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FIT - PROLOG: A FUNCTIONAL/RELATIONAL LANGUAGE COMPARISON

Harold Boley, Universitaet Kaisers lautern
Fachbere ich  Informatik, Postfach 3059 ,  0—8750 Kaisers lautern

Abst rac t

The programming languages FIT and PROLOG are compared  as examples  of
functional and relational programming. respectively. This leads to some

proposals concerning both languages. —
As an introductory tutorial. PROLOG facts. questions. variables.

conjunctions, and rules are reformulated in F IT .
A natural equivalence between functions and relations is exploited

for their interchangeable FIT use. An ESCVAL operator is proposed which
causes relation calls to return values of request variables and thus
permits their function—like nesting. Function calls with request
variables are introduced. showing a sense in which FIT functions are
more general than PROLOG relations. Higher-order functions and

relations are demonstrated to be available i n  FIT but not in PROLOG.

PROLOG structures and FIT compounds differ mainly in the fixed arity
of the former and the variable length o f  the latter. FIT's compounds

can also be interpreted as function calls that return themselves in

normalized form.
Pattern matching in PROLOG [ F IT ]  treats list heads and tails

asymmetrically [symmetrically] and doesn't [does] allow for
non-deterministic results. While PROLOG generalizes pattern-data
matching to pattern—pattern unification. FIT generalizes it to

adapter—data fitting.
PROLOG's Horn clauses in FIT become implicit fitters: Facts become

special implicit adapters and rules become special implicit
transformers; for PROLOG II constraints. transformers with LOCAL bodies

or invocation adapters with COM[POSE-TRA]F0 expressions can be used.
While PROLOG interprets clauses in textual order. FIT interprets them
in a specificity order which is modifiable by a SECURE operator.
Although PROLOG's cut operator is not used in F IT ,  a proposal is made
to distinguish the specification of clause ordering [by FIT's SECURE
operator] and the specification of clause abandoning [by an EXCLUSIVE
operator corresponding to 'initial'—restricted cuts]. EXCLUSIVE-marked
COMFO-constrained rules are then used for functional and relational
representations of guarded commands.

A comparison of the list processing capabilities of both languages
exemplifies how FIT's adapters can make relational programming more
concise than PROLOG‘s Horn clauses. The representation of sets as lists
without duplicates leads to difficulties with PROLOG's standard
intersection and union predicates, which can be overcome by
representing them as the self-normalizing CLASS data structure in FIT.

Possible reasons for the poor readability of Warren's PROLOG
serialise predicate are discussed and an alternative F IT  function is
formulated which shows the inherent simplicity of this problem.
McDermott's PROLOG quadrat predicate is transformed into a more concise
and readable ESCVAL form. which in turn is transformed into a
corresponding F IT  ESCVAL form and into a functional FIT form. Fermat's
equation is formulated relationally. showing that for principal reasons
some relations can not be used in all ways allowed by PROLOG's
notation, a problem that does not arise in a corresponding functional
FIT formulation.
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l ‚INTRODUCTION

This paper  a t tempts  to  compare  in  de ta i l  the  p rogramming  languages
F IT  and  PROLOG. I t  d iscusses  some o f  the i r  common and  d is t ingu ish ing
f ea tu res  and may thus shed some new l igh t  on both  languages.  Hence i t
addresses  readers  who a re  in te res ted  in  a t  l eas t  one  o f  these
languages .  The  paper  can  be  read  as  a cons t ruc t ive  c r i t ique  o f
PROLOG-style p red ica te  log ic  o r  re la t iona l  programming from the
s tandpo in t  o f  F IT -s ty le  app l i ca t i ve  o r  func t iona l  p rogramming .  I t  a lso
shows tha t  F IT  can  be  v iewed  as  an  in tegra t ion  o f  some o f  PRDLOG's
re la t iona l  f ea tu res  w i th  a func t iona l  L ISP  ph i losophy ,  a t  the  same t ime
avo id ing  the  c r i t i c i zed  PROLOG fea tures .



More precisely. FIT consists of a kernel. pure F IT ,  and an

interactive user—interface, impure F IT ;  FIT's present implementation is

F IT—1.  Pure FIT is regarded in principle as a functional language

because it is based on purely functional features (Henderson 1980 ) .
augmented mainly by

1. Consistent-assignment variables. needed for patterns, which preserve

functionality much like the well-known single-assignment variables.

2. Implicit adapters, permitting the direct representation of PROLOG
facts and their retrieval using request variables.

Furthermore, since pure F IT -1  is implemented in a purely functional

L ISP  subset, this paper can also be viewed as a preparatory step for a

semantic comparison of PROLOG with unaugmented functional languages,

like pure L ISP .  completing the implementation—oriented comparisons from

(Warren et al. 1977) to (O'Keefe 1983 ) .  Finally. since PROLOG borrowed
a lot from PLANNER-like languages. this, in turn. would entail an

indirect functional formalization of a subset of PLANNER-like

languages, complementing the logical/relational formalization of this

subset in PROLOG. Actually. FIT—1 itself can be regarded as a direct

functional reorganization of PLANNER, much like “Prolog may be regarded
as a logically reorganized Planner" (Fuchi 1982 ) .

The function augmentation of implicit adapters. besides allowing the

representation of data base facts, also provides a succinct FIT

notation for relation definitions [cf. section 7]. So, when we

criticize relational programming. this applies to PROLOG as well as to
a relational use of F IT .  However. we feel the important thing is that
both functional and relational features are available as possibilities
in F IT .  We dispute the contention that relational programming is
'simply a generalization' of functional programming and our critique
centers on the omission o f  features like higher-order functions in
PROLOG [cf. section 3 .3 ] .

For PROLOG critiques from other standpoints see (McDermott 1980 )
[PLANNER-like languages]. (Robinson & Sibert 1982) [denotational
semantics], (Kurokawa 1982) [software engineering]. (Bibel 1983)
[unrestricted first-order logic]. (Feigenbaum & McCorduck 1983)
[ know ledge  engineering]. and (Shapiro 1983) [multi—processing].
Self-contained treatments o f  PROLOG and FIT can be found in the
references of this paper. More references can be obtained from
(Fuhlrott 198k) [nearly exhaustive PROLOG bibliography] and the author
[complete FIT bibliography]. A global perspective of PROLOG's role in
artificial intelligence. in particular in relation to that of L ISP .  can
be found in (Boley 1982 /83 ) .  which also contains references for all AI
languages mentioned in this paper.

In spite of whatever complaints we may have to make about PROLOG in
these pages, w e  d o  appreciate the excellent work done under the 'logic
programming' heading [in particular, Kowalski's pioneering logic
studies and the efficiency of Warren's von Neumann PROLOG compiler] and
the impact it has had on the Japanese Fifth—Generation Computer Systems
endeavour. both of which have strongly increased interest in artificial
intelligence in general and in AI languages and machines in particular
[as measured by the success of the book (Feigenbaum & HcCorduck 1983 ) ] .
In our opinion it is still an open question, however. whether PROLOG's
traditional orientation toward efficient implementation on available



sequent ia l  computers  p rov ides  an  ideal base  language fo r  p ro jec ts  in
fu tu re  non-or thodox  para l l e l  computer  a rch i tec tu res .  Wh i le  the  in i t i a l
i ne f f i c iency  o f  McCarthy's  LISP implementat ion o f  LISP subsequently
suggested new machine a rch i tec tu res .  the  in i t i a l  e f f i c iency  o f
Colmerauer 's FORTRAN implementat ion o f  PROLOG subsequently may make i t
poss ib le  to  l i ve  w i th  ex is t ing  ones. I t  i s  perhaps p rec ise ly  PROLOG's
ear ly  e f f i c iency  tha t  shows i t s  a f f in i ty  to  von Neumann computers.
ind ica t ing  tha t  i t  cannot be the  r igh t  non—von Neumann l anguage .

St r iv ing  fo r  p rec ise  te rmino logy .  we p re fe r  the  te rm ' re la t iona l
p rogramming '  ins tead  o f  the  o f ten -used  te rm '1og ic  p rogramming '  to
charac te r i ze  PROLOG's programming methodology. In  our f i e ld  there  i s
some tempta t ion  to  adopt  ' f ash ionab le  te rms '  uncr i t i ca l l y  and  norma l ly
one  wou ldn ' t  even  no t ice  a redundancy  l i ke  "Programming  in  PROgramming
i n  LOGic" i n  a book  title. But  now.  even  the  p r inc ipa l  founder  o f  log ic
programming has admit ted  tha t  the  present  d iscuss ion  i s  marked by the
confus ion  o f  1991; programming  w i th  PROLOG. log ic  nxggggmming with
programming  languages .  and  log ic  p rogramming  w i th  Horn  c lause
programming  (Kowalski 1983 ) .  Below. we summar i ze  the  ra t iona le  fo r  our
t e rmino log ica l  dec is ion .

F i rs t .  we th ink  tha t  the  te rm '1og ic  programming' i s  l ess  su i tab le
because PROLOG's computat iona l  mechanisms on ly  over lap  w i th  the
deduct ive  mechanisms o f  f i r s t -o rder  p red ica te  ca lcu lus :

1 .  PROLOG uses "ex t ra—log ica l  f ea tu res"  (VanEmden 1980) such as
the  cu t  opera to r  and  many o ther  bu i l t—in  p red ica tes  go ing  fa r
beyond  f i rs t -o rder  log ic  (McDermot t  1980 ) :  ”But  perhaps  PROLOG
wi l l  t ake  the  wor ld  by  s to rm and  perhaps  log ic  p rogramming
wi l l  be fo rgo t ten  . . . "  (VanEmden 1980 ) .

2 .  There  a re  f i rs t -o rder  fo rmulas .  such  as  those  invo lv ing
d is junc t ion  (Bowen 1982) and nega t ion  (A ida  e t  a l .  1983 ) .
which  a re  no t  p rovab le  w i th  PROLOG's Horn  c lause  p rogramming
but  on ly  w i th  " fu l l  f i r s t -o rder  log ic  programming" (Bowen
1982 ) .

Second. we th ink  tha t  the  term ' re la t iona l  programming' i s  more
appropr ia te  ma in ly  because  o f  two reasons :

1 .  The  charac te r is t i c  p rogramming  language  fea tu re  o f  PROLOG is
the  t rans format ion  o f  re la t ions .  even fo r  computing
de te rmin is t i c  func t ions  [ fo r  which ear l i e r  PLANNER-like
languages resor ted  to  L ISP] .

2 .  PROLOG can be regarded as an enrichment o f  re la t iona l  da ta
base  sys tems  by  deduc t ive  re la t ion  re t r i eva l .

A l though  there  a re  many d ia lec ts  o f  PROLOG. the  most  wel l—known and
wide -spread  vers ion  i s  tha t  deve loped  in  Ed inburgh .  and  we w i l l  base
our comparison on th is .  Thus in  the  fo l low ing  the  unqua l i f i ed  term
'PROLOG' will stand fo r  'Edinburgh PROLOG as descr ibed  in  (C locks in  &

Hel l i sh  1981 ) ‘ .

At l eas t  those PROLOG examples no t  quoted from the  l i t e ra tu re  have
been  tes ted .  p r inc ipa l l y  in  DEC-10  Ed inburgh  PROLOG and  in  a few  cases
i n  micro-PROLOG and LOGLISP. The F IT  examples no t  in t roduced  as s t i l l



unimplemented suggestions have been tes ted  in DEC-1o FIT—1, which is
itself r unn ing  in UCI LISP.

The following section [2] is a tutorial introduction which may be
skimmed by readers who want to get to the essentials quickly or who
already have some knowledge of PROLOG and F IT .  Section 3 contains the

central points of the discussion 'functional vs. relational'. including
relations that return values [ESCVAL operator]. functions with request
variables. and higher—order functions; it anticipates some of the
material treated more extensively in later sections. The short section
& deals with the data structures o f  both languages and may be skimmed

by a l l  those familiar with LISP. FIT, or PROLOG. Section 5 discusses
pattern matching as needed for f ac t  retrieval and rule invocation,

including its unification [PROLOG] and fitting [F IT ]  generalizations.
Then, section 6 treats clauses [facts and rules] and their constraints
restriction, textual/specificity ordering, and cut/EXCLUSIVE/SECURE
marking. The penultimate section [7] compares list/set processing in
PROLOG and FIT and also demonstrates the use of FIT's adapter-driven
computation for relational programming. Finally. the last section [ 8 ]
gives more detailed examples [acknowledging Warren, McDermott, and
Fermat], but also points to a number of further principal issues in
functional/relational programming.

2 A TUTORIAL COMPARISON OF FIT AND PROLOG

This introductory comparison is based on the tutorial introduction
in chapter 1 of the standard PROLOG textbook (Clocksin & Mellish 1981).
It covers all the PROLOG features of this introductory chapter or, as
the authors call it, o f  the “basic core o f  PROLOG“. Some advanced
PROLOG features are not discussed in this introductory comparison. but
are treated in the remainder of this paper. Although the comparison can
be regarded as an introduction to FIT for readers acquainted with
PROLOG. it is not a general introduction to that language. because it
concentrates on PROLOG—related FIT features. All PROLOG examples are
taken from (Clocksin & Mellish 1981 ) .  sometimes with minor extensions:
the subheadings are cited unchanged from this source.

2.1 Facts

A f ac t  like "John likes Mary“ in PROLOG is regarded as a relation,
likes, that holds between two individuals; it is written as
likes1john.mary) and is stored by a "."-terminated statement

likes1john,mary).

[Thus the period is part of the object language. PROLOG, not part of
the meta language, English; to avoid confusion of language levels we
will always omi t  meta—language punctuation after object—language
expressions displayed between two blank lines.]

In FIT the fact is regarded as a [predicate] function, LIKES. which is
'true' for the two individuals; it is written as (LIKES JOHN MARY) and
is stored by a unary GLOBAL expression whose argument is a one—element
list containing the f ac t .  i.e. by



GLOBAL:((LIKES JOHN HARY))

[The mathematical function/relation notation, f(a1.a2.....aN). for LISP
func t ion  ca l l s  and, more generally, FIT fitments is r ewr i t t en  as a list

with a distinguished first element f. ( f  a1 a 2  ... aN), which in FIT

for N=1 may be abbreviated to f:a1, i.e. in the example, with f=GLOBAL
and a1=((LIKES JOHN MARY) ) .  the parentheses are part of the argument

rather than the call notation.)

Whereas in PROLOG ".“ i s  just a syntactical terminator, which in this

context serves as a top-level cue to invoke the storing routine, in FIT
GLOBAL is the s tor ing  function which can be called from any level.

To create a four-element [n-element] data base in PROLOG one must
write four In] " " - te rmina ted  relations like

valuab1e(gold).
femaletjane).
owns(john.gold).
father(john,mary).

while in FIT one may use a four—element [n—element] list argument of a
single GLOBAL expression

GLOBAL:((VALUABLE GOLD)
(FEMALE JANE)
(OWNS JOHN GOLD)
(FATHER JOHN MARY))

as an alternative to four In] corresponding GLOBAL expressions. PROLOG
does not allow the storage of several data base facts as a single
operation [the above PROLOG use of " " can be regarded as a postfix
operator corresponding to the built-in assertz predicate; cf. ASSERT in
PLANNER-like languages]. Instead, each fact must be stored
individually. which has been reported to be a common source of syntax
errors (Clocksin & Mellish 1981). On the other  hand, in FIT the use of
GLOBAL's add i t iona l  pair of parentheses is not obvious when storing
individual facts but becomes apparent when storing an entire data base.
The deeper reason for this general form of GLOBAL is its use as a
semantic primitive for multiple definition side-effects [for example.
the pattern match (>X >Y :) generates two binding side—effects (>X)  and
(>Y), which are represented as GLOBAL:((>X) (>Y ) ) :  cf. section 5.1]. In
order to avoid parenthesis omission errors when storing individual
facts, a simple FIT extension

ASSERTzfgct = GLOBAL:(fact)

could be defined.

Unlike in PROLOG, in F IT  facts need not be stored globally but can
also be stored locally, creating 'local data bases‘, by using the LOCAL
instead of the GLOBAL storage operator. as exemplified in the next
subsection and exploited as a module feature in section 7.1.



2.2 Quest ions

Presupposing the above global 'Mary' fac t .  a PROLOG question/answer

sequence [to distinguish user  quest ions  f rom computer answers in such
sequences, the answers  will be underlined here  and below]

?- 1ikes(john.mary).
1E3

i n  FIT becomes

(LIKES JOHN MARY)
W

Thus instead of printing a simple 'yes' or 'true', FIT fo l l ows  a
good PLANNER tradition and returns the instantiated form of requested
fac t s  [in such simple cases as above, th is  i s  identical to the
ques t ion;  but see the next subsection]. The question in FIT is regarded
as a call of the LIKES predicate function with two arguments. JOHN and
MARY. the only pair of arguments for  which that predicate has so far
been defined by a GLOBAL expression. Whi le  the PROLOG likes request
just prints its answer 'yes'. the FIT L IKES call returns its answer
(LIKES JOHN MARY) as a function value which can be fur ther  processed by
other function calls; for  example, the nested call (COR (LIKES JOHN
HARY)) uses a CDR call to return the tail (JOHN MARY) of the resu l t  of
the L IKES call. L IKES can be regarded as a predicate func t ion ,  although
the returned expression (L IKES JOHN MARY) is not equal to the
truth-value "T" for  ' t rue ' ,  because in FIT every expression not
denoting 'false' or 'unknown' is interpreted as being 'true' [this
corresponds to LISP's non—NIL = 'true' convention].

Again presupposing the above 'Hary' fac t .  the LOCAL data base
question '

(LOCAL ((VALUABLE SILVER) (LIKES JOHN JANE)!
(LIKES JOHN JANE) (LIKES JOHN MARY) (VALUABLE SILVER))

would  re turn

(LIKES JOHN JANE) (LIKES JOHN MARY) (VALUABLE SILVER)

since all these facts are stored, the f i r s t  and third locally, the
second globally.

Summarizing the syntax introduced in these f i r s t  two subsections.
while PROLOG prefixes questions [with "7-"]  and interprets unprefixed
expressions as the assertion of fac t s ,  FIT pre f ixes  assertions [with
'GLOOAL:“] and interprets unprefixed expressions as questions.

2.3 Variables

The PROLOG facts and questions containing variables

likes(john.flowers).
1ikes(john,mary).
likes(paul.mary).



7- likes(john.X).
x=flogggs

?— likes(X.mary).
X= jgnn;
x=gaul;

£2

in pure FIT [he re  we assimilate the presenta t ion  of non—determinism to
PROLOG's t rea tment ]  become

GLOBAL:((LIKES JOHN FLOWERS)
(LIKES JOHN MARY)
(LIKES PAUL MARY))

(LIKES JOHN | ?X )
(GLOBAL [()X FLONQBSII I L IKE ;  JOHN FLOWER§1I

(LIKES |?X MARY)
L A >X O IK JOHN MAR

MORE A , .

MORE
jg

To distinguish variables from individuals, PROLOG uses a capitalization
convention [inverse to the standard mathematical convention. as
remarked in (Robinson & Sibert 1981) and corrected in LOGLISP] while
FIT marks single-value—accepting variables by a "?" [SHOVEONE] prefix,
multiple—value-accepting variables by a ”>" [SHOVE] prefix, and open

request variables by an additional ”I" [VERTICAL] prefix. As answers to
successful questions containing variables. PROLOG prints variable
bindings 'X=flowers' etc. while pure FIT returns binary GLOBAL
expressions (GLOBAL ((>x FLOWERS)) (LIKES JOHN FLOWERS)) etc. with the
bindings in their first argument [internally. always the more general
">" prefix is used] and the instantiated expression in their second
argument. Like user—initiated GLOBAL expressions these system—generated
ones in impure FIT store their bindings in the data base: all GLOBAL
expressions also return their second argument, which for unary GLOBALs
is the empty imposition [an imposition is a possibly empty sequence of
expressions]. For example. after pure FIT has evaluated (L IKES JOHN
|?X) to (GLOBAL ( (>X  FLOWERS)) (LIKES JOHN FLOWERS)). impure FIT sets X
to FLOWERS and returns (L IKES JOHN FLOWERS). Thus. while in PROLOG the
bindings are just printed and gone in the next interaction step. in FIT
they are stored in the global data base for later use [the recent
LM-PROLOG (Kahn  1983 )  also has a facility for saving bindings until the
next interaction step]. As in (Winston & Horn 1981 ) .  the "(' [PULL]
prefix is used in FIT to fetch variable values. e.g.. the value a
variable received as the_resu1t of a previous interaction step. This
allows the incremental interactive construction of answers to compound
questions as in

(L IKES PAUL I?X) ;  first give me the entity X that Paul likes
A >X RY K PAU- R



(LIKES JOHN (X ) ;  second check to see if John a l so  likes that entity X
(LIKES JOHN MARY); internal r e fo rmula t i on  asking if John likes Mary

1L1£££_l9flN_MA£Ill

By now the naturalness of returning instantiated questions as answers

should have become apparent: We asked FIT to find individuals replacing
t h e  variable X in propositional forms thus making them true

propositions, and it returned these true propositions together with
their x—bindings.

If global binding effects are not desired, request variables can be
localized using LOCAL expressions. In a basic LOCAL form the request
variables are listed in the first argument and the question appears in
the second argument. The following question-answering sequence is an
example [X is locally initialized with the empty imposition]:

(LOCAL (>x:) (LIKES PAUL I?X))
iLlK£§_EAnL_flAkll

In an advanced LOCAL form the question itself is written to the left of
a colon separator and an arbitrary expression making use of the request
variables to the right of the " : " .  An example is this
question-answering:

(LOCAL (LIKES PAUL I?X)

(APPEND ' (HE  LIKES) (L IST (X) ' (AS FAR AS I KNOW)))
(HE LIKES MAR! A5 EAE AS I ENQEI

Returning to the first example of this subsection. the 7carry on'
command use of PROLOG's ":" operator in FIT translates to MORE
commands. PROLOG's ‘no' responses for indicating failures in FIT often
become ju failure signals [jump 'unknown'] rather than the literally
corresponding jF failures [jump 'false'].

e ‘ 0  S

The reason for this is that in FIT the 'closed-world-assumption'
[ he re  implying that the system knows all about who likes Mary] is
not built in. As another example, consider the FIT query (L IKES FRED
MARY) and the corresponding PROLOG query likes(fred.mary) in the
above respective data bases, in which no 'likes' relationship is
stored for Fred: In FIT it yields jU ['I don ' t  know' ] ,  while in
PROLOG it prints 'no' [‘I assume no']. This is because FIT. by
default, regards facts as open-ended information about relations
[e.g.. 'likes']. while PROLOG assumes facts to completely define
these relations. Instead of relying on a universal closed-world
assumption. the FIT user may 'close off' each_predicate individually
if its clauses are to be regarded as 'definitional'. so that the
system will give negative information [ j F ]  only for requests with
that predicate for which no normal clause is successful. In LOGLISP,
the user can also declare a predicate—restricted closed—world
assumption [we may call this a 'closed-predicate specification], but
must d o  this by applying the L ISP  function NULL to the result of a
call to the LOGLISP procedure ANY (Robinson & S ibe r t  1981 ) .  For
example. the LOGLISP definition



_ 10 -

(NOT (LIKES x y)) <- (NULL (ANY 1 T (LIKES x y)))

wou ld  close off the L IKES relation. In FIT a closed-predicate

specification be longs  to the completely normal way of defining

predicate functions: A clause with a minimally specific head pattern
defines the predicate to be jF, so t ha t  this clause is used if and

only if no other matching one with that predicate remains untried.

For example. the FIT definition

(>(LIKES ?x ?Y) jF)

would also close off the L IKES relation [it sets the 'compound

variable' (LIKES ?X ?Y) to the value jF, which. when typed in.
should normally be quoted like 'jF]. The  LOGLISP and FIT sys tems  on

the basis of these definitions would know all about who likes whom
but make no assumptions about other relationships. For instance, in
the previous data base this would cause the FIT query (L IKES FRED
MARY) and similar ones like (L IKES FRED B ILL )  to yield jF but would

not change a jU yielded by queries with other relations like

(S ISTER_0F  FRED MARY).  The closed—world assumption can be restricted

even further to predicates with some given fixed arguments. For

example. the FIT definition

(>(LIKES ?X MARY) jF)

would close off the L IKES relation for a second argument equal to

MARY only; the system on the basis of this definition would know all
about who likes Mary but make no assumptions about who likes other
persons. This is sufficient for obtaining jF for the query

(L IKES FRED MARY) .  but not for obtaining jF for the similar query

(LIKES FRED BILL)  [the system would modestly reply jU]. In general.
FIT allows restricting closed—predicate specifications to exactly
the scope required.

The predicates of 'closed subworlds' [e.g.. Of list processing: cf.
section 7] can be closed off by a single definition

(>(CLOSEDPRED >X) jF)

provided that the second—order predicate CLOSEDPRED is 'true" for
them. [For instance. the second-order definition (CLOSEDPRED MEMBER)
could be used instead of the first—order definition (>(MEMBER ?X ?Y)
jF) for closing off the MEMBER predicate: further CLOSEDPRED
definitions could be used for closing off the other predicates in
this paper.)

Incidentally. it is FIT's three-valued logic which permits a
differentiation of what is known to be true. what is known to be
false. and what is unknown. while PROLOG's two—valued logic leads to
a confusion of the latter two categories. Although the closed-world
assumption gives rise to certain nice formal properties (cf. the
recent paper (Jaffar et g a l .  1983)]. its practical usefulness is
questionable. It enforces a narrow world view in PROLOG-based
systems because what they actually assume is “All that I haven't
heard of cannot be true". Presumably. it would not be prudent to
endow future computer systems with such a built-in illusory
assumption _of omniscience. Another recent critique of the
closed-world assumption of ordinary PROLOG may be found in (Hewitt &
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de Jong 1983 ) .  Ironically. while Hewitt has abandoned his PLANNER
tradition in this respect. Kowalski is still cultivating it
(Kowal sk i  1983 ) .

Perhaps it was the special syntactical position of predicates in the
mathematical/logical notation R(a1,....aN) for applications/relations.
in contrast to LISP's modern Cambridge Polish prefix notation
(R a1 ... aN). that prevented PROLOG from allowing questions asking for
the predicate. using predicate variables [indeed micro—PROLOG, the only
well—known PROLOG dialect which has some means of asking for
predicates. resorts t o  its LISP—like ”internal syntax" (Clark et a1.
1982 )  for that purpose, as shown below]. Perhaps it was a fear of
losing the semantics of first—order predicate calculus when permitting

implicit request quantifiers ranging over predicates instead of over
individuals on l y .  And/or  perhaps efficiency considerations were
involved, because such requests cannot make use of a primary predicate
indexing of facts. In FIT's attempt to permit what the user finds
natural we allow such requests. For example. in the above data base we
obtain

( |?x  JOHN MARY)
W

The natural—language paraphrase of this question. "Is there some
relationship between John and Mary?”, doesn't sound less natural than
“Is there an entity that likes Mary?", the paraphrase of our previous
request (LIKES |?X MARY). There are no syntactical problems with this
when using Cambridge Polish prefix notation. The direct equivalence
with first-order predicate calculus cannot be maintained anyway because
higher—order constructs like mapping functions are indispensable (cf.
section 3 .2 ] .  The indexing problems are easily solvable on the basis of
current data base technology; indeed already LEAP (Feldman et a1. 1972 )
allowed asking for all components o f  associative triples and
PLANNER-like languages allow asking for all components of assertion
n—tuples. implemented. e.g.. by means o f  "coordinate indexing”
(Rulifson et al. 1972 ) .

In micro—PROLOG the extra~logical auxiliary dictionary program must
be used for simulating such requests (Clark et al. 1982 ) :

uh(x (dict x)(x John Mary))
Answer is likes

Moreover, the ”meta—variable” x used here is not a true request
variable for predicates since it must be bound through the dict call by
the time micro—PROLOG evaluates (x John Mary).

The variables used previously are typeless. as they always are in
PROLOG. but only by default in FIT. Typed variables can be specified in
FIT as follows. Every predicate pred may be used as a typed variable
x?pred or x>pred. a valuewaccepting variable with an additional "x"
[XAMINE] prefix. For example. x?FEMALE can only be bound to individuals
for which the predicate FEMALE is true and x>LIKES can only be bound to
pairs of individuals which are in a L IKES relationship.
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2 .4  Con junc t ions

In  the  PROLOG da ta  base

l i kes (mary . food) .
l i kes (mary ,w ine ) .
l i kes ( john .w ine ) .
l i kes ( john .mary ) .

the  reques t  con junc t ion  [ the  “ .  ' i s  used as an AND in f i x  opera to r ]

? -  l i kes ( john ,mary ) .  l i kes (mary , john) .

i s  p rocessed  f rom le f t  to  r igh t ,  the  f i rs t  goa l  succeed ing  and  the
second fa i l ing .  so  tha t  the  con junc t ion  fa i l s .  In  the  cor respond ing  F IT
data  base

GLOBAL:((LIKES MARY FOOD)
(L IKES MARY WINE)
(LIKES JOHN NINE)
(L IKES JOHN MARY))

we can use an imp l ic i t l y  AND-connected impos i t ion

(LIKES JOHN MARY) (LIKES MARY JOHN)

which a lso  fa i l s  because the  express ion  (LIKES MARY JOHN) does.

The ques t ion  " Is  the re  anyth ing  tha t  Mary and John both  l i ke?" ,
exempl i fy ing  conjunction—wide request  va r iab les .  in  PROLOG becomes

?— 1 ikes (mary ,X ) ,  l i kes ( john ,x )

and is  processed us ing  back t rack ing  as fo l lows:

1 .  The f i rs t  goa l  l i kes (mary .X )  matches the  f i rs t  f ac t
l i kes (mary , food) ,  b ind ing  X to  food  and  mark ing  the  p lace  o f
th is  fac t  in  the  da ta  base .

2 .  The ins tan t ia ted  second  goa l  l i kes ( john . food)  f a i l s .  so
back t rack ing  occurs .  1 .9 .  X becomes unbound and the  prev ious
goa l  i s  t r i ed  aga in ,  s ta r t ing  from a f te r  the  marked fac t .

3 .  The f i rs t  goa l  l i kes (mary .x )  now matches the  second fac t
l i kes (mary .w ine ) .  b ind ing  X to  w ine  and  mark ing  tha t  f ac t ' s
p lace .

&. The ins tan t ia ted  second goa l  l i kes ( john .w ine )  matches the
th i rd  fac t ,  mark ing  i t s  p lace .

5 .  Since both  goa ls  a re  sa t i s f i ed  'X=wine'  i s  p r in ted .

I n  F IT  the  reques t  con junc t ion  can  e i ther  be  par t i t ioned
in te rac t ive ly  as  exempl i f i ed  in  the  p rev ious  subsec t ion  o r  i t  can  be
wr i t ten  as the  impos i t ion

(LIKES MARY I?X)  (LIKES JOHN I?X)
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which is eva lua ted  w i t hou t  backtracking t hus :

1. the first goal (L IKES MARY I?X)  yields a BREADTH expression

containing all its matching facts [namely the first and second

one], and simultaneously also the second goal (L IKES JOHN I?X)
yields a BREADTH of all its matching facts [namely the third
and fourth one]. altogether yielding the intermediate

imposition of BREAOTH expressions

(BREADTH (GLOBAL ( (>X  FOOD)) (LIKES MARY FOOD)!
(GLOBAL ( (>X  H INE) )  (LIKES MARY H INE) ) )

(BREAOTH (GLOBAL ( (>X  H INE) )  (LIKES JOHN HINE) )
(GLOBAL ( (>X  MARY)) (LIKES JOHN MARY)))

2. In combining the BREADTH results of both  goals three candidate

results

(GLOBAL ( (>X  FOOD)) (LIKES MARY F000 , )
(GLOBAL ( (>X  WINE)) (LIKES JOHN WINE),

(GLOBAL ( (>X  FOOD)) (LIKES MARY FOOD),
(GLOBAL ( (>X  MARY)) (LIKES JOHN MARY))

(GLOBAL ( (>X  WINEJI (LIKES MARY WINE))
(GLOBAL ( (>X  MARY)) (LIKES JOHN MARYI)

are rejected because of inconsistent X bindings and only one

‘result,

(GLOBAL ( (>X  WINE), (LIKES MARY WINE))
(GLOBAL ( (>X  H INE) )  (LIKES JOHN WINEI)

remains. so that the result

(GLOBAL ( (>X  WINE)) (LIKES MARY WINE) (LIKES JOHN HINE) )

is returned.

Thus FIT abolishes depth—oriented, chronological backtracking in
favour of breadth—oriented. non—chronological parallelism. avoiding a
host of p rob lems  that plague PROLOG [not just beginning with the "cu t" ]
from the start. Backtracking within a sequential conjunction on a
sequential data base is perhaps PROLOG's mos t  unfortunate [von Neumann]
deviation from pure logic. Rather than regarding a data base of clauses
[facts and rules] as a set. which. because it is unordered. has the
crucial advantage of modularity, PROLOG regards it as an ordered
collection, pointed to by place-markers which are pushed back and forth
on it as i f  it were a SNOBOL string. "Paper-and-pencil simulations“
(Clocksin & Mellish 1981) are required to keep track of what's going
on.

The annoying difficulty with such a sequential data base can be seen
in the example. The order of the four '1ikes' facts (shortened.
1—2—3-4 ] ,  i.e. the sequence of typing them in. first seemed to be
immaterial in (Clocksin & Mellish 1981 ) ,  as in logic. but now it
becomes apparent that it has a profound impact on backtracking and
efficiency [sometimes even on termination. i.e. total correctness.
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because  depth-first search may diverge into an infinite subtree

a l t hough  a solution exists somewhere else in the search tree]: Had we

t yped  in the first two facts in reverse orde r  [ i . e . .  2—1—3-(1 no

backtracking would have occurred at all. A similar reordering of the
last two facts [i.e., 1-2-6-3] would also change backtracking behavior.

However. regroupings [he re .  3-4—1-2]  or even interleavings [e.g..

1-3-2-(1 would have no behavioral effect.

Avoiding such “arbitrary sequencing“ (Leavenworth & Sammet 1975) in
space and time. FIT follows predicate calculus in not imposing an

arbitary order onto the data base items. It makes available all facts

matching a question at once. as an explicit conflict set. and uses a

'most specific first' rule for "conflict resolution" (McDermott & Forgy
1978). If, as in the example. all facts are equally specific they form

a BREADTH express ion  which can be  processed by "OR parallelism”

[(Conery & Kib le r  1981 ) ,  (C lark  & Taernlund 1982)].

Another sequencing which causes PROLOG to deviate from predicate

calculus is the left-to-right order imposed on conjunctions. Like
LISP's AND this can be used to simulate 'if then' statements and other
desired orderings; it is also available as an option. called ANOTH, in
FIT. However ,  in the example. as is usually the case, we preferred t o

retain the non-sequenced meaning o f  logical conjunction by using

simultaneously evaluating impositions. These can be processed by "AND
parallelism” [(Conery & Kib le r  1981 ) ,  (Clark & Taernlund 1982)].

In F IT ,  if we d o  wish to use the bindings of a request variable
produced in a first request inside a second request. we can replace
occurrences of the request variable [711 ;  in the second request by
occurrences o f  a corresponding PULLTEMPORARY variable "var .  where  “'"
fetches the value that a variable received in an ongoing evaluation.
For example, instead o f  our previous request imposition, we could write

(LIKES MARY |?X) (LIKES JOHN 'X)

Since data flow in FIT is not restricted t o  the direction 'left to
right' but may as well proceed 'right to leftf, the request could also
be replaced by

(LIKES MARY “X) (LIKES JOHN |?X)

In order to transcribe PROLOG conjunctions literally into F IT ,  however.
a left-to-right pass would be used, in which a PROLOG variable not yet
encountered is replaced by a "l?'-variable and one already encountered
by a “" -var iab le .

2.5 Rules

A PROLOG rule like

likes(john.X) :~ likes(x.wine)

in FIT can be rewritten as

( ) (L IKES JOHN ?X) (LIKES ( X  WINE),
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Tha t  i s .  i n  F IT  a ru le  has  the  fo rm o f  a va r iab le -va lue  assoc ia t ion .  I t
i s  generated by setting a compound variable l i ke  (LIKES JOHN ?X) to  a
quoted va lue  like ' (L IKES (X  N INE) .  Typing i n  the  se t t ing

(>(LIKES JOHN ?X) ' (L IKES (X  WINE))

abbrev ia tes  (and .  in  F IT -1 .  t emporar i l y  expands to ]

(GLOBAL ( (> (L IKES JOHN ?X) (LIKES <X WINE)) )  ' (L IKES (X  N INE) )

which ac tua l l y  s to res  (>(LIKES JOHN ?X) (LIKES (X  N INE) )  and re tu rns
(LIKES (X  N INE) .  .

Using th is  ru le  toge ther  w i th  Mary 's  l i k ings  in  the  da ta  base  o f  the
prev ious  sec t ion .  the  PROLOG reques t

l i kes ( john ,mary )

is  matched by the  ru le  head l i kes ( john .X ) ,  binding X to  mary and
marking i t s  p lace  in  the  da ta  base.  Then i t s  ins tan t ia ted  body
l i kes (mary .w ine )  i s  turned  in to  another  reques t ,  which i s  d i rec t l y
matched by a da ta  base fac t  so tha t  ' yes '  i s  p r in ted .

In  F IT .  ru les  a re  dea l t  w i th  s imi la r l y .  except  tha t  the i r
pat te rn—di rec ted  invoca t ion  i s  t rea ted  comple te ly  w i th in  the  F IT
formal ism i tse l f .  I n te rmed ia te  computations l i ke  those fo r  invoca t ion
match ing  may be  observed  in  F IT -1 's  t race  mode.  wh ich  we w i l l  i nd ica te
as  a sequence  o f  indented  express ions  [as  t races  may be  sw i tched  o f f  in
F IT -1 .  the  I lO—or ien ted  reader  may ignore  indented  express ions  here  and
la te r  on ] .  Thus the  cor respond ing  ques t ion -answer ing  becomes

(LIKES JOHN MARY)
(LOCAL (L IST (LIKES LIKES) (JOHN JOHN) (?X MARY))

(LIKES (X  N INE) )
(LOCAL ( (>X  MARY)) (LIKES (X  N INE) )
(LOCAL ( ( )X  MARY)) (LIKES MARY WINE))

(LIKES MARY NINE)

Pat te rn—di rec ted  invoca t ion  genera tes  a LOCAL express ion  (c f .
subsec t ion  2 .3 ]  wi th  the  invoca t ion  match  in  i t s  b ind ings  [be fore  the
" : ”1  and the  ru le  body as i t s  body [a f te r  the  ' : "1 .  Here .  the  match i s
success fu l ,  y ie ld ing  a s imp le r  LOCAL in  wh ich  X i s  bound to  MARY. The
body is  eva lua ted  ins ide  th is  LOCAL scope and the  successfu l  resu l t
(L IKES HARY WINE)  causes  the  LOCAL and  i t s  b ind ing  to  d isappear .

Note tha t  F IT  'overanswers '  the  o r ig ina l  ques t ion  "Does John l i ke
Mary?"  in  re tu rn ing  no t  s imp ly  ' yes '  bu t  an  express ion  in te rpre tab le  as
"Yes  because  Mary  l i kes  w ine" .  The  re tu rned  express ion
(L IKES MARY N INE)  encodes  the  reason  why the  answer  to  the  ques t ion
(LIKES JOHN MARY) i s  ' t rue ' .  The non-false—and-non-unknown = ' t rue '
convent ion permi ts  regard ing  the  answer expression as a simple ' t rue '
answer  and  go ing  in to  the  express ion  and  ana lyz ing  the  reason  fo r  i t s
be ing  ' t rue '  on ly  i f /when  des i red .

I f  we a lso  p resupposed  John 's  l i k ings  in  the  da ta  base  o f  the
prev ious  sec t ion ,  we cou ld  answer  the  ques t ion  w i thout  any  ru le  by
us ing  a f ac t .  However ,  s ince  PROLOG uses  c lauses  in  tex tua l  o rder ,  i t
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wou ld  on l y  app l y  the  fac t  f i r s t  i f  i t  were  s tored  in  f r on t  of  the  ru le :
otherwise  i t  wou ld  s t i l l  f i r s t  use  the  ru l e .  In  FIT .  on  the  other  hand .
the  order  o f  de f in i t i ons  in  s tore  i s  immater ia l  because  the  de f in i t i ons
match ing  a reques t  are  cons idered  in  the  order  o f  the i r  spec i f i c i ty .
Thus the  fac t  in  any  case  wou ld  be  used  f i r s t  and the  ru le  s econd .  so
tha t  we  would  obta in  a DEPTH expres s ion  [ the  ordered  counterpar t  to
BREADTH]

(DEPTH (LIKES JOHN MARY) suspens ion-genera t ing -our—prev ious -resu l t )

whose  f i r s t  e l ement  shows  us  tha t  John l ikes  Mary d i rec t ly  and whose
suspended  second  e l ement ,  on ly  popped  up  and ac t iva ted  by a MORE
reques t .  wou ld  show us  tha t  he  l ikes  her  because  o f  her  l ik ing  for
wine .  a s  d i scussed  above .

The  no ta t ion  o f  ru le s  w i th  conjunc t ion  bod ie s  shou ld  be  c l ear  f rom
the  forego ing .  For  example  the  PROLOG ru le

l ikes ( john .X)  : -  l ikes (X ,wine ) ,  l ikes (X . food)

in  FIT  becomes

(>(LIKES JOHN ?X) (LIKES <X WINE) (LIKES <x FOOD))

Fina l ly .  l e t  u s  cons ider  ru le s  w i th  conjunc t ion  bod ie s  conta in ing
conjunc t ion-wide  reques t  var iab le s .  A PROLOG ru le  l ike

s i s t er_o f (X .Y)  : -
f emale (X) .
parent s (X .M.F) .
parent s (Y ,M.F) .

can  be  rewr i t t en  in  FIT as

(>(SISTER_0F ?X 7Y)
(LOCAL ()MOTH: >FATH:)

(FEMALE (X)
(PARENTS (X |?HOTH |?FATH)
(PARENTS (Y I?MOTH I?FATH)) )

F shou ldn ' t  be  used  as  a var iab le  in  FIT because ,  a s  in  some LISP' s .  i t
i s  the  cons tant  mean ing  ' fa l s e ' ;  there fore  we rep lace  F and H by the
more  mnemonic  FATH and  MOTH, respec t ive ly .  S ince  these  Var iab le s  are
not  ' formal  parameters ‘  o f  the  ru l e .  we have  to  dec lare  them LOCAL in
FIT  i f  we  don ' t  want  them to  spread  g loba l ly .  In  PROLOG a l l  var iab le s
in  ru le  bod ie s  are  t rea ted  a l ike .  namely  a s  ' l og i ca l  var iab le s '  wh ich .
even  i f  they  spread  g loba l ly ,  cannot  co l l ide  because  they  are  un ique ly
renamed.

E _ I | l '  E .

The  PROLOG des ign  dec i s ion  to  per form such  read—time  renaming .
however .  i s  de tr imenta l  to  in terac t ive  programming .  When typ ing  in  a
c lause  in terac t ive ly  the  PROLOG sys tem changes  ones  mnemonic
var iab le  names  under  ones  f ingers  in to  mean ing le s s  ' _ '—pref ixed
numbers .  The  mean ings  in  var iab le  names  cannot  be  recovered  by  the
' l i s t ing '  pred ica te  which  pre t ty -pr in t s  them as  a lphabet i c  ord ina l s
”A”. "B". “C“.  . . .  denot ing .  re spec t ive ly .  the  f i r s t .  s econd .  th i rd .
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variable used  in  a c lause .  For  example .  when typing i n  the  above
s is te r_o f  ru le  exac t ly  in  the  form o f  (C locks in  & Mel l i sh  1981 ) .
using the i r  mnemonics M and F fo r  mother and fa ther .  respec t ive ly .
PROLOG fo rces  the  p rogrammer  to  reconceptua l i ze  th is  as

s is te r_o f (A ,8 )  : -
f ema le (A ) ‚
paren ts (A .C ‚D ) .
paren ts (B .C ,D ) .

One must accept  the  machine 's  abs t rac t  isomorphism between these
s is te r_o f  ru les  and  use  i t s  mean ing less  va r iab le  names.  as  i f  see ing
which  var iab le  occur rences  a re  used  fo r  inpu t ,  fo r  ou tpu t ,  and /o r
fo r  in te rmed ia te  resu l ts  weren ' t  a l ready  hard  enough w i th  mnemonics .
I f  you  t race  s is te r_o f  ca l l s  us ing  the  ' spy '  p red ica te .  wha t  you see
i s  no t  even ”A".  "8" ,  "C“ bu t  something l i ke  “_24" .  “_109 ‘ .  "_110" .
Cer ta in ly .  th is  t rea tment  o f  va r iab les  i s  no t  a h igh - leve l  f ea tu re
of  PROLOG. When you  dump an  in te rac t ive ly  cons t ruc ted  p rogram us ing
the  ' t e l l '  and ' l i s t ing '  p red ica tes  you, o f  course.  a lso  have the
a lphabe t ic  o rd ina ls  in  your f i l e .

The  on ly  remedy  is  to  p repare  source  f i l es  w i th  an  ed i to r  gu ts ide
PROLOG and then read ing  such f i l es  in to  PROLOG in  the i r  en t i re ty .
But  tha t  i sn ' t  in te rac t ive  p rogramming:  For  each  l i t t l e  change  you
have  to  l eave  the  PROLOG sys tem.  en te r  the  ed i to r .  make the  change .
res ta r t  PROLOG. and read  in  the  a f fec ted  f i l e .  Nor does i t  so lve  a l l
prob lems:  You s t i l l  have  to  accomodate  to  a lphabe t ic  o rd ina ls  i f  you
want to  look  a t  the  de f in i t ion  o f  a c lause  dur ing  the  in te rac t ive
sess ion ;  the  t races  s t i l l  use  these  underscore  numbers .  There fo re
newer  PROLOG deve lopments  t ry  to  cor rec t  th is  fau l t ,  acknowledg ing
the  fac t  tha t  th rowing  the  user ' s  va r iab le  names ou t  o f  ma in  memory
was too  h igh  a p r ice  fo r  ga in ing  computer  e f f i c iency .

The ' s is te r_o f '  ru le  toge ther  w i th  a da ta  base descr ib ing  some
fami ly  re la t ionsh ips  o f  Queen V ic to r ia .

ma1e (a lber t ) .
ma1e(edward).
f ema le ta l i ce ) .
f ema le ‘v ic to r ia ) .
pa ren ts (edward ,v ic to r ia .a lber t ) .
paren ts (a l i ce .v ic to r ia ,a lber t ) .

permi ts  PROLOG ques t ions  such  as

?— s is te r_o f (a l i ce .edward ) .

which  i s  p rocessed  thus :  The  ques t ion  i s  matched  by  the  ru le  head
s is te r_o f (X .Y ) .  b ind ing  X to  a l i ce  and  Y to  edward .  Then the  body
con junc ts  fema le (a l i ce )  fo l lowed  by  paren ts (a l i ce .M .F )  a re  sa t i s f i ed ,
the  l a t te r  b ind ing  M to  V ic to r ia  and  F to  a lber t .  F ina l l y .  the
i ns tan t ia ted  goa l  pa ren ts tedward ,v ic to r ia .a lber t )  succeeds. answering

yes .

Wi th  F lT 's  ve rs ion  o f  the  'V ic to r ia '  da ta  base



GLOBAL:((MALE ALBERT)
(MALE EDWARD)
(FEMALE ALICE)
(FEMALE VICTORIA)
(PARENTS EDWARD VICTORIA ALBERT)
(PARENTS ALICE VICTORIA ALBERT))

the  cor respond ing  F IT  ques t ion -answer ing  p rocess  can  be  t raced  to  show
the  following details:

(SISTER_OF ALICE EDWARD)
(LOCAL (L IST (SISTER_OF SISTER_OF) (?X ALICE) (?Y EDWARD))

(LOCAL ()MOTH: >FATH:)
(FEMALE <x)
(PARENTS <x I?MOTH |?FATM)
(PARENTS (Y I?MOTH I?FATH)))

(LOCAL (>x ALICE >Y EDNARD >MOTH: >FATN:)
(FEMALE <X)
(PARENTS <x I7MOTH |?FATH)
(PARENTS (Y I?MOTH l?FATH))

(LOCAL (>X:ALICE >Y EONARO )MOTH: )FATH:)
(FEMALE ALICE)
(PARENTS ALICE I?MOTH I?FATH)
(PARENTS EONARO I?MOTH |?FATH))

(LOCAL (>X:ALICE >Y:EONARO >MOTH: )FATH:)
(FEMALE ALICE)
(GLOBAL (I>MOTH:VICTORIA I>FATH:ALBERT)

(PARENTS ALICE VICTORIA ALBERT))
(GLOBAL (I>MOTH:VICTORIA I)FATH:ALBERT)

(PARENTS EONARO VICTORIA ALBERT)))
(LOCAL (>x ALICE >Y EONARO )MOTH: )FATH:)

(GLOBAL (I>MOTH:VICTORIA I>FATH=ALBERT)
(FEMALE ALICE)
(PARENTS ALICE VICTORIA ALBERT)
(PARENTS EONARO VICTORIA ALBERT)))

(LOCAL (>x ALICE >Y:EONARO >MOTH:VICTORIA >FATH ALBERT)
(FEMALE ALICE) '
(PARENTS ALICE VICTORIA ALBERT)
(PARENTS EONARB VICTORIA ALBERT))

(EEMALE ALICE)
(PARENIS ALICE VICTORIA ALBERT)
(PARENTS EONARO VICTORIA ALBERT)

Not ice  how the  invoca t ion -genera ted  LOCAL and  the  exp l i c i t  LOCAL body
merge  when the  invoca t ion  match  ends  success fu l l y .  how the  two
reques t -genera ted  GLOBALS migra te  upward  and  jo in  success fu l l y  because
of  the i r  cons is ten t  va r iab le  b ind ings .  and how the  GLOBAL b ind ings  o f
MOTH and  FATH a re  t rapped  in  the  LOCAL. Aga in ,  F IT  overanswers  the
ques t ion :  ins tead  o f  ' yes '  an impos i t ion  o f  the  t h ree  i ns tan t ia ted
subgoa ls  i s  re tu rned;  the i r  con junc t ion  exp la ins  why the  answer  i s
' t rue ' .

In  PROLOG in  the  prev ious  da ta  base the  ques t ion

?-  s is te r_o f (a l i ce .X ) .

i s  t rea ted  s imi la r l y .  bu t  p r in ts  'X=edward' ins tead  o f  ' y es ' .  However ,
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now the sister_of rule allows a possibly unwanted second answer.
'X=a1ice'.

The following t race  gives an analysis of how the corresponding

question is answered in F IT :

(SISTER_OF ALICE I?X)
(LOCAL (L IST (SISTER_OF SISTER_0F) (?X ALICE) (?Y I ?X ) )

(LOCAL (>MOTH: >FATH:)
(FEMALE (X)
(PARENTS <x |?MOTH |?FATH)
(PARENTS (Y |?MOTH I?FATH)))

(LOCAL (>X:ALICE >Y:I?X >MOTH: )FATHz)
(FEMALE (X)
(PARENTS <x |?MOTH |?FATH)
(PARENTS (Y |7MOTH I?FATH))

(LOCAL (>X:ALICE >Y |?x >MOTH: >FATH:)
(FEMALE ALICE)
(PARENTS ALICE |?MOTH |?FATH)
(PARENTS |?x I?MOTH I?FATH))

(LOCAL (>X:ALICE >Y:|?X >MOTH: >FATH:)
(FEMALE ALICE)
(GLOBAL (|>MOTH VICTORIA |>FATH:ALBERT)

(PARENTS ALICE VICTORIA ALBERT))
(BREADTH (GLOBAL (|>x:EDwARD I>MOTH:VICTORIA I>FATH:ALBERT)

(PARENTS EONARO VICTORIA ALBERT))
(GLOBAL (I>X:ALICE I>MOTH:VICTORIA |>FATH:ALBERT)

(PARENTS ALICE VICTORIA ALBERT))))

(BARENIS ALICE XICIQBIA ALEERI)
(BABENIS EDUAED VICIQRIA ALaERI I I

(ELQBAL ((zx ALICE}! (EEHALE ALICE)  '
lEABEfll£_ALl££_xl£IQBlA_ALfl££ll
P A RT

Note tha t  the accidental use of the name X for both the parameter
variable ? X  in the rule head and the request variable |?X in the
ques t i on  does  not lead to a conflict. This is due to FIT's "|"
[VERTICAL] prefix distinguishing request variables and sparing it from
having to perform PROLOG's above  discussed read-time renaming of rule
variables.

The computation result is two GLOBAL expressions, used as elements
of a BREADTH expression. The second GLOBAL contains two identical
instantiations of the 'parents' subgoals of the rule body, showing why
the rule regards ALICE as her own sister.

3 FUNCTIONAL AND RELATIONAL PROGRAMMING

While FIT is principally based on a functional programming style.
PROLOG is based on a relational one. Therefore a comparison between the
two languages entails a comparison of the two programming styles. It is
a natural state of affairs that researchers in functional and
relational programming have tried to explore their respective
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programming disciplines to their ultimate limits. After a period of

enthusiastic statements to the effect tha t  'relations are better than
functions'. even the most articulate advocate of relational programming

now concedes, somewhat cryptically though, that functions can be “more

natural” than relations: ”Although functional notation is more

user—friendly than relational notation. computation by means of rewrite
rules is less versatile than backward reasoning.“ (Kowalski 1983 ) .
Actually. there is not only a sense in which relations are 'more

general' than functions [cf. section 3 .1 ]  but also a sense in which

funtions are 'more general' than relations [cf. section 3.2]. However,

it now seems clear that both functional and relational programs have

characteristic advantages and disadvantages for specific applications.
Therefore it seems worthwhile to work toward a natural combination of

both methodologies. There are several PROLOG—oriented approaches of
function/relation combination, even if we omit indirect function uses

in PROLOG that are achieved simply through a L ISP  interface in the
traditional PLANNER-like manner. The diversity of proposals seems to
indicate that there is no natural PROLOG solution to function/relation
integration:

1. (Egger t  & Schorre 1982) require preprocessing which gives rise
to the well-known problems of superimposed levels [e.g. error
messages from the lower level obstruct the higher level's
abstraction effect].

2. (Kornfeld 1983) needs an additional equality theorem for the
use of each relation as a function.

3. (Sato & Sakurai 1983 )  use syntax and semantics that are very
hard to understand from their English description.

The FPL language (Bellia et a1. 1982) extends a functional language
[TEL] by ”conditional equations and multi-output functions (described
by a relational syntax)" but uses only relations equivalent to
deterministic functions (cf. their f example below].

The natural deduction system of (Hansson et al. 1982) defines functions
by "equalities or conditional equalities" which seem to interact nicely
with the relational constructs ( c f .  their quick-sort example below].

In FIT we can freely define some algorithms as functions and other
ones as relations and then dynamically use the functions as relations
and the relations as functions. as desired.

In the first subsection we will show in which sense functions and
relations are naturally equivalent and exploit this for their
interchangeable FIT use [ i n  section 7 we will exemplify how FIT's
adapters can be used for relational programming]. In the second
subsection we will treat characteristic functions as another FIT method
of representing relations and develop the idea of using function calls
with request variables. In the third subsection we will deal with
higher—order functions and relations. not available in PROLOG.
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3 .1  In te rchang ing  Func t ions  and  Relations

3 .1 .1  Mathemat ica l / log ica l  Foundations -

I t  i s  well—known tha t  fo r  each N -a ry  func t ion  f [N=0 .1 .2 . . . . l

f :  A1 x A2 x . . .  x AN - )  V

there  i s  an N+1-p lace  re la t ion  f—P [we use the  su f f i x  " -P '  [o f ten
abbrev ia ted  to  'P ' .  as in  LISP pred ica tes ]  to  mark re la t ion  [o r
predicate]  versions/of functions]

f -P  g A1 x A2 x . . .  x AN x V

such tha t

f (a1 .a2 . . . . , aN )  = v

i f f

f~P (a1 ,a2 . . . . . aN .v )  ho lds .

There fo re .  g iven  the  func t ion  f .  the  re la t ion  f -P  can  be  de f ined
thus :

f -P  g A1 x A2 x . . .  x AN x V

f -P (a1 ,a2 , . . . . aN .v )  :=  f ( a1 ,a2 . . . . . aN )=v

Since  such a re la t ion  in  PROLOG can be used s imi la r l y  as a func t ion
by us ing  a1 ,  . . . .  aN as f i xed  arguments and v as an open argument
(which .  however. i s  no t  rea l l y  re tu rned  as a va lue ] .  PROLOG re la t ions
are  o f ten  sa id  to  be 'more genera l ‘  than  func t ions .

Conversely .  g iven  the  re la t ion  f -P .  the  func t ion  f and o ther  ones
can be de f ined  us ing  H i lbe r t ' s  eps i lon  opera to r  (H i lbe r t  & Bernays
1939 /70 ) .  This  i s  a 'non—determin is t ic '  ve rs ion  o f  the  jo ta  opera to r ,
i . e .  eps i lon (x )  P1 . . . . x . . . . ) .  denotes one o f  the  ob jec ts  x fo r  which
P( . . . . x , . . . )  ho lds .  [ f  the  d i f f e rence  between denot ing  a va lue  and
re tu rn ing  a va lue  i s  neg lec ted ,  the  eps i lon  opera to r  can  be  used  to
de f ine  non—dete rmin is t i c  func t ions .  A non—dete rmin is t i c  func t ion
es tab l i shes  a no t  necessar i l y  un ique  cor respondence  be tween  domain  and
range  e lements  and  thus  can  s t i l l  be  regarded  as  a re la t ion
mathemat ica l l y ;  i t  becomes func t ion - l i ke  through the  d is t inc t ion  o f
domain  e lements  as  input  a rguments  and  range  e lements  as  ou tpu t  va lues
such  tha t  fo r  g iven  a rguments  some va lue  i s  re tu rned .

For  the  de f in i t ion  o f  the  de te rmin is t i c  func t ion  f f rom the  re la t ion
f—P the  eps i lon  opera to r  happens  to  ac t  de te rmin is t i ca l l y  on ly :

f :  A l  x A2 x . . .  x AN ->  V

f ( a1 . . . . . aN )  :=  eps i lon1v )  f -P (a1 . . . . . aN .v )

However, the  non-de te rmin is t i c  capab i l i t y  o f  the  eps i lon  opera tor  i s
necessary  fo r  the  de f in i t ion  o f  N fu r ther  [ in  genera l
non-de te rmin is t i c ]  func t ions  f I  [ l i l gN l  from the  f -P  re la t ion :
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f l :  A1 x . . .  x AI -1  x AI+1 x . . .  x AN x V ->  powerse t (A I )

f I ( a1 . . . . , a I - 1 .a I+1 . . . . , aN .v )  :=“
eps i lon (a I )  f—Pla I . . . . . a I - 1 .a I . a I+1 , . . . . aN .v )

In  the  above de f in i t ions ,  the  powerset range i s  used to  explain a
non-de te rmin is t i c  func t ion  as  a mapp ing  in to  a se t  o f  subse ts  [ in  pure
F IT .  o f  BREADTH express ions ] ,  ra ther  than  in to  a se t  o f  s ing le
e lements ;  to  accomodate  fo r  the  spec ia l  case  o f  a non-de te rmin is t i c
func t ion  tha t  re tu rns  exac t ly  one  va lue  fo r  some a rguments ,  we iden t i f y
s ing le ton  sets  w i th  the i r  s ing le  elements [ in  pure  F IT .  (BREAOTH e )  =
e ] :  the  empty se t  represents  fa i lu re  [ in  pure  F IT ,  (BREADTH) = jU ] .  As
in  eps i lon  expressions.  in  impure F IT  one element o f  such a subset i s
se lec ted  on  re tu rn  f rom a ca l l  f I I a I , . . . , a I—1 .a I+1 , . . . . aN ,v ) :  un l i ke  in
eps i lon  express ions .  in  impure  F IT  there  i s  the  poss ib i l i t y  o f
success ive  a t tempts  a t  re tu rn  f rom tha t  func t ion  ca l l .  wh ich  enumera te
the  rema in ing  subse t  e lements .

I n  genera l .  i f  we pu t  M=N+1 [ i . e .  M :1 .2 ,3 . . . ] .  an M-p lace  re la t ion
can  be  used  to  de f ine  M (N -1 )—ary  func t ions .  Some or  a l l  o f  these
func t ions  may be  non-de te rmin is t i c .

3 .1 .2  F IT  De f in i t ions  -

I n  F IT  the  de f in i t ion  o f  a re la t ion  f rom a func t ion  i s  made by  a
t r i v ia l  EQUAL ca l l  tha t  implements "=" .

The definition of  func t ions  from a re la t ion  i s  made by LOCAL
express ions  tha t  imp lement  an  eps i lon  opera to r  wh ich  rea l l y  re tu rns
values ra ther  than jus t  denot ing  them [ tha t  i s ,  o ther  than  GUTE (Sato  &
Sakurai 1983) .  F IT  doesn ' t  requ i re  eps i lon  expressions as a language
const ruc t  bu t  represents  them by  the  much more  ve rsa t i l e  LOCAL
express ions ] .  Such LOCALs conta in  a re la t ion  ca l l  w i th  one  open
var iab le  v [marked  by  a I?~pre f i x ]  and  M-1  f i xed  p laces  be fore  the
co lon  and  conta in  the  va r iab le  v [marked  by  a («pre f i x l  a f te r  the
co lon .  Thus

(LOCAL ( r  p l  . . .  p I—1 |?v  p I+1  . . .  pH)  : ( v )

implements

eps i lon (v )  r (p1 . . . . . p I—1 ,v .p I+1 , . . . , pM)  fo r  1$ I$H

In  PROLOG ne i ther  de f in i t ion  i s  poss ib le  because o f  i t s  l ack  o f
va lue - re tu rn ing  func t ions .

Now le t  us consider  an example. For  the  b inary  func t ion  NTH.
re tu rn ing  the  N th  e lement  X o f  a l i s t  L .  the re  i s  the  te rnary  re la t ion
NTH—P or  NTHP, ho ld ing  fo r  t r ip les  (N ,L .X )  i f f  X occurs as the  Nth
L -e lement .  In  F IT ,  i f  the  func t ion  NTH is  de f ined  by something l i ke

(>(NTH 1 (?X #ID) )  (X ) ;  NTH o f  N=1 and L=(e lem . . . )  i s  elem
r INTH SUBI COR);  NTH o f  o ther  N and  L i s  NTH o f  SUB! o f  N and  CDR o f  L

then  the  re la t ion  NTHP can  be  de f ined  by
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(>(NTHP ?N ?L ?X) (EOUAL (NTH (N  (L )  (X ) )

Conversely .  i f  the  re la t ion  NTHP is  de f ined  by something l i ke

(NTHP 1 (7x  310 )  ?X) :  NTHP o f  N : ) .  L= (e1em . . . ) .  and  X=e lem is  t rue
r(NTHP SUB) CDR ID ) ;  NTHP o f  o the r  N.  L .  and X i s  (NTHP SUBtzN CDR:L X)

then the  func t ion  NTH can be de f ined  by

(>(NTH ?N ?L) (LOCAL (NTHP (N  (L  I?X)  : <X ) )

The same re la t ion  NTHP can a lso  be used to  de f ine  two more b inary
func t ions  [ the  fo l low ing  NTHP der iva tes ,  o ther  than NTH. don ' t  run  in
F IT -1 .  because genera l  func t ion -var iab le  un i f i ca t ion  f i t t ing  i s  not
implemented in  th is  f i rs t  ve rs ion  o f  F IT ;  c f .  subsect ion 5 .3 ] :

POSIT ION re tu rns  the  numer ic  pos i t ion  N o f  a g iven  e lement  X i n  a list

L .

(>(POSITION ?X ?L) (LOCAL (NTHP |?N (L  (X )  : (N ) )

NXLISTS re tu rns  the  l i s ts  L wh ich  have  the  e lement  X in  pos i t ion  N .

(>(NXLISTS ?N ?X) (LOCAL (NTHP (N  |?L (X )  : (L ) )

Of these  NTHP der iva tes .  the  func t ion  NIH i s  de te rmin is t i c  wh i le  the
func t ions  POSIT ION and  NXLISTS a re  non-de te rmin is t i c .  POSIT ION
[ re tu rn ing  the  pos i t ion  o f  an a rb i t ra ry  occurrence o f  a g iven  element
in  a g iven  l i s t ]  i s  f in i t e ly  non—determinist ic .  wh i le  NXLISTS
[ re tu rn ing  an a rb i t ra ry  l i s t  w i th  a g iven  element in  a g iven  pos i t ion ]
is  in f in i te ly  non-de te rmin is t i c .

3 .1 .3  Severa l  Reques t  Var iab les  -

The  above  representa t ion  o f  eps i lon  express ions  by  LOCAL express ions
on ly  makes  use  o f  a ve ry  spec ia l  k ind  o f  LOCAL, whose l e f t—impos i t ion
par t  i s  a re la t ion  ca l l  con ta in ing  one  reques t  va r iab le  |?v  and  whose
body  is  a s ing le  PULL var iab le  <v .

A more  general kind of  LOCAL. whose l e f t—impos i t ion  par t  i s  a
re la t ion  ca l l  con ta in ing  severa l  [S ]  request  va r iab les  I?v1 .  . . . ,  l?vS
and  whose body  cons is ts  o f  some permuta t ion  o f  cor respond ing  PULL
var iab les  (v l ,  . . . .  ( vs .  can  be  used  to  de f ine  mu l t i [S ] -va lued
func t ions  by abs t rac t ing  S arguments from an M—place re la t ion  [SgM]. I t
has  the  fo rm

(LOCAL ( r  e l  . . .  eM) : ( v )  . . .  (VS)

where  e l  i s  e i the r  a reques t  va r iab le  |?v  [1$ I$M,  1$ j I $SJ  o r  a f i xed
p lace  p1  and fo r  each <vK there  i s  exac t ly  one 91  = |?vK [1$K$S] .  This
LOCAL express ion  fo rm cor responds  to  a genera l i zed  eps i lon  express ion
form w i th  S eps i lon  var iab les

eps i lon (v1 , . . . , vS )  r (e1 , . . . . eM)

For  example .  the  NTHP re la t ion  can  a lso  be  used  to  de f ine  a 2—valued
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func t ion  POSELEM which non—determin is t i ca l l y  r e tu rns  some position N
toge ther  with the  element X i n  i t  o f  a g iven  list L .

(>(POSELEM ?L) (LOCAL (NTHP I?N (L  I?X)  : (N  (X ) )

LOCALs whose bodie s  cons is t  o f  a "0“ [INSTANTIATE] express ion over
the  variables v1 .  . . . .  vs  can  be  used  to  ob ta in  the  ana logue  to
"answer" templates  in  some log ic  programming languages.  e .g .  in  LOGLISP
(Robinson & Siber t  1981) and micro-PROLOG (C la rk  e t  a1 .  1982)
(remember. however, tha t  in  F IT  such 'answers'  a re  t rue  func t ion
va lues .  nes tab le  ins ide  a rb i t ra ry  o ther  func t ion  app l ica t ions  in  the
ord inary  func t iona l  manner, whereas in  PROLOG d ia lec ts  these normal ly
are  jus t  top - leve l  p r in t  ou ts ] .  For  example ,  POSELEMLST is  a va r ian t  o f
POSELEH which re tu rns  one l i s t  o f  the  form
(THE POSITION IS  N AND THE ELEMENT IS  X) instead of  two va lues  N and X.

(>(POSELEMLST ?L)
(LOCAL (NTHP |?N (L  I?X)

0(THE POSITION IS  <N AND THE ELEMENT IS  (X ) ) )

Almost -genera l  LOCALS whose bodies cons is t  o f  a rb i t ra ry  expressions
over  the  va r iab les  v1 ,  . . . .  vS can  be  used  fo r  de f in ing  func t ions  tha t
per fo rm a rb i t ra ry  pos t -p rocess ing  on  the  va r iab les  abs t rac ted  f rom a
re la t ion .  For  example  FIXEDELEM is  ano ther  va r ia t ion  o f  POSELEM wh ich
re tu rns  T i f f  the  l i s t  L con ta ins  a f i xed—poin t—l ike  ' f i xed  e lement ' .
1 .9 .  a pos i t i ve  in teger  e lement  tha t  i s  equa l  to  the  numer ic  pos i t ion
in  wh ich  i t  occurs  in  L [ the  'u"  opera to r  t rans forms  jF  to  jU ,  wh ich  i s
necessary fo r  d iscard ing  those non—determinist ic  poss ib i l i t i es  fo r
which EO y ie lds  j F ] .

(>(FIXEDELEM ?L) (LOCAL (NTHP l?N (L  )?X) : u(EO (N  <X) ) )

For example. (FIXEDELEM ' (2  1 3 5 1 ) )  non—dete rmin is t i ca l l y  y ie lds  the
LOCAL position—element b ind ings  {N=1‚  X=2} .  {N=2. X=1} ‚  {N=3‚ X=3} .
{N=4. x=5} .  {N=S. X=1}. one of which [character iz ing 3 as a f ixed
element]  makes the  EO call r e tu rn  T .

He regard  the  qu ick -sor t  de f in i t ion  in  (Hansson  e t  a1 .  1982 )  as  ano the r
example fo r  th is  genera l i za t ion  o f  eps i lon  express ions:

qu ick -sor t (N IL )=N IL
qu ick -sor t (x .y )=conc (qu ick -sor t (y1 ) . x .qu ick -sor t (y2 ) )  <—-

par t i t ion (x .y .y1 ,y2 )

I n  F IT  th is  becomes

(>(0UICK-SORT N IL )  N IL )
(>(OUICK—SORT (?X ?YOLIST))

(LOCAL (PARTITION (X  (Y  |?Y1 |?Y2)

(APPEND (QUICK-SORT (Y1 )  (CONS (X  (QUICK-SORT (Y2 ) ) ) ) )

Since LOCAL express ions.  in  add i t ion  to  the i r  genera l i zed  eps i lon
expression use .  can p lay  the  ro le  o f  "LET expressions” (Landin  1965 ) .
genera l i zed  fo r  loca l i z ing  names o f  reques t  va r iab les  whose va lues  a re
to  be reused severa l  t imes .  the  f "equat ion“  in  (Be l l i a  e t  a l .  1982 ) .
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f(x)=y <-- r(ifl:x;gut:w1,z).h1(z)=w2.h2(z)=w3.g(w1.w2,w3)=y

can be formulated in FIT as [input variables in FIT are <-prefixed.

ggtput variables are l?—prefixed1

(>(F ?X) (LOCAL (R <X |?w1 |?Z) : (G <w1 (H1 (2) (H2 <Z) ) ) )

and their NFL-s ty le  vers ion

f ( x )=g (w1 .h1 (z ) .h2 (z ) )  where r'(x)=<w1,z>

can be expressed  in FIT as

(>(F ?X) (LOCAL (?w1 ?Z : (R‘ (X ) )  : (G <w1 (H1 <2) (H2 <Z) ) ) )

Note  tha t  no additional tuple notion [corresponding to ( . . . ) ]  is needed
in FIT because R‘ returns an imposition which can be distributed among
W1 and Z by a ”:"-fitting (cf. section 5 .1 ] .  Thus the rationale for
using a relational syntax given in (Bellia et al. 1982) would not apply
t o  F IT .

Completely general LOCALs have  an additional colon. separating the

previously used 'then-part' from a new 'else-part'. This permits taking
arbitrary action for relation calls that yield no bindings but a jF.
For example. the above POSELEMLST definition can be modified to a final
variant POSELSE, which returns 2-list-impositions of the form ( N

POSITION) (X ELEMENT). containing positions N and elements X of
non—empty lists. and the 2—1ist—imposition (NO POSIT ION)  (NO ELEMENT)
for the empty list.

(>(POSELSE ?L)
(LOCAL (NTHP |?N <L l?X)

(L IST  ( N  POSITION)
(L IST <X ELEMENT)

'(NO POSITION)
'(NO ELEMENT)))

Then the call; say, (POSELSE '(A B C)) non—deterministically returns
(1 POSITION) (A ELEMENT), (2 POSITION) (B ELEMENT). or (3 POSITION)
( C  ELEMENT).  whereas, assuming (> (NTHP ?N NIL ? X )  jF) is asserted as
well. the call (POSELSE N IL )  returns (NO POSITION) (NO ELEMENT).

3 .1 .4  The ESCVAL Operator »

As a notational convenience we could introduce another prefix
operator "$" [ESCVAL], meaning "escape with yalue". which distinguishes
a request variable such that the value it receives replaces the normal
value of the entire request expression in which it occurs directly
[this should not be confused with the above mentioned "output”
variables as used in (Bellia et al. 1982 )  which are to be bound through
relation calls]. More precisely. an ESCVAL expression of the form

(r p1 ... pI—1 $l?v pI+1 ... pM)
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could be  de f ined  by  our  p rev ious  LOCAL expre s s ion

(LOCAL ( r  p l  . . .  p1-1  |?v p1+1  . . .  pH) : <v)

I f .  fu r thermore ,  ESCVAL or  LOCAL express ions  embedded in  reques ts  a re
eva luated  'by va lue ' ,  l i ke  F IT 's  bu t  un l i ke  PROLOG's embedded terms,
this wou ld  allow the  nes t ing  o f  re la t ion - l i ke  express ions,  s im i la r  to
the  nes t ing  o f  func t ion  ca l l s .  For  example .  the  L ISP /F IT  func t ion
nes t ing

(PLUS (SQUARE 5 )  (SQUARE 3 ) )

w i th  ESCVAL would become

(PLUSP (SOUAREP 5 $ l?S1)  (SOUAREP 3 S l782 )  $ l?P)

which  i s  more  conc ise  than  the  equ iva len t  LOCAL fo rm

(LOCAL (PLUSP (LOCAL (SOUAREP 5 |?S I )  : (S I )
(LOCAL (SOUAREP 3 I?SZ) : (SZ )
|?P)

(F )

The  PROLOG con junc t ion  cor respond ing  to  the  func t ion  nes t ing .  name ly

? -  squarep (5 .S I ) .  squarep (3 .$2 ) .  p lusp (S ( ,SZ ,P ) .

wi th  ESCVAL would become

?- p1usp(squarep(5,$$1).squarep(3.552).SP).

ESCVAL express ions  can  be  regarded  as  genera l i z ing  bo th  func t ions
and re la t ions  because they re tu rn  va lues .  l i ke  func t ions ,  and a re  not
based on a d is t inc t ion  o f  inpu t  and output  arguments, l i ke  re la t ions .  A
la rger  example o f  ESCVAL uses w i l l  be t rea ted  in  sec t ion  8 .2 .

A more  genera l  ESCVAL opera to r  m igh t  p re f i x  an  a rb i t ra ry  express ion
such tha t  i t s  va lue  rep laces  tha t  o f  the  d i rec t l y  superord ina te
expression:  th is  would a l low  escaping va lues  o f  reques t  va r iab les
occur r ing  ind i rec t l y  in  reques t  express ions  by  p re f i x ing  a l l
i n te rmed ia te  expressions w i th  "$" .  More p rec ise ly .  a genera l  ESCVAL
express ion  o f  the  fo rm

( r  p1

p I - I
$(s q1 . . .  qJ—1 $ ( . . .  $I?v . . . )  qJ+1 . . .  qN)
p I+1

pH)

could be  de f ined  by  the  LOCAL express ion
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(LOCAL ( r  p1

pI—1
( s  q1 . . .  qJ-1 ( . . .  l?v  . . . )  qJ+1 . . .  qN)
pl . )

pH)

(v )

3 .2  Func t i on  Cal l s  with Reques t  Var iab le s

3 .2 .1  In terpre t ing  Re la t ions  a s  Charac ter i s t i c  Funct ions  -

An M—place re la t ion  also def ines  an  add i t iona l  M-ary func t ion ,
namely  i t s  charac ter i s t i c  func t ion .  S ince .  in  F IT .  re la t ion  ca l l s
re turn  va lues .  th i s  func t iona l  v i ew  o f  re la t ions  i s  impl i c i t  in  tha t
language ;  for  example .  the  FIT re la t ion  ca l l  [pred ica te  func t ion  ca l l ]

(NTHP 3 ' (A  B C D) C)

re turns  the  ' t rue '  va lue  (NTHP 1 (C D) C) .  In  genera l ,  a
' fa l s e ' - fa i l ing  re la t ion  ca l l  in  FIT y i e lds  jF .  an  'unknown' - fa i l ing
one  y i e lds  jU .  and  a succes s fu l  one  re turns  T or  any  o ther  va lue
unequa l  to  jF  or  jU .  In  PROLOG. re la t ion  ca l l s  don ' t  re turn  va lues :  for
example .  the  PROLOG re la t ion  ca l l

7 -  n thp(3 . [a .b . c .d ] . c ) .

pr in t s  ' ye s '  but  doesn‘ t  re turn  anyth ing .

Suppose  some  FIT  programmer  doesn‘ t  want  compound  t ru th -va lues  l ike
(NTHP 1 (C D) C) a s  used  for  ques t ion—overanswer ing ,  wh ich  here  can  be
in terpre ted  as  ”Yes [C  i s  the  3rd  e l ement  o f  (A B C 0) ]  because C i s
the  1 s t  e l ement  o f  (C D )" .  This  programmer may obta in  the  a tomic
t ru th -va lue  T by  rewr i t ing  fac t s  wh ich  are  adapters  o f  the  form

( r  p1 . . .  pM)

as  t rans formers  o f  the  form

( ) ( r  p1 . . .  pH) T)

For  example ,  the  NTHP fac t

(NTHP 1 (?X #10)  7X)

can  be  rewr i t t en  as

(>(NTHP 1 (?X #10)  ?X) T)

Now the  ca l l

(NTHP 3 ' (A  B C D) C)
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wou ld  re tu rn  the a tom T. Similarly. the usual numeric characteristic

func t ions  cou ld  be modelled directly be defining facts as t r ans fo rmers

that r e tu rn  1 instead of T [and 0 i n s tead  of jF].

The important observation is that all these relation—derived
functions in FIT can still be used with request variables. so that.

besides returning values. they also yield variable binding effects. For
example. the call

(NTHP 3 '(A e c D) | ?x )

would return some 'true' value. according to the already discussed

alternatives used to define the NTHP fact. and it would also bind x to
C.

3 .2 .2  Extending Relations to General Functions —

While the values returned by characteristic functions are primarily
truth—values, nothing changes if we use arbitrary values. That is. in

FIT not on l y  predicate-like functions but also arbitrary general

functions can be used with request variables.

To demonstrate this. we can start with another predicate function

KNOWS. defined as a transformer fact for JOHN and MARY:

(>(KNOHS JOHN MARY) 1)

If we extend the two—valued characteristic function to a many—valued
probabilistic. possibilistic, or fuzzy function. we can modifiy the
previous fact to something like

(>(KNOHS JOHN MARY) .82‘)

Now a request like (KNOWS JOHN I?X)  returns .824 and binds x t o  MARY.
Instead of numeric certainty degrees we can also use symbolic ones as
in

()(KNOHS JOHN HARY) QUITE-WELL)

Now a request like (KNOWS JOHN I?X)  returns QUITE-HELL and binds X to
MARY. Symbolic values can not only represent degraded truth but also
many other things. such as the person believing the fact as in

()(KNONS JOHN MARY) (OPINIONOF PAUL),

Now a request like (KNOWS JOHN | ?X)  returns (OPINIONOF PAUL) and binds
X to MARY.

If the original fact contains variables [understood to be quantified
universally], then the value may be an expression in these variables.
For example, the fact

(NEEDS ?EVERYBODY A-PRODUCT)

cannot only be extended t o  a function with a constant value. like
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(>(NEEDS ?EVERYBODY A—PRODUCT) IN THE EYES OF A-COMPANY)

but also t o  a func t ion  with a var iab le  value. like

(>(NEEDS ?EVERYBODY A-PRODUCT) ESPECIALLY (EVERYBODY WILL NEED IT)

With the l a t t e r  definition a reques t  like (NEEDS JOHN I?X)  re turns
ESPECIALLY JOHN WILL NEED IT and binds X to A-PRODUCT.

In general for each  relation definition

(r p1 .... pM)

and arbitrary value v .  which may depend on p1, . . . ,  pH. there is a
function definition

(r p1 . . . .  pH) := v

or, in F IT ,

(> (r  p1 ... pM) v)

That is. each relation can be extended to a function. Although in
PROLOG r e l a t i on  definitions of the above form correspond to facts only,
rule-defined relations must also be 'grounded' in facts. to which.

then. the function—generalization is applicable. The values o f  the

ground facts can be calculated and passed back across the rule arrows.
For this. a PROLOG rule definition [in FIT syntaxl'

(>(r p1 ... pM) (r1 ...) ... (r2 ...))

can be replaced by

(>(r p1 ... pM) (combine (r1 ...) ... (r2 . . . ) ) )

where combine is some function combining the values returned by the
conjuncts o f  the rule body. For numeric values combine=TIHES or
combinezMIN may be applied, as usual; for symbolic values there are
many combination possibilities. the most trivial being combine=LIST
[combine must fulfill the requirement of strictness. so that jF and jU
signals can escape from its calls].

Since such a function in FIT can be used as a relation [i.e. with
arbitrary fixed and open arguments] by simply ignoring the value
returned as long as it is 'true'. FIT functions can be said to be 'more
general' than relations.

Of course. the M-ary function (>(r p1 ... pM) v ) .  derived from the
M-ary relation (r p1 ... pH) .  can again be represented as an M+1-ary
relation (r p1 ... pM v); for example, (>(KNONS JOHN MARY) (OPINIONOF
PAUL)) thus becomes (KNOWS JOHN MARY (OPINIONOF PAUL)). And of course.
the M+1—ary relation could again be generalized to an M+1—ary function
()(r p1 ... pH v) v ' ) .  e . g . .  (KNOHS JOHN MARY (OPINIONOF PAUL)) to
(>(KNONS JOHN MARY (OPINIONOF PAUL)) QUITE-WELL). etc. ad infinitum.
However, this misses the point that relation calls don't exploit the
linguistic dimension of returning useful values although nothing would
prevent them from doing so.



_ 3 0  -

Finally note  that relations generalized to functions by means of

ex tend ing  definitions. can still be used  as functions by means of the
ESCVAL operator [subsection 3 .1 .41 .  because this use is def ined  by the

LOCAL semantics of ESCVAL: After the func t ion  extension (>(r p1 ... pM)

v) the ESCVAL expression (r p1 ... pf-T $(?w pI+T ... pM) expands to

(LOCAL (r p1 ... pI-1 (7w pl+1 ... pH) : (w) .  hence throws away the
value v returned by (r p1 ... pI—f |?w pI+1 ... pM) and instead‘returns
the value Of w. For example. after (>(KNOWS JOHN MARY) QUITE—WELL) the
r e q u e s t  (KNOWS S I ? “  MARY)  v i a  (LOCAL (KNOWS I ? ”  MARY)  : (N ) .  (LOCAL

(GLOBAL (()” JOHN) !  QUITE-WELL) : (W) .  and (LOCAL ( (>N  JOHN?) ( W )
returns JOHN. In  o ther  words ,  the programmer need not be aware of what

kind' of ' t rue ’  value an expression would return if used without an
ESCVAL operator; if used with ESCVAL, it always returns the

ESCVAL-marked subexpression.

3 .2 .3  Using Functions like Relations -

We now proceed to three examples of functions not derived from

relations and still usable with request variables, like relations.

A unary function FATHEROF can be defined by a set of individual

settings such as

(>(FATHEROF ATHENA) ZEUS)
(>(FATHEROF APOLLO) ZEUS)
(>(FATHEROF zsus) cnonus)

This FATHEROF function can not on ly  be  called with a fixed argument as
in (FATHEROF ATHENA) returning ZEUS, but also with a request variable
argument as in (FATHEROF |?X) non—deterministically returning ZEUS and
binding X to ATHENA, returning ZEUS and binding X to APOLLO, or

returning CRONUS and binding X to ZEUS. In general. function calls all
of whose arguments are request variables enumerate the function's range
and bind  the variables to the corresponding domain elements. In the
FATHEROF example the call returns all persons known to be fathers and
binds the single request variable argument to their children.

A binary function PARENTS can be defined similarly as

(>(PARENTS ABRAHAM HAGAR) rSHHAEL)
(>(PARENTS ABRAHAM SARAH) ISAAC)

[The persons of th is  de f in i t ion  were  quoted previously to illustrate
various things; in the PROLOG literature the males occur in (Clocksin &
Mellish 1981) and the females were added in (Fuhlrott 1982 ) . ]

This PARENTS function can be called as follows. The child of ABRAHAM
and SARAH is obtained when both arguments are correspondingly fixed as
in (PARENTS ABRAHAM SARAH). returning ISAAC.  All children of ABRAHAM
and any woman are obtained when the first argument is fixed to ABRAHAM
and the second is left open as in (PARENTS ABRAHAM I?X) .
non-deterministically returning ISAAC and binding x to SARAH ‘or
returning ISHMAEL and binding X to HAGAR. All children o f  HAGAR and any
man are obtained when the second argument is f i xed  to HAGAR and the
first is left open as in (PARENTS l?X HAGAR). returning ISHMAEL and
binding X to ABRAHAM. In general. function calls some of whose
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arguments  are  reques t  variables and  the  o ther  ones  are  f i xed  enumerate
the  func t ion ' s  subrange  under  the  f i xed  arguments  and  b ind  the
var iab le s  to  the  remain ing  domain  e l ements .  A l l  ch i ldren  o f  any  man and
woman are  obta ined  when  both  arguments  are  l e f t  open  as  in  (PARENTS I?X
| ?Y ) .  re turn ing  ISAAC and b ind ing  X to  ABRAHAM and Y to  SARAH or
re turn ing  ISHMAEL and  b ind ing  X to  ABRAHAM and  Y to  HAGAR.

In  genera l .  o f  course .  the  PARENTS func t ion  i s  non—determin i s t i c  even
for  f i xed  fa thers  and mothers .  Th i s  can  be  expres sed  us ing  the  “v"
pre f ix  [ c f .  s ec t ion  6 .2 ]  a s  in

(V(PARENTS ISAAC REBECCA) ESAU)
(V(PARENTS ISAAC REBECCA) JACOB)

Now even  wi th  bo th  arguments  f i xed  as  in  (PARENTS ISAAC REBECCA) we
non-de termin i s t i ca l ly  obta in  ESAU or  JACOB. with  the  f i r s t  argument
f ixed  to  ISAAC and the  s econd  l e f t  open  as  in  (PARENTS ISAAC I?X)  we
al so  obta in  ESAU or  JACOB, in  bo th  cases  x becoming  bound to  REBECCA.
Reques t s  l ike  (PARENTS | ?X  REBECCA) and (PARENTS | ?X  |?Y)  behave
s imi lar ly .

A recurs ive  func t ion  HONOI for  in i t i a l i z ing  homogeneous ly  co lored
towers  o f  Hang;  o f  g iven  h ight  by cons truc t ing  them as  impos i t i ons  o f
the  d i sks  ava i lab le  in  the  da ta  base  can  be  de f ined  as

(>(HONOI ?DIAMETER ?COLOR)
(DISK (DIAMETER (COLOR)
(HONOI (SUBI (DIAMETER) <COLOR))

(>(HONOI 0 ?COLOR))
(DISK 1 RED)
(DISK RED)
(DISK RED)
(DISK BLUE)
(DISK BLUE)
(DISK BLUE)N

U
-I

N
U

This  func t ion  can  be  ca l l ed  wi th  f i xed  co lor  argument  a s  in  (HONOI 3
RED), re turn ing  the  impos i t i on

(DISK 3 RED) (DISK 2 RED) (DISK 1 RED)

or  wi th  an  open  co lor  argument  a s  in  (HONOI 3 |?X ) .  re turn ing  the
impos i t i ons

(DISK 3 BLUE) (DISK 2 BLUE) (DISK 1 BLUE)

or

(DISK 3 RED) (DISK 2 RED) (DISK 1 RED)

The second  HONOI ca l l  chooses  a s ing le  co lor  for  a l l  d i sks  o f  a tower .
here  b lue  or  red .  Nonhomogeneous ly  co lored  towers  cannot  be  cons truc ted
because  a l l  occurrences  o f  the  co lor  reques t  var iab le  | ?X  must  be  bound
cons i s t en t ly .  A l though  in  bo th  cases  we ca l l ed  the  HONOI func t ion  wi th
f ixed  d iameter  arguments ,  i t  can  a l so  be  ca l l ed  wi th  an  open  d iameter
argument ,  but  then  in  F IT -1  on ly  the  d iameter  0 i s  chosen  and the  empty
tower  i s  cons truc ted .



- 32 -

3 .3  H igher -o rder  Func t ions  and  Rela t ions

3 .3 .1  The Direc t  Approach -

Let  us begin with expressions cons is t ing  o f  severa l  func t ions .  A
nested func t ion  ca l l .  i n  the  s implest  case having the  form

g(h (a ) )

fo r  PROLOG must f i rs t  be rewr i t t en  as a con junc t ion  o f  two func t ion
ca l l s  communica t ing  v ia  a t emporary  va r iab le  x ,

x=h(a ) ,  y=9 (x )

which  can  then  be  pu t  in to  a re la t iona l  fo rm

h—P(a.x) .  g -P (x .y )

This l eads  to  a f l a t  sys tem o f  re la t ion  ca l l s  w i th  many temporary
var iab les  whose correspondence i s  o f ten  d i f f i cu l t  to  es tab l i sh .  On the
o ther  hand. F IT 's  LISP—like nes t ing  form

(g  (h  a ) )

l eads  to  deep ly  nes ted  func t ion  ca l l s  w i th  many c los ing  paren theses .  To
avoid  unnecessary parentheses in  F IT  a r igh t -assoc ia t i ve  ' app ly '  in f i x
opera to r  “ "  can  be  used  fo r  unary  func t ions .  s imp ly f ing  the  above
nes t ing  to

g :h :a

PROLOG's need fo r  temporary "ob jec t  va r iab les"  makes i t  imposs ib le
to  use  h igher -o rder  func t ions  o r  “ func t ion - leve l  opera to rs"  in  the
sense  o f  (Backus  1902 )  in  tha t  l anguage .  An examp le  of  wha t  cannot  be
expressed  in  PROLOG is  a func t ion  compos i t ion  l i ke

goh

which in  Backus' FP. in  F IT .  and in  o ther  func t iona l  languages can be
passed  as  an  a rgument  and  re tu rned  as  a va lue .  independent ly  o f  the
arguments  to  wh ich  i t  w i l l  be  even tua l l y  app l i ed .  On ly  on  app l ica t ion
to  an  a rgument  a can  the  compos i t ion  goh  be  expanded  to  the  nes t ing
g(h (a ) ) .  and on ly  then could the  above rewr i t ing  to  the  corresponding
re la t iona l  PROLOG form beg in .

More genera l l y .  PROLOG's res t r i c t ion  to  f i rs t -o rder  p red ica te
ca lcu lus  prevents  opera t ions  on re la t ions .  i . e .  i t  fo rces  every th ing
tha t  i s  sa id  to  be sa id  about ind iv idua ls  [Backus‘ ob jec ts ] .
Higher -o rder  func t ions  o r  p red ica tes  [ re la t ions ]  a re  no t  ava i l ab le .
Thus a very  use fu l  dimension o f  abs t rac t ion  i s  no t  exp lo i ted  in  PROLOG.

For example, in  F IT  we can form the  composit ion o f  the  successor
func t ion  g=SUCC and  the  square  func t ion  h=SOUARE, SUCCoSOUARE. where
' o  i s  an in f i x  shorthand fo r  the  h igher -o rder  COMPOSE func t ion .  which
becomes exp l i c i t  i n  the  unshortened no ta t ion  (COMPOSE SUCC SQUARE).
H igher -o rder  func t ions  can be de f ined  in  F IT  l i ke  f i rs t—order
func t ions .  For  example, a l though COMPOSE is  bu i l t  i n to  FIT—1, i t  could
be  de f ined  in  F IT -1  i t se l f  by
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3 .3  H igher -o rder  Func t ions  and  Rela t ions

3 .3 .1  The Direct Approach -

Le t  us begin wi th  expressions cons is t ing  o f  several func t ions .  A
nested func t ion  ca l l .  i n  the  s imples t  case hav ing the  form

g(h(a ) )

fo r  PROLOG must f i rs t  be rewr i t t en  as a con junc t ion  o f  two func t ion
ca l l s  communica t ing  v ia  a t emporary  va r iab le  x .

x=h(a ) .  y=g(x )

which can  then  be  pu t  in to  a re la t iona l  fo rm

h-P (a .x ) .  g -P (x .y )

This  l eads  to  a f l a t  system o f  re la t ion  ca l l s  w i th  many temporary
var iab les  whose cor respondence  i s  o f ten  d i f f i cu l t  to  es tab l i sh .  On the
other  hand. F IT 's  LISP—like nes t ing  form

(g  (h  a ) )

l eads  to  deep ly  nes ted  func t ion  ca l l s  w i th  many c los ing  paren theses .  To
avoid  unnecessary parentheses in  F IT  a r igh t -assoc ia t i ve  ' app ly ‘  in f i x
opera to r  “ "  can  be  used  fo r  unary  func t ions .  s imp ly f ing  the  above
nes t ing  to

g:h :a

PROLOG's need fo r  temporary “ob jec t  va r iab les“  makes i t  imposs ib le
to  use  h igher—order  func t ions  o r  " func t ion - leve l  opera to rs '  in  the
sense  o f  (Backus  1982 )  in  tha t  l anguage .  An examp le  of  wha t  cannot  be
expressed  in  PROLOG is  a func t ion  compos i t ion  l i ke

goh

which  in  Backus '  FP .  in  F IT .  and  in  o ther  func t iona l  l anguages  can  be
passed  as  an  a rgument  and  re tu rned  as  a va lue .  independent ly  o f  the
arguments  to  wh ich  i t  w i l l  be  even tua l l y  app l i ed .  On ly  on  app l ica t ion
to  an  a rgument  a can  the  compos i t ion  goh  be  expanded  to  the  nes t ing
g(h (a ) ) ,  and on ly  then  could the  above rewr i t ing  to  the  corresponding
re la t iona l  PROLOG form beg in .

More genera l l y .  PROLOG's res t r i c t ion  to  f i rs t -o rder  p red ica te
ca lcu lus  p revents  opera t ions  on  re la t ions .  i . e .  i t  fo rces  every th ing
tha t  i s  sa id  to  be sa id  about ind iv idua ls  [Backus'  ob jec ts ] .
Higher -o rder  func t ions  o r  p red ica tes  [ re la t ions ]  a re  no t  ava i l ab le .
Thus a ve ry  use fu l  d imens ion  o f  abs t rac t ion  i s  no t  exp lo i ted  in  PROLOG.

For example, in  F IT  we can form the  composit ion o f  the  successor
func t ion  g=SUCC and  the  square  func t ion  h=SnUARE. SUCCoSOUARE. where
“a i s  an in f i x  shorthand fo r  the  h igher -o rder  COHPOSE func t ion .  which
becomes exp l i c i t  i n  the  unshortened no ta t ion  (COHPOSE SUCC SQUARE).
H igher -o rder  func t ions  can be de f ined  in  F IT  l i ke  f i rs t -o rder
func t ions .  For  example, a l though COMPOSE is  bu i l t  i n to  F IT -1 .  i t  could
be  de f ined  in  F IT -1  i t se l f  by
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3 .3  H igher -o rder  Func t ions  and  Relations

3 .3 .1  The  Direct Approach  —

Let  us begin with expressions cons is t ing  o f  severa l  func t ions .  A
nested func t ion  ca l l .  i n  the  s imples t  case having the  form

g(h(a ) )

fo r  PROLOG must f i rs t  be rewr i t t en  as a con junc t ion  o f  two func t ion
ca l l s  communica t ing  v ia  a t emporary  va r iab le  x .

x=h (a ) .  y=g (x )

which can  then  be  pu t  in to  a re la t iona l  fo rm

h—P(a.x) .  g—P(x.y)

Th is  l eads  to  a f l a t  sys tem o f  re la t ion  ca l l s  w i th  many temporary
var iab les  whose cor respondence  i s  o f ten  d i f f i cu l t  to  es tab l i sh .  On the
other  hand. F IT 's  LISP—like nes t ing  form

(g  (h  a ) )

l eads  to  deep ly  nes ted  func t ion  ca l l s  w i th  many c los ing  paren theses .  To
avoid  unnecessary parentheses in  F IT  a r igh t -assoc ia t i ve  ' app ly '  in f i x
opera to r  ' - '  can  be  used  fo r  unary  func t ions .  s imp ly f ing  the  above
nes t ing  to

g:h :a

PROLOG's need fo r  temporary ”ob jec t  va r iab les"  makes i t  imposs ib le
to  use  h igher—order  func t ions  o r  " func t ion—leve l  opera to rs“  in  the
sense  o f  (Backus  1982 )  in  tha t  l anguage .  An example  o f  wha t  cannot  be
expressed  in  PROLOG is  a func t ion  compos i t ion  l i ke

goh

which  in  Backus '  FP .  in  F IT .  and  in  o ther  func t iona l  l anguages  can  be
passed  as  an  a rgument  and  re tu rned  as  a va lue ,  independent ly  o f  the
arguments to  which i t  w i l l  be even tua l l y  app l i ed .  Only on app l ica t ion
to  an  a rgument  a can  the  compos i t ion  goh  be  expanded  to  the  nes t ing
g(h (a ) ) ‚  and on ly  then could the  above rewr i t ing  to  the  corresponding
re la t iona l  PROLOG form beg in .

More  genera l l y .  PROLOG's res t r i c t ion  to  f i rs t -o rder  p red ica te
ca lcu lus  p revents  opera t ions  on  re la t ions .  i . e .  i t  fo rces  every th ing
tha t  i s  sa id  to  be sa id  about ind iv idua ls  [Backus'  ob jec ts ] .
H igher -o rder  func t ions  o r  p red ica tes  [ re la t ions ]  a re  no t  ava i l ab le .
Thus a ve ry  use fu l  d imens ion  o f  abs t rac t ion  i s  no t  exp lo i ted  in  PROLOG.

For example. in  F IT  we can form the  composit ion o f  the  successor
func t ion  g=SUCC and the  square func t ion  h=SOUARE, SUCCoSOUARE. where
‘o '  i s  an in f i x  shorthand fo r  the  h igher -o rder  COMPOSE func t ion .  which
becomes exp l i c i t  i n  the  unshor tened  no ta t ion  (COMPOSE SUCC SQUARE).
Higher -o rder  func t ions  can be de f ined  in  F IT  l i ke  f i rs t -o rder
func t ions .  For example. a l though COMPOSE is  bu i l t  i n to  F IT -1 ,  i t  could
be  de f ined  in  F IT -1  i t se l f  by
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(>((COMPOSE ?G ?H) >X) ( (G  ( (H  <X) ) )

A composition can t hen  be used exac t ly  like an ord ina ry  func t ion .  say .
with the  argument 3 as in

((COHPOSE SUCC SQUARE) 3 )

which r e tu rns  10 .  I t  can also be used as the  paramenter o f  the
higher—order "8 '  [REPEAT] func t ion ,  which app l ies  i t s  parameter to  i t s
a rb i t ra ry  number o f  arguments. ob ta in ing  (REPEAT (COMPOSE SUCC SQUARE))
o r  8(COMPOSE SUCC SQUARE). The ob jec t  ¢(COMPOSE SUCC SQUARE) can aga in
be used as an o rd inary  func t ion ,  fo r  ins tance  w i th  the  four  arguments
O. 1 ,  2 .  and  3 as  in

(#(COMPOSE SUCC SQUARE) 0 1 2 3 )

re tu rn ing  1 2 5 10 .

3 .3 .2  Warren's  S imu la t ion  Method -

As d iscussed  above .  such  compos i t ions  cannot  be  expressed  in  PROLOG
as i t  s tands.  Nor i s  i t  poss ib le  to  de f ine  a higher—order compose
pred ica te .  ana logous  to  F IT 's  h igher -o rder  COMPOSE func t ion  de f in i t ion .
by  someth ing  l i ke

compose(G,H)(X.Z)  :— H(X ,Y ) .  G (Y .Z ) .

wh ich  could t hen  be  i nvoked  by

?-  compose(succp.squarep)(3.Ans).

The  only way ou t  i s  to  imp lement  compos i t ions  as  par t  o f  a new language
on  top  o f  PROLOG. In  o ther  words .  goh  must  be  used  as  a da ta  ob jec t .
namely as a te rm composetg,h) .  For ins tance .  (Warren 1982) in t roduces  a
pred ica te  app ly .  wh ich  rea l l y  i s  an  in te rpre te r  o f  a l anguage  o f  ' t e rm
programs' l i ke  compose(g,h) .  One de f in ing  c lause  o f  the  in te rpre te r
app ly  may spec i fy  wha t  to  do  w i th  such  compose s t ruc tures :

apply(compose(G.H) ,X .Z)  : -  app1y (H .X ,Y ) .  app l t .Y .Z ) .

But  now we must  a lso  spec i fy  app ly  c lauses  fo r  every  func t ion  g and  h
tha t  i s  to  be  used  in  the  compos i t ion -ex tended  PROLOG; e .g .  fo r  succp
and  squarep  we have  to  p rov ide  the  app ly  de f in i t ions

app ly (succp .x1 .X2 )  :— succp(X1 .X2) .
app ly tsquarep ,x1 ,x2 )  : -  squarep(X1 ,X2) .

a long w i th  the  o rd inary  succp and squarep de f in i t ions

succp(X.Y)  : -  Y i s  X+1.
squarep (X .Y )  :— Y i s  X*X .

Af te r  these  p repara t ions  we can  use  app ly  fo r  compose lsuccp .squarep )
and the  argument 3 as in

? -  apply(compose(succp.squarep) ,3 ,Ans) .
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which  b inds  Ans to  10 .  However  we ge t  an  e r ro r .  i f  we t ry  the  ana logue
of  repea t ing  the  compose te rm over  severa l  a rguments .  by  mapp ing  i t
over a l i s t  o f  these arguments w i th  the  map l is t  re la t ion  fo r  p red ica tes
descr ibed in  (C locks in  & Mellish 1981 ) .  We must again def ine  a special
app l y  vers ion  fo r  mapping, which we ca l l  'mapp ly l i s t ' :

mapp ly l i s t (_ . [ ] . [ ] ) .
mapplyl ist tP. [XlL] . [YIM])  :—

app ly iP .X .Y ) .
mapply l i s t (P .L .M) .

Using th is  we can eventua l l y  s imula te  what we want:

? -  mapp ly l i s t tcompose(succp .squarep ) . [ 0 .1 .2 .3 ] .Ans ) .

binds Ans to  the  l i s t  [ 1 .2 .5 .10 ] .

We don ' t  regard  th is  s imu la t ion  o f  h igher -o rder  func t ions  in  PROLOG
as  a p roper  ex tens ion  o f  tha t  l anguage  because  i t  doesn ' t  pe rmi t  the
d i rec t  use  o f  the  o r ig ina l  l anguage  kerne l  [ e .g .  succp ,  squarep .
map l is t ]  f rom the  newly  de f ined  cons t ruc ts .  War ren  i s  rea l l y  beg inn ing
to  de f ine  a new in te rpre te r  when he in t roduces  apply  de f in i t ions ,
a l though  he  doesn ' t  seem to  no t ice  th is  s ta tus  o f  app ly .  He  even  a rgues
tha t  the  ' ex tens ion '  can  be  regarded  as  “syn tac t ic  sugar“  fo r  s tandard
f i r s t -o rder  log ic ;  th is  use o f  the  te rm "syn tac t ic  sugar" has
comple te ly  los t  the  o r ig ina l  mean ing  o f  (Land in  1955 ) .  whose LET
ex tens ion  does  l eave  the  under ly ing  LAMBDA kerne l  l anguage  un touched .
I n  (Warren 1982) i t  i s  s ta ted  tha t  fo r  the  h igher - to—f i rs t -o rder
reduc t ion  a c lause

“app ly ( foo ,X1 . . . . ,Xn )  : -  go (X1 ‚ . . . .Xn ) .

is suppl ied  fo r  each p red ica te  £99 which needs to  be t rea ted  as a da ta
ob jec t " ,  and  we have  done  th is  fo r  succp  and  squarep .  bu t  ac tua l l y  th is
means tha t  one  needs  an  add i t iona l  c lause  fo r  all p red ica tes  one  ever
wants  to  use  as  a rguments  o f  h igher—order  p red ica tes .  However ,  when you
def ine  a p red ica te  l i ke  succp  or  squarep  you  norma l ly  don ' t  know
whether you o r  o ther  programmers w i l l  need i t  a t  some la te r  po in t  in  a
h igher -o rder  cons t ruc t  l i ke  compose.  tw ice .  o r  wha tever .  A f te r  some
er rors  caused  by  miss ing  app ly  c lauses  you  w i l l  ce r ta in ly  con templa te  a
convent ion  fo r  genera l l y  supp ly ing  p red ica tes  w i th  the  add i t iona l  app ly
c lause .  However .  s ince  many o f  these  c lauses  wou ld  never  be  used .  the
resu l t ing  inc rease  o f  code  wou ld  be  unacceptab le  because  i t  makes
programs less  readab le  and  more  s to rage  consumpt ive .  I t  was there fo re
proposed by (Nebe l  1983) to  de f ine  apply  us ing  PROLOG's "= . . "  and
"ca l l "  p red ica tes ,  which abbrev ia tes  Warren's  c lauses fo r .  say.  n=2 to
the  s ing le  genera l  c lause

app l too ,x1 ,X2 )  :— 0= . . [Foo .X1 .X2 ] .  ca l l ( 0 ) .

tha t  could be fu r ther  genera l i zed  by always us ing .  l i ke  L ISP 's  APPLY,
one argument 1131 X ins tead  o f  some f i xed  number n o f  arguments X1.

. . .  Xn. Although th is  de f in i t ion  i s  very  conc ise .  i t  does no t  on ly
depend on the  ex t ra - log ica l  “ : . . "  and "call” f ea tu res  bu t  must a lso  be
pos i t ionned  jud ic ious ly ,  name ly  a f te r  a l l  o ther ,  spec i f i c  app ly
c lauses .  Th is ,  in  tu rn .  en ta i l s  tha t  a l l  these  spec i f i c  c lauses must be
augmented by  a cu t  opera to r  to  p revent  ca l l s  l i ke
apply(compose(succp.sqr tp) .9 ,Ans)  from fa l l ing  in to  the  l as t ,  ca tch -a l l



- 3 5 -

app l y  definition if their body fails [say, because sqr tp  is undefined].

In our example  this leads t o

apply(compose(G.H1.X.Z) :— !. apply(H.X.Y). apply1G.Y.Z).
apply(twice(G),X,Z) :— !. app1y(G.X.Y). app ly (G .Y .Z ) .

apply(Foo.X1,X2) :— 0=..[Foo.x1,X2], callto).

One might therefore s t a r t  to consider building app l y  clauses implicitly

into the PROLOG interpreter, thus taking the first step toward really
extending PROLOG for higher—order constructs. Warren's simulation

method may be theoretically nice. but it isn't practical.

Kowalski. unlike Warren. has recently acknowledged that higher-order
functions are a serious problem for PROLOG—like languages; however. his
attempt to use a logical metalanguage for simulating higher-order
functions is still quite "complicated” (Kowalski 1983 ) .  and looks even
less practical than Warren's simulation.

3.3.3 New Higher-order Functions from Old —

Noticing the relationship between the above compose and twice
definitions. we may. l i n  addition, ask if the really nice features of
functional programming. like the definition o f  higher-order functions

[e.g. TWICE] by other higher-order functions [e.g. COMPOSE]. as opposed
to their above "object-level" (Backus 1982) definitions. can in
principle be expressed nearly as nicely in relational programming. For
example. the TWICE-by-COMPOSE definition in FIT can be formulated very
concisely with

(>(TWICE ?G) (COMPOSE (G <61)

which may be called on the top-level, as in

(TWICE A0011
IQQHEQSE A001 A201!

returning a higher—order function. or in a functional position. as in

((TWICE A001) 01
(1COMPOSE ADDI ADD‘) 01
(A001 (A001 D))

Z

applying the higher—order function and returning a data object.
Concerning PROLOG. even if a definition

apply1twice1G),X.Z) : -  app1y(compose(G,G).X,Z).

in ordinary PROLOG, can be shortened to

twice(G)(x,Z) :— compose(G,G)(X,Z).

in an extended PROLOG. the redundant object variables X and Z cannot be
omitted, i.e. the definition cannot be shortened to something like



_ 35  _

tw ice(G)  :— compose(G,G).

without  introducing func t ions  as  a t rue  counte rpar t  to  re la t ions .

To see  the  re levance  o f  the  above  d iscuss ion  fo r  day - to -day
re la t iona l  p rogramming .  cons ider  the  PROLOG c lauses

grandfa thero fp (x .2 )  : -  pa ren to fp (X .Y ) .  f a thero fp (Y ,Z ) .
unc leo fp tx .2 )  :— paren to fp (X .Y ) .  b ro thero fp (Y .Z ) .

where  " . . . "  s tands  fo r  ana logous  ru les  fo r  g randmothero fp ,  aun to fp  e tc .
Such re la t ions  cou ld  be  rede f ined  on  a h igher  l eve l  o f  abs t rac t ion  in  a
most concise manner as

grandfa thero fp  : -  compose( fa thero fp ‚paren to fp ) .
unc leo fp  : -  compose(bro thero fp ‚paren to fp ) .

w i thout  requ i r ing  a l l  these  ob jec t  va r iab les  X .  Y .  and  2 but  ins tead
using the  p rev ious ly  discussed h igher -Order  compose p red ica te .  Whi le
th is  i s  on ly  a sugges t ion  fo r  an  ex tended  PROLOG, the  cor respond ing
func t iona l  de f in i t ions

(>GRANDFATHEROF (COMPOSE FATHEROF PARENTOF)!
(>UNCLEOF (COMPOSE BROTHEROF PARENTOF)’

a re  a rea l i t y  in  F IT -1 .

& PROLOG STRUCTURES AND F IT  COMPOUNDS

As an  a l te rna t ive  to  L ISP  l i s ts ,  PROLOG uses  so -ca l l ed  ' s t ruc tures ' .
a lso  ca l l ed  'compound te rms ' .  A s t ruc ture  cons is ts  o f  a func tor  f of
ar i ty  N and arguments a1 .  a2 ,  . . . .  aN: the  arguments may aga in  be
s t ruc tures .  I t  i s  wr i t t en  in  the  usua l  mathemat ica l / log ica l  p re f i x
no ta t ion

f (a1 ,a2 . . . . . aN )

F IT 's  genera l i za t ion  o f  LISP l i s ts  a re  'compounds'. bu t  on ly  the i r
l i s t—l ike  subse t  i s  cons idered  exp l i c i t l y  here  and  la te r  on .  The  above
PROLOG s t ruc ture  in  F IT  can  be  represented  by  a compound o f  l eng th  N+ l
wi th  a d is t ingu ished  f i rs t  element f "  and remaining elements a t " .  32" .

. . .  aN" .  I t  i s  wr i t t en  in  L ISP 's  Cambr idge  Po l ish  p re f i x  no ta t ion

( f~  a1~ az" aN")

where f "  i s  a FIT atom corresponding to  the PROLOG-functor f and a1".
az",  . . . ,  aN~ are recursively rewr i t ten subexpressions corresponding to
a1 .  a2 .  . . . ,  aN,  respec t ive ly .  down to  the  g round—leve l  o f  PROLOG
constan ts  wh ich  a re  rewr i t t en  to  F IT  cons tan ts  by  in teger"= in teger  and
atom"=ATOM.
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As an examp le  let us consider the notation of LISP's dotted pairs as

PROLOG structures and a co r respond ing  FIT representation. Such a
structure uses a functor f:“." of arity N=2 and two arguments, say,

a1=alfa and a2=beta. hence  it may look like

.(alfa,beta)

The corresponding compound of length N+1=3 uses the distinguished. atom

f"=DOT and arguments a1"=ALFA and aZ"=BETA. i.e. it is

(DOT ALFA BETA)

Similarly a PROLOG structure nesting like

.(alfa,.(beta,.(gamma.nil)))

} becomes the FIT compound nesting

(DOT ALFA (DOT BETA (DOT GAMMA N IL ) ) )

PROLOG structures have an important restriction as compared to L ISP
lists and FIT compounds, namely their fixed arity. Besides the binary
"."-functor PROLOG could use a triple functor allowing structures like
triple(alfa,beta,gamma), a quadruple functor allowing structures like
quadrup1e(alfa,beta,gamma,delta) etc. but not a general tuple functor
allowing all these structures tuple(alfa.beta), tuple(alfa.beta,gamma),
tuple(a1fa.beta,gamma.de1ta) etc. F IT ,  on the other hand, besides DOT
compounds not only allows TRIPLE  compounds like (TR IPLE  ALFA BETA
GAMMA), QUADRUPLE compounds like (QUADRUPLE ALFA BETA GAMMA DELTA) etc.
but also general TUPLE compounds like (TUPLE ALFA BETA) .  (TUPLE ALFA
BETA GAMMA). (TUPLE ALFA BETA GAMMA DELTA) etc.

A PROLOG functor f has either a single fixed arity N or it is
'overloaded' by a. usually small. finite number k of fixed arities N1,

.. Nk. Occurrences of an arity-overloaded functor f are sometimes
written along with their arities N1. . . . ,  Nk as f/N1, . . . ,  f/Nk, which
can also be regarded as k different functors. each with its own fixed
arity. Lists and compounds, on the other hand. can be used with a
distinguished first element followed by a varying, potentially infinite
number of arguments, with available computer memory being the only
restriction on the maximum argument number. For example. sets whose
cardinality is an arbitrary non—negative integer cannot be represented
as unnested PROLOG structures but can be represented as unnested FIT
compounds using the distinguished first element CLASS and varying
numbers of remaining elements. as shown in the following table. The
left column shows the usual mathematical set notation. the inner column
shows equivalent F IT  compounds, and the right column shows a
corresponding PROLOG-like functor-argument notation, which however, is
not realizable in PROLOG because for each number k of different arities
for which the functor 'class' might be defined there is a number k+1
such that 'class' is not defined for arity Nk+1  [the table shows k=4 ,
N1=0. N2=2. N3=3‚ NA=8] .
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{ }  | (CLASS) c lass ( )
{1.3} | (CLASS 1 3) c lass(1 .3 )
{A,B‚C}  | (CLASS A B C) c lass (a .b ,c )
{A ,B ,C ‚1 ‚2 ‚3 }  (CLASS A B C 1 2 3 )  C lass (a .b ,c .1 .2 ,3 )I

l

Programmers  used  to  L ISP .  where  many func t ions .  e .g .  assoc ia t ive
ones  like APPEND, have  an  a rb i t r a ry  number o f  a rguments ,  must  f ee l  t ha t
this i s  an unnecessary res t r i c t ion  on express iveness;  and indeed ,  the
L ISP-based  LM—PROLOG (Kahn  1983 )  in t roduces  var iab le -a r i t y  func tors
in to  a LISP/PROLOG env i ronment .

We now show how the  F IT  CLASS compounds.  exempl i f i ed  in  the  inner
co lumn.  may be  de f ined  fo r  a rb i t ra ry  k .  In  genera l ,  F IT  compounds,  in
cont ras t  to  PROLOG s t ruc tures ,  can  be  in te rpre ted  as  va lue - re tu rn ing
func t ion  ca l l s ,  where the  d is t ingu ished  f i rs t  element [ ' func tor ' ]  p lays
the  ro le  o f  a func t ion  app l ied  to  the  a rguments  in  the  rema in ing
e lement  pos i t ions .  Th is  permi ts  F IT 's  so -ca l l ed  ' se l f -norma l i z ing
co l lec t ions ' .  genera l i z ing  those  in  GAL/QLISP (Ru l i f son  e t  a l .  1572 ) .
wh ich  a re  compounds tha t  re tu rn  the i r  own norma l i zed  fo rm.  For  example .
CLASS in  F IT  i s  de f ined  as  a norma l i za t ion  func t ion  fo r  se ts ,  remov ing
dup l ica te  a rguments  and  sor t ing  the  rema in ing  ones  l ex icograph ica l l y .
Thus (CLASS l 3 )  re tu rns  i t se l f  and (CLASS B A C B C) re tu rns
(CLASS A B C) .  The  CLASS de f in i t ion  can  be  expressed  in  F IT  i t se l f  by
[ the  va r iab le  >X enab les  va ry ing  a r i t i es  k ]

()(CLASS >X) (CONS CLASS (SORT 9 ( (X )  LEXORDER NODUPS)))

wi th  SORT be ing  L ISP 's  sor t ing  func t ion  o r  i t s  F IT  rede f in i t ion  shown
i n  sec t ion  8 .1  [ “3"  ins tan t ia tes  a l i s t  whose contents  i s  the
impos i t ion  o f  CLASS e lements ] .  For  e f f i c iency .  however .  we norma l ly  use
a CLASS vers ion  de f ined  en t i re ly  in  F IT—1 's  imp lementa t ion  l anguage .
LISP.

I n  o rd inary  PROLOGs. va r iab le—length  s t ruc tures  can  on ly  be
s imu la ted  by  nes t ings  o f  f i xed - leng th  s t ruc tures .  In  par t i cu la r .  PROLOG
bor rows  L ISP 's  representa t ion  o f  N -e lement  l i s ts  as  nes t ings  o f  N
2 -e1ement  do t ted  pa i rs .  Thus our  p rev ious  r igh t - recurs ive  nes t ing  o f
dot ted  pa i rs

. (a l f a , . (be ta , . (gamma,n i l ) ) )

in  PROLOG can be abbrev ia ted  to  the  so -ca l l ed  ' l i s t  no ta t ion '

[a l fa ,be ta ,gamma]

i . e .  i t  co r responds  to  the  L ISP  l i s t

( a l f a  be ta  gamma)

However .  in  PROLOG th is  i s  on ly  a va r iab le—length  sur face  syn tax  fo r
bas ica l l y  f ixed—length ' . “ -s t ruc tures .  We fee l  tha t  th is  i s  no so lu t ion
to  the  f i xed - leng th  res t r i c t ion .  fo r  the  fo l low ing  reasons :

1 .  PROLOG's l i s t  no ta t ion  does  no t  abs t rac t  f rom i ts  under ly ing
dot ted  pa i r  fo rm.  because  fo r  the  pa t te rn -match ing  se lec t ion
of  l i s t  e lements  a " I " -opera to r  i s  used  wh ich  cor responds
d i rec t ly  to  the  ‘ . ” -opera to r  [Th is  i s  s im i la r  to  the  CAR and
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CDR func t ions  in L ISP  which, however ,  can be viewed as

selectors of an abs t rac t  da ta  t ype ;  do t ted  pairs neve r  need  to
become visible to the L ISP  programmer  and modern L ISP
textbooks such as (Winston & Horn 1981) don't even use them
for association lists. In FIT no binary dotted-pair structure

at all becomes visible on pattern-matching selection of

compound elements, independent of their implementation; cf.

section 5 .1 ] .

For variable—length structures other than lists no surface

syntax is provided, although this would be very desirable for

sets, i.e. writing {a,b,c}. etc. [Since the available bracket.

types are not sufficient, FIT uses only ordinary parentheses.

as in (CLASS A B C) .  whose 'type' can be seen from the

distinguished first element. here CLASS. Since in PROLOG
variableulength s t ruc tu res  are represented as dotted pairs

using an 'auxiliary' "."—functor, variable—length structures
cannot use a 'proper' functor, analogous to a distinguished
element in F IT .  say CLASS].

Mainly for these reasons we feel that (Stefik et a1. 1983 )  are

correct in depicting the connection of list operations to PROLOG as a
"patch approach“ because they were added to the language after the

initial design.

Besides their disadvantages, PROLOG's structures have also two
advantages as compared with ordinary LISP lists, which they share.
however, with FIT's collection compounds.

1. The functor of a structure indicates the 'type' of that entire
structure, which may sometimes enhance readability and which
can help in matching. E.g. the matching of data with
incompatible types, say of apples a and b with pears a and b.
immediately fails in PROLOG's structure representation,

apples(a,b) = pears(a,b).

whereas that matching would yield an unwanted success in a
naive type—less LISP list representation

(SETO APPLES '(A B))
(SETQ PEARS '(A B))
(MATCH APPLES PEARS) or (MATCH '(A B) '(A B))

but it again immediately fails in FIT's typed collection
compound representation

( '(APPLES A B) '(PEARS A B))

Access  to the arguments of PROLOG structures can be
implemented efficiently [constant time] because their fixed
length allows array like random access to every argument [cf.
the vector of cells.called a "frame" in "structure sharing"
(Warren et al.»197?)]. whereas LISP lists are less efficient
[linear time] because their varying length seems to require
CDRing through from left to right to the desired element [even
if the "CBR—coding" techn ique  of the L ISP  machine (Weinreb et
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al. 19531  is used] .  However ,  FIT collection compounds which

are on l y  used with a fixed arity or with a small number of
fixed arities can a l so  be implemented array-like instead of

with list pointers. For varying-length compounds many

instances of which have some fixed arity, a mixture of

list—like [varying—length case] and array—like [fixed—length

case] implementation is possible. For example if there are

many three—element sets. their compound notations, e.g. (CLASS
A 8 C). (CLASS A a 2). (CLASS B 3 G), . . . .  (CLASS 2 b 7), can
be implemented as the array shown in the table on the left

side below. other se t s .  such as (CLASS 1 3 )  and (CLASS A 8 C 1
2 3). can be implemented as the ordinary lists shown in the
pointer diagram on the right below.

| 1 | 2  I 3 |

l---+—-—+-—-l __________________
IA IB IC I  |1l--|-->I3INIL|
l---+---+---| . . . . . . . . . . . . . . . . . .
IA | B | 2 |

l---+---+---l . . . . . . . . . . . . . . . . . . . . . . . . . . .
| B | 3 | 8 I I A | - - | - -> |  B | - - | - -> |  C I --|-->|
|-——--———-| ——————————————————————————— |

.. | --------------------------------------- |
|_--.__-._--| | . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2 I '- I 7 |  |-—>| 1 I -~(-->l 2 l --|-->| 3 INILI

5 PATTERN MATCHING AND GENERALIZATIONS

FIT and  PROLOG are bo th  languages built around generalized concepts
of pattern matching. These are based on the asymmetric pattern-data
matching foUnd in many AI languages. for which FIT prov ides  a richer
set of primitives than PROLOG (cf. subsection 5.1]. This basic matching
concept is generalized differently in the two languages. FIT
generalizes it to asymmetric adapter—data fitting, where the adapter.
an operator derived from a pattern by allowing it to contain functions,
both tests and locally transforms data [cf. subsection 5.2]. PROLOG
generalizes it t o  symmetric pattern—pattern unification. where both
patterns are made equal through variable-value substitutions ( c f .
subsection 5.3].

5.1 Basic Hatching: Variables in Patterns

Although basic patterns may consist of variables and constants. we
restrict our attention to pattern variables he re ,  pa t t e rn  constants
being almost the same in PROLOG and FIT {except that unprefixed atoms
are first applied as functions in FIT. so that a “Z“ prefix is used to
enforce an exclusive constant interpretation].

In PROLOG. pa t t e rn  variables can match arbitrary list elements but
not arbitrary list segments. The only kind of list segment a PROLOG
variable can match is a tail segment [this must be specified- in the
pattern by a “|“ head/tail separator, i.e. it is not a property o f  the
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variable but  o f  the  ent i re  pat te rn ] .  An initial or  an  in te rmed ia te  list

segment  cannot  be  matched  in  PROLOG; hence  mul t ip le  segments  a ren ' t
poss ib le  e i the r .  Thus in  PROLOG there  i s  a fundamenta l  asymmetry
be tween  head  and  ta i l ,  i nher i ted  f rom the  b inary  do t ted  pa i r
representa t ion  o f  l i s ts  as  " . "—st ruc tures .  A l though  th is  representa t ion
i s  hidden in  the  l i s t  no ta t ion .  i t  comes to  the  sur face  dur ing
match ing .  PROLOG's do t ted  pa i r  match ing  i s  we l l - known f rom some o ther
PLANNER- l i ke  A I  l anguages ,  such  as  CONNIVER.

F IT ,  like most other  PLANNER—like A I  l anguages .  such  as  FUZZY.  ~uses
both element va r iab les  [p re f i xed  by "? " J  and segment va r iab les  [ in  F IT
add i t iona l l y  'pos t ' - f i xed  by  "oL IST" ] :  t hus  we fo rma l i ze  a segment
var iab le  as  a f i t t e r  compos i t ion  o f  a "?"-variable with the  L IST
function. Unlike previous languages. F IT  a lso  a l lows  the  use  o f
impos i t ion  var iab les  [p re f i xed  by ' > ' ]  which like segment va r iab les
match  sequences  o f  l i s t  e lements  bu t  un l i ke  these  a re  bound to  the
element sequences themselves.  ra ther  than  to  the i r  L IST i f i ed  form.
F IT 's  segment  and  impos i t ion  var iab les  can  occur  a t  a rb i t ra ry  pos i t ions
and  a rb i t ra r i l y  o f ten  ins ide  pa t te rns .

The fo l low ing  tab le  compares  match ing  in  PROLOG and  F IT .  showing the
h igher  express iveness  o f  F IT  pa t te rns .  For  each  PROLOG match example ,
except  the  f i rs t ,  a d i rec t l y  cor respond ing  F IT  match  [us ing  "oLIST"l i s
wr i t t en  in  the  same row and  a more  typ ica l .  impos i t ion—var iab le  F IT
match [us ing  ”>“ ]  i s  wr i t t en  in  the  nex t  row. Fur ther  F IT  rows show
var ia t ions  on the  o r ig ina l  match. with segment and impos i t ion  var iab les
occur r ing  in  non- ta i l  pos i t ions  and  occur r ing  more  than  once .  The
bindings  resu l t ing  from matches a re  wr i t t en  below each match [ the  empty
impos i t ion  i s  denoted by ( IMPOSIT ION) ] .  For non-de te rmin is t i c  matches.
no t  poss ib le  in  PROLOG. each se t  o f  b ind ings  i s  wr i t t en  in  a separate
l i ne .

PRgLog Ell

[ x ,Y .X ]  = [ a .b .a ] .  ( ' (?X  ?Y ?X)  ' (A  B A ) )
X=a. Y=b X=A. Y=B

[ lJ  = [a .b .c ] .  ( ' (?x  ?YoLIST) ‘(A B C))
X=a. Y=[b.c] x=A, Y=(B C)

( ' (?X  >Y) ' (A  B C ) )
X=A. Y=B C

(')?XoLIST ?Y) '(A B c) )
X=(A B). Y=C

( ' ( >x  ?Y) ' (A a C))
X=A a.  Y=C

[X IY ]  = [a.b]. ( ‘ (?x  ?YoLIST) ' (A  B ) )
X=a, Y=[b] x=A. Y=(B)

( ' (?X  >Y) ' (A  B ) )
X=A‚ Y=B

( ' ( ?XOL IST  ?Y) ' (A  B ) )
X= (A) .  Y=B



[ l ]
X=a .

[ x ‚Y |
X=a .

= . [a ] .
Y=[ l

Z] = [ a .b ‚c ‚d ] .
Y=b‚ Z=[c,d]
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( ' ( >x  ?Y) ' (A  B ) )
x=A‚ Y=B

( ' (?x  ?YbLIST) ' (A ) )
X=A. Y=()

(‘(?x )Y) ‘(A))
X=A, Y=(IHPOSITION)

( ' (?XOLIST ?Y) ' (A ) )
X= ( ) ,  Y=A

( ' ( >x  ?Y) ' (A ) )
X=(IMP05ITION). Y=A

('(?X ?Y ?ZOLIST) ' (A  B C 0 ) )
X=A, Y=B. Z=(C 0 )

( ' (?X  ?Y >2)  ' (A  B C 0 ) )
X=A. Y=8. Z=C 0

(‘(?XoLIST ?Y 72)  '(A B c D))
X=(A B), Y=C. z=n

?Z)  ' (A  B C D) )
=C. Z=D

( ' (?x  ?YoLIST ?Z) ' (A B c D))
X=A. Y=(B C) ,  Z=D

('(?X )Y  ?Z) ' (A  B C 0 ) )
X=A. Y=B C. Z=D

(?X ?YOLIST ?ZOLIST) ' (A  B C D ) )
A. Y=(B C D) .  Z= ( )
A. Y=(B C) .  Z=(D)
A Y= (B) .  Z=(C D)
A Y= ( ) .  Z=(B C D)

>
<

>
<

->
<

>
<

" ‘
ll

n
n

u

LIST) ' (A  B C D ) )

O
O

N
llIMPOSITION). Z=(B C D)

(A B C 0 ) )
Z=(IMPOSITION)

<
<

<
<

=D
o
TION). z=a c D

( '  (?XoLIST ?Y ?zoLxsT) '(A a c D))
x :  (A a C). Y= D, z= ( )
x:  (A a ) .  Y: c, Z=(D)
X=(A), Y=B. z=(c D)
X=(), Y=Ä‚ Z=(B c D)



' (A  a c D))
=(IMPOSITION). Z=(IMPOSITION)

Z=(IMPOSITION)
MPOSITION), z=o

Z=(IMPOSITION)

I -
I ~

=(IMPOSITIO
IMPOSITION). Y

X=(IMPOSITION). Y
X=(IMPOSITION). Y
X=(IMPOSITION), Y
X=(IMPOSITION). Y

An impor t an t  d i f f e r ence  between  PROLOG and  F IT  pa t te rn  match ing  no t
shown in  the  tab le  shou ld  be  ment ioned .  Wh i le  a success fu l  match  in
PROLOG s imp ly  p r in ts  the  resu l t ing  var iab le  b ind ings ,  in  F IT  i t  r e tu rns
the  da ta  ins tance  matched  and  as  i t s  e f fec t  y ie lds  the  b ind ings .  For
example .  the  match  in  the  f i rs t  t ab le  row in  impure  F IT  wou ld  re tu rn
(A B A) and b ind  X to  A and Y to  B. The nex t  subsect ion w i l l  show tha t
pat te rn 's  re tu rn ing  o f  unchanged  da ta  ins tances  genera l i zes  g race fu l l y
to  adapte r ' s  re tu rn ing  o f  mod i f i ed  da ta  ins tances .  Semant ica l l y .  the
va lues  re tu rned  and  the  b ind ings  y ie lded  a re  t rea ted  as  one  va lue  pa i r
of  the  form (GLOBAL (b ind ings )  va lues ) .  Thus the  example match in  pure
F IT  would re tu rn  the  GLOBAL expression (GLOBAL ( (>X  A) (>Y B ) )  (A B
A) ) .  GLOBAL express ions  may migra te  ou t  o f  o ther  express ions .  un i t ing
the i r  b ind ings  cons is ten t ly  and l eav ing  the i r  values behind.  Indeed.
the  above  GLOBAL express ion  resu l ts  f rom an  in te rmed ia te  L IST
express ion  w i th  th ree  embedded GLOBAL express ions  as  shown in  the
fo l low ing  t race  o f  the  sample  match  eva lua t ion :

( ' (?X  ?Y ?X) ' (A  B A ) )
(L IST  (?X A) (?Y B) (?X A ) )
( L IST  (GLOBAL ( (>X  A ) )  A) (GLOBAL ( (>Y  B ) )  B) (GLOBAL ( (>X  A ) )  A ) )

BAL >X A >Y B A B A

Fina l ly .  matches  in  F IT  can  no t  on ly  be  per fo rmed  on  l i s ts  bu t  a lso
on impos i t ions .  For example. the  l i s t  match in  the  f i rs t  row o f  the
above  tab le  can  be  rewr i t t en  to  the  impos i t ion  match  [ the  co lon
separates pa t te rn  and da ta  impos i t ions ]

(?X  ?Y ?X : A B A)

which  also b inds  X to  A and  Y to  B bu t  re tu rns  the  impos i t ion  A B A
i ns tead  o f  the  l i s t  (A B A ) .  For the  o ther  t ab le  rows in  the  F IT  column
the  same paren thes is -sav ing  impos i t ion—rewr i t ing  i s  poss ib le .



5.2 Fitting: Special Elements  in Pat te rns  or Funct ions in Adapters

Since non—trivial adapters are a main theme of FIT [dealt with in
(Boley 1983 ) ]  but are absent  in PROLOG, they  are not explored in great

detail in the con tex t  of this FIT /PROLOG comparison: however, section 7
will show the use o f  adapters for defining functions.

5 .2 .1  Simple Adapters -

Most pattern matchers provide something like 'don't care‘ or 'match
all' pattern elements, in PROLOG ca l l ed  'anonymous variables' and

written "_" .  In FIT this special [non—constant, non—variable] pattern

element is formalized using the identity function ID. which is
applicable to one arbitrary element and returns it unchanged. Patterns

containing functions in FIT are called 'adapters'. Thus a PROLOG
pattern

[A ]

successfully matching lists like [a,b.bJ and Ia,b.c]. but neither [ a .b ]
nor [a.b.b.c,c]. becomes the FIT adapter

(A ID ID ) .

successfully fitting lists like (A B B) and (A B C) ,  but neither (A B)
nor (A B B C C) .  i.e.

( ' (A  ID ID) '(A B B)) returns (A B B).
( ' (A  ID ID) '(A B C)) returns (A a c ) .
( ' (A  ID ID) '(A B)) yields jF.
( ' (A  [ D  ID )  '(A B 8 C C)) yields jF.

ID is only a trivial example of the arbitrary functions allowed in
FIT adapters. A similar example is the absorption function AB.
definable by (>(AB ?X) ) ,  which is applicable to one arbitrary element
and returns the empty imposition:

( ' (A  AB AB) '(A B B)) returns (A ) .
( ' (A  A8 A8) '(A 8 C)) returns (A ) .
( ' (A  AB AB) '(A B)) yields jF.
( ' (A  A8 AB) '(A a a c C)) yields jF.

A less trivial function is NUMBERP. a predicate for numbers. as
applicable in the successful adapter fitting

( ' (A  NUMBERP C) '(A 2 C) ) ,  returning (A T C)

and in the failing adapter fitting

( ' (A  NUHBERP C) '(A B C) ) .  yielding 1F-

Functions inside adapters need not be unary. as shown by the
successful adapter fitting [matching A to A and applying LESSP to 2 3]

( ' (A  LESSP) '(A 2 3 ) ) ,  returning (A T)
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and the failing adapter fitting

( ' (A  LESSP) ' (A  3 2 ) ) .  yielding jF.

Besides such  predicate-like functions, arbitrary genera l  functions

are also allowed inside adapters. For instance. one adapter fitting

generalization o f  the match in the first row in the table in subsection

5.1 is

( ' (?x  L IST ?X) ' (A  8 A))

which binds x to A and returns (A (B) A). The semantic trace of ‘this
evaluation corresponds to that in section 5 .1 :

( ' (?X  LIST ?X) '(A B A))
(L IST (?X A) (L IST 8 )  (?X A))
(L IST (GLOBAL ( (>X  A)) A) (B)  (GLOBAL ( (>X  A)) A))

(GLOBAL ( (>X  A)) (A ( 8 )  A))

There are operators making new fitters from old, e .g .  the "#"
[REPEAT]  operator. For example. the 'repeated identity' #10 allows the

following fittings:

( ' (A  tID) '(A B B)) returns (A B B)
( ' (A  #10) ' (A  B C)) returns (A B C)
( ' (A  #10) '(A B)) returns (A B)
( ' (A  #10) ' (A ) )  returns (A)
( ' (A  u rn )  '(A B B C C)) returns (A B 8 C C)
( ' (A  #ID) '(A B C D E F G)) returns (A B C D E F G).

Similarly, (A 88) successfully fits (A B B). (A B) .  and (A). but none
of the other examples above. Also. (A  #NUMBERP) successfully fits (A  2
3). returning (A T T) and (A #ADDI) successfully fits (A 2 3).
returning (A 3 4).

5 .2 .2  A PROLOG Simulation —

In PROLOG, the adapte r  ( A  #ADD1) .  for instance. can be simulated by
a relation named a_repsucc. using maplist (Clocksin & Mellish 1981 )  for
modeling "#" :

a_repsucc ( [a |L ] . [ a |M] )  :— mapl is t (succp ‚L .M) .

Now F IT ' s  fitment ( ' (A  #ADDI) ' (A 2 3)), returning (A 3 4). can be
simulated by PROLOG's relation call a_repsucc([a,2.3],Ans). binding Ans
to [3.3.4]. Notice that PROLOG mus t  give a name. like a_repsucc. to
every program, even if it is used only once. whereas anonymous programs
are allowed in most other languages [cf. not only FIT's adapters above
but also LISP's LAMBDA expressions and FIT's TRAFOs below].

A slightly more general adapter, ( t sua i  O $ADDI ) ,  successfully fits
number lists containing a 0, returning the predecessors of all numbers
before the 0 and the successors of all numbers after the 0 .  For example
the adapter fitment ( ' (#SUB1 0 #ADD1) '(3 G 0 4 2 7)) returns (2 5 0 5
3 8). In PROLOG this must be simulated by a considerably more general
predicate, named reppred_0_repsucc, using recursion for modeling the
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f i r s t  " I "  app l i ca t i on  [no t e  t he  ' r eve r se '  c l ause  o rde r  r equ i r ed  he re ] :

r epp red_0_repsucc t l0 lL ] . [DIM])  : -  map l i s t t succp .L .M) .
r epp red_0_repsucc ( [XlL] . [YIH] )  : -  p r ed t .Y) .  r epp red_0_repsucc (L .M)

Then t he  r e l a t i on  ca l l  co r r e spond ing  to  t he  above  adap te r  f i tmen t  i s
r epp red_0_ repsucc ( [ 3 .6 .0 .4 .2 .7 l .Ans ) .  b ind ing  Ans t o  [ 2 ,5 .0 ‚5 .3 .8 ] .  I f
we wan ted  t o  mode l  bo th  " ! "—app l i ca t i ons  wi th  map l i s t .  i . e .  by  u s ing
map l i s t  no t  on ly  fo r  t he  s egmen t  a f t e r  t he  0 bu t  a l so  fo r  t ha t  be fo re
the  0 .  we  migh t  app ly  append  [ c f .  s ec t i on  7 .1 ]  fo r  l oca t ing  t he  0 and
sp l i t t i ng  t he  l i s t  i n to  t he  r equ i r ed  s egmen t s :

r epp red_0_repsucc ( In ,0u t )  :—
append (P In , [ 0 lS In ] . I n ) .
map l i s t ( p redp .P In .P0u t ) ‚
append(P0ut ‚ [OISOut] .0ut) .
map l i s t ( succp .$ In .SOu t ) .

Al though  in  t h i s  r epp red_0_repsucc  ve r s ion  t he  ' i n t e r l eaved '  o rde r  o f
the  append  and  map l i s t  c a l l s  [ i n  con t r a s t  t o  ' f i r s t  [ / 0  pa r t i t i on .  t hen
mapp ing '  o rde r s ] .  p roposed  by  (Fuh l ro t t  1983 )  and  t e s t ed  i n
mic ro -PROLOG,  may  no t  l ook  obv ious .  i t  i s  c ruc i a l  f o r  p r even t ing
non—de te rmin i s t i c  ca l l s  l i ke  r epp red_0_repsucc ( [3 ,0 .5 .0 .7 ] .Ans )  and
con junc t ive  r e l a t i on  ca l l s  l i ke

7— repp red_0_repsucc ( [3 .0 .7 ] .Ans ) ,  member (b .Ans ) .

f rom d ive rg ing  on  the i r  back t r ack  s ea rch  fo r  a s econd  so lu t i on .  The
f ac t  t ha t  t he  r e l a t i ona l  r epp red_0_repsucc  r ep re sen t a t i on  o f  an  adap te r
as  s imp le  a s  ( csue1  o #ADOI) i nvo lves  t he se  non—tr iv i a l  p rog ramming
cous ide ra t i ons  i nd i ca t e s  t ha t  r e l a t i ona l  p rog ramming  may  a t  t imes
appea r  qu i t e  l ow- l eve l  i f  compared  wi th  h ighe r -o rde r  func t iona l  o r
adap te r  p rog ramming .  S t i l l ,  l i ke  t he  F IT  adap te r s ,  i n  PROLOG ne i the r
a_ repsucc  no r  t he  two  ve r s ions  o f  r epp red_0_repsucc  work  i f  u sed  f rom
r i gh t  t o  l e f t :  Fo r  example ,  r epp red_0_repsucc (Ans . [2 .0 .8 ] )  y i e ld s  a
' f i n i t e  e r ro r '  i n  t he  r ecu r s ive  ve r s ion  and  an  ' i n f in i t e  e r ro r '  i n  t he
append-us ing  ve r s ion .

5 .2 .3  TRAFO and  COHFO Expres s ions  —

Apar t  f rom the  f ac t  t ha t  adap te r s  t hemse lves  a r e  no rma l ly  unnamed .
func t ions  i n s ide  adap te r s  need  no t  be  named .  l i ke  NUMBERP, bu t  may  a l so
be  anonymous .  l i ke  (TRAFO ?X (GREATERP (X  8 ) ) .  co r r e spond ing  to  L ISP ' s
(LAHBDA (X )  (GREATERP X a ) ) .  Fo r  example .  t he  adap te r  f i tmen t

( ' ( 1  (TRAFO ?X (GREATERP (X  8 ) )  8 ?X)  ' ( 1  9 8 3) )

succes s fu l ly  app l i e s  t he  TRAFO exp ress ion  (TRAFO ?X (GREATERP <X 8 ) )  t o
9 .  b inds  ?x  t o  3 ,  and  r e tu rns  (1  T a 3 ) .  Note  t ha t  t he  TRAFO va r i ab l e
?X i s  un re l a t ed  t o  the  va r i ab l e  ?X .  bound t o  3 :  -Hh i l e  the  fo rmer  i s
l oca l  t o  t he  TRAFO. t he  l a t t e r  i s  g loba l  t o  t he  adap te r .  I f  t he  TRAFO
body (GREATERP <x a )  i s  r ega rded  a s  a t ype  check  ove r  t he  TRAFO
va r i ab le  ?X,  ana logous  t o  t he  t ype  check  pe r fo rmed  by  NHNBERP fo r  t he
typed  va r i ab l e  x?NUM8£RP. t hen  the  TRAfo ' s  l oca l i za t i on  e f f ec t  may  we l l
be i nco r r ec t .



_ 47 _

To l eave  the variable ? x  global to the adapter. the composition

(COMPOSE (TRAFO ID (GREATERP 'X B)) ?X) can be used instead. For
example,

( ' ( 1  (COMPOSE (TRAFO ID (GREATERP ~X 8)) ?X) 8 ?X) '(1 9 8 3))

success fu l l y  applies the composition to 9 by first binding ? x  to 9 and

t hen  evaluating (GREATERP ' X  8 )  in the global environment thus created,
but altogether fails because o f  the inconsistency o f  this env i ronmen t
with t he  binding of ? X  to 3. A s im i l a r .  but altogether successful.
adapter fitment is

( ' ( 1  (COMPOSE (TRAFO ID (GREATERP 'X B)) ?X) 8 ?X) '(1 9 8 9))

binding X to 9 and returning (1 T 8 9). Such COMPOSE expressions are

more generally usable and may thus be given a name, COMFO
[COMPOSE—TRAEQ]. which can be introduced by the definition

(COMFO pattern body) = (COMPOSE (TRAFO ID body) pa t t e rn )

or, more  generally,

(COMFO pattern1 ... patternM : body1 ... bodyN) =
(COMPOSE (TRAFO #ID body1 ... bodyN) pattern1 ... pa t t e rnM)

Using a COMFO expression, our previous adapter is shortened to
(1 (COMFO ?X (GREATERP "X 8)) 8 ?X) and its sample fittings become:

( ' ( 1  (COMFO ?X (GREATERP ~X 3)) 8 ?X) '(1 9 8 3)) yields jF

( ' ( 1  (COMFO ?X (GREATERP ”X e)) 8 ?X) '(1 9 8 9)) returns (1 T 8 9) and
binds X to 9.

Not i ce  t ha t  the COMFO expression has the same structure as the initial
TRAFO examp le .  I ndeed .  TRAFO and COMFO f o rm  a nice symmetrical pair. as
characterized by the equations [the first generalizes beta—reduction in
LAMBDA calculus]

ll((TRAFO pattern body) expr)
((COMFO pattern body) expr)

(LOCAL (pattern expr) : body)
(GLOBAL (pattern expr) : body)

For the use of COMFO expressions in invocation adapters see section
6 .3 .2 .

5 .2 .4  Boolean F i t t e r  Operators -

Finally, consider the 'boolean pattern operators' POR. PAND. and
PNDT wh ich  are available in almost all classic pattern matchers [see.
e.g., (Rulifson et al. 1972 ) ] .  In FIT t hey  are generalized to 'boolean
fitter operators' and are formally explained by the respective logical
connectives for disjunction. conjunction. and negation. For example.

((POR (?X ?Y ?X) (?X ?Y ?Y) (?X ?X ?Y) )  '(A B B))

succeeds because one of the pa t t e rn  ma tches  to wh ich  it is reduced,
( ' (?X  ?Y ?Y) '(A B B)) succeeds.



((PAND ( ID  NUMBERP ID )  (?X LIST ?X) )  ' (A  2 Cl )

fa i l s  because one o f  the  adapter  fittings. ( ' (?X  L IST ?X) ' (A  2 C) )
f a i l s .

((PNOT LESSP) 3 2 )

succeeds because (LESSP 3 2 )  f a i l s .  In  PROLOG boolean opera tors  on
pat te rns  a re  l ack ing .  pe rhaps  because  they  cannot  be  genera l i zed  to
un i f i ca t ion  in  a s imple manner [c f .  subsect ion 5 .3 ] .

5 .3  Un i f i ca t ion :  Var iab les  in  Two Pa t te rns

PROLOG uses  un i f i ca t ion  imp l ic i t l y  fo r  f ac t  re t r i eva l  and  ru le
invoca t ion .  Un i f i ca t ion  can  a lso  be  done  exp l i c i t l y  by  the  user  w i th
the  "=” [equa l i t y ]  p red ica te .  For example one un i f i ca t ion
genera l i za t ion  o f  the  match  in  the  f i rs t  row in  the  tab le  in  subsec t ion
5 .1  i s

[X,Y.X] = [ a .b .Z ] .

which binds X and Z to  a and Y to  b .  The prominent ro le  o f  un i f i ca t ion
in  PROLOG becomes even more impor tant  in  UNIFORM (Kahn 1981 ) .  which
uses  augmented  un i f i ca t ion  as  i t s  so le  bas is .  However ,  the  no t ion  tha t
PROLOG i tse l f  bases  i t s  computa t ion  en t i re ly  on  un i f i ca t ion  i s
exaggera ted :  th is  wou ld  on ly  be  t rue  i f  the re  were  fac ts  on ly :  ru les .
a l though  invoked  th rough  un i f i ca t ion  o f  the i r  heads  w i th  a reques t ,
th rough  reso lu t ion  tzgnsigrm the  r eques t  i n to  a con junc t ion  o f  o ther
requests  in  the  un i f i ca t ion -ex tended  environment .  F IT 's  adapte rs .  on
the  o ther  hand ,  share  w i th  fac ts  the  p roper ty  o f  be ing
' invoca t ion -comput ing ' :  a l l  adap te r  computa t ion  i s  per fo rmed  dur ing
invoca t ion  f i t t ing  [an  adapte r  has  comple ted  i t s  work  when i t s
invoca t ion  has  been  comple ted ] :  no  g loba l  ru le - l i ke  head- to—body
t rans format ion  i s  performed [a  ru le  has completed i t s  work on ly  when
the  computa t ion  o f  i t s  body  has  been  comple ted ] .

F IT -1  uses a res t r i c ted  form o f  imp l ic i t  un i f i ca t ion  but  doesn ' t  use
exp l ic i t  un i f i ca t ion  s ince  i t  r egards  pa t te rns  as  opera to r—l ike  ac t i ve
en t i t i es  [ ' f i t t e rs ' ]  wh ich  a re  matched  to  operand- l i ke  pass ive  en t i t i es
[ ' f i t t ees ' ]  in  the  usua l  asymmetric operator—operand manner.
Fur thermore ,  the  genera l  pa t te rns  permi t ted  in  F IT  [a rb i t ra ry  numbers
o f  impos i t ion  o r  segment  va r iab les ]  wou ld  make symmet r ic
pa t te rn -pa t te rn  un i f i ca t ion  matches  computa t iona l l y  as  complex  as
s t r ing  un i f i ca t ion .  F ina l l y ,  symmetric adapte r -adapte r  un i f i ca t ion
f i t t ing  poses  new prob lems  wh ich  a re  no t  ye t  we l l  unders tood .
[A func t ion  pa i red  w i th  a va r iab le  may leave  i t s  app l i ca t ion  pending
unt i l  tha t  va r iab le  rece ives  a va lue ;  a func t ion  pa i red  w i th  a func t ion
might  genera te  a va lue  o f  i t s  range  wh ich  i s  a lso  in  the  range  o f  the
other  func t ion . ]

To be  sure ,  the re  wou ld  be  no  p rob lem in  imp lement ing  un i f i ca t ion
fo r  F IT  i f  pa t te rns  to  be un i f i ed  had to  have the  res t r i c ted  form o f
PROLOG pa t te rns .  To  pu t  i t  d i f f e ren t ly .  PROLOG and  any  o ther  l anguage
wou ld  have  the  same prob lems  as  F IT  would i f  i t  des i red  to  incorpora te
more  genera l  pa t te rns  [ in  par t i cu la r ,  mu l t ip le  segment  va r iab les .  wh ich
are  very  convenient  fo r  the  user  and pose no ser ious  problems in
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asymmetric matching] and still desired to perform symmetric unification
matching on these [ i n  particular, the problem of string unification

complexity]. OLISP  may actually have had these problems among others.

We thus decided to restrict FIT—1's explicit fitting to the

asymmetric case until issues of unification matching are better

understood [for an overview of what is known and what is still open see

(Siekmann & Szabo  1982)]. In any case. with FIT-1‘s other match

generalizations [e.g. adapters] available. this restriction didn't turn
out to be such a great hindrance in practical programming tasks.

6 HORN CLAUSES AND IMPLICIT FITTERS

Definitions in PROLOG are made by storing Horn clauses and in FIT by
storing fitters into the global data base. Stored fitters are also
called 'implicit fitters' and are dual to 'explicit fitters' which the
user directly fits to fittees. PROLOG's Horn clauses are divided into
facts and rules. FIT's corresponding implicit fitters are divided into
implicit adapters and transformers. However, to represent PROLOG facts
only very special FIT adapters. namely simple patterns, are needed.
Similarly. to represent PROLOG rules only very special FIT transformers
are r equ i red ;  alternatively, PROLOG rules can often be more concisely
represented as FIT adapters [cf. section 7].

6.1 Facts

A PROLOG fact is a structure of the form f(a1,a2,...,aN). globally
stored by

f(aT,a2,...,aN).

where the arguments aI's can be constants, variables. or substructures.
That the period after the structure indicates the storing, not the
query of the structure. can only be seen at the lack of a “?—" prefix.
[In PROLOG's rudimentary interactive programming the system by default
is in a mode where it expects each input to be a query. hence uses "?~ "
directly as a prompt. To store facts. the user must first switch off
this prompt by entering a storing mode. After storage is completed, one
must not forget to reenter the default mode before asking a query.]

A corresponding FIT fact is a compound of the form (f~ a1~ a2
an ” ) ,  globally s to red  by

GLOBAL:((f" a1" a2~ ... aN"))

where the tilded symbols are transformed versions of those in PROLOG as
explained in section 4. with one addition: PROLOG variables are
rewritten to FIT variables by Variable"=?VARIABLE. The storing is
simply indicated by the embedding of the compound into a GLOBAL : ( .  . . )
exp ress ion .  [ I n  F IT 's  L ISP /PLANNER—l i ke  i n te rac t i ve  p rog ramming  no mode
change is necessary for storing, hence a modeless "*“-prompt is used.
The "GLOBAL2" prefix makes clear that a. possibly one-element. list of
facts is to be stored.]
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In both PROLOG and FIT. structures/compounds containing constants

and variables along with other such  structures/compounds can be used  as
explicit patterns in explicit matches or, after having stored them in

the data base. as implicit patterns in implicit matches. Therefore

PROLOG and FIT facts actually are implicit patterns.

Simple facts without variables were exemplified in section 2.1: for
a fact example with variables. consider the phrase "The successor of

something is greater than that thing". Which can be stored as the

PROLOG fact

greater(successor(X),X).

and as the FIT fact

GLOBAL:((GREATER (SUCCESSOR ?X) ?X) )

In this example. the first argument of the greater structure is a
successor structure. Notice that the top~level functor greater is a
predicate whereas the sublevel functor successor is a function. In

general, PROLOG, like predicate logic. allows a functional notation in
sublevels but not on the top-level [in sublevels it doesn‘t matter that
these notations cannot be evaluated. on the top-level it would]; thus,
unlike the above PROLOG example. successortx) :— Xt1 is not a
legitimate PROLOG clause. F IT .  like all functional languages, allows
functions on every level; thus, just like the above FIT example,

()(SUCCESSOR ? X )  (ADD1 (X ) )  is a legitimate FIT clause.

When now the PROLOG question

?— greater(successor(3).3).

or the FIT question

(GREATER (SUCCESSOR 3) 3)

is posed. an implicit match corresponing to the explicit PROLOG match

greater(successor(X).x) = greater(successor(3).3).

or to the explicit FIT match

('(GREATER (SUCCESSOR ?X) ?X) '(GREATER (SUCCESSOR 3) B))

is used  to answer it affirmatively. The main difference between
explicit and implicit matches is the treatment of resulting variable
bindings [here X=3 ] :  Bindings of variables occurring in explicit
patterns become visible; those of variables occurring in implicit
patterns remain hidden.

When the PROLOG question

?- greater(successor(Y).3).

is posed. an implicit unification match corresponing t o  the explicit
PROLOG unification match

greater(successor(X).X) = greater(successor(Y).3).



is used  to answer  it affirmatively and binding Y to 3; when  the FIT

question

(GREATER LSUCCESSOR |?Y)  3)

is posed, an implicit unification match  is used  not corresponing to an

explicit unification match and binding Y to 3 [in the implicit

unification match the binding Y=3 becomes visible because  Y occurs in

the request pattern: the binding X=3 remains hidden because X occurs in
the implicit pattern]. The current FIT-1 only supports such restricted

implicit unification matching but no explicit unification matching. as

discussed in subsection 5.3.

6.2 Rules

A PROLOG rule has the form structureo :— structurei. . . . .  s t r uc tu reN
and is globally stored by

structurefl :~ structure1, ..., structureN.

where the structurel's are structures as in facts. The storing is again

indicated by the period after the structures in the absence of a "?-"

prefix. A corresponding FIT rule has the form

(TRAFO structureo~
(LOCAL (>var1: ... >varM:) structure1~ ... structureN"))

and is stored globally as

({>.v}structureo~
'(LOCAL (>var1: ... >varM:) structure1" ... s t ruc tu reN" ) !

where  the tilded structureI's are the usual transformed versions of

those in PROLOG rules and the varI's are the request variables being
used in structurei“. . . . .  s t r uc tu reN ' .  The i r  LOCAL declaration is

‘necessary to prevent name conflicts between the request variables of
different rule bodies. If there are no request variables a FIT rule can
be simplified to (TRAFO s t ruc tu reo "  structure1~ ... s t ruc tu reN" )  wh i ch
is stored as

({),v}structure0~ 'structure1~ ... 'structureN")

Here and later on the meta—language expression ”{>,v}“ stands for
either of the object—language symbols ">" or "v". The ">“ [SHOVE] .and
“v" [VEL]  prefixes effect rule storing by setting rule heads.
structureo", to rule bodies. The SHOVE prefix specifies an ordinary
setting. where several body assignments to the same head cause the old
rules to be erased on storage of the new ones. The VEL prefix specifies
a 'non-deterministic' setting. where several body assignments to the
same head cause all rules to be stored and subsequently to be used
non—deterministically. Since settings evaluate to GLOBAL expressions
(cf. section 5.1], no user—provided “GLOBAL:" prefix is necessary for
rule storing.
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The ""  [QUOTE] pre f ix  i n  f ron t ‘  o f  the  LOCAL body and the
s t ruc tu re ! "  bodies [151$N]  p reven ts  their evaluation a t  stor ing—time;
in  in te rna l  s to re ,  the  " ' "  p re f i x  i s  removed; hence such QUOTES a re
usually e l ided  f rom the  F IT  examples .

As an  example  cons ider  the  phrase  “someth ing  i s  even  i f  i t  i s  an
in teger  divisible by  two" ,  wh ich  can  be  s to red  as  the  PROLOG ru le

even(X) : -  i n teger (X ) ,  d iv is ib1e (X .2 ) .

and as the  F IT  ru le

(> (EVEN ?X)  ( INTEGER (X )  (D IV IS IBLE  (X  2 ) )

When now the  PROLOG ques t ion

?~ eventfl).

or  the  F IT  ques t ion

(EVEN 8 )

i s  asked, the  ru le  head even(X)  o r  (EVEN ?X) i s  matched to  the  ques t ion
even(8 )  o r  (EVEN a )  and the  ru le  body i s  eva lua ted  w i th  the  resu l t ing
b ind ing  X=8. '

I n  PROLOG such  an  imp l ic i t  ru le  app l i ca t ion  doesn ' t  cor respond  to  an
exp l ic i t  one  tha t  i s  d i rec t l y  spec i f i ed  by  the  user .  In  F IT  i t
cor responds  to  the  exp l i c i t  ru le  app l i ca t ion  ‘

((TRAFO (EVEN 2X) (INTEGER (X )  (DIVISIBLE (X  2 ) )  '(EVEN 8 ) )

using the  exp l i c i t  TRAFO nota t ion  o f  t ransformers  which genera l i zes  the
usua l  LAMBDA express ions .  O f ten  TRAFO express ions  a re  used  w i th  the
iso la ted  var iab les  o f  pa t te rns .  ins tead  o f  w i th  comple te  invoca t ion
pa t te rns .  as  the i r  l e f t -hand  s ides :  th is  fo rm o f  TRAFO spec i f i es
'anonymous' ru les  and is  equ iva len t  w i th  LAHBDA express ions .  For
example ,  the  p rev ious  TRAFO app l ica t ion  can  be  shor tened  to  [ the  'name '
EVEN is  omi t ted ]

((TRAFO ?X (INTEGER (X )  (DIVISIBLE (X  2 ) )  8 )

Whi le  PROLOG a l lows  on ly  such  re la t iona l  ru les  [comput ing  t ru th
va lues ] ,  F IT  a lso  a l lows  func t iona l  ru les  [comput ing  a rb i t ra ry  va lues ] .
For  example ,  the  phrase  " the  d iv is ion  o f  a f i r s t  th ing  by  a second
th ing  i s  the  quot ien t  and  the  rema inder  o f  the  f i rs t  by  the  second"  can
be  s to red  in  F IT  as  the  ru le

(> (D IV IS ION ?X ?Y)  (QUOTIENT (X  (Y )  (REMAINDER (X  (Y ) )

I n  PROLOG the  phrase  must  f i r s t  be  pu t  in to  the  awkward re la t iona l  fo rm
" four  th ings  a re  in  a d iv is ion  re la t ion  i f  the  f i rs t  th ree  th ings  a re
in  a quot ien t  re la t ion  and the  f i rs t  two th ings  and the  four th  th ing
are  in  a rema inder  re la t ion"  be fore  i t  can  be  s to red  as  the  ru le

d iv is ion t ,Y ,0 .R )  :— quot ien tp (X ,Y .0 ) .  r ema inderp (X ,Y .R ) .

which  in  F IT  cou ld  a lso  be  s to red  as
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(> (0 IV IS IONP ?X ?Y ?0 ?R) (QUOTIENTP ( X  ( Y  <0) (REMAINDERP ( X  ( Y  <R))

Functional FIT ru l e s  can a l so  be used in explicit appl i ca t ions .  For
example,

((TRAFO (DIVISION ?X ?Y) (QUOTIENT ( X  (Y) (REMAINDER ( X  (Y))
' (D IV IS ION 7 2))

re turns  3 1. Using the pat te rn  variables alone as TRAFO left—hand sides
we get the anonymous rule application

((TRAFO ?X ?Y : (QUOTIENT ( X  (Y) (REMAINDER ( X  (Y))
7 2)

Let us summarize a fact/rule implicit/explicit tradeoff in
FIT/PROLOG:

While FIT unification can only be used implicitly to access facts and
rules stored in the data base. PROLOG unification can also be used
explicitly on non—stored structures.

While PROLOG rules can only be used implicitly. namely after they have
been stored in the data base [and named by a functor], FIT rules can
also be used explicitly [and anonymously] without such prior storing.

6.3 Clauses with Constraints

6 .3 .1  PROLOG II Constraints and their LOCAL Representation —

Although the simplicity of Horn clauses has definite advantages with
respect to formal semantics it now seems clear that they are too simple
for real—live programming. One possible generalization of Horn clauses
has been recently proposed in (Colmerauer 1983)  for PROLOG II. In this
proposal a clause can be augmented by "constraints" which are sets of
equalities and inequalities over variables. All constraints must be
fulfilled for a clause to be successful. Facts and rules with
constraints c1. c2. . . . .  cK in PROLOG II are written thus [a fact is
regarded as a rule with an empty body]

structureo -> , { e l .  c2. . . . .  cK};
structureo —> structure! ... structureN, {c1. c2. . . . .  cK];

where the cI's either have the form varR=varS o r  the form varR\=varS
[we use Edinburgh PROLOG's ' \ = "  to denote inequality]. For clauses
without constraints [K=0] in PROLOG II the meaningless part ", {)" is
omitted.

In FIT these clauses may be rewritten t o  [for simplicity we assume
that no request variables are used]

({>,v}structure0" c1~ c2~ cK')
({>.v}structure0~

(LOCAL c1~ c2~ ... cK~ : structure1~ ... s t ruc tureN ' ) )

where c! = varR=varS yields cl" = (EQ varR~ vars") and cl = varR\=varS
yields cI" = (NEO varR~ vars"). Constraints in FIT thus become
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implicitly conjoined rule bodies [ f o r  facts] or left—imposition

arguments  of "if then" LOCALs used  as rule bodies [for rules]. A
constrained fact ()structureo" c1" cz" ... CK") can be viewed as an
abbreviation for a constrained rule with empty LOCAL body ()structureo"

(LOCAL cl" cz" ... cK~ : ) ) .  Clauses without constraints are rewritten
into FIT as usual.

Ah examp le  o f  a constrained fact is the following diffchain
predicate. holding for all triples without equal adjacent elements:

diffchain(x.y.z) —> . {x \=y .  y \=z } :

In FIT this can be rewritten as

(>(DIFFCHAIN ?X ?Y ?Z) (NEO ( X  (Y) (NEO <Y <Z) )

In orde r  to illustrate a constrained rule let us consider a slightly
corrected version of the out—of definition in (ColmeraUrer 1983 ) .  a
simple list predicate which in functional notation would trivialize to
NOToMEMBER.

out—of(u.nil) ->;
out—of(u.v.l) ->

out-of(u.1).
{u\=v};

In FIT this can be rewritten as

(OUT—OF ?X NIL )
()(OUT—OF ?X (?Y ?LoLIST))

(LOCAL (NEO (X (Y) : (OUT-0F ( X  <L) ) )

As useful as Colmerauer's constraints may be. it remains doubtful
whether these simple equality and inequality Constraints are sufficient
for all applications. For instance, many programmers [not only in
fields like operations research] may wish to have the full set of
relational operators Ii.e. also including ”<". “;”. “>“, and "3'1 for
expressing inequation constraints. As examples, consider the predicates
lesschain and least-of derived. respectively. from diffchain and out-of
by replacing “ \="  by “<“. This is possible in FPL (Bellia et al. 1982 ) .
In FIT it is also no problem because LOCAL expressions can, of course.
not only be used with the EO and NEO predicates but allow for arbitrary
constraints (incl. LESSP.  LE .  GREATERP. and GE] .  For example. as we
used (LOCAL (NEO <x (Y) : . . . )  in the OUT-OF program, we can use (LOCAL
u(GREATERP <X (Y) : . . . )  in. say. Euclid's algorithm for computing the
greatest common divisor [the "u” operator transforms jF to jU. which is
necessary for handling the non—determinism arising from the first two
rules]:

(V(EUCLID ?X ?Y)
.(LOCAL u(GREATERP ( X  (Y) : (EUCLID (DIFFERENCE (X (Y) (Y ) ) )
(VIEUCLID ?X ?Y)

(LOCAL u(GREATERP ( Y  (X) : (EUCLID (X (DIFFERENCE ( Y  (X ) ) ) )
( ) (EUCLID ?X ?X) (X)

For another such example see the FIT FERM definition in section 8 .3 . '
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8y  means  o f  LOCALs with arbitrary predicates F IT .  unlike PROLOG I I ,

can  a l so  be used  t o  directly r ep resen t  conditional t e rm  rewr i t i ng
sys tems ,  i ndependen t  o f  t he  k i nd  o f  condition.

I n  gene ra l .  t he  cons t ra i n t s  c I~  i n  t he  above  F IT  ru l e  schema may

have  t he  f o rm  o f  a rb i t r a r y  s t r uc tu res ,  i n  add i t i on  t o  t ha t  o f

a r i t hme t i ca l  r e l a t i onsh ips .  I t  i s  no tewor thy  t ha t  (Be l l i a  e t  a l .  1982)
use  "equations" that a l so  a l l ow  f o r  a rb i t r a r y  s t r uc tu re  cons t ra i n t s .
w i t h  t he  syn tax

s t ruc tu re0 . c1 , c2 , . . . , cK  <-— s t ruc tu re1 . . . . , s t r uc tu reN

where  K lo  and  N30 [i.e. t he  cons t ra i n t s  and  t he  body  may be  emp ty ] .  Fo r
t he i r  f i xed—po in t  seman t i cs ,  howeve r ,  t hey  move  t he  cons t ra i n t s  t o  t he
body  s t r uc tu res  t o  ob ta i n  o rd i na ry  Ho rn  c l auses  o f  t he  f o rm

s t ruc tu reo  <-— s t ruc tu re1 , . . . . s t r uc tu reN ,c1 , c2 , . . . , cK

Un fo r t una te l y ,  s i nce  t he  eva lua t i on  o rde r  i ns i de  pu re  Ho rn  c l ause
bod ies  i s  no t  de te rm ined ,  t he  two  f o rms  a re  no t  equ i va len t  i n  gene ra l
[ cons ide r  a non - te rm ina t i ng  c l  and  a f a i l i ng  s t r uc tu reJ ] ,  bu t  on l y
unde r  a spec ia l  we l l—fo rmedness  cond i t i on .  I r on i ca l l y  i t  happens  t o  be
the  case  t ha t  w i t h  t he  impu re  Ho rn  c l auses  o f  mos t  PROLOG
imp lemen ta t i ons ,  t he  p r i o r i t y  o f  t he  cons t ra i n t  con junc t s  ove r  t he
o rd ina ry  body  con junc t s  i n  t he  o r i g i na l  equa t i on  may be  exp ressed  as

s t ruc tu refl  :— c1 ,  c2 ,  . . . ,  cK ,  s t r uc tu re1 ,  . . . ,  s t r uc tu reN .

because  now  the  cons t ra i n t s  happen  t o  be  eva lua ted  be fo re  t he  p rope r
body  pa r t ;  howeve r ,  now  the re  i s  a l so  an  unwan ted  l e f t—to - r i gh t  o rde r
i ns i de  c1 .  c2 ,  . . . ,  cK  and  i ns i de  s t r uc tu re1 ,  . . . ,  s t r uc tu reN .  I ns tead
o f  r e l y i ng  on  t he  haza rds  o f  t he  eva lua t i on  o rde r ,  i n  F IT  we use  t he
LOCAL f o rm  i n t r oduced  p rev ious l y ,  wh i ch  a lways  eva lua tes  t he
cons t ra i n t s  [ t he  impos i t i on  t o  t he  l e f t  o f  " : " 1  f i r s t ,  w i t hou t  o rde r i ng
the  eva lua t i on  i ns i de  t he  cons t ra i n t s  o r  t he  s t r uc tu res .

Cons t ra i n t s  may j us t  be  t he  f i r s t  s t ep  i n  t he  rep lacemen t  o f  s imp le
con junc t i ve  re l a t i on  ca l l s  i n  Ho rn  ru l e  bod ies  by  a rb i t r a r y  f unc t i ona l
p rog ram bod ies .  As f u r t he r  ex tens ions  o f  Ho rn  l og i c  t he  " somewha t
comp l i ca ted "  mac ros  i n  ESP (Ch i kayama  1983 )  o r  t he  recen t  p roposa l s  i n
(Kowalski 1983) ["It has p roved  necessa ry  t o  ex tend  Horn  c l ause
p rog ramming  i n  va r i ous  ways " ]  may be  men t i oned .  I ns tead  o f  r ewo rk i ng
the  seman t i cs  o f  PROLOG wi th  each  such  new  gene ra l i za t i on  o f  t he
o r i g i na l  Ho rn  c l ause  f o rma l i sm ,  i t  m igh t  be  p re fe rab le  t o  use  gene ra l
f unc t i ona l  r u l e  bod ies  f r om the  ve ry  s ta r t ,  as done i n  F IT  t o - f o rma l i ze
t he  seman t i cs  o f  f unc t i ona l l y  r ep resen tab le  r u l es  o f  PLANNER- l i ke
l anguages .

6 .3 .2  The  COMFO Rep resen ta t i on  o f  Cons t ra i n t s  —

At  t h i s  po in t  r eade rs  f am i l i a r  w i t h  F IT  may wonde r  whe the r
cons t ra i n t s  can  somehow be  b rough t  t o  t he  pa t t e rn  s i de  (Hussmann  1983 ) .
And  i ndeed .  acco rd ing  t o  F IT ' s  gene ra l  ph i l osophy  o f  pe r f o rm ing
non~ t r i v i a l  compu ta t i on  i n  t he  i nvoca t i on  adap te r  i ns tead  o f  i n  t he
body .  ano the r  me thod  f o r  r ep resen t i ng  cons t ra i ned  c l auses  i s  t o  move
the  cons t ra i n t s  f r om the  body  t o  t he  head ,  as  f o l l ows .
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Ä fact with a cohstraints body of the form

((>.v}(r p1 ... pH) c1 c2 ... ck)

by means of the COMPOSE expressions introduced in section 5 .2 .3 .  can
f i r s t  be r ewr i t t en  as

(r (compose (TRAFD sto cl' tz“ ... cx‘i pl ... pH!)
Also. a rule with a LOCAL constraints body of the form

((>‚vltr pi ... pM) (LOCAL c1 c2 ... cK : sl ... su»)
by means of these  COMPOSE expressions, can first be rewritten as

({>,v}(r (compose (rnAro urn c1“ cz“ ... cK") pl ... p")! 51 ... sN)
Each cI' is obtained from cI by replacing '<"-occurrences _by
"" -o thur rences  and by omitting possible "u'-prefixes. The
‘('l""-rep1acement accounts for the fact that the constraints now
operate on variables global across the invocation adapter. The
“u'—dmission becomes possible because in inVocation computations jF
failures are automatically treated as jU failures.

For example, the DIFFCHAIN  fac t  of subsection 6 .3 ,1  in this way
becomes

(DIFFCHAIN (COMPDSE (TRAFO # ID  (NED 'X ~Y) (NED "Y ' Z ) )  ?X ?Y ?Z) )

And the iirst two EUCLID rules in this way become

(V (EUCLID  (COMPOSE (TRAFO # ID  (GREATERP ‘ X  -Y ) )  ? X  ?Y) )
(EUCLID  (DIFFERENCE ( X  ( Y )  (Y , )  _

(v(EUCLID (compose (TRAFD #ID (GREATERP ‘Y ‘X)) ?x ?Y))
(EUCLID ( X  (DIFFERENCE ( Y  (X ) ! )

Then. with the help of the CDHFD abbreviation introaucefi in section
5 .2 .3 .  the COMPDSE fOrms can be shortened to

(r (COHFO p1 ... pH : ci“ cz“ ... ck'))

and

({>.v}(r (CDfiFD p1 ... pM : c1~ cz“ ... ck ' ) )  s1 ... 5“)

For example. the DIFFCHAIN fact is shortened to

(D IFFCHAIN  (CDMFD ? X  ? Y  ? Z  : (NEO ' x  ' Y )  (NED “Y °Z ) ) )

And the EUCLID rules are shortened to

(v(EUCtID (cofiro ?x ?Y : (GREATERP ‘x “Yawa
(EUCLID  (DIFFERENCE ( X  ( Y )  <Y) )

(v(EUCLID (conFo ?x ?Y : (GREATERP “v ' x ) ) )
(EUCLID ( X  (DIFFERENCE ( Y  (X ) ) )

Note tha t  the COMFD's pattern l i m o u s i t i O n  is the ‘clause's original
invocation pattern without the tunction name and without parentheses
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[ i . e .  the  imposition of  i t s  CDR]. Of course .  th is  l arge  scope o f  the
COMFO pa t te rn  i s  on l y  necessary  i f  the  cons t ra in ts  ac tua l l y  ac t  over
var iab les  which a re  maximal ly  separated from one another :  th is  happens
to  be  the  case  in  the  D IFFCflAIN  and  EUCLID examples .  In  a l l  o ther  cases
the  scope  o f  the  COMFO pa t te rn  can  be  reduced ,  poss ib ly  by  b reak ing  the
COMFO express ion  in to  severa l  sma l le r  COMFO express ions .  For  example .
the  ru le

(> (F00  ?A ?B ?C ?D ?E) (LOCAL (GREATERP <8 (C )  (LESSP (D (E )  : . . . ) )

by the  genera l  COMFO t rans format ion  becomes
o

(> (F00  (COMFO ?A ?B ?C ?D ?E : (GREATERP “B ”C) (LESSP 'D  'E ) ) )  . . . ) .

and  by  b reak ing  the  COMFO down as  fa r  as  poss ib le  becomes

(>(F00 7A
(COMFO ?a ?c : (GREATERP “B “C) !
(conro 70  ?E : (LESSP “o ‘E ) ) )

. )

Of ten .  however .  the  COMPOSE fo rm can  a lso  be  s imp l i f i ed  w i thout  the
he lp  o f  COMFO. us ing  spec i f i c  p roper t i es  o f  func t ions .  In  the  EUCLID
example. (TRAFO #ID (GREATERP “x ‘Y ) )  can be replaced d i rec t l y  by
GREATERP and (TRAFO GID (GREATERP 'Y  'X ) )  can be rep laced  by i t s
i nverse ,  LESSP.  Th is  renders  the  f i rs t  two  EUCLID ru les  in  the i r
max ima l ly  conc ise  fo rm:

(v(EUCLID (COMPOSE GREATERP ?X ?Y) )
(EUCLID (DIFFERENCE (X  (Y )  <Y ) )

(V(EUCLID (COMPOSE LESSP ?X ?Y) )
(EUCLID (X  (DIFFERENCE <Y <X) ) )

fi . ‘  C lause  Order ing

A PROLOG da ta  base  i s  an  o rdered  se t  o f  c lauses ,  i . e .  i t  has  the
form

c lause1 .
c lauseZ .

c lause I .

c lauseZ .

where  the  o rder  o f  the  ind ices  1 .  2 .  . . . ,  I ,  . . . ,  Z i s  re levan t  and
each  c lause I  i s  a PROLOG fac t  o r  ru le .  A PROLOG ques t ion  over  tha t  da ta
base  uses  the  f i rs t  match ing  c lauseF  [w i th  the  sma l les t  index  F ]  and
on ly  on  i t s  f a i lu re  cons iders  the  tex tua l l y  consecut ive  c lauses .

A cor respond ing  F IT  da ta  base  i s  an  unordered  se t  o f  c lauses .  i . e .
i t  has  the  fo rm
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c lausep I~
clausepZ~

clausepl”.

c lausepz '

where  p1 .  p2 .  . . . .  p I .  . . . .  p2  is  any  permuta t ion  o f  1 .  2 ,  . . . . I .  . . . .
Z and each  c lausep I~  i s  a F IT  fac t  o r  ru le .  A F IT  ques t i on  over  tha t
da ta  base  uses  the  most  specific match ing  c lauses~  [ independent  o f  i t s
index  S ]  o r -  the  subse t  o f  equa l l y  maximum spec i f i c  match ing  c lauses
c lauseS I .  . . . .  c l auseSk  and  on ly  on  i t s  o r  the i r  f a i lu re  cons iders  the
nex tmost  spec i f i c  c lauses .

These PROLOG and F IT  da ta  bases l ead  to  equ iva len t  behav iors  on ly  in
the  fo l low ing  two  cases .

1 .  PROLOG's c lause  o rder ing  and  F IT 's  spec i f i c i t y  o rder ing  a re
immater ia l .  An examp le  i s  the  two-c lause  PROLOG da ta  base

human(socrates) .
mor ta1(X)  : -  human(X).

which  in  F IT  becomes

(HUMAN SOCRATES)
()(HORTAL ?X) (HUMAN (X ) )

The order ings  a re  immater ia l  he re  because  in  PROLOG no
possible r eques t  i s  matched  by  bo th  c lauses  and  a lso  in  F IT  no
PROLOG- l i ke  reques t  i s  matched  by  bo th  c lauses  [we  exc lude
here  non-PROLOG—like F IT  reques ts  such  as  ( | ?WHATIS  SOCRATES)
tha t  wgglg be matched by both  c lauses ] .  Both the  PROLOG
reques t

?— mor ta l (wH0) .

and  the  F IT  reques t

(MORTAL |?HHO)

wou ld  yield the  cor rec t  'Socra tes '  b ind ing  o f  WHO.

2 .  PROLOG's c lause  o rder ing  co inc ides  w i th  F IT 's  spec i f i c i t y
order ing .  An example  i s  the  th ree -c lause  PROLOG da ta  base

inhab i t (wha le .sea ) .
i nhab i t (X . l and )  : -  mammal(x).
mammallwhale).

which  in  F IT  can  be  wr i t t en  as

(INHABIT HHALE SEA)
( ) ( INHABIT  ?X LAND) (MAHMAL <X) )
(MAHHAL HHALE)

The order ings  co inc ide  here  because in  PROLOG the  'wha le '  f ac t
tex tua l l y  precedes the  'mammal' ru le  and in  F IT  the  'wha le '
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f ac t  i s  more spec i f i c  than the  'mammal' ru le .  There fore  both
the  PROLOG reques t

?-  inhabi t (whale .WHAT) .

and  the  F IT  reques t

( INHABIT  NHALE |?HHAT)

wou ld  yield the  cor rec t  ' sea '  binding of  WHAT. However, in  the
‘permuted'  da ta  bases

inhab i t (x . l and )  :— mamma11X).
i nhab i t (wha1e ,sea ) .
mammal1wha le ) .

and

(>( INHABIT ?X LAND) (HAMHAL (X ) )
(INHABIT “HALE SEA)
(MAMMAL NHALE)

the  tex tua l  and spec i f i c i t y  o rder ings  no longer  co inc ide
because the  former has changed and the  l a t te r  has remained the
same. There fo re  on ly  F IT  would s t i l l  y i e ld  the  cor rec t  ' sea '
b ind ing  in  the  'wha le '  reques t ,  whereas PROLOG would y ie ld  an
incor rec t  ' l and '  b ind ing .

The  dependence  on  tex tua l  o rder  in  PROLOG and  the  independence  o f
tha t  o rder  in  F IT  accounts  fo r  a g rea te r  modu la r i t y  o f  the  l a t te r
l anguage .  In  PROLOG. when add ing  a new c lause  the  cur ren t  da ta  base  has
to  be  examined  care fu l l y  to  ensure  tha t  the  c lause  i s  inser ted  a t  the
cor rec t  t ex tua l  pos i t ion  [no t  to  speak o f  the  d i f f i cu l ty  o f  99! to
per fo rm such  inser ts  us ing  PROLOG's asser t / re t rac t  p r im i t i ves ,  once  i t
i s  c lea r  where to  do  i t ] .  I n  F IT ,  however ,  the  cur ren t  da ta  base  need
not  be  examined  a t  a l l ;  on ly  the  spec i f i c i t y  o f  the  new c lause  mat te rs .
and  th is  i s  an  in t r ins ic  p roper ty  o f  the  c lause  i t se l f .  F IT 's  h igher
modu la r i t y  a lso  s imp l i f i es  au tomat ic  add i t ion  o f  c lauses ,  wh ich  i s
necessary  fo r  knowledge  acqu is i t ion  by  A I  sys tems .

6 .5  Cut ,  SECURE, and EXCLUSIVE

6 .5 .1  Cut  Cont ras ted  w i th  SECURE -

The  PROLOG cu t  opera to r  i s  no t  ava i l ab le  in  F IT  because  o f  the
wel l -known problems w i th  th is  impera t ive  programming const ruct
[ (VanEmden 1980 ) ,  (Clocksin & Mel l i sh  1981 ) ] .  However .  F IT  p rov ides  a
func t iona l  SECURE opera to r  wh ich  i s  comparab le  to  the
ru le -cho ice—conf i rming  use  o f  cu t  as  descr ibed  be low.

Le t  c lause !  abbrev ia te  e i the r  a PROLOG ru le  o f  the  fo rm [wh ich  we ' l l
ca l l  ' i n te rmed ia te  cu t ' ]

s t ruc tureO : -  s t ruc ture I .  . . . ,  ! .  . . . ,  s t ruc tureN .
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where  one  cu t  ope ra to r  " ! ”  occu rs  somewhere be tween  the  body  reques ts
[ ' in termedia te ' ]  or a PROLOG ru le  of one of  the distinguished forms
[which we ' l l  ca l l .  respectively.  ' i n i t i a l  cut '  and ' f ina l  cu t ' ]

s t ruc tu refl  :— ! .  s t ruc tu re1 .  . . . .  s t r uc tu reN .

and

s t ruc tu reo  :— s t ruc ture I .  . . . .  s t r uc tu reN .  ! .

which activate the  cu t  immediate ly  a f te r  a successfu l  invoca t ion  match
[ ' in i t i a l ' ]  and on ly  a f te r  a successfu l  eva lua t ion  o f  the  en t i re  body
[ ' f ina l ' ] ,  r espec t ive ly ;  a f ac t  o f  the  form s t ruc tureo .  through cut
becomes a ru l e  of  the  fo rm s t ruc turefl  : “  ! .  [ r egarded  as  ' in i t i a l ' ,
though coextensive  w i th  ' f ina l ' ] .

Let  \ c lause  abbrev ia te  a F IT  fac t  o f  the  fo rm

\s t ruc tureo

or  a F IT  ru le  o f  the  fo rm

( {> ,v } \s t ruc tureo  s t ruc tu re !  . . .  s t ruc tu reN)

where the  SECURE opera tor  " \ “  marks the  invoca t ion  pa t te rn  and is
a lways  ac t iva ted  immedia te ly  a f te r  a success fu l  invoca t ion  match  [ thus
SECURE is  always ' in i t i a l ' ] .

I f  i n  a PROLOG da ta  base

c lause1 .
c lauseZ .

c lauseH! .

c lauseZ .

some c lauseM is  “ ! "  [ cu t ]  marked  and  in  a cor respond ing  F IT  da ta  base

clausepI~
clausepZ"

\clauseM~

clausepZ"

a corresponding c lause" -  i s  " \ "  [SECURE] marked. then a reques t  matched
by the  marked c lause  i s  processed thus:

I n  PROLOG c lauseM is  on ly  app l ied  i f  none  o f  the  c lauses  c1ause1 ,  . . . ,
c l auseM-1  a lso  matches  the  reques t .  O therw ise ,  c lause"  wou ld  on ly  be
app l ied  on fa i lu re  o f  a l l  these preceding matching [ " ! " - l ess ]  c lauses .
Once app l ied .  the  cu t  mark ” ! “  o f  c lauseH makes a l l  poss ib ly  matching
clauses clauseM+1, ..., clauseZ inapp l icab le  fo r  tha t  reques t .  Thus, i f
clauseH should fa i l  [ th is  can happen i f  clauseM has the  non- f ina l -cu t
form s t ruc tureo  :— . . . ,  ! ,  s t ruc tureC .  . . . ,  s t ruc tureN .  and one o f
s t ruc turec .  . . . .  s t ruc tureN  fa i l s ]  the  en t i re  reques t  f a i l s .  S imi la r l y .
i f  l a te r  requests  conjoined w i th  the  c lauseM-using reques t  f a i l  [ th is
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can  happen  even  i f  c l auseM has  the  f ina l -cu t  fo rm s t ruc turen  : -
s t ruc ture I .  . . . ,  s t ruc tureN .  ! . ] ,  this r eques t  can  produce  no  fu r ther
alternatives.

I n  F IT  the  SECURE mark  " \ "  o f  c lause"  p r io r i t i zes  i t  such  tha t  i t  i s
applied independent ly  o f  o the r  [ “ \ '—les s ]  clauses w i th  poss ib ly  h igher
spec i f i c i t y  tha t  may a lso  match the  reques t .  When app l ied ,  clauseM
doesn ' t  make o ther  [ ' \ " -1ess ]  c lauses inapp l icab le  but  on ly
depr io r i t i zed  fo r  tha t  reques t .  Thus, i f  clauseM should fa i l  o ther
c lauses  may s t i l l  cause  the  reques t  to  succeed .  S imi la r l y .  i f  l a t e r
r eques t s  con jo ined  w i th  the  Clausen—us ing  r eques t  f a i l .  o ther  c lauses
for  th is  reques t  may s t i l l  p roduce  fu r ther  a l t e rna t ives .  I f  severa l
c lauses  a re  SECURE-marked a l l  o f  them are  p r io r i t i zed  aga ins t  a l l  o ther
[ " \ ' - 1ess ]  c lauses .  For the  ' f ine  p r io r i t i za t ion '  ins ide  the  se t  o f
SECURE c lauses  the i r  spec i f i c i t y  i s  used  [ i f  no  s ing le  SECURE c lause  i s
maximal ly  spec i f i c  an en t i re  BREADTH i s  p r io r i t i zed ] .

Let  us  cons ider  two  s imp le  examples  o f  CUT and SECURE uses .

I n  the  prev ious  ‘wha le '  example one might  wish to  make the  genera l
' inhab i t '  ru le  inapp l icab le  i f  the  spec i f i c  'wha le ‘  f ac t  matches. In
PROLOG th is  may be  done  by  mark ing  tha t  f ac t  by  a cu t :

i nhab i t (wha1e . sea )  : "  ! .
i nhab i t (x . l and )  :— mammal (X) .
mamma1(wha1e ) .

With F IT 's  SECURE th is  cannot be done because marking the  'wha le '  f ac t
i n  t h i s  way ,  y ie ld ing

\ ( INHABIT WHALE SEA)
(>( INHABIT ?X LAND) (HAHMAL (X ) )
(MAMMAL WHALE)

wouldn ' t  change  any th ing .  as  the  marked  fac t  i s  more  spec i f i c  than  the
' i nhab i t '  ru le  in  any case [bu t  see subsect ion 6 .5 .2 ] .

As ano the r  example  cons ide r  the  PROLOG da ta  base

knows( john .mary ) .
knows(x .p res iden t ) .

and  i t s  F IT  counte rpar t

(KNOWS JOHN MARY)
(KNOWS ?X PRESIDENT)

A PROLOG reques ts  l i ke

? -  knowst john .WHOM) .

f i rs t  b inds  WHOM to  mary  and  then  to  p res iden t  because  o f  the  tex tua l
o rder ing .  A cor respond ing  F IT  r eques t

(KNOWS JOHN I?WHOM)

f i r s t  b inds  WHOM to  MARY and  then  to  PRESIDENT because  o f  the
spec i f i c i t y  o rder ing .  Now. i f  We want  to  reverse  the  o rder  o f  these
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answers, i.e. 'privileging‘ the President, in PROLOG we have to reorder
the data  base.  yielding

knows(X,president).
knowstjohn.mary).

In FIT the same e f fec t  is obtained by marking the 'President' fact as
SECURE, yielding '

(KNOWS JOHN MARY)
\(KNOHS ?X PRESIDENT)

In the PROLOG data base a corresponding cut mark as in

knows(john,mary).
knowstX.president) :— !.

wouldn ' t  change anything because the 'President' fact is still only
reached after the 'Mary' fact. On the other  hand. in PROLOG a
combination of reordering the data base and cut. as in

knows(x.president) :- !.
knows(john.mary).

would allow the knowstjohn.HHOM) request t o  succeed only once. binding
WHOM to president and forgetting about mary. A cor respond ing
combina t ion  of reordering and SECURE in t h e  FIT data base, as in

\(KNONS ?X PRESIDENT)
(KNOWS JOHN MARY)

would. of course. still allow (KNOHS JOHN I?WHOM) t o  succeed twice.
first with the 'President' and then with the 'Mary' binding [but see
subsection 6 .5 .2 ] .

More sophisticated examples of unrestricted cut and of SECURE may be
found in section 7 and a further discussion o f  SECURE in (Boley 1983 ) .

6 .5 .2  Cut Restricted to EXCLUSIVE ~

In FIT the prioritization of SECUREd clauses is formalized
semantically by putting the 'activation record' of a prioritized clause
into the first argument position o f  a DEPTH expression and putting
those of other  matching clauses into later DEPTH positions. In a
formalization of [initial] cut's semantics of making non—prioritized
clauses inapplicable. only the activation record of the prioritized une
would be kept and the other ones could be thrown away ['abandoned'l.
[FIT's FINALIZE primitive, a functional version of MICRO-PLANNER's,
selects the first successfully evaluated DEPTH element and could thus
be used to formalize the 'abandon' semantics of final cuts. not of the
initial cuts to be discussed here . ]  An EXCLUSIVE SECURE version could
then be introduced for obtaining a cut—like rigid control in situations
where a normal SECURE would seem to be too permissive.
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I n  our  op in ion  the  PROLOG use  o f  a cu t  opera tor  makes programs  ha rd
to  r ead  mainly because  i t  r e l i es  on  the  t ex tua l  data  base  orde r .  Thus
one  s tep  toward  the  so lu t ion  o f  the  cu t  p rob lem wou ld  be  the
d isen tang l ing  o f  the  'abandon' semantics and the  ' t ex tua l  o rder '
semantics.  Now. in  F IT  we don ' t  use ' t ex tua l  o rder '  semantics bu t  a
”spec i f i c i t y  o rder '  semantics mod i f i ab le  by the  SECURE opera to r .  On
th i s  basis we cou ld  i n t roduce  an in i t i a l—cut - l i ke  EXCLUSIVE opera tor
[a lso  abbrev ia ted  w i th  “ ! "1  usab le  in  i so la t ion  as in  !c lausen ' .
abandoning l ess  spec i f i c  and o ther  equa l l y  spec i f i c  [ ' \ “ - l ess ]  c lauses .
o r  toge ther  w i th  the  SECURE opera to r  as in  ! \ c lauseM" .  abandoning a l l
other  match ing  c lauses .  We wou ld  thus  have  separa ted  the  abandonment
in fo rmat ion  f rom the  o rder ing  in fo rmat ion .  I f  severa l  equa l l y
pr io r i t i zed  match ing  c lauses  a re  EXCLUSIVE-marked .  on ly  one  o f  them
would have to  be kep t  and a l l  o thers  could  be abandoned. [EXCLUSIVE.
un l i ke  SECURE. i s  no t  ye t  implemented in  F IT -1 ! ]

I n  the  ' inhab i t ’  example .  a l l  the  F IT  da ta  bases

! ( INHABIT WHALE SEA) ! \ ( INHABIT  WHALE SEA)
(>(INHABIT ?X LAND) (MAMMAL <X) )  (>( INHABIT 7X LAND) (MAMMAL <X) )
(MAMMAL WHALE) (MAMMAL WHALE)

(>(INHABIT ?X LAND) (MAMMAL <X) )  (>( INHABIT 7X LAND) (MAMMAL (X ) )
! ( INHABIT WHALE SEA) ! \ ( INHA8 IT  WHALE SEA)
(MAMMAL WHALE) (MAMMAL WHALE)

fo r  the  'wha le '  request  would abandon the  l ess  spec i f i c  ' l and '  ru le
because th is  i s  excluded by the  more spec i f i c ' l i n  the  r igh t -hand-s ide
data  bases .  redundant ly  SECURE marked]  ‘wha le '  f ac t .  i . e .  they  wou ld
ac t  l i ke  the  PROLOG da ta  base

i nhab i t (wha le .sea )  : -  ! .
i nhab i t (x . l and )  : -  mamma1(x).
mammal(whale).

In  the  ' k nows '  example. bo th  the  F IT  da ta  bases

(KNOWS JOHN MARY)
!(KNOWS ?X PRESIDENT)

and

!(KNOWS ?X PRESIDENT)
(KNOWS JOHN MARY)

wouldn ' t  change  the  behav io r  o f  the  unmarked  da ta  base  because  no th ing
is  l e f t  to  exc lude  fo r  the  l ess  spec i f i c  'P res iden t '  f ac t .  i . e .  they
wou ld  ac t  l i ke  the  PROLOG da ta  base

knowst john.mary) .
knows(x .p res ident )  : -  ! .

However ,  bo th  the  F IT  da ta  bases

(KNOWS JOHN MARY)
!\(KNOWS ?X PRESIDENT)
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and

!\(KNOHS ?X PRESIDENT)
(KNOWS JOHN MARY)

wou ld  permit success  only fo r  the  prioritized President which exc ludes
Mary. i . e .  they wou ld  ac t  l i ke  the  PROLOG da ta  base

knowstx ,pres ident1  :— ! .
knows( john,mary) .

I n  F IT .  EXCLUSIVE and  SECURE cou ld  be  used  no t  on l y  i n  the
definition of  p red ica te  func t ions  l i ke  KNOWS but  a lso  in  the  de f in i t ion
o f  general func t ions  like FAC, no t  poss ib le  in  PROLOG. For  ins tance ,
the  usua l  s imple j ag tor ia l  de f in i t ion

(>(FAC 0 )  1 )
(>(FAC ?N) (TIMES <N (FAC (SUBI <N) ) ) )

has  the  d isadvantage  tha t  [ a t  the  bo t tom o f  recurs ions ]  the  ca l l
(FAC 0 )  i s  matched  by  bo th  c lauses .  in  pure  F IT  re tu rn ing

(DEPTH 1 suspens ion—which -wou ld -d ive rge—to—negat ive—in f in i ty l

Th is  can  be  avo ided  by  mak ing  the  invoca t ion  pa t te rn  o f  the  second
clause d is jo in t  from tha t  o f  the  f i rs t .  i . e .  by exchanging the  untyped
var iab le  ?N by  the  typed  var iab le  X?POSINT fo r  pos i t i ve  in iegers :

(>(FAC 0 )  1 )
( ) (FAC x?POSINT) (TIMES (POSINT (FAC ($081 (POSINT) ) ) )

A l te rna t ive ly  [sav ing  repea ted  POSINT checks fo r  each recurs ive  FAC
call. redundant  fo r  a l l  bu t  the  in i t i a l  and  the  f ina l  ca l l ] .  the  f i rs t
c lause  cou ld  be  marked  by  an  EXCLUSIVE opera to r :

(>!(FAC 0 )  1)
( ) (FAC ?N) (TIMES (N  (FAC (SUB! <N) ) ) )

Since the  pa t te rn  (FAC 0 )  i s  more spec i f i c  than  the  pa t te rn  (FAC ?N) no
SECURE opera to r  i s  needed  here .  I f ,  i ns tead ,  we used  equa l l y  spec i f i c
and d is jo in t  invoca t ion  pa t te rns  l i ke  (FAC x?ZEROP) and  (FAC x?POSINT) .
no  EXCLUSIVE opera to r  wou ld  be  needed  and  the  SECURE opera to r  wou ld  be
reduced  to  a mat te r  o f  s ty le  and  e f f i c iency :

(> \ (FAC x?ZEROP) 1 )
( ) (FAC x?POSINT) (TIMES (POSINT (FAC (SU81 <POSINT) ) ) )

F ina l l y .  i f  we used equa l l y  spec i f i c  and non-d is jo in t  invoca t ion
pat te rns  l i ke  (FAC x?ZEROP) and  (FAC x?NUMBERP) bo th  EXCLUSIVE and
SECURE wou ld  be  ca l l ed  fo r :

(> ! \ (FAC x?ZEROP) 1 )
( ) (FAC x7NUMBERP) (TIMES (NUMBER? (FAC (SMI1 (N“MBERP))))

The examples i l l us t ra te  the  fo l lowing  p roper ty  o f  the  EXCLUSIVE
opera tor .  In  add i t ion  to  no t  re ly ing  on the  tex tua l  da ta  base order
between ru les ,  EXCLUSIVE is  h igher - l eve l  than  cu t  because i t  doesn ' t
re ly  on  o rder ing  inside ru le  bod ies .  Jus t  as  the  “N ILE  s ta tement
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co r responds  t o  a very  restricted f o rm  o f  go to ,  t he  EXCLUSIVE ope ra to r

co r responds  t o  a ve ry  r es t r i c t ed  f o rm  o f  cu t ,  cha rac te r i zed  by  t he
fo l l ow ing  p rope r t i es :

1 .  Only one cut i s  permitted f o r  each c l ause  [ t he  ' s i ng le  cu t '
p rope r t y ] .

2 .  Th i s  cu t  can on l y  occu r  i n  a f i xed  pos i t i on ,  namely
immed ia te l y  a f t e r  t he  i nvoca t i on  match  [ t he  ' i n i t i a l  cu t '
p rope r t y ] .

Th i s  means  t ha t  EXCLUSIVE,  as  we l l  as  SECURE. app l i es  t o  a c l ause  i n
i t s  en t i r e t y .  i n  con t ras t  t o  un res t r i c t ed  cu t s ,  wh i ch  may be  sp r i nk l ed
th roughou t  c l ause  bod ies .  The re fo re .  unde rs tand ing  a F IT  c l ause
invo l ves  on l y  check ing  whe the r  i t  i s  EXCLUSIVE [SECURE] a t  a l l ,  r a the r
t han  gg! o f t en  o r  whe re  i t  has  some such  p rope r t y .  as  requ i red  f o r
unde rs tand ing  a PROLOG c lause .  Th i s  i s  i n  parallel with WHILE,  wh i ch .
un l i ke  un res t r i c t ed  go tos .  app l i es  t o  a p rog ram b lock  i n  i t s  en t i r e t y ,
he igh ten ing  i t s  unde rs tandab i l i t y  i n  a s im i l a r  manner .

Ano the r  use  o f  EXCLUSIVE i n  t he  f o l l ow ing  subsec t i on  5 .5 .3  w i l l
exh ib i t  f u r t he r  advan tages  o f  t he  i n i t i a l - cu t  p rope r t y .

6 .5 .3  F rom Gua rded  Commands t o  Cons t ra i ned  EXCLUSIVE Ru les  —

The comb ina t i on  o f  EXCLUSIVE c l auses  and cons t ra i ned  c l auses
[ sec t i on  6 .3 ]  y i e l ds  an  i n te res t i ng  k i nd  o f  r u l e .  wh i ch  may be  seen  as
a f unc t i ona l  ve rs i on  o f  " gua rded  commands" (D i j k s t r a  1975) and
"p roduc t i ons "  (Newe l l  1973 ) .  Th i s  comb ina t i on  i s  enab led  by t he  COMFO
cons t ra i n t s  me thod ,  i n t r oduced  i n  sec t i on  6 .3 .2 .  L i ke  eve ry  o the r  r u l e ,
a COMFO cons t ra i ned  ru l e  can  be  marked  by  an  EXCLUSIVE ope ra to r ,
ob ta i n i ng

( {> . v } ! ( r  (COMFO p1 . . .  pM : c1 c2 . . .  cK))  s1 . . .  sN)

On invocation, t h i s  r u l e  f i t s  i t s  head ( r  (COMFO p1  . . .  pM : c1  c2
CK! )  t o  t he  exp ress ion  t o  be  eva lua ted .  t he reby  check ing  t he
cons t ra i n t s  c l ,  c2 ,  . . . ,  cK ove r  t he  va r i ab les  among p1 .  . . . ,  pM .  I f
t h i s  cons t ra i n t—check ing  i nvoca t i on  f i t t i ng  succeeds .  t he  EXCLUSIVE
ope ra to r  causes  o the r  poss ib l y  success fu l  r u l es  t o  be  abandoned .

Then  a gua rded  command o f  t he  f o rm

gua rd  ->  s ta temen t1 : . . . : s t a temen tN

can  be  represented as  t he  ru l e  [the t i l de  deno tes  a t r ans fo rma t i on  f r om
Di j ks t r a ' s  ALGOL—like syn tax  t o  F IT  syn tax ]

( {> , v } ! (D  (COMFO : guard")) statement1~ . . .  statementN")

The  ru l e  uses  a dummy name r=D  and  a COMFO expression with an  emp ty
pa t t e rn  [ i . e .  M=0;  i n  that case equ i va len t  t o  a TRAFO] and  a body
cons i s t i ng  o f  a s i ng le  cons t ra i n t  [ i . e .  K=1 ] .  c l =gua rd " .  ope ra t i ng  ove r
g loba l  va r i ab les .
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Dijkstra's guarded-command—based alternative const ruc t

ii guarded—command1

[ ]  güarded—coümandz

[ ]  guarded-commandZ
51

can be rewritten in FIT as [ the  tilde transforms guarded commands as
demonstrated above]

guarded-command1"
gUarded-commandz~

guarded-commandz~

That is. the isolated goarded—command rules are simply written into a
[possibly LOCAL] FIT data base.  Note that while "a guarded command by
itself is not a statement" (Dijkstra 1975 ) .  its FIT representation ig a
r u l e ,  usable by itself or as part of a larger construct.

For example. Dijkstra's "program that for fixed x and y assigns to m
the maximum value of x and y",

if x 3 y —> m := x
[ ]  y 3 X -> m := y
i;

in FIT can be rewritten as

(> ! (b  (conro : (GE <x (Y ! ) !  (>" <x))
(>!(o (conro : (GE <Y <X)))  (>M (7))

After (>X 3) and (>Y S) this can be called by (D ) .  which sets M to 5.

Deviating from Dijkstra's imperative global—state-oriehted
pregraMMing style. a tunctional method of trahScribing a
guarded-command-baSed construct consists of the introduction of a new
fdnction for it such that the imported global variables of the
ConStruct become the arguments of the Function and the eXported global
variables are replaced by the tunction's returned values. A guarded
command of sueh a construet is transcribed using the function's name
instead o f  D, a non—trivial COMFO expression with the guard operating
on the function's arguments arg1, . . . .  argM. and functional expreSsions
as statements [here the tilde denotes a Functional transformation]:

({>,v}!(hame (COHFO arg1 ... argH : guard"))
statement!" ... statementN')

Thüs the alternatiVe constrUct tunctionally becomes [Using the
abbreviations args = arg! ... argH and, tor 15:52. statementsj” =
stateMentj,1' ... statementj.Nj']

‘({>,v}!(name (COHFO args : guardj")! statemehtsi")
I{>.v}!lname (COMFO args : gu:ru2")) statemehts2“o

11>.v}!(name (COMFO args : guardz;)) Statementsi")
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For  examp le .  the  maximum program can  be  represented  as  a func t ion  named
MAX with two  a rguments  X and  Y and  one  re tu rned  va lue :

(>!(MAX (COMFO ?x ?Y : (GE ‘x  ‘Y ) ) )  <x)
(>!(MAX (COMFO ?x ?Y : (GE “Y "x ) l )  (Y )

Th is  can  be  ca l l ed  by  (MAX 3 5 ) .  re tu rn ing  5 .

D i j ks t ra 's  guarded-command—based repe t i t i ve  cons t ruc t  cou ld  be
re fo rmula ted  in to  F IT  s imi la r l y ,  add i t iona l l y  us ing  ta i l - recurs ion  fo r
represent ing  i t e ra t ion .  For example, D i j ks t ra 's  "program fo r  the
grea tes t  common d iv isor  o f  two  pos i t i ve  numbers“,

x :=  X :  y :=  Y ;
gg x > y - )  x :=  x — y
[ ]  y > x —> y = y — x
gg

can be func t iona l l y  rewr i t t en  in  F IT  as

(v!(EUCLID (COMFO ?X ?Y : (GREATERP ' X  'Y ) ) )
(EUCLID (DIFFERENCE <X <Y) <Y ) )

(v!(EUCL[D (COMFO ?X ?Y : (GREATERP “Y 'X l l )
(EUCLID <X (DIFFERENCE <Y <X) ) )

( ) (EUCLID ?X ?X) (X )

Howeve r ,  this doesn ' t  change  any th ing  in  the  EXCLUSIVE—less COMFO
vers ion  o f  subsec t ion  6.3.2. because .  a f te r  the  cons t ra in ts  check .
a lways  exac t ly  one  ru le  rema ins ,  so tha t  the re  i s  no th ing  l e f t  to
exc lude  fo r  th is  s ing le  ru le .  Th is  shows tha t  the  imp l ic i t  ' abandon
semantics'  [ c f .  subsect ion 5 .5 .2 ]  o f  D i j ks t ra 's  guarded commands is  not
requ i red  in  h is  p r inc ipa l  EUCLID example  [nor  in  o ther  p rograms  whose
guards  a re  d is jo in t  ra ther  than  over lapp ing  as  in  the  maximum program] .
S ince  i t  i s  c lea r  tha t  the  cu t  opera to r  shou ld  no t  be  used  w i thout
need. the  same should ho ld  fo r  i t s  res t r i c ted  EXCLUSIVE form, so tha t
the  ea r l i e r  EUCLID vers ion  o f  subsec t ion  6 .3 .2  appears  p re fe rab le  to
the  p resent  one ,  de r ived  f rom guarded  commands. The  non—abandoning.
l og ica l l y  'pure r '  ve rs ion  cannot be spec i f i ed  w i th  guarded commands.
because o f  the i r  bu i l t - in  abandon semantics.

A re la t iona l  t ranscr ip t ion  method  fo r  gua rded—command-based
const ruc ts ,  in te rmed ia te  be tween  the  impera t ive  and  the  func t iona l  one .
can  be  der ived  f rom the  func t iona l  method ,  p rov ided  tha t  the  expor ted
var iab les  become resu l t  va r iab les  o f  the  re la t ion .  A guarded  command o f
such a cons t ruc t  looks  l i ke  the  func t iona l  one  except  tha t  i t  uses  a
re la t ion  name [by convent ion having a "—P" su f f i x ] ,  add i t iona l  resu l t
var iab les  res l .  . . . .  resL .  and  re la t iona l  express ions  as  s ta tements
[he re  the  t i lde  denotes a re la t iona l  t rans format ion ] :

( {> .v } ! (name-P  (COMFO arg I  . . .  argM : guard")  res I  . . .  r esL )
statement1" . . .  statementN")

Thus the  a l te rna t ive  cons t ruc t  re la t iona l l y  becomes [us ing  the  p rev ious
abbrev ia t ions  toge ther  w i th  ress  = res1  . . .  r esL ]
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( (> .v l ! (name-P  (COMFO args : guard i ' )  r ess )  s ta tements l " )
((>,v}!(name~P (COMFO args : guard2") ress) statement52~)

({>.v}!(name-P (COMFO args : guardZ") ress) statementsz")

Of ten  th is  raw  relational t r ansc r ip t i on  can  be  simplified.

For  example .  the  maximum p rog ram can  be  represented  as  a re la t ion  named
MAXP [ a  shor t  form o f  MAX-P] wi th  two input  va r iab les  X and Y and one
resu l t  va r iab le  M:

()!(MAXP (COMFO ?x ?Y : (GE “X ‘Y)) ?M) (eu <M <x))
(>!(MAXP (COMFO ?x ?Y : (GE ‘Y "X)! ?M) (E0 <M <Y))

Of  course ,  the  s ta tements  (EQ (M  (X )  and  (E0  (M  <Y)  can  be  omi t ted  here
by  rep lac ing  the  ?H a rguments  d i rec t l y  by  ?X and  ?Y .  respec t ive ly :

( ) ! (HAXP (COMFO ?X ?Y : (GE “X 'Y ) )  ?X) )
(>!(MAXP (COHFO ?X ?Y : (GE 'Y  ‘X ) )  ?Y) )

Then ,  i f ,  as  in  the  above  maximum program,  the  s ta tement  par t  o f  ru les
becomes empty through the  re la t iona l  t ranscr ip t ion ,  these
t rans format ion  ru les  [ t rans formers ]  can  be  fu r ther  s imp l i f i ed  to
adapta t ion  ru les  [adapte rs ] :

!(MAXP (COMFO ?X ?Y : (GE "X °Y ) )  ?X)
!(MAXP (COMFO ?X ?Y : (GE ~Y 'X ) )  ?Y)

The re la t iona l  vers ions can be ca l l ed  by (MAXP 3 5 |?ANS). binding ANS
to  5 .

I n  (Kowalski 1979) a re la t iona l  fo rmula t ion  o f  D i j ks t ra 's  maximdm
program is  d iscussed  as  an  example  o f  "don ' t  ca re”  non-de te rmin ism1 ,
charac te r is t i c  fo r  guarded  commands and  usab le  fo r  a fo rm o f
i n te l l igen t  back t rack ing :  however. i t  i s  no t  s ta ted  tha t  such a ”don ' t
care"  spec i f i ca t ion  requ i res  an ex t ra - log ica l  f ea tu re  equ iva len t  to
PROLOG's cu t  opera to r .  Th is  i s  deMonst ra ted  in  the  fo l low ing
PROLOG—like ve rs ion  o f  the  maximum program wh ich .  l i ke  the  p rev ious
vers ions .  p resupposes  no  c lause  o rder :

maxp(X.Y.X) :— X > , ! .
maxp(X,Y.Y) : -  Y >

Y
X. ! .

[ I f  i n te rpre ted  as  o rd inary  PROLOG. with c lause  o rder ,  the  second  cu t
‚wou ld  be redundant . ]

No t ice  tha t  th is  must t ake  the  form o f  PROLOG ru les  [ t rans formers ] ,
even  though  no  goa ls  fo l low  a f te r  the  guard  eva lua t ion  o r  cons t ra in ts
check .  PROLOG fac ts  [adapte rs ]  cannot  be  used ,  s ince  the  cons t ra in ts
are  themse lves  represented  as  goa ls .

I n  (C la rk  & Gregory 1981) the  te rm "committed“ ins tead  o f  "don ' t
care"  non-de te rmin ism is  used  and  the  cu t  opera to r  be tween  guards  and
other  goals  i s  ca l l ed  “clauSe bar"  [wr i t t en  as " I “ l .  Finally. i n
CONCURRENT PROLOG (Shapi ro  & Takeuchi 1983)  re la t iona l  guarded commands
are  ca l l ed  ”guarded—clauses"  and  the  " I "  cu t  i s  adopted  under  the  name
"commit opera to r” .



FIT's  const ra ined  EXCLUSIVE ru le s  are  pre ferab le  to  CONCURRENT
PROLOG's guarded-c lauses  for  the  fo l l owing  reasons :

1 . Although  the  commit  opera tor  has  the  s ing le - cu t  proper ty  i t
doesn ' t  have  the  in i t i a l—cut  proper ty  o f  the  EXCLUSIVE
opera tor ;  i t  thus  mis se s  the  advantages  o f  in i t i a l  cu t s :

1 .  The l e f t—right  d iv i s ion  [ the  ' arrow' ]  o f  t rans format ion
ru le s  co inc ides  syntac t i ca l ly  w i th  the  in i t i a l  cu t  [bo th
are  thus  jo inab le  to  a ' cu t  arrow' .  a s  used  impl i c i t l y  in
Di jks tra ' s  guarded  commands];  in  th i s  way the  cu t  i s
l imi ted  to  a pos i t i on  in  the  t rans former  which  i s  spec ia l
in  any  case .  so  tha t  readab i l i ty  i s  improved .

2 .  I t  i s  advantageous  to  cons ider  cons tra in t s  checks  a s
genera l i zed  pa t t ern-d irec ted  invoca t ion .  i . e .  carry ing
them out  a s  par t  o f  the  ' l e f t -hand-s ide '  invoca t ion
f i t t ing  o f  a ru le  [mirror ing  the  l e f t -hand-s ide  eva lua t ion
of  D i jks tra ' s  guards ] :  I f  the  ru le  cons tra ined  in  th i s  way
has  an  in i t i a l  cu t .  a comple t ion  o f  the  invoca t ion  f i t t ing
means  a rea l  comple t ion  o f  the  ru le  s e l ec t ion .  in  contras t
to  the  pre l iminary  comple t ion  permi t t ed  by a non- in i t i a l
cu t .  wh ich  can  be  cont inuous ly  rev i sed  unt i l  the  body
eva luat ion  reaches  the  cu t .

3 .  Only initial cu t s  preserve  the  l e f t - r ight  symmetry  o f
ru le s ,  i . e .  permi t  ' cu t - symmetr i ca l '  ru l e s :  th i s  becomes
important  i f  the  arrow d irec t ion  i s  reversed  to  swi t ch
from backward reason ing  to  forward  reason ing  [ exp lo i t ing
the  mul t ip l e  readab i l i ty  o f  Horn  c lauses  through
"top—down‘ /”bot tom-up  in ference“  (Kowalski 1979 ) .  ra ther
than  through  " inver t ib i l i t y"  (Kowalski 1983 )J :  Whi le
top—down/bot tom-up  reversa l s  make  no  sense  w i th
non—ini t ia l  cu t s ,  they  can  be  mean ingfu l  w i th  in i t i a l
cut s .

EXCLUSIVE—marked t rans format ion  ru le s  can  be  s impl i f i ed  to
EXCLUSIVE-marked  adapta t ion  ru le s  i f  the  cons tra in t s  are
checked  dur ing  invoca t ion  f i t t ing  and  i f  there  are  no  o ther
goa l s  [ c f .  the  l a s t  MAXP version].

Constra ined  ru le s  are  more  genera l  than  guarded—clauses  in
tha t  they  can  no t  on ly  be  used  re la t iona l ly  for  de f in ing
pred ica te s  ( c f .  MAXP] but  a l so  func t iona l ly  for  de f in ing
genera l  func t ions  ( c f .  MAX].

7 L IST  AND SET PROCESSING

We now compare  l i s t  and  se t  proces s ing  in  FIT  and  PROLOG. S ince  s e t s
wi l l  be  represented  as  l i s t s  w i thout  dup l i ca te  e l ements .  the  t erm ' l i s t
proces s ing '  in  the  fo l l owing  wi l l  encompass  s e t  proces s ing .  As  in
PROLOG in  FIT  we  wi l l  de f ine  re la t ions  ra ther  than  func t ions  for  l i s t
proces s ing .  In  th i s  way  the  compar i son  be tween  FIT  and  PROLOG becomes
eas i er than  v ia  a t rans la t ion  o f  FIT' s  l i s t -proces s ing  func t ions  to
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PROLOG's l i s t -p rocess ing  relations. At the  same t ime i t  shows how F IT 's
adapters [c f .  section 5 .2 ]  can make relational programming. PROLOG's
domain  o f  exper t i se ,  more  conc ise  t han  even  PROLOG's t r ans fo rmers  [Horn
clauses] can .  In  such  adapte rs  f requent  use  will be  made o f
compositions o f  the  form ABo?var. wh ich  g ive  some subexpression a name
var ,  usab le  a t  ano ther  p lace .  and  t hen  erase  th is  subexpress ion ;  us ing
COMFO express ions  [c f .  sec t ion  5 .2 .31 .  th is  cou ld  a lso  be  fo rmula ted  as
(COMFO ?var ) .

To avo id  confus ion  be tween  l i s t—func t ion  names co ined  by  L ISP  [a lso
used in  F IT ]  and corresponding re la t ion  names in  F IT  we w i l l  append the
le t te r  “P“ to  every  re la t ion  [p red ica te ]  name which PROLOG borrowed
f rom the  name o f  a genera l  func t ion  in  L ISP .

As usua l .  the  F IT  examples  o f  th is  sec t ion  have  been  tes ted  in
F IT -1 .  However .  on ly  the  pure  p red ica te  use  o f  the  de f in i t ions  i s
comple te ly  imp lemented  in  F IT—1:  de f in i t ion  uses  w i th  reques t  va r iab les
are  no t  ye t  opera t iona l  in  fu l l  genera l i t y .  because  o f  the  res t r i c ted
un i f i ca t ion  f i t t ing  per fo rmed  in  th is  cur ren t  F IT  imp lementa t ion .  We
won ' t  use the  EXCLUSIVE opera to r  fo r  represent ing  in i t i a l  cu ts  here ,
but  the  reader  may eas i l y  supp ly  i t  where  des i red  [c f .  sec t ion  6 ] .

7 .1  Elementary L is t  Processing

For the  fo l low ing  comparison we w i l l  use the  PROLOG examples o f
chapte r  7 .5  in  (C locks in  & Me l l i sh  1981 )  and  re fo rmula te  them in  F IT .

F ind ing  the  l as t  e lemen t  9! 3 l i s t :  The recurs ive  PROLOG de f in i t ion

l a s t (X . (X ] ) .
l a s t (X . [ _ lY ] )  :— las t (X .Y ) .

can be d i rec t l y  m i r ro red  by a recurs ive  F IT  de f in i t ion  us ing  a
constan t—adapte r  fo r  the  boundary  cond i t ion  and  a t rans former  fo r  the
recurs ive  case :

(LASTP ?X (?X))
()(LASTP ?X ( ID  ?YoLIST)) (LASTP (X  <Y) )

However ,  the  ta i l - recurs ive  t rans former  ' can  be  rep laced  by  a
REVA-adapter [marked by an " r "—pre f ix  tha t  causes the  resu l t  o f  the
adapte r  f i t t ing  to  be  i g—eyg lua ted ] .  making  the  F IT  de f in i t ion  more
concise and f ree  o f  s ing le -occur rence  var iab les  [ fo r  de ta i l s  on these
adapter  concepts see (Boley  1983 ) ] :

(LASTP ?X (?X))
r(LASTP ID (AB 310! )

Now, s ince  there  i s  no  need  fo r  the  l e f t—to - r igh t  p rocess ing  per fo rmed
by  the  above  de f in i t ions .  the  two  adapte rs  can  be  co l l apsed  in to  a
s ing le  constant—adapter:

(LASTP ?X (CID ?X) )
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This is a mos t  conc i se .  declarative, and pictorial description of

the desired last list element. In PROLOG such a very-high—level
formulation can only be approximated by a transformer presupposing the

definition of append [see below]:

last(X,L) :— append(_.[X3,L).

gnggting for consecutive elements; The recursive PROLOG definition

nextto(X.Y.[X,Yl_J).
nex t t o (X .Y . [ _ |Z ] )  :— nex t t o (X ‚Y ‚Z ) .

could also be directly mirrored in FIT using a transformer, but let us

directly consider the more concise REVA—adapter version:

(NEXTTOP ?X ?Y (?X ?Y #ID) )
r(NEXTTOP ID ID (AB #10 ! )

Aga in ,  without left-to—right commitment these adapters collapse into

one constant adapter:

(NEXTTOP ?X ?Y ( #10  ?X ?Y #10 ) ,

And again, this most concise V v e r s i o n  in PROLOG can only be
approximated by a transformer depending on append [see below]:

nextto(X,Y,L) :— append(_,[X,Yl_],L).

Anggflging lists: The recursive PROLOG definition

append([1.L.L).
append([XIL1],L2,[XIL3]) :— append(L1,L2.L3).

by our previous method becomes the FIT adapters

(APPENDP () ?L ?L)
r(APPENDP (A807X #ID) ID (A807X 810) )

Through the use of parallel imposition variables this becomes
trivialized to

(APPENDP (>R) ‘ (>S )  (>R >S) )

The "flexibility of append" in PROLOG. which allows (Clocksin &
Mel l i sh  1981 )  to “define several other predicates in terms of it“ [cf.
last and nextto above ] ,  cons i s t s  of the f ac t  that append can be used to
divide a list almost symmetrically into two segments, so that its first
argument and a tail of its second argument can be used to simulate two
segment variables. However. this is a very indirect and cumbersome way
of bi—partitioning lists, not to speak of n-partitionings, that require
the analogue of nested append expressions [PROLOG's append relation
corresponds to LISP's binary *APPEND function, not to its n—ary APPEND
func t i on ] .  As an example consider the append—based member predicate
definition in (Clocksin & Mellish 1981 ) :

member(E1.List) :— append(_,[Ell_].List).

The append call uses an anonymous variable as its first argument. which
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ac ts  as  an  a rb i t r a ry  l e f t  segment .  As  i t s  second  a rgument  append  uses  a
list with t he  member sh ip  cand ida te  E1  a s  i t s  head  and  ano the r  anonymous
va r i ab l e  a s  i t s  t a i l .  t he  l a t t e r  ac t i ng  a s  an  a rb i t r a ry  r i gh t  s egmen t .
50  t he  two  segmen t  con tex t s  a round  E l  a r e  no t  symmet r i c  syn t ac t i ca l l y ,
because  t he  l e f t  one  appea r s  a s  a t op - l eve l  a rgumen t  o f  append ,  whe reas
the  r i gh t  one  i s  embedded  in  t he  t a i l  o f  an  append  a rgumen t .  Th i s
occ ludes  t he  comple t e  s eman t i c  symmet ry  o f  t he  two  segmen t  con tex t s  o f
an  e l emen t  occu r r ing  somewhere  i n  a l i s t .

I n  F IT  the  s eman t i c  symmet ry  i s  made  v i s ib l e  syn t ac t i ca l l y .  u s ing
d i r ec t  no t a t i ons  fo r  s egmen t s .  he re  anonymous  «10  segmen t s :

(MEMBER ?EL (CID ?EL #10) ,

[ Inc iden ta l l y ,  which no ta t i on  t o  u se  fo r  anonymous  s egmen t s  i s  no t  a t
i s sue  he re .  The  t h r ee  cha rac t e r s  " . . . “  a s .  e . g . ,  used  i n  LISPTO may  a t
f i r s t  s eem more  na tu ra l  t han  t he  t h r ee  cha rac t e r s  "#10" ,  bu t  t he  l a t t e r
can  be  s eman t i ca l l y  decomposed  in to  t he  ve ry  na tu ra l  " t "  and  “IO"
ope ra to r s . ]

nglsing a list; PROLOG's e f f i c i en t  r eve r se  de f in i t i on

rev2 (L1 .L2)  :— revzap (L1 . [ ] ,L2 ) .

revzap((X|L].L2,L3) : -  revzap(L. [X|L2] ‚L3) .
revzap ( [ l .L .L ) .

i n  F IT  becomes

(>(nsvzp ?L1 1L2) (REVZAP <L1 () <L2))

r(REVZAP (ABo?X #ID)  ((TRAFO : “X) #10)  ID)
(REVZAP ( )  ?L ?L)

The  t r ans fo rmer  i n i t i a l i z ing  REVZAP can  be  made  a REVA—adap te r  by
naming  REVZAP, also REVZP and  us ing  (TRAFO : ( ) )  t o  gene ra t e  t he  empty
l i s t  ( r am the  empty  impos i t i on :

r(REV2P IO (TRAFO : ( ) )  ID)

r(REV2P (ABo?X #ID)  ((TRAFO : 'X )  #10)  ID)
(REV2P ( )  ?L ?L)

The  PROLOG r ev2  def in i t ion  w i th  i t s  unneces sa r i l y  g loba l ly
acces s ib l e  r evzap  subord ina t e s  i l l u s t r a t e s  a ma jo r  sho r t coming  o f  t ha t
l anguage .  wh ich  may  even  d i squa l i fy  i t  a s  an  imp lemen ta t i on  l anguage
fo r  l a rge  so f tware  eng inee r ing  p ro j ec t s :  A l though  PROLOG was  deve loped
i n  t he  s ame  t ime  pe r iod  a s  abs t r ac t  da t a  t ypes .  and  log i ca l  ADT
spec i f i ca t i on  appea r s  t r i v i a l  (B ibe l  1983)  as  we l l .  PROLOG has  no
i n fo rma t ion  h id ing  and  modu la r i za t i on  f ac i l i t i e s .  The re  a r e  now
prOposa l s  t o  augmen t  PROLOG wi th  ADTs (Nakash ima  & Suzuk i  1983)  and
modu le  concep t s  [ (Bend l  e t  a l .  1980) ,  (C la rk  e t  a l .  1982) .  (Egger t  &
Schorre 1982) .  (Ch ikayama  1983) ] .  bu t  t he  l ack  o f  an  obv ious  'w inne r '
among  these  un re l a t ed  cand ida t e s  s eems  to  i nd i ca t e  t ha t  modu le s  a r e
ha rd  t o  i n t eg ra t e  w i th  PROLOG's  base  componen t s .  Fo r  example .  (Egge r t  &
Schor re  1982)  r e fo rmula t e  t he  r ev2  de f in i t i on  a s  t he  fo l l owing  modu le
expor t i ng  t he  name  r eve r se :
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module ( reverse ) .
r (n i1 .L ,L ) .
r (Y .L1 .L2 .R )  < -  r (L1 ,Y .L2 .R ) .

reverse (L .R )  < -  r (L ,n i l ,R ) ;
endModu le .

However,  like their func t ion  ex tens ion  [c f .  sec t ion  3 ] ,  this i s
implemented t h rough  preprocessing, which surely i s  no t  the  right
approach fo r  realizing a concept as bas ic  as modules. In  F IT  the
available LOCAL [da ta  base ]  p r im i t i ve  (c f .  sec t ion  2 .2 ]  can  be  used  fo r
de f in ing  modu les  [R  happens  to  ac t  bo th  as  a va r iab le  and  a re la t ion
name]:

(>(REVERSEP ?L ?R)
(LOCAL ( (R  NIL ?L ?L)

(>(R (?Y ?L10LIST) ?L2 ?R) (R <L1 (CONS (Y <L2) <R) ) )
(R <L NIL <R) ) )

Whi le  in  Egger t /Schor re 's  modu les  the  un i t  o f  expor t  i s  re la t ion  names,
in  F IT  i t  i s  re la t ion  ca l l s .  There fo re  in  the  fo rmer  modu le  the  names r
and  reverse  must  be  ca re fu l l y  d is t ingu ished .  whereas  in  the  l a t te r
there  wou ld  be  no  p rob lem i f  the  names R and  REVERSEP were  jo ined  to
REVERSEP:

(>(REVERSEP ?L ?R)
(LOCAL ((REVERSEP NIL  ?L ?L)

(>(REVERSEP (?Y ?L1oLIST) ?L2 ?R)
(REVERSEP <L1 (CONS (Y  (L2 )  <R) ) )

(REVERSEP (L  N IL  (R ) ! )

The LOCALized REVERSEP def in i t ions  a re  jus t  as  inv is ib le  ex te rna l l y  as
were  the  LOCALized  R de f in i t ions .  There fo re ,  ex te rna l l y  s t i l l  on ly
ca l l s  l i ke  (REVERSEP ' ( 1  2 3 )  |?ANS) are poss ib le .  not  ca l l s  l i ke
(REVERSEP ' ( 1  2 3 )  N IL  |?ANS) .

De le t ing  one  e lement :  The  recurs ive  PROLOG de f in i t ion

e f face (A . [A lL ] .L )  :— ! .
e f face (A . [8 lL ] . [B IM] )  :— e f face (A ,L ,M) .

can  be  d i rec t l y  t rans la ted  to  the  F IT  de f in i t ion  [ the  SECURE opera to r
" \ "  p r io r i t i zes - the  less spec i f i c  f i r s t  de f in i t ion ]

\(EFFACE ?A (?A ?LoLIST) ?L)
r(EFFACE ID  (ABo?B # ID )  (ABo?B 910) )

I f  an  a rb i t ra ry  A—element ra ther  than  the  l e f t—most  occur rence  i s  to  be
removed  the  adapte rs  can  be  co l l apsed  in to

(EFFACE ?A (>L ?A >R) (>L )R ) )

PROLOG's add i t iona l  c lause  fo r  recogn iz ing  when the  second  a rgument
becomes reduced to  the  empty l i s t ,

e f face (_ . [ ] . [ ] ) .

i n  F IT  becomes
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(EFFACE ID () ())

Deleiins all securrenses Qi an glasses; The PROLOG definition

delete(_.[].[]).
delete(X,[XlL],M) :- !. delete(X,L.M).
deletetX.[YlL1].[YIL2]) :- delete(X.L1.L2).

in FIT becomes

r(DELETEP ?X (#10  ABO?X # ID )  ID)
(DELETEP [D ?L ?L)

fiupgtitutign; The PROLOG definition

subst(_.[]._.[]).
s u b s t ( X , [ X I L ] , A . [ A I H ] )  : -  ! .  subst (X .L .A ,M) .
subst(X.[Y|L] ‚A‚[Y|M])  :— subst(X.L.A.M).

is e r roneous  because it accepts. for instance, the list [ 1 .2 ]  as the
input and the result of substituting a new element [unequal to 1]. say
O, for the old element 1: The relation call subst(1.[1.2],0.[1.2]) is
not matched by the second clause. since A cannot be both 0 and 1;

unfortunately. however, it is matched by the third clause. since both

lists happen to start with the same element Y=1;  thus an illegitimate

recursion subst(1.[2),0.[2]) takes place. which via subst(1.[].0.[])
yields an incorrect 'yes' answer. The subst definition could be
corrected using “ \=“  in the third clause to ensure that the first list
element is not the old element [since this is the last subst clause no
cut is necessary after the 'constraint check' X\=Y] :

subst(X,[YlL],A.[YlM]) ‚_ X\=Y.  subs t (X ‚L ‚A ‚M) .

In FIT the definition becomes [the "\" prioritizations guarantee that
the last definition is used only when no other one applies]

r\(SUBSTP ?X (#10 A80?X #ID) ?A (#10 ABo?A #I0 ) )
(>\(SUBSTP ?X (#10  ?X # ID )  ID ID) jF)
(SUBSTP ID ?L [D ?L)

Here .  the critical example. (SUBSTP 1 '(1 2) 0 '(1 2)) is not matched
by the more specific first clause. an adapter generalizing PROLOG's
second clause; therefore it is matched by the less specific second

clause, which correctly yields jF.

Perhaps the error in PROLOG originated from formulating subst too
closely in analogy to delete (“this is quite similar to delete. except
instead of deleting a desired element, we substitute some other element
in its place“ (Clocksin & Mellish 1981 ) ] :  The second delete clause is
only inapplicable when the old element is not the first element of the
argument list, whereas the second subst clause is also inapplicable in
the 'unusual' case that the new element is not the first element of the
result list. The case is 'unusual' at least in the view o f  functional
programming where result lists are returned values rather than
arguments: posssibly. (Clocksin & Mellish 1981 )  had only LISP‘s natural
functional subst use in mind. not the strange but basic relational
subst use of checking whether 'four given s-expressions are in a
substitution relation'. This will be further discussed in the context
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(EFFACE ID ( )  ( ) )

Deleting all occurrences 21 an element; The PROLOG definition

de le te (_ . [ ] . [ ] ) .
de le te (X . [X lL ] .M)  :— ! .  de le te (X .L .M) .
dele te (X . [Y IL1] . [Y IL2] )  : -  de lete(X.L1.L2) .

i n  F IT  becomes

rCDELETEP ?X (# ID  ABO?X #ID)  ID)
(DELETEP [D ?L 7L)

fiupititutign; The PROLOG definition

subst(_.[]._.[]).
subst (X . [X |L ] .A . [A IM] )  : -  ! .  subs t (X .L .A .M) .
subst (X . [Y IL ] .A . [Y IM] )  : -  subs t (X .L .A .M) .

i s  e r roneous  because  i t  accepts .  fo r  ins tance ,  the  l i s t  ( 1 .2 ]  as  the
input and the  result of  substituting a new element [unequal  to  1 ] .  say
0 .  fo r  the  o ld  element 1 :  The re la t ion  ca l l  subs t (1 , [1 .2 ] . 0 . [ 1 .2 ] )  i s
not  matched  by  the  second  c lause .  s ince  A cannot  be  bo th  0 and  1 ;
unfor tuna te ly .  however. i t  i s  matched by the  th i rd  c lause .  s ince  both
lists happen  to  s ta r t  w i th  the  same e lement  Y=1 ;  thus  an  illegitimate
recurs ion  subs t (1 , [2 ] . 0 . [ 2 ] )  takes  p lace .  which v ia  subs t (1 . [ ] . 0 . [ ] )
y ie lds  an incor rec t  ' yes '  answer. The subst de f in i t ion  could be
cor rec ted  us ing  " \=”  in the  third clause to  ensure  tha t  the  f i rs t  l i s t
element i s  not  the  o ld  element [s ince  th is  i s  the  l as t  subst c lause no
cut  i s  necessary a f te r  the  ' cons t ra in t  check'  X \=Y] :

subst(X.[YlL].A.[YlM])  :~ X\=Y. subst(X.L.A.M).

I n  F IT  the  de f in i t ion  becomes [ the  " \ "  p r io r i t i za t ions  guarantee  tha t
the  l as t  de f in i t ion  i s  used on ly  when no o ther  one app l ies ]

r\(SUBSTP ?X ( “ [0  A80?X SID)  ?A (« to  A80?A #ID) )
(>\(SUBSTP ?X (#10  ?X #ID)  ID  ID )  jF )
(SUBSTP [D ?L [D ?L)

Here .  the  c r i t i ca l  example. (SUBSTP 1 ' ( 1  2)  O ' (1  2 ) )  i s  no t  matched
by the  more spec i f i c  f i r s t  c lause ,  an adapter  genera l i z ing  PROLOG's
second c lause ;  the re fo re  i t  i s  matched  by  the  l ess  spec i f i c  second
c lause .  wh ich  cor rec t ly  y ie lds  jF .

Perhaps  the  e r ro r  in  PROLOG or ig ina ted  f rom fo rmula t ing  subs t  too
c lose ly  in  analogy to  de le te  [ " th is  i s  qu i te  s im i la r  to  de le te .  except
i ns tead  o f  de le t ing  a des i red  e lement .  we subs t i tu te  some o ther  e lement
i n  i t s  p lace"  (C locks in  & Mellish 1981) ] :  The second de le te  c lause  i s
on ly  inapp l icab le  when the  o ld  e lement  i s  no t  the  f i rs t  e lement  c f  the
argument  l i s t .  whereas  the  second  subs t  c lause  i s  a lso  inapp l icab le  in
the  'unusua l ‘  case  tha t  the  new e lement  i s  no t  the  f i rs t  e lement  o f  the
resu l t  l i s t .  The case  i s  'unusua l '  a t  l eas t  in  the  v iew  o f  func t iona l
p rogramming  where  resu l t  l i s ts  a re  re tu rned  va lues  ra ther  than
arguments ;  posss ib ly .  (C locks in  & Me l l i sh  1981)  had  on ly  L ISP 's  na tura l
func t iona l  subs t  use  in  mind .  no t  the  s t range  bu t  bas ic  re la t iona l
subs t  use  o f  check ing  whether  ' four  g iven  s -express ions  a re  in  a
subs t i tu t ion  re la t ion ' .  Th is  w i l l  be  fu r ther  d iscussed  in  the  contex t
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of a similar problem with the intersection and union relations in

subsection 7.2. In any case, the subst error seems to indicate that

relational formulations can make programs as simple as LISP's SUBST

func t ion  error—prone because of the increased number o f  arguments and

their possible unexpected usage [it is true that some o f  these errors

won't come to the surface as long as nobody uses these relations in a

'strange' manner. but how d o  you explain to your students that basic

'yes/no' questions without any request variables are 'strange'?].

§EELL§L§i The PROLOG definition

sublist([XIL].[X|M]) :- prefix(L,M). !.
sublist(L,[_lM]) :— sublist(L.M).

prefix([]._).
prefix([XlLJ.[X|M]) :- prefix(L,M).

in FIT trivializes to

(SUBLIST (?x >L) (#ID ?x >L $10))

The PROLOG definition is cumbersome because its sublist and prefix

parts handle overlapping cases. a redundancy which can be seen in the

almost identical first sublist clause and second prefix clause [the cut

in the former is disputable anyway. because. although it prevents calls

from incorrectly falling into the second clause. it also prevents calls

like sublist([b,SECOND,THIRD].[a.b,c,d.e.b.e,a]) from finding not only
SECOND=c and THIRD=d but also SECOND=e and THIRD=a].

The above definitions don't allow empty sublists. although these are
sublists according to a literal interpretation of the definition "list
X is a sublist o f  list Y if every item in X also appears in Y. . . . “
(Clocksin & Mellish 1981 ) .  Thus ,  the non—emptiness restriction may well
be an artifact of PROLOG's task sharing between sublist and prefix. In
FIT the removal of the non-emptiness restriction makes the definition
even simpler:

(SUBLIST (>L)  (#ID >L $10))

The structural similarity of this definition and the MEMBER
definition suggests another. still simpler definition.

(SUBIMP >L (RID >L $10 ) )

which generalizes MEMBER by just replacing its ?EL occurrences by >L
occurrences. Alternatively, SUBIMP can also be regarded as a
generalization of NEXTTOP from two to arbitrarily many consecutive
elements. For example. (SUBIMP B C D '(A B C D E)) would succeed but
(SUBIMP A C D '(A B C 0 E)) would fail. A definition like SUBIMP is
impossible in PROLOG because of the formal imposition argument allowing
for a variable number of actual arguments.

Since the FIT adapter definitions directly capture the essence of the
list predicate functions involved, semantically similar functions
become similar syntactically. Thus. an automatic program understanding
system would only have to attempt a unification of. say. the
definitions
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(NEXTTOP ?X ?Y (S ID  ?X ?Y 310 ! )  and
(SUBIMP >L (RID >L $10))

to  recognize  tha t  the  former i s  a special case o f  the  latter because
the  substitution L=X Y allows NEXTTOP and SUBIMP to  become equal.
A l though  PROLOG programs make heavy use o f  un i f i ca t ion ,  they themselves
are  not  eas i l y  un i f i ab le  da ta  s t ruc tures  and an automat ic  recogn i t ion
of  a cor respond ing  re la t ionsh ip  be tween  nex t to  and  sub l is t  wou ld
i nvo lve  much more than a simple un i f i ca t ion  [how o f ten  was the
re la t ionsh ip  found 'by  hand '? ] .

7 .2  Man ipu la t ing  Se ts

For  the  fo l low ing  compar ison  we w i l l  use  the  PROLOG examples  o f
chapte r  7 .6  in  (Clocksin a Me l l i sh  1981 )  and  re fo rmula te  them in  F IT .
Other  than  in  the  case  o f  e lementa ry  l i s t  opera t ions .  the re  i s  no
genera l  shor tening e f fec t  through the  F IT  de f in i t ions  here .  This  i s
par t l y  because  we d i rec t l y  de f ine  a l l  F IT  opera t ions  in  te rms  o f
pr im i t i ves ,  whereas  PROLOG bu i lds  on  the  member p red ica te  [wh ich  cou ld
a lso  be done in  F IT ] .  and par t l y  because the  PROLOG de f in i t ions  fo r
in te rsec t ion  and union a re  ' i ncomple te '  in  tha t  they don ' t  account fo r
the  unorderedness  o f  se t s .  Al though  the  permuta t ion  p red ica te  i s  the
most  bas ic  p red ica te  on  se ts  represented  as  l i s ts  [name ly  se t  equa l i t y ]
and .  genera l l y .  sor t ing  i s  p re requ is i te  to  se t  p rocess ing ,  in  (C locks in
& Mel l i sh  1981 )  th is  i s  on ly  d iscussed  in  the  fo l low ing  chapte r ,
w i thout  any  connec t ion  be tween  the  two  chapte rs .

The PROLOG permuta t ion  p red ica te

permutation(L,[HlT]) :—
append(V,[HIU].L).
appendtV,U,W).
permuta t ion(w,T1 .

permuta t ion ( [ ] . [ ] ) .

i n  F IT  can  be  shor tened  to  the  de f in i t ion

r(PERMUTATION (ABo?Z #ID)  (OID ABO?Z #10 ! )
(PERMUTATION ( )  ( ) )

whose mean ing  cou ld  be  paraphrased  as  "A l i s t  i s  in  a permuta t ion
re la t ion  w i th  another  l i s t  i f  the  e lements  o f  the  f i rs t  l i s t  can  be
removed f rom le f t  to  r igh t ,  s imu l taneous ly  remov ing  iden t ica l  e lements
somewhere f rom the  second  l i s t .  so  tha t  bo th  l i s ts  become empty  a t  the
same t ime .“

The  member p red ica te  fo r  se ts  i s  omi t ted  here  because  i t  i s  the  same
as  tha t  fo r  l i s ts .

The PROLOG subset p red ica te

subse t ( [A lX ] .Y )  : -  membertA.Y).  subse t (X .Y ) .
subse t ( [ l .Y ) .

i n  F IT  can  be  rede f ined  as
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r(SUBSET (ABo?A #ID)  (#10  ABO?A #ID) )
(SUBSET () ID)

whose meaning could be paraphrased as 'A list is in a subset relation
with another  list if the elements of the f i r s t  list can be removed from
left to right. simultaneously removing identical elements somewhere
from the second list, so that the first list becomes empty before or

together with the second list."

Notice the similarity of the PERMUTATION and SUBSET definitions in
FIT and their crucial syntactical ( ) I ID  difference. which faithfully
reflects their semantic difference. No such syntax/semantics
correspondence between the PROLOG permutation and subset definitions is
perceivable.

The PROLOG disjoint predicate

disjoint(X,Y) :— not(( membet(Z.X). member(Z.Y) )).

in FIT can be redefined 'negatively' as

( ) \ (D ISJO[NT  (# ID  ?Z RIU) (#10  ?2 #ID) )  jF)
(DISJOINT ID ID)

The PROLOG intersection predicate

intersection([].x.[]).
intersection([l],Y.[XlZ]) :—

member(X,Y).
I
intersection(R.Y.Z).

intersection([XlR].Y,Z) :~ intersection(R.Y,Z).

in FIT becomes

(INTERSECTIONP () ID ())
r(INTERSECTIONP (ABo?X #ID)  (#10 ?X #10)  (# ID  ABO?X #ID) )
r(INTERSECTIONP (AB $!0) ID 10)

The PROLOG union predicate

union([].X.X).
union([X|R].Y.Z) :— member(X.Y). !. union(R.Y,Z).
union([l].Y.[XlZ]) :- union(R.Y,Z).

in FIT becomes

(>(UNIONP () ?X ?Y) (PERMUTATION (X (Y) )
()(UNIONP ?X ( )  ?Y) (PERMUTATION ( X  (Y) )
r\(UNIONP (#ID ABo?X CID) (#10  A80?X SID)  (# ID  ABO?X $ID) )
r(UNIONP (ABo?X #ID)  (#ID ABo?Y #ID)  (# ID  ABO?X #ID ABO?Y 310) )
rlUNIONP (ABO?X 3ID)  (# IO ABo?Y #10) (# ID  ABO?Y 8ID ABO?X 810) )

Although in (Clocksin & Me l l i sh  1981)  one finds the correct set
characterization "A se t  is a collection of elements. rather like a
list. but it does not make sense to ask "where” or "how many times"
something is an element of a set". the authors don't account for the
"where" irrelevance consistently. While the PROLOG set operations
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member, subset. and disjoint are insensitive to the orde r  of the

elements in lists representing sets. the operations intersection and

union are not. For instance. the fact that the intersection of
{r.a,p.i.d} and {p.i.c.t,u,r.e} is {r.i,p]. an example given in
(Clocksin & Hel l i sh  1981).‘ cannot be verified by the PROLOG
intersection program quoted above from the same book. The call

i n t e r sec t i on ( [ r . a ‚p . i . d l . [ p . i ‚ c ‚ t . u . r . e ] . [ r ‚ i , p ] )  incorrectly prints
'no' because the order in the result set differs from the order in the
first argument. A correct 'yes' answer can only be obtained if the

list—represented set {r,i.p] is given in the permutation {r,p,i]
corresponding to the element order in {r.a.p.i.d}. i.e. by

i n t e r sec t i on ( [ r . a ‚p , i . d ] . [p . i . c , t ‚ u ‚ r . e ] ‚ [ r , p . i ] ) .  This prob lem is
caused by the second clause which runs through its first argument [XIR]
and its third argument [X IZ ]  in a synchronized manner. imposing the

same order on both arguments. PROLOG's union operation suffers from the
same unwanted synchronization in its third clause; there is an
additional problem with the first clause. union([].X,X). which forces
the two X occurrences to be equal a; 1111; [ i nc l .  order], not as sets

[this problem can be traced back to the strange elision of permutation
from the discussion of sets]. Thus not even the equation [} U [ a . b }  =
{b .a }  can be verified because the trivial call union([],[a,b].[b.a]).
which may recursively result from calls like union([a].[a,b].[b.a]).
incorrectly prints 'no'. To obtain the correct 'yes' answer one must
write union([l.[a.b].[a.b]) or union([a].[a,b].[a,b]).

The FIT set operations are insensitive t o  the order of elements in
lists. which thus become true set representions. This order

insensitivity comes for free by virtue of the inherent parallelism of
adapters. with two exceptions [both will be eliminated later]. 1. In
the first two UNIONP clauses we cannot use adapters (UNIONP () ?X ?X)
and (UNIONP ?X () ?X) but have to use transformers with a PERMUTATION
call in their body. 2. The last UNIONP clause r(UNIONP (ABo?X #ID)  (#ID
A80?Y SID) (# ID  ABo?Y #ID A80?X 310) )  is only necessary for permitting
reductions like (UNIONP ' (A )  ' (B )  "(B A)) => (UNION () () ()). where
d i f f e r en t  e l emen t s  in the argument sets occur in inverse order in the
result set. while the first ordering problem can also be solved in
PROLOG by exchanging the fact union([].X.X) by the rule union([],X.Y)
:— permutation(X.Y). there seems t o  be no FIT—like simple addition to
the PROLOG definitions that would account for the second ordering
problem.

Perhaps this problem with the PROLOG definitions is due t o  the fact
that the authors used the predicates intersection and union
'function-like' only, with the third argument of calls being a
variable. so that there was no possibility for a 'wrong' order; this is
even more probable since a similar problem appeared for the PROLOG
subst definition. discussed in subsection 7.1 [while the subst
predicate accepts argument tuples which are not related, the
intersection and union predicates reject argument tuples which are
related]. However, this would support a feeling among functional
programmers that it can be very unnatural to keep track of all readings
of a relation: one may even forget to think of the basic predicate
reading [where all arguments are fixed] if the relation is normally
used only function-like [where one argument is variable].

Actually, a functional definition of set union is trivial if it can
build on FIT's CLASS function. which performs the often—needed
set-normalization. namely sorting without duplicates (cf. section 4]:
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CLASS can be used in  the  form CDRoCLASS [e .g . ,  (CDRoCLASS B A B 8 )  v ia
(CDR (CLASS A B) )  r e tu rns  (A B ) ] :

(>(UNION (>X) (>Y)) (CDRoCLASS <x <Y))

The  UNION func t ion  can  t hen  be  used  to  de f ine  the  UNIONP relation:

(>(UNIONP ?X ?Y (>Z ) )  (EQUAL (UNION (X  (Y )  (CDRoCLASS <Z ) ) )

However ,  in  F IT  we p re fe r  to  represent  se ts  no t  jus t  as  l i s ts  w i thout
dup l ica tes  bu t  d i rec t l y  as  CLASS co l l ec t ions .  wh ich  f ina l l y  renders  the
de f in i t ion  o f  se t  un ion  as  s imp le  as  i t  i s  conceptua l l y :

(>(UNION (CLASS )X )  (CLASS >Y) )  (CLASS (X  <Y) )
(>(UNIONP ?X ?Y ?Z) (EQUAL (UNION (X  (Y )  (Z ) )

I f  we now use (UNIONP (CLASS A) (CLASS A B) (CLASS B A) )  fo r  ve r i f y ing
(a }  U {a .b }  = {b .a }  the  th i rd  embedded CLASS ca l l  normal izes  to  (CLASS
A B)  and  we ge t  the  ca l l  (UNIONP (CLASS A)  (CLASS A 8 )  (CLASS A 8 ) ) .
The body  o f  UNIONP ca l l s  (UNION (CLASS A)  (CLASS A B) ) .  which j u s t
hands the  two CLASS contents  to  another  CLASS. g iv ing  (CLASS A A B)
tha t  normal izes  to  (CLASS A B) .  Th is  UNION resu l t  i s  EQUAL to  the
norma l i zed  th i rd  UNIONP a rgument .

The func t iona l  CLASS co l l ec t ion  can a lso  be used to  s imp l i f y  our
or ig ina l  re la t iona l  de f in i t ion  o f  se t  un ion :  1 .  The f i rs t  two c lauses
need  no more  PERMUTATION tes ts  because  norma l i zed  CLASS co l l ec t ions  a re
se t -equa l  i f f  they  a re  l i s t—equa l .  2 .  I f  the  f i t t ing  o f  CLASS
co l lec t ions  i s  a lso  de f ined  as commutative, as descr ibed using F IT  in
(Boley  (980 )  fo r  the  more genera l  DRLHs, then the  l as t  UNIONP
def in i t ion  c lause  [where d i f f e ren t  elements in  the  argument sets  occur
i n  inverse  o rder  in  ( the  resu l t  se t ]  becomes super f luous  and in  no
def in i t ion  c lause  does more than one # ID  contex t  in  a se t  remain
necessary:

(UNIONP ( )  ?X ?X)
(UNIONP ?X ( )  ?X)
r\(UNIONP (CLASS ABO?X # ID )  (CLASS ABo?X # ID )  (CLASS ABo?X # ID ) )
r(UNIONP (CLASS A80?X #10)  (CLASS ABO?Y #10)  (CLASS'ABO?X A80?Y Ü ID) )

8 THREE EXAMPLES

Fina l l y .  l e t  us consider  th ree  examples in  de ta i l .  The f i rs t  shows a
PROLOG programming  parad igm.  the  second  is  a more  neu t ra l  PROLOG
example ,  and  the  th i rd  demonst ra tes  a p rob lemat ic  PROLOG re la t ion .  A l l
examples '  a re  re fo rmula ted  in  F IT ;  fo r  a more  typ ica l  F IT  p rogramming
example. however, see Wang's a lgor i thm in  (Boley 1983 ) .

Since in  the  f i rs t  two examples a PROLOG re la t ion  from the
l i t e ra tu re .  whose name doesn ' t  end in  "P " ,  will be represented_as a F IT
func t ion ,  we won ' t  ma in ta in  the  "P" -naming  convent ion  in  th is  sec t ion .
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8 .1  War ren ' s  SERIALISE Algorithm

The  SERIAL ISE  program has  been  used  as  a s tanda rd  PROLOG examp le
since i t s  i n t roduc t ion  i n  (War ren  e t  a l .  191?) .  we quo te  f r om tha t
paper:

“The  second  examp le  displays many o f  t he  cha rac te r i s t i c s  wh i ch  make
Prolog an  agreeable language f o r  comp i l e r  w r i t i ng  (as  app l i ed  i n  t he
case o f  ou r  own Prolog comp i l e r ) .  The t ask  i s  t o  gene ra te  a l i s t  o f
se r i a l  numbers f o r  t he  i t ems  o f  a g i ven  l i s t ,  t he  members o f  wh i ch  a re
t o  be  numbered  i n  a l phabe t i ca l  o rde r  eg .

( p . r . o . l . o . g .n i l )  —> (4.5.3.2.3.1.nil)

As with many  Prolog programs. t he  key  t o  a r r i v i ng  a t  t he  requ i red
a lgo r i t hm i s  t o  f i r s t  conce i ve  a p rocedu re  wh i ch  checks  whe the r  a
p roposed  l i s t  o f  se r i a l  numbers  i s  a co r rec t  solution. Th i s  can  be  done
by  pa i r i ng  up  t he  i t ems  of t he  i npu t  l i s t  w i t h  t he i r  p roposed  se r i a l
numbers  as  an  "assoc ia t i on  l i s t " ,  a r rang ing  t hese  pa i r s  i n  a l phabe t i ca l
o rde r .  and  t hen  f i na l l y  check ing  whe the r  t he  se r i a l  numbers  a re  i n  t he
co r rec t  consecu t i ve  o rde r .  i . e . -

se r i a l i se (L .R )  :—
pa i r l i s t s (L .R .A ) .
a r range lA ,T ) .
numbered (T .1 .N ) .

The  pa i r i ng  i s  done  by  a p rocedu re  ve ry  s im i l a r  t o  t he  ngirlis f unc t i on
o f  t he  L i sp  1 .5  manua l ,  bu t  w i t h  t he  pa i r s  r ep resen ted  as  t e rms
' pa i r (X ;Y ) ' :—

pa i r l i s t s ( (X .L ) . (Y .R ) . ( pa i r (X ,Y ) .A ) )  : -
pa i r l i s t s (L .R .A ) .

pa i r l i s t s (n i l . n i l , n i 1 ) .

The  a r rangemen t  i n  a l phabe t i ca l  o rde r  and  check ing  o f  t he  numbers  cou ld
be  done  us ing  on l y  l i s t s ,  howeve r  i t  i s  much  more  conven ien t  t o  use
b ina ry  t r ees .  we rep resen t  a t r ee  as a t e rm  o f  t he  form. 'void' ( " t he
vo id  t r ee " )  o r  ' t r ee (T1 ,X ,T2 ) '  ( “  a t r ee  w i t h  X a t  t he  roo t  and
sub t rees  T1 and T2“ ) .
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ar range ( (X .L ) . t ree (T1 .X ,T2 ) )  :-
partition(L,X,L1.L2).
arrangetL1.T1).
arrange(L2,TZ).

arran9e(nil.void).

partition((X.L),X.L1.L2) :— partition(L.X,L1.L2).
partition((X.L).Y.(X.L1),LZ) :—

before(X.Y). partition(L.Y,L1,L2).
partition((X.L).Y,L1.(X.L2)) :—

before(Y.X). partition(L.Y.L1.L2).
partitiontnil‚Y.nil‚nil).

before(pair(X1.Y1).pair(X2.Y2)) :— X1 < X2.

numbered(tree(T1.pair(X.N1).T2),N0.N) :-
numbered(T1,N0.N1).
N2 is N1+1 ,
numberedtT2.N2.N).

numbered(void,N.N)."

The above program is quite involved and difficult to understand. in
spite of the English explanations. Principally. this may be due to the

fact tha t  SERIAL ISE  is an instance o f  t hose  prob lems  for which  a

relational solution [”check I/O pairs"] is more difficult than a
functional solution [“generate output from input"]. Another reason for
the program's poor readability is its operation on binary trees instead
of on lists. which the authors feel is “much more convenient". but
which certainly is a retrograde step to a lower—level data structure

[lists are composed of binary trees]. (Incidentally. the PROLOG program
features three kinds of binary trees: The standard ".“ functor for
representing lists as binary trees. an isomorphic, hence redundant,
“pair“ functor for representing dotted pairs in association lists. and

a "tree“ functor for representing binary trees with labeled roots.] The
below FIT version, instead. uses lists internally and impositions
[saving unnecessary parentheses] for I /O .

A negative effect of performing the quicksort—like arrangement on an
intermediate binary tree structure instead of on sequences is the
resulting lack of modularity. It is not possible to regard the sorting
subtask as elementary first and only later refine it by writing a
sorting module in the usual top—down manner or by using a quicksort
from the local program library. To understand PROLOG's se r ia l i se .
reasoning about finding the serial numbers must be interleaved with
reasoning about sorting. In FIT the sorting aspect is completely
separated from other aspects of the program. The proper SERIALISE
kernel thereby essentially reduces to a four-liner.

The transformations performed by the subfunctions of this FIT
SERIALISE program can be illustrated by using the input imposition
P R 0 L 0 G. corresponding to PROLOG's input list (p.r.o.l.o.g.nil):



- 8 2 . . .

P R 0 L 0 G
l

“STAR
I
V

xp *R to *L to *G

I
I
I
|

(*P *R *0 *L *0 *G) |
I I

SORT |
I l
V I

(*G *L *o *P *R) |
I I

VARPOS |
I I
V I

I>*G 1) I>*L 2) (>*o 3) (>*p L) I>*R 5) I
I

4 5 3 2 3 1

As a preparatory first s tep .  SERIAL ISE  applies STAR to all

express ions  of its input imposition for "*"—encoding them into
legitimate variables in a lexical-order preserving manner, before they
are assigned to the argument IMP ,  by composing > IMP with #STAR.
[Instead of the STAR encoding a simple NCONS encoding could also be
used; inputs, like the above. containing ordinary identifiers only.
would require no_encoding at all.) Second SERIALISE calls SORT for
sorting the encoded imposition ) IMP  as a list 0 I< IMPI  in
lggicographical order and with gg ggplicatqg [the "3" instantiates the
list contents]. Third it calls VARPOS to generate yaLiable-g_§itiOn
bindings from the sorted list elements and their position numbers.
Fourth it uses the LOCAL primitive to evaluate the encoded imposition
IMP in the binding environment created by VARPOS.

I)ISERIALISE )IMPotSTARI
(LOCAL (VARPOS 1 (SORT 3 ( ( IMP)  LEXORDER NODUPSII : IMP I I

VARPOS generates a variable assignment from each list element X and the
number N corresponding to its list position (initially. 1]: hence the
recursive VARPOS call both removes one element X and increments N by 1.
If the list becomes empty, VARPOS returns the empty imposition.

()(VARPOS ?N (?X >Y) )  I><X <N) (VARPOS (ADDI <N) a (<Y) ) )
()(VARPOS ID NIL ) )

STAR encodes its argument into a "*”-variable by simply CONS—catenating
an asterisk to its argument X, wi th  L ISP  primitives for transforming an
atom to a list of its characters [EXPLGDE] and vice versa [READLIST] .
(Alternatively. STAR cou ld  j us t  L IST  the asterisk with its argument X.]
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(>(STAR ?X) (READLIST (CONS * (EXPLODE <X) ) ) )

The  sorting i s  done  he re  by  the  p rede f ined  genera l  L ISP  func t ion
SORT. Shou ld  this not  be ava i l ab le .  i t  cou ld  a l so  be de f ined  as a F IT
vers ion .  e .g .  on the  basis of  QUICKSORT [ th ree - impos i t ion  LOCALS a re
read  (LOCAL cond i t ion  : then -par t  : e lse -par t ) ;  NOTH is  F IT 's  ana logue
to  L ISP 's  NOT; the  LT—EO—GT workhorse func t ion  bu i lds  on tha t  in
(Friedman & Wise 1978 ) ;  two NEO calls make i t  independent from whether
the  COMPAREFN is  <-1 i ke  or  g—l ike ] :



Ob

(>(SORT ?L ?COMPAREFN ?NOOUPS) (QUICKSORT (L ) )

()(GUICKSORT ?L)
(LOCAL (NULL (L )

NIL

(APPENO ( QUICKSORT
ID
OUICKSORT

(LT-EO-GT (COR (L )  (CAR (L ) ) ) ) ) )

(>(LT—EO-GT ?L ?V)
(LOCAL (NULL (L )

NIL
(LIST <V)
NIL

(LOCAL ((COHPAREFN (CAR (L )  (V )
(NEO (CAR- (L )  <V )

( (TRAFO ?X (CONS (CAR (L )  (X ) )
ID
[D

(LT-EO-GT (COR (L )  <V ) )

(LOCAL (NOTH ((COMPAREFN (CAR (L )  <V ) )
(NEO (CAR (L )  (V )

( ID
ID
(TRAFO ?X (CONS (CAR (L )  (X ) )

(LT-EQ-GT (COR (L )  <V ) )

( ID
(TRAFO 7x

(LOCAL (NULL (NODUPS)

(CONS (CAR (L )  <x)

<x ) )
ID

(LT-EO-GT (CDR (L )  (V ) ) ) ) ) )

8 .2  McDermott's QUADRAT Program

The author  o f  the  OUADRAT PROLOG program fo r  finding the  rea l  roo ts
o f  a quadrat i c  equat ion  charac te r i zes  i t  thus :  “ I t  does no t  show PROLOG
at  i t s  bes t  (o r  i t s  wors t ) .  bu t  i t  does make i t  easy to  compare w i th
more  traditional l anguages"  (McDermot t  1980 ) .  Since we fee l  tha t  th is
program also sugges ts  a comparison wi th  o ther  non- t rad i t iona l  l anguages
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and a discussion of various o the r  matters, we reproduce  it he re  in a

slightly co r r ec t ed  form:

quadrat(A.8.C,Realroots) :—
discrim(A,B.C.D). quadrat)(A,B.D.Realroots).

discrim(A.B,C.D) :—

mult(8,8.83quared), mu1t(A.C.P1).

mu1t (k ‚P1 ,P2 ) ,  add(Bsquared.D,P2).
b7

quadrat11A,8,D.[]) :— D<0 .

quadra t1 (A ‚B ‚D . [R ] )  :-
D=0. add(8.HinusB,0). mult(2.A,TwoA).
mul t (R ,TwoA ‚M inusB) .

quadrat1(A.B.D,[R1.R2]) :- ‘
D>O‚ add(8,MinusB.D). sqrt(D,Sqrt0).
add(MinusB.SqrtD,Num1).
add(Num2.SqrtD,MinusB). mult(2.A.TwoA).
mu1t(TwoA,R1.Num1). mul t (TwoA.R2 .Num2) .

[L ike  HcDermo t t .  we omit the cuts t ha t  shou ld  follow after D<0 and 0:0

and a cut t ha t  might r edundan t l y  fo l l ow  a f t e r  D>0 . ]

Apparent ly  to illustrate relational programming through all levels,
McDermott generously presupposes primitive add and mult relations.
although these are not primitive relatigflg but function-like
one-directional operatgrs in PROLOG.

It appears to be an inherent problem o f  relational programming that
such [arithmetic] primitives cannot be easily defined as relations:
Implementation i s  unsatisfactory with software and probably even more
difficult with digital hardware [perhaps analogical hardware, like the
circuits suggested by CONSTRAINTS (Sussman & Steele 1980 ) .  is better
suited than normal arithmetic units for realizing multiple relation
use]. For example, (Clocksin & He l l i sh  1981) introduce arithmetic
ogeratigns under the misleading heading of built-in predicates [that a
special "is" primitive must be used for evaluating arithmetic
expressions, other types of expressions being not evaluable at all.
makes things even more inconsistent]. (Colmerauer 1983 )  even attempts
to enumerate successor relations extensionally. and (Chikayama 1983)
states with regard to the Japanese Fifth-Generation Kernel Language:
"Arithmetical operations in KLO are not bi—directional: Addition and
subtraction should be effected by individual operations". While
micro—PROLOG is a notable exception in that it does have arithmetic
relations, it also illustrates the problem because it restricts their
use to at most one unknown argument by simulating the underlying
extensional relations imperfectly only (Clark et a1. 1982 ) .

It is also obvious that such relational primitives are less readable
than their functional counterparts. For example. to decipher the
relation call mu1t(R,TwoA.MinusB) in the second quadrat) clause. one
first has to check which variables will be instantiated at the time of
the call. finally finding TwoA and MinusB; only then can one determine
which use should be made of the relation by transforming its original
product form R * TwoA = MinusB into the quotient form
R = Minuse / TwoA.
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But  now le t  us  assume the  add  and  mul t  relations were  prede f ined  and
readab le .  Then another  p rob lem ar ises  when look ing  a t  the  nex t  higher

level of  the  square  and  square  roo t  opera t ions :  Why is  square  per fo rmed
by mul t (B,B.Bsquared)  wh i le  square roo t  i s  performed by sqr t (D ,Sqr tD ) ,
i . e .  why i sn ' t  t he re  a s ing le  re la t ion  fo r  both  operat ions? Now. you
may no t ice  tha t  sqr t  shou ld  a l ready  be  tha t  s ing le  re la t ion  because  in
re la t iona l  p rogramming  i t  shou ld  a lso  be  readab le  f rom r igh t  to  l e f t .
so  tha t  mu1t (8 ,8 ,asquared )  shou ld  be  rep laceab le  by  sqr t (Bsquared .B ) .
However ,  the re  wou ld  be  p rob lems  w i th  such  a square~sqr t  combina t ion .
Less  impor tan t ly .  s ince  the  range  o f  square  i s  non—negat ive  numbers .
the  domain  o f  i t s  square  roo t  inverse  i s  res t r i c ted  to  these .
There fo re .  wh i le  a re la t ion  ca l l  w i th  nega t ive  second  a rgument  l i ke
sqr t (Ans , -3 )  would y ie ld  Ans=9 a re la t ion  ca l l  w i th  nega t ive  f i rs t
argument  l i ke  sqr t1—9.Ans)  wou ld  be  unde f ined .  More  impor tan t ly ,  wh i le
the  a lgor i thm fo r  square [PROLOG's nonvar p r im i t i ve  i s  used to  ensure
tha t  the  argument 39 sgua re  i s  f i xed ]  i s  t r i v ia l .

sqr t (Ans .Tosquare )  : -  nonvar (Tosquare ) ,  mu l t (Tosquare ,Tosquare ,Ans ) .

the  one fo r  sqr t  [ the  argument gg sguare  1005 must be f i xed ]  i s  no t ,

sqr t (Tosqr t .Ans )  : -  nonvar (Tosqr t ) .  . . .  Newton's method

The po in t  i s  tha t  the re  a re  qu i te  different a lgor i thms fo r  the  two uses
of  the  sqr t  re la t ion .  and  incorpora t ing  them both  in to  a single
[nonvar - l ess ]  re la t ion  de f in i t ion  wou ld  ne i ther  be  easy  nor  mean ing fu l .
Th is  becomes even  more  obv ious  when no t ic ing  tha t  in  re la t iona l
p rogramming  even  the  supposed pr im i t i ve  mu l t  shou ld  be  usab le  fo r
tak ing  square  roo ts .  so  tha t  sqr t lD .Sqr tD )  shou ld  be  rep laceab le  by
mu1t (sqr tD .sqr tD ,D ) .  Th is  shou ld  work  inverse ly  to  mu1t (B .B ,Bsquared )
by  f ind ing  a number sqr to  whose p roduc t  w i th  i t se l f  i s  0 [ th is  re la t ion
use i s  unusual in  tha t  one output  va r iab le  occurs tw ice  to  d iv ide  the
i npu t  in to  two  equa l  f ac to rs ] .  I f  we hes i ta ted  to  incorpora te  the
pr imi t i ve  product and quot ien t  func t ions  in to  a s ing le  mu l t  re la t ion .
we may be  even  more  concerned  about  the  square -sqr t  combina t ion ,  no t  to
ment ion  a mu l t  in tegra t ion  o f  the  non—pr imi t i ve  square  roo t  func t ion .
Perhaps  McDermot t  took  two  comple te ly  d i f f e ren t  re la t ions  fo r  square
and square  roo t  because  o therw ise  ' . . .  i n  PROLOG you  have  the  p rob lem
of  how to  keep  s t ra igh t  two  separa te  ve rs ions  o f  a re la t ion ,  fo r
d i f fe ren t  cons te l l a t ions  o f  inpu ts"  (McDermott 1980 ) .  In  the  l as t
subsection we w i l l  see th is  problem fu r ther  aggravated .

McDermott comments on h is  quadrat  ve rs ion :  'The  f i rs t  th ing  to  no te
is  tha t  c lauses do not  con ta in  LISPy deep ly -nes ted  func t ion  ca l l s ,  but
ins tead  a sequence o f  re la t ion  ca l l s"  (McDermott 1980 ) .  Th is  i s  the
well-known ' f l a tness '  o f  PROLOG, normal ly  d is l i ked  by func t iona l  [ fo r
example ,  L ISP]  p rogrammers  bu t  l i ked  by  impera t ive  [ fo r  example .
PASCAL] programmers.

Now, the  ”S"  [ESCVAL]  opera to r  de f ined  in  sec t ion  3 .1  can  be  used  to
in t roduce  some nes t ing  in to  th is  p rogram mak ing  i t  more  conc ise  and
more  readab le :

quadra t tA .B .C .Rea l roo ts )  :—
quadra t i (A .B .d i sc r im(A.B .c .$D) .Rea l roo t s ) .

d iscr im(A ‚B .C ,D )  : -
add (mul t (B .B ‚$Bsquared ) .D .mul t (4 .mu l t (A .C ,$P1 ) .SP2 ) ) .
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quadra t1 ‘A ,B ,D , [ ] )  : “  D<O.

quadra t1 (A .B ,D . [R ] )  : ;
0 :0 .  mul t (R .mul t (2 .A .$TwoA) ,add(B ,$MinusB.0 ) ) .

quadra t1 (A ,B ,D . [R1 .R2 ] )  : -
0>O. add(8 .MinusB.O) .  sqr t (D .Sqr tD ) .  mu l t (2 .A .TwoA) ,
mu1t (TwoA.R1 .add (M inusB .Sqr tD ,$Num1) ) ,
mu1 t (TwoA.R2 ,add ($Num2,Sqr tD ‚M inusB) ) .

Notice t ha t  an  express ion  with embedded ESCVAL express ions_  can  be
easily unders tood  in  a top—down manner  by  f i rs t  abs t rac t ly  v iew ing  each
ESCVAL express ion  as  the  ESCVAL var iab le  i t  w i l l  p roduce .  When we ' x
o f f '  the  func tors  and  a rguments  thus  abs t rac ted  away ,  the  top—leve l  o f
the  d i sc r im  c l ause  body, fo r  ins tance ,  i s  abs t rac t ly  v iewable as
add (x ( x , x .$ßsqua red ) ,D ‚ x ( x . x ‚ $P2 ) ) .  corresponding to  the  l a s t  con junc t
add (Bsqua red ‚D ,P2 )  i n  the  o r ig ina l  c lause .  Wh i le  in  ce r ta in  c lause
bod ies  the  en t i re  con junc t ion  i s  jo ined  to  a s ing le  re la t ion  nes t ing
[ c f .  the  quadra t  and d isc r im  c lauses ] .  in  o ther  ones the  conjunct ion
becomes a t  l eas t  sma l le r  by  jo in ing  some o f  i t s  con junc ts  to  re la t ion
nes t ings  [c f .  the  l a s t  two quad ra t1  c lauses ] .

A co r respond ing  ESCVAL—enr i ched  F IT  ve rs ion  o f  QUADRAT i s  the
fo l low ing :

(>(0UADRAT ?A ?8 ?C ?REALROOTS)
(0UADRAT1 (A  (B (DISCRIM (A (B (C $ |?D)  <REALROOTS))

( ) (DISCRIM ?A ?B ?C ?D)
(ADD (MULT (B (B $|?BSQUARED) (D (MULT 4 (MULT (A (C  SI?P1) $ I?P2 ) ) )

(>(0UADRAT1 ?A ?B ?D ( ) )  (LESSP (D  D ) )

(>(0UADRAT1 ?A ?B ?D (?R) )
(LOCAL (EQ (D 0 )

(MULT (R (MULT 2 (A $I?TWOA) (ADD (B  $I?MINUSB 0 ) ) ) )

(>(QUADRAT1 ?A ?B ?D (?R1 ?R2) )
(LOCAL (GREATERP (D  0 )

(LOCAL (ADD <a |?MINUSB n)
(soar <0 |?sanr0)
(MULT 2 (A |?Tw0A)

(MULT (TWOA (R1 (ADD (MJNUSB (SQRTD $(?NUM1))
(MULT (TWOA (R2 (ADD $l?NUM2 (SQRTD (M INUSB) ) ) ) )

The  expreSSion  (LOCAL (EO <D O) : (MULT . . . ) )  i n  the  second  QUADRAT1
c lause  re f l ec ts  the  rea l  ' i f  then '  meaning o f  the  con junct ion  in  the
cor respond ing  PROLOG c lause .  name ly  i f  D20 then  mul t t . . . ) .  S imi la r l y ,
the  ou te r  LOCAL of  the  l as t  OUADRAT1 c lause  i s  bes t  v i ewed  as  an
' i f  then '  cond i t ion  [con t ro l  F low] .  I t s  i nne r  LOCAL i s  bes t  v iewed  as  a
genera l i zed  LET  express ion  wh ich  in t roduces  the  va r iab les  MINUSB.
SORTD, and TWOA through re la t ion  ca l l s  [da ta  f low] .  The par t i a l  order
of  the  da ta  and  cont ro l  f low  o f  tha t  c lause 's  con junc ts  i s
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This cannot be seen in  PROLOG's corresponding c lause .  where,  fo r
example .  D>0 p recedes  add(B . . . . ) .  as  requ i red  by  the  cont ro l  f low ,
add(B . . . . )  precedes mul t ITwoA,R1 , . . . I ,  as requ i red  by da ta  f low .  but
add(B . . . . )  also precedes  sqr t (D , . . . ) ,  wh ich  i s  requ i red  ne i ther  by
cont ro l  nor  da ta  f low  [ th is  i s  wha t  (Leavenwor th  & Sammet 1974 )  ca l l
"a rb i t ra ry  sequenc ing"  whose e l im ina t ion  i s  p re requ is i te  fo r  a l anguage
to  be  non—procedura l ] .  The nes ted  F IT  LOCALs o f  the  l as t  0UADRAT1
c lause .  on the  o ther  hand ,  d i rec t l y  re f l ec t  the  cont ro l  and da ta  f low
[ the  tex tua l  o rder  ins ide  LOCAL is  immater ia l  apar t  f rom the
re la t ionsh ip  ' l e f t  o f  co lon ' l ' r igh t  o f  co lon ' ] .

A comple te ly  func t iona l  ve rs ion  o f  QUAORAT in  F IT  can  be  de f ined
thus :

(>(OUADRAT ?A ?B ?C) (QUADRATI (A (B (DISCRIM (A (B (C))!

(>(DISCRIM ?A ?B ?C)
(DIFFERENCE (SQUARE (8 )  (TIMES 4 (A <C) ) )

()(QUADRAT1 ?A ?B O)
(QUOTIENT (MINUS (B )  (TIMES 2 (A ) )?

(>(QUADRAT1 ?A ?B X?POSINT)
(LOCAL (>SQRTD (SORT (POSINTI I

v (0UOTIENT  (PLUS (MINUS (B )  ((BREADTH PLUS MINUS) (SORTDII
(TIMES 2 <A) ) ) )

(>(POSINT ?N) (GREATERP (N  D ) )

Th is  i s  the  f i rs t  ve rs ion  wh ich  d i rec t l y  re f l ec ts  the  p rob lem
spec i f i ca t ion  because  i t  f f inds  the  rea l  roo ts  o f  a quadra t ic"
(McDermott 1980) and does not  appear to  so lve  fu r ther  problems l i ke
f ind ing  the  in f in i te ly  many quadra t ics  w i th  g iven  rea l  roo ts .  Perhaps
i t  i s  a lso  the  f i r s t  version which i s  readab le  w i thout  much ponder ing.

Ins tead  o f  y ie ld ing  the  empty l i s t  i f  the re  i s  no rea l  so lu t ion ;  a
one-e lement  l i s t  i f  the re  i s  one  so lu t ion .  and  a two—element  l i s t  i f
the re  a re  two ,  the  p rogram exp lo i ts  the  non—dete rmin ism o f  F IT  and
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yields jU, a single value, and a BREADTH of two va lues  in these
respective cases. Indeed we regard quadratics as a nice example for the

explicit specification o f  non-determinism: The caller of a quadratics

program should receive a failure i f  there is no solution for the given

arguments. so that, e.g., other arguments may be tried automatically:

the caller should receive just a single value i f  there is exactly one

solution, so it can proceed deterministically, not even noticing the
principal possibilities of failure and ambiguity; and the caller should
receive a BREADTH of two equal-right values if there are two solutions.
Note that the explicit non~deterministic branch  (BREADTH PLUS MINUS)  in
the last OUADRAT1 clause corresponds exactly to the use o f  i in

mathematics. This is not possible with PROLOG's implicit depth-oriented
non-determinism. Our use of non—deterministic instead of listified root
results also has another advantage: It allows us to get rid of the
first quadrat1 clause because for D<0, no other clause being
applicable, jU is yielded automatically. The empty list could not be
yielded in such an automatic manner. Although it would not have been
necessary during the relational-functional translation, we replaced the
condition 0:0 by a constant 0 and replaced the condition D>0 by a typed
variable x?POSINT in the invocation pattern. The typed variable is
built from the generally useful predicate POSINT for ngsitive integers.

The last OUADRAT1 clause may be further shortened to finally obtain
the usual mathematical form of the quadratic algorithm:

(>(OUADRAT1 ?A ?B x?POSINT)
(OUOTIENT (PLUS (MINUS (B) ((BREADTH PLUS MINUS) (SORT (POSINT) ) )

(TIMES 2 <A) ) )

However. the earlier clause precomputing the SORT of POSINT in a
LOCAL is preferable for efficiency reasons because under FIT-1's
evaluation strategy ((BREADTH PLUS MINUS) (SORT <POSINT)) would
immediately normalize to (BREADTH (PLUS (SORT (POSINT)) (MINUS (SORT
<POSINT)) ) .  so that (SORT (POSINT) would be evaluated twice.

8.3 Fermat's Last Theorem

The FERMAT example shows that for some relations there is no known
algorithm which uses them in one way, whereas there is an algorithm
which uses them in another way. Let us begin with a trivial example
often used to illustrate relational programming (Kowalski 1979 )  and
constraint systems (Sussman and Steele 1980 ) .  namely the equation

X + Y = 2

which  in PROLOG is written as a relation

plus(X,Y,Z).

Since this equation can be regarded as X'1 + Y°1 = Z '1 .  Fermat's
equation might seem to be just a little bit more general. It is

X‘N + Y.N = Z_N

and is considered as a relation



fermat(X.Y.Z.N).

To simplify the following discussion we presuppose that X. Y. 2, as

wel l  as N, are non-negative integers [not all PROLOGs have negative

integers]. The relation call fermat(4.3,5.2), for instance. should

succeed because £°2 + 3°2 = 5 '2 .  Bu t  wha t  about calls with request
variables like fermat(4,3,5.N) and fermat(X,Y.Z.2)? Although bo th  may

look harmless, in general we can only define the fo rmer  use of the

fermat relation [X. Y. and 2 are f i xed  —— N is open ] .  no t  the latter
use [X. Y. and Z are open -- N is fixed]. In other words, if we split
the fermat relation into two functions ferm and ferm—I [ he re .  X, Y, 2,
and N denote the set of non-negative integers: the empty set. {}.
denotes explicit failure]

ferm: X x Y x Z -> N U { {} }
ferm-I: N -> powerset(x x Y x 2)

these can be called with specific arguments as in ferm($.3.5) = 2 and
ferm—I(2) = {(4,3,5). . . . }  [for the argument N=2 ferm—I is infinitely
non-deterministic; cf. section 3.1]. In general. however, we know only
that ferm is computable, but don't know whether f a rm—I  is. The former
is demonstrated below; the latter is the case because there still is no
known proof or disproof of "Fermat's last theorem“. stating that for an
integer N>2 the equation

X‘N + Y‘N = Z N

has no solution in integers all different from 0 (R ibenbo im  1979 ) .  1.9.
no 'non-null solution'. So the relational representation of the Fermat
equation will lead to a severe problem [ a  not generally usable relation
fermat must be introduced]. not arising in its functional
representation [ a  generally usable function ferm can be introduced
without at the same time introducing a not generally usable function
ferm~I].

To find N or to yield a failure i f  none exists for arbitrary given
X. Y, and Z a relational PROLOG p rog ram can be defined.

For this we first construct the underlying algorithm which relies on
the following observations. Since for X22 or YZZ t he re  clearly can be
no non-null solution, we can presuppose X<Z and Y<Z .  Now we can show
two facts.

1. If a Z exponentiation once became greater than the sum of the X and
Y exponentiations. it will remain greater for all higher exponents.
i.e.

if Z'N ) X'N + Y'N t hen  Z°N+1 > X'N+1 + Y'N+1 for all N

This can be seen very easily. Assuming Z'N > X'N + Y‘N and multiplying
it with Z we get

z‘N+1 = 2*z ‘N  > z*[x“N + Y'N] t ' N  + Z*Y 'N

S ince  Z>X we get

Z*X 'N + Z*Y ‘N  > X*X'N + Z*Y 'N
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Similarly. since Z>Y we get

X*X ‘N  + Z *Y 'N  > X*X-N + Y*Y'N = X'N41 + Y'N+1

2. Z'N grows faster with N than X'N + Y'N does. i.e.

t he re  exists an integer N' such that Z'N ) X'N + Y'N for all N)N' .

This can be shown by the following elementary transformations. We can
assume without loss o f  generality that XzX. Z'N can be rewritten as

[ X  + DJ‘N with 021 because Z>X.  The binomial theorem gives us
[the binomial coefficients are defined by binco(N.K) :=
N* [N- l ] * [N—2] * . ‚ . * [N4K+1]  / 1*2 *3 . . . *K ]

[x + DJ‘N = X'N + binco(N,1)*X'[N—1]*D + binco(N,2)*x'[N-2]*o’2 + ...
+ binco(N ‚N-1 ) *X*D ' [N—1]  + D‘N

If we omit the terms of the sum from binco(N.2)*X'[N-2]*0‘2 we get

Z'N = [x + DJ‘N > x‘N + binco(N.1)*X'[N—1J*D = x'N + N*x'[N—1]*D

Since 021 we get

x“N + N*X‘[N-1]*D ; x‘N + N*X°N-1

If we set N'=X then for all N>N'

Z'N > X'N + N*X ‘N-1  > X'N + X*X 'N - l  = X'N + X'N

Since s

x‘N + x‘N g x‘N + Y'N .

Using these facts we get the following concise but inefficient
algorithm in ALGOL—like notation.

if xzz or vzz then fail :
N := 1 ;
while X'N + Y'N > Z'N do N := N+1 ;
if X'N + Y“N = Z'N then N else fail

Fact 2 ensures termination of the while loop.
Fact 1 p e r m i t s  the fail in the else case, i.e. if x'N + Y‘N < z 'N.

Now, the algorithm can be rewritten into a more efficient PROLOG
program. which accumulates exponentiations instead of recomputing them.

fermattX.Y,Z.N) :—
nonvar(X). nonvar(Y), nonvar(Z). X<Z ,  Y<Z ,
XY is X+Y ‚  fermat2(X.Y,Z.X,Y,XY.Z,1,N).

fermatZtX.Y.Z.XX,YY,XXYY.ZZ,M,N) :—
XXYY=ZZ. N is H.

fermatZ(X.Y.Z.XX,YY,XXYY.ZZ,M.N) :-
XXYY<ZZ. fail. '
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fermat2(x,Y.Z,XX,YY,XXYY,ZZ.M.N) :—
XXYY)ZZ. XXX is XX*X‚ YYY is YY*Y. XXXYYY is XXX+YYY‚ ZZZ is ZZ*Z,
H1 is M61, fermat2(X,Y.Z.XXX,YYY,XXXYYY,ZZZ,M1.N).

If none  of X.  Y. and Z is an [open]  variable and both X and Y are less
than 2 the fermat program calls the auxiliary tail-recursive relation
fermatZ. The arguments  of the fermatz program are the original
variables X.  Y, and Z. variables XX and YY for accumulating X and Y
exponentiations. a variable XXYY for storing the sum of XX and YY. a
variable ZZ for accumulating the Z exponentiations. a variable M for
holding the current exponent .  and the original variable N for handing
the found exponent back to fermat. The initial fermatz call essentially
uses  XXYY=XY=X+Y and M=1.  The  use of its nine arguments reduces the
task of fermatz to a simple case analysis on the  relationship between
XXYY and 22.

If XXYY=ZZ then  t he  cu r ren t  va lue  of M is the exponent sought for
[obvious] and is assigned to N.

if XXYY<ZZ then  this r e l a t i onsh ip  wou ld  a l so  ho ld  for all subsequent
recursions with higher exponents [fact 1 ]  and a failure can be
generated.

If XXYY>ZZ then  XXYY w i l l  become  equal t o  or less than ZZ for some
higher exponent [fact 2] and fermatz is called recursively. This call.
apart from the original X, Y. and 2 variables, could use the variables
XX:=XX*X. YY:=YY*Y, XXYY:=XX+YY‚ ZZ:=ZZ*Z.  and M:=M+1‚ if PROLOG's
singlenassignment property wouldn't enforce the use of new intermediate
variables XXX. YYY, XXXYYY. ZZZ. and M1. respectively.

To find X. Y. and 2 or to- y ie l d  a failure if none exist 'For
arbitrary given N no PROLOG program is known. however.

fermat(X.Y,Z.N) :- nonvar(N). ... unknown method

A functional FIT program that finds N or yields jF if none exists
for given X, Y, and-Z can be defined thus:

(>(FERM ?X ?Y ?Z)
(LOCAL (LESSP ( X  (Z )

(LESSP (Y  (Z )

(FERH2 (X  (Y  (2  (X  (Y  (PLUS (X  (Y )  (Z  1 ) ) )

(vlFERH2 ?x 7v ?2 ?xx ?YY ?xxvv ?22 ?N)
(LOCAL „(so <xxvv <22) : (N ) )  '

(V(FERH2 ?X ?Y ?Z ?XX ?YY ?XXYY ?22 ?N)
(LOCAL u(LESSP (XXYY (ZZ )  : j F ) )

(V(FERH2 ?X ?Y ?Z ?XX ?YY ?XXYY ?22 ?N)
(LOCAL u(GREATERP (XXYY (ZZ )

(LOCAL (>XXX (TIMES (XX (X ) )
(>YYY (TIMES (YY (V ) )

(FERM2 <x (Y  <2 (xxx (YYY (PLUS (XXX-(YYY)
(TIMES <zz <2) (A001 <N) ) ) ) )



This works  like the co r respond ing  PROLOG fermat program, except  for the

following differences. The FIT FERH p rog ram directly nests (PLUS ( X  ( Y )
into its FERMZ call instead of first introducing an intermediate

variable XY to transport X+Y into the call as done in PROLOG. Also.

FERM needs no M variable because N. not being used  for holding a

request variable, can itself be used for exponentiation accumulation.

Then, in the case XXYY=ZZ FERMZ returns N instead of assigning M to N.

For XXYY<ZZ it yields jF to signal that no N exists [here FIT's jF is
clearer than PROLOG's fail. which could also mean. like jU, that it is

unknown whether an N exists]. If XXYY>ZZ only two additional variables
XXX and YYY are used instead of five in the PROLOG version [in FIT even
these are only for efficiency, avoiding two additional multiplications.

whereas in PROLOG three further variables are necessary because

nestings like fermat2(X,Y.Z.XXX.YYY,XXX+YYY,ZZ*Z.M+).N) are not

allowed].

The above case analysis by EQ. LESSP.  and GREATERP calls in LOCAL
bodies corresponds to clauses with constraints on the FERMZ invocation

pattern [cf. section 6.3]. In FIT. such constraints can also be put

directly into an invocation adapter. here constructed by putting the

functions EQ. LESSP.  and GREATERP into the invocation pattern. In this

way. the FERMZ definitions can be shortened to

(V(FERM2 ?X ?Y ?Z ?XX ?YY EQ ?N) (N)

(V(FERM2 ?X ?Y ?Z ?XX ?YY LESSP ?N) jF)

(V(FERM2 ?X ?Y 72 ?XX ?YY (COMPOSE GREATERP ?XXYY ?ZZ) ?N)
(LOCAL (>XXX (TIMES (XX <X))

(>YYY (TIMES <YY <Y) )

(FERM2 (X ( Y  ( 2  (XXX (YYY (PLUS (XXX (YYY)
(TIMES (22 (Z) (ADO1 <N) ) ) )

The GREATERP function is composed with the original variables XXYY and

ZZ because  the value of 22 is needed in the body.

A functional FIT program that finds X. Y. and Z for given N would be
something completely separate from the above FERM function [namely the
non—deterministic inverse function FERM- I ] .  That FERN—I cannot be
defined doesn't restrict the applicability of the FERM function,
whereas the non—definability of the corresponding relation use does
restrict the applicability of the fermat relation.

It has often been pointed out in the PROLOG literature that the cut
operator (Clocksin & Mellish 1981 )  and the execution order (Kowalski
1983) obstruct the multiple useability of relations; what seems to be
less well known is the fact that even without any cut and with any
conceivable execution strategy some relations cannot be used in a
multiple manner. In the latter case the problem resides in the
relational formulation [in the 'logic'] itself, not in a particular
deduction procedure [in a 'control'] working on it. Let us further
reformulate our point in Kowalski's terminology: Not only in PROLOG but
even in logic programming [which is more pure becadse it is cut-less
and non-sequential], there are programs for which invertibility. as
defined by "This characteristic of logic programs. that it is possible
to find any individual in a relationship with other individuals, is
called iflyertibility." (Kowalski ! 983 ) .  cannot be achieved.
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The original sou rce  of the fermat p rob lem can be t r aced  back  to the

fact tha t  in PROLOG Fermat's equation. like every  top—level assertion.

can only be f o rmu la ted  as a relation, fermat, not as a function, ferm;
an illegitimate ferm-I use of this relation could only be prevented by
superimposed "mode declarations" (Warren et al. 1977) [normally used
for enhancing compiler efficiency]. which are extraneous to the

relational formalism. The fermat example is thus a signal cautioning

against indiscriminate relational programming. This specializes the

‚ o r i g i n a l  interpretation of Fermat's last theorem for specification

languages. namely that "there will never be a "solution” to the

automatic programming problem" (Feldman 1972), also adopted in
(Leavenworth a Sammet 1974).
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