher—order p red ica tes . However , when you
def ine a p red ica te l i ke succp or squarep you norma l ly don ' t know
whether you o r o ther programmers w i l l need i t a t some la te r po in t in a
h igher -o rder cons t ruc t l i ke compose. tw ice . o r wha tever . A f te r some
er rors caused by miss ing app ly c lauses you w i l l ce r ta in ly con templa te a
convent ion fo r genera l l y supp ly ing p red ica tes w i th the add i t iona l app ly
c lause . However . s ince many o f these c lauses wou ld never be used . the
resu l t ing inc rease o f code wou ld be unacceptab le because i t makes
programs less readab le and more s to rage consumpt ive . I t was there fo re
proposed by (Nebe l 1983) to de f ine apply us ing PROLOG's "= . . " and
"ca l l " p red ica tes , which abbrev ia tes Warren's c lauses fo r . say. n=2 to
the s ing le genera l c lause

app l too ,x1 ,X2) :— 0= . . [Foo .X1 .X2] . ca l l (0) .

tha t could be fu r ther genera l i zed by always us ing . l i ke L ISP 's APPLY,
one argument 1131 X ins tead o f some f i xed number n o f arguments X1.

. . . Xn. Although th is de f in i t ion i s very conc ise . i t does no t on ly
depend on the ex t ra - log ica l “ : . . " and "call” f ea tu res bu t must a lso be
pos i t ionned jud ic ious ly , name ly a f te r a l l o ther , spec i f i c app ly
c lauses . Th is , in tu rn . en ta i l s tha t a l l these spec i f i c c lauses must be
augmented by a cu t opera to r to p revent ca l l s l i ke
apply(compose(succp.sqr tp) .9 ,Ans) from fa l l ing in to the l as t , ca tch -a l l

- 3 5 -

app l y definition if their body fails [say, because sqr tp is undefined].

In our example this leads t o

apply(compose(G.H1.X.Z) :— !. apply(H.X.Y). apply1G.Y.Z).
apply(twice(G),X,Z) :— !. app1y(G.X.Y). app ly (G .Y .Z) .

apply(Foo.X1,X2) :— 0=..[Foo.x1,X2], callto).

One might therefore s t a r t to consider building app l y clauses implicitly

into the PROLOG interpreter, thus taking the first step toward really
extending PROLOG for higher—order constructs. Warren's simulation

method may be theoretically nice. but it isn't practical.

Kowalski. unlike Warren. has recently acknowledged that higher-order
functions are a serious problem for PROLOG—like languages; however. his
attempt to use a logical metalanguage for simulating higher-order
functions is still quite "complicated” (Kowalski 1983) . and looks even
less practical than Warren's simulation.

3.3.3 New Higher-order Functions from Old —

Noticing the relationship between the above compose and twice
definitions. we may. l i n addition, ask if the really nice features of
functional programming. like the definition o f higher-order functions

[e.g. TWICE] by other higher-order functions [e.g. COMPOSE]. as opposed
to their above "object-level" (Backus 1982) definitions. can in
principle be expressed nearly as nicely in relational programming. For
example. the TWICE-by-COMPOSE definition in FIT can be formulated very
concisely with

(>(TWICE ?G) (COMPOSE (G <61)

which may be called on the top-level, as in

(TWICE A0011
IQQHEQSE A001 A201!

returning a higher—order function. or in a functional position. as in

((TWICE A001) 01
(1COMPOSE ADDI ADD‘) 01
(A001 (A001 D))

Z

applying the higher—order function and returning a data object.
Concerning PROLOG. even if a definition

apply1twice1G),X.Z) : - app1y(compose(G,G).X,Z).

in ordinary PROLOG, can be shortened to

twice(G)(x,Z) :— compose(G,G)(X,Z).

in an extended PROLOG. the redundant object variables X and Z cannot be
omitted, i.e. the definition cannot be shortened to something like

_ 35 _

tw ice(G) :— compose(G,G).

without introducing func t ions as a t rue counte rpar t to re la t ions .

To see the re levance o f the above d iscuss ion fo r day - to -day
re la t iona l p rogramming . cons ider the PROLOG c lauses

grandfa thero fp (x .2) : - pa ren to fp (X .Y) . f a thero fp (Y ,Z) .
unc leo fp tx .2) :— paren to fp (X .Y) . b ro thero fp (Y .Z) .

where " . . . " s tands fo r ana logous ru les fo r g randmothero fp , aun to fp e tc .
Such re la t ions cou ld be rede f ined on a h igher l eve l o f abs t rac t ion in a
most concise manner as

grandfa thero fp : - compose(fa thero fp ‚paren to fp) .
unc leo fp : - compose(bro thero fp ‚paren to fp) .

w i thout requ i r ing a l l these ob jec t va r iab les X . Y . and 2 but ins tead
using the p rev ious ly discussed h igher -Order compose p red ica te . Whi le
th is i s on ly a sugges t ion fo r an ex tended PROLOG, the cor respond ing
func t iona l de f in i t ions

(>GRANDFATHEROF (COMPOSE FATHEROF PARENTOF)!
(>UNCLEOF (COMPOSE BROTHEROF PARENTOF)’

a re a rea l i t y in F IT -1 .

& PROLOG STRUCTURES AND F IT COMPOUNDS

As an a l te rna t ive to L ISP l i s ts , PROLOG uses so -ca l l ed ' s t ruc tures ' .
a lso ca l l ed 'compound te rms ' . A s t ruc ture cons is ts o f a func tor f of
ar i ty N and arguments a1 . a2 , aN: the arguments may aga in be
s t ruc tures . I t i s wr i t t en in the usua l mathemat ica l / log ica l p re f i x
no ta t ion

f (a1 ,a2 aN)

F IT 's genera l i za t ion o f LISP l i s ts a re 'compounds'. bu t on ly the i r
l i s t—l ike subse t i s cons idered exp l i c i t l y here and la te r on . The above
PROLOG s t ruc ture in F IT can be represented by a compound o f l eng th N+ l
wi th a d is t ingu ished f i rs t element f " and remaining elements a t " . 32" .

. . . aN" . I t i s wr i t t en in L ISP 's Cambr idge Po l ish p re f i x no ta t ion

(f~ a1~ az" aN")

where f " i s a FIT atom corresponding to the PROLOG-functor f and a1".
az", . . . , aN~ are recursively rewr i t ten subexpressions corresponding to
a1 . a2 , aN, respec t ive ly . down to the g round—leve l o f PROLOG
constan ts wh ich a re rewr i t t en to F IT cons tan ts by in teger"= in teger and
atom"=ATOM.

_ 37 -

As an examp le let us consider the notation of LISP's dotted pairs as

PROLOG structures and a co r respond ing FIT representation. Such a
structure uses a functor f:“." of arity N=2 and two arguments, say,

a1=alfa and a2=beta. hence it may look like

.(alfa,beta)

The corresponding compound of length N+1=3 uses the distinguished. atom

f"=DOT and arguments a1"=ALFA and aZ"=BETA. i.e. it is

(DOT ALFA BETA)

Similarly a PROLOG structure nesting like

.(alfa,.(beta,.(gamma.nil)))

} becomes the FIT compound nesting

(DOT ALFA (DOT BETA (DOT GAMMA N IL)))

PROLOG structures have an important restriction as compared to L ISP
lists and FIT compounds, namely their fixed arity. Besides the binary
"."-functor PROLOG could use a triple functor allowing structures like
triple(alfa,beta,gamma), a quadruple functor allowing structures like
quadrup1e(alfa,beta,gamma,delta) etc. but not a general tuple functor
allowing all these structures tuple(alfa.beta), tuple(alfa.beta,gamma),
tuple(a1fa.beta,gamma.de1ta) etc. F IT , on the other hand, besides DOT
compounds not only allows TRIPLE compounds like (TR IPLE ALFA BETA
GAMMA), QUADRUPLE compounds like (QUADRUPLE ALFA BETA GAMMA DELTA) etc.
but also general TUPLE compounds like (TUPLE ALFA BETA) . (TUPLE ALFA
BETA GAMMA). (TUPLE ALFA BETA GAMMA DELTA) etc.

A PROLOG functor f has either a single fixed arity N or it is
'overloaded' by a. usually small. finite number k of fixed arities N1,

.. Nk. Occurrences of an arity-overloaded functor f are sometimes
written along with their arities N1. . . . , Nk as f/N1, . . . , f/Nk, which
can also be regarded as k different functors. each with its own fixed
arity. Lists and compounds, on the other hand. can be used with a
distinguished first element followed by a varying, potentially infinite
number of arguments, with available computer memory being the only
restriction on the maximum argument number. For example. sets whose
cardinality is an arbitrary non—negative integer cannot be represented
as unnested PROLOG structures but can be represented as unnested FIT
compounds using the distinguished first element CLASS and varying
numbers of remaining elements. as shown in the following table. The
left column shows the usual mathematical set notation. the inner column
shows equivalent F IT compounds, and the right column shows a
corresponding PROLOG-like functor-argument notation, which however, is
not realizable in PROLOG because for each number k of different arities
for which the functor 'class' might be defined there is a number k+1
such that 'class' is not defined for arity Nk+1 [the table shows k=4 ,
N1=0. N2=2. N3=3‚ NA=8] .

- 38 _

{ } | (CLASS) c lass ()
{1.3} | (CLASS 1 3) c lass(1 .3)
{A,B‚C} | (CLASS A B C) c lass (a .b ,c)
{A ,B ,C ‚1 ‚2 ‚3 } (CLASS A B C 1 2 3) C lass (a .b ,c .1 .2 ,3)I

l

Programmers used to L ISP . where many func t ions . e .g . assoc ia t ive
ones like APPEND, have an a rb i t r a ry number o f a rguments , must f ee l t ha t
this i s an unnecessary res t r i c t ion on express iveness; and indeed , the
L ISP-based LM—PROLOG (Kahn 1983) in t roduces var iab le -a r i t y func tors
in to a LISP/PROLOG env i ronment .

We now show how the F IT CLASS compounds. exempl i f i ed in the inner
co lumn. may be de f ined fo r a rb i t ra ry k . In genera l , F IT compounds, in
cont ras t to PROLOG s t ruc tures , can be in te rpre ted as va lue - re tu rn ing
func t ion ca l l s , where the d is t ingu ished f i rs t element [' func tor '] p lays
the ro le o f a func t ion app l ied to the a rguments in the rema in ing
e lement pos i t ions . Th is permi ts F IT 's so -ca l l ed ' se l f -norma l i z ing
co l lec t ions ' . genera l i z ing those in GAL/QLISP (Ru l i f son e t a l . 1572) .
wh ich a re compounds tha t re tu rn the i r own norma l i zed fo rm. For example .
CLASS in F IT i s de f ined as a norma l i za t ion func t ion fo r se ts , remov ing
dup l ica te a rguments and sor t ing the rema in ing ones l ex icograph ica l l y .
Thus (CLASS l 3) re tu rns i t se l f and (CLASS B A C B C) re tu rns
(CLASS A B C) . The CLASS de f in i t ion can be expressed in F IT i t se l f by
[the va r iab le >X enab les va ry ing a r i t i es k]

()(CLASS >X) (CONS CLASS (SORT 9 ((X) LEXORDER NODUPS)))

wi th SORT be ing L ISP 's sor t ing func t ion o r i t s F IT rede f in i t ion shown
i n sec t ion 8 .1 [“3" ins tan t ia tes a l i s t whose contents i s the
impos i t ion o f CLASS e lements] . For e f f i c iency . however . we norma l ly use
a CLASS vers ion de f ined en t i re ly in F IT—1 's imp lementa t ion l anguage .
LISP.

I n o rd inary PROLOGs. va r iab le—length s t ruc tures can on ly be
s imu la ted by nes t ings o f f i xed - leng th s t ruc tures . In par t i cu la r . PROLOG
bor rows L ISP 's representa t ion o f N -e lement l i s ts as nes t ings o f N
2 -e1ement do t ted pa i rs . Thus our p rev ious r igh t - recurs ive nes t ing o f
dot ted pa i rs

. (a l f a , . (be ta , . (gamma,n i l)))

in PROLOG can be abbrev ia ted to the so -ca l l ed ' l i s t no ta t ion '

[a l fa ,be ta ,gamma]

i . e . i t co r responds to the L ISP l i s t

(a l f a be ta gamma)

However . in PROLOG th is i s on ly a va r iab le—length sur face syn tax fo r
bas ica l l y f ixed—length ' . “ -s t ruc tures . We fee l tha t th is i s no so lu t ion
to the f i xed - leng th res t r i c t ion . fo r the fo l low ing reasons :

1 . PROLOG's l i s t no ta t ion does no t abs t rac t f rom i ts under ly ing
dot ted pa i r fo rm. because fo r the pa t te rn -match ing se lec t ion
of l i s t e lements a " I " -opera to r i s used wh ich cor responds
d i rec t ly to the ‘ . ” -opera to r [Th is i s s im i la r to the CAR and

- 39 -

CDR func t ions in L ISP which, however , can be viewed as

selectors of an abs t rac t da ta t ype ; do t ted pairs neve r need to
become visible to the L ISP programmer and modern L ISP
textbooks such as (Winston & Horn 1981) don't even use them
for association lists. In FIT no binary dotted-pair structure

at all becomes visible on pattern-matching selection of

compound elements, independent of their implementation; cf.

section 5 .1] .

For variable—length structures other than lists no surface

syntax is provided, although this would be very desirable for

sets, i.e. writing {a,b,c}. etc. [Since the available bracket.

types are not sufficient, FIT uses only ordinary parentheses.

as in (CLASS A B C) . whose 'type' can be seen from the

distinguished first element. here CLASS. Since in PROLOG
variableulength s t ruc tu res are represented as dotted pairs

using an 'auxiliary' "."—functor, variable—length structures
cannot use a 'proper' functor, analogous to a distinguished
element in F IT . say CLASS].

Mainly for these reasons we feel that (Stefik et a1. 1983) are

correct in depicting the connection of list operations to PROLOG as a
"patch approach“ because they were added to the language after the

initial design.

Besides their disadvantages, PROLOG's structures have also two
advantages as compared with ordinary LISP lists, which they share.
however, with FIT's collection compounds.

1. The functor of a structure indicates the 'type' of that entire
structure, which may sometimes enhance readability and which
can help in matching. E.g. the matching of data with
incompatible types, say of apples a and b with pears a and b.
immediately fails in PROLOG's structure representation,

apples(a,b) = pears(a,b).

whereas that matching would yield an unwanted success in a
naive type—less LISP list representation

(SETO APPLES '(A B))
(SETQ PEARS '(A B))
(MATCH APPLES PEARS) or (MATCH '(A B) '(A B))

but it again immediately fails in FIT's typed collection
compound representation

('(APPLES A B) '(PEARS A B))

Access to the arguments of PROLOG structures can be
implemented efficiently [constant time] because their fixed
length allows array like random access to every argument [cf.
the vector of cells.called a "frame" in "structure sharing"
(Warren et al.»197?)]. whereas LISP lists are less efficient
[linear time] because their varying length seems to require
CDRing through from left to right to the desired element [even
if the "CBR—coding" techn ique of the L ISP machine (Weinreb et

‘B

al. 19531 is used] . However , FIT collection compounds which

are on l y used with a fixed arity or with a small number of
fixed arities can a l so be implemented array-like instead of

with list pointers. For varying-length compounds many

instances of which have some fixed arity, a mixture of

list—like [varying—length case] and array—like [fixed—length

case] implementation is possible. For example if there are

many three—element sets. their compound notations, e.g. (CLASS
A 8 C). (CLASS A a 2). (CLASS B 3 G), (CLASS 2 b 7), can
be implemented as the array shown in the table on the left

side below. other se t s . such as (CLASS 1 3) and (CLASS A 8 C 1
2 3). can be implemented as the ordinary lists shown in the
pointer diagram on the right below.

| 1 | 2 I 3 |

l---+—-—+-—-l __________________
IA IB IC I |1l--|-->I3INIL|
l---+---+---|
IA | B | 2 |

l---+---+---l .
| B | 3 | 8 I I A | - - | - -> | B | - - | - -> | C I --|-->|
|-——--———-| ——————————————————————————— |

.. | --------------------------------------- |
|_--.__-._--| | .
I2 I '- I 7 | |-—>| 1 I -~(-->l 2 l --|-->| 3 INILI

5 PATTERN MATCHING AND GENERALIZATIONS

FIT and PROLOG are bo th languages built around generalized concepts
of pattern matching. These are based on the asymmetric pattern-data
matching foUnd in many AI languages. for which FIT prov ides a richer
set of primitives than PROLOG (cf. subsection 5.1]. This basic matching
concept is generalized differently in the two languages. FIT
generalizes it to asymmetric adapter—data fitting, where the adapter.
an operator derived from a pattern by allowing it to contain functions,
both tests and locally transforms data [cf. subsection 5.2]. PROLOG
generalizes it t o symmetric pattern—pattern unification. where both
patterns are made equal through variable-value substitutions (c f .
subsection 5.3].

5.1 Basic Hatching: Variables in Patterns

Although basic patterns may consist of variables and constants. we
restrict our attention to pattern variables he re , pa t t e rn constants
being almost the same in PROLOG and FIT {except that unprefixed atoms
are first applied as functions in FIT. so that a “Z“ prefix is used to
enforce an exclusive constant interpretation].

In PROLOG. pa t t e rn variables can match arbitrary list elements but
not arbitrary list segments. The only kind of list segment a PROLOG
variable can match is a tail segment [this must be specified- in the
pattern by a “|“ head/tail separator, i.e. it is not a property o f the

„41 .—

variable but o f the ent i re pat te rn] . An initial or an in te rmed ia te list

segment cannot be matched in PROLOG; hence mul t ip le segments a ren ' t
poss ib le e i the r . Thus in PROLOG there i s a fundamenta l asymmetry
be tween head and ta i l , i nher i ted f rom the b inary do t ted pa i r
representa t ion o f l i s ts as " . "—st ruc tures . A l though th is representa t ion
i s hidden in the l i s t no ta t ion . i t comes to the sur face dur ing
match ing . PROLOG's do t ted pa i r match ing i s we l l - known f rom some o ther
PLANNER- l i ke A I l anguages , such as CONNIVER.

F IT , like most other PLANNER—like A I l anguages . such as FUZZY. ~uses
both element va r iab les [p re f i xed by "? " J and segment va r iab les [in F IT
add i t iona l l y 'pos t ' - f i xed by "oL IST"] : t hus we fo rma l i ze a segment
var iab le as a f i t t e r compos i t ion o f a "?"-variable with the L IST
function. Unlike previous languages. F IT a lso a l lows the use o f
impos i t ion var iab les [p re f i xed by ' > '] which like segment va r iab les
match sequences o f l i s t e lements bu t un l i ke these a re bound to the
element sequences themselves. ra ther than to the i r L IST i f i ed form.
F IT 's segment and impos i t ion var iab les can occur a t a rb i t ra ry pos i t ions
and a rb i t ra r i l y o f ten ins ide pa t te rns .

The fo l low ing tab le compares match ing in PROLOG and F IT . showing the
h igher express iveness o f F IT pa t te rns . For each PROLOG match example ,
except the f i rs t , a d i rec t l y cor respond ing F IT match [us ing "oLIST"l i s
wr i t t en in the same row and a more typ ica l . impos i t ion—var iab le F IT
match [us ing ”>“] i s wr i t t en in the nex t row. Fur ther F IT rows show
var ia t ions on the o r ig ina l match. with segment and impos i t ion var iab les
occur r ing in non- ta i l pos i t ions and occur r ing more than once . The
bindings resu l t ing from matches a re wr i t t en below each match [the empty
impos i t ion i s denoted by (IMPOSIT ION)] . For non-de te rmin is t i c matches.
no t poss ib le in PROLOG. each se t o f b ind ings i s wr i t t en in a separate
l i ne .

PRgLog Ell

[x ,Y .X] = [a .b .a] . (' (?X ?Y ?X) ' (A B A))
X=a. Y=b X=A. Y=B

[lJ = [a .b .c] . (' (?x ?YoLIST) ‘(A B C))
X=a. Y=[b.c] x=A, Y=(B C)

(' (?X >Y) ' (A B C))
X=A. Y=B C

(')?XoLIST ?Y) '(A B c))
X=(A B). Y=C

(' (>x ?Y) ' (A a C))
X=A a. Y=C

[X IY] = [a.b]. (‘ (?x ?YoLIST) ' (A B))
X=a, Y=[b] x=A. Y=(B)

(' (?X >Y) ' (A B))
X=A‚ Y=B

(' (?XOL IST ?Y) ' (A B))
X= (A) . Y=B

[l]
X=a .

[x ‚Y |
X=a .

= . [a] .
Y=[l

Z] = [a .b ‚c ‚d] .
Y=b‚ Z=[c,d]

_ 42 _

(' (>x ?Y) ' (A B))
x=A‚ Y=B

(' (?x ?YbLIST) ' (A))
X=A. Y=()

(‘(?x)Y) ‘(A))
X=A, Y=(IHPOSITION)

(' (?XOLIST ?Y) ' (A))
X= () , Y=A

(' (>x ?Y) ' (A))
X=(IMP05ITION). Y=A

('(?X ?Y ?ZOLIST) ' (A B C 0))
X=A, Y=B. Z=(C 0)

(' (?X ?Y >2) ' (A B C 0))
X=A. Y=8. Z=C 0

(‘(?XoLIST ?Y 72) '(A B c D))
X=(A B), Y=C. z=n

?Z) ' (A B C D))
=C. Z=D

(' (?x ?YoLIST ?Z) ' (A B c D))
X=A. Y=(B C) , Z=D

('(?X)Y ?Z) ' (A B C 0))
X=A. Y=B C. Z=D

(?X ?YOLIST ?ZOLIST) ' (A B C D))
A. Y=(B C D) . Z= ()
A. Y=(B C) . Z=(D)
A Y= (B) . Z=(C D)
A Y= () . Z=(B C D)

>
<

>
<

->
<

>
<

" ‘
ll

n
n

u

LIST) ' (A B C D))

O
O

N
llIMPOSITION). Z=(B C D)

(A B C 0))
Z=(IMPOSITION)

<
<

<
<

=D
o
TION). z=a c D

(' (?XoLIST ?Y ?zoLxsT) '(A a c D))
x : (A a C). Y= D, z= ()
x: (A a) . Y: c, Z=(D)
X=(A), Y=B. z=(c D)
X=(), Y=Ä‚ Z=(B c D)

' (A a c D))
=(IMPOSITION). Z=(IMPOSITION)

Z=(IMPOSITION)
MPOSITION), z=o

Z=(IMPOSITION)

I -
I ~

=(IMPOSITIO
IMPOSITION). Y

X=(IMPOSITION). Y
X=(IMPOSITION). Y
X=(IMPOSITION), Y
X=(IMPOSITION). Y

An impor t an t d i f f e r ence between PROLOG and F IT pa t te rn match ing no t
shown in the tab le shou ld be ment ioned . Wh i le a success fu l match in
PROLOG s imp ly p r in ts the resu l t ing var iab le b ind ings , in F IT i t r e tu rns
the da ta ins tance matched and as i t s e f fec t y ie lds the b ind ings . For
example . the match in the f i rs t t ab le row in impure F IT wou ld re tu rn
(A B A) and b ind X to A and Y to B. The nex t subsect ion w i l l show tha t
pat te rn 's re tu rn ing o f unchanged da ta ins tances genera l i zes g race fu l l y
to adapte r ' s re tu rn ing o f mod i f i ed da ta ins tances . Semant ica l l y . the
va lues re tu rned and the b ind ings y ie lded a re t rea ted as one va lue pa i r
of the form (GLOBAL (b ind ings) va lues) . Thus the example match in pure
F IT would re tu rn the GLOBAL expression (GLOBAL ((>X A) (>Y B)) (A B
A)) . GLOBAL express ions may migra te ou t o f o ther express ions . un i t ing
the i r b ind ings cons is ten t ly and l eav ing the i r values behind. Indeed.
the above GLOBAL express ion resu l ts f rom an in te rmed ia te L IST
express ion w i th th ree embedded GLOBAL express ions as shown in the
fo l low ing t race o f the sample match eva lua t ion :

(' (?X ?Y ?X) ' (A B A))
(L IST (?X A) (?Y B) (?X A))
(L IST (GLOBAL ((>X A)) A) (GLOBAL ((>Y B)) B) (GLOBAL ((>X A)) A))

BAL >X A >Y B A B A

Fina l ly . matches in F IT can no t on ly be per fo rmed on l i s ts bu t a lso
on impos i t ions . For example. the l i s t match in the f i rs t row o f the
above tab le can be rewr i t t en to the impos i t ion match [the co lon
separates pa t te rn and da ta impos i t ions]

(?X ?Y ?X : A B A)

which also b inds X to A and Y to B bu t re tu rns the impos i t ion A B A
i ns tead o f the l i s t (A B A) . For the o ther t ab le rows in the F IT column
the same paren thes is -sav ing impos i t ion—rewr i t ing i s poss ib le .

5.2 Fitting: Special Elements in Pat te rns or Funct ions in Adapters

Since non—trivial adapters are a main theme of FIT [dealt with in
(Boley 1983)] but are absent in PROLOG, they are not explored in great

detail in the con tex t of this FIT /PROLOG comparison: however, section 7
will show the use o f adapters for defining functions.

5 .2 .1 Simple Adapters -

Most pattern matchers provide something like 'don't care‘ or 'match
all' pattern elements, in PROLOG ca l l ed 'anonymous variables' and

written "_" . In FIT this special [non—constant, non—variable] pattern

element is formalized using the identity function ID. which is
applicable to one arbitrary element and returns it unchanged. Patterns

containing functions in FIT are called 'adapters'. Thus a PROLOG
pattern

[A]

successfully matching lists like [a,b.bJ and Ia,b.c]. but neither [a .b]
nor [a.b.b.c,c]. becomes the FIT adapter

(A ID ID) .

successfully fitting lists like (A B B) and (A B C) , but neither (A B)
nor (A B B C C) . i.e.

(' (A ID ID) '(A B B)) returns (A B B).
(' (A ID ID) '(A B C)) returns (A a c) .
(' (A ID ID) '(A B)) yields jF.
(' (A [D ID) '(A B 8 C C)) yields jF.

ID is only a trivial example of the arbitrary functions allowed in
FIT adapters. A similar example is the absorption function AB.
definable by (>(AB ?X)) , which is applicable to one arbitrary element
and returns the empty imposition:

(' (A AB AB) '(A B B)) returns (A) .
(' (A A8 A8) '(A 8 C)) returns (A) .
(' (A AB AB) '(A B)) yields jF.
(' (A A8 AB) '(A a a c C)) yields jF.

A less trivial function is NUMBERP. a predicate for numbers. as
applicable in the successful adapter fitting

(' (A NUMBERP C) '(A 2 C)) , returning (A T C)

and in the failing adapter fitting

(' (A NUHBERP C) '(A B C)) . yielding 1F-

Functions inside adapters need not be unary. as shown by the
successful adapter fitting [matching A to A and applying LESSP to 2 3]

(' (A LESSP) '(A 2 3)) , returning (A T)

_ 45 _

and the failing adapter fitting

(' (A LESSP) ' (A 3 2)) . yielding jF.

Besides such predicate-like functions, arbitrary genera l functions

are also allowed inside adapters. For instance. one adapter fitting

generalization o f the match in the first row in the table in subsection

5.1 is

(' (?x L IST ?X) ' (A 8 A))

which binds x to A and returns (A (B) A). The semantic trace of ‘this
evaluation corresponds to that in section 5 .1 :

(' (?X LIST ?X) '(A B A))
(L IST (?X A) (L IST 8) (?X A))
(L IST (GLOBAL ((>X A)) A) (B) (GLOBAL ((>X A)) A))

(GLOBAL ((>X A)) (A (8) A))

There are operators making new fitters from old, e .g . the "#"
[REPEAT] operator. For example. the 'repeated identity' #10 allows the

following fittings:

(' (A tID) '(A B B)) returns (A B B)
(' (A #10) ' (A B C)) returns (A B C)
(' (A #10) '(A B)) returns (A B)
(' (A #10) ' (A)) returns (A)
(' (A u rn) '(A B B C C)) returns (A B 8 C C)
(' (A #ID) '(A B C D E F G)) returns (A B C D E F G).

Similarly, (A 88) successfully fits (A B B). (A B) . and (A). but none
of the other examples above. Also. (A #NUMBERP) successfully fits (A 2
3). returning (A T T) and (A #ADDI) successfully fits (A 2 3).
returning (A 3 4).

5 .2 .2 A PROLOG Simulation —

In PROLOG, the adapte r (A #ADD1) . for instance. can be simulated by
a relation named a_repsucc. using maplist (Clocksin & Mellish 1981) for
modeling "#" :

a_repsucc ([a |L] . [a |M]) :— mapl is t (succp ‚L .M) .

Now F IT ' s fitment (' (A #ADDI) ' (A 2 3)), returning (A 3 4). can be
simulated by PROLOG's relation call a_repsucc([a,2.3],Ans). binding Ans
to [3.3.4]. Notice that PROLOG mus t give a name. like a_repsucc. to
every program, even if it is used only once. whereas anonymous programs
are allowed in most other languages [cf. not only FIT's adapters above
but also LISP's LAMBDA expressions and FIT's TRAFOs below].

A slightly more general adapter, (t sua i O $ADDI) , successfully fits
number lists containing a 0, returning the predecessors of all numbers
before the 0 and the successors of all numbers after the 0 . For example
the adapter fitment (' (#SUB1 0 #ADD1) '(3 G 0 4 2 7)) returns (2 5 0 5
3 8). In PROLOG this must be simulated by a considerably more general
predicate, named reppred_0_repsucc, using recursion for modeling the

- ‘6 -

f i r s t " I " app l i ca t i on [no t e t he ' r eve r se ' c l ause o rde r r equ i r ed he re] :

r epp red_0_repsucc t l0 lL] . [DIM]) : - map l i s t t succp .L .M) .
r epp red_0_repsucc ([XlL] . [YIH]) : - p r ed t .Y) . r epp red_0_repsucc (L .M)

Then t he r e l a t i on ca l l co r r e spond ing to t he above adap te r f i tmen t i s
r epp red_0_ repsucc ([3 .6 .0 .4 .2 .7 l .Ans) . b ind ing Ans t o [2 ,5 .0 ‚5 .3 .8] . I f
we wan ted t o mode l bo th " ! "—app l i ca t i ons wi th map l i s t . i . e . by u s ing
map l i s t no t on ly fo r t he s egmen t a f t e r t he 0 bu t a l so fo r t ha t be fo re
the 0 . we migh t app ly append [c f . s ec t i on 7 .1] fo r l oca t ing t he 0 and
sp l i t t i ng t he l i s t i n to t he r equ i r ed s egmen t s :

r epp red_0_repsucc (In ,0u t) :—
append (P In , [0 lS In] . I n) .
map l i s t (p redp .P In .P0u t) ‚
append(P0ut ‚ [OISOut] .0ut) .
map l i s t (succp .$ In .SOu t) .

Al though in t h i s r epp red_0_repsucc ve r s ion t he ' i n t e r l eaved ' o rde r o f
the append and map l i s t c a l l s [i n con t r a s t t o ' f i r s t [/ 0 pa r t i t i on . t hen
mapp ing ' o rde r s] . p roposed by (Fuh l ro t t 1983) and t e s t ed i n
mic ro -PROLOG, may no t l ook obv ious . i t i s c ruc i a l f o r p r even t ing
non—de te rmin i s t i c ca l l s l i ke r epp red_0_repsucc ([3 ,0 .5 .0 .7] .Ans) and
con junc t ive r e l a t i on ca l l s l i ke

7— repp red_0_repsucc ([3 .0 .7] .Ans) , member (b .Ans) .

f rom d ive rg ing on the i r back t r ack s ea rch fo r a s econd so lu t i on . The
f ac t t ha t t he r e l a t i ona l r epp red_0_repsucc r ep re sen t a t i on o f an adap te r
as s imp le a s (csue1 o #ADOI) i nvo lves t he se non—tr iv i a l p rog ramming
cous ide ra t i ons i nd i ca t e s t ha t r e l a t i ona l p rog ramming may a t t imes
appea r qu i t e l ow- l eve l i f compared wi th h ighe r -o rde r func t iona l o r
adap te r p rog ramming . S t i l l , l i ke t he F IT adap te r s , i n PROLOG ne i the r
a_ repsucc no r t he two ve r s ions o f r epp red_0_repsucc work i f u sed f rom
r i gh t t o l e f t : Fo r example , r epp red_0_repsucc (Ans . [2 .0 .8]) y i e ld s a
' f i n i t e e r ro r ' i n t he r ecu r s ive ve r s ion and an ' i n f in i t e e r ro r ' i n t he
append-us ing ve r s ion .

5 .2 .3 TRAFO and COHFO Expres s ions —

Apar t f rom the f ac t t ha t adap te r s t hemse lves a r e no rma l ly unnamed .
func t ions i n s ide adap te r s need no t be named . l i ke NUMBERP, bu t may a l so
be anonymous . l i ke (TRAFO ?X (GREATERP (X 8)) . co r r e spond ing to L ISP ' s
(LAHBDA (X) (GREATERP X a)) . Fo r example . t he adap te r f i tmen t

(' (1 (TRAFO ?X (GREATERP (X 8)) 8 ?X) ' (1 9 8 3))

succes s fu l ly app l i e s t he TRAFO exp ress ion (TRAFO ?X (GREATERP <X 8)) t o
9 . b inds ?x t o 3 , and r e tu rns (1 T a 3) . Note t ha t t he TRAFO va r i ab l e
?X i s un re l a t ed t o the va r i ab l e ?X . bound t o 3 : -Hh i l e the fo rmer i s
l oca l t o t he TRAFO. t he l a t t e r i s g loba l t o t he adap te r . I f t he TRAFO
body (GREATERP <x a) i s r ega rded a s a t ype check ove r t he TRAFO
va r i ab le ?X, ana logous t o t he t ype check pe r fo rmed by NHNBERP fo r t he
typed va r i ab l e x?NUM8£RP. t hen the TRAfo ' s l oca l i za t i on e f f ec t may we l l
be i nco r r ec t .

_ 47 _

To l eave the variable ? x global to the adapter. the composition

(COMPOSE (TRAFO ID (GREATERP 'X B)) ?X) can be used instead. For
example,

(' (1 (COMPOSE (TRAFO ID (GREATERP ~X 8)) ?X) 8 ?X) '(1 9 8 3))

success fu l l y applies the composition to 9 by first binding ? x to 9 and

t hen evaluating (GREATERP ' X 8) in the global environment thus created,
but altogether fails because o f the inconsistency o f this env i ronmen t
with t he binding of ? X to 3. A s im i l a r . but altogether successful.
adapter fitment is

(' (1 (COMPOSE (TRAFO ID (GREATERP 'X B)) ?X) 8 ?X) '(1 9 8 9))

binding X to 9 and returning (1 T 8 9). Such COMPOSE expressions are

more generally usable and may thus be given a name, COMFO
[COMPOSE—TRAEQ]. which can be introduced by the definition

(COMFO pattern body) = (COMPOSE (TRAFO ID body) pa t t e rn)

or, more generally,

(COMFO pattern1 ... patternM : body1 ... bodyN) =
(COMPOSE (TRAFO #ID body1 ... bodyN) pattern1 ... pa t t e rnM)

Using a COMFO expression, our previous adapter is shortened to
(1 (COMFO ?X (GREATERP "X 8)) 8 ?X) and its sample fittings become:

(' (1 (COMFO ?X (GREATERP ~X 3)) 8 ?X) '(1 9 8 3)) yields jF

(' (1 (COMFO ?X (GREATERP ”X e)) 8 ?X) '(1 9 8 9)) returns (1 T 8 9) and
binds X to 9.

Not i ce t ha t the COMFO expression has the same structure as the initial
TRAFO examp le . I ndeed . TRAFO and COMFO f o rm a nice symmetrical pair. as
characterized by the equations [the first generalizes beta—reduction in
LAMBDA calculus]

ll((TRAFO pattern body) expr)
((COMFO pattern body) expr)

(LOCAL (pattern expr) : body)
(GLOBAL (pattern expr) : body)

For the use of COMFO expressions in invocation adapters see section
6 .3 .2 .

5 .2 .4 Boolean F i t t e r Operators -

Finally, consider the 'boolean pattern operators' POR. PAND. and
PNDT wh ich are available in almost all classic pattern matchers [see.
e.g., (Rulifson et al. 1972)] . In FIT t hey are generalized to 'boolean
fitter operators' and are formally explained by the respective logical
connectives for disjunction. conjunction. and negation. For example.

((POR (?X ?Y ?X) (?X ?Y ?Y) (?X ?X ?Y)) '(A B B))

succeeds because one of the pa t t e rn ma tches to wh ich it is reduced,
(' (?X ?Y ?Y) '(A B B)) succeeds.

((PAND (ID NUMBERP ID) (?X LIST ?X)) ' (A 2 Cl)

fa i l s because one o f the adapter fittings. (' (?X L IST ?X) ' (A 2 C))
f a i l s .

((PNOT LESSP) 3 2)

succeeds because (LESSP 3 2) f a i l s . In PROLOG boolean opera tors on
pat te rns a re l ack ing . pe rhaps because they cannot be genera l i zed to
un i f i ca t ion in a s imple manner [c f . subsect ion 5 .3] .

5 .3 Un i f i ca t ion : Var iab les in Two Pa t te rns

PROLOG uses un i f i ca t ion imp l ic i t l y fo r f ac t re t r i eva l and ru le
invoca t ion . Un i f i ca t ion can a lso be done exp l i c i t l y by the user w i th
the "=” [equa l i t y] p red ica te . For example one un i f i ca t ion
genera l i za t ion o f the match in the f i rs t row in the tab le in subsec t ion
5 .1 i s

[X,Y.X] = [a .b .Z] .

which binds X and Z to a and Y to b . The prominent ro le o f un i f i ca t ion
in PROLOG becomes even more impor tant in UNIFORM (Kahn 1981) . which
uses augmented un i f i ca t ion as i t s so le bas is . However , the no t ion tha t
PROLOG i tse l f bases i t s computa t ion en t i re ly on un i f i ca t ion i s
exaggera ted : th is wou ld on ly be t rue i f the re were fac ts on ly : ru les .
a l though invoked th rough un i f i ca t ion o f the i r heads w i th a reques t ,
th rough reso lu t ion tzgnsigrm the r eques t i n to a con junc t ion o f o ther
requests in the un i f i ca t ion -ex tended environment . F IT 's adapte rs . on
the o ther hand , share w i th fac ts the p roper ty o f be ing
' invoca t ion -comput ing ' : a l l adap te r computa t ion i s per fo rmed dur ing
invoca t ion f i t t ing [an adapte r has comple ted i t s work when i t s
invoca t ion has been comple ted] : no g loba l ru le - l i ke head- to—body
t rans format ion i s performed [a ru le has completed i t s work on ly when
the computa t ion o f i t s body has been comple ted] .

F IT -1 uses a res t r i c ted form o f imp l ic i t un i f i ca t ion but doesn ' t use
exp l ic i t un i f i ca t ion s ince i t r egards pa t te rns as opera to r—l ike ac t i ve
en t i t i es [' f i t t e rs '] wh ich a re matched to operand- l i ke pass ive en t i t i es
[' f i t t ees '] in the usua l asymmetric operator—operand manner.
Fur thermore , the genera l pa t te rns permi t ted in F IT [a rb i t ra ry numbers
o f impos i t ion o r segment va r iab les] wou ld make symmet r ic
pa t te rn -pa t te rn un i f i ca t ion matches computa t iona l l y as complex as
s t r ing un i f i ca t ion . F ina l l y , symmetric adapte r -adapte r un i f i ca t ion
f i t t ing poses new prob lems wh ich a re no t ye t we l l unders tood .
[A func t ion pa i red w i th a va r iab le may leave i t s app l i ca t ion pending
unt i l tha t va r iab le rece ives a va lue ; a func t ion pa i red w i th a func t ion
might genera te a va lue o f i t s range wh ich i s a lso in the range o f the
other func t ion .]

To be sure , the re wou ld be no p rob lem in imp lement ing un i f i ca t ion
fo r F IT i f pa t te rns to be un i f i ed had to have the res t r i c ted form o f
PROLOG pa t te rns . To pu t i t d i f f e ren t ly . PROLOG and any o ther l anguage
wou ld have the same prob lems as F IT would i f i t des i red to incorpora te
more genera l pa t te rns [in par t i cu la r , mu l t ip le segment va r iab les . wh ich
are very convenient fo r the user and pose no ser ious problems in

_ 49 -

asymmetric matching] and still desired to perform symmetric unification
matching on these [i n particular, the problem of string unification

complexity]. OLISP may actually have had these problems among others.

We thus decided to restrict FIT—1's explicit fitting to the

asymmetric case until issues of unification matching are better

understood [for an overview of what is known and what is still open see

(Siekmann & Szabo 1982)]. In any case. with FIT-1‘s other match

generalizations [e.g. adapters] available. this restriction didn't turn
out to be such a great hindrance in practical programming tasks.

6 HORN CLAUSES AND IMPLICIT FITTERS

Definitions in PROLOG are made by storing Horn clauses and in FIT by
storing fitters into the global data base. Stored fitters are also
called 'implicit fitters' and are dual to 'explicit fitters' which the
user directly fits to fittees. PROLOG's Horn clauses are divided into
facts and rules. FIT's corresponding implicit fitters are divided into
implicit adapters and transformers. However, to represent PROLOG facts
only very special FIT adapters. namely simple patterns, are needed.
Similarly. to represent PROLOG rules only very special FIT transformers
are r equ i red ; alternatively, PROLOG rules can often be more concisely
represented as FIT adapters [cf. section 7].

6.1 Facts

A PROLOG fact is a structure of the form f(a1,a2,...,aN). globally
stored by

f(aT,a2,...,aN).

where the arguments aI's can be constants, variables. or substructures.
That the period after the structure indicates the storing, not the
query of the structure. can only be seen at the lack of a “?—" prefix.
[In PROLOG's rudimentary interactive programming the system by default
is in a mode where it expects each input to be a query. hence uses "?~ "
directly as a prompt. To store facts. the user must first switch off
this prompt by entering a storing mode. After storage is completed, one
must not forget to reenter the default mode before asking a query.]

A corresponding FIT fact is a compound of the form (f~ a1~ a2
an ”) , globally s to red by

GLOBAL:((f" a1" a2~ ... aN"))

where the tilded symbols are transformed versions of those in PROLOG as
explained in section 4. with one addition: PROLOG variables are
rewritten to FIT variables by Variable"=?VARIABLE. The storing is
simply indicated by the embedding of the compound into a GLOBAL : (. . .)
exp ress ion . [I n F IT 's L ISP /PLANNER—l i ke i n te rac t i ve p rog ramming no mode
change is necessary for storing, hence a modeless "*“-prompt is used.
The "GLOBAL2" prefix makes clear that a. possibly one-element. list of
facts is to be stored.]

- 5 ' 0 i

In both PROLOG and FIT. structures/compounds containing constants

and variables along with other such structures/compounds can be used as
explicit patterns in explicit matches or, after having stored them in

the data base. as implicit patterns in implicit matches. Therefore

PROLOG and FIT facts actually are implicit patterns.

Simple facts without variables were exemplified in section 2.1: for
a fact example with variables. consider the phrase "The successor of

something is greater than that thing". Which can be stored as the

PROLOG fact

greater(successor(X),X).

and as the FIT fact

GLOBAL:((GREATER (SUCCESSOR ?X) ?X))

In this example. the first argument of the greater structure is a
successor structure. Notice that the top~level functor greater is a
predicate whereas the sublevel functor successor is a function. In

general, PROLOG, like predicate logic. allows a functional notation in
sublevels but not on the top-level [in sublevels it doesn‘t matter that
these notations cannot be evaluated. on the top-level it would]; thus,
unlike the above PROLOG example. successortx) :— Xt1 is not a
legitimate PROLOG clause. F IT . like all functional languages, allows
functions on every level; thus, just like the above FIT example,

()(SUCCESSOR ? X) (ADD1 (X)) is a legitimate FIT clause.

When now the PROLOG question

?— greater(successor(3).3).

or the FIT question

(GREATER (SUCCESSOR 3) 3)

is posed. an implicit match corresponing to the explicit PROLOG match

greater(successor(X).x) = greater(successor(3).3).

or to the explicit FIT match

('(GREATER (SUCCESSOR ?X) ?X) '(GREATER (SUCCESSOR 3) B))

is used to answer it affirmatively. The main difference between
explicit and implicit matches is the treatment of resulting variable
bindings [here X=3] : Bindings of variables occurring in explicit
patterns become visible; those of variables occurring in implicit
patterns remain hidden.

When the PROLOG question

?- greater(successor(Y).3).

is posed. an implicit unification match corresponing t o the explicit
PROLOG unification match

greater(successor(X).X) = greater(successor(Y).3).

is used to answer it affirmatively and binding Y to 3; when the FIT

question

(GREATER LSUCCESSOR |?Y) 3)

is posed, an implicit unification match is used not corresponing to an

explicit unification match and binding Y to 3 [in the implicit

unification match the binding Y=3 becomes visible because Y occurs in

the request pattern: the binding X=3 remains hidden because X occurs in
the implicit pattern]. The current FIT-1 only supports such restricted

implicit unification matching but no explicit unification matching. as

discussed in subsection 5.3.

6.2 Rules

A PROLOG rule has the form structureo :— structurei. s t r uc tu reN
and is globally stored by

structurefl :~ structure1, ..., structureN.

where the structurel's are structures as in facts. The storing is again

indicated by the period after the structures in the absence of a "?-"

prefix. A corresponding FIT rule has the form

(TRAFO structureo~
(LOCAL (>var1: ... >varM:) structure1~ ... structureN"))

and is stored globally as

({>.v}structureo~
'(LOCAL (>var1: ... >varM:) structure1" ... s t ruc tu reN") !

where the tilded structureI's are the usual transformed versions of

those in PROLOG rules and the varI's are the request variables being
used in structurei“. s t r uc tu reN ' . The i r LOCAL declaration is

‘necessary to prevent name conflicts between the request variables of
different rule bodies. If there are no request variables a FIT rule can
be simplified to (TRAFO s t ruc tu reo " structure1~ ... s t ruc tu reN") wh i ch
is stored as

({),v}structure0~ 'structure1~ ... 'structureN")

Here and later on the meta—language expression ”{>,v}“ stands for
either of the object—language symbols ">" or "v". The ">“ [SHOVE] .and
“v" [VEL] prefixes effect rule storing by setting rule heads.
structureo", to rule bodies. The SHOVE prefix specifies an ordinary
setting. where several body assignments to the same head cause the old
rules to be erased on storage of the new ones. The VEL prefix specifies
a 'non-deterministic' setting. where several body assignments to the
same head cause all rules to be stored and subsequently to be used
non—deterministically. Since settings evaluate to GLOBAL expressions
(cf. section 5.1], no user—provided “GLOBAL:" prefix is necessary for
rule storing.

52 ~

The "" [QUOTE] pre f ix i n f ron t ‘ o f the LOCAL body and the
s t ruc tu re ! " bodies [151$N] p reven ts their evaluation a t stor ing—time;
in in te rna l s to re , the " ' " p re f i x i s removed; hence such QUOTES a re
usually e l ided f rom the F IT examples .

As an example cons ider the phrase “someth ing i s even i f i t i s an
in teger divisible by two" , wh ich can be s to red as the PROLOG ru le

even(X) : - i n teger (X) , d iv is ib1e (X .2) .

and as the F IT ru le

(> (EVEN ?X) (INTEGER (X) (D IV IS IBLE (X 2))

When now the PROLOG ques t ion

?~ eventfl).

or the F IT ques t ion

(EVEN 8)

i s asked, the ru le head even(X) o r (EVEN ?X) i s matched to the ques t ion
even(8) o r (EVEN a) and the ru le body i s eva lua ted w i th the resu l t ing
b ind ing X=8. '

I n PROLOG such an imp l ic i t ru le app l i ca t ion doesn ' t cor respond to an
exp l ic i t one tha t i s d i rec t l y spec i f i ed by the user . In F IT i t
cor responds to the exp l i c i t ru le app l i ca t ion ‘

((TRAFO (EVEN 2X) (INTEGER (X) (DIVISIBLE (X 2)) '(EVEN 8))

using the exp l i c i t TRAFO nota t ion o f t ransformers which genera l i zes the
usua l LAMBDA express ions . O f ten TRAFO express ions a re used w i th the
iso la ted var iab les o f pa t te rns . ins tead o f w i th comple te invoca t ion
pa t te rns . as the i r l e f t -hand s ides : th is fo rm o f TRAFO spec i f i es
'anonymous' ru les and is equ iva len t w i th LAHBDA express ions . For
example , the p rev ious TRAFO app l ica t ion can be shor tened to [the 'name '
EVEN is omi t ted]

((TRAFO ?X (INTEGER (X) (DIVISIBLE (X 2)) 8)

Whi le PROLOG a l lows on ly such re la t iona l ru les [comput ing t ru th
va lues] , F IT a lso a l lows func t iona l ru les [comput ing a rb i t ra ry va lues] .
For example , the phrase " the d iv is ion o f a f i r s t th ing by a second
th ing i s the quot ien t and the rema inder o f the f i rs t by the second" can
be s to red in F IT as the ru le

(> (D IV IS ION ?X ?Y) (QUOTIENT (X (Y) (REMAINDER (X (Y))

I n PROLOG the phrase must f i r s t be pu t in to the awkward re la t iona l fo rm
" four th ings a re in a d iv is ion re la t ion i f the f i rs t th ree th ings a re
in a quot ien t re la t ion and the f i rs t two th ings and the four th th ing
are in a rema inder re la t ion" be fore i t can be s to red as the ru le

d iv is ion t ,Y ,0 .R) :— quot ien tp (X ,Y .0) . r ema inderp (X ,Y .R) .

which in F IT cou ld a lso be s to red as

- 53 -

(> (0 IV IS IONP ?X ?Y ?0 ?R) (QUOTIENTP (X (Y <0) (REMAINDERP (X (Y <R))

Functional FIT ru l e s can a l so be used in explicit appl i ca t ions . For
example,

((TRAFO (DIVISION ?X ?Y) (QUOTIENT (X (Y) (REMAINDER (X (Y))
' (D IV IS ION 7 2))

re turns 3 1. Using the pat te rn variables alone as TRAFO left—hand sides
we get the anonymous rule application

((TRAFO ?X ?Y : (QUOTIENT (X (Y) (REMAINDER (X (Y))
7 2)

Let us summarize a fact/rule implicit/explicit tradeoff in
FIT/PROLOG:

While FIT unification can only be used implicitly to access facts and
rules stored in the data base. PROLOG unification can also be used
explicitly on non—stored structures.

While PROLOG rules can only be used implicitly. namely after they have
been stored in the data base [and named by a functor], FIT rules can
also be used explicitly [and anonymously] without such prior storing.

6.3 Clauses with Constraints

6 .3 .1 PROLOG II Constraints and their LOCAL Representation —

Although the simplicity of Horn clauses has definite advantages with
respect to formal semantics it now seems clear that they are too simple
for real—live programming. One possible generalization of Horn clauses
has been recently proposed in (Colmerauer 1983) for PROLOG II. In this
proposal a clause can be augmented by "constraints" which are sets of
equalities and inequalities over variables. All constraints must be
fulfilled for a clause to be successful. Facts and rules with
constraints c1. c2. cK in PROLOG II are written thus [a fact is
regarded as a rule with an empty body]

structureo -> , { e l . c2. cK};
structureo —> structure! ... structureN, {c1. c2. cK];

where the cI's either have the form varR=varS o r the form varR\=varS
[we use Edinburgh PROLOG's ' \ = " to denote inequality]. For clauses
without constraints [K=0] in PROLOG II the meaningless part ", {)" is
omitted.

In FIT these clauses may be rewritten t o [for simplicity we assume
that no request variables are used]

({>,v}structure0" c1~ c2~ cK')
({>.v}structure0~

(LOCAL c1~ c2~ ... cK~ : structure1~ ... s t ruc tureN '))

where c! = varR=varS yields cl" = (EQ varR~ vars") and cl = varR\=varS
yields cI" = (NEO varR~ vars"). Constraints in FIT thus become

- 5‘ _

implicitly conjoined rule bodies [f o r facts] or left—imposition

arguments of "if then" LOCALs used as rule bodies [for rules]. A
constrained fact ()structureo" c1" cz" ... CK") can be viewed as an
abbreviation for a constrained rule with empty LOCAL body ()structureo"

(LOCAL cl" cz" ... cK~ :)) . Clauses without constraints are rewritten
into FIT as usual.

Ah examp le o f a constrained fact is the following diffchain
predicate. holding for all triples without equal adjacent elements:

diffchain(x.y.z) —> . {x \=y . y \=z } :

In FIT this can be rewritten as

(>(DIFFCHAIN ?X ?Y ?Z) (NEO (X (Y) (NEO <Y <Z))

In orde r to illustrate a constrained rule let us consider a slightly
corrected version of the out—of definition in (ColmeraUrer 1983) . a
simple list predicate which in functional notation would trivialize to
NOToMEMBER.

out—of(u.nil) ->;
out—of(u.v.l) ->

out-of(u.1).
{u\=v};

In FIT this can be rewritten as

(OUT—OF ?X NIL)
()(OUT—OF ?X (?Y ?LoLIST))

(LOCAL (NEO (X (Y) : (OUT-0F (X <L)))

As useful as Colmerauer's constraints may be. it remains doubtful
whether these simple equality and inequality Constraints are sufficient
for all applications. For instance, many programmers [not only in
fields like operations research] may wish to have the full set of
relational operators Ii.e. also including ”<". “;”. “>“, and "3'1 for
expressing inequation constraints. As examples, consider the predicates
lesschain and least-of derived. respectively. from diffchain and out-of
by replacing “ \=" by “<“. This is possible in FPL (Bellia et al. 1982) .
In FIT it is also no problem because LOCAL expressions can, of course.
not only be used with the EO and NEO predicates but allow for arbitrary
constraints (incl. LESSP. LE . GREATERP. and GE] . For example. as we
used (LOCAL (NEO <x (Y) : . . .) in the OUT-OF program, we can use (LOCAL
u(GREATERP <X (Y) : . . .) in. say. Euclid's algorithm for computing the
greatest common divisor [the "u” operator transforms jF to jU. which is
necessary for handling the non—determinism arising from the first two
rules]:

(V(EUCLID ?X ?Y)
.(LOCAL u(GREATERP (X (Y) : (EUCLID (DIFFERENCE (X (Y) (Y)))
(VIEUCLID ?X ?Y)

(LOCAL u(GREATERP (Y (X) : (EUCLID (X (DIFFERENCE (Y (X))))
() (EUCLID ?X ?X) (X)

For another such example see the FIT FERM definition in section 8 .3 . '

_ 55 _

8y means o f LOCALs with arbitrary predicates F IT . unlike PROLOG I I ,

can a l so be used t o directly r ep resen t conditional t e rm rewr i t i ng
sys tems , i ndependen t o f t he k i nd o f condition.

I n gene ra l . t he cons t ra i n t s c I~ i n t he above F IT ru l e schema may

have t he f o rm o f a rb i t r a r y s t r uc tu res , i n add i t i on t o t ha t o f

a r i t hme t i ca l r e l a t i onsh ips . I t i s no tewor thy t ha t (Be l l i a e t a l . 1982)
use "equations" that a l so a l l ow f o r a rb i t r a r y s t r uc tu re cons t ra i n t s .
w i t h t he syn tax

s t ruc tu re0 . c1 , c2 , . . . , cK <-— s t ruc tu re1 , s t r uc tu reN

where K lo and N30 [i.e. t he cons t ra i n t s and t he body may be emp ty] . Fo r
t he i r f i xed—po in t seman t i cs , howeve r , t hey move t he cons t ra i n t s t o t he
body s t r uc tu res t o ob ta i n o rd i na ry Ho rn c l auses o f t he f o rm

s t ruc tu reo <-— s t ruc tu re1 , s t r uc tu reN ,c1 , c2 , . . . , cK

Un fo r t una te l y , s i nce t he eva lua t i on o rde r i ns i de pu re Ho rn c l ause
bod ies i s no t de te rm ined , t he two f o rms a re no t equ i va len t i n gene ra l
[cons ide r a non - te rm ina t i ng c l and a f a i l i ng s t r uc tu reJ] , bu t on l y
unde r a spec ia l we l l—fo rmedness cond i t i on . I r on i ca l l y i t happens t o be
the case t ha t w i t h t he impu re Ho rn c l auses o f mos t PROLOG
imp lemen ta t i ons , t he p r i o r i t y o f t he cons t ra i n t con junc t s ove r t he
o rd ina ry body con junc t s i n t he o r i g i na l equa t i on may be exp ressed as

s t ruc tu refl :— c1 , c2 , . . . , cK , s t r uc tu re1 , . . . , s t r uc tu reN .

because now the cons t ra i n t s happen t o be eva lua ted be fo re t he p rope r
body pa r t ; howeve r , now the re i s a l so an unwan ted l e f t—to - r i gh t o rde r
i ns i de c1 . c2 , . . . , cK and i ns i de s t r uc tu re1 , . . . , s t r uc tu reN . I ns tead
o f r e l y i ng on t he haza rds o f t he eva lua t i on o rde r , i n F IT we use t he
LOCAL f o rm i n t r oduced p rev ious l y , wh i ch a lways eva lua tes t he
cons t ra i n t s [t he impos i t i on t o t he l e f t o f " : " 1 f i r s t , w i t hou t o rde r i ng
the eva lua t i on i ns i de t he cons t ra i n t s o r t he s t r uc tu res .

Cons t ra i n t s may j us t be t he f i r s t s t ep i n t he rep lacemen t o f s imp le
con junc t i ve re l a t i on ca l l s i n Ho rn ru l e bod ies by a rb i t r a r y f unc t i ona l
p rog ram bod ies . As f u r t he r ex tens ions o f Ho rn l og i c t he " somewha t
comp l i ca ted " mac ros i n ESP (Ch i kayama 1983) o r t he recen t p roposa l s i n
(Kowalski 1983) ["It has p roved necessa ry t o ex tend Horn c l ause
p rog ramming i n va r i ous ways "] may be men t i oned . I ns tead o f r ewo rk i ng
the seman t i cs o f PROLOG wi th each such new gene ra l i za t i on o f t he
o r i g i na l Ho rn c l ause f o rma l i sm , i t m igh t be p re fe rab le t o use gene ra l
f unc t i ona l r u l e bod ies f r om the ve ry s ta r t , as done i n F IT t o - f o rma l i ze
t he seman t i cs o f f unc t i ona l l y r ep resen tab le r u l es o f PLANNER- l i ke
l anguages .

6 .3 .2 The COMFO Rep resen ta t i on o f Cons t ra i n t s —

At t h i s po in t r eade rs f am i l i a r w i t h F IT may wonde r whe the r
cons t ra i n t s can somehow be b rough t t o t he pa t t e rn s i de (Hussmann 1983) .
And i ndeed . acco rd ing t o F IT ' s gene ra l ph i l osophy o f pe r f o rm ing
non~ t r i v i a l compu ta t i on i n t he i nvoca t i on adap te r i ns tead o f i n t he
body . ano the r me thod f o r r ep resen t i ng cons t ra i ned c l auses i s t o move
the cons t ra i n t s f r om the body t o t he head , as f o l l ows .

- 56

Ä fact with a cohstraints body of the form

((>.v}(r p1 ... pH) c1 c2 ... ck)

by means of the COMPOSE expressions introduced in section 5 .2 .3 . can
f i r s t be r ewr i t t en as

(r (compose (TRAFD sto cl' tz“ ... cx‘i pl ... pH!)
Also. a rule with a LOCAL constraints body of the form

((>‚vltr pi ... pM) (LOCAL c1 c2 ... cK : sl ... su»)
by means of these COMPOSE expressions, can first be rewritten as

({>,v}(r (compose (rnAro urn c1“ cz“ ... cK") pl ... p")! 51 ... sN)
Each cI' is obtained from cI by replacing '<"-occurrences _by
"" -o thur rences and by omitting possible "u'-prefixes. The
‘('l""-rep1acement accounts for the fact that the constraints now
operate on variables global across the invocation adapter. The
“u'—dmission becomes possible because in inVocation computations jF
failures are automatically treated as jU failures.

For example, the DIFFCHAIN fac t of subsection 6 .3 ,1 in this way
becomes

(DIFFCHAIN (COMPDSE (TRAFO # ID (NED 'X ~Y) (NED "Y ' Z)) ?X ?Y ?Z))

And the iirst two EUCLID rules in this way become

(V (EUCLID (COMPOSE (TRAFO # ID (GREATERP ‘ X -Y)) ? X ?Y))
(EUCLID (DIFFERENCE (X (Y) (Y ,) _

(v(EUCLID (compose (TRAFD #ID (GREATERP ‘Y ‘X)) ?x ?Y))
(EUCLID (X (DIFFERENCE (Y (X) !)

Then. with the help of the CDHFD abbreviation introaucefi in section
5 .2 .3 . the COMPDSE fOrms can be shortened to

(r (COHFO p1 ... pH : ci“ cz“ ... ck'))

and

({>.v}(r (CDfiFD p1 ... pM : c1~ cz“ ... ck ')) s1 ... 5“)

For example. the DIFFCHAIN fact is shortened to

(D IFFCHAIN (CDMFD ? X ? Y ? Z : (NEO ' x ' Y) (NED “Y °Z)))

And the EUCLID rules are shortened to

(v(EUCtID (cofiro ?x ?Y : (GREATERP ‘x “Yawa
(EUCLID (DIFFERENCE (X (Y) <Y))

(v(EUCLID (conFo ?x ?Y : (GREATERP “v ' x)))
(EUCLID (X (DIFFERENCE (Y (X)))

Note tha t the COMFD's pattern l i m o u s i t i O n is the ‘clause's original
invocation pattern without the tunction name and without parentheses

_ 57 _

[i . e . the imposition of i t s CDR]. Of course . th is l arge scope o f the
COMFO pa t te rn i s on l y necessary i f the cons t ra in ts ac tua l l y ac t over
var iab les which a re maximal ly separated from one another : th is happens
to be the case in the D IFFCflAIN and EUCLID examples . In a l l o ther cases
the scope o f the COMFO pa t te rn can be reduced , poss ib ly by b reak ing the
COMFO express ion in to severa l sma l le r COMFO express ions . For example .
the ru le

(> (F00 ?A ?B ?C ?D ?E) (LOCAL (GREATERP <8 (C) (LESSP (D (E) : . . .))

by the genera l COMFO t rans format ion becomes
o

(> (F00 (COMFO ?A ?B ?C ?D ?E : (GREATERP “B ”C) (LESSP 'D 'E))) . . .) .

and by b reak ing the COMFO down as fa r as poss ib le becomes

(>(F00 7A
(COMFO ?a ?c : (GREATERP “B “C) !
(conro 70 ?E : (LESSP “o ‘E)))

.)

Of ten . however . the COMPOSE fo rm can a lso be s imp l i f i ed w i thout the
he lp o f COMFO. us ing spec i f i c p roper t i es o f func t ions . In the EUCLID
example. (TRAFO #ID (GREATERP “x ‘Y)) can be replaced d i rec t l y by
GREATERP and (TRAFO GID (GREATERP 'Y 'X)) can be rep laced by i t s
i nverse , LESSP. Th is renders the f i rs t two EUCLID ru les in the i r
max ima l ly conc ise fo rm:

(v(EUCLID (COMPOSE GREATERP ?X ?Y))
(EUCLID (DIFFERENCE (X (Y) <Y))

(V(EUCLID (COMPOSE LESSP ?X ?Y))
(EUCLID (X (DIFFERENCE <Y <X)))

fi . ‘ C lause Order ing

A PROLOG da ta base i s an o rdered se t o f c lauses , i . e . i t has the
form

c lause1 .
c lauseZ .

c lause I .

c lauseZ .

where the o rder o f the ind ices 1 . 2 , I , . . . , Z i s re levan t and
each c lause I i s a PROLOG fac t o r ru le . A PROLOG ques t ion over tha t da ta
base uses the f i rs t match ing c lauseF [w i th the sma l les t index F] and
on ly on i t s f a i lu re cons iders the tex tua l l y consecut ive c lauses .

A cor respond ing F IT da ta base i s an unordered se t o f c lauses . i . e .
i t has the fo rm

- 58 -

c lausep I~
clausepZ~

clausepl”.

c lausepz '

where p1 . p2 p I p2 is any permuta t ion o f 1 . 2 , I
Z and each c lausep I~ i s a F IT fac t o r ru le . A F IT ques t i on over tha t
da ta base uses the most specific match ing c lauses~ [independent o f i t s
index S] o r - the subse t o f equa l l y maximum spec i f i c match ing c lauses
c lauseS I c l auseSk and on ly on i t s o r the i r f a i lu re cons iders the
nex tmost spec i f i c c lauses .

These PROLOG and F IT da ta bases l ead to equ iva len t behav iors on ly in
the fo l low ing two cases .

1 . PROLOG's c lause o rder ing and F IT 's spec i f i c i t y o rder ing a re
immater ia l . An examp le i s the two-c lause PROLOG da ta base

human(socrates) .
mor ta1(X) : - human(X).

which in F IT becomes

(HUMAN SOCRATES)
()(HORTAL ?X) (HUMAN (X))

The order ings a re immater ia l he re because in PROLOG no
possible r eques t i s matched by bo th c lauses and a lso in F IT no
PROLOG- l i ke reques t i s matched by bo th c lauses [we exc lude
here non-PROLOG—like F IT reques ts such as (| ?WHATIS SOCRATES)
tha t wgglg be matched by both c lauses] . Both the PROLOG
reques t

?— mor ta l (wH0) .

and the F IT reques t

(MORTAL |?HHO)

wou ld yield the cor rec t 'Socra tes ' b ind ing o f WHO.

2 . PROLOG's c lause o rder ing co inc ides w i th F IT 's spec i f i c i t y
order ing . An example i s the th ree -c lause PROLOG da ta base

inhab i t (wha le .sea) .
i nhab i t (X . l and) : - mammal(x).
mammallwhale).

which in F IT can be wr i t t en as

(INHABIT HHALE SEA)
() (INHABIT ?X LAND) (MAHMAL <X))
(MAHHAL HHALE)

The order ings co inc ide here because in PROLOG the 'wha le ' f ac t
tex tua l l y precedes the 'mammal' ru le and in F IT the 'wha le '

_ 5g _

f ac t i s more spec i f i c than the 'mammal' ru le . There fore both
the PROLOG reques t

?- inhabi t (whale .WHAT) .

and the F IT reques t

(INHABIT NHALE |?HHAT)

wou ld yield the cor rec t ' sea ' binding of WHAT. However, in the
‘permuted' da ta bases

inhab i t (x . l and) :— mamma11X).
i nhab i t (wha1e ,sea) .
mammal1wha le) .

and

(>(INHABIT ?X LAND) (HAMHAL (X))
(INHABIT “HALE SEA)
(MAMMAL NHALE)

the tex tua l and spec i f i c i t y o rder ings no longer co inc ide
because the former has changed and the l a t te r has remained the
same. There fo re on ly F IT would s t i l l y i e ld the cor rec t ' sea '
b ind ing in the 'wha le ' reques t , whereas PROLOG would y ie ld an
incor rec t ' l and ' b ind ing .

The dependence on tex tua l o rder in PROLOG and the independence o f
tha t o rder in F IT accounts fo r a g rea te r modu la r i t y o f the l a t te r
l anguage . In PROLOG. when add ing a new c lause the cur ren t da ta base has
to be examined care fu l l y to ensure tha t the c lause i s inser ted a t the
cor rec t t ex tua l pos i t ion [no t to speak o f the d i f f i cu l ty o f 99! to
per fo rm such inser ts us ing PROLOG's asser t / re t rac t p r im i t i ves , once i t
i s c lea r where to do i t] . I n F IT , however , the cur ren t da ta base need
not be examined a t a l l ; on ly the spec i f i c i t y o f the new c lause mat te rs .
and th is i s an in t r ins ic p roper ty o f the c lause i t se l f . F IT 's h igher
modu la r i t y a lso s imp l i f i es au tomat ic add i t ion o f c lauses , wh ich i s
necessary fo r knowledge acqu is i t ion by A I sys tems .

6 .5 Cut , SECURE, and EXCLUSIVE

6 .5 .1 Cut Cont ras ted w i th SECURE -

The PROLOG cu t opera to r i s no t ava i l ab le in F IT because o f the
wel l -known problems w i th th is impera t ive programming const ruct
[(VanEmden 1980) , (Clocksin & Mel l i sh 1981)] . However . F IT p rov ides a
func t iona l SECURE opera to r wh ich i s comparab le to the
ru le -cho ice—conf i rming use o f cu t as descr ibed be low.

Le t c lause ! abbrev ia te e i the r a PROLOG ru le o f the fo rm [wh ich we ' l l
ca l l ' i n te rmed ia te cu t ']

s t ruc tureO : - s t ruc ture I , ! , s t ruc tureN .

- 50 _

where one cu t ope ra to r " ! ” occu rs somewhere be tween the body reques ts
[' in termedia te '] or a PROLOG ru le of one of the distinguished forms
[which we ' l l ca l l . respectively. ' i n i t i a l cut ' and ' f ina l cu t ']

s t ruc tu refl :— ! . s t ruc tu re1 s t r uc tu reN .

and

s t ruc tu reo :— s t ruc ture I s t r uc tu reN . ! .

which activate the cu t immediate ly a f te r a successfu l invoca t ion match
[' in i t i a l '] and on ly a f te r a successfu l eva lua t ion o f the en t i re body
[' f ina l '] , r espec t ive ly ; a f ac t o f the form s t ruc tureo . through cut
becomes a ru l e of the fo rm s t ruc turefl : “ ! . [r egarded as ' in i t i a l ' ,
though coextensive w i th ' f ina l '] .

Let \ c lause abbrev ia te a F IT fac t o f the fo rm

\s t ruc tureo

or a F IT ru le o f the fo rm

({> ,v } \s t ruc tureo s t ruc tu re ! . . . s t ruc tu reN)

where the SECURE opera tor " \ “ marks the invoca t ion pa t te rn and is
a lways ac t iva ted immedia te ly a f te r a success fu l invoca t ion match [thus
SECURE is always ' in i t i a l '] .

I f i n a PROLOG da ta base

c lause1 .
c lauseZ .

c lauseH! .

c lauseZ .

some c lauseM is “ ! " [cu t] marked and in a cor respond ing F IT da ta base

clausepI~
clausepZ"

\clauseM~

clausepZ"

a corresponding c lause" - i s " \ " [SECURE] marked. then a reques t matched
by the marked c lause i s processed thus:

I n PROLOG c lauseM is on ly app l ied i f none o f the c lauses c1ause1 , . . . ,
c l auseM-1 a lso matches the reques t . O therw ise , c lause" wou ld on ly be
app l ied on fa i lu re o f a l l these preceding matching [" ! " - l ess] c lauses .
Once app l ied . the cu t mark ” ! “ o f c lauseH makes a l l poss ib ly matching
clauses clauseM+1, ..., clauseZ inapp l icab le fo r tha t reques t . Thus, i f
clauseH should fa i l [th is can happen i f clauseM has the non- f ina l -cu t
form s t ruc tureo :— . . . , ! , s t ruc tureC , s t ruc tureN . and one o f
s t ruc turec s t ruc tureN fa i l s] the en t i re reques t f a i l s . S imi la r l y .
i f l a te r requests conjoined w i th the c lauseM-using reques t f a i l [th is

_ 51 -

can happen even i f c l auseM has the f ina l -cu t fo rm s t ruc turen : -
s t ruc ture I , s t ruc tureN . ! .] , this r eques t can produce no fu r ther
alternatives.

I n F IT the SECURE mark " \ " o f c lause" p r io r i t i zes i t such tha t i t i s
applied independent ly o f o the r [“ \ '—les s] clauses w i th poss ib ly h igher
spec i f i c i t y tha t may a lso match the reques t . When app l ied , clauseM
doesn ' t make o ther [' \ " -1ess] c lauses inapp l icab le but on ly
depr io r i t i zed fo r tha t reques t . Thus, i f clauseM should fa i l o ther
c lauses may s t i l l cause the reques t to succeed . S imi la r l y . i f l a t e r
r eques t s con jo ined w i th the Clausen—us ing r eques t f a i l . o ther c lauses
for th is reques t may s t i l l p roduce fu r ther a l t e rna t ives . I f severa l
c lauses a re SECURE-marked a l l o f them are p r io r i t i zed aga ins t a l l o ther
[" \ ' - 1ess] c lauses . For the ' f ine p r io r i t i za t ion ' ins ide the se t o f
SECURE c lauses the i r spec i f i c i t y i s used [i f no s ing le SECURE c lause i s
maximal ly spec i f i c an en t i re BREADTH i s p r io r i t i zed] .

Let us cons ider two s imp le examples o f CUT and SECURE uses .

I n the prev ious ‘wha le ' example one might wish to make the genera l
' inhab i t ' ru le inapp l icab le i f the spec i f i c 'wha le ‘ f ac t matches. In
PROLOG th is may be done by mark ing tha t f ac t by a cu t :

i nhab i t (wha1e . sea) : " ! .
i nhab i t (x . l and) :— mammal (X) .
mamma1(wha1e) .

With F IT 's SECURE th is cannot be done because marking the 'wha le ' f ac t
i n t h i s way , y ie ld ing

\ (INHABIT WHALE SEA)
(>(INHABIT ?X LAND) (HAHMAL (X))
(MAMMAL WHALE)

wouldn ' t change any th ing . as the marked fac t i s more spec i f i c than the
' i nhab i t ' ru le in any case [bu t see subsect ion 6 .5 .2] .

As ano the r example cons ide r the PROLOG da ta base

knows(john .mary) .
knows(x .p res iden t) .

and i t s F IT counte rpar t

(KNOWS JOHN MARY)
(KNOWS ?X PRESIDENT)

A PROLOG reques ts l i ke

? - knowst john .WHOM) .

f i rs t b inds WHOM to mary and then to p res iden t because o f the tex tua l
o rder ing . A cor respond ing F IT r eques t

(KNOWS JOHN I?WHOM)

f i r s t b inds WHOM to MARY and then to PRESIDENT because o f the
spec i f i c i t y o rder ing . Now. i f We want to reverse the o rder o f these

_ 52 _

answers, i.e. 'privileging‘ the President, in PROLOG we have to reorder
the data base. yielding

knows(X,president).
knowstjohn.mary).

In FIT the same e f fec t is obtained by marking the 'President' fact as
SECURE, yielding '

(KNOWS JOHN MARY)
\(KNOHS ?X PRESIDENT)

In the PROLOG data base a corresponding cut mark as in

knows(john,mary).
knowstX.president) :— !.

wouldn ' t change anything because the 'President' fact is still only
reached after the 'Mary' fact. On the other hand. in PROLOG a
combination of reordering the data base and cut. as in

knows(x.president) :- !.
knows(john.mary).

would allow the knowstjohn.HHOM) request t o succeed only once. binding
WHOM to president and forgetting about mary. A cor respond ing
combina t ion of reordering and SECURE in t h e FIT data base, as in

\(KNONS ?X PRESIDENT)
(KNOWS JOHN MARY)

would. of course. still allow (KNOHS JOHN I?WHOM) t o succeed twice.
first with the 'President' and then with the 'Mary' binding [but see
subsection 6 .5 .2] .

More sophisticated examples of unrestricted cut and of SECURE may be
found in section 7 and a further discussion o f SECURE in (Boley 1983) .

6 .5 .2 Cut Restricted to EXCLUSIVE ~

In FIT the prioritization of SECUREd clauses is formalized
semantically by putting the 'activation record' of a prioritized clause
into the first argument position o f a DEPTH expression and putting
those of other matching clauses into later DEPTH positions. In a
formalization of [initial] cut's semantics of making non—prioritized
clauses inapplicable. only the activation record of the prioritized une
would be kept and the other ones could be thrown away ['abandoned'l.
[FIT's FINALIZE primitive, a functional version of MICRO-PLANNER's,
selects the first successfully evaluated DEPTH element and could thus
be used to formalize the 'abandon' semantics of final cuts. not of the
initial cuts to be discussed here .] An EXCLUSIVE SECURE version could
then be introduced for obtaining a cut—like rigid control in situations
where a normal SECURE would seem to be too permissive.

- 53 -

I n our op in ion the PROLOG use o f a cu t opera tor makes programs ha rd
to r ead mainly because i t r e l i es on the t ex tua l data base orde r . Thus
one s tep toward the so lu t ion o f the cu t p rob lem wou ld be the
d isen tang l ing o f the 'abandon' semantics and the ' t ex tua l o rder '
semantics. Now. in F IT we don ' t use ' t ex tua l o rder ' semantics bu t a
”spec i f i c i t y o rder ' semantics mod i f i ab le by the SECURE opera to r . On
th i s basis we cou ld i n t roduce an in i t i a l—cut - l i ke EXCLUSIVE opera tor
[a lso abbrev ia ted w i th “ ! "1 usab le in i so la t ion as in !c lausen ' .
abandoning l ess spec i f i c and o ther equa l l y spec i f i c [' \ “ - l ess] c lauses .
o r toge ther w i th the SECURE opera to r as in ! \ c lauseM" . abandoning a l l
other match ing c lauses . We wou ld thus have separa ted the abandonment
in fo rmat ion f rom the o rder ing in fo rmat ion . I f severa l equa l l y
pr io r i t i zed match ing c lauses a re EXCLUSIVE-marked . on ly one o f them
would have to be kep t and a l l o thers could be abandoned. [EXCLUSIVE.
un l i ke SECURE. i s no t ye t implemented in F IT -1 !]

I n the ' inhab i t ’ example . a l l the F IT da ta bases

! (INHABIT WHALE SEA) ! \ (INHABIT WHALE SEA)
(>(INHABIT ?X LAND) (MAMMAL <X)) (>(INHABIT 7X LAND) (MAMMAL <X))
(MAMMAL WHALE) (MAMMAL WHALE)

(>(INHABIT ?X LAND) (MAMMAL <X)) (>(INHABIT 7X LAND) (MAMMAL (X))
! (INHABIT WHALE SEA) ! \ (INHA8 IT WHALE SEA)
(MAMMAL WHALE) (MAMMAL WHALE)

fo r the 'wha le ' request would abandon the l ess spec i f i c ' l and ' ru le
because th is i s excluded by the more spec i f i c ' l i n the r igh t -hand-s ide
data bases . redundant ly SECURE marked] ‘wha le ' f ac t . i . e . they wou ld
ac t l i ke the PROLOG da ta base

i nhab i t (wha le .sea) : - ! .
i nhab i t (x . l and) : - mamma1(x).
mammal(whale).

In the ' k nows ' example. bo th the F IT da ta bases

(KNOWS JOHN MARY)
!(KNOWS ?X PRESIDENT)

and

!(KNOWS ?X PRESIDENT)
(KNOWS JOHN MARY)

wouldn ' t change the behav io r o f the unmarked da ta base because no th ing
is l e f t to exc lude fo r the l ess spec i f i c 'P res iden t ' f ac t . i . e . they
wou ld ac t l i ke the PROLOG da ta base

knowst john.mary) .
knows(x .p res ident) : - ! .

However , bo th the F IT da ta bases

(KNOWS JOHN MARY)
!\(KNOWS ?X PRESIDENT)

- 54 _

and

!\(KNOHS ?X PRESIDENT)
(KNOWS JOHN MARY)

wou ld permit success only fo r the prioritized President which exc ludes
Mary. i . e . they wou ld ac t l i ke the PROLOG da ta base

knowstx ,pres ident1 :— ! .
knows(john,mary) .

I n F IT . EXCLUSIVE and SECURE cou ld be used no t on l y i n the
definition of p red ica te func t ions l i ke KNOWS but a lso in the de f in i t ion
o f general func t ions like FAC, no t poss ib le in PROLOG. For ins tance ,
the usua l s imple j ag tor ia l de f in i t ion

(>(FAC 0) 1)
(>(FAC ?N) (TIMES <N (FAC (SUBI <N))))

has the d isadvantage tha t [a t the bo t tom o f recurs ions] the ca l l
(FAC 0) i s matched by bo th c lauses . in pure F IT re tu rn ing

(DEPTH 1 suspens ion—which -wou ld -d ive rge—to—negat ive—in f in i ty l

Th is can be avo ided by mak ing the invoca t ion pa t te rn o f the second
clause d is jo in t from tha t o f the f i rs t . i . e . by exchanging the untyped
var iab le ?N by the typed var iab le X?POSINT fo r pos i t i ve in iegers :

(>(FAC 0) 1)
() (FAC x?POSINT) (TIMES (POSINT (FAC ($081 (POSINT))))

A l te rna t ive ly [sav ing repea ted POSINT checks fo r each recurs ive FAC
call. redundant fo r a l l bu t the in i t i a l and the f ina l ca l l] . the f i rs t
c lause cou ld be marked by an EXCLUSIVE opera to r :

(>!(FAC 0) 1)
() (FAC ?N) (TIMES (N (FAC (SUB! <N))))

Since the pa t te rn (FAC 0) i s more spec i f i c than the pa t te rn (FAC ?N) no
SECURE opera to r i s needed here . I f , i ns tead , we used equa l l y spec i f i c
and d is jo in t invoca t ion pa t te rns l i ke (FAC x?ZEROP) and (FAC x?POSINT) .
no EXCLUSIVE opera to r wou ld be needed and the SECURE opera to r wou ld be
reduced to a mat te r o f s ty le and e f f i c iency :

(> \ (FAC x?ZEROP) 1)
() (FAC x?POSINT) (TIMES (POSINT (FAC (SU81 <POSINT))))

F ina l l y . i f we used equa l l y spec i f i c and non-d is jo in t invoca t ion
pat te rns l i ke (FAC x?ZEROP) and (FAC x?NUMBERP) bo th EXCLUSIVE and
SECURE wou ld be ca l l ed fo r :

(> ! \ (FAC x?ZEROP) 1)
() (FAC x7NUMBERP) (TIMES (NUMBER? (FAC (SMI1 (N“MBERP))))

The examples i l l us t ra te the fo l lowing p roper ty o f the EXCLUSIVE
opera tor . In add i t ion to no t re ly ing on the tex tua l da ta base order
between ru les , EXCLUSIVE is h igher - l eve l than cu t because i t doesn ' t
re ly on o rder ing inside ru le bod ies . Jus t as the “N ILE s ta tement

_ 55 -

co r responds t o a very restricted f o rm o f go to , t he EXCLUSIVE ope ra to r

co r responds t o a ve ry r es t r i c t ed f o rm o f cu t , cha rac te r i zed by t he
fo l l ow ing p rope r t i es :

1 . Only one cut i s permitted f o r each c l ause [t he ' s i ng le cu t '
p rope r t y] .

2 . Th i s cu t can on l y occu r i n a f i xed pos i t i on , namely
immed ia te l y a f t e r t he i nvoca t i on match [t he ' i n i t i a l cu t '
p rope r t y] .

Th i s means t ha t EXCLUSIVE, as we l l as SECURE. app l i es t o a c l ause i n
i t s en t i r e t y . i n con t ras t t o un res t r i c t ed cu t s , wh i ch may be sp r i nk l ed
th roughou t c l ause bod ies . The re fo re . unde rs tand ing a F IT c l ause
invo l ves on l y check ing whe the r i t i s EXCLUSIVE [SECURE] a t a l l , r a the r
t han gg! o f t en o r whe re i t has some such p rope r t y . as requ i red f o r
unde rs tand ing a PROLOG c lause . Th i s i s i n parallel with WHILE, wh i ch .
un l i ke un res t r i c t ed go tos . app l i es t o a p rog ram b lock i n i t s en t i r e t y ,
he igh ten ing i t s unde rs tandab i l i t y i n a s im i l a r manner .

Ano the r use o f EXCLUSIVE i n t he f o l l ow ing subsec t i on 5 .5 .3 w i l l
exh ib i t f u r t he r advan tages o f t he i n i t i a l - cu t p rope r t y .

6 .5 .3 F rom Gua rded Commands t o Cons t ra i ned EXCLUSIVE Ru les —

The comb ina t i on o f EXCLUSIVE c l auses and cons t ra i ned c l auses
[sec t i on 6 .3] y i e l ds an i n te res t i ng k i nd o f r u l e . wh i ch may be seen as
a f unc t i ona l ve rs i on o f " gua rded commands" (D i j k s t r a 1975) and
"p roduc t i ons " (Newe l l 1973) . Th i s comb ina t i on i s enab led by t he COMFO
cons t ra i n t s me thod , i n t r oduced i n sec t i on 6 .3 .2 . L i ke eve ry o the r r u l e ,
a COMFO cons t ra i ned ru l e can be marked by an EXCLUSIVE ope ra to r ,
ob ta i n i ng

({> . v } ! (r (COMFO p1 . . . pM : c1 c2 . . . cK)) s1 . . . sN)

On invocation, t h i s r u l e f i t s i t s head (r (COMFO p1 . . . pM : c1 c2
CK!) t o t he exp ress ion t o be eva lua ted . t he reby check ing t he
cons t ra i n t s c l , c2 , . . . , cK ove r t he va r i ab les among p1 , pM . I f
t h i s cons t ra i n t—check ing i nvoca t i on f i t t i ng succeeds . t he EXCLUSIVE
ope ra to r causes o the r poss ib l y success fu l r u l es t o be abandoned .

Then a gua rded command o f t he f o rm

gua rd -> s ta temen t1 : . . . : s t a temen tN

can be represented as t he ru l e [the t i l de deno tes a t r ans fo rma t i on f r om
Di j ks t r a ' s ALGOL—like syn tax t o F IT syn tax]

({> , v } ! (D (COMFO : guard")) statement1~ . . . statementN")

The ru l e uses a dummy name r=D and a COMFO expression with an emp ty
pa t t e rn [i . e . M=0; i n that case equ i va len t t o a TRAFO] and a body
cons i s t i ng o f a s i ng le cons t ra i n t [i . e . K=1] . c l =gua rd " . ope ra t i ng ove r
g loba l va r i ab les .

~ 66

Dijkstra's guarded-command—based alternative const ruc t

ii guarded—command1

[] güarded—coümandz

[] guarded-commandZ
51

can be rewritten in FIT as [the tilde transforms guarded commands as
demonstrated above]

guarded-command1"
gUarded-commandz~

guarded-commandz~

That is. the isolated goarded—command rules are simply written into a
[possibly LOCAL] FIT data base. Note that while "a guarded command by
itself is not a statement" (Dijkstra 1975) . its FIT representation ig a
r u l e , usable by itself or as part of a larger construct.

For example. Dijkstra's "program that for fixed x and y assigns to m
the maximum value of x and y",

if x 3 y —> m := x
[] y 3 X -> m := y
i;

in FIT can be rewritten as

(> ! (b (conro : (GE <x (Y !) ! (>" <x))
(>!(o (conro : (GE <Y <X))) (>M (7))

After (>X 3) and (>Y S) this can be called by (D) . which sets M to 5.

Deviating from Dijkstra's imperative global—state-oriehted
pregraMMing style. a tunctional method of trahScribing a
guarded-command-baSed construct consists of the introduction of a new
fdnction for it such that the imported global variables of the
ConStruct become the arguments of the Function and the eXported global
variables are replaced by the tunction's returned values. A guarded
command of sueh a construet is transcribed using the function's name
instead o f D, a non—trivial COMFO expression with the guard operating
on the function's arguments arg1, argM. and functional expreSsions
as statements [here the tilde denotes a Functional transformation]:

({>,v}!(hame (COHFO arg1 ... argH : guard"))
statement!" ... statementN')

Thüs the alternatiVe constrUct tunctionally becomes [Using the
abbreviations args = arg! ... argH and, tor 15:52. statementsj” =
stateMentj,1' ... statementj.Nj']

‘({>,v}!(name (COHFO args : guardj")! statemehtsi")
I{>.v}!lname (COMFO args : gu:ru2")) statemehts2“o

11>.v}!(name (COMFO args : guardz;)) Statementsi")

_ 57 -

For examp le . the maximum program can be represented as a func t ion named
MAX with two a rguments X and Y and one re tu rned va lue :

(>!(MAX (COMFO ?x ?Y : (GE ‘x ‘Y))) <x)
(>!(MAX (COMFO ?x ?Y : (GE “Y "x) l) (Y)

Th is can be ca l l ed by (MAX 3 5) . re tu rn ing 5 .

D i j ks t ra 's guarded-command—based repe t i t i ve cons t ruc t cou ld be
re fo rmula ted in to F IT s imi la r l y , add i t iona l l y us ing ta i l - recurs ion fo r
represent ing i t e ra t ion . For example, D i j ks t ra 's "program fo r the
grea tes t common d iv isor o f two pos i t i ve numbers“,

x := X : y := Y ;
gg x > y -) x := x — y
[] y > x —> y = y — x
gg

can be func t iona l l y rewr i t t en in F IT as

(v!(EUCLID (COMFO ?X ?Y : (GREATERP ' X 'Y)))
(EUCLID (DIFFERENCE <X <Y) <Y))

(v!(EUCL[D (COMFO ?X ?Y : (GREATERP “Y 'X l l)
(EUCLID <X (DIFFERENCE <Y <X)))

() (EUCLID ?X ?X) (X)

Howeve r , this doesn ' t change any th ing in the EXCLUSIVE—less COMFO
vers ion o f subsec t ion 6.3.2. because . a f te r the cons t ra in ts check .
a lways exac t ly one ru le rema ins , so tha t the re i s no th ing l e f t to
exc lude fo r th is s ing le ru le . Th is shows tha t the imp l ic i t ' abandon
semantics' [c f . subsect ion 5 .5 .2] o f D i j ks t ra 's guarded commands is not
requ i red in h is p r inc ipa l EUCLID example [nor in o ther p rograms whose
guards a re d is jo in t ra ther than over lapp ing as in the maximum program] .
S ince i t i s c lea r tha t the cu t opera to r shou ld no t be used w i thout
need. the same should ho ld fo r i t s res t r i c ted EXCLUSIVE form, so tha t
the ea r l i e r EUCLID vers ion o f subsec t ion 6 .3 .2 appears p re fe rab le to
the p resent one , de r ived f rom guarded commands. The non—abandoning.
l og ica l l y 'pure r ' ve rs ion cannot be spec i f i ed w i th guarded commands.
because o f the i r bu i l t - in abandon semantics.

A re la t iona l t ranscr ip t ion method fo r gua rded—command-based
const ruc ts , in te rmed ia te be tween the impera t ive and the func t iona l one .
can be der ived f rom the func t iona l method , p rov ided tha t the expor ted
var iab les become resu l t va r iab les o f the re la t ion . A guarded command o f
such a cons t ruc t looks l i ke the func t iona l one except tha t i t uses a
re la t ion name [by convent ion having a "—P" su f f i x] , add i t iona l resu l t
var iab les res l resL . and re la t iona l express ions as s ta tements
[he re the t i lde denotes a re la t iona l t rans format ion] :

({> .v } ! (name-P (COMFO arg I . . . argM : guard") res I . . . r esL)
statement1" . . . statementN")

Thus the a l te rna t ive cons t ruc t re la t iona l l y becomes [us ing the p rev ious
abbrev ia t ions toge ther w i th ress = res1 . . . r esL]

- 68 „

((> .v l ! (name-P (COMFO args : guard i ') r ess) s ta tements l ")
((>,v}!(name~P (COMFO args : guard2") ress) statement52~)

({>.v}!(name-P (COMFO args : guardZ") ress) statementsz")

Of ten th is raw relational t r ansc r ip t i on can be simplified.

For example . the maximum p rog ram can be represented as a re la t ion named
MAXP [a shor t form o f MAX-P] wi th two input va r iab les X and Y and one
resu l t va r iab le M:

()!(MAXP (COMFO ?x ?Y : (GE “X ‘Y)) ?M) (eu <M <x))
(>!(MAXP (COMFO ?x ?Y : (GE ‘Y "X)! ?M) (E0 <M <Y))

Of course , the s ta tements (EQ (M (X) and (E0 (M <Y) can be omi t ted here
by rep lac ing the ?H a rguments d i rec t l y by ?X and ?Y . respec t ive ly :

() ! (HAXP (COMFO ?X ?Y : (GE “X 'Y)) ?X))
(>!(MAXP (COHFO ?X ?Y : (GE 'Y ‘X)) ?Y))

Then , i f , as in the above maximum program, the s ta tement par t o f ru les
becomes empty through the re la t iona l t ranscr ip t ion , these
t rans format ion ru les [t rans formers] can be fu r ther s imp l i f i ed to
adapta t ion ru les [adapte rs] :

!(MAXP (COMFO ?X ?Y : (GE "X °Y)) ?X)
!(MAXP (COMFO ?X ?Y : (GE ~Y 'X)) ?Y)

The re la t iona l vers ions can be ca l l ed by (MAXP 3 5 |?ANS). binding ANS
to 5 .

I n (Kowalski 1979) a re la t iona l fo rmula t ion o f D i j ks t ra 's maximdm
program is d iscussed as an example o f "don ' t ca re” non-de te rmin ism1 ,
charac te r is t i c fo r guarded commands and usab le fo r a fo rm o f
i n te l l igen t back t rack ing : however. i t i s no t s ta ted tha t such a ”don ' t
care" spec i f i ca t ion requ i res an ex t ra - log ica l f ea tu re equ iva len t to
PROLOG's cu t opera to r . Th is i s deMonst ra ted in the fo l low ing
PROLOG—like ve rs ion o f the maximum program wh ich . l i ke the p rev ious
vers ions . p resupposes no c lause o rder :

maxp(X.Y.X) :— X > , ! .
maxp(X,Y.Y) : - Y >

Y
X. ! .

[I f i n te rpre ted as o rd inary PROLOG. with c lause o rder , the second cu t
‚wou ld be redundant .]

No t ice tha t th is must t ake the form o f PROLOG ru les [t rans formers] ,
even though no goa ls fo l low a f te r the guard eva lua t ion o r cons t ra in ts
check . PROLOG fac ts [adapte rs] cannot be used , s ince the cons t ra in ts
are themse lves represented as goa ls .

I n (C la rk & Gregory 1981) the te rm "committed“ ins tead o f "don ' t
care" non-de te rmin ism is used and the cu t opera to r be tween guards and
other goals i s ca l l ed “clauSe bar" [wr i t t en as " I “ l . Finally. i n
CONCURRENT PROLOG (Shapi ro & Takeuchi 1983) re la t iona l guarded commands
are ca l l ed ”guarded—clauses" and the " I " cu t i s adopted under the name
"commit opera to r” .

FIT's const ra ined EXCLUSIVE ru le s are pre ferab le to CONCURRENT
PROLOG's guarded-c lauses for the fo l l owing reasons :

1 . Although the commit opera tor has the s ing le - cu t proper ty i t
doesn ' t have the in i t i a l—cut proper ty o f the EXCLUSIVE
opera tor ; i t thus mis se s the advantages o f in i t i a l cu t s :

1 . The l e f t—right d iv i s ion [the ' arrow'] o f t rans format ion
ru le s co inc ides syntac t i ca l ly w i th the in i t i a l cu t [bo th
are thus jo inab le to a ' cu t arrow' . a s used impl i c i t l y in
Di jks tra ' s guarded commands]; in th i s way the cu t i s
l imi ted to a pos i t i on in the t rans former which i s spec ia l
in any case . so tha t readab i l i ty i s improved .

2 . I t i s advantageous to cons ider cons tra in t s checks a s
genera l i zed pa t t ern-d irec ted invoca t ion . i . e . carry ing
them out a s par t o f the ' l e f t -hand-s ide ' invoca t ion
f i t t ing o f a ru le [mirror ing the l e f t -hand-s ide eva lua t ion
of D i jks tra ' s guards] : I f the ru le cons tra ined in th i s way
has an in i t i a l cu t . a comple t ion o f the invoca t ion f i t t ing
means a rea l comple t ion o f the ru le s e l ec t ion . in contras t
to the pre l iminary comple t ion permi t t ed by a non- in i t i a l
cu t . wh ich can be cont inuous ly rev i sed unt i l the body
eva luat ion reaches the cu t .

3 . Only initial cu t s preserve the l e f t - r ight symmetry o f
ru le s , i . e . permi t ' cu t - symmetr i ca l ' ru l e s : th i s becomes
important i f the arrow d irec t ion i s reversed to swi t ch
from backward reason ing to forward reason ing [exp lo i t ing
the mul t ip l e readab i l i ty o f Horn c lauses through
"top—down‘ /”bot tom-up in ference“ (Kowalski 1979) . ra ther
than through " inver t ib i l i t y" (Kowalski 1983)J : Whi le
top—down/bot tom-up reversa l s make no sense w i th
non—ini t ia l cu t s , they can be mean ingfu l w i th in i t i a l
cut s .

EXCLUSIVE—marked t rans format ion ru le s can be s impl i f i ed to
EXCLUSIVE-marked adapta t ion ru le s i f the cons tra in t s are
checked dur ing invoca t ion f i t t ing and i f there are no o ther
goa l s [c f . the l a s t MAXP version].

Constra ined ru le s are more genera l than guarded—clauses in
tha t they can no t on ly be used re la t iona l ly for de f in ing
pred ica te s (c f . MAXP] but a l so func t iona l ly for de f in ing
genera l func t ions (c f . MAX].

7 L IST AND SET PROCESSING

We now compare l i s t and se t proces s ing in FIT and PROLOG. S ince s e t s
wi l l be represented as l i s t s w i thout dup l i ca te e l ements . the t erm ' l i s t
proces s ing ' in the fo l l owing wi l l encompass s e t proces s ing . As in
PROLOG in FIT we wi l l de f ine re la t ions ra ther than func t ions for l i s t
proces s ing . In th i s way the compar i son be tween FIT and PROLOG becomes
eas i er than v ia a t rans la t ion o f FIT' s l i s t -proces s ing func t ions to

_ 70 _

PROLOG's l i s t -p rocess ing relations. At the same t ime i t shows how F IT 's
adapters [c f . section 5 .2] can make relational programming. PROLOG's
domain o f exper t i se , more conc ise t han even PROLOG's t r ans fo rmers [Horn
clauses] can . In such adapte rs f requent use will be made o f
compositions o f the form ABo?var. wh ich g ive some subexpression a name
var , usab le a t ano ther p lace . and t hen erase th is subexpress ion ; us ing
COMFO express ions [c f . sec t ion 5 .2 .31 . th is cou ld a lso be fo rmula ted as
(COMFO ?var) .

To avo id confus ion be tween l i s t—func t ion names co ined by L ISP [a lso
used in F IT] and corresponding re la t ion names in F IT we w i l l append the
le t te r “P“ to every re la t ion [p red ica te] name which PROLOG borrowed
f rom the name o f a genera l func t ion in L ISP .

As usua l . the F IT examples o f th is sec t ion have been tes ted in
F IT -1 . However . on ly the pure p red ica te use o f the de f in i t ions i s
comple te ly imp lemented in F IT—1: de f in i t ion uses w i th reques t va r iab les
are no t ye t opera t iona l in fu l l genera l i t y . because o f the res t r i c ted
un i f i ca t ion f i t t ing per fo rmed in th is cur ren t F IT imp lementa t ion . We
won ' t use the EXCLUSIVE opera to r fo r represent ing in i t i a l cu ts here ,
but the reader may eas i l y supp ly i t where des i red [c f . sec t ion 6] .

7 .1 Elementary L is t Processing

For the fo l low ing comparison we w i l l use the PROLOG examples o f
chapte r 7 .5 in (C locks in & Me l l i sh 1981) and re fo rmula te them in F IT .

F ind ing the l as t e lemen t 9! 3 l i s t : The recurs ive PROLOG de f in i t ion

l a s t (X . (X]) .
l a s t (X . [_ lY]) :— las t (X .Y) .

can be d i rec t l y m i r ro red by a recurs ive F IT de f in i t ion us ing a
constan t—adapte r fo r the boundary cond i t ion and a t rans former fo r the
recurs ive case :

(LASTP ?X (?X))
()(LASTP ?X (ID ?YoLIST)) (LASTP (X <Y))

However , the ta i l - recurs ive t rans former ' can be rep laced by a
REVA-adapter [marked by an " r "—pre f ix tha t causes the resu l t o f the
adapte r f i t t ing to be i g—eyg lua ted] . making the F IT de f in i t ion more
concise and f ree o f s ing le -occur rence var iab les [fo r de ta i l s on these
adapter concepts see (Boley 1983)] :

(LASTP ?X (?X))
r(LASTP ID (AB 310!)

Now, s ince there i s no need fo r the l e f t—to - r igh t p rocess ing per fo rmed
by the above de f in i t ions . the two adapte rs can be co l l apsed in to a
s ing le constant—adapter:

(LASTP ?X (CID ?X))

- 71 _

This is a mos t conc i se . declarative, and pictorial description of

the desired last list element. In PROLOG such a very-high—level
formulation can only be approximated by a transformer presupposing the

definition of append [see below]:

last(X,L) :— append(_.[X3,L).

gnggting for consecutive elements; The recursive PROLOG definition

nextto(X.Y.[X,Yl_J).
nex t t o (X .Y . [_ |Z]) :— nex t t o (X ‚Y ‚Z) .

could also be directly mirrored in FIT using a transformer, but let us

directly consider the more concise REVA—adapter version:

(NEXTTOP ?X ?Y (?X ?Y #ID))
r(NEXTTOP ID ID (AB #10 !)

Aga in , without left-to—right commitment these adapters collapse into

one constant adapter:

(NEXTTOP ?X ?Y (#10 ?X ?Y #10) ,

And again, this most concise V v e r s i o n in PROLOG can only be
approximated by a transformer depending on append [see below]:

nextto(X,Y,L) :— append(_,[X,Yl_],L).

Anggflging lists: The recursive PROLOG definition

append([1.L.L).
append([XIL1],L2,[XIL3]) :— append(L1,L2.L3).

by our previous method becomes the FIT adapters

(APPENDP () ?L ?L)
r(APPENDP (A807X #ID) ID (A807X 810))

Through the use of parallel imposition variables this becomes
trivialized to

(APPENDP (>R) ‘ (>S) (>R >S))

The "flexibility of append" in PROLOG. which allows (Clocksin &
Mel l i sh 1981) to “define several other predicates in terms of it“ [cf.
last and nextto above] , cons i s t s of the f ac t that append can be used to
divide a list almost symmetrically into two segments, so that its first
argument and a tail of its second argument can be used to simulate two
segment variables. However. this is a very indirect and cumbersome way
of bi—partitioning lists, not to speak of n-partitionings, that require
the analogue of nested append expressions [PROLOG's append relation
corresponds to LISP's binary *APPEND function, not to its n—ary APPEND
func t i on] . As an example consider the append—based member predicate
definition in (Clocksin & Mellish 1981) :

member(E1.List) :— append(_,[Ell_].List).

The append call uses an anonymous variable as its first argument. which

-12 . .

ac ts as an a rb i t r a ry l e f t segment . As i t s second a rgument append uses a
list with t he member sh ip cand ida te E1 a s i t s head and ano the r anonymous
va r i ab l e a s i t s t a i l . t he l a t t e r ac t i ng a s an a rb i t r a ry r i gh t s egmen t .
50 t he two segmen t con tex t s a round E l a r e no t symmet r i c syn t ac t i ca l l y ,
because t he l e f t one appea r s a s a t op - l eve l a rgumen t o f append , whe reas
the r i gh t one i s embedded in t he t a i l o f an append a rgumen t . Th i s
occ ludes t he comple t e s eman t i c symmet ry o f t he two segmen t con tex t s o f
an e l emen t occu r r ing somewhere i n a l i s t .

I n F IT the s eman t i c symmet ry i s made v i s ib l e syn t ac t i ca l l y . u s ing
d i r ec t no t a t i ons fo r s egmen t s . he re anonymous «10 segmen t s :

(MEMBER ?EL (CID ?EL #10) ,

[Inc iden ta l l y , which no ta t i on t o u se fo r anonymous s egmen t s i s no t a t
i s sue he re . The t h r ee cha rac t e r s " . . . “ a s . e . g . , used i n LISPTO may a t
f i r s t s eem more na tu ra l t han t he t h r ee cha rac t e r s "#10" , bu t t he l a t t e r
can be s eman t i ca l l y decomposed in to t he ve ry na tu ra l " t " and “IO"
ope ra to r s .]

nglsing a list; PROLOG's e f f i c i en t r eve r se de f in i t i on

rev2 (L1 .L2) :— revzap (L1 . [] ,L2) .

revzap((X|L].L2,L3) : - revzap(L. [X|L2] ‚L3) .
revzap ([l .L .L) .

i n F IT becomes

(>(nsvzp ?L1 1L2) (REVZAP <L1 () <L2))

r(REVZAP (ABo?X #ID) ((TRAFO : “X) #10) ID)
(REVZAP () ?L ?L)

The t r ans fo rmer i n i t i a l i z ing REVZAP can be made a REVA—adap te r by
naming REVZAP, also REVZP and us ing (TRAFO : ()) t o gene ra t e t he empty
l i s t (r am the empty impos i t i on :

r(REV2P IO (TRAFO : ()) ID)

r(REV2P (ABo?X #ID) ((TRAFO : 'X) #10) ID)
(REV2P () ?L ?L)

The PROLOG r ev2 def in i t ion w i th i t s unneces sa r i l y g loba l ly
acces s ib l e r evzap subord ina t e s i l l u s t r a t e s a ma jo r sho r t coming o f t ha t
l anguage . wh ich may even d i squa l i fy i t a s an imp lemen ta t i on l anguage
fo r l a rge so f tware eng inee r ing p ro j ec t s : A l though PROLOG was deve loped
i n t he s ame t ime pe r iod a s abs t r ac t da t a t ypes . and log i ca l ADT
spec i f i ca t i on appea r s t r i v i a l (B ibe l 1983) as we l l . PROLOG has no
i n fo rma t ion h id ing and modu la r i za t i on f ac i l i t i e s . The re a r e now
prOposa l s t o augmen t PROLOG wi th ADTs (Nakash ima & Suzuk i 1983) and
modu le concep t s [(Bend l e t a l . 1980) , (C la rk e t a l . 1982) . (Egger t &
Schorre 1982) . (Ch ikayama 1983)] . bu t t he l ack o f an obv ious 'w inne r '
among these un re l a t ed cand ida t e s s eems to i nd i ca t e t ha t modu le s a r e
ha rd t o i n t eg ra t e w i th PROLOG's base componen t s . Fo r example . (Egge r t &
Schor re 1982) r e fo rmula t e t he r ev2 de f in i t i on a s t he fo l l owing modu le
expor t i ng t he name r eve r se :

_ 73 _

module (reverse) .
r (n i1 .L ,L) .
r (Y .L1 .L2 .R) < - r (L1 ,Y .L2 .R) .

reverse (L .R) < - r (L ,n i l ,R) ;
endModu le .

However, like their func t ion ex tens ion [c f . sec t ion 3] , this i s
implemented t h rough preprocessing, which surely i s no t the right
approach fo r realizing a concept as bas ic as modules. In F IT the
available LOCAL [da ta base] p r im i t i ve (c f . sec t ion 2 .2] can be used fo r
de f in ing modu les [R happens to ac t bo th as a va r iab le and a re la t ion
name]:

(>(REVERSEP ?L ?R)
(LOCAL ((R NIL ?L ?L)

(>(R (?Y ?L10LIST) ?L2 ?R) (R <L1 (CONS (Y <L2) <R)))
(R <L NIL <R)))

Whi le in Egger t /Schor re 's modu les the un i t o f expor t i s re la t ion names,
in F IT i t i s re la t ion ca l l s . There fo re in the fo rmer modu le the names r
and reverse must be ca re fu l l y d is t ingu ished . whereas in the l a t te r
there wou ld be no p rob lem i f the names R and REVERSEP were jo ined to
REVERSEP:

(>(REVERSEP ?L ?R)
(LOCAL ((REVERSEP NIL ?L ?L)

(>(REVERSEP (?Y ?L1oLIST) ?L2 ?R)
(REVERSEP <L1 (CONS (Y (L2) <R)))

(REVERSEP (L N IL (R) !)

The LOCALized REVERSEP def in i t ions a re jus t as inv is ib le ex te rna l l y as
were the LOCALized R de f in i t ions . There fo re , ex te rna l l y s t i l l on ly
ca l l s l i ke (REVERSEP ' (1 2 3) |?ANS) are poss ib le . not ca l l s l i ke
(REVERSEP ' (1 2 3) N IL |?ANS) .

De le t ing one e lement : The recurs ive PROLOG de f in i t ion

e f face (A . [A lL] .L) :— ! .
e f face (A . [8 lL] . [B IM]) :— e f face (A ,L ,M) .

can be d i rec t l y t rans la ted to the F IT de f in i t ion [the SECURE opera to r
" \ " p r io r i t i zes - the less spec i f i c f i r s t de f in i t ion]

\(EFFACE ?A (?A ?LoLIST) ?L)
r(EFFACE ID (ABo?B # ID) (ABo?B 910))

I f an a rb i t ra ry A—element ra ther than the l e f t—most occur rence i s to be
removed the adapte rs can be co l l apsed in to

(EFFACE ?A (>L ?A >R) (>L)R))

PROLOG's add i t iona l c lause fo r recogn iz ing when the second a rgument
becomes reduced to the empty l i s t ,

e f face (_ . [] . []) .

i n F IT becomes

7 ‘ .

(EFFACE ID () ())

Deleiins all securrenses Qi an glasses; The PROLOG definition

delete(_.[].[]).
delete(X,[XlL],M) :- !. delete(X,L.M).
deletetX.[YlL1].[YIL2]) :- delete(X.L1.L2).

in FIT becomes

r(DELETEP ?X (#10 ABO?X # ID) ID)
(DELETEP [D ?L ?L)

fiupgtitutign; The PROLOG definition

subst(_.[]._.[]).
s u b s t (X , [X I L] , A . [A I H]) : - ! . subst (X .L .A ,M) .
subst(X.[Y|L] ‚A‚[Y|M]) :— subst(X.L.A.M).

is e r roneous because it accepts. for instance, the list [1 .2] as the
input and the result of substituting a new element [unequal to 1]. say
O, for the old element 1: The relation call subst(1.[1.2],0.[1.2]) is
not matched by the second clause. since A cannot be both 0 and 1;

unfortunately. however, it is matched by the third clause. since both

lists happen to start with the same element Y=1; thus an illegitimate

recursion subst(1.[2),0.[2]) takes place. which via subst(1.[].0.[])
yields an incorrect 'yes' answer. The subst definition could be
corrected using “ \=“ in the third clause to ensure that the first list
element is not the old element [since this is the last subst clause no
cut is necessary after the 'constraint check' X\=Y] :

subst(X,[YlL],A.[YlM]) ‚_ X\=Y. subs t (X ‚L ‚A ‚M) .

In FIT the definition becomes [the "\" prioritizations guarantee that
the last definition is used only when no other one applies]

r\(SUBSTP ?X (#10 A80?X #ID) ?A (#10 ABo?A #I0))
(>\(SUBSTP ?X (#10 ?X # ID) ID ID) jF)
(SUBSTP ID ?L [D ?L)

Here . the critical example. (SUBSTP 1 '(1 2) 0 '(1 2)) is not matched
by the more specific first clause. an adapter generalizing PROLOG's
second clause; therefore it is matched by the less specific second

clause, which correctly yields jF.

Perhaps the error in PROLOG originated from formulating subst too
closely in analogy to delete (“this is quite similar to delete. except
instead of deleting a desired element, we substitute some other element
in its place“ (Clocksin & Mellish 1981)] : The second delete clause is
only inapplicable when the old element is not the first element of the
argument list, whereas the second subst clause is also inapplicable in
the 'unusual' case that the new element is not the first element of the
result list. The case is 'unusual' at least in the view o f functional
programming where result lists are returned values rather than
arguments: posssibly. (Clocksin & Mellish 1981) had only LISP‘s natural
functional subst use in mind. not the strange but basic relational
subst use of checking whether 'four given s-expressions are in a
substitution relation'. This will be further discussed in the context

7 ‘ .

(EFFACE ID () ())

Deleting all occurrences 21 an element; The PROLOG definition

de le te (_ . [] . []) .
de le te (X . [X lL] .M) :— ! . de le te (X .L .M) .
dele te (X . [Y IL1] . [Y IL2]) : - de lete(X.L1.L2) .

i n F IT becomes

rCDELETEP ?X (# ID ABO?X #ID) ID)
(DELETEP [D ?L 7L)

fiupititutign; The PROLOG definition

subst(_.[]._.[]).
subst (X . [X |L] .A . [A IM]) : - ! . subs t (X .L .A .M) .
subst (X . [Y IL] .A . [Y IM]) : - subs t (X .L .A .M) .

i s e r roneous because i t accepts . fo r ins tance , the l i s t (1 .2] as the
input and the result of substituting a new element [unequal to 1] . say
0 . fo r the o ld element 1 : The re la t ion ca l l subs t (1 , [1 .2] . 0 . [1 .2]) i s
not matched by the second c lause . s ince A cannot be bo th 0 and 1 ;
unfor tuna te ly . however. i t i s matched by the th i rd c lause . s ince both
lists happen to s ta r t w i th the same e lement Y=1 ; thus an illegitimate
recurs ion subs t (1 , [2] . 0 . [2]) takes p lace . which v ia subs t (1 . [] . 0 . [])
y ie lds an incor rec t ' yes ' answer. The subst de f in i t ion could be
cor rec ted us ing " \=” in the third clause to ensure tha t the f i rs t l i s t
element i s not the o ld element [s ince th is i s the l as t subst c lause no
cut i s necessary a f te r the ' cons t ra in t check' X \=Y] :

subst(X.[YlL].A.[YlM]) :~ X\=Y. subst(X.L.A.M).

I n F IT the de f in i t ion becomes [the " \ " p r io r i t i za t ions guarantee tha t
the l as t de f in i t ion i s used on ly when no o ther one app l ies]

r\(SUBSTP ?X (“ [0 A80?X SID) ?A (« to A80?A #ID))
(>\(SUBSTP ?X (#10 ?X #ID) ID ID) jF)
(SUBSTP [D ?L [D ?L)

Here . the c r i t i ca l example. (SUBSTP 1 ' (1 2) O ' (1 2)) i s no t matched
by the more spec i f i c f i r s t c lause , an adapter genera l i z ing PROLOG's
second c lause ; the re fo re i t i s matched by the l ess spec i f i c second
c lause . wh ich cor rec t ly y ie lds jF .

Perhaps the e r ro r in PROLOG or ig ina ted f rom fo rmula t ing subs t too
c lose ly in analogy to de le te [" th is i s qu i te s im i la r to de le te . except
i ns tead o f de le t ing a des i red e lement . we subs t i tu te some o ther e lement
i n i t s p lace" (C locks in & Mellish 1981)] : The second de le te c lause i s
on ly inapp l icab le when the o ld e lement i s no t the f i rs t e lement c f the
argument l i s t . whereas the second subs t c lause i s a lso inapp l icab le in
the 'unusua l ‘ case tha t the new e lement i s no t the f i rs t e lement o f the
resu l t l i s t . The case i s 'unusua l ' a t l eas t in the v iew o f func t iona l
p rogramming where resu l t l i s ts a re re tu rned va lues ra ther than
arguments ; posss ib ly . (C locks in & Me l l i sh 1981) had on ly L ISP 's na tura l
func t iona l subs t use in mind . no t the s t range bu t bas ic re la t iona l
subs t use o f check ing whether ' four g iven s -express ions a re in a
subs t i tu t ion re la t ion ' . Th is w i l l be fu r ther d iscussed in the contex t

- 75 _

of a similar problem with the intersection and union relations in

subsection 7.2. In any case, the subst error seems to indicate that

relational formulations can make programs as simple as LISP's SUBST

func t ion error—prone because of the increased number o f arguments and

their possible unexpected usage [it is true that some o f these errors

won't come to the surface as long as nobody uses these relations in a

'strange' manner. but how d o you explain to your students that basic

'yes/no' questions without any request variables are 'strange'?].

§EELL§L§i The PROLOG definition

sublist([XIL].[X|M]) :- prefix(L,M). !.
sublist(L,[_lM]) :— sublist(L.M).

prefix([]._).
prefix([XlLJ.[X|M]) :- prefix(L,M).

in FIT trivializes to

(SUBLIST (?x >L) (#ID ?x >L $10))

The PROLOG definition is cumbersome because its sublist and prefix

parts handle overlapping cases. a redundancy which can be seen in the

almost identical first sublist clause and second prefix clause [the cut

in the former is disputable anyway. because. although it prevents calls

from incorrectly falling into the second clause. it also prevents calls

like sublist([b,SECOND,THIRD].[a.b,c,d.e.b.e,a]) from finding not only
SECOND=c and THIRD=d but also SECOND=e and THIRD=a].

The above definitions don't allow empty sublists. although these are
sublists according to a literal interpretation of the definition "list
X is a sublist o f list Y if every item in X also appears in Y. . . . “
(Clocksin & Mellish 1981) . Thus , the non—emptiness restriction may well
be an artifact of PROLOG's task sharing between sublist and prefix. In
FIT the removal of the non-emptiness restriction makes the definition
even simpler:

(SUBLIST (>L) (#ID >L $10))

The structural similarity of this definition and the MEMBER
definition suggests another. still simpler definition.

(SUBIMP >L (RID >L $10))

which generalizes MEMBER by just replacing its ?EL occurrences by >L
occurrences. Alternatively, SUBIMP can also be regarded as a
generalization of NEXTTOP from two to arbitrarily many consecutive
elements. For example. (SUBIMP B C D '(A B C D E)) would succeed but
(SUBIMP A C D '(A B C 0 E)) would fail. A definition like SUBIMP is
impossible in PROLOG because of the formal imposition argument allowing
for a variable number of actual arguments.

Since the FIT adapter definitions directly capture the essence of the
list predicate functions involved, semantically similar functions
become similar syntactically. Thus. an automatic program understanding
system would only have to attempt a unification of. say. the
definitions

TG

(NEXTTOP ?X ?Y (S ID ?X ?Y 310 !) and
(SUBIMP >L (RID >L $10))

to recognize tha t the former i s a special case o f the latter because
the substitution L=X Y allows NEXTTOP and SUBIMP to become equal.
A l though PROLOG programs make heavy use o f un i f i ca t ion , they themselves
are not eas i l y un i f i ab le da ta s t ruc tures and an automat ic recogn i t ion
of a cor respond ing re la t ionsh ip be tween nex t to and sub l is t wou ld
i nvo lve much more than a simple un i f i ca t ion [how o f ten was the
re la t ionsh ip found 'by hand '?] .

7 .2 Man ipu la t ing Se ts

For the fo l low ing compar ison we w i l l use the PROLOG examples o f
chapte r 7 .6 in (Clocksin a Me l l i sh 1981) and re fo rmula te them in F IT .
Other than in the case o f e lementa ry l i s t opera t ions . the re i s no
genera l shor tening e f fec t through the F IT de f in i t ions here . This i s
par t l y because we d i rec t l y de f ine a l l F IT opera t ions in te rms o f
pr im i t i ves , whereas PROLOG bu i lds on the member p red ica te [wh ich cou ld
a lso be done in F IT] . and par t l y because the PROLOG de f in i t ions fo r
in te rsec t ion and union a re ' i ncomple te ' in tha t they don ' t account fo r
the unorderedness o f se t s . Al though the permuta t ion p red ica te i s the
most bas ic p red ica te on se ts represented as l i s ts [name ly se t equa l i t y]
and . genera l l y . sor t ing i s p re requ is i te to se t p rocess ing , in (C locks in
& Mel l i sh 1981) th is i s on ly d iscussed in the fo l low ing chapte r ,
w i thout any connec t ion be tween the two chapte rs .

The PROLOG permuta t ion p red ica te

permutation(L,[HlT]) :—
append(V,[HIU].L).
appendtV,U,W).
permuta t ion(w,T1 .

permuta t ion ([] . []) .

i n F IT can be shor tened to the de f in i t ion

r(PERMUTATION (ABo?Z #ID) (OID ABO?Z #10 !)
(PERMUTATION () ())

whose mean ing cou ld be paraphrased as "A l i s t i s in a permuta t ion
re la t ion w i th another l i s t i f the e lements o f the f i rs t l i s t can be
removed f rom le f t to r igh t , s imu l taneous ly remov ing iden t ica l e lements
somewhere f rom the second l i s t . so tha t bo th l i s ts become empty a t the
same t ime .“

The member p red ica te fo r se ts i s omi t ted here because i t i s the same
as tha t fo r l i s ts .

The PROLOG subset p red ica te

subse t ([A lX] .Y) : - membertA.Y). subse t (X .Y) .
subse t ([l .Y) .

i n F IT can be rede f ined as

_ 77 _

r(SUBSET (ABo?A #ID) (#10 ABO?A #ID))
(SUBSET () ID)

whose meaning could be paraphrased as 'A list is in a subset relation
with another list if the elements of the f i r s t list can be removed from
left to right. simultaneously removing identical elements somewhere
from the second list, so that the first list becomes empty before or

together with the second list."

Notice the similarity of the PERMUTATION and SUBSET definitions in
FIT and their crucial syntactical () I ID difference. which faithfully
reflects their semantic difference. No such syntax/semantics
correspondence between the PROLOG permutation and subset definitions is
perceivable.

The PROLOG disjoint predicate

disjoint(X,Y) :— not((membet(Z.X). member(Z.Y))).

in FIT can be redefined 'negatively' as

() \ (D ISJO[NT (# ID ?Z RIU) (#10 ?2 #ID)) jF)
(DISJOINT ID ID)

The PROLOG intersection predicate

intersection([].x.[]).
intersection([l],Y.[XlZ]) :—

member(X,Y).
I
intersection(R.Y.Z).

intersection([XlR].Y,Z) :~ intersection(R.Y,Z).

in FIT becomes

(INTERSECTIONP () ID ())
r(INTERSECTIONP (ABo?X #ID) (#10 ?X #10) (# ID ABO?X #ID))
r(INTERSECTIONP (AB $!0) ID 10)

The PROLOG union predicate

union([].X.X).
union([X|R].Y.Z) :— member(X.Y). !. union(R.Y,Z).
union([l].Y.[XlZ]) :- union(R.Y,Z).

in FIT becomes

(>(UNIONP () ?X ?Y) (PERMUTATION (X (Y))
()(UNIONP ?X () ?Y) (PERMUTATION (X (Y))
r\(UNIONP (#ID ABo?X CID) (#10 A80?X SID) (# ID ABO?X $ID))
r(UNIONP (ABo?X #ID) (#ID ABo?Y #ID) (# ID ABO?X #ID ABO?Y 310))
rlUNIONP (ABO?X 3ID) (# IO ABo?Y #10) (# ID ABO?Y 8ID ABO?X 810))

Although in (Clocksin & Me l l i sh 1981) one finds the correct set
characterization "A se t is a collection of elements. rather like a
list. but it does not make sense to ask "where” or "how many times"
something is an element of a set". the authors don't account for the
"where" irrelevance consistently. While the PROLOG set operations

- 7 8 -

member, subset. and disjoint are insensitive to the orde r of the

elements in lists representing sets. the operations intersection and

union are not. For instance. the fact that the intersection of
{r.a,p.i.d} and {p.i.c.t,u,r.e} is {r.i,p]. an example given in
(Clocksin & Hel l i sh 1981).‘ cannot be verified by the PROLOG
intersection program quoted above from the same book. The call

i n t e r sec t i on ([r . a ‚p . i . d l . [p . i ‚ c ‚ t . u . r . e] . [r ‚ i , p]) incorrectly prints
'no' because the order in the result set differs from the order in the
first argument. A correct 'yes' answer can only be obtained if the

list—represented set {r,i.p] is given in the permutation {r,p,i]
corresponding to the element order in {r.a.p.i.d}. i.e. by

i n t e r sec t i on ([r . a ‚p , i . d] . [p . i . c , t ‚ u ‚ r . e] ‚ [r , p . i]) . This prob lem is
caused by the second clause which runs through its first argument [XIR]
and its third argument [X IZ] in a synchronized manner. imposing the

same order on both arguments. PROLOG's union operation suffers from the
same unwanted synchronization in its third clause; there is an
additional problem with the first clause. union([].X,X). which forces
the two X occurrences to be equal a; 1111; [i nc l . order], not as sets

[this problem can be traced back to the strange elision of permutation
from the discussion of sets]. Thus not even the equation [} U [a . b } =
{b .a } can be verified because the trivial call union([],[a,b].[b.a]).
which may recursively result from calls like union([a].[a,b].[b.a]).
incorrectly prints 'no'. To obtain the correct 'yes' answer one must
write union([l.[a.b].[a.b]) or union([a].[a,b].[a,b]).

The FIT set operations are insensitive t o the order of elements in
lists. which thus become true set representions. This order

insensitivity comes for free by virtue of the inherent parallelism of
adapters. with two exceptions [both will be eliminated later]. 1. In
the first two UNIONP clauses we cannot use adapters (UNIONP () ?X ?X)
and (UNIONP ?X () ?X) but have to use transformers with a PERMUTATION
call in their body. 2. The last UNIONP clause r(UNIONP (ABo?X #ID) (#ID
A80?Y SID) (# ID ABo?Y #ID A80?X 310)) is only necessary for permitting
reductions like (UNIONP ' (A) ' (B) "(B A)) => (UNION () () ()). where
d i f f e r en t e l emen t s in the argument sets occur in inverse order in the
result set. while the first ordering problem can also be solved in
PROLOG by exchanging the fact union([].X.X) by the rule union([],X.Y)
:— permutation(X.Y). there seems t o be no FIT—like simple addition to
the PROLOG definitions that would account for the second ordering
problem.

Perhaps this problem with the PROLOG definitions is due t o the fact
that the authors used the predicates intersection and union
'function-like' only, with the third argument of calls being a
variable. so that there was no possibility for a 'wrong' order; this is
even more probable since a similar problem appeared for the PROLOG
subst definition. discussed in subsection 7.1 [while the subst
predicate accepts argument tuples which are not related, the
intersection and union predicates reject argument tuples which are
related]. However, this would support a feeling among functional
programmers that it can be very unnatural to keep track of all readings
of a relation: one may even forget to think of the basic predicate
reading [where all arguments are fixed] if the relation is normally
used only function-like [where one argument is variable].

Actually, a functional definition of set union is trivial if it can
build on FIT's CLASS function. which performs the often—needed
set-normalization. namely sorting without duplicates (cf. section 4]:

- 79 . .

CLASS can be used in the form CDRoCLASS [e .g . , (CDRoCLASS B A B 8) v ia
(CDR (CLASS A B)) r e tu rns (A B)] :

(>(UNION (>X) (>Y)) (CDRoCLASS <x <Y))

The UNION func t ion can t hen be used to de f ine the UNIONP relation:

(>(UNIONP ?X ?Y (>Z)) (EQUAL (UNION (X (Y) (CDRoCLASS <Z)))

However , in F IT we p re fe r to represent se ts no t jus t as l i s ts w i thout
dup l ica tes bu t d i rec t l y as CLASS co l l ec t ions . wh ich f ina l l y renders the
de f in i t ion o f se t un ion as s imp le as i t i s conceptua l l y :

(>(UNION (CLASS)X) (CLASS >Y)) (CLASS (X <Y))
(>(UNIONP ?X ?Y ?Z) (EQUAL (UNION (X (Y) (Z))

I f we now use (UNIONP (CLASS A) (CLASS A B) (CLASS B A)) fo r ve r i f y ing
(a } U {a .b } = {b .a } the th i rd embedded CLASS ca l l normal izes to (CLASS
A B) and we ge t the ca l l (UNIONP (CLASS A) (CLASS A 8) (CLASS A 8)) .
The body o f UNIONP ca l l s (UNION (CLASS A) (CLASS A B)) . which j u s t
hands the two CLASS contents to another CLASS. g iv ing (CLASS A A B)
tha t normal izes to (CLASS A B) . Th is UNION resu l t i s EQUAL to the
norma l i zed th i rd UNIONP a rgument .

The func t iona l CLASS co l l ec t ion can a lso be used to s imp l i f y our
or ig ina l re la t iona l de f in i t ion o f se t un ion : 1 . The f i rs t two c lauses
need no more PERMUTATION tes ts because norma l i zed CLASS co l l ec t ions a re
se t -equa l i f f they a re l i s t—equa l . 2 . I f the f i t t ing o f CLASS
co l lec t ions i s a lso de f ined as commutative, as descr ibed using F IT in
(Boley (980) fo r the more genera l DRLHs, then the l as t UNIONP
def in i t ion c lause [where d i f f e ren t elements in the argument sets occur
i n inverse o rder in (the resu l t se t] becomes super f luous and in no
def in i t ion c lause does more than one # ID contex t in a se t remain
necessary:

(UNIONP () ?X ?X)
(UNIONP ?X () ?X)
r\(UNIONP (CLASS ABO?X # ID) (CLASS ABo?X # ID) (CLASS ABo?X # ID))
r(UNIONP (CLASS A80?X #10) (CLASS ABO?Y #10) (CLASS'ABO?X A80?Y Ü ID))

8 THREE EXAMPLES

Fina l l y . l e t us consider th ree examples in de ta i l . The f i rs t shows a
PROLOG programming parad igm. the second is a more neu t ra l PROLOG
example , and the th i rd demonst ra tes a p rob lemat ic PROLOG re la t ion . A l l
examples ' a re re fo rmula ted in F IT ; fo r a more typ ica l F IT p rogramming
example. however, see Wang's a lgor i thm in (Boley 1983) .

Since in the f i rs t two examples a PROLOG re la t ion from the
l i t e ra tu re . whose name doesn ' t end in "P " , will be represented_as a F IT
func t ion , we won ' t ma in ta in the "P" -naming convent ion in th is sec t ion .

“80 . .

8 .1 War ren ' s SERIALISE Algorithm

The SERIAL ISE program has been used as a s tanda rd PROLOG examp le
since i t s i n t roduc t ion i n (War ren e t a l . 191?) . we quo te f r om tha t
paper:

“The second examp le displays many o f t he cha rac te r i s t i c s wh i ch make
Prolog an agreeable language f o r comp i l e r w r i t i ng (as app l i ed i n t he
case o f ou r own Prolog comp i l e r) . The t ask i s t o gene ra te a l i s t o f
se r i a l numbers f o r t he i t ems o f a g i ven l i s t , t he members o f wh i ch a re
t o be numbered i n a l phabe t i ca l o rde r eg .

(p . r . o . l . o . g .n i l) —> (4.5.3.2.3.1.nil)

As with many Prolog programs. t he key t o a r r i v i ng a t t he requ i red
a lgo r i t hm i s t o f i r s t conce i ve a p rocedu re wh i ch checks whe the r a
p roposed l i s t o f se r i a l numbers i s a co r rec t solution. Th i s can be done
by pa i r i ng up t he i t ems of t he i npu t l i s t w i t h t he i r p roposed se r i a l
numbers as an "assoc ia t i on l i s t " , a r rang ing t hese pa i r s i n a l phabe t i ca l
o rde r . and t hen f i na l l y check ing whe the r t he se r i a l numbers a re i n t he
co r rec t consecu t i ve o rde r . i . e . -

se r i a l i se (L .R) :—
pa i r l i s t s (L .R .A) .
a r range lA ,T) .
numbered (T .1 .N) .

The pa i r i ng i s done by a p rocedu re ve ry s im i l a r t o t he ngirlis f unc t i on
o f t he L i sp 1 .5 manua l , bu t w i t h t he pa i r s r ep resen ted as t e rms
' pa i r (X ;Y) ' :—

pa i r l i s t s ((X .L) . (Y .R) . (pa i r (X ,Y) .A)) : -
pa i r l i s t s (L .R .A) .

pa i r l i s t s (n i l . n i l , n i 1) .

The a r rangemen t i n a l phabe t i ca l o rde r and check ing o f t he numbers cou ld
be done us ing on l y l i s t s , howeve r i t i s much more conven ien t t o use
b ina ry t r ees . we rep resen t a t r ee as a t e rm o f t he form. 'void' (" t he
vo id t r ee ") o r ' t r ee (T1 ,X ,T2) ' (“ a t r ee w i t h X a t t he roo t and
sub t rees T1 and T2“) .

_ 81 _

ar range ((X .L) . t ree (T1 .X ,T2)) :-
partition(L,X,L1.L2).
arrangetL1.T1).
arrange(L2,TZ).

arran9e(nil.void).

partition((X.L),X.L1.L2) :— partition(L.X,L1.L2).
partition((X.L).Y.(X.L1),LZ) :—

before(X.Y). partition(L.Y,L1,L2).
partition((X.L).Y,L1.(X.L2)) :—

before(Y.X). partition(L.Y.L1.L2).
partitiontnil‚Y.nil‚nil).

before(pair(X1.Y1).pair(X2.Y2)) :— X1 < X2.

numbered(tree(T1.pair(X.N1).T2),N0.N) :-
numbered(T1,N0.N1).
N2 is N1+1 ,
numberedtT2.N2.N).

numbered(void,N.N)."

The above program is quite involved and difficult to understand. in
spite of the English explanations. Principally. this may be due to the

fact tha t SERIAL ISE is an instance o f t hose prob lems for which a

relational solution [”check I/O pairs"] is more difficult than a
functional solution [“generate output from input"]. Another reason for
the program's poor readability is its operation on binary trees instead
of on lists. which the authors feel is “much more convenient". but
which certainly is a retrograde step to a lower—level data structure

[lists are composed of binary trees]. (Incidentally. the PROLOG program
features three kinds of binary trees: The standard ".“ functor for
representing lists as binary trees. an isomorphic, hence redundant,
“pair“ functor for representing dotted pairs in association lists. and

a "tree“ functor for representing binary trees with labeled roots.] The
below FIT version, instead. uses lists internally and impositions
[saving unnecessary parentheses] for I /O .

A negative effect of performing the quicksort—like arrangement on an
intermediate binary tree structure instead of on sequences is the
resulting lack of modularity. It is not possible to regard the sorting
subtask as elementary first and only later refine it by writing a
sorting module in the usual top—down manner or by using a quicksort
from the local program library. To understand PROLOG's se r ia l i se .
reasoning about finding the serial numbers must be interleaved with
reasoning about sorting. In FIT the sorting aspect is completely
separated from other aspects of the program. The proper SERIALISE
kernel thereby essentially reduces to a four-liner.

The transformations performed by the subfunctions of this FIT
SERIALISE program can be illustrated by using the input imposition
P R 0 L 0 G. corresponding to PROLOG's input list (p.r.o.l.o.g.nil):

- 8 2 . . .

P R 0 L 0 G
l

“STAR
I
V

xp *R to *L to *G

I
I
I
|

(*P *R *0 *L *0 *G) |
I I

SORT |
I l
V I

(*G *L *o *P *R) |
I I

VARPOS |
I I
V I

I>*G 1) I>*L 2) (>*o 3) (>*p L) I>*R 5) I
I

4 5 3 2 3 1

As a preparatory first s tep . SERIAL ISE applies STAR to all

express ions of its input imposition for "*"—encoding them into
legitimate variables in a lexical-order preserving manner, before they
are assigned to the argument IMP , by composing > IMP with #STAR.
[Instead of the STAR encoding a simple NCONS encoding could also be
used; inputs, like the above. containing ordinary identifiers only.
would require no_encoding at all.) Second SERIALISE calls SORT for
sorting the encoded imposition) IMP as a list 0 I< IMPI in
lggicographical order and with gg ggplicatqg [the "3" instantiates the
list contents]. Third it calls VARPOS to generate yaLiable-g_§itiOn
bindings from the sorted list elements and their position numbers.
Fourth it uses the LOCAL primitive to evaluate the encoded imposition
IMP in the binding environment created by VARPOS.

I)ISERIALISE)IMPotSTARI
(LOCAL (VARPOS 1 (SORT 3 ((IMP) LEXORDER NODUPSII : IMP I I

VARPOS generates a variable assignment from each list element X and the
number N corresponding to its list position (initially. 1]: hence the
recursive VARPOS call both removes one element X and increments N by 1.
If the list becomes empty, VARPOS returns the empty imposition.

()(VARPOS ?N (?X >Y)) I><X <N) (VARPOS (ADDI <N) a (<Y)))
()(VARPOS ID NIL))

STAR encodes its argument into a "*”-variable by simply CONS—catenating
an asterisk to its argument X, wi th L ISP primitives for transforming an
atom to a list of its characters [EXPLGDE] and vice versa [READLIST] .
(Alternatively. STAR cou ld j us t L IST the asterisk with its argument X.]

- 33 _

(>(STAR ?X) (READLIST (CONS * (EXPLODE <X))))

The sorting i s done he re by the p rede f ined genera l L ISP func t ion
SORT. Shou ld this not be ava i l ab le . i t cou ld a l so be de f ined as a F IT
vers ion . e .g . on the basis of QUICKSORT [th ree - impos i t ion LOCALS a re
read (LOCAL cond i t ion : then -par t : e lse -par t) ; NOTH is F IT 's ana logue
to L ISP 's NOT; the LT—EO—GT workhorse func t ion bu i lds on tha t in
(Friedman & Wise 1978) ; two NEO calls make i t independent from whether
the COMPAREFN is <-1 i ke or g—l ike] :

Ob

(>(SORT ?L ?COMPAREFN ?NOOUPS) (QUICKSORT (L))

()(GUICKSORT ?L)
(LOCAL (NULL (L)

NIL

(APPENO (QUICKSORT
ID
OUICKSORT

(LT-EO-GT (COR (L) (CAR (L))))))

(>(LT—EO-GT ?L ?V)
(LOCAL (NULL (L)

NIL
(LIST <V)
NIL

(LOCAL ((COHPAREFN (CAR (L) (V)
(NEO (CAR- (L) <V)

((TRAFO ?X (CONS (CAR (L) (X))
ID
[D

(LT-EO-GT (COR (L) <V))

(LOCAL (NOTH ((COMPAREFN (CAR (L) <V))
(NEO (CAR (L) (V)

(ID
ID
(TRAFO ?X (CONS (CAR (L) (X))

(LT-EQ-GT (COR (L) <V))

(ID
(TRAFO 7x

(LOCAL (NULL (NODUPS)

(CONS (CAR (L) <x)

<x))
ID

(LT-EO-GT (CDR (L) (V))))))

8 .2 McDermott's QUADRAT Program

The author o f the OUADRAT PROLOG program fo r finding the rea l roo ts
o f a quadrat i c equat ion charac te r i zes i t thus : “ I t does no t show PROLOG
at i t s bes t (o r i t s wors t) . bu t i t does make i t easy to compare w i th
more traditional l anguages" (McDermot t 1980) . Since we fee l tha t th is
program also sugges ts a comparison wi th o ther non- t rad i t iona l l anguages

_ 35 _

and a discussion of various o the r matters, we reproduce it he re in a

slightly co r r ec t ed form:

quadrat(A.8.C,Realroots) :—
discrim(A,B.C.D). quadrat)(A,B.D.Realroots).

discrim(A.B,C.D) :—

mult(8,8.83quared), mu1t(A.C.P1).

mu1t (k ‚P1 ,P2) , add(Bsquared.D,P2).
b7

quadrat11A,8,D.[]) :— D<0 .

quadra t1 (A ‚B ‚D . [R]) :-
D=0. add(8.HinusB,0). mult(2.A,TwoA).
mul t (R ,TwoA ‚M inusB) .

quadrat1(A.B.D,[R1.R2]) :- ‘
D>O‚ add(8,MinusB.D). sqrt(D,Sqrt0).
add(MinusB.SqrtD,Num1).
add(Num2.SqrtD,MinusB). mult(2.A.TwoA).
mu1t(TwoA,R1.Num1). mul t (TwoA.R2 .Num2) .

[L ike HcDermo t t . we omit the cuts t ha t shou ld follow after D<0 and 0:0

and a cut t ha t might r edundan t l y fo l l ow a f t e r D>0 .]

Apparent ly to illustrate relational programming through all levels,
McDermott generously presupposes primitive add and mult relations.
although these are not primitive relatigflg but function-like
one-directional operatgrs in PROLOG.

It appears to be an inherent problem o f relational programming that
such [arithmetic] primitives cannot be easily defined as relations:
Implementation i s unsatisfactory with software and probably even more
difficult with digital hardware [perhaps analogical hardware, like the
circuits suggested by CONSTRAINTS (Sussman & Steele 1980) . is better
suited than normal arithmetic units for realizing multiple relation
use]. For example, (Clocksin & He l l i sh 1981) introduce arithmetic
ogeratigns under the misleading heading of built-in predicates [that a
special "is" primitive must be used for evaluating arithmetic
expressions, other types of expressions being not evaluable at all.
makes things even more inconsistent]. (Colmerauer 1983) even attempts
to enumerate successor relations extensionally. and (Chikayama 1983)
states with regard to the Japanese Fifth-Generation Kernel Language:
"Arithmetical operations in KLO are not bi—directional: Addition and
subtraction should be effected by individual operations". While
micro—PROLOG is a notable exception in that it does have arithmetic
relations, it also illustrates the problem because it restricts their
use to at most one unknown argument by simulating the underlying
extensional relations imperfectly only (Clark et a1. 1982) .

It is also obvious that such relational primitives are less readable
than their functional counterparts. For example. to decipher the
relation call mu1t(R,TwoA.MinusB) in the second quadrat) clause. one
first has to check which variables will be instantiated at the time of
the call. finally finding TwoA and MinusB; only then can one determine
which use should be made of the relation by transforming its original
product form R * TwoA = MinusB into the quotient form
R = Minuse / TwoA.

- 35 -

But now le t us assume the add and mul t relations were prede f ined and
readab le . Then another p rob lem ar ises when look ing a t the nex t higher

level of the square and square roo t opera t ions : Why is square per fo rmed
by mul t (B,B.Bsquared) wh i le square roo t i s performed by sqr t (D ,Sqr tD) ,
i . e . why i sn ' t t he re a s ing le re la t ion fo r both operat ions? Now. you
may no t ice tha t sqr t shou ld a l ready be tha t s ing le re la t ion because in
re la t iona l p rogramming i t shou ld a lso be readab le f rom r igh t to l e f t .
so tha t mu1t (8 ,8 ,asquared) shou ld be rep laceab le by sqr t (Bsquared .B) .
However , the re wou ld be p rob lems w i th such a square~sqr t combina t ion .
Less impor tan t ly . s ince the range o f square i s non—negat ive numbers .
the domain o f i t s square roo t inverse i s res t r i c ted to these .
There fo re . wh i le a re la t ion ca l l w i th nega t ive second a rgument l i ke
sqr t (Ans , -3) would y ie ld Ans=9 a re la t ion ca l l w i th nega t ive f i rs t
argument l i ke sqr t1—9.Ans) wou ld be unde f ined . More impor tan t ly , wh i le
the a lgor i thm fo r square [PROLOG's nonvar p r im i t i ve i s used to ensure
tha t the argument 39 sgua re i s f i xed] i s t r i v ia l .

sqr t (Ans .Tosquare) : - nonvar (Tosquare) , mu l t (Tosquare ,Tosquare ,Ans) .

the one fo r sqr t [the argument gg sguare 1005 must be f i xed] i s no t ,

sqr t (Tosqr t .Ans) : - nonvar (Tosqr t) Newton's method

The po in t i s tha t the re a re qu i te different a lgor i thms fo r the two uses
of the sqr t re la t ion . and incorpora t ing them both in to a single
[nonvar - l ess] re la t ion de f in i t ion wou ld ne i ther be easy nor mean ing fu l .
Th is becomes even more obv ious when no t ic ing tha t in re la t iona l
p rogramming even the supposed pr im i t i ve mu l t shou ld be usab le fo r
tak ing square roo ts . so tha t sqr t lD .Sqr tD) shou ld be rep laceab le by
mu1t (sqr tD .sqr tD ,D) . Th is shou ld work inverse ly to mu1t (B .B ,Bsquared)
by f ind ing a number sqr to whose p roduc t w i th i t se l f i s 0 [th is re la t ion
use i s unusual in tha t one output va r iab le occurs tw ice to d iv ide the
i npu t in to two equa l f ac to rs] . I f we hes i ta ted to incorpora te the
pr imi t i ve product and quot ien t func t ions in to a s ing le mu l t re la t ion .
we may be even more concerned about the square -sqr t combina t ion , no t to
ment ion a mu l t in tegra t ion o f the non—pr imi t i ve square roo t func t ion .
Perhaps McDermot t took two comple te ly d i f f e ren t re la t ions fo r square
and square roo t because o therw ise ' . . . i n PROLOG you have the p rob lem
of how to keep s t ra igh t two separa te ve rs ions o f a re la t ion , fo r
d i f fe ren t cons te l l a t ions o f inpu ts" (McDermott 1980) . In the l as t
subsection we w i l l see th is problem fu r ther aggravated .

McDermott comments on h is quadrat ve rs ion : 'The f i rs t th ing to no te
is tha t c lauses do not con ta in LISPy deep ly -nes ted func t ion ca l l s , but
ins tead a sequence o f re la t ion ca l l s" (McDermott 1980) . Th is i s the
well-known ' f l a tness ' o f PROLOG, normal ly d is l i ked by func t iona l [fo r
example , L ISP] p rogrammers bu t l i ked by impera t ive [fo r example .
PASCAL] programmers.

Now, the ”S" [ESCVAL] opera to r de f ined in sec t ion 3 .1 can be used to
in t roduce some nes t ing in to th is p rogram mak ing i t more conc ise and
more readab le :

quadra t tA .B .C .Rea l roo ts) :—
quadra t i (A .B .d i sc r im(A.B .c .$D) .Rea l roo t s) .

d iscr im(A ‚B .C ,D) : -
add (mul t (B .B ‚$Bsquared) .D .mul t (4 .mu l t (A .C ,$P1) .SP2)) .

_ 87 _

quadra t1 ‘A ,B ,D , []) : “ D<O.

quadra t1 (A .B ,D . [R]) : ;
0 :0 . mul t (R .mul t (2 .A .$TwoA) ,add(B ,$MinusB.0)) .

quadra t1 (A ,B ,D . [R1 .R2]) : -
0>O. add(8 .MinusB.O) . sqr t (D .Sqr tD) . mu l t (2 .A .TwoA) ,
mu1t (TwoA.R1 .add (M inusB .Sqr tD ,$Num1)) ,
mu1 t (TwoA.R2 ,add ($Num2,Sqr tD ‚M inusB)) .

Notice t ha t an express ion with embedded ESCVAL express ions_ can be
easily unders tood in a top—down manner by f i rs t abs t rac t ly v iew ing each
ESCVAL express ion as the ESCVAL var iab le i t w i l l p roduce . When we ' x
o f f ' the func tors and a rguments thus abs t rac ted away , the top—leve l o f
the d i sc r im c l ause body, fo r ins tance , i s abs t rac t ly v iewable as
add (x (x , x .$ßsqua red) ,D ‚ x (x . x ‚ $P2)) . corresponding to the l a s t con junc t
add (Bsqua red ‚D ,P2) i n the o r ig ina l c lause . Wh i le in ce r ta in c lause
bod ies the en t i re con junc t ion i s jo ined to a s ing le re la t ion nes t ing
[c f . the quadra t and d isc r im c lauses] . in o ther ones the conjunct ion
becomes a t l eas t sma l le r by jo in ing some o f i t s con junc ts to re la t ion
nes t ings [c f . the l a s t two quad ra t1 c lauses] .

A co r respond ing ESCVAL—enr i ched F IT ve rs ion o f QUADRAT i s the
fo l low ing :

(>(0UADRAT ?A ?8 ?C ?REALROOTS)
(0UADRAT1 (A (B (DISCRIM (A (B (C $ |?D) <REALROOTS))

() (DISCRIM ?A ?B ?C ?D)
(ADD (MULT (B (B $|?BSQUARED) (D (MULT 4 (MULT (A (C SI?P1) $ I?P2)))

(>(0UADRAT1 ?A ?B ?D ()) (LESSP (D D))

(>(0UADRAT1 ?A ?B ?D (?R))
(LOCAL (EQ (D 0)

(MULT (R (MULT 2 (A $I?TWOA) (ADD (B $I?MINUSB 0))))

(>(QUADRAT1 ?A ?B ?D (?R1 ?R2))
(LOCAL (GREATERP (D 0)

(LOCAL (ADD <a |?MINUSB n)
(soar <0 |?sanr0)
(MULT 2 (A |?Tw0A)

(MULT (TWOA (R1 (ADD (MJNUSB (SQRTD $(?NUM1))
(MULT (TWOA (R2 (ADD $l?NUM2 (SQRTD (M INUSB)))))

The expreSSion (LOCAL (EO <D O) : (MULT . . .)) i n the second QUADRAT1
c lause re f l ec ts the rea l ' i f then ' meaning o f the con junct ion in the
cor respond ing PROLOG c lause . name ly i f D20 then mul t t . . .) . S imi la r l y ,
the ou te r LOCAL of the l as t OUADRAT1 c lause i s bes t v i ewed as an
' i f then ' cond i t ion [con t ro l F low] . I t s i nne r LOCAL i s bes t v iewed as a
genera l i zed LET express ion wh ich in t roduces the va r iab les MINUSB.
SORTD, and TWOA through re la t ion ca l l s [da ta f low] . The par t i a l order
of the da ta and cont ro l f low o f tha t c lause 's con junc ts i s

- 68

D
/

0
\

>

I
I

/ I \
/ I \

I \
I \
D. . . .) mu1 t (2)

/
/

add (8 , . . .) sq r t I
I \ / \ /

X X
/ \ / \

/ X \
| / / \ \

mul t ITwoA.R1 , . . .) mu l t ITwoA,R2 , . . .)

I
I I
I I
l I
I / \ / \ I |
I I
I I
I I

I

This cannot be seen in PROLOG's corresponding c lause . where, fo r
example . D>0 p recedes add(B) . as requ i red by the cont ro l f low ,
add(B) precedes mul t ITwoA,R1 , . . . I , as requ i red by da ta f low . but
add(B) also precedes sqr t (D , . . .) , wh ich i s requ i red ne i ther by
cont ro l nor da ta f low [th is i s wha t (Leavenwor th & Sammet 1974) ca l l
"a rb i t ra ry sequenc ing" whose e l im ina t ion i s p re requ is i te fo r a l anguage
to be non—procedura l] . The nes ted F IT LOCALs o f the l as t 0UADRAT1
c lause . on the o ther hand , d i rec t l y re f l ec t the cont ro l and da ta f low
[the tex tua l o rder ins ide LOCAL is immater ia l apar t f rom the
re la t ionsh ip ' l e f t o f co lon ' l ' r igh t o f co lon '] .

A comple te ly func t iona l ve rs ion o f QUAORAT in F IT can be de f ined
thus :

(>(OUADRAT ?A ?B ?C) (QUADRATI (A (B (DISCRIM (A (B (C))!

(>(DISCRIM ?A ?B ?C)
(DIFFERENCE (SQUARE (8) (TIMES 4 (A <C)))

()(QUADRAT1 ?A ?B O)
(QUOTIENT (MINUS (B) (TIMES 2 (A))?

(>(QUADRAT1 ?A ?B X?POSINT)
(LOCAL (>SQRTD (SORT (POSINTI I

v (0UOTIENT (PLUS (MINUS (B) ((BREADTH PLUS MINUS) (SORTDII
(TIMES 2 <A))))

(>(POSINT ?N) (GREATERP (N D))

Th is i s the f i rs t ve rs ion wh ich d i rec t l y re f l ec ts the p rob lem
spec i f i ca t ion because i t f f inds the rea l roo ts o f a quadra t ic"
(McDermott 1980) and does not appear to so lve fu r ther problems l i ke
f ind ing the in f in i te ly many quadra t ics w i th g iven rea l roo ts . Perhaps
i t i s a lso the f i r s t version which i s readab le w i thout much ponder ing.

Ins tead o f y ie ld ing the empty l i s t i f the re i s no rea l so lu t ion ; a
one-e lement l i s t i f the re i s one so lu t ion . and a two—element l i s t i f
the re a re two , the p rogram exp lo i ts the non—dete rmin ism o f F IT and

_ 89 _

yields jU, a single value, and a BREADTH of two va lues in these
respective cases. Indeed we regard quadratics as a nice example for the

explicit specification o f non-determinism: The caller of a quadratics

program should receive a failure i f there is no solution for the given

arguments. so that, e.g., other arguments may be tried automatically:

the caller should receive just a single value i f there is exactly one

solution, so it can proceed deterministically, not even noticing the
principal possibilities of failure and ambiguity; and the caller should
receive a BREADTH of two equal-right values if there are two solutions.
Note that the explicit non~deterministic branch (BREADTH PLUS MINUS) in
the last OUADRAT1 clause corresponds exactly to the use o f i in

mathematics. This is not possible with PROLOG's implicit depth-oriented
non-determinism. Our use of non—deterministic instead of listified root
results also has another advantage: It allows us to get rid of the
first quadrat1 clause because for D<0, no other clause being
applicable, jU is yielded automatically. The empty list could not be
yielded in such an automatic manner. Although it would not have been
necessary during the relational-functional translation, we replaced the
condition 0:0 by a constant 0 and replaced the condition D>0 by a typed
variable x?POSINT in the invocation pattern. The typed variable is
built from the generally useful predicate POSINT for ngsitive integers.

The last OUADRAT1 clause may be further shortened to finally obtain
the usual mathematical form of the quadratic algorithm:

(>(OUADRAT1 ?A ?B x?POSINT)
(OUOTIENT (PLUS (MINUS (B) ((BREADTH PLUS MINUS) (SORT (POSINT)))

(TIMES 2 <A)))

However. the earlier clause precomputing the SORT of POSINT in a
LOCAL is preferable for efficiency reasons because under FIT-1's
evaluation strategy ((BREADTH PLUS MINUS) (SORT <POSINT)) would
immediately normalize to (BREADTH (PLUS (SORT (POSINT)) (MINUS (SORT
<POSINT))) . so that (SORT (POSINT) would be evaluated twice.

8.3 Fermat's Last Theorem

The FERMAT example shows that for some relations there is no known
algorithm which uses them in one way, whereas there is an algorithm
which uses them in another way. Let us begin with a trivial example
often used to illustrate relational programming (Kowalski 1979) and
constraint systems (Sussman and Steele 1980) . namely the equation

X + Y = 2

which in PROLOG is written as a relation

plus(X,Y,Z).

Since this equation can be regarded as X'1 + Y°1 = Z '1 . Fermat's
equation might seem to be just a little bit more general. It is

X‘N + Y.N = Z_N

and is considered as a relation

fermat(X.Y.Z.N).

To simplify the following discussion we presuppose that X. Y. 2, as

wel l as N, are non-negative integers [not all PROLOGs have negative

integers]. The relation call fermat(4.3,5.2), for instance. should

succeed because £°2 + 3°2 = 5 '2 . Bu t wha t about calls with request
variables like fermat(4,3,5.N) and fermat(X,Y.Z.2)? Although bo th may

look harmless, in general we can only define the fo rmer use of the

fermat relation [X. Y. and 2 are f i xed —— N is open] . no t the latter
use [X. Y. and Z are open -- N is fixed]. In other words, if we split
the fermat relation into two functions ferm and ferm—I [he re . X, Y, 2,
and N denote the set of non-negative integers: the empty set. {}.
denotes explicit failure]

ferm: X x Y x Z -> N U { {} }
ferm-I: N -> powerset(x x Y x 2)

these can be called with specific arguments as in ferm($.3.5) = 2 and
ferm—I(2) = {(4,3,5). . . . } [for the argument N=2 ferm—I is infinitely
non-deterministic; cf. section 3.1]. In general. however, we know only
that ferm is computable, but don't know whether f a rm—I is. The former
is demonstrated below; the latter is the case because there still is no
known proof or disproof of "Fermat's last theorem“. stating that for an
integer N>2 the equation

X‘N + Y‘N = Z N

has no solution in integers all different from 0 (R ibenbo im 1979) . 1.9.
no 'non-null solution'. So the relational representation of the Fermat
equation will lead to a severe problem [a not generally usable relation
fermat must be introduced]. not arising in its functional
representation [a generally usable function ferm can be introduced
without at the same time introducing a not generally usable function
ferm~I].

To find N or to yield a failure i f none exists for arbitrary given
X. Y, and Z a relational PROLOG p rog ram can be defined.

For this we first construct the underlying algorithm which relies on
the following observations. Since for X22 or YZZ t he re clearly can be
no non-null solution, we can presuppose X<Z and Y<Z . Now we can show
two facts.

1. If a Z exponentiation once became greater than the sum of the X and
Y exponentiations. it will remain greater for all higher exponents.
i.e.

if Z'N) X'N + Y'N t hen Z°N+1 > X'N+1 + Y'N+1 for all N

This can be seen very easily. Assuming Z'N > X'N + Y‘N and multiplying
it with Z we get

z‘N+1 = 2*z ‘N > z*[x“N + Y'N] t ' N + Z*Y 'N

S ince Z>X we get

Z*X 'N + Z*Y ‘N > X*X'N + Z*Y 'N

_ 9f _

Similarly. since Z>Y we get

X*X ‘N + Z *Y 'N > X*X-N + Y*Y'N = X'N41 + Y'N+1

2. Z'N grows faster with N than X'N + Y'N does. i.e.

t he re exists an integer N' such that Z'N) X'N + Y'N for all N)N' .

This can be shown by the following elementary transformations. We can
assume without loss o f generality that XzX. Z'N can be rewritten as

[X + DJ‘N with 021 because Z>X. The binomial theorem gives us
[the binomial coefficients are defined by binco(N.K) :=
N* [N- l] * [N—2] * . ‚ . * [N4K+1] / 1*2 *3 . . . *K]

[x + DJ‘N = X'N + binco(N,1)*X'[N—1]*D + binco(N,2)*x'[N-2]*o’2 + ...
+ binco(N ‚N-1) *X*D ' [N—1] + D‘N

If we omit the terms of the sum from binco(N.2)*X'[N-2]*0‘2 we get

Z'N = [x + DJ‘N > x‘N + binco(N.1)*X'[N—1J*D = x'N + N*x'[N—1]*D

Since 021 we get

x“N + N*X‘[N-1]*D ; x‘N + N*X°N-1

If we set N'=X then for all N>N'

Z'N > X'N + N*X ‘N-1 > X'N + X*X 'N - l = X'N + X'N

Since s

x‘N + x‘N g x‘N + Y'N .

Using these facts we get the following concise but inefficient
algorithm in ALGOL—like notation.

if xzz or vzz then fail :
N := 1 ;
while X'N + Y'N > Z'N do N := N+1 ;
if X'N + Y“N = Z'N then N else fail

Fact 2 ensures termination of the while loop.
Fact 1 p e r m i t s the fail in the else case, i.e. if x'N + Y‘N < z 'N.

Now, the algorithm can be rewritten into a more efficient PROLOG
program. which accumulates exponentiations instead of recomputing them.

fermattX.Y,Z.N) :—
nonvar(X). nonvar(Y), nonvar(Z). X<Z , Y<Z ,
XY is X+Y ‚ fermat2(X.Y,Z.X,Y,XY.Z,1,N).

fermatZtX.Y.Z.XX,YY,XXYY.ZZ,M,N) :—
XXYY=ZZ. N is H.

fermatZ(X.Y.Z.XX,YY,XXYY.ZZ,M.N) :-
XXYY<ZZ. fail. '

_ 92 „

fermat2(x,Y.Z,XX,YY,XXYY,ZZ.M.N) :—
XXYY)ZZ. XXX is XX*X‚ YYY is YY*Y. XXXYYY is XXX+YYY‚ ZZZ is ZZ*Z,
H1 is M61, fermat2(X,Y.Z.XXX,YYY,XXXYYY,ZZZ,M1.N).

If none of X. Y. and Z is an [open] variable and both X and Y are less
than 2 the fermat program calls the auxiliary tail-recursive relation
fermatZ. The arguments of the fermatz program are the original
variables X. Y, and Z. variables XX and YY for accumulating X and Y
exponentiations. a variable XXYY for storing the sum of XX and YY. a
variable ZZ for accumulating the Z exponentiations. a variable M for
holding the current exponent . and the original variable N for handing
the found exponent back to fermat. The initial fermatz call essentially
uses XXYY=XY=X+Y and M=1. The use of its nine arguments reduces the
task of fermatz to a simple case analysis on the relationship between
XXYY and 22.

If XXYY=ZZ then t he cu r ren t va lue of M is the exponent sought for
[obvious] and is assigned to N.

if XXYY<ZZ then this r e l a t i onsh ip wou ld a l so ho ld for all subsequent
recursions with higher exponents [fact 1] and a failure can be
generated.

If XXYY>ZZ then XXYY w i l l become equal t o or less than ZZ for some
higher exponent [fact 2] and fermatz is called recursively. This call.
apart from the original X, Y. and 2 variables, could use the variables
XX:=XX*X. YY:=YY*Y, XXYY:=XX+YY‚ ZZ:=ZZ*Z. and M:=M+1‚ if PROLOG's
singlenassignment property wouldn't enforce the use of new intermediate
variables XXX. YYY, XXXYYY. ZZZ. and M1. respectively.

To find X. Y. and 2 or to- y ie l d a failure if none exist 'For
arbitrary given N no PROLOG program is known. however.

fermat(X.Y,Z.N) :- nonvar(N). ... unknown method

A functional FIT program that finds N or yields jF if none exists
for given X, Y, and-Z can be defined thus:

(>(FERM ?X ?Y ?Z)
(LOCAL (LESSP (X (Z)

(LESSP (Y (Z)

(FERH2 (X (Y (2 (X (Y (PLUS (X (Y) (Z 1)))

(vlFERH2 ?x 7v ?2 ?xx ?YY ?xxvv ?22 ?N)
(LOCAL „(so <xxvv <22) : (N)) '

(V(FERH2 ?X ?Y ?Z ?XX ?YY ?XXYY ?22 ?N)
(LOCAL u(LESSP (XXYY (ZZ) : j F))

(V(FERH2 ?X ?Y ?Z ?XX ?YY ?XXYY ?22 ?N)
(LOCAL u(GREATERP (XXYY (ZZ)

(LOCAL (>XXX (TIMES (XX (X))
(>YYY (TIMES (YY (V))

(FERM2 <x (Y <2 (xxx (YYY (PLUS (XXX-(YYY)
(TIMES <zz <2) (A001 <N)))))

This works like the co r respond ing PROLOG fermat program, except for the

following differences. The FIT FERH p rog ram directly nests (PLUS (X (Y)
into its FERMZ call instead of first introducing an intermediate

variable XY to transport X+Y into the call as done in PROLOG. Also.

FERM needs no M variable because N. not being used for holding a

request variable, can itself be used for exponentiation accumulation.

Then, in the case XXYY=ZZ FERMZ returns N instead of assigning M to N.

For XXYY<ZZ it yields jF to signal that no N exists [here FIT's jF is
clearer than PROLOG's fail. which could also mean. like jU, that it is

unknown whether an N exists]. If XXYY>ZZ only two additional variables
XXX and YYY are used instead of five in the PROLOG version [in FIT even
these are only for efficiency, avoiding two additional multiplications.

whereas in PROLOG three further variables are necessary because

nestings like fermat2(X,Y.Z.XXX.YYY,XXX+YYY,ZZ*Z.M+).N) are not

allowed].

The above case analysis by EQ. LESSP. and GREATERP calls in LOCAL
bodies corresponds to clauses with constraints on the FERMZ invocation

pattern [cf. section 6.3]. In FIT. such constraints can also be put

directly into an invocation adapter. here constructed by putting the

functions EQ. LESSP. and GREATERP into the invocation pattern. In this

way. the FERMZ definitions can be shortened to

(V(FERM2 ?X ?Y ?Z ?XX ?YY EQ ?N) (N)

(V(FERM2 ?X ?Y ?Z ?XX ?YY LESSP ?N) jF)

(V(FERM2 ?X ?Y 72 ?XX ?YY (COMPOSE GREATERP ?XXYY ?ZZ) ?N)
(LOCAL (>XXX (TIMES (XX <X))

(>YYY (TIMES <YY <Y))

(FERM2 (X (Y (2 (XXX (YYY (PLUS (XXX (YYY)
(TIMES (22 (Z) (ADO1 <N))))

The GREATERP function is composed with the original variables XXYY and

ZZ because the value of 22 is needed in the body.

A functional FIT program that finds X. Y. and Z for given N would be
something completely separate from the above FERM function [namely the
non—deterministic inverse function FERM- I] . That FERN—I cannot be
defined doesn't restrict the applicability of the FERM function,
whereas the non—definability of the corresponding relation use does
restrict the applicability of the fermat relation.

It has often been pointed out in the PROLOG literature that the cut
operator (Clocksin & Mellish 1981) and the execution order (Kowalski
1983) obstruct the multiple useability of relations; what seems to be
less well known is the fact that even without any cut and with any
conceivable execution strategy some relations cannot be used in a
multiple manner. In the latter case the problem resides in the
relational formulation [in the 'logic'] itself, not in a particular
deduction procedure [in a 'control'] working on it. Let us further
reformulate our point in Kowalski's terminology: Not only in PROLOG but
even in logic programming [which is more pure becadse it is cut-less
and non-sequential], there are programs for which invertibility. as
defined by "This characteristic of logic programs. that it is possible
to find any individual in a relationship with other individuals, is
called iflyertibility." (Kowalski ! 983) . cannot be achieved.

-91.-

The original sou rce of the fermat p rob lem can be t r aced back to the

fact tha t in PROLOG Fermat's equation. like every top—level assertion.

can only be f o rmu la ted as a relation, fermat, not as a function, ferm;
an illegitimate ferm-I use of this relation could only be prevented by
superimposed "mode declarations" (Warren et al. 1977) [normally used
for enhancing compiler efficiency]. which are extraneous to the

relational formalism. The fermat example is thus a signal cautioning

against indiscriminate relational programming. This specializes the

‚ o r i g i n a l interpretation of Fermat's last theorem for specification

languages. namely that "there will never be a "solution” to the

automatic programming problem" (Feldman 1972), also adopted in
(Leavenworth a Sammet 1974).

3 REFERENCES

Aida. H. & Tanaka. H. & Hoto-oka. T.: A Prolog extension for handling
negative knowledge. New Generation Computing 1(1). 1983. 87-91.

Backus. J.: Function—level computing. IEEE spectrum, August 1982,
22-27.

Bellia. H. & Degano. P. & Levi. G.: The call by name semantics of a
clause language with functions. In: (Clark & Taernlund 1982),
'291-295.

Bendl. J. & Koeves, P. & Szeredi. P.: The MPROLOG system. In:
Taernlund. S.-A. [Ed.]: Proceedings o f the Logic Programming
Workshop. Debrecen, Hungary, 1980. 201—210.

Bibel. H.: Knowledge representation from a deductive point of view.

Technische Universitaet Muenchen, Institut fuer Informatik. Projekt
Beweisverfahren. Bericht ATP—19-V-83. May 1983. Also in: Proc. IFAC
Symposium on Artificial Intelligence, Leningrad. Oct. 1983, Pergamon
Press. to appear.

Boley. H.: Processing directed recursive labelnode hypergraphs with FIT
programs. Univ. Hamburg. F8 Informatik. IFI-HH—H—a1/80. Sept. 1980.

Boley, H.: Artificial intelligence languages and machines. Univ.
Hamburg. F8 Informatik, IFI—HH—B—9b/82. Dec. 1982. Final version in:

Technology and Science of Informatics 2(3). May—June 1983.

Holey. H.: From pattern—directed to adapter—driven computation via
function-applying matching. Univ. Kaiserslautern, FB Informatik.
lnterner Bericht 81/83. MEMO SEKI-BB-OG. Also in: GI - 13.
Jahrestagung. Hamburg. Oct. 1983, Springer 1983.

Bowen. K.: Programing with full first-order logic. Machine Intelligence
10. 1982. 421-640.

Chikayama. T.: ESP - extended self—contained PROLOG — as a preliminary
kernel language of fifth generation computers. New Generation
Computing 1(1). 1983, 11—24.

- 9 5 -

Clark. K. & Ennals. J. & McCabe, F.: A micro-PROLOG pr imer . Logic

Programming Associates Ltd., 36 Gorst Rd., London SN11 BJE. England,
April 1982.

Clark, K. & Gregory, S.: A relational language for parallel

programming. Proc . of the Conference on Functional Programming

Languages and Computer Architecture, ACM. Octobe r 1981 , 171—178.

Clark. K. & 73ernlund, S.-A. [Eds.]: Logic programming. Academic Press.
London, 1982 .

Clocksin. w. & Mellish, C.: Programming in Prolog. Springer-Verlag.
Berlin Heidelberg New York, 1981.

Colmerauer, A: Prolog in 10 figures. Proc. 8th IJCAI—83, Karlsruhe.

Aug. 1983, 487—499.

Conery. J. & Kibler. D.: Parallel interpretation of logic programs.

Proc. of the Conference on Functional Programming Languages and
Computer Architecture, ACM, October 1981 , 183—170.

Dijkstra, E.: Guarded commands. nondeterminacy and formal derivation of

programs. CACM 1818). Aug. 1975. 453—457.

Eggert, P. & Schorre, D.: Logic enhancement: a method for extending

logic programming languages. Conference Record of the 1982 ACM
Symposium on L ISP and Functional Programming. Pittsburgh. Penn..

August 1982, 74-88.

Feigenbaum. E. & McCorduck. P.: The fifth generation: Artificial
intelligence and Japan's computer challenge to the world.

Addison—Wesley. Reading, 1983.

Feldman. J.: Automatic programming. Stanford University, Computer

Science Department, CS—255, Feb. 1972 .

Feldman, J. & Low, J. & Swinehart, D., Taylor, R.: Recent developments

in SAIL — An ALGOL-based language for artificial intelligence. Proc.
AFIPS 1972 FJCC 41 . 1972. 1193-1202.

Friedman. D. & Wise, D.: Functional combination. Computer languages,
Vol. 3, 31—35. 1978 .

Fuchi, K.: Aiming for knowledge information processing systems. In:
Moto-oka, T. [Ed.]: Proceedings of the international conference on
fifth generation computer systems. Tokyo. October 1981 . North-Holland
1982. 181-114.

Fuhlrott, 0.: PROLOG als Datenbank- und Programmiersprache. Univ.
Hamburg, F8 Inform., Oberseminar Datenbanken und Informationssysteme.
Nov. 1982.

Fuhlrott, 0.: personal communication. Hamburg. December 1983 .

Fuhlrott, 0.: A personal bibliography on logic programming. PROLOG.
databases. 0.Fuhlrott, Bekassinenau 92. D—2008 Hamburg 73. W.Germany,
1984.

Hansson. A. & Haridi, S. & Taernlund. S.—A. : Prope r t i e s o f a logic

programming l anguage . In: (Clark & Taernlund 1982) , 267—280.

Henderson. P.: Func t i ona l programming. Application and implementation.

Prentice-Hall International. London 1980 .

Hewitt. C. & de Jong, P.: Analyzing the roles of descriptions and

actions in open systems. Proc. AAAI»83‚ Washington, Aug . 1983,
162-167.

Hilbert. D. & Bernays, P.: Grund lagen der Mathematik II.
Springer—Verlag, Berlin Heidelberg 1939 , Zweite Auflage 1970.

Hussmann. M.: personal communication. Hamburg, November 1983 .

Jaffar. J. & Lassez, J .—L . & Lloyd, J.: Completeness o f the negation as
failure rule. Proc. 8th I JCA I—83 , Karlsruhe, Aug . 1983 , 500—506.

Kahn, K.: Unique features o f Lisp Machine Prolog. Uppsala Programming
Hethodology and Artificial Intelligence Laboratory, UPMAIL Technical
Report No. 15, 1983 -02—14 .

Kornfeld. w.: Equality for Prolog. Proc. 8th IJCAI»83. Karlsruhe, Aug .
1983 , 514-519.

Kowalski, R.: Logic for problem solving. North—Holland. 1979.

Kowalski, R.: Logic programming. Proc. IFIP 83, Paris, 1983 , 133—145.

Kurokawa, T.: LOGIC PROGRAMMING -- What does it bring to the software
engineering? In: VanCaneghem, M. [Ed .] : Proceedings o f the First
International Logic Programming Conference. Marseille, Sept. 1982,
134-138.

Landin, P.: A correspondence between ALGOLEO and Curch's
lambda-notation: Part I. CACM Vol. 8, No. 2, Febr. 1965, 89—101 .

Leavenworth. B. [Ed.]: ACM SIGPLAN symposium on very high level
languages. March 1974 , Santa Monica, Ca., SIGPLAN Notices 9(4).

Leavenworth. B. & Sammet, J.: An overview of nonprocedural languages.
In: (Leavenworth 1974).

McDermott, D. : The PROLOG phenomenon. SIGART Newsletter, No. 72, July
1980, 16-20.

McDermott. J. & Forgy, C. : Production system conflict resolution
strategies. In: (Waterman a Hayes—Roth 1978) .

Nakashima, H. & Suzuki, N.: Data abstraction in Prolog/KR. New
Generation Computing 1 (1) . 1983 , 49—62.

Nebel, B.: personal communication. Hamburg, September 1983 .

Newell, A.: Production systems: Models of control structures. In:
Chase, w. [Ed.]: Visual information processing. Academic Press. 1973,
(63-526.

_ 97 -

O'Kee fe , R . : PROLOG compared with LISP? SIGPLAN Notices 18 (5) . May
1983, 66 -56 .

Ribenbo im, P . : 13 l e c tu re s on Fermat 's l as t theorem. Springer—Verlag.

New York Heidelberg Ber l in . 1979 .

Rob inson . J . & S iber t . E . : The LOGLISP user 's manual. School o f
Computer and In fo rmat ion Sc ience . Syracuse Un ivers i ty . December 1981 .

Rob inson . J . & Sibert. E. : LOGLISP: an a l te rna t ive to PROLOG. Mach ine
In te l l igence 10 . 1982 . 399 -419 .

Ru l i f son , J . & Derksen. J . & Wa ld inger . R . : 0A4 : A p rocedura l ca lcu lus
for in tu i t i ve reason ing . S tan ford Research Ins t i tu te . A I Cente r .
Technical Note 73 , Nov 1972.

Sata . M . & Sakura i . T . : Qute : A Pro log /L isp type l anguage fo r log ic
programming . P roc . 8 th I JCAI—83 , Kar ls ruhe . Aug. 1983 . 507—513.

Shap i ro , E . : Me thodo logy o f log ic p rogramming research . Log ic
Programming Workshop , Por tuga l . 1983 .

Shap i ro . E . & Takeuch i . A . : Ob jec t o r ien ted p rogramming in Concur ren t
Pro log . New Generation Computing 111) . 1983, 25 -68 . '

Siekmann, J . & Szabo. P . : Un iversa l un i f i ca t ion . In :
Nah ls te r , w. [Ed .] : GWAI-OZ, Bad Honnef. Sept . 1982.
I n fo rmat ik -Fachber ich te 58 . Spr inger -Ver lag . 102 -141 .

S te f i k , M . & Bobrow. D . & Mittal. S. & Conway. L . : Knowledge
programming in LOOPS: Repor t on an exper imenta l course . The A I
Magazine 413) , Fa l l 1983 , 3—13.

Sussman. G . & Steele. G. : CONSTRAINTS — A language fo r express ing
a lmost -h ie ra rch ica l descr ip t ions . Ar t i f i c ia l In te l l igence 14 . 1980.
1 -39 .

VanEmden. M . : McDermott on Pro log : A re jo inder . SIGART News le t te r 73 .
October 1980 . 19 -20 .

Warren. D . : Higher—order extensions to PROLOG: a re they needed? Machine
In te l l igence 18 . 1982. 441 -454 .

Warren . D . & Pereira. l . & Pereira. F . : PROLOG — The language and i t s
implementat ion compared w i th L ISP. Proc . Symposium on Ar t i f i c ia l
I n te l l igence and Programming Languages . SIGPLAN Not ices 12 (8) .
Spec ia l I ssue , August 1977 , 109 -115 .

Wate rman . D . & Hayes-Roth, F . [Eds .] : Pa t te rn—di rec ted in fe rence
sys tems . Academic Press . 1978 . ‘

Weinreb . D . & Moon, D . & Stallman. R. : L ISP mach ine manua l . F i f th
ed i t ion . M IT , A I Lab . . Jan . 1983 .

Winston. P . & Horn. B . : L ISP . Addison-Wesley, Reading. 1981.

