NI

\‘_".--)-))

&
L

<
m
ot

S
4

Term Rewriting Systems
Richard Gobhel
Memo SEKI-83-11

[}

M [
jo BES)
o] -
v <
&) i
C o
o
>N

1

oo
o ®©
" 0
& 0O
[
- U
jon

E ~
c O
[
<

Auelwan) A\ 'L WIBINEBISISSIEY (05/9-0
6708 UDB}ISOd OENE
UIBINZ[SIASIEY 1BUSISAIUN R
NIBULIOJU| YDiaiaqyoed -:um

A COMPLETION PROCEDURFE FOR GLOBALLY FINITE
TERM RFEWRITING SYSTEMS

Richard Gobel

fachberelch Informatik
Nniversltit Kalserslantern
PostFfach 3049
D-6750 Kaiserslautern

West-Germany

November 1983

This research was supported by the Rundesministerium flir

Forschung und Technologie under contract IT.8302363.

Abstract

The Knuth-Bendlix Algorithm 1is not able to complete term rewriting
systems (TRS) with cycllc rules such as commutativity,
assoclativity ete. A solutlon for this problem 1s to separate the
cyelle rules from the TRS and 1ncorporate them Into the
unification algorithm. Thils requlires a unificatlion alporithm for
the specific theory. Usually 1t is very difficult to develop such
algorithms, and we therefore discuss another way to solve this
problem.

We propose an extension of the completion procedure for globally
Finite TRS. For a globally finite TRS cycles may occur in 3
reduction chain, but for each term there 1s only a finite set of
reductions. A confluent and globally finite TRS R provides a
decision procedure for the equality induced by R:

Two terms are equal iff there is a common term in their reduction
sets.

This extenslion requlres new methods Ffor testing whether a iven
TRS 18 confluent and globally finite. For proving that a T3 is
globally finite appropriate ordering relations are required,
which are usually reflexive. Proving the confluence of a glohally
finite TRS is more di1fficult than for ndtherian TRS and the set
of critical pairs which has to be tested 1s in general infinite.
Therefore a completion procedure with thils test may not
terminate. Further work has to be done to decrease this critical

palr set.

1.

Contents

A decision procedure for the
equalitiy based on globally finite
and confluent TRS

Ordering relations for proving a TRS
mlobally finite

A confluence test for globally finite
TRS

N

Technical Remarks

We assume familiarity of the reader with the basic proofs and
results of the Knuth-Rendix Algorithm (e.g. [HUE 77], [HUFR
80], [KB 70]).
We denote by:

s5,t terms

u,v,w occurrences 1in terms

a,b,c,d } rewriting rules

(a,B),(y,8)

15} substitutlons

R TRS (always finite in thils paper)

5 *p t one step reductlons

S **R £ reduction in a finite number of steps
we omit R, 1if we conslder only one TRS

(tls #> t} reduction set of s

set of operators

™
I
[
(@]
o
=
M

dlagrams:

s Is reduced to t by a and t 1s reduced by multiple application
of b to E.

Kor example:

t
a b
*///ﬂ\\\\%

If a is applied at a variable occurrence of b (the occurrence
where a is applied 1s matched by a variable of b), then we can
find a term T and reductions to T (result of Knuth and Bendix

in [KB 70]):

1.

A decision procedure for the equality based on globally finite
and confluent TRS

First, we defline the globally finliteness property for TRS.
This definition 1s equivalent to the definition given in [HUR
77] .

Definition 1.1
A TRS R 1is globally filnite 1ff for each term s the reduction
set is finite:

¥s: 3 n: |[{t] s #> t}| < n

Given a confluent TRS R, the test for the equality induced by
R for two terms s,t 1s equivalent to the test whether there is
a common term 1in thelr reduction sets. If R is also globally
finite, each reduction set 1s finite and the equality 1is
decldable:

Decision Procedure 1

(1) 1 := 0, My(0) := {s}
(2) 4 =1+ 1, ML) := {t]ls » t . s e M(1-1)} u M, (i-1)
My (1) = My(i-1)° true: » 3
false: » 2
(3) J := 0, My(0) := (&}
(W) § =3+ 1, Mp(J) := {t]ls » t « 5 e My(j-1)} u My(j-1)
Ms(J) = My(J-1)? true: » 5
false: » 1
(5 My (D Ms(3) = 07
true: s,t not equal
false: s,t equal

This test 1s rather 1lnefficlent as 1t enumerates the complete
reductlon sets for both terms. For a more efficient decislion

procedure, we will distingulsh between cyclic and reduction

runles. Cyclic rules always create terms wlth the same
reductlon set as the original term.

After applyling a reduction rule, the original term does not
belong to the reduction set of the resulting term.

Definition 1.2
Let R be a globally finite TRS.
A rule (a,B) € R 1s a cyclic rule iff:

¥s: s/u = o(a) => s[u « o(B)] *» s

Definition 1.3

Let R be a globally finite TRS.

A rule (a,B8) € R is a reduction rule iff:
¥s: s/u = o(a) => s ¢ {t| s[u « o(B)] *» t}

Note:
There might be rules which are neither cyclic nor reduction

rules:

Fxample:

R = {(f(x,g(y,z)),f(gly,z),x))}

f(x,eg(y,z)) » f(gly,z),x) ¥+ £f(x,g(y,z))
t(gle,c),ely,z)) » f(gly,z),g(c,c)) » f(glc,c),g(y,z))

A test for checking whether a rule is a cyclic or reduction

rule 1s given 1In chapter 2.

If we are able to split a TRS R into cyclic rules CR and
reduction rules RR, we can define a more efficient decision

procedure for the equality.
First, we note that there 1is a least cycle for each reduction

set, since otherwise R can not be confluent.

Second, 1if there is a common term 1n two different reductlon

sets,

this term has a unlique least cycle, which is the least

cycle of these two sets. Thus 1t is sufficient for testing the

equality of two terms s,t to compare the two least cycles of the

reduction sets of s and t:

Decision Procedure 2?2

(1)
(2)

(3)

()
(l’))
(6)

(7)

(8)
(9)

1 :=0, s(i) := s, My(1) := {s(1)}

is there any reductlon rule which reduces s(i) to a term
s(i+41)°?

true: > 4

false: » 3

is there any cyclic rule which reduces a term in Ml(i) to
a new term s(1+1) ¢ My (1)

true: My(i+l) := M (1) u {s(1+1)}, 1 := 1+1, > 2
false: » B

My (141) == {s(1+1)}, 1 := 141, » 2

J o= 0, t(J) = t, My(0) == {t(1))

is there any reductlon rule which reduces t(j) to a term
t(j+1)?

true: + 8

false: » 7

is there any cyclic rule which reduces a term in Mg(j) to
a new term t(j+1) ¢ M??

true: My(J+1) := My(3) u {t(J+1)}, J := j+1, + 6
false: > 5
My (d+1) 1= {8(J+D)}, § := j+1, » 6

5 ls an arbitrary term in M](i)
S € M?(J)?
true: s5,t equal

false: s,t not equal

2. Ordering relations for proving a TRS globally finite

In this chapter we show how to prove a TRS to be globally
finite by some simple tests. These tests are very similar to
the usual tests for ndtherian TRS where the only differcnce
between the used ordering relations is, that ours are usually
reflexive. Thus we are able to extend many of the existing

orderings for our purposes.

Definition 2.1
< 1s a partial ordering relation for terms 1ff:

- S < S reflexive
- s <t~ t<T = s<F transitive
- {t] t < s} finite for all s

Note:

For two different terms s,t on the same cycle of a reduction
chain we have both s<t and t<s. Thus the antisymmetric axlom
for partial ordering relations s <t ~ t <s => s = this
missing here.

For proving a TRS globally finite, we have to show that each

reduction 1s not greater than the original termn:

Lemma 2.2
¥ (a,8) eR: ¥ s: s/u= od(a) => s[u « o(B)] < s
=> R 1s globally finite

Proof
Assume R 1s not globally finite.
Then there is an infinite reduction chailn:

Sl"S?"’...‘*S > e

n
wlth By = SJ = 1 = }
and:

81 2 Sp 2 ... 285, 2 ... premise

=> {t]|t < s1} 1s infinte (contradiction) e

Another restriction for orderings seems to be natural. For
comparing two terms which differ only at a certain
subtermposition, we should compare only these subterms. With

this restriction, we get a lemma with a weaker premise:

Lemma 2.3

IL.et € be a partial ordering for terms with:

¥ s,t,t: ¥ue0(E): s <t => F[u+ s] < F[u « t]

Then R is globally finite 1f for every rule (a,B) eR: o/ B) < o(a)
holds.

Proof
s/u= o(a)
=> s[u « o(8)]/u < s/u

=> s[u <« ag(B)] < s premise. °

Some simple orderlngs are extendable now:

The depth of a term 1s the maximal length of a path in its
tree representation. A term s 1s not greater than a term t if

its depth is less or equal than the depth of t.

Definition 2.4
The depth of a term t 1s defined as:

Nit) := f 0 t eV .t e &
MAX({D(t1),.e.,D(t)})+1 tE=f(ty, ..t

Lemma 2.5
The relation <:
s <t «<=> D(s) < D(t)
is a partial ordering relation in the sense of definition 2.1

The reflexivity and the transitivity of this relation is
obvious.

The set of terms of a limited depth 1s finite, thus we can
prove the third property of definition 2.1 too.

For testing whether a rule does not Increase the depth of a
term, we have to check whether the right hand side 1s not
greater than the left hand side of the rule and the
occurrences of variables of the right hand side are not deeper
than on the left hand side.

Definition 2.6
The depth of an occurrence 1s defined as:

d(u) := f 0 u = €
d(u)+1 u-= 1.

Note:
The depth of a term 1s equal to the maximal depth of 1its
occurrences:

D(s) = Max{d(u)|u € 0(s)}

Lemma 2.7

Let (a,B) be a rewrite rule:

¥ xe0(a): s/u= x ~ t/v=x => d(u) » d(v) . D(B) < D(a)
=> ¥ s: s/u = o(a) => D(s[u « o(B)]) < D(s)

Proof
First we show for <:
(1) ¥ s5,t,F: ¥ueo(E): s < t => Fu « s] <ETL -]

Assume: v 1s the occurrence in T[u « s]| with the maximal
depth.

We obtaln two cases:

- v overlaps with u => v = u.v
=> V 1s a deepest occurrence in s
> 3 we o(t): d(w) » 4a(¥v)
=> u.w e O(E[u « t]) ~ d(u.w) » d(u.v)
=> D(E[u « t]) > D(E[u « s])

- v does not overlap with u
=> ve O(E[u « t])
=> D(E[u « t]) > D(E[u « s])

and the proof for (i) 1s complete.
Now it 1s sufficient to prove:
¥ o: ol 8) < o(a) (by Lemma 2.3)

Assume: D(a) > D(B)

+ we 0(c(B)): D(o(B)) = d(w)

w e 0(B)
=> D(B) = D(a(B))
=> D(o(B)) < D(a) D(a) > D(B)

=> D(o(B)) < D(a(a))

w ¢ 0(8)

> W = WpeWo A B/Wy €V

=> } Wyr a/Wy = B/wy e V V(B) ¢ V(a)

=> d(Wy) » dlwy) premise of Lemma

=) d(wl'WQ) 2 d(wlow2>
=> d(w-l-WQ) 2 D(O(B))
=> D(o(a)) » D(o(B))

We get another slmple ordering relatlon by comparing the

number of operators (length) of terms:

Definition 2.8
We define the number of operators of a term t as:

0 t eV
F(t)+eooti(t)+ t=f(tq,eeesty) o el

The ordering relation t<s <=> #(t) < #(s) can be proved to
be a partlial ordering relatlion as in Definition 2.1. This

proof 1is very simple and omitted.

For proving a TRS to he globally finite with this ordering,
the number of operators 1n the left hand side has to be not
less than those in the right hand side of the rule and for any
variable, there are not more occurrences 1In the right hand
side than in the left hand side.

NDefinition 2.9
The number of variable occurrences for a variable x in a term t

is defined as:

0 (teVat#x) v telg
#(x,t) =41 £t = x
r(x,t1)+...+w(x,tn) s=f(t1,...,tn) ~ fexl

Lemma 2.10
Let (a,B) be a rewrite rule:

(¥ x: #(x,a) > #(x,8)) ~ #(a) > #(B)
=> ¥s: s/u = o(a) => #(s[u«c(B)]) < #(s)

Proof
#(Elues]) = #(T) - #(E/u) + #(s)
#(Efuet]) = #(E) - #(T/u) + #(t)

#(s) < #(t)
= #(F) - #(E/u) + #(s) < #(¥) - #(T/u) + #(¢v)
=> #(E[u*s]) < #(E[u«t])

=> prove: ¥ o: ol B) < o(a)
#(a) > #(B)

#(x,a) » #(x,B)
=> #(x,a) * #(c(x)) > #(x,B) * #(a(x))

} premises

= #(a) + I #(x,a) ¥ #(o(x))
xeVia)
> #(B) + I #(x,B) * #(o(x)) V(B) ¢ V(a)
xeV(B)
with:
#(o(s)) = #(s) + © #(x,s) * #(o(x))
xeV(s)

=> #(o(a)) > #(o(B))

Although these orderings are much simpler than many of the
existing orderings for ndtherian TRS, we can for example prove
that a TRS with abelian group axioms 1s globally finite:

Example

(1) f(x,y) » £(y,x)

(2) f(rf(x,y),z) » £(x,f(y,z))
(3) f(x,0) » x

(4) f(x,I(x)) » O

#(f(x,y)) =1 = #(f(y,x))
#(F(f(x,y),z)) = 2 = #(f(x,f(y,z)))
#(£(x,0)) =2 #(x) = 0

)
#(f(x,I(x))) = 2 #(0) = 1

For each variable the number of occurrences on the left hand

side 1s not less than on the right hand side of these rules.

Hence, this TRS 1is globally finite.

In fact 1t might be "easier" to prove

a TRS globally finite

than proving 1t ndtherlan, because global finlteness 1Is the

weaker property:

R ndtherian <=> R globally finite
~s Tt = ot %4 s

Although the proof for global finiteness might be "easier",

there 1s no way to find a general ordering relation, for this

problem 1s still undecidable.

We get another ordering relation by combining the depth and
length ordering. First we split the set of operators I into
two disjolint sets F and G. The computation of the depth 1s

restricted to operators of F and only operators from G are
The definition of the

counted to get the number of operators.
depth of an occurrence is different too,

are considered for computing the depth.

Definition 2.11
Split £ into two disjoint sets F and G:
r=FuG .~ FnG=20

We define the depth of a term as:

only operators from ¥

1 teV u (tef - teEO)
0 teG tezo
PCE) =1 MAX({D(t1),...,D(t,)}) t = g(ty,.ae,ty) ~ ge

MAX({D(t1),...,D(t)})+1 t

10

f(tl,...,tm) -~ feF

#(t) is the number of operations in t:

1 teG . ter

0 (teXO ~ teR) v teV
F(t) =4 rit)+ +8(t)+] t = glty,...,t,) ~ gea

F(E) et (L)) t = f(ty,..e,t) o feF

d(u,t) is the depth of an occurrence u in a term t:

0 u = €
d(u,t) :={d(u,ty) u = 1.0 ~ s=g(ty,eee,tp) ~ geh
~ 1<i<m
d(u,ty)+1 u = 1i.u s=f(t1,...,tm) -~ feF
~ 1<i<m

A term t 1s not greater than s iff the depth of t and the
number of operators in t 1s not greater than in s. For proving
a TRS globally finite the two variable conditions for the
depth and length ordering have to hold too:

lLemma 2.12
Let (a,B) be a rewrite rule:
D(B) < D(a) ~ #(B) < #(a)
~ ¥xeV(a): a/u = x . B/v =x => d(u,a) < d(v,B)
~ ¥xeV(a): #(x,a) > #(x,B)

=> ¥s: s/u = o(a) => D(s[u « a(B8)]) < D(s)
~ #(s[u « a(B)]) < #(s)

The proof of lemma 2.12 is similar to the proofs of lemma 2.10
and 2.7, thus we skip it.

These ordering relations are easily extendable for sorted
algebras. Also welghts for operators might be added. More work
has to be done to find more general ordering relations, but

11

for first tests wilth the extended completion procedure, these
orderings might be sufficient.

With these ordering relations we can split a globally finite
TRS Into cyeclic and reductlion rules. The test Cor cyclic rules
is rather simple. The left hand side has to be 1in the
reduction set of the right hand side of the rule:

Lemma 2.13
(a,B) € R 1s a cyclic rule iff B ¥+ a.

Proof
(=>)
(a,B) 1s cycliec
a > B with (a,B)

=) B * 5 o

(¢=)

s/u = o(a)

s[u <« a(B)]/u = o(8)

o(B) *» o(a) with B ¥+ a
s[u «a(8)]/u » s/u

=> s[u « o(B)] » s

=> (a,B) 1s cyclic rule ®

For testing whether a rule 1s a reduction rule, we need the
same ordering relation which was used to prove that the TRS 1is
globally finite. After applying a reduction rule to a termn,
the resulting term has to be less than the original term.

Lemma 2,14

Let < be an ordering relation in the sense of Definition 2.1
and R 1s a TRS with:

s >t = t < s

Then (a,8) € R 1s a reduction rule if:

12

¥s: s/u = o(a) => s ¢ s[u « o(8)]

Proof
Assume: s § s[u« o(B)] ~ s[u ¢ o(B)] *» s
=> s < s[u « og(B)] transivity ol <
(contradiction) °

For the depth, length and combined ordering, the test of Lemma
2.14 1s rather simple, and it is sufficient to prove s ¢ t
for a reduction rule.

Lemma 2.15
R is a rewriting system:
s+t => t < s

- t < s <=> D(t) < D(s) (depth)
(a,B) € R . «a * B
=> (a,B) 1is a reduction rule

-t <s <=> #¥(t) < #(s) (number of operators)
(¢,B) e R ~ «a § 8 => (a,B) 1s a reduction rule

-t <s «<=> #(t) < #¥(s) . D(t) < D(s) (combination)
(a,B) e R ~ « ¢ 8 => (a,B) 1s a reduction rule

Proof
We prove this lemma only for the depth ordering because the
ideas of these proofs are very similar.

We prove:

¥s: s/u = o(a) => s § s[u « o(B)]
Because of:

s <t <=> F[u=<« s] < F[u « t]

13

it i1s sufficient to prove:
Vo: o(a) ¢ o(B)

a ¢t 8B <=> D(a) § D(B) <=> D(a) > D(B)

We prove now:
¥o: D(o(s)) > D(o(t))

This proof 1s equivalent to the proof of Lemma 2.7. In the
same way we can prove:

#(a(s)) > #(a(t))

#(o(s)) > #(a(t)) v D(a(s)) > D(a(t))

Note:
A set of reduction rules is a ndtherian TRS.

Now we are able to give a procedure that attempts to split a
TRS into cyclic rules and reduction rules:

(1) prove R globally finite by an ordering relation <.
(2) test for each rule whether the left hand side of the rule
is 1n the reduction set of the right hand side.

+ CR
" (3) test with this ordering whether each rule in R - CR is a
reduction rule:
successful?

true: stop with RR = R - CR

false: stop with faillure

14

3.

A confluence test for globally finite TRS

Unfortunately there seems to be no simple extension for the
confluence test as for the test for global finiteness. The
local confluence 1s not equivalent to the confluence of these

systems.

For example:
s T

This globally finite relation 1is locally confluent, but not
confluent. Thus, the local confluence has to be extended for
globally finite TRS. If we consider equivalence classes of
terms, we are able to deflne a similar property.

Lemma 3.1

Let R be a globally finite TRS. The equivalence class [s] 1s
defined as: [s] = {t| s*> t . ¢t #*» g}

Then the relation +>:

[s] »> [t] <=> } 53¢ [s]: } T e[t]: s » %

is n6therian.

Proof

Assume there 1s an infinite chain:

[s1] »> [s,] » [33] .

All sy are different, for if they were not there would be a
cyle in this chain, and since all elements on a cycle have to
be in the same equivalence class, this chain would be finite.

Lemma 3.2
Let R be a globally finite TRS. R is confluent 1iff:
=> }E: t]. *> -t - t2 * > .t

15

Proof
(<=) obvious
(=>) »> 1s n8therian
= [s] » [t7] ~ [s] » [t,]
= }[E]: [tl] *> [E] - [tg] *s [E]

<=> +> confluent.

[s] »> [tq]
<=> }5,%y: Se[s] ~ Tye[ty] ~ § » Fy
[s] »> [t,]
<=> 18,85 8efs] . T, e[t,] - B8 > %,
=> 5 ¥» § . g *»
=} £ ¥ T . 0, ¥ X premise
=> }E]:[E;] *»> [E] ~ [E,] *»> [F]
=> $[E]:[t1] *»> [E] .~ [tp] *»> [F]
=> +> confluent

wnl

s ¥» tl A~ S ¥» t2
=> [s] *»> [t1] « [s] *+> [t,]
=> } [E]: [t1] *> [E] .~ [t,] *> [%E]
=5 tl ¥ £ . t2 > €

=> + confluent

Lemma 3.2 does not gilve a simple test of critical pairs
between rules.

In the next theorem we prove a test where we have to consider
also critical pairs between critical pairs.

Theorem 3.3
Let R be a globally finite TRS, consisting of cyclic and
reduction rules:
R = CR u RR
C(R), C(CR) and C(RR) are the smallest sets with:
- (a,8) € CR => (a,B) € C(CR)
(B,a) € C(CR)

16

(al,Bl),(a2,82) e C(CR) . 0(0-1)/\1 = 6((12)
=> (o(ay)[uca(B,)],0(8,)) e C(CR)
(6(B1),0(ay)[uca(B,)]) e C(CR)

- RR ¢ C(RR)
(ay,81) € C(RR) . (a,,B5) € C(CR) . o(a;)/u = o(ay)
=> (o(ay)[uta(B,)],0(8,)) € C(RR)
(a1,87) € C(RR) « (a,,B5) € C(CR) « ala;) = ag(ay)/u
=> (0(By),0(ay)[u«s(By)]) ¢ C(RR)

- (Gl,sl),(ag,sz) e C(RR) . U(al)/u = 0(0-2)
=> (o(ay)[ucc(B,)],0(8,)) e C(R)

with:
(u € 0(ag) ~ ay/u ¢ V) v (ue 0(ay) » ay/u ¢ V)
for C(CR), C(RR) and C(R).

R is confluent 1iff:
V(a,B8) € C(R): +t: o *> t . B *» ¢

The proof theorem 3.3 1s rather long, thus we will describe
the 1deas of the proof first.
Consider two different reduction chains of a term s:

al"“’an’bl""’bm e R

A1seeerdy and bl,.“,b might be cyclic rules and ai+1’bj+1

J

1F

reduction rules:

e ; - e
s a a s b b ~ .8
/l a's 1 7~ SR -o(_,]:____..o——_..~l.. ~2O- - -)()‘"'1"""9 2
ai+l /’/' \\ . o o e e S e e S ‘. b'j+l
b o ot

Thus, there are reductlon chalns from s; to S, and vice versa.
It 1is sufficient to prove the existence of a common term in
the reduction sets of tl and t2;

~ 1induction TNt induction \‘
d%~,‘ hypotheses .~ " - _hypotheses ’?b
T YA
jd%\,‘ induction LT
© ~hypotheses

This proof 1is done by 1induction on the number of reduction
rules in a chain.

In the following example we show how critical pairs have to be
created for proving a TRS confluent.

Example

R is a TRS with 6 rules.

(a) (f£(x,x),cq)

(b) (F(x,x),cp)

(e) (f(g(x),g8(x)), T(g(x),g(x)))
(d) (F(g(x),g(x)),f(g(x),g(x)))
(e) (glx),g(x))

(f) (g(x),g(x))

18

(¢),(d),(e) and (f) are cyclic rules, (a) and (b) are

reductlion rules.
We want to reduce the term: flg(x) g(x))

flg(x),g(x)) € f(glx),g8(x)) €= T(g(x),g(x))
d \b
Cl C2

=> R 1s not confluent.

There are no critical pairs between the reduction rules. Even
between a and e there 1s no critical pair. Thus, we try to
find critical pairs between cycllc rules first. We get a
critical pair between rules (c) and (e):

(c) (£f(g(x),8(x)),T(g(x),g(x)))

If we use thls palr as a cycllic rule, we can replace the rules
(¢) and (e) by (c) in the reduction chain:

(o}
f(g(x),g(x)) -—-—=> F(g(x),g(x))

Y/ N
¢y €2
Now we get another critical pair between a and ¢:

(a) (T(g(x) g(x)),cq)

We replace (a) and (c¢) by (&):
T(g(x),g(x))

¥
€1 e

19

At last we get a critical pair between 3 and b
(01,02)

There is no way to reduce this critical pair to a common term,
thus R 1s not confluent.

As a conclusion of this example, we have to create three kinds
of critical pairs:

- between cyclic rules C(CR)
- between cyclic and reduction rule C(RR)
- between reduction rules C(R)

Critical pairs between cyclic rules and between reduction and
cyclic rules are also conslidered as cyclic and reductlon
rules. Thus we have to create critical palrs between critical
pairs too.

Before we start to prove the theorem we want to know whether
it makes sense to consider critical pairs as reductlion or
cyclic rules (Lemma 3.5). In Lemma 3.4 we prove that we need
not consider cyclic rules with left hand sides consisting of a
single variable.

Lemma 3.4
Let R be a globally finite TRS consisting of cyclic rules CPR
and reduction rules RR:

(¥ x : (x,x) ¢ R) => ¥y, : (y,8) ¢ CR

Proof
Assume: (x,B) € CR

20

(1) x ¢ V(8)
B ¥» x (x,B) cyclic
This contradicts the variable condition for rewrite
rules: (a,B) € R => V(B) ¢ V(a)

(11) 8 = £(tyseee5ty) ~ F ue 0(B): B/u = x
=> £(b1,0005tp) *» TlEg, 00) [uef(ty,0na,t))] (x,8)
#5 P(tq,eeest) [ueflty,oie,t) uef(ty oo t)]]

.

=> R 1s not globally finite (contradiction)

Lemma 3.5

R 1s a globally finite TRS.

C(CR) and C(RR) are the sets of theorem 3.3:

(a,B) € C(CR) => (a,B) is a cyclic rule in C(CR)

(a,8) € C(RR) => (a,8) 1s a reduction rule in C(RR) u C(CR)

Proof
First we check the variable condition for these rules:

- cyelic rules
(a,B) € CR
Assume } x: x € V(a) ~ x ¢ V(8)

=> B ¥4 @ variable condition
=> (a,B) 1s not cyclic (contradiction)
=> V(a)=V(8)

(a7,87), (ay,B5) € C(CR) 4 o(aj)/u = o(ay,)
=iy V(O((!l)) = V(C(Bl))
=> V(a(ap)) = V(a(B,))

21

=> V(o(al)[u*0(32)]) = V(O(al))
=> V(o(ay)[uca(B,)]) = V(o (Bq))

- reduction rules
(ay,87) e C(CR) is a cyclic rule
(a2,82) e C(RR) 1s a reduction rule

(1) o(ay) = o(a,)/u
=> V(a(B,)) ¢ V(o(a,))
=> V(o(ay)) = V(a(Bq))
=> V(o (ay)[uca(B)]) = V(s(ay))
=> V(o (B,)) ¢ V(a(ay)[uca(g;)])

(11) O(al)/u = O(ag)
=> V(a(B5)) ¢ V(a(ay))
=> V(o(ay)) = V(o (B;))
=> V(o(aq)[usa(8,)]) ¢ V(a(ay))
=> V(o(ay)[uca(B5)]) ¢ V(a(B;))

Now we check whether C(CR) are cyclic rules and C(RR) are

reduction rules:

- (a,B) € C(CR)
=> }(“1’81)’(“2’32) e C{CR) c(al)/u=o(a2)

Assume (a;,B,),(a5,8,) are cyclic rules

(i) a = O(Gl)[u+°(82)] ~ B=0(Bl)

0(81) * o(al) (Gl,Bl) CyCliC
0'(02) Ea 0(32) ((12,82)
=> o(ay)/u > o(8,) o(aq)/u=o(a,)

=5 o(al) LS c(al)[u*d(ﬂz)]
=> o(B;) *» o(a;)[uco(B,)]

(11) o = o(By) ~ B=0(a;)[uca(B,)]
0(32) *> 0(“2) (“2,82) CyCliC

22

=> o(ay)[uco(B,)]/u *+ o(a,)

=> o(aq)[ucc(B,)] *» o(aj) o (ay)/u=a(8,)
o(ay) » o(By) (ay,89)

=> o(aj)[uco(B,)] *» o(8,)

~ (a.B) e C(RR)
=> }(al Bl) e O CR), (32,62) e C(CR):

(“1,31)

(ap,85) ;::;;>>*’jp(“’3)

Assume : (a2,82) is a reduction rule.
If (a,B) 1s no reduction rule, there is a term t:

(a2,62) would not be a reduction rule (induction hypothesis)

=> (a,B) 1s a reduction rule.

®
Proof of Theorem 3.3
sg .- By Bq- By By Sn-1 Pn ®n
T?K/F‘ R PO - e - o c
to *tn
bl,...,bn are cyclic rules applied at Upseee,Up.

a,c are reduction rules applled at v,w.

by = (ag,84), sy_3/uy = 04(ay), sy = sy g[ugeoy(8y)]
a = (a,8), sop/v =o0(a), ty = s5[ves(8)]

23

c = (v,8), sp/Ww=20(y), t, = s [wed(8)]

We want to prove the exlstence of an equivalent problem where
we have to test only two reduction rules &, ¢ from O RR)
which are applied to a single term T:

If there 1s a common term Ein the reduction sets of EO and

£ E is also in the reduction sets of tO and tn.

n?

There are seven cases:

(1) by and a do not overlap

Bp B 8 by 8 Sh-1 Pn Sp
WA T TN
to b1t tn
=> consider the subproblem
s by s, Sn-1 Pn Sp

24

(2) b, and ¢ do not overlap

sp Pb; s; by s Sp-1 Pn Sy
P SR - >
a c
to tn-1 Pn ‘tn
R

=> conslider the subproblem

8g. By # Dby By Sn

— - - e - a 1
a/ \C
tO tn—l

(3) a 1s applied at a variable occurrence of b,

b2 So s

bl E}
;r W~ -~ — . L Ao N e
/
/
/

S0
a
t/
a¥
/
’ b

R

This 1is the classical way to reduce to and 54 to the same

term.

There has to be at least one application of a at S1» otherwise
a would not be a reduction rule:

25

Therefore, we get:

8g by 8y by 8y Sp-1 Pn Sp
30 — 30— e — - s emm e =)
a a c
to IS ol P
a*’/ a*/,/ " - B -) P
// / I = .
/by !: induction = _A:;:
Sa hypothesis S
~ g \\\ E) o —-
\ﬁok

If t; and t, reduce to the same term T, we can also reduce tj
and t, to a common term. Thus, we have to consider the

subproblem:

5y By -
°‘3/0—”—_—'7"' """""""""""""" ~ o }‘\C“
tl tn

(4) ¢ is applied at a variable occurrence of b . This case 1s
equivalent to case (3). Thus we have to consider the

subproblem:

sp by 81 Dby Sp

20 Po- - - - - - -
a \C

to

(5) there 1s a critical overlapping between a and bj:

8 by By by B

26

a2 € C(RR)

=> consider the subproblem:

; b, 8, by s,
to c tn

(ay,8,) => (B,,a,) e C(CR)
¢ e C(RR)

o
[}

]
v 35
Q

=> conslder the subproblem:

g B3 By by By Sn-1
to tn

(7) The problem cannot be reduced by any of the cases (1) - (6)

= - bl is applied at a variable occurrence of a
-~ bn is applied at a variable occurrence of c

=> oq,(aq) 1s a subterm of o(a)

o,(B,) 1s a subterm of F(y)
First we want to find a "minimal" rule. We consider the rules
with their substitutions:

(a(a),(a(8)),(a1(a;),0,(B1)),uee, (o, (a) o (8.)),(5(y),5(5))

27

A rule 1s "minimal" if no left or right side of other rules
occures at a variable occurrence in the left side of this rule.

We define an ordering relation < for these rules as:
Definition (1)

(oi(ai)’oi(si)) > (oj(aj),oj(sj))
<=> Jue 0(oq(ay)): u=uj.uy » ay/u; e V

. (oi(ai)/u = OJ(“J) voi(ai)/u = OJ(BJ))
We prove for >:

Lemma (i1)
- > 1is antisymmetric:

(04(ay),05(84)) > (o5(ay),04(8)))

=> (o 4(ay),04(84)) b (o4(ay),04(84))

- > 1s transitive:

(64(ay) 0g(By)) > (o (a;),0(8)))

- (°J(“j)’°J(BJ)) > (oy(ay),0,(8,))
= (04(a;),04(84)) > (o,(ay),0,(8,))

Proof of Lemma (1)
Assume:

(Gi(ai)’oi(si)) > (OJ(GJ)’GJ(SJ))
-~ (OJ(aJ),oJ(BJ)) > (oi(ai),oi(si))

u € O(Gi(ai))’ u=ul.u2, ai/ul € V
vV e O(cj(aj)), V=V Vo, uj/v1 e V

(1) ci(ai)/u = OJ(“j) a oJ(aJ)/v = oi(ai)
=> g4(ay)/uw = o4(ay)
=> U=e . V=€

=> ay, ay € \' (contradiction)

(ii) Oi(ai)/u * GJ(GJ) - UJ(aJ)/V = 01(81)
oq(ag)/u.y = o,(84)

28

o (By) ¥+ g (ay) (ay,84) cyclic
*¥> 04 (ag)[u.veoy (ay)]
=> R 1s not globally finite (contradiction)

(111) oy (ay)/u = OJ(BJ) ~ oJ(aJ)/v = o4 (ay)
V=V).Vy a aj/v1 e V
=> } vy BJ/Vl = aJ/v1 V(aJ) = V(BJ)
=> oJ(BJ)/Vl = oJ(aJ)/vl
=> oJ(BJ)/Vl.VQ = cJ(aJ)/vl.v2
=> o4(ay)/u.vq.v, = cj(aj)/v gy (ay)/u = oJ(BJ)
=> oi(ai)/u.\?l.v2 = oi(ai)
=> U.Vy.Vy = €
=> aj e V (contradiction)

(1v) o4 (ay)/u = oJ(BJ) - oj(aJ)/v = 04(8y)
V=V]eVy s aj/v1 e V
=> 3 ¥ & By/Vy = ay/vy
=> cJ(BJ)/Vl =°J(“J)/V1
=> oJ(BJ)/Vl.Vg = oj(aj)/vl.v2
=3 oi(ui)/u.vl.v2 = OJ(GJ)/V oi(ai)/u = UJ(BJ)
=> oy (ay)/u.vq.vy = 04(84)

01(31) * 5 ci(ai) (ai,Bi) cyclic
" 930 [waFy Voo lay)]
=> R is not globally finite (contradiction)

Assume:
(01(0'1)’01(81)) > (OJ(GJ),UJ(BJ))
- (UJ(GJ),O (BJ)) > (ck(ak)’ak(sk))

u € O(oi(“i)): Usuq.Uy, ay/u; € V
vV e O(OJ(“j))’ V=V .V, uJ/v1 e V

(1) oq(ay)/u = UJ(“J) " oj(“j)/v = ck(ak)

=) oi(ai)/u.v = ok(ak)
=> (Oi(ai),oi(si)) > (ok(ak)’dk(ek))

29

(11) Ui(ai)/u = Oj(aj) N OJ(QJ)/V = Ok(Bk)
=> Ui(ai)/u.v = Ok(Bk)
> (0,(a),04(B)) > (9,(a)),0,(8,))

(111) oi(ai)/u = oJ(BJ) " GJ(QJ)/V = ok(ak)
V=V{.Vy s aJ/v1 e V
=> UJ(BJ)/VI = oj(aj)/vl
=) UJ(BJ)/VI.VQ = OJ(“j)/Vl’V2
=> o4(ay)/u.¥y.v5 = o (ay)
=> (Ui(ai),oi(si)) > (Uk(ak),ok(sk))

(1v) o4(ay)/u = °J(Bj) & oj(aj)/v = 0, (By)
V=V]eVy 4 aJ/Vl e V
=> } Vlt Bg/Vl = QJ/VI V(QJ) = V(BJ)
=2 OJ(BJ)/VI = G.j(a,j)/vl
=> OJ(BJ)/VI.V2 = OJ(GJ)/V10V2
=> oi(ai)/u.Vl.Vg = ok(Bk)
=> (°i<ai)’°i<si)) > (ok(ak)’ok(sk))

Thus we can find a minimal rule (ok(ak)ﬁ”JBk)) by this

ordering.

Assume:
-} owowoe oploy) o wEWy Wy 4 o /Wy e Vs oy (a)/w = o(a)
$ w: o(a)/w = oq(ay) b, 1s applied at a variable
occurrence of a
=> oy (ap)/w.w = 01(ay)
=> (ok(ak),ok(sk)) is not a minimal rule

W e ok(ak) A WEW] o Wo s ak/wl e V . ok(ak)/w = g(y)

s(y)/w = a,(B) b, 1s applied at avariable

-3 w:
} w:
occurrence of c¢

=> Ok(ak)/w.W = Gn(Bn)

30

=3 (ok(ak),ok(sk)) is not a minimal rule

Therefore, any left or right side of other rules does not
occur as a subterm at a variable position of rule

(ok(ak)’ok(sk))'

Consider now:

with d; = (B4,ay) € C(CR) i=1,...,k-1

Now we replace each subterm ok(ak) in s, by ok(Bk) and
continue until no subterm o (a,) is left.
We will prove the termination of this procedure:

Assume:

this procedure does not terminate

=> O(Sk) is finite, thus there are overlappings between the
application of thils rule.

u first application of rule bk

v second application of rule bk

31

u=v

=D O'(Bk) T G(ak)

this rule does not change the term, so we can skip it.

Consider the subproblem:

u>v. => u = v.,u

=> a(8,) = olay)/

o (By) *» o(a)) (a),B,) cyclic rule
*> o(a) [d « ola))]
=> R 1s not globally finite. (contradiction)

u.v

[0}

u<v. => v

=> o(8,)/% = o ()

o(ak) + O(Bk) (ak,ﬁk)
» o (B [T « o(8y)] CTN-
=> R 1s not globally finite. (contradiction)

Thus, the occurrences where we replace ok(ak) by ok(Bk) do not

overlap.

32

Before we continue with the proof, we show Lemma (1ii) first:

Lemma (1ii)
Let a = (a,8) and b = (y,8) be two rules, t a term and 0,7

two substitutions. a 1s applied at occurrence v and b 1is

applied at Ujseee,lUp:

%o
a b
i)
s
|
|
| b¥*
)
1
Y.
tn

to/v = O(Q) N El = tO[V < U(B)]
t1/U341 = T(Y) ~ tyyy = Byfugyy ¢ 8(8)] 120,1,...,n
1+ 3= uy { Uy ~ uy 4 ujy no overlappings

o(a) 1s not a subterm at a variable occurrence of y:
Yu: (ue 0(y) => y/ue V) => g(y)/u # o(a)

There 1s no subterm 5(y) in t,:

Vu: t /u # o(y)

o

H
=_ o
\n

ot ;- - -

d 1s constructed by
critical pairs between a
and b.

:mi{”“

33

Proof of Lemma (1ii)

- v and U do not overlap

to
b
% Pt
b :
a |, b*
t5 ‘.
¥,

=> consider:

Y
2/
ts ‘.'b*
¥t,

- there is a critical overlapping between a,b

to
a b
% vy
a |
. b¥
Yy
=> conslder: tl
a/f
| *
E2 'b

Ytn
- a 1s applied at a variable occurrence of b

This case does not occure because of our premilse:

¥Vw: (ue O(y) => Y/ue V) => 5(y)/w % a(a)

34

- b 1s applied at a variable occurrence of a

o
a b

3]
at {wl,. PR ,Wm}““:—b*/’l
’]
b*:/’]

¥ | o%
¥

{wl,”.,wm} is a subset of {ul,.“,un}, because every
subterm o(y) in t, is replaced by o(8).

There is no overlapping between the Wy thus we can apply b
in an arbitrary sequence:

a

a \

v 7%
b b
: A5
at {wy,ee.,wWyl— b* ¥ at {wy,...,w}
\ ,
; [?tm+1
\

|
:b* at {u1,ooo,un}-{W1’|oo,wm}
¥

=> to4q and T are the same terms:

; a to
F‘T 5
b ¥
|
|
V: |
' a Yt

'b¥* at {ul,...,un}-{wl,...,wm}

b* at {wl,...,wm}

m+1=¢

=> consider the subproblem:

35

a t
0 m+1

' b¥ at {ul,...,un}-{wl,...,w
¥
This completes the proof of Lemma (111) and we can apply the

result to our main proof:

}

m

ak_l and 5k+l are constructed by critical pairs between dk—l’
=> ak_1,5k+1 € C(CR)

We replace every subterm in o, (a}) 1n §, 5 and §, ., by
ok(Bk):

36

Assume:
Some of the by, which have been applied at §,_, (§,,;) do not

overlap with dp_q (b, ,q) or they overlap at an occurrence
which is matched by a variable of dy;q; (Byy4q). Thus, thelr
left hand sides would occur 1in §k and this contradicts our
premise for §k.

=> there are only critical overlappings between ak 1 (5k+l>
and we get two other rules dk 1 (bk+l) e C(CR):

Sk-1
die-1 By
S //\ S
k-2 ~ ~ k .
. / k+1
| /'K\\\\\\\¥Sk+1
;s : b*k b*k'l 7 \\‘\
21 5) b¥y // Sn-
dq 1 By)/
S0 3 Skk\\—n(/\ "’ Sh

B

Now we create rules fromd,_, and b, +» which can be applied at
Sk_2 and Sk+1.

We continue this process until we get:

Sk-1
dye_1 Dy
Sk-2, S
/ ‘\ b
’ k+1
, Y
/ L Sk
o 1 .
7/ 1
s |) ~
Sl 17 " Sn_l
d : on
!
50 . Sk _ Sn
aw/// ~ dk‘%//}\\gifl A
bo ¢ Sk-2. b Skt Sty
o i .
// ~ '
;1 ’.' - %5

n
with: a,b € C(RR)
=> consider the subproblem:
Sp b1 S1 Sp.1 Pro1 B¢ byl Spe1 Spo1 Pn 8y
z s b v S D A
)
t

with: dy = (y,8) 1 =
by = (8,v)

this completes the proof of theorem 3.3.

We are able now to create a completion procedure for globally

finite TRS using thils confluence test and the reflexive
ordering relations:

38

Completion Algorithm

(1)

(2)

j=0

transform the equations into a globally finite TRS R(0),
no direction found for some equations?

true: stop with failure

false: +» (2)

i=0, CC(0) := cyclic rules, CR(0) := reductlion rules
R(J) = CR(0) u cC(0)?

true: + (3)

false: stop with failure

i =1i+1
CR(1) :=
{(o(ap)[uca(8,)],0(a))| (a;,8,)e0C(1-1)(a,,B,)eCR(1-1)
Ao(al)/u=o(a2)}
u {(o(By),0(ay)[uca(8y)])| (a;,B1)eCC(1-1)a(ay,,B,)eCR(1-1)
ho(a1)=o(a2)/u}

cc(1) :=
{(o(ay)[uca(B,)],0(8:))] (ay,8;),(ay,8,)eCC(1~1)
,o(al)/u=o(a2)}
u {(o(By),0(ay)[uca(By)])] (ay,8;),(ay,B,)eCC(1-1)
0 (a;)/u=o(a,)}

GlL) =
{(o(ay)[uca(B,)],0(8))] (ay,8;),(ay,8,)eCR(1~1)
~0(ay)/u=0(a,)}

with:
(u e O(al) - al/u d V) v (uce O(a2) N a2/u ¢ V)

for CR(1i), cC(1i), C(1)

Is there a critical pair (a,B) in C(i) which cannot be
reduced to a common term?

39

true: J = j+1
R(Jj-1) u {(a,B)} globally finite?
true: R(J) := R(J-1) u {(a,B)} » (2)
false: R(J-1) u {(B,a)} globally finilte?
true: R(J) := R(J-1) u {(B,a)} +» (2)
false: stop with failure
false: » (U4)

(4) CR(1)=CR(i-1) ~ CC(1i) = CC(1-1)?
true: stop R complete
false: » (3)

This completion procedure will find every critical pair which
has to be added as a new rule to the TRS. If there are no
cyclic rules, the set of critical pairs is the same as in the
classical procedure. Therefore, it stops if R 1s complete. But
if there are cyclic rules iIn R the procedure does not stop for
every complete TRS. For example if we want to complete the
abelian group axioms the assoclativity axiom produces an
infinite set of cyclic critical pairs (C(CR)). In fact the
confluence of globally finite TRS might be undecidable. We are
currently implementing this procedure on a Symbolics 3600
Lispmachine, for testing some examples and finding stop

criteria for this procedure.

4o

References

[HUE 77] Huet, G.:
Confluent reductlons:
Abstract properties and applications to term rewriting
systems.
18th IEEE Symposium on Foundations of Computer Science
1977, p. 30-45.

[HUE 80] Huet, G., Oppen, D.:
Fquations and rewrite rules:

A survey
Technical Report CSL 111, SRI International 1980

[JoU 83] Jouannaud, J.P.:
Confluent and coherent equational TRS, application to
proofs in abstract data types.
Centre de Recherche en Informatique de Nancy, 1983.

[KB 70] Knuth, D., Bendix, P.:
Simple word problems in universal algebras.
Computational probelms in abstract algebra.
Ed. Leech I., Pergamon Press

11/22/1983

SEKI Memos

The following memos are available free of charge from

Mrs. Dorothea Kilgore
Universitdt Kaiserslautern
Fachbereich Informatik

Postfach 3049

D-6750 Kaiserslautern

West Germany

MEMO SEKI-81-01

MEMO SEKI-81-03

MEMO SEKI-81-04

MEMO SEKI-81-05

MEMO SEKI-81-06

MEMO SEKI-81-07

MEMO SEKI-81-08

MEMO SEKI-82-01

MEMO SEKI-82-02

MEMO SEKI-82-03

U. Bartels, W. Olthoff and P. Raulefs:

APE: An Expert System for Automatic
Programming from Abstract Specifications of
Data Types and Algorithms.

Peter Raulefs: Expert Systems: State of the
Art and Future Prospects.

Christoph Beierle: Programmsynthese aus Bei-
spielsfolgen.

Erich Rome: Implementierungen Abstrakter
Datentypen in terminaler Algebrasemantik.

Christoph Beierle: Synthesizing Minimal Pro-
grams from Traces of Observable Behaviour.

Dieter Wybranietz: Ein verteiltes Betriebs-
system fiir CSSA.

Ulrich Bartels and Walter Olthoff:
APE - Benutzerbeschreibung.

Hans VoB: Programming in a Distributed
Environment: A Collection of CSSA Examples.

Hartmut Grieneisen: Eine algebraische Spezi-
fikation des Software-Produkts INTAKT.

Christian Beilken, Friedemann Mattern and
Michael Spenke: Entwurf und Implementierung
von CSSA - Beschreibung der Sprache, des
Compilers und des Mehrrechnersimulationssyst-
ems.

Printed in 6 volumes, which can be ordered
individually:

Vol-A: Konzepte

Vol-B: CSSA-Sprachbeschreibung

Vol-C: CSSA-Systembenutzung

Vol-D: CSSA-Programmbeispiele

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

" MEMO

MEMO

MEMO

MEMO

MEMO

SEKI~-83-01

SEKI-83-02

SEKI-83-03

SEKI~-83-04

SEKI-83-05

SEKI-83-06

SEKI-83-07

SEKI-83-08

SEKI-83-09

SEKI-83-10

SEKI-~-83-11

SEKI-83-12

SEKI-83-13

Vol-El: Programmdokumentation Teil T
Vol-E2: Programmdokumentation Teil II

Spezifika-
Aufbe-

Wilfried Schrupp and Johann Tamme:
tion und abstrakte Implementierung des
reitungsteils von INTAKT.

Frank Puppe and Bernd Puppe: Overview on
MED1l: A Heuristic Diagnostic System with an
Efficient Control-Structure.

Elisabeth Hiilsmann: LISP-SP : A portable IN-
TERLISP Subset Interpreter for Mini-Computers.

FrankPuppe: MEDl1 - Ein heuristisches Diagno-
sesystem mit effizienter Kontrollstruktur.

Horst Peter Borrmann: MODIS - Ein Experten-
system zur Erstellung vonReparaturdiagnosen
flir den Ottomotor und seineAggregate.

Harold Boley: From Pattern-Directed to

Adapter-Driven Computation via Function-
Applying Matching. .
Christoph Beierle and Angi VoR: Canonical

Term Functors and Parameterization-by-use for
for the Specification of Abstract Data Types.

Christoph Beierle and Angi VoR:
Parameterization-by-use for

structured objects.

hierarchically

Christoph Beierle, Michael Gerlach and
Angi VoB: Parameterization without parameters
in : The History of a Hierarchy of Specifi-

cations.

Ulrike Petersen: Elimination von Rekursionen.

Gerd Kritzer: An'Approach to Parameterized
Continuous Data Types.

Richard Gobel: A Completion Procedure for
Globally Finite Term Rewriting Systems.

Michael Gerlach: A Second-Order Matching
Procedure for the Practical Use in a Program
Transformation System,

