SCENELAB

Michael Reinfrank

c
[0}
4+
n m
2 >
c 0
& o
< O
-
G
8 %
o8
0 O
D Al
o}
0w L
c
© -
o
5 O
10)]
o g
£ 0
- O
—
= T
P
g 5
ol
v S
g}
g 2
)
<

Auewiar) 1sap\ Auewlan) 1sap\
aynisuey 00S2-A uisne|siasiey| 0529-ad ozui
08€9 ydoejsod 610€ Ydejsod -:um

| ¥ewuoyul Jny Inusu| ¥iewJou| yaeiaqyoe

aynisyey| JelsiaAiun ulane|(siasiey) 1elIsIaAIuN

Xk kkxkkkkkkxx SCENELAB **xxkkxkkkkkk%

Ahstract

This paper describes SCENELAB, a computer system for Labelling
line drawings of scenes 1n simple polyhedral wortds. The key
idea behind SCENELAB is to bring together the concept of
contraint-based filtering algorithms and the paradigm of
societies of cooperating agents. The probiem of finding labell-
ings for pictures drawn from blocks worlae scenes has been taken
as a sample application. Clearly, this makes SCENELAB no vision
system, but we claim that a system designed along these Lines
could be part of a real vision system.

Following e.g. Alan Mackworth, we argue that constraint ex-
ploitation on resp. between various representational levels i1s a
key technique of ’'seeing things'. Furthermore, constraints and
constraint propagation neatly fit into the framework of
societies of agents, realized by asynchronuously concurrent
processing units and messags passing mechanisms.

SCENELAB, as it 1s actually running, can be used to specify
and solve arbitrary labelling problems that can be seen as in-
stances of a particular citass of simple constraint problens,
based on finite, pseudo—-transitive binary constraints. However,
it is felt that the cverall approach generalizes to arbitrary
constraint probiems.

Emphasis 18 given to a mathematical model of the problem and
its sotution, to be able to specify the reasoning techniques of
SCENELAB, and to identify the class of problems 1t can handle. T
tried to shed some Llight onto the methodological background of
SCENELAB, which seems nececusary to judge the achievements and
disachievements of the present work.

After some i1ntroductory chapters on the key concepts involved
in SCENELAB, (scene) labkelling problems, constraint propagation,
and societies of agents, an overview on bhoth the structure 3and
behavior of SCENELAB is given in part B of the paper. In part C,
then, an altgebrayc model 12 introduced, which serves as a base
for discussing saveral approaches to tabelling pronlems, namely
Waltz's original landmarx atgorithm, a synchronized parallel
solution suggested by Azriel Rosenfeld, and cleariy, the present
approach. A proof of the correctness of SCENELABs algorithms is
included. This proof takes i1nto account the spec fities of sys-
tems of asyncnronously communicating agents wnere no global
state 1s observable.

Author's current address

Michael Th. Reinfrank
Kiefernweg 4
6730 Neustadt-Hambach
West GCermany

18AUG8S M. Reinfrank

*khkkkkkhkhkdxkkx SCENELAB Hokkdkskkkkk*kkx

Table of Contents

D. Preface

1. Scene Analysis

1.1
12
1.3

A Note on Computer V:ision
Perfect Drawings of Trihedral Scenes
The Relation of Representation

2. Labelled Line Drawings

2.1
2.2
2.3

The General Idea
The Huffman-Clowes Label Set
Admissible Huffman-Clowes Labellings

3. Constraints and Constraint Propagation

3.1
32
5.3

Waltz Filtering
Constraint Propagation
Some Related Worck

4. Societies of Agents

4.1
4.2

The Paradigm
CSSA: Computer System for Societies of Agents

5. SCENELAB

v
. e e
Ve wWwn -

(V)
.

The Key Idea and the System Kernet

Architecture and Interfaces of SCENELAB

Correctness and Term nation - Some Informal Arguments
Distributed Terminat-on Detection

Freeze-and-Check

6. A Model of the Picture Domain

—a

oo~
e e e
A W

The Basic Level

The Topologic Level

The Geomretric Level

A Note on Qualitative and Quantitative Numerical
Descriptions

7. Labellings

7.1
7.2
t .3

The Label Dictionary
Consistent Labellings
Label Compatibilities Seen as Constraints

18AUGES

M Reinfrank

Hdkkdkkkkkkkkk SCENELAB *kdrkkkkdkkkhkx

8. Filtering Algorithms Revisited
8.1 A Basic Operator
8.2 The Waltz Procedure
3.3 Rosenfeld's Version
9. SCENELAB's Asynchronous Labelling Algorithm
9.1 The Operations of LOCAL ANALYSTs

9.2 Snapshots Replace Global States
9.3 Towards a Correctness Proof for SCENELAB

10. Conclucive Remarks
Appendix A: References

Appendix B: Working with SCENELAB

18AUG8S

M.

Reinfrank

0 Preface

U Preface

This paper describes SCENELAB, =2 fully 1implemented computer
system for labelling line drawings of scenes in simple
polyhedral worlds. The key idea behind SCENELAB is to bhring
together the concept of contraint-based fittering algorithms and
the paradigm of societies of cooperating agents. The problem of
finding Llabellings for pictures drawn from blocks world scenes
has been taken as a sample application. Clearly, this makes
SCENELAB no vision system, but we claim that a system designed
along these lines could be part of a real vision system.

Following e.g. Alan Mackworth [Mackworth-83], we argue that
constraint exploitation on resp. between various representa-

tional Levels 11s a key technigue of 'seeing things"'.
Furthermore, constraints and constraint propagation neatly fit
into the framework of societies of agents, realized by

asynchronuously concurrent processing units and message passing
mechanisms.

SCENELAB, as it i1s actually running, can be used to specify
and solve arbitrary labelling problems that can be seen as in-
stances of a particular class of simple constraint problems,
based on finite, pseudo~-transitive binary constraints. However,
it is felt that the overall approach generalizes to arbitrary
constraint problems.

Emphasis 1s ¢given to a mathematical model of the problem and
its solution, to be able to specify the reasoning techniques of
SCENELAB, and to identify the class of problems 1t car handle. I
tried to shed some light onto the methodological background of
SCENELAB, which seems necessary to judge the achievements and
disachievements of the present work.

After some introductory chapters on the key concepts involved
in SCENELAB, (scene) labelling problems, constraint propagation,
and societies of agents, an overview on both the structure and
behavior of SCENELAB is given 1in part B of the paper. In part C,
then, an algebraic model s introduced, which serves as a base
for discussing several approcaches to labelling prohlems, namely
Waltz's originalt landmark algorithm [Waltz-72]7]. a synchronized

parallel solution suggaested by Azriel Rosenfeld
[RosenfeLdIHummeL|Zucker~?6], and clearly, the present approach.
A proof of the correctness of SCENELABs algorithms is included.
This proof takes into account the specifities of systems of
asynchronously communicating agents where no global state ts

observable.

18AUG8S 1 M. Reinfrank

1 Scene Analysis

1 Scene Analysis

1 1 A Note on Caomputer Vision

This is a paper on distributed constraint propagation rather
than on wvision. Nevertheless, the problem of labelling Lline
drauwings plays a central role throughout the paper, o) I feel
some general remarks on computer vision in order. This is simply
to place the problems addressed into their proper context, to bhe
able to judge what has and what has not been achieved by the
work presented herein.

Natural vision is considered to be a kind of intelligent in-
formation processing, hence vision 1S an integratl part of
artificial intelligence, too. However, natural vision is not un-
derstood well enough to directly copy the visual machinery of

biological seeing into some artificial harduware. Therefore, Al
research strives for a better understanding of the key 1ssues
involved in 'seeing things', and focusses on making a computer

he rather than simulate a seeing machine.

Research thus far has provided the key insight that vision
relies both on massive computation and knowledge—-based
processing. I.e., vision is neither a matter of pattern analysis
only, nor can it be hoped that some elaborate problem solving
component can completely replace extensive low level compu-
tations.

The purpose of scene analysis is not only to process a 2D im-
age but also to understand that image 1n terms of a 3D scene it
has been made of. Therefore, scene analysis is often referred to
as to image understanding to contrast 1t with 1image processing
[Cohen|Feigenbaum-821]. It ceems to be a matter of fact that the
gap between a 2C image and a 3D interpretation cannot bhe come
across by one single large step. However, it is still subject to
a rather controverse discussion what the intermediate level
representations should be, and how .processing should proceed
(bottom—-up, top-down, mixed heterarchical control ...). One of
the currently most popular approaches has been suggested by
David Marr [Marr-821]. Marr separates the following representa-
tional levels (see figure 1.1):

- A digitalized 2D image, a so-called pixel (for picture ete-
ments) array, representing brightness values, 1i.e. the
powers per unit area sensored by a camera.

- A primat sketch, where some low level computations have
made facts about brightness changes, texture, etc. ex—-
plicit.

- A 2-1/2D sketch, 1including e.g-. information about surface
orientation

18AUG85S é M. Reinfrank

1 Scene Analysis

— A 3D world model, representing facts about volumes. These
models are frequently based on Binford's g¢generalized
cylinders [Binford-821].

3O SceENE

N\

INTENSUYY
MaT®r

PRAWAL
SKaTe ¢

\ 21 0

SKETCH

N\

30 woRrLp
MopEL

Figure 1.1: Scene analysis proceeds through several
intermediate levels of representation

One particutlarly important point made by Marr (see also
(Mackworth-831) is that an image inherently underconstrains the
scene(s) it might represent, and that the process of vision can
he considered as exploring various kinds of constraints within
and/or hetween different levels of abstraction, to increasingly
restrict the equivalence <class of scenes that could provide a
satisfactory interpretation for the image.

I do not pursue the discussion of general issues in computer
vision here. Some 1ntroductory readings on vision can be found
e.g. in [CohenlFeigenbaum-82] and [Winston-84J]. David Marr's
book VISION ([Marr-82] provides a detailed treatnent of his
theory on vision. Some state of the art papers are gathered in a
special iscue of the AI-journal on this subject [AI17-8117. Alan
Mackworth [Mackworth-83] reviews the achievements of computer
vision from a global perspective.

18AUGS8S 3 M. Reinfrank

1 Scene Analysis

1 2 Perfect Drawings of Trihedral Scenes

Throughout this paper, I use a very simple model of the vision
process that relies on several restrictive assumptions. First of
all, the world in consideration 1s a toy btltocks world, composed
of opaque polyhedral objects. We suppose that at every vertex of
a complex object that may consist of several such polyeders, ex-
actly three surfaces meet. I.e. polyeders with cracks, and some
particular alignments of polyeders are excluded (figure 1.2).

Figure 1.2: Non-trihedral object. Crack-line (a),
shadows (b), more than three surfaces
meeting at one vertex (c).

Furthermore, we assume that the choice of viewpoint is such that
a minor movement of the eye cannot lead to significant changes
of the 1image, e.g-. no axis of projection may fall into a plane
defined by a surface (figure 1.3). .Finally, we assume that nro
significant brightness change is due to a shadow in the scene,
orr to some borderline between two differently colored regions of
one surface.

Given a 3D scene in such a trihedral world, we use only one
intermediate level representation between its 2D image and 1ts
interpretation, namely a line drawing showing the edges,
regions, and vertices of the scene from a particular point of
view. In this context, then, the purpose of scene analysis is to
find an interpretation of that drawing (figure 1.4).

18AUGSS 4 M. Reinfrank

17 Scene Analysis

4

~% ®
® ©

Figure 1.3: An accidental alignment.

S,

2D IMAGE

(invensiTy
RATRIX)

LINE FINOGR

LINE DRAWING

L\NE
INTER PR UTER

3

30 INTERPRETATVN

Figure 1.4: Our simplified model uses only one inter-
mediate level representation.

It should bhe clear that in any reasonably complex real wor td
environment, none of these restrictions will he met. Note that
things get even more complicated when e.g. sequences of imagnes
from time-varying scences have to be interpreted. Howuever, come

M. Reinfrank

w1

18AUG8S

1 Scene Analysis

of the key problems of vision can be siudied in such simpte
worlds, and the basic concep«:s (not their technical
realizations) Like e.q. constrain: exploitation that apply 1in

simple worlds often generalize to real worlds. Alan Mackuworth
[Mackuorth-77] surveys a number of scene analysis systems that
work 1n symple worlds.

1.3 The Relation of Representation

Computer vision is closely related to natural language under-
standing, which 1s another field of major interest in AI. As
M.B. Clowes has pointed out in his landmark publication 'On See-
ing Things' [Clowes-72], some concepts that have proven fruitful
for semantic—-based natural language prrocessing car: be very use-
fully introduced into the area of scene #nalysis. In particular,
this is true for the distinction made hetween expressions Llike
the sound of a spoken r, a wuritten r, ERE o i and their cor-
responding abstrractions, here the latter r. Taking pattern from
Clowes, wuwc say that a 3D scene belongs to an abstract scene
domain, while «drawings of that scene belong tc an expressive

picture domain. The relation between a scene and its expression
in terms of the picture domazins primitives like lines, points,
and regions, is called - again following Clowes - the Relation

of Representation.

In the sequel, our considerations will rely on an additional
assumption about a given line drawing. A drawing is assumed to
be perfect in the sense that each of tts junctions, regions, and
Lines correcsponds to resp. exactly one vertex, surface, or edge,
and that every such scene element that can ke seen from the
current vieupoint 1s represcented in the drawing. The perfectness
assumption i< even more demanding than the simplicity assump-
tions about trihedral scenes, since it imposes some unrealistic
reguirements on the sensoric machinery and the Lline extracting
mocdule of a vision system.

Notice that a clean distinction between the scene domain and
the picture domain, although 1t may seem a little bit too
sophisticated, 1s essential for the understanding of the capa-
hbilities of labhelling procedures, as discussed in this paper.
Such algorithms work only in the picture domain, and any inter-—
pretation based on labellings heavily relies on the descriptive
adequacy of the picture primitives (the Llabels included) chosen,
and on a proper relation between a drawing and the corresponding
SCeNe.

18AUGS8S 6 M. Reinfrank

2 Labelled Line Drawings

2 Labelled Line Drawings

2. 1 The General Idea

Given a line drawing, we are seeking a description in terms
Like ™there is a small block in front of a big block, a
tetraeder stands on that big block ...". One hig step towards
such an interpretation is frequently accomplished by finding an
assignment of some meaningful Llabels to picture elements. The
key ideas hereby are:

- Labels stand for properties of the objects in a 3D scene
heing represented by the elements of a Lline drawing. An
attachment of a Label to such an element means that the
corresponding scene element has a particular property.

- There are natural constraints upon the properties of ele-
ments that stand in a particular relationship. This means
that only certain comb'nations of labels are admissible for
the corresponding picture elements, while other com-
hinations would denote a physically impossible situation.

In order to realize this idea, two major problems have to be
sotved. Firstly, an appropriate choice of properties to be
represented must be made, and adequoate representations in terms
of Labels must bhe found. Furthermore, the constraints upon the
occurences of (combinations) of these propertien must be
elahorated. Secondly, given such a collection of labhels and cor-
responding constraints, methods must be designed to find labhell-
ings for Lline dJdrawings that satisfy all of these consiraints.

Clearly, the <choice of properties and labels should be such
that 1t i1s easy to derive readable descriptions ¢f a 4cene from
a Llahelled drawing. In the present paper, we are mainly con-
cerned with the problem of finding atl the admissibte labhellings
of a line drawing using a predefined set of labels and related
constraints.

2.2 The Huffman—-Clowes Labe. Set

In 1971, . A. Huffman [Huffman-71] and M. B. Clowes
[Clowes—-71] - independent Iy - published two papers on scoene
analysis that can be regardcd as the antecedents of wmany <ub-
sequently developed labelling procedures. In faclk, their cys-—

tems, too, had some predecessors as e.d. the SEE-program by A.
Guzman [Guzman-681], but Huffaman aznd Clowes were the tirst to
make the very »nrinciples explicit thit underly sitch procedures.

Huf fman and Clowes restricted their considerations mainly to
the properties of edges in trihedral scenes. Basical'y, an edge
can phe concave or convex. Given a fixed vieuwpcint, one seas

18AUG8S 7 M Reinfrank

2 Labelled Line Drawings

either bhoth or none of the surfaces meeting at a concave edge,
i.e. one labetl csuffices to mark conczave edges. The case is dif-
ferent for a ccnvex edge: it may be invisible, or one can see
one or both of the surfaces meeting at the edge. Furthermore, if
only one surface is visible, it may be on one of two different
sides. These three cases are reflected by three different Labels
for convex edges. The complete set of four line labels is shouwun
in figure 2.1.

CONCAVE E06|E) TWO

= SURFACGS WVISIBLE

ConNVEX ED&E) TWO

e
SURFACES wineL e

> CONVEX EOGE’ OCLLUD ING ONE
SURFACE . THE WISIBLE SURFACE

<, 1§ ON THE RIGRT t\0E OF

THE WLITTLE ARROW

Figure 2.1: The Huffman/Clowes segment labels

For reasons that soon will become clear, we adopt the convention
that we always look at a segment from theée point of view of one
of 1ts two end-junctions. We therefore temporarily use pairs of
labels for segments, one for each junction in consideration. The
property of being resp. a concave ecdge or a convex edge with two

surfaces visible is independent from the viepoint. However, a
region that is on the right side of a segment when viewed from
one junction is on the left side when viewved from the opposite

junction, and vice versa. To make the viepoint explicit, we
replace the Llittle arrow labels by o> and >0, and speak of ingo-
ing and outgoing segments w.r.t. that particular junction.

It is easy to see that the properties chosen are both exhaus-
tive and exclusive in the sense that every edge, in comhination
with a given point of view, must have one and only one of these

properties. Te€,, every line must be labelled with exactly one
of the following pairs of labels: Gy, (=3=) ; (o>,>0),
(>o0,0>) . Given an assignment of such pairs of Labels to seg-

ments, we can orientate the segments according to the following
derfinition:

18AUG8S 8 M. Reinfrank

2 Labetled Line Drawings

- If a segment is lakelled (+,+) or (-,=-), choose an arbi-
trary but fixed direction.

- A segment with labels (o>,>0) or (>0,0>) is directed from
the junction where 1t is outgoing to the junction where it
is ingoing, i.e. from o> to >o.

Thus, having a unique labelling, we can use the singular
labels shown in figure 2.1 instead of pairs of Llabels. For
arrow-labelled segments we implicitely assume that the segment
has tne same direction as the arrow, and hence that the visible
surface is on the right side of the segment when the movement of
eye follows the direction given by the arrowu. Figure 2.2 shows
the labetlled drawings of a cube and of a small stair.

Figure 2.2: Labetled line drawings

2.3 Admissible Huffman—Clowes Labellings

The very central idea behind labelling algorithms now is the
following: the edges meeting at a trihedral vertex can only ex-
hibit some combinbaticons of the properties represented bhy
labels, for physical reasons, and these are ususally only a
small subset of all combinatorially possible combinations.

As every trihedral vertex joins exactly three surfaces, it
subdivides the space into eight octants. The follwoing procedure
can be used to systematically derive all possible combinations
of labels at junctions representing such a vertex. Coensider all
combinations of 1 to 7 c¢f the resulting octants being filled

18AUG3S 9 M. Reinfrank

2 Labelled Line Drawings

with opaque material, and place the observer into each of the
remaining free octants to look at the vertex (figure 2.3).

Figure 2.3: A trihedral vertex subdivides the space
into eight octants

It turns out hat trihedral junctions fall into one of four dif-—
ferent classes, properly separable hy some geometric features
(figure 2.4). Notice that all but one of these figures, the
FORK, allow for the definition of a unique ordering of the seg-
ments involved. This ordering i< based on the fact that ther
segments of a junction concavely bound at most one region, which
can serve as a starting point for a clockwise order. For a FORK,
vwe can choose one of three possible cyclic permutations of an
arbitrary but fixed clockwicse ordering. Figure 2.5 then showus
all of the eighteen possible combinations of segment Llabels at a
given junction, using the Huffman/Clowes tabel set. The com-—
bination of segment labels &t a junction is said to be a (com—
posite) junction label, and a list of iadmissible junction Llabhels
is referred to as to a label dictionary.

18AUGSS 10 M. Reinfrank

2 Labelled Line Drawings

ARROW ELL:

TEE

\» FORK :

> AR Row :

‘.\ TeE .

eLL

Fowrk

45>

Figure 2.4: Trihedral junctions fall into one of four
possible classes

NN N N N N

4
\
7/
\
=

+ + 1
< << < < <T<
+ \ A v

Figure 2.5: The complete Huffman/Clowes Llabel
| dictionary

Note that e.g- an ARROW can only be Llabelled in 3 different
ways, although there are 64 combinatorial possibilities. The
problem of scene labelling then states as:

18AUG8S 11 M. Reinfrank

2 Labelled Line Drawings

- Given a label dictionary and a line drawing, find an assig-
ment of junction labels to junctions such that every junc-
tion ‘s labelled with a unique Label from the appropriate
class, and such that any pair of neighborinc junctions in-
duces a par of compatible segment Llabels for the segment
joining them.

We now could expect that every drawing that is labelld this
way represents a possible real world scene. Unfortunately, this
1s not the case, =as shown 1n figure 2.6. However, every drawing
of a trihedral scene has at least one admissible Llabelling.
I.e., having an admissible labelling is a necessary but not a
sufficient condition for a drawing to depict a possible scene.
Sugihara [Sugihara-82] argued that a sufficient condition can
only be achieved when information about surface orientation 1is
included. Other authors as e.g. Draper [Draper-81] came to
similar recults.

As we have yet mentioned, the information given by an image,
and espechratly by such a highly absctracted representation as a
Line drawing, inherently underconstrains the scene. It should be
clear that a labelled Lline drawing stands for an entire
euilvalence class o7 scenes, S1hCce e.0. no difference 1s made
between a flat or a peaked arrow. Moreover, many aspects of
scenes such as color and texture are not represented in our sim-
ple models. There are also line drawings with more than one
admissible labellings (figure 2.7), i.e. the equivalence classes
induced by unlabelled drawings are nct so fine-grained as those
induced by labhelled drawings.

However, there 1s one point to be made: elaborate vision sys-
tems, .too, make extensive use of similar constraint directed
renresentation and reasoning techniques, Labels standing e.g.
for depth, illumination, and orientation information, or even

for specific objects in the domain of discourse. Tenenbaum and
Barrow [Tenenbaum|Barrow-76]) use region labels Llike *door-knobh"
and ‘door"', a possible constraint being that a region labelled

*door-knob' must be within a region Labelted 'door'.

18AUGSS 72 . M. Reinfrank

2 Labelied Line Drawings

Figure 2.6: An 1impossible object with an admissible

labelling (left), and another impossible
object, having no admissible labelling. (Figures due
to Sugihara [Sugihara-821]).

SUSPENDED SUPPORTED RY A
TARQLE

Figure 2.7: A line drawing mith multiple admissible
tabellings

18AUG8S 13 M. Reinfrank

3 Constraints and Constraint Propagation

3 Constraints and Constraint Propagation

3 1 Waltr-Filtering

Early labelling procedures used standard search strategies to
find admissible labellings, Llike e.g. depth-first search with
backtracking [Huffman-71]. The structure of the search tree
thereby depends upon the order in which the procedure attempts
to label the junctions. In 1972, David Waltz [waltz-72],
[Winston-75] tried to Lloosen the restrictions imposed by a
trihedral world by a substantial extension of the Huffman/Clouwes
labhel set. The introduction of labels e.g-. for crack Llines and
for region iltumination led to an explosive growth of the number
of possible composite junction labels that now ranged at more
than 3,000. Standard search methods uJasuatly fail to find 'solu-
tions in such a giant search space within an acceptable time.

It was the merit of Waltz to recognize that the admissibility
of labellings mainly depends on lLocal features, and that there-
fore, a locally restricted search can drastically prune the
search space. A label from a given universe of potentially pos-
sible Labels for a Jjunction of a certain class can only con-
tribhute to an admissible labelling if at least one compatible
Label can be found for each adjacent junction. The key idea of
the Waltz-algorithm 1s to exploit this restriction and to
eliminate every Llabel that can not be part of an admissible
labelling for these local reasons. Properiy speaking, the Waltz-
algorithm works as follows:

(1) for every junction x of the drawing do

(1.1) assign the set of physically possible lLabels,
as given by a label dictionary, to x

(1.2) mark x visited

(1.3) adjust the labelling of x w.r.t. all of its
neighbors that have been previously visited,
i.e. remove from X every label ¢ for which
there i1s some neighbor y of x without any
Lahel compatible with <

(1.4) recursively do until no more deletions occur
for all marked neighobors y of x, adjust the
labelling of v w.r.t. that one of x.

We call a set valued labelling locally consistent at a junction
x if every Llabel ¢ of x can consistently reside at x in the
sense that every neighbor y of x has at least one compatible
Label Qe. As will be shown in a later chapter, the Waltz-
algorithm correctly determines the maximal set-valued Lahelling
being contained 1in the original labelling given by the dic-
tionary that enjoys this local consistency property for every

18AUG8S 14 M. Reinfrank

3 Constraints and Constraint Propagation

junction.

Unfortunately, local consistency does not guarantee that the
remaining labels allow for the construction of a unique admissi-
ble labelling. We will show that the result of the Waltz-
algorithm necessarily comprises every admissible labelling of a
drawing, while not every inadmissible labelling is filtered out.
Thus, the relevance of Waltz-like algorithms is to scale down to
a manageable size the number of possibilities to be considered
by a costly global search strategy. Recently, some authors
[Gaschnig-79]1, [Nudel-83] have suggested to use hybrid algor-
ithme that combine filtering and tree search. For an overview cf
such consistency providing procedures, see e.q.
[Mackworth|Freuder-851].

3.2 Constraint Propagation

The Waltz-filtering procedure derives constraints upon possi-
ble labellings by local computations and then it propagates
these restrictions towards junctions in the neighborhood. This
1s in fact the key idea of the constraint propagation paradigm
which nowadays plays a prominent role in AI. Constraint probhlems
usually exhibit the following structure: There is 2 number of
variables VARS and corresponding domains DOMS, a variable v
taking values from an associated domain dom(v). A constraint re-
lation is an n-ary relation on domains, i.e.

R € Dy XD, X...X0D,

A constraint instance or, simply, a constraint is a named triple
of the form <NAME,REL,VAR-LIST>, where NAME is a unique symbolic
name, VAR-LIST is an n-tuple (vy,Vv,,...,v,)YEVARS" of variables,
and REL is an n-ary constraint relation on the appropriate
comains. A constraint netwcrk, then, is composed of a number of
such constraints.

It is often convenient to represent such networks c¢raphically
as follows: there are two types of nodes, variable nodes and
constraint nodes, one for each variable and constrairt in con-
siderattion. The constrairt nodes are linked exactly to those
variables mentioned in 1ts variable list (see figure 2.1).

18AUGS8S 15 M. Reinfrank

3 Constraints and Constraint Propagation

vars = § A B C 0 E}
<AvoEe Sun (A 8 C)>
{MuLTER | troguct (¢, 0, €) D

<Twe, CONSTANT-2 (0) 2

Figure 3.1: Constraint nodes and variable nodes in a
constraint network

A single-valeued assignment of values to variables is a partial
function

ass: VARS - DOMS
v » ass(v)€dom(v)

Definition 3,1 [admissible assignments]

An assignment ass 1s admissible w.r.t. a constraint
EN R (Vy sNVa 00 o pVd > if and onty if it 1s defined for every
variable 1n the lList and

(ass(v,),ass(v,),...,ass(v,)) € REL

holds. Admissibility extends to constraint networks in that
an assignment is admissible w.r.t. to a network of con-—
straints if and only 17 1t is admissible w.r.t. to every

single constraint of the network.
L]

A constraint network thus can be seen as a declarative specifi-
cation of all admissible assignments to its variables. Given a
partial assignment to some of the variables, a procedure that
finds admissible completions, if any, can be used to perform
arbitrary computations. Figure 3.1 shows a VISICALC-like
[Steele-8017, [Sussman!SteeLe~80] network representing the
aritthmetic equations A+B=C, C*¥D=E, and D=2. The constraint
relations in that example, however, are very sinple. For every
n-ary constraint, (n=-1) values uniquely determine the remaining

18AUG8S 16 M. Reinfrank

3 Constraints and Constraint Propagation

n-th value. Wwe call a relation R almost simple if for a

‘reasonably large' number of (n-1)~-tuples there is exactly one
completed n-tuple belonging to R. For the remaining tuples,
there may be no or several dirfferent such completions. Given a

network of almost—-simple constraints, and a partial assignment,
admissible completions can be found by constructive propagation
algorithms of the following form:

- Whenever all but one variables in the list of a constraint
have definite values, compute the corresponding value f or
that wvariabte, and make 1t available at all other con-
straints the variable 1s involved in.

- When all the variables in a Llist have definite values,
check that they satisfy the constraint relation.

A constraint problem given by a network of constraints along
with an initial partial assignment may be both overconstrained
and underconstrained. I.e. there may be no solution (= admissi-
ble completion) at all, or there may be several solutions.

Moreover, when trying to find a solution by local, construc-
tive propagation algorithms, several difficulties may arise. The
propagation procedure may fail to find an admissible completion
either because at some simple constraint, lecss than (n-1) values
are knowun, or because at some non-simple constraint, no unigue

value «can bhe «deduced. The former case can be handled by in-
troducing and propagating unknowns, but that requires the evalu-
ation and simplification of symbolic expressions. The tLtatter

case can be handled by making choices, but, as muttiple choices
may turn out to be mutually incompatible, a conflict handling
mechanism is needed.

If the constraint relations are highly non-simple, making
choices and recovering from erroneous choices becomes infeasi-
ble. In this case, destructive propagation algorithms along the
lines of Waltz-filtering apply as a pre-processor. Such algor-
ithms handle set-valued assignments

sv-ass: VARS - P(DOMS)
v 1 sv-ass(v)ycdom(v)

For such set-valued assignments, the definition of local con-
sistency replaces admissibility.

Definition 3,2 [local consistency of set-valued assignments]

An assignment sv-ass 1s locally consistent at a variable v
if and only 1if for every yesv-ass(v) and for every con-

straint <N,R, (., e, W1 ,V,W;5;41,+--,4,)> where v occurs in
the variable Llist, there are values Xy, ..o, X5 1, X541, 00,%,,
where X; € sv-ass(w;), such that
(xll'"'rxi-llYI-\(i«i-lr"‘r-\(-..) € R

Destructive propagation algorithms now proceed as follows:

18AUGS8S 17 M. Reinfrank

3 Constraints and Constraint Propagation

-~ Initially assign to every variable its entire domain, or
some appropriate subset thereof.

- If, at some constraint, a restriction upon the values for a
variable can be computed, remove the corresponding values,
and make this restriction available at all other con-
straints involved.

Such algorithms can be used to derive assignments that are lo-
cally consistent at every variable. As we have yet mentioned,
this does not necessarily imply that the resulting set-valued
assignment comprises admissible single~-valued assignments.
Clearly, if the domains and relations are 1infinite, managing
set-valued assignments requires some effective finite represen-
tation of infinite sets.

In a lLater chapter, we will see that the scene Llabelling
problem fits 1into the general scheme of constraint problems in
two different. ways, where either the junctions or the segments
are considered as variables, the domains being given by resp.
the total of composite junction labels or simple segment labels.
We will see that the specifities of constraint relations induced
by Labelling problems allow for an efficient representation and
corresponding propagation atgorithms.

3.3 Some Related Work

Guy Steele from the M.I.T. has developed and implemented a
general-purpose constraint system for almost-simple, integer
valued constraints, based on constructive, local propagation
[Steele-80]. The truth maintenance system by David HcAllester
[McALLesE&r—BO] works with constraints upon the truth vatues of
propositiponal formulae, as induced by the truth value tables for
logical cbnnectives. The basic structure of this system is
closely related to Steele’'s system. The M.I.T. research on con-
straints has been deeply influenced by the pioneering work of
Stallman and Sussman [Stallman|Sussman-79] on the use of con-
straint propagation for electrical circuit analysis and design.

A number of succesor systems Llike e.g. QUAL by Johan deKleer
[deKleer-79] uses similar techniques. Another system for
handling algebraic constraints 1s due to James Gosling

[Gosling-83] from CMU.

The ISIS—-group at the robotics institute of CMU used con-
straints to attack the job-shop-scheduling problem
[Fox et al-83] which 1is known to be NP-complete. Constraint-
directed reasoning is also popular in planning [Stefik-81] and
simulation [Borning-79].

The combinatorial aspects of finite constraints are discussed
in two papers by Haralick and Shapiro [Haralick|Shapiro-79,80]

on what they call the ‘Consistent Labelling Problem'. Among
others, the work of Mackworth [Mackworth-771], Montanari
[riontanari-g2], and Freuder [Freuder-82] is also important, not

18AUGS85 18 M. Reinfrank

3 Constraints and Constraint Propagation

to forget the original Waltz-paper [Waltz-72]. John Gaschnig
[Gaschnig-79] provides an extensive discussion of the efficiency
of several search algorithms, including Waltz-filtering, w.r.t.
constraint problems. So does Bernard Nudel [Nudelt-831].

The relaxation labelling approach taken by Rosenfeld, Hummel,
and Zucker [Rosenfetd[HummeL|2ucker—?6] can be seen as the con-
tinuous equivalent of discrete tabelling algorithms.

18AUGS8S 19 M. Reinfrank

4 Societies of Nngents

4+ Societies of Agents

As I have mentioned in an previous chapter, no cverall control
strategy like e.g. hierarchical top-down or bottom-up approaches
has been proven to be superior for vision. However, one thing 1s
clear: vision involves massive computation and reasoning
processes on various representatronal levels. LE seems
straightforward to attack this complexity problem by concurrent
processing and to exploit a parallel vs. sequential processing
speed-up and, in fact, some existing vision systems as wetl 2s
concepts for furtner developments make extensive use of para-
Ltetism. The nature of parallel solutions denends on the teve l
of detail on which they are applied.

- For low level image processing, massively parallel hardware
architectures such as e.g. SIMD array processors apply.
using e.g. one processer per piyel to perform uniform oper-
atione. A survey on parallel processing for lLow Level vi-
sion can be found in [Davis|Rosenfeld-80].

- Concerning high Level vision, a specialization of a few
processors to some speficic aspects of the vision probtlem
can be made, e.g. concurrently and interactively co-
operating Line-finders and drawing-interpreters, or e.g.
specilalists for 1llumination, texture etc...

- 0On intermedtiate levels such as line drawings, frequently
algorithms on graph structures allow for the introduction
of parallelism. The nodes of such a graph stand for com-—
ponents of the drawing like regions or junctions. and the
links reflect the adjacency of these components. Following
Douglass [Douglass-82], we call such algorithms image graph
algorithms.

4 1 The Paradigm

For discussing intermediate and high-level parallelism, the
conceptuat view of societies of co-operating agents has become
increasingly important. Such a society is composed of a numbher
of indenendent units, the agents, that do some Llocal problenm
solving of their own, and that exchange results and requests by
a (mostly asynchronous) communication mechanisn. There 1s no
superior instance to guide the overall flow of reasoning. This
paradigm relates to the cbject—-oriented programming approach,
which plays a2 prominent role not only within the AI community,
and to algebraic specification techniques using absiract data
types. Thus, the concept of societies of agents can be secen as
the problem solving-tevel counterpart of related concepts on the
programming language resp. ithe abstract specification level.

I now briefly outline a simple mcdel of societies of agents,
to be refined in a later chapter, wh ch serves as a bacis for an
informa! introduction of the languagc CSSA, given in the next
section. WYe assume the acqu2intances between agents to be

13AUG8S 20 M. Reinfrank

4 Socie:ies of Agents

directed, i.e. the topologic structure of such a society is that
of a directed graph. At a given time 1instant, each agent 158
either inactive, being in 2 stable state from a given universe
of possibhle states 1t may he within, or it is busy, performing a
non-separable transaction from one stazble state to another. Such
transactions can only started (3% requests from outside the
agent, i.e. by the receipt of a message. During such a transac-
tion, an agent is free to send messages to acquainted agents.
Message transmission is constdered time-consuming, with unknown
but non—-null transmission times. Messages are only accepted in
stable states. We therefeore assume some I1mplicit buffering
mechanism, a so-called mailbox, to store messages until the
addressee is ready to accept them. Intuitively, this buffer can
be regarded as a mailbox, the basic action cycle of an agent be-
ing to look in his mailbox and select a message, to work on this
message, possibly issuing some messages of his ouwn, and then to
look again into the mailbox (figure 4.1).

s y_..--h-—..—-—-.-—,.,.\--w.‘&_

STABLé &]reﬁ FFRANS&bTioN;
SELECT A m:'ss;;e F—Hﬁnue A MESSAGE
FroM THE MAILCox Y WAMPULATING THe
o WmT PFOR INTERNAL TATE 4NOD
INGOING MESSAGES ISENmNa_ﬁEuAﬁGS

AN

TS~

e r—

Figure 4.1: Action cycle of an agent

We do not assume any regular transmission order as e.g.
first-sent/first-received or similar orders, but we require that
every message sent is eventually received. Note that this
requirement involves the message passing technique, mechanisms
for selecting a message from a mailbox, as well as the internat
hehavior of the agents themselves in that we must exclude in-
finite transactions.

We do not go into the details of a proper, elaborate semanti-

cal theorie of such sochretiecs of agents. Indeed, I do not know
any such theory that is completely satisfactory, but two
problems of particular mportance should be addressed: the

starting problem, and the fermination problem. The starting

18AUG85 4 M. Reinfrank

4 Societies of Agents

problem 1is the following: where do the agents come from and as
they may not act spontaneously, where do the initially
activating messages come from. We assume that agents can be
created by other agents, and that there 1s one superior meta-
agent being able to act spontaneously. Note that this makes the
netuwork completely dynamic, together with the hitherto unme-
tioned postulate that acquaintances be communicable.

The termination problem is twofold: when does an agent end to
exist, and what does it mean that a society of agents is ter-
minated? In chapter 9, wve will see that a proper specification
of 'termination' is a non-trivial affair, and that checking for
such a condition is both a delicate theoretical problem and an
issue of practical importance. Basically, the difficulties
result from the absence of a common, g¢global system state.
Properly speaking, the existence of such a state can be postu-
lated but it is not directly observabnle. We will not consider
the problem of 'dying' agents, but assume that every agent ex-
ists at least as long no appropriately defined termination con-
dition holds and is detected.

4 2 CSSA:Computer System for Societies of Agents

It is not the purpose of this pape~ to discuss the concrete
realization of a society of agents. However, I think that an in-
formal introduction of the implemetantion language of SCENELAB,
CSSA, will help to clarify som=2 of its aspects. CSSA
[Beilken|Mattern|Spenke-82] is a fully implemented Computer Sys-—
tem for (realizing) Societies of Agents.

The behavior of an individual CSSA-agent is determined by a
so-called script, formulated 1in an imperative language in the
tradition of PASCAL. The Llocal state of an agent is given by the
values of variables, state transitions are realized hy the side-
effects of operations. An agent is able to perform a number of
such operations, where the effects of an operation are modifi-
cations of the agents variables and, possibly, the sending of
messages. From a programming language point of view, an oper-
ation is a block of code, possibly structured into subblocks
such as procedures or functions, and possibly having scome local
variables, quite similar to a usual procedure. An operation may
only be invoked by a message that is composed of the operations
name, and a list of actual parameters that matches the formal
parameter list. An CSSA-agents execution cycle corresponds to
the cycle shoun 1n figure 4.17.

The user itself is an integral part of a CSSA-society, in the
form of a spectial interface agent . This interface agent is the
only agent that may take actions of “is own, and hence plays the
role of the meta-agent mentioned in the preceding section. ALl
other agents must be created by a special generative command,

according to some pre-defined script. The initial states of
these agents are defined by implicit default values or by ex-
plicirtely specified values of their variables. The resulting

18AUG8S 22 M. Reinfrank

4 Societies of Agents

network is dynamic in that agents may not only be created but
also aborted, and 1in that acquaintances can be communicated at
run-time.

An early version of CCSSA has been running on a single-CPU
SIEMENS BS2000 machine. The CSSA-code 1s translated to an inter-
mediate virtual stack machine, running on a SIMULA multiple
processor simulation sysiem. This system simulates an
asynchronous processing environment with flexible parameters,
such as number and i1nterconnection of physical processors and
message transmission routes and times etc... A distributed oper-
ating system i1is running on the simulator.

Currently, a realization of CSSA on a real multicomputer net-
work composed of sevarl 32-Bit Charles River machines is under
development, and a first prototype has now been completed. This
reasearch and development 15 part of the INKAS-project at
Kaiserslautern University [Nehmer et al-85]. A brief overview on
(SSA can be found in [Mattern|Beilken-851]. For full details,
especially for the many aspects of CSSA not mentioned here, sce
[Beilken|Mattern|Spenke-82]. A collection of CSSA-programming
examples 1s given in [Voss-87].

18AUG85S 23 M. Reinfrank

5 SCENELAB

5 SCENELAB

5 1 The Key Idea and the System Kernel

The key idea of SCENELAB 1s to realize Waltz-like filtering
procedures by a society of cooperating agents. The problem of
labelling line drawings from trihedral scenes has been taken as
sample application area to exploit this idea.

The kernel of SCENELAB is constituted by a network of agents
that 1s 'isomorphic' to the line drawing in that there is one
agent per junction, agents that work on adjacent junctions being
acquainted to each other (figure 5.1).

anqumL(a)

Mu(o.f* (4) Mubrf(‘)

ouawarnc)

Figure 5.1: SCENELAB works with a network of
cooperatgng agents that is isomorphic to
the line idrawing

1

_|

Basically, the task of such an agents is to keep the labelling
of its owun junction compatible with those of all of its
neighbors.

This goal is achieved by the following realization of a Waltz-
filtering algorithm. Initially, every agent is supplied with a
list of potentially possible junction labels for the type of

junction it 1i1s processing. These labels restrict the possibil-
ities of assigning segment Llabels to the segments joining at
that junctiron, as seen from that particular viewpoint. If some

specific segment Llabel is ruled out by the current set of junc-
tion labels, the agent sends a message to the agent working on
the opposite junction of the segment in consideration. This

18AUGSS 24 M. Reinfrank

5 SCENELAB

message says, the addresse should remove from its current Llabel
set all those junction labels that induce a segment label for
that segment that corresponds to the Llabhel that has been
eliminated. When receiving such a message, an agent performs the
appropriate deleﬁions and then checks whether these deletions
impose additional constraints upon some other segments, i.e.

whether some label has become impossible for a segment while 1t
has been possible before the transaction. If so,; the agent
forwards corresponding messages to the neighbors involved

(figure 5.2).

u»wA(ﬁ(u)

atud PROPAGKE (+ %) +o ww‘nr(d);
PRO PAGATE (+ , 4)
v PROPAGATE (- ,2)

NESSAGE SENT 8Y cmadunt (e) .
cuawhr*(4) tg 'Qr)

Figure 5.2: An agent evaluates and propagates
constraints

5 2 Architecture and Interfaces of SCENELAB

The kernel constraint network is embedded in a computing sys-
tem composed of several additional agents (figure 5.3). First of
all, there 1< the SUPERVISOR being responsible for the overatl
control of the system. The SUPERVISOR communicates with the user
of the system and generates and monitors the constraint network.
The user specifies a picture description and a label dictionary
in a special description language PDL. He is completely free in
defining junction figures and labels of his oun. This makes
SCENELAB no general purpose constraint system, but it enables
the user to define and manipulate arbitrary constraint prohlems
that exhibit the same structure as the scene labellirg problen,
1.e. finite constraint relations where the compatibility hetween
composite node labels reduces to a3 one-to-one compatibility
between edge Llabels.

18AUG8S5 25 M. Reinfrank

5 SCENELAZ

j&

PDF

SO~ WR TR

A LD
LA L

@

LO-ReADER

LocAaL
ANALYSTS

Figure 5.3: Architecture of SCENELAB

Here are the PDL-definitions of the junction figure ARROW, and
of a "figure' OR, representing a logical disjunction.

def-Lab +;-;0>;>0. { The pbasic segment Llabels }
spec—com +:+;-:-;0>:>0;>0:0>. { Compatible segment Llabels }
def-fig ARROW. { A junction figure }
spec—-deg ARROW:3. { Degree of an ARROW }

cpec—Llab ARROW: +/-/+,+/+/+,0>/+/>0.
{ Admissible ARROW-labhellings }

def-lab tt;ff. 8

spec—-com tt:tt;ff:ff.

def-fig OR.

spec-deg OR:3.

spec—-lab OR: ff/ff/ff, ff/tt/tt, tt/ff/tt, tt/tt/tt.

The following PDL-statements specify a part of the tetraeder
shown 1n figure 5.1, and a related network representing a logi-
cal connection.

def-seg s;t;u;v;uw.

def-jun a;b;c;d.

spec—-fig a:ARROW; b:ELL; c:ARROW; d:ELL.
spec-gra a: s/b,t/c,u/d.

def-seqg p;d;r;s;t.

18AUGS8S 26 M. Reinfrank

5 SCENELAB

def-jun a;b;c;d.
spec—-fig a:0R; b:2-IDENT;c: AND; d:NEG.
spec~gra a:p/b,a/c,r/d.

where 2-IDENT could be defined as

def-fig 2-IDENT.
spec-deg 2-IDENT:2.
spec-lab 2-IDENT:tt/tt,ff/ff.

Note that in the latter example, the segments play the role of
propositional formulae. To overcome the restriction that every
segment 1is constrained by exactly two Jjunctions (here: every
formulae 1s involved 1n exactly two other fomulae), an N-IDENT
constraint can be used to replicate segments.

The picture description file PDF and the label dictionary LD
are logical files which can be linked either to an interactive
input device or to some predefined descriptions from a Library.

For scene lahelling purposes, there typically will bhe a
predefined standard label dictionary available, while the pic-
ture description 1s 1nteractively supplied by the user. PDF and

LD contain PDL-representations of line drawings and labhels,
which are incrementally translated into an internal represen-
tation. PDL as well as the i1nternal structures are reatltizations
of the abstract model to be discussed in the next part of the
paper.

The LD-SERVER shown in figure 5.3 is a special agent managing
a Library of dictionaries and the dictionary currently in use.
It supplies the agents 1in the constraint network with their ini-
tial labellings. The user controls the system by sending com-
mands to the SUPERVISOR. The following sequence of commands
would result 1n the construction of a constraint network to
tabel a drawing being described on a PDF lLinked to a special
reader agent PDF-READER, using a label dictionary residing on a
file read by the LD-READER.

send INTERPRETE (PDF-READER) {to SUPERVISOR;

send INTERPRETE (LD-READER)Y to LD-SERVER;"®

{ Tell the SUFERVISOR and the LD-SERVER where to get their
input data)

send INIT-NET to SUPERVISOR;

{ The SUPERVISOR will create a constraint network and

supply the agents with their initial information as e.g.
acquaintances and type of junction they nave to work on. The

agents then will send requests for appropriate initial labellin
to the LD-SERVER }

send START-NET to SUPERVISOR;
{ Activate the constraint network }.

The user may alco impose additional constraints by means of
messages during the constraint process, excluding certain
labellings, e.g. to enforce a unique labelling when the result

18AUG8S 2 M. Reinfrank

5 SCENELAB

is ambiguous.

send EXCLUDE(+,a,s) to SUPERVISOR;

{ The SUPERVISOR will sent appropriate messages to the

agents working on the junctions joined by the segment s

to rule out the label '+' for s, as seen from the junction a }

Furthermore, there are various inspection and control commands
to display intermediate results, or’ to trace the constraint
propagation process. An interactive error handling facility
allows for correcting errors without restarting from the
scratch. When an error occurs when reading from a file, the in-
put stream is automaticallly switched to the interface agent,
i.e. to the user, who 1s asked to correct the faulty input or to
break the session. Appendix B gives a complete specification of
PDL and lists the most important SCENELAB commands available to
the user.

5 3 Correctness and Termination — Some Informal Arquments

Sequential and synchronized parallel versions of this algor-
ithm exhibit simple criteria for correctness and termination
[Waltz-72], [Rosenfeld|Hummel|Zucker-76]. Basically, the same
arguments apply to the asynchronous case, too, but some techni-
cal overhead 1s needed to provide formal proofs. Before we turn
to a somewhat more rigorous treatment of the problemn, I would
like to give some informal arguments that the system always ter-
minates, providing the desired result.

First, notice that every inconsistency occuring at a junction
is resolved by deléeting the labels that are responsible for this
inconsistency. Second, only necessary deletions are made. Dete-
tions may only occur as the result of a message, and messages
are not sent until some label must be excluded for local
reasons. This shows that a label is removed if and only if it
cannot consistently reside at a junction, hence the resulting
labelling must be the greatest locally consistent labelling con-
tained in the initial labelling.,

Furthermore, both the constraint network and the Llabel dic-—
tionary are finite, 1i.e. only a finite number of deletions may
occur and, consequently, only a finite number of propagation
messages will ever be sent. As message transmission times and
transactions are finite, the system must eventually halt and
come to a stable state.

However, although system termination seems to be obvious and,
in fact, will be shown in a later chapter, how can we find out
vhether the network has terminated or not?

18AUGS8S 28 M. Reinfrank

5 SCENELAB

5 & Distributed Termination Dgﬁection

The problem arises from the fact that, on one hand, ter-
mination is clearly a global feature. On the other hand, every
agent only has a restricted local view of the entire state of
affairs, and agents can only be inspected by message passing,
i.e. only one agent is accessiblte at a time. Henceforth,
although one can postulate a global system state, this state 1is
not directly observable.

Another question hereby is, what does it mean that a system of
asynchronously co-operating agents has terminated? This question
seems odd first, but it turns out to be a non-trivial 1issue.
Basically, there are tuo different views of that problem.
Firstly, an event-oriented approach says, the system 1s ter-
minated if no agent is currently active or will hecome active in
the future. This means that every agent is in a stable state and
that no message is currently on the way between two agents.
Since no agent may become spontaneously active, only messages
coming from outside the system can re-activate an agent. Notice

that such messages retativize the condition 'no agent will
become active in the future’ to the system being considered as
closed.

Another, state-oriented approach says, the system has ter-
minated 1f 1t has reached a state providing the cesired result.
Here, some care must be taken that the termination condition on
states is persistent in the sense that, whenever a state satis-
fying that condition is reached, no subsequent state may violate
the condition, except those induced by external messages. Com-
pnlete Llocal consistency e.g- is such a persistent condition in
our constraint network. And, as messages may be on the way that
do not Lead to further deletrons, this condition does not imply
that the system 1s terminated w.r.t. an event-oriented defini-
tion.

The trouble with any such termination condition, either state-
or event-oriented, is that i+t usually does not subdivide into a
conjunction of local conditions. In both cases, simply asking
around every agent for h's local termination, according to
either condition, does not colve the problem. An agent saying,
ok, I am done, will usually not be able to exclude that it could
be re-activated by the receipt of a message that was on the way
when the query was broud-casted (figure 5.4).

18AUG8S 29 M. Reinfrank

5 SCENELAB

TERMINATED !
YES MESSARE
&
. D ARR\VAL OF THRE
MESSAGE ...
TERMINATED ! * \2
YES ~vv CAUSES ANOTHER
‘(TRANS ALTION
Figure 5.4: Simple broad-casting does not solve the
distributed termination problem

Note that the condition 'will not become active except for
messages coming from outside’', considered for a single agent,
translates to 'will not become spontaneously active'. Thus, from
an event-oriented point of view, a single agent trivially
futfills a local termination condition whenever it is in a sta-
bhle state.

In most reasonable cases, a more or less costly overhead will
be needed to detect the termination of a distributed system
working along the Lines sketched in chapter 4. In
[BeiLkenlMatternlReinfrank~85], we discuss the general ter-
mination <detection problem and review some approaches thereto
that have become known in the literature. In particular, several
practical algorithms due to Christian Beilken and Friedemann
Mattern are presented, which have been realized in several CSSA-
programs running at Kaiserstauterr, including a constraint
propagation system for cryptarithmetic, as desctribed in
[Kornfeld-81J. I should point out that most of the vocabulary on
distributed termination used in this section evolved from vari-
ous discussions with Christian and Friedemann.

18AUG8S 30 M. Reinfrank

5 SCENELAB

5 5 Freeze—and-Check

In SCENELAB, a brute-force method for termination detection
has been chosen. Based upon the fact that complete Local con-
sistency 1s persistent, SCENELAB proceeds as follows. First the
constraint system is frozen by sending appropriate STOP-messages
to every LOCAL ANALYST, that break their constraint processing
when receiving such a message. This 15 initiated by the command

send CHECK-NET to SUPERVISOR;

The sequence in which these stops occur cannot be specified bhut,
after a while, all of the LOCAL ANALYSTs will have interrupted

constraint propagation. The Llocal label sets - 1n spite of the
fact that they have been evaluated within different intervals of
time - determine a globhal Llabelling tnat is now checked for lo-

cal consistency. To do this, every agent simply asks each of his
neighbors, "is may labellin¢ ok for you', i.e. for every segment
lahel bheing possible from h*s point of view, he asks for a com-
patible Llabel at every neighbor. Waiting for the answers
requires some synchronizaticn, which can be easity realized by
using counters. The LOCAL ANALYSTs then tell the SUPERVISOR
whether the ltabelling i1s locally consistent at their junctions.
Depending on the answer, the SUPERVISOR resp. the user can
decide e.g. to restart the constraint propagation, or to gener-
ate an output file containng the PDL-description of a labelted
drawing. This is done resp. by the commands

send RESTART-NET to SUPERVISOR;
or
send GENERATE-OUTPUT to SUPERVISOR;

The cautious reader may have noticed that the concept of
"freezing' docs not neatly fit into our model of how CSSA
realizes sociueties of agents. Freezing the constraing
propagation means that the local agents temporarily do not ac-
cept for processing any PROPAGATE message but lLeave them un-
opened in the nmailbox until a RESTART message is received. This
involves the fact that @ message with the same pattern once
matches an operation of tne adressee, and once does not. in
fact, CSSA provides an acdditional facility, the facettes, a
facette being an internal state of an agent where only a subset
of att of 1ts operations s available. A trancaction then may
also include the transition from one facette into another. A
STOP-message simply makes an agent go into a facette where no
PROPAGATE-operation 1s known. However, this significantly com-
plicates our model of CSSA, and leads to suhstantial conceptual
problems that Lie considerably beyond the scope of this paper.
Therefore, we should content ourselves with the informal notion
that the LOCAL ANALYST leaves any incoming PROPAGATE message un-
opened until he has receivect a RESTART-message. This 1is less
severe than could be assumed, because such a behavicr could be
simutated in our simple CSSi-model, too. To achieve this, let
the STOP-message set a fleg which can be reset by the RESTART-
message. The PROPAGATE-operations then can be modified such
that, as long as the flag is set, the agent does nothing but

18AUG8S 31 M. Reinfrank

5 SCENELAB

send a duplicate of this message to tself.

18AUG8S5 32 M. Reinfrank

6 A Model of the Picture Domain

6 A Model of the Picture Domain

In this chapter, I am going to work out what knowledge we need
about a line drawing as an input for a labelling procedure.
Several levels of representation will be introduced, with vari-
ous degrees of precision, a basic Level, a topologic Llevel, a
geometric level, and a numeric level.

6 1 The Basic Level

At a basic level, I postulate a clear notion about what a line
drawing 1s: a line drawing is composed of a number of straight
line segments S, junctions J, and regions R, being arranged in
some particular way. We will only consider drawings without iso-
lated elements, especially without isolated or dead-end seg-
ments. Every segment joins exactly two junctions, and at every
junction, two or three cegments meet. This restriction partially
reflects the requirement that the drawings be perfect drawings
of trihedral scenes. However, perfectness and trihedrality
qualify the scene and the relationship between the scene and the
drawing, so 1t cannot ©be fully represented in the picture
domain.

6 2 The Topoloqic Level

Most of the knowledge we need to label a line drawing 1is of
topological nature, i1.e. how are the primitives grouped together
to configurate a line drawing? To capture this information, ve
define two kinds of picture graphs.

Notation [unordererd tuples!

Given a carrier set M, let [Xy,%X2,+--,%X,1 € M/~ denote an
un—-ordered n-tuple of elements of M, with possibly multiple
occurences of single elements.

The graph theoretical vocabtulary used here is largely taken from
[Bondy |Murty-761.

Definition 6_1 [junction picture graphl]

For a given line drawing with segments S and junctions J,
let an 1ncidency function 1t be defined as follows:

M S - Jz/“
s = p(s)=[a,n]

where wn(s)=[a,h] if and only if the segment s joins the
junctions a and b. The resulting undirected graph G6=(J,S,)
is called the junction picture graph of the drawing.

»

18AUGS8S 33 M. Reinfrank

6 A Model of the Picture Domain

Notice that the junction picture graph of a perfect drawing of a
trihedral scene is necessarily both simple and planar.
Furthermore, every junction has a degree of 2 or 3.

Notation [degree - incidencts - adjacents]

Given a graph G and a vertex v, let deg(v), inc(v), and
adj (v) denote, respectively, the edge degree of v, the seg-
ments incident to v, and the junctions adjacent to v.

| |

A related graph can be defined for the regions of a drawing.

Definition 6 .2 [region picture graph]

For a given line drawing with regions R and segments S, let
an incidency function v be defined as follows:

v: S o R/~
s B vis)=[x,y]

where v(s)=[x,y] if and only if the segment s separates the
two regions x and vy. The resulting undirected graph
H=(R,S,v) 1is called the region picture graph of the drauwing.

Notice that a region picture graph is usually not simple (see
figure 6.1). Since we do not consider region labellings in our
example, we will focus on junction picture graphs.

18AUGS8S5 34 M. Reinfrank

6 A Model of the Picture Domain

Figure 6.1: The junction picture graph, and the region
picture graph of a drawing of a cube

Figure 6.2: Two significantly different Lline drawings
having 1somorphic junction picture graphs J

18AUG8S 35 M. Reinfrank

6 A Model of the Picture Domain

6. 3 The Geometric Level

Unfortunately, line drawings exhibit some significant features
that are not represented in the picture graphs but that we need
to achieve proper labellings. Although e.g. the two line draw-
ings shown 1in figure 6.2 have isomoarphic picture graphs, they
are quite differently to be labelled. These drawings have the
same topological structure at the junctions d, resp. d,, but the
geometric shapes of d; and d, substantially differ in that d,
has two segments co—-linear while d, inas not. In our vocabulary,
d, is a TEE-typed junction and d, 1s an ARROW-typed junction. As
we have already discussed in an earlier chapter, we call such
typical intersection patterns of segments at junctions
junction figures. We also have argued that such a figure has
some physical meaning in that different figures result from the
objects in consideration and from the particular viewpoint from
which we ltook at these objects. Houwever, this physical meaning
cannot be directly represented in the picture domain. We there-
fore introduce figures independently from their physical inter-
pretation.

Definition 6,3 [junction figure classification]

A junction figure classification is a partition of all pos-
sible junctions in the (plane) surface the drawing has been
drawun within s.t. the following holds:

Junctions that belong to the same class have the same edge
degree. This degree is referred to as to the degree of the
figure.

Given a figure classification, the class of an arbitrary
junction is effectively computable.
-

Notation [figure of a junction].

Given a figure classification F={f,,...f.}, and a junction
a, we denote the figure of a w.r.t. to F by fig(a)=f,, for
some 1.

Notice that the equivalence relation induced by a equiv b if and
only if fig(a)=fig(b) is a refinement of the equivalence re-
lation induced by deg(a)=deg(b). For scene labelling purposes,
such a figure classification is usually based on some geometric
properties of the Jjunctions. \le use the <classification
F = { ARROW, ELL, FORK, TEE}, being defined as follows:

- ELL: any two line junction
- ARROW: any three line junction in which there are two

segments such that for each of these segments, the other
twuo segments (ie on the same cide of it

18AUG8S 36 M. Reinfrank

5 A Model ot the Picture Domain

- TEE: any three line junction having two of its segments
co-linear

- FORK: any other three line junction

Clearly, these descriptions provide a basis for an effective
computation of the class any two or three line junction belongs
two. To rigorousty fulfill the requirement that a figure classi-
fication partition all possible junctions 1in a plane we would
have to introduce additional figures, say DEG-4, DEG-5, etc.,
that subsume all non-trihedral junctions.

Frequently, junction figures allow for a distinction between
uniquely determined segments of junctions of that class, as e.q.
the 'shaft segment of an ARROW'. Such a distinction betueen
particular segments 1s valuable for scene labelling, since dif-
ferent segments usually may be differently labelled, so we want
to make this knowledge explicit in our representation. We 1in-
troduce an ordering upon the segments of trihedral junctions ac-
cording to the following convention. Firstly, ordering is always
clockwise. Secondly, if there is one region bounded concavely by
the segments of a junction of a particular class, we begin to
count at the first segment to the right (in clockwise direction)
of that region. Note that there is either no or exactly one such
region. Junction figures having this property are called
ordering figures, others are called semi ordering. In case of
semi-ordering figures we start at an arbitrary but fixed segment
and consider all cyclic permutations of the resulting order.

Classifying a junction, say x, according to 1ts figure fig(x)
thus induces an ordering resp. several orderings upon hoth
inc(x) and adj(x). Notice that all but one of the Huffman Clouwes
figures (the FCRK) are ordering (figure 6.3).

18AUG8S 37 M. Reinfrank

6 A Model of the Picture Domain

3 1
X 1 ‘é/,///]\\\\\: |
T T
3 1 {>\\\I////§ 1 L
g 8 1 3

Figure 6.3: ALl but one of the junction figures allow
for a unique ordering of their segments

We are now ready to define a structure that represents all the
knowledge we need to labhel a line drawing. It is based on the
junction picture graph, and on a classification of the junctions
of that graph. Furthermore, we extend the incidence function by
some explicit ordering 1nformation, as available through the
figures:

Definition 6_4 [classified ordered picture graphl]

Given the junction picture graph G6=(J,S,R) of a lLine
drawing, and a figure classification fig: J- F, we define
its classified ordered picture graph , copg in short, as a
quintuple

H=(J,S,F,fig,graph)
graph: J = (SX)) "/~

where graph(a)=((s, ,b,),...,(s,,b)) 1f and only if
n=deg(a)
and for i=1,2,...,n, p(s.;>=La,b,;],
(by,.--,b,) being an ordering induced by fig(a)
upon adj(a).

If fig(a) is a semi-ordering junction, we take an arbitrary

but fixed one of its orderings.
-

Notice that n is variable in the definition above. A rigorously
proper definition could be achieved «.g. by using the degree as

18AUG3S 38 M. Reinfrank

6 A Model of the Picture Domain

an additional parameter of araph, or by defining separate func-
tions graph-n for the junctions of degree n, graph being the
union of all these functions. However, I do not want to be ex-
cessively formal and omit some formal rigor for the sake of
simplicity.

6 4 A Note on Qualitative and Quantitative Numeric Descriptions

Although a copg provides a finer-grained representation of a
line drawing than a pure picture graph, 1t is stiltl a very crude
level of abstraction. No distinction can be made e.g. between
the two drawings shown in figure 6.4.

Figure 6.4: Two drawings that cannot be distinguished
by Huffman/Clowes Llabellings

Another level of detail could be achieved by representing
numeric coordinates w.r.t. to some underlying coordinate system.
However, although such numeric values are usually available
since the basic i1mages are represented as pixel arrays, they are
generally inadequate for jenerating semantic descrintions of a
scene being represented by 21 drawing. Instead of saying, the
anagle of the peak of an ARROW measurcs 37,5 degrees, while that
one of another measures 105, descriptions Like the ARROW s
peaked resp. very smooth are more expressive and adapted to o
human user of the system. Jhen working on such a gqualitative
level, appropriate constraints can also he defined and evaluated
for picture processing. David Waltz [Waltz-72] has used e.g. a
very crude qualitative distinction between shadowed and
itluminated regions - 1nsteyd of concrete illum nation values,
and his Llabelling procedu-e exploits constraints L(ike "if o two
regions are separated »y a crack line, they must be c¢ither both

18AUG8BS 39 M. Reinfrank

6 A Model of the Picture Domain

shadowed or both illuminated'. The use of qualitative represen-
tation and related reasoning facilities is currently one of the
hottest topics in AI [AI24-84].

18AUGS8S 40 M. Reinfrank

7 Labellings

7 Labhellings

7.1 The Label Dictionary

our final goal is to find a unambiguous assignment of labels
to segments, labels standing for certain properties of the cor-
responding edges. As we have discussed in an earlier section, we
always look at such a segment from one of its endjunctions, and
that sometimes, the choice of viewpoint is significant. However,
for every aspect of the segment that we consider in our appli-
cation, the views from two opposite junctions are either identi-
cal or complementary.

Thus, we work with a finite set of segment Llabels

iz={cl,---,6n>
where there is a symmetric one-to-one compatibility relation =
between tabels. This compatinility induces a bijection

match: ¥ - X

match(g)=¢ 1f and only if ¢=¢
Note that the symmetrz of = means that match 1s equal to its in-
verse function match ~, hence we have

match(match(g))=¢

Different junction figures allow for different labellings, and
the ordering of the segments usually, in the case of ordering
figures, makes some difference. Thus, for every figure in con-
sideration, there 1s¢ a number of pozsible composite junction
labels represented as ordered n—-tuples of segment Llabels, n be-
ing the degree of the figure.

Definition 7.1 [dictionary page]

Let £ be a set of segment Llabels, f be a figure from a given
total F of figures. A dictionary page L (f) is a finite
numher of junction labels ¢ of the form

s = (6, ,...,6,) € 1"

where n is the degree ~nf f. Notice that we use underlined
greek letters for juncticn Llabels.

A label dictionary then 15 given by a number of dictionary
pages, one for every figure in consideration.

We do not require that the dictionary pages be disjoint. For
such a dictionary, we write L(F) and omit F 1f ic is clear what
figure set 1s meant.

18AUGS85 41 M. Reinfrank

7 Labellings

Notice that the only time a physical meaning of labels 1is in-
volved 1s the time when the dictionary is generated. Once 1§ it
completed, a labelling procedure treats them as simple symbolic
entities. In the case of semi-ordering figures, care mnust be
taken to include every cyclic permutation of each of the labels.

The compatibility between segment lahels extends to junction
labels in the following canonical way:

Definition 7.2 [compatible junction labels]

Let 8 = (8;,...,98,) and ¢ = (@;,...,¢,) be two Jjunction
Labels, and let k€{1,...m} and L€{1,...n} be two indices. ¢
is said to be k/l-compatible with ¢ if and only if

Sg T @

We write ¢ k=l ¢
The definition of a set-valued junction labelling is
straightforward:

Definition 7,3 [junction labelling]

Given the copg H=(J,S,F,fig,graph) of a line drawing, and a
label dictionary L(F), a junction LlLabelling is a function

I: J = PLIF))
a » I(a) g L{fig(a))

Defintion 7 4 [labelling problem]

A pair LP=(H,L)>, where H is a copg of a line drawing, and
where L 1s an appropriate Label dictionary, is called a
labelling problem.

Notation [special labellings]

Given a labelling problem LP=(H,L), we denote the total of
all possible labellings of H from L by LP-I.

The empty Labelling T, where Ya<J:I(a)={}, is called the
null—Label Ling I-NULL.

The Llabelling I that assigns to every junction a its entire
dictionary page L(fig(a)) is called the initial labelling
T=INIT:

The mapping I, defined as VYa€J:I(a)=X", where n=deg(a), 1is
called the tabel universe I-UNIV of a junction. Notice that
I-UNIV is no labelling 1in the proper sense of the word.

1T8AUG8Y 42 M. Reinfrank

7 Labellings

7.2 Consistent Labellings

In this section, we rigorously re-define the notions of
admissibility and consistency of labellings, that have been in-
formally introduced in the preceding chapters. Based upon these
definitions, we will be able to show that, in fact, every
tabelling problem has a well-defined result.

Definition 7.5 [admissible labellings]

Let LP be a labelling problem, and I€LP-I a labelling. I 1is
admissible if and only 1f

(1) va€J: |Ita)|=1

(2) Let u, v be two adjacent junctions, where u is the
p'th neighbor of v and v is the g'th neighbor of u. Let
furthermore I(uw={ ¢ }, and I(v)={ ¢ }. Then $ q=p ¢

holds.
|]

Notation [matching labels]

In the situation described in the definition above, we say
that the Llabel ¢ is matched by ¢.

In the context of Waltz-like filtering procedures, the concept
of local consistency plays a central rote.

pefinition 7,6 [local consistency]
Let LP be a labelling problem, a€J a junction, where
graph(a)=((s, ,by),...,(s,,b,)), n=deg(a)
We say that a labelling T€LP-I is locally consistent at a if

and onlty if for every < € I(a) and for every neighbor b; of
a, there is at least one ¢ € I(b;) s.t. ¢ is matched by e¢.

Definition 7.7 [complete local consistency]

A labelling TI€LP-I is called completetly locally consistent
- c¢clc in short - 1f and only if I is locally consistent at

every junction a€lJ.
-

From previous chapters, we know that Waltz-fitering procedures
determine a maximal sublabelling contained in the initial

18AUG8S 43 M. Reinfrank

7 Labellings

labelling that enjoys this clc—-property.

Notation [sub-labetling]

For two labellings I, I' € LP-I, we say that I s

labelling of I' if and only if
Va€J: I(a) <€ 1I'(a)

We write I € I'.

Definition 7,8 [maximal clc sublabhelling]

Let LP be a labelling problen, I, € LP-I. A
I* € LP-I is said to be a maximally clc w.r.t. I,
only if

(1) 1* € I,
(2) 1* is clc
(3) ¥V I'" € I,: I'" is cle = 1" ¢ 1%

Azriel Rosenfeld and his colleagues [Rosenfeld|Hummel|Z
have shown that this maximal clc sublabelling is unique
mined.

Theorem 7.1
[existence and uniqueness of maximal clc sublabellings]

Let LP be a labelling problem, [,€LP-1. There 1is
labelling I* that is maximally clc w.r.t. I,.

Proof (Rosenfeld)

First, we show that the subset of all clc subl

a sub-

labelling
if and

ucker-76]
ly deter-

a unique

abellings

of I, is closed under set union. To see this, let

1,1'Cl, be clc. Clearly, (Tul')cl,. Further
for some a€J, ¢ € (I(a)ul'(a)). For every neig
a, we can find a label ¢ 1in I(b) or wn I°
matches <, hy view of the consistency of bhoth
Since ¢ € (I(b)ul'(b)), this is the desired re

Second, note that the null labelling I-NULL
definition, hence there is at least one
Ltabhelling of I,. As LP-I 1s finite, we can sh
duction that the union of all clc sublabelling
is clc, too. This union 1s the well-defined ma
sublabelling I%* of I,.

Corollary 7.2 [maximal clc sublabelling of I-INIT]

Every labelling problem LP has 31 uniquely defined

more, let
hbor b of
(n) that
I and I'.
sult.

is clc by
clc sub-
ow by 1n-
s of I,
ximal clc

solution

18AUG8S 44 M.

Reinfrank

7 l.abellings

in terms of a labelling I* that is maximally clc w.r.t. to
the initial labelling I--INIT of LP.

In the sequel, we will speak of the maximal clc labelling of a
labelling problem to denote this labelling I™ being maximally
clec w.r.t. I-INIT. What we would like a labelling procedure to
do i1s to produce a (possibily ambiguous) labelling such that we
can start at every junction, choose an arbitrary label and find
an unambiguously completed admissible labelling.

Definition 7,9
[global consistency and complete global consistency]

A labelling I€LP-I is dlobally consistent at a junction ae€J
if and only if for every < € I(a), there is an admissible
sublabelling I'CI of I «uch that I'(a) = <&. Here too, we ex-
tend the definition to complete global consistency as
pointwise global consistency.

The following two lemmata summarize some of our previous
results.

Lemma 7.3 [global consistency implies Local consistency]

Let I€LP-I be a lebetling. If I is completely globally con-
sistent then it is completely locally consistent.

Proof (indirect)

Let I be not clc. Then there must be a junction a s.t.
1 1is not locally consistent at a. By definition 7.6,

this means that there is some ¢ € I(a) and there s
some neighbor be€adj(a) s.t. no label ¢ of b matches s.
Thus, no admissible sublabelling I'CI with I'(a) = ¢
can be found. I.e., I 1is not globally consistent at a

and hence, I is not completety globally consistent.

Lemma 7_4
[local consistency s insufficient for global consistency]

There are iabelling problems LP with labellings I€LP~I such
that I 1s clc but not completely globally consistent.

Proof (by counter—example)
The labelling shown in figure 7.1 is clc. However, no

admissible labelling can be found for any of the labels
of, say, the junction a.

18AUG8S 45 M. Reinfrank

7 Labellings

I(a) = { (*f’),('a‘)g
\(4..).-{“'_)' -, 4}

l(f-)={(+,+),(-)-)}

< 22

Figure 7.1: A locally consistent labelling without any
admissible sub-labelling

The two Lemmata above, together with the fact that, most
usually, the initial Llabelling I-INIT is significantly larger
than its maximal clc sublabelling 1%, shed some Llight onto the
relevance of filtering procedures. Ir the next chapter, then, we
will show that Waltz-like filterirg procedures are correct in
that they, in fact, determine the nmaximal clc labelling of any
given Llabelling problem.

7 3 Label Compatibilities Seen as Corstraints

Labelling problems fit into the general constraint problem
sketched in chapter 3 in two differert ways. On the one hand, uwe
can consider the segments as variables, taking values from the
total of possible segment tzabels:

VARS = S
DOMS {%}

The constraint relations then are given by the dictionary pages,
as e.g.

ARROW € T X ¥ X X
ARROW = { (+,—=,+), (+,+,+), (0o>,+,>0) }

Constraint instances relate to junctions, LlLike e.g.

<a; ARROW; (s, t,u)>

18AUG8S 46 M. Reinfrank

7 Labellings

However, this representation is only correct if the compatibhil-
ity between segment labels reduces to simple identity.
Otherwise, we must e.g. represent every segment by two variables
that are constrained by a binary compatibility constraint being
an instance of = (figure 7.2). Besides that, every variable is
constrained by exactly two cvonstraints of various degrees.

Figure 7.2: The labeLLiné problem seen as an n-ary

constraint problem. If = is not identity
then every segment must be represented by two veariables
whose values are related through a =-constraint.

An alternate way 1is to consider the junctions as variables
taking values from appropriate dictionary pages. The constraints
then correspond to the binary p=d-compatibility relations. The
labels of the junctions a and b in figure 7.3 e.g. are con-
strained by an instance of o relation

ARROW-1=Z2-ELL <€ L(ARROW) X LC(ELL)

where

ARROW-1Z2-ELL {Co>,+,>0),(0>,>0)) ,((a>,+,>0), (+,>0)),
((=,+,=),(o>,=)), ((+,~,+),(>0,+))}

<CONNECT=-a,b; ARROW-1Z2-ELL; (a,d)>

Alternatively, one could say that the labels are constrained by
a relation 132 <€ £*Xr*, ~+he restriction to L (ARROW)XL(ELL)
resulting from an initial anssignment. Or, this restriction could
also be viewed as additional unary constraints instead of ini-
tial assignments.

18AUG8S 47 M. Reinfrank

7 Labellings

Akmw-v\n—cg E‘-:'La—mnaw

ARROW- L& 2 -ARRoW

ELL-1% 3-»&(2&)

L

@reOW-1® 2- ELL

Figure 7.3: A lLabelling problem seen as a binary
constraint problem

These binary constraints have a very simple, uniform structure
that allows for an efficient representation.

Definition 7,10 [pseudo-transitive relations]
Let A, B be two disjoint sets. A relation RCAXB is pseudo-
transitive 1f and only if for every a,,a,€A and for every

b,,b,€B, the following holds

if {(a,,b,), (a,,b,), (a,,b,)} € R then (a,,b,) € R.

The relation graph of a pseudo-transistive relation subdivides
into complete bipartite componenents (figure 7.4).

18AUG85 48 M. Reinfrank

7 Labellings

@, R k,
o R 4, C? x, R b,
o, R '61.
o
1
Q
X 6‘ aL 46‘1
Figure 7.4: The relation graph of a pseudo-transitive
relation subdivides into completely
bipartite connectivity components

Lemma 7.5 [junction

label compatibility

1s pseudo-transitive]

The relations p=q are pseudo-transitive.

Proof

Pseudo-transitivity obviously follows from the fact
that p=qg is defined in terms of = which is a symmetric
one-to-one relation. For, let € p=q ¢ , H pPEq ¢ , and p
P=g V. By definition of p=q, we then have <&, = ¢y,
Hp = @4, and Hp = vy. Since = is one-to-one, it must bhe
the ~case that <, = Ry, and hence 6, = wvq. This means
that € p=q v , what is the desired result.

The structure of a completaely bipartite
represented by a related jraph that
plex. ALl the nodes of A resp.
ponent are condensed into one
such connectivity component

graph can be fully
1s significantly Less com-

B that belong to one common com-
single node. ALL the Llinks of one
then can be represented by one Link

between the resulting two super-nodes. Isolated nodes are all
gathered in one super-node that is connected to a node
representing the empty set (figure 7.5).

18AUG8S 49 M. Reinfrank

7 Labellings

~
==

O O

—

(o)

o

c (oY
(o} - o
2 o

Figure 7.5:

Completely bipartite graphs atlow for a
simplified representation

Figure 7.6 shows the relation graph and

its simplified represen-

tation of the 1=Z2—-relation between ARROW and ELL labels.

phat

-

Figure 7.6:

Relation graph of ARROW-1Z2-ELL

18AUG8S

50

M. Reinfrank

8 Filtering Algorithms Revisited

8 Filtering Algorithms Revisited

In this chapter, I am going to discuss several filtering
algorithms using the vocabulary develtoped in the chapters six
and seven. A basic filtering operator 1is introduced. After a
review of the original Waltz~algorithm [Waltz-72], I briefly
survey the synchronized parallel version developed by Azriel
Rosenfeld [RosenfeLd\HummeLlZucker~?6]. In the next chapter,
then, I will give a somewhat more rigorous specification of
SCENELABs Llabelling procedure and prove that it is correct.

8 1 A Basic Operator

A basic operation that is, with some modifications, performed
by every filtering procedure is to adjust the current Llabhelling
of a junction w.r.t. to the labelling of one of its neighbors.

Definition 8.1 [T-operators]

Let LP be a labelling problem. For two adjacent junctions
a,b€J, let the operator I's"(a,b) be defined as follows:

e LP-1 =¥ LP=IL
rica) = I(a) \N { ¢ | =3 ¢ € I(hb) that matches <)
Yx¥a: PT(x) = I(x)

Such a T"'-operator 1is ‘correct' in the sense that i1t does not
remove Llabels belonging to the solution I* of LP for its oun
sake.

Lemma 8.1 [preservation of I*-subsumption]

Let LP be a labelling problem, I€LP-I. Let T'=sT"'(a,b) be as in
definition 8.%.

If I* ¢ I then I* C T'I.
Proof (indirect)

Suppose that IX*ErrI. Then there is a junction x and a
label ¢ € IF(x)\I'I(x). If x*¥a we are done, since
FI(x)=I1(x), and hence I*(x)EI(x).

Therefore, assume »=a. By definition of I,

Frica) = I(a)\{ g I H is not matched by any » € I(h)}.
If I¥(a)¢I(a) we are done. Otherwise, let ¢ € 1*(a) has
been removed by T'. This means that there is no ¢ € I(b)
that matches ¢. Since ¢ € I¥(a), there is at least one
such ¢ € I7™(b). This shows that I*(h)&I(b). Hence, n
any case, 17¢T.

18AUG8S 51 M. Reinfrank

8 Filtering Algorithms Revisited

Corollary 8.2 [iterated preservation of I¥-subsumption]

Let LP be a Llabelling problen, relLp—1. Let (a; ,b;),
1= 525 ¢ w = 505 be a sequence of pairs of adjacent junctions.
Set M;=r(a;,b;). If I™ € I then I ¢ (", o, .,0...00)1I.

Proof

Obviously, induction on n provides the desired result,
using lemma 8.1.
n

"-operators are also ‘complete’ in the sense that when a
labelling is not altered by the application of any possible such
operator then it is consistent.

Lemma 8,3 [stability implies consistency]

Let LP be a labelling problem. Let (a;,b;), i=1,2,...,n, be
an arbitrary enumeration of all ordered pairs of adjacent
junctions. I.e., for every segment s where p(s)=[a,b], both
(a,h) and (h,a) are enumerated. Set, as above, T".=I'(a;,b;).
1f (r,of,-.40...0">)I =1 then I 1is clc.

Proof

Clearlty, if the precondition holds then, for every
ke{1,2,+..,Nn}, (Fryolfy, -10.:+.7,91 = I holds, too. For an
arbitrary junction a, we show that I 1s locally con-
sistent at a. Let adj(a)={b,,...,bp}. For every such

neighbor b;, the operator T (a,b;) occurs 11 the
enumeration. Thus, we have
vhbeadj(a): T(a,b)I(a) = I(ay. By the definition of T,
this means that, for every neighbor b of a, the set { <
€ I(a) | ¢ is not matched by a ¢ € I(b) } is empty. Or,

the other way round, every lahel < at a i1s matched by
at least one label ¢ at each of its neighbors. I.e., 1
15 locally consistent at a and, as the same arguments
apply to arbitrary junctions, I is clc.

n

Corollary 8.2 and lemma 8.3, taken together, suggest the
following overall structure of a tiltering algorithm: First,
assign to every junction the corresponding dictionary page.
Second, for an enumeration of all pairs of adjacent junctions,
iteratively apply the corresponding sequence of TI'—operators, un-
til no more deletions occur (figure 6.1).

18AUG8S 52 M. Reinfrank

8 Filtering Algorithms Revisited

let (a,;,b;), 1i=1,2,...n, be an enumeration of
all pairs of adjacent junctions.

begin

for a€Jd do
Ita):=L(fig(a);

repeat
I1':=1;
for i:=1..n do
I:=T‘(a,~,b;)I;

until I=1"

end.

Figure 8.1: Basic version of a filtering algorithm

Theorem 8.4 [correctness of BASIC-FILTER]

When working on a labelling problem LP, BASIC-FILTER ter-
minates after a finite number of iterations and provides the
maximal clc labelling I™ of LP.

Proof

Clearly, after the initial setting I=I-INIT holds.
Since T"—~operations perform only deletions, if any, we
have ICI-INIT, for every subsequently reached staqe.
Suppose that the procedure terminates with '=1.. By
view of corollary 8.2, e = 9 Furtnermore, lemma 3.3
says, I is clc. Thus, we have:

I1* ¢ I € I-INIT, and I is clc
By view of the maximality of I¥, we conclude that I1=1%.

It remains to show that BASIC~-FILTER terminates. To see
this, note that I-INIT is finite, and that *the
resulting sequence of intermediate labellings is
monotonically decreasing in that ICI' holds after every
jteration. Henceforth, the termination condition can
dnty lbe violated 7initely many times.

18AUG8S 53 M. Reinfrank

8 Filtering Algorithms Revisited

8.2 The Waltz-Procedure

As I have already informally introduced the original Waltz-
algorithm in chapter 3, I just indicate one possible realization
in some linear pseudo-code notation, without further explanation
(figure 8.2). A call adjust(a,b) realizes a I"'operator T'(a,b),
plus the corresponding propagative calls for the neighbors of a.
Notice that the adjust calls here follow a queue-based
scheduling, a stack-based organization 1s also possible.

The Waltz-procedure differs from our prototype algorithm
mainly in two aspects. Firstly, there is some definite control
regime that guides the application of r-tike operators.
Secondly, 1t works only with partial Llabellings, namely of those
junctions being marked ‘'visited'. However, to require the
labelling of a Jjunction to be locally consistent w.r.t. the
labellings of some but not necessarily all of its neighbors 1is
equivalent to Local consistency (w.r.t. all of the neighbors)
where the neighbors not considered carry their entire Llabel
universe I-UNIV.

18AUG8S 54 M. Reinfrank

8 Filtering Algorithms Revisited

procedure WALTZ (labelling problem: LP);

var labelling: I;
var List-of-junction-pairs: CHECK-LIST;

procedure ADJUST (junction: a,h)

var set of labels: I°';

I' := { 8€I(a) | no g€I(b) matches & };

if I' % {} then
I(a) := I(a)y \1I';

for x € adj(a)\{b} do
if marked(x) then

append(x,a) to CHECK-LIST;
endif;
endfor;
endif;

endprocedure ADJUST;
for a € J do

I(a) := L(fig(a));
mark(a);

for b € adj(a) do
if marked(b) then

I¢a) := Ita) \ { ¢| no e€I(b) matches <)}
append(b,a) to CHECK-LIST;
endif;
endfor;

while CHECK-LIST * empty-list do
ADJUST (head (CHECK-LIST)) ;
CHECK-LIST := tail(CHECK-LIST);
enduwhile;

endfor;

endprocedure WALTZ;

Figure 8.2: A possible realization of the
Waltz-algorithm

Definition 8_2 [universal completion]

Let

LP be a Lahelling problem, KgQJ. Given a partial

18AUG8S

55 M. Reinfrank

8 Filtering Algorithms Revisited

Defi

Label ling

I- K = PL)
Xx » I(x) € L(fig(x))

we call the mapping ucl defined as below the universal
completion of I.

ucl: J =» P(L)
YXEK: ucl(x)=I(x)
YXE(INK) : ucI(x)=%", n=deg(x)

Notice that wucl is no labelling in the proper sense of the
word.

nition 8.3 [K-partial local consistency]

Let LP be a labelling problem, KCJ. A K-partial labelling I
is called K-partially locally consistent, K-plc in short, if
and onty if the wuniversal completion ucl of I is locally
consistent at every junction a € K.

[}

Let {(a,,2,,...,a,} be the enumeration of J used 1in the Waltz-
procedure. The outer for—-Loop results in a sequence of
{a,,...,apt-partial ltabellings I,, for p=1,2,...n.

Lemma 8,5 [partial consistency of I,]

For every such p, I, is {a,,...ap}t-plc.

Proof (by induction on p)

Let p=1.
ucl, (a,) = L(fig(a,), and V x#a,: ucl, (x)
Hence, ucl, 1is locally consistent at a,.

I-UNIV(x).

Now suppose that Ip is {a,,...,apr-plc, for some
p >= 1.

ucIpya is made locally consistent at ap,; by means of
the inner for-loop. Local consistencey then may only be
violated at some neighbor b of ap,,., where the source

for the inconsistency Llies at ap., - These in-
consistencies are removed by the corresponding
edjust(b,ap,,)-calls. Possibly resulting in-

consistencies due to these adjustments are resolved by
the subsequent iterations of the while-loop.
-

Corollary 8.6 [local consistency of the final labelling]

I, is cle.

18AUG8S Sé M. Reinfrank

8 Filtering Algorithms Revisited

Proof

Obviously, ucI, =I,.

Lemma 8.7 [iterated I¥-subsumption]
For every p, I* C ucl,.
Proof
Besides the initial assignments I(a) := L(fig(a)), the
procedure performs only T'-operations on the current

labellings. Lemma 8.1 says, '-operations preserve
I¥~subsumption.

Corollary 8.6 and lLemma 8.7 suffice to show that the Waltz-
procedure provides the desired result I*.
Theorem 8,8 [correctness of the Waltz-procedure]

I, = I%.

Proof

By view of lemma 8.7, and as a consequence of the ini-
tial assignments, we have

I ¢ 1, ¢ I-INIT

Furthermore, I, is clc (Corotlary 8.6). As I* is maxi-
mal, we conclude that I, € I*, and hence I, = I%.

By now, we left one Llittle problem unaddressed: the Waltz-
procedure contains a while-loop which might prevent it from ter-
mination. We argue that the check-list may 1increase only
finitely many times within the while-loop, as a consedauence of
some label(s) being eliminated, while it decreases during every
iteration of the Lloop. Additionally, when the loop is entered,
the check-list will always have some finite length.

8 3 Rosenfelds Version

Azriel Rosenfeld and his colleagues from the University of
Maryland [Rosenfeld|Hummel|Zucker-76] have pointed out that the
very nature of a labelling problem favors a parallel solution
which, 1n fact, turns out to be convincincly simple.

Given an actual labelling I, their algorithm simultaneously
removes from every junction all those Llabels for which there 1is
some neighbor having no matching Llabel.

18AUG8S 5T M. Reinfrank

3 Filtering Algorithms Revisited

Definition 8,4 "A-operator]
Let LP he a labelling problem. The &-operator is defined as

6: LP-I - LP-I

I » &l
where
ol(a) = I(a) \ { s | 3 b € adj(a) s.t.
-3 ¢ € I(b) s.t. ¢ matches s }.

Thus, for every pair (a,b) of adjacent junctions, & removes the
labels at b being not matched by a label at a and vice versa.
I.e., an evaluation of & corresponds to a simultaneous evalu-
ation of the I'—operators I"(a,b) for every (ordered) pair of
adjacent junctinns.

With arguments similar to those used in the lemmata 8.1 and
8.3, one can show that an iterated application of & to the ini-
tial labelling I-INIT until the resulting labelling becomes sta-
ble provides the solution I¥* of a labelling problem.

Theorem 8.9 [correctness of Rosenfelds version]

Let LP be a labelling problenm. Define a sequence I,, neN of
labellings as follows:

I, = I-INIT
Iivyr = &I
Then, for some finite n, I, = I.,.,, and I, = I*.

Proof (Rosenfeld)

First, observe that for every n, I,,, € I,. As I-INIT
is finite, the sequence monotonically converges to some
finite subset, say I', of I-INIT.

Second, the definition of & assures that for every n21,
and for every a € J, the labelling I, is locally con-
sistent at a w.r.t. to the labelling I,., of all
neighbors b of a. Once I, equals I,.,, I, is locally
consistent at every a, and hence it 1§ clc. For a
detailed proof, see [RosenfeLleummeL|Zucker—?6].

18AUG8S 58 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

9 SCENELABs Asynchrouncus Labelling Algqorithm

Our solution, as discussed in Part B of this paper, is in some
sense a hon-compromising continuation of the development from
the original sequential version through Rosendfelds synchronized
parallel version. The motivation thereof is twofold.

- Expected Speed-up: Firstly, there i1s an expected speed-up.
On one hand, in some regions of the drawing, restrictive
constraints could be propagated relatively far but are re-
tained until the next global, common step. on the other
hand, there may be some regions being processed by any
global step although no additional constraints can he
evaluated. Thus, why not omit the synchronization overhead
that is both costly and restrictive?

- Ease of Renresentation: Secondly, it is an issue of
representational adequacy. Filtering algorithms, whether
sequential or paratlel, with or without a global control
regime, can only make a labelling locally consistent. So, I
find it more convenient to look at Llabelling problems
through the paradigm of societies of agents, where every
local processing unit is responsible for keeping 1ts owuwn,
local labelling consistent w.r.t. to all of its neighbors.

Notice that the same arguments, expected speed-up and
‘natural’ view of the problem, also have motivated the develop-
ment of a synchronized parallel version 1in comparison to a
sequential version. The speed-up argument, however, remains
somewhat hypothetical as long as there are no real, physically
distributed realizations trunning on asynchronously coupled
processors, or at least some appropriate performance measures
that take the communication overnhead into account.

9 1 The DOperations of lLocal Analysts

Recall that the internal state of a CSSA-agent 1is given by
variable/value pairs, and that state transactions are performed
by CSSA-operations being executed after the receipt of an appro-
pi~iate message. Both the total of possible states and (possibly
parametrized) transactions are specified within the cor-
responding CSSA-scripts from which the concrete agents are in-
stantiated by generator-expressions (see section 4.2).

The keywords used in the descriptions below form a small sub-
set of a documentation language I have developed and used for an
implementation of SCENELAB [Reinfrank-83J]. I the sequel, we will
refer to a LOCAL ANALYST that works on the labelling of a junc-
tion a by analyst(a). Every such agent has internal represen-—
tations of the segment Llanels I, the matching function match,
and the ordered set of adjacent junctions adj(a). Furthermceore,
it manipulates the reprecsentation of a set I(a)<i”, n=deg(a), of
junction Llabels, where the value of I(a) represents the local
labelting of a as has been evaluated thus far by analyst(a). For

18AUG8S 59 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

the sake of simplicity, I do not distinguish between objects and
their internal representations here.

Definition 9_1
[junction labels inducing a specific segment label]

For £, adj(a), and a set I(a)CI", n=deg(a), let

M(s,b,I(a)) = { ¢ € I(a)]|
S = (Sy, «ve 6 1,9,8 41, ~0e , S,)

adjla) = Oy, vwsw sbpog. B, Bisgs «oa LB) 3

I.e., M(<¢,b,I(a)) consists of those labels in I(a) that in-
duce the segment label ¢ for the segment joining a and b.

Basically, an agent analyst(a) can perform two different actions
to manipulate labellings. Firstly, it can remove such a set
M(s,h,I(a)) from its current labelling. Secondly, it can tell a
neighbor b about the fact that such a set has been eliminated
and , hence, b should detete M(match(s),a,I(h)).

These actions are performed by means of the CSSA-operations
INIT, START, and PROPAGATE. The effects of these operations,
when executed by analyst(a), are described below. The condition

is-sent (OPERATION (PARAMETERS) to ADDRESSEE)

means that the corresponding message is issued during the oper-
ation.

operation INIT(X, adj(a), I-INIT(a), match, ...) 1is

comment: initializes the variables of analyst(a). The
additional parameters are irrelevant here.

post-INIT: I(a) = I-INIT(a)
¥, adj(a),match, and I-INIT(a) are correct w.r.t.
to the given lahelling problem LP currently in work.

endoperation;

operation START 1is

comment: propagates the initial constraints induced by the
assignment I(a) := I-INIT(a), as done by INIT.

pre-START: I(a) = I-INIT(a);
post-START: V¥V <€ V beadj(a):
is-sent (PROPAGATE (match (<) ,a) to analyst (b))

if and only if
M(s,b,I-INIT(a)) = {}

18AUG85 60 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

endoperation;

operation PROPAGATE(S,b) 1is
comment: removes all labels from I(a) that induce ¢ for the
segment joining a with b, and immediately propagates
resulting additional constraints, if any.

let: i(I(a)) and o(I(a)) denote the value of I(a) when the
operation is started resp. finished.

Post-PROPAGATE: o(I(a)) = j(I(a)) \ M(<,b,i(I(a))
VQeEL VYVce€adj (a)
is-sent (PROPAGATE (match(¢),a) to analyst(c))
if and only if
M(e,c,i(I(a)))*{} and M(e,c,o(I(a)))={}

endoperation;

Notice that the message
send (PROPAGATE (match(e),a) to analyst (b)) is not necessary in
PROPAGATE. Therefore, it 18 suppressed 1n the real implemen-

tation. Furthermore, to reduce the number of messages, one could
pack all the messages sent during one START or PROPAGATE trans-
action to one agent b into a single message
PROPAGATE ({S,,...,$p},a).

9 2 Snapshots Replace Global States

Clearly, the specifications above do not allow for a rigorous
verification of SCENELAB. Notice e.g. that the post-conditions
cannot be shoun from the pre-conditions and the code alone. Even
if we assume that atl of these post-conditions, in fact, do
hold, we need some additional assumptions about the global sys—
tem structure and behavior. In particular, we will assume that

-~ The operations being executed by every agent analyst (a)
satisfy the pathcondition INIT;START; (PROPAGATE) ™.

- There are no PROPAGATE-messages besides those sent within
START and PROPAGATE transactions. I.e. we do not consider
PROPAGATE messages sent by thne SUPERVISOR as a consequence

of an EXCLUDE-command. In fact, such exclusions initiated
by the user medify the underlying lakelling probiem and 1ts
result I7.

The post-INIT condition says that the network is really
isomorphic to the Lline drawing, and that the labellings are cor-
rectly initialized. Furthermore, recall our postulate that every
message, especially the PROPAGATE-messages, once sent are
eventuatly received and processed.

18AUGS8S 61 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

Based on these assumptions, we will show the following claim.
Claim 9.1 [correctness of SCENELABs labelling algorithm]

When working on a labelling problem LP, the constraint net-
work of SCENELAB eventually comes to a halt, and the Llocal
labellings I(a) then represent the solution I* of LP.

The versions of filtering procedures discussed in the preceding
chapter could be adequately represented in terms of intermediate
labellings and operators that modify these intermediate labell-
ings. In the asynchronous case, there are no such well-defined
intermediate lLabellings. Basically, the PROPAGATE-messages sent
by analyst(a) to analyst(b) during one START or PROPAGATE trans-
action realize a T-operator T'(b,a). However, the adjustments are
performed after some finite delay. Asking around every analyst
for 1ts current local Llahelling may provide a chaotic result,
since an unknown number of messages may be still on the way.

The basic problem hereby is the tack of an observable globat
state, as we have already discussed in chapter 4. Moreover,
there is also no global system time observable by any of the
agents. Such a global time could be used to assess past global
states. To get things right: we can postulate a globhal time
w.r.t. to, say, the users watch or so. However, as communication
always 1involves some message transmission time, this clock
cannot be simultaneously assessed by the agents. Hence, local
clocks only can he synchronized with respect to each other up to
some non-negligible fault-tolerance. Synchronization of real
time clocks in distributed environments i1s discussed e.g. by
Lecslie Lamport [Lamport-7817].

The 1inobservability of simultaneous global states leads us to
the introduction of snapshots as a substitute for such states.
Intuitively, a snapshot is a possible result of asking around
every agent for its actual local state. Recall that there is a
one-to—-one correspondence between messages and transactions in
that transactions are induced by the the receipt of messages and
every message is eventually received. Given a network of LOCAL
ANALYSTS working on a labelling problem, we restrict our con-
siderations to transcations belonging to the kernel filtering
algorithm, and to their effects unon those parts of the local
states that represent the local labellings. Furthermore, we will
condense the sequence of an INIT-transaction and a START-
transaction into one single INIT;START-transaction. This does
not make any difficulties, since the INIT-transactions only
leads to a modification of the state but does not send any
messages, while a START-transcation only sends messages, but
does not modify the state. From a conceptual point of view, such
a combined INIT;START transaction is very much lLike a PROPAGATE
transaction: it "removes" labels from a hypothetical original
labelling I-UNIV(2a), and immddiately propagates the resulting
constraints.

18AUG85 62 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

Definition 9_2 [F-transactions and F-states]

The F-TRANSACTIONS performed by SCENELABs constraint network
consist of

- for every analyst(a), an initial INIT;START-transaction

- exactly those PROPAGATE-transactions performed by an
analyst(a) as a consequence of a message sent by another
LOCAL ANALYST, say, analyst(b).

The F-STATES consist of

- for every analyst(a), an original state S, it is within
after being created by the SUPERVISOR

-~ every state of an analyst(a) that results from a transac-
tion T € F-TRANSACTIONS.

Notation [state transitions]

Let T be a transaction performed by an agent analyst(a),
leading to a state transition from S to S'. We then urite

a:: § =T=>» S

Usually, if it is clear or unimportant which agent performs
T, we omit a.
-

Every LOCAL ANALYST, then, goes through a sequence of stable
states and transactions of the form

a:: So -—INIT;START-> §; -PROPAGATE-> S, -—-PROPAGATE->
Ss

Such a sequence 1nduces a sequence of local ltabellings at a:

1,(a) = I -UNIV(a)
I,(a) = I-INIT(a)
I,..,(¢a) = I, (a) \ M(<¢,b,I,(a)y,

where T,,, = PROPAGATE (&,b)

Definition 9 3 [snapshot]

Let a;,a;,...,2, be an enumeration of J. A snapshot
{02 CBy)s Tyo@2), 0T I,,(a,)} is composed of local
labellings I,; (a;) being reached after the k;'s transaction
of analyst(a;).

|

18AUG8S 63 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

A
|, (a)
lo (Q)

ly (&)
[y (&)

Iy (c)
|4 (€)

Figure 9.1: A snapshot {[3(.%',(0%'.(:)J lL(J)}

We now can define termination conditions, either event-oriented
or state-oriented, in terms of properties of snapshots.

Definition 9.4 [satisfactory and final snapshots]

A snapshot 1is satisfactory 1f the corresponding labelling
equals I%.

A snapshot is final if there is no junction a where the k-th

local labelling I, (a) 1S in the snapshot such that
analyst (a) performs another transaction T, € F-TRANSACTIONS,
p>k.

Note that the definition of a final snapshot relativizes ter-
mination to F-TRANSACTIONS.

Independently from any global system clock, we can define a
partial ordering upon transactions that reflects the
cause/effect relationships between them.

Definition 9 5 [is-caused-by partial order of F-transactions]
Let T,T' € F-TRANSACTIONS, not necessarily being performed
by two different agents. We say that T 1s caused by T° if

and only if the message leading to T has been sent within
T'. We urite

T ich T

18AUG8S 64 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

Obviously, icbh s a irreflexive partial ordering of
F-TRANSACTIONS.

Lemma 9,1 [icb-decreasing chains]

For every T € F-TRANSACTIONS, there 1s a unique ich-
decreasing chain

T=T, 1¢h T,y d€b ... igb T,

downwards from T, and this chain 1s bound by a
INIT;START~transaction T,.

Proof

Obviously, every PROPAGATE-transaction is caused ex-
actly by one other transaction, that is either a
PROPAGATE-transaction, too, or an
INIT;START-transaction. INIT;START-transactions are
caused by transactions of the SUPERVISOR.

If we extend F-TRANSACTIONS by one addtional element that stands
for the SUPERVISOR-transaction sending the INIT;START-messages,
we get the following tree-structure of the partially ordered set
(F-TRANSACTIONS, ich) « Notice that the INIT;START-transctions
are Jjust the icb-minimal transactions (figure 9.2).

F-TRaNSACTIONS

[\

SUPERVISOR
TRANS ACTION

1e
o o

\
{
{

‘ @ = \NIT START O = PRoPARATE

Figure 9.2: Structure of the icb partial order of
F-TRANSACTIONS

We define yet another partial ordering for transactions, hased
on local features.

18AUG8S 65 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

Definition 9_6 [is-locally-after partial order]

Let T,T' € F~TRANSACTIONS. We say that T is locally after
T', in signs

T ila T°
if and only if there 1s a junction a such that

ar: Sy =T'™> Spsy ~T=2 Syao

Notice that both definitions are consistent with the flow of
time, w.r.t. to a non-observable globhal time, in that T ich T°
and T ila T° imply that T begins strictly after T'. This 1is
guaranteed by the fact that message transmission 1is time-
comsuming (for T ich T'), resp. by the fact that transactions
are time-consuming and may not overtap (for T ila T'). To give a
full proof of this intuitively correct notion, however, one
would have to establish a correspondence between transactions
and intervals of time on some time axis, or to associate every
transaction with a pair [beg(T), end(T)] of points of time. Here
again, we emphasize that we can postulate but not practically
determine such a correspondence.

Definition 9.7 [partial ordering of F-transactions]
Let icb and ila be defined as above. We say that a transac-
tion T is greater than 7', In signs T >> T', if and only 1f
there 1s a sequence
Ty=T ry T, rp Tz ry o0 ooy T,=T7,

where r; € {ich, ila}

I.e., >> is the transitive closure of (ich U ica)

Lemma 9.2 [<<-minimal transactions]

A transaction T € F-TRANSACTIONS is <<-minimal in
F-TRANSACTIONS if and only i f T 18 an
INIT;START-transaction.

Proof
Let T be an INIT;START-transaction. Then T has neither
an ich-predecessor nor an ila-predecessor in

F-TRANSACTIONS.

Conversely, if T is a <<-minimal transaction, it cannot
hbe a PROPAGATE-transaction because every PROPAGATE-

transaction has a unique icbh precdecessor in
F-TRANSACTIONS and, hence, at least one <<-predecessor.
Thus, if T is <<-minimal it must be an

18AUGS8S 66 M. Reinfrank

9 SCENELABs Asynchrounous Labeliing Algorithm

INIT;START-transaction.

Leslie Lamport [Lamport-78] discussed orderings of events in
distributed systems that are <closely related to <<. A more
detailed representational formalism for the temporal behavior of
distributed systems has been developed by James F. Allen
[Atlen-831]. He distinguishes between 7 possible temporatl
relationships and their inverses betuween two intervals of time,
such as meets, overlaps etc... Hans Voss [Voss—85] makes exten-—
sive use of an extension of Allen's technique to provide
gualitatitve descriptions of the temnoral and causal aspects of
techno-physical systems, being represented by CSSA-lLike models.
These issues, however, lie considerably beyond the scope of the
present paper.

9.3 Towards a Correctness Proof for SCENELAB

The next lemma is central to our proof for SCENELAB's correct-
ness.

Lemma 9.3 [cause—-effect of PROPAGATE-messages]

Let a€J, and let I1I,(a) be the n-th local labelling, evalu-
ated by analyst(a).

Y S€L V bheadj (a):

M(s,b,I, (a)) = {}

if and only if
3 k<n: analyst (a) has sent a message
PROPAGATE (match (¢) ,a) to analyst (b) during 1it's k-th
transaction T, .

Proof

Since transactions only remove but never add labels to
I1(a), and I,(a) = I-UNIV(a), it must be the case that

M(s,b,I,(a)) = {}
if and onlty if
3 k€n s.t. M(s,b,I,_.,(a)) * {} and
Mic,b, I, (a)) = {}

Note that for every p2k, M(S,b,I (a)) = {}.

The specifications of PROPAGATE and INIT;START,
together with the restrictions to F-TRANSACTIONS, say
that exactly one message PROPAGATE(match (<) ,a) has been
sent during the f{ransaction T, to analyst(b) by
analyst(a).

Conversely, let anatyst(a) have sent this message

18AUG85 67 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

during T,. This is only done when the set M(g,b,I, (a))
has become empty during the transaction. Cleartly, it
remains empty afterwarcs. Hence, for any n2k,
M(s,b,I,(a)) 1s empty.

Corollary 9.4 [SCENELABs kernel algorithm terminates]

When working on a labelling problem LP, the constraint net-
work oif SCENELAB sends and processes only a finite number of
messages, and therefore reaches a final snapshot.

Proof

It obviously follows from lemma 9.3, by view of the
finiteness of both J and L, that the numbher of
PROPAGATE-transactions is finite. Moreover, there are
also onlty a finite number of INIT;START-messages to be
processed (exactly one per junction).

Lemma 9.5 [final snapshots and local consistency]
Every final snapshot is clc.
Proof (indirect)

Suppose that the labelling induced by a final snapshot
ic not clc. Then there are two adjacent junctions a,b
such that for their current lahellings I, (a), I.,(b) 1in
that particular snapshot the following holds

M(S,h,In(a)) = {}
and
M(match(s),a,Iq(M) + {}

Lemma 9.3 now says that analyst(a) must have sent a
message PROPAGATE(match(s),a) to analyst(b). However,
analyst(h) cannot yet have received this message, by
view of post-PROPAGATE. We conclude that the snapshot
is not final.

o

Lemma 9.6 [no spontaneous removals of I¥*-labels]

Let a transaction T, where a:: S, -T-> §S_,, remove a label ¢
€ I*. Then there must bhe a neighbor b € adj(a) such that a
transaction T'<K<T, where bassg Ry —T'=> Ried ., has removed

another Llabel ¢ € I*.

Proof

Clearly, T cannot be an INIT;START-transaction. Thus,

18AUG8S 68 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithm

let T be a transaction PROPAGATE(S,b) of analyst(a).
Lemma 9.3 says that the set Mimatch(s),a,I(h)) has
become empty exactly during the transaction, say T1'',
of analyst(h), in which this message has been sent. By
definition of <<, T'" << T. Furthermore, there is at
least one e € 1%*(b) matching S. Hence,
Mimatch(s),a,I, (b)) # {}. This ¢ has been removed hy
analyst(b) either during T'', or by another, previous
transaction T' << T'"'.

]
Corollary 9.7 [(preservation of I1*-subsumption]

No transaction T € F-TRANSACTIONS removes a label belonging
to 1%,

Proof
The claim is clear for INIT;START transactions. If T is
a PROPAGATE transaction, iterated application of lemma

9.6 requires the existence of a <<-decreasing chain

TaT, 55 Tueg X5 «o0ssas >> T,

j
where every T, removes a label belonging to I*¥. Every
such chain has an INIT;START transaction as lower bound
(lemma 9.2)Y, and this is an obvious contradiction.

Corollary 9.8 [I*-subsumption]
Every snapshot subsumes I*.

Proof

This is an obvious consequence of corollary 9.7.

Lemma 9,9 [I-INIT-containment]

Every snapshot 1s subsumed by I-INIT.

Proot
Obvious, from post-INIT, post~START, and post-—
PROPAGATE. I«ies, after an initial assignment
I(a) := I-INIT(a), labels are only eliminated but never
added.

We are now ready to show that SCENELAB, in fact, works cor-
rectly.

18AUG8S 69 M. Reinfrank

9 SCENELABs Asynchrounous Labelling Algorithnm

Theorem 9_ 10 [SCENELAB Works Correctly]
Claim 9.1 holds.

Proof

Corollary 9.4 means that a final snapshot is reached.
Let it represent a labelling I. I 18 €le, as shown in
lemma 9.5. Furthermore, I subsumes I* (corollary 9.8),
and itsetf is contained in I-INIT (lemma 9.9). Thus,
the whole state of arfairs is Like that:

I €¢I ¢ I-INIT, and I is clc.

This shows that I = I%.

18AUG8S 70 M. Reinfrank

10 Conclusive Remarks

10 Conclusive Remarks

SCENELAB evolved from the idea of realizing the Waltz-
algorithm in CSSA, and 1t 1s felt that this goal has been suc-
cesfully achieved. SCENELAB can be used to specify and solve
arbitrary Labelling problems LP. In this last section, I witl
briefly address two further questions. Firstly, do the principal
techniques applied in SCENELAB generalize to Llarger problem
classes and, secondly, is CSSA an adequate tool to realize such
systems?

The first question must be answered both no and yes. SCENELAB,
as it has been implemented, makes extensive use of the simple
structure of the constraint problems defined by Llabelling
problems. Therefore, it does not support more complex constraint
probtems. However, we argue that the key idea of realizing con-
straints by agents, and constraint propagation by message
passing mechanisms generalizes to arbitrary problems that fit
into the scheme of a constraint-directed representation. I have
discussed some of these issues elsewhere [Reinfrank-85].

Currently, a really physically distributed realization of CSSA
is being developed, running on a network of about a dozen 32-bhit
CPU Charles River machines. CSSA-agents can make full use of the
complete processing time of such a machine, when scheduled by an
underlying distributed operation system. Such powerful units
seem adequate to implement a high-level cooperation between e.q.
the SUPERVISOR and the DB-SERVER, while they are 'overskilled’
for such simple and largely uniform constraint processes Like
the LOCAL ANALYSTS. If the constraint netuwork contains con-
siderably more nodes than the computer network, the overhead in-
troduced by the operating system may become too costly.

However, we should deliberately distinguish between the two
gquestions raised here, can a certain class of problems suitably
he attacked by a specific problem solving techniqgue, and is a
particular language or computing system an adequate tool to
realize corresponding solutions.

Acknowledgements

Several people have contributed to the work presented in this
paper. First of all, I would Llike to thank my friend Hans Voss.
Without him, my thesis would never have been started nor com-
pleted. The insights on the distributed termination problem are
largely due to several discussions with Christian Beilken and
Friedemann Mattern. I am thankful to Peter Raulefs for
encouraging me to work on constraints, and for commenting on an
earlier draft of this paper. Finally, I am indepted to my thesis
supervisor, Prof. Joerg Siekmann, who did not hesitate to help
me go through a rather difficult situation that arose shortly
before this thesis has been completed.

18AUG8S 71 M. Reinfrank

Appendix—A Bibliography

Apnendix—A Biblioqraphy

[AI17-1981] Bobrow, Daniel G. (ed.): Special Issue on Computer
Vision. ARTIFICIAL INTELLIGENCE 17 (1981)

[Beilken|Mattern|Reinfrank-851]
Beilken, Christian; Mattern, Friedemann; Reinfrank,
Michael: Verteilte Terminierung, ein wesentlicher
Aspekt der Kontrolle 1in verteilten Systemen (In
German). Forthcoming technical report, SFB VLSI und
Parallelitaet, Univ. Kaiserslautern (Kaiserslautern,
Automn 1985).

[Beilken|Mattern|Spenke-83]
Entwurf und Implementierung von CSSA - Beschreibung
der Sprache, des Compilers und eines
Mehrrechnersimulationssystems (In German). MEMO-SEKI
82-03, Univ. Kaiserslautern (Kaiserslautern,
September 1982)

[Binford-82]
Binford, Thomas A.: Survey of Model-Based Image
Analysis Systems. INTERNATIONAL JOURNAL OF ROBOTICS
RESEARCH 1(1) (1982)

[Bondy |Murty-761]
Bondy, J.A.: Murty, U.S.R. 3 Graph Theory with Ap-
plications. The Macmillan Press Ltd (London, 1976)

[Borning-79]
Borning, Alan: THINGLAB - A Constraint Oriented
Simulation Laboratory. PhD dissertation, Stanford
University (Stanford, 1979)

[Clowes-71] Clowes, M.B.: On Seeing Things. ARTIFICIAL IN-
TELLIGENCE 2 (1971)

[Cohen|Feigenbaum-82]
Cohen, Paul R.; Fejgenbaum, Edward A.: The Handbook
of Artificial Intelligence, Volume III. Pitman Books
Limited (London, 1982)

[Davis|Rosenfeld-80]

Davis, L.S.; Rosenfeld, Azriel: Cooperating
Processes for Low Level Vision: A Survey. TR-851,
CS-Center, Univ. of Maryland (College Park, January
1980)

[deKleer-79]
deK leer, Johan: Causal and Teleogical Reasoning in
Circuit Recognition. TR S29, AI-LAB, Maessachusetts
Institute of Technology (Cambridge, 1979)

[Douglas-82]
Douglas, Robert J.: Computing Occlusion with Locally

18AUGS8S 72 M. Reinfrank

Appendix—A Bibliography

Connected Networks of Parallel Processes. In
Preston; Uhr (eds.): Multicomputers and 1Image
Processing Algorithms and Programs. Academic Press
(New York, 1982)

[Fox et al-83]
Fox, Mark S.; Allen, Bradley P.; Smith, Steven F.;
Strohm, Gay AL ISIS - A Constraint Directed
Reasoning Approach to Job Shop Scheduling.
CHMU-RI-83-3, The Robotics Institute, Carnegie-HMellon
University (Pittsburgh, 1983)

[Freuder-821
Freuder, Eugene: On the Knowledge Required to Label
a Picture Graph. ARTIFICIAL INTELLIGENCE 15 (1982)

[Gaschnig-79]
Gaschnig, J.G.: Perfomance Measurement and Analysis
of Certain Search Algorithms. PhD Thesis, Carnegie-
Mellon University (Pittshurgh, 1979)

[Gosling-83]
Gosling, James: Algebraic Constraints. CMU-
CS~TR-83-132, Carnegie-Mellon University
(Pittsburgh, 19832).

[Haralick|ElLliot-80]
Haralick, R.M.; Elliot, G.L.: Increasing Tree Search
Efficiency for Constraint Satisfaction Problems.
ARTIFICILAL INTELLIGENCE 14, p. 263 (1980)

[HaraLiclehapiro—??]
Haralick, ReMa. Shapiro, L. Goi The Consistent
Labelling Problem, Part I. IEEE TRANSACTIONS ON PAMI
1(2) (1979)

(Haralick|Shapiro-801]
Haralick, R.-M.; Shapiro, LelGas The Consistent
Labelling Problem, Part II. IEEE TRANSACTIONS ON
PAMI 2(3) (4980)

[Hein-82]1] Hein, Uuwe: Constraints and Event Sequences. LITH-
MAT=R=82=02, Linkoeping University (Linkoeping,
Sweden, 1932)

[Huffman-717]
Huf fman D.Ax: Imposcsible Objects as Nonsense
Sentences. MACHINE INTELLIGENCE 6 (Edinburgh, 1971)

[Kanade-80] Kanade, T wi A Theory of Origami World. ARTIFICIAL
INTELLIGENCE 13(3), p.279 (1980)

[Kornfeld-81]
Kornfeld, W.A.: The Use of Parallelism to Implement
a Heuristic Search. Proc. 7th IJCAI (1981)

1T8AUG8S5 T3 M. Reinfrank

Appendix~A Bibliography

[Lamport-78]
Lamport, Leslie: Time, Clocks, and the Ordering of
Events in a Distributed System. COMMUNICATIONS OF
THE ACM 21(7) (July 1978)

[Mackworth-73]
Mackworth, Alan | Interpreting Pictures of
Polyhedral Scenes. ARTIFICIAL INTELLIGENCE &4 (1973)

{(Mackworth-77a]
Mackworth, Alan K.: How to See a Simple World - An
Exegesis of Some Computer Programs for Scene
Analysis. In Elcock/Michie (eds.): MACHINE IN-
TELLIGENCE 8, pp. 510-537 (1977)

[Mackworth-77b]

Mackworth, Alan K.: Consistency in Networks of
Relations. ARTIFICIAL INTELLIGENCE 8 ppn. 929-118
(1977)

[Mackworth-83]
Mackworth, Alan K.: On Seeing Things Again. Proc.
8th IJCAI (1983)

[Mackworth|Freuder-85]
Mackworth, Alan K.; Freuder, Eugene: The Complexity
of Some Polynomial Network Consistency Algorithms
for Constraint Satisfaction Problems. ARTIFICIAL IN-
TELLIGENCE 25, p. 65 (1985)

[Marr-82] Marr, David (posth.): VISION. W.H. Freeman (San
Francisco, 1982)

[Mattern|Beilken-85]
Mattern, Friedemann; Beilken, Christian: The Dis-
tributed Programming Language CSSA - A Very Short
Introduction. Interner Bericht 123/85, Univ.
Kaiserslautern (Kaiserslautern, January 1985)

[McAllester-80]
McAllester, David A.: An Outlook on Truth Main-
tenance. AI-LAB IMemo 551, AI-LAB, Massachusetts In-
stitute of Technology (Cambridge, 1980)

[Nehmer et al-85]
Nehmer, J.; Beilken, C.; Haban, D.; Massar, R.;
Mattern, F.; Rombach, D.; Stamen, F.-J.; VMWeitz, B.;
Wybranietz, D.: The Multicomputer Project INCAS -
Objectives and Basic Concepts. SFB 124-Report 11/85
Univ. Kaiserslautern (Kaisersltautern, 1985)

[Nudel-83] Nudel, Bernard: Consistent Labelling Problems and
their Algorithms: Expected Complexities and Theory-
Based Heuristics. ARTIFICIAL INTELLIGENCE 21 (1983)

18AUGS8S5 T4 M. Reinfrank

Appendix—-A Bibliography

[Reinfrank-83]
Reinfrank, Michael Th.: The Implementation of
SCENELAB (an annotated CSSA-program). Projektarbeit,
Universitaet Kaiserslautern, (Kaiserslautern, July
1983)

[Reinfrank—84]

Reinfrank, Michael Th.: Distributed Constraint
Propagation - A Case Study. MEMO-SEKI-84-07,
Universitaet Kaiserslautern (Kaiserslautern,

September 1984)

[Reinfrank-85]
Reinfrank, Michael Th.: An Introduction to Non-
Monotonic Reasoning. MEMO-SEKI-85-02, Univ.
Kaiserslautern (Kaiserslautern, June 1985)

[Rosenfeld|Hummel |Zucker-76]
Rosenfeld, Azriel; Hummel, RebBois Zucker, Stephen:
Scene Labelling by Relaxation Operations. 1EEE
TRANSACTIONS ON SMC 6(6) (1976)

[Sandewal [-83]
Sandewall, Erik: Partial Models, Attribute
Propagation Systems, and Non-Monotonic Semantics.
LITH-IDA-R-83-01, Dept. of CS, Linkoeping University
(Linkoeping, Sweden, December 1983)

[Steele-80] Steete, Guy L.: The Definition and Implementation of
a Computer Language Based on Constraints. TR 595,
AI-LAB, Massachucsetts Institute of Technology
(Cambridge, 1980)

[Steels-82] Steels, Luc: Constraints as Consultants. Proc.
ECAI-82, pp. 75-78 (1982)

[Stefik-81] Stefik, Mark: Planning with Constraints (MOLGEN:
PART I). ARTIFICIAL INTELLIGENCE 16 (1981)

[Stallman|Sussman-77]
Stallman, Richard M.; Sussman, Gerald J.: Forward
Reasoning and Dependency-Directed Backtracking in a
System for Computer-Aided Analysis. ARTIFICIAL IN-
TELLIGENCE 9 (1977

[Sugihara-82]
Sugihara, K.: Mathematical Structures of Line Draw-
ings of Polyhedrons - Towards Man-Machine Communi-
cation by Means of Line Drawings. IEEE TRANSACTIONS
ON PAMI 4(5) (1982)

[Sussman|Steele-80]
Sussman, Gerald; Steele, Guy: CONSTRAINTS - A Lan-
guage for Expressing Altmost-Hierarchical Descrip-
tions. ARTIFICIAL INTELLIGENCE 14 pp. 1-40 (1980)

18AUGS8S 5 M. Reinfrank

Appendix—A Bibliography

[Tenenbaum|Barrow-76]
Tenenbaum, J.M.; Barrow, H.G.: 1GS: A Paradigm for
Integrating Image Segmentation and Interpretation.
Proc. 3rd International Joint Conference on Pattern
Recognition, pp. 504-513 (1976)

[Voss—-82] Voss, Hans: Programming 1in a Distributed Environ-
ment: A Collection of CSSA Examples. MEMO-
SEKI-82-01, Univ. Kaiserstautern

(Kaiserslautern, 1982)

[Voss-85] Voss, Hans: Representing and Analyzing Time and
Causality in HIQUAL Models. Proc. of the 1985 German
Workshop on Artificial Intelligence (to appear)

[Waltz-72] Wattz, David: Generating Semantic Descriptions from
Drawings of Scenes with Shadows. MAC-TR 271,
Massachusetts Institute of Technology (Cambridge,
1972) . This paper has been reprinted in

[Winston-75].

[Winston-75]
Winston, Patrick H. (ed.): The Psychology of Compu-
ter Vision. McGraw Hill (New York, 1975)

[(Winston~-84]
Winston, Patrick H.: Artificial Intelligence, 2nd
edition. Addison-Wesley (1984)

18AUG85 76 M. Reinfrank

Appendix—-B Working with SCENELAB

Appendix—-B Working with SCENELAB

When the CSSA-environment is Lloaded, an INTERFACE-agent is
made available for the user. In order to work with SCENELAB, he
then must create both a SUPERVISOR and an LD-SERVER

const agent: SUPERVISOR := new(SUPERVISOR-SCRIPT);
const agent: LD-SERVER := new(LD-SERVER-SCRIPT) ;

After that, he will mainly communicate with these two agents.

If a picture description or a label dictionary is to be read
from a file, these files must be previously edited with the
usual editing facilities, using the desciption language PDL.
Additionally, special I/0O-agents must be created to read these
files:

const agent: LD-READER := new(LD-READER-SCRIPT(LD-FILE));
const agent: PDF-READER :=
new (PDF-READER~-SCRIPT(PDF~FILE)) ;

where LD-FILE and PDF-FILE are supposed to be the corresponding
files. For Llater output, a special writing agent must be
created:

const agent: SDF-WRITER :=
new (SDF-WRITER-SCRIPT(SDF-FILE));

SDF~-FILE here 1s a file where the user wants the final output to
be written (1f any).

Translation of the PDL-input descriptions is initiated by
means of

send INTERPRETE (<source-agent>) to SUPERVISOR|LD-SERVER;

where <source-agent> 1is either the INTERFACE, for interactive
input, or a reader agent. The SUPERVISGR resp. the LD-SERVER
then enters a translation cycle where it requests one PDL-
statement after another from the corresponding source agent and
incrementally generates an internal representation. Such a
request is fulfilled by

send REPLY(PDL-statement) to SUPERVISOR|LD-READER;
Whenever an error 1is detected in such a statement, the source-
agent 18 set to INTERFACE, and an approriate error message 1is
sent. The user then may indicate that he is willing to continue
and correct the fault by

REPLY (*xcont)

or he may stop the translation cycle by

REPLY (*xterm)

18AUG8S 77 M. Reinfrank

Appendix—-B Working with SCENELAB

(or by anything else different from *cont). After correcting a
buggy PDL-statement being supplied from a file, the user may
switch back to the corresponding reader-agent hy
REPLY (*switch)
Here is a grammar of all possible PDL statements.
<PDL-description> -> (<stmt>.)¥*
<stmt> -> <comment> | <cntrlstmt> | <defstmt> | <specstmt>
<comment> -=> &<text-Lline>
<cntrlstmt> => <cntrlhdr>{<cntrllist>)
<cntrlhdr> => *<Zcntrlopn>
<cntrlopn> -> genid | switch | term | cont
genid: makes a number of predefined junction
and segment identifiers available
switch: switches the source-agent
term: terminates the translation cycle
cont: initiates the correcture of a buggy
PDL-statement
<defstmt> ~> <defhdr> <deflist>
<defhdr> => def-<defopn>
<defopn> -> fig | jun | lab | seg
fig: junction figure
jun: junction
Lab: segment Llabel
seg: segment
<deflist>d =-> <defelem>(;<defelem>)™
<defelem> -> <identifier>
<identifier> => <letter>(<letter>|<digit>)*
<specstmt> -> <spechdr> <speclist>
<spechdr> -~-> spec—-<specopn>
<specopn> -> com | deg | fig | gra [tab | res
com: compatibility between segment labels
deg: degree of a figure
gra: (junction picture) graph at a junction

lab: junction Llabels of a figure
res: resulting labelling of a junction

18AUG85 73 M. Reinfrank

Appendix-B Working with SCENELAB

(output statement only)
<speclist> =-> <specelem>(;<specelem>)™
<specelem> -> <arg>:<valtuplelist>
<arg> => <identifier>
<valtuplelist> => «<valtuple>(,<valtuple>)™®
<valtuple> -> <val>(/<val>)™*
<val> => <identifier>

Besides a check for syntactical correctness according to this
grammar, a number of semantical checks are performed, e.g. a
consistency check of the type of identifiers in sepcification
statements.

When the translation phase is terminated, the wuser may in-
ttiate the generation of a corresponding constraint network and
start the propagation mechanism. The most important SCENELAB
commands are:

send INTERPRETE (Ksource-—-agent>) to LD-SERVERIINTERPRETER;

send INIT-NET to SUPERVISOR;
create the constraint network and initialize the LOCAL ANALYSTS

send START-NET to SUPERVISOR;
start the constraint propagation

send CHECK-NET to SUPERVISOR;
freeze the network and initiate a termination check

send RESTART-NET to SUPERVISOR;
restart the constraint propagation after a freeze

send GENERATE-QUTPUT to SUPERVISOR;
initiate the generation of a scene description file that con-
tains the PDL decscription of the l(abelled line-drawing

send EXCLUDE (Klabel>,<junction>,<segment>) to SUPERVISOR;
exclude the lahel <lahel> for the segment <segment>, seen from
the point of view of the junction <junction>

send DISPLAY-LABELS (<junction>) to SUPERVISOR;
the actual labelling of <junction> 1is sent to the INTERFACE

send SHOW-LABELS (<figure>) to LD-SERVER;
the dictionary page of <figure> is sent to the INTERFACE

Furthermore, the CSSA-environment provides a number of addi-
tional facilities that altlow, among other things, to trace the
operations of an agent, to inspect the mailbox of an agent, and
to observe the message passing activities. The latter facility

18AUG8RS 79 M. Reinfrank

Appendix—-B Working with SCENELAB

can be used to trace the entire constraint propagation process.

18AUG8S 80 M. Reinfrank

	SR-1.pdf
	SR-2
	SR-3

