
>
c
m
c
t
w
0

.
>
>

‚
„

5
9
3
2
9
3
6
!

o
m

ß
w

ö
oven

cumzwom
5
3
3
9
9
3
6
!

5
5
5
2
:
:

£
3
6
.
2
5
5
2
2
3
2
8
“
.

Richard G ö b e l

Memo S E K I - 8 3 — l ‘ l

S
e

m
t

e
.
1

t

n
S

.
1

y

F
S

y
G
.
.

l
n
.
.

l
.
1

a
t

b
.
1

O

r
.

l
w

G
eR

r.O

m
f

rET

erUdeCOrD
.
.

nO.1te
.
I
.D
.
.

m0CA

h
s
w
a
m
m
u
ä
w
m

A COMPLETION PROCEDURE FOR GLOBALLY FINITE

TERM REWRITING SYSTEMS

R i c h a r d G ö b e l

F a c h b e r e i c h Informatik

Universität Kaiserslautern

Postfach 3049
D—6750 Kaiserslautern

West—Germany

November 1983

T h i s r e s e a r c h w a s s u p p o r t e d b y t h e B u n d e s m i h i s t e r i u m f ü r

Forschung und Technologie under contract IT.8302363.

Abstract

The Knuth—Bendix Algorithm is not able to complete term rewriting

s y s t e m s (T R S) w i t h c y c l i c r u l e s s u c h a s c o m m u t a t i v i t y ,

associativity etc. A solution for this problem is to separate the
c y c l i c r u l e s f r o m t h e T R S a n d i n c o r p o r a t e t h e m i n t o t h e

unification algorithm. This requires a unification algorithm for

the specific theory. Usually it is very difficult to develop such

algorithms, and w e therefore discuss another way to solve this

problem.

W e propose an extension of the completion procedure for globally

finite TRS. F o r a globally finite TRS cycles m a y occur in a

reduction chain,.but for each term there is only a finite set of

reductions. A confluent and globally finite TRS R provides a

decision procedure for the equality induced by R:

Two terms are equal iff there is a common term in their reduction

s e t s .

This extension requires new methods for testing whether a given

T R S is confluent and globally finite. For proving that a TRS is

globally finite appropriate ordering relations a r e required,

which are usually reflexive. Proving the confluence of a globally

finite TRS i s m o r e difficult than f o r notherian TRS and the set

of critical pairs which has to be tested is in general infinite.

T h e r e f o r e a c o m p l e t i o n p r o c e d u r e w i t h t h i s t e s t m a y n o t

terminate. Further work has to be done to decrease this critical

p a i r s e t .

ggntents

1 . A d e c i s i o n p r o c e d u r e f o r t h e

equalitiy based on globally Finite

and c o n f l u e n t T R S

Ordering relations for proving a TRS

g l o b a l l y f i n i t e

A confluence test for globally finite

TRS

l5

T e c h n i c a l Remarks

W e a s s u m e familiarity o f the reader with the basic proofs and

_ results of the Knuth-Bendix Algorithm (e.g. [HUE 77], [HUF
80], [KB 70]) .
We denote by:

s,t terms *
u ,v ,w occurrences in terms

a,b,c,d } rewriting rules
(a ,8> , (¥ ,6)
o substitutions

R TRS (always finite in this paper)

s + R t one step reductions

s ¥ + R t reduction in a finite number of steps

we omit R , if we consider only one TRS

{tls *+ t} reduction set of s

2 = 2 0 u . . . u Z n s e t o f operators

diagrams:

s

a /p

t/
b* ,’

fly,

s is reduced to t by a and t is reduced by multiple application

of b to t .

F o r e x a m p l e :

I f a .is applied at a variable occurrence of‘ b (t h e occurrence
where a is applied is matched by a variable o f b), then we can

f i n d a t e r m '5 a n d r e d u c t i o n s t o 'E (r e s u l t o f K n u t h a n d B e n d i x

m [KB 70]) :

1. A decision procedure for the equality based on globally finite

and confluent TBS

F i r s t , w e define the globally finiteness property for TRS.

This definition is equivalent to the definition given in [HUF
77].
Definition l.;

A TRS R is globally finite iff for each term s the reduction

s e t i s f i n i t e :

Vs: } n: I{tl s *+ t}I < n

Given a confluent TRS R, the test for the equality induced by

R f o r t w o t e r m s s,t is equivalent to the test whether there is

a c o m m o n term i n their reduction sets. I f R is also globally

finite, each reduction set is finite and the equality is

decidable:

D e c i s i o n P r o c e d u r e 1

(1) 1 = O, M1(0) := {s}
(2) 1 = 1 + 1, M1(1) := {tls + t . s e M1(i—1)} u M1(i—1)

M1(i) = M1(i—1)? true: + 3
false: + 2

<3) J = 0 , Mew) := {t}
(n) J = J + 1, M2(J) := {tls + t . s e M2(j—1)} u M2(J—l)

M2(J) = M2(J—1)? true: + 5
false: + H

<5) Mlm Mgcj) =0?
t r u e : s , t n o t equal

false: s,t equal

This test is rather inefficient as it enumerates the complete

r e d u c t i o n s e t s f o r b o t h t e r m s . F o r a m o r e e f f i c i e n t d e c i s i o n

procedure, w e will distinguish between cyclic and reduction

r u l e s . C y c l i c r u l e s a l w a y s c r e a t e t e r m s w i t h t h e s a m e

reduction set as the original term.

After applying a reduction rule, the original term does not

belong to the reduction set of the resulting term.

Definition 1.g

Let R be a globally finite TRS.

A rule (a,B) a R is a cyclic rule iff:
Vs: s/u = 0(a) => s[u + o(8)] *+ 3

Definition 1.;

Let R be a globally finite TBS.

A rule (a,B) e R is a reduction rule iff:
Vs: s/u = 0(a) => 3 & {tl s[u + a (ß)] *+ t}

Note:

There might be rules which a r e neither cyclic n o r reduction

rules:

Example:

R = { (f (x ,g (y , z)) ‚ f (g (y , z) ‚x))}

f (x ‚g (y ‚z)) + f (g (y , z) , x) *! f (x ,g (y ‚2))
f (g (c ‚ c) , g (y , z)) + f (g (y ‚z) , g (0 ,0)) + f (g (0 ‚c) ‚g (y ‚z))

A test for checking whether a rule is a cyclic o r reduction

rule is given in chapter 2 .

If w e a r e able t o split a TRS R into cyclic rules CR and

reduction rules RR, w e can define a m o r e efficient decision

procedure for the equality.

First, we note that there is a least cycle for each reduction

set, since otherwise R can not be confluent.

Second , if there i s a common term i n t w o different reduction

sets, this t e r m h a s a unique least cycle, which is the least

cycle o f these t w o sets. Thus it is sufficient for testing the

equality of two terms s,t to compare the two least cycles of the

reduction s e t s o f s and t:

D e c i s i o n P r o c e d u r e 2

(1) 1 := o, s(1) s, M1(1) := {s(i)}
(2) is there any reduction rule which reduces s(i) to a term

||

s(i+1)?

true: + 4

f a l s e : + 3

(3) is there any cyclic rule which reduces a term in M1(i) to
a n_e_vg term s(_i+1) # M1(1)?
true: M1(i+l) := M1(1) u {S (i +1) } , i := 1+1 , + 2

false: * 5

(u) M1(i+1) := [s (1+1) } ‚ 1 := 1+1 , + 2

(5) J := 0, 12(3) := t, M2(0) := {t(i)}
(6) is there any reduction rule which reduces t (j) t o a term

t(j+1)?

true: + 8

false: + 7

(7) is there any cyclic rule which reduces a term in M2(J) to
a new term t(J+D i M2?

true: M2(J+1) := M2(J) u { t (J+1) } ‚ J != J+1‚ * 6
false: + 5

(8) M2(J+l) := {t(J+1)}, J := J+1‚ + 6
(0) is a n arbitrary t e r m i n M1(1)

e M2(J)?

true: s , t equal

c
a
l

m

false: s,t not equal

2. Ordering relations for proving a TBS globally finite

I n this chapter w e show h o w t o prove a T R S t o b e globally

f i n i t e b y s o m e s i m p l e t e s t s . T h e s e t e s t s a r e v e r y s i m i l a r t o

the usual tests for notherian TRS where the only difference

b e t w e e n the used ordering relations is, t h a t o u r s a r e usually

reflexive. Thus w e a r e able to extend many of the existing

orderings for o u r purposes.

Definition 2.1

< is a partial ordering relation for terms iff:

— 3 < 5 reflexive

- s < t „ t < t => 3 < t transitive

- {tl t < s} finite for all 3

Note:

For t w o different terms s,t o n the s a m e cycle o f a reduction

chain we have both s<t and t<s. Thus the antisynnnetric axiom

for partial ordering relations 3 < t » t ‘ S => S = this

missing here.

For proving a TBS globally finite, w e have t o s h o w that each

reduction is not greater than the original term:

Lemma 2.g

V (a,8) e R : V s: s/u = 0(a) => s[u + 0 (8)] < 8
=> R is globally finite

P r o o f

Assume R is not globally finite.

Then t h e r e i s a n i n f i n i t e r e d u c t i o n c h a i n :

S l + s 2 + l . . + S n + . . .

with si = SJ => i = j

a n d :

s1 > 3 2 > ... > s n > ... premise

=> { t l t < sl} is infinte (contradiction) O

Another restriction f o r orderings s e e m s t o b e natural. For

c o m p a r i n g t w o t e r m s w h i c h d i f f e r o n l y a t a c e r t a i n

subtermposition, we should compare only these subterms. With

this restriction, we get a lemma with a weaker premise:

Lemma 2.;

Let < be a partial ordering for terms with:

-¥ s,t,f: -¥11€O(f): s < t => '$[u + s] < ' f [u + t]
Then R is globally finite if for every rule (a,8) 5 R : 0 (8) < a(a)
holds.

P r o o f

s/u = 0(a)
=> s[u + o(ß)]/u < s/u
=> s[u + o(8)] < 3 premise. .

Some simple orderings are extendable now:

The depth o f a t e r m is the m a x i m a l length of a path in its

tree representation. A term s i s not greater than a term t if
its depth is less o r equal than the depth of t.

Definition 2.3

The depth of a term t is defined as:

1 7 (1 3) : : { 0 t e v „ t e z o

MAX({D(t1),...,D(tn)})+1 t=f(t1,...,tn) . fen

Lemma 2.2

The relation <:

s < t <=> D(s) < D(t)
is a partial ordering relation in the sense of definition 2.1

T h e reflexivity and the transitivity o f this relation is

obvious.

The set of terms o f a limited depth is finite, thus w e can

prove the third property o f definit101 2.1 too.

F o r t e s t i n g w h e t h e r a r u l e d o e s n o t i n c r e a s e t h e d e p t h (H ‘ n

term, w e have t o check whether the right hand side i s not

g r e a t e r t h a n t h e l e f t h a n d s i d e o f t h e r u l e a n d t h e

occurrences o f v a r i a b l e s o f t h e r i g h t hand s i d e a r e n o t d e e p e r

than on the left hand side.

Definition 2.§
The depth of an occurrence is defined as:

d(u) := { O u = e
d(fi)+1 u = iii „ 1 € N

Note:

T h e d e p t h o f a t e r m i s e q u a l t o t h e m a x i m a l d e p t h o f i t s

occurrences:

D(s) = Max{d(u)|u e O(s)}

L a m a 2 i

Let (a,B) be a rewrite rule:

V e(a): s/u = x « t / V = X => d (U) > d(V) . D(ß) ‘ D(a)
=> -¥ s: s/u = 0(0) => D(s[u + o(B)]) < D(s)

P r o o f

F i r s t w e s h o w f o r < :

(i) V s,t,t: Viieo(t): 3 < t => tb; + s] < tb; * t]

Assume: v is the occurrence in T [u + s] with the maximal

depth.

We o b t a i n two c a s e s :

- v overlaps with u => v = u.?
=> V is a deepest occurrence in 3

=> } W s O(t): d (fi) > d(V)
=> u.W e O(E[u + t]) » d(u.W) > d(u .V)
=> D(E[u + t]) > D(f[u + s])

— v does n o t o v e r l a p w i t h u

=> v e O(t[u + t])
=) D(f[u + t]) > D(E[u * 8])

and the proof for (i) is complete.

N o w i t i s s u f f i c i e n t t o prove:

V o: d B) < 0(a) (by Lemma 2.3)

Assume: D(a) > D(B)

} w e 0 (0 (6)) : D(O(B)) = d(w)

w_e 0 (3)
=> D(B) = D(o(8))
=> D(a(ß)) < D(a) D(a) > D(8)
=> D(o(ß)) < D(0(a))

w i 0(8)
= > w = w 1 . w 2 « B / W l € V

=> } W1: a/Wl = B/wl e V V(B) c V(a)
=> d (fi1) > d(w1) premise of Lemma

=> d(Wl.w2) > d(w1.w2)
=> d(W1.w2) > D(o(ß))
=> D(0(a)) > D(0(B))

W e g e t another simple ordering relation by comparing the

number of operators (length) of terms:

Definition 2.8

We d e f i n e t h e number of o p e r a t o r s of a t e r m t a s :

0 t e V

(t1)+°'°+(tn)+1 t=f(t1,...‚tn) . feE

The ordering relation t<s <=> #(t) < #(s) can be proved to

be a partial ordering relation a s in Definition 2.1. This

proof is very simple and omitted.

For proving a TBS to be globally finite with this ordering,

the number of operators in the left hand side has to be not

l e s s than t h o s e i n t h e r i g h t hand s i d e of t h e r u l e and f o r a n y

variable, there a r e not m o r e occurrences i n the right hand

side than in the left hand side.

Definition 2 . 9

T h e n u m b e r o f v a r i a b l e o c c u r r e n c e s f o r z a v a r i a b l e x i J I a t e r m t

i s defined a s :

0 (teV.t¢x) v tezo
#(x‚t) = l t = x

u r (x , t 1) + . . . + # (x , t n) s=f(t1,...‚tn) . fezn

Lemma 2.10

Let (« ,8) be a rewrite rule:

(V x: #(X,a) > *(X,B)) « #(a) > #(8)
=> Vs: s/u = a(a) => #(s[u+0(8)]) < *(S)

Proof

#(E[u+s]) = t(E) - #(E/u) + #(s)
#(t[u+t]) = #(f) — #(f/u) + %(t)

#(s) < #(t)
=> $(E) _ f (E /u) + #(s) < #(f) — t(t/u) + *(t)
=> #(E[u+s]) < #(f[u+t])

=> prove: V o: d B) < 0(a)

#(a) > #(B)
#(x,a) > #(x ,8)
=> #(x,a) * # (o (x)) > #(X,B) * %(O(X))

} premises

=> #(a) + E #(x,a) * # (a (x))
s (a)

> H e) + z Hx,s) * *(a(x)) W e) g V(a)
e (B)

w i t h :

*(o(s)) = #(s) + z t(x,s) * #(0 (x))
e (s) '

=> &(o (a)) > $ (a (ß))

Although these orderings a r e m u c h simpler than many of the

existing orderings for nötherian TBS, w e can for example prove

that a TRS with abelian group axioms is globally finite:

Example

(1) f (x ,y) + f (y ‚X)
(2) f (f (X ,y) , z) + f (x ‚ f (y ‚Z))
(3) f (x ,0) + x

(4) f (X , I (X)) + 0

#(f (X ,y)) = 1 = #(f (y ,x))
#(f (f (x ‚y) , z)) = 2 = 1r(f(x,f(y,z)))
#(f (x ‚0)) = 2 r (x) = 0
#(f (x , I (x))) = 2 f (0) = 1

F o r e a c h v a r i a b l e t h e n u m b e r of o c c u r r e n c e s o n t h e l e f t h a n d

side is not less than on the right hand side of these rules.

Hence, this TRS is globally finite.

I n fact it might be "easier" to prove a T H S globally Finite

than proving it notherian, because global finiteness is the

weaker property:

R notherian <=> R globally finite

« s i t => t *} 8

Although the proof f o r global finiteness might be "easier",

there is n o way to find a general ordering relation, for this

problem is still undecidable.

W e get another ordering relation by combining the depth and

length ordering. First w e split the set of operators 2 into

t w o disjoint sets F and G. The computation of the depth is

restricted to operators of F and only operators f r o m G a r e

counted to get the number of operators. The definition of the

depth of an occurrence is different too, only operators from F

are considered for computing the depth.

Definition 2.11

Split Z into two disjoint sets F and G :

z = F u G „ F f 1 G = 0

We define the depth of a term as:

1 teV u (te? . taro)
o teG . tsZO

D(t) := MAX({D(t1) ‚ . . . ,D(tn)}) t = g(t1 ‚ . . . , t n) . geG
MAX({D(t1),...,D(tn)})+l t = f<t1‚...,tm) . feF

10

#(t) i s the number of operations in t:

l t e G . teZO

O (teZO . teF) v tsV

$(t) := f(t1)+...+#(tn)+l t = g(t1,...,tn) . geG

#(tl)+...+#(tn) t = f(t1,...,tm) . s

d(u,t) is the depth of an occurrence u in a term t:

0 u = E

d(u , t) : = d(ü ‚ t i) u = 1.1-1- A S = g (t 1 , . . . , t m) A g E G

' . 1<1<m
d (ü ‚ t 1) + 1 u = 1.5 . s=f(t1‚...,tm) . n

„ 1 < i < m

A term t i s n o t greater than 8 iff the depth of t and the

number of operators in t is not greater than in s. For proving

a T R S globally f i n i t e the t w o variable conditions f o r the

depth and length ordering have to hold too:

Lemma 2.12

Let (a ,ß) be a rewrite rule:

D(B) < D(a) „ $(B) < #(a)
„ VXEV(a): u/u = x . ß/V = x => a(u,a) < a (v ,8)
. Ve(a): #(x,a) > #(x ,ß)

=> Vs: s/u = 0(a) => D(s[u * “ (ß)]) ‘ D(S)
„ #(s[u + U(B)]) ‘ *(S)

The proof of lemma,2.12 i s s imilar t o the proofs of l e m m a 2.10

and 2 .7 , thus we skip it.

These ordering relations a r e easily extendable f o r sorted

algebras. Also weights for operators might be added. More work

has to be done t o f ind m o r e general ordering relations, but

11

for first tests with the extended completion procedure, these

orderings might be sufficient.

With these ordering relations we can split a globally finite

TRS into cyclic and reduction rules. The test for cyclic rules

i s r a t h e r s i m p l e . T h e l e f t h a n d s i d e h a s t o b e i n t h e

reduction set of the right hand side of the rule:

Lemma 2.13

(a,8) e R is a cyclic rule iff B *+ a.

M
(=>)
(0 ,8) is cyclic

« + B with (a,8)

(<=)
s/u = 0 (a)
s[u + a (ß)] / u = a m
0(8) ** 0(a) with B ** a
s[u +a(ß)]/u + s/u
=> s[u + a(ß)] + s
=> (a ‚ß) is cyclic rule o

For testing whether a rule is a reduction rule, w e need the

same ordering relation which was used to prove that the TRS is

globally finite. After applying a reduction rule to a t e r m,

the resulting term has to be less than the original term.

Lemma 2.1#

Let < be an ordering relation in the sense of Definition 2.1
and R is a TRS with:

s + t => t < 3

Then (a ,B) e R is a reduction rule if:

12

Vs: s/u = 0(a) => s # s[u + a (8)]

Proof
Assume: s { s[u+ a(ß)] . s[u + d (ß)] *+ s

=> s < s[u + a(ß)] transivity of <
(contradiction) o

For the depth, length and combined ordering, the test of Lemma

2 .14 i s rather simple, and i t i s sufficient t o prove s 4‘t

f o r a r eduction rule.

Lemma 2 .15

R is a rewriting system:
3 + 1 : => t < s

.. t < s <=> D(t) < D(8)
(«,8) e R . u * 6
=> (a ,ß) is a reduction

_ t < s <=> r(t),< H s)
(a ‚ß) 6 R A a * 3 =>

_ t < s <=> r(t) < t (S)

(a,8) € R » “ * 8 =>

Proof

(depth)

rule

(number of operators)

(«,8) is a reduction rule

« D(t) < D(s) (combination)
(a ,ß) is a reduction rule

W e prove this l e m m a only f o r the depth ordering because the

ideas of these proofs are very similar.

We prove:

Vs: s/u = 6(6) => S * s[u * “ (ß)]
B e c a u s e o f :

s < t <=> E[u + s] < t[u + t]

13

it is sufficient to prove:

Va: a(a) * 0 (8)

(1*8 <=> D(a) # D(8) <=> D(a) > D(ß)

We prove now:

Va: D(a(s)) > D(O(t))

This proof is equivalent t o the proof of L e m m a 2.7. In the

same way we can prove:

#(a (s)) > *(a(t))
#(o(s)) > #(o(t)) v D(a(s)) > D(o(t))

Note:

A set of reduction rules i s a nötherian TRS.

Now w e are able to give a procedure that attempts to split a

TRS into cyclic rules and reduction rules:

(1) prove R globally finite by an ordering relation <.
(2) test f o r each rule whether the left hand side of the rule

is in the reduction set of the right hand side.

+ CR
' (3) test with this ordering whether each rule in R - CR is a

reduction rule:

successful?

true: stop with RR = R — CR

false: stop with failure

14

3. ' A confluence test for globally finite TRS

Unfortunately there s e e m s to be no simple extension for the

confluence test a s for the test for global finiteness. The

local confluence is not equivalent to the confluence of these

systems. lk'l b

For example:

s tN
s %

This globally finite relation is locally confluent, but not

confluent. Thus, the local confluence has to be extended for

globally finite TRS. If w e consider equivalence classes of

terms, we are able to define a similar property.

Lemma 3.1 .

Let R be a globally finite TRS. The equivalence class [s] is
defined as: [s] = {tl s*+ t . t *+ s}
Then the relation +>:

[s] +> [t] <=> } s e [s]: } t e[t]: E + t
is nötherian.

Proof

Assume there is an infinite chain:

[sl] +> [s2] +> [s3] +> ...
All 51 are different, for if they w e r e not there would be a

cyle in this chain, and since all elements o n a cycle have to

be in the same equivalence class, this chain would be finite.

Lemma 3.2

Let R be a globally finite TRS. R is confluent iff:

V sl,s2‚t1,t2: sl *+ s2 . s2 *+ s1 . sl +t1 . s2 + t2
= > + 5 : t l * * ‚€ A t 2 * * ‚€ '

15

Proof

(<=) obvious
(=>) +> is nötherian

=> [8] +> [t1] » [S] *> [t2]
=> }[f]= [tl] *+ [€] ~ [te] ** [€]
<=> +> confluent. '

[S] +> [t1]
<=> }§ ,E l : §e[s]

[s] *> [t2]
<=> }s,f2: Se[s]
=) g *+ s „ g ** §
=> }f- fl ** € „ 52 *+ € premise

=> +[f]=[f11 *+> [f] A [£21 *+> [€]
=> }[f]=[t1] *+> [f] . [t2] *+> [f]
=> +> confluent

s *+ t1 . s *+ t2

=> [8] **> [tl] » [S] **> [t2]
=> } [€]: [t1] **> [€] « [t2] *+> [f]
=>t1*+€ . t 2 * + f

=> * confluent

)
) .52 € [t 2] „ S " t z

L e m m a 3.2 does not give a simple test of critical pairs

between rules.

In the next theorem we prove a test where we have to consider

also critical pairs between critical pairs.

Theorem 3.3

Let R be a globally finite TBS, consisting o f cyclic and

reduction rules:

R = CR u RR
C(R)‚ C(CR) and C(RR) are the smallest sets with:

.- (a ,ß) e CR => (0 ,8) 6 C(CR)
(8 ,a) s C(CR)

l6

(«1 ,81) , (02 ,82) e C(CR) . 0(a1) /u = a(a2)
=> (a(a1)[u+a(82)],0(81)) e C(CR)

(0(ßl)‚a(a1)[u+o(ß2)]) e C(CR)

- RR c C(RR)
(„1 ,31) s C(RR) . («2,82) e C(CR) . a(a1) /u = a (a2)

=> (o(u1)[u+a(ß2)]‚o(81)) e C(RR)
(«1 ,81) s C(RR) . (62 ,82) e C(CR) « o(a1) = O(a2) /u

=> (0(82),o(a2)[u+6(81)]) e C(RR)

— (G1‚Bl) , (a2 ‚ß2) 8 C(RR) A ° (u 1) / u = C(62)

=> (a (a1) [u+a(82)] ‚ ° (81)) e C(R)

with:

(u e 0(a1) . ul/u & V) v (u e 0(a2) . a2 /u & V)
for C(CR) , C(RR) and C(R) .

R is confluent iff:

V(a‚8) e C(R): }t: a ** t . B *+ t

The proof theorem 3.3 is rather long, thus w e will describe

the ideas of the proof first.

Consider two different reduction chains of a term 8 :

a 1 ‚ o o o , a n , b 1 ‚ o o o , b m e R

a1 ,„ . , a1 and b1‚ .„ ,bJ might be cyclic rules and a i + 1 ’ b j + 1

l7

reduction rules:

8 1

a 1 + 1

t..1':' "

Thus , there are reduction chains from 31 to sP and vice versa.

I t i s s u f f i c i e n t t o p r o v e t h e e x i s t e n c e of a c o m m o n t e r m i n

the reduction sets of t1 and te;

..— ‚ -‚. _.
.- ..

„ ” induction ?Üt induction ‘\
d % — _ _ hypotheses 1 ”

* ‘ ‘ihypotheses , = i)

“‘ ’ \ ‘ * # ”
J b & « — _ induction ‚ '

"\hypotheses,»’
'a}:"

This proof is done by induction on the n u m b e r of reduction

rules in a chain.

In the following example w e show how critical pairs have to be

created for proving a TRS confluent.

Example

R is a TRS with 6 rules.-
(a) (f(x,X),c1)
(b) (f (x ‚x) ‚ c2)
(c) (f(s(x),§(x)), f(g(x),s(x)))
(d) (f (g (x) ,ä (x)) ‚ f (g (x) ,g (x)))
(e) (8 (x) ,§ (x)) '
(f) (§ (x) ,8 (x))

18

(c),(d),(e) and (f) are cyclic rules, (a) and (b) are

reduction rules.

We want to r educe the t e rm: f (g (x)—s(x))

f (g (X) , s (x)) 9 — > f (g(X) ,§(X)) 9 - > T(g(X),g(X))

% \.”c1 - °2

=> R i s not confluent.

There are no critical pairs between the reduction rules. Even

b e t w e e n a and e there i s no critical pair. Thus , w e try t o

find critical pairs b e t w e e n cyclic rules first. W e get a

critical pair between rules (0) and (e):

(€) (f (g (x) ‚ s (x)) ‚T (g (x) ‚ s (x)))

I f w e u s e this pair a s a cyclic rule, w e can replace the rules

(c) and (e) by (E) in the reduction chain:

c

f (g (x) ,g (X)) --—> T(g(x) ,g (X)) 'a/ \c1 c 2

Now we get another critical pair between a and E:

(ä) (T(s(x) s (x)) , c1)

We r ep l ace (a) and (8) by (ä) :
T(g(x) ,g (x))

a b

0 1 c a

19

At last we get a critical pair between ä and b

(01 ,02)

There is no way to reduce this critical pair to a c o m m o n term,

thus R is not confluent.

As a conclusion.of this example, w e have t o create three kinds

of critical pairs:

- between cyclic rules C(CR)
— between cyclic and reduction rule C(RR)
- between reduction rules C(R)

Critical pairs between cyclic rules and between reduction and

cyclic rules are also considered as cyclic and reduction

rules. Thus we have to create critical pairs between critical

pairs too.

Before we start to prove the theorem we want to know whether

it makes sense t o consider critical pairs as reduction o r

cyclic rules (Lemma 3.5). In Lemma 3.u we prove that we need

not consider cyclic rules with left hand sides consisting of a

single variable.

Lemma 3.h

Let R be a globally finite TRS consisting of cyclic rules CR

and reduction rules RR:

(V x : (x ,x) 4 R) => V y,ß : (y ‚ß) & CR

Proof

Assume: (x ,ß) e CR

20

(i)

(11)

x & V(ß)
B *+ x (x ,8) cyclic

T h i s contradicts the variable condition for rewrite

rules: (« ,8) e R => V(B) c V(a)

8 = f (t 1 " " , t n) A } u S 0 (8) : B / u = X

=> f(t1,...,tn) + f(t1,...,tn)[u+f(t1,...,tn)] (x,B)
*+ f(t ,.„,t)[u+f(t , . „ , t)[u+f(t „.„t)]]1 n l n 1 n

=> R is not globally finite (contradiction)

3.5Lemma

R is

C(CR)
(a ,ß)
(a‚®

a globally finite TRS.

and C(RR) are the sets of theorem 3.3:
e C(CR) => (a ,ß) is a cyclic rule in C(CR)
e C(RR) => (a ,ß) is a reduction rule in C(RR) u C(CR)

Proof

First

- eye

(a,

A s s

=>

=>

= >

(0 1

=>

= >

we check the variable condition f o r th ese rules:

1 1 0 rules

8) 8 CR

ume } x: x e V(a) . x é V(B)

B ** « ‘variable condition
(a ‚ß) is not cyclic (contradiction)
V(a)=V(B)

’31) , (02 ,32) € C(CR) A 0 (a 1) / u = 0 (a2)

V(a(a1)) = mal))
V(O(G2)) = V (0 (8 2))

21

=> V(O(G1) [U* ° (82)]) = V (U (G 1))

=> V(a (a1) [u+0(82)]) V (° (ß r))

— reduction rules

(«1 ,81) s C(CR) i s a cyclic rule
(a2 ,62) e C(RR) i s a r educ t ion rule

(1) 0(61) = 0(a2) /u

=> V(o(82)) c V(a(a2))
=> V(a (a1)) = V(O(81))

V(0(a2)[u+0(81)]) = V(0(u2))
V(a(82)) c V(c(a2) [u+a(ß l)])

_. V

__ V

(11) a (a l) / u = 0 (a2)
=> V(a(82)) c V(a(a2))
=> mal)) = mal))
=> V(a(al)[u+6(ß2)]) c vca<a1n
=> V(o(c1)[u+a(ß2)]) c V(0(81))

Now we check whe the r C(CR) a r e cyclic rules and C(RR) a r e
reduction rules:

- («,3) e C(CR)
=> }(a1‚ß1)‚(a2‚82) e C(CR) . a(a1)/u=a(u2)

Assume (a l , ß l) ‚ (a2 ,82) a r e cyclic rules

(1) a = 0 (a1) [U+G(32)] A 8 :“ (B l) ‘
0(81) ** 0(a l) (61,81) cyclic
C(02) * ° (B2) (“ 2 ,82)

=> 0(a1) /u + o(82) 0(a1) /u=a (62)

=> °(°l) *+ o (a1) [u+d(82)]
=> o(81) ** 0(a1) [u+o(82)]

(11) a = 0(81) . B=o(al)[u+0(82)]
° (8 2) ** " (02) (“2 ,32) c y c l i c

22

=> o(a1)[u+a(82)] /u *+ o(u2)
=> a (a 1) [u + a (ß 2)] ** a(a1) o(al)/u=0(82)

a(u1) * O(81) (61 ,81)
=) C(u1)[u+a(ß2)] ** ° (81)

— («„B) e C(RR)
=> }(al 8 1) e C(CR) , («2 ,82) e C(CR):

(“1 ,81)

(02 ,32) ‘ — — — - — — (0 ,8)

Assume: (a2 ,82) is a reduction rule.

If (a ,ß) is no reduction rule, there is a term t:

(51 ,31)

(«2 ,82) would not be a reduction rule (induction hypothesis)

=> (a ,B) is a reduction rule.

Proof of Theorem 3.3

s o b1 S 1 b 2 8 2 Sn—l n 8 n

i!{}r——————nr—————+o _ _ _ _ _ _ _ _ _ _ _ _ V c

t 0 * t n

b1,...,bn are cyclic rules applied at ul , . . . , un .

a,c are reduction rules applied at v ,w .

bi = (“1 ,31) ’ s1-1/“1 = °1(°1)’ $1 = s1-1[u1*°1(51)]
a = (a ‚ß) , so/v = 0 (a) , t o = so[v+a(ß)]

23

c = (Y,6), sn/w = 5(Y)‚ tn = sn[w+3(6)]

We want to prove the existence of an equivalent problem where

w e have to test only t w o reduction rules ä, E f r o m « I H N
which are applied to a single term E:

3 o b1 $ 1 b 2 5 2 3 n - 1 b n S n

W - — " — ~ - — — ‚ ’ c

t o \ \ — \ \ ‚ " / , . f / t n

I f there is a common term t i x a t h e reduction sets of t o and

En, E i s also in the reduction sets of to and tn.

There a r e seven cases:

(1) b l and a do not overlap

=> c o n s i d e r the subproblem

2h

(2) bn and c do not overlap

So b1 s 1 b2 8 2

a

t o t n — 1

=> consider the subproblem
80 b1 _?1 b2 =gg__„________3n-1

a c
t o t n - l

(3) a is applied at a variable occurrence of b1

This is t h e classical way t o reduce t o and s l t o the s a m e

term.

There has to be at least one application of a at sl, otherwise

a would not be a reduction rule:

25

There fo re , we ge t :

n n

c

I t n

I I »- ,

b ' induction “ „ _ t , ’
äL—-$Lak “‘-&k

‘ \ \ \ hypo thes i s ‚ "

\ \ \ \ ‘ E ‚ ”

‘ ä fl k

If tl and tn reduce to the same t e rm t, we can also reduce to

and tn to a c o m m o n t e rm . Thus , w e have to consider t he -

subproblem:

(H) c is applied at a va r i ab l e occurrence of b n ‘ This case is

equivalent to case (3). Thus w e have t o consider the

subproblem:

so b1 81 b2 8 2 sn-l

a! . "\%c

t o t n — l

(5) t he re is a critical overlapping be tween a and bl:

5 0 b 1 5 1 b 2 8 2

26

ä e C(RR)

=> consider the subproblem:

(6) there is a critical overlapping between c and bn

fo b1 S1 b2 82
4 x -

7 "t o

— (an‚ßn) => (ßn‚an) e C(CR)
e C(RR)

Y l I | I I I I I
|
.

3 !

Ol
i]

d
o

13

I
I

0
“

v OI

I

=> consider the subproblem:

So b1 81 b2 82 sn—l

to ‘ t n

(7) The problem cannot be reduced by any of the cases (1) - (6)

=> - b1 is applied at a variable occurrence of a

- bn is applied at a variable occurrence of 0

=> 01 (a1) is a subterm of 0(a)
an(8n) is a subterm of 5 (y)

First we want to find a "minimal" rule. We consider the rules

with their substitutions:

(0(a) , (0(8)) , (01(a1) ,01(81)) , . . . , (on(an) ,on(8n)) , (3(y) ,6(5))

27

A rule is "minimal" if no left or right side of other rules

occures at a variable occu r r ence in the left side of this rule.

We define an ordering relation < for these rules as:

Definition (i)

(oi(ai),01(ßi)) > (0J(aJ),OJ(BJ))
<=> } u 2 0011011)): u=u1.u2 . ati/ul e V

. „ (ai(ai)/u = aJ(aJ) V°1(“1) /u = aJ (BJ))

We prove for >:

Lemma (ii)
- > is antisymmetric:

(ai<a1),a1<ei)) > (aJ(aJ>,aJ<sJ>)
=> (aJ(aJ)‚oJ(BJ)) # (ai(a1)‚ci(ßi))

- > is transitive:

(analysing) > (oJ<aJ>,aJ<sJ>)
. (0 J (a J) , o J (BJ)) > (ak(ak)‚°k(8k))
=> (° i (°1) ’ °1 (51)) > (0k(ak),ok(8k))

Proof of Lemma (i)
Assume:

(U i (a i) ‚ ° 1 (ß i)) > (° J (° J) ‚ ° J (BJ))

» (OJ (GJ) ,OJ (BJ)) > (° i (° i) ’ ° i (ß i))

u e 0(ai(ai)), u=u l .u2 , ai/ul e V
v e O(aJ(aJ))‚ v=v1 .v2 ‚ uJ/vl e V

(i) 01(a1) /u = aJ (aJ) . OJ(GJ) /V = °1 (°1)
=> °i(°‘i)/u'v = °i(°‘i)
=> u=e . v=e
=> “i’ aJ e V (contradiction)

(ii) ai(ai)/u = aJ(aJ) . oJ(aJ) /V = °i(ßi)
01(a1)/u.v = 61 (81)

28

51 (81) * * ° 1 (G i) (G1 ,ß i) c y c l i c

*+ oi(ai)[u.v+ai(a1)]
=> R is not g l o b a l l y finite (contradiction)

(111) 01(a1) /u = 03 (83) . oJ(aJ) /v = °1 (°1)
v=v1.v2 . aJ/v1 e V
=> } V1: BJ/Vl = aJ /v l V(uJ) = V(BJ)
=> oJ(BJ)/Vl = oJ (a J) /v1
=> aJ(BJ)/Vl.v2 = ° J (° J) /V1 'V2 .
=> oi(ai)/u.V1.v2 = aJ(aJ)/v oi(ai)/u = aJ(ßJ)
=> oi(a1)/u.Vl.V2 = 01 (a1)
=> u.Vl.V2 = 5
=> “1 e V (contradiction)

(1 V) °1 (°1) /u = UJ (BJ) . UJ(° J) /V : ° 1 (ß i)

= > } V I 2 B J / V l = G J / V l

= > O J (B J) / V 1 =°J (a J) /V1

=> oJ(BJ)/Vl.v2 = oJ(aJ) /v1 .v2
=> o1(a1)/u.\71.v2 = aJ (a J) /v 01(a1) /u = °J(BJ)
= > a i (a 1) / u . V l . V 2 : ° 1 (B i)

0 1 (B i) * * G i (° i) (01 ,81) c y c l i c

** 0 1 (a 1) [u . V I . v 2 + a i (a i)]

=> R is not globally finite (contradiction)

Assume: _
(° i (° i) ’ ° 1 (ß i)) > (° J (° J) ‚ ° J (BJ))

„ (OJ (GJ) ,UJ (3J)) > (°k (°k) ’ °k (ßk))

u e O(c i (a1)) , u=u1 .u2 , “i/u1_e V
V e O(oJ(aJ)) , v=v1 .v2 , aJ/Vl @ V

(i) 01(a1) /u : UJ (GJ) A UJ<GJ) /V = ok(ak)

=> ui(ai)/u.v = ak (ak)

= > (01 (a i) ‚ °1 (81)) > (°k (°k) ’ °k (8k))

29

(11) 01(Gi) /u = OJ(aJ) A °J (°J) /V = Ok(ßk)

=> oi(a1)/u.v = ok(8k)
=> (ai<a1),oi<si)) > (ok<ak),ak(sk))

(iii) 01(a1) /u = 03(BJ) . oJ(aJ) /v = °k(°k)
v=v1 .v2 . aJ /v l e V
=> }vlz ßJ/v1 = aJ/vl . vwd) = V<eJ)
=> aJ (BJ) /V1 = oJ (a J) /v1
=> aJ (ßJ) /V1 .v2 = oJ (aJ) /v1 .v2
=> o i (u i) /u .V l .V2 = ck(ak)

=> (a i (a1) ,a i (81)) > (ok(ak) ‚ok(ßk))

(iv) 01(a1) /u = 03(83) . ° J (“ J) /V = ak(ßk)
v=V1 .V2 A a J / V l € V

=) } 51: B J / V l = Q J / V l V(CJ) = V(8J

=> °J(BJ)/:;1 = ° J (° J) /V1 ' '

=> oJ (ßJ) /v1 .v2 = aJ (aJ) /v l . v2
=> 01(a1)/u..\71-V2 = ° k (ß k)

=> (0 1 (G i) , ° 1 (ß i)) > (°k (°k) ‚ °k (ßk))

Thus we can find a minimal rule (ok(ak) ,ok(6k)) by this
ordering.

Assume :

- w: w e a (a) . w=w .w . a /w e V . o (a) /w = 0(a)k k l 2 k 1 k k
} fi : 0 (u) /W = 01(a1) b l i s applied at a variable

occurrence of a
=> ok(ak) /W.W = 01 (a1)

=> (ak(ak) ,ak(8k)) i s no t a minimal rule

w e °k(°k) . w=w1.w2 . uk/w1 e V . ak(ak) /w = 5 (Y)
E(Y)/W = on(8n) bn i s applied at avariable

— } w:
} W:

occurrence of c

=> ok(uk) /w .fi = on(8n)

30

=> (ak(ak),ak(8k)) is not a minimal rule

There fo re , a n y l e f t o r right side of other rules does not

o c c u r a s a s u b t e r m a t a v a r i a b l e p o s i t i o n o f r u l e

‘ (°k (ak) ’ ak (8k)) '

C o n s i d e r n o w :

Now w e replace each subterm ak(ak) in sk by ak(ßk) and

continue until no subterm ak(ak) is left.

We will prove the termination of this procedure:

Assume:

this procedure does not terminate

=> 0(Sk) i s finite, thus there a r e overlappings between the

application of this rule.

u first application of rule b k

v second application of rule b k .

31

U = V

=> 0 (Bk) = 0(ak)

this rule does not change the term, so we can skip it.

Consider the subproblem:

u>v => u = v.ü

=> (‚ (BR) = 0(°k) /u

0(8k) ** 0(ak) (ak‚ßk) cyclic rule
** o(ak) [ä + 0(ak)]

=> R is not globally finite. (contradiction)

u<v => v = u.?

=> o(8k) /V = 0(ak)

0(ak) + 0(Bk) (°k‚ßk)
+ a(8k) [V + 0 (Bk)] (ak’ßk)

=> R is not globally finite. (contradiction)

Thus, the occurrences where we replace °k (°k) by ak (8k) do not

overlap.

32

Before we continue with the proof , we show Lemma (111) first:

Lemma (111)

Let a = (a,B) and b = (y ,6) be two rules, t a term and 0,8
t w o substitutions. a is applied at occurrence v and b is

applied at u1‚ .„ ,un:

t o

a b

E1

. t1
I
|
I b *
‚‘

€;
t n

to/v = 0(a) . fl = to[v + a(B)]
t1/“1+1 = 5(Y) * t1+1 = t1[u1+1 * 3(5)] i=0 ‚1 ‚ - - - ‚n

i * J => ui * uJ „ “1 } “3 no overlappings

0(a) is not a subterm at a variable occurrence of y:

Vu: his 0(7) => Y/u e V) => 3 (Y) /u * 0(a)
There is no subterm 3(1) in tn:

Vu: tn/u * E(Y)

:) t o

a |
El. : ä is constructed by

l

: ; critical pairs between a
n .. 3t“ and b.

”
%

33

Proof of Lemma (iii)

- v and ul do not overlap

to

b
f 1 1;1

I
b l

a : b*
£2 ‘.

an

=> consider: t 1

3/?t2 ‘.b*
*Jtn

- t he re is a critical overlapping between a,b

t o

b
€1 tl

ä !
I b .
l

3v
o t n

=> consider: tl

ä/‘f
762 EM

Ytn

- a is applied at a variable occurrence of b

This case does not occure because of our premise:

VW: (u e O(Y) => Y/u e V) => 3 (Y) /w * 0(a)

34

- b is applied at a variable occurrence of a

to

a b

I t l
a t {W1, . . . ,Wm}—:—b*‚ 'n

I I
b * : , ’ l

? :b*

\

{w1 ,„ . ,wm} i s a subse t of {u1 , . „ ‚un} ‚ because e v e r y

subterm o(Y) in to is replaced by 0(6) .
There is no overlapping between the wi, t hus we can apply b

in an arbitrary sequence: I

a to

b*: b
'. t1

a t {W1, . . . ‚Wm}—: b i ‚ " , E b * a t {W1, . . . ,Wm}

I r

: E p , * tm+1

: a ‘
I

I
: b * a t {u l , . . . , un} - {W1, . . . ,Wm}

35’

=> t m + 1 and € a r e the same t e r m s :

a t o

b

b * l b * a t {W1‚ . . . ‚Wm}

!
a Itm+1=15

I
. 1) ” a t {u1 , . . . , un} - {W1, . . . ,Wm}

=> consider the subproblem:

35

a tm+1

_
-
.
o

' b * a t {u l , . . . , un} - {W1, . . . ,Wm}

&
“
-

This completes the proof of Lemma (iii) and we can apply the

result to our main proof:

b * k b * k / I \ \

l

I b * k ' ‘ S n - l

' I
a § f 5,k—l k k+1~ ‚g gr - S

a
tto ,

ök_1 and B k + 1 are constructed by critical pairs between d k — l ’

b k a n d bk+1

= > a k _ l , 5 k + l 6 C(CR)

We replace every subterm in °k (“k) in § k - 2 and §k+1 by
°k (8k)2

-36

Assume :
Some of t he bk which have been app l i ed a t Ek—2 (§k+ l) do no t

ove r l ap w i th ak_1 (5 k + 1) or they ove r l ap a t an occu r r ence
which i s ma tched by a va r i ab l e o f ak+1 (5k+1) ' Thus , t he i r

l e f t hand s ides wou ld occu r i n §k and th i s con t r ad i c t s ou r

p remise fo r Ek .

=> the re a r e on ly c r i t i c a l ove r l app ings be tween dk_1 (Bk+1)

and we ge t two o the r ru l e s dk_1 (bk+1) s C(CR):

37

Now w e c rea t e rules f r o m d k - 2 : a n d bk+2 w h ich can be applied at

sk_ 2 and sk+1.
We continue this proces s until we get:

with: 5,5 e C(RR)

=> consider the subproblem:
so b1 g1 sk—l bk-l 5k gk+1sk+1 S n l bn E"n

äf—w—w -----»—-—————— M - m h — ~ % \
E

- (},E) 1 = l,...‚k—l
b i = (6 ,Y)

f 0

€ |..
. €? D
' D. p
. I

this completes the proof of theorem 3.3.

We are able now to create a completion procedure for globally

finite TRS using this confluence test and the reflexive

ordering relations:

38

Completion Algorithm

(1)

(2)

(3)

J = 0

transform the equations into a globally finite TBS R(0) ,
no direction found for some equations?‘

true: stop with failure

false: + (2)

i=0, CC(0) := cyclic rules, CR(0) := reduction rules
3(3) = 03(0) u 00(0)?
true: + (3)
false: stop with failure

1 = 1+1
CR(1) :=
{(o(a1)[u+a(62)],o(a1))l (a1,51)e00(1—1).(u2,92)e0R(1—1)

.o(al)/u=0(02)}

u {(o(32),o(a2)[u+a(81)])| (a1,al)e00(1—1).(a2,32)eCR(1—1)
.o(a1)=a(a2)/u}

00(1) {=
{(a(a1)[u+o(ß2)]‚o(81))| («1,81),(a2,82)ecc(1-1)

.o(al)/u=o(a2)}

u ((a(81),a(a1)[u+a(82)])l (01,81),(02,82)6CC(i-1)
.o(a1) /u=a(a2)}

C(1) :=
{ (0 (01) [U+° (ß2)] ‚ ° (81)) l (G1‚Bl) ‚ (°2282)€CR(1-1)

. a (a1) /u=o(u2) }

with:

(u e O(al) . al/u € V) v (u e O(a2) . a2/u i V)

for CR(i), 00(1) , 0 (1)

Is there a critical pair (0 ,8) in C(i) which cannot be

reduced to a common term?

39

true: J = J+1

R(J-1) u {(a,8)} globally finite?
true: R(J) := R(J-1) u { (a ‚ 8) } # (2)
false: R(J—1) u {(a,a)} globally finite?

true: H(J) := R(J-1) u {(B,a)} * (2)
false: stop with failure

false: + (H)

(u) CR(1)=CR(i-1) . cc(1) = cc (1 -1)?
true: stop R complete

false: + (3)

This completion procedure will find every critical pair which

has t o b e added a s a n e w rule t o t h e TRS. If there a r e n o

cyclic rules, the set of critical pairs i s the s a m e a s i n the

classical procedure. Therefore, i t stops if R is complete. But

if there are cyclic rules in R the procedure does not stop for
every complete TRS. Fo r ekample if w e want t o complete the

abelian group a x i o m s t h e associativity a x i o m produces an

infinite set of cyclic critical pairs (C(CR)) . In fact the

confluence of globally finite TRS might be undecidable. We are

currently implementing this procedure o n a S ymbolics 3600

Lispmachine, f c r testing s o m e examples and finding stop

criteria for this procedure.

no

Refe rences

[HUE 77]

[HUE 80]

[JOU 83]

[KB 70]

Huet, G.f

Confluent reductions:

Abstract properties and applications to term rewriting

systems.

18th IEEE Symposium_on Foundations of Computer Science

1977 , p. 30-h5 .

Huet, G., Oppen, D.:

Equations and rewrite rules:

A survey
Technical Report CSL 111 , SRI International 1980

Jouannaud, J .P . ;

Confluent and coherent equational TRS, application to

proofs in abstract data types.

Centre de Recherche en Informatique de Nancy, 1983 .

Knuth, D., Bendix, P.:

Simple word problems in universal algebras.

Computational probelms in abstract algebra.

Ed. Leech I., Pergamon Press

11/22/1983

SEKI Memos

The following memos are available free of charge from

Mrs. Dorothea Kilgore
Universität Kaiserslautern
Fachbereich Informatik
Postfach 3 0 4 9
D - 6 7 5 0 K a i s e r s l a u t e r n
West Germany

MEMO SEKI-Bl-Ol

MEMOSEKI-81-03

MEMO SEKI-81-04

MEMO sEKI-sl-os

MEMO SEKI—81-06

MEMO SEKI-81-O7

MEMO SEKI-sl-oa

MEMO SEKI-82-01

MEMO SEKI-82-02

MEMO saxi—‘az-os }

U . Bartels, W . Olthoff and P . Raulefs:
A P E : A n E x p e r t S y s t e m f o r A u t o m a t i c
P r o g r a m m i n g from Abstract Specifications of
Data Types and Algorithms.

Peter Raulefs: Expert Systems: State of the
Art and Future Prospects.

Christoph Beierle: Programmsynthese aus Bei-
spielsfolgen.

Erich Rome: ' Implementierungen Abstrakter
Datentypen in terminaler Algebrasemantik.

Christoph Beierle: Synthesizing Minimal Pro-
grams from Traces of observable Behaviour.

Dieter Wybranietz: Ein verteiltes Betriebs-
system für CSSA.

Ulrich Bartels and Walter Olthoff:
APE 4 Benutzerbeschreibung.

Hans Voß: Programming in a Distributed
Environment: A Collection of CSSA Examples.

Hartmut Grieneisen: Eine algebraische Spezi-
fikation des Software—Produkts INTAKT.

Christian Beilken, Friedemann Mattern and
Michael Spenke: Entwurf und Implementierung
von CSSA - Beschreibung der Sprache, des
Compilers und des Mehrrechnersimulationssyst—
ems.
Printed in 6 volumes, which c a n be ordered
individually:
Vol-A: Konzepte
Vol-B: CSSA-Sprachbeschreibung
Vol-C: CSSA-Systembenutzung
Vol-D: CSSA—Programmbeispiele

1

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

‘MEMO

MEMO

MEMO

MEMO

MEMO

SEKI-83-01

SEKI-83-02

SEKI-83-03

SEKI-83-04

SEKI-83-05

SEKI-83-06

SEKI-83—07

SEKI-83-08

SEKI-83-O9

SEKI-83-10

SEKI-83-11

SEKI-83-12

SEKI-83-13

Vol—El: Programmdokumentation Teil I
Vol-E2: Programmdokumentation Teil II

Spezifika-
Aufbe-

Wilfried Schrupp and Johann Tamme:
tion und abstrakte Implementierung des
reitungsteils von INTAKT.

Frank Puppe and Bernd Puppe: Overview on
MEDI: A Heuristic Diagnostic System with an
Efficient Control-Structure.

Elisabeth Hfilsmann: LISP—SP : A portable IN-
TERLISP Subset Interpreter for Mini-Computers.

FrankPuppe: MEDl - Ein heuristisches Diagno-
sesystem mit effizienter Kontrollstruktur.

Horst Peter Borrmann: MODIS - Ein Experten-
system zur Erstellung vonReparaturdiagnosen
für den Ottomotor und seineAggregate.

Harold Boley: From Pattern-Directed to
Adapter-Driven Computation via Function—
Applying Matching.-

Christoph Beierle and Angi VoB: Canonical
Term Functors and Parameterization-by-use for
for the Specification of Abstract Data Types.

Christoph Beierle and Angi Voß:
Parameterization-by-use for
structured objects.

hierarchically

Christoph Beierle, Michael Gerlach and
Angi Voß: Parameterization without parameters
in : The History of a Hierarchy of Specifi-
cations.

U l r i k e P e t e r s e n : Elimination von Rekursionen.

Gerd Krfltzer: An Approach t o Parameterized
Continuous Data Types. 4

Richard Göbel: A Completion Procedure for
Globally Finite Term Rewriting Systems.

Michael Gerlach: A S e c o n d — O r d e r M a t c h i n g
Procedure for the Practical Use in a Program
Transformation System.

