AL NN

IN MECHANICAL

Oktober 1984

ENGINEFRING
Peter Raulefs

MEMO SEKI-84-08

[as
(e
L
v
=
[}
—
(¥
>
v
—_
o
L
(a8
>
)
(o
c
=
(em)
—
=
=
c
=
<
L

CONCEPTIONAL DESIGN

AuBwign) A\ 'L LISINB(SIBSIEY 0G.9-0 o
6708 uoepiSod W3IwW
UJaINe[sIasiey 1BHSIaAIuN ==
MIIBLWIO4U| YDI813qyoe -:um

CONTENTS

Abstract

1. Introduction

2. A Model of Construction and Conceptional Design
2.1. Construction in Mechanical and Software Engineering
2.2. A Model of Computer-Aided Conceptional Design

3. Reasoning on Time and Causality

3.1. Requirements on Representing Time and Causality
3.2. Interval Structures

3.3. Event and Situation Structures

3.4. Reasoning Techniques

4. Non-Monotonic Reasoning (NMR)

4,1. Formal systems
4,2. NMR-calculi on formal systems

5. A Theory of Qualitative Reasoning (QRT)
5.1. Objectives
5.2. Principles

5.3. QRL: A Language for Qualitative Reasoning

6. References

16

16
18

24
26

29

29
29

31

31

33

41

52

Abstract

A theory of qualitative reasoning on physico-technical systems is
developed. Particular results include

® an approach to reasoning on time and causality combining

state- and event-based approaches allowing concurrent time

structures.
® the multiple view technique which allows to represent, reason
about, and relate different views of time scales and other

physical dimensions with respect to e.g. precision and
granularity. Precise quantitative models appear as particular
views, so that conventional mathematical reasoning can be
incorporated in our approach. l

® representing physico-technical systems in terms of objects
with internal states, processes denoting consecutive and/or
concurrent structures of state transitions (events), and
meta-processes for expressing teleological considerations.
This approach is summarized in terms of the
qualitative reasoning language QRL which, in addition,

provides various aggregation and abstraction mechanisms on
objects and processes.
© an approach for applying non-monotonic reasoning techniques

to the design of physico-technical systems.

These results provide a foundation towards mechanizing the
construction process in mechanical engineering: QRL supports the
phases of requirements definition and specification, as well as
conceptional design in a way which is refinable to material
design as supported by CAD-systems.

1. Introduction

The central methods for building expert systems differ for
different fields of applications, allowing the following taxonomy
of fields:

(1) INTERPRETATION SYSTEMS are -aimed at interpreting
findings, i.e. sensory or other observations about the
state of a system to derive propositions about past,
present, and future states of the system. Examples of
such propositions are identifying faults and their
causes (diagnosing), justifying why particular states
or state sequences occur, and what future developments
can be predicted.

(2) CONFIGURATION SYSTEM put together configurations of
actions (planning) or objects to achieve a particular
goal, such as a procedure transforming initial into
goal states, or assembling parts to a machine which
performs some given task.

(3) CONSTRUCTION SYSTEMS perform the task of devising
methods to solve problems described in terms of
intended functional behaviors. Such a method may be
realized in terms of a program as well as a machine in
mechanical engineering.

(4) TUTORING SYSTEMS help to acquire a particular body of
knowledge which is to be incorporated into the thinking

structures of the students.

The fact that much more rapid progress in developing expert
systems has been achieved for interpretation rather than
configuration and construction systems is apparently due to a

simpler control structure of interpretation systems:

e Interpretations of findings are derived from chaining primarily
local observations which associate findings and intermediate
stages of interpretations with consequences. Such associations

either express compiled knowledge, i.e. heuristic resp.

judgmental knowledge based on shallow models, or they are based
on deep models in which functional and causal relationships are

explicitly represented.

Configuring and construction requires additional mechanisms on
top of chaining local decisions: There is always some overall
goal, or even hierarchies of overall goals so that 1local
associations must be made with simultaneously pursuing ways for
achieving the overall goals. If Tlocal and global decision
making is in conflict, additional mechanisms such as
backtracking, constraint propagation and reasoned revisions of

beliefs are required.

The purpose of this paper is to contribute to the development
of expert systems for mechanizing the process of construction
in mechanical engineering. Present approaches towards a
systematic construction process can be summarized in four
successive phases [Hansen 74, Koller 71, Pahl/Beitz 76,
Rodenacker 76, Roth 68, Yoshikawa 83]:

I. Problem clarification

II. Conceptional design

III. Detailed design

IV. Elaboration of the detailed design
Phases III and IV are currently supported by CAD/CAM-systems
which mechanize the drawing board together with catalogues of
pre-fabricated parts. Our work strives for providing mechanical
support of phases I and II which incorporate the core of what
is creative about construction, i.e. the invention of new
technical mechanisms and the synthesis of such mechanisms for
achieving a desired functional behavior. As far as it is known
to us, there is no previous work in this area, except for
attempts in mechanical engineering to systematize the

construction process.

Conceptional design is exclusively concerned about the
qualitative properties of technical systems and ignores
quantitative aspects such as geometrical measures, material

properties, etc. Hence, progress in this area requires
solutions for the following problems:
® Qualitative reasoning: How do we represent

- the way a technical system is assembled from its parts,
- qualitative properties of parts and the way such properties
interact to forming properties of the entire system, and
- the functioning of parts and their interaction towards the
functioning of the whole?
How can we reason on such representations to derive, judge and
explain properties detailing how and why a technical system
functions? As such qualitative representations and reasoning
form a basis towards mechanizing phases I and II of the
construction process, it is essential that they can be refined
into quantitative representations and reasoning as done in
CAD/CAM-systems and mechanical engineering anyway.

® Non-monotonic reasoning (NMR). Conceptional design is very much

a trial and error process. Approaches are pursued under
assumptions which may turn out to be wrong as a result of

elaborating them. Techniques of non-monotonic reasoning must
therefore be extended to the representations and mechanisms of

qualitative reasoning.

2. A Model of Construction and Conceptional Design

Construction in mechanical engineering is a task which has
methodological similarities with program development in software
engineering. Some of the standard textbooks in construction
theory of mechanical engineering [Hansen 74, Koller 71,
Pahl/Beitz 76, Roth 68] decompose the construction process into
phase models which we very roughly summarize in three major
phases:

A. Requirements definition and specification. The task to be
solved is clarified in terms of functional, performance,
material, and economical requirements. Except for
structured charts and tables, no formal means (for

mechanical processing) for expressing such requirements

have been developed so far.

B. Conceptional design. This phase produces principle solutions
exhibiting the required functional behavior qualitatively,
j.e. without detailing geometrical measures, materials, etc.
Different solution variants are evaluated, and decisions for

selecting an optimal one are made.

C. Material design. The result of this phase is a detailed
design containing all information required for a subsequent

material realizatfon. As this phase is a major working area
for mechanical engineers, it is often elaborated into more
detailed phases. The current widespread CAD-systems support
this.phase by transferring the drawing board to the

computer.

It is interesting to note that in its short period of existence,
software engineering has come up with much more sophisticated,
precise, and mechanizable models of program development. For an
objective to contribute towards a mechanization of construction
in mechanical engineering, it turned out that concepts from

software engineering can be fruitfully applied. This is briefly
explored in section 2.1. Section 2.2 then concentrates on the
central issue of this paper and introduces a model for computer-
aided conceptional design.

2.1. Construction in Mechanical and Software Engineering

We consider the software development cycle as indicated in Fig.
2-1 [Beierle et al. 83]. In contrast to traditional approaches,
it has been the contribution of AI programming methodology to
show that methods of "structured top-down design" are unfeasible
for complex systems, and that program development should include
all phases simultaneously, supported by appropriate programming
environments. We therefore propose in [Raulefs 84] to realize the
development cycle of Fig. 2-1 by a spiral of program development
triads as indicated in Fig. 2-2.

l

ARequirements Definition

Validation

~<
\
N validation
Y

Formal

Specification¥\ A
~ A

Validation

2

~N
~

~
~»

\Algorithm and Data Type Design

Prototype

Validation

JImp]ementation }

Validation /

1

i
Adaption

Maintenance_

N

S

Fig. 2-1

Methods exist for supporting the mechanization of all

the above development cycle
formal

Software Development Cycle

phases of

[Beierle at al.

and knowledge-based techniques.

10

83],

using both

'\Program//)~““““*“”‘"‘”“““”““'“\ Prototypes

Program Development Triad

Development Spiral
Fig. 2-2. Program Development Triad and Spiral

A crucial reason for the failure of the "structured top-down

approaches" is the fact that the development itself Teads to
revisions in earlier stages. In particular, requirements and

specifications usually fail to anticipate all what is expected
from the program under construction, as this is often revealed

when observing the behavior of an initial version under operating
conditions. In other words, software development is an inherently

non-monotonic process.

Similar observations apply to mechanical engineering. The
construction process has the following analogies to software
development:

® Requirements definition and specification is common to both

areas.
e Algorithm and (abstract) data type design corresponds to

conceptional design.
e Implementation corresponds to a combination of material design

and manufacturing.

11

Apparently, there are in particular two areas where construction
methodology in mechanical engineering could benefit from software
construction methods:

(1) Requirements definition and specification: Mechanical

engineering currently completely lacks mechanisms to formally
represent the architecture, structure, function of components
and their interaction, and properties of technical devices in
an integrated framework so that both such concepts as well as
relationships can be mechanically reasoned about. We claim
and provide evidence that algebraic software specification
languages provide excellent facilities for developing such

representations.

(2) Conceptional design: A language for qualitative representation

of architecture and function of technical devices together
with mechanisms for reasoning about such representations

would provide a facility to

- decompose a problem definition into subtasks, resulting
in a functional model of the problem structure
(subproblems and their functional relationships),

- represent and extract basic solution approaches from
appropriate knowledge bases,

- integrate principle solutions of subtasks to conceptional
variants (corresponds to module integration),

- improve variants by concretizations and optimizations,
- evaluate and decide on conceptional variants.

12

2.2. A Model of Computer-Aided Conceptional Design

The above considerations suggest to learn from mechanisms
developed for knowledge-based program construction when setting
up a framework for conceptional design in mechanical engineering.
Such a framework is based on a number of observations and
principles which we discuss first.

2.2.1. Priniciples

(1) The paradigm of proceeding from non-constructive to

constructive descriptions. We describe technical systems in terms
of objects constituting their components, and processes denoting
histories i.e. sequences of state changes in the objects

involved. A non-constructive description details objects and
processes with their constituents without saying how state

changes and histories are actually executed. In contrast, a
constructive specification can be executed, producing a history

from a given initial state.
A requirements definition (informal) and a specification (formal)

provide a non-constructive problem definition in describing
devices in terms of their functional behavior and intended

properties of their performance. The objective of conceptional
design is to develop constructive solutions which can be obtained

by gradually refining non-constructive descriptions into
constructive designs.

(2) The requirement of a vocabulary of technical concepts. To

describe the problem of e.g. designing a transmission, we need a
sufficcient vocabulary of notions to say what a transmission is
actually about: A transmission transforms one form of motion into
another. Hence, we need to describe both forms of motion and the
way both motions should be related. Moreover, both forms of
motion are carried by concrete physical objects, such as a shaft
and a wheel. This implies that part of the problem definition is
a description of the physical environment into which the device

13

to be constructed is to be incorporated. In summary, a problem
definition describes a technical system where some components
(the existing environment) are described constructively, and
others (to be designed) are specified non-constructively. Both
require a vocabulary of technical concepts and mechanisms for

reasoning about them.

(3) Qualitative-to-quantitative refinement. Conceptional design

is primarily concerned about qualitative descriptions and
qualitative reasoning about them. Mechanisms must be provided for
refining qualitative into detailed quantitative designs so that
conceptional design systems provide input into CAD-systems.

(4) Abstraction requirement. As conceptional design is intended
to produce principle solution, problem descriptions resp.

solutions must be general enough to
- allow to devise a variety of design variants

- allow tailoring both problem definitions and solution variants
to specific situations.

2.2,2. A Framework for Conceptional Design

Fig. 2-3 summarizes our model for conceptional design. The table

merely lists the major building blocks without reflecting the
control structure providing substantial facilities for interative

revisions and refinements. It is a crucial requirement to conduct
the entire design process within the uniform language environment

of QRL which is expressive enough to support all levels from
abstract problem descriptions down to representations of concrete

systems.

14

Language Phase Result Tool(s)
graphics, System Analysis, Description of (editors)
technical NL Requirements intended system
Definition
QRL Specification Specification QRL-system
and (abstraction (editor,
Abstraction and potential interpreter,
refinements) reasoner,
explainer)
QRL Decomposition Specification QRL-system
into Subtasks
QRL Design of Conceptional domain
principle subtask-variants specific
solutions for expert
subtasks systems
QRL Evaluation of Properties about QRL-system
subtask variants subtask variants and critic
QRL Subsystem Conceptional QRL-system
integration variants of
entire system
QRL Evaluation of Selected principle critic with
system variants solution QRL-system
and variant
selection
QRL Optimization Optimized knowledge-
principle based
solution optimizer

Fig. 2-3 Model

of Conceptional Design

with
system

QRL -

3. Reasoning on Time and Causality

3.1 Requirements on Representing Time and Causality

Time and causality are closely related. Basic to our model is the
elementary notion of an event denoting observable changes of the
state of a system. Time becomes observable because of events
occurring at different instances of time. An event e; may cause
another event e, so that it is observable that e; occurs before
ep. However, any ordering of time depends on observable causal
relationships between events: if e, is not caused by e, the only
way to observe that e, occurs before e, is to observe e,

simultaneously with some event e which causes another event e?
observed simultaneously with e, (note that e, and ei, and e,

and/or e and e may be equal). Hence, different unrelated
systems necessarily have independent time scales, and events

occur concurrently.

Previous work on modelling and reasoning about time consists of
two categories:

e State-based approaches take states to be elementary and
observable. Events are caused by actions described as state

transformations which are not observed. Hence, time is
observed as a sequence of states wusually attributed to

instants of time [Sacerdoti 77]. This has been extended to
situations [McDermott 82] and states persisting over time

intervals having a more or less certain extension [Allen 83].

© Event-based approaches take events to be elementary and
observable, e.g. by describing time as a sequence of chains

of state transitions denoting the state change effected by
the events having occurred [Kahn, Gorry 77].

[A11en 83] postulated three major requirements for models of
time:
(1) The postulate of uncertainty. The representation must allow

for uncertainty w.r.t. two aspects:
- The time scale need not consist of precisely quantifiable

dates and relationships between dates. Instead, vague
notions for relationships between instances and intervals
such as "long before", "much later", etc. must be
accounted for.

- Vague notions for time spans such as "a pretty short time"
must be available.

16

(2)

The postulate of variety in granularity. Depending on the

context being reasoned about, particular spans of time may be
short or extremely long, like a millenium being looked at as
an instant in paleontology although it is:-longer than all of
modern history.

The postulate of persistency. The model must account for

properties being persistent, i.e. if it holds over a period
of time, it will also hold later on unless explicitly

negated. Persistency substantially reduces storage
requirements when maintaining all of, or only aspects of

states over a period of time.

The above dicussion indicates the importance of additional
postulates:

(4)

(5)

The postulate of time-causality linkage. Any ordering on time

scales must be related to causal relationships between events
s.t. one event causing another implies that the cause occurs

before the effect.

The postulate of concurrency. The model must represent

concurrency of events and time scales.

We claim that the model presented in this section fully satisfies

all

of these requirements.

17

3.2. Interval Structures

To satisfy the above postulates except for (3-persistency), time

is represented by a set Intv of intervals which is
e doubly partially ordered by the partial orders

<" s.t. I, < I, stands for "interval I; is earlier than

interval I2", and ’

"c" s.t. Iy ¢ I, stands for "interval I; is during interval
12"-

Intervals not comparable under < are concurrent.

® associated with functions relating intervals to extensions

and distances.
Interval structures are obtained by composing intervals

sequentially and/or concurrently.

Notation. I(p) stands for the sequence (I1,12,000,1n) resp. the

set {11’12"f"1n} as it is evident from the

corresponding context.

3.2.1. Intervals

(Intv,<,c) is a doubly partially ordered set, and
® beg,end: Intv » Intv map intervals to their beginning resp.
end.
® dist: Intv x Intv » Ext measures the distance between
<-comparable intervals.

® ext ¢ Intv x Ext relates intervals to notions of temporal
extensions.

3.2.1.1. beg-end laws. The functions beg and end are required to
satisfy the following laws for any intervals I,Il,Iz e Intv,

[beg-end 1] beg(I) < end(I)
{the beginning of an interval is earlier than its
end}

[beg-end 2] I; < I, <=> beg(I;) < beg(I,) & end(I;) < end(I,)
{If interval I1 is earlier than interval 12, then I1
and Io are in one of three relations:
seperated end(Il) < beg(Iz)

consecutive end(I,) = beg(Iz)

18

overlapping beg(I,) < end(Iq)}

[beg-end 3] a(b(I)) = b(I) for a,b e {beg,end}.
{The beginning/end of the beginning/end of an
interval 1is the beginning/end itself. I.e.

beginning and end of intervals are instances in the
sense that their beginning and end coincidel.

[beg-end 4] I, c I, <=> beg(Ip) < beg(I) & end(I1) < end(Ip)
{I1 c I2 expresses that I1 is during 12}

Note that beg(I) = end(I) is sufficient to characterize I as an
instance without having any notion on the extension on intervals.
By [beg-end 2], I1 = I2 iff each beginnings and ends of I1 resp.
I, coincide, as "<" is a partial order.

3.2.1.2. Time lines. A sequence I(n with Wie(n-1).1; < I54q is
atime line. We require Intv to be gap-free on time lines, i.e.
for any intervals I},I§
I,<I, & end(Il)<beg I,) = }I.II<I< I,

& end(Iq) = beg(I) & end(I) = beg(Ip)

In this case, we call I to be the gap between Iy and Ip:
I = gap(Il,Iz). _

3.2.1.3. Extensions. Intervals describe both instances and
temporally extended time spans. The postulates (l-uncertainty)
and (2-granularity) are taken care of by introducing appropriate

notions of the extension of intervals. Leaving the choice of
particular notions up to specific applications, we postulate the

following minimal requirements to be satisfied by a set Ext of
notions of extensions:

[Ext-l](Ext,<) is a partially ordered set of notions of
extensions.
{Extensions should at least be partially comparable.}

[Ext-2] (0,pos) c Ext and 0 is minimum of Ext.
{Ext contains at 1least the extensions 0 and pos

("positive") with 0 < pos.}
[Ext-3] +: Ext x Ext » Ext is an addition operation s.t.

® + is associative and commutative
e x + 0 = x

19

® + is monotonic

® all <-comparable elements of Ext are closed under +
{+ is closed under any single view.}

[Ext-4] ext ¢ Intv x Ext is the extension relation satisfying
(1) ext is partitioned into multiple extension views

Eview = {exty,extp,...} s.t.’

® cach extension view ext is a function, and
ext = U Eview.

e the range of each extension view is linearly
ordered.

o (I,x) € ext & x #¥0 => (I,pos) e ext
{if some view assigns I a non-0 extension then it

is a "refinement" of pos}

The partitioning of ext into extension views may
therefore l1ook like this:

pos
1 2 34

Eview

(2) ext(I) = 0 <=> beg(I) = end(I) for any Ielntv.
{beg and end take the "finest" view, i.e. if

beginning and end of an interval coincide, then this
interval has extension 0 under any view.}

(3) (a(I1),0) € ext for Ielntv, ae{beg,end}
{Under some view, beg/end map to instances, but not

necessarily under every view.}

[Ext-3] ensures that addition of extensions of different
intervals is defined if they conform to the same view.

Partitioning ext into arbitrary views in [Ext-4] allows to have
different granularities and degrees of imprecision to exist.

Here, we leave open in what way different views might be
combined.

3.2.1.4, For <-comparable intervals, it is interesting to

determine how far they are apart. We therefore introduce a
distance function mapping pairs of intervals to temporal

extensions:
dist ¢ Intv x Intv x Ext is a relation s.t.

20

[dist-1] Iy # I, => dist(I7,I,) is undefined.
{Distances can only be determined for intervals of the
same time line.}

[dist-2] For any intervals I;,I, e Intv,
e if I, < I7 then dist(Iy,Ip) := dist(Io,I7).
{A distance is always determined from an earlier to a
later interval.}
o if I1 < I2
then a. beg(I) < end(Iy) => dist(I;,I2) = 0, and
{overlapping intervals have distance 0}
b. end(Il) < beg (12)
=> VextjeEview.extj[gap(I1,I2)] e dist(Iq,I2)
{the distance is determined as the
extension of the gap between intervals}

[dist-3] dist satisfies the triangle inequality under any
extension view:
dist(I7,I3) < dist(Iy,Ip) + dist(Ip,I3)
for any intervals Il’ 12 and I3 on the same time line.

Note: dist is only a quasi-metric on any particular view of ext
in the sense that dist(Il,Iz) =0 even if I, # I,

3.2.1.5. Interval structures. Intervals on the same time line can
be merged to intervals covering them. Intervals on different time
lines can be combined into an expression just describing their

concurrency. This gives us two combinators for merging and
conjoining ("join concurrently") which can be used to construct

expressions describing interval structures. The merge and conjoin
operations are defined in such a way that they require to
introduce the empty interval Inil as a neutral element w.r.t.
both operations.

The empty interval Inil. We require Intv to contain the empty
interval Inil with the following properties:

[Ini1-1] ¥IelIntv. Inil # 1
{Inil cannot be placed on any time line}

[Ini1-2] beg(Inil) = end(Inil) = Inil
{implies ext(Inil) = 0 by [Ext-4(3)]}

[Ini1-3] dist(Inil,I),dist(Inil,I) are undefined for any interval

21

I ¥ Inil
{any artificial definition for dist(Inil,I) results in

conflicts with the triangle inequality [dist-3].}

Merge. The merge operation ;: Intv x Intv » Intv is defined to
be a function with the following properties for any intervals I,

I; and Iy:

[Merge-1] I;;I, is undefined if I; ¢ I, unless I;=Inil or
12=In1'1
{only intervals on the same time line can be merged}.

[Merge-2] Inil;I = I;Inil = 1
{Inil is the identity for merging}

[Merge-3] If I; < I, with I;,I, # Inil then I;;I, ¢ Intv s.t.
(1) beg(Iy;1,) = beg(Iy), end(I;;I,) = end(I,).

{I;;5I, is an interval beginning with the begin

I; and ending with the end of I,}

(2) if end(I;) < beg(I,) {I; ends before I, begins}

n ext(Iy;I,) = {ej+tete,| ext; e EView and e; =
ext;(I1), e, = ext;(I,), e = exts[gap(Iq,I5)]}
{the merged interval I151, extends not only over I

and I,, but over the gap between I, and I,, too}

(3) if beg(I,) < end(I;) {both intervals overlap}
then ext(I;;I,) = ext[beg(I{);end(I,)].

[Merge-4] ; is associative, i.e. I;3(I1;I5) = (I517);1,
Notation: I(n;) stands for Iy;...;I, for any time line I(n).

Conjoining concurrent intervals and interval structures.
Intervals on different time lines are called concurrent, i.e.
intervals I; and I, are concurrent iff I, 4 I,. The conjoin
operation (,): Intv x Intv » IS combines concurrent intervals
to concurrent interval structures.

The domain IS of interval structures is inductively defined to be
the least set s.t.
(1) Intv c IS {each interval is an interval structure}

* (2) For any time line I(n)’ I(n;) = Ty5eee3l, € IS

22

of

(3)

is a consecutive interval structure.
Note: By [Merge-3], consecutive interval structures are

gap-free.

For any concurrent intervals I,I” € Intv, (I,I7) € IS is a
concurrent interval structure with
beg[(I,I7)] := if beg(I) = beg(I”) then beg(I)

else undefined
end[(I,I7)] := if end(I) = end(I”) then end(I)

else undefined

The merge and conjoin operations are both extended from

intervals to interval structures, so that
i5(5)2 IS x IS > IS satisfy the following laws:

® The conjoin of the operation (,) is commutative
and associative, and has Inil as its identity on IS.

® Merging distributes over conjoining, i.e.
I3(I1,15) = (1319,1512) and

(I1,12)51 = (I131,1251),
assuming the respective subexpressions to be proper

interval structures.

23

3.3 Event and Situation Structures

Remembering that solely a state-based as well as an event-based
approach has both advantages and disadvantages when compared with
the other, we combine both approaches. States are described by
assertions about values bound to observables, and events are
taken to denote transitions between states referring to intervals
on the same time line in increasing order.

3.3.1 Event structures. Let E be a set of events. ES = (E,<,X) is
an event structure (on X) iff
e (E,<) is a partially ordered set (a causal structure), and
© X cExEis asymmetric and irreflexive conflict relation on E
s.t. for any events e;,ep,e3,e4 ¢ E,
e] < ep < ez & ep < eq => ey X eyq

Clearly, the partial order "<" describes the causal relationships
between events in the sense that e; < e, iff e; causes ej. If an
event e, causes both the events e3 and ey, the effects e3 and ey
of e, are said to be in conflict. These notions originate form
Petri nets [Genrich, Lautenbach 79], where causal structures and
conflicts are modelled in occurrence nets shown to be closely
related to event structures in [Winskel 81].

3.3.2. Situation structures. Our objective is to relate states
and events via the temporal intervals in which they occur. First,
we relate event and interval structures: time ¢ E x Intv relates
events to intervals in which they occur.

Actually, time involves particular views w.r.t. precision and
granularity to which the interval chosen to describe the time
span containing the occurence of an event is determined.

Given an event structure ES = (E,<,X), time is required to
satisfy the following compatibility relation between (Intv,<) and
ES for events e;,e, € E:

® e; < ep => ¥I;,I, € Intv. e time I & e, time I, => I; < I,
{If ey causes ey then e; occurs earlier than ej,.}

Note: e; X e, does not imply time(e;) # time(e,), i.e. two
events in conflict may occur on the same time line.

Notation: For an interval I e Intv and events e;,...,ep,
(1] ey,...,e,) denotes the assertion

24

{e1se0e58p) ¢ time~l(1), i.e. "the events €1s0005€p
occur in I",

A situation (I|e;,...,e |p) consists of
- an interval I € Intv
- a set {e;,...,e } of events s.t. (I[el,...,en)
- a first-order property p about the state of the system being
modelled s.t. p holds throughout the interval I.

Let intst € IS be any interval structure s.t. intv(intst) is the
set of intervals occurring in intst. If each interval in
intv(intst) is the image of some set of events under time, then

replacing each interval in intst with a corresponding situation
yields a situation structure. (Sit,<,c) denotes the domain of all

situation structures, where < and c are the partial orders
extended from Intv to Sit in an obvious way, but respecting the

causality order of events.

A situation (I|ej,...,en|p) is called persistent, iff for any
interval I~ ¢ Intv containing I, the properties of the situation

persist through I7:

e (Ileg,ecesrepnlp) &1 ¢ I7 => (I7|e1,...,ep]|pP)

Note that persistency is attributed to situations and not to
temporal intervals as in [Allen 83]. This is because persistency

relates to properties of states extending over time despite the
occurrence of events. Ascribing persistency to temporal intervals

which a variety of different and unrelated states and events
might refer to simultaneously is a misleading "overloading" of

time.

25

3.4. Reasoning Techniques

This section briefly introduces several approaches to causal and
temporal reasoning, based on the concepts introduced in the
previous sections.

3.4.1. Relations on intervals. For intervals on the same time
line, Allen 83 discussed the following comprehensive set of
relationships between intervals shown in Fig. 3-1.

Relation Graphical Definition
ITlustration

before XXXeoXXX I, < Ip, i.e. end(I;) < beg(I,)
equal I = 1y

XX XXX
overlaps XXX XX beg(I,) < end(I;)

& end(I,) end(I,)
during X X X I, ¢ I,, i.e. beg(I,) = beg(Iq)
XXX XXX
& end(I;) < end(I,)
Fige 3-1. Allen”s relations on intervals.

A refinement of the "during" relationship are the relations

starts beg(Iy) = beg(I,) & end(I;) end(I,)
between I cl, &1, #1,
finishes beg(I,) < beg(I;) & end(I; = end(I,)

Allen 83 presents procedures for computing the transitive
closures of these relations, their inverses, and combinations of
them.

3.4.2. Magnitudes. The above relations lack qualitative,

refineable notions such as "immediately before", "long after",
"slightly overlapping" etc., i.e. the postulates (l-uncertainty)
and (2-granularity) of section 3.1 are not satisfied. We call
such qualifications of the temporal relations magnitudes.
Similarly as for extensions, we assume to have different views on

26

magnitudes, obtaining a partially ordered domain (Magn,<) with a
structure similar to Ext:

[Magn-1] (Magn,<) is a partially ordered set of magnitudes.
[Magn-2] 0 ¢ Magn is the minimal magnitude.

[Magn-3] +: Magn x Magn + Magn is an addition operation s.t.
® + is associative, commutative, and monotonic
o x + 0 = x
® all <-comparable magnitudes are closed under +
[Magn-4] The relation magn c IReln x Intv x Intv > Magn ascribes
relations on intervals a magnitude so that
magn is partitioned into multiple views
Mview = {magny, magnp,...} with
®© each magnitude view is single-valued, and
magn = U Mview
® the range of each magnitude view is linearly
ordered.

When choosing particular notions and views of magnitudes, one may
introduce rules for combining them and make inferences.

3.4.3. Reasoning on extension and magnitude views. One obvious
way for determining magnitudes is to relate them to particular
extension views.
Example: Let (0, immediately, shortly, long) c Magn and
(0, short, medium, long, very long) c Ext be the ranges of two
particular magnitude and extension views magn;j and ext One
could then base the magnitude ascribed to the "before" re%at1on
on extj:

magn; (before, I, 12) 1=

0 if ext; [gap 1,)] =0
immediately if ext; [gap(Il,Ig)] short
Hj
5l

shortly if ext; gap(I;, 2)] = medium
Tong if ext gap(Iy,Ip)]
e {long, very long}
So taking the gap between two intervals I1 and 12 to be “short”

resp. medium” is translated into I being “immediately before~
resp. ~shortly before~ 12. Clearly, one must be careful to define

the addition operations on Ext and Magn in a compatible way.

Rules may be introduced for reasoning about extension and
magnitude views. Two particularly important ways of reasoning

27

about views are translating one view into another, and inferring
one view from another view or even several other views.

3.4.4. Concurrency reasoning. [Winskel 81] has shown that event
structures and occurrence nets are equivalent in the sense that
they are isomorphic. This allows to apply the wealth of
techniques for reasoning about occurrence nets to event and
interval structures. For example, techniques for detecting or
ruling out deadlocks, livelocks, liveliness, etc. become
applicable.

3.4.5. Causal-temporal reasoning. Clearly, temporal relationships
between intervals carry over to events, e.g.

e, occurs "long before" e, iff (Illel) & (Izlez)

& magni(before, I, I2) = long

(forsome magnitude view magnj).

A historian might refuse to impose causal relationships, saying

that e * e,. However, within severly restricted, e.g. partially

restricted, contexts it may be possible to find conditions
allowing to infer causal from temporal relationships.

28

4. Non-Monotonic Reasoning(NMR)

Conceptional design is often based on assumptions and goals which
turn out to be unsuitable or misleading in the course of
developing the design. If such assumptions and goals need to be
revised, all dependent conclusions and design decisions have to
be revised, too. Conceptional design therefore involves non-
monotonic reasoning (NMR).

Previous work on NMR has been based on extensions of
propositional and predicate logic (for summaries, see e.g. [Doyle
83], [Etherington 83], [Moore 83]). As we are not only concerned
with logical assertions in general, but machine designs in
particular, we introduce a special NMR-calculus to support the
non-monotonic development of conceptional designs. This system is
based on Doyles” Reason Maintenance System (RMS) [Doyle 83,
Goodwin 82], and extends arbitrary formal systems, not just
logical calculi.

4,1. Formal systems.

A formal system FS = (L,R) consists of a language L and a set
Rc LxL of rules which induce a derivation relation>on L, where
+ = R*, For denoting rules, we employ conditional rule schemata
(c|p>q), where p and q are expressions with variables
instantiating to elements of L, and c is a first-order formula
containing at most the variables occuring in p and q as free
variables. The rule schema (c|p+q) applies to an element w ¢ L
iff there is a substitution o s.t. op = w and oc = true, allowing
to infer oq from w.

4.2 NMR-calculi on formal systems.

We apply Doyle”s "reason maintenance"-notation to an arbitrary
formal system FS = (L,R) with a set RS of rule schemata denoting
R by constructing an NMR-calculus based on the following abstract
syntax: :

Attitude: := Belief|Drive
{attitudes are either justified
assertions called beliefs, or
justified rules called drives}

29

Belief := (Name L Justification-set)

{a belief is an assertion associated
with a set of justifications; each
belief may be referred to by a unique
name}

Drive := Sl-Justification | P-Justification |
Justification-set

SL-Justification := (SL In-set Out-set)

CP-Justification := (CP Conseq In-set Out-set)

In, Out, Conseq = Atom
Atom := Name | (GOAL Name) | (non Atom)
Meta-Drive := MCond + MAction

{meta-drives act as meta-rules which

fire when an assertion on
justifications, called meta-condition,
holds; the effect of fixing a meta-
drive is executing its meta-action}

MCond := is a domain of assertions on
justifications

MAction := JustifyAction | SelectAction
{meta-actions may alter justifications
or propose names of drives for further
execution}.

The semantics of this system is an obvious extension of Doyle”s
RMS [Doyle 83], extended in [Mina 84].

30

5. A Theory of Qualitative Reasoning (QRT)

This section introduces a theory of qualitative reasoning (QRT)
particularly suited for physico-technical systems. We proceed by
summarizing the goals and requirements for any such theory in
section 5.1, and introduce the basic concepts of our theory in
section 5.2. The theory is formalized in terms of the language
QRL (Qualitative Reasoning Language) presented in section 5.3.

5.1. Objectives

The overall goals of a theory of QR go far beyond applications
for conceptual design. A theory of QR must provide for
representation formalisms and reasoning mechanisms allowing to

express and utilize all kinds of knowledge about physico-
technical systems which is refineable into quantitative models.

5.1.1. Epistemological domains. Reasoning on physico-technical
systems comprises a substantial variety of knowledge domains
suggesting different knowledge representation and reasoning
techniques. Therefore, it is a crucial problem to find an
appropriate decomposition of the entire universe of discourse
into epistemological domains. Imposing such structure should be
guided by two principles:
® epistemological uniformity: each domain should be uniform and
succinct w.r.t. employing a minimal diversity of techniques
for representing its contents adequately. Note that this is
not necessarily a matter of formalism: e.g. Horn clauses of
first-order predicate calculus are similarly adequate for
representing the state transformations effected by (AB)STRIPS
operations as the PLANNER-like SOUP-functions [Sacerdoti 77].
® hierarchy formation: knowledge of one domain is often based
on resp. is the basis for knowledge in other domains,
resulting in use-relationships according to which domains

utilize others. -The easiest way of constructing and
maintaining such relationships is to form use-hierarchies of

domains.

For physico-technical systems that have been studied so far, it
turned out to be useful to cluster the epistemological domains

into three different levels:
(1) The object level comprises domains relating to the physical

appearance and properties of objects, such as geometry with

31

decomposition and aggregation of parts, and materials with
their properties.

(2) The function level consists of domains containing knowledge
about operations and actions performed by, resp. executed
upon objects and their parts described in the object level.
Such operations are meant to be elementary, i.e. not composed
of temporally extended functions on "the respective level of
aggregation. For example, the flight of a plane between
cities is taken to be an elementary function at the
aggregational level of flight schedules, although each single
flight is composed of many subactions.

(3) The process level combines domains with knowledge about
processes, 1i.e. temporally extended, successive and/or
concurrent sequences of operations introduced in the function
level, and acting on objects described in the object level.

5.1.2., Goals of QR. Based on the structure and extent of
knowledge as outlined above, QR should allow to
® describe and explain conceptual, spatial, and temporal
structure as well as causal and functional relationships on
all three levels of epistemological domains.
@ interpret observable phenomena, such as measurement data and
sensory perceptions, as effects of processes.

e infer new causal and functional relationships, both by
knowledge-based inference and formation of abstractions.

® predict future phenomena.
® synthesize properties from properties of aggregational

components such as subparts or subprocesses.
@ configure sequences of actions ("planning") and aggregations

of parts ("design", "construction") to reach particular goals
resp. obtain a specific behavior.

For each of these activities, QR should allow for appropriate
quantitative refinements.

This wide range of objectives for a theory of QR makes it basic
to all forms of representing and processing knowledge about
physico-technical systems. Hence, a theory of QR is actually a

foundation for all application areas of this subject, i.e. it is
what expert systems for various kinds of applications discussed

in section 1 are based on.

32

5.2. Principles

QR for physico-technical systems requires specific consideration

of four aspects:

- qualitative reasoning should be refinable to quantitative
reasoning in mathematical models.

- the frame problem has to be solved.

- QR must comprise mechanisms of aggregation and decomposition
of spatially, temporally, and functionally composite objects
and processes.

- QR must incorporate causal, temporal, teleological, and

non-monotonic reasoning.
This section discusses the principles of our approach towards

these aspects.

5.2.1. Refinement principle. Mathematical models in science and
engineering are abstractions which assume, but do not explicitly

model the nature of objects with the processes operating on them,
based on causal relationships determined by physical laws.

Quantitative models describe systems in terms of spatial and
temporal changes of observable quantities as expressed 1in

differential equations. Qualitative models only describe such
changes in terms of qualitative notions such as "large speed",

"small distance", etc. Clearly, such qualitative notions are made
precise by quantitative data. The refinement principle postulates

this relationship in a consistent and Comp]ete way:

e Refinement principle. QR must admit refinements into
quantitative models satisfying the following three

conditions:
(1) Consistency. Qualitative notions are refined to

quantitative domains of values s.t. orderings are
preserved. Likewise, qualitative functions are refined

into quantitative ones, again preserving continuity resp.
monotonicity properties. This consistency requirement

extends to explanations, interpretations, inferences,
predictions, synthesized properties, plans, and designs.

(2) Completeness. Each qualitative notion must have a
quantitative refinement, and each quantitative value has
a corresponding qualitative coarsening. Again, this
completeness requirement extends to functions and

reasoning procedures.
(3) Disambiguation. Qualitative notions are necessarily vague

so that a qualitative value may have several, even an

33

infinity of quantitative refinements. A quantitative
model should allow to decide on any qualitative
ambiquities and vagueness.

5.2.2. Frame problem. The frame problem [McCarthy, Hayes 69] is

to maintain the current state under changes affecting only small
parts of extremely complex state descriptions. It arises

regardless of whether reasoning is done qualitatively or
quantitatively. However, the fact that QR addressed functional

and causal relationships provides approaches to solving the frame
problem.

Early approaches to solve the frame problem (as e.g. in
STRIPS/ABSTRIPS [Sacerdoti 77]) consisted of describing state
changes in situation calculi by axiomatizing the effects of

actions. However, an increasing number of actions results in an
astronomical growth of axioms prohibiting this approach from

being practical. [Hayes 79] has shown that stepping through
isolated state changes without reasoning on inherent connections

is principally insufficient. To solve this deficiency, Hayes
[Hayes 78] introduced histories which are composed from episodes,

where each episode comprises a conceptually aggregated sequence
of state transitions. Confining the extent of state changes is

achieved by imposing the requirement that a state change of an
object may only affect another object if both objects touch each

other. Forbus [Forbus 81, 82, 83] discovered that histories
describe the effects of the underlying mechanisms without

representing and allowing to reason about the mechanisms
themselves. Forbus therefore proposed processes as basic entities

desribing changes in physical systems in his qualitative process
theory. A process describes a mechanism whose repeated execution

may effect a multitude of histories.

Such processes may operate on different objects, and the changes
of particular observables can only be determined from all,

usually both spatially and temporally distributed processes,
affecting it. A complementary view is taken by the envisionings

[de Kleer, Brown 83], where confluence laws on qualitative
variables are based on device and machine models. [Kuipers 82;
Kuipers, Kassirer 83] discuss such confluence laws without
explicitly relating them to either processes and device resp.

machine models.

Both qualitative process theory and envisioning have identified

34

(see [Forbus 83] and [de Kleer, Brown 83]) two basic problems
which must be solved for solving the frame problem with an
approach based on histories and processes:

[Construction Problem] Given an observable behavior as a goal,
how can one construct a machine model with processes being
executed on the machine(s) leading to the required behavior?

[Interaction Problem] Interactions between histories can be
considered on different levels of abstraction:

Process level: How can one determine and describe interactions
between histories from descriptions of different
processes generating these histories?

This is the problem of finding combinators on
processes, leading to mechanisms for aggregating

processes to another level of abstraction.
History level: Given different histories interacting via

particular states resp. objects or parts, how

can one infer and explain such interactions with

interactions among objects in terms of physical
Taws?

This is the problem of how to find mechanisms
modelling and explaining interactions among

histories.

A third substantial problem closely related to the preceding ones
is to find appropriate aggregations:

[Aggregation Problem] How can one combine spatially related

objects to composite spatial aggregates, and, simultaneously, how
can one combine temporally distributed events to composite

temporal aggregates so that both spatial and temporal aggregates
make up meaningful functional aggregates?

We will show in the sequel how solving these problems leads to
solving the frame problem, too.

5.2.3. Conceptual network for QR on physico-technical systems.
The approach of qualitative reasoning theory (QRT) is based on

the conceptual network [Raulefs 83] given in Fig. 5-1.

35

{
\

on|>

temporal aggregati

N

-
[
X

‘-\ <

N e e e e e e e mwem meirie ewie

e

‘process \ i ;

e m——

roups «————meta
i o
justi- i
conceptual/ fi- g
causal cation iprocesseJ
concep- exe- aggregation '
tual i cution s L_
T — ——
histories ,scenar1ost::::::;‘processes T
aggre- N—— ab- o
I gation straction
T
,ep1sodes!
{events
B
Y ___.
SO T oo T
elementary | rﬁys1ca1 _________ composite |
objects i l11nkage J objects |

- — o o

spatial aggregation l >

Fig 5-1. Conceptional network for QRT.

The
aggregation:

nodes of this network are linked by four kinds of

Spatial aggregation is done by physically linking objects

s.t. state changes of one object are physically transmitted

to the Tinked objects. Objects which cannot be decomposed
into physically linked parts are elementary objects, and

spatial aggregation of elementary and composite objects
results in composite objects. Note that an object must not be
solid, but may very well be a gas or a 1iquid with a spatial
extension which rapidly changes in time.

Clearly, what is taken to be elementary is a matter of
viewpoint, For describing a car, the engine may be taken to
be an elementary part, although another view considers the
engine to be a composite object aggregated from thousands of
parts.

Temporal aggregation takes events to be elementary implying

that events cannot be attributed any temporal extension (time
is discrete). Situations that may contain events may be

36

aggregated to episodes, and episodes can be composed to
histories and furthermore to scenarios. Any temporal

aggregate spreads into a situation structure so that episodes
and histories may consist of concurrent (sub-)episodes,

particulary for (sub-)episodes occurring on physically not
connected objects.

Abstraction of histories or scenarios to processes is a
particular kind of conceptual aggregation. A process denotes
the set of all histories which it can execute, similarly to a

program denoting under its operational semantics the set of
all execution traces obtained from executing it on all

possible input data.

Conceptual aggregation clusters histories to scenarios as
well as processes to process groups whenever there appears to

be a compelling reason to consider them under a common point
of view.

Meta-processes provide justifications and allow for teleological

reasoning.

There are close analogies between programming languages and QRT:

Spatial aggregation of composite objects corresponds to

forming data structures.
Temporal aggregation of events to histories corresponds to

combining isolated state transitions to execution traces of
programs which, in turn, correspond to processes.

Abstraction of histories resp. scenarios to processes
corresponds to the design of abstract data types comprising
data structures and characteristic sets of operations
denoting sets of execution traces.

Conceptional aggregation of scenarios to processes resp.
process groups corresponds to incorporating different

operations (giving rise to execution traces) in an abstract
data type, whereas conceptual aggregation of processes to

process groups corresponds to "use"-hierarchies of abstract
data types.

5.2.4. Qualitative physics refining into "ordinary" physics is an

important part of QRT. A physical system is described in terms of
states and state changes in space-time, where a state is a set of

values taken by physical quantities. A physical quantity consists
of a numerical value referring to a particular scale, and a

37

dimension denoting that scale. Physical functions relate physical
quantities in space-time, and thus contribute to descriptions of
the spatially and temporally extended behavior of physical
systems. As such behavior is recorded in terms of state changes,
differential equations play a central role in physical models. It

is therefore important to devise qualitative analogues which
refine into the above notions.

5.2.4.1. Qualitative quantities. A dimension D is an arbitrary
set of qualitative values which may decompose into different
views required to refine each other. Such a

multiple view dimension consists of

e a set D of qualitative values which is partitioned into

® a set Dview = {Dy,Dp,...} of views with D = UDview, and

e a relation refine ¢ D x D which refines views in a way which

is compatible with orderings on views.

A qualitative quantity q denotes a pair q = (val(q),dim(q))
consisting of the value val(q) and the dimension dim(q) of g,
where val(q) e dim(q).

Dimensions can be composed to form new dimensions. As an example,
we take

D] = (0, short, medium, long) to be a dimension for measuring
length, and

Dt = (0, immediate, very-short, short, a-while, some-time,
long, very-long) to be a dimension for measuring time
spans.

We want to relate both dimensions to the new dimension for
velocities

Dy = (0, slow, medium, fast).
This is done by setting up a division table for dividing the
qualitative values from D] by the values for time spans from Dt:

Dy 0 _ _short ~ medium long
0 - = - -

immediate 0 medium fast fast

very-short 0 medium medium fast

short 0 slow medium fast
a-while 0 slow slow medium
some-time 0 slow slow medium

long 0 slow slow slow

very-long 0 slow slow slow

38

We require such compositions of dimensions to be compatible with
multiple views as defined below.

5.2.4.2. Qualitative functions map qualitative quantities to
qualitative quantities. View compatibility is a property of
particular importance for qualitative functions. We define this
property for monadic functions producing single quantities only,
as this easily generalizes to arbitrary vector functions:

Let D and D” be two multiple view dimensions with views
Dview = {Dl,D?,u.} and Dview™ = {DIJE,".}, and view
refinement relations refine and refine”.

A qualitative function f: D » D is view compatible iff

¥ x,y e D . x refine y => f(x) refine” f(y).

As qualitative functions primarily describe changes of
qualitative quantities, we need a notion for derivatives.

Previous approaches on qualitative derivatives simply took
difference quotients as qualitative derivatives:

If f:D»>D” is qualitative function, and dist:NDxN+Ext,
dis”:D"xD">Ext are distances on D resp. D™ (see
3.2.1.3.4), then

dist'[f(x),f(xo)]/dist(x,xo)
is the qualitative derivative of f at xg, assuming a
division operation on Ext.

Clearly, this approach fails uniqueness, because arbitrarily
chosen values for x could produce wildly different values of the

derivative at xp. It is obvious that no such concept could do
without topologies on D and D~.

Let D,D” be sets with distances dist and dist” as above.

(1) A subset A ¢ D™ is called open iff VxeA.lreExt.r#0 &
{y|dist(x,y)<r} cA

(2) A function f:D>D" is continuous at xgeD iff for any open set
V'eD™ with f(xo)sV', there is an open set VcD s.t. xoeV and
f(v) c v,

f is continuous on D iff €D, f is continuous at x for every x el.

(3) A continuous function f:D»D” is qualitatively differentiable
for xosAgn for an open subset A of D, iff there is a linear
function u:Ext+D" s.t. for ¢:D+»D” with ¥xeD.¢(x):= f(xo) +
u[dist(x,xo)], the following property of qualitative
differentiability holds:

VxeA. dist’Tf(x),¢(x)]/d1’st(x,xo) =0
=> V¥x"eA. dist(x‘,xo)/dist(x,xo)=0

39

=>dist"[f(x"),¢(x7)]/dist(x™,x4)=0

If f is qualitatively differentiable at x,eA then ¢(x,) is

called the qualitative _derivative of f at x,.

Notation. The qualitative derivative of f at x, is denoted by
QDf(xo).
Note that QDf(x,) is defined as a linear form
rather than a value, with the derivative obtained
from a local linear approximation. This has many
advantages over the approach taken in most
elementary analysis texts, as pointed out in e.q.
[Dieudonne 60]

It is far beyond the scope of this paper to further pursue a

qualitative analysis, as it is currently being developed by the
author,

40

5.3. ORL: A Language for Qualitative Reasoning

The language ORL (Qualitative Reasoning Language) combines our
current principles and approaches to describe and reason about
physico-technical systems. OQRL has drawn from concepts in
"~ qualitative process theory [Forbus 83], envisionings [de Kleer,
Brown 83], and the algebraic software specification language
ASPIK [Beierle, et. al. 83]. These developments provided some of
the ideas incorporated in the QR-language OARG [Raulefs 83, Mina
84], of which OQRL is a substantially revised and extended
language.

QRL combines the object and function level (see section 5.1.1) of

epistemological domains in the notion of objects and their
abstractions in terms of object-types. Processes and process-

types comprise the process level.

Spatial aggregation is described by relating objects in terms of
the part-/subpart relations, and describing their composition
with material (e.g. "glued together..") and spatial
relationships. The execution of processes produces histories,
which can be decomposed into episodes, and, ultimately, to
events. Explicit justifications allowing for teleological
reasoning and reason revision are introduced by meta-processes.

QRL is object-oriented. Subsystems of physico-technical sysfems
‘can be generalized as types for objects and processes. Object-
and process-types can be instantiated to objects resp. processes
so that any such type denotes a set of objects resp. processes.

5.3.1. Objects

Objects are described in terms of (ORL-keywords capitals)

- structure and geometrical composition by specifying the PARTS
objects are composed of. The way an object is incorporated into
the external world is described by referring to other external
objects (REFOBS-clause). Geometrical properties and relations
as well as indications about how PARTS and external objects
(REFOBS) are composed are specified in WHERE-clauses.

- an internal state consisting of the qualitative values bound to
qualitative variables (OVAR) being explicitly declared. Each
QVAR-declaration consists of the name and the range of the
qualitative variable.

- Operations that can be executed by the objects. Operations may

41

denote transitions of internal states. For each operation, at
least a non-constructive specification is given by describing
properties for initial states required to hold for carrying out
the operation, and relationships between initial and final states
constraining the effect of the operation. Note that the precision
of a non-constructive specification may vary between weak
constraints and a unique function from states to states.

- properties describing all properties of the objects which can

be expressed in terms of the visible names.

Fig. 5-2 shows the definition of the object-type "wheel" as an
example. wheel is declared to be a constant name (permanent
binding) bound to the object-type defined in this declaration.
The individual clauses express the following descriptions of
wheels:

REFOBJ: Wheels are considered to roll on smooth surfaces.
“surface” must be the name of an object(type) which is
defined with a qualitative variable “evenness” containing
the qualitative value “smooth™ in its range. TOUCHES 1is a
built-in relation in QRL.

PARTS: Wheels consist of spokes and a ring. The number of spokes
is left open up to an instantiation, where at least 3
spokes must be parts of a wheel. Spokes are particular
bars and the ring is a particular circle with a radius
equal to the length of the bars. All spokes have the same

length, originate in the center of the ring, and end on

the ring.

QVAR: The qualitative variables setting up the state of a wheel
are described here with their ranges. Ranges are denoted
by

- explicit enumerations of finite sets, as e.g. {metal,

plastic, gum} and (small, med, large), "{...} refers to
ordinary set notiorn, and "(...)" constructs a linearly

ordered set s.t. small < med < Targe.
- built-in ranges such as NAT.

- names of qualitative variables with ranges already
defined being taken to be the ranges of newly declared

variables as well.
Any variable declared with the keyword CONST cannot

change its value once the object of the corresponding
type has been created. Hence, only the identifiers

declared to be variable actually contribute to the
internal state of an object. For objects of type “wheel”,

the velocity and direction of rotation, “rot-vel” and

42

“rot-dir”, as well as the speed and direction on the
surface, “speed” and “direction”, are variable
identifiers, whereas all others are constants.
Views. “direction”™ is declared to have a multiple view
dimension, i.e. values are either degrees between 0 and
360, or geographical directions, or local directions.
Connections between views, and view refinement are
expressed in the WHERE-clause.

OPS: In this example, operations are specified non-

constructively with PRE- and POST-conditions. Qualitative
variables always refer to the internal state before

executing the operation, unless they are marked with an
apostrophe indicating the internal state after

completing the operation.
OP-TRACE is a clause under which the required sequences

of operations are specified. Note that this clause is
redundant if the operation-sequences given here can be

inferred from the pre- and post-conditions of the
operation specifications.

PROPS: Properties required for all objects of this type are
specified in a 1logical first-order notation on all

visible names.

Instantiation of an object-type is simply done by giving values
for all identifiers which are not ex- or implicitly bound. A

partial instantiation of an object-type results in another
object-type inheriting all components and properties already

defined.
The micro-world defined in Fig. 5-2 consists of two wheels wl and

w2 with the same radius, with wl having three and w2 having seven
spokes, and a suface sl17 that both wl and w2 touch. Many other

properties such as both wheels being perpendicular to surface
sl7, their initial rotating velocity and direction, etc. have

been left open as it is obvious how to specify them.

CONST wheel = OBJECT-TYPE .
REFOBJ surface[evenness = smoth]WHERE wheel TOUCHES surface.

PARTS spoke[l..$n: NAT & n>3], ring
WHERE ring IS circle[rad=radius], ring TOUCHES surface,

spoke IS bar[length=radius, origin=center.ring,
end ON ring], spoke INSIDE ring.

QVAR CONST radius:(small,med,large), #spokes: NAT& #spokes>3,
ring-material: {metal,plastic,rubber};

VAR rot-vel: (0,small,med,fast,very-fast),

43

rot-dir: {left,right,undet}, speed:rot-vel,
direction: [(0..360): NAT, {E,SE,S,SW,W,NW,N,NE},
{up,down,left,right}
WHERE E IS (340..360)+(0..30),
SE IS (30..70), S IS (70..110),...,
NE,E IS left, SE,S IS UP,...].

OPS stop = PRE rot-vel % 0, rot-dir: {left,right}
POST rot-vel” =0, rot-dir =undet
move(d) = PRE rot-vel=0, rot-dir=undet

POST rot-vel”™#0, rot-dir: {left,right}
PRE O<rot-vel<very-fast, rot-dir#undet

POST rot-vel<rot-vel ,rot-dir =rot-dir

accelerate

PRE rot-vel#0
POST O<rot-vel <rot-vel,rot-dir =rot-dir.

slow

OP-TRACE (move;(accelerate|slow)*;stop)*.

PROPS $n=#spokes, rot-vel=0 <=> rot-dir=undet,

{equations relating rot-vel and speed,
rot-dir and direction, etc.}.

CONST wl = OBJECT wheel[$n=5,surface=s17,radius=med,ring-material=metal,...];
VAR w2 = OBJECT wheel wl[$n=7];

Fig. 5-2. Example of object-type and object definitions.

5.3.2. Processes
Processes denote sets of histories, where each history is a

situation structure as introduced in section 3.2.2. Before
introducing processes, we need two additional concepts for

describing processes:
- history views because of the fact that situations may be

refined into different situation structures, and
- interval-types combining time-intervals with similar events

and properties.

5.3.2.1. Histories and history views. A history is a situation

structure referring to a specific set of objects s.t. all events
are names of transitions of internal states in these objects, and
properties are propositions about states of the involved objects
as well as spatial and physical relationships among them.

44

As situations may cover intervals containing several events, a
situation may be refined into a situation structure, e.g.
(Iley,...,e5|p) refines into
(I1le1]p1),(12]e2]|p2),(13]e3|p3),(14a]es|pa),(I5]e5]|p5),
where beg(I)=beg(Iy) and end(I)=end(Ig), and
Vie(l..5) . (Ijup), i.e. p is an invariant on all
intervals "covered" by I.

Therefore, histories may refer to different more or less refined
history views. Depending on the way elementary (= no further
refineable) situations are combined, histories ultimately refined
to the same structures of elementary situations may not be
refinements of each other, i.e. refinement only constructs a

partial ordering on histories.

5.3.2.2. Interval types. Very often, histories contain
repetitions of similar situations. For example, a wheel rolling
up and down inside a U-shaped surface periodically undergoes
similar motions from a left turning point down to the center, up

to the right turning point, down to the center, etc.

We collect time intervals containing similar events and/or
properties for states in interval types. An interval type denotes

the set of all intervals declared to be of that type. Properties
and events ascribed to interval types are automatically ascribed

to all intervals of that type. Interval types may be used instead
of intervals in expressions denoting interval and situation

structures. Then, interval types in such an expression may be
substituted with intervals of the respective type within an

expression. Any such expression containing interval types denotes
the set of all interval resp. situation structures obtained by

proper substitutions.

5.2.3.2. Example. QRL-mechanisms for describing processes are
illustrated in the micro-world of Fig. 5-3: The wheel “wl™ of
Fig. 5-2 rolls up and down in the interior of a circular surface.
Friction causes the wheel to slow down until it stops ultimately
at the center point.

45

1tp +\\X rtp
[/

L

left 7 right

ctr
Fig. 5-3. Rolling wheel mirco-world

The particular mechanism of processes are explained at the

example of the rolling wheel process (Fig. 5-4) which runs in the
micro-world of Fig. 5-3.

0BJ The wheel “wl™ as defined in Fig. 5-2 and a
semicircular surface are involved. The identifier
“wl® is made visible via the REFerence qualifi-
cation, and the surface object s is created here.

QVAR Five positions are considered for the wheel (see
Fig. 5-3). Because of speed-reduction due to
friction, the left and right turning points “1tp~
and “rtp” gradually move closer to the center
“ctr”, starting with a “very-high™ position. “last-
speed” and “slowdown™ serve to take care of speed
losses due to friction.

INTV-TYPES The entire motion of the wheel is broken down into
seven phases ascribed to seven different types of
intervals:

(1) The motion starts at the left or right turning
point, “1tp” or “rtp”. The start instance is an
interval of type IT-1t resp. IT-rt. As such
intervals occur as begin/end of others, they
must have extent 0.

(2) The up and down motion takes place in the
intervals of type IT.side-up/down with side €
{left,right} so that these intervals start
resp. end with the turning point and the center
intervals (which are instances).

INTV-STRUCT This clause specifies a finite but unbounded
sequence of intervals for the respective phases of
the motion as indicated under INTV-TYPES.

EVENTS The events listed in this clause must occur in
intervals of the specified type, where (...]...)
denotes mutually exclusive alternatives. Events

46

0OPS

are names for state transitions effected by

executing operations as specified in the O0OPS-

clause. The order in which events occur follows
from the order in which the correspondiong
operations are executed, as it is specified in the

OP-TRACE-clause.

Each operation is specified in three parts:

1. The PREcondition contains all conditions which
must hold for the operation to be executable.
Conditions consist of properties of the internal
state of both the process and any objects
involved, an indication of the time interval for
which the properties about states apply, and an
indication of events effecting the state change
described by the operation. Hence, the first
part of an operation specification has the form
PRE <conditions> IN <time dinterval> WITH
<events>.

2. Actions effecting the state transition. Here,
all actions consist in executing operations of
the wheel.

3. The POSTcondition specifies conditions which
must hold upon completing the operation.
Apostrophes after qualitative variables indicate
that this identifier denotes values upon
starting the operation, whereas identifiers
without apostrophes denote values upon starting
the operation. Time intervals and events apply
analoguously to the prediction.

47

CONST rolling-wheel =

PROCESS-TYPE
0BJ REF wl:wheel, s:surface.wl[shape=semicircular].

QVAR position: {1tp,rtp,left,right,ctr} INITIAL (1tp|rtp),

1tp,rtp: {ctr,close-to-ctr,near-ctr,middle,upper-middie,high,very-high}
INITIAL very-high,
last-speed: speed.wl, slowdown: boolean

INTV-TYPES IT-left-down, IT-left-up, IT-right-down, IT-right-up,
IT-left-turn,IT-right-turn,IT-ctr
WHERE beg(IT-left-down), end(IT-left-up): IT-left-turn,

beg(IT-right-down), end(IT-right-up): IT-right-turn,
beg(IT-1eft-down), end(IT-right-up): IT-ctr.
INTV-STRUCT (IT-left-down; IT-right-up; IT-right-down; IT-left-up)*.

EVENTS start IN (IT-left-turn|IT-right-turn),upturn IN IT-ctr,
left-turn IN IT-right-turn,right-turn IN IT-left-turn.

0PS initiate(pos): LET side := (pos=1tp+left, pos=rtp+right) IN
PRE position=pose{1tp,rtp} IN IT-side-turn WITH start
move.wl(side)

POST position =side,slowdown™=true IN IT-side-turn
start-rolling(side): PRE positione{1tp,rtp}, position#ctr,
IN IT-side-turn WITH side-turn
move.wl(side)
POST position =side IN IT-side-down
roll-down(side): PRE position=side IN IT-side-down
accelerate.wl
POST position=ctr, slowdown™=—slowdonw”™IN IT-ctr
roll1-up(side): PRE position=ctr,speed.wl#0 IN IT-ctr WITH upturn
slow.wl
POST position~=side
turn(side): PRE position=side IN IT-side-up
stop.wl
POST position =(side=1eft+1tp,side=right>rtp),
sTowdown+position <position
IN IT-side-turn WITH side-turn.
OP-TRACE(initiate;roll-down;roll-up;turn);(start-rolling;roll-down;
rollup;turn)*,
PROPS positione{1tp,rtp} => rot-vel.wl=0

Fig: 5-4. Type of a rolling wheel process

48

5.3.3. Meta-Processes

For specifying design goals and intentions, we simply use the

same mechanisms already introduced for describing systems also
for specifying requirements still open for design.

As an example, consider designing a "friction-clock" from the
following principle: Friction causes a moving object to stop
after a specific amount of time which depends on the initial
position and speed of the object. The time elapsing hetween begin
and end of a motion is taken for determining time spans. To
specify this principle, we need the concepts of

- a moving object which is slowed down by friction until it

ultimately stops.
- a process causing the object to move from particular initial

states, determining the time elapsing between begin and end of
the motion.
Before specifying our design goal in a meta-process, we specify

the notions required to describe it:
CONST moving-object =

OBJECT-TYPE QVAR position, speed:{0;#%0}.
INTV-TYPES IT-rest,IT-start-moving,IT-in-motion,IT-stop

WHERE beg(IT-in-motion): IT-start-moving,
end(IT-in-motion): IT-stop.
INTV-STRUCT (IT-rest;IT-in-motion)*; IT-rest.
EVENTS start IN IT-start-moving, stop IN IT-stop.

0PS move PRE speed=0 POST speed”#0,
slowdown PRE speed+0 POST speed <speed,

stop PRE speed+0 POST speed”=0.
OP-TRACE (move;slowdown;stop)*.

CONST fading-motion =

PROCESS-TYPE 0BJ mob: moving-object.
INTV-TYPES IT-start, IT-motion-(1..$n), IT-stop
WHERE beg(IT-motion-1):1T-start,end(IT-motion-n):IT-stop
INTV-STRUCT IT-motion-1;...;IT-motion-n.

EVENTS start IN IT-start, stop IN IT-stop.
0PS start(speed) PRE mob.speed=0 IN IT-start WITH start
move.mob
POST mod.speed”=speed#0 IN IT-motion-1.
sTowdown PRE mob.speed#0 IN IT-motion-i

49

WHERE i IN (1..n-1)
sTowdown.mob
POST mod-speed”<mod.speed IN IT-motion-(i+l),
stop PRE mod.speed+0 IN beg(IT-motion-n)
stop.mob
POST mob.speed™=0 IN IT-stop WITH stop.
OP-TRACE start;slowdown;stop. -

These notions now allow to specify what we want:
CONST friction-clock =

META-PROCESS 0BJ m: moving-object.
PROC fm: fading-motion.
QVAR elapsed-time.
OPS timer(ip:position.m):elapsed-time
PRE speed.m=0, position.m=ip
start.fm;sTowdown.fm;stop.fm
POST elapsed-time =ext[intv(history(fm,speed.m))]

Actually, the “friction-clock™ is a specific approach towards
designing a clock. The meta-process clock specifies what we
expect from a clock:

CONST META-PROCESS clock =

PROCESS proc(INIT-COND)

QVAR elapsed-time
OPS clocking(INIT-VAL): elapsed-time
PRE INIT-VAL IN RANGE

POST elapsed-time =ext{intv[history(proc,INIT-COND)]}
{INIT-COND,INIT-VAL are reserved words to be substituted with a condition

resp. value}

The reasoning system observes that a “friction-clock™ satisfies
what is required from a “clock™ and comes up with that statement

friction-clock SATISFIES clock FOR fm/proc,f(ip:position.m)/speed.m,
timer/clocking,
ip:position.m/INIT-COND,
speed.m/INIT-VAL

where f is an auxiliary function converting initial positions of
the moving objects into initial speeds.

50

A first attempt to realize a “fading-motion™ process is to let a
wheel roll down a slope onto a plane until it is stopped by
friction. A critic might observe that a disadvantage of this
approach is that the plane must possibly of considerable
extensions if the friction is low; if the friction is high,
however, the precision of timing will decrease. This difficulty
is removed by bending the plane upwards so that the wheel will
roll back and forth. It is considerably beyond the scope of this
paper to discuss the intricacies of automating this kind of
reasoning.

Acknowledgements and Ongoing Research

The results reported on qualitative and non-monotonic reasoning

have been motivated by the work of Brown, Doyle, Forbus, de
Kleer, and Kuipers. Earlier approaches in Kaiserslautern have

been explored, revised and elaborated in [Mina 84]. This paper
summarizes the state in mid-84 after substantial revisions and

extensions, as well as a first experimental implementation of QRL
and an earlier prototype version of the conceptual design system

CD have been completed and applied in experiments.
Current work, to be completed in early 1985 includes

a prototype of the QRL-system serving not only for descriptions
of, but also for qualitative simulations of and reasoning

(incl. NMR) about physico-technical systems.
- experimental applications in conceptual design and production

planning in mechanical engineering. Another application
concerns portfolio management and planning for capital

investments.
- using QRL for deep modelling in fault diagnosis and signal

interpretation under real-time conditions.
- foundations of qualitative analysis and qualitative mechanics.

51

6. References

1. Allen, J.F. Maintaining knowledge about temporal intervals.
CACM:26(1983) 832-843.

2. Beierle, Ch., Gerlach, M., Gobel,R., Olthoff,W., Raulefs, P.,

VoB, A., 1983. Integrated Program Development and Verification in

H.-L. Hansen(ed.) Symp. on Software Validation. Amsterdam:
North-Holland Publ.Co.

3. Dieudonné,J. 1960. Foundations of Modern Analysis. New York:
Academic Press.

4, Doyle, J. 1979. A Truth Maintenance System. Artificial
Intelligence. 12(1979)231-272.

5. Doyle, J. 1980. A Model of Deliberation, Action and
Interpretation. TR-581, Al-Lab, MIT.

6. Doyle, J. 1983. Some Theories of Reasoned Assumptions. TR CS-83-
125, Dept. of Computer Science, Carnegie-Mellon-University.

7. Etherington, D.W. 1983. Formalizing non-monotonic reasoning
systems., Tech. Rept. CS-TR-83-1. Computer Sci. Dept.,
Univ. of British Colombia. '

8. Fikes, R., Nilsson, N. 1971. STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving.
Artificial Intelligence: 2(1971)189-208.

9., Forbus, K.D. 1981. Qualitative Reasoning about Physical
Processes. Proc. 7th IJCAI-81:326-330.

10. Forbus, K.D. 1982. Qualitative Process Theory. AI-Lab Memo AIM-
664, MIT.

11. Forbus, K.D. 1983. Measurement Interpretation in Qualitative
Process Theory. Proc. 8th IJCAI-83:315-320.

12. Genrjch, H.A., Lautenbach, K. 1979. The analysis of
distributed systems by means of predicate-transition-nets.
Proc. Symp. Semantics of Concurrent Computation (Evian),
Springer, LNCS-70.

52

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Goodwin, J.W. 1982. An improved algorithm for non-monotonic
dependency net update. Tech. Rept. LITH-MAT-R-82-23,
Linkoping Univ.

Hansen, F. 1974. Konstruktionswissenschaft. Miinchen:Hanser-
Verlag.

Hayes, P. 1978. Naive Physics I: Ontology for Liquids. (Working
Paper) Inst. of Semantic and Cognitive Studies, Geneva.

Hayes, P. 1979. The Naive Physics Manifesto. in D. Michie (ed.)
Expert System in the Micro Electronic Age. Edinburgh:
Edinburgh Univ. Press.

Kahn, K.M., Gorry, A. G. Mechanizing temporal knowledge.
Artificial Intelligence: 9(1977)87-108.

de Kleer, J., Brown, J.S. 1983. The Origin, Form and Logic of
Qualitative Physical Laws. Proc. 8th IJCAI-83:1158-1169.

Koller, R. 1971. Konstruktionsmethode fiir den Maschinenbau---
Heidelberg:Springer-Verlag.

Kuipers, B. 1982. Getting the Envisionment Right. Proc. AAAI-
82:209-212.

Kuipers, B. Kassirer, J.P. 1983. How to Discover a Knowledge
Representation for Causal Reasoning by Studying an Expert

Physician., Proc. 8th IJCAI-83:49-56.

McAllester,D.A. 1980. An Outlook on Truth Maintenance. Memo AIM-
551, AI-Lab, MIT.

McCarthy, J., Hayes, P. 1969. Some philosophical problems from
the standpoint of artificial intelligence. 1In Machine

Intelligence 4(1969), 463-502.

McDermott, D., Doyle, D. 1980. Non-Monotonic Logic I. Artificial
Intelligence:13(1980).

McDermott, D. 1982. A temporal Logic for Reasoning about
Processes and Plans. Cognitive Science:6(1982).

Mina, I. 1984. Ph.D. - Dissertation (submitted).

R

27.

28.

29.

30.

31.

32.

33;

34.

35,

36.

Moore, R.C. 1983. Semantical Considerations on non-monotonic
logic. Proc. 8th IJCAI-83(1983) 272-279 and SRI
International, AI-Ctr.TN 284 (1983).

Pahl, G. Beitz, W. 1976. Konstruktionslehre. Heidelberg:Springer-
Verlag.

Raulefs, P. 1983. Basic Ideas on Conceptional Design and
Qualitative Reasoning for Physico-Technical Systems.

Working Paper, Kaiserslautern Univ.

Raulefs, P. 1984. Knowledge-based software engineering. Tech.
Rept., FB Informatik, Univ. Kaiserslautern.

Rodenacker, W.G. 1976. Methodisches Konstruieren.
Heidelberg:Springer-Verlag.

Roth, R. 1968. Gliederung und Rahmen einer neuen Maschinen-
Gerdte-Konstruktionslehre. Feinwerktechnik:72(1968)521-528.

Sacerdoti, E.D. 1977. A Structure for Plans and Behavior. New
York:Elsevier.

Smullyan, R.M. 1970. Formal Systems. New York:Harper and Row.

Winskel, G. 1981. Events in Computation (Ph.D.- Thesis). Dept. of
Computer Science, Univ. of Edinburgh,.

Yoshikawa, H. 1983. Automation of Thinking in Design. Proc. CAPE-
83(1983):405-407.

