YIS B
NI

N~
é
L oY
e
—
Lo
Lo

Decemher 1983

I

@

FIT - PROILYG:

Language Comparison
Harold Poley

=
I
=
e
'
=l
42
li9)
—
)
B
S~
=
o
=
=
~
v
+
U
fims
—
=]
| 9
<

Memo SFKT-83-14

AUBUWLIBD) M ‘| uidine[siasiey 05.a-0
6t0€ Yoesod OEHE
UIBINBISIBSIEY [BYSIaAIUN =4
YIIBWIOU| Y2I1alagyoe4 -:uu

FIT - PROLOG: A FUNCTIONAL/RELATIONAL LANGUAGE COMPARISON

Harold Boley, Universitaet Kaiserslautern
Fachbereich Informatik, Postfach 3049, D-6750 Kaiserslautern

Abstract

The programming languages FIT and PROLOG are compared as examples of
functional and relational programming, respectively. This leads to some
proposals concerning both languages. -

As an introductory tutorial, PROLOG facts, questions, variables,
conjunctions, and rules are reformulated in FIT.

A natural equivalence between functions and relations 1is exploited
for their interchangeable FIT use. An ESCVAL operator is proposed which
causes relation calls to return values of request variables and thus
permits their function-like nesting. Function calls with request
variables are introduced, showing a sense in which FIT functions are
more general than PROLOG relations. Higher-order functions and
relations are demonstrated to be available in FIT but not in PROLOG.

PROLOG structures and FIT compounds differ mainly in the fixed arity
of the former and the variable length of the latter. FIT's compounds
can also be interpreted as function calls that return themselves in
normalized form.

Pattern matching in PROLOG [FIT] treats 1list heads and tails
asymmetrically [symmetrically] and doesn't (does] allow for
non-deterministic results. While PROLOG generalizes pattern-data
matching to pattern-pattern wunification, FIT generalizes it to
adapter-data fitting.

PROLOG's Horn clauses in FIT become implicit fitters: Facts become
special implicit adapters and rules become special implicit
transformers; for PROLOG II constraints, transformers with LOCAL bodies
or invocation adapters with COM[POSE-TRA]FO expressions can be used.
While PROLOG interprets clauses in textual order, FIT interprets them
in a specificity order which 1is modifiable by a SECURE operator.
Although PROLOG's cut operator is not used in FIT, a proposal is made
to distinguish the specification of clause ordering [by FIT's SECURE
operator] and the specification of clause abandoning [by an EXCLUSIVE
operator corresponding to ‘initial’-restricted cuts]. EXCLUSIVE-marked
COMFO-constrained rules are then used for functional and relational
representations of guarded commands.

A comparison of the list processing capabilities of both languages
exemplifies how FIT's adapters «can make relational programming more
concise than PROLOG's Horn clauses. The representation of sets as lists
without duplicates leads to difficulties with PROLOG's standard
intersection and wunion predicates, which can be overcome by
representing them as the self-normalizing CLASS data structure in FIT.

Possible reasons for the poor readability of Warren's PROLOG
serialise predicate are discussed and an alternative FIT function 1is
formulated which shows the inherent simplicity of this problem.
McDermott's PROLOG quadrat predicate is transformed into a more concise
and readable ESCVAL form, which in turn 1is transformed into a
corresponding FIT ESCVAL form and into a functional FIT form. Fermat's
equation is formulated relationally, showing that for principal reasons
some relations can not be wused in all ways allowed by PROLOG's
notation, a problem that does not arise in a corresponding functional
FIT formulation.

Contents

1 INTROOUCTION 2

2 A TUTORIAL COMPARISON OF FIT AND PROLOG 5
2.1 Facts 5§

2.2 Questions 7

2.3 Variables 7

2.4 Conjunctions 12

2.5 Rules 14

3 FUNCTIONAL AND RELATIONAL PROGRAMMING 19
3.1 Interchanging Functions and Relations 21
3.2 Function Calls with Request Variables 27
3.3 Higher-order Functions and Relations 32

4 PROLOG STRUCTURES AND FIT COMPOUNDS 36

5 PATTERN MATCHING AND GENERALIZATIONS 40
5.1 Basic Matching: Variables in Patterns 40
5.2 Fittinyg: Special Elements in Patterns or Functions 1in Adapters 44
5.3 Unification: Variables in Two Patterns 48
6 HORN CLAUSES AND IMPLICIT FITTERS 489

6.1 Facts 49

6.2 Rules 51

6.3 Clauses with Constraints 53

6.4 Clause Ordering 57

6.5 Cut, SECURE, and EXCLUSIVE 59

7 LIST AND SET PROCESSING 69

7.1 Elementary List Processing 70

7.2 Manipulating Sets 76

8 THREE EXAMPLES 79

8.1 Warren's SERIALISE Algorithm 80

8.2 McDermott's QUADRAT Program 84

8.3 Fermat’'s Last Theorem 89

9 REFERENCES 94

1 INTRODUCTION

This paper attempts to compare in detail the programming languages
FIT and PROLOG. It discusses some of their common and distinguishing
features and may thus shed some new light on both languages. Hence it
addresses readers who are interested in at least one of these
languages. The paper can be read as a constructive critique of
PROLOG-style predicate logic or relational programming from the
standpoint of FIT-style applicative or functional programming. It also
shows that FIT can be viewed as an integration of some of PROLOG's
relational features with a functional LISP philosophy, at the same time
avoiding the criticized PROLOG features.

More precisely, FIT consists of a kernel, pure FIT, and an
interactive user-interface, impure FIT; FIT's present implementation is
FIT-1. Pure FIT is regarded in principle as a functional language
because it is based on purely functional features (Henderson 1980),
augmented mainly by

1. Consistent-assignment variables, needed for patterns, which preserve
functionality much like the well-known single-assignment variables.

2. Implicit adapters, permitting the direct representation of PROLOG
facts and their retrieval using request variables.

Furthermore, since pure FIT-1 is implemented in a purely functional
LISP subset, this paper can also be viewed as a preparatory step for a
semantic comparison of PROLOG with unaugmented functional languages,
like pure LISP, completing the implementation-oriented comparisons from
(Warren et al. 1977) to (0'Keefe 1983). Finally, since PROLOG borrowed
a lot from PLANNER-like languages, this, 1in turn, would entail an
indirect functional formalization of a subset of PLANNER-1ike
languages, complementing the logical/relational formalization of this
subset in PROLOG. Actually, FIT-1 itself can be regarded as a direct
functional reorganization of PLANNER, much like "Prolog may be regarded
as a logically reorganized Planner” (Fuchi 1982).

The function augmentation of implicit adapters, besides allowing the
representation of data base facts, also provides a succinct FIT
notation for relation definitions [cf. section 7]. So, when we
criticize relational programming, this applies to PROLOG as well as to
a relational use of FIT. However, we feel the important thing 1is that
both functional and relational features are available as possibilities
in FIT. We dispute the contention that relational programming 1is
‘simply a generalization' of functional programming and our critique
centers on the omission of features 1like higher-order functions 1in
PROLOG [cf. section 3.3].

For PROLOG critiques from other standpoints see (McDermott 1980)
[PLANNER-1like languages], (Robinson & Sibert 1982) [(denotational

semantics], (Kurokawa 1982) [software engineeringl], (Bibel 1983)
[unrestricted first-order logicl, (Feigenbaum & McCorduck 1983)
[knowledge engineeringl], and (Shapiro 1983) [multi-processing].

Self-contained treatments of PROLOG and FIT can be found in the
references of this paper. More references can be obtained from
(Fuhlrott 1984) ([(nearly exhaustive PROLOG bibliography] and the author
[complete FIT bibliographyl. A global perspective of PROLOG's role 1in
artificial intelligence, in particular in relation to that of LISP, can
be found in (Boley 1982/83), which also contains references for all Al
languages mentioned in this paper.

In spite of whatever complaints we may have to make about PROLOG 1in
these pages, we do appreciate the excellent work done under the 'logic
programming’ heading [in particular, Kowalski's pioneering logic
studies and the efficiency of Warren's von Neumann PROLOG compiler] and
the impact it has had on the Japanese Fifth-Generation Computer Systems
endeavour, both of which have strongly increased interest in artificial
intelligence in general and in Al languages and machines in particular
(as measured by the success of the book (Feigenbaum & McCorduck 1983)1].
In our opinion it is still an open question, however, whether PROLOG's
traditional orientation toward efficient implementation on available

sequential computers provides an ideal base language for projects 1in
future non-orthodox parallel computer architectures. While the initial
inefficiency of McCarthy's LISP implementation of LISP subsequently
suggested new machine architectures, the initial efficiency of
Colmerauer's FORTRAN implementation of PROLOG subsequently may make it
possible to 1live with existing ones. It is perhaps precisely PROLOG's
early efficiency that shows its affinity to von Neumann computers,
indicating that it cannot be the right non-von Neumann language.

Striving for precise terminology, we prefer the term ‘'relational
programming’ instead of the often-used term 'logic programming’ to
characterize PROLOG's programming methodology. In our field there 1is
some temptation to adopt 'fashionable terms’ uncritically and normally
one wouldn't even notice a redundancy like "Programming in PROgramming
in LOGic" in a book title. But now, even the principal founder of logic
programming has admitted that the present discussion is marked by the
confusion of logic programming with PROLOG, logic programming with
programming languages, and logic programming with Horn clause
programming (Kowalski 1983). Below, we summarize the rationale for our
terminological decision.

First, we think that the term 'logic programming’ 1is less suitable
because PROLOG's computational mechanisms only overlap with the
deductive mechanisms of first-order predicate calculus:

1. PROLOG uses "extra-logical features” (VanEmden 1980) such as
the cut operator and many other built-in predicates going far

beyond first-order logic (McDermott 1980): "But perhaps PROLOG
will take the world by storm and perhaps logic programming
will be forgotten ..." (vVanEmden 1980).

2. There are first-order formulas, such as those involving
disjunction (Bowen 1982) and negation (Aida et al. 1983),
which are not provable with PROLOG's Horn «clause programming
but only with “full first-order 1logic programming” (Bowen
1982).

Second, we think that the term 'relational programming’ 1is more
appropriate mainly because of two reasons:

1. The characteristic programming language feature of PROLOG 1is
the transformation of relations, even for computing
deterministic functions [for which earlier PLANNER-1like
languages resorted to LISP].

2. PROLOG can be regarded as an enrichment of relational data
base systems by deductive relation retrieval.

Although there are many dialects of PROLOG, the most well-known and
wide-spread version is that developed in Edinburgh, and we will base
our comparison on this. Thus in the following the unqualified term
"PROLOG" will stand for 'Edinburgh PROLOG as described in (Clocksin &
Mellish 1981) " .

At least those PROLOG examples not quoted from the literature have
peen tested, principally in DEC-10 Edinburgh PROLOG and in a few cases
in micro-PROLOG and LOGLISP. The FIT examples not introduced as still

unimplemented suggestions have been tested in DEC-10 FIT-1, which is
itself running in UCI LISP.

The following section [2] is a tutorial introduction which may be
skimmed by readers who want to get to the essentials quickly or who
already have some knowledge of PROLOG and FIT. Section 3 <contains the
central points of the discussion 'functional vs. relational’, including
relations that return values [ESCVAL operator], functions with request
variables, and higher-order functions; it anticipates some of the
material treated more extensively in later sections. The short section
4 deals with the data structures of both languages and may be skimmed
by all those familiar with LISP, FIT, or PROLOG. Section 5 discusses
pattern matching as needed for fact retrieval and rule invocation,
including its unification [PROLOG] and fitting [FIT] generalizations.
Then, section 6 treats clauses (facts and rules] and their constraints
restriction, textual/specificity ordering, and cut/EXCLUSIVE/SECURE
marking. The penultimate section [7] compares list/set processing in
PROLOG and FIT and also demonstrates the use of FIT's adapter-driven
computation for relational programming. Finally, the last section (8]
gives more detailed examples [acknowledging Warren, McDermott, and
Fermat], but also points to a number of further principal issues in
functional/relational programming.

2 A TUTORIAL COMPARISON OF FIT AND PROLOG

This introductory comparison is based on the tutorial introduction
in chapter 1 of the standard PROLOG textbook (Clocksin & Mellish 1981).
It covers all the PROLOG features of this introductory chapter or, as
the authors «call it, of the “basic core of PROLOG". Some advanced
PROLOG features are not discussed in this introductory comparison, but
are treated in the remainder of this paper. Although the comparison can
be regarded as an introduction to FIT for readers acquainted with
PROLOG, it 1is not a general introduction to that language, because it
concentrates on PROLOG-related FIT features. All PROLOG examples are
taken from (Clocksin & Mellish 1981), sometimes with minor extensions;
the subheadings are cited unchanged from this source.

2.1 Facts

A fact like "John likes Mary” in PROLOG is regarded as a relation,
likes, that holds between two individuals; it is written as
likes(john,mary) and is stored by a "."-terminated statement

likes(john,mary).

[Thus the period is part of the object language, PROLOG, not part of
the meta language, English; to avoid confusion of language levels we
will always omit meta-language punctuation after object-language
expressions displayed between two blank lines.)

In FIT the fact is regarded as a [predicate] function, LIKES, which is
“true’ for the two individuals; it is written as (LIKES JOHN MARY) and
is stored by a unary GLOBAL expression whose argument is a one-element
list containing the fact, i.e. by

GLOBAL: ((LIKES JOHN MARY))

[The mathematical function/relation notation, f(a1,a2,...,aN), for LISP
function calls and, more generally, FIT fitments is rewritten as a list
with a distinguished first element f, (f a1l a2 ... aN), which in FIT

for N=1 may be abbreviated to f:al, i.e. in the example, with f=GLOBAL
and al=((LIKES JOHN MARY)), the parentheses are part of the argument
rather than the call notation.]

Whereas in PROLOG "." is just a syntactical terminator, which in this
context serves as a top-level cue to invoke the storing routine, in FIT
GLOBAL is the storing function which can be called from any level.

To create a four-element [n-element] data base in PROLOG one must
write four [(n] "."-terminated relations like

valuable(gold).
female(jane).
owns(john,gold).
father(john,mary).

while in FIT one may use a four-element [n-element] list argument of a
single GLOBAL expression

GLOBAL: ((VALUABLE GOLD)
(FEMALE JANE)
(OWNS JOHN GOLD)
(FATHER JOHN MARY))

as an alternative to four [n] corresponding GLOBAL expressions. PROLOG
does not allow the storage of several data base facts as a single
operation [the above PROLOG use of "." can be regarded as a postfix
operator corresponding to the built-in assertz predicate; cf. ASSERT in
PLANNER-1ike 1languages]. Instead, each fact must be stored
individually, which has been reported to be a common source of syntax
errors (Clocksin & Mellish 1981). On the other hand, in FIT the use of
GLOBAL's additional pair of parentheses is not obvious when storing
individual facts but becomes apparent when storing an entire data base.
The deeper reason for this general form of GLOBAL is its use as a
semantic primitive for multiple definition side-effects [for example,
the pattern match (>X >Y :) generates two binding side-effects (>X) and
{>Y), which are represented as GLOBAL:((>X) (>Y)); cf. section 5.11. In
order to avoid parenthesis omission errors when storing individual
facts, a simple FIT extension

ASSERT:fact = GLOBAL:(fact)
could be defined.

Unlike in PROLOG, in FIT facts need not be stored globally but can
also be stored locally, creating 'local data bases’', by using the LOCAL

instead of the GLOBAL storage operator, as exemplified in the next
subsection and exploited as a module feature in section 7.1.

2.2 Questions

Presupposing the above global 'Mary’ fact, a PROLOG question/answer
sequence ([to distinguish user questions from computer answers in such
sequences, the answers will be underlined here and below]

?7- likes(john,mary).
yes

in FIT becomes

(LIKES JOHN MARY)
ALIKES JOHN MARY)

Thus instead of printing a simple 'yes' or ‘'true’', FIT follows a
good PLANNER tradition and returns the instantiated form of requested
facts [in such simple <cases as above, this is identical to the
question; but see the next subsection]. The question in FIT is regarded
as a call of the LIKES predicate function with two arguments, JOHN and
MARY, the only pair of arguments for which that predicate has so far
been defined by a GLOBAL expression. While the PROLOG likes request
just prints its answer ‘yes', the FIT LIKES call returns its answer
(LIKES JOHN MARY) as a function value which can be further processed by
other function ~calls; for example, the nested call (COR (LIKES JOHN
MARY)) uses a CDR call to return the tail (JOHN MARY) of the result of
the LIKES call. LIKES can be regarded as a predicate function, although
the returned expression (LIKES JOHN MARY) 1is not equal to the

truth-value “T" for ‘true', because in FIT every expression not
denoting 'false’' or ‘unknown' is interpreted as being ‘true’ [this
corresponds to LISP's non-NIL = 'true' convention].

Again presupposing the above 'Mary’ fact, the LOCAL data base
question

(LOCAL ((VALUABLE SILVER) (LIKES JOHN JANE))
(LIKES JOHN JANE) (LIKES JOHN MARY) (VALUABLE SILVER))

would return
(LIKES JOHN JANE) (LIKES JOHN MARY) (VALUABLE SILVER)

since all these facts are stored, the first and third 1locally, the
second globally.

Summarizing the syntax introduced in these first two subsections,
while PROLOG prefixes questions [with "?-"] and interprets unprefixed
expressions as the assertion of facts, FIT prefixes assertions [with
“GLOBAL:"] and interprets unprefixed expressions as questions.

2.3 Variables
The PROLOG facts and questions containing variables
likes(john, flowers).

likes(3john,mary).
likes(paul,mary).

?7- likes(john, X).
X=flowers

?- likes(X,mary).
X=john;

X=paul;

no

in pure FIT [here we assimilate the presentation of non-determinism to
PROLOG's treatment] become

GLOBAL: ((LIKES JOHN FLOWERS)
(LIKES JOHN MARY)
(LIKES PAUL MARY))

(LIKES JOHN |?X)
(GLOBAL ({>X FLOWERS)) (LIKES JOHN FLOWERS))

(LIKES |?X MARY)
(GLOBAL ((>X JOHN)) (LIKES JOHN MARY]))
MORE

LOBA X _PA KES_PA A
MORE
au

To distinguish variables from individuals, PROLOG uses a capitalization
convention (inverse to the standard mathematical convention, as
remarked in (Robinson & Sibert 1981) and corrected in LOGLISP] while
FIT marks single-value-accepting variables by a "?" [SHOVEONE] prefix,
multiple-value-accepting variables by a ">" [SHOVE] prefix, and open

request variables by an additional "|" [VERTICAL] prefix. As answers to
successful questions containing variables, PROLOG prints variable
bindings ‘X=flowers' etc. while pure FIT returns binary GLOBAL

expressions (GLOBAL ((>X FLOWERS)) (LIKES JOHN FLOWERS)) etc. with the
bindings in their first argument [internally, always the more general
">" prefix is used] and the instantiated expression in their second
argument. Like user-initiated GLOBAL expressions these system-generated
ones in impure FIT store their bindings in the data base; all GLOBAL
expressions also return their second argument, which for unary GLOBALs
is the empty imposition [an imposition is a possibly empty sequence of
expressions]. For example, after pure FIT has evaluated (LIKES JOHN
|?X) to (GLOBAL ((>X FLOWERS)) (LIKES JOHN FLOWERS)), impure FIT sets X
to FLOWERS and returns (LIKES JOHN FLOWERS). Thus, while in PROLOG the
bindings are just printed and gone in the next interaction step, in FIT
they are stored in the global data base for later use [the recent
LM-PROLOG (Kahn 1983) also has a facility for saving bindings until the
next interaction stepl. As in (Winston & Horn 1981), the "<¢" [PULL]
prefix 1s used in FIT to fetch variable values, e.g., the value a
variable received as the result of a previous interaction step. This
allows the incremental interactive construction of answers to compound
questions as in

(LIKES PAUL |?X); first give me the entity X that Paul likes
GLOBA >X_MARY IKES PAUL MARY

(LIKES JOHN <X): second check to see if John also likes that entity X
(LIKES JOHN MARY); internal reformulation asking if John likes Mary

(LIKES JOHN MARY))

By now the naturalness of returning instantiated questions as answers
should have become apparent: We asked FIT to find individuals replacing
the wvariable X in propositional forms thus making them true
propositions, and it returned these true propositions together with
their X-bindings.

If global binding effects are not desired, request variables can be
localized wusing LOCAL expressions. In a basic LOCAL form the request
variables are listed in the first argument and the question appears in
the second argument. The following question-answering sequence is an
example [X is locally initialized with the empty imposition]:

(LOCAL (>X:) (LIKES PAUL |?X))
{LIKES PAUL MARY)

In an advanced LOCAL form the question itself is written to the left of
a colon separator and an arbitrary expression making use of the request
variables to the right of the fil An example is this
question-answering:

(LOCAL (LIKES PAUL |?X)
(APPEND ' (HE LIKES) (LIST <X) '(AS FAR AS I KNOW)))
H K ARY A R K

Returning to the first example of this subsection, the ‘carry on’
command use of PROLOG's ";" operator in FIT translates to MORE
commands. PROLOG's ‘no’ responses for indicating failures in FIT often
become jU failure signals [Jjump 'unknown'] rather than the literally
corresponding jF failures [jump 'false'].

rsus: The osed-world Ass ion

The reason for this is that in FIT the ‘closed-world-assumption’
(here 1implying that the system knows all about who likes Maryl] is
not built in. As another example, consider the FIT query (LIKES FRED
MARY) and the corresponding PROLOG query likes(fred,mary) in the
above respective data bases, in which no ‘likes’ relationship 1is
stored for Fred: In FIT it yields jU ['I don't know'l, while in
PROLOG it prints 'no’ ['I assume no'l. This is because FIT, by
default, regards facts as open-ended information about relations
[e.g., "likes’'], while PROLOG assumes facts to completely define
these relations. Instead of relying on a universal closed-world
assumption, the FIT user may 'close off' each predicate individually
if its clauses are to be regarded as 'definitional’, so that the
system will give negative information [jF] only for requests with
that predicate for which no normal clause is successful. In LOGLISP,
the wuser can also declare a predicate-restricted closed-world
assumption [we may call this a ‘closed-predicate specification], but
must do this by applying the LISP function NULL to the result of a
call to the LOGLISP procedure ANY (Robinson & Sibert 1981). For
example, the LOGLISP definition

(NOT (LIKES x y)) <- (NULL (ANY 1 T (LIKES x y}))

would close off the LIKES relation. In FIT a closed-predicate
specification belongs to the completely normal way of defining
predicate functions: A clause with a minimally specific head pattern
defines the predicate to be jF, so that this clause 1is used if and
only if no other matching one with that predicate remains wuntried.
For example, the FIT definition

(>(LIKES ?X ?Y) JF)

would also close off the LIKES relation [it sets the 'compound
variable' (LIKES ?X ?Y) to the value jF, which, when typed in,
should normally be quoted like ‘jF]. The LOGLISP and FIT systems on
the basis of these definitions would know all about who likes whom
but make no assumptions about other relationships. For instance, 1in
the previous data base this would cause the FIT query (LIKES FRED
MARY) and similar ones like (LIKES FRED BILL) to yield JF but would
not change a JjU yielded by queries with other relations like
(SISTER_OF FRED MARY). The closed-world assumption can be restricted
even further to predicates with some given fixed arguments. For
example, the FIT definition

(>(LIKES ?X MARY) jF)

would close off the LIKES relation for a second argument equal to
MARY only; the system on the basis of this definition would know all
about who likes Mary but make no assumptions about who 1likes other
persons. This 1s sufficient for obtaining JF for the query
(LIKES FRED MARY), but not for obtaining jF for the similar query
(LIKES FRED BILL) [(the system would modestly reply jul. In general,
FIT allows restricting closed-predicate specifications to exactly
the scope required.

The predicates of 'closed subworlds' [e.g., of list processing; cf.
section 7] can be closed off by a single definition

(>(CLOSEDPRED >X) 3jF)

provided that the second-order predicate CLOSEDPRED is 'true’ for
them. (For instance, the second-order definition (CLOSEDPRED MEMBER)
could be used instead of the first-order definition (> (MEMBER ?X ?Y)
jF) for <closing off the MEMBER predicate; further CLOSEDPRED
definitions could be used for closing off the other predicates 1in
this paper.]

Incidentally, it is FIT's three-valued 1logic which permits a
differentiation of what 1is known to be true, what is known to be
false, and what is unknown, while PROLOG's two-valued logic leads to
a confusion of the latter two categories. Although the closed-world
assumption gives rise to certain nice formal properties [cf. the
recent paper (Jaffar et al. 1983)], its practical usefulness is
questionable. It enforces a narrow world view in PROLOG-based
systems because what they actually assume is "All that I haven't
heard of cannot be true”. Presumably, it would not be prudent to
endow future computer systems with such a built-in illusory
assumption of omniscience. Another recent critique of the
closed-world assumption of ordinary PROLOG may be found in (Hewitt &

= 11 =

de Jong 1983). Ironically, while Hewitt has abandoned his PLANNER
tradition in this respect, Kowalski is still cultivating it
(Kowalski 1983).

Perhaps it was the special syntactical position of predicates in the
mathematical/logical notation R(at,...,aN) for applications/relations,
in contrast to LISP's modern Cambridge Polish prefix notation
(R at ... aN), that prevented PROLOG from allowing questions asking for
the predicate, using predicate variables [indeed micro-PROLOG, the only
well-known PROLOG dialect which has some means of asking for
predicates, resorts to its LISP-like "internal syntax”™ (Clark et al.
1982) for that purpose, as shown below]. Perhaps it was a fear of
losing the semantics of first-order predicate calculus when permitting
implicit request quantifiers ranging over predicates instead of over
individuals only. And/or perhaps efficiency considerations were
involved, because such requests cannot make use of a primary predicate
indexing of facts. In FIT's attempt to permit what the wuser finds
natural we allow such requests. For example, in the above data base we
obtain

(]?X JOHN MARY)
A > S H

The natural-language paraphrase of this question, “Is there some
relationship between John and Mary?", doesn't sound less natural than
“Is there an entity that likes Mary?”, the paraphrase of our previous
request (LIKES |?X MARY). There are no syntactical problems with this
when using Cambridge Polish prefix notation. The direct equivalence
with first-order predicate calculus cannot be maintained anyway because
higher-order constructs like mapping functions are indispensable [cf.
section 3.2)]. The indexing problems are easily solvable on the basis of
current data base technology; indeed already LEAP (Feldman et al. 1972)
allowed asking for all components of associative triples and
PLANNER-1ike languages allow asking for all components of assertion
n-tuples, implemented, e.g., by means of “coordinate indexing”
(Rulifson et al. 1972).

In micro-PROLOG the extra-logical auxiliary dictionary program must
be used for simulating such requests (Clark et al. 1982):

Wh(x (dict x)(x John Mary))
Answer is likes

Moreover, the "meta-variable” x wused here is not a true request
variable for predicates since it must be bound through the dict call by
the time micro-PROLOG evaluates (x John Mary).

The variables used previously are typeless, as they always are 1in
PROLOG, but only by default in FIT. Typed variables can be specified in
FIT as follows. Every predicate pred may be used as a typed variable
x?pred or x>pred, a value-accepting variable with an additional “x"
(XAMINE] prefix. For example, x?FEMALE can only be bound to individuals
for which the predicate FEMALE is true and x>LIKES can only be bound to
pairs of individuals which are in a LIKES relationship.

2.4 Conjunctions
In the PROLOG data base

likes({mary, food).
likes(mary,wine).
likes(john,wine).
likes(john,mary).

the request conjunction [the ", " is used as an AND infix operator]

?- likes(john,mary), likes(mary, john).

1s processed from left to right, the first goal succeeding and the
second failing, so that the conjunction fails. In the corresponding FIT

data base

GLOBAL: ((LIKES MARY FO0OD)
(LIKES MARY WINE)
(LIKES JOHN WINE)
(LIKES JOHN MARY))

we can use an implicitly AND-connected imposition

(LIKES JOHN MARY) (LIKES MARY JOHN)

which also fails because the expression (LIKES MARY JOHN) does.

The question "Is there anything that Mary and

John both 1like?",

exemplifying conjunction-wide request variables, in PROLOG becomes

?7- likes(mary,X), likes(john,X)
and is processed using backtracking as follows:

1. The first goal 1likes(mary,X) matches

the first fact

likes(mary,food), binding X to food and marking the place of

this fact in the data base.

2. The instantiated second goal 1likes{john,food) fails, so
backtracking occurs, i.e. X becomes unbound and the previous
goal is tried again, starting from after the marked fact.

3. The first goal 1likes(mary,X) now matches

the second fact

likes(mary,wine), binding X to wine and marking that fact's

place.

4. The instantiated second goal 1likes(john,wine) matches the

third fact, marking its place.

5. Since both goals are satisfied 'X=wine' is printed.

In FIT the request conjunction can either

be partitioned

interactively as exemplified in the previous subsection or it can be

written as the imposition

(LIKES MARY |?X) (LIKES JOHN |?X)

= 13 =

which is evaluated without backtracking thus:

1. the first goal (LIKES MARY |?X) yields a BREADTH expression
containing all its matching facts [namely the first and second
onel, and simultaneously also the second goal (LIKES JOHN |?X)
yields a BREADTH of all its matching facts [namely the third
and fourth onel, altogether yielding the intermediate
imposition of BREADTH expressions

(BREADTH (GLOBAL ((>X FOOD)) (LIKES MARY FOOD))
(GLOBAL ((>X WINE)) (LIKES MARY WINE)))
(BREADTH (GLOBAL ((>X WINE)) (LIKES JOHN WINE))
(GLOBAL ((>X MARY)) (LIKES JOHN MARY)))

2. In combining the BREADTH results of both goals three candidate
results

(GLOBAL ((>X FOOD)) (LIKES MARY FOOD))
(GLOBAL ((>X WINE)) (LIKES JOHN WINE))

(GLOBAL ((>X FOOD)) (LIKES MARY FO0OD))
{GLOBAL ((>X MARY)) (LIKES JOHN MARY))

(GLOBAL ((>X WINE)) (LIKES MARY WINE))
(GLOBAL ((>X MARY)) (LIKES JOHN MARY))

are rejected because of inconsistent X bindings and only one
result,

(GLOBAL ((>X WINE)) (LIKES MARY WINE))
(GLOBAL ((>X WINE)) (LIKES JOHN WINE))

remains, so that the result
(GLOBAL ((>X WINE)) (LIKES MARY WINE) (LIKES JOHN WINE))

1s returned.

Thus FIT abolishes depth-oriented, chronological backtracking in
favour of breadth-oriented, non-chronological parallelism, avoiding a
host of problems that plague PROLOG [not just beginning with the "cut"”]
from the start. Backtracking within a sequential conjunction on a
sequential data base is perhaps PROLOG's most unfortunate [von Neumann]
deviation from pure logic. Rather than regarding a data base of clauses
[facts and rules] as a set, which, because it 1is unordered, has the
crucial advantage of modularity, PROLOG regards it as an ordered
collection, pointed to by place-markers which are pushed back and forth
on it as 1if it were a SNOBOL string. “"Paper-and-pencil simulations”
(Clocksin & Mellish 1981) are required to keep track of what's going
on.

The annoying difficulty with such a sequential data base can be seen
in the example. The order of the four ‘likes’' facts ([shortened,
1-2-3-4], i.e. the sequence of typing them 1in, first seemed to be
immaterial in (Clocksin & Mellish 1981), as 1in logic, but now it
becomes apparent that it has a profound impact on backtracking and
efficiency [sometimes even on termination, i.e. total correctness,

because depth-first search may diverge 1nto an infinite subtree
although a solution exists somewhere else 1n the search tree]: Had we
typed in the first two facts in reverse order (i.e., 2-1-3-4] no
backtracking would have occurred at all. A similar reordering of the
last two facts (i.e., 1-2-4-3] would also change backtracking behavior.
However, regroupings [here, 3-4-1-2]1 or even interleavings [e.g.,
1-3-2-4] would have no behavioral effect.

Avoiding such “"arbitrary sequencing” (Leavenworth & Sammet 1974) in
space and time, FIT follows predicate calculus in not imposing an
arbitary order onto the data base items. It makes available all facts
matching a question at once, as an explicit conflict set, and uses a
‘most specific first’' rule for "conflict resolution” (McDermott & Forgy
1978). If, as in the example, all facts are equally specific they form
a BREADTH expression which can be processed by "OR parallelism”
[(Conery & Kibler 1981), (Clark & Taernlund 1982)1].

Another sequencing which causes PROLOG to deviate from predicate
calculus 1is the 1left-to-right order imposed on conjunctions. Like
LISP's AND this can be used to simulate 'if then' statements and other
desired orderings; it is also available as an option, called ANDTH, in
FIT. However, in the example, as is usually the case, we preferred to
retain the non-sequenced meaning of 1logical conjunction by using
simultaneously evaluating impositions. These can be processed by "AND
parallelism” [(Conery & Kibler 1981), (Clark & Taernlund 1982)].

In FIT, if we do wish to use the bindings of a request variable
produced in a first request inside a second request, we can replace
occurrences of the request variable |?var in the second request by
occurrences of a corresponding PULLTEMPORARY variable “yar, where "~
fetches the value that a variable received in an ongoing evaluation.
For example, instead of our previous request imposition, we could write

(LIKES MARY [?X) (LIKES JOHN “X)

Since data flow in FIT is not restricted to the direction ’'left to
right’' but may as well proceed ‘right to left’', the request could also
be replaced by

(LIKES MARY “X) (LIKES JOHN |?X)

In order to transcribe PROLOG conjunctions literally into FIT, however,
a left-to-right pass would be used, in which a PROLOG variable not yet

encountered is replaced by a "|?"-variable and one already encountered
by a ""“-variable.

2.5 Rules

A PROLOG rule like
likes{john,X) :- likes(X,wine)
in FIT can be rewritten as

(>(LIKES JOHN ?X) (LIKES <X WINE))

- 15 -

That is, in FIT a rule has the form of a variable-value association. It
is generated by setting a compound variable like (LIKES JOHN ?X) to a
quoted value like '(LIKES <X WINE). Typing in the setting

(>(LIKES JOHN ?X) '(LIKES <X WINE))
abbreviates [and, in FIT-1, temporarily expands to]
(GLOBAL ((>(LIKES JOHN ?X) (LIKES <X WINE))) '(LIKES <X WINE))

which actually stores (>(LIKES JOHN ?X) (LIKES <X WINE)) and returns
(LIKES <X WINE).

Using this rule together with Mary's likings in the data base of the
previous section, the PROLOG request

likes(3john,mary)

is matched by the rule head 1likes(john,X), binding X to mary and
marking 1its place in the data base. Then 1its 1instantiated body
likes({mary,wine) is turned into another request, which 1is directly
matched by a data base fact so that 'vyes' is printed.

In FIT, rules are dealt with similarly, except that their
pattern-directed invocation is treated completely within the FIT
formalism itself. Intermediate computations like those for invocation
matching may be observed in FIT-1's trace mode, which we will indicate
as a sequence of indented expressions [as traces may be switched off in
FIT-1, the I/0-oriented reader may ignore indented expressions here and
later on]. Thus the corresponding question-answering becomes

(LIKES JOHN MARY)
(LOCAL (LIST (LIKES LIKES) (JOHN JOHN) (?X MARY))

(LIKES <X WINE))
(LOCAL ((>X MARY)) (LIKES <X WINE))
(LOCAL ((>X MARY)) (LIKES MARY WINE))
(LIKES MARY WINE)

Pattern-directed invocation generates a LOCAL expression [cf.
subsection 2.3] with the invocation match in its bindings [before the
":"] and the rule body as its body [after the ":"]. Here, the match 1is
successful, vyielding a simpler LOCAL in which X is bound to MARY. The
body is evaluated inside this LOCAL scope and the successful result
(LIKES MARY WINE) causes the LOCAL and its binding to disappear.

Note that FIT ‘overanswers' the original question "Does John 1like
Mary?" in returning not simply 'yes' but an expression interpretable as

“"Yes because Mary likes wine" . The returned expression
(LIKES MARY WINE) encodes the reason why the answer to the question
(LIKES JOHN MARY) is ‘true’'. The non-false-and-non-unknown = ‘'true'’

convention permits regarding the answer expression as a simple 'true’
answer and going into the expression and analyzing the reason for its
being 'true’ only if/when desired.

If we also presupposed John's 1likings 1in the data base of the
previous section, we could answer the question without any rule by
using a fact. However, since PROLOG uses clauses in textual order, it

would only apply the fact first if it were stored in front of the rule;
otherwise it would still first use the rule. In FIT, on the other hand,
the order of definitions in store is immaterial because the definitions
matching a request are considered in the order of their specificity.
Thus the fact in any case would be used first and the rule second, so
that we would obtain a DEPTH expression [the ordered counterpart to
BREADTH]

(DEPTH (LIKES JOHN MARY) suspension-generating-our-previous-result)

whose first element shows us that John likes Mary directly and whose
suspended second element, only popped up and activated by a MORE
request, would show us that he likes her because of her 1liking for
wine, as discussed above.

The notation of rules with conjunction bodies should be clear from
the foregoing. For example the PROLOG rule

likes(john,X) :- likes(X,wine), likes(X, food)
in FIT becomes
(>(LIKES JOHN ?X) (LIKES <X WINE) (LIKES <X FOOD))

Finally, let us consider rules with conjunction bodies containing
conjunction-wide request variables. A PROLOG rule like

sister_of(X,Y) :-
female(X),
parents(X,M,F),
parents(Y,M,F).

can be rewritten in FIT as

(>(SISTER_OF ?X ?Y)
(LOCAL (>MOTH: >FATH:)
(FEMALE <X)
(PARENTS <X |?MOTH [?FATH)
(PARENTS <Y |?MOTH |?FATH)))

F shouldn't be used as a variable in FIT because, as in some LISP's, it
is the constant meaning 'false’'; therefore we replace F and M by the
more mnemonic FATH and MOTH, respectively. Since these variables are
not ‘'formal parameters’' of the rule, we have to declare them LOCAL in
FIT if we don't want them to spread globally. In PROLOG all variables
in rule bodies are treated alike, namely as 'logical variables' which,
even if they spread globally, cannot collide because they are uniquely
renamed.

E 1 . 4

The PROLOG design decision to perform such read-time renaming,
however, is detrimental to interactive programming. When typing in a
clause interactively the PROLOG system changes ones mnemonic
variable names under ones fingers into meaningless “_"-prefixed
numbers. The meanings in variable names cannot be recovered by the
‘listing’ predicate which pretty-prints them as alphabetic ordinals
"A", "B", "C", ... denoting, respectively, the first, second, third,

- 17 -

variable used in a clause. For example, when typing in the above
sister_of rule exactly in the form of (Clocksin & Mellish 1981),
using their mnemonics M and F for mother and father, respectively,
PROLOG forces the programmer to reconceptualize this as

sister_of(A,B) :-
female(A),
parents(A,C,D),
parents{(B,C,D).

One must accept the machine’s abstract isomorphism between these
sister_of rules and use its meaningless variable names, as if seeing
which variable occurrences are used for input, for output, and/or
for intermediate results weren't already hard enough with mnemonics.
If you trace sister_of calls using the 'spy’' predicate, what you see
is not even "A", "B", "C" but something like "_24", "_109", "_110".
Certainly, this treatment of variables is not a high-level feature
of PROLOG. When you dump an interactively constructed program using
the "tell’ and ‘listing’ predicates you, of course, also have the
alphabetic ordinals in your file.

The only remedy is to prepare source files with an editor outside
PROLOG and then reading such files into PROLOG in their entirety.
But that isn't interactive programming: For each little change vyou
have to leave the PROLOG system, enter the editor, make the change,
restart PROLOG, and read in the affected file. Nor does it solve all
problems: You still have to accomodate to alphabetic ordinals if you
want to look at the definition of a clause during the interactive
session; the traces still use these underscore numbers. Therefore
newer PROLOG developments try to correct this fault, acknowledging
the fact that throwing the user's variable names out of main memory
was too high a price for gaining computer efficiency.

The 'sister_of' rule together with a data base describing some
family relationships of Queen Victoria,

male(albert).

male(edward].

female(alice).

female(victoria).
parents(edward,victoria,albert).
parents(alice,victoria,albert).

permits PROLOG questions such as
?- sister_of(alice,edward).

which 1s processed thus: The question 1is matched by the rule head
sister_of(X,Y), binding X to alice and Y to edward. Then the body

conjuncts female(alice) followed by parents(alice,M,F) are satisfied,
the latter binding M to wvictoria and F to albert. Finally, the

instantiated goal parents(edward,victoria,albert) succeeds, answering
yes' .

With FIT's version of the 'Victoria' data base

GLOBAL : ((MALE ALBERT)
(MALE EDWARD)
(FEMALE ALICE)
(FEMALE VICTORIA)
(PARENTS EOWARD VICTORIA ALBERT)
(PARENTS ALICE VICTORIA ALBERT))

the corresponding FIT question-answering process can be traced to show
the following details:

(SISTER_OF ALICE EODWARD)
(LOCAL (LIST (SISTER_OF SISTER_OF) (?X ALICE) (?Y EDWARD))

(LOCAL (>MOTH: >FATH:)
(FEMALE <X)
(PARENTS <X |?MOTH |?FATH)
(PARENTS <Y |?MOTH [?FATH)))
(LOCAL (>X:ALICE >Y:EDWARD >MOTH: >FATH:)
(FEMALE <X)
(PARENTS <X |?MOTH |?FATH)
(PARENTS <Y |?MOTH |?FATH))
(LOCAL (>X:ALICE >Y:EDWARD >MOTH: >FATH:)
(FEMALE ALICE)
(PARENTS ALICE [?MOTH |?FATH)
(PARENTS EDWARD |?MOTH |?FATH))
(LOCAL (>X:ALICE >Y:EDWARD >MOTH: >FATH:)
(FEMALE ALICE)
(GLOBAL (|>MOTH:VICTORIA |>FATH:ALBERT)
(PARENTS ALICE VICTORIA ALBERT))
(GLOBAL (|>MOTH:VICTORIA |>FATH:ALBERT)
(PARENTS EDWARD VICTORIA ALBERT)))
(LOCAL (>X:ALICE >Y:EDWARD >MOTH: >FATH:)
(GLOBAL (|>MOTH:VICTORIA |>FATH:ALBERT)
(FEMALE ALICE)
(PARENTS ALICE VICTORIA ALBERT)
(PARENTS EDWARD VICTORIA ALBERT)))
(LOCAL (>X:ALICE >Y:EDWARD >MOTH:VICTORIA >FATH:ALBERT)
(FEMALE ALICE)
(PARENTS ALICE VICTORIA ALBERT)
(PARENTS EDWARD VICTORIA ALBERT))

(FEMALE ALICE)

(PARENTS ALICE VICTORIA ALBERT)
(PARENTS EOWARD VICTORIA ALBERT)

Notice how the invocation-generated LOCAL and the explicit LOCAL body
merge when the invocation match ends successfully, how the two
request-generated GLOBALs migrate upward and join successfully because
of their consistent variable bindings, and how the GLOBAL bindings of
MOTH and FATH are trapped in the LOCAL. Again, FIT overanswers the
question: instead of ‘yes' an imposition of the three instantiated
subgoals is returned; their conjunction explains why the answer is
"true’.

In PROLOG in the previous data base the question
?7- sister_of(alice,X).

is treated similarly, but prints 'X=edward' instead of 'ves'. However,

- 19 -

now the sister_of rule allows a possibly unwanted second answer,
"X=alice'.

The following trace gives an analysis of how the corresponding
question is answered in FIT:

(SISTER_OF ALICE |?X)
(LOCAL (LIST (SISTER_OF SISTER_OF) (?X ALICE) (?Y [?X))

(LOCAL (>MOTH: >FATH:)
(FEMALE <X)
(PARENTS <X |?MOTH |?FATH)
(PARENTS <Y |?MOTH [?FATH)))
(LOCAL (>X:ALICE >Y:|?X >MOTH: >FATH:)
(FEMALE <X)
(PARENTS <X |?MOTH |?FATH)
(PARENTS <Y |?MOTH |?FATH))
(LOCAL (>X:ALICE >Y:|?X >MOTH: >FATH:)
(FEMALE ALICE)
(PARENTS ALICE |?MOTH |?FATH)
(PARENTS |?X |?MOTH [?FATH))
(LOCAL (>X:ALICE >Y:|?X >MOTH: >FATH:)
(FEMALE ALICE)
(GLOBAL (|>MOTH:VICTORIA |>FATH:ALBERT)
(PARENTS ALICE VICTORIA ALBERT))
(BREADTH (GLOBAL (|>X:EDWARD |>MOTH:VICTORIA |>FATH:ALBERT)
(PARENTS EDWARD VICTORIA ALBERT))
(GLOBAL (|>X:ALICE |>MOTH:VICTORIA |>FATH:ALBERT)
(PARENTS ALICE VICTORIA ALBERT))))

(BREADTH (GLOBAL ((>X EDWARD)) (FEMALE ALICE)
R I T RT
(PARENTS EDWARD YICTORIA ALBERT))
LOBAL >X ALIC L
(PARENTS ALICE VICTORIA ALBERT)
(PARENTS ALICE VICTORIA ALBERT)))

Note that the accidental use of the name X for both the parameter
variable ?X in the rule head and the request variable |?X in the
question does not lead to a conflict. This is due to FIT's *“|"
[VERTICAL] prefix distinguishing request variables and sparing it from
having to perform PROLOG's above discussed read-time renaming of rule
variables.

The computation result is two GLOBAL expressions, used as elements
of a BREADTH expression. The second GLOBAL contains two identical
instantiations of the 'parents’ subgoals of the rule body, showing why
the rule regards ALICE as her own sister.

3 FUNCTIONAL AND RELATIONAL PROGRAMMING

While FIT is principally based on a functional programming style,
PROLOG 1s based on a relational one. Therefore a comparison between the
two languages entails a comparison of the two programming styles. It is
a natural state of affairs that researchers 1in functional and
relational programming have tried to explore their respective

programming disciplines to their wultimate limits. After a period of
enthusiastic statements to the effect that ‘relations are better than
functions', even the most articulate advocate of relational programming
now concedes, somewhat cryptically though, that functions can be “"more
natural” than relations: "Although functional notation 1s more
user-friendly than relational notation, computation by means of rewrite
rules 1is less versatile than backward reasoning.” (Kowalski 1983).
Actually, there is not unly a sense 1in which relations are 'more
general’ than functions [cf. section 3.1] but also a sense in which
funtions are 'more general’ than relations [cf. section 3.2]. However,
1t now seems clear that both functional and relational programs have
characteristic advantages and disadvantages for specific applications.
Therefore it seems worthwhile to work toward a natural combination of
both methodologies. There are several PROLOG-oriented approaches of
function/relation combination, even 1f we omit indirect function uses
in PROLOG that are achieved simply through a LISP interface 1in the
traditional PLANNER-1ike manner. The diversity of proposals seems to
indicate that there is no natural PROLOG solution to function/relation
integration:

1. (Eggert & Schorre 1982) require preprocessing which gives rise
to the well-known problems of superimposed levels [e.g. error
messages from the lower level obstruct the higher level's
abstraction effect].

2. (Kornfeld 1983) needs an additional equality theorem for the
use of each relation as a function.

3. (Sato & Sakurai 1983) use syntax and semantics that are very
hard to understand from their English description.

The FPL language (Bellia et al. 1982) extends a functional language
[TEL] by “"conditional equations and multi-output functions (described
by a relational syntax)" but wuses g9ply relations equivalent to
deterministic functions [cf. their f example belowl].

The natural deduction system of (Hansson et al. 1982) defines functions
by "equalities or conditional equalities” which seem to interact nicely
with the relational constructs ([cf. their quick-sort example below].

In FIT we can freely define some algorithms as functions and other
ones as relations and then dynamically use the functions as relations
and the relations as functions, as desired.

In the first subsection we will show in which sense functions and
relations are naturally equivalent and exploit this for their
interchangeable FIT use [(in section 7 we will exemplify how FIT's
adapters can be wused for relational programmingl. In the second
subsection we will treat characteristic functions as another FIT method
of representing relations and develop the idea of using function calls
with request variables. In the third subsection we will deal with
higher-order functions and relations, not available in PROLOG.

3.1 Interchanging Functions and Relations

3.1.1 Mathematical/logical Foundations -

It is well-known that for each N-ary function f [N=0,1,2,...]
f: A1 x A2 x ... X AN -> V
there is an N+1-place relation f-P [we wuse the suffix "-P" [often
abbreviated to "P", as in LISP predicates] to mark relation [or

predicate] versions.of functions]

f-P C A1 x A2 x ... x AN x V
such that

flat,a2,...,aN) = v

iff

f-P(a1,a2,...,aN,v) holds.

Therefore, given the function f, the relation f-P can be defined
thus:

f-P C A1 x A2 x ... x AN x V
f-P(a1,a2,...,aN,v) := fl(a1,a2,...,aN)=v

Since such a relation in PROLOG can be used similarly as a function
by wusing at, ..., aN as fixed arguments and v as an open argument
[which, however, is not really returned as a valuel, PROLOG relations
are often said to be 'more general’' than functions.

Conversely, given the relation f-P, the function f and other ones
can be defined wusing Hilbert's epsilon operator (Hilbert & Bernays
1939/70). This 1s a 'non-deterministic’ version of the Jjota operator,
i.e. epsilon{x) P{...,x,...), denotes one of the objects x for which
P(...,%x,...) holds. If the difference between denoting a value and
returning a value 1s neglected, the epsilon operator can be used to
define non-deterministic functions. A non-deterministic function
establishes a not necessarily unique correspondence between domain and
range elements and thus <can still be regarded as a relation
mathematically; it becomes function-like through the distinction of
domain elements as input arguments and range elements as output values
such that for given arguments some value is returned.

For the definition of the deterministic function f from the relation
f-P the epsilon operator happens to act deterministically only:

f: Al x A2 x ... x AN -> V
flatl,...,aN) := epsilon(v) f-P(atl,...,aN,v)
However, the non-deterministic capability of the epsilon operator is

necessary for the definition of N further [in general
non-deterministic] functions fI [1<IKN] from the f-P relation:

fI: A1 x ... x AI-1 x AI+1 x ... x AN x V -> powerset(AI)
fI(at,...,al-t1,al+1,...,aN,v) :=
epsilon(al) f-P(at,...,al-1,al,al+1,...,aN,v)

In the above definitions, the powerset range is used to explain a
non-deterministic function as a mapping into a set of subsets [in pure
FIT, of BREADTH expressions], rather than into a set of single
elements; to accomodate for the special case of a non-deterministic
function that returns exactly one value for some arguments, we identify
singleton sets with their single elements [in pure FIT, (BREADTH e) =
e]; the empty set represents failure [in pure FIT, (BREADTH) = jul. As
in epsilon expressions, in impure FIT one element of such a subset 1is
selected on return from a call fI(at,...,al-1,al+1,...,aN,v); unlike 1in
epsilon expressions, in impure FIT there 1is the possibility of
successive attempts at return from that function call, which enumerate
the remaining subset elements.

In general, if we put M=N+1 [i.e. M=1,2,3...], an M-place relation
can be wused to define M (M-1)-ary functions. Some or all of these
functions may be non-deterministic.

3.1.2 FIT Definitions -

In FIT the definition of a relation from a function 1is made by a
trivial EQUAL call that implements “=".

The definition of functions from a relation 1s made by LOCAL
expressions that implement an epsilon operator which really returns
values rather than just denoting them [that is, other than QUTE (Sato &
Sakurai 1983), FIT doesn't require epsilon expressions as a language
construct but represents them by the much more versatile LOCAL
expressions]. Such LOCALs contain a relation call with one open
variable v [marked by a |?-prefix] and M-1 fixed places before the
colon and contain the variable v [marked by a <-prefix] after the
colon. Thus

(LOCAL (r pt ... pI-1 |?2v pI+1 ... pM) : <v)
implements
epsilon(v) r(pt,...,pI-1,v,pl+1,...,pM} for 1<IKM

In PROLOG neither definition is possible because of its lack of
value-returning functions.

Now let us consider an example. For the binary function NTH,
returning the Nth element X of a list L, there is the ternary relation
NTH-P or NTHP, holding for triples (N,L,X) iff X occurs as the Nth
L-element. In FIT, if the function NTH is defined by something like

(>(NTH 1 (?X #ID)) <X); NTH of N=1 and L=lelem ...) is elem
r(NTH SUB1 CDR); NTH of other N and L is NTH of SUB1 of N and CDR of L

then the relation NTHP can be defined by

- 23 -

(>(NTHP ?N 7L ?X) (EQUAL (NTH <N <L) <X))
Conversely, if the relation NTHP is defined by something like

(NTHP 1 (7?X #ID) 7?X): NTHP of N=1, L=(elem ...), and X=elem is true
r(NTHP SUB1 CDR ID); NTHP of other N, L, and X is (NTHP SUB1:N CDR:L X)

then the function NTH can be defined by
(>(NTH ?N 7L) (LOCAL (NTHP <N <L |?X) : <X))

The same relation NTHP can also be used to define two more binary
functions [the following NTHP derivates, other than NTH, don't run in
FIT-1, because general function-variable wunification fitting 1is not
implemented in this first version of FIT; cf. subsection 5.3]:

POSITION returns the numeric position N of a given element X in a 1list
L.

(>(POSITION ?X ?L) (LOCAL (NTHP 7N <L <X) : <N))
NXLISTS returns the lists L which have the element X in position N.
(>(NXLISTS ?N ?X) (LOCAL (NTHP <N |?L <X) : <L))

Of these NTHP derivates, the function NTH is deterministic while the
functions POSITION and NXLISTS are non-deterministic. POSITION
(returning the position of an arbitrary occurrence of a given element
in a given 1list] is finitely non-deterministic, while NXLISTS
[returning an arbitrary list with a given element in a given position]
is infinitely non-deterministic.

3.1.3 Several Request Variables -

The above representation of epsilon expressions by LOCAL expressions
only makes use of a very special kind of LOCAL, whose left-imposition
part is a relation call containing one request variable |?v and whose
body 1s a single PULL variable <v.

A more general kind of LOCAL, whose left-imposition part 1is a

relation call containing several [S] request variables |?v1, ..., |?vS
and whose body consists of some permutation of corresponding PULL
variables <v1, ..., «<vS, can be used to define multi(S]-valued

functions by abstracting S arguments from an M-place relation [S¢<M]. It
has the form

(LOCAL (r et ... eM) : <v1 ... <vS)

where el is either a request variable |?v3jI [1<I<M, 1<jILS] or a fixed
place pl and for each <vK there is exactly one el = |?vK [1<K<S]. This
LOCAL expression form corresponds to a generalized epsilon expression
form with S epsilon variables

epsilon(v1,...,vS) r(el,...,eM)

For example, the NTHP relation can also be used to define a 2-valued

- 24 -

function POSELEM which non-deterministically returns some position N
together with the element X in it of a given list L.

(>(POSELEM 7L) (LOCAL (NTHP |?N <L |?X) : <N <X))

LOCALs whose bodies consist of a "@" [INSTANTIATE] expression over
the wvariables v1, ..., VvS <can be wused to obtain the analogue to
"answer” templates in some logic programming languages, e.g. in LOGLISP
(Robinson & Sibert 1881} and micro-PROLOG (Clark et al. 1982)
[remember, however, that in FIT such ‘answers' are true function
values, nestable inside arbitrary other function applications in the
ordinary functional manner, whereas in PROLOG dialects these normally
are just top-level print outs]. For example, POSELEMLST is a variant of
POSELEM which returns one list of the form
(THE POSITION IS N AND THE ELEMENT IS X) instead of two values N and X.

(>(POSELEMLST ?L)
(LOCAL (NTHP |?N <L |?X)

A(THE POSITION IS <N AND THE ELEMENT IS <X)))

Almost-general LOCALs whose bodies consist of arbitrary expressions
over the variables v1, ..., vS can be used for defining functions that
perform arbitrary post-processing on the variables abstracted from a
relation. For example FIXEDELEM is another variation of POSELEM which
returns T iff the list L contains a fixed-point-like 'fixed element’,
i.e. a positive integer element that is equal to the numeric position
in which it occurs in L [the "u" operator transforms jF to juU, which is
necessary for discarding those non-deterministic possibilities for

which EQ yields jF].
(>(FIXEDELEM ?L) (LOCAL (NTHP |?N <L |?X) : ul{EQ <N <X)))

For example, (FIXEDELEM (2 1 3 5 1)) non-deterministically yields the
LOCAL position-element bindings {N=1, X=2}, {N=2, X=1}, {N=3, X=3},
{N=4, X=5}, {N=5, X=1}, one of which [characterizing 3 as a fixed
element] makes the EQ call return T.

We regard the quick-sort definition in (Hansson et al. 1982) as another
example for this generalization of epsilon expressions:

quick-sort(NIL)=NIL
quick-sort(x.y)=concl(quick-sort(y1),x.quick-sort(y2)) <--
partition(x,y,y1,y2)

In FIT this becomes

(>(QUICK~SORT NIL) NIL)
(>(QUICK-SORT (?X ?YoLIST))
{LOCAL (PARTITION <X <Y |?2Y1 |?Y2)

(APPEND (QUICK-SORT <Y1) (CONS <X (QUICK-SORT <Y2)))))

Since LOCAL expressions, in addition to their generalized epsilon
expression use, can play the role of "LET expressions” (Landin 1965),
generalized for localizing names of request variables whose values are
to be reused several times, the f "equation” in (Bellia et al. 1982),

= 95 =

fix)=y <-- r{in:x;out:wi,z),h1{z)=w2,h2(z)=w3,g(wl, w2 ,w3)=y

can be formulated in FIT as [input variables in FIT are <-prefixed,
gutput variables are |?-prefixed]

(>(F ?X) (LOCAL (R <X |?W1 |?2) : (6 <W1 (H1 <Z) (H2 <Z))))
and their NPL-style version

fix)=g(wl, hi1(z),h2(2z)) where r'(x)=<wi, z>

can be expressed in FIT as

(>(F ?2X) (LOCAL (?W1 ?2Z : (R' <X)) : (G <W1 (H1 <Z) (H2 <Z))))

Note that no additional tuple notion [corresponding to <...>] is needed
in FIT because R' returns an imposition which can be distributed among
W1 and 2 by a ":"-fitting [cf. section 5.1]. Thus the rationale for
using a relational syntax given in (Bellia et al. 1982) would not apply
to FIT.

Completely general LOCALs have an additional colon, separating the
previously used ‘'then-part’ from a new 'else-part’'. This permits taking
arbitrary action for relation calls that yield no bindings but a JjF.
For example, the above POSELEMLST definition can be modified to a final
variant POSELSE, which returns 2-list-impositions of the form (N
POSITION) (X ELEMENT), containing positions N and elements X of
non-empty lists, and the 2-list-imposition (NO POSITION) (NO ELEMENT)
for the empty list.

(>(POSELSE ?L)
(LOCAL (NTHP |?N <L [?X)

(LIST <N POSITION)
(LIST <X ELEMENT)

"(NO POSITION)
"(NO ELEMENT)))

Then the call, say, (POSELSE "(A B C)) non-deterministically returns
(1 POSITION) (A ELEMENT), (2 POSITION) (B ELEMENT), or (3 POSITION)
(C ELEMENT), whereas, assuming (>(NTHP ?N NIL ?X) jF) is asserted as
well, the call (POSELSE NIL) returns (NO POSITION) (NO ELEMENT).

3.1.4 The ESCVAL Operator -

As a notational convenience we could introduce another prefix
operator "$" [ESCVAL], meaning "escape with value", which distinguishes
a request variable such that the value it receives replaces the normal
value of the entire request expression in which it occurs directly
[this should not be confused with the above mentioned “output”
variables as used in (Bellia et al. 1982) which are to be bound through
relation calls]. More precisely, an ESCVAL expression of the form

(r pt ... pI-1 $|?2v pI+1 ... pM)

could be defined by our previous LOCAL expression

(LOCAL (r p1 ... pI-1 |?2v pI+1 ... pM) : <v)

[f, furthermore, ESCVAL or LOCAL expressions embedded in requests are
evaluated 'by wvalue', 1like FIT's but unlike PROLOG's embedded terms,
this would allow the nesting of relation-like expressions, similar to
the nesting of function «calls. For example, the LISP/FIT function
nesting

(PLUS (SQUARE 5) (SQUARE 3))

with ESCVAL would become

(PLUSP (SQUAREP 5 $]?S1) (SQUAREP 3 $|?S2) §$|?P)

which is more concise than the equivalent LOCAL form

(LOCAL (PLUSP (LOCAL (SQUAREP 5 [?S1) : <St1)
(LOCAL (SQUAREP 3 [|?S2) : <S2)
|7p)

<P)

The PROLOG conjunction corresponding to the function nesting, namely
?- squarep(5,S1), squarep(3,S2), plusp(S1,S2,P).
with ESCVAL would become
?7- plusp(squarep(5,$S1),squarep(3,$52),$P).

ESCVAL expressions can be regarded as generalizing both functions
and relations because they return values, like functions, and are not
based on a distinction of input and output arguments, like relations. A
larger example of ESCVAL uses will be treated in section 8.2.

A more general ESCVAL operator might prefix an arbitrary expression
such that its value replaces that of the directly superordinate
expression; this would allow escaping values of request variables
occurring indirectly in request expressions by prefixing all
intermediate expressions with "$". More precisely, a general ESCVAL
expression of the form

(r p1t
pl-1
$Sts a1 ... g)-1 $(... $|?v ...) qI+1 ... gN)
pl+1
pM)

could be defined by the LOCAL expression

- 27 -

(LOCAL (r p1
pl-1
(s g1 ... g3-1 (... |]?v ...) gd+1 ... gN)
pl+1
pM)

<v)

3.2 Function Calls with Request Variables
3.2.1 Interpreting Relations as Characteristic Functions -

An M-place relation also defines an additional M-ary function,
namely its characteristic function. Since, 1in FIT, relation calls
return values, this functional view of relations is implicit in that
language; for example, the FIT relation call [predicate function calll
(NTHP 3 ‘(A B C D) C)
returns the ‘'true' wvalue (NTHP 1 [(C D) Cc). In general, a
‘false’'-failing relation <call in FIT yields jF, an ‘unknown'-failing
one yields ju, and a successful one returns T or any other value
unequal to jF or jU. In PROLOG, relation calls don't return values; for
example, the PROLOG relation call
?7- nthp(3,(a,b,c,dl,c).
prints ‘yes' but doesn't return anything.

Suppose some FIT programmer doesn't want compound truth-values 1like
(NTHP 1 (C D) C) as used for question-overanswering, which here can be
interpreted as "Yes [C is the 3rd element of (A B C D)] because C 1is
the 1st element of (C D)". This programmer may obtain the atomic
truth-value T by rewriting facts which are adapters of the form
(r p1 ... pM)
as transformers of the form
(>(r pt ... pM) T)

For example, the NTHP fact
(NTHP 1 (?X #ID) ?X)

can be rewritten as
(>(NTHP 1 (?X #ID) ?X) T)
Now the call

(NTHP 3 "(A B C D) C)

would return the atom T. Similarly, the wusual numeric characteristic
functions could be modelled directly be defining facts as transformers
that return 1 instead of T [and 0 instead of jF].

The important observation 1is that all these relation-derived
functions in FIT can still be used with request variables, so that,
besides returning values, they also yield variable binding effects. For
example, the call

(NTHP 3 "(A B C D) |?X)

would return some ‘true’' value, according to the already discussed
alternatives used to define the NTHP fact, and it would also bind X to
C.

3.2.2 Extending Relations to General Functions -

While the values returned by characteristic functions are primarily
truth-values, nothing changes if we use arbitrary values. That is, in
FIT not only predicate-like functions but also arbitrary general
functions can be used with request variables.

To demonstrate this, we can start with another predicate function
KNOWS, defined as a transformer fact for JOHN and MARY:

(> (KNOWS JOHN MARY) 1)

If we extend the two-valued characteristic function to a many-valued
probabilistic, possibilistic, or fuzzy function, we can modifiy the
previous fact to something like

(>(KNOWS JOHN MARY) .824%)

Now a request like (KNOWS JOHN |?X) returns .824 and binds X to MARY.
Instead of numeric certainty degrees we can also use symbolic ones as
in

(> (KNOWS JOHN MARY) QUITE-WELL)

Now a request like (KNOWS JOHN |?X) returns QUITE-WELL and binds X to
MARY. Symbolic values can not only represent degraded truth but also
many other things, such as the person believing the fact as in

(> (KNOWS JOHN MARY) (OPINIONOF PAUL))

Now a request like (KNOWS JOHN |?X) returns (OPINIONOF PAUL) and binds
X to MARY.

If the original fact contains variables [understood to be quantified
universallyl, then the value may be an expression in these variables.
For example, the fact

(NEEDS ?EVERYBODY A-PRODUCT)

cannot only be extended to a function with a constant value, like

- 29 -

(>(NEEDS ?EVERYBODY A-PRODUCT) IN THE EYES OF A-COMPANY)
but also to a function with a variable value, like
(>{NEEDS ?EVERYBODY A-PRODUCT) ESPECIALLY <EVERYBODY WILL NEED IT)

With the latter definition a request 1like (NEEDS JOHN |?X) returns
ESPECIALLY JOHN WILL NEED IT and binds X to A-PRODUCT.

In general for each relation definition
(r pt pM)

and arbitrary value v, which may depend on p1, ..., pM, there 1is a
function definition

(r pt pM) := v
or, in FIT,
(>(r pt ... pM) v)

That is, each relation can be extended to a function. Although 1in
PROLOG relation definitions of the above form correspond to facts only,
rule-defined relations must also be 'grounded’' in facts, to which,
then, the function-generalization 1is applicable. The values of the
ground facts can be calculated and passed back across the rule arrows.
For this, a PROLOG rule definition [in FIT syntax]

(>(r pt ... pM) (rt ...) ... (rZ2 ...))
can be replaced by
(>(r pt ... pM) (combine (r1 ...) ... (rZ ...)))

where combine is some function combining the values returned by the
conjuncts of the rule body. For numeric values combine=TIMES or
combine=MIN may be applied, as usual; for symbolic values there are
many combination possibilities, the most trivial being combine=LIST
[combine must fulfill the requirement of strictness, so that jF and 3jU
signals can escape from its calls].

Since such a function in FIT can be used as a relation (i.e. with
arbitrary fixed and open arguments] by simply ignoring the value
returned as long as it is 'true’, FIT functions can be said to be 'more
general' than relations.

0f course, the M-ary function (>(r p1 ... pM) v), derived from the
M-ary relation (r pt1 ... pM), can again be represented as an M+1-ary
relation (r pt ... pM v); for example, (>(KNOWS JOHN MARY) (OPINIONOF

PAUL)) thus becomes (KNOWS JOHN MARY (OPINIONOF PAUL)). And of course,
the M+1-ary relation could again be generalized to an M+1-ary function
(>(r pt ... pM v) v'), e.g., (KNOWS JOHN MARY (OPINIONOF PAUL}) to
(> (KNOWS JOHN MARY (OPINIONOF PAUL)) QUITE-WELL), etc. ad infinitum.
However, this misses the point that relation calls don't exploit the
linguistic dimension of returning useful values although nothing would
prevent them from doing so.

- 30 -

Finally note that relations generalized to functions by means of
extending definitions, can still be used as functions by means of the
ESCVAL operator [subsection 3.1.4], because this use is defined by the

LOCAL semantics of ESCVAL: After the function extension (>(r p1 ... pM)
v) the ESCVAL expression (r pt ... pI-1 $|?w pI+1 ... pM) expands to
(LOCAL (r pt ... pI-1 |?w pI+1 ... pM) : <w), hence throws away the
value v returned by (r pt ... pI-1 |?w pI+1 ... pM) and instead returns
the value of w. For example, after (>(KNOWS JOHN MARY) QUITE-WELL) the
request (KNOWS $]?W MARY) via (LOCAL (KNOWS |?W MARY) 4 <W), (LOCAL
(GLOBAL ((>W JOHN)) QUITE-WELL) : <W), and (LOCAL ((>W JOHN)) <W)

returns JOHN. In other words, the programmer need not be aware of what
kind of ‘true' value an expression would return if used without an
ESCVAL operator; 1if wused with ESCVAL, it always returns the
ESCVAL-marked subexpression.

3.2.3 \Using Functions like Relations -

We now proceed to three examples of functions not derived from
relations and still usable with request variables, like relations.

A unary function FATHEROF can be defined by a set of 1individual
settings such as

(>(FATHEROF ATHENA) ZEUS)
(>(FATHEROF APOLLO) ZEUS)
(>(FATHEROF ZEUS) CRONUS)

This FATHEROF function can not only be called with a fixed argument as
in (FATHEROF ATHENA) returning ZEUS, but also with a request variable
argument as in (FATHEROF |?X) non-deterministically returning ZEUS and
binding X to ATHENA, returning 2ZEUS and binding X to APOLLO, or
returning CRONUS and binding X to ZEUS. In general, function calls all
of whose arguments are request variables enumerate the function's range
and bind the variables to the corresponding domain elements. In the
FATHEROF example the call returns all persons known to be fathers and
binds the single request variable argument to their children.

A binary function PARENTS can be defined similarly as

(>(PARENTS ABRAHAM HAGAR) ISHMAEL)
(>(PARENTS ABRAHAM SARAH) ISAAC)

[The persons of this definition were quoted previously to illustrate
various things; in the PROLOG literature the males occur in (Clocksin &
Mellish 1981) and the females were added in (Fuhlrott 1982).]

This PARENTS function can be called as follows. The child of ABRAHAM
and SARAH is obtained when both arguments are correspondingly fixed as
in (PARENTS ABRAHAM SARAH), returning ISAAC. All children of ABRAHAM
and any woman are obtained when the first argument is fixed to ABRAHAM
and the second is left open as in (PARENTS ABRAHAM |7x),
non-deterministically returning ISAAC and binding X to SARAH or
returning ISHMAEL and binding X to HAGAR. All children of HAGAR and any
man are obtained when the second argument is fixed to HAGAR and the
first is left open as in (PARENTS [?X HAGAR), returning ISHMAEL and
binding X to ABRAHAM. 1In general, function calls some of whose

- 31 -

arguments are request variables and the other ones are fixed enumerate
the function's subrange under the fixed arguments and bind the
variables to the remaining domain elements. All children of any man and
woman are obtained when both arguments are left open as in (PARENTS |?X
|?Y), returning ISAAC and binding X to ABRAHAM and Y to SARAH or
returning ISHMAEL and binding X to ABRAHAM and Y to HAGAR.

In general, of course, the PARENTS function is non-deterministic even

for fixed fathers and mothers. This can be expressed using the "v”
prefix [cf. section 6.2] as in

(v(PARENTS ISAAC REBECCA) ESAU)
(Vv(PARENTS ISAAC REBECCA) JACOB)

Now even with both arguments fixed as in (PARENTS 1ISAAC REBECCA) we
non-deterministically obtain ESAU or JACOB. With the first argument
fixed to ISAAC and the second left open as in (PARENTS ISAAC |[?X) we
also obtain ESAU or JACOB, in both cases X becoming bound to REBECCA.
Requests like (PARENTS |?X REBECCA) and (PARENTS |?X |?Y) behave
similarly.

A recursive function HONOI for initializing homogeneously colored
towers of Hapgoi of given hight by constructing them as impositions of
the disks available in the data base can be defined as

(>(HONOI ?DIAMETER ?COLOR)

(DISK <DIAMETER <COLOR)

(HONOI (SUB1 <DIAMETER) <COLOR))
(>(HONOI 0 ?COLOR))

(DISK 1 RED)
(DISK RED)

(DISK RED)
(DISK BLUE)

(DISK BLUE)
(DISK BLUE)

N W= W

This function can be called with fixed color argument as in (HONOI 3
RED), returning the imposition

(DISK 3 RED) (DISK 2 RED) (DISK 1 RED)

or with an open color argument as in (HONOI 3 |?X), returning the
impositions

(DISK 3 BLUE) (DISK 2 BLUE) (DISK 1 BLUE)
or
(DISK 3 RED) (DISK 2 RED) (DISK 1 RED)

The second HONOI call chooses a single color for all disks of a tower,
here blue or red. Nonhomogeneously colored towers cannot be constructed
because all occurrences of the color request variable |[?X must be bound
consistently. Although in both cases we called the HONOI function with
fixed diameter arguments, it can also be called with an open diameter
argument, but then in FIT-1 only the diameter 0 is chosen and the empty
tower is constructed.

3.3 Higher-order Functions and Relations

3.3.1 The Direct Approach -

Let us begin with expressions consisting of several functions. A
nested function call, in the simplest case having the form

g(h(a))

for PROLOG must first be rewritten as a conjunction of two function
calls communicating via a temporary variable x,

x=h(a), y=g(x)
which can then be put into a relational form
h-P{a,x), g-Pix,y)

This leads to a flat system of relation calls with many temporary
variables whose correspondence is often difficult to establish. On the
other hand, FIT's LISP-like nesting form

(g (h a))

leads to deeply nested function calls with many closing parentheses. To
avoid unnecessary parentheses in FIT a right-associative ‘apply’' infix
operator " can be used for wunary functions, simplyfing the above
nesting to

g:h:a

PROLOG's need for temporary “"object variables” makes it impossible
to use higher-order functions or “"function-level operators” in the
sense of (Backus 1982) in that language. An example of what cannot be
expressed in PROLOG is a function composition like

goh

which in Backus' FP, in FIT, and in other functional languages can be
passed as an argument and returned as a value, independently of the
arguments to which it will be eventually applied. Only on application
to an argument a can the composition goh be expanded to the nesting
g(h(a)), and only then could the above rewriting to the corresponding
relational PROLOG form begin.

More generally, PROLOG's restriction to first-order predicate
calculus prevents operations on relations, i.e. it forces everything
that 1is said to be said about individuals [Backus' objects].
Higher-order functions or predicates [relations] are not available.
Thus a very useful dimension of abstraction is not exploited in PROLOG.

For example, in FIT we can form the composition of the successor
function g=SUCC and the square function h=SQUARE, SUCCoSQUARE, where
0" is an infix shorthand for the higher-order COMPOSE function, which
becomes explicit in the unshortened notation (COMPOSE SUCC SQUARE).
Higher-order functions can be defined in FIT like first-order
functions. For example, although COMPOSE is built into FIT-1, it could

be defined in FIT-1 itself by

3.3 Higher-order Functions and Relations
3.3.1 The Direct Approach -

Let us begin with expressions consisting of several functions. A
nested function call, in the simplest case having the form

glhla))

for PROLOG must first be rewritten as a conjunction of two function
calls communicating via a temporary variable x,

x=h(a), y=g(x)
which can then be put into a relational form
h-Pla,x), g-Pix,y)

This leads to a flat system of relation calls with many temporary
variables whose correspondence is often difficult to establish. On the
other hand, FIT's LISP-like nesting form

(g (h a))

leads to deeply nested function calls with many closing parentheses. To
avoid unnecessary parentheses in FIT a right-associative ‘apply’ infix
operator ":" can be used for wunary functions, simplyfing the above
nesting to

g:h:a

PROLOG's need for temporary "object variables” makes it impossible
to wuse higher-order functions or “function-level operators” in the
sense of (Backus 1982) in that language. An example of what cannot be
expressed in PROLOG is a function composition like

goh

which in Backus' FP, in FIT, and in other functional languages can be
passed as an argument and returned as a value, independently of the
arguments to which it will be eventually applied. Only on application
to an argument a can the composition goh be expanded to the nesting
g(h(a)), and only then could the above rewriting to the corresponding
relational PROLOG form begin.

More generally, PROLOG's restriction to first-order predicate
calculus prevents operations on relations, i.e. it forces everything
that is said to be said about individuals [Backus’ objects].
Higher-order functions or predicates (relations] are not available.
Thus a very useful dimension of abstraction is not exploited in PROLOG.

For example, in FIT we can form the composition of the successor
function g=SUCC and the square function h=SQUARE, SUCCoSQUARE, where
"0" is an infix shorthand for the higher-order COMPOSE function, which
becomes explicit in the unshortened notation (COMPOSE SUCC SQUARE).
Higher-order functions can be defined in FIT like first-order
functions. For example, although COMPOSE is built into FIT-1, it could

be defined in FIT-1 itself by

3.3 Higher-order Functions and Relations
3.3.1 The Direct Approach -

Let us begin with expressions consisting of several functions. A
nested function call, in the simplest case having the form

glh({a))

for PROLOG must first be rewritten as a conjunction of two function
calls communicating via a temporary variable x,

x=h(a), y=g(x)
which can then be put into a relational form
h-Pla,x), g-Plx,y)

This leads to a flat system of relation calls with many temporary
variables whose correspondence is often difficult to establish. On the
other hand, FIT's LISP-like nesting form

(g (h a))

leads to deeply nested function calls with many closing parentheses. To
avoid unnecessary parentheses in FIT a right-associative ‘apply’ infix
operator “:" can be used for wunary functions, simplyfing the above
nesting to

g:h:a

PROLOG s need for temporary "object variables” makes it impossible
to use higher-order functions or “function-level operators” in the
sense of (Backus 1982) in that language. An example of what cannot be
expressed in PROLOG is a function composition like

goh

which in Backus’' FP, in FIT, and in other functional languages can be
passed as an argument and returned as a value, independently of the
arguments to which it will be eventually applied. Only on application
to an argument a can the composition goh be expanded to the nesting
glh(a)), and only then could the above rewriting to the corresponding
relational PROLOG form begin.

More generally, PROLOG's restriction to first-order predicate
calculus prevents operations on relations, i.e. it forces everything
that 1is said to be said about individuals [Backus' objects].
Higher-order functions or predicates (relations] are not available.
Thus a very useful dimension of abstraction is not exploited in PROLOG.

For example, in FIT we can form the composition of the successor
function g=SUCC and the square function h=SQUARE, SUCCoSQUARE, where
“0" is an infix shorthand for the higher-order COMPOSE function, which
becomes explicit in the unshortened notation (COMPOSE SUCC SQUARE).
Higher-order functions can be defined in FIT like first-order
functions. For example, although COMPOSE is built into FIT-1, it could

be defined in FIT-1 itself by

- 33 -

(>((COMPOSE ?G ?H) >X) (<G (<H <X)))

A composition can then be used exactly like an ordinary function, say
with the argument 3 as in

((COMPOSE SUCC SQUARE) 3)

which returns 10. It can also be wused as the paramenter of the
higher-order “#" [REPEAT] function, which applies its parameter to its
arbitrary number of arguments, obtaining (REPEAT (COMPOSE SUCC SQUARE))
or #(COMPOSE SUCC SQUARE). The object #(COMPOSE SUCC SQUARE) can again
be used as an ordinary function, for instance with the four arguments
0, 1, 2, and 3 as in

(#(COMPOSE SUCC SQUARE) 0 1 2 3)

returning 1 2 5 10.

3.3.2 Warren's Simulation Method -

As discussed above, such compositions cannot be expressed in PROLOG
as 1t stands. Nor 1is it possible to define a higher-order compose
predicate, analogous to FIT's higher-order COMPOSE function definition,
by something like

compose(G,H)(X,Z) :- H(X,Y), G(Y,2Z).

which could then be invoked by

?- compose(succp,squarep)(3,Ans).

The only way out is to implement compositions as part of a new language
on top of PROLOG. In other words, goh must be used as a data object,
namely as a term composel(g,h). For instance, (Warren 1982) introduces a
predicate apply, which really is an interpreter of a language of 'term
programs’' like compose(g,h). One defining clause of the interpreter
apply may specify what to do with such compose structures:
apply(compose(G,H),X,Z2) :- apply(H,X,Y), apply(G,Y,Z).

But now we must also specify apply clauses for every function g and h
that 1is to be used in the composition-extended PROLOG; e.g. for succp

and squarep we have to provide the apply definitions

apply(succp,X1,X2) :- succp(X1,X2).
apply(squarep,X1,X2) :- squarep(X1,X2).

along with the ordinary succp and squarep definitions

succp(X,Y) :- Y 1is X+1.
squarep(X,Y) :- Y is X*X.

After these preparations we can use apply for compose(succp,squarep)
and the argument 3 as in

?7- apply(compose(succp,squarep),3,Ans).

which binds Ans to 10. However we get an error, if we try the analogue
of repeating the compose term over several arguments, by mapping it
over a list of these arguments with the maplist relation for predicates
described in (Clocksin & Mellish 1981). We must again define a special
apply version for mapping, which we call 'mapplylist’:

mapplylist(_,[1,[1).

mapplylist(P,(X|L},[Y|M]) :-
apply(P,X,Y),
mapplylist(P,L,M).

Using this we can eventually simulate what we want:
?7- mapplylist(compose(succp,squarep),[0,1,2,3]1,Ans).
binds Ans to the 1list ([1,2,5,10].

We don’'t regard this simulation of higher-order functions in PROLOG
as a proper extension of that language because it doesn’'t permit the
direct use of the original 1language kernel (e.g. succp, squarep,
maplist]l from the newly defined constructs. Warren is really beginning
to define a new interpreter when he introduces apply definitions,
although he doesn’'t seem to notice this status of apply. He even argues
that the 'extension' can be regarded as "syntactic sugar” for standard
first-order logic; this wuse of the term “syntactic sugar” has
completely lost the original meaning of (Landin 1965), whose LET
extension does leave the underlying LAMBDA kernel language untouched.
In (Warren 1982) it 1is stated that for the higher-to-first-order
reduction a clause

"apply(foo,X1,...,Xn) :- foolX1,...,Xn).

is supplied for each predicate foo which needs to be treated as a data
object”, and we have done this for succp and squarep, but actually this
means that one needs an additional clause for all predicates one ever
wants to use as arguments of higher-order predicates. However, when you
define a predicate like succp or squarep you normally don't know
whether vyou or other programmers will need it at some later point in a
higher-order construct like compose, twice, or whatever. After some
errors caused by missing apply clauses you will certainly contemplate a
convention for generally supplying predicates with the additional apply
clause. However, since many of these clauses would never be used, the
resulting increase of code would be wunacceptable because it makes
programs less readable and more storage consumptive. It was therefore
proposed by (Nebel 1983) to define apply wusing PROLOG's “=.." and
“call® predicates, which abbreviates Warren's clauses for, say, n=2 to
the single general clause

apply(Foo,X1,X2) :- Q=..[Foo,X1,X2], calll(Q).

that could be further generalized by always using, like LISP's APPLY,
one argument list X instead of some fixed number n of arguments X1,

.+ Xn. Although this definition is very concise, it does not only
depend on the extra-logical "=.." and "call” features but must also be
positionned Jjudiciously, namely after all other, specific apply
clauses. This, in turn, entails that all these specific clauses must be
augmented by a cut operator to prevent calls like

apply(compose(succp,sqrtp),9,Ans) from falling into the last, catch-all

- 35 -

apply definition if their body fails [say, because sqrtp is undefined].
In our example this leads to

apply(compose(G,H),X,2) :- !, apply(H,X,Y), applyl(G,Y,2Z).
apply(twice(G),X,Z) :- !, applyl(G,X,Y), apply(G,Y,Z).
apply(Foo,X1,X2) :- Q=..[Foo,X1,X2], calll(Q).

One might therefore start to consider building apply clauses implicitly
into the PROLOG interpreter, thus taking the first step toward really
extending PROLOG for higher-order constructs. Warren's simulation
method may be theoretically nice, but it isn’'t practical.

Kowalski, unlike Warren, has recently acknowledged that higher-order
functions are a serious problem for PROLOG-like languages; however, his
attempt to use a logical metalanguage for simulating higher-order
functions 1s still quite "complicated” (Kowalski 1883), and looks even
less practical than Warren's simulation.

3.3.3 New Higher-order Functions from 0ld -

Noticing the relationship between the above compose and twice
definitions, we may, in addition, ask if the really nice features of
functional programming, like the definition of higher-order functions
[e.g. TWICE] by other higher-order functions [e.g. COMPOSE], as opposed
to their above “"object-level” (Backus 1982) definitions, can 1in
principle be expressed nearly as nicely in relational programming. For
example, the TWICE-by-COMPOSE definition in FIT can be formulated very
concisely with

(>(TWICE ?G) (COMPOSE <G <6G))
which may be called on the top-level, as in

(TWICE ADD1)
{(COMPOSE _ADDt! ADD1)

returning a higher-order function, or in a functional position, as in
((TWICE ADD1) 0)
((COMPOSE ADD1 ADD1) 0)

(ADD1 (ADD1 0))
2

applying the higher-order function and returning a data object.
Concerning PROLOG, even if a definition

apply(twice(G) ,X,2Z) :- applyl(compose(G,G),X,Z).
in ordinary PROLOG, can be shortened to
twice(G)(X,Z) :- compose(G,G)(X,2).

in an extended PROLOG, the redundant object variables X and Z cannat be
omitted, 1.e. the definition cannot be shortened to something like

twice(G) :- compose(G,G).
without introducing functions as a true counterpart to relations.

To see the relevance of the above discussion for day-to-day
relational programming, consider the PROLOG clauses

grandfatherofp(X,2) :- parentofp(X,Y), fatherofp(Y,62).
uncleofp(X,Z) :- parentofp(X,Y), brotherofpl(Y,2Z).

where "..." stands for analogous rules for grandmotherofp, auntofp etc.
Such relations could be redefined on a higher level of abstraction in a
most concise manner as

grandfatherofp :- compose(fatherofp,parentofp).
uncleofp :- compose(brotherofp,parentofp).

without requiring all these object variables X, Y, and 2 but instead
using the previously discussed higher-order compose predicate. While
this is only a suggestion for an extended PROLOG, the corresponding
functional definitions

(>GRANDFATHEROF (COMPOSE FATHEROF PARENTOF))
(>UNCLEOF (COMPOSE BROTHEROF PARENTOF))

are a reality in FIT-1.

4 PROLOG STRUCTURES AND FIT COMPOUNDS

As an alternative to LISP lists, PROLOG uses so-called 'structures’,
also called ‘compound terms'. A structure consists of a functor f of
arity N and arguments at, a2, ..., aN; the arguments may again be
structures. It is written 1in the usual mathematical/logical prefix
notation

flat,a2,...,aN)

FIT's generalization of LISP lists are ‘'compounds', but only their

list-like subset is considered explicitly here and later on. The above

PROLOG structure in FIT can be represented by a compound of length N+1

with a distinguished first element f~ and remaining elements atl”™, a2~,
.. aN". It is written in LISP's Cambridge Polish prefix notation

~ ~ ~

(f7 a1”™ a2” ... aN")

where f~ is a FIT atom corresponding to the PROLOG-functor f and a1”,
a2”, ..., aN” are recursively rewritten subexpressions corresponding to
at, a2, ..., aN, respectively, down to the ground-level of PROLOG
constants which are rewritten to FIT constants by integer =integer and
atom™=ATOM.

As an example let us consider the notation of LISP's dotted pairs as
PROLOG structures and a corresponding FIT representation. Such a
structure uses a functor f="." of arity N=2 and two arguments, say,
al=alfa and a2=beta, hence it may look like

.{alfa,beta)

The corresponding compound of length N+1=3 uses the distinguished atom
f7=D0T and arguments al =ALFA and a2 =BETA, i.e. it is

(DOT ALFA BETA)
Similarly a PROLOG structure nesting like
.(alfa,.(beta,.(gamma,nil)))
becomes the FIT compound nesting
(0DOT ALFA (DOT BETA (DOT GAMMA NIL)))

PROLOG structures have an important restriction as compared to LISP
lists and FIT compounds, namely their fixed arity. Besides the binary
"."-functor PROLOG could use a triple functor allowing structures like
triple(alfa,beta,gamma), a quadruple functor allowing structures like
quadruple(alfa,beta,gamma,delta) etc. but not a general tuple functor
allowing all these structures tuple(alfa,beta), tuple(alfa,beta,gamma),
tuple(alfa,beta,gamma,delta) etc. FIT, on the other hand, besides DOT
compounds not only allows TRIPLE compounds 1like (TRIPLE ALFA BETA
GAMMA), QUADRUPLE compounds like (QUADRUPLE ALFA BETA GAMMA DELTA) etc.
but also general TUPLE compounds like (TUPLE ALFA BETA), (TUPLE ALFA
BETA GAMMA), (TUPLE ALFA BETA GAMMA DELTA) etc.

A PROLOG functor f has either a single fixed arity N or it 1is
‘overloaded’ by a, usually small, finite number k of fixed arities N1,

.. Nk. Occurrences of an arity-overloaded functor f are sometimes
written along with their arities N1, ..., Nk as f/N1, ..., f/Nk, which
can also be regarded as k different functors, each with its own fixed
arity. Lists and compounds, on the other hand, can be used with a
distinguished first element followed by a varying, potentially infinite
number of arguments, with available computer memory being the only
restriction on the maximum argument number. For example, sets whose
cardinality 1s an arbitrary non-negative integer cannot be represented
as unnested PROLOG structures but can be represented as unnested FIT
compounds wusing the distinguished first element CLASS and varying
numbers of remaining elements, as shown in the following table. The
left column shows the usual mathematical set notation, the inner column
shows equivalent FIT compounds, and the right column shows a
corresponding PROLOG-like functor-argument notation, which however, is
not realizable in PROLOG because for each number k of different arities
for which the functor ‘class’' might be defined there is a number k+1
such that ‘class’' is not defined for arity Nk+1 [the table shows k=4,
N1=0, N2=2, N3=3, N&=6].

{1} (CLASS) class ()
{1,3} (CLASS 1 3) class(1,3)

I I
I I
{A,8,C} | (CLASS A 8 C) | class(a,b,c)
{A,B,C,1,2,3} | (CLASS A B C 12 3) | classla,b,c,1,2,3)
I I

Programmers used to LISP, where many functions, e.g. assoclative
ones like APPEND, have an arbitrary number of arguments, must feel that
this is an unnecessary restriction on expressiveness; and 1indeed, the

LISP-based LM-PROLOG (Kahn 1983) introduces variable-arity functors
into a LISP/PROLOG environment.

We now show how the FIT CLASS compounds, exemplified in the 1inner
column, may be defined for arbitrary k. In general, FIT compounds, in
contrast to PROLOG structures, can be interpreted as value-returning
function calls, where the distinguished first element [functor’'] plays
the role of a function applied to the arguments in the remalning
element positions. This permits FIT's so-called 'self-normalizing
collections’, generalizing those in QA4/QLISP (Rulifson et al. 1972),
which are compounds that return their own normalized form. For example,
CLASS in FIT 1s defined as a normalization function for sets, removing
duplicate arguments and sorting the remaining ones lexicographically.
Thus (CLASS 1 3) returns itself and (CLASS B A C B C) returns
(CLASS A B C). The CLASS definition can be expressed in FIT itself by
(the variable >X enables varying arities k]

(>(CLASS >X) (CONS CLASS (SORT ad(<X) LEXORDER NODUPS}}]

with SORT being LISP's sorting function or its FIT redefinition shown
in section 8.1 ["d" instantiates a 1list whose contents 1is the
imposition of CLASS elements]. For efficiency, however, we normally use
a CLASS version defined entirely in FIT-1's implementation language,
LISP.

In ordinary PROLOGs, variable-length structures can only be
simulated by nestings of fixed-length structures. In particular, PROLOG
borrows LISP's representation of N-element lists as nestings of N
2-element dotted pairs. Thus our previous right-recursive nesting of
dotted pairs

.{alfa,.(beta,.(gamma,nil)))

in PROLOG can be abbreviated to the so-called ‘list notation’
(alfa,beta,gammal

i1.e. it corresponds to the LISP list

(alfa beta gamma)

However, in PROLOG this is only a variable-length surface syntax for
basically fixed-length "."-structures. We feel that this is no solution
to the fixed-length restriction, for the following reasons:

1. PROLOG's list notation does not abstract from its wunderlying
dotted pair form, because for the pattern-matching selection

of list elements a "|"-operator is used which corresponds
directly to the "."-operator [This is similar to the CAR and

- 39 -

COR functions in LISP which, however, can be viewed as
selectors of an abstract data type; dotted pairs never need to
become visible to the LISP programmer and modern LISP
textbooks such as (Winston & Horn 1981) don't even use them
for association lists. In FIT no binary dotted-pair structure
at all becomes visible on pattern-matching selection of
compound elements, independent of their implementation; cf.

section 5.11].

For variable-length structures other than 1lists no surface
syntax 1s provided, although this would be very desirable for
sets, i.e. writing {a,b,c}, etc. [Since the available bracket.
types are not sufficient, FIT uses only ordinary parentheses,
as in (CLASS A B C), whose 'type' <can be seen from the
distinguished first element, here CLASS. Since in PROLOG
variable-length structures are represented as dotted pairs
using an ‘auxiliary' “."-functor, variable-length structures
cannot use a 'proper’' functor, analogous to a distinguished
element in FIT, say CLASS].

Mainly for these reasons we feel that (Stefik et al. 1983) are

correct

in depicting the connection of list operations to PROLOG as a

"patch approach” because they were added to the language after the
initial design.

Besides their disadvantages, PROLOG's structures have also two
advantages as compared with ordinary LISP lists, which they share,
however, with FIT's collection compounds.

1.

The functor of a structure indicates the 'type’ of that entire
structure, which may sometimes enhance readability and which
can help 1n matching. E.g. the matching of data with
incompatible types, say of apples a and b with pears a and b,
immediately fails in PROLOG's structure representation,

apples(a,b) = pears(a,b).

whereas that matching would yield an unwanted success in a
naive type-less LISP list representation

(SETQ APPLES '(A B))
(SETQ PEARS ‘(A B))
(MATCH APPLES PEARS) or (MATCH ‘(A B) '(A B))

but it again immediately fails in FIT's typed collection
compound representation

(" (APPLES A B) '(PEARS A B))

Access to the arguments of PROLOG structures can be
implemented efficiently [constant time) because their fixed
length allows array-like random access to every argument [cf.
the wvector of «cells called a “frame” in "structure sharing”
(Warren et al. 1977)], whereas LISP lists are less efficient
[linear timel] because their varying length seems to require
CORing through from left to right to the desired element (even
1f the "CDR-coding” technique of the LISP machine (Weinreb et

- 40 -

al. 1983) is used]. However, FIT collection compounds which
are only used with a fixed arity or with a small number of
fixed arities can also be implemented array-like instead of
with list pointers. For varying-length compounds many
instances of which have some fixed arity, a mixture of
list-like [varying-length <case] and array-like [fixed-length
case] implementation is possible. For example if there are
many three-element sets, their compound notations, e.g. (CLASS
A B C), (CLASS A B 2), (CLASS B 3 6), ..., (CLASS 2 4 7), can
be implemented as the array shown in the table on the left
side below. Other sets, such as (CLASS 1 3) and (CLASS A 8 C 1
2 3), can be implemented as the ordinary lists shown in the
pointer diagram on the right below.

11 2] 3]

| mebmmmpmts | emmssssss sssessses

| Al B8] C| I 1| --1-->] 3 INIL]|

R e e T P

| Al B 2]

SO S (S A D SR

| 81 3] 6| I Al --1-->1 8] --|-->] ¢ | --]-->]

R et e T ettt |
[-mmmmm e R |

R | mmmmmmm e e

21 4] 7| [-->] 1+] --]-->] 2 | --]-->| 3 INIL|

5 PATTERN MATCHING AND GENERALIZATIONS

FIT and PROLOG are both languages built around generalized concepts
of pattern matching. These are based on the asymmetric pattern-data
matching found in many AI languages, for which FIT provides a richer
set of primitives than PROLOG [cf. subsection 5.1]1. This basic matching
concept 1is generalized differently in the two languages. FIT
generalizes it to asymmetric adapter-data fitting, where the adapter,
an operator derived from a pattern by allowing it to contain functions,
both tests and locally transforms data [cf. subsection 5.2]. PROLOG
generalizes it to symmetric pattern-pattern wunification, where both
patterns are made equal through variable-value substitutions [cf.
subsection 5.3].

5.1 Basic Matching: Variables in Patterns

Although basic patterns may consist of variables and constants, we
restrict our attention to pattern variables here, pattern constants
being almost the same in PROLOG and FIT [except that wunprefixed atoms
are first applied as functions in FIT, so that a "1" prefix is used to
enforce an exclusive constant interpretation].

In PROLOG, pattern variables can match arbitrary list elements but
not arbitrary 1list segments. The only kind of list segment a PROLOG
variable can match is a tail segment [this must be specified in the
pattern by a “|" head/tail separator, i.e. it is not a property of the

variable but of the entire pattern]. An initial or an intermediate list
segment cannot be matched in PROLOG; hence multiple segments aren't
possible either. Thus in PROLOG there 1is a fundamental asymmetry
between head and tail, inherited from the binary dotted pair
representation of lists as "."-structures. Although this representation
is hidden in the 1list notation, it ~comes to the surface during
matching. PROLOG's dotted pair matching is well-known from some other
PLANNER-1ike AI languages, such as CONNIVER.

FIT, like most other PLANNER-like AI languages, such as FUZZY, ‘uses
both element variables [prefixed by "?"] and segment variables [in FIT
additionally ‘post’'-fixed by "oLIST"]1; thus we formalize a segment
variable as a fitter composition of a "?"-variable with the LIST
function. Unlike previous languages, FIT also allows the wuse of
imposition variables [prefixed by ">"] which like segment variables
match sequences of list elements but unlike these are bound to the
element sequences themselves, rather than to their LISTified form.
FIT's segment and imposition variables can occur at arbitrary positions
and arbitrarily often inside patterns.

The following table compares matching in PROLOG and FIT, showing the
higher expressiveness of FIT patterns. For each PROLOG match example,
except the first, a directly corresponding FIT match [using "oLIST"] is
written in the same row and a more typical, imposition-variable FIT
match [using ">"] is written in the next row. Further FIT rows show
variations on the original match, with segment and imposition variables
occurring in non-tail positions and occurring more than once. The
bindings resulting from matches are written below each match [the empty
imposition is denoted by (IMPOSITION)]. For non-deterministic matches,
not possible in PROLOG, each set of bindings is written in a separate
line.

PROLOG FIT
[X,Y,X] = [a,b,al. ("(?2X ?2Y ?2X) "(A B A))
Xza, Y=b X=A, Y=8B
[X|Y] = [a,b,c]. ("(?X ?YoLIST) (A B C))
X=a, Y=[b,c] X=A, Y=(B C)

("(?2X >Y) "(A B C))

X=A, Y=B C

(" (?XoLIST ?Y) '(A B C))
X=(A B), Y=C

{("(>X ?2Y) "(A B C))
X=A 8, Y=C
[X[Yl = [a,b]. ("(?X ?YoLIST) '(A B})
X=a, Y=[b] X=A, Y=(8B)
("(?2X >Y) "(A B))
X=A, Y=8

(" (?XoLIST ?Y) '(A B))
X=(A), Y=8B

[x)yl
X=a,

[X.v|
X=a,

Y=(

Z]

[a].

1

= [a,b,c,d].
2=(c,d]

Y=b,

- 42 -
(" {>X ?2Y) (A B))
X=A, Y=B

("(?X ?YoLIST) "(A))
X=A, Y=()

(12X >Y) " (A))
X=A, Y=(IMPOSITION)

(" (?XoLIST ?2Y) '(A))
X=(), Y=A

("(>X ?2Y) "(A))
X=(IMPOSITION), Y=A

("(?X ?Y ?ZoLIST) "(A B C D))

X=A, Y=8, Z=(C D)

("(?7X ?Y >Z) "(A B C D))

X=A, Y=8B, Z=C D

(" (?XoLIST ?Y ?2Z) "(A B C D))

X=(A B), Y=C, Z=0

(I
X=A B8, Y=C, Z=0D

>X ?Y ?Z) (A B C D))
8

(" (?X ?YoLIST ?Z) '(A B C D))

X=A, Y=(8 C), Z=0D

("(?X >Y ?2Z) "(A B CD))

X=A, Y=8 C, Z2=D

"(?X ?YoLIST ?ZoLIST)
A, Y=(B C D), 2=()
A, Y=(B C), Z=(D)

A, Y=(B), 2=(C D)

A, Y=(), Z=(B C D)

=8 C 0, Z={()

=B C, Z=(D)

=8, Z=(C D)
=(IMPOSITION),

=D
D
IT

(" (?XoLIST ?Y ?ZoLIST)
X=(A B C), Y=D, Z=1()

X=(A B), Y=C, Z=(D)
X=(A), Y=8B, Z=(C D)
X=(), Y=A, Z=(B C D)

“(A B CD))
Z=(IMPOSITION)

(A B CD))

?7X >Y ?ZoLIST) '(A B C D))

Z=(B C D)

ION), 2=B C D

“(ABCD))

Y >2
D

>) "(A B C D))

C Y=(IMPOSITION), Z=(IMPOSITION)
C, D, Z=(IMPOSITION)

C (IMPOSITION), Z=D

D, Z=(IMPOSITION)

=D

OSITION), Z=C D

, Z2=(IMPOSITION)

, 2=D

Z=C D

T m® m® m X

Y&
v Y=
Y=C D,
Y=C, 2
, Y=(IMP
Y=86 C D
, Y=B C
Y=8,
Y={IMPOSITION)
IMPOSITION), Y=A
IMPOSITION), Y=A
IMPOSITION), Y=A
IMPOSITION), Y=A
[MPOSITION), Y=(

An important difference between PROLOG and FIT pattern matching not
shown in the table should be mentioned. While a successful match in
PROLOG simply prints the resulting variable bindings, in FIT it returns
the data instance matched and as its effect yields the bindings. For
example, the match in the first table row in impure FIT would return
(A B A) and bind X to A and Y to B. The next subsection will show that
pattern’'s returning of unchanged data instances generalizes gracefully
to adapter's returning of modified data instances. Semantically, the
values returned and the bindings yielded are treated as one value pair
of the form (GLOBAL (bindings) values). Thus the example match in pure
FIT would return the GLOBAL expression (GLOBAL ((>X A) (>Y B)) (A B
A)). GLOBAL expressions may migrate out of other expressions, uniting
their bindings consistently and leaving their values behind. Indeed,
the above GLOBAL expression results from an 1intermediate LIST
expression with three embedded GLOBAL expressions as shown 1in the
following trace of the sample match evaluation:

("(?2X ?2Y ?7X) (A B A))

(LIST (?X A) (?Y B) (?X A))

(LIST (GLOBAL ((>X A)) A) (GLOBAL ((>Y B)) B) (GLOBAL ((>X A)) A))
(GLOBAL ((>X A) (>Y B)) (A B A))

Finally, matches in FIT can not only be performed on lists but also
on impositions. For example, the 1list match in the first row of the
above table can be rewritten to the imposition match [the <colon
separates pattern and data impositions]

(?X ?2Y ?X : A B A)
which also binds X to A and Y to B but returns the imposition A B A

instead of the list (A B A). For the other table rows in the FIT column
the same parenthesis-saving 1mposition-rewriting is possible.

5.2 Fitting: Special Elements in Patterns or Functions 1n Adapters

Since non-trivial adapters are a main theme of FIT [dealt with 1in
(Boley 1983)] but are absent in PROLOG, they are not explored 1in great
detail in the context of this FIT/PROLOG comparison; however, section 7
will show the use of adapters for defining functions.

5.2.1 Simple Adapters -

Most pattern matchers provide something like ‘don’'t care’ or 'match
all’ pattern elements, in PROLOG called 'anonymous variables’' and
written "_". In FIT this special [non-constant, non-variable] pattern
element 1is formalized wusing the identity function ID, which 1is
applicable to one arbitrary element and returns it unchanged. Patterns
containing functions in FIT are <called ‘adapters’'. Thus a PROLOG
pattern

(A,]

successfully matching lists like [a,b,b] and [a,b,c], but neither [a,b]
nor [a,b,b,c,c], becomes the FIT adapter

(A ID ID),

successfully fitting lists like (A B B) and (A B C), but neither (A B)
nor (A BBCC), i.e.

("(A ID ID) ‘(A B B)) returns (A B B),
("(A ID ID) '(A B C)) returns (A B C),
("(A ID ID) '(A B)) yields jF,

("(A ID ID) (A B B C C)) yields jF.

ID 1s only a trivial example of the arbitrary functions allowed 1in
FIT adapters. A similar example 1is the absorption function AB,
definable by (>(AB ?X)), which is applicable to one arbitrary element
and returns the empty imposition:

("(A AB AB) '(A B B)) returns (A),
('(A AB AB) '(A B C)) returns (A),
("(A AB AB) '(A B)) yields jF,

("(A AB AB) '(A B B C C)) yields jF.

A less trivial function is NUMBERP, a predicate for numbers, as
applicable in the successful adapter fitting

(" (A NUMBERP C) '(A 2 C)), returning (A T C)
and in the failing adapter fitting
('(A NUMBERP C) "(A B C)), yielding jF.

Functions inside adapters need not be wunary, as shown by the
successful adapter fitting [matching A to A and applying LESSP to 2 3]

("(A LESSP) "(A 2 3)), returning (A T)

and the failing adapter fitting
("(A LESSP) "(A 3 2)), yielding JjF.

Besides such predicate-like functions, arbitrary general functions
are also allowed inside adapters. For instance, one adapter fitting
generalization of the match in the first row in the table in subsection
5.1 1s

{"(?X LIST ?X) "(A B A))

which binds X to A and returns (A (B) A). The semantic tracé of this
evaluation corresponds to that in section 5.1:

("(?X LIST ?X) "(A B A))

(LIST (?X A) (LIST B) (?X A))

(LIST (GLOBAL ((>X A)) A) (B) (GLOBAL ((>X A)) A))
(GLOBAL ((>X A)) (A (B) A))

There are operators making new fitters from old, e.g. the "#"
[REPEAT] operator. For example, the 'repeated identity’' #ID allows the
following fittings:

(‘(A #ID) "(A B B)) returns (A B B)

('(A #ID) "(A B C)) returns (A B C)

("(A #ID) (A B)) returns (A B)

("(A #ID) "(A)) returns (A)

("(A #I0) '(A B B C C)) returns (A B B8 C C)

("(A #ID) "(A B CDEF G)) returns (A B CDEFG).

Similarly, (A #B) successfully fits (A B8 8), (A B), and (A), but none
of the other examples above. Also, (A #NUMBERP) successfully fits (A 2
3), returning (A T T) and (A #ADD1) successfully fits (A 2 3),
returning (A 3 4).

5.2.2 A PROLOG Simulation -

In PROLOG, the adapter (A #ADD1), for instance, can be simulated by
a relation named a_repsucc, using maplist (Clocksin & Mellish 1981) for
modeling “#":

a_repsucc(lalL],[a|M]) :- maplist(succp,L,M).

Now FIT's fitment ('(A #ADD1) (A 2 3)), returning (A 3 &), can be
simulated by PROLOG's relation call a_repsucc(la,2,3],Ans), binding Ans
to [(a,3,4]. Notice that PROLOG must give a name, 1like a_repsucc, to
every program, even if it 1s used only once, whereas anonymous programs
are allowed in most other languages [cf. not only FIT's adapters above
but also LISP's LAMBDA expressions and FIT's TRAFOs below].

A slightly more general adapter, (#SUB1 0 #ADD1), successfully fits
number lists containing a 0, returning the predecessors of all numbers
before the 0 and the successors of all numbers after the 0. For example
the adapter fitment (' (#SUB1 0 #ADD1) '(3 6 0 4 2 7)) returns (2 50 5
3 8). In PROLOG this must be simulated by a considerably more general
predicate, named reppred_0_repsucc, using recursion for modeling the

first "#" application [note the ‘'reverse’' clause order vequired herel:

reppred_0_repsucc([0|L],[0[M]) :- maplist(succp,L,M).
reppred_0_repsucc({X|L],{Y[M]) :- predp(X,Y), reppred_0_repsucc(lL,6M)

Then the relation call corresponding to the above adapter fitment 1s
reppred_0_repsucc((3,6,0,4,2,71,Ans), binding Ans to (2,5,0,5,3,8]. If
we wanted to model both "#"-applications with maplist, i.e. by using
maplist not only for the segment after the 0 but also for that before
the 0, we might apply append [cf. section 7.1] for locating the 0 and
splitting the list into the required segments:

reppred_0_repsucc(In,Out) :-
append(PIn,(0]|SIn],In),
maplist(predp,PIn,POut],
append(POut, [(0]SOut],Out),
maplist(succp,SIn,SOut).

Although in this reppred_0_repsucc version the 'interleaved’' order of
the append and maplist calls [in contrast to 'first I/0 partition, then
mapping’' orders], proposed by (Fuhlrott 1983) and tested in
micro-PROLOG, may not look obvious, it 1s crucial for preventing
non-deterministic calls 1like reppred_0_repsucc([3,0,5,0,7],Ans) and
conjunctive relation calls like

?7- reppred_0_repsucc([3,0,7]1,Ans), member(4,Ans).

from diverging on their backtrack search for a second solution. The
fact that the relational reppred_0_repsucc representation of an adapter
as simple as (#SUB1 0 #ADO1) involves these non-trivial programming
considerations indicates that relational programming may at times
appear quite low-level if compared with higher-order functional or
adapter programming. Still, 1like the FIT adapters, in PROLOG neither
a_repsucc nor the two versions of reppred_0_repsucc work if wused from
right to left: For example, reppred_0_repsucc(Ans,[2,0,8]) yields a
‘finite error’' in the recursive version and an ‘'infinite error’' in the
append-using version.

5.2.3 TRAFO and COMF0O Expressions -

Apart from the fact that adapters themselves are normally wunnamed,
functions inside adapters need not be named, like NUMBERP, but may also
be anonymous, like (TRAFO ?X (GREATERP <X 8)), corresponding to LISP's
(LAMBDA (X) (GREATERP X 8)). For example, the adapter fitment

("(1 (TRAFO ?X (GREATERP <X 8)) 8 ?X) (1 9 8 3))

successfully applies the TRAFO expression (TRAFO ?X (GREATERP <X 8)) to
9, binds ?X to 3, and returns (1 T 8 3). Note that the TRAFO variable
?X is unrelated to the variable ?X, bound to 3: While the former 1is
local to the TRAFQ, the latter is global to the adapter. If the TRAFO
body (GREATERP <X 8) is regarded as a type <check over the TRAFO
variable 7?X, analogous to the type check performed by NUMBERP for the
typed variable x?NUMBERP, then the TRAFO's localization effect may well
be incorrect.

To leave the variable ?X global to the adapter, the composition
(COMPOSE (TRAFO ID (GREATERP "X 8)) ?X) can be used instead. For
example,

("(1 (COMPOSE (TRAFO ID (GREATERP "X 8)) ?X) 8 ?X) '(1 9 8 3))

successfully applies the composition to 9 by first binding ?X to 3 and
then evaluating (GREATERP "X 8) in the global environment thus created,
but altogether fails because of the inconsistency of this environment
with the binding of ?X to 3. A similar, but altogether successful,
adapter fitment is

("(1 (COMPOSE (TRAFO ID (GREATERP "X 8)) ?X) 8 ?X) '(1 9 8 9))

binding X to 9 and returning (1 T 8 9). Such COMPOSE expressions are
more generally usable and may thus be given a name, COMFO
[COMPOSE-TRAFO], which can be introduced by the definition

(COMFO pattern body) = (COMPOSE (TRAFO ID body) pattern)
or, more generally,

(COMFO patternt ... patternM : body1 ... bodyN) =
(COMPOSE (TRAFO #ID body1 ... bodyN) patternt ... patternM)

Using a COMFO expression, our previous adapter 1is shortened to
(1 (COMFO ?X (GREATERP "X 8)) 8 ?X) and its sample fittings become:

("(1 (COMFO ?X (GREATERP "X 8)) 8 ?X) '(1 9 8 3)) yields 3F

("(1 (COMFO ?X (GREATERP "X 8)) 8 ?X) (1 9 8 9)) returns (1 T 8 9) and
binds X to 9.

Notice that the COMFO expression has the same structure as the initial
TRAFO example. Indeed, TRAFO and COMFO form a nice symmetrical pair, as
characterized by the equations [the first generalizes beta-reduction in
LAMBDA calculus]

((TRAFO pattern body) expr) (LOCAL (pattern expr) : body)
((COMFO pattern body) expr) = (GLOBAL (pattern expr) : body)

For the use of COMFO expressions in 1invocation adapters see section
6.3.2.

5.2.4 Boolean Fitter Operators -

Finally, consider the ‘boolean pattern operators’ POR, PAND, and
PNOT which are available in almost all classic pattern matchers [see,
e.g., (Rulifson et al. 1972)]. In FIT they are generalized to 'boolean
fitter operators' and are formally explained by the respective logical
connectives for disjunction, conjunction, and negation. For example,

((POR {?X ?Y ?X) (?2X ?2Y ?Y) (?X ?X ?Y)) "(A B B))

succeeds because one of the pattern matches to which it 1s reduced,
("(?X ?Y ?Y) '"(A B B)) succeeds.

LA

((PAND (ID NUMBERP ID) (?X LIST ?X)) "(A 2 C))
fails because one of the adapter fittings, (' (?X LIST ?2X) ‘(A 2 C))
fails.

((PNOT LESSP) 3 2)

succeeds because (LESSP 3 2) fails. In PROLOG boolean operators on
patterns are lacking, perhaps because they cannot be generalized to
unification in a simple manner [cf. subsection 5.3].

5.3 Unification: Variables in Two Patterns

PROLOG uses unification implicitly for fact retrieval and rule
invocation. Unification can also be done explicitly by the user with
the =" [equality] predicate. For example one unification
generalization of the match in the first row in the table in subsection
5.1 is

(X,Y,X] = (a,b,2].

which binds X and Z to a and Y to b. The prominent role of wunification
in PROLOG becomes even more important in UNIFORM (Kahn 1981), which
uses augmented unification as its sole basis. However, the notion that
PROLOG itself bases its computation entirely on wunification 1is
exaggerated: this would only be true if there were facts only; rules,
although invoked through wunification of their heads with a request,
through resolution transform the request into a conjunction of other
requests in the wunification-extended environment. FIT's adapters, on
the other hand, share with facts the property of being
"invocation-computing’': all adapter computation is performed during
invocation fitting ([an adapter has completed 1its work when 1its
invocation has been completed]l; no global rule-like head-to-body
transformation is performed [a rule has completed its work only when
the computation of its body has been completed].

FIT-1 uses a restricted form of implicit unification but doesn’'t use
explicit wunification since it regards patterns as operator-like active
entities ['fitters’'] which are matched to operand-like passive entities
['fittees') in the usual asymmetric operator-operand manner.
Furthermore, the general patterns permitted in FIT [arbitrary numbers
of imposition or segment variables] would make symmetric
pattern-pattern wunification matches computationally as complex as
string wunification. Finally, symmetric adapter-adapter wunification
fitting poses new problems which are not vyet well understood.
[A function paired with a variable may leave its application pending
until that variable receives a value; a function paired with a function
might generate a value of its range which is also in the range of the
other function.]

To be sure, there would be no problem 1in implementing wunification
for FIT if patterns to be unified had to have the restricted form of
PROLOG patterns. To put it differently, PROLOG and any other language
would have the same problems as FIT would if it desired to incorporate
more general patterns [in particular, multiple segment variables, which
are very convenient for the wuser and pose no serious problems in

asymmetric matchingl] and still desired to perform symmetric unification
matching on these [in particular, the problem of string unification
complexity]. QLISP may actually have had these problems among others.

We thus decided to restrict FIT-1's explicit fitting to the
asymmetric case until issues of wunification matching are better
understood [for an overview of what is known and what is still open see
(Siekmann & Szabo 1982)]. In any case, with FIT-1's other match
generalizations [e.g. adapters] available, this restriction didn’'t turn
out to be such a great hindrance in practical programming tasks.

6 HORN CLAUSES AND IMPLICIT FITTERS

Definitions in PROLOG are made by storing Horn clauses and in FIT by
storing fitters into the global data base. Stored fitters are also
called 'implicit fitters’' and are dual to 'explicit fitters' which the
user directly fits to fittees. PROLOG's Horn clauses are divided into
facts and rules. FIT's corresponding implicit fitters are divided into
implicit adapters and transformers. However, to represent PROLOG facts
only very special FIT adapters, namely simple patterns, are needed.
Similarly, to represent PROLOG rules only very special FIT transformers
are required; alternatively, PROLOG rules can often be more concisely
represented as FIT adapters [cf. section 7].

6.1 Facts

A PROLOG fact is a structure of the form f(atl,a2,...,aN), globally
stored by
flat,a2,...,aN).

where the arguments al's can be constants, variables, or substructures.
That the period after the structure indicates the storing, not the
query of the structure, can only be seen at the lack of a "?-" prefix.
[In PROLOG's rudimentary interactive programming the system by default
is 1n a mode where it expects each input to be a query, hence uses "?-"
directly as a prompt. To store facts, the user must first switch off
this prompt by entering a storing mode. After storage is completed, one
must not forget to reenter the default mode before asking a query.]

A corresponding FIT fact is a compound of the form (f~ a1t~ a2~
aN”), globally stored by

GLOBAL:((f~ a1™ a2” ... aN™))

where the tilded symbols are transformed versions of those in PROLOG as
explained 1in section 4, with one addition: PROLOG variables are
rewritten to FIT wvariables by Variable =?VARIABLE. The storing 1is
simply indicated by the embedding of the compound into a GLOBAL:(. . .)
expression. [In FIT's LISP/PLANNER-like interactive programming no mode
change 1is necessary for storing, hence a modeless "*“-prompt is used.
The "GLOBAL:" prefix makes clear that a, possibly one-element, list of
facts is to be stored.]

In both PROLOG and FIT, structures/compounds containing constants
and variables along with other such structures/compounds can be used as
explicit patterns in explicit matches or, after having stored them 1in
the data base, as implicit patterns in implicit matches. Therefore
PROLOG and FIT facts actually are implicit patterns.

Simple facts without variables were exemplified in section 2.1; for
a fact example with variables, consider the phrase "The successor of
something is greater than that thing”, which can be stored as the

PROLOG fact

greater(successor(X),h X).

and as the FIT fact

GLOBAL: ((GREATER (SUCCESSOR ?X) ?X))

In this example, the first argument of the greater structure 1is a
successor structure. Notice that the top-level functor greater is a
predicate whereas the sublevel functor successor 1s a function. In
general, PROLOG, like predicate logic, allows a functional notation in
sublevels but not on the top-level [in sublevels it doesn’'t matter that
these notations cannot be evaluated, on the top-level it wouldl; thus,
unlike the above PROLOG example, successor(X) :- X+1 1s not a
legitimate PROLOG clause. FIT, like all functional languages, allows
functions on every level; thus, Jjust 1like the above FIT example,
(>(SUCCESSOR ?X) (ADD1 <X)) is a legitimate FIT clause.

When now the PROLOG question
?7- greater(successor(3),3).
or the FIT question
(GREATER (SUCCESSOR 3) 3)
is posed, an implicit match corresponing to the explicit PROLOG match
greater(successor(X),X) = greater(successor(3),3).
or to the explicit FIT match
(' (GREATER (SUCCESSOR ?X) ?X) '(GREATER (SUCCESSOR 3) 3))
is used to answer it affirmatively. The main difference between
explicit and implicit matches is the treatment of resulting variable
bindings [here X=3]: Bindings of variables occurring in explicit
patterns become visible; those of variables occurring in implicit
patterns remain hidden.

When the PROLOG question

?- greater(successor(Y),3).

is posed, an implicit unification match corresponing to the explicit
PROLOG unification match

greater(successor(X),X) = greater(successor(Y),3).

51 -

is used to answer it affirmatively and binding Y to 3; when the FIT
question

(GREATER (SUCCESSOR |?Y) 3)

is posed, an implicit unification match is used not corresponing to an
explicit wunification match and binding Y to 3 (in the implicit
unification match the binding Y=3 becomes visible because Y occurs 1in
the request pattern; the binding X=3 remains hidden because X occurs in
the implicit pattern]. The current FIT-1 only supports such restricted
implicit wunification matching but no explicit unification matching, as
discussed in subsection 5.3.

6.2 Rules

A PROLOG rule has the form structure0 :- structuretl, ..., structureN
and is globally stored by

structure0 :- structuret, ..., structureN.

where the structurel's are structures as in facts. The storing is agailn
indicated by the period after the structures in the absence of a "?-"
prefix. A corresponding FIT rule has the form

(TRAFO structure0”
(LOCAL (>vart1: ... >varM:) structure1”™ ... structureN”))

and is stored globally as

({>,v}structure0”
"(LOCAL (>varit: ... >varM:) structure1”™ ... structureN"))

where the tilded structurel’'s are the wusual transformed versions of
those in PROLOG rules and the varl's are the request variables being
used in structuret”™, ..., structureN . Their LOCAL declaration 1is
necessary to prevent name conflicts between the request variables of
different rule bodies. If there are no request variables a FIT rule can
be simplified to (TRAFO structure0” structurel”™ ... structureN") which
is stored as

({>,v}structured”™ ‘structuretl”™ ... 'structureN")

Here and later on the meta-language expression “{>,v}" stands for
either of the object-language symbols ">" or "v". The ">" [SHOVE]) and
"v" [VEL] prefixes effect rule storing by setting rule heads,
structure0”, to rule bodies. The SHOVE prefix specifies an ordinary
setting, where several body assignments to the same head cause the old
rules to be erased on storage of the new ones. The VEL prefix specifies
a '‘non-deterministic’ setting, where several body assignments to the
same head cause all rules to be stored and subsequently to be used
non-deterministically. Since settings evaluate to GLOBAL expressions
[cf. section 5.1], no user-provided "GLOBAL:" prefix is necessary for
rule storing.

52 -

The "'" [QUOTE] prefix in front of the LOCAL body and the
structurel” bodies [1<I<N] prevents their evaluation at storing-time;
in internal store, the "'" prefix is removed; hence such QUOTEs are

usually elided from the FIT examples.

As an example consider the phrase “something is even if it 1is an
integer divisible by two”, which can be stored as the PROLOG rule

even(X) :- integer(X), divisible(X, 2).

and as the FIT rule

(>(EVEN ?X) (INTEGER <X) (DIVISIBLE <X 2))
When now the PROLOG question

?7- even(8).

or the FIT question

(EVEN 8)

is asked, the rule head even(X) or (EVEN ?X) is matched to the question
even(8) or (EVEN 8) and the rule body is evaluated with the resulting
binding X=8. ‘

In PROLOG such an implicit rule application doesn’'t correspond to an
explicit one that is directly specified by the wuser. In FIT 1t
corresponds to the explicit rule application

((TRAFO (EVEN ?X) (INTEGER <X) (DIVISIBLE <X 2)) '(EVEN 8))

using the explicit TRAFO notation of transformers which generalizes the
usual LAMBDA expressions. Often TRAFO expressions are used with the
isolated variables of patterns, instead of with complete invocation
patterns, as their 1left-hand sides; this form of TRAFO specifies
‘anonymous’' rules and 1is equivalent with LAMBDA expressions. For
example, the previous TRAFO application can be shortened to (the 'name’
EVEN is omitted]

((TRAFO ?X (INTEGER <X) (DIVISIBLE <X 2)) 8)

While PROLOG allows only such relational rules [computing truth
values], FIT also allows functional rules (computing arbitrary valuesl].
For example, the phrase "the division of a first thing by a second
thing is the quotient and the remainder of the first by the second” can
be stored in FIT as the rule

(>(DIVISION ?X ?Y) (QUOTIENT <X <Y) (REMAINDER <X <Y))

In PROLOG the phrase must first be put into the awkward relational form
“four things are in a division relation if the first three things are
in a quotient relation and the first two things and the fourth thing
are in a remainder relation” before it can be stored as the rule

divisionp(X,Y,Q,R) :- quotientp(X,Y,Q), remainderp(X,Y,R).

which in FIT could also be stored as

(>(DIVISIONP ?X ?Y ?Q ?R) (QUOTIENTP <X <Y <Q) (REMAINDERP <X <Y <R))

Functional FIT rules can also be used in explicit applications. For
example,

({TRAFO (DIVISION ?X ?Y) (QUOTIENT <X <Y) (REMAINDER <X <Y})
"(DIVISION 7 2))

returns 3 1. Using the pattern variables alone as TRAFO left-hand sides
we get the anonymous rule application

((TRAFO ?X ?Y : (QUOTIENT <X <Y) (REMAINDER <X <Y))
71 .2)

Let us summarize a fact/rule implicit/explicit tradeoff in
FIT/PROLOG:

While FIT unification can only be used implicitly to access facts and
rules stored in the data base, PROLOG unification can also be used
explicitly on non-stored structures.

While PROLOG rules can only be used implicitly, namely after they have
been stored in the data base [and named by a functor], FIT rules can
also be used explicitly [and anonymously] without such prior storing.

6.3 Clauses with Constraints
6.3.1 PROLOG II Constraints and their LOCAL Representation -

Although the simplicity of Horn clauses has definite advantages with
respect to formal semantics it now seems clear that they are too simple
for real-live programming. One possible generalization of Horn clauses
has been recently proposed in (Colmerauer 1983) for PROLOG II. In this
proposal a clause can be augmented by “constraints” which are sets of
equalities and 1inequalities over variables. All constraints must be
fulfilled for a <clause to be successful. Facts and rules with
constraints «c¢1, «c2, ..., €K 1n PROLOG II are written thus (a fact 1is
regarded as a rule with an empty body]

structure0 -> , {ct, c2, ..., cK};
structure0 -> structuretl ... structureN, {ct1, c2, ..., cK};

where the clI's either have the form varR=varS or the form varR\=vars

[we wuse Edinburgh PROLOG's “\=" to denote inequalityl]. For clauses
without constraints [K=0] in PROLOG II the meaningless part ", {}" 1is
omitted.

In FIT these clauses may be rewritten to [for simplicity we assume
that no request variables are used]

({>,v}structure0™ c1” c2” ... cK™)
({>,v}structureo”
(LOCAL c1”™ c2” ... cK” : structurei1”™ ... structureN”))
where clI = varR=varS yields cI” = (EQ varR™ varS”) and cI = varR\=vars

yields c¢I” = (NEQ wvarR™ wvarS~). Constraints in FIT thus become

implicitly conjoined rule bodies [for facts] or left-imposition
arguments of “if then" LOCALs wused as rule bodies [for rules]. A

constrained fact (>structure0” ¢1” c2” ... cK”) can be viewed as an
abbreviation for a constrained rule with empty LOCAL body (>structure0”
(LOCAL c1” c2” ... ¢cK~ :)). Clauses without constraints are rewritten

into FIT as usual.

An example of a constrained fact 1is the following diffchain
predicate, holding for all triples without equal adjacent elements:

diffchain(x,y,z) -> , {x\=y, y\=z};
In FIT this can be rewritten as
(>(DIFFCHAIN ?X ?Y ?2) (NEQ <X <Y) (NEQ <Y <2))

In order to illustrate a constrained rule let us consider a slightly
corrected version of the out-of definition in (Colmeraurer 1983), a
simple list predicate which in functional notation would trivialize to
NOToMEMBER.

out-of(u,nil) ->;

out-of(u,v.1) ->
out-of(u,l),
{u\=v};

In FIT this can be rewritten as

(OUT-OF ?X NIL)
(>(0UT-0F ?X (?Y ?LoLIST))
(LOCAL (NEQ <X <Y) : (OUT-OF <X <L)))

As useful as Colmerauer's constraints may be, it remains doubtful
whether these simple equality and inequality constraints are sufficient
for all applications. For instance, many programmers ([not only 1in
fields 1like operations research] may wish to have the full set of
relational operators [i.e. also including "<", "<*, ">", and ">"] for
expressing inequation constraints. As examples, consider the predicates
lesschain and least-of derived, respectively, from diffchain and out-of
by replacing "\=" by “<". This is possible in FPL (Bellia et al. 1982).
In FIT it 1is also no problem because LOCAL expressions can, of course,
not only be used with the EQ and NEQ predicates but allow for arbitrary
constraints [incl. LESSP, LE, GREATERP, and GE]. For example, as we
used (LOCAL (NEQ <X <Y) : ...) in the OUT-OF program, we can use (LOCAL
ulGREATERP <X <Y) : ...) in, say, Euclid's algorithm for computing the
greatest common divisor [(the "u" operator transforms jF to jU, which 1is
necessary for handling the non-determinism arising from the first two
rules]:

(v(EUCLID ?X ?Y)

.(LOCAL u(GREATERP <X <Y) : (EUCLID (DIFFERENCE <X <Y) <Y)))
(v(EUCLID ?X ?Y)

(LOCAL u(GREATERP <Y <X) : (EUCLID <X (DIFFERENCE <Y <X))))
(>(EUCLID ?X ?X) <X)

For another such example see the FIT FERM definition in section 8.3.

- 55 -

By means of LOCALs with arbitrary predicates FIT, unlike PROLOG II,
can also be used to directly represent conditional term rewriting
systems, independent of the kind of condition.

In general, the constraints cI” in the above FIT rule schema may
have the form of arbitrary structures, in addition to that of
arithmetical relationships. It is noteworthy that (Bellia et al. 1982)
use “"equations” that also allow for arbitrary structure constraints,
with the syntax

structurel,c1,c2,...,cK <-- structurel,...,structureN

where k>0 and N>0 [i.e. the constraints and the body may be emptyl. For
their fixed-point semantics, however, they move the constraints to the
body structures to obtain ordinary Horn clauses of the form

structure0 <-- structuretl,...,structureN,ct1,c2,...,cK

Unfortunately, since the evaluation order inside pure Horn clause
bodies 1s not determined, the two forms are not equivalent in general
[consider a non-terminating cI and a failing structurel)], but only
under a special well-formedness condition. Ironically it happens to be
the case that with the impure Horn clauses of most PROLOG
implementations, the priority of the <constraint conjuncts over the
ordinary body conjuncts in the original equation may be expressed as

structure0 :- c¢t1, c2, ..., cK, structuretl, ..., structureN.

because now the constraints happen to be evaluated before the proper
body part; however, now there is also an unwanted left-to-right order

inside c¢1, c2, ..., cK and inside structuretl, ..., structureN. Instead
of relying on the hazards of the evaluation order, in FIT we use the
LOCAL form introduced previously, which always evaluates the
constraints [the imposition to the left of ":"] first, without ordering

the evaluation inside the constraints or the structures.

Constraints may just be the first step in the replacement of simple
conjunctive relation calls in Horn rule bodies by arbitrary functional
program bodies. As further extensions of Horn logic the “"somewhat
complicated” macros in ESP (Chikayama 1983) or the recent proposals in
(Kowalski 1983) ["It has proved necessary to extend Horn clause
programming in various ways”] may be mentioned. Instead of reworking
the semantics of PROLOG with each such new generalization of the
original Horn clause formalism, it might be preferable to use general
functional rule bodies from the very start, as done in FIT to formalize
the semantics of functionally representable rules of PLANNER-like
languages.

6.3.2 The COMFO Representation of Constraints -

At this point readers familiar with FIT may wonder whether
constraints can somehow be brought to the pattern side (Hussmann 1983).
And indeed, according to FIT's general philosophy of performing
non-trivial computation 1in the invocation adapter instead of in the
body, another method for representing constrained clauses 1is to move
the constraints from the body to the head, as follows.

A fact with a constraints body of the form
({>,v}(r p1 ... pM) c1 c2 ... cK)

by means of the COMPOSE expressions introduced in section 5.2.3,
first be rewritten as

(r (COMPOSE (TRAFO #ID c1” c2” ... cK') pt ... pM))
Also, a rule with a LOCAL constraints body of the form
({>,vi{r pt ... pM) (LOCAL ct c2 ... cK : st ... sN))

by means of these COMPOSE expressions, can first be rewritten as

({>,v}(r (COMPOSE (TRAFO #ID c1” c2” ... cK") p1 ... pM)) s1 ... sN)
Each cI” is obtained from cl by replacing "¢"-pccurrences
""" -occurrences and by omitting possible “u"-prefixes.
"¢"/"""-replacement accounts for the fact that the constraints

operate on variables global across the 1invocation adapter.
"u"-omission becomes possible because in invocation computations
failures are automatically treated as jU failures.

For example, the DIFFCHAIN fact of subsection 6.3.1 in this
becomes

(DIFFCHAIN (COMPOSE (TRAFO #ID (NEQ "X "Y) (NEQ Y “Z)) ?X ?Y ?22))
And the first two EUCLID rules in this way become
(v(EUCLID (COMPOSE (TRAFO #ID (GREATERP "X “Y)) ?X ?Y))

(EUCLID (DIFFERENCE <X <Y) <Y))

(v(EUCLID (COMPOSE (TRAFO #ID (GREATERP Y "X)) ?X ?Y))
(EUCLID <X (DIFFERENCE <Y <X)))

can

by
The
now
The

JF

way

Then, with the help of the COMFO abbreviation introducéd in section

5.2.3, the COMPOSE forms can be shortened to

(r (COMFO p1 ... pM : c1” c2” ... cK™))
and
{{>,v}(r (COMFO p1 ... pM : c1” c2" ... cK")) s1 ... sN)

For example, the DIFFCHAIN fact is shortened to

(DIFFCHAIN (COMFO ?X ?Y ?Z : (NEQ@ "X "Y) (NEQ Y "Z)))

And the EUCLID rules are shortened to

(v(EUCLID (COMFO ?X ?Y : (GREATERP "X "Y)))
(EUCLID (DIFFERENCE <X <Y) <Y))

(v(EUCLID (COMFO ?X ?Y : (GREATERP Y "X)))
(EUCLID <X (DIFFERENCE <Y <X)))

Note that the COMFO's pattern imposition is the clause’'s original
invocation pattern without the function name and without parentheses

[L.e. the imposition of its CDR]. Of course, this large scope of the
COMF0O pattern 1is only necessary if the constraints actually act over
variables which are maximally separated from one another; this happens
to be the case in the DIFFCHAIN and EUCLID examples. In all other cases
the scope of the COMFO pattern can be reduced, possibly by breaking the
COMFO expression into several smaller COMFO expressions. For example,
the rule

(>(FOO ?A ?B ?C ?D ?E) (LOCAL (GREATERP <B <C) (LESSP <D <E) : ...))

by the general COMFO transformation becomes

(>(FOO (COMFO ?A ?B ?C ?D ?E : (GREATERP "B "C) (LESSP "D "E))) ...)
and by breaking the COMFO down as far as possible becomes

(>(FOO0 ?A
[COMFO ?B ?C : (GREATERP "B "C))

{COMFO ?0 ?€ : (LESSP "D "E)))

Often, however, the COMPOSE form can also be simplified without the
help of COMFO, wusing specific properties of functions. In the EUCLID

-

example, (TRAFO #ID (GREATERP "X “Y)) <can be replaced directly by
GREATERP and (TRAFO #ID (GREATERP Y °X)) can be replaced by its
inverse, LESSP. This renders the first two EUCLID rules 1in their

maximally concise form:

(v(EUCLID (COMPOSE GREATERP ?X ?Y))
(EUCLID (DIFFERENCE <X <Y) <Y))

(v(EUCLID (COMPOSE LESSP ?X ?Y))
(EUCLID <X (DIFFERENCE <Y <X)))

6.4 Clause Ordering

A PROLOG data base is an ourdered set of clauses, 1.e. 1t has the
form

clausel.
clause?.

clausel.
clausel.
where the order of the indices t, 2, ..., I, ..., 2 1is relevant and
each clausel 1s a PROLOG fact or rule. A PROLOG question over that data
base uses the first matching clauseF [with the smallest index F] and

only on its failure considers the textually consecutive clauses.

A corresponding FIT data base is an unordered set of clauses, 1i.e.
it has the form

clausepit”
clausep2”

clausepl”™.
clausepZ”

where pt1, p2, ..., plI, ..., pZ is any permutation of 1, 2, ..., I, ...,
Z and each <clausepl”™ is a FIT fact or rule. A FIT question over that
data base uses the most specific matching clauseS [independent of 1its
index S] ore the subset of equally maximum specific matching clauses
clauseS1, ..., clauseSk and only on its or their falilure considers the
nextmost specific clauses.

These PROLOG and FIT data bases lead to equivalent behaviors only 1in
the following two cases.

1. PROLOG's clause ordering and FIT's specificity ordering are
immaterial. An example is the two-clause PROLOG data base

human(socrates).
mortal(X) :- human(X).

which in FIT becomes

(HUMAN SOCRATES)
(>(MORTAL 7?X) (HUMAN <X))

The orderings are immaterial here because 1n PROLOG no
possible request is matched by both clauses and also in FIT no
PROLOG-1ike request is matched by both clauses [we exclude
here non-PROLOG-like FIT requests such as (|?WHATIS SOCRATES)
that would be matched by both clauses]l. B8oth the PROLOG
request

?7- mortal(WHO).

and the FIT request

(MORTAL |?WHO)

would yield the correct 'Socrates’ binding of WHO.

2. PROLOG's clause ordering coincides with FIT's specificity
ordering. An example is the three-clause PROLOG data base

inhabit(whale,sea).
inhabit(X,land) :- mammal(X).
mammal (whale).

which in FIT can be written as
(INHABIT WHALE SEA)

(>(INHABIT ?X LAND) (MAMMAL <X))
(MAMMAL WHALE)

The orderings coincide here because in PROLOG the ‘whale’ fact
textually precedes the ‘'mammal’ rule and in FIT the ‘whale’

fact is more specific than the 'mammal’ rule. Therefore both
the PROLOG request

?7- inhabit(whale,WHAT).
and the FIT request
(INHABIT WHALE |?WHAT)

would yield the correct 'sea’ binding of WHAT. However, in the
‘permuted’ data bases

inhabit(X,land) :- mammal(X).
inhabit(whale,sea).
mammal(whale).

and

{(>(INHABIT ?X LAND) (MAMMAL <X))
(INHABIT WHALE SEA)
(MAMMAL WHALE)

the textual and specificity orderings no longer coincide
because the former has changed and the latter has remained the
same. Therefore only FIT would still yield the correct ‘'sea’
binding in the ‘whale’ request, whereas PROLOG would yield an
incorrect 'land’ binding.

The dependence on textual order in PROLOG and the independence of
that order in FIT accounts for a greater modularity of the latter
language. In PROLOG, when adding a new clause the current data base has
to be examined carefully to ensure that the clause is inserted at the
correct textual position [not to speak of the difficulty of how to
perform such inserts using PROLOG's assert/retract primitives, once it
is clear where to do it]. In FIT, however, the current data base need
not be examined at all; only the specificity of the new clause matters,
and this is an intrinsic property of the clause itself. FIT's higher
modularity also simplifies automatic addition of clauses, which is
necessary for knowledge acquisition by Al systems.

6.5 Cut, SECURE, and EXCLUSIVE
6.5.1 Cut Contrasted with SECURE -

The PROLOG cut operator is not available 1in FIT because of the
well-known problems with this imperative programming construct
[(VanEmden 1980), (Clocksin & Mellish 1981)]. However, FIT provides a
functional SECURE operator which 1s comparable to the
rule-choice-confirming use of cut as described below.

Let clause! abbreviate either a PROLOG rule of the form [which we'll
call 'intermediate cut’']

structure0 :- structuret, ..., !, ..., structureN.

where one cut operator “!" occurs somewhere between the body requests
[‘intermediate’'] or a PROLOG rule of one of the distinguished forms
{which we'll call, respectively, 'initial cut' and 'final cut']

structure0 :- !, structuretl, ..., structureN.
and
structure0 :- structuret, ..., structureN, !.

which activate the cut immediately after a successful invocation match
['initial’'] and only after a successful evaluation of the entire body
[‘final']), respectively; a fact of the form structure0. through cut
becomes a rule of the form structure0 :- !. [regarded as 'initial’,
though coextensive with ‘final'l.

Let \clause abbreviate a FIT fact of the form
\structure0
or a FIT rule of the form
({>,vl\structure0d structuret! ... structureN)
where the SECURE operator "\" marks the invocation pattern and 1is
always activated immediately after a successful invocation match [thus
SECURE is always 'initial’'].

If in a PROLOG data base

clausel.
clause?2.

clauseM!.
clausel.
some clauseM is "!" [cut] marked and in a corresponding FIT data base

clausepl:
clausep?2
\clé&éeM“
cl;d;ep2~
a corresponding clauseM” is "\" [SECURE] marked, then a request matcheu

by the marked clause 1i1s processed thus:

In PROLOG clauseM is only applied if none of the clauses clausel, ...,
clauseM-1 also matches the request. Otherwise, clauseM would only be
applied on failure of all these preceding matching ["!"-less] clauses.
Once applied, the cut mark "!" of clauseM makes all possibly matching

clauses clauseM+1, ..., clauseZ inapplicable for that request. Thus, if
clauseM should fail [this can happen if clauseM has the non-final-cut
form structure0 :- ..., !, structureC, ..., structureN. and one of
structureC, ..., structureN falils] the entire request fails. Similarly,

1f later requests conjoined with the clauseM-using request fail [this

can happen even 1if clauseM has the final-cut form structure0 :-
structuretl, ..., structureN, !.], this request can produce no further
alternatives.

In FIT the SECURE mark “\" of clauseM prioritizes it such that it 1is
applied independently of other ["\"-less] clauses with possibly higher
specificity that may also match the request. When applied, clauseM
doesn't make other ["\"-less] clauses inapplicable but only
deprioritized for that request. Thus, if clauseM should fail other
clauses may still cause the request to succeed. Similarly, if later
requests conjoined with the clauseM-using request fail, other clauses
for this request may still produce further alternatives. If several
clauses are SECURE-marked all of them are prioritized against all other
("\"-less] clauses. For the 'fine prioritization’' inside the set of
SECURE clauses their specificity is used [if no single SECURE clause is
maximally specific an entire BREADTH is prioritized].

Let us consider two simple examples of CUT and SECURE uses.

In the previous ‘whale' example one might wish to make the general
‘inhabit’ rule inapplicable if the specific 'whale' fact matches. In
PROLOG this may be done by marking that fact by a cut:
inhabit(whale,sea) :- .
inhabit(X,land) :- mammal(X).

mammal (whale).

With FIT's SECURE this cannot be done because marking the ‘'whale’ fact
in this way, yielding

\(INHABIT WHALE SEA)
(>(INHABIT ?X LAND) (MAMMAL <X))
(MAMMAL WHALE)

wouldn't change anything, as the marked fact is more specific than the
"inhabit’ rule in any case [but see subsection 6.5.2].

As another example consider the PROLOG data base

knows (john ,mary) .
knows (X,president).

and its FIT counterpart

(KNOWS JOHN MARY)
(KNOWS ?X PRESIDENT)

A PROLOG requests like
?- knows(john,WHOM).

first binds WHOM to mary and then to president because of the textual
ordering. A corresponding FIT request

(KNOWS JOHN |?WHOM)

first binds WHOM to MARY and then to PRESIDENT because of the
specificity ordering. Now, 1if we want to reverse the order of these

answers, i.e. 'privileging’ the President, in PROLOG we have to reorder
the data base, yielding

knows (X,president).
knows {john,mary).

In FIT the same effect is obtained by marking the 'President’ fact as
SECURE, vyielding :

(KNOWS JOHN MARY)
\ (KNOWS ?X PRESIDENT)

In the PROLOG data base a corresponding cut mark as 1in

knows (john,mary).
knows (X,president) :- !.

wouldn't change anything because the ‘President’ fact 1is still only
reached after the 'Mary’ fact. On the other hand, in PROLOG a
combination of reordering the data base and cut, as in

knows (X,president) :- !.
knows (john,mary).

would allow the knows(john,WHOM) request to succeed only once, binding
WHOM to president and forgetting about mary. A corresponding
combination of reordering and SECURE in the FIT data base, as in

\(KNOWS ?X PRESIDENT)
(KNOWS JOHN MARY)

would, of course, still allow (KNOWS JOHN |?WHOM) to succeed twice,
first with the 'President’' and then with the 'Mary’' binding [but see
subsection 6.5.2].

More sophisticated examples of unrestricted cut and of SECURE may be
found in section 7 and a further discussion of SECURE in (Boley 1983).

6.5.2 Cut Restricted to EXCLUSIVE -

In FIT the prioritization of SECUREd <clauses 1s formalized
semantically by putting the 'activation record’' of a prioritized clause
into the first argument position of a DEPTH expression and putting
those of other matching clauses into later DEPTH positions. In a
formalization of [initiall]l cut’'s semantics of making non-prioritized
clauses 1inapplicable, only the activation record of the prioritized one
would be kept and the other ones could be thrown away ['abandonad’].
[FIT's FINALIZE primitive, a functional version of MICRO-PLANNER s,
selects the first successfully evaluated DEPTH element and could thus
be wused to formalize the 'abandon’' semantics of final cuts, not of the
initial cuts to be discussed here.] An EXCLUSIVE SECURE version could
then be introduced for obtaining a cut-like rigid control in situations
where a normal SECURE would seem to be too permissive.

In our opinion the PROLOG use of a cut operator makes programs hard
to read mainly because it relies on the textual data base order. Thus
one step toward the solution of the cut problem would be the
disentangling of the ‘abandon' semantics and the ‘textual order’
semantics. Now, in FIT we don't use 'textual order’' semantics but a
'specificity order’' semantics modifiable by the SECURE operator. On
this basis we could introduce an initial-cut-like EXCLUSIVE operator
[also abbreviated with “!"] wusable in isolation as in !'clauseM”,
abandoning less specific and other equally specific ["\"-less] clauses,
or together with the SECURE operator as in !\clauseM™, abandoning all
other matching clauses. We would thus have separated the abandonment
information from the ordering information. If several equally
prioritized matching clauses are EXCLUSIVE-marked, only one of them
would have to be kept and all others could be abandoned. [EXCLUSIVE,
unlike SECURE, is not yet implemented in FIT-11!]

In the 'inhabit' example, all the FIT data bases

'{INHABIT WHALE SEA) '"\(INHABIT WHALE SEA)

(>(INHABIT ?X LAND) (MAMMAL <X)) (>(INHABIT ?X LAND) (MAMMAL <X))
(MAMMAL WHALE) (MAMMAL WHALE)

(>({INHABIT ?X LAND) (MAMMAL <X)) (>(INHABIT ?X LAND) (MAMMAL <X))
'(INHABIT WHALE SEA) '"N\(INHABIT WHALE SEA)

(MAMMAL WHALE) (MAMMAL WHALE)

for the 'whale’ request would abandon the 1less specific ‘land’ rule
because this 1is excluded by the more specific [in the right-hand-side
data bases, redundantly SECURE marked] ‘whale’' fact, i.e. they would
act like the PROLOG data base

inhabit(whale,sea) :- !.
inhabit(X,land) :- mammal(X).
mammal(whale).

In the "knows' example, both the FIT data bases

(KNOWS JOHN MARY)
I {KNOWS ?X PRESIDENT)

and

I (KNOWS ?X PRESIDENT)
(KNOWS JOHN MARY)

wouldn't change the behavior of the unmarked data base because nothing
is left to exclude for the less specific ‘'President’ fact, i.e. they
would act like the PROLOG data base

knows (john,mary).
knows (X,president) :- !,

However, both the FIT data bases

(KNOWS JOHN MARY)
'\(KNOWS ?X PRESIDENT)

and

'\ (KNOWS ?X PRESIDENT)
(KNOWS JOHN MARY)

would permit success only for the prioritized President which excludes
Mary, i.e. they would act like the PROLOG data base

knows (X,president) :- !.
knows (john,mary) .

In FIT, EXCLUSIVE and SECURE could be wused not only in the
definition of predicate functions like KNOWS but also in the definition
of general functions like FAC, not possible in PROLOG. For 1nstance,
the usual simple factorial definition

(>(FAC 0) 1)
(>(FAC ?N) (TIMES <N (FAC (SUB1 <N))))

has the disadvantage that [at the bottom of recursions] the call
(FAC 0) is matched by both clauses, in pure FIT returning

(DEPTH 1 suspension-which-would-diverge-to-negative-infinity)

This can be avoided by making the 1invocation pattern of the second
clause disjoint from that of the first, i.e. by exchanging the untyped
variable ?N by the typed variable x?POSINT for positive jintegers:

(>(FAC 0) 1)
(>(FAC x?POSINT) (TIMES <POSINT (FAC (SUB1 <POSINT))))

Alternatively [saving repeated POSINT checks for each recursive FAC
call, redundant for all but the initial and the final calll, the first
clause could be marked by an EXCLUSIVE operator:

(>'(FAC 0) 1)
(>(FAC ?N) (TIMES <N (FAC (SuB1 <N))))

Since the pattern (FAC 0) is more specific than the pattern (FAC ?N) no
SECURE operator 1s needed here. If, instead, we used equally specific
and disjoint invocation patterns like (FAC x?ZEROP) and (FAC x?POSINT),
no EXCLUSIVE operator would be needed and the SECURE operator would be
reduced to a matter of style and efficiency:

(>\(FAC x?ZEROP) 1)
(>(FAC x?POSINT) (TIMES <POSINT (FAC (SUB1 <POSINT))))

Finally, if we wused equally specific and non-disjoint invocation
patterns 1like (FAC x?ZEROP) and (FAC x?NUMBERP) both EXCLUSIVE and
SECURE would be called for:

(>'\(FAC x?ZEROP) 1)
(>(FAC x?NUMBERP) (TIMES <NUMBERP (FAC (SUB1 <NUMBERP))))

The examples illustrate the following property of the EXCLUSIVE
operator. In addition to not relying on the textual data base order
between rules, EXCLUSIVE is higher-level than cut because it doesn't
rely on ordering jinside rule bodies. Just as the WHILE statement

- 65 -

corresponds to a very restricted form of goto, the EXCLUSIVE operator
corresponds to a very restricted form of cut, characterized by the

following properties:

1. Only one cut is permitted for each clause [the ‘'single cut’

propertyl.

2. This cut can only occur in a fixed position, namely
immediately after the invocation match [the 'initial cut’
propertyl.

This means that EXCLUSIVE, as well as SECURE, applies to a clause 1in
its entirety, 1in contrast to unrestricted cuts, which may be sprinkled
throughout <clause bodies. Therefore, understanding a FIT clause
involves only checking whether it is EXCLUSIVE [SECURE] at all, rather
than how often or where it has some such property, as required for
understanding a PROLOG clause. This is in parallel with WHILE, which,
unlike unrestricted gotos, applies to a program block in its entirety,
heightening its understandability in a similar manner.

Another use of EXCLUSIVE in the following subsection 6.5.3 will
exhibit further advantages of the initial-cut property.

6.5.3 From Guarded Commands to Constrained EXCLUSIVE Rules -

The <combination of EXCLUSIVE clauses and constrained clauses
[section 6.3] yields an interesting kind of rule, which may be seen as
a functional version of “"guarded commands” (Dijkstra 1975) and
“productions” (Newell 1973). This combination is enabled by the COMFO
constraints method, introduced in section 6.3.2. Like every other rule,
a COMFO constrained rule can be marked by an EXCLUSIVE operator,
obtaining

({>,v}!'(r (COMFO p1 ... pM : ¢c1 c2 ... cK)) st ... sN)

On invocation, this rule fits its head (r (COMFO pt ... pM : c1 c2

cK)) to the expression to be evaluated, thereby checking the
constraints c1, c2, ..., cK over the variables among p1, ..., pM. If

this constraint-checking invocation fitting succeeds, the EXCLUSIVE
operator causes other possibly successful rules to be abandoned.

Then a guarded command of the form
guard -> statementt;...;statementN

can be represented as the rule [the tilde denotes a transformation from
Dijkstra's ALGOL-1like syntax to FIT syntax]

({>,v}'(D (COMFO : guard™)) statement1™ ... statementN")

The rule uses a dummy name r=D and a COMFO expression with an empty
pattern [i.e. M=0; in that case equivalent to a TRAFO] and a body
consisting of a single constraint (i.e. K=1], cl=guard”, operating over
global variables.

- 66

Dijkstra's guarded-command-based alternative construct

1f guarded-command1
[1 guarded-command?

[] guarded-commandZ
fi

can be rewritten in FIT as [the tilde transforms guarded commands as
demonstrated abovel

guarded-command1”
guarded-command2”

guarded-commandZ”

That is, the isolated guarded-command rules are simply written into a
[possibly LOCAL] FIT data base. Note that while "a guarded command by
itself is pot a statement” (Dijkstra 1975), its FIT representation is a
rule, usable by itself or as part of a larger construct.

For example, Dijkstra's "program that for fixed x and y assigns to m
the maximum value of x and y",

p—
-

y ->m
X =>m :=y

v Iv

X
y

- —
L]

in FIT can be rewritten as

(>1{(D (COMFO : (GE <X <Y))) (>M <X))
(>'(D (COMFO : (GE <Y <X))) (>M <Y))

After (>X 3) and (>Y 5) this can be called by (D), which sets M to 5.

Deviating from Dijkstra's imperative dlobal-state-oriented
programming style, a functional method of transcribing a
guarded-command-based construct consists of the introduction of a new
function for it such that the imported global variables of the
construct become the arguments of the function and the exported global
variables are replaced by the function's returnéd values. A guarded
command of such a construct is transcribed using the function's name
instead of D, a non-trivial COMFO expression with the guard operating
on the function's arguments argl, ..., argM, and functional expressions
as statements [here the tilde denotes a functional transformation]:

({>,v}!(name (COMFO argtl ... argM : guard™))

statement!”™ ... statementN”)
Thus the alternative construct functionally becomes [using the
abbreviations args = argt! ... argM and, for 1<j<Z, statementsj” =
statementj, 1™ ... statementj,Nj"]

({>,v}!(name (COMFO args : guardi1”)) statements1”)
({>,v}!'{name (COMFO args : guard2”)) statements2”)

{({>,v}!(name (COMFO args : guardZ”)) statementsz”)

For example, the maximum program can be represented as a function named
MAX with two arguments X and Y and one returned value:

(> (MAX (COMFO ?X ?Y : (GE "X "Y))) <X)
{(>V(MAX (COMFO ?X ?Y : (GE "Y "X))) <Y)

This can be called by (MAX 3 5), returning 5.

Dijkstra's guarded-command-based repetitive construct could be
reformulated into FIT similarly, additionally using tail-recursion for
representing iteration. For example, Dijkstra's “program for the
greatest common divisor of two positive numbers”,

X 1= X; 9y = Y3

do x >y -> x 1= x - ¥
[J]y>x ->y := - X
od

can be functionally rewritten in FIT as

(v!'(EUCLID (COMFO ?X ?Y : (GREATERP "X "Y)))
(EUCLID (DIFFERENCE <X <Y) <Y))

(vI(EUCLID (COMFO ?X ?Y : (GREATERP "Y "X)))
(EUCLID <X (DIFFERENCE <Y <X)))

{(>(EUCLID ?X 7X) <X)

However, this doesn't <change anything in the EXCLUSIVE-less COMFO
version of subsection 6.3.2, because, after the constraints check,
always exactly one rule remains, so that there is nothing left to
exclude for this single rule. This shows that the implicit ‘abandon
semantics’' [cf. subsection 6.5.2] of Dijkstra's guarded commands is not
required 1in his principal EUCLID example [nor in other programs whose
guards are disjoint rather than overlapping as in the maximum program].
Since 1t 1s clear that the cut operator should not be used without
need, the same should hold for its restricted EXCLUSIVE form, so that
the wearlier EUCLID version of subsection 6.3.2 appears preferable to
the present one, derived from guarded commands. The non-abandoning,
logically 'purer’' version cannot be specified with guarded commands,
because of their built-in abandon semantics.

A relational transcription method for guarded-command-based
constructs, intermediate between the imperative and the functional one,
can be derived from the functional method, provided that the exported
variables become result variables of the relation. A guarded command of
such a construct looks like the functional one except that it wuses a
relation name [by convention having a "-P" suffix], additional result
variables rest, ..., resL, and relational expressions as statements
[here the tilde denotes a relational transformation]):

({>,v}!'({name-P (COMFO arg! ... argM : guard”) res! ... reslL)
statement1”™ ... statementN™)

Thus the alternative construct relationally becomes [using the previous
abbreviations together with ress = rest! ... restL]

({>,v}!'({name-P (COMFO args : guardi”) ress) statementsi”)
({>,v}'({name-P (COMFO args : guard2”) ress) statements2”)

({>,v}'(name-P (COMFO args : guardZ”) ress) statementsZ”)
Often this raw relational transcription can be simplified.

For example, the maximum program can be represented as a relation named
MAXP [a short form of MAX-P] with two input variables X and Y and one
result variable M:

(>!'(MAXP (COMFO ?X ?Y : (GE "X "Y)) ?M) (EQ <M <X))
(>!'(MAXP (COMFO ?X ?Y : (GE "Y "X)) ?M) (EQ <M <Y))

0f course, the statements (EQ <M <X) and (EQ <M <Y) can be omitted here
by replacing the ?M arguments directly by ?X and ?Y, respectively:

(>!(MAXP (COMFO ?X ?Y : (GE "X "Y)) ?X))

(>! (MAXP (COMFO ?X ?Y : (GE "Y “X)) ?Y))

Then, if, as in the above maximum program, the statement part of rules
becomes empty through the relational transcription, these
transformation rules [transformers]l can be further simplified to
adaptation rules [adapters]:

! (MAXP (COMFO ?X ?Y : (GE "X "Y)) ?X)
' (MAXP (COMFO ?X ?Y : (GE Y "X)) ?Y)

The relational versions can be called by (MAXP 3 5 |?ANS), binding ANS
to 5.

In (Kowalski 1979) a relational formulation of Dijkstra’'s maximum
program 1is discussed as an example of "don’'t care” non-determinismi,
characteristic for guarded commands and usable for a form of
intelligent backtracking; however, it is not stated that such a "don't
care” specification requires an extra-logical feature -equivalent to
PROLOG's cut operator. This 1s demonstrated in the following
PROLOG-1like version of the maximum program which, 1like the previous
versions, presupposes no clause order:

maxp(X,Y,X) :-
maxp(X,Y,Y) :-

[If interpreted as ordinary PROLOG, with clause order, the second cut
would be redundant.]

Notice that this must take the form of PROLOG rules [transformersl],
even though no goals follow after the guard evaluation or constraints
check. PROLOG facts [adapters] cannot be used, since the ~constraints
are themselves represented as goals.

In (Clark & Gregory 1981) the term “committed” instead of “"don't
care” non-determinism 1is used and the cut operator between guards and
other goals is called “clause bar" ([written as "["]. Finally, in
CONCURRENT PROLOG (Shapiro & Takeuchi 1983) relational guarded commands
are called "guarded-clauses” and the "|" cut is adopted under the name
“commit operator”.

FIT's constrained EXCLUSIVE rules are preferable to CONCURRENT
PROLOG's guarded-clauses for the following reasons:

1. Although the commit operator has the single-cut property it
doesn't have the initial-cut property of the EXCLUSIVE
operator; it thus misses the advantages of initial cuts:

1. The left-right division [the ‘arrow'] of transformation
rules coincides syntactically with the initial cut [both
are thus joinable to a ‘cut arrow', as used implicitly in
Dijkstra's guarded commands]l; in this way the cut is
limited to a position in the transformer which is special
in any case, so that readability is improved.

2. It is advantageous to consider constraints checks as
generalized pattern-directed invocation, 1i.e. carrying
them out as part of the ‘left-hand-side’' invocation
fitting of a rule [mirroring the left-hand-side evaluation
of Dijkstra's guards]: If the rule constrained in this way
has an initial cut, a completion of the invocation fitting
means a real completion of the rule selection, in contrast
to the preliminary completion permitted by a non-initial
cut, which can be continuously revised until the body
evaluation reaches the cut.

3. Only initial cuts preserve the 1left-right symmetry of
rules, 1i.e. permit ‘cut-symmetrical’ rules; this becomes
important if the arrow direction 1is reversed to switch
from backward reasoning to forward reasoning [exploiting
the multiple readability of Horn clauses through
"top-down"/"bottom-up inference” (Kowalski 1979), rather

than through “invertibility" (Kowalski 1983)]: While
top-down/bottom-up reversals make no sense with
non-initial cuts, they can be meaningful with initial
cuts.

2. EXCLUSIVE-marked transformation rules can be simplified to
EXCLUSIVE-marked adaptation rules if the constraints are
checked during invocation fitting and if there are no other
goals [cf. the last MAXP version].

3. Constrained rules are more general than guarded-clauses 1in
that they can not only be wused relationally for defining
predicates [cf. MAXPl but also functionally for defining
general functions [cf. MAX].

7 LIST AND SET PROCESSING

We now compare list and set processing in FIT and PROLOG. Since sets
will be represented as lists without duplicate elements, the term 'list
processing’ in the following will encompass set processing. As in
PROLOG in FIT we will define relations rather than functions for list
processing. In this way the comparison between FIT and PROLOG becomes
easier than wvia a translation of FIT's list-processing functions to

- 70 -

PROLOG's list-processing relations. At the same time it shows how FIT's
adapters [cf. section 5.2] can make relational programming, PROLOG's
domain of expertise, more concise than even PROLOG's transformers [Horn
clauses] can. In such adapters frequent wuse will be made of
compositions of the form ABo?var, which give some subexpression a name
var, usable at another place, and then erase this subexpression; using
COMFO expressions [cf. section 5.2.3], this could also be formulated as
(COMFO ?var).

To avoid confusion between list-function names coined by LISP [also
used 1n FIT] and corresponding relation names in FIT we will append the
letter "P" to every relation [predicate]l] name which PROLOG borrowed
from the name of a general function in LISP.

As usual, the FIT examples of this section have been tested 1in
FIT-1. However, only the pure predicate use of the definitions 1is
completely implemented in FIT-1; definition uses with request variables
are not vyet operational in full generality, because of the restricted
unification fitting performed in this current FIT implementation. We
won't use the EXCLUSIVE operator for representing initial cuts here,
but the reader may easily supply it where desired [cf. section 6].

7.1 Elementary List Processing

For the following comparison we will wuse the PROLOG examples of
chapter 7.5 in (Clocksin & Mellish 1981) and reformulate them in FIT.

Finding the last element of a list: The recursive PROLOG definition

last(X,I{X]1).
last(X,[_|Y]l) :- last(X,Y).

can be directly mirrored by a recursive FIT definition wusing a
constant-adapter for the boundary condition and a transformer for the
recursive case:

(LASTP 2X (?X))
(>(LASTP ?X (ID ?YoLIST)) (LASTP <X <Y))

However, the tall-recursive transformer can be replaced by a
REVA-adapter [marked by an “r"-prefix that causes the result of the
adapter fitting to be re-evaluated], making the FIT definition more
concise and free of single-occurrence variables [for details on these
adapter concepts see (Boley 1983)1:

(LASTP ?2X (?X))
r(LASTP ID (AB #ID))

Now, since there is no need for the left-to-right processing performed
by the above definitions, the two adapters can be collapsed into a

single constant-adapter:

(LASTP ?2X (#ID ?X))

This is a most concise, declarative, and pictorial description of
the desired 1last 1list element. In PROLOG such a very-high-level
formulation can only be approximated by a transformer presupposing the
definition of append [see belowl]:

last(X,L) :- append(_,[X],L).
Checking for consecutive elements: The recursive PROLOG definition

nextto(X,Y,[X,Y]_1).
nextto(X,Y,[_[Z]) :- nextto(X,Y,Z).

could also be directly mirrored in FIT using a transformer, but let wus
directly consider the more concise REVA-adapter version:

(NEXTTOP ?X ?Y (?X ?Y #ID))
r(NEXTTOP ID ID (AB #ID))

Again, without left-to-right commitment these adapters collapse 1into
one constant adapter:

(NEXTTOP ?X ?Y (#ID ?X ?Y #ID))

And again, this most concise version in PROLOG can only be
approximated by a transformer depending on append [see belowl]:

nextto(X,Y,L) :- append(_,[X,Y|_1,L).

Appending lists: The recursive PROLOG definition

append([],L,L).
append ([X|L1],L2,[X]|L3)) :- append(L1,L2,L3).

by our previous method becomes the FIT adapters

(APPENDP () 7L 7L)
r(APPENDP (ABo?X #ID) ID (ABo?X #ID))

Through the wuse of parallel imposition variables this becomes
trivialized to

(APPENDP (>R) (>S) (>R >S))

The "flexibility of append” in PROLOG, which allows (Clocksin &
Mellish 1981) to "define several other predicates in terms of it" [cf.
last and nextto abovel, consists of the fact that append can be used to
divide a list almost symmetrically into two segments, so that its first
argument and a tail of its second argument can be used to simulate two
segment variables. However, this is a very indirect and cumbersome way
of bi-partitioning lists, not to speak of n-partitionings, that require
the analogue of nested append expressions [PROLOG's append relation
corresponds to LISP's binary *APPEND function, not to its n-ary APPEND
function]l. As an example consider the append-based member predicate
definition in (Clocksin & Mellish 1981):

member (EL,List) :- append(_,[E1l|_],List).

The append call uses an anonymous variable as its first argument, which

acts as an arbitrary left segment. As its second argument append uses a
list with the membership candidate E1 as its head and another anonymous
variable as its tail, the latter acting as an arbitrary right segment.
So the two segment contexts around El are not symmetric syntactically,
because the left one appears as a top-level argument of append, whereas
the right one is embedded in the tail of an append argument. This
occludes the complete semantic symmetry of the two segment contexts of
an element occurring somewhere in a list.

In FIT the semantic symmetry is made visible syntactically, using
direct notations for segments, here anonymous #ID segments:

(MEMBER ?EL (#ID ?EL #ID))

[Incidentally, which notation to use for anonymous segments is not at
issue here. The three characters "..." as, e.g., used 1n LISP70 may at
first seem more natural than the three characters "#ID", but the latter
can be semantically decomposed 1into the very natural "#" and "ID”
operators.]

Reversing a list: PROLOG's efficient reverse definition
rev2(L1,L2) :- revzap(L1,[],L2).

revzap([X|L],L2,L3) :- revzap(L,[X|L2]1,L3).
revzap([],L,L).

in FIT becomes
(>(REV2P ?2L1 ?L2) (REVZAP <Lt () <L2))

r(REVZAP (ABo?X #ID) ((TRAFO : "X) #ID) ID)
(REVZAP () 2L ?L)

The transformer initializing REVZAP can be made a REVA-adapter by
naming REVZAP also REV2P and using (TRAFO : ()) to generate the empty
list from the empty imposition:

r(REV2P ID (TRAFO : ()) ID)
r(REV2P (ABo?X #ID) ((TRAFO : "X) #ID) 1ID)
{REV2P () ?L ?L)

The PROLOG rev2 definition with its unnecessarily globally
accessible revzap subordinates illustrates a major shortcoming of that
language, which may even disqualify it as an implementation language
for large software engineering projects: Although PROLOG was developed
in the same time period as abstract data types, and logical ADT
specification appears trivial (Bibel 1983) as well, PROLOG has no
information hiding and modularization facilities. There are now
proposals to augment PROLOG with ADTs (Nakashima & Suzuki 1983) and
module concepts [(Bendl et al. 1980), (Clark et al. 1982), (Eggert &
Schorre 1982), (Chikayama 1983)], but the lack of an obvious 'winner’
among these unrelated candidates seems to indicate that modules are
hard to integrate with PROLOG's base components. For example, (Eggert &
Schorre 1982) reformulate the rev2 definition as the following module
exporting the name reverse:

module(reverse).
rinil,L,L).
r{(Yy.Lt,L2,R) ¢- r(Lt1,Y.L2,R).

reverse(L,R) <- r(L,nil,R).
endModule.

However, like their function extension [cf. section 3], this 1is
implemented through preprocessing, which surely 1is not the right
approach for realizing a concept as basic as modules. In FIT the
available LOCAL [data base] primitive (cf. section 2.2] can be used for
defining modules [R happens to act both as a variable and a relation
namel:

(>(REVERSEP ?L ?R)
(LOCAL ((R NIL ?L ?L)
(>(R (?Y ?L10oLIST) ?2L2 ?R) (R <L1 (CONS <Y <L2) <R)))
(R <L NIL <R)))

While in Eggert/Schorre's modules the unit of export is relation names,
in FIT it is relation calls. Therefore in the former module the names r
and reverse must be carefully distinguished, whereas in the latter
there would be no problem if the names R and REVERSEP were joined to
REVERSEP:

(>(REVERSEP ?L ?R)
(LOCAL ((REVERSEP NIL ?L ?L)
(>(REVERSEP (?Y ?L10LIST) ?L2 ?R)
(REVERSEP <L1 (CONS <Y <L2) <R)))
(REVERSEP <L NIL <R)))

The LOCALized REVERSEP definitions are just as invisible externally as
were the LOCALized R definitions. Therefore, externally still only
calls like (REVERSEP ‘(1 2 3) |?ANS) are possible, not calls like
(REVERSEP "(1 2 3) NIL |?7ANS).

Deleting one element: The recursive PROLOG definition

efface(A,[A|L), L) :- 1.
efface(A,[B]L]),(B|M]) :- effacel(A,L,M).

can be directly translated to the FIT definition [the SECURE operator
"\" prioritizes the less specific first definition]

\(EFFACE ?A (?A ?LoLIST) ?L)
r(EFFACE ID (ABo?8 #ID) (ABo?B #ID))

If an arbitrary A-element rather than the left-most occurrence is to be
removed the adapters can be collapsed into

(EFFACE ?A (>L ?A >R) (>L »R))

PROLOG's additional clause for recognizing when the second argument
becomes reduced to the empty list,

efface(_,(1,(1).

in FIT becomes

T4

(EFFACE ID () ())

Deleting all occurrences of an element: The PROLOG definition

delete(_,[]1,[1).
delete(X,[X|L],M) :- !, delete(X,L,M).
delete(X,[Y|L1],[Y|L2]) :- delete(X,L1,L2).

in FIT becomes

r(DELETEP ?X (#ID ABo?X #ID) ID)
(DELETEP ID ?L ?L)

Substitution: The PROLOG definition

subst(_,[1,_,[]).
subst(X,[X|L1,A,[A[M]) :- ', subst(X,L,A,M).
subst(X,[Y|L],A,[Y|M]) :- subst(X,L,A,M).

is erroneous because it accepts, for instance, the list (1,21 as the
input and the result of substituting a new element [unequal to 1], say
0, for the old element 1: The relation call subst(1,(1,2],0,(1,2]) 1is
not matched by the second clause, since A cannot be both 0 and 1;
unfortunately, however, it is matched by the third clause, since both
lists happen to start with the same element Y=1; thus an illegitimate
recursion subst(1,(21,0,[(2]) takes place, which via subst(1,0(1,0,(1)
yields an 1incorrect ‘'yes' answer. The subst definition could be
corrected using "\=" in the third clause to ensure that the first 1list
element is not the old element [since this 1s the last subst clause no
cut is necessary after the 'constraint check’' X\=Y]:

subst(X,[Y|L],A,[Y|M]) :- X\=Y, subst(X,L,A,M).

In FIT the definition becomes [the "\" prioritizations guarantee that
the last definition is used only when no other one applies]

r\(SUBSTP ?X (#ID ABo?X #ID) ?A (#ID ABo?A #ID))
(>\(SUBSTP ?X (#ID ?X #ID) ID ID) 3jF)
(SUBSTP ID ?L ID ?L)

Here, the critical example, (SUBSTP 1 ‘(1 2) 0 '(1 2)) is not matched
by the more specific first clause, an adapter generalizing PROLOG's
second clause; therefore it is matched by the less specific second
clause, which correctly yields jF.

Perhaps the error in PROLOG originated from formulating subst too
closely in analogy to delete ["this is quite similar to delete, excepi
instead of deleting a desired element, we substitute some other element
in 1its place” (Clocksin & Mellish 1981)]: The second delete clause 1s
only inapplicable when the old element is not the first element cr the
argument 1list, whereas the second subst clause 1s also inapplicable 1in
the 'unusual' case that the new element is not the first element of the
result 1list. The case is 'unusual’ at least in the view of functional
programming where result 1lists are returned values rather than
arguments; posssibly, (Clocksin & Mellish 1981) had only LISP's natural
functional subst use in mind, not the strange but basic relational
subst use of checking whether 'four given s-expressions are in a
substitution relation’'. This will be further discussed in the context

T4

(EFFACE ID () ())

Deleting all occurrences of an element: The PROLOG definition

deletel(_,[1,[1).
delete(X,[X|L]1,M) :- !, delete(X,L,M).
delete(X,[Y|L1],[Y|L2]) :- delete(X,L1,L2).

1n FIT becomes

r(DELETEP ?X (#ID ABo?X #ID) 1ID)
(DELETEP ID ?L ?L)

Substitution: The PROLOG definition

subst(_,[1,_.[]).
subst(X,[X|L]I,A,[A|M]) :- !, subst(X,L,A,M).
subst(X,[Y|L), A, L[Y|M]) :- subst(X,L,A,M).

1s erroneous because it accepts, for instance, the list [1,2] as the
input and the result of substituting a new element [unequal to 1], say
0, for the old element 1: The relation call subst(1,(1.,2],0,[1,2]) 1is
not matched by the second clause, since A cannot be both 0 and 1;
unfortunately, however, it is matched by the third clause, since both
lists happen to start with the same element Y=1; thus an illegitimate
recursion subst(1,(2]1,0,[2]) takes place, which wvia subst(1,(1,0,(1)
yields an 1incorrect ‘yes' answer. The subst definition could be
corrected using "\=" in the third clause to ensure that the first 1list
element is not the old element [since this is the last subst clause no
cut is necessary after the ‘constraint check’' X\=Y]:

subst (X, [Y|L],A,[Y]|M]) :- X\=Y, subst(X,L,A,M).

In FIT the definition becomes ([the "\" prioritizations gquarantee that
the last definition is used only when no other one applies]

r\(SUBSTP ?X (#ID ABo?X #ID) ?A (#ID ABo?A #ID))
(>\(SUBSTP ?X (#ID ?X #ID) ID ID) jF)
(SUBSTP I0 ?L ID ?L)

Here, the critical example, (SUBSTP 1 ‘(1 2) 0 "(1 2)) is not matched
by the more specific first clause, an adapter generalizing PROLOG's
second clause; therefore it is matched by the 1less specific second
clause, which correctly yields jF.

Perhaps the error in PROLOG originated from formulating subst too
closely 1in analogy to delete ["this is quite similar to delete, excepl
instead of deleting a desired element, we substitute some other element
in its place” (Clocksin & Mellish 1981)]: The second delete clause is
only inapplicable when the old element is not the first element cr the
argument 1list, whereas the second subst clause is also inapplicable 1in
the 'unusual' case that the new element is not the first element of the
result 1list. The case 1s ‘unusual’ at least in the view of functional
programming where result 1lists are returned values rather than
arguments; posssibly, (Clocksin & Mellish 1981) had only LISP's natural
functional subst use in mind, not the strange but basic relational
subst use of checking whether 'four given s-expressions are in a
substitution relation’'. This will be further discussed in the context

of a similar problem with the intersection and union relations in
subsection 7.2. In any case, the subst error seems to indicate that
relational formulations can make programs as simple as LISP's SUBST
function error-prone because of the increased number of arguments and
their possible unexpected usage [it is true that some of these errors
won't come to the surface as long as nobody uses these relations in a
‘strange’ manner, but how do you explain to your students that basic
‘yes/no' questions without any request variables are ‘strange’?].

Sublists: The PROLOG definition

sublist([X|L],[X|IM]) :- prefix(L,M), !.
sublist(L,(_|M)) :- sublist(L,M).
prefix((],_).

prefix([X|L],[X|M]) :- prefix(L,M).

in FIT trivializes to
(SUBLIST (?X >L) (#ID ?X >L #ID))

The PROLOG definition is cumbersome because its sublist and prefix
parts handle overlapping cases, a redundancy which can be seen in the
almost identical first sublist clause and second prefix clause [the cut
in the former is disputable anyway, because, although it prevents calls
from incorrectly falling into the second clause, it also prevents calls
like sublist([b,SECOND,THIRD],[a,b,c,d,e,b,e,al) from finding not only
SECOND=c and THIRD=d but also SECOND=e and THIRD=al.

The above definitions don’t allow empty sublists, although these are
sublists according to a literal interpretation of the definition "list
X 1is a sublist of list Y if every item in X also appears 1in Y, "
(Clocksin & Mellish 1981). Thus, the non-emptiness restriction may well
be an artifact of PROLOG's task sharing between sublist and prefix. In
FIT the removal of the non-emptiness restriction makes the definition
even simpler:

(SUBLIST (>L) (#ID >L #1D))

The structural similarity of this definition and the MEMBER
definition suggests another, still simpler definition,

{SUBIMP >L (#ID >L #ID))

which generalizes MEMBER by just replacing its ?EL occurrences by »>L
occurrences. Alternatively, SUBIMP can also be regarded as a
generalization of NEXTTOP from two to arbitrarily many consecutive
elements. For example, (SUBIMP B C D '(A B C D E)) would succeed but
(SUBIMP A C D '"(AB CD E)) would fail. A definition 1like SUBIMP 1is
impossible in PROLOG because of the formal imposition argument allowing
for a variable number of actual arguments.

Since the FIT adapter definitions directly capture the essence of the
list predicate functions involved, semantically similar functions
become similar syntactically. Thus, an automatic program understanding
system would only have to attempt a wunification of, say, the
definitions

16

(NEXTTOP ?X ?Y (#ID ?X ?Y #ID)) and
(SUBIMP Lo (#ID >L #ID))

to recognize that the former is a special case of the latter because
the substitution L=X Y allows NEXTTOP and SUBIMP to become equal.
Although PROLOG programs make heavy use of unification, they themselves
are not easily unifiable data structures and an automatic recognition
of a corresponding relationship between nextto and sublist would
involve much more than a simple wunification [how often was the
relationship found 'by hand'?].

7.2 Manipulating Sets

For the following comparison we will wuse the PROLOG examples of
chapter 7.6 1in (Clocksin & Mellish 1981) and reformulate them in FIT.
Other than in the case of elementary 1list operations, there 1s no
general shortening effect through the FIT definitions here. This 1s
partly because we directly define all FIT operations 1in terms of
primitives, whereas PROLOG builds on the member predicate [which could
also be done in FIT], and partly because the PROLOG definitions for
intersection and union are 'incomplete’ in that they don't account for
the unorderedness of sets. Although the permutation predicate 1is the
most basic predicate on sets represented as lists [namely set equality]
and, generally, sorting is prerequisite to set processing, in (Clocksin
& Mellish 1981) this 1s only discussed 1in the following chapter,
without any connection between the two chapters.

The PROLOG permutation predicate

permutation(L,[H|T])
append(V,[H|U], L),
append(V,U,W),
permutation(W,T).

permutation([],[]).

in FIT can be shortened to the definition

r(PERMUTATION (ABo?Z #ID) (#ID ABo?Z #1D))
(PERMUTATION () ())

whose meaning could be paraphrased as "A 1list 1is 1in a permutation
relation with another 1list 1if the elements of the first list can be
removed from left to right, simultaneously removing identical elements
somewhere from the second list, so that both lists become empty at the
same time."

The member predicate for sets is omitted here because it is the same
as that for lists.

The PROLOG subset predicate

subset ([A]X],Y) :- member(A,Y), subset(X,Y).
subset([1,Y).

in FIT can be redefined as

r(SUBSET (ABo?A #ID) (#ID ABo?A #ID))
(SUBSET () ID)

whose meaning could be paraphrased as "A list is in a subset relation
with another list if the elements of the first list can be removed from
left to right, simultaneously removing identical elements somewhere
from the second 1list, so that the first list becomes empty before or
together with the second list.”

Notice the similarity of the PERMUTATION and SUBSET definitions 1in
FIT and their crucial syntactical ()/ID difference, which faithfully
reflects their semantic difference. No such syntax/semantics
correspondence between the PROLOG permutation and subset definitions 1is
perceivable.

The PROLOG disjoint predicate
disjoint(X,Y) :- not((member(Z,X), member(Z,Y))).
in FIT can be redefined ‘negatively’ as

(>\V(DISJOINT (#ID ?Z #ID) (#ID ?Z #ID)) jJF)
(DISJOINT ID ID)

The PROLOG intersection predicate

intersection([],X,[]).
intersection([X|R],Y,[X]|21) :-
member(X,Y),
',

intersection(R,Y,2Z).
intersection([X|R1,Y,2) :- intersection(R,Y,Z).

in FIT becomes

(INTERSECTIONP () ID ())
T(INTERSECTIONP (ABo?X #ID) (#ID ?X #ID) (#ID ABo?X #ID))
r(INTERSECTIONP (AB #ID) ID ID)

The PROLOG union predicate

union((], X, X).
union([X|R],Y,Z) :- member(X,Y), !, union(R,Y,Z).
union((X|R],Y,(X]21) :- union(R,Y,Z).

in FIT becomes

(>CUNIONP () ?X ?Y) (PERMUTATION <X <Y))

(>(UNIONP ?X () ?Y) (PERMUTATION <X <Y))

r\(UNIONP (#ID ABo?X #ID) (#ID ABo?X #ID) (#ID ABo?X #ID))
r(UNIONP (ABo?X #ID) (#ID ABo?Y #ID) (#ID ABo?X #ID ABo?Y #ID))
r(UNIONP (ABo?X #ID) (#ID ABo?Y #ID) (#ID ABo?Y #ID ABo?X #ID))

Although in (Clocksin & Mellish 1981) one finds the correct set
characterization "A set 1is a collection of elements, rather like a
list, but it does not make sense to ask “where" or “how many times”
something is an element of a set”, the authors don't account for the
"where” irrelevance consistently. While the PROLOG set operations

member, subset, and disjoint are insensitive to the order of the
elements in lists representing sets, the operations intersection and
union are not. For instance, the fact that the 1intersection of
{r,a,p,i,d} and {p,i,c,t,u,r,e} is {r,i,pl, an example given in
(Clocksin & Mellish 1981), cannot be verified by the PROLOG
intersection program quoted above from the same book. The call
intersection((r,a,p,i,d]l,[p,i,c,t,u,r,el,(r,1,pl) incorrectly prints
‘no’ because the order in the result set differs from the order in the
first argument. A correct ‘'ves' answer can only be obtained if the
list-represented set {r,i,p} is given 1in the permutation {r,p,i}
corresponding to the element order in {r,a,p.1.,d}, 1i.e. by
intersection([r,a,p,i,d],[p,i,c,t,u,r,el,[r,p,i1). This problem is
caused by the second clause which runs through its first argument (X|R]
and its third argument [X]|Z] in a synchronized manner, imposing the
same order on both arguments. PROLOG's union operation suffers from the
same unwanted synchronization in its third clause; there 1is an
additional problem with the first clause, union([],X,X), which forces
the two X occurrences to be equal as lists [incl. order], not as sets
[this problem can be traced back to the strange elision of permutation
from the discussion of sets]. Thus not even the equation {} U f{a,b} =
{b,al <can be verified because the trivial call union([],[a,bl,[b,al),
which may recursively result from calls 1like wunion([al,[a,bl,[b,al),
incorrectly prints ‘'no’. To obtain the correct ‘yes' answer one must
write union([],(a,bl,[a,bl) or union((al,(a,bl,la,bl).

The FIT set operations are insensitive to the order of elements 1in
lists, which thus become true set representions. This order
insensitivity comes for free by virtue of the inherent parallelism of
adapters, with two exceptions [both will be eliminated laterl]. 1. In
the first two UNIONP clauses we cannot use adapters (UNIONP () ?X 7?X)
and (UNIONP ?2X () ?X) but have to use transformers with a PERMUTATION
call in their body. 2. The last UNIONP clause r(UNIONP (ABo?X #ID) (#ID
ABo?Y #ID) (#ID ABo?Y #ID ABo?X #ID)) is only necessary for permitting
reductions like (UNIONP "(A) "(B) "(B A)) => (UNION () () ()), where
different elements 1in the argument sets occur in inverse order in the
result set. While the first ordering problem can also be solved 1in
PROLOG by exchanging the fact union((1,X,X) by the rule union([],X,Y)
:- permutation(X,Y), there seems to be no FIT-like simple addition to
the PROLOG definitions that would account for the second ordering
problem.

Perhaps this problem with the PROLOG definitions is due to the fact
that the authors used the predicates intersection and union
‘function-like' only, with the third argument of calls being a
variable, so that there was no possibility for a 'wrong' order; this 1is
even more probable since a similar problem appeared for the PROLOG
subst definition, discussed 1in subsection 7.1 [while the subst
predicate accepts argument tuples which are pot related, the
intersection and wunion predicates reject argument tuples which are
related]. However, this would support a feeling among functional
programmers that it can be very unnatural to keep track of all readings
of a relation: one may even forget to think of the basic predicate
reading [where all arguments are fixed] if the relation is normally
used only function-like [where one argument is variable].

Actually, a functional definition of set union is trivial if it can
build on FIT's CLASS function, which performs the often-needed
set-normalization, namely sorting without duplicates [cf. section &4];

CLASS <can be used in the form CDRoCLASS (e.g., (CDRoCLASS B A B B) via
(CDR (CLASS A B)) returns (A B)]:

(>(UNION (>X) (>Y)) (CDRoCLASS <X <Y))
The UNION function can then be used to define the UNIONP relation:
(>(UNIONP ?2X ?Y (>Z)) (EQUAL (UNION <X <Y) (CDRoCLASS <Z)))

However, in FIT we prefer to represent sets not just as 1lists without
duplicates but directly as CLASS collections, which finally renders the
definition of set union as simple as it is conceptually:

(>(UNION (CLASS >X) (CLASS >Y)) (CLASS <X <Y))
(>(UNIONP ?X ?Y ?Z) (EQUAL (UNION <X <Y) <Z))

If we now use (UNIONP (CLASS A) (CLASS A B) (CLASS B A)) for verifying
{a} U {a.,b} = {b,a} the third embedded CLASS call normalizes to (CLASS
A B) and we get the call (UNIONP (CLASS A) (CLASS A 8) (CLASS A 8)).
The body of UNIONP <calls (UNION (CLASS A) (CLASS A B)), which just
hands the two CLASS contents to another CLASS, giving (CLASS A A B8)
that normalizes to (CLASS A B). This UNION result is EQUAL to the
normalized third UNIONP argument.

The functional CLASS collection can also be used to simplify our
original relational definition of set union: 1. The first two clauses
need no more PERMUTATION tests because normalized CLASS collections are
set-equal 1ff they are 1list-equal. 2. If the fitting of CLASS
collections is also defined as commutative, as described using FIT in
(Boley 1980) for the more general DRLHs, then the 1last UNIONP
definition clause [where different elements in the argument sets occur
in 1inverse order in the 1result set] becomes superfluous and in no
definition clause does more than one #ID context in a set remain
necessary:

(UNIONP () ?2X ?X)

(UNTONP 27X () ?X)

r\(UNIONP (CLASS ABo?X #ID) (CLASS ABo?X #ID) (CLASS ABo?X #ID))

r (UNIONP (CLASS ABo?X #ID) (CLASS ABo?Y #ID) (CLASS ABo?X ABo?Y #ID))

8 THREE EXAMPLES

Finally, let us consider three examples in detail. The first shows a
PROLOG programming paradigm, the second 1is a more neutral PROLOG
example, and the third demonstrates a problematic PROLOG relation. All
examples are vreformulated in FIT; for a more typical FIT programming
example, however, see Wang's algorithm in (Boley 1983).

Since 1in the first two examples a PROLOG relation from the
literature, whose name doesn’'t end in "P", will be represented as a FIT
function, we won't maintain the "P"-naming convention in this section.

8.1 Warren's SERIALISE Algorithm

The SERIALISE program has been used as a standard PROLOG example
since 1its introduction 1in (Warren et al. 1977). We quote from that

paper:

“The second example displays many of the characteristics which make
Prolog an agreeable language for compiler writing (as applied in the
case of our own Prolog compiler). The task is to generate a 1list of
serial numbers for the items of a given list, the members of which are
to be numbered in alphabetical order eg.

(p.r.o.l.0.9.nil) -> (4.5.3.2.3.1.ni1)

As with many Prolog programs, the key to arriving at the required
algorithm 1is to first <conceive a procedure which checks whether a
proposed list of serial numbers is a correct solution. This can be done
by pairing up the items of the input list with their proposed serial
numbers as an "assocliation list", arranging these pairs 1n alphabetical
order, and then finally checking whether the serial numbers are in the
correct consecutive order. i.e.-

serialise(L,R) :-
pairlists(L,R,A),
arrange(A,T),
numbered(T,1,N).

The pairing is done by a procedure very similar to the pairlis function
of the Lisp 1.5 manual, but with the pairs represented as terms
"pair(X,Y)' :-

pairlists((X.L),(Y.R),(pair(X,Y).A))} :-
pairlists(L,R,A).
pairlists({nil,nil,nil).

The arrangement in alphabetical order and checking of the numbers could
be done wusing only 1lists, however it is much more convenient to use
binary trees. We represent a tree as a term of the form. ‘'void' ("the
void tree") or ‘tree(T1,X,T2)' (" a tree with X at the root and
subtrees T1 and T2").

arrange((X.L),tree(T1,X,T72)) :-
partition(L,X,L1,L2),
arrange(L1,T1),
arrange(L2,72).

arrange(nil,void).

partition((X.L),X,L1,L2) :- partition(L,X,L1,L2).
partition((X.L),Y,(X.L1),L2) :-

before(X,Y), partition(L,Y,L1,L2).
partition((X.L),Y,L1,(X.L2)) :-

before(Y,X), partition(L,Y,L1,L2).
partition(nil,Y,nil,nil).

beforel(pair(X1,Y1),pair(X2,Y2)) :- X1 < X2.

numbered(tree(T1,pair(X,N1),T2),NO,N) :-
numbered(T1,NO,N1),
N2 1s N1+1,
numbered(T2,N2,N).
numbered(void,N,N)."

The above program is quite involved and difficult to understand, 1in
spite of the English explanations. Principally, this may be due to the
fact that SERIALISE is an instance of those problems for which a
relational solution (["check [I/0 pairs”] 1s more difficult than a
functional solution ["generate output from input”]. Another reason for
the program’'s poor readability is its operation on binary trees instead
of on lists, which the authors feel 1is “"much more convenient”, but
which certainly 1is a retrograde step to a lower-level data structure
[lists are composed of binary trees]. [Incidentally, the PROLOG program
features three kinds of binary trees: The standard "." functor for
representing lists as binary trees, an isomorphic, hence redundant,
"pair” functor for representing dotted pairs in association lists, and
a "tree” functor for representing binary trees with labeled roots.] The
below FIT version, instead, wuses 1lists internally and impositions
[saving unnecessary parentheses] for 1/0.

A negative effect of performing the quicksort-like arrangement on an
intermediate binary tree structure instead of on sequences is the
resulting lack of modularity. It is not possible to regard the sorting
subtask as elementary first and only 1later refine it by writing a
sorting module in the usual top—dowh manner or by using a quicksort
from the 1local program library. To wunderstand PROLOG's serialise,
reasoning about finding the serial numbers must be interleaved with
reasoning about sorting. In FIT the sorting aspect is completely
separated from other aspects of the program. The proper SERIALISE
kernel thereby essentially reduces to a four-liner.

The transformations performed by the subfunctions of this FIT
SERIALISE program can be illustrated by using the input imposition
PROL OG, corresponding to PROLOG's input list (p.r.o.l.o0.g.nil):

PROLOG
l
BSTAR
I
v
XP XR X0 XL X0 *G
| }------ SELLEEEEEREEE I
l
a)
l
v
(XP *R X0 %L %0 *G)
I
SORT
|
v
(*G *L *0 *P *R)
I
VARPOS
|
v
(>*G 1) (>*L 2) (>*0 3) (>*P &) (>*R 5)

453231

As a preparatory first step, SERIALISE applies STAR to all
expressions of 1its input imposition for "*"-encoding them 1into
legitimate variables in a lexical-order preserving manner, before they
are assigned to the argument IMP, by composing >IMP with #STAR.
[Instead of the STAR encoding a simple NCONS encoding could also be
used; inputs, 1like the above, containing ordinary identifiers only,
would require no encoding at all.] Second SERIALISE <calls SORT for
sorting the encoded imposition >IMP as a list Q(<IMP) 1in
lexicographical order and with no duplicates [the "@" instantiates the
list <contents]. Third it calls VARPOS to generate variable-positioan
bindings from the sorted list elements and their position numbers.
Fourth 1t wuses the LOCAL primitive to evaluate the encoded imposition
IMP in the binding environment created by VARPOS.

(>(SERIALISE >IMPO#STAR)
(LOCAL (VARPOS 1 (SORT Q@(<IMP) LEXORDER NODUPS)) : IMP))

VARPOS generates a variable assignment from each list element X and the
number N corresponding to its list position [initially, 1]; hence the
recursive VARPOS call both removes one element X and increments N by 1.
If the list becomes empty, VARPOS returns the empty imposition.

(>(VARPOS ?N (?X >Y)) (><X <N) (VARPOS (ADD1 <N) a(<Y)))
(>(VARPOS ID NIL))

STAR encodes its argument into a "*"-variable by simply CONS-catenating
an asterisk to its argument X, with LISP primitives for transforming an
atom to a list of its characters [EXPLODE] and vice versa [READLIST].
[Alternatively, STAR could just LIST the asterisk with its argument X.]

- 83 -

(>(STAR ?X) (READLIST (CONS * (EXPLODE <X))))

The sorting is done here by the predefined general LISP function
SORT. Should this not be available, it could also be defined as a FIT
version, e.g. on the basis of QUICKSORT ([three-imposition LOCALs are
read (LOCAL condition : then-part : else-part); NOTH is FIT's analogue
to LISP's NOT; the LT-EQ-GT workhorse function builds on that 1in
(Friedman & Wise 1978); two NEQ calls make it independent from whether
the COMPAREFN 1is <-like or ¢-likel:

8¢

(>(SORT ?L ?COMPAREFN ?NODUPS) (QUICKSORT <L))

(>(QUICKSORT ?L)
(LOCAL (NULL <L)

NIL
(APPEND (QUICKSORT
1D
QUICKSORT
(LT-EQ-GT (CDR <L) (CAR <L))))))

(>(LT-EQ-GT ?L ?V)
(LOCAL (NULL <L)
NIL
(LIST <V)
NIL
(LOCAL (<COMPAREFN (CAR <L) «V)
(NEQ (CAR <L) «V)

((TRAFO ?X (CONS (CAR <L) <X))
1D
1o
(LT-EQ-GT (CDR <L) <V))

(LOCAL (NOTH (<COMPAREFN (CAR <L) <V))
{NEQ (CAR <L) <V)

(ID
1D
(TRAFO ?X (CONS (CAR <L) <X))
(LT-EQ-GT (CDR <L) <V))

(ID

(TRAFO ?X
(LOCAL (NULL <NODUPS)
(CONS (CAR <L) <X)
<X))
1D

(LT-EQ-GT (CDR <L) <V))))))

8.2 McDermott's QUADRAT Program

The author of the QUADRAT PROLOG program for finding the real roots
of a quadratic equation characterizes it thus: "It does not show PROLOG
at its best (or its worst), but it does make it easy to compare with
more traditional languages” (McDermott 1980). Since we feel that this
program also suggests a comparison with other non-traditional languages

- 85 -

and a discussion of various other matters, we reproduce it here in a
slightly corrected form:

quadrat(A,B8,C,Realroots) :-
discrim(A,B,C,D), quadrati{A,B,D,Realroots).

discrim(A,B,C,D) :-
mult(B8,8,Bsquared), mult(A,C,P1),
mult(4,P1,P2), add(Bsquared,D,P2).
K 9

~_

quadrat1(A,B,D,[]) :- D<O.

quadrat1(A,B,D,[R]) :-
0=0, add(B,MinusB,0), mult(2,A,TwoA),
mult (R, TwoA,MinusB).

quadrat1(A,B,D,[R1,R2]) :-
0>0, add(B,MinusB,0), sqrt(D,SqrtD),
add(MinusB,SqrtD,Num1),
add (Num2,SqrtD,MinusB), mult(2,A, TwoA),
mult(TwoA,R1,Num1), mult(TwoA,R2,Num2).

[Like McDermott, we omit the cuts that should follow after D<0 and 0=0
and a cut that might redundantly follow after D>0.]

Apparently to illustrate relational programming through all levels,
McDermott generously presupposes primitive add and mult relations,
although these are not primitive relations but function-like
one-directional operators in PROLOG.

It appears to be an inherent problem of relational programming that
such [arithmetic] primitives cannot be easily defined as relations:
Implementation is unsatisfactory with software and probably even more
difficult with digital hardware [perhaps analogical hardware, like the
circuits suggested by CONSTRAINTS (Sussman & Steele 1980), is better
suited than normal arithmetic wunits for realizing multiple relation
usel. For example, (Clocksin & Mellish 1981) introduce arithmetic
operations under the misleading heading of built-in predicates [that a
special "is" primitive must be wused for evaluating arithmetic
expressions, other types of expressions being not evaluable at all,
makes things even more inconsistent], (Colmerauer 1983) even attempts
to enumerate successor relations extensionally, and (Chikayama 1983)
states with regard to the Japanese Fifth-Generation Kernel Language:
"Arithmetical operations in KLO are not bi-directional: Addition and
subtraction should be effected by individual operations”. While
micro-PROLOG 1is a notable exception in that it does have arithmetic
relations, it also illustrates the problem because it restricts their
use to at most one wunknown argument by simulating the underlying
extensional relations imperfectly only (Clark et al. 1982).

It Ls also obvious that such relational primitives are 1less readable
than their functional counterparts. For example, to decipher the
relation call mult(R,TwoA,MinusB) in the second quadratl clause, one
first has to check which variables will be instantiated at the time of
the call, finally finding TwoA and MinusB; only then can one determine
which wuse should be made of the relation by transforming its original
product form R * TwoA = MinusB into the quotient form
R = MinusB / TwoA.

But now let us assume the add and mult relations were predefined and
readable. Then another problem arises when looking at the next higher
level of the square and square root operations: Why 1s square performed
by mult(B,8,Bsquared) while square root 1s performed by sqrt(D,SqrtD),
i.e. why isn't there a single relation for both operations? Now, you
may notice that sqrt should already be that single relation because in
relational programming it should also be readable from right to 1left,
so that mult(B,B,Bsquared) should be replaceable by sqrt(Bsquared,B8).
However, there would be problems with such a square-sqrt combination.
Less importantly, since the range of square 1s non-negative numbers,
the domain of 1its square root inverse 1is restricted to these.
Therefore, while a relation call with negative second argument like
sqrt(Ans,-3) would yield Ans=9 a relation call with negative first
argument like sqrt{-9,Ans) would be undefined. More importantly, while
the algorithm for square [PROLOG's nonvar primitive is used to ensure
that the argument to square is fixed] is trivial,

sqrt(Ans,Tosquare) :- nonvar(Tosquare), mult(Tosquare,Tosquare,Ans).
the one for sqrt [the argument to square root must be fixed] is not,
sqrt(Tosqrt,Ans) :- nonvar(Tosqrt), ... Newton's method

The point is that there are quite different algorithms for the two uses
of the sqrt relation, and incorporating them both into a gingle
[nonvar-less] relation definition would neither be easy nor meaningful.
This becomes even more obvious when noticing that 1in relational
programming even the supposed primitive mult should be wusable for
taking square roots, so that sqrt{(D,SqrtD) should be replaceable by
mult(sqrtD,sqrtD,D). This should work inversely to mult(B,B,Bsquared)
by finding a number sqrtD whose product with itself is D [this relation
use is unusual in that one output variable occurs twice to divide the
input into two -equal factors]. If we hesitated to incorporate the
primitive product and quotient functions into a single mult relation,
we may be even more concerned about the square-sqrt combination, not to
mention a mult integration of the non-primitive square root function.
Perhaps McDermott took two completely different relations for square
and square root because otherwise "... in PROLOG you have the problem
of how to keep straight two separate versions of a relation, for
different constellations of inputs” (McDermott 1980). 1In the last
subsection we will see this problem further aggravated.

McDermott comments on his quadrat version: “The first thing to note
is that clauses do not contain LISPy deeply-nested function calls, but
instead a sequence of relation calls” (McDermott 1980). This 1is the
well-known ‘flatness' of PROLOG, normally disliked by functional [for
example, LISP] programmers but 1liked by imperative [for example,
PASCAL] programmers.

Now, the "S$" [ESCVAL] operator defined in section 3.1 can be used to
introduce some nesting into this program making it more concise and
more readable:

quadrat(A,B,C,Realroots) :-
quadrati(A,B,discrim(A,B8,C,$D),Realroots).

discrim(A,B,C,D) :-
add(mult(B,B,$Bsquared) ,D,mult(4,mult(A,C,S$P1),$P2)).

quadrat1(A,8,D,[1) :- D<O.

quadrat1(A,B,D,[R]) :-
D=0, mult(R,mult(2,A,$TwoA),add(B,$MinusB,0)).

quadrat1(A,B,D,[R1,R2]) :-
D>0, add(B,MinusB,0), sqrt(D,SqrtD), mult(2,A,TwoA),
mult(TwoA,R1,add(MinusB,SqrtD, $Num1)),
mult(TwoA,R2,add(SNum2,SqrtD,MinusB)).

Notice that an expression with embedded ESCVAL expressions can be
easily understood in a top-down manner by first abstractly viewing each
ESCVAL expression as the ESCVAL variable it will produce. When we 'x
off' the functors and arguments thus abstracted away, the top-level of
the discrim clause body, for instance, 1is abstractly viewable as
add(x(x,x,$Bsquared),D,x(x,x,$P2)), corresponding to the last conjunct
add(Bsquared,D,P2) in the original clause. While in certain clause
bodies the entire conjunction is joined to a single relation nesting
[cf. the quadrat and discrim clauses], in other ones the conjunction
becomes at 1least smaller by joining some of its conjuncts to relation
nestings [cf. the last two quadrati1 clauses].

A corvesponding ESCVAL-enriched FIT version of QUADRAT 1is the
following:

(>(QUADRAT ?A ?8 ?C ?REALROOTS)
(QUADRAT1 <A <B (DISCRIM <A <B <C $[?D) <REALROOTS))

(>(DISCRIM ?A ?B ?C ?D)
(ADD (MULT <B <B $|?BSQUARED) <D (MULT & (MULT <A <C $|?P1) $|?P2)))

(>(QUADRAT1 ?A ?B ?D ()) (LESSP <D 0))

(>(QUADRAT1 ?A ?B ?D (?R))
(LOCAL (EQ <D 0)

(MULT <R (MULT 2 <A S$]?TWOA) (ADD <B $|?MINUSB 0))))

(>(QUADRAT1 ?A ?B ?D (?R1 ?R2))
(LOCAL (GREATERP <D 0)

(LOCAL (ADD <B |?MINUSB 0)
(SQRT <D |[?SQRTD)
(MULT 2 <A |?TWOA)

(MULT <TWOA <Rt (ADD <MINUSB <SQRTD $|?NUM1))
(MULT <TWOA <R2 (ADD $|?NUM2 <SQRTD <MINUSB)))))

The expression (LOCAL (EQ <D 0) : (MULT ...)) in the second QUADRAT1
.lause reflects the vreal '"if then' meaning of the conjunction in the
corresponding PROLOG clause, namely if D=0 then mult(...). Similarly,

the outer LOCAL of the last QUADRAT! <clause is best viewed as an
"if then’ condition [control Fflowl. Its inner LOCAL is best viewed as a
generalized LET expression which introduces the variables MINUSB,
SQRTD, and TWOA through relation calls [data flow]. The partial order
of the data and control flow of that clause’'s conjuncts is

88

\
s L...) mult(2,...)
/ \ /

I
I |
I I
I [
| / \ / \ |
I I
I I
I |

I

|/ !/ \ \
mult (TwoA,R1,...) mult(TwoA,R2,...)

This cannot be seen in PROLOG's corresponding clause, where, for

example, D>0 precedes add(B,...), as required by the control flow,
add(8,...) precedes mult(TwoA,R1,...), as required by data flow, but
add(B,...) also precedes sqrt(D,...), which 1is required neither by

control nor data flow [this is what (Leavenworth & Sammet 1974) «call
"arbitrary sequencing” whose elimination is prerequisite for a language
to be non-procedurall. The nested FIT LOCALs of the last QUADRATI
clause, on the other hand, directly reflect the control and data flow
[the textual order inside LOCAL 1is 1immaterial apart from the
relationship 'left of colon’'/'right of colon’].

A completely functional version of QUADRAT in FIT <can be defined
thus:

(>(QUADRAT ?A 7B ?C) (QUADRAT1 <A <B (DISCRIM <A <B <C)))

(>(DISCRIM ?A 7B ?C)
(DIFFERENCE (SQUARE <B) (TIMES 4 <A <C)))

(>(QUADRAT1 ?A ?B 0)
(QUOTIENT (MINUS <B) (TIMES 2 <A))Y)

(>(QUADRAT1 ?A ?B x?POSINT)
(LOCAL (>SQRTD (SQRT <POSINT))

(QUOTIENT (PLUS (MINUS <B) ((BREADTH PLUS MINUS) <SQRTD))
(TIMES 2 <A))))

(>(POSINT ?N} (GREATERP <N 0))

This is the first version which directly reflects the problem
specification because it “finds the real roots of a guadratic”
(McDermott 1980) and does not appear to solve further problems 1like
finding the infinitely many quadratics with given real roots. Perhaps
it 1s also the first version which is readable without much pondering.

Instead of yielding the empty list if there is no real solution, a
one-element 1list if there is one solution, and a two-element list if
there are two, the program exploits the non-determinism of FIT and

yields ju, a single value, and a BREADTH of two values in these
respective cases. Indeed we regard quadratics as a nice example for the
explicit specification of non-determinism: The caller of a quadratics
program should receive a failure if there is no solution for the given
arguments, so that, e.g., other arguments may be tried automatically;
the caller should receive just a single value if there is exactly one
solution, so it can proceed deterministically, not even noticing the
principal possibilities of failure and ambiguity; and the caller should
receive a BREADTH of two equal-right values if there are two solutions.
Note that the explicit non-deterministic branch (BREADTH PLUS MINUS) in
the last QUADRAT!1 <clause corresponds exactly to the wuse of + in
mathematics. This is not possible with PROLOG's implicit depth-oriented
non-determinism. Our use of non-deterministic instead of listified root
results also has another advantage: It allows us to get rid of the
first quadrat? clause because for D<0, no other <clause being
applicable, jU is yielded automatically. The empty list could not be
yielded in such an automatic manner. Although it would not have been
necessary during the relational-functional translation, we replaced the
condition D=0 by a constant 0 and replaced the condition D>0 by a typed
variable x?POSINT in the invocation pattern. The typed variable 1is
built from the generally useful predicate POSINT for positive jntegers.

The last QUADRAT1 clause may be further shortened to finally obtain
the usual mathematical form of the quadratic algorithm:

(>(QUADRAT1 ?A ?B x?POSINT)
(QUOTIENT (PLUS (MINUS <B) ((BREADTH PLUS MINUS) (SQRT <POSINT)))
(TIMES 2 <A)))

However, the earlier clause precomputing the SQRT of POSINT in a
LLOCAL 1is preferable for efficiency reasons because wunder FIT-1's
evaluation strategy ((BREADTH PLUS MINUS) (SQRT <POSINT)) would

immediately normalize to (BREADTH (PLUS (SQRT <POSINT)) (MINUS (SQRT
<POSINT))), so that (SQRT <POSINT) would be evaluated twice.

8.3 Fermat's Last Theorem

The FERMAT example shows that for some relations there is no known
algorithm which wuses them in one way, whereas there is an algorithm
which uses them in another way. Let us begin with a trivial example
often wused to 1illustrate relational programming (Kowalski 1979) and
constraint systems (Sussman and Steele 1980), namely the equation
X +Y =2
which in PROLOG is written as a relation

plus(X,Y,Z).

Since this equation can be regarded as X1 + Y1 = 21, Fermat's
equation might seem to be just a little bit more general. It is

XN+ YN = 2N

and 1s considered as a relation

fermat(X,Y,Z,N).

To simplify the following discussion we presuppose that X, Y, Z, as
well as N, are non-negative integers [not all PROLOGs have negative
integers]. The relation «call fermat(4,3,5,2), for 1instance, should
succeed because 4 2 + 372 = 572, But what about calls with request
variables like fermat(4,3,5,N) and fermat(X,Y,Z,2)? Although both may
look harmless, in general we can only define the former use of the
fermat relation [X, Y, and Z are fixed -- N is openl], not the latter
use [X, Y, and Z are open -- N is fixed]. In other words, 1f we split
the fermat relation into two functions ferm and ferm-I [here, X, Y, 2,
and N denote the set of non-negative integers; the empty set, {1},
denotes explicit failurel

ferm: X x Y x Z -> NU { {} }
ferm-I: N -> powerset(X x Y x Z}

these can be called with specific arguments as in ferm(4,3,5) = 2 and
ferm-1(2) = {(4,3,5), ...} [for the argument N=2 ferm-I is infinitely
non-deterministic; cf. section 3.1]. In general, however, we know only
that ferm 1is computable, but don't know whether ferm-I is. The former
is demonstrated below; the latter is the case because there still is no
known proof or disproof of "Fermat's last theorem”, stating that for an
integer N>2 the equation

XN + Y'N = Z°N

has no solution in integers all different from 0 (Ribenboim 1979), i.e.
no ‘non-null solution’'. So the relational representation of the Fermat
equation will lead to a severe problem [a not generally usable relation
fermat must be introducedl], not arising in 1ts functional
representation [a generally usable function ferm can be introduced
without at the same time introducing a not generally usable function
ferm-1].

To find N or to yield a failure if none exists for arbitrary given
X, Y, and Z a relational PROLOG program can be defined.

For this we first construct the underlying algorithm which relies on
the following observations. Since for X>Z or Y>Z there clearly can be
no non-null solution, we can presuppose X<Z and Y<Z. Now we can show
two facts.

1. If a Z exponentiation once became greater than the sum of the X and
Y exponentiations, it will vremain greater for all higher exponents,
l.e.

if 2°N > XN + Y'N then Z"N+1 > X N+1 + Y 'N+1 for all N

This can be seen very easily. Assuming Z'N > X'N + Y'N and multiplying
it with Z we get

Z°N+1 = Z*Z°N > Z*[X'N + Y NI Z*XN + Z*xY'N
Since Z>X we get

2XX°N + ZXY'N > X*X N + Z*Y'N

Similarly, since 2>Y we get

X*X'N + ZXY'N > X*X'N + YXY'N = X'N+1 + Y 'N+1

2. 2°N grows faster with N than X'N + Y N does, i.e.

there exists an integer N' such that Z'N > X'N + Y'N for all N>N'.

This can be shown by the following elementary transformations. We can
assume without 1loss of generality that X2Y. Z'N can be rewritten as
[X + DI'N with D>1 because 2Z>X. The binomial theorem gives us
[the binomial coefficients are defined by binco(N,K) HE
N*[N-13*[N-21*. . . x[N-K+1] / 1%x2%x3 ., *K]

(X + DI'N = X'N + binco(N,1)*X [N-11*D + binco(N,2)*X [N-21*D"2 +
+ binco(N,N-1)*X*D"[N-1] + D°N

If we omit the terms of the sum from binco(N,2)*X [N-21*D"2 we get
Z°N = [X + DI'N > X'N + binco(N,1)*X " [N-11*D = X N + N*X [N-11*D
Since D>1 we get

XN + NXX"[N-11*D > X'N + N*X'N-1

If we set N'=X then for all N>N’

Z°N > X'N + N¥*X"N-1 > X'N + X*X'N-1 = XN + X'N

Since X2Y

XN + X'N > X'N+ YN

Using these facts we get the following concise but inefficient
algorithm in ALGOL-like notation.

if X2Z or Y>Z then fail ;

N := 1 ;

while X'N + Y'N > Z'N do N := N+1 ;
if X'N + Y'N = Z'N then N else fail

Fact 2 ensures termination of the while loop.
Fact 1 permits the fail in the else case, i.e. if X'N + Y'N ¢ Z'N.

Now, the algorithm can be rewritten into a more efficient PROLOG
program, which accumulates exponentiations instead of recomputing them.

fermat(X,Y,Z,N) :-
nonvar(X), nonvar(Y), nonvar(z), X<z, Y<Z,
XY is X+Y, fermat2(X,Y,Z,X,Y,XY,Z,1,N).

fermat2(X,Y,Z,XX,YY,XXYY,ZZ,M,N) :-
XXYY=2Z, N is M.

fermat2(X,Y,Z,XX,YY, XXYY,2Z ,M,N) :-
XXYY<2z, fail.

fermat2(X,Y,Z,XX,YY XXYY,2Z ,M,N) :-
XXYY>ZZ, XXX 1s XX*X, YYY is YY*Y, XXXYYY is XXX+YYY, Z22Z is 22*Z,
M1 is M+1, fermat2(X,Y,Z, XXX,YYY, 6XXXYYY,Z2Z2Z M1 ,6N).

If none of X, Y, and Z is an [open] variable and both X and Y are less
than 2 the fermat program calls the auxiliary tail-recursive relation
fermat2. The arguments of the fermat2 program are the original
variables X, Y, and 2Z, variables XX and YY for accumulating X and Y
exponentiations, a variable XXYY for storing the sum of XX and YY, a
variable 2ZZ for accumulating the Z exponentiations, a variable M for
holding the current exponent, and the original variable N for handing
the found exponent back to fermat. The initial fermat2 call essentially
uses XXYY=XY=X+Y and M=1. The use of its nine arguments reduces the
task of fermat2 to a simple case analysis on the relationship between
XXYY and 22Z.

If XXYY=2Z then the current value of M 1is the exponent sought for
(obvious] and is assigned to N.

If XXYY<ZZ then this relationship would also hold for all subsequent
recursions with higher exponents [fact 1] and a failure can be
generated.

If XXYY>ZZ then XXYY will become equal to or 1less than ZZ for some
higher exponent [fact 2] and fermat2 is called recursively. This call,
apart from the original X, Y, and Z variables, could use the variables
XX:=XX*¥X, YY:=YY*Y, XXYY:=XX+YY, 22:=22*%2, and M:=M+1, if PROLOG's
single-assignment property wouldn't enforce the use of new intermediate
variables XXX, YYY, XXXYYY, ZZzZ, and M1, respectively.

To find X, Y, and Z or to yield a failure 1if none exist " for
arbitrary given N no PROLOG program is known, however.

fermat(X,Y,Z,N) :- nonvar(N), ... unknown method

A functional FIT program that finds N or yields jF 1f none exists
for given X, Y, and Z can be defined thus:

(>(FERM ?2X ?Y ?2)
(LOCAL (LESSP <X <2Z)
(LESSP <Y <2Z)
(FERM2 <X <Y <Z <X <Y (PLUS <X <Y} <Z 1)))

(VIFERM2 ?X ?Y 2Z ?XX ?YY 2?XXYY 22Z ?N)
(LOCAL ul(EQ <XXYY <2Z) : <N)) ’

(VIFERM2 ?X ?Y 72 ?XX ?YY ?XXYY ?2Z ?N)
(LOCAL u(LESSP <XXYY <2Z) : 3jF))

(V(FERM2 ?X ?Y 72 ?2XX ?YY ?XXYY ?2Z ?N)
(LOCAL u(GREATERP <XXYY <22Z)

(LOCAL (>XXX (TIMES <XX <X))
(>YYY (TIMES <YY <Y))

(FERM2 <X <Y <Z <XXX <YYY (PLUS <XXX <YYY)
(TIMES <ZZ <Z) (ADD1 <N)))))

This works like the corresponding PROLOG fermat program, except for the
following differences. The FIT FERM program directly nests (PLUS <X <Y)
into its FERM2 call instead of first introducing an intermediate
variable XY to transport X+Y into the call as done in PROLOG. Also,
FERM needs no M variable because N, not being used for holding a
request wvariable, <can itself be used for exponentiation accumulation.
Then, in the case XXYY=ZZ FERM2 returns N instead of assigning M to N.
For XXYY<ZZ it yields jF to signal that no N exists [here FIT's jF is
clearer than PROLOG's fail, which could also mean, like jU, that it is
unknown whether an N exists]. If XXYY>ZZ only two additional variables
XXX and YYY are used instead of five in the PROLOG version (in FIT even
these are only for efficiency, avoiding two additional multiplications,
whereas in PROLOG three further variables are necessary because
nestings like fermat2(X,Y,Z XXX, YYY, XXX+YYY,22*%Z ,M+1,N) are not
allowedl.

The above case analysis by EQ, LESSP, and GREATERP <calls in LOCAL
hodies corresponds to clauses with constraints on the FERM2 invocation
pattern [cf. section 6.3]. In FIT, such constraints can also be put
directly into an invocation adapter, here constructed by putting the
functions EQ, LESSP, and GREATERP into the invocation pattern. In this
way, the FERM2 definitions can be shortened to

(v(FERM2 ?X ?Y ?Z ?XX ?YY EQ ?N) <N)
(VIFERM2 ?X ?Y ?Z ?XX ?YY LESSP ?N) 3F)

(V(FERM2 ?X ?Y ?Z ?XX ?YY (COMPOSE GREATERP ?XXYY ?ZZ) 7?N)
(LOCAL (>XXX (TIMES <XX <X))
(>YYY (TIMES <YY <Y))

(FERM2 <X <Y <Z <XXX <YYY (PLUS <XXX <YYY)
(TIMES <ZZ <Z) (ADD1 <N)I)))

The GREATERP function is composed with the original variables XXYY and
22 because the value of ZZ is needed in the body.

A functional FIT program that finds X, Y, and Z for given N would be
something completely separate from the above FERM function [namely the
non-deterministic inverse function FERM-I1. That FERM-I cannot be
defined doesn’'t restrict the applicability of the FERM function,
whereas the non-definability of the corresponding relation wuse does
restrict the applicability of the fermat relation.

It has often been pointed out in the PROLOG literature that the cut
operator (Clocksin & Mellish 1981) and the execution order (Kowalski
1983) obstruct the multiple useability of relations; what seems to be
less well known is the fact that even without any cut and with any
conceivable execution strategy some relations cannot be wused in a
multiple manner. In the 1latter case the problem resides 1in the
relational formulation [in the "logic’'] itself, not in a particular
deduction procedure [in a ‘'control’] working on it. Let us further
reformulate our point in Kowalski's terminology: Not only in PROLOG but
even 1in logic programming [(which is more pure because it 1is cut-less
and non-sequentiall], there are programs for which invertibility, as
defined by "This characteristic of logic programs, that it is possible
to find any individual in a relationship with other individuals, 1is
called Jynvertibility.” (Kowalski 1983), cannot be achieved.

The original source of the fermat problem can be traced back to the
fact that in PROLOG Fermat's equation, like every top-level assertion,
can only be formulated as a relation, fermat, not as a function, ferm;
an illegitimate ferm-I use of this relation could only be prevented by
superimposed “"mode declarations” (Warren et al. 1977) [(normally wused
for enhancing compiler efficiencyl, which are extraneous to the
relational formalism. The fermat example is thus a signal cautioniny
against indiscriminate relational programming. This specializes the

original interpretation of Fermat's last theorem for specification
languages, namely that “"there will never be a “solution” to the
automatic programming problem” (Feldman 1972), also adopted in

(Leavenworth & Sammet 1974).

9 REFERENCES
Aida, H. & Tanaka, H. & Moto-oka, T.: A Prolog extension for handling
negative knowledge. New Generation Computing 1(1), 1983, 87-91.

Backus, J.: Function-level computing. IEEE spectrum, August 1982,
22-21.

Bellia, M. & Degano, P. & Levi, G.: The call by name semantics of a

clause language with functions. In: (Clark & Taernlund 1982),
'281-295.

Bendl, J. & Koeves, P. & Szeredi, P.: The MPROLOG system. In:
Taernlund, S.-A. [Ed.]: Proceedings of the Logic Programming

Workshop, Debrecen, Hungary, 1980, 201-210.

Bibel, W.: Knowledge representation from a deductive point of view.
Technische Universitaet Muenchen, Institut fuer Informatik, Projekt
Beweisverfahren, Bericht ATP-19-V-83, May 1983. Also in: Proc. IFAC
Symposium on Artificial Intelligence, Leningrad, Oct. 1983, Pergamon
Press, to appear.

Boley, H.: Processing directed recursive labelnode hypergraphs with FIT
programs. Univ. Hamburg, FB Informatik, I[FI-HH-M-81/80, Sept. 1980.

Boley, H.: Artificial intelligence languages and machines. Univ.
Hamburg, FB8 Informatik, IFI-HH-B-94/82, Dec. 1982. Final version in:
Technology and Science of Informatics 2(3), May-June 1983.

Boley, H.: From pattern-directed to adapter-driven computation wvia
function-applying matching. Univ. Kaiserslautern, FB Informatik,
Interner Bericht 81/83, MEMO SEKI-83-06. Also 1in: GI - 13.
Jahrestagung, Hamburg, Oct. 1983, Springer 1983.

Bowen, K.: Programing with full first-order logic. Machine Intelligence
10, 1982, 421-440.

Chikayama, T.: ESP - extended self-contained PROLOG - as a preliminary
kernel language of fifth generation computers. New Generation
Computing 1(1), 1983, 11-24.

- 95 -

Clark, K. & Ennals, J. & McCabe, F.: A micro-PROLOG primer. Logic
Programming Associates Ltd., 36 Gorst Rd., London SW11 6JE, England,

April 1982.

Clark, K. & Gregory, S.: A relational language for parallel
programming. Proc. of the Conference on Functional Programming
Languages and Computer Architecture, ACM, October 1981, 171-178.

Clark, K. & Taernlund, S.-A. [Eds.]: Logic programming. Academic Press,
London, 1982.

Clocksin, W. & Mellish, C.: Programming in Prolog. Springer-Verlag,
Berlin Heidelberg New York, 1981.

Colmerauer, A: Prolog in 10 figures. Proc. 8th TJCAI-83, Karlsruhe,
Aug. 1983, 487-499.

Conery, J. & Kibler, D.: Parallel interpretation of logic programs.
Proc. of the Conference on Functional Programming Languages and
Computer Architecture, ACM, October 1981, 163-170.

Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of
programs. CACM 18(8), Aug. 1975, 453-457.

Eggert, P. & Schorre, D.: Logic enhancement: a method for extending
logic programming languages. Conference Record of the 1982 ACM
Symposium on LISP and Functional Programming. Pittsburgh, Penn.,
August 1982, 74-80.

Feigenbaum, E. & McCorduck, P.: The fifth generation: Artificial
intelligence and Japan's computer challenge to the world.
Addison-Wesley, Reading, 1983.

Feldman, J.: Automatic programming. Stanford University, Computer
Science Department, CS-255, Feb. 1972.

Feldman, J. & Low, J. & Swinehart, 0., Taylor, R.: Recent developments
in SAIL - An ALGOL-based language for artificial intelligence. Proc.
AFIPS 1972 FJCC 41, 1972, 1193-1202.

Friedman, D. & Wise, D.: Functional combination. Computer languages,
Vol. 3, 31-35, 1978.

Fuchi, K.: Aiming for knowledge information processing systems. In:
Moto-oka, T. [Ed.]: Proceedings of the international conference on
fifth generation computer systems. Tokyo, October 1981. North-Holland
1982, 101-11¢4,

Fuhlrott, 0.: PROLOG als Datenbank- wund Programmiersprache. Univ.
Hamburg, FB Inform., Oberseminar Datenbanken und Informationssysteme,
Nov. 1982.

Fuhlrott, 0.: personal communication. Hamburg, December 1983.
Fuhlrott, 0.: A personal bibliography on 1logic programming, PROLOG,

databases. 0.Fuhlrott, Bekassinenau 92, D-2000 Hamburg 73, W.Germany,
1984 .

Hansson, A. & Haridi, S. & Taernlund, S.-A.: Properties of a logic
programming language. In: (Clark & Taernlund 1882), 267-280.

Henderson, P.: Functional programming. Application and implementation.
Prentice-Hall International, London 1980.

Hewitt, C. & de Jong, P.: Analyzing the roles of descriptions and
actions 1in open systems. Proc. AAAT-83, Washington, Aug. 1983,

162-167.

Hilbert, D. & Bernays, P.: Grundlagen der Mathematik 1T7.
Springer-Verlag, Berlin Heidelberg 1939, Zweite Auflage 1970.

Hussmann, M.: personal communication. Hamburg, November 1983.

Jaffar, J. & Lassez, J.-L. & Lloyd, J.: Completeness of the negation as
failure rule. Proc. 8th TJCAI-83, Karlsruhe, Aug. 1983, 500-506.

Kahn, K.: Unique features of Lisp Machine Prolog. Uppsala Programming
Methodology and Artificial Intelligence Laboratory, UPMAIL Technical
Report No. 15, 1983-02-14.

Kornfeld, W.: Equality for Proloyg. Proc. 8th IJCAI-83, Karlsruhe, Aug.
1983, 514-519.

Kowalski, R.: Logic for problem solving. North-Holland, 1979.
Kowalski, R.: Loglic programming. Proc. IFIP 83, Paris, 1983, 133-145.

Kurokawa, T.: LOGIC PROGRAMMING -- What does it bring to the software
engineering? In: VanCaneghem, M. (Ed.]: Proceedings of the First

International Logic Programming Conference. Marseille, Sept. 1982,
134-138.
Landin, P.: A correspondence between ALGOLGO and Curch's

lambda-notation: Part I. CACM Vol. 8, No. 2, Febr. 1965, 89-101.

Leavenworth, B. [Ed.]: ACM SIGPLAN symposium on very high level
languages. March 1974, Santa Monica, Ca., SIGPLAN Notices 9(4).

Leavenworth, B. & Sammet, J.: An overview of nonprocedural languages.
In: (Leavenworth 1974).

McDermott, D.: The PROLOG phenomenon. SIGART Newsletter, No. 72, July
1980, 16-20.

McDermott, J. & Forgy, C.: Production system conflict resolution
strategies. In: (Waterman & Hayes-Roth 1978).

Nakashima, H. & Suzuki, N.: Data abstraction in Prolog/kKR. New
Generation Computing 1(1), 1983, 49-62.

Nebel, B.: personal communication. Hamburg, September 1983.
Newell, A.: Production systems: Models of control structures. In:

Chase, W. [Ed.]: Visual information processing. Academic Press, 1973,
463-526.

- 97 -

0'Keefe, R.: PROLOG compared with LISP? SIGPLAN Notices 18(5), May
1983, 46-56.

Ribenboim, P.: 13 lectures on Fermat's last theorem. Springer-Verlag,
New York Heidelberg Berlin, 1979.

Robinson, J. & Sibert, E.: The LOGLISP wuser's manual. School of
Computer and Information Science, Syracuse University, December 1981.

Robinson, J. & Sibert, E.: LOGLISP: an alternative to PROLOG. Machine
Intelligence 10, 1982, 399-419.

Rulifson, J. & Derksen, J. & Waldinger, R.: QA4: A procedural calculus
for 1intuitive reasoning. Stanford Research Institute, AI Center,

Technical Note 73, Nov 1972.

Sato, M. & Sakurai, T.: Qute: A Prolog/Lisp type 1language for logic
programming. Proc. 8th IJCAI-83, Karlsruhe, Aug. 1983, 507-513.

Shapiro, E.: Methodology of logic programming research. Logic
Programming Workshop, Portugal, 1983.

Shapiro, E. & Takeuchi, A.: Object oriented programming in Concurrent
Prolog. New Generation Computing 1(1), 1983, 25-48.

Siekmann, J. & Szabo, P.: Universal unification. In:
Wahlster, W. [Ed.]: GWAI-82, Bad Honnef, Sept. 1982,
Informatik-Fachberichte 58, Springer-Verlag, 102-141.

Stefik, M. & Bobrow, D. & Mittal, S. & Conway, L.: Knowledge
programming in LOOPS: Report on an experimental course. The Al
Magazine 4(3), Fall 1983, 3-13.

Sussman, G. & Steele, G.: CONSTRAINTS - A language for expressing
almost-hierarchical descriptions. Artificial Intelligence 14, 1980,
1-39.

VanEmden, M.: McDermott on Prolog: A rejoinder. SIGART Newsletter 173,
October 1980, 19-20.

Warren, D.: Higher-order extensions to PROLOG: are they needed? Machine
Intelligence 10, 1982, &441-454.

Warren, D. & Pereira, L. & Pereira, F.: PROLOG - The language and its
implementation compared with LISP. Proc. Symposium on Artificial
Intelligence and Programming Languages. SIGPLAN Notices 12(8),
Special Issue, August 1977, 109-115.

Waterman, D. & Hayes-Roth, F. [Eds.]: Pattern-directed inference
systems. Academic Press, 1978.

Weinreb, D. & Moon, D. & Stallman, R.: LISP machine manual. Fifth
edition. MIT, AI Lab., Jan. 1983.

Winston, P. & Horn, B.: LISP. Addison-Wesley, Reading, 1981.

