LA R X )

AL

(XX RSN

=
Lt
=
jad
jam]
[
o
Ll
—
o
=T
]
=
(]
—
o]
L
—
o
Ll
o
—
o]
[
=
o
L
—
—
<<
(=}
=
o
ac
Lo

<o

=

—

I

(&3

b—

<

=

o]

=
<t —
—_ >

= 4
o

= o
(S S
— '
= =

< O

— —
= =
a o
= =
e Q=
LS I

Harold Boley
MEMO SEKI-83-06

AUBWISE) M 'L UISINBISIASIEY 06.9-0 o_)— ‘)-
870 UOB{SOd u =
UIDINBISIBSIBY 1BjISIanIuN
HHBUWLIOU| D121agQuyoe -zmm






FROM PATTERN-DIRECTED TO ADAPTER-DRIVEN COMPUTATION
VIA FUNCTION-APPLYING MATCHING °

Harold Boley, Universitaet Kaiserslautern
Fachbereich Informatik, Postfach 3049, D-6750 Kaiserslautern

Abstract

The generalization of pattern matching to adapter fitting, as
implemented in the programming language FIT, is described semantically.
Adapters are like patterns that contain functions which during fitting
are applied to corresponding arguments contained in data instances.
They are more concise, easier to read, and more efficiently
implementable than equivalent LAMBDA expressions and pattern-action
rules, because they can analyse data, 1like patterns, and manipulate
them, 1like functions, 1in one sweep. Variable settings created by
pairing adapter elements with data elements are treated as expressions
obeying a consistent-assignment rule, generalizing the wusual
single-assignment. While pattern-directed computation invokes
transformation rules by matching their patterns to an expression and
then performing the associated actions, adapter-driven computation only
requires adapter/expression fittings. This permits a new representation
of Al data bases, LISP functions, hypergraph operations, inference
rules (incl. Wang's algorithm), Woods' RTNs, and Turing machines,
showing that adapter-driven computation provides an Al-oriented general
computational base. The efficiency of pattern-directed and
adapter-driven computation 18 enhanced by introducing the SECURE
operator as a functional alternative to PROLOG's cut.

1 INTRODUCTION

The notion of matching has become one of the most important concepts in
artificial 1intelligence (AI), because of the recognition problems that
arise on all levels of AI systems. The corresponding AI language
feature of pattern matching is a central link between other important
very-high-level AI language features like associative data bases,
pattern-action rules, and non-determinism (Boley 1983). Moreover, the
basic form, which uses a 1list pattern as a template to test and
decompose a 1list instance, has been generalized along the nearly
independent axes of unification, non-list matching, partial matching,
and fitting. Ffor a recent survey dealing with the first three
generalizations see (Siekmann & Szabo 1982).

Fitting, as first presented at the Hamburg AISB/GI conference in 1978,
synthesizes pattern matching (recognition) and function application
(action) 1instead of performing recognition only. Below we will
concentrate on list fitting (with a hint on hypergraph fitting), which
is implemented in the form of a definitional interpreter of the Al
programming language FIT (Boley 1979). Another language using a version
of this generalization, albelit a SNOBOL-string-oriented one, is POPLAR
(Morris 1982).

The fitting concept of FIT leads to a new view of computational
processes, called adapter-driven computation, which permits more
concise, easler to read, and more efficiently implementable programs
than pattern-directed computation. Unlike some other approaches toward

Y To o appear in: GI - 13. Jahrestagung, Hamburg, Springer '873







a generalized matcher serving as a framework for formalized reasoning,
notably "forced matches” in MERLIN and KRL (Bobrow & Winograd 1977),
this matching/computation synthesis is a general yet simple and formal
computational base. It can be introduced in three steps.

Pattern-directed computation: Computation is directed by patterns for
invoking pattern-action rules or transformers, well-known from
production systems (Waterman & Hayes-Roth 1978), Al languages (Hewitt
1972), and logic programming (Clark & Taernlund 1982). Left-hand-side
patterns of transformers stored in a data base are matched to the
expression to be evaluated and their instantiated right-hand-side
actions are used as new expressions to be evaluated by the same
process.

Function-applying matching or adapter fitting: Matching is enriched by
applying functions inside generalized patterns to arguments inside
instances. Elements of a pattern enriched by functions (then called an
'adapter’') are paired with corresponding elements of an instance, the
pairing results (which may be function applications) are -evaluated
using the full computational power of the general evaluator, and their
values are reconstructed.

Adapter-driven computation: Computation is driven completely by
adapters. Adapters stored in a data base are fitted to the expression
to be evaluated and the successfully reconstructed expressions are
directly used as new expressions to be evaluated by the same process.

Note that we understand the unqualified term ‘rule’ in its general
sense, not necessarily implying a left/right division. Indeed, we are
making a case for monolithic adaptation rules (adapters) as a
complement to dichotomized transformation rules (transformers). The FIT
version of Wang's algorithm shown in the appendix is typical for the
mixture of adapters and transformers suited to practical AI programs.

Below we will discuss adapter fitting and adapter-driven computation
through comparisons with previous work, systematically developed
examples, and evaluation traces that highlight their operational
semantics and interpreter realization. FIT programs will use the syntax
of the present UCI LISP implementation FIT-1, running on a PDP-10, in
which all ewamples 1n €h1e papey Rava been fested. e will simplafy
internal trace steps (for instance, we omit certain oprefix charactere
where no confusion can arise, in particular quotes) and only touch on
the BREADTH/DEPTH expression handling of non-determinism (Boley 1973).
For the presentation of the FIT formalism we will adopt an informal
style, even when discussing abstract automata, so as to avoid
additional meta formalisms that would deter many application-oriented
readers.

2 THE CONCEPT OF FITTING

By synthesizing the concepts of applying a function to arguments and of
matching a pattern to an instance (in particular, of setting a variable
to values), we will arrive at the generalized concept of fitting a
‘fitter' to 'fittees'. The syntactical form for evoking fitting, called
"fitment', is (fitter fitteetl ... fitteeN), like that of LISP +function
application. However, fitter may expand not only to transformer (incl.
its named form, function) but also to adapter (incl. the classical
pattern (incl. the degenerate forms, variable and constant)); the







fitteel's simply denote data for the fitter. In order to illustrate the
semantics of this abstracted concept, we will begin by discussing
simple examples of symbolic computation, involving LISP's 1+Z-ary (230}
integer division function QUOTIENT, defined by (QUOTIENT n d1 ... dZ) =
n/{dix...*xdZ) for Z>0 and (QUOTIENT n) = n for Z=0.

The synthesis starts with predicate functions and patterns. Consider
the recognition of 0 denominators for preventing division by 0 in
QUOTIENT calls. In LISP we can define it as a predicate function

ZEROD = (LAMBDA (X) (AND (EQ (CAR X} 'QUOTIENT) (MEMBER O (CDDR X)})).

In FIT we can alternatively define it as a structure-reflecting
expression consisting of constants and variables, i1.e. as a pattern

ZEROD = (QUOTIENT ?N >DL 0 >OR),

where ?-variables bind exactly one element and >-variables bind an
arbitrary number of elements (incl. zero). A fitment like

(ZEROD '(QUOTIENT 256 4 0 8 2))

evaluates to a function application ((LAMBDA (X)...) ‘(QUOTIENT ...))
or to a pattern match

(" {QUOTIENT ?N >DL 0 >DR) '(QUOTIENT 256 4 0 8 2)),

depending on whether ZEROD denotes the predicate function or the
pattern. Thus the fitter name ZEROD abstracts from its underlylng
implementation. When typed to the FIT-1 system, the above pattern match
pairs to the expression

(LIST (QUOTIENT QUOTIENT) (?N 256) (>DL 4) (0 0) (>DR 8 2)).

The pairing results are again fitments to be further evaluated inside
the LIST call: (QUOTIENT QUOTIENT) and (0 0) are constant-constant
matches returning QUOTIENT and 0, respectively; (?N 256), (>DL &), and
(> DR 8 2) are variable settings yielding the bindings N=256, DL=4,
DR=8 2 and returning 256, &, 8 2, respectively. After the evaluation of
these derived fitments, the list (QUOTIENT 256 4 0 8 2) is successfully

reconstructed. In general, successful pattern matches return the
expression originally used as the fittee (truth-equivalent with ‘true’)
and possibly vyield binding side-effects. Failing matches like

predicates in FIT yield the failure signal jF (Jjump 'false').

By analogical reasoning we may now find another fitter subconcept that
relates to general functions as patterns relate to predicate functions.
These adapters are expressions containing functions (transformers)
besides constants and variables. We call adapters using only predicate
functions predicate adapters and call other ones general adapters.

The synthesis is then completed with general functions and adapters.
Varying the previous example, consider the transformation of 1
denominators into denominators without the 1 for simplifying QUOTIENT
calls. In LISP we <can write a general function (presupposing that
(REMOVE x 1) has been defined to remove the element x from the list 1)

ONED = (LAMBDA (X)
(COND ((AND (EQ (CAR X) "QUOTIENT) (CDR X))
(CONS (CAR X) (CONS (CADR X) (REMOVE 1 (CDDR X))))))).






In production systems, QLISP, PROLOG, FIT, and many other AI languages,
we can use more general, pictorial, and concise pattern-action rules,
in FIT represented as TRAFO (transformer) expressions, which are
generalized LAMBDA expressions having a pattern in place of a simple
list of LAMBDA variables. Using such a transformer the example becomes

ONED = (TRAFO (QUOTIENT ?N >DL 1 >DR) (QUOTIENT <N <DL <DR)),

where <-variables return their values. However, this example also
illustrates some shortcomings with transformer solutions:

1. Transformers are not really concise because many of the constants
and variables occur on both sides of such fitters, often even in
identical order.

2. Transformers are not optimally readable because the correspondence
between elements of both sides of a transformer 1is difficult to
establish: In ONED above, one might overlook the fact that the 1 is
elided on the right-hand side; in 1larger transformers like (TRAFO
(TTFTTTFFTTTTFTTT) (TTFTTTFTTTTFFTTT)
this becomes even more of a problem.

3. Transformers entail some inefficiencies because an interpreter for
transformers must generate variable bindings during invocation matches
of their left-hand sides, somehow transport these bindings to their
right-hand sides, and evaluate the right-hand sides in this
environment, thus being committed to three mostly sequential
computation steps.

FIT's method of overcoming these drawbacks is the use of general
adapters, which combine the 1left-hand sides and right-hand sides of
transformers into a new kind of monolithic very-high-level “aggregate
operator” in the sense of (Leavenworth & Sammet 1974). In the example
this leads to

ONED = (QUOTIENT ?N >DL ABotl >DR),

where ABo1 can be regarded as a function primitive that returns the
empty sequence 1if its argument is 1 and fails otherwise. ABol is
actually composed (using o as the composition infix operator for
fitters) of AB = (TRAFO ?X), a function which absorbs (transforms to
the empty sequence) one argument ?X, and of 1, a constant which
successfully matches, hence returns, only another 1.

If ONED has been bound to this general adapter, the following 7-step
fitment evaluation results:

1 (ONED ' (QUOTIENT 256 4 1 8 2))

2 ("(QUOTIENT ?N >DL ABo1 >DR) ‘'(QUOTIENT 256 4 1 8 2))

3 (LIST (QUOTIENT QUOTIENT) (?N 256) (>DL &) (ABo1 1) (>DR 8 2))
¢a (LIST QUOTIENT 256 4 (AB (1 1)) 8 2) with N=256, DL=4, DR=8 2
S5a (LIST QUOTIENT 256 4 (AB 1) 8 2) -

6a (LIST QUOTIENT 256 4 8 2) ~ F

7a (QUOTIENT 256 4 8 2) B R =

The example shows that the shortcomings of transformers disappear in
adapter solutions:






1. Adapters are very concise.

2. Adapters are optimally readable, because they eliminate the element
correspondence problem: In the ONED adapter, one sees that the 1 will
be absorbed; the 16-bit transformer becomes the adapter
(T TFTTTFNOTOoF TTTNOTOoT F T T T). Furthermore, adapters make
it possible to get rid of single-occurrence variables altogether (cf.
section 5). This is done by replacing ?-variables by ID and >-variables
by #ID, e.g. obtaining ONED = (QUOTIENT ID #ID ABot #ID). ID 1is a
function which like the identity returns its single argument but fails
for any other number of arguments. # 1s a prefix operator for fitter
repetition (zero or more) related to LISP's MAPCAR by (MAPCAR f 1) =
("(8f) 1), where f is a function without side-effects and 1 is a list.

3. Adapters avoid invocation inefficiencies because they require few
{theoretically, as shown 1in section 5, no) variable bindings during
invocation fittings and need not transport any bindings to an
expression to be instantiated, thus being able to fully exploit the
parallelism of the invocation computation.

Like FP programs (Backus 1982) adapters are directly constructed by
applying ‘“program-forming operations” (mainly generalized parallel
“combination” in the sense of Brainerd and Landweber, a version of
which was introduced to programming languages in (Friedman 3 Wise
1978)) to existing programs (fitters) instead of specifying
transformations on “object variables” as done by LAMBDA and TRAFO
expressions.

3 GLOBAL EXPRESSIONS AND THE CONSISTENT-ASSIGNMENT RULE

In most LISP-based pattern matchers successful matches return T and
yield variable-binding side-effects or they return a list with T in its
CAR and an a-list of variable-value pairs in its COR. In FIT we attempt
to combine the handiness of yielding bindings as side-effects with the
functional pureness of returning bindings as values. This 1leads to a
new, inherently parallel, semantic foundation of pattern matching (and
adapter fitting), completely integrated with functional expression
evaluation. For this we allow a successful fitting to return a GLOBAL
expression of the form (GLOBAL (b1 ... bM) v1 ... vN), where the bj's
are bindings of the form (>variablej valuej,1 ... valuej,Kj) and the
vj's are returned values proper. For example, the assignment (>DR B 2)
returns (GLOBAL ({>DR 8 2)) 8 2), where M=1 and N=K1=2. Fittings not
performing any variable bindings can be viewed a3 returning a GLOBAL
expression (GLOBAL () wv1 ... VvN) with an empty binding list which,
however, simplifies to the values proper v1 ... vN.

The evaluation of the ONED fitment from step 4 can now be shown more
precisely in the manner of pure FIT's semantic FEVAL function:

4b (LIST QUOTIENT

(GLOBAL ((>N 25B)) 256)

(GLOBAL ((>DL %)) &)

(AB (1 1))

(GLOBAL ((>DR 8 2)) 8 2))
Sb (GLOBAL ((>N 256) (>DL &) (>DR 8 2))

(LIST QUOTIENT 256 4 (AB 1) 8 2))

6b (GLOBAL ((>N 256) (>DL 4) (>DR B8 2)) (LIST QUOTIENT 256 4 8 2))
7b (GLOBAL ((>N 256) (>DL &) (>DR 8 2)) (QUOTIENT 256 & 8 2))






The evaluation trace shows that GLOBAL expressions which are returned
inside another expression migrate out of that expression and on their
way up the expression tree are combined (uniting their bindings) until
only one GLOBAL remains at the tree's root (5b). The evaluation
continues in this GLOBAL's scope and pure FEVAL returns the evaluated
GLOBAL (here M=3, N=K1=K2=1, and K3=2) as its value (7b), which impure
FIT-1 then splits into binding effects and values proper (7a). The
GLOBAL migration and combination can be described by the axiom

(... (GLOBAL (81) V1) . . . (GLOBAL (BZ) VZ) ...) =
(GLOBAL (ubc B1 . . . BZ) (... N1 . . .NZ ...)).

Here the Bj's and ¥Yj's are binding and value sequences of the
respecitve forms pj,1 ... bj,MJ and vj,t ... vJj,NJj; ubc is a function
for uniting bindings consistently (all occurrences of a
multiple-occurrence varliable require the same value), causing the
entire GLOBAL expression to fail (to be reduced to 3jF) when any
inconsistency is detected. This allows context-sensitive checks as in

(' (QUOTIENT ?X ?X)} '(QUOTIENT 8 4)) =>

(LIST (QUOTIENT QUOTIENT) (?X 8) (?X &4)) =>

(LIST QUOTIENT (GLOBAL ({(>X 8)) 8) (GLOBAL ((>X &)) &)) =>
(GLOBAL (ubc (>X 8) (>X 4)) (LIST QUOTIENT 8 &4)) =>

jF .

Our integration of pattern matching into a functional framework leads
to a generalization of “single-assignment languages” (Tesler & Enea
1968) which may be called 'consistent-assignment languages'. (Interest
in single-assignment languages stems from their equivalence with purely
functional languages (Backus 1982) and their executability on parallel
data-flow machines.) The requirement that only a single assignment to a
variable is permitted becomes relaxed to the requirement that all
assignments to a variable must be consistent. Single-assignment is a
special case of consistent-assignment because, if there is only one
assignment to every variable, no inconsistency can occur. Although the
consistent-assignment rule allows assignments to a variable already
bound to a value, these cannot change the old value because a new value
differing from the old one causes the entire evaluation to be aborted
with a failure signal JF. Therefore all statements (subexpressions)
whose data values are available can be executed simultaneously. In FIT
this means that expressions (incl. assignments) inside fitments can be
executed using "AND parallelism” (Clark & Taernlund 1982), 1like the
arguments of function applications in pure LISP, resulting in high
speed-ups on parallel hardware (Boley 1983).

Using the “-prefix for fetching variable values as soon as they are
avallable, we may have the following evaluation:

{LIST (LIST (ADD1 "X) (0 0) {SuBt 3)) (?X (SuBt 2)) (?Xx 1))
(GLOBAL ((>X 1)) (LIST (LIST (ADD1 "X) 0 2) (?X 1) 1))
(GLOBAL ((>X 1)) (LIST (LIST (ADDY 1) 0 2) 1 1))

(GLOBAL ((>X 1)) ((2 0 2) 1 1))

N =

In step 1 the subexpressions (0 6), (SuUB1 3), (SUB1 2), and (?X 1) «can
be evaluated in parallel, the latter generating an X value. In step 2
"X and another (?X 1) can be evaluated in parallel, the former using
the old value of X and the latter generating a new value for X which
happens to be consistent with the o0ld one. Note that the binding
generated in the 'upper right' of the expression 1is used in its 'lower
left’ . This 1is possible only because of the parallel subexpression






evaluation which contrasts with the left-to-right EVLIS evaluation
performed by ordinary LISP interpreters.

While we regarded the LIST application 1in step 1 as the initial
expression of the above evaluation, it can also be viewed as the result
of an adapter fitment in a step 0 (the embedded adapter (ADD1 0 SUB1)
causes the embedded LIST application):

0 ('((ADD1 O SUB1) ?XoSUB1 ?X) '(({'X 0 3) 2 1))

This shows that “"output” variables of single-assignment languages such
as COMPEL (Tesler & Enea 1968) correspond to "temporary” variables in
Al languages such as PLANNER (Hewitt 1972) or FIT, the latter wusing a
PULLTEMPORARY (") prefix to fetch the temporary variable values being
generated during fitment evaluation, which become permanent only if the
fitment succeeds; in contrast, the ordinary PULL (<) prefix is used to
fetch permanent variable values. (Whereas PLANNER's MATCHLESS marks
variables as receiving a temporary or a permanent value, FIT gives all
variables temporary values during matches, but allows us to fetch their
temporary or thelr previous permanent value. This 1s because no reason
could be seen why " a variable should permanently keep a value it
received in a failing match.)

Apart from 1its application to the semantic foundation and
implementation of pattern matching, there are many other interesting
uses for the consistent-assignment rule, of which we mention only
conjunctive retrievals, whose |?-variables, like match variables, are
bound temporarily first (the |-prefix allows variables to retrieve
their values from the data base without needing an explicit FETCH or
GOAL statement). If the assertions (BIG TABLE), (BIG CHAIR), and
{RED CHAIR) have been stored in the data base (see section & for how to
do this), the consistent-assignment rule ensures that an expression
containing conjunctive requests like

(APPEND ' (THE) (BIG |?THING) ‘(IS A) (RED |?THING))
fails with one combination of bindings,

(APPEND " (THE) (GLOBAL ((>THING TABLE)) (BIG TABLE))
‘(IS A) (GLOBAL ((>THING CHAIR)) (RED CHAIR))),

but succeeds with the other,

(APPEND " (THE) (GLOBAL ((>THING CHAIR)) (BIG CHAIR))
"(IS A) (GLOBAL ((>THING CHAIR)) (RED CHAIR)}),

returning (GLOBAL ({>THING CHAIR)) (THE BIG CHAIR IS A RED CHAIR)).

4 IMPLICIT FITTERS AND ADAPTER-DRIVEN COMPUTATION

Besides explicitly fitting a fitter fr (then called an ‘explicit
fitter') to a fittee fe using a fitment (fr fe), one can also store fr
(then called an 'implicit fitter') in a data base and allow it to be
implicitly fitted to fe by simply writing fe inside the scope of that
data base. If more than one implicit fitter is fittable to a fittee,
the partial order of the specifity of their invocation adapters,
represented by a nesting of DEPTH and BREADTH expressions, 1s used as
the principal information for conflict-resolution. The resulting






bindings remain local to such implicit fittings. To store M fitters
fr1, ..., frM globally, a direct GLOBAL call (GLOBAL (fr1 ... fxM) )
with an empty returned value can be used.

The explicit/implicit duality holds for all kinds of fitters, i.e. both
for transformers and for adapters. For example, transformers such as
the ONED TRAFO can not only be used explicitly in fitments like ((TRAFO
(QUOTIENT ?N >DL 1 >DR) (QUOTIENT <N <DL <DR)) '(QUOTIENT 256 4 1 8 2))
but can also be stored in the global data base. To do this one might

use (GLOBAL ( (TRAFO (QUOTIENT ...) (QUOTIENT ...)) ) ), but currently
the form of a variable setting (FIT permits arbitrary lists to act as
variables), (GLoBAL | (>(QUOTIENT ...) (QUOTIENT ...)) ) ), is still

prefered. This has the same effect as the GLOBAL generated by the
setting (>(QUOTIENT ?N >0L 1t >DR) '(QUOTIENT <N <DL <DR)) itself. If
expressions like (QUOTIENT 256 4# 1 8 2) are now typed in the scope of
the global data base, the implicit fitter is fitted to these fittees
and transforms them in the well-known pattern-directed manner.

What 1s new, however, is our transfer of this duality to adapters. In
particular, the ZEROD pattern can either be used explicitly in fitments
like (" (QUOTIENT ?N >DL 0 >DR) '(QUOTIENT 256 4 0 8 2)), as discussed
above, or it can be stored in the global data base using (GLOBAL (
(QUOTIENT ?N >DL 0 >DR) ) ) and be implicitly matched to fittees 1like
(QUOTIENT 256 4 0 8 2) by simply typing these expressions. (Some
‘parenthesis sugaring’ and renaming of such special GLOBAL uses would
yield the more usual (ASSERT (QUOTIENT ?N >DL 0 >DR)).) Once implicit,
the adapter (QUOTIENT ?N >DL 0 >DR) can be viewed as a definition for a
function QUOTIENT applied to formal arguments containing a zero
divisor. The sample fittee (QUOTIENT 256 & 0 B8 2) can be viewed as an
application of the QUOTIENT function to actual arguments containing a
zero divisor. Like the explicit match, the implicit match returns the
fittee; 1in other words, this QUOTIENT application returns itself,
indicating that it contains a zero divisor and preventing the erroneous
use of the numeric definition of QUOTIENT. This QUOTIENT definition can
also be regarded as an assertion containhing variables, as allowed in AI
languages like QLISP and PROLOG. When the definition
(KNOWS ?X PRESIDENT) has been established, the call
(KNOWS FRED PRESIDENT) returns itself to indicate that FRED knows the
PRESIDENT, in the same way the QUOTIENT call returns itself to indicate
that 256, 4, 0, 8, 2 contains a zero divisor. By using such implicit
patterns, predicate functions can be specified in a very-high-level
manner. In particular, definitions of list predicates often become more
declarative than their LISP and PROLOG correlates. For example, the
definition of the MEMBER predicate, which still involves recursion in
both LISP and PROLOG, 1in FIT reduces to the implicit pattern
(MEMBER ?X (>L ?X >R)), pictorially showing an ?X-element in the list
(>L ?X >R).

Examples of implicit predicate adapters are (COLOR ELEPHANT GREY),
(CLOLOR FIRE-HYDRANT RED), etc. (where ELEPHANT, FIRE-HYDRANT, etc. are
embedded predicate functions), abbreviating the implicit transformers
(Charniak 1981) (TRAFO (COLOR ?ELEPHANT GREY) (ELEPHANT <ELEPHANT)),
(TRAFO (COLOR ?FIRE-HYDRANT RED) (FIRE-HYDRANT <FIRE-HYDRANT)), etc.
Charniak’'s request (COLOR CLYDE |?WHAT) is only fitted by the first
adapter whose predicate application (ELEPHANT CLYDE) succeeds, not by
the many other adapters whose predicate applications (FIRF-HYDRANT
CLYDE) etc. fail. In the naive transformer implementation only the
right-hand sides discover these failures. Charniak's discrimination net
indexing uses ?ELEPHANT, ?FIRE-HYDRANT, etc. as typed variables, so
that CLYDE only invokes the ELEPHANT transformer. This, however, makes






the right-hand sides vacuous, showing that predicate adapters, viewahle
as agsertions containing predicates and indexable like transformer
patterns, are a natural representation here. Predicate adapters also
permit the definition of predicates by recursively using the predicate
to be defined in its own invocation. A very concise definition of a
PALINDROME predicate consists of a principal definition
(ZPALINDROME ?X PALINDROME ?X) specifying this kind of invocation
recursion and of two definitions (7/PALINDROME ?X) and (7ZPALINDROME) for
recursion termination (the 7-prefix in front of the ‘defined’
PALINDROME occurrences restricts them to being constants in contrast to
the recursively ‘'defining’ PALINDROME occurrence which acts as a
function). Successful evaluations (embedded recursive calls are written
inside 'evaluates to' arrows, thus =[...1=>) like

(PALINDROME M A D A M) =[ (PALINDROME A D A) =([ (PALINDROME D) 1=>
(PALINDROME A (PALINDROME D) A) 1=>
(PALINDROME M (PALINDROME A (PALINDROME D) A) M)

do not just return ‘true’' but give a parse of the recursive palindrome
structure.

The ONED general adapter can also be stored in the data base, wusing
(GLOBAL ( (QUOTIENT ?N >DL ABo1 >DR) ) ), and be implicitly fitted to
fittees like (QUOTIENT 256 4 1 8 2) by typing these expressions. Like
the corresponding explicit fitting, this example returns the list
(QUOTIENT 256 4 8 2). More generally, a QUOTIENT application to
arguments containing a 1 denominator returns this QUOTIENT call as a
data value without the 1. This is probably not exactly what is wanted,
because, after the simplification of our QUOTIENT application, we would
normally like the evaluation to continue, eventually returning the
final result 4. For enabling this, the REVA (r) prefix operator is
introduced which, applied to an arbitrary fitter, reevaluates the
result of its fitting. Thus we <can modify the ONED adapter to
r(QUOTIENT ?N >DL ABo1 >DR) which, when stored in the data base and
used implicitly, drives the desired evaluation (QUOTIENT 256 4 1 8 2)
=> (QUOTIENT 256 4 8 2) => &. The evaluation continuing after an
implicit fitting specified by a REVA-adapter may, of course, use the
same REVA-adapter again, so that a kind of tail-recursion or iteration
with varying numbers of arguments emerges. For example, the modified
ONED definition can be used iteratively to -eliminate an arbitrary
number of 1 denominators in QUOTIENT calls as in the adapter-driven
computation

(QUOTIENT 160 1 S 1 1 &) =>
(QUOTIENT 160 5 1 1 &) =>
(QUOTIENT 160 5 1 &) =>
(QUOTIENT 160 5 &) =>

8.

While it is in principle possible to specify all kinds of computation
using REVA-adapters for recursion and constant-adapters {i.e. adapters
without an r-prefix) for termination (see section §5), it is often
convenient to wuse implicit REVA-adapters for making a function
application its own iteration loop and using an implicit transformer
for detecting a termination «criterion and also returning the result
accumulated in one of the arguments.

A simple numeric example of applying this method 1is an alternate
definition of a LISP-like PLUS function (for non-negative arguments) on
the basis of ADD1 and SUB1. The definition can be made by typing






(GLOBAL { r(PLUS SuUB1 ADD1) (>(PLUS 0 ?X) <X) ) ), where
r(PLUS SUB1 ADD1) specifies an 1iteration loop for simultaneously
decrementing the first and 1incrementing the second argument, while
(>(PLUS 0 ?X) <X) detects when the first argument is 0 and the second
argument can be returned as the result. A sample evaluation first using
the adapter twice and then using the transformer once is (PLUS 2 8) =>
(PLUS 1 9) => (PLUS O 10) => 10.

An example involving numbers and 1lists 1is the NTH function for
selecting the nth 1list element. It consists of r(NTH SUB1 CDR) and
(>(NTH 1 (?X >Y)) <X), enabling evaluations like (NTH 3 "(A B C D)) =>
(NTH 2 '(B C D)) => (NTH 1 "(C D)) => C.

Finally, a purely non-numeric example is the BOXES operation for
transforming directed recursive labelnode hypergraphs into set-like
DRLHs containing all the original labelnode boxes but none
of their hyperarc arrows (Boley 1980). The adapter
r(BOXES (DRLH >X (TRAFO (TUPLE »>Y) <Y) >Z)) wuses an embedded TRAFO
expression to iteratively replace TUPLEs representing the arrows of
ODRLHs by their box contents. When this is no 1longer applicable, only
boxes remain and the less specific transformer (>(BOXES (DRLH >L))
(DRLH <L)) 1initiates a ORLH collection normalization. This permits
evaluations like

(BOXES '(DRLH B (TUPLE C D E A) (TUPLE D A D))) =>
(BOXES '(DRLH B C D E A (TUPLE D A D))) =>

(BOXES "(DRLH B C D E A D A D)) =>

(ORLH B C D E A D A D) =>

(DRLH A B C D E}.

5 ADAPTERS AS A COMPUTATIONAL BASE

Special adapter definitions using the form r(fct fct1 ... f£ctN) are
equivalent to tail-recursive function definitions of the form
(>(fct ?argt? ... ?argN) (fct (fct1 <argt) ... (fctN <argN))), where the
argl’'s are variables and the fctl's are unary functions (incl. the
identity) or function compositions. Thus, making the adapter

r(PLUS SUB1 ADD1) implicit 1is equivalent to defining the function
(>(PLUS ?X ?Y) (PLUS (SUB1 <X) (ADD1 <Y))).

There are, however, adapters which cannot be so directly transformed
into functions, for instance those performing context-sensitive checks
by using multiple-occurrence variables (e.g. FIT's PALINDROME; it can
be translated differently of course). On the other hand there are
functions which cannot be easily transformed into adapters, e.g.
tail-recursive functions wusing their arguments in different orders in
their pattern and in their body (e.g. LISP's REVERSE; it can be
translated wusing PULLTEMPORARY variables inside implicit adapters for
example). Instead of considering more of these special transformations
we would like to pose the general question whether adapters can be used
to represent partial recursive functions or some other universal
computational base. (The Church/Turing thesis implies that arbitrary
adapters can be represented by partial recursive functions; FIT's FEVAL
function shows how this may be done in LISP.) We can answer it
affirmatively by showing that adapters without variables and with very
simple functions can ’'be used to simulate Turing machines. This will
build on a uniform tail-recursive representation of Chomsky-hierarchy
abstract automata, including Woods' recursive transition networks.






The tape of each automaton m can be represented as a variable-length
sequence of actual arguments to a tail-recursive function defined by
adapters. The function name 1is “scattered” (Boley 1979); more
precisely, it consists of a principal prefix m and a subordinate infix
8. The state and the head position of an automaton are represented by
the naming of 8 and by its position between the arguments,
respectively, where the automaton’'s head is understood to scan the
argument (for RTNs, the arguments) immediately to the right of s.
Essentially, the transition function f of an automaton becomes a
function f which 1is applied to state infixes s1 and arguments al to
their right, returning successor state infixes 82 and possibly new
arguments a2. It is called inside an implicit REVA-apdapter
rim ... £ #ID) for defining m; the 'repeated identity’', #ID, is used to
avoid single-occurrence >-variables (in our automata representation
there is no need for multiple-occurrence variables). For each final
state 82 a constant-adapter definition (m ... sz ...) terminates the
computation. To initialize m with start state sa, this start state can
be used as an additional function name defined by the adapter
r((TRAFO : m) sa #ID), where (TRAFO : m) generates m from the empty
sequence.

If m 1s a finite automaton (FA), the REVA-adapter is r(m f #ID) and the
constant-adapters are (m sz). If m's transition function f for state s1
and symbol a returns state g2, i.e. f(s1,a)=s2, then an £ definition

becomes (>(f s1 a) s2).

If m is a recursive transition network (RTN) (Woods 1970), the adapters
are the same as in FAs and the f definitions are extended as follows.
If m's transition function f for state st and a successful embedded
call to a subnetwork with initial state sal returns state g2, then an f
definition becomes (>(f s1 sal1) s2). Thus, the invocation adapter of
f's definition contains a call to satl, which acts as a predicate
checking f's applicability (truly recursive calls, i.e. gsal=ga are
allowed). A simple example suggestive of the context-free power of such
invocation recursions is an RTN for recognizing AIN BIN for N>1. The
Woods-like notation of this RTN shown on the left below becomes the FIT
definitions on the right, using m=RTN, f=FANBN, sa=ANBN, sz=AN-1BN-1.

ANBN r((TRAFO : RTN) ANBN #ID)
/--\ r(RTN FANBN #I0)
| (RTN AN-1BN-1)
A | v 8 (>(FANBN ANBN A) AN-1BN)
ANBN ----- -> AN-1BN ------ > AN-1BN-1 (>(FANBN AN-1BN ANBN) AN-1BN)
{start) {final) (>(FANBN AN-18N B) AN-1BN-1)

A sample evaluation 1is (recursion level is reflected by indentation)

(ANBN A A A B B B) =>
(RTN ANBN A A A B B B) =>
(RTN AN-1BN A A B B B) =[ (ANBN A A B B) =>

(RTN ANBN A A B B) =>

(RTN AN-1BN A B B8) =( (ANBN A B) =>
(RTN ANBN A B)
(RTN AN-1BN B8)
(RTN AN-1BN-1)

— g n
H v v

(RTN AN-1BN B)

=>
(RTN AN-1BN-1) 1=

>
(RTN AN-1BN B) =>
(RTN AN-1BN-1).






By embedding RTNs 1inside patterns, obtaining adapters such as
(>W ANBN >W), many context-sensitive languages can be accepted, which
can be recognized neither by patterns nor by RTNs alone (thus adapters
also synthesize matching and parsing, as desired by Simmons, Wilks, and
others). In this way, the use of registers and tests in augmented
transition networks (ATNs) can often be avoided. In cases where this is
not possible, such features could still be added to this RTN
representation to obtain full ATNs (arbitrary test predicates on arcs
are implicit in our formalization).

If m 1s a linear bounded automaton (LBA), the REVA-adapter 1is
r(m #ID f #ID) and the constant-adapters are (m #ID sz #ID). If m's
transition function f for state s1 and symbol al returns state 2,
print symbol a2, and a right move, i.e. f(s1,a1)=(82,a2,RIGHT), then an
f definition is (>(f s1 al) a2 s2). Analogously, fl(st1,a1)=(s2,a2,LEFT)
becomes (>(f ?X s1 al) s2 <X a2).

If m 1is a Juring machine, the adapter and f definitions are as in LBAs
with one addition. There 1s another REVA-adapter definition r(m #ID g)
which applies a function g at the right end of the tape. Thus, m's
transition function f remains restricted to a function reading proper
symbols. At the tape end, instead of letting f read the BLANK symbol
(virtually padded to the right of the proper symbols until actual
infinity), another function g i1s applied to a state argument only, from
which it generates a new proper symbol (thus sticking to potentially
infinite argument sequences). If m's transition function f for state si
and the special symbol BLANK returns state g2, print symbol a2, and a
right move, i.e. f(s1,BLANK)=(82,a2,RIGHT), then a g definition 1is
(>(g 81) a2 s2). Analogously, f(s1,BLANK)=(82,a2,LEFT) becomes
(>(g ?X s1) 82 <X a2).

6 FITTER EFFICIENCY AND THE SECURE OPERATOR

Because of the 1inherent parallelism  of fitting, parallel Al
architectures (Boley 1983), rather than sequential computers, are 1ideal
adapter machines (cf. section 3). However, although the FIT-1
implementation 1is written in a purely functional subset of LISP to
emphasize semantic clarity, the response times of the fully compiled
UCI LISP version running on a von Neumann computer are already
sufficient for serious experimentation. Still there are many
machine-independent possibilities for further improving the efficiency
of adapter-driven computation, even without exploiting imperative LISP.

First, we have studied the 'compilation’' of adapters from FIT into
LAMBDA expressions of 1ts present implementation language LISP, thus
avoiding their repeated FIT interpretation (Boley 1979).

Recent experiments have led us to devise and implement the SECURE
operator in the FIT-1 system. This can be viewed as a purely functional
alternative to the rule-choice-confirming use of PROLOG's cut operator.
Other than cut, SECURE applies to an unordered set of rules, thus
keeping the original modularity advantage of production systems, i.e. a
programmer can decide whether a new rule is SECURE independently of the
data base of rules into which it is to be added. A SECURE (\) mark
specifies the safeness of a rule definition (implicit transformer or
adapter) such that a use of it can be prioritized to uses of other
matching definitions and to other wuses of itself. Thus the SECURE
prioritization applies to non-determinism arising 1. from several






matching definitions and 2. from several possibilities for matching one
definition. (For this also separate SECURE1 and SECURE2 prioritizations
could be introduced.) SECURE performs its prioritization during
conflict-resolution by changing the order inside priority-ordered DEPTH
expressions or changing unordered BREADTH expressions to more efficient
DEPTH expressions. Such SECURE-generated DEPTH expressions are a very
transparent means for contolling combinatorial explosion in Al
programs. The two applications of SECURE's priority assignment are
refined as follows.

1a. A SECUREd definition is prioritized to any non-SECUREd definition,
independent of 1its specifity value. It can thus be used to override
specifity orderings. For example, (GLOBAL (\(KNOWS ?X PRESIDENT)
(KNOWS JOHN MARY))) defines a less specific adapter meaning "Everybody
knows the president” with a SECURE mark and a more specific adapter
meaning “John knows Mary" without a SECURE mark. After this,
(KNOWS JOHN |?7WHOM) yields

(DEPTH (GLOBAL ((>WHOM PRESIDENT)) (KNOWS JOHN PRESIDENT))
(GLOBAL ((>WHOM MARY)) (KNOWS JOHN MARY))),

i.e. it returns (KNOWS JOHN PRESIDENT) and binds WHOM to PRESIDENT
before 1t returns (KNOWS JOHN MARY) and binds WHOM to MARY. Thus the
usual specifity order is inverted, enforcing the early use of less
specific, yet explicitly 'privileged’', definitions.

1b. A SECUREd definition may become prioritized to other equally
specific SECUREd definitions: since all these SECUREd definitions arve
safe they can be tried in an arbitrary DEPTH order. Continuing the
example, after the additional definition (GLOBAL (\(KNOWS ?X POPE)))
the localized request (LOCAL (KNOWS JOHN |?WHOM) : <WHOM) through
SECURE becomes arbitrarily either (DEPTH PRESIDENT POPE MARY) or (DEPTH
POPE PRESIDENT MARY) instead of (DEPTH MARY (BREADTH POPE PRESIDENT)).
Similarly, using the rules P3b and Pha in the appendix,
(WANG ' (AND P Q) ARROW '(OR P Q)) arbitrarily chooses one of the two
definitions, say the OR dropping definition P4a, and vyields the
efficient

(DEPTH (WANG ' (AND P Q) ARROW P Q) suspension-for-dropping-the-AND)
instead of the inefficient
(BREADTH (WANG P Q ARROW "(OR P Q)) (WANG '(AND P Q) ARROW P Q)).

2. An invocation match possibility of a SECUREd definition may become
prioritized to other equally context-sensitive invocation match
possibilities: since all these invocation possibilities of a SECUREd
definition are safe they can be tried in an arbitrary DEPTH order. For
example, using rule P3b in the appendix, (WANG '(AND P Q) '(AND R S)
ARROW P S) arbitrarily chooses one of the two invocation fitting
possibilities, say that one dropping the first AND, and vyields the
efficient

(DEPTH (WANG P Q '(AND R S) ARROW P S)
suspension-for-dropping-the-second-AND)

instead of the inefficient

(BREADTH (WANG P Q '(AND R S) ARROW P S)
(WANG ' (AND P Q) R S ARROW P S)).






As a final means for improving efficiency, domain-dependent knowledge
may be applied in the form of “meta rules” (Davis 1980) to make more
‘reasonable’ use of stored adapters. Like “function-level” reasoning
(Backus 1982) adapter-level reasoning is easier than transformer-level
reasoning, since meta rules, like programmers, can read from an adapter
both when it will be used and what it will do, at one glance. There is
no need for a separate examination of a "content”™ (Davis 1980) part
supporting the matching of the pattern part, because form (pattern) and
content (action) are united. For example, in the domain of natural
numbers, the convergence-seeking meta rule “Use rules applying the
predecessor function SUB1 before rules applying the successor function
ADD1" can compare adapters of the form

r{(... SUBT ...) and
r{(... ADD1 ...)

more easily than transformers of the form

(... 2 ...) (... (SuB1 <X) ...)) and
(>C... 22X ...) (... (ADD1 <X) ...)).
1 CONCLUSIONS

Although adapters are a general base for computation, they are not
intended to replace functions or transformers. Indeed, by their very
definition they depend on transformers; furthermore, implicit adapters
can be wused to define functions 1in a particularly concise manner.
However, adapters give programmers a new dimension of trade-off: For
many problems, one can specify transformers that rewrite an entire
expression or one can specify structure-reflecting adapters performing
localized parallel rewritings in the globally recognized context of an
expression.

Valuable insights about this trade-off could be gained while working
with the FIT-1 system. Functions which leave the top-level form of data
largely intact but change arbitrary parts of their content, as typical
for many inference rules (such as about half of the rules in Wang's
algorithm) and for operations on DRLHs, frames, and other complex
structures, are most naturally expressible as adapters. These are more
concise, easier to read, and more efficiently interpretable than
corresponding transformer definitions. Often mixtures of adapters (e.g.
for recursion) and transformers (e.g. for initialization and
termination) seem the best method of defining a function.

0f course, more work will be necessary for further exploring the
potentials of adapters. The documented 60 K words of UCI LISP source
programs implementing FIT-1 are available from the author. In order to
transfer FIT-1 to the VAX-11, it will be transcribed into FRANZ LISP.

8 REFERENCES

Backus, J.: Function-level computing. IEEE spectrum, August 1982,
22-21.
Bobrow, D. & Winograd, T.: An overview of KRL, a knowledge

representation language. Cognitive Science 1(1), 1977.






Boley, H.: Five views of FIT programming. Univ. Hamburg, FB Inform.,
IFI-HH-B-57/79, Sept. 1979.

Boley, H.: Processing directed recursive labelnode hypergraphs with FIT
programs. Univ. Hamburg, FB Inform., IFI-HH-M-81/80, Sept. 1980.

Boley, H.: Artificial 1intelligence languages and machines. Univ.
Hamburg, FB Inform., IFI-HH-B-94/82, Dec. 1982. Also in: Technique
and Science of Informatics 2(3), May-June 1983.

Charniak, E.: A common representation for problem-solving and
language-comprehension information. AI 16, 1981, 225-255.

Clark, K. & Taernlund, S.-A. (Eds.): Logic programming. Academic Press,
New York, 1982.

Davis, R.: Content reference: Reasoning about rules. Al 15, 1980,
223-239.

Friedman, D. & Wise, D.: Functional combination. Computer languages,
Vol. 3, 31-35, 1978.

Hewitt, C.: Description and theoretical analysis (using schemata) of
PLANNER: A language for proving theorems and manipulating models in a
robot. MIT, AI-TR-258, April 1972.

Leavenworth, B. & Sammet, J.: An overview of nonprocedural languages.
In: B. Leavenworth (Ed.): ACM SIGPLAN symposium on very high level
languages. March 1974, Santa Monica, Ca., SIGPLAN Notices 9(4), 1-12.

Morris, J.H.: Real programming in functional languages.
In: J. Darlington, P. Henderson & D. Turner (Eds.): Functional
programming and its applications. Cambridge University Press, 1982.

Siekmann, ). & Szabo, P.: Universal unification. In: W. Wahlster (Ed.):
GWAI-82, Bad Honnef, Sept. 1982, Informatik-Fachberichte 58,
Springer-Verlag, 102-141.

Tesler, L.G. & Enea, H.J.: A language designh for concurrent processes.
AFIPS Conference Proceedings, SJCC, Vol. 32, 1968, 403-408.

Wang, H.: Toward mechanical mathematics. IBM Journal of Research and
Development 4(1), Jan. 1960, 2-22.

Waterman, D. & Hayes-Roth, F. (Eds.): Pattern-directed inference
systems. Academic Press, New York, 1978.

Woods, W.A.: Transition network grammars for natural language analysis.
CACM 13(10), October 1970, 591-606.

9 APPENDIX: WANG'S ALGORITHM IN FIT

"Sequents” antecedent -> consequent (Wang 13960) are represented as
expressions of the form (WANG antecedent ARROW consequent), where
antecedent (consequent) 1is a sequence of implicitly conjuncted
{disjuncted) formulas. Wang's original rule labels are used for easy
comparison; without loss of generality the rules PSa-P6b are omitted.
His ‘and’ 1is represented by ANDTH, FIT's wversion of LISP's AND.
Exploiting a Church-Rosser property, Wang always eliminates 1leftmost
connectives while our SECURE (\) marks do this by allowing the rules to
eliminate arbitrary connectives (see section 6).

P1. \(WANG #ID ?X #ID ARROW #ID ?X #ID); ?X on both ARROW sides: proven
P2a. r\(WANG (TRAFO : "X) #ID ARROW #ID ABo(NOT ?X) #ID): ?X inside NOT
P2b. r\(WANG #ID ABo(NOT ?X) #ID ARROW #ID (TRAFO : "X)); crosses ARROW
P3a. (>\(WANG >L ARROW >R1 (AND ?X ?Y) >R2); consequent AND gives ANDTH
(ANDTH (WANG <L ARROW <R1 <X <R2) (WANG <L ARROW <R1 <Y <R2)))
P3b. r\(WANG #ID (TRAFO (AND ?X ?Y) <X <Y) #ID ARROW #ID); drop ant.AND
P4éa. r\(WANG #ID ARROW #ID (TRAFO (OR ?X ?Y) <X <Y) #ID); drop conse.OR
P4éb. (>\(WANG >L1 (OR ?X ?Y) >L2 ARROW >R); antecedent OR gives ANDTH
(ANDTH (WANG <L1 <X <L2 ARROW <R) (WANG <11 <Y <L2 ARROW <R)))






