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Abstract. Humans spend most of their lives indoors, so indoor air quality (IAQ) plays a key role in human
health. Thus, human health is seriously threatened by indoor air pollution, which leads to 3.8 × 106 deaths an-
nually, according to the World Health Organization (WHO). With the ongoing improvement in life quality, IAQ
monitoring has become an important concern for researchers. However, in machine learning (ML), measurement
uncertainty, which is critical in hazardous gas detection, is usually only estimated using cross-validation and is
not directly addressed, and this will be the main focus of this paper. Gas concentration can be determined by
using gas sensors in temperature-cycled operation (TCO) and ML on the measured logarithmic resistance of
the sensor. This contribution focuses on formaldehyde as one of the most relevant carcinogenic gases indoors
and on the sum of volatile organic compounds (VOCs), i.e., acetone, ethanol, formaldehyde, and toluene, mea-
sured in the data set as an indicator for IAQ. As gas concentrations are continuous quantities, regression must be
used. Thus, a previously published uncertainty-aware automated ML toolbox (UA-AMLT) for classification is
extended for regression by introducing an uncertainty-aware partial least squares regression (PLSR) algorithm.
The uncertainty propagation of the UA-AMLT is based on the principles described in the Guide to the Expres-
sion of Uncertainty in Measurement (GUM) and its supplements. Two different use cases are considered for
investigating the influence on ML results in this contribution, namely model training with raw data and with data
that are manipulated by adding artificially generated white Gaussian or uniform noise to simulate increased data
uncertainty, respectively. One of the benefits of this approach is to obtain a better understanding of where the
overall system should be improved. This can be achieved by either improving the trained ML model or using a
sensor with higher precision. Finally, an increase in robustness against random noise by training a model with
noisy data is demonstrated.

1 Introduction

1.1 Indoor air quality and VOCs

As humans spend most of their lives indoors, the most sig-
nificant environment for them is the indoor environment
(Brasche and Bischof, 2005). For this reason, indoor air qual-
ity (IAQ) is of special importance as it plays a leading role
with regard to the performance, well-being, and health of
humans (Sundell, 2004; Asikainen et al., 2016). Volatile or-
ganic compounds (VOCs) are one of the main contributors
to poor air quality, especially in indoor air, and can lead

to serious health problems, e.g., leukemia, cancers, or tu-
mors (Jones, 1999; Tsai, 2019). Nowadays, IAQ monitoring
is mostly based on measurements of carbon dioxide (CO2)
emitted by humans as the primary indicator for poor in-
door air, as CO2 concentration is directly related to VOCs
caused by human presence (Von Pettenkofer, 1858). How-
ever, this neglects the fact that not only humans emit VOCs
but also their activities such as household cleaning, cooking,
and smoking, as well as, for example, furniture, carpets, and
even the building itself due to the building materials used
(Spaul, 1994). To measure almost all types of VOCs in in-
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door air, metal oxide semiconductor (MOS) gas sensors are
widely used as they are low-cost, robust, and highly sensitive.
To improve the limited selectivity of these sensors and en-
able the discrimination of specific pollutants, MOS gas sen-
sors can be operated in dynamic modes, especially by us-
ing a temperature-cycled operation (TCO; Eicker, 1977; Lee
and Reedy, 1999; Baur et al., 2015; Schütze and Sauerwald,
2020a; Baur et al., 2021). A TCO, especially in combination
with modern microstructured gas sensors, yields extensive
and rich response patterns that need to be interpreted using
machine learning (ML) to extract the relevant information
(Schütze and Sauerwald, 2020a).

For the data set used in this contribution, sensor responses
of an SPG30 sensor (Sensirion AG, Stäfa, Switzerland) with
four gas-sensitive layers in TCO were recorded (Rüffer et al.,
2018). This contribution focuses on formaldehyde as an ex-
ample of a highly relevant toxic gas and on the sum concen-
tration of all VOCs (VOCsum) in parts per billion (ppb) in the
used data set, i.e., the sum of the concentrations of acetone,
ethanol, formaldehyde, and toluene. VOCsum should not be
confused with the widely used total VOC (TVOC) value, as
this is based on analytical measurements and takes into ac-
count only VOCs with medium volatility (Schütze and Sauer-
wald, 2020b). Formaldehyde (CH2O) is one of the most toxic
and carcinogenic gases in indoor air (Hauptmann et al., 2004;
Zhang, 2018; NTP, 2021) and is released from a variety of
sources. The most significant ones are pressed wood prod-
ucts, e.g., particle board and plywood paneling. The World
Health Organization (WHO) set the guideline threshold for
a 30 min average concentration to 0.1 mg m−3, which corre-
sponds to approximately 80.1 ppb for 760 mmHg and 20 ◦C
(World Health Organization, 2010).

1.2 Automated ML toolbox

In recent years, an automated machine learning toolbox
(AMLT) was developed and applied to different classifica-
tion tasks (Schneider et al., 2017, 2018; Dorst et al., 2021).
Its extension to an uncertainty-aware AMLT (UA-AMLT) for
classification was presented in Dorst et al. (2022). As gas
concentrations are continuous quantities, regression must be
used, which is a supervised ML technique. In this contribu-
tion, the AMLT is therefore extended to be applicable for
regression tasks and, furthermore, the corresponding uncer-
tainty for the ML result is considered. The uncertainty propa-
gation is based on the Guide to the Expression of Uncertainty
in Measurement (GUM; BIPM et al., 2008a) and its Supple-
ment 1 (BIPM et al., 2008b) and Supplement 2 (BIPM et
al., 2011). These three documents establish general rules for
evaluating and expressing measurement uncertainty. These
rules and principles are applied in this contribution for esti-
mating the uncertainty of an ML model prediction, thus ex-
tending the GUM approach to smart sensors.

To investigate the influence of measurement uncertainty
on machine learning (ML) results, sensor raw data are ma-

Figure 1. Gas composition for calibration consisting of random
mixtures of VOCs (blue) and background gases (red; adapted from
Baur et al., 2021).

nipulated by simulated additive white Gaussian noise. With
these manipulated data sets, different ML models are deter-
mined based on feature extraction, feature selection followed
by regression, and the influence of the Gaussian noise, which
simulates increased sensor uncertainty in the ML results, is
investigated. Gaussian (normally distributed) noise is a very
good assumption for any process for which the central limit
theorem holds. In addition, the influence of additive white
uniform noise as a further noise model is investigated.

2 Materials and methods

2.1 Data set

A data set published in Baur et al. (2021) is used to investi-
gate the influence of measurement uncertainty on ML results.
It consists of different calibration and field test measurements
of gas mixtures with the MOS gas sensor SGP30 (Sensirion
AG, 2020). The gas mixtures are composed of random mix-
tures of seven different gases that are relevant for indoor air
quality. Various VOCs, i.e., acetone, ethanol, formaldehyde,
and toluene, are used together with water vapor and inor-
ganic background gases, i.e., hydrogen and carbon monox-
ide, as shown in Fig. 1. The gas concentrations are mixed
using Latin hypercube sampling (LHS; McKay et al., 1979)
to obtain unique gas mixtures (UGMs). In this contribution,
only data from the initial calibration are used. The concen-
tration ranges for all gases during the initial calibration are
shown in Table 1.

The SGP30 sensor, with its four different gas-sensitive lay-
ers, is used in TCO to improve its selectivity, sensitivity, and
stability (Schultealbert et al., 2018). As shown in Fig. 2, the
temperature cycle consists of 10 steps at 400 ◦C, with a dura-
tion of 5 s each, followed by different low-temperature steps,
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Table 1. Concentration ranges for all gases during the initial cali-
bration phase (Amann et al., 2021b).

Substance Minimum Maximum

Humidity 25 % RH 70 % RH
Hydrogen 400 ppb 2000 ppb
Carbon monoxide 150 ppb 2000 ppb
Acetone 14 ppb 300 ppb
Ethanol 4 ppb 300 ppb
Formaldehyde 1 ppb 400 ppb
Toluene 4 ppb 300 ppb
VOCsum 300 ppb 1200 ppb

RH is the relative humidity.

Figure 2. Logarithmic conductance of one sensor element (blue)
and the temperature-cycled operation of the SGP30 (red).

with a duration of 7 s each. One single temperature cycle thus
lasts 120 s and, due to the sampling rate of 20 Hz, consists of
2.400 measurement values for each gas-sensitive layer. The
sensor output represents the logarithmic resistance shown for
one cycle and one gas-sensitive layer in Fig. 2.

During the initial calibration phase, the SGP30 sensor is
exposed to 500 UGMs for 10 temperature cycles (TCs) each.
Due to the limited time response of the gas mixing apparatus
(GMA) and synchronization problems between sensor and
GMA, four TCs at the beginning and the last TC for each
UGM are omitted so that only five TCs per UGM are evalu-
ated. Furthermore, the first three UGMs are also not consid-
ered due to run-in effects. Thus, the data set comprises 2485
relevant cycles of 497 UGMs with stable gas concentrations
from the initial calibration.

2.2 Uncertainty-aware automated machine learning
toolbox

In general, regression is used for predicting a continuous
quantity, whereas classification is used for predicting a dis-
crete class label. As a basis for this publication, the AMLT

Figure 3. Feature extraction (red), feature selection (green), and
regression (blue) algorithms of the uncertainty-aware AMLT for re-
gression tasks.

for classification tasks (Schneider et al., 2017, 2018; Dorst et
al., 2021) and its extended uncertainty-aware version (Dorst
et al., 2022) are modified to also solve regression tasks.
With the AMLT, feature extraction (FE) and feature selec-
tion (FS), as well as classification/regression and evalua-
tion, are performed without expert knowledge and without
a detailed physical model of the process to minimize model
generation costs. Model training, in addition to application,
can be carried out with the (uncertainty-aware) AMLT. Par-
tial least squares regression (PLSR) as the de facto standard
for quantification in the field of gas sensors (Wold et al.,
2001; Gutierrez-Osuna, 2002) is used for regression tasks
in the AMLT. Another well-known regression algorithm is
principal component regression (PCR), which first performs
the principal component analysis (PCA) as an unsupervised
technique to obtain the principal components (PCs) and then
uses these PCs to build the regression model. As a two-step
model-building algorithm, the PCR makes interpreting the
ML results harder in contrast to PLSR, which only has one
step (Ergon, 2014). Using PCA leads to a relevant drawback
of the PCR algorithm, as performing an unsupervised tech-
nique does not guarantee that the selected principal compo-
nents for the regression model building are associated with
the target. An advantage of PLSR is that it often has fewer
components than PCR to achieve the same prediction level
(De Jong, 1993a).

As shown in Fig. 3, five complementary FE algorithms are
used within the AMLT, together with Pearson correlation for
FS and PLSR, as the regression algorithm.

Adaptive linear approximation splits cycles into approx-
imately linear segments, and for each segment, the mean
value and slope are extracted as features from the time
domain (Olszewski et al., 2001). The best Daubechies
wavelets algorithm performs a wavelet transform using a
Daubechies D4 wavelet (Daubechies, 1992) to extract 10 %
of the wavelet coefficients with the highest average abso-
lute value over all cycles as features from the time fre-
quency domain. The best Fourier coefficients algorithm per-
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forms a Fourier transform, and 10 % of the amplitudes with
the highest average absolute value over all cycles and their
corresponding phases are extracted from frequency domain
(Mörchen, 2003). Using principal component analysis, pro-
jections on the principal components are determined (Pear-
son, 1901; Jackson, 1991) and used as features from the time
domain. Moreover, the statistical distribution of the measure-
ment values also includes information in the time domain
(Martin and Honarvar, 1995). Thus, the cycles are split into
10 approximately equally sized segments, and the four sta-
tistical moments (mean, standard deviation, skewness, and
kurtosis) are extracted for each segment as features. These
five FE algorithms and the Pearson correlation as FS lead to
five different algorithm combinations, each benchmarked to
choose the best one for the respective application. The best
combination is determined by the smallest cross-validated
root mean square error (RMSE), which is a measure for the
differences between the predicted ypred ∈ Rm and the ob-
served target values y of the same dimension, i.e.,

RMSE(ypred ,y)=

√√√√ 1
m

m∑
i=1

(ypredi − yi)
2 . (1)

The cross-validation (CV) scenario used is explained in
Sect. 2.2. In general, different metrics can be used to describe
the performance of a regression model; however, RMSE is
one of the best interpretable error measures as it has the same
unit as the prediction of the model and is also comparable to
the (standard) measurement uncertainty used in describing
data quality in measurement.

To use the UA-AMLT, a data matrix D ∈ Rm×n for each
sensor (or sensor layer) must be given, where m denotes the
number of cycles of length n. In case of non-cyclic sensor
data, data must be windowed to obtain the correct m×n for-
mat. Furthermore, there must be knowledge about the uncer-
tainty matrix U ∈ Rm×n, which assigns an uncertainty value
uij to a measurement value dij ∀ i,j . This means that corre-
lation of errors at different time instants is neglected.

Uncertainty-aware feature extraction and selection

To perform FE, which mathematically describes the map-
ping D 7−→ FE, five complementary methods are used. In
this step, one feature matrix FE ∈ Rm×k , k ≤ n is calculated
for each of the FE methods. The uncertainty calculation is
performed according to Dorst et al. (2022), so that, for ev-
ery feature matrix FE, an uncertainty matrix UFE of the same
dimension is calculated.

In the uncertainty-aware FS step, features are ranked ac-
cording to their weighted Pearson correlation to the target
value, i.e., in this contribution to the gas concentration. In
weighted Pearson correlation, the reciprocals of the squared
uncertainty values of the features are used as weights (Dorst
et al., 2022). After ranking the features, a 10-fold stratified
CV (Kohavi, 1995) is carried out for every possible number

of features, and the minimum CV error is determined based
on the optimal number of features l ∈ N found. From a math-
ematical point of view, FS is a mapping FE 7−→ FS, with
FS ∈ Rm×l , l < k containing only the optimal number of the
most relevant features according to weighted Pearson corre-
lation. The corresponding uncertainty matrix is UFS ∈ Rm×l .

2.3 Partial least squares regression

Let a predictor matrix X ∈ Rm×l and a responses matrix
Y ∈ Rm×s be given. The basic algorithm for computing a
PLSR of Y on X using ncomp PLSR components is devel-
oped in Wold et al. (1984). Performing PLSR means iter-
atively solving the following decompositions, such that the
covariance between X and Y is maximized as follows:

X= XS ·XL
>
+Xres (2)

Y= YS ·YL
>
+Yres, (3)

where XL ∈ Rl×ncomp and YL ∈ Rs×ncomp denote the orthogo-
nal loading matrices. XS ∈ Rm×ncomp and YS ∈ Rm×ncomp are
the predictor and response scores, respectively. The matri-
ces Xres and Yres are the residual terms for predictor and
response, respectively, and are used as a start for the next
iteration step.

In MATLAB®, the partial least squares regression (PLSR)
is calculated using the SIMPLS (statistically inspired mod-
ification of the partial least squares) algorithm (De Jong,
1993b). The advantage of SIMPLS is that the regression co-
efficients are determined directly without inverse matrices or
singular value decomposition. Assume that X̂ ∈ Rm×(l+1) de-
notes a matrix in which a vector of ones is prepended to
X to compute coefficient estimates for a model with con-
stant terms. With 1 ∈ Rm denoting a vector containing only
ones, it holds for the augmented matrix that X̂= (1 |X) ∈
Rm×(l+1). The SIMPLS algorithm involves the calculation of
a weighted matrix W ∈ R(l+1)×ncomp . For the SIMPLS algo-
rithm, the following holds:

XS = X̂ ·W and (4)

Y= XS ·YL
> . (5)

Combining Eqs. (4) and (5) leads to the following:

Y= X̂ ·W ·YL
> (6)

= X̂ ·B , (7)

where B ∈ R(l+1)×s denotes the matrix containing intercept
terms in the first row and PLSR coefficient estimates in the
others (De Jong, 1993b).

Uncertainty-aware partial least squares regression

In this contribution, the target values y ∈ Rm are only rep-
resented by one vector, which leads to the matrix B (see
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Sect. 2.3) being also only a vector β ∈ Rl+1. The matrix
of selected features is given by FS ∈ Rm×l . F̂S = (1 |FS) ∈
Rm×(l+1) denotes the matrix where one column of ones at the
beginning of FS was added. For PLSR, the following holds:

ypred = F̂S ·β, (8)

with ypred ∈ Rm representing the predicted target values. The
basis of the uncertainty values calculation for the prediction
ypred are formulas given in Sect. 6.2 (“Propagation of uncer-
tainty for explicit multivariate measurement models”) found
in Supplement 2 of GUM (GUMS2; BIPM et al., 2011).
This section of GUMS2 shows the covariance matrix cal-
culation associated with an estimate of a multidimensional
output quantity with the help of a sensitivity matrix using
matrix–vector notation. This approach can be transferred to
the propagation of uncertainty for PLSR. The first step is the
transposing of Eq. (8), which leads to the following:

y>pred = β
>
· F̂>S . (9)

To use Sect. 6.2 of GUMS2, F̂S and β must be transformed
into vector and matrix, respectively. For the columns of F̂>S ,
the following holds:

F̂>S =
(

1 . . . 1
f>S1

f>S2
. . . f>Sm

)
, (10)

where f>Si ∈ R
l , ∀i = 1, . . .,m denotes the selected features

for the ith cycle. Thus, the matrix–vector representation is
given by the following:

F̃>S =



1
f>S1

1
f>S2
...

1
f>Sl


∈ R(m·(l+1))×1, (11)

and β̃> ∈ Rm×(m·(l+1)), with

β̃> =


β> 0. . .0 0. . .0 . . . 0. . .0

0. . .0 β> 0. . .0 . . . 0. . .0
0. . .0 0. . .0 β> . . . 0. . .0
...

...
...

. . .
...

0. . .0 0. . .0 0. . .0 . . . β>

 , (12)

which leads to

y>pred = β̃
>
· F̃>S . (13)

To propagate the uncertainty in the PLSR, the uncertainty
matrix of the selected features UFS ∈ Rm×l must be ex-
tended with a column associated with the first column of F̂S.

Thus, it holds that ÛFS =
(
|UFS

)
∈ Rm×(l+1). The trans-

pose matrix Û>FS
is transferred to the diagonal matrix Ũ>FS

∈

R(m·(l+1))×(m·(l+1)), where the rows of ÛFS are in the diag-
onal. Using Sect. 6.2.1.3 of BIPM et al. (2011) leads to the
following:

Ũ= β̃> ·
(

Ũ>FS

)2
·

(
β̃>
)>

(14)

= β̃> ·
(

Ũ>FS

)2
· β̃, (15)

with Ũ ∈ Rm×m. To obtain the diagonal elements of Ũ,
Eq. (15) can be simplified and retransformed to the follow-
ing:

U>PLSR =
(
β> ◦β>

)
·

(
Û>FS
◦ Û>FS

)
(16)

⇔ UPLSR =
(

ÛFS ◦ ÛFS

)
· (β ◦β) (17)

= Û◦ 2
FS
·β◦ 2, (18)

where ◦ denotes the Hadamard (element-wise) product
(Horn, 1990). The uncertainty values associated with ypred
can be calculated by the following:

Uypred =

(∣∣∣Û◦ 2
FS
·β◦2

∣∣∣)◦1/2 ∈ Rm×1, (19)

where |.| denotes the element-wise absolute value and (.)◦ 1/2

the Hadamard (element-wise) square root (Reams, 1999).

3 Investigation of the influence of measurement
uncertainty on ML results

To evaluate the influence of measurement uncertainty on ML
results, the logarithmic resistance raw data of each sensor
layer are modified by artificially generated additive white
Gaussian noise of different signal-to-noise ratios (SNRs).
This means that the logarithmic amplifier of the sensor is
responsible for the noise. In general, the SNR is defined
as the ratio of signal power to background noise power.
SNR> 0 dB indicates that there is more signal than back-
ground noise. The maximum theoretical SNR in decibel (dB)
for an analog-to-digital converter (ADC) can be determined,
according to Bennett (1948), with the following:

SNR(N )= 20 · log10

(
2N ·

√
3
2

)
[dB] (20)

≈ 6.02 ·N + 1.76 [dB] , (21)

where N is the resolution of an ADC in bits. Thus, the maxi-
mum theoretical SNR for the 16 bit ADC of the SGP30 is ap-
prox. 98 dB. For this reason, only SNRs from 0 to 98 dB are
considered in this publication. Figure 4 shows an example of
raw and modified sensor data with different SNR values. The
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Figure 4. Raw (violet) and modified sensor signals with additive
white Gaussian noise of different SNR values.

relation between the SNR and squared standard uncertainty
σ 2 is given by the following:

σ 2
= 10

SP−SNR
10 , (22)

where the signal power (SP) is calculated by

SP= 10 · log10

(
‖A‖22
m · n

)
. (23)

Here, A ∈ Rm×n denotes the data for one sensor. Thus, for
example, 75 dB corresponds to σ 2

= 91.71, 80 dB to σ 2
=

29.00, and 98 dB to σ 2
= 0.46 for the first gas-sensitive layer

of the SGP30. In practical applications, 98 dB is typically not
reached because the measurement range of the ADC is larger
than the range of actual measured values within the data set.

3.1 Application of AMLT

To investigate the influence of measurement uncertainty on
machine learning results, the best FE algorithm must first be
determined. To train, validate, and test a model, the data set is
randomly split into 70 % training, 10 % validation, and 20 %
test data by omitting complete UGMs in the training, vali-
dation, or test data set, respectively. This means that each of
the 497 UGMs exists in either the training, validation, or test
data but not in more than one at a time (see Fig. 5). Training
the model is carried out by using the AMLT together with
the training data and formaldehyde or VOCsum, respectively,
as the target. The results obtained for VOCsum as the target
show the same trends and lead to the same conclusions as the
results with formaldehyde as target and are therefore only
shown in Sect. A2.

A 10-fold stratified CV is automatically performed in
the AMLT to determine the best FE algorithm out of five

Figure 5. Randomized split of the UGMs into training, validation,
and test data used in this contribution.

complementary FE methods. In contrast to the data split,
which is carried out by omitting complete UGMs and used
for performing group-based CV with validation data, the
10-fold stratified CV randomly omits individual TCs. The
RMSE value resulting from the 10-fold CV is called the ran-
dom CV error. To obtain quality information on the trained
model, the differences between the predicted and the ob-
served target values are measured using RMSE. The test
RMSE (T−RMSE) results from applying the trained model
to the test data. There can be a significant difference be-
tween a group-based CV error and T−RMSE, as the omitted
UGMs are selected randomly. For each of the five algorithm
combinations (see Fig. 3), a Monte Carlo different train, val-
idation, and test data sets, is performed. The mean value and
standard deviation are calculated for the three different errors
resulting from using training, validation, and test data, with
ncomp = 20 in the PLSR algorithm. The reason for choosing
ncomp = 20 is given below. The results are shown in Fig. 6.
Although principal component analysis (PCA) achieves the
lowest random CV error mean value (14.7 ppb), with neg-
ligible variations for different splits and therefore seems to
be the best FE algorithm, applying 10 % validation data will
lead to a group-based CV error mean value of 24.7 ppb. This
means that 10-fold stratified CV does not efficiently detect
overfitting for this application as it does not omit complete
UGMs and, thus, does not need to interpolate to different gas
concentrations. A new, unpublished version of the AMLT
already allows the user to define validation scenarios (ran-
dom or group based). Here, adaptive linear approximation
(ALA) as the second-best method with a random CV error
mean value of 15.3 ppb is chosen for further investigations
as there is no significant difference in the error mean values
between omitting single TCOs (15.3 ppb; random validation)
and complete UGMs (16.5 and 16.6 ppb; group-based vali-
dation). Thus, it is sufficient to evaluate the random CV er-
ror with 80 % training (including 10 % validation data) and
20 % test data split by omitting complete UGMs in the train-
ing or test data, respectively. Applying this trained model
(ncomp = 20; 80 % data used for model training) to the 20 %
test data (see Fig. 5) leads to a shown in Fig. 7.

For VOCsum as the target, the results are similar, and again,
ALA is chosen as the best FE algorithm (random CV error
mean value of 40.9 ppb) due to the overfitting of the trained
model when using PCA (random CV error mean value of
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Figure 6. Random CV, group-based CV, and test RMSE of the five
FE algorithms using Pearson as FS and PLSR with ncomp = 20 for
100 trials with different randomized UGM splits and the formalde-
hyde concentration as target. ALA is the adaptive linear approxima-
tion, BDW is the best Daubechies wavelets, BFC is the best Fourier
coefficients, PCA is the principal component analysis, and SM is
the statistical moments.

Figure 7. PLSR model for the quantification of formaldehyde for
testing with test data from the data split shown in Fig. 5. Dashed
lines indicate the RMSE of the test data (T−RMSE).

31.9 ppb; group-based CV error mean value of 61.3 ppb). Ap-
plying the model trained with the data split in Fig. 5 to the
20 % test data results in a T−RMSE of 46.1 ppb. The corre-
sponding results are shown in Figs. A3 and A4.

To determine the optimal number of PLSR components,
a Monte Carlo simulation (10 trials with different train and
test data) was carried out, and the T−RMSE mean values
of 10 trials, in addition to the corresponding standard devia-
tions, were calculated. In Fig. 8, the T−RMSE value is plot-
ted over the number of PLSR components for ALA as FE,
Pearson as FS, and PLSR. For a small number of PLSR com-

Figure 8. Elbow method applied to the T−RMSE curve for 10
trials. The optimal number of PLSR components is 20.

ponents, T−RMSE mean values have large standard devi-
ations, for example, the standard deviation for ncomp = 1 is
σ = 5.5 ppb. If the number of PLSR components is greater
than 10, then the standard deviations are in the range from
1.15 to 1.22 ppb; thus, the obtained models are highly repro-
ducible. The lowest T−RMSE mean value is achieved for a
high number of PLSR components (here 13.5 ppb is achieved
with ncomp = 100), but it is preferable to find a good trade-
off between the accuracy and computational cost, as a lower
number of PLSR components reduces the computational ef-
fort. Therefore, the optimal number of PLSR components is
determined using the elbow method (Thorndike, 1953) to en-
sure a stable model, with a T−RMSE of 15.3 ppb. The el-
bow point, i.e., the point after which no further significant
change occurs, is determined by using the ALA algorithm.
ALA automatically determines four segments as being the
best segmentation of the T−RMSE curve (see Fig. 8). Thus,
the optimal number of PLSR components is ncomp = 20,
as more components have no considerable influence on the
T−RMSE, leading to higher computational cost and also in-
creasing the risk of overfitting.

3.2 Influence of measurement uncertainty on ML results

In this contribution, two approaches for investigating the in-
fluence of the measurement uncertainty on machine learn-
ing results are considered, namely training a model with raw
(see Sect. 3.2.1) and noisy (see Sect. 3.2.2) data, respectively.
The trained models are used to predict data with varying
noise levels between 0 and 98 dB in both use cases. Train-
ing a model with raw data means that the uncertainty as-
sociated with the raw data is propagated through the UA-
AMLT, which saves on computational cost, as no retraining
is necessary if the uncertainty changes. To validate the UA-
AMLT, training with the noisy data of different SNRs is car-
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ried out and compared to the results of the uncertainty propa-
gation approach. The number of PLSR components (ncomp =

20) determined with the elbow method is considered for
formaldehyde and VOCsum as the target. For formaldehyde,
the number of PLSR components leading to the minimum
T−RMSE value, i.e., ncomp = 100, is also considered and
compared to the results for

3.2.1 Model trained with raw data

The motivation for using raw data for training and noisy data
for model application is the typical degradation of sensors
over time (Jiang et al., 2006). To avoid a loss in sensor perfor-
mance, periodical recalibration is typically required, which
is often expensive and difficult or impossible to perform, as
collecting sensors and sending them to the lab leads to the
downtime of the IAQ monitoring system.

The test plus uncertainty RMSE (T+U−RMSE) is in-
troduced as measure for the quality of the model consid-
ering the uncertainty values. This T+U−RMSE value is
the sum of the two RMSE values obtained by the test of the
model (T−RMSE) and by propagating the measurement un-
certainty through the toolbox (U−RMSE), respectively. It is
calculated according to the following:

du = ypred+Uypred (24)

d l = ypred−Uypred (25)

RMSET+U =

{
RMSE(du,y) ypred ≥ y

RMSE(d l,y) otherwise
, (26)

where y ∈ Rm and ypred ∈ Rm denote the actual and the pre-
dicted target, respectively. Uypred contains the uncertainty
values associated with the predicted target. Furthermore,
noisy data RMSE (ND-RMSE) is used, which indicates the
quality of the model when applying it to another simulated
data set (2000 cycles) with the added white Gaussian noise
(noisy data) of different SNRs.

First, it is of interest if the selected FE algorithm still per-
forms well when applying the model trained with raw data
on noisy test data. ALA was chosen as the best FE algorithm
when applying a model trained with raw data on raw test
data, as shown in Sect. 3.1. Applying the model on noisy test
data leads to the T+U−RMSE curves, as shown in Fig. 9.
For SNR values greater than 65 dB, ALA achieves the small-
est T+U−RMSE. In this range, the statistical moments
(SM) also perform well, with the best Daubechies wavelets
(BDW) achieving similar results for very high SNR≤ 85 dB.
The T+U−RMSE difference between ALA (best algo-
rithm) and SM is only 1.9 ppb for 98 dB. Between 50 and
65 dB, the smallest T+U−RMSE is achieved using statisti-
cal moments. If SNR≤ 50 dB, then PCA achieves the small-
est T+U−RMSE. This means that PCA can compensate
for noise in this range, but overfitting leads to higher error,
as shown above for the raw data. This figure shows that the

Figure 9. Test plus uncertainty RMSE (T+U−RMSE) curve for
the five complementary FE algorithms, each in combination with
the Pearson correlation for FS and PLSR.

measurement uncertainty has a direct influence on the perfor-
mance of the ML algorithm, and thus, different FE methods
should be chosen for different SNR values.

Figure 10a shows T−RMSE, T+U−RMSE, and ND-
RMSE values for a model trained on raw data for SNR≥
40 dB (approx. maximum theoretical SNR for a 6 bit ADC,
according to Eq. 21), using the data split shown in Fig. 5 with
ALA as FE, the Pearson correlation for FS, and PLSR. The
T−RMSE values in Fig. 10 are constant because the model
was trained with one specific raw data split (see Fig. 5). For
large SNR values, it can be assumed that the added white
Gaussian noise is smaller than the SNR of the raw data and,
therefore, has no significant influence, as is indeed observed.
The T+U and ND errors show a similar increase with re-
duced SNR for both models with 20 and 100 PLSR compo-
nents, with the ND error being slightly lower than the T+U
error. This indicates that the model uncertainty estimated by
propagating the error through the toolbox, i.e., the T+U er-
ror, overestimates the true model uncertainty slightly but still
provides valuable insight into the sensitivity of the ML model
to noisy data. To obtain an accurate model for predicting
formaldehyde concentrations with ncomp = 20, the SNR of
the data set should not fall below 70 dB, as, for this SNR, the
T+U−RMSE is approx. 19.2 ppb, which is an acceptable
uncertainty for determining the formaldehyde concentration
with a threshold limit value (TLV) of 81 ppb. An SNR of
45 dB for ncomp = 20 and of 50 dB for ncomp = 100 results
in T+U−RMSE and ND-RMSE values of approx. 80 ppb,
i.e., similar to the TLV, which means that the sensor sys-
tem would no longer be useful for estimating the formalde-
hyde concentration. For SNR< 80 dB, the model based on
20 PLSR components is more robust against noise than a
model with 100 PLSR components, yielding lower RMSE
values. In contrast, for SNR≥ 80 dB, a higher number of
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Figure 10. RMSE for testing a model trained with 80 % raw data for formaldehyde prediction on (a) 20 % test data without (red) and with
associated uncertainty values (green), in addition to the application of the model on a noisy data set (blue) and (b) 20 % raw test data (red),
and the calculated uncertainty RMSE (light blue) resulting from the difference in T+U−RMSE and T−RMSE for a different number of
PLSR components.

PLSR components performs slightly better, i.e., an improve-
ment in the RMSE values can be achieved with more PLSR
components if the noise level in the data is very low. In the
case of an SNR value of 98 dB, the T−RMSE value is 15.33
and 13.34 ppb for ncomp = 20 and ncomp = 100, respectively.

Figure 10b shows the T−RMSE and the U−RMSE.
U−RMSE is calculated as the difference between
T+U−RMSE and T−RMSE (see Fig. 10a). This
figure shows that the influence of the trained model (ex-
pressed by T−RMSE) on T+U−RMSE is constant, while
the influence of the measurement uncertainty (expressed
by U−RMSE) decreases steadily with increasing SNR.
For ncomp = 20 (ncomp = 100), U−RMSE is smaller than
T−RMSE when SNR is greater than 60 dB (65 dB).

The results for the additive white uniform noise and
formaldehyde as target are nearly the same as for the addi-
tive white Gaussian noise (see Fig. A8a). Similar results for
VOCsum as the target are shown in Fig. A5a.

To demonstrate the effect of the noise on test data, PLSR
models trained with raw data (ncomp = 20) for the quantifi-
cation of formaldehyde and VOCsum are shown in Figs. A1
and A6 for the two different SNR values, respectively.

3.2.2 Model training with noisy data

The second use case occurs when using low-performance
sensors or sensor systems that provide significant noisy data
or where the electronics/ADCs add significant noise. For the
investigation of the influence of measurement uncertainty on
regression results, ALA as FE and Pearson correlation as FS
are used together with PLSR. Formaldehyde as the target is
discussed here, as VOCsum leads to similar results, which

are shown in Appendix A2. Only results for white Gaussian
noise are shown here, as the results for white uniform noise
are similar (see Appendix A3).

Figure 11a shows T−RMSE, T+U−RMSE, and ND-
RMSE values for a model trained on noisy data for SNR≥
40 dB, using the data split shown in Fig. 5. Compared to
Fig. 10a, the T+U−RMSE is significantly smaller for the
model trained with noisy data, i.e., the ML model can sup-
press noise if it is contained in the training data. For ex-
ample, for SNR= 50 dB and 20 PLSR components, the
T+U−RMSE is 60.22 ppb when training with raw data,
while it is only 34.3 ppb when training with noisy data. In
general, a model can be made more noise resistant by adding
additive white Gaussian noise to the training data. Compar-
ing Figs. 10a and 11a, note that the regression results are sim-
ilar for noisy and raw data for SNR≥ 80 dB, thus indicating
again that the noise level of the raw data is approx. 80 dB.
The same holds for T+U−RMSE when SNR≥ 80 dB. Of
course, there is no need to train the model with noisy data
with an added noise level lower than the noise of the origi-
nal data. As already observed for the model trained with raw
data, the RMSE values can be reduced by using more compo-
nents, but here, this observation holds for all SNR levels, as
the noise is contained in the training data, so there is no over-
fitting. This means that training a model with raw data once is
sufficient, and no new model must be trained with noisy data.
The associated measurement uncertainty values must only be
used in the application of the model, which saves much com-
putational cost. Figure 11b shows that, for T+U−RMSE
values, the contribution resulting from the measurement un-
certainty is always lower than the contribution from the test
of the model. This means that the noise is already trained in
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Figure 11. RMSE for testing a model trained with 80 % noisy data for formaldehyde prediction on (a) 20 % test data without (red) and with
associated uncertainty values (green) and (b) 20 % raw test data (red) and the calculated uncertainty RMSE (light blue) resulting from the
difference in T+U−RMSE and T−RMSE for a different number of PLSR components. Note the magnification compared to Fig. 10.

the model, and improving the used sensor would significantly
improve the ML results.

For white uniform noise, similar results are shown in
Fig. A8b.

In case of VOCsum as the target, the results are similar,
despite the fact that the RMSE values are higher than for
formaldehyde, as shown in Fig. A5b. No significant differ-
ence between the RMSE values when training with raw and
noisy data, respectively, is observed for SNR values higher
than 70 dB.

To demonstrate the effect of noise on test data, PLSR mod-
els trained with noisy data (ncomp = 20) for the quantification
of formaldehyde and VOCsum are shown in Figs. A2 and A7,
for two different SNR values, respectively.

4 Conclusion and outlook

In this contribution, the uncertainty-aware AMLT for clas-
sification tasks presented in Dorst et al. (2022) was first
extended for solving regression problems. In accordance
with the GUM, an analytical method for uncertainty prop-
agation of PLSR was implemented. The code for this
UA-AMLT for classification and regression tasks was
published on GitHub (https://github.com/ZeMA-gGmbH/
LMT-UA-ML-Toolbox, last access: 18 January 2023). For
different SNR levels, the UA-AMLT automatically selects
the best ML algorithm based on the overall test plus the un-
certainty RMSE.

The influence of measurement uncertainty on machine
learning results is investigated in depth with two use cases,
namely model training with raw and noisy data generated by
adding white Gaussian noise. For both use cases, the analy-
sis shows where the measurement system must be improved

to achieve better ML results. In general, there are two dis-
tinct possibilities, i.e., improving either the ML model or the
used sensor. In case of an RMSE resulting from measure-
ment uncertainty tending towards zero, an improvement of
the ML model is suggested. In the range where U−RMSE is
already very small (see Fig. 10b), a better ML model should
be obtained as optimizing the sensor, including the data ac-
quisition electronics, will only lead to even lower U−RMSE
values close to zero, which does not significantly impact the
overall T+U−RMSE. In contrast to that, in ranges where
U−RMSE is higher, minimizing this RMSE by optimizing
the physical sensor system should be the objective. To reduce
the T−RMSE resulting from the ML model, using a better
model would be necessary, as this can significantly influence
the ML results. A better model can be achieved, for example,
by using a higher number of PLSR components, as shown in
this contribution, or by using deep learning, which can also
improve the T−RMSE (Robin et al., 2021).

Finally, it is shown that increased robustness of the ma-
chine learning model can be achieved by adding white Gaus-
sian noise to the raw training data.

In future work, the influence of different types of colored
noise on ML results can be investigated, as this contribu-
tion has addressed only different additive white noise mod-
els. Therefore, the correlation must be considered within the
uncertainty propagation, and this is only possible for the fea-
ture extractors. Furthermore, the difference between noise
produced by the data acquisition electronics, especially the
logarithmic amplifier as simulated in this contribution, and
noise produced by the sensor could be investigated. To sim-
ulate sensor noise or electronic noise before the logarithmic
amplifier noise, the noise must already be added to the in-
verse logarithmic of the logarithmic resistance raw data.
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Appendix A: Additional figures

A1 Formaldehyde as target

Figure A1. PLSR model (trained with raw data; ncomp = 20) applied to test data (see Fig. 5) for the quantification of formaldehyde and
the propagated uncertainty. (a) SNR= 55 dB. (b) SNR= 40 dB. Dashed red and green lines indicate the test RMSE (T−RMSE) and the
test plus uncertainty RMSE (T+U−RMSE) based on test data, respectively. For better visibility, error bars are only shown for every 10th
prediction.

Figure A2. PLSR model (trained with noisy data; ncomp = 20) applied to noisy test data (see Fig. 5) for the quantification of formalde-
hyde using their associated standard uncertainty. (a) SNR= 55 dB. (b) SNR= 40 dB. Dashed red and green lines indicate the test RMSE
(T−RMSE) and the test plus uncertainty RMSE (T+U−RMSE) based on test data, respectively. For better visibility, error bars are only
shown for every 10th prediction.
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A2 VOCsum as target

Figure A3. Random CV, group-based CV, and test RMSE of the five FE algorithms, using Pearson as FS and PLSR with ncomp = 20 for
100 trials with different data splits and the VOCsum concentration as target. ALA is the adaptive linear approximation, BDW is the best
Daubechies wavelets, BFC is the best Fourier coefficients, PCA is the principal component analysis, and SM is the statistical moments.

Figure A4. PLSR model for the quantification of VOCsum for testing with test data from the data split shown in Fig. 5. Dashed lines indicate
the RMSE of test data (T−RMSE).
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Figure A5. RMSE for testing a model trained with 80 % (a) raw data and (b) noisy data for VOCsum prediction on 20 % test data without
(red) and with associated uncertainty values (green), in addition to the calculated uncertainty RMSE (blue) resulting from the difference in
T+U−RMSE and T−RMSE.

Figure A6. PLSR model (trained with raw data; ncomp = 20) applied to test data (see Fig. 5) for the quantification of VOCsum and propagated
uncertainty. (a) SNR= 55 dB. (b) SNR= 40 dB. Dashed red and green lines indicate the test RMSE (T−RMSE) and the test plus uncertainty
RMSE (T+U−RMSE) based on test data, respectively. For better visibility, error bars are only shown for every 10th prediction.
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Figure A7. PLSR model (trained with noisy data; ncomp = 20) applied to noisy test data (see Fig. 5) for the quantification of VOCsum using
their associated standard uncertainty. (a) SNR= 55 dB. (b) SNR= 40 dB. Dashed red and green lines indicate the test RMSE (T−RMSE)
and the test plus uncertainty RMSE (T+U−RMSE) based on test data, respectively. For better visibility, error bars are only shown for every
10th prediction.

A3 Additive white uniform noise and formaldehyde as
target

Figure A8. RMSE for testing of a model trained with 80 % (a) raw data and (b) noisy data (added white uniform noise to raw data) for
a formaldehyde prediction on 20 % test data without (red) and with associated uncertainty values (green), in addition to the calculated
uncertainty RMSE (blue) resulting from the difference in T+U−RMSE and T−RMSE.

Code and data availability. The paper uses data obtained from
different calibration and field test measurements of gas mixtures
with a MOS gas sensor. The data set is available on Zenodo
https://doi.org/10.5281/zenodo.4593853 (Amann et al., 2021a).

The uncertainty-aware AMLT (Dorst et al., 2022;
https://doi.org/10.1515/teme-2022-0042) includes all the code for
data analysis associated with the current submission and is available
at https://github.com/ZeMA-gGmbH/LMT-UA-ML-Toolbox (last
access: 15 April 2022).
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