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The enzymes of the 2-C-methylerythritol-d-erythritol 4-
phosphate (MEP) pathway (MEP pathway or non-mevalonate
pathway) are responsible for the synthesis of universal
precursors of the large and structurally diverse family of
isoprenoids. This pathway is absent in humans, but present in
many pathogenic organisms and plants, making it an attractive
source of drug targets. Here, we present a high-throughput

screening approach that led to the discovery of a novel
fragment hit active against the third enzyme of the MEP
pathway, PfIspD. A systematic SAR investigation afforded a
novel chemical structure with a balanced activity–stability
profile (16). Using a homology model of PfIspD, we proposed a
putative binding mode for our newly identified inhibitors that
sets the stage for structure-guided optimization.

The 2-C-methylerythritol-d-erythritol 4-phosphate (MEP) path-
way, consists of seven enzymes, and is an essential biosynthetic
pathway for the production of isopentenyl diphosphate (IDP)
and its isomer dimethylallyl diphosphate (DMADP) both of
which are universal building blocks of isoprenoids, a large and
structurally diverse group of natural products with crucial
physiological functions.[1] As the MEP pathway is absent in
humans, but essential in most Gram-negative bacteria, Myco-

bacterium tuberculosis and Plasmodium falciparum, the parasite
responsible for malaria, it is an attractive source of anti-infective
drug targets.[2] Inhibitors able to target this pathway have the
advantage to exhibit a novel mechanism of action without
target-based side effects. Nevertheless, despite the important
functions served by the MEP pathway few inhibitors have been
reported so far.[3] Importantly, fosmidomycin,[4] a potent inhib-
itor of the second enzyme of the MEP pathway, IspC or DXR,
has undergone phase II clinical trials as antimalarial chemo-
therapeutic agent in combination with clindamycin and piper-
aquine, validating the enzymes of the MEP pathway as drug
targets.[5] In the present study, we focused our attention on
IspD, alternatively known as MEP cytidyltransferase or ygbP
protein, that is the third enzyme in the MEP pathway.[6] IspD
catalyzes the formation of 4-diphosphocytidyl-2-C-meth-
ylerythritol (CDP-ME) from MEP and cytidine triphosphate CTP
in the presence of Mg2+, with the release of inorganic
diphosphate (PPi) (Figure 1).[7]

Looking at the IspD inhibitors, to date only a few
compounds have been reported.[8] Aiming to enlarge the
portfolio of IspD inhibitors and particularly of Plasmodium IspD
(PfIspD), we performed a high-throughput screening (HTS),
using the proprietary BASF library of about 100,000 diverse
selected compounds. The search for novel antimalarial com-
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Figure 1. Reaction catalyzed by the IspD protein. MEP: 2-C-methylerythritol-
d-erythritol 4-phosphate; CDP-ME: 4-diphosphocytidyl-2-C-methylerythritol.
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pounds endowed with a novel mechanism of action has a
continuous and long history of research. Although novel
approved treatments and preventions helped to save many
lives, malaria is still responsible for more than 400,000 deaths
worldwide, mostly young children.[9]

Herein we describe the identification of a fragment-like
compound (16) able to inhibit PfIspD in vitro in the micromolar
range and with a suitable physicochemical profile (Figure 2).

The screening performed against PfIspD led to the identi-
fication of compound 1. Despite its moderate activity it
attracted our attention due to its fragment-like size and
modular structure that lends itself to chemical modification. In
order to identify structural features that are critical for PfIspD
inhibition, we followed a classical structure–activity relationship
(SAR) study, as we could not rely on any structural information
about the protein. High-resolution structures are only available
for Escherichia coli IspD,[10] besides additional structures from
non-pathogenic organisms.[11] We therefore, conducted a
focused SAR study with two inter-related objectives: i) find a
replacer for the pyrrole ring as it is known to be a structural
alert,[12] ii) validate the fragment hit by improving the potency
and the physicochemical profile for further optimization. With
these goals in mind, we initially started our exploration by
keeping the core molecule constant and varying only the
terminal nitro group (1–8); while, the second subset of
molecules (9–18) includes modifications around the pyrrole
ring.

Half-maximal inhibitory concentration (IC50) values against
purified PfIspD are reported in Table 1, while Table 2 summa-

rizes the second set. Details about the assay are reported in the
Supporting Information, section 3.

Compounds 1–8 were synthesized following the classical
Paal–Knorr pyrrole condensation by refluxing 5-substitued
anthranilic acid in toluene with 1.5 eq of 2,5-hexanedione in the
presence of molecular sieves (Scheme S1).[13]

Based on our previously reported discovery of
azolopyrimidines[8a] and pseudilins[14] as halogenated and allos-
teric modulators of the enzyme IspD, we were intrigued to also
evaluate the influence of halogens in our new scaffold, leading
to derivatives 3–5. In fact, while for the azolopyrimidine scaffold
only activity against the plant Arabidopsis thaliana (AtIspD) is
reported, the pseudilin-type inhibitors showed potency against
the malaria parasite too, in vitro and in cell-based assays.
Specifically, in our series of compounds, the best halogen
turned out to be bromine (4) that is slightly more potent than
hit 1 and about two-fold more potent than its iodo derivative 5.
By contrast, activity is completely lost upon introduction of an
electron-donating group (6–8) and also a short elongation with
an acetamide group 8 is not tolerated. The drop in activity
observed for compound 2 suggests the influence played by a
substituent in position 5 of the phenyl ring within this subset of
derivatives.

Figure 2. Chemical structures of compounds reported in the present study.

Table 1. Inhibition values by 5-substituted 2-pyrrol-1-benzoic acid deriva-
tives (1–8) determined using the coupled photometric assay with purified
PfIspD.

Compd R IC50 [μm]*

1 NO2 271�24
2 H >500
3 Cl 263�35
4 Br 117�20
5 I 208�37
6 CH3 >500
7 � OCH3 >500
8 � NHCOCH3 >500

Table 2. [*] IC50 values were obtained from two independent experiment-
s.Table 2
Inhibition values by 2-substituted-5-nitrobenzoic acid derivatives (9–18)
determined with the coupled photometric assay using purified PfIspD.

Compd R IC50 [μm]*

9 264�30

10 225�27

11 >500

12 >500

13 >500

14 >500

15 277�56

16 151�17

17 >500

18 280�55
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Next, we moved our attention to the pyrrole core. For
consistency, we maintained the initial 5-nitrobenzoic acid
scaffold, having the 2-position occupied by a small but diverse
library of aliphatic and substituted aromatic rings (Table 2). For
the synthesis of this series of compounds, we relied on the
classical Suzuki cross-coupling reaction between 2-bromo-5-
nitrobenzoic acid and the respective boronic acid derivatives
(Scheme S2).

Interestingly, the pyrrolidine 9 and the piperidine 10 could
replace the dimethyl pyrrole ring without a significant loss in
activity. Introducing another heteroatom in the piperidine ring
to give the morpholine 11 led to a further decrease in activity.
Other 5-membered heterocyclic rings such as the furan 12 and
the thiophene 13 were not beneficial for the activity. Although,
the unsubstituted phenyl 14 did not show significant activity,
further substitution on the ring seemed to be beneficial.
Substituents of variable nature such as the methyl 15 and the
nitrile 16 restored the activity of the unsubstituted phenyl,
suggesting there is room for further modification on this side of
the molecule. The nitrile derivative 16 showed almost two-fold
higher potency than its methyl analogue 15. Exploring other
polar groups such as the hydroxy 17 was not useful, hinting
that the electronic effects exerted by the substituents may
affect the activity. Remarkably, further growing on the hydroxyl
with an isopropyl 18 regained the activity, indicating some
space that could be available to modulate the activity.

To gain further insights into this class of compounds, we
built a homology model for PfIspD using EcIspD (PDB 1I52) as a
template and docked our compounds into the substrate bind-
ing pocket (Figure 3). The docked pose of hit compound 1
(Figure 3a) shows that the carboxylic group forms two H bonds
with Lys207 and Ile205 in the binding pocket. Both H bonds
were also seen in the case of 4 and 16 with a substituted
phenyl instead of the dimethyl pyrrole. Another H bond is
formed between the compounds having the terminal NO2

group and Arg429.

Finally, as the affinity for the target is not the only aspect to
be considered during fragment-based drug discovery, we also
focused our attention on the physicochemical properties of our
compounds (see Table 3).[15] Despite compound 4 showing the
best potency in our series of compounds, we do not consider it
a suitable candidate for further fragment growing as the
lipophilic ligand-efficiency (LLE) parameter is not ideal. Most
probably, the better IC50 value is due to the higher cLogP value.
Conversely, with compound 16 we have a good balance in all
the ligand efficiency scores evaluated. Of note, having an
aromatic core with a nitrile substituent as in 16, has several
advantages compared to the pyrrole liability.[16]

In conclusion, the present report describes the identification
of compound 16 as an optimized fragment hit, targeting PfIspD
with high potential for further fragment growing and optimiza-
tion.
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Figure 3. Docked poses of compounds 1, 4, and 16 in the homology model
of PfIspD using SeeSAR 11.0. a) The carboxylic group of 1 (blue) forms two H
bonds (green dotted lines) with Lys207 and Ile205 and the NO2 group is
engaged in a H bonding interaction with Arg429. b) The carboxylic group in
4 (beige) forms the same H bonds as for compound 1. c) Compound 16
(yellow) forms the same H bonds with Lys207, Ile205 and Arg429 as the hit
compound 1. d) Overlay of the docked poses of compounds 1 and 16.

Table 3. [*] IC50 values were obtained from two independent experiment-
s.Table 3
Summary of ligand-efficiency scores calculated on StarDrop version:
7.0.1.29911.

Compd 1 4 16

PfIspD
IC50 [μm]

271�24 117�20 151�17

cLogP 1.79 3.84 1.75
MW[a] 262.3 294.1 270.2
HA[b] 19 17 20
LE[c] 0.26 0.32 0.26
LLE[d] 1.77 0.085 2.072

[a] Molecular weight. [b] Non-hydrogen atom. [c] Ligand efficiency. [d] Lip-
pophilic ligand efficiency.
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