
‚ . . . . . .

NEvI

DhD.DnETD
IADnun0TDETC_L.._

RID_NRFLTTAD
..

M0RF

GNIHCTIAMGN
A 

I
I

V
I

„V 
L

DI
N 

D
I

0 
An

I 
.

T 
N

A 
0

T 
I

U 
T

D
: 

C
M

 
N

_
„U

U
r... 

F

Haro1d  Bo1ey

MEMO SEKI -83 -U6

m
cm

E
m

.3‚F
5

2
3

5
9

3
5

!
0

9
.9

0
äE

m
a

O
.,—

us—
E

m
ä
fim

h
m

m
a

x
&

:P
ä
ficn

' 
„_

_
„m

E
ö

E
.

5
2

9
3

5
3

-=
u

m





FROM PATTERN—DIRECTED T0 ADAPTER-DRIVEN COMPUTATION
VIA FUNCTION-APPLYING HATCHING°

Harold Boley. Unive r s i t ae t  Kaiserslautern
Fachbereich Informatik. Post fach  3049.  0—6750 Kaise r s l au t e rn

Abstract

The generalization of pat te rn  matching to adap te r  fitting. as
implemented in the programming language FIT. is described semantically.

Adapters are like pa t t e rns  tha t  contain f unc t i ons  which during fitting
are applied to corresponding arguments  contained in data instances.
They are more concise. easier to read. and more efficiently
implementable than equ iva l en t  LAMBDA expressions and pattern—action
rules. because they can analyse data. like patterns. and manipulate

them. like functions. in one sweep. Variable settings crea ted  by
pairing adap te r  elements with data  elements are t r ea t ed  as express ions
obeying a consistent-assignment rule, generalizing the usual
single—assignment. While pattern—directed computation invokes
t r ans fo rma t ion  rules by matching their pat te rns  to an expression and

then performing the associated actions. adapter—driven computation on l y
r equ i r e s  adapter/expression fittings. This pe rmi t s  a new r ep re sen t a t i on
of AI data bases .  L ISP  func t ions .  hypergraph Operations. i n f e r ence
ru le s  (incl. Hang's algorithm). Hoods' RTNs. and Tur i ng  machines.
showing that adapter-driven computation provides an AI—oriented general
computational base. The efficiency of pattern—directed and
adap te r -d r iven  computa t ion  is enhanced  by introducing the SECURE
opera tor  as a func t iona l  a l t e rna t ive  to PROLOG's cut.

1 INTRODUCTION

The notion of matching has become one of the most important concepts in
artificial intelligence (A I ) .  because of the recognition problems that
arise on all levels of AI systems. The corresponding AI language
feature of pattern matching is a central link between other important
very—high—level AI language features like associative data  bases.
pattern—action rules. and non—determinism (Boley 1983 ) .  Horeover. the
basic form. which uses a list pattern as a template to test and
decompose a list instance. has been generalized along the nearly
independent axes of unification, nonLlist matching. pa r t i a l  matching.
and fitting. For a recent survey dealing with the first three
gene ra l i za t i ons  see (Siekmann & Szabo 1992 ) .

Fitting. as first presented at the Hamburg AISB/GI conference in 1978,
synthesizes pa t t e rn  matching (recognition) and func t ion  application
(action) instead of pe r fo rming  recognition only. Below we will
concen t r a t e  on list fitting (with a hint on hypergraph fitting). which
is implemented in the form of a definitional i n t e rp re t e r  of the AI
programming language FIT (Boley 1979 ) .  Another language using a version
of this generalization. albeit a SNOBOL—string—oriented one. is POPLAR
(Morris 1982 ) .

The fitting concept  of FIT l eads  to a new view of computational
processes. called gggpter—driven compu ta t i on .  which pe rmi t s  more
concise. eas i e r  to read, and more efficiently implementable programs
than pattern—directed computa t ion .  Unlike some other approaches  t oward

3 T o  a p p e a r  i n :  G I  — 1 3 i h u fi fi f o s t a g u n g ,  H a m b u r g ,  S p r i n g e r  'h?





a generalized matcher serving as a f r amework  for formalized reasoning.

no tab l y  " fo rced  matches" in MERLIN and KRL (Bobrow & Ninograd 1977 ) .
this matching/computation synthesis is a general yet simple and formal
compu ta t i ona l  base.  It can be i n t roduced  in t h r ee  s teps .

Pattern—directed computation: Computation is directed by pa t t e rns  for
invoking pattern-action rules or t r ans fo rmer s .  well—known from
produc t ion  systems (Naterman & Hayes—Roth 1978). A1 languages (Hewitt
1972 ) .  and logic programming (Clark & Taernlund 1982 ) .  Left~hand—side
pat te rns  of transformers stored in a data base are matched  to the
expression to be eva luated  and their instantiated right—hand—side
actions are used as new expre s s ions  to be eva lua t ed  by the same
process.

Function—applying matching or adapter jigging: Matching is enriched by
applying func t ions  inside generalized pat te rns  to a rgumen ts  inside

instances. Elements  of a pattern enriched by funct ions  ( t hen  called an
'adapter') are paired with corresponding elements of an instance. the
pairing results (which may be function applications) are eva lua ted
using the full computational power  of the general eva lua to r .  and their
values are r econs t ruc t ed .

Adapter—driven gomputation: Computation is driven completely by
adapters. Adapters s tored  in a da ta  base are fitted to the expression
to be eva lua ted  and the successfully r econs t ruc t ed  expressions are
directly used as new express ions  t o  be eva lua t ed  by the same process.

Note that we understand the unqualified term 'rule' in its general
sense. not necessarily implying a left/right division. Indeed, we are
making a case for monolithic adap ta t i on  rules (adapters) as a
complement to dichotomized t r ans fo rma t ion  rules ( t rans formers ) .  The FIT
vers ion  of Hang's algorithm shown in the append ix  is typical for the
mixture of adapters  and t rans formers  suited to practical AI programs.

Below we will discuss adapter fitting and adapter—driven computation
t h rough  compar i sons  with previous work. systematically deve loped
examples, and evaluation traces that highlight their ope ra t i ona l
semantics and i n t e rp re t e r  r ea l i za t i on .  FIT prog rams  will use the syntax
of the present UCI LISP implementation FIT—1. running on a POP—10, in
which sII examples in this paper have seen tastaa. “e will aimp1i¥y
internal trace steps (for i n s tance .  we omit certain prefix charac ters
where no con fus ion  can arise. in particular qUotes) and only touch on
the BREADTH/DEPTH expression handling of non—determinism (Boley 1979 ) .
For the presentation of the FIT formalism we will adap t  an informal
style. even  when  discussing abstract automata. so as to avoid
additional meta formalisms tha t  would deter many application—oriented
readers.

2 THE CONCEPT OF FITTING

By synthesizing the concepts of applying a function to arguments and of
matching a pattern to an instance (in particular. of setting a variable
to values). we will arrive at the generalized concept of fitting a
'fitter' to 'fittees'. The syntactical form for evoking fitting. called
' f i tmen t ' .  is (fittgr fittee1 ... fitteeN). like that of LISP func t i on
application. Howeve r .  fitter may expand  not only to nns fgzmer  (incl.
its named form. function) but also to adapter (incl. the classical
a er (incl. the degenerate forms; a 'ab and constantll; the





f i t t ee l ' s  simply denote da ta  f o r  t he  fitter. I n  order  t o  illustrate t he
semantics o f  t h i s  abs t rac ted  concep t .  we w i l l  begin by  discussing

simple examples o f  symbolic computat ion.  involving L ISP 's  1+Z—ary (210 )
integer division func t ion  QUOTIENT. de f ined  by  (QUOTIENT n g1 . . .  £2 )  =
n / (d1 * . . . * 12 I  f o r  Z>0 and (QUOTIENT n )  = n f o r  2 :0 .

The synthesis s t a r t s  with ggggiggtg f unc t i ons  and pattggns. Consider
t he  recognition o f  fl denomina to r s  f o r  p reven t i ng  division by  0 i n
QUOTIENT ca l l s .  I n  LISP we can  de f i ne  i t  as a predicate f unc t i on

ZEROD = (LAMBDA (X I  (AND (EO (CAR XI  'QUOTIENTI (MEMBER ü (CDDR XI I I I .

I n  F IT  we can  alternatively def ine  i t  as a structure-reflecting
expre s s ion  consisting o f  constants  and variables. i . e .  as  a pa t t e rn

ZEROD = (DUOTIENT ?N >DL D >DRI.

where  7—var i ab les  b i nd  exactly one  element and  >—var i ab les  b i nd  an
arb i t rary  number o f  e l ements  (incl. ze ro ) .  A fitment like

(ZEROD '(OUOTIENT 256 4 D fl 2 I I

eva lua tes  t o  a func t ion  application ((LAHBDA (X ) . . . )  '(OUOTIENT . . . I I
o r  t o  a pat te rn  match

('(QUOTIENT ?N )DL o )DRI ‘toUOTIENT 255 ‘ 0 3 21).
depend ing  on  whe the r  ZEROD denotes  t he  predicate function o r  t he
pa t t e rn .  Thus  t he  fitter name ZEROD abs t r ac t s  f rom i t s  underlying

implementation. When typed  t o  t he  F IT—1 sys tem.  t he  above  pa t t e rn  ma tch
pa i r s  t o  t he  exp ress ion

(L IST  (OUDTIENT QUOTIENTI (?N 256 I  (>DL ( I  ( 0  B I  (>DR B 2 I I .

The pairing results a re  again f i tmen ts  t o  be  f u r t he r  eva lua ted  inside

t he  L IST  ca l l :  (QUOTIENT QUOTIENTI and  (0  0 )  a re  cons tan t—cons tan t
matches returning QUOTIENT and 0 .  r e spec t ive ly ;  (?N 256 ) .  (>DL 4 ) .  and
(>DR 8 2 )  a re  va r i ab le  se t t i ngs  yielding t he  bindings N=256. DL=4.
DR=B 2 and  returning 256 .  £ .  8 2 ,  respectively. Af te r  t he  eva lua t i on  o f
t hese  derived f i tmen ts .  t he  l i s t  (QUOTIENT 256 k 0 a 2)  i s  successfully
r econs t ruc t ed .  I n  gene ra l .  success fu l  pa t t e rn  matches  r e tu rn  t he
exp ress ion  originally used as t he  f i t t ee  (truth-equivalent with ' t r ue ' I
and possibly yield binding s ide—ef fec t s .  Failing matches like
predicates i n  F IT  yield t he  failure signal j F  (jump ' f a l se ' ) .

By  analogical r ea son ing  we may now  f i nd  ano the r  fitter subconcep t  t ha t
r e l a t e s  t o  gene ra l  f unc t i ons  as  pa t t e rns  relate t o  predicate func t ions .
These  adap te rs  a re  expressions containing func t ions  ( t r ans fo rmers l
besides constants  and var iab le s .  He ca l l  adap te r s  using on l y  predicate
func t ions  predicate adap te rs  and call o the r  ones gene ra l  adap te r s .

The synthesis i s  t hen  comp le ted  w i t h  gene ra l  f unc t i ons  339 adap tegg .
Varying t he  p rev ious  example .  cons ide r  t he  t r ans fo rma t ion  o f  1
denomina to r s  into denomina to r s  without t he  1 f o r  simplifying QUDTIENT
ca l l s .  I n  L ISP  we  can  w r i t e  a gene ra l  f unc t i on  (p resuppos ing  t ha t
(REMOVE a l l  has been de f i ned  t o  remove t he  e lement  & f r om the  l i s t  l )

ONED = (LAHBDA (X I
(COND ((AND (EO (CAR XI  'QUOTIENTI (CDR XI I

(CONS (CAR XI  (CONS (CADR XI  (REHOVE 1 (CDDR XI I I I I I I .





I n  production sys tems .  QLISP .  PROLOG. F IT ,  and  many o the r  AI  l anguages .
we can  use  more  gene ra l .  pictorial. and  concise pa t t e rn—ac t i on  ru l es .
i n  F IT  represented  as TRAFO ( j rgns jg rmer )  exp ress ions .  which a re
generalized LAHBDA expres s ions  hav ing  a pa t t e rn  i n  place o f  a simple
list o f  LAMBDA variables. Using such a t rans former  t he  example becomes

ONED = (TRAFO (QUOTIENT ?N >DL 1 >DR) (QUOTIENT (N  (DL (BR) ) .

where  < -va r i ab les  r e tu rn  their values. However ,  t h i s  examp le  also
illustrates some shortcomings with t rans former  solutions:

1 .  Trans fo rmer s  a re  no t  really concise because  many o f  t he  constan ts
and  var iab le s  occu r  on  bo th  s i des  o f  such  f i t t e r s .  of ten  even  i n
identical order .

2 .  Trans fo rmer s  a re  no t  optimally r eadab le  because  t he  cor respondence
between elements o f  bo th  s i des  o f  a t ransformer  i s  difficult t o
establish: I n  ONED above .  one might over look  t he  f ac t  tha t  t he  1 i s
e l i ded  on t he  r i gh t -hand  s i de ;  in l a rge r  t rans formers  like (TRAFO
(T  T F T T T F F T T T T F T T T l  (T  T F T T T F T T T T F F T T T ) )
t h i s  becomes  even  more  o f  a prob lem.

3 .  T rans fo rmers  entail some inefficiencies because  an  i n t e rp re t e r  f o r
t rans formers  must genera te  var iab le  bindings during invocation matches
o f  their l e f t—hand  sides. somehow t r anspo r t  these bindings t o  t he i r
r i gh t -hand  sides. and eva luate  t he  r i gh t -hand  s i des  i n  this
env i ronmen t ,  t hus  be ing  committed t o  t h r ee  mostly sequential
computation s teps .

F IT ' s  me thod  o f  overcoming t hese  d rawbacks  i s  t he  use  o f  gene ra l
adap te rs .  which combine t he  l e f t - hand  sides and r i gh t -hand  sides o f
t rans formers  into a new kind o f  monolithic very—high—leve l  " agg rega te
opera tor"  i n  t he  sense  o f  (Leavenwor th  & Sammet 1974 ) .  I n  t he  examp le
this leads t o

ONED = (QUOTIENT ?N >DL A801 >DR).

where  A801 can  be regarded as a func t ion  primitive t ha t  r e tu rns  t he
empty sequence i f  i t s  argument  i s  1 and fails otherwise. A801 i s
ac tua l l y  composed (using 0 as t he  compos i t i on  i n f i x  Ope ra to r  f o r
fitters) o f  A8 = (TRAFO ?X) .  a f unc t i on  wh i ch  absorbs ( t ransforms t o
t he  empty sequence)  one argument  ?x .  and o f  1 .  a cons tan t  wh i ch
successfully matches .  hence  r e tu rns .  on l y  ano the r  1 .

I f  ONED has  been  bound  t o  t h i s  gene ra l  adap te r .  t he  f o l l ow ing  7—s tep
fitment evaluation resu l t s :

1 (ONED '(QUOTIENT 255 1 1 a 2 ) )
2 ('(OUOTIENT ?N >DL ABO) >on) '(QUOTIENT 255 4 1 a 2 ) )
3 (L IST (QUOTIENT QUDTIENT) (?N 255)  1>DL 4 )  (A801 1 )  1>DR & 2 ) )
4a (L IST DUOTIENT 255 ) (AB 11 1 ) )  a 2)  with N=255‚ oL=4 ‚  oe=a 2
5a (L IST OUOTIENT 256 4 (An 1) a 2 )  — " —
Ba (L IST QUOTIENT 255 4 a 2 )  - “ —
7a (QUOTIENT 255 4 a 2 )  — " —

The examp le  shows  t ha t  t he  shortcomings o f  t r ans fo rmer s  d isappear  i n
adap te r  so lu t i ons :





1 .  Adapters a re  ve ry  concise.

2 .  Adapters a re  optimally r eadab le ,  because they  eliminate t he  e lement
cor respondence  prob lem:  I n  t he  ONED adap te r .  one  sees  tha t  t he  1 wi l l
be  abso rbed ;  t he  1B -b i t  t rans former  becomes t he  adapte r
(T  T F T T T F NOToF T T T NOToT F T T T ) .  Fur thermore .  adapte rs  make
i t  possible t o  ge t  r i d  o f  s i ng le—occu r rence  var iab le s  altogether ( c f .
section 5 ) .  This i s  done by  replacing ?—var iab1es by  ID  and >—var iab les
by  # ID .  e .g .  obtaining ONED = (QUOTIENT ID  # ID  ABol #10 ) .  ID  i s  a
func t i on  which like t he  i den t i t y  r e tu rns  i t s  s i ng le  argument  bu t  f a i l s
f o r  any o the r  number o f  arguments. # i s  a p re f i x  ope ra to r  f o r  f i t t e r
repetition ( ze ro  o r  more)  re la ted  t o  L ISP ' s  MAPCAR by (MAPCAR i ; )  :
( ' ( t i )  l ) .  where  1 i s  a f unc t i on  without s ide—ef fec t s  and ; i s  a list.

3 .  Adapters avo id  invocation inefficiencies because they  require f ew
(theoretically. as shown i n  sec t i on  5 .  no )  var iab le  bindings during
invocation f i t t i ngs  and need no t  t r anspo r t  any bindings t o  an
expression t o  be instantiated. thus being ab le  t o  f u l l y  exploit t he
parallelism o f  t he  invocation computat ion.

Like FP prog rams  (Backus  1982 )  adap te rs  a re  directly const ruc ted  by
applying "program—forming Ope ra t i ons "  (mainly generalized parallel
“ comb ina t i on “  i n  t he  sense o f  B ra ine rd  and Landweber .  a ve r s ion  o f
which was i n t roduced  t o  programming l anguages  i n  (F r iedman & Wise
1978 ) )  t o  ex i s t i ng  programs (fitters) instead o f  specifying
t r ans fo rma t ions  on "ob jec t  var iab le s"  as done by LAHBDA and TRAFO
express ions.

3 GLOBAL EXPRESSIONS AND THE CONSISTENT—ASSIGNMENT RULE

I n  mos t  L ISP-based  pat te rn  matche rs  success fu l  matches  r e tu rn  T and
yield va r i ab le—b ind ing  s i de—ef fec t s  o r  they  r e tu rn  a l i s t  w i t h  T i n  i t s
CAR and an a—l i s t  o f  va r i ab le—va lue  pa ir s  i n  i t s  COR. I n  F IT  we a t t emp t
to  combine t he  hand iness  o f  yielding bindings as s i de—ef fec t s  w i t h  t he
functional pu reness  o f  returning bindings as  va lues .  This leads t o  a
new.  inherently para l l e l ,  semantic founda t ion  o f  pat te rn  matching ( and
adapter  f i t t i ng ) .  completely integrated wi th  func t iona l  expression
evaluation. For  t h i s  we a l l ow  a successful fitting t o  r e tu rn  a GLOBAL
expre s s ion  o f  t he  f o rm  (GLOBAL (Q1 . . .  EM) 31  . . .  gN ) .  where  t he  Q j ' s
a re  bindings o f  t he  f o rm  1>va r i ab1e j  va lue j . 1  . . .  va l ue j ‚K j )  and t he
g j ' s  a re  r e tu rned  va lues  proper .  For  examp le .  t he  ass ignment  (>DR B 2 )
re turns  (GLOBAL ((>DR 8 2 ) )  8 2 ) .  where  H=1 and N=K1=2. F i t t i ngs  no t
performing any variable bindings can be  v iewed  as returning a GLOBAL
exp ress ion  (GLOBAL ( )  v1  . . .  vN) w i t h  an empty binding list wh ich .
however .  simplifies t o  t he  va lues  proper  v1  . . .  vN .

The  eva lua t i on  o f  t he  ONED f i tmen t  f r om s tep  4 can  now  be  shown  more
precisely i n  t he  manner o f  pu re  F IT ' s  semantic FEVAL f unc t i on :

4b (L IST OUOTIENT
(GLOBAL 11>N 255 ) )  256)
(GLOBAL 11>DL 4 ) )  &)
(AB 11 1 ) )
(GLOBAL ( ( )DR B 2 ) )  B 2 ) )

5b (GLOBAL 11>N 256) 1>DL &) (>DR B 2 ) )
(L IST OUOTIENT 256 4 (AB 1 )  B 2 ) )

Gb (GLOBAL ( (>N  256) 1>OL #) 1>DR 8 2 ) )  (L IST OUOTIENT 256 4 B 2 ) )
7b 1GLOBAL 11>N 258) 1>DL 4)  1>OR B 2 ) )  (OUOTIENT 256 & B 2 ) )





The  evaluation t r ace  shows t ha t  GLOBAL expressions which a re  r e tu rned
inside another  expre s s ion  migrate ou t  o f  t ha t  expression and on their
way up t he  exp ress ion  t ree  a re  combined (uniting their bindings) until
only one GLOBAL remains a t  t he  t r ee ' s  r oo t  ' (Sb ) .  The eva lua t i on
cont inues i n  this GLOBAL's scope and pu re  FEVAL r e tu rns  t he  evaluated
GLOBAL ( he re  H=3‚ N=K1=K2=1‚ and K3=2) as i t s  va lue  (Tb ) ,  wh i ch  impure
F IT -1  t hen  splits into binding e f f ec t s  and va lues  prope r  (Ta ) .  The
GLOBAL migration and combinat ion  can be described by  t he  axiom

( . . .  (GLOBAL l ä1 )  11 )  . . . (GLOBAL (32) 32)  . . . )  =
(GLOBAL ( ubc  g1  . . . BZ)  ( . . .  11 . . . 12 . . . ) ) .

Here  t he  g j ' s  and i j ' s  a re  binding and va lue  sequences o f  t he
respec i t ve  f o rms  n j . 1  . . .  gj.Mj and 1 j . 1  . . .  1 j .N j ;  ubc i s  a func t ion
f o r  gn i t i ng  Q ind ings  gons i s ten t l y  ( a l l  occurrences  o f  a
mul t i p l e—occu r rence  variable require t he  same va lue ) .  causing t he
en t i r e  GLOBAL exp ress ion  t o  f a i l  ( t o  be  reduced  t o  j F )  when any
inconsistency i s  detec ted .  This allows context-sensitive checks  as i n

('(OUOTIENT ?x  ?X) '(OUOTIENT B 4 ) )  =>
(LIST (OUBTIENT OUOTIENT) (7x B) (?x A)) =>
(LIST OUOTIENT (GLOBAL ((>x B))  B) (GLOBAL ((>x 41) 4 ) )  =>
(GLOBAL (ubc (>x B) (>x ( ) )  (LIST OUOTIENT B A)) =>
jF .

Our i n teg ra t i on  o f  pa t t e rn  matching into a functional framework leads
t o  a generalization o f  ”single-assignment l anguages “  (Tes le r  & Enea
1968) which may be ca l l ed  ' cons i s ten t—ass ignmen t  l anguages ' .  ( I n te res t
i n  s i ng le -ass ignmen t  languages stems from their equivalence with purely
functional languages (Backus 1982) and their executability on parallel
da ta—f low  mach ines . )  The  requirement tha t  on l y  a s i ng le  ass ignment  t o  a
va r i ab le  i s  permitted becomes  r e l axed  t o  t he  r equ i r emen t  tha t  a l l
assignments t o  a var iab le  must be  cons i s ten t .  S ing le—assignment  i s  a
spec ia l  case  o f  cons i s ten t—ass ignmen t  because .  i f  t he re  i s  on l y  one
ass ignment  t o  every  va r i ab le ,  no  inconsistency can  occur .  A l though  t he
cons i s ten t—ass ignmen t  r u l e  allows assignments t o  a variable already
bound  t o  a va lue .  t hese  canno t  change  t he  O ld  va lue  because  a new va lue
differing f rom t he  o l d  one  causes  t he  entire evaluation t o  be  abo r ted
with a f a i l u re  s i gna l  j F .  There fore  a l l  statements ( subexp ress ions )
whose  da ta  va lues  a re  ava i l ab le  can  be  executed  simultaneously. I n  F IT
t h i s  means t ha t  expres s ions  (incl. assignments) inside f i tmen ts  can be
executed  using "AND pa ra l l e l i sm"  (C la r k  & Tae rn lund  1982 ) .  l i ke  t he
arguments o f  func t ion  applications i n  pu re  LISP.  r esu l t i ng  i n  h i gh
speed—ups on  pa ra l l e l  ha rdware  (Bo ley  1983 ) .

Us ing  t he  ‘—pre f i x  f o r  f e t ch ing  variable values as  soon  as  t hey  a re
ava i l ab le .  we may have  t he  f o l l ow ing  eva lua t i on :

1 {L IST  (L IST (ADDI ' X )  (O O) (SUB) B) )  ( ?x  (SUB) 2 ) )  (?X ( ) )
2 (GLOBAL ( ( )X  1 ) )  ( L IST  (L IST  (ADD) “X )  0 2 )  ( 7X  1 )  1 ) )
3 (GLOBAL ( (>X  T ) )  (L IST  (L IST  (A001  1 )  0 2 )  1 l ) )
& (GLOBAL ( (>X  T ) )  ( ( 2  0 2 )  1 T ) )

I n  s t ep  1 t he  subexp ress ions  (O O) .  (SUB1 3 ) .  (SUB1 2 ) .  and (?X 1 )  can
be  eva lua ted  i n  pa ra l l e l .  t he  latter generating an  X va lue .  I n  s tep  2
“ x  and ano the r  ( ?x  1 )  can be  eva lua ted  i n  pa ra l l e l ,  t he  f o rmer  us i ng
the  o ld  va lue  o f  x and t he  latter generating a new va lue  f o r  X which
happens t o  be  consistent wi th  t he  o l d  one .  No te  t ha t  t he  binding
generated i n  t he  'upper right' o f  t he  exp ress ion  i s  used i n  i t s  ' l owe r
l e f t ' .  Th i s  i s  poss ib l e  on l y  because o f  t he  pa ra l l e l  subexp ress ion





eva lua t ion  which contras t s  with t he  l e f t—to—r igh t  EVLIS evaluation
pe r fo rmed  by  ordinary L ISP  i n t e rp re t e r s .

While we regarded t he  LIST application i n  step  1 as t he  initial
expres s ion  o f  t he  above  eva lua t i on ,  i t  can  a l so  be  viewed as  t he  resu l t
o f  an adap te r  fitment i n  a s tep  0 ( t he  embedded adap te r  (A001 0 SUB1)
causes t he  embedded LIST application):

a ( ' ( tAoo1 o sua1) ?xosua1 ?X) ' ( t ‘ x  o 3) 2 1 ) )

Th i s  shows t ha t  " ou tpu t "  variables o f  s ing le—ass ignment  languages such
as COMPEL (Tesler & Enea 1968) correspond t o  ” t empora ry ”  var iab le s  i n
A1 l anguages  such as PLANNER (Hewitt 1972) o r  F IT .  t he  l a t t e r  using a
PULLTEHPORARY ( ' )  pre f ix  t o  f e tch  t he  t emporary  variable values being

generated during fitment eva lua t i on .  wh i ch  become permanent  on l y  i f  t he
fitment succeeds ;  i n  con t ras t .  t he  o rd i na ry  PULL (< )  pre f ix  i s  used  t o
f e tch  permanent variable values. (Hhereas PLANNER's HATCHLESS marks
variables as  receiving a t empora ry  o r  a pe rmanen t  va lue .  F IT  g i ves  a l l
var iab le s  t empora ry  va lues  during matches. bu t  allows us  t o  igtgn t he i r
t empo ra ry  o r  t he i r  p rev ious  pe rmanen t  va lue .  Th i s  i s  because  no  reason
cou ld  be  seen why '  a va r i ab le  shou ld  pe rmanen t l y  keep a va lue  i t
r ece i ved  i n  a failing match . )

Apart  f rom i t s  app l i ca t i on  t o  t he  seman t i c  f ounda t i on  and
implementation o f  pat te rn  match ing .  t he re  a re  many o the r  i n t e res t i ng
uses  f o r  t he  cons i s ten t -ass ignmen t  ru le .  o f  which we mention on l y
ggnjgngtiyg retzigyals‚ whose l ? - va r i ab les .  l i ke  match  va r i ab les .  a re
bound  temporarily f i r s t  ( t he  l—pre f i x  a l l ows  variables t o  retrieve
t he i r  va l ues  f r om the  da ta  base w i t hou t  needing an explicit FETCH o r
GOAL s ta tement ) .  I f  t he  assertions (BIG TABLE). (BIG CHAIR). and
(RED CHAIR) have been s to red  i n  t he  da ta  base  ( see  sec t i on  & f o r  how to
do  t h i s ) .  t he  cons i s ten t -ass ignmen t  r u l e  ensures t ha t  an exp ress ion
con ta in i ng  con junc t ive  reques ts  like

(APPEND '(THE) (BIG |?THING) ‘ ( I s  A) (RED |?THING))

fails with one comb ina t i on  o f  bindings,

(APPEND ' (THE)  (GLOBAL ((>THING TABLE)! (B IG TABLE)!
' ( IS  A) (GLOBAL ((>THING CHAIR)! (RED CHAIR I I ) .

bu t  succeeds  with t he  o the r .

(APPEND ' (THE)  (GLOBAL ((>THING CHAIR)! (BIG CHAIR!)
' ( IS  A) (GLOBAL ((>THING CHAIR)! (RED CHAIRJI I .

r e tu rn ing  (GLOBAL ((>THING CHAIR)!  (THE BIG CHAIR IS  A RED CHAIR)) .

( IHPLICIT  FITTERS AND ADAPTER—DRIVEN COMPUTATION

Besides explicitly fitting a f i t t e r  ir ( t hen  ca l l ed  an ' exp l i c i t
f i t t e r ' )  t o  a f i t t ee  jg us i ng  a fitment ( j ;  j g ) .  one can a l so  s to re  1;
( t hen  ca l l ed  an ' imp l i c i t  f i t t e r ' )  i n  a da ta  base  and a l l ow  i t  t o  be
imp l i c i t l y  fitted t o  ig by  s imp l y  w r i t i ng  ig i ns i de  t he  scope o f  t ha t
da ta  base .  I f  more  t han  one  implicit f i t t e r  i s  f i t t ab le  t o  a f i t t ee ,
t he  pa r t i a l  o rde r  o f  t he  spec i f i t y  o f  t he i r  i nvoca t i on  adapte rs ,
represented  by  a nes t i ng  o f  DEPTH and  BREADTH exp ress ions .  i s  used  as
t he  principal in format ion  f o r  conflict-resolution. The resu l t i ng





bindings r ema in  l oca l  to such  implicit fittings. To store M f i t t e r s
i £ 1 ‚  . . . .  il“ g l o b a l l y .  a d i r e c t  GLOBAL c a l l  (GLOBAL ( 1 1 1  . . .  iLM) )
with an empty returned value can be used.

The explicit/implicit duality holds for all kinds of f i t t e r s .  i.e. bo th
for t r ans fo rmer s  and for adapters. For example .  t r ans fo rmer s  such  as
the ONED TRAFO can not on l y  be used explicitly in fitments like ((TRAFO
(OUOTIENT ? N  >DL 1 >DR) (OUOTIENT ( N  ( D L  (DR) !  ' (OUOTIENT 256 k 1 8 2))
but can also be s tored  in the global data  base .  To d o  this one might
use (GLOBAL ( (TRAFO (OUOTIENT ...! (OUOTIENT ...l) ) ). but currently
the form of a variable setting (F IT  permits a rb i t r a ry  lists to act as
variables). (GLOBAL ( (>(OUOTIENT ...) (OUOTIENT ...)! ) ). is still
p re fe red .  This has the same e f f ec t  as the GLOBAL gene ra ted  by the
setting (> (OUOTIENT ? N  >DL 1 >DR) ' (OUOTIENT ( N  (OL  (DR! )  itself. If
expressions like (OUOTIENT 256 A 1 B 2) are now typed in the scope of
the global data base. the implicit fitter is fitted to these fittees
and t rans forms  t hem in the well—known pattern—directed manner.

What is new, howeve r ,  is our t rans fer  of this duality to adapters. In
particular. the ZEROD pattern can either be used explicitly in fitments
like ('(ouorrenr ?N >OL o >OR) '(QUOTIENT 255 4 o a 2) ) .  as discussed
above, or it can be s to red  in the global data base using (GLOBAL (
(OUOTIENT ?N >DL O >DR) ) ( and be implicitly matched to fittees like
(OUOTIENT 256 4 O 8 2) by simply typing t hese  express ions.  (Some
'paren thes is  sugaring' and renaming of such special GLOBAL uses would
yield t he  more usual (ASSERT (OUOTIENT ?N >DL O >DR)).) Once implicit,
the adap te r  (OUOTIENT ?N >DL O )DR) can be v iewed as a definition for a
function OUOTIENT applied to formal  arguments  containing a ze ro
divisor. The sample fittee (OUOTIENT 256 & 0 B 2 )  can be v iewed  as an
application of the OUOTIENT function t o  actual arguments  containing a
zero divisor. Like the explicit match. the implicit match r e tu rns  the
fittee; in o the r  words. t h i s  OUOTIENT application r e tu rns  itself,
indicating t ha t  it contains a zero divisor and prevent ing  the e r roneous
use of the numeric definition of OUOTIENT. This OUOTIENT definition can
also be regarded  as an assertion containing variables. as allowed in AI
languages like OLISP and PROLOG. When the definition
(KNOWS ?X PRESIDENT) has been established. the call
(KNOHS FRED PRESIDENT) r e tu rns  itself to indicate t ha t  FRED knows the
PRESIDENT. in the same way the OUOTIENT call returns itself to indicate
t ha t  256. k, 0 ,  a. 2 conta ins  a zero  divisor. By using such implicit
patterns. predicate functions can be specified in a very—high—level
manner. In particular. definitions of list predicates of ten  become more
declarative t han  their L ISP  and PROLOG co r r e l a t e s .  For example. the
definition of the MEMBER predicate. which still involves recursion in
both L ISP  and PROLOG, in FIT reduces t o  the implicit pattern
(MEMBER ?X (>L ?X >Rl), pictorially showing an ?X—element in the list
( )L  ?x >R) .

Examples of implicit prediggtg adaptgrs are (COLOR ELEPHANT GREY}.
(CLOLOR FIRE—HYDRANT RED) .  e tc .  (whe re  ELEPHANT, FIRE—HYDRANT. e t c .  are
embedded_pred ica te  functions). abbreviating the implicit t r ans fo rmer s
(Charniak 1981) (TRAFO (COLOR ?ELEPHANT GREY) (ELEPHANT <ELEPHANT1).
(TRAFO (COLOR ?FIRE—HYDRANT RED) (FIRE—HYDRANT (FIRE—HYORANTJ), e tc .
Charniak's r eques t  (COLOR CLYDE |?NHAT) is only fitted by the first
adapter whose predicate application (ELEPHANT CLYDE) succeeds. not by
the many o the r  adapters whose predicate applications (FIRE—HYDRANT
CLYDE) e t c .  fail. In the naive t r ans fo rmer  implementation only the
right—hand sides discover t hese  failures. Charniak's discrimination net
indexing uses ?ELEPHANT. ?FlRE—HYORANT, e tc .  as t yped  var iab le s ,  so
t ha t  CLYDE only invokes the ELEPHANT t rans former .  This. howeve r ,  makes





t he  r i gh t—hand  sides vacuous .  showing t ha t  predicate adapters .  viewable
as gsgg r t i gns  con ta i n i ng  ggggiggtgg and i ndexab le  like t r ans fo rmer
pa t t e rns .  a re  a na tu ra l  r ep re sen t a t i on  he re .  Predicate adapte rs  a l so
permit t he  definition o f  pred ica te s  by recursively using t he  pred ica te
t o  be  de f i ned  i n  i t s  own invocation. A very  concise definition o f  a
PALINDROHE predicate consists o f  a principal definition
(IPALINDROME ?X PALINDROME ?X) specifying this kind o f  i nygga t i gn
[ eguxg ion  and o f  two definitions (IPALINDROME ?X) and (ZPALINDROHE) f o r
recurs ion  termination ( t he  Z—pre f i x  i n  f ron t  o f  t he  ' de f ined '
PALINDROHE occu r r ences  r e s t r i c t s  them t o  being constants i n  con t r a s t  t o
t he  recursively ' de f i n i ng '  PALINDROME occu r r ence  which ac ts  as a
func t ion ) .  Success fu l  eva lua t ions  (embedded recurs ive  calls a re  written
inside ' e va lua tes  t o '  a r rows .  t hus  =[ . . . ]=>)  like

(PALINDROME M A D A M) = [  (PALINDROME A D A) = (  (PALINDROME D) 1 : )
(PALINDROME A (PALINDROME D) A) ] = )

(PALINDROHE M (PALINDROME A (PALINDROHE D) A1 N)

do no t  j us t  r e tu rn  ' t r ue '  bu t  give a parse  o f  t he  recursive palindrome
s t ruc tu re .

The  ONED ggngggl gggntgg can  a l so  be  s tored  i n  t he  data  base ,  using

(GLOBAL ( (QUOTIENT ?N >DL ABo1 >DR) ) l .  and be implicitly f i t t ed  t o
f i t t ees  l i ke  (QUOTIENT 256 4 1 8 2 )  by  t yp ing  these expressions.  Like
t he  corresponding explicit fitting. this example r e tu rns  t he  l i s t
(QUOTIENT 256  k B 2 ) .  More  generally. a QUOTIENT application t o
arguments  containing a 1 denomina to r  r e tu rns  this QUOTIENT call as a
data  va lue  without t he  1 .  Th i s  i s  p robab l y  no t  exac t l y  what  i s  wanted ,
because .  a f t e r  t he  simplification o f  ou r  QUOTIENT application. we would
normally like t he  eva lua t i on  t o  con t i nue .  even tua l l y  returning t he
f i na l  r esu l t  k .  Fo r  enabling t h i s .  t he  REVA ( r )  pre f ix  ope ra to r  i s
introduced wh ich .  app l i ed  t o  an  arb i t rary  fitter. Lgegg lua tes  t he
r esu l t  o f  i t s  f i t t i ng .  Thus we can mod i f y  t he  ONED adap te r  t o
r(QUOTIENT ?N >DL ABo1 >DR) wh i ch .  when s to red  i n  t he  da ta  base and
used implicitly. drives t he  desired evaluation (OUOTIENT 256 & 1 B 2)
=> (QUOTIENT 256 k 8 2 )  => 4 .  The eva lua t i on  continuing a f t e r  an
implicit fitting specified by  a REVA-adapter may, o f  cou rse .  use  t he
same REVA—adap te r  aga in .  so  t ha t  a k i nd  o f  tail—recursion o r  iteration
wi th  varying numbers o f  a rguments  emerges. For  example .  t he  mod i f i ed
ONED de f i n i t i on  can  be  used  iteratively t o  eliminate an a rb i t r a ry
number o f  1 denominators  i n  QUOTIENT ca l l s  as  i n  t he  adapter—driven
computa t ion

(QUOTIENT 160  1 5 1 1 41  =>
(QUOTIENT 160  5 1 1 &!  =>
(QUOTIENT 160  5 1 41  =>
(QUOTIENT 160  5 4 )  = )
8 .

Hh i l e  i t  i s  i n  principle possible t o  specify a l l  kinds o f  compu ta t i on
us ing “  REVA—adapters f o r  recurs ion  and cons tan t -adap te rs  ( i . e .  adap te r s
wi thout  an r -p re f i x )  f o r  termination (see section 5 ) .  i t  i s  o f t en
convenient t o  use  implicit REVA—adapters f o r  mak ing  a f unc t i on
app l i ca t i on  i t s  own iteration l oop  and using an implicit t rans former
f o r  detecting a t erminat ion  criterion and a l so  returning t he  result
accumula t ed  i n  one o f  t he  a rgumen ts .  '

A s imp le  numer i c  example o f  applying t h i s  method i s  an a l t e rna t e
definition o f  a L ISP—l i ke  PLUS func t ion  ( f o r  non -nega t i ve  arguments) on
the  bas i s  o f  ADD1 and SU61. The de f i n i t i on  can be made by typing





(GLOBAL ( r (PLUS SUB) ADDT) (> (PLUS U ?X)  (X)  ) ) .  where
r (PLUS SUB) ADD1) spec i f i es  an  iteration l oop  f o r  simultaneously
decrementing t he  f i r s t  and incrementing t he  second argument .  while
(>(PLUS 0 ?X)  (X)  de tec t s  when t he  f i r s t  argument i s  0 and t he  second
argument can  be  re tu rned  as t he  resu l t .  A sample evaluation first using
t he  adap te r  twice and t hen  using t he  t rans former  once i s  (PLUS 2 8 )  =>
(PLUS 1 9)  => (PLUS 0 10)  => 10 .

An example involving numbers and lists i s  t he  NTH func t ion  f o r
selecting t he  n th  list e l ement .  I t  consists o f  r (NTH SUB) COR) and
(>(NTH 1 (?X >Y))  (X) .  enabling evaluations like (NTH 3 ' (A  B C D) )  =>
(NTH 2 “ ( a  c D)) => (NTH 1 ' ( c  0 ) )  => c.

F ina l l y .  a purely non -numer i c  example i s  t he  BOXES ope ra t i on  f o r
transforming directed recurs ive  l abe lnode  hype rg raphs  i n to  se t - l i ke
DRtHs containing a l l  t he  original l abe lnode  boxes bu t  none
o f  t he i r  hype ra rc  a r rows  (Bo ley  1980) .  The adap te r
r(BOXES (DRLH >X (TRAFO (TUPLE >Y) (Y)  >Z) )  uses  an embedded TRAFO
exp ress ion  t o  iteratively r ep l ace  TUPLEs r ep re sen t ing  t he  arrows  o f
DRtHs by  their box conten ts .  When this i s  no  longer applicable. on l y
boxes remain and t he  less specific t rans former  (>(BOXES (DRLH >L))
(DRLH (L) )  i n i t i a t es  a DRLH co l l ec t ion  normalization. This permits
evaluations like

E C D E A) (TUPLE D A D)) )  =)
A (TUPLE D A D)) )  =>
A D A D) )  = )

=)

(BOXES '(DRLH B (TUPL
(BOXES '(DRLH B C D E
(BOXES '(DRLH B C D E
(DRLH B C O E A D A D)

E(DRLH A B C D ) .

5 ADAPTERS AS A COMPUTATIONAL BASE

Special adap te r  definitions using t he  f o rm  r (£ t t  ££L1 . . .  ££LN) a re
equivalent t o  t a i l - r ecu rs i ve  func t ion  definitions o f  t he  f o rm
( ) ( j t t  73£21 . . .  ?gt )  (is; ( j t t l  <3£213 . . .  (tttN ( t t ) ) ) ‚  where the
t t g l ' s  a re  var iab le s  and t he  j t t l ' s  a re  una ry  functions (incl. t he
iden t i t y )  o r  function compositions. Thus, making t he  adap te r
r(PLUS SUB) ADD1) implicit i s  equivalent t o  defining t he  f unc t i on
(> (PLUS ?X ?Y)  (PLUS (SUB)  (X)  (ADD) (Y) ) ) .

There  a re .  howeve r .  adap te r s  which cannot be  so d i rec t l y  t rans formed
into functions. f o r  instance those  pe r fo rming  con tex t - sens i t i ve  checks
by  using multiple—occurrence variables ( e .g .  F IT ' s  PALINDROME; i t  Egg
be  t rans la ted  differently o f  cou rse ) .  On t he  o the r  hand  t he re  a re
functions which canno t  be easily t r ans fo rmed  i n to  adapters .  e .g .
t a i l—recu rs i ve  functions using t he i r  arguments i n  d i f f e ren t  orders  i n
t he i r  pa t t e rn  and i n  t he i r  body (e .g .  LISP's REVERSE; i t  gta be
t r ans l a t ed  using PULLTEHPORARY var iab le s  inside implicit adapters f o r
examp le ) .  I ns tead  o f  considering more  o f  t hese  spec ia l  t r ans fo rma t i ons
we wou ld  like t o  pose  t he  gene ra l  ques t i on  whe the r  adap te rs  can  be  used
to  r ep re sen t  partial recursive func t ions  o r  some other universal
computational base .  (The Church/Tur ing thesis implies t ha t  a rb i t r a r y
adap te rs  can  be  represented  by  partial r ecu r s ive  functions; F IT ' s  FEVAL
func t i on  shows how this may be  done i n  L ISP . )  We can answer i t
affirmatively by  showing t ha t  adap te r s  ELLDQML ya r i ap tgs  tag wttn 1e ry
s imp le  fungtigns can 'be used  t o  s imu la te  Tu r i ng  mach ines .  This will
bu i l d  on a un i f o rm  ta i l - r ecu rs i ve  r ep re sen t a t i on  o f  Chomsky—hierarchy
abs t r ac t  au toma ta .  including woods '  r ecu r s ive  transition ne two rks .





The  t ape  o f  each  automaton  m can  be  represented  as  a va r i ab le—leng th
sequence o f  actual arguments t o  a t a i l - r ecu rs i ve  func t ion  de f ined  by
adap te r s .  The func t ion  name i s  “sca t te red"  (Bo ley  1979 ) ;  more
precisely. i t  consists o f  a principal pre f ix  @ and a subordinate i n f i x
; .  The s ta te  and t he  head position o f  an automaton a re  rep resen ted  by
t he  nam ing  o f  1 and  by  i t s  position between  t he  a rgumen ts .
respec t i ve l y ,  where  t he  automaton 's  head  i s  unders tood  t o  scan  t he
argument  ( f o r  RTNs. t he  arguments) immediately t o  t he  r i gh t  o f  3 .
Essentially. t he  t r ans i t i on  f unc t i on  j o f  an automaton becomes a
func t ion  1 wh ich  i s  app l i ed  t o  s ta te  i n f i xes  31  and  arguments  31  t o
their r i gh t .  returning successor s ta te  i n f i xes  32  and possibly new
arguments 32 .  I t  i s  ca l l ed  i ns i de  an implicit REVA-apdapter
r (m  . . .  1 #ID)  f o r  defining @; the  ' r epea ted  i den t i t y ' .  # ID .  i s  used t o
avoid s ing le—occu r rence  > -va r i ab les  ( i n  ou r  au tomata  r ep re sen t a t i on
the re  i s  no  need f o r  mu l t i p l e -occu r rence  variables). For  each final
s ta te  g; a cons tan t—adap te r  de f i n i t i on  (@ . . .  &; . . . )  terminates t he
computation. To  initialize @ w i th  s ta r t  s t a te  ga .  t h i s  s t a r t  s t a te  can
be  used  as  an  additional func t ion  name de f ined  by  t he  adap te r
r ( lTRAFO : m) gg S ID ) .  where  (TRAFO : ml  generates  9 f r om the  empty
sequence.

I f  @ i s  a finite agtgmgtgg (FA ) .  t he  REVA—adapter i s  r im  1 # ID )  and t he
cons tan t -adap te rs  a re  (m 51 ) .  I f  m ' s  t r ans i t i on  f unc t i on  ; f o r  s t a te  g l
and symbol  g r e tu rns  state g2 .  i . e .  i ( §1 .g )=§2 .  t hen  an 1 definition
becomes l > t i  g1  a )  £ 2 ) .

I f  m i s  a r gcg rs i vg  t r ans i t i on  ne two rk  (RTN) (Noods 1970 ) .  t he  adap te rs
a re  t he  same as i n  FAs and t he  1 definitions a re  extended as follows.
I f  m ' s  t r ans i t i on  f unc t i on  i f o r  s ta te  51  and  a success fu l  embedded
call t o  a subne two rk  w i t h  i n i t i a l  s t a te  531 r e tu rns  s ta te  32 .  t hen  an  £
de f i n i t i on  becomes ( ) ( i  g1 §g1 l  g2 ) .  Thus .  t he  invocation adap te r  o f
1 ' s  definition contains a ca l l  t o  sg1 .  wh i ch  ac t s  as a predicate
checking 1 ' s  applicability (truly recursive ca l l s .  i . e .  sg1=ga a re
a l l owed ) .  A s imp le  examp le  sugges t ive  o f  t he  con tex t—f ree  power  o f  such
invocation recursions i s  an RTN fo r  r ecogn i z i ng  AIN B IN f o r  N31. The
Woods—l i ke  notation o f  t h i s  RTN shown on  t he  l e f t  be low  becomes  t he  F IT
definitions on  t he  r i gh t .  us i ng  m=RTN. i=FANBN. ga=ANBN, §1=AN—18N—1.

ANBN - rtlTRAFO : RTN) ANBN 310)
I-—\ r(RTN FANBN #10)
| | (RTN AN—iBN—1)

A | v s (>IFANBN ANBN A) AN-IBN)
ANBN —————— > AN—1BN —————— > AN-1BN—1 ()(FANBN AN—1BN ANBN) AN—1BN)
( s t a r t )  ( f i na l )  ()(FANBN AN-1BN a) AN-1BN-1)

A sample eva lua t i on  i s  (recursion level i s  r e f l ec t ed  by indentation)

(ANBN A A A B 8 B) =>
(RTN ANBN A A A B B B) =>
(RTN AN—lBN A A B B B) = [  (ANBN A A B B) =>

(RTN ANBN A A B 8 )  =>
(RTN AN—1BN A s a )  = [  (ANBN A 5 )  =>

(RTN ANBN A a )  =
(RTN AN-1BN B) =
(RTN AN—1BN—1l ]

(RTN AN—1BN B) =>

(RTN AN—1BN-1 )  ] = >
(RTR AN- iBN  8 )  =>
lRTN AN—1BN—1).





By embedding RTNs inside patterns. obtaining adapters such as
I>H ANBN >w). many  context—sensitive l anguages  can be accepted. which
can be recogn ized  neither by pat te rns  nor by RTNs a lone  ( thus  adapte rs
also synthes ize  matching and parsing. as desired by Simmons. wilks. and
others). In this way. the use of registers and t es ts  in augmented
transition networks (ATNs) can of ten  be avoided.  In cases where this is
not poss ib l e .  such f ea tu res  cou ld  still be added to this RTN
r ep re sen t a t i on  to obta in  full ATNs (arbitrary t es t  pred i ca t e s  on a rc s
are implicit in our formalization).

If @ is a linear bounded autqmgton (LBA).  the REVA—adapter is
rtm #ID i #ID)  and the constant—adapters are (m  #10 g; #10 ) .  If m's
transition function i for s ta te  g1 and symbol 11 r e tu rns  s ta te  52.
print symbol 12. and a right move. i.e. 1(§1.11)=(;2.12.RIGHT). then an
i definition is ()(1 11 a1) 12 £ 2 ) .  Analogously. ils1.g1)=(s2.12‚LEFT)
becomes (>(i ?X g1 31 )  12 <x 12 ) .

If @ is a Turing machine. the adapter and 1 definitions are as in LBAs
with one addition. There is another REVA-adapter definition rIm #10 9 )
which applies a func t ion  g at the right end of the tape. Thus. m's
transition function i remains restricted to a func t ion  reading proper
symbo l s .  At the tape end. instead of letting 1 read the BLANK symbol
(virtually padded  t o  the right of the preper symbo l s  until ac tua l
infinity), another function 9 is applied to a state argument only. from
which it genera tes  a new proper symbol (thus sticking to potentially
infinite argument sequences).  If m's transition function 1 for state g1
and the special symbol BLANK r e tu rns  s t a t e  5 2 .  print symbo l  g2. and a
right move. i.e. i I s ) .BLANK)= (32 .12 ,R IGHT) .  t hen  a g definition is
(>Ig 51 )  12 s2). Analogously. i I s1 ‚BLANK)=(32 .12 .LEFT)  becomes
()(g ?x g1) g2 <x 12).

6 FITTER EFFICIENCY AND THE SECURE OPERATOR

Because of the inherent parallelism' of fitting. parallel AI
a rch i t ec tu re s  (Boley 1983 ) ,  rather than sequential computers, are ideal
adapter  machines (cf. section 3 ) .  However.  a l t hough  the FIT—1
implementation is written in a purely functional subset of LISP to
emphas ize  semantic clarity. the response times of the fully compiled
UCI L ISP  version running on a von Neumann computer are already
sufficient for serious experimentation. Still t he re  are many
machine-independent possibilities for further improving the efficiency
of adapter-driven computat ion,  even without exploiting impe ra t i ve  LISP.

First. we have studied the ;ggmpilgtign; gi gggpters from FIT into
LAHBDA expre s s ions  of its present implementation l anguage  L ISP .  thus
avoiding their repeated  FIT i n t e rp re t a t i on  (Boley 1979 ) .

Recent exper iments  have  led us to devise and implement the gggußg
gpgrgtgr in the FIT—1 system. This can be viewed as a purely functional
alternative to the rule—choice—confirming use of PROLOG's cut Operator.
Other than cut, SECURE applies to an uno rde red  set of rules. thus
keeping the original modularity advan tage  of production systems, i.e. a
programmer can decide whether a new rule is SECURE independently of the
data base of rules into which it is to be added. A SECURE ( \ )  mark
specifies the safeness of a rule definition (implicit t r ans fo rmer  or
adapter )  such t ha t  a use of it can be prioritized to uses of other
matching definitions and to other uses of itself. Thus the SECURE
prioritization applies to non—determinism arising 1. from several





match ing  definitions and 2 .  f rom severa l  possibilities for  matching one
definition. (For  th i s  also sepa ra t e  SECURE1 and SECUREZ pr ior i t i za t ions
could be  introduced.) SECURE pe r fo rms  i t s  prioritization during

conf l i c t - re so lu t ion  by chang ing  the  order  inside pr ior i ty -ordered  DEPTH
expres s ions  or  changing unordered BREADTH expressions to  more e f f i c i en t
DEPTH expre s s ions .  Such SECURE-genera ted  DEPTH express ions  are  a very
t ransparent  means  for  conto l l ing  combinator ia l  explosion in  AI
programs. The two applications of  SECURE's priority ass ignment  are
refined as  fo l l ows .

1a .  A SECUREd definition i s  prioritized to  any  non—SECUREd def in i t i on ,
i ndependent  of  i t s  spec i f i ty  va lue .  I t  can  t hus  be  used  to  override

spec i f i ty  orderings. For example .  (GLOBAL (\(KNONS ?x  PRESIDENT)
(KNONS JOHN MARY))) de f ines  a l e s s  specific adap te r  meaning "Everybody
knows the  pres ident“  w i th  a SECURE mark and a more specific adapter
meaning “John knows Mary“ without a SECURE mark.  A f te r  th i s .
(Knaus JOHN |7wHOM) yields

(DEPTH (GLOBAL ((>HHOM PRESIDENT)! (KNOWS JOHN PRESIDENT)’
(GLOBAL ((>HHOM MARY!) (KNOWS JOHN MARY))) .

i . e .  i t  r e tu rns  (KNOHS JOHN PRESIDENT) and  binds WHOM to  PRESIDENT
before  i t  r e tu rns  (KNDNS JOHN MARY) and binds WHOM to  MARY. Thus the
usual spec i f i ty  orde r  i s  inver ted ,  enforc ing  the  early use  o f  l e s s
spec i f i c .  ye t  explicitly 'pr iv i l eged ' .  definitions.

1b .  A SECUREd definition may become prioritized to  o ther  equally
specific SECUREd definitions: since a l l  these  SECUREd definitions are
sa fe  they  can  be  t r i ed  in  an  a rb i t r a ry  DEPTH orde r .  Continuing the
example. a f t er  the  add i t iona l  de f in i t i on  (GLOBAL (\(KNDWS ?X POPE)))
the  localized request  (LOCAL (KNOWS JOHN |?HHOM) : (WHOM) t h rough
SECURE becomes arbitrarily either (DEPTH PRESIDENT POPE MARY) or  (DEPTH
POPE PRESIDENT MARY) instead of  (DEPTH MARY (BREADTH POPE PRESIDENT)).
Simi lar ly .  u s ing  the  ru le s  Pan and P43 in  the  appendix.
(HANG '(AND P 0)  ARRON '(OR P a) )  arbitrarily chooses one  o f  the  two
def in i t i ons .  say  the  OR dropping definition Pka .  and yields the
efficient

(DEPTH {HANG '(AND P O) ARROW P 0)  suspension-for—dropping—the—AND)

ins tead  o f  the  inefficient

(BREADTH (WANG P O ARROW ' (OR P 0) )  (HANG {(AND P 0)  ARROW P D)) .

2 .  An invocation match  possibility of  a SECUREd definition may become
prioritized to  o ther  equa l ly  context-sensitive invocation match
possibilities: s ince  a l l  these  invocation possibilities of  a SECUREd
definition are  sa fe  they  can  be  t r i ed  in  an  arb i t rary  DEPTH order .  For
example .  u s ing  ru le  Fan in  the  appendix.  (HANG '(AND P a!  '(AND R S)
ARROH P S)  arbitrarily chooses one  o f  the  two invocation fitting
poss ib i l i t i e s .  say  tha t  one  dropp ing  the  f i r s t  AND. and  y i e lds  the
efficient

(DEPTH (HANG P 0 ' (AND R S)  ARROW P S)
suspens ion—for-dropping—the—second-AND)

in s t ead  o f  the  inefficient

(BREADTH (WANG P O '(AND R S)  ARROW P S)
(WANG '(AND P Q) R S ARROW P S ) ) .





_ 14 _

As a final means fo r  improving e f f i c iency .  domain-dependent knowledge
may be applied i n  the  form o f  “meta ru les“  (Davis 1980) to  make more
' reasonab le '  use o f  s tored  adapte rs .  L ike  “ funct ion—level"  reasoningn
(Backus  1982 )  adapte r—leve l  reason ing  i s  easier than  t rans former—leve l
reason ing .  since meta ru les .  like prog rammers .  can r ead  from an adapter
bo th  when i t  will be used and what i t  will do.  a t  one glance. There i s
no need fo r  a sepa ra t e  examination of  a "content"  (Davis 1980) par t
suppo r t i ng  the  matching of  the  pa t te rn  par t .  because form (pa t te rn )  and
content  (action) are  un i t ed .  For example. in  the  domain of  na tu ra l
numbers .  the  convergence—seek ing  meta  rule "Use  ru les  applying the
predeces sor  func t ion  SUBI before  ru le s  applying the  successor func t ion
A001“ can  compare  adapters  of  the  fo rm

r ( . . .  SUB1 . . . )  and
r ( . . .  ADD1 . . . )

more  eas i l y  than  t r ans fo rmer s  of  the  fo rm

(> ( . . .  7x . . )  ( . .  (SUB) (X )  . . . ) )  and
( ) ( . . .  ?x . . . )  ( . . .  (ADD1 (X )  . . . ) ) .

7 CONCLUSIONS

A l though  adapte rs  a re  a general base  fo r  computa t ion .  they  a re  no t
intended to  replace f unc t i ons  or  t rans formers .  Indeed.  by their very
definition they  depend  on  t rans formers ;  fur thermore .  implicit adapte rs
can be used to  de f ine  func t ions  in  a par t i cu la r ly  concise manner.
However ,  adapte rs  g ive  prog rammers  a new dimension of  t rade -o f f :  For
many problems. one can spec i fy  t r ans fo rmer s  t ha t  rewrite an en t i re
expression o r  one can spec i fy  s t ruc ture—re f lec t ing  adapters  per forming
localized parallel rewr i t ings  in  the  globally recognized context  o f  an
express ion .

Valuab le  insights about this t rade—off  cou ld  be gained while working
with the  FIT—1 system. Funct ions which l e ave  the  top—level  form o f  data
largely i n t ac t  but  change  arb i t rary  pa r t s  of  their conten t .  as  typ ica l
fo r  many inference rules (such as about ha l f  o f  the  ru les  in  Hang's
a lgor i thm)  and fo r  operations on DRLHs. f rames.  and o the r  complex
s t ruc tures .  a re  most  naturally expressible as  adapte rs .  These  a re  more
concise .  easier to  read .  and more efficiently interpretable t han
corresponding t r ans fo rmer  definitions. Of ten  mixtures of  adapters (e .g .
fo r  recursion) and t rans formers  ( e .g .  fo r  initialization and
termination) seem the  bes t  method o f  defining a func t ion .

Of  course .  more  work  w i l l  be  necessary  fo r  fu r ther  exploring the
potentials of  adapte rs .  The  documented  BO K words  of  UCI  L ISP  source
programs implementing F IT -1  a re  ava i l ab le  f rom the  au thor .  In  o rder  to
t rans fe r  F IT—1 to  the  VAX-11 .  i t  will be  t r ansc r ibed  into FRANZ L ISP .

8 REFERENCES

Backus. J . :  Funct ion—level  compu t i ng .  IEEE Spectrum. August 1982,
22—27.

Bobrow. D. & Ninograd .  T . :  An overview o f  KRL. a knowledge
r ep re sen t a t i on  language.  Cognitive Science 1 (1 ) .  1977.





Boley. H. :  F ive  views of  F IT  programming. Univ. Hamburg. F8 In fo rm. .
IFI—HH—8—57179. Sept .  1979.

Bo ley .  H . :  Processing directed recursive l abe lnode  hypergraphs w i th  F IT
programs. Univ. Hamburg. FB In fo rm. .  IF l -HH—H-81/88.  Sept .  1980.

Boley .  H. :  Artificial intelligence languages and machines. Univ.
Hamburg. F8 In fo rm. .  IFI—HH—8—94/82. Dec. 1982.  Also in :  Technique
and Science of  In fo rma t i c s  2 (3 ) .  May-June 1983.

Charn iak .  E . :  A common r ep re sen t a t i on  fo r  p rob lem-so lv ing  and
language-comprehension in format ion .  AI  18 .  1981.  225 -255 .

C la rk .  K. & Taern lund.  S.—A. (Eds . ) :  Logic programming. Academic Press.
New York .  1982 .

Dav is .  R . :  Con ten t  re fe rence :  Reason ing  about rules. Al 15.  1988.
223—239.

Friedman. D. & Wise. D . :  Func t i ona l  combinat ion.  Computer languages.
Vo l .  3 .  31 -35 .  1978.

Hewi t t .  C . :  Descr ip t ion  and theoretical analysis (using schemata) o f
PLANNER: A language fo r  prov ing  theorems and manipulating models i n  a
robot .  H IT .  AI—TR—258. Apr i l  1972.

Leavenwor th .  B .  & Sammet. J . :  An overv iew  o f  nonprocedura l  l anguages .
I n :  B.  Leavenworth (Ed . ) :  ACM SIGPLAN symposium on very  h igh  l eve l
languages.  March 1974.  Santa Monica.  Ca . .  SIGPLAN Not ices  9 ( ( ) .  1 -12 .

Mor r is .  J .H . :  Rea l  programming in  func t iona l  languages.
In :  J .  Dar l ing ton .  P .  Henderson & D.  Turner (Eds . ) :  Func t iona l
programming and i t s  app l i ca t ions .  Cambridge Un ivers i ty  Press .  1982.

Siekmann. J .  & Szabo. P . :  Un iversa l  unification. I n :  H .  Nah ls te r  (Ed . ) :
GNAI—82. Bad Honnef.  Sept .  1982.  Informat ik—Fachber ichte 58 .
Springer—Verlag.  182—141.

Tes le r .  L .G .  & Enea .  H .J . :  A l anguage  des ign  fo r  concu r r en t  processes .
AFIPS Conference Proceedings.  SJCC. Vo l .  32 .  1968. (83—488.

Hang .  H . :  Toward  mechan ica l  mathematics. IBM Jou rna l  of  Resea rch  and
Development ( ( 1 ) .  Jan. 1958.  2—22.

Waterman .  D .  & Hayes—Roth.  F .  (Eds . ) :  Pa t te rn—di rec ted  inference
sys tems .  Academic Press .  New York .  1978 .

Woods. N .A . :  T rans i t ion  network grammars fo r  na tu ra l  language ana lys is .
CACN 13 (18 ) .  October 1978.  591—886.

9 APPENDIX: HANG'S ALGORITHM IN  F IT

“Sequents”  an tecedent  ->  conseguen t  (Wang 1968 )  a re  represented  as
express ions  o f  the  fo rm (WANG an tecedent  ARROW conseguent ) .  where
antegedent (conseguent)  i s  a sequence o f  imp l ic i t l y  conjuncted
(d is junc ted )  formulas .  Nang's original rule labels are  used fo r  easy
compar ison;  without l o s s  of  generality the  rules PSa—PGb a re  omi t ted .
His  ’and '  i s  represented  by ANDTH. F IT 's  ve rs ion  o f  L ISP 's  AND.
Exploiting a Church -Rosser  p roper ty .  Hang  a lways  eliminates l e f tmos t
connect ives while our SECURE ( \ )  marks do th is  by a l low ing  the  ru les  to
eliminate a rb i t r a ry  connect ives (see  section 6 ) .

P1 .  \ (NANG #18  ?X # ID  ARROW #10  7x  #10) ;  ?X on  bo th  ARROW sides: p roven
P2a .  r \ (NANG (TRAFO : “X )  #10  ARROW #10  ABOINOT ?X)  #10 ) ;  ?X ins ide  NOT
P2b .  r \ (NANG # ID  ABO(NOT ?X)  # ID  ARRON # ID  (TRAFO : “X I I :  c ros se s  ARROW
P3a. (>\(WANG >L ARROW >R1 (AND ?x ?Y) >R2) ;  consequent AND g ives  ANDTH

(ANDTH (HANG (L  ARRON (R1  (X  (R2 )  (WANG (L  ARROW (R1  (Y  (R2 ) ) )
P3b. r\(NANG #10 (TRAFD (AND ?X ?Y) <x (Y )  #10 ARROW # ID ) ;  drop ant.AND
Pka. r\(HANG # ID  ARROW # ID  (TRAFO (OR ?X ?Y) (X  (Y )  #18 ) :  drop conse.0R
Pßb .  (> \ (HANG >L1  (OR ?X ?Y)  >L2  ARROW >R) :  an tecedent  OR g ives  ANOTH

(ANDTH (WANG (L1  (X  (L2  ARROW (R)  (WANG (L1  (Y  <12  ARROW <R) ) )




