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An Approach T o  Parameterized Continuous Data Types

0 .  Introduction

In this paper l try to point out one possible way to combine two

approaches to abstract data types (adt’s), namely SCOTT’s domains

and the initial algebra approach of the ADJ — group.

( R e f e r e n c e s :  [ADJ 76], [ADJ 77], [ADJ 82], [Rau 79], [Sco 72],
[Sco 76])

S c o t t  h a s  developped an order-theoretic approach to data types

Basically a data type is a domain (usually a complete partial

order (cpo) or a lattice). T h e r e  are basic types like integers,

characters etc. (viewed as_£lat cpo’s) and a method of

constructing n e w  domains from given domains by using the so—
; f ; ;

(sum), ’x (product) and +’
c a l l e d  d o m a i n - c o n s t r u c t o r s  +

continuOus (preserve limits of certain directed setsL

One of the most important tools in constructing domains are the

so—called recursive domain equations. A recursive domain equation

h a s  t h e  form

D §(D)

w h e r e  D i s  t h e  d o m a i n  t o l w z d e f i n e d a m u i § ( n ) m e a n s  t h a t  t h i s s i d e

Il
l

of the equation consists of (previously) defined domains combined

by the constructors ’+’, ’X’, ’ + ’  and of D itself.

The solution of this equation is the_so-called inverse—limit Dw.

Generally D°° is a cpo of (infinite) retraction sequences.

Let P 1 ’ " " P n  denote the previously defined domains used in 5 (n )
and let §:(D) denote the combination of P1,...,Pn as given by

K(D) withOut D.(e.g. if yOu have the equationl7=  5(D) with

5(D) E P1 x P2 + D then K’(D) is Pl x P2).
Now proceed in the following way to solve D = 5(D):
( 1 )  D e f i n e  a s e q u e n c e  o f  d o m a i n s  D 0 ,  D 1 , . . .  b y

(i) no .-= {(n)
(ii) Dk+1 := 5’(Dk).



( 2 )  D e f i n e  a sequence  o f  pa i r s  o f  con t i nuOus  mapp inqs

( r e t r ac t i ons )  ( i k , j k )  where
i k  ‘ Dk * Dk+1 '  j k  ‘ Dk+1 * Dk by

( i )  V denk j k ( i k (d ) )  = d

( i i )  VdeDk+ l  i k ( j k (d ) )  < d

( 3 )  De f i ne  D°° by
Den  : :  { < d k | k > 0  & dkEDk> l  dk  = j ( d k + 1 ) } .

Then  D0° so l ves  D E £ (D )  ( ’ 3 ’  means  i somorphy ! )

W h a t  i s  impo r tan t  he re  i s  t ha t  we  have  a ” c l ea r ”  way  o f

cons t ruc t i ng  new  t ypes  f r om o ld  ones  and  t he  poss ib i l i t y  t o

de f i ne  da ta  t ypes  imp l i c i t l y  ( r eCu rs i ve l y )  by means  o f  r ecu rs i ve
doma in  equa t i ons .  _
Howeve r  i t  i s  no t  a t r i v i a l  t ask  t o  f i nd  t he  r i gh t  r e t r ac t i on

sequences  fo r  a q i ven  domain equa t i on  (o r  fo r  a sys tem o f  doma in

equa t i ons ) .  And  wha t  i s  mo re  we  have  go t  no  way 'o f  de te rm in ing  a

p r i o r i  ( v i a  ax i oms  fo r  examp le )  wha t  t he  ope ra t i ons  on  ou r  t ypes

shou ld  do ;  t ha t  i s  spec i f y i ng  wha t  t hey  a re  i n tended  to  do .

Here  we sha l l  ge t  he lp  f r om the  a l qeb ra ig  app roach  t o  ad t ’ s

name ly  t he  i n i t i a l  a l qeb ra  - app roach  wh i ch  has  been  deve lopped

by  t he  ADJ  g roup .

(References: [ADJ 76], [ADJ 77], [ADJ 82]) ‘

The  a lgeb ra i c  app roach  p rov ides  a means t o  t r ea t  formally
(ma thema t i ca l l y )  t he  re l a t i on  be tween  a p rob lem and  i t s  so lu t i on .

I n  ADJfisv iew  an  ad t  cons i s t s  o f  two  pa r t s  name ly  a syn tac t i ca l
pa r t  t o  desc r i be  t he  “ f o rm“  o f  t he  iflESflEEQ da ta  t ype  ( t he
spec i f i ca t i on )  and  a seman t i ca l  l eve l  o f  mode l s  ( a l geb ras )  wh i ch
sa t i s f y  t he  spec i f i ed  f o rm .



The signaiuie £ =<S,E> with sort — set S and operation — set 2
determines the form o f  the intended data type.

A heterogenous algebra A is a m o d e l  o f  that signature if it has
carrier sets AS for each 588 and operations O A  : Aslx„.XA + A5s n
F o r  e a c h  o s E s l „ . s n ‚ s '

As a unique model we take the tgim-algebra T Z  and state that the

adt defined by  i is the isomorphy-class o f  T Z .

T 2  i s  t h e  iniiiai a l g e b r a  i n  t h e  c l a s s  ( c a t e g o r y )  o f  a l l  £-

alqebras ( @ 4 9 2 ) -

(ifliiiai means that there is a unique i—alqebra homomorphism

hA: T Z  + A for a l l  Z — a l g e b r a s  A).

Usually operations on data types ifligragi with each other.

T h e r e f o r e  ADJ i n t r o d u c e  e q u a t i o n s  ( a x i o m s )  o n  t h e  s y n t a c t i c a l

level t o  express the (intended) interaction between various

operations (e.q. their behaviour).

S o  we come to the notion of specifigaiigg. Let E be a set of
equations where each equation is a pair <L,R> (L,R e T2(X)) + the

free term-algebra o n  the s e t  x o f  generators) where L ,  R are

terms o f  T£(X) which have the same EQEE’

T h e n  a specification i s  a t r iple S p e c  : =  <S‚Z‚E>.

T h e  so—defined adt is the quotient-term—algebig TZ/EE (where E E

denotes the congruence-relation defined by the set of equationsL

Again TZ/EE is initiai in the class (category) of all i—alqebras

whose operations satisfy the equations (for all substitutions of

v a l u e s  for variables). T h i s  c l a s s  i s  denoted b y

é-l-QZJ‘.”

Now there is an important feature in defining new adt’s,

n a mely the concept o f  parameterization. T h e  parameterization-

concept w i l l  be discussed m o r e  explicitly in the following

chapter.'rhus I’ll only  give a rough overview. I n  the sequel let

the class (category) of specifications be denoted by gggg.

Let x and D belong to gggg. Then X is the parametEE-specification
and D the iagggi—specification.

Then a parameterized data type (pdt) or data-type—constructor is

a £53959; P:§lgx + 549% which takes each X-algebra A to a D-
a l g e b r a  R S u c h  t h a t  B i s  t h e  f r e e  D — a l g e b r a  qengiaigg b y  A.



Furthermore P is such  that for a suitable forgetful-functor
U: Aggn + ggqx (each D—algebra i s  taken t o  it’s X—reduct) the

following assumption holds:

v A e lggqxl- IWPHA) & A

With this definition of a data—type-constructor we have given a

unique meaning to pdt’s.

ObviOusly we have no possibility to define adt’s in the sense of

ADJ implicitly v i a  r e c u r s i v e  d o m a i n  e q u a t i o n s .  .

T h e n  w e  m a y  ask: I s  it possible t o  c o m b i n e  the approaches o f

Scott and ADJ in a way that we get advantages from both?

T h e  plan will be following:

- We show how Ehrich and Lipeck [E/L 81] solve algebraic figmaifl

equations for data types without an order-theoretical structure

(simple adt’s).

- T h e n  w e  take the data types suggested by ADJ and enrich them

with an order—theoretical structure. Levy - Maibaum [L/M 82]

show how to get continuous data types in this sense. (The

corresponding carrier sets o f  the algebra a r e  cpo’s and the

operations are required to be continuous.)

I n  t h e  l a s t  c h a p t e r  w e  s h o w  o n e  p o s s i b l e  w a y  t o  c o m e  t o

parameterized continuOus data types defined by algebraic domain

eguations.

T h e  whole plan is not yet worked out, so we give merely a rough

overview pointed out by figure l.
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Chapter £
Specifications, Anr’s and Parameterization

I.l Specification and ADT’s

Following the well known results of the ADJ - group w e  take a

specification Spec to be a triple

Spec = <S,£,E>

where Spec is the set of sorts

2 is the set of operations

and R is the set of equations (axioms).

T h e  p a i r  E : =  < S , E >  i s  c a l l e d  t h e  513535259 o f  t h i s

specification.

The signature belongs to a syntactical level in the sense that it

determines the £95m of the specified data type. Each algebra A

which is supposed to be a model for this specification must have

a carrier—set A S  for each sort 383 and an operation

o: A s l x ” ‘ x A s n  + A S  f o r  e a c h  a e E s l ‚ „ . ‚ s n , s ‘

T h e  set E of equations consists o f  pairs <L,R> where L,R are

t e r m s  b u i l t  f r o m  o p e r a t i o n s  ( o f  t h e  s i g n a t u r e )  a n d  v a r i a b l e s

(from an S - sorted variable — set X). In the categorical view we

want to choose a category whose objects are specifications. But

w e  still need to say which mggphisms should connect various

specifications.

Thus first we say what a signature morphism is.

1 . 1 . 1  Definition

Let E = <S‚E> and E“ = <S’,Z’> be two signatures.

Then a signature-morphism is a pair f=<f > with

( i )  a sort-mapping f s o r t :  S + S

and

(ii) an operation mapping f o p ‘  Z + 2 ’

s u c h  t h a t  if o e 2 8 1 , . . . , s n , s  t h e n

f o p ( ° )  E z f s o r t ( s l ) , . . . , f s o r t ( S n ) . f S O I - ‘ t ( 5 )

sort’fop



With this definition we can build the category of signatures as

objects and signature morphisms as morphisms. W e  denote this

category by ggg.

We are now able to define specification: morphisms which in a

sense take care of a proper translation of gaugtigns from one

specification to another. So we come along with the following

1.1.2 Definition

Let Spec = <S,£,E> and Spec’ = <S’,Z’,E’> be specifications.

Then a specification-morphism

f : Spec + Spec’
is a signature-morphism f=<f > such that

VeeE.f(e) e E ’
sort'fop

I n  t h i s  s e n s e  a s p e c i f i c a t i o n — m o r p h i s m  corresponds to the theory—

morphisg as in [R/G 80].
S o  w e  get the category with specifications as objects and

specification-morphisms as morphisms.'rhis category is a very

important one and as already pointed cut, we denote it by=gggg.

Now some technical results abOut the category of specifications,

which w e  shall use later on. T h e s e  results can be found in the

paper of Ehrich and Lipeck [E/L 81] and thus detailed proofs will
be omitted.

Most of these results have to do with the cocompleteness-property

of §pgg. Cocompleteness means that for any family

(SpecilieI) of specifications in gggg there is a unique object C

in gpg; and a family of gpgg—morphisms 1 i :  Speci * C such that

the following diagram commutes



S p e C O  _ O O  .) S p e c l  _ 0 1  ‘, S p e C 2  _ l  . . . c o .

\ / /In\C/:l/ 12

I n f o r m a l l y  s p e a k i n g  t h i s  means  t h a t  w h e n e v e r  w e  h a v e

s p e c i f i c a t i o n s  S p e c o ,  S p e c 1 ‚ „ .  connec ted  b y  s p e c i f i c a t i o n

m o r p h i s m s  a S p e c i  + S p e c i + 1  w e  c a n  d e t e r m i n e  a u n i q u e

s p e c i f i c a t i g n  C in w h i c h  a l l  s p e c i f i c a t i o n s  S p e c i  c a n  b e

’ e m b e d d e d ’  ( w i t h o u t  l o s s  o f ’ i n f o r m a t i o n ’ )  b y  s p e c i f i c a t i o n

morphisms 1 i :  Speci + C. Furhtermore this ’embedding’ respects
the connection between the specifications Speci, Speci+1 due to

the commutativity property o f  the diagram above.

This means VieI.1-1+100i = 1i

T h e  importance o f  the cocompleteness o f  gggg lies in the fact

that for (SpecilieI) there is a unique specification C which in a

sense ’containes’ all the structure carried by (SpecilieIL

Now the r e s u l t s :

1.1.3 Theorem [E/L 81]

§ n  h a s  coequalizers.

This means that for any pair of Spec-morphisms

f,g: S p e c  + S p e c ’  there exists a unique specification C and a

unique morphism h: Spec’ + C with hOf = hOg.
C and h are such that for any specification C’ and morphism

h’: Spec’ + C’ with h’Of = h'q; there exists a unique morphism

r- C + C ’  such that h ’  = roh.

1.1.4 Thoeggm [E/L 81]

gggg has coproducts.

This means that for any family (SpecilieI) of specifications

there exists a unique object C and a f a m i l y  o f  (coproduct-

10



injections) 1k: Speck + C. These are such that for any object D
a n d  a n y  f a m i l y  ( d k : S p e c k  + D I k e K )  t h e r e  a l w a y s  e x i s t s  a u n i q u e

gpgg—morphism h: C + D such that UksI. hOIk = dk.

1.1.5 Theorem

gpgg is cocomplete.

T ish is a consequence of the preceeding two theorems.

For further discussion it is useful t o  show the construction

of coequalizers and coproducts in gggg.
T h e  coproduct of t w o  specifications Spec = <S‚E‚E> and

S p e c ’  = <S’,Y]E’> i s  s i m p l y  t h e  t r i p l e  b u i l t  f r o m  t h e

disjoint union of the components of Spec and Spec’. We denote it

by Spec + Spec’ : =  <S+S’,Z+Z’,E+E’> (”+“ means disjoint union).

Given the two specifications Spec and Spec’ as above. Furthermore

l e t  f,g: S p e c  + S p e c ’  b e  s p e c i f i c a t i o n — m o r p h i s m s .  T h e n  t h e

coequalizer of f and g is built in the following way:

F i r s t  t a k e  3(8’) t o  b e  t h e  l e a s t  e q u i v a l e n c e  r e l a t i o n  o n  8 ’

generated by the set {<fsortls):gsort(s)>lSES}
Then take 3(2’) to be the least equivalence relation generated by

the set {<fop(o),gop(o)>loe£} which respects 3(S’L 'This means:

By 3 (5 ’ )  the set S ’  is divided into equivalence classes. T h e n

g i v e  each equivalence class a unique new name. T h i s  leads to a
_ "new sort set S . Let o e E s l ‚ „ . ‚ s n ‚ s ‘  T h e n  the sorts sl‚„.,sn‚s

are mapped to the n e w  sorts (in S") denoted by [ f s o r t ( s l ) ] ’ “ "

[fsort(sn)]sort(s)] for the respective equivalence classes of

3(S’).)

W e  had already a e E T h e  corresponding (coequalizer)sl,„.,sn‚s'
o p e r a t i o n  falls into t h e  equivalence c l a s s  [fop(o)] belonging t o

the new operation set £’[fsort(sl)],.u,[fsort(sn)]sort(s)L
T o  get the new operation—set F ' w e  have to

rename the equivalence classes generated by 3(2’) with unique new

operation names. The equation—set E’ is then renamed according

to the previOus renaming of sort— and operation—sets.

11



T h e  coequalizer morphism h (in 1.1.3) is t hen  simply defined by

( 1 )  sort-mapping h s o r t

Vs es . h s o r t ( s  ) := [s ]
( i i )  operation-mapping

v o ’ e z s l ’ . . . s n ’ , s "  h o p ( °  ) := [a ]
Now one can easily verify h°f = hOQ.

1.2 Algebras: Models for Specifications

Specifications are the syntactical description for adt’s. T h e y

determine in a sense the ’form’ of adt’s. O n  the semantical level

we have to consider models for specifications. Here the ADJ-grOup

uses heterogeneOus algebras. W e  shall shortly r e v i e w  their

interpretation by giving the m o s t  important definitions and

t h e o r e m s  ( w i t h o u t  p r o o f )  a s  f a r  a s  w e  n e e d  t h e m  h e r e .  F o r  m o r e

detailed information consult [ADJ 76], [ADJ 77], [ADJ 82].
L e t  Spec = <S,Z,E> b e  a s p ecification w i t h  s i g n a t u r e  5 = <S,Z>.

1 . 2 . 1  D e f i n i t i o n

A E—Algebra A is given by:

( i )  a set AS for each sort seS

( U AS is called the carrier-set)
s e s

( i i )  a mapping o A :  A s l s z x “ ' x A s n  + A 5  f o r  e a c h

' o e 2o p e r a t i o n  s ] , . . . , s n , s

I . 2 . 2  D e f i n i t i o n

Let A ,  B b e  £ - algebras (the respective carriers w i l l  b e

denoted by the name o f  the algebras”. A Ä— algebra-homomorphism

is a mapping h: A + B such that
V a s t  V a 1 ‚ „ . , a  e A s l x „ . X Asl‚...‚sn‚s n s n '
h(oA(al‚...‚an)) = oB(h(a1)‚...‚h(a„)> ‘

T h e  c a t e g o r y  w i t h  E - a l g e b r a s  a s  o b j e c t s  a n d  E — a l g e b r a -

homomorphisms a s  morphisms is denoted Algz.

12



I . 2 . 3  D e f i n i t i o n

A i—term is defined by

(i) each constant c s Z A , s  is a Äfterm (of sort s)

( A  d e n o t e s  the empty w o r d ! )

n
T h e n  o(t1,„.‚tn) is a i — t e r m  of sort s.

( i i )  L e t  tl,...,tn b e  g — t e r m s  o f  s o r t s  s l ‚ „ . ‚ s  and

o E z s 1 ‚ . . . ‚ s n ‚ s '

Ä—algebras can be interrelated with certain structure—preserving

mappings, called Z—algebra—homomorphisms.

But i—terms may not always give what we need. Thus we introduce

t e r m s  w i t h  variables.

L e t  x : =  U x s  b e  a c ountable s e t  o f  variables.

s e s

T h e n  we d e f i n e  i — t e r m s  w h i c h  (eventually) c o n t a i n  variables from

X .  T h e s e  t e r m s  w i l l  b e  denoted E ( X ) — t e r m s .

1.2.4 Definition

T h e  following terms are considered to be Z(X)—terms.

( i )  Each i—term is a i ( X ) — t e r m

(ii) Each variable xexS is a gun—term of sort s.
(iii)Let tl,...,tn b e  i - t e r m s  o f  sorts sl‚„.‚s andn

o e 2 . T h e n  o ( t1 ‚ . „ ‚ t n )  i s  a i ( X ) - t e r m .s l ‚ „ . , s n ‚ s

T e r m s  c a n  b e  u s e d  t o  c o n s t r u c t  c a r r i e r - e l e m e n t s  o f  s o — c a l l e d

iggm-algebras. These term—algebras have an interesting property

w h i c h  m a k e s  t h e m  a d e q u a t e  c a n d i d a t e s  f o r  EfllSEE m o d e l s  for

specifications: They are initial in Algz.

1 . 2 . 5  Definition

A i—algebra A is igiiiai in gigz, if for each i—algebra B
there exists a unique i—algebra-homomorphism hB: A + B.

Now w e  have to give a description of the term—algebra determined

by Z.

13



1 . 2 . 6  Definition

The term—algebra T Z  determined by the signature £ is defined by

the following conditions:

( i )  T h e  c a r r i e r  s e t  for a s o r t  3 6 3  i s  t h e  s e t  o f  E — t e r m s  o f

sort 5.

(ii) Let ° € Z s l , . . . ‚ s n ‚ s

s o r t s  $1,...,sn,s. T h e n  “ T E  i s  defined b y

and tl,...,tn be E — t e r m s  of

O T Z ( t 1 ’ . . . ’ t n )  : =  ° ( t l ' o . . , t n ) n

1.2.7 Theorem

TZ is initial in glgz.

T h e  initial ( t e r m - )  algebra T 2  is fully determined by the

signature £ given in a respective specification. I t  is in a

sense the most ‘universal’ E-algebra and is therefore often

called ’the anarchic EEEEZEASEEFET-
The mere advantage we get from T Z  is that it is defined solely

by the signature of a specification. But it turns out that T 2  is

“too univeral’ namely if w e  want to say something about the

properties of the operations.This is very important if w e  want

to specify how the various operations given in the specification

w o r k  togethe . T h i s  means that w e  would eventually have to

identify certain terms in TZ. For example in a specification NAT

( f o r  n a t u r a l  n u m b e r s )  w i t h  s u c c e s s o r  o p e r a t i o n  s a c  and

predecessor operation p r e d  w e  should identify such t e r m s  a s

pred(suc(t)) and t for each term t n i T X .  But this is a n ‘ e x t r a -

property’ which is not given by the signature above, w e  need

additional Qigong or 333353935 to specify that we want to
identify terms which should have the same meaning in a respective

model. Furthermore as TE is the most ’universal’ E-algebra it
considers each pair of terms to be distinct. This means that the

use of T Z  above doesn't lead to identification of terms. We have

to impose additional structure on  T 2  to get what we want. We get

the additional structure by dividing TZ into congruence—classes
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generated by the equation set E in a specification

Spec = <S,2,E>. T h e  congruence-relation generated by E will be

denoted b y  E E  (the term ’congruence’ means that this relation

respects the operations). The algebra we get by dividing T E  into

congruence classes is the ’quotient-algebra’ TZ/EE. The following

sequence o f  definitions and theorems w i l l  describe the con—

struction of TZ/EE.

1 . 2 . 7  Definition

L e t  § ( X )  b e  t h e  s i g n a t u r e  w i t h  v a r i a b l e s  from definition 1 .2 .4 .

Then the algebra T2(X) is defined by the following conditions:

(i) T2(x)S is the set of all Z(X)-terms as in definition L2.4

(for each sort ses).

(ii) Let t1,...,tn b e  t e r m s  from TZ(x)s(l),...,TZ(X) ands ( n )
o e E

sl‚...‚sn,s'
Then

O T Z ( X ) ( t 1 , o n ’ t n )  : =  0 ( t 1 ‚ | o c ‚ t n )

According to this definition TZ(X) is a Z-alggbra namely the

free E—algebra generated by the set x.

Terms of T£(X) can be evaluated in a E-algebra A if we assign to

each v a r i a b l e  an e l e m e n t  o f  A .

1 .2 .8  Definition

Let T£(x) be the free Ä—algebra generated by X and A be a

E-algebra.

Then an assignment from elements of A to X is a mapping

O: X + A

with e := ( e s :  x + AslseS)
S

Such an assignment determines the so—called evaluation-mapping

for £(x)-terms in a Efalgebra A.

15



I.2.9 T h e o r e m

Let 0 be an assignment and A be a E—algebra.

Let the evaluation-mapping ©: T Z ( X )  + A with

5 = (ÖS:TZ(X)S + AslseS) be defined by

(i) V x e x s .  ÖS(X) = G S ( X )

( i i )  L e t  tl‚...‚tn b e  e l e m e n t s  o f  T2(X)Sl,...,T2(X)sn a n d

o € Z s l ‚ . . . ‚ s n , s '  Then
Ö(o(t1‚...‚tn)) := oA(Esl(tl),...‚Gsn(tn)).

Then Ö: TZ(X) + A is a E—homomorphism.

This theorem shows that intgrgretatiggg of terms fit into the

algebraic framework, because they are Ä-algebra homomorphisms.

Now we must say what gggatiggs are considered to be and what it

means to say: an equation is satisfied in an algebra.

1.2.10 D e f i n i t i o n

A 5—39335193 is a pair E=<L,R> with L,R e TZ(X)S f o r  a sort
ses.

I.2.11 D e f i n i t i o n

L e t  E = <L‚R> be a E-equation o f  sort 5 5 8  and A be a E — a l g e b r a .

Then A EEEÄEÄÄEE E if for all assignmgnts-O: X + A the eva-
luation Ö: TZ(X) + A gives

6 3 m  = 6 3 m ) .

This definition means that an equation is valid in a n  algebra, if

all interpretations of left— and right-hand sides of E in A have

the same value a s  result.

Let A b e  a E-algebra. T h e n  a congruence relation 5 o n  A is a
family E : =  ( E s  g ASXASIseS) such that each Es is a n  equivalence

on As and respects the operations in the sense that if

o e E a n d  a 1 ‚ „ . , a  € A s l x „ . X A s  t h e ns l ‚ „ . ‚ s n , s  n
oA([al],...,[an]) = [ ° A ( a l " “ ’ a n ) ] '

n
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([a] denotes the equivalence-class of a).
L e t  S p e c  = < S , £ ‚ E >  b e  a s p e c i f i c a t i o n .  T h e n  w e  d e f i n e  a

congruence relation on  T E  by using the equations E and assign—

m e n t s  9: X + T Z  ( X  i s  t h e  v a r i a b l e  s e t  o f  E )  i n  t h e  f o l l o w i n g

w a " !  .

1 .2 .12  D e f i n i t i o n

T h e  congruence relation o n  T 2  generated by E is a family
EF: (EE s c T Z S  x T B S  IseS) of least congruences defined by E F  s'

, I " ‘I
(i) Let E = <L,R> be an equation in E of sort S .  Then

(ii) Let a e z s l ‚ „ . , s n ‚ s  and t i ' t i  e T z s i  (1=1‚„.‚n)

with ti E E , s i  t i “

Then

o(t1‚...‚tn) E R , s  o(t1,...,t;)

(iii) VteTZs. tEE's t

(iv) Vt‚t’eTZs. t EE,s  t ’  => t ’  E‘ Is  t

(V) Vt,t’,t"eTZS. ( t 5 n ‚ s  t’&t' EE 'S  t") => t EE'S t n

The congruence-classes [t] for t e Tzs are built by
[ t ] E E , s  := {t eTEs | t EE's t’}

T h e n  w e  c a n  b u i l d  t h e  q u o t i e n t - t e r m  a l g e b r a  'I‘E/EE in t h e

following way:

1 .2 .13  Definition

Let Spec = <S,X,E> be a specification. T h e n  the Q u o t i e n t z t e r m :
a l g e b r a  TZ/EE is defined by
(i) For each ses the carrier—set TIE/ER,S is the set

TZ/EE’S := {[t]EE | t e TES}

( i i )  L e t  o e z s l , . . . , s n ‚ s  a n d  t i  e T z s i  ( 1  = l,...,n).

Then

“rt/2E ([t1]‚...,[tn]) := [0(t1,...,tn)]

As w e  have already seen T X  plays an important role in the
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category of Z—algebras gtgz: it is the i n i t i a l  object in this

category and it is uniquely determined (up to isomorphism).

TZ/5E has an analoguous role in the category n Z ' E .  The objects

in éggzlE are the E-algebras which satisfy the equations E.The

morphisms are E-algebra-homomorphisms h: A + B (A, B are algebras
in algz’fi) which satisfy

h(oA([al],...,[an])) = 08([h(al)],...,[h(an)])

1 . 2 . 1 4  Theorem

Let Spec = <S,E‚E> be a specification and T Z / E E  the quotient—

termalgebra defined by Spec.

T h e n  T Z / E E  is ifllEiEl ingggyzlE (and is uniquley determined up

to isomorphism!).

S o  w e  are prepared to say what an adt is considered to be in the

ADJ-philosophy:

1 . 2 . 1 5  Definition

Let Spec = <S,Z,E> be a specification.

Then by the atattatt gata typa specified by Spec we mean the
isomorphism-class o f  t h e  quotient—termalgebra  T Z / E E .

1.3 Parameterized Specifications and Parameterized Data Types

W e  now show how ’new’ data types can be constructed from “old”

ones in the ADJ-approach by using the ’pataaatattaattga—

technique. O n  the syntactical level parameterization reans that

w e  start with a formal parameter specification X a n d ‘ e m b e d ’  it

into a resulting specification D via an injective ggggrmorphim

p: X + D.

The formal parameter has very little structure such that there is

a (eventually) large class of specifications in gggg which

w i l l  f i t  t h i s  s t r u c t u r e  a n d  c a n  t h e r e f o r e  s e r v e  a s  a c t u a l
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s y n t a c t i c a l  p a r a m e t e r s .  P a r a m e t e r i z a t i o n  m e a n s  t h a t  o n e

specification is built from one or more parameter-specifications

by eventually extending the structure provided by the parameters

with n e w  s o r t s ,  n e w  operations  and n e w  equations.'rhis is so far

the syntactical view.

On the semantical level parameterization means transformation of

algebras o f  o n e  category into algebras o f  another (resultant)

category together with transformation of algebra—homomorphisms.

T h i s  should b e  done in such a w a y  that the structure of the

parameter-algebra will not be lost. T his means that by a certain

“reduction“ o f  the resultant algebra w e  g e t  a n  algebra that has

the same structure a s  the parameter—algebra. T he  transformation

of ’old’ structures (category of parameter algebras) into ’new’

(extended) structures (category <1f parameterized algebras) will

b e  c a r r i e d  o u t  by f u n c t o r s  (according to the category—theoretical

viewpoint used in the ADJ—approach). Analogously the ’reduction’

will be carried out by so—called forgetful functors. These

functors ’forget’ in a sense all o f  the additional structure o f

the resultant algebras and ’concentrate’ only on the structure of

the ’old’ parameter algebra.

According to the philosophy that a n  adt should be uniquely

determined the resultant (parameterized) algebra is the ’frggl:

EEEEBEESE of the parameter algebra.’Free extension’means that

the elements of the ’glg: carriers As (for the parameter algebra)

become by transformation (with the respective functor) elements

of the new carrier ) (if B is the resultant algebra andB M S

p: X -> D the parameterized specification belonging to the

transformation).

T h e  following definitions and theorems formalize the above ideas.

The reSults are taken from [E/L 81].

Remark: In the sequel if p: X + D is a gggg—morphism, then
p(s) == p s o r t ( s )  (588) and p(a) := pop(°) (08231 ‚„ ‚sn  s)'
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I . 3 . 1  Definition

A parameterized specification is an injective gggg-morphism

p :  X + D

X is called the formal parameter of p.

I n  t h e  s e q u e l  w e  use a s p e c i a l  k i n d  o f  p a r a m e t e r i z e d

specifications, namely (strongly) persistent specifications. This

property is mainly connected with the transformation (of data

types) specified by the parameterized specifications. T h e

transformation is expressed by using certain EEEEEEEE between

categories of algebras. S o  w e  introduce here the functors with

which we are concerned in parameterization namely forgetful and

(strongly) persistent functors.

Ramnk: If e: X + D  is a gggg—morphism t hen  the respective

persistent functor belonging to e will be denoted by the

(upper case letter) E and the respective forgetful

functor will be denoted by E.

1 . 3 . 2  Definition

Let e: X + D be a %ggg—morphism and R be a D-algebra. Furthermore

let sig(X),sig(D) and sorts(X),sorts(D) denote the signatures and

sorts of the specifications X and D.

Then the forgetfgl functor E: éggn + gggx sends each D-

algebra B to the X-algebra A defined by
( i )  Vsesorts(x). A S  : =  B e ( s )

(ii) Each operation o E sig(X) is defined by the
sl‚„.‚sn‚s

image-operation under e. ‚ „ .

“‘xAsn + AS is defined t o  b e  the operation

. . .XB

G A :  A s l x

e o p ( ° ) R :  B e ( s l ) x  e(sn) + B e ( s )

T h e  algebra A is called t h e  sig(X)-reduct o f  B.

(iii) Let B, B’ be D-algebras and h: B + B’ be a D—algebra-

homomorphism.

Let A, A’ be the respective sig(X)-reducts o f  R and B’

20



defined by fi.

Then  ? transforms h into an X—algebra-homomorphism

q : A - > A ’ b y

Vsesorts(X). g s  : =  h e ( s )

In the following discussion w e  denote the object part of a

category 9 by IQ] and the morphism part by /g/. If A,B e Igl

then g (A ‚B )  d e n o t e s  t h e  s e t  o f  a l l  m o r p h i s m s  from A to P .

Furthermore if g, Q are categories and F: g + Q is a functor
F l :  lgl + IQ! and itsthen w e  shall denote its object part b y

morphism part by /F / :  /g/ * / 2 / -
N o w  w e  turn t o  the definition o f  persistent functors between

categories o f  algebras. Persistent functors are used to construct

parameterized data types from parameter data—types. They perform

this transformation in such a w a y  that they ’EEESEEEE’ the

s t r u c t u r e  o f  t h e  p a r a m e t e r - a l g e b r a .  T h e  s t r u c t u r e  o f  t h e

’remembered’ algebra can then be rediscovered by application of a

forgetful functor.

1 .3 .3  Definition

Let p,e: X + D be gggg—morphisms.

Then a persistent functor P (determined by p) is a functor
P- gggx » Alan

such that
VAEIQLSXl - IFOPI (A )  E A (’E’ Ineans isomorphy and

1f denotes the composition o f  functors)

P is strongly persistent if
VAelélgx 15-°P|(A) = A

N o w  w e  c a n  s e e  w h a t  it m e a n s  to say that a persistent functor

’remembers’ the structure of its argument (or parameter)-algebra

namely

lfi o P|(A) s A
O‘l.”

Ii 0 PI(A) = A.
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W e  see that w e  can always rediscover the structure o f  the

a r g u m e n t  a n d  t h u s  n o  r e l e v a n t  ’ i n f o r m a t i o n ’  i s  l o s t  b y

application of a persistent functor.

W h a t  is left for the m o m e n t  is t o  g i v e  the respective working

d e f i n i t i o n s  f o r  p a r a m e t e r i z e d  d a t a  t y p e s  ( p d t ’ s )  and t h e

semantics of a parameterized specification.

F o r  s h o r t :  a p d t  o r  d a t a — t y p e  c o n s t r u c t o r  c o n s i s t s  n a m e l y  o f  a

persistent functor and forgetful functor. T h e  standard-semantics

o f  a p arameterized specification i s  g i v e n  b y  a p e r s i s t e n t  functor
P f r e e :  Aggx + éLgD which transforms each X—algebra into its free

extension and by the forgetful functor F: gggn * éggx-
Constructing the free extension of an X-algebra A by application

of a persistent functor P f r e e =  Aggx *:AÄSD with | P f r e e | ( A )  := A"

means:

The old carriers AS (sesorts(x)) are Eiiggtivgly transformed

to the ’new’ carriers A§(S) (neither n e w  elements a r e  added

t o  A s  in A§(S) nor “old“ elements a r e  mapped o n t o  t h e  s a m e

image).

and

n e w  carriers, n e w  o p e r a t i o n s  and n e w  e q u a t i o n s  a r e  e v e n t u a l l y

added in A”.

T h e s e  are the k e y  ideas contained in the following sequence o f

definitions and theorems.

1 .3 .4  Definition

As a working definition for pdt’s we choose

A parameterized data type consists of a parameterized

specification

p :  X + D

and the (strongly) persistent functor P f r e e :  Algx +=Aggn that

takes each X-algebra A to its free extension over A with respect

t o  p s u c h  t h a t

liopfreelm s A (IPopfreeHA) = A)
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1 . 3 . 5  D e f i n i t i o n

Let p: X + D be a parameterized specification.

Then by the standard—semantics of p we mean the pair (p,Pfree).

1.3.6 Definition

Let p X + D be a parameterized specification.

T h e  p is called (strongly) persistent if its underlying standard—

semantics has this property.

W e  shall proceed by clarifying parameter-passing in gggg and by

building instances o f  pdt’s. T h e  rest of the chapter contains

some category-theoretical results on the interrelationship of

§pgg and the category of Sgggrmodels, the algebras, which are

contained in gg; (category’ of categories with functors as

morphisms).

As a parameterized specification is intended t o  be used as a

method of systematically constructing new specifications from old

ones we have to indicate what parameter passing means.

In general w e  bind an actual (syntactical) parameter to the

formal parameter in p: X + D by a morphism f: X + A and t hen

complete the resulting diagram

x - -9-> D
f+

E
by giving it a unique meaning as the EEEhQEE of the diagram

x —-E-> D
f+ +f’

A --D:—> B
(where f’Op = p’Of)

1 . 3 . 7  Definition

Let p: X + D be a parameterized specification.
T h e n  an a c t u a l  s y n t a c t i c a l  p a r a m e t e r  i s  a p a i r  ( f , § )  s u c h  t h a t
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f: X + A is a gggg—morphism.

r

1 .3 .8  D e f i n i t i o n

Let (f,§) be an actual syntactical parameter for p: x + 1 x  T h e n

the result of parameter passing ( 5  for X) is the E u s h g g t  of the

diagram

x ——9—-> n
f+ +f'

A --P=—> D'

T h e  p r e c e d i n g  d e f i n i t i o n  m e a n s  t h a t  t h e  r e s u l t  o f  p a r a m e t e r —

passing is determined by the equivalence of

(i) embedding X into D and then replacing the formal part in D
by the actual parameter & via using f

and

(ii) substituting 5 for X via f and then embedding & into D (by

changing D to D’).

Again by the requirement that the meaning of parameter- passing

should be the pushout of the above diagram w e  k n o w  that the

reSult is uniquely determined. The parameter-passing-mechanism on

the syntactical level corresponds in a sense t o  the following

mechanism on the semantical level.

Let ( f ‚ 5 )  b e  a n  a c t u a l  p a r a m e t e r  for t h e  p a r a m e t e r i z e d

specification p: X + D.

Then by using the standard—semantics ( p ' P f r e e )  we indicated that

each x-algebra will be transformed into a D—algebra ( f r e e -

extension) by using the (strongly) persistent functor P f r e e '  Now

w e  take an A-algebra and then transform it into a D’-algebra by

using the standard-semantics of p? 5 + D’, n a m e l y  ( p ’ fl fi r e e )

which sends the actual A—algebra to its free extension in éégn"

1.3.9 Definition

Let p: X + D be a parameterized specification with actual
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parameter (f,§). Let the result of parameter passing be the

pushout of the following diagramm:

x —-P——> D
f+ +f’

‚ A __P : -  > D'

Then an actual parameter for ( p ' P f r e e )  is a triple (f,5‚A) where

(f,§) is the actual parameter for p and A is an fi—algebra. T h e

result of parameter—passing is indicated to be the commutativity

of the following diagram.

élgx —B§E9§----> Alan
F + +?“

éLgA -B—§E§§-——> Alan.
R e m a r k :  I f  P f r e e  i s  ( s t r o n g l y )  p e r s i s t e n t  t h e n  P ’ - f r e e  is.

(technical result in [E/L 81])

W e  adopt the following convention for the structure of formal-

parameter-specifications.

1 . 3 . 1 0  C o n v e n t i o n

Let p: X + D be a (simple) parameterized specification.

T h e n  the formal parameter X is o n e  o f  the following specifi-

c a t i o n s  ( a l t e r n a t i v e s  a r e  enclosed in b r a c k e t s  { } h

s o r t s :  x

opns: {Q: + X} (x contains eventually a constant)
Ex: Xxx + BOOL

S a n s :  
E x  x = t r u e

X E X  X = X E x x

: a 4 : " = ; " ___.((x -xx & x _ x x  ) > x _ x x  ) true

Furthermore w e  shall give each parameterized specification a

unique name, This will help us to identify various specifications

by t h e i r  n a m e s  and t o  use t h e m  a s  p a r a m e t e r s  in o t h e r

parameterized specifications. Thus if p: x + D is a parameterized

specification with simple parameter X we identify the resulting
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specification by the (unique) name P. The equation
P 5 (x1 ‚ „ . xn )  where 5 is a constructor (that is a combination

o f  the parameters X1....,Xn via operations such as ’+’,’X’)

means, that we name the resulting specification by P. The formal

parameter will be denoted by the keyword formal.

We make the following convention:

1.3.11 C o n v e n t i o n

Let p X + D be a parameterized specification.

T h e n  the equation P K ( X )  d e n o t e s  t h e  following specification:

EQEEE‘ P . . .

formal X
OEH_= {fiz + P}

“ p :  P X P  + BOOL

. other .

. opera- .

. tions .
formal {iz + x}

Ex: X X X  * BOOL

e ns: p Ep p = true

p E p p ’  = p’ E p  p
( ( p  E p  

p “  & p ’  E p  p " )  => p E p  p " )  = t r u e

. other .

. equations .

formal x E x  x

x E x  x = x E x  x

((x Ex x’ & x’ E x  x") => xix x") = true

I n  t h e  c a s e  o f  more t h a n  o n e  f o r m a l  parameter 84L

P

tuple of parameterized specifications (pi: X

5 (x1 , „ . , xn )  t h i s  c o n c e p t  c a n  b e  e a s i l y  e x t e n d e d  b y  u s i n g  a

+ DI i=1,„.‚n) and

then defining one gggg—morphism by this tripfe.

What we still need is to extend the parameter—paSSing concept in

the case when the parameters are themselves parameterized

specifications for parameterized data types. I n  this case the

following definitions will be used:
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I . 3 .11  Definition

Let p: X + I) be a parameterized specification with actual

parameter (f,§). Let p: Y + 5 be a parameterized specification.

L e t  t h e  r e s u l t  o f  p a s s i n g  ( f , § )  f o r  X b e  t h e  p u s h o u t  o f  t h e

following diagram

x ——9——> D
f i  + £ ’

Y __fi„_> A ——91—> D'

T h o n  the result of passing @: Y + A for X via f is given by
‚ O E .

1 . 3 . 1 2  Definition

Let ( p ' P f r e e )  be (strongly) persistent standard—semantics for

p: X + D a n d  ( f , A , A )  h e  a n  a c t u a l  p a r a m e t e r .  F u r t h e r m o r e  l e t
( p ' fi f r e e )  be a (strongly) persistent standard—semantics for

p: Y + A.
Then the reSult of parameter passing is the (strongly) persistent

parameterized data type given by

(p’op, p f r e e o fi f r e e ) ‘

Now we give some examples for parameterized specifications using

the conventions 1.3.10 and 1.3.11.

Eyample_l

P = X l x x z x  o o .  X X  ( 1 1 6 “ )n

sorts: P ,  BOOL

formal Xl,...,Xn

o p n s :  E p :  P X P  + BOOL

( . . - >=X1X  0 0 0  X X “  + P

[ i ] :  P+X-  ( i :  l p o o - p n )

. :  X - X x i  "BOOL ( j . : l y o o o ' n )

= t r u e  : p  i s  a np

p _ =  p : p equivalence
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( ( p  ap  p’ & p’ E p  p") => p E p  p") = true relation on P

[i]<xl‚...‚xn> = xi (i = 1,...,n)
( X l ‚ . . . ‚ x n >  : p  ( X l ‚ . . . ‚ x n >  : ( X 1  EX] .  X 1  & o o o 8 l

x n  = x n  X n )

formal x i  E x i  x i

x i  E X i  
i x i = X i E  X i  l = l ‚ . . . ‚ n

: ’ : " .. *: " _-((Xi “x'i X i  ‘xi Xi) “> x i  "xi xi) ‘ true

E x a m p l e  2

P = XlXXZX . . .  x x n  + l ( n — f o l d  product w i t h

sorts: p, BOOL
formal X1‚...,Xn

opns: 5: + P
E p :  P X P  + BOOL

( . . . ) :  X I X  . . .  x X n  + P

[ i ] : P + X i  ( i = 1 , . . . , n )

formal Ei: + X i  ( i  = l,...‚n)
E x i :  X i X X i  + FOOL

e ns: p E p  p = t r u e

p 2 p  p’ _ p’ E p  p
= ' ’ 5 " = >  5 " =((p _p p & p _p p ) P p p ) tr

<xl‚...,xn> E p  p = f a l s e

5 ap <x1,...,xn> = false
[1] P = X i

formal x i  E x i  X i  = t r u e

xi Exi i = xi Exi Xi ‘1 = 1" " ' “ )
: ‘ ’ = " = . = .( ( X i  — X i  X i  & X i  ‘ X i  X i )  > x l  _ X l  X

Bgmark

c o n s t a n t )

u e

t r u e?)

In the following sections we shall omit the ’equivalence’—part

o f  t h e  s p e c i f i c a t i o n  t h a t  i s  t h e  o p e r a

equations s t a t i n g  t h e  e q u i v a l e n c e  property o f

Now some examples for parameter passinq.
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We use the following specification NAT for ”natural numbers ’ :

sorts: NAT, BOOL

opns: O :  + NAT

s u C :  NAT + NAT

NATXNNT + BOOL

O - O = true

s u c ( n )

l
l

f a l s e

f a l s es u c ( n )  E N N T  0

suc(n) ENAT SUC(N’) = n ENÄT n ’

(This is a quite redundant specification of NAT but it is useful

in showing parameter-passing!)

Let’s turn to our next example:

We want to build 0 = NNTXNNT.

So we take the specification from Example 1 with

P = X1 xx? and the two gpgg—morphisms pl‚p2 characterized by:

* N A T '  E x 1  * ENAT' SE1 * °
* ”“T' Ex2 * 5Nm” 22 * °
the tuple P = <P1 ‚p2>  to lead to the paraneterized

specification

[3: xlxx2 + NATxNAT
The resulting specification is given by:

s o r t s :

ogns  :

o, NAT , BOOL

: NATXNAT + o
]: o +  NAT
]: Q + NAT

. NAT—opns
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. _e._guation_s_ .p HAT. .

We can now use this specification for buildinq

Q x Q 5 (NAT x NAT) x (NAT x NAT)

(NAT X NAT) + 1Q + 1

e t c .
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II. Algebraic Domain Equations

W e  have indicated in the introduction what it means to specify a

Scott—like data type (domain) via a reCursive domain equation of

the form

D e 5(D).
Here the solutign was the inverse limit of a retraction—sequence.

Scott’s method o f  constructing new data types from old ones by

using the domain constructors ’+’,’X’,’+’ and recursive domain

equations is in a sense quite comfortable.

But on the other hand w e  should be able t o  write down  formally

how We intend to solve a given problem by using the names of the

u s e d  d a t a  ( s o r t s ) ,  a n d  t h e  o p e r a t i o n s  w h i c h  w o r k  o n  t h e s e

operations given by the axioms.

T h e  next step is then the construction of mathematical models

(universal algebras) for specifications and formalizing ways for

c o n s t r u c t i n g  n e w  d a t a  t y p e s  f r o m  o l d  o n e s  ( e . g .

parameterization). T h e s e  r e q u i r e m e n t s  a r e  satisfied b y  the ADJ—

approach a s  VH2 have seen hi the previous sections.Thus in

following Our a i m  t o  construct parameterized continuous data

types by certain ’recursive algebraic domain equations’ we treat

d o m a i n  equations in an algebraic framework. In this section w e

shall use ’simple’ data types withOut any order-theoretical

s t r u c t u r e .

F i r s t  we start w i t h  a n  introduction to r e c u r s i v e  d o m a i n  equations

from a category theoretical viewpoint.

We analyse Scott’s reCursive domain equations. Suppose A is the

domain with one non—bottom element l = {l‚e} with i < e.
Now we look at the domain equation

D 2 D + l
T o  s o l v e  t h i s  e q u a t i o n ,  we need the following sequence o f  domains

D _

Di+1 := D i  + l
and use retraction sequences ((ik,jk)lkeN) t o  construct the

solution D0° (*g* )  D°° + ;.

03 :1 .

But what means the term “solution” category-theoretically?
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As we have  suggested in the introduction the above equation

D EI )+  1 can be transformed into the equation D E 5(D) where 5
w a s  called a ’constructor’. I n  the Current e x a m p l e  the case is

obvious, w e  have:

§ (D)  : =  D + l.

T h e  first observation is that K ’maps’ in a sense  d o m a i n s  t o

other d o m a i n s ,  n a m e l y  e a c h  d o m a i n  D i s  m a p p e d  to D + l. B u t  w h a t

is more 5 maps each continuous function f: D + D’ to a continu0us
function 5(f): 5 ( D )  + § (D ’ )  such that the following diaqram

c o m m u t e s

n ---f---> n“
+ +1;

5(n) äLf1_> g (n ’ )
where ( i 0 ‚ j 0 )  and ( i ö ) ‚ j 6 )  a r e  r e t r a c t i o n s  w i t h

What have we gained by these observations?

Let ggg be the category with cpo’s as objects and strict

c o n t i n u O u s  f u n c t i o n s  b e t w e e n  cpo’s a s  m o r p h i s m s .  ( A  c o n t i n u o u s

function f: D + D’ is strict‘ if f(lD) = i n t h e n  the recursive

domain equation

D 5 5(0) leads to a fungtgg

K :  992 * 922-

ObviOusly 3 is an 5399333959; (SOurce— and target-category are

the s a m e l h

T h e n  by ’solution’ o f  D E 5(D) we m e a n  the initial fixedpoint o f
§.'Phis unique fixedpoint is the inverse l i m i t  D°° (described in

the introductionL

But what is more: data types are domains in the theory of Scott.

T h e n  the equation D E § (D )  describes in a sense a parameterized

data type (with D a s  parameter and 5 as data type constructor)!

H e n c e a a p a r a m e t e r i z e d  d a t a  t y p e i j x t h e  s e n s e  o f  S c o t t  i s  a u n i q u e

fixedpoint of an endofunctor K: gpg + gpg.

Oneargument—parameterization and fixedpoint—construction for
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recursive domain equations are in this sense  equivalent.

But w h a t  about parameterization in the ADJ-approach? Scott’s

method suggests looking for endofunctors on suitable categories.

Nevertheless the (strongly) persistent functors which extend the

parameter algebras to build parameterized data types can’t be

supposed to b e  endofunctors in all relevant cases. T h e  main

reason for this argument is that in the relevant cases o f

constructing parameterized data types new sorts, operations and

equations w i l l  b e  added t o  the parameter. O n  t h e  syntactical

level w e  have a parameterized specification p: X + D between

different source- and target—specifications.The corresponding

equivalent on the semantical level is a data type constructor

P: 949x + gggn with different source— and target-categories.

Hence the data type constructor P above will not suffice to allow

specifications o f  data types as fixedpoints of certain recursive

’algebraic’ domain equations.

O n  t h e  o t h e r  h a n d  w e  a r e  a b l e  t o  s p e c i f y  t h e  f o l l o w i n g

endofunctors.

As already indicated
EOP Aigx + Alex

is an endofunctor where fi:=é$gn +==e  is the forgetful functor
corresponding to a gggg—morphism e: X + D.
I f  P is a (strongly) persistent data type constructor the the

equation

v Aelélgxl. A IEOPI(A)
holds.The algebra A is obviously a fixedpoint of the endofunctor

EOP.

But what will be gained by considering fixedpoints for EDP?
M y  answer is: nothing interesting w i l l  b e  gained, because w e

loose all relevant information about the parameterized data type

|PI(A)if we applicate fi afterwards. fi is a forgetful functor and

will therefore reduce most of the relevant structure of IPI(A)
to the gggx-components 'rherefore fixedpoints of EOP will not

concern us in Our further discussion. T h e  other endofunctor w e

may specify is
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POE: §;9D * Aign-

H e r e  we can b e  s u r e  t h a t  n o  r e l e v a n t  structure o f  a p arameterized

data type will be lost by applicating POE; we shall always have

the full glgD-structure when looking at fixedpoints of POE.
B u t  n e v e r t h e l e s s  P O E  w i l l  n o t  g i v e  e x a c t l y  w h a t  w e  w a n t .  A

slight modification o f  fixedpoints o f  POE w i l l  b e  used in the

projected ’algebraic domain equations’ (ade’sL Please consider

the following example taken from [E /L  81] as a motivation: The
solution o f  Scott’s reCursive d o m a i n  equation X s X + l  is the

domain of natural numbers.

Now let’s stick to an algebraic interpretation of this equation.

Let x b e  a variable ranging over pointed sets (M,i). Each (M,i)

i s  a o n e - s o r t e d  a l g e b r a  w i t h  c a r r i e r  ( M , i )  f o r  s o r t  5 0  W i t h o u t

operations. Let P b e  a functor taking each pointed s e t  (M,i) t o

the two-sorted algebra with carrier (M,i) for s 0  and carrier

(M+{0}‚0) for sort s1 and two operations a:(M,i) + (M+{0},0) and
I : (M+{0 } , 0 )  + (M,i). H e r e  (M+{0}‚O) is the pointed s e t  (M,i) to—

gether with a new element denoted by ’0’.

T h e  operations are defined in the following way

a: (M,i) + (M+{0}‚0)
y + { y  if y * i

{ o  if y = i

I :  (M+{0 } , 0 )  + (M,i)
y + { y if y # 0

{ i if y = 0

0 denotes in a sense a successor operation w i t h  the n e w  point 0

a s  the successor o f  i.

I is a predecessor operation: if the new point 0 is generated by

i then i is the predecessor of 0 .

Let E be a functor which takes the two sorted algebra

((M,i),(M+{0},0),a,I) t o  the o n e  sorted—algebra (M+{O}‚O) where

(M+{0 } , 0 )  is t h e  carrier o f  sort 5 0 '  (Consider the underlying

signature-morphism e for ? to be such that e maps S n  to s l ! )

Now in Scott’s inverse limit construction we got the solution of
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X E x+1 by iterated application of the functor 5 with

I§ | (D)  := D+l. The solution consists of a sequence of domains
D O  = =  l

D1 := l § I (D0 )  := ”0 + l

Dk+1  == |E | ( | § l k (Dn ) )  == Dk + l

and a s e quence o f  r e t r a c t i o n s  ( i k ’ j k )  s u c h  t h a t

in: D0 + l5l(Do)
jo: I5l(no) + D0
il == /§/<io>= I§|<n0) + |5l2(n„)
jl := AIS/(3'0): lglzwo) + _rgmo)

ik+1 == /5/(ik)= |5|k
(D„> + lglk+1(n„)

jk+1 == /K/(jk>= |Ä|k+
l(nn) + l5|k<Do)

Let A be the following two sorted algebra

A S O  : =  ( { n } ' 0 ) l  A8] .  : =  ( { 0 , 1 } ' 1 )

a: ({0},0) + ([0,1},1) with a (0 )  := 1

I :  ( { 0 , l } , l )  + ( { 0 } ‚ 0 )  w i t h  1 (0 )  : =  0

Then iterating A by the composed functor Poi gives the following
sequence o f  a l g e b r a s :

tpofil°(A) : A

lpofi’lgA) == Af with
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Ag“ := ({o‚1}‚1)‚ Agl : ({n,1}+{2},2)
Ago sl
y + { 2 if y = 1

{ «(y) otherwise

I’: A s l  + A g o

z + { 1 if y = 2
{ ! ( z )  otherwise

|Poäl2(A) := A" with
:= ({0‚l‚2}‚2)‚ Agl := ({0,1,2}+{3},3)30

°"‘ Age * Aäl
y + { 3 if y = 2

{ ¢ ’ (y )  otherwise
Agl + Ago
z + { 2 if z = 3

{ " ( z )  otherwise

[pofi k+1(A) == A , ( k + 1 )
‚(k+1) := (Agik)yk+2)r

Ag(1k+1) :71: (Agik)+{k+2},k+2)‚ ( k + l ) ,  ' k + 1  » k + l., . AS}, ) + AS](. )
y + { k + 2  i f  y = k + l

{ ° ’ ( k ) ( y )  otherwise
‚(k+1). f(k+1) ’(k+l)! - A s l  + A s fl

z + { k + l  i f  Z = k + 2

{ " ( k ) ( z )  otherwise

T h e  iteration involves n o t  only algebras but a l s o  algebra

homomorphisms.

Define

h: A + IPO§|(A)
with

h: ( h S O ’ h s l >

such that

hso’ A s o  * A g o
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hs1= As1 * Aél
O + O
1 + 1 .

(hsn and hsl are ’embeddings’)

Then you can easily verify, that h is a homomorphism,

e.g. hsl(a(0)) = hsl(l) = 1
II I

°’<hso<°’) c’(0) = 1.
T h e n  you can iterate h itself by /POE/  and get the sequence of

homomorphisms:

h: A + |poEl(A)

"

h’ == /PoE/(h)= IP°E|(A> + IPofil2(A>
h"k+1’  == /PoE/(h"k’)= |P°fi|k(A) + Ipofilk*1(A)

The whole process corresponds to the following diagram.

- 2
h 2 P O E  h 3

A --—> IPUEI(A) —————————— > IPOEW (A) ZL_-Z;£_2_, lpoEI (A) ‚„

where in a sense (which will be explained later on) each algebra

IP0§ I k+1 (A )  contains “more information’ than IPOEIk (A ) .
“More information’ here means

lP°E|k(A) g IPoElk+1<A)
and

o’(k+1) = „»(k)

‚»(k+1) = ‚»(k)
U {(k+1‚k+2)}

U {(k+2,k+1)}.

If w e  follow this iteration process, we shall g e t  at least an

algebra Ä with
Ä s o  := R

N'+{0} where N' is the set of successors of natural

numbers

together with
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;: N + N’+{o}
h |+ h+1

#: N’+{0} + N
h+l + h

0 + 0

One can now verify that Ä is a fixedpoint of POE. But we have
still ”redundant“ information due to the fact that Äso' Ä s l  are

isomorphic as sets. Therefore we have to apply a sort of identi-

fication process on Ä (coequalizer-construction in c a t e g o r i e l
T h e  resulting ’solution’ w i l l  then b e  a 923 sorted algebra con-

sisting o f  the carrier N and operations a’: N + N and I’: N + N.

As we have seen we need two functors P: éégx + Algn and

fi: QLQD * éggx to define the endofunctor POE: gig“ +gggqn and

then look for fixedpoints. I n  the previous example the reason for

this w a s  that if w e  w a n t  to iterate a D—algebra  A b y  POE w e  have

t o  reduce it first to a n  X—algebra by E and then to apply the

data type constructor P.

A s  certain fixedpoints o f  POE should g i v e  meaning to‘recursive

domain equations’ in an algebraic framework it should be obvious

that these ’equations’ should be defined by a pair of gggg-

m o r p h i s m s  p,e: X + D Here p i s  a p a r a m e t e r i z e d  s p e c i f i c a t i o n  and

e is used to define the forgetful functor @: gggn + gggx. T h e

following sequence o f  definitions and theorems formalizes the

ideas we have given in the introduction.

I I . l .  D e f i n i t i o n

Let X and D be specifications.

An algebraic domain equation (ade), denoted by

x ( B f )  D
consists of a pair of gggg-morphisms

p , e :  X + D

where p is a (strongly) persistent parameterized specification

and e describes a forgetful functog.

Remarks: (i) The  double-arrow(;2 in X (gse)n is used to indicate
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(ii)

that p,e are directed from X to D.

By 1.3.2. we know that each gggg;morphism defines a

f o r g e t f u l  f u n c t o r .  A s  w e  h a v e  indicated in

convention 1.3.11. each parameterized specification

s h O u l d  u s e  u n i q u e  nanuas ( f o r  s o r t ,  c o n s t a n t s ,

equality). Then for e it Suffices to map the formal

parameter components to the (new) Components in the

resulting specification which have unique names.

S o  if the formal parameter is denoted by X and the

target specification by P then

e(X) := P

e(§) := 5
e(Ex) == E p

As I have already mentioned in the introduction to this chapter

we have two endofunctors described by p and e, namely
E°P= élax * Alax

and

P°E=  élip * éigp
We shall use this later on but the two functors are related in

the following way:

II.2.___hemma

Let A e I é i gx . T h en the following assumption holds:

If A is fixedpoint of fiop then IP I (A)  is a fixedpoint of poE
and

if B is a fixedpoint of POE then l§I(B) is a fixedpoint of
EOP.

Proof:
By persistency of P: éiflx + gggn we have by

V Aelélsx . A s IE0PI(A)
that A is a fixedpoint of EOP.

But since persistent functors respect isomorphy we have

IPI(A)
IPJ<A>

I
I
I

I
I
!

IPIOIE°P|(A) <=>
IpoEIoIPl(A)
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Thus |P|(A) is a fixedpoint of POE.
T h e  proof of the second part of the assumption w o r k s  due to the

fact that forgetful functors respect isomorphy.

I I . 3 .  Lemma

B is a fixed point of PO? iff Ifi I (B) IPI(B) and there exists
an X-algebra A such that IPI(AI s B.

££92£=

I
R

B is a fixed point of POE <=>

B s IPofil(B>
P is (strongly) persistent <=>

v Aelélgxl. A s lPoPl(A)
Since |E|(B) is an object of gggx we have

IE|(B) s IPoPl(|fil(B)) <=>
|fi|(B) E IPIOIPofi|(P) <=>
lfil(B) z I§I(B)

They define A := IE I (B )  and the proof is completed.

The next theorem is very important. It states (informally spoken)

that each fixedpoint of POE has a certain (syntactically

d e t e r m i n e d )  f o r m  and t h a t  w e  c a n  r e s t r i c t  t h e  s e a r c h  for

fixedpoints to a subcategory of glgn. T h e  argumentation is the

following:

Let X “Qf) D be an ade. We know by IJ„3. that each pair of
morphisms in &Egg=has a coegualizer. This coequalizer leads to a

renaming of sorts, operations and equations in the specification

D as shown in the construction of coequalizers is gggg (the

section following theorem I.1.5J. S o  w e  k n o w  that ( p  e )  has a

coequalizer in 5999. This coequalizer consists of a unique speci-

fication Q and a unique gggg—morphism q: D + @ ( s e e  theorem

1.1.3.).

Let coeq(p,e)=(q Q )  denote this relation formally: N o w  it turns

out that if BeLAAgDI is a fixedpoint of POE then there exists

an Q—algebra C such that |Öl(d
restrict our search for fixedpoints o f  POE t o  coequalizer—

I
I
I

B. T h a t  m e a n s  t h a t  w e  m a y

40



algebras (glgo). And here in coequalizer algebras an identifica—

tion (renaming) between p— and e-components of D has been made.

Now we t u r n  to the t h e o r e m .

13:3; Theorem

Let X (E ;e )  D be an ade and let (q 0 )  = coeq(p,e).
If B is a fixedpoint of POE then there exists a 221333

O—algebra C such that R E |Ö|(C).
Proof:

Our argumentation here is the following:

( i )  ( q  0 )  = coeq(p,e). Now the functor alg: gggg + gggop sends
e a c h  gggg—morphism r :  S + T t o  the forgetful functor

R := alg—r: gggr + filgs. alg transforms Egggualizers in
ges; to 29.2911:n in 9—2;- If (cm) = coeq<p.e> in aeg;
t hen  (Öhäégg) = eq(P,fi) in gg; ( w h e r e  eq() denotes the

equalizer).

Thus for each Q-algebra c lfioöHC) = lfioölm) holds.

(equalizer-propertyl).

(ii) S i n c e  B is a f i x e d - p o i n t  o f  P O E  w e  k n o w  that

I § I (R )  E lfi | (B ) .  But we can even construct a D-algebra
B’ s B such that |5|(B’) = IfiI(B’L T h i s  looks similar to

the equalizer property I§OGI(C) = |fi0Ö|(C).
(iii) What is still missing is an algebra Cslgéglo suchthat

B’ 5 |ö|(C). W e  show how we can construct a suitable o—
alqebra C out o f  R ’  such that this property holds.

Then we shall have R s B” E IÖ I (C )  and we are ready.

( i i )  C o n s t r u c t i o n  o f  B ’  using ( i ) :

Let SX := {5%,n.,s;} and SD := {sg,„.,sg} denote the
respective sort-sets of X and D in X (age) IL Then since

B i s  a D - a l g e b r a  w e  h a v e  t h e  c a r r i e r s  B s % , . n , B s g .  N o w

c o n s t r u c t  B ’  a s  follows:

( a )  V s’esD Vssx. s’#p(s) & s’*e(s) = )  B;‚ : =

{b) V s’tsD VseSX. p(s) = s ’  = e(s) => H g ,  : =
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(iii)

(c) Vsesx }s’,s"sSD. p(s)=s’ # s"=e(s) => B’‚:=Bg„ := BS S "

Have we kept in mind B E 8’?

Indeed  we have!

I n  t h e  c a s e s  ( a )  a n d  ( b )  w e  h a v e  n o t h i n g  to d o  h e r e  8’ s B

is obviously satisfied.

But even case (c) works well because from | F | (B )  5 Ifi | (B )
w e  k n o w  that for p(s) = s ’  # s" = e(s) BS» 5 BS". And so w e

have indeed B ’  s B. And furthermore by identification

Hg, := B5" =: Hg" we have I § I (B ’ )  = |fi | (B ' ) -

Construction of C such that B’ 5 |Ö|(C).
W e  use the coequalizer property o f  (q‚0) = coeq(p‚e) for

the construction of C. T h e  most important fact is the con—

struction o f  the carriers. W e  use the case distinction (a)—

( c )  from the construction o f  B’:

F o r  a n y  s o r t  s ’ e s D  w h i c h  s a t i s f i e s  ( a )  d e f i n e  C s ’  : =  “ Q 1

( q  sends s’ to [s’] = {s’}). For any sort s’eSD satisfyinq
( b )  define C s ’  := 8;, ( q  sends s ’  to [s’] =
[p(s) .e(s) ]={s’})
For any s o r t s  s’,s" w h i c h  s a t i s f y  ( c )  u s e  a unique n e w  s o r t

name g for [s’,s"] = [p(s),e(s)] and define Cé := Ba
s " .

Then the reduction |Ö|(C) is isomorphic to R’.

S o  we have

B =—= B’ s lölm => B e law).
T h e  u n i q u e n e s s  o f  (3 i s  d u e  t o  t h e  u n i q u e n e s s  o f

coequalizers!

I I . 5  C o r o l l a r y

B is a fixedpoint of PO? iff the following conditions hold:

(a) B s IPI(A) for a X-alqebra A
(b) B E |Ö|(C) for a O—algebra C

Proof:

"=>”:  R is a fixedpoint of POE. Then by theorem II.4.

t h e r e  e x i s t s  a u n i q u e  O - a l q e b r a  C s u c h  t h a t
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lq’mC). Furthermore lpofilua) <=> Belpldfilwm.
’<=’, S i n c e  ( Ö E A L Q Q )  is the equalizer o f  P ,  E in gggop

then we have for the unique Ce§;g0 in (2):

I F | ( | 5 I (C ) )  = IE|(|Ö|(C)).Since B “ |Ö|(C)we have

|F|(B) s IE I (B ) .  By L e m m a  II.3. this m e a n s  that B

is a fixedpoint of POE.

Each fixedpoint B of POE has the property IP I (B )  s IE I (BL
T h i s  m e a n s  t h a t  a l l  t h e  c a r r i e r s  R p ( s ) ’  B e ( s )  ( s e S X )  a r e

isomorphic and may therefore be identified. This identification

i s  just w h a t  the coequalizer o f  p and e leads to. Moreover the

identification process via coequalizers in gggg yields a unique

category ggqo w h i c h  consists in a sense o f  a l l  D-algebras in

which isomorphic 5 and E—parts are identified. Motivated by the

e x a m p l e  in the introduction and b y  T h e o r e m  II.4. w e  consider

Egiflfiigflfi of ade’s X (€;?) D to be O—algebras ((q 0)=coeq(p,e))
which have the fixedpoint property for POE, w h e n  they are

reduced by Ö.

1 1 . 6 .  D e f i n i t i o n

L e t  X ( 5 )9 )  D b e  a n  ade and (q,Q) = coeq(p,e). T h e n  a solution

of X (gge ’  D is a Q—algebra C such that

lö.|(c> lPofiHIöhcn
( l ö lC  is a fixedpoint of POE!)

IR

N o w  according to this definition there m a y  b e  a variety o f  0—

algebras C which are solutions of X é?‚e) D. But when we

started w e  had in mind t o  use ade’s for implicit specifications

o f  p a r a m e t e r i z e d  d a t a  t y p e s .  D u e  t o  t h e  A D J - p h i l o s o p h y  t h e r e

adn’s should define a n  ( u p  to isomorphism) unique data t y p e . S o

the question is: I s  there a uniquely determined o-algebra C which
is a solution for X gg'e) D? Fortunately Ehrich and Lipek have

a positive answer to this question:

T h e  initial O—algebra denoted by I0 is uniquely determined and is

a solution of X (Ege )  D!
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The following theorems and definitions show the development of

this result. W e  proceed by using an analogon t o  Scott’s inverse

limit construction.

II.7. Therorem

Let X (g>e) D be an ade and let I D  denote the initial D-algebra.
F u r t h e r m o r e  l e t  i o :  I D  + | P 0 E | ( I D )  b e  t h e  u n i q u e  i n i t i a l  h o m o —

morphism and let ik+lz= /POE/(ik).Then the colimit D—algebra of

the diagram
In _.i.0__> IP0E\|(ID) --1——> |P°El2(ID ) —-

\
° \ \CC7/

is a fixedpoint of EOP.

Proof

We know that for any Dslggggl the category Algn of D—models is

cocomplete. Thus the colimit of the above diagram exists. Let it

be denoted by Hon: Ipofiln+clneu),C).
Thus we have the following diagram 1:

D-—o- ->  IpoE|(1D) --1—-> |P°E|2(ID ) --

\CCZ/

Now forgetful functors (here: E) and their left-adjoints (here:

P) resEect colimits o f  chains. Therefore ((/P°fi/(Cn)|n€Nn)‚

|P°fi|(C)) is the colimit of diagram &

lPoäl<ID) ————— > IPoä12(ID) ————— > IP°fi|3(ID)
\
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Rut since I D  is initial in éifln we are able to add

in: I D + IP°FI(1„>and cn= In+ IP°F1 I (C ) .  So (Upofi/(cnflneNn),
(POF I (C ) )  is another c o l i m i t  o f  diagram 1. S i n c e  colimits are

unique up to isomorphism, we have

c s lPoE|(C).

Thus C is a fixeflpoint of POfi.

Remarks: ( 1 )  A s  a n  a n a l o g y  t o  S c o t t ’ s  i n v e r s e  l i m i t  f o r  D?EE(D)

( ü

(ii)

‚ w e  know that

D°° (W;° )  K(n„).
( 2 )  B y  T h e r o e m  11 .4 .  t h e r e  e x i s t s  a u n i q u e  ( u p  t o

isomorphism) O—algebra Aeléégol Such t ha t

c I ö lw .

N o w  w e  want t o  prove that the initial Q-algehra I O

is a solution of)((§;e)rx Before giving the proof
I s h a l l  o u t l i n e  t h e  argumentation.

F r o m  t h e  fixedpoint property w e  k n o w :  i f  R e g l g n  is a fixed-

point of POE then lfil(B) E I§ I (R ) .  According to this

fact we get a category ;gg with:

cbjecür T h e  c l a s s  o f  a l l  p a i r s  ( B , B )  w h e r e  R is a

fixedpoint of POE and B: I§ I (P)  + IFI(B) is the
isomorphism for IE IB  E |5|(R).

morphisms: f: ( 8 1 , 8 1 )  + ( 8 2 , 8 2 )  w h e r e  E: R 1  + R Z  is a n

—morphism Such that |T>I(f)oßl = 820 ]? I ( f ) .
Note that is a full subcategory of glgn. We can

I
H

"
b

égn

§Q
consider gg: to be the category of all fixedpoints of

POE.

Thvorem T I .4  shows that for each fixedpoint R of PO? we
can construct a R ’  e glgn such that R s B' and

lfi|(n’) = |F|(B’L
This fact leads to the category gg; with:

objects: all pairs (R’,id|§|(n,)) from ;§g.

morphisms; all f: ( B l ’ i d l fi l ( B l ) )  + ( B z ' i d l fi l ( B 2 ) )
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(iii)

such  t h a t

/fi/(f)= /§/(fL ( because  /5/(ELid l
t ö/(f)

/fi/(f>
i d o / fi / ( F )

H
I
I

On the other hand since Ö: Algo * &;gD is an equalizer of E
ani 5 .  the characterizinq property o f  the m o r p h i s m s  and

(B) = I§I<B) and /fi/<F> = /fi/(F))
is similar to Ö’s characteristic property namely

ficö = 506.

objects in Egg (where [E

These observations culminate in the assumption that Egg

of Ö is restricted.)

We had ((cnlneNn),C) as the colimit of diagram 1 in Theorem

II.? The object C was isomorphic to IPOEI(C).
Let Y: IPOEI(C) + C be this isomorphism. Then the pair
( C  /P / (Y ) )  is initial in ;gp. S i n c e  ;sg and Egg a r e

gguiyalggt as categories there exists a D—algebra C’

isomorphic to C such that (C’‚id!fi|(c»)) is an object o f

Egg. Equivalence of ggg and_ägg imply that initiality of

(C , / § / (Y ) )  is respected. Isomorphy o f  @gg and fikfio then

implies that IO is a solution of igfflyn since isomorphy
respects initiality.'Phus the argumentation is closed.

Now w e  c a n  s t a t e  t h e  m a i n  theorem.

iii-_T h e o r e m

Let X (age) D be an ade where (q,0) = coeq(p,e).'Phen the  initlgi

Q-algebra t o  is a solution.

Proof:

Suppose ((cnlnEN0)‚C) is the c o l i m i t  o f  diagram l in T h e o r e m

II.7. Then ((/Pofi/(Cn)InENn)‚|POfi|(C)) is another colimit of

this diagram and thus C E IP0fi|(C).
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Let Y: IPOfi|(C) + C be the isomorphism as stated above.
Then /§/(Y): IEI(C) + I§I(C) is an isomorphism.
( § o ( p o E )  = ( fi o p ) o fi  = idofi = E).
(C,/P/(y)) is an 'I§g=object: and furthermore (C./§/(Y)) is
initial in ;;Q.

L e t  ( 8 , 8 )  b e  a n  n - o b j e c t . ' r h e n  w h a t  r e m a i n s  to b e  d o n e  i s  t h e

construction o f  a unique ;gg—morphism

f: ( C , / § / ( Y ) )  + (8,8).
Since C s IPOfil(C) and Y: |P0fi|(C) + C is an isomorphism we
have as a characteristic property for the cn; [pofiln(Id + c;
(i) c n + 1  = YO/Pofi/(cn)
Furthermore there exists a n  initial morphism b0: I D  + B and a

unique morphism f: C + B since C is a coiimit.

S o  we can construct bn: IPOEIn(ID) + B by using b0 and

(ii) /P/(bk+l) = Bo/F/(bn)
F u r t h e r m o r e  w e  h a v e

( i i i )  b n  = b

And with the unique morphism
' f :  C + B we get
(iv) bn = f0cn

B u t  é?EEZ"WE'want t o  use f t o  construct the required initial

morphism in ;gg t hen  f must have the following property:

(v) /P/<f)o/F/(y) = so/fi/(f).
I t  remains to show the equivalence of (iv) and (v).

(iV) => (V)

W e  have bn+1 = f0cn+1 (neNO). From (ii) we get

/§/(bn+1) = P o / E / ( b n )  and from ( i )  we g e t  cn+1 = Y o / p o fi / ( c n y

Then

/ 5 / ( hn+1 )  = /§/(E)0/§/(Cn+1)

(/5/(f)°/5/(Y))°fi(cn)
(ii) so/fi/(bn)
= ß ° / fi / ( f ) ° / fi / ( C n ) .

So /F/(f)o/5/(Y) = ßo/fi/(f) for all n.

( V )  => (iV)

We use induction on n:
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For n=0 w e  have  b O  = foc0 b y  initiality. Suppose bn

all k ‘n. Then  by (ii)
/fi/(bn+1) = BO/E/(bn)

= B o ( / § / ( f ) o / fi / ( c n ) )  (induction hypothesis)

‘3’ (/fi/(f)o/fi/(Y))o/fi/(cn)
(i) /fi/(f>o/ö/<cn+1)
= / § / ( f 0 c n + l )

Thus  bn+1 = fOC a n d  the proof is complete.n + 1

4 8
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I I I .  Continuous Data Types ani Parameterization

I’ll return now to our basic question, namely: I s  it possible to

c o m b i n e  t h e  d a t a  t y p e  a p p r o a c h e s  o f  S c o t t  a n d  t h e  A D J - g r o u p  t o

q e t  a c o n c e p t  o f  parameterized c o n t i n u o u s  d a t a  t y p e s ?

I s  it possible to specify parameterized continuous data types by

a s o r t  o f  a l g e b r a i c  d o m a i n  e q u a t i o n s  a s  p r e s e n t e d  in the

preceedinq chapter?

We’ll try to clarify s o m e  aspects o f  this problem in this

chapter.

First some standards from the theory of domains.

I I I . 1 . 1  Definition

L e t  (D ,< )  be a p a r t i a l  o r d er w i t h  a m i n i m a l  e l e m e n t  in. X g D i s

directed if every finite subset Z c X has an PPPEE bound'ai X.

III.1.2. _Definition

Let (D ,< )  again be a partial order with in. Then D is a EEE
(complete partial order) if every directed subset X g D has a

least upper bound lub(X) in D.

I I I  1 . 3 .  Definition

Let (D ,< )  and ( D ’ , (  ) be partially ordered sets a s  in III.1.l.

( i )  A m a p p i n q  f :  D + D ’  i s  m o n o t o n i c  if

V d , d ’ s D .  d < d ’  => f ( d )  < ’  f ( d ’ )

( i i )  f i s  c o n t i n u o u s  if

v xEn. x is directed => f(lub(x)) = lub’{f(x)lxex}
(iii) f is strict if

f(in) = in’
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N o w  a c o n t i n u o u s  d a t a  t y p e  i s  m e r e l y  a n  a l g e b r a  w h o s e  c a r r i e r s

are partially ordered and whose operations respect monotonicity

and existing limits of directed sets.

I I I  1.4. Definition

Let 5 = <S,Z> be a signature.

A E-algebra A is continuous iff

(i) A s  is a cpo (for each seS).

( i i ) o A :  A q l x „ . X A  + A s  i s  a c o n t i n u O u s  f u n c t i o n  f o r  e a c hs n

° € z s l ‚ . . . , s n , s '

Let g é é g z  denote the category of continuOus E—alqebras together

with strict continuous homomorphisms. Then gélgz has an initial

object: the continuous term algebra CTZ. G T Z  is in a sense T X

equipped w i t h  a n  order—theoretical s t r u c t u r e .

III.1.5. D e f i n i t i o n

Let E = (S ,Z>  b e  a signature.’Phen the continuous term—algebra

CT: is defined by

( u  ) For each 558 is is the least element of C T Z , S

v teCTES. is < t.
( i i )  L e t  a e E s l , . „ , s n , s

( t i ' t i e T z s i )

Then a(tl,...,tn) < o(ti‚...‚t;).
(iii) L e t  o 8 Y.

a n d  f o r  i = l,...‚n l e t  t .  < t ?

sl‚„.‚sn,s' T h e  operation corresponding t o  a in

CTZ is denoted by c c  and defined by

( a )  d c  : =  o i f  a & z k , s

(b) °c(tl""'tn) = °t1,...‚tn‘

The following theorem is due to [ADJ 77].

III.1.6. Theorem

CT! is initial in gélgz.
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S o  even in the category o f  continuous E—algebras w e  have a

uniquely determined model for a signature. Again, choosing this

model a s  the continuous meaning of a signature is standard.

I I I . 1 . 7 .  D e f i n i t i o n

Let 5 be a signature.

T h e  abstract continuous data specified by £ is the isomorphy

class of GTE.

But what about initial models for speCifications Spec = <S‚Z‚EP’

T h e  search for initial m o d e l s  in ggggz  E is successful for a

class of specifications which give rise to so-called continuous

congruences. I f  there exists a strict continuOus function nf:

CTZ + GTZ-which takes each member téCTx's to a_ngrmal£9£m nf(t)
a n d  w h i c h  b e h a v e s  ’ w e l l ’  w i t h  r e s p e c t  t o  t h e  c o n t i n u o u s

congruence generated by D then we have an initial algebra GTE/EE

in § § $ 9 2 , E '  The following definitions and theorems concerning

continuous congruences, normalizers and initiality of GTE/5E are

taken from [L/M 82].

T h e  set of equations E in Spec = ( S  E‚R> generates in the normal

framework exposed b y  the ADJ-grOup the congruence E E  o n  T2. S o

t h e  initial q u o t i e n t  T Z / E E  i s  generated. Moreover E E  i s  unique in

the sense that it is the least congruence containing E. One

critical point about continuous data types is that limit points

for chains and directed sets exist. But normally the congruence

relation EE generated is not defined on those limits because only

finite terms are considered to be elements of T2. But CT:

contains finite and infinite terms. Then a continuous congruence

h a s  t o  t a k e  i n t o  a c c o u n t  l i m i t s  o f  directed sets.

III.1.8. D e f i n i t i o n

Let 5 be a signature. Let A be a continuous E-algebra and
R g AXA a relation on A.

Then the continuous E-congruence on A generated by R (denoted by
E R )  is the least congruence on A containing R and whenever there
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a r e  two c h a i n s  ( a i l i € I > ,  ( b i l i E I >  i s  A s  w i t h  ( a i , b i ) € E R  t hen

(lub(<ailieI>), lub(<bilieI>)) a ER,

A congruence class of E R  (denoted by [ ]ER) contains equivalent
elements. I t  is useful t o  choose  o n e  representative for each

congruence—class and to use this representative in proofs con—

cerning the whole congruence—class. If certain properties hold w e

c a n  speak o f  a n o r m a l f o r m .  A n o r m a l i z e r  t hen  i s  r o u g h l y  spoken a

mapping which takes terms to their normalforms. I n  the framework

of continuOus algebras order—theoretical requirements have to be

considered.

III.1.9. Definition

Let ER denote a continuOus congruence o n  CTZ. A continuous

mapping nf: CTZ + C T S  is called a normalize; w ith respect t o  E R

iff the following properties hold:

(i) v t,t’eCT£s. ([t] [t’]) => nf(t) = nf(t’)
(ii) v teCI‘ZS. [nf(t)] [t]

L e t  E R  d e n o t e  i n  t h e  s e q u e l  t h e  c o n t i n u O u s  c o n g r u e n c e  o n  a

continuous E-algebra as in III.1JL T o  make CTZ/ER a continuOus

algebra we have to define a partial ordering between congruence

classes. W e  d o  this by using the normalizer nf.

III.l.ln. D e f i n i t i o n

Let GTX/ iR  be the quotient of CTS with respect to the congruence
E R  and l e t  n f  b e  a n o r m a l i z e r .

/
We define a partial ordering ’<R

v t,t’ECT£S. [ t ]  <R [t’]; <=> nf(t) < nf(t’)
on GTZ/ER in the following way:

a
I t  is easy to verify that ‚ ( R  is indeed a well—defined partial

o r d e r i n g  o n  C T Z / E R  d u e  t o  t h e  f a c t  t h a t  ’<’ i s  w e l l  d e f i n e d  o n

CTZ and that nf: CTS + CTZ is a normalizer.

Furthermore GTZ/ER is chain complete.
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I I I . 1 . 1 1 .  Lemma

Let <[tj]IiEI> be a chain in GTE/ER.

Define lub(<[ti]IieI>) == [nf(lub({tjlieI}))].
Then GTX/ER is chain-complete.

L e t  S p e c  = <S Z,E> b e  a s p e c i f i c a t i o n .  T h e n  E g e n e r a t e s  a

c o n t i n u o u s  c o n g r u e n c e  o n  C T E  ( d e n o t e d  b y  ER) .  T h i s  c o n g r u e n c e

a l w a y s  e x i s t s  a n d  i s  u n i q u e l y  d e t e r m i n e d ,  s i n c e  i t  i s  t h e  least

congruence on CTS which contains E and for which the continuity

property holds. N o w  the question arises if GTZ/ER i s  initial in

CAlgz'E? Indeed, the m a i n  r e s u l t  in t h e  work o f  [L/M 8 2 ]  has

s h o w n  t h a t  i f  a n o r m a l i z e r  n f :  C T Z  + C T Z  w i t h  r e s p e c t  t o  E F

exists, then CTZ/E is initial in_gAlg .E „__  m".

III.1.12.“_Theorem

Let S p e c  = <S,£,E> b e  a specification and EF b e  the continuous

congruence on CTZ generated by E.

I f  there exists a normalizer nE C T Z  + C T E  with respect to 5 E

then GTZ/EE lS initial in C A n ' F .

III.2. Parameterized gontinuous Data Types

T h e  preceding r e s u l t  is very important w h e n  using continuous

algebras a s  d a t a  types. I f  S p e c  = <S,2,R> is a specification w e

k n o w  that there a l w a y s  exists a least continuous congruence o n

GTX/EE containing E. Furthermore if there exists a normalizer

with respect to ’EE’ then the quotient GTZ/EE is initial in

g g n I R .  A s  w e  h a v e  s e e n  i n  T h e o r e m s  I I . 7 .  a n d  I I . 8 .  t h e

e x i s t e n c e  o f  i n i t i a l  a l g e b r a s  i s  e s s e n t i a l  i n  c o n s t r u c t i n g  a

unique s o l u t i o n  for a l g e b r a i c  d o m a i n  equations. A s  w e  wanted to

use this method for specifying parameterized continuOus algebras

it s e e m s  r e a s o n a b l e  t o  r e s t r i c t  o u r  a t t e n t i o n  t o  t h o s e

specifications which possess an initial continuOus model. In the

context w e  have s h o w n  in the preceedinq sections this means w e
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consider only those specifications for which a normalizer exists.

This category of specifications will be denoted by yäggg

(Specifcations with normalizersL

III.2.1. Definition

T h e  category E§2SE is defined by
a fi e c t s z a l l  g p g g - o b j e c t s  w i t h  f i n i t e  s o r t - ,  o p e r a t i o n - ,

equation-sets for which a normalizer does exist.

yorphism : the morphisms between two ggggg-objects are those in

gggg which exist between these two obfiects.

III.2.2. Corollary

As we have seen in chapter II the cocompleteness-property is es—

sential for using algebraic domain equations.

III.2.3. Corollary

gg is cocomplete.

r o o*U
 
"Z

|!!
!)

g
f :

Since §Qgg is cocomplete and:flgflgc is a full subcategory o f  gpgg

it follows immediately that cocompleteness holds for ggggg.

We use the same parameterization concept for specifications from

ggpgg as defined for gpgg in chapter I, namely that a para—

the result of parameter passing is the pgshggt of a certain dia—

g r a m  in:fl§ggp (see definitions I 3.1. and I.3.8J. But w h a t  about

Our forgetful functors and persistent data type constructors? Do

they fit into the framework of continuOus algebras?

Principally the answer is “yes“ but we have to take into account

some merely slight modifications.
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In definition I JLZ .  we used  the functor alg: gggg + QQQOP send-
ing each specification S p e c  = <£ E> to the categoryfigggz F . a n d

sending each gpgg—morphism e: <£,E> + <£f‚E’> to a forgetful
functor F:=§;gz”E’ + A g Z ‚ E '  In the framework of continuous

data types we modify alg explicitly in the following way:

calq: ggggg + gg;0P  is the following functor

( i )  Each specification g = <E,E> e lggpggl is send to gélgz F“

( i i )  L e t  e :  <§,E> + <£'‚E’> b e  a g gpgg—morphism.

T h e n  calg s e n d s  e t o  t h e  forgetful f u n c t o r

‚. , , + ‘- Qéigz ‚E § § ; 3 2 , e  defined by

( a )  Each CAlgz, F I — a l g e b r a  A’ is sent to it’s Z—reduct A by:__. „ _
V SES .  A s  : =  A e ( s )

(b)If A’, R” a r e  : fi l q z ’
==_I(notice that |s e(s)!)

F ‚ — a l g e b r a s  and h": A’ + R' is a

strict continuous algebra homomorphism

then the resulting Qälflg F morphism,.
h := /fi/(h’):lfil(A') + IE | (B ' )  is given by
V SES.  h s  : =  h e ( s ) o

( n o t i c e  t h a t  h S ( - L A S )  : J—RS : i B ’ e ( s )  = h é ( S ) ( i A ’ e ( S ) ) ! )

,

I t  i s  i m p o r t a n t  t o  s e e  t h a t  e a c h  f o r g e t f u l  f u n c t o r
E :  CAlgz» F’ + Calgz F which sends each continuOus (Z’‚RW-

_ _ "  I .: _ _ “  ' _.

algebra to its continuous (Z,F)-reduct r e s p e c t s  continuity by

d e f i n i t i o n  ( s i n c e  reduction h e r e  i s  a r e n a m i n g  o p e r a t i o n  w h i c h

doesn’t affect the order—theoretical properties of algebras and

homomorphisms).

I n  t h e  c a s e  o f  p e r s i s t e n t  f u n c t o r s  s e r v i n g  a s  d a t a - t y p e

constructors the continuity o f  the target and resulting types

r e q u i r e s  t h e  s t r o n g  p e r s i s t e n c y  p r o p e r t y .  I f g n  X +1315  a p a r a —

meterized specification in ggggg then weak persistency of the

corresponding data type constructor is equivalent to

V AEQélgx- l?°Pfreel(A) s A

But Scott’s theory o f  d o m a i n s  s h o w s  that pure isomorphy o f
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domains is not strong enOugh to ensure that they possess the same

order theoretical s t r u c t u r e  ( e . q .  t h a t  are homoeomogphig).

Thus weakly persistent data type constructions don’t necessarily

lead to equivalent order—theoretical structures of

IFOPf ree I (A)  and the argument—algebra A.
T h e  following theorem shows why.

I 1.2.5. “Theogem

Let p: X + D be a specification in ugpeg.

Let P f r e e :  C l + gglgn b e  a weakly persistent functor with

r e s p e c t  t o  p which is EEE s t r o n q  persistent.

T h e r e  is an  alqebra A e lgglgxl such that for a directed set M_c_:l\s

( f o r  a s o r t  s e s o r t s ( x ) )  a n d  t h e  rest ricted p e r s i s t e n t  functor

% .  CAlgx + C A l g p ( X )  t h e  following inequality h o l d s :

IPI(lubAS(M)) a: lm |P|(A)p(s){|P|(m)|mEM}
( T h i s  m e a n s  t h a t  w e a k  p e r s i s t e n c y  d o e s n  t n e c e s s a r i l y  r e s p e c t

continuity!)

Ergofi:

Let X and D be the follOWing specifications:
( { 5 } ,  a: s + S )

<{r}, w: r + r )

f

X

D

„
.

D
'

sort(s) :: r
(a) ‚= $ } renaming of operations

L e t  A b e  t h e  following Célg  X — a l q e b r a -

AS := { i s ’ n '  l} with is 0 and i < 1

o : A + A %

A
"

A s

ls + 1 :
O + i s

l + 1
Let A’ s Igglg|p(x) be the following algebra:

A; := {ir‚b,c} with _|r < b, b < c ( => _lr < c)
i“ A; * AE
lr+lr
b + c
c + c
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Let the functor fi‘xe defined hy

IPI(A) == A’
|PI(1S> == c
| £ | ( 0 )  := b

lg|(1) == 1r
I P "  O A )  = =  ‘I’A’

|M (A )  which is equivalent to the persistency—T h e n  w e  have A

property ( w e  have defineh B to be the restricted functor defined

by p: X + D and thus m a y  o m i t  the forgetful functor

TS: CALLED " 91):;n-

L e t  M b e  t h e  d i r e c t e d  sets

M := {15,1}

Then we havv

lPI(lubSM) = |P|(1) = ir
a n d

lubr{ |P|(m)|meM} = lubr{ir,c} = c.
T h u s  [Pl(iubs(M)) # lubr({lP|(m)|meM}) an? P doesn’t respect

continuity.

1 1 1 . 2 . 6 .  D e f i n i t i o n

A parameterized continuous data type consists of a parameterized

specification

p :  X + n

in @gggg and a EEEQESÄZ persistent data type constructor
P f r e e ’  Qßggx + ggign that takes each ggggx—algebra A to it’s
free continu0us extension over A with respect to p such that

l fi o p f r e e l ( A )  = A ’

Wehave defined alqebraic domain equations to be a pair X (:;e) D

where p: X + D is a parameterized specification. Therefore p is

an jnjective gggg—morphism. The gggg—morphism e is only supposed

to define a forgetful functor E: éggn *2Aggx. But in all

interesting cases of applications of algebraic domain equations

it turns o u t  that even  e is a n  injective gggg—morphism.'rhus it

seems_reasonable to modify the concept of algebraic domain
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equations in this sense :

III 2 .7 .  Definition

Let X, D be two ggggg-objects.

Then  by a continuous algebraic domain equation we mean a pair of
injectiyg ygpgg—morphisms p,e: X + D.
According to solutions of continuous algebraic domain equations

w e  proceed in a similar way  a s  s h o w n  in chapter I I . T h o  proofs of

the various theorems are not yet worked Out in detail but will

appear in an extended version of this paper.

W e  have t h e  following facts:

Eact 1

ggpgg  is cocomplete. Thus colimits, coproducts and coequalizers

ex1st in g g g g g .

V D e l g g g e c l .  ggggn has an initial object.

T h i s  initial object is the quotient CTZ/EF ( E  := siq ( n ) )  which

is guaranteed to exist in gggln since a normalizer
nf: C T E  * C T Z  e x i s t s  for D a n d  t h e  c o n t i n u O u s  c o n g r u e n c e

generated by the equations in D.

Fact 3

According to the definition of the forgetful functor

P: QA;QD + ___3x  (p: X + D is a ygpgg-morphism) there exists a
left—adjoint P f r e e ‘  C§;9¥ + t39 which respects continuity and

takes each ggégX-algebra to its free continuOus extension.

Fact 4
The functor calg: gggg; + §§;0P respects colimits in ggggg.

Thus we are able to define what a solution of a continuous

algebraic domain equation is.
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£1142.§;__Definition

Let X (gge) D be a continuous ade.
L e t  ( q , Q )  : =  c o e q ( p . e )  b e  t h e  c o e q u a l i z e r  o f  p a n d  e g u a r a n t e e d

to exist by cocompleteness of §§§5gh Then a continuous solution

of X (Ege )  D is a gglgo—alqebra C ’  such that

löl<C> lPofiIMöhcn

S i n c e  the initial géggO—algebra I exists w e  have to prove the0
following theorems in the framework o f  continuous algebras to

hold. With these theorems we get the result that I 0  is a

solution of X (E ;e )  D.

III.2.8. ASSumption

Let D a läggggl be a specification.
T h e n  géégn h a s  c o l i m i t s  o f  c h a i n s  o f  t h e  form

- — - — 2ID ——i --> IPOE'(ID) ——11_—> Ipon| (ID)--___0
(where I D  is the initial algebra in géign)

III.2.9. Assumption

Let p be a IIipgcl morphism.

T h e n  calg—p respects colimits of chains.

III.2.10. Assumption

Let (2 )9 )  D be a continuous ade.
Let R be a ggn—algebra Moreover B is a fixedpoint of POE.

Then there exists a D—algebra R ’  such that IE I (B ’ )  = I§I(B’).

U n d e r  t h e s e  c o n d i t i o n s  I 0  i s  a c o n t i n u o u s  s o l u t i o n  o f  X £ p , e )  D

and due t o  the initiality property it is the unigue continuous

solution of x (Egg)  n.
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