
Michael Gerlach

Memo SEKI—83—13

&sUlm.1aarPemm
.

f

mWm
.

„m.

mmrmm&A

in a Program Transformation System

„
8

o
.
ä
.
.
.
.

h
s
m
fl
m
m
m

-
E
m
m

„_„„„„_e„„mm„__„w„%_„_„„„ E
m
m

A SECOND-ORDER MATCHING PROCEDURE

FOR THE PRACTICAL USE

IN A PROGRAM TRANSFORMATION SYSTEM

M . Gerlach

Universität Kaiserslautern

Fachbereich Informatik

Postfach 3049

D-6750 Kaiserslautern

West Germany

November 1983

Abstract

One way of transforming functions towards greater efficiency is

to apply a transformation rule given in form of two program

s c h e m e s . The first great s t e p in applying such a rule is t o

recognize that a given function is an instance of such a program

scheme. W e describe a procedure for this task working on a

second—order term language. Using this language it is possible to

comprise the essential features of a wide class of programs into

one scheme, independently of their arity as well as the number

and arity of auxiliary functions used in their definitions.

This research was supported by t h e Bundesministerium f ü r
Forschung und Technologie under contract IT.8302363.

C o n t e n t s

I. Introduction

II. The Term Language

III. The Matching Prodecure

IV. A Transformational Example

V. Conclusion

Appendix: Scoring Nodes

References

I . Introduction

The specification system SPESY, currently developed at the

University of Kaiserslautern, provides an environment for the

construction of highly reliable software. The whole system is

based on the paradigm of stepwise refinement with the following

-main tasks:

1. Specification of the requirements by using signatures and

logical formulas (axiomatic specification).

2. Construction o f algorithms fulfilling these requirements but

still presented as abstract data types (algorithmic

specification).

3 . O p t i m i z i n g t h e s e a l g o r i t h m s w i t h o u t l o o s i n g t h e i r

correctness.

4. Implementing the abstract data types by Pascal programs and

proving this implementation correct with respect to the

abstract types.

This paper is concerned with step 3.: How can programs be

_optimized without loosing their correctness? An important method

for this kind of program development is the use of transformation

rules [Broy, Pepper, 1981]. A transformation rule may be regarded

as a tripel <z,x,z’> [Huet, Lang, 1978] with the following
components:

- A s c h e m e 2 denoting the class of programs the rule is

applicable to.

- A condition X which must be true to make the transformation

semantics preserving.

- A scheme E ’ denoting the result of the transformation.

The scheme 2 always contains variables. The set of all legal
substitutions for these variables constitutes the set of all

programs matching the scheme Z. Given a program P and a scheme):

we must decide whether there is a substitution a such that

at = P, i.en "Is P an instance of the scheme 2“? That is the

question this paper is dealing with.

To make a single transformation rule as powerful as possible we

try to make the set of legal variable bindings as large as

possible. Look at the scheme for linear recursive functions:

f(x) := ;; B(x) then ¢(f(K(x)).E(x)) else H(x)

The class of functions described by that scheme will comprise

functions 4

— that are of arbitrary arity, i.e. x m a y denote several_

p a r a m e t e r s x1,„.‚xn , a n d K s e v e r a l functions K 1 " “ ' K n '

— where ¢ is of arbitrary arity, i.e. E may denote several

functions E1,...‚Em computing arguments for ©.

— w h e r e t h e v a r i a b l e s ¢ , K, E, H are a n y c a s c a d e o f function

calls, from identity to complex conditional expressions.

Here are t w o linear recursive functions matching the given

s c h e m e :

insert(x,l) : =

if if empty?(l)

ghee false

elee le (first(l),x)

£222 put(first(l)‚insert(x‚rest(l)))

else ;; empty?(l)

then put(x,empty)

else put(x,l)

with the variable bindings

f insert

x x‚1

B luv. if empty?(v)

£222 false

elee le (first(v),u)

luv. put (v,u)

luv. u, luv. rest(v)

Auv. first(v)

E
B
M
N
Q
-

luv. ;; empty? (v)

then put (u,empty)

else put (u,v)

sub(n,m)
i_f_ g t (m ‚ 0)

then sub(sub1(n),sub1(m))

w n

with the variable bindings

sub

n,m

luv. gt(V‚0)
Au. u

luv. sub1(u), luv. sub1(v)

:
n
r
q
x
e
w
x
w
a

l u v . u

To g a i n t h i s w i d e c l a s s o f functions m a t c h i n g o n e scheme, w e

use second-order variables and multivariables. Second-order

variables are well—known from higher—order logic and the typed A-

calculus [Church, 1940]. The value of a second—order variable

must always denote a function, given in form of a A-abstraction.

The concept of multivariables is introduced in this paper. A

multivariable may have several values, and the substitution rule

substitutes a multivariable by its values (and not by the list

consisting o f t h e s e values). I n the s c h e m e f o r the linear

recursion B, @ , K, E, H a r e second-order variables, and x, K, E

a r e m u l t i v a r i a b l e s . H e n c e , E a n d K a r e s e c o n d — o r d e r

multivariables.

In the following chapter we give a formal definition of the term

language. It was designed for the practical use in a program

transformation s y s t e m , and is therefore a modification and

extension of the ordinary typed A-calculus. The task of matching

t w o terms is specified, and in the succeeding chapter an

algorithmic solution of that task based on the work of [Huet,

Lang, 1978] is described in detail. The transformation example

given afterwards shows how to use matching for recursion removal

which is an important issue in making programs more efficient.

II. The Term Language

T h e r e i s a s e t C o f c o n s t a n t s a n d a s e t V o f v a r i a b l e s . C a n d V

must be disjoint. Furthermore, V is divided up into the following

subsets:

V1 simple first-order variables
V 1 * first-order multivariables

V2 simple second-order variables
V 2 * second—order multivariables

VB bound variables

The explicit definition of a set of bound variables that is

disjoint to all others is for avoiding collision problems when

substituting variables. VS := V - VB is called the set of scheme

variables. (Remark: The difference and union of sets is denoted
‚ & 4by — and “+ J

Terms are atomic terms, abstractions, applications and lists.

Atomic terms are constants, first-order and bound variables.

I f u1,...,un a r e bound variables and t is an a t o m i c term or an

application, (Au1„.un. t) is an abstraction.

I f t1,t2,...,tn a r e a t o m i c terms o r applications o r lists, and ©

is a second—order v a r i a b l e o r an abstraction, then ¢(t1,t2,u.,

tn) is an application. (t1,t2,n.,tn) is a list, which may also

be written a s t1(t2,...,tn).

The classical l-calculus does not define lists as terms. The

extension just established is introduced for the following

reason: The definition of the sub operation

(sub(x,y):= (;; ... Eben sub(...)...))

is an instance of the list

(f(u):= (i; ... Eben f(...)...))‚

f and u being first o r d e r variables. Equivalent t e r m s not being_

lists will contain the fixpoint operator Y, the conditional

operator C, and f a s a second-order variable, c.f.

Y(Afu . C(...f(...)...))

The former notation seems to be more natural and allows to

simplify the algorithm that matches two terms.

The evaluation rule for our terms is called B-reduction. It

specifies how to apply an abstraction to a sequence of arguments.

It is defined by the following function 8:

s[ui/ai,l<i<k] if f = (m l . . . u n . s) & n=k
B(f,(a1,...,ak)) = undefined if f = (Xul...un . s) & n s k

f(al,...,ak) otherwise

s[ui/ai‚ l<i<k] denotes the term 5 in which every occurrence of ui

is replaced by ai. Collision problems between free and bound

variables do not occur due to our strict classification of

variables.

A substitution tupel is a tupel < v , t 1 „ . „ t n > meeting the

following properties:

1 . veVs

2. If ve V l + V2 then n=l. Hence, <v,tl> is a well-known

substitution pair.

If ve V l * + V2* then n>0.

3. If vs V2 + V2* then all ti must be abstractions.

4. None of the tilnay contain a free occurrence of a‘variable
u e V B

A substitution is a set of substitution tupels pertaining to

distinct variables.

For every substitution 0 and every term t the term at denotes

the result of the application of o to t .In some cases, however,

at is not defined at all: What should at be if a = {<t,a,b>}?

1 . t is atomic:

undefined if t sV1* + V 2 *

at = t’ if } <t,t’> so

t otherwise

2 . t is an application ¢(t1,...,tn):

undefined if ¢eV2*

a t =

8 (0 ¢ . o(tl,...,tn)) otherwise

3. t is an abstraction (Aul...un.t’):

at = (Aul...un . ot)

(F o r t h e c o n d i t i o n s 1 a n d 4 v a r i a b l e b i n d i n g s m a y b e

ignored)

4. t is a list (t1‚...‚tn):

“t = (”'11'x'12'°°"x'1m1'
x’21'x 22'°“'x 2m2'

x nl'x n 2 " " ’ x nmn)
where

4 . 1 i f t i e V 1 * t h e n :

or x i1=t1 & m1=1

4.2 if t i : ¢(al,...,ak) & ¢eV2* then:

either } <¢,fl,f2,...,fmi>ea &

X ' i j = ß (f j r ° (a l r o o o r a k)) l j < m i

o r X i l = B (¢ I ° (a l , . . . , a k)) & m i = 1

4.3 otherwise:

The composition of two substitutions o and a ’ is

0 0 ’ = { (q l r - o o q > ' (q l l - O O q) = °’[°(V)] &

} t1....,tn: (v ’ t l ’ f ° " t n > e o + 0’}

Let t, E'be two terms. We say that E’matcheS'tif there exists

a substitution 0 with at=t’ (a is called a "matcher"). Two

substitutions 0,0’ are said to be dependent if there is a

substitution o" such that o"a=a’ or a"a’=a. In a first-order

language the following proposition holds:

at=f’& o’t=t’+- a and f ’ a r e dependent.

I.e. if t’ matches t, then there is a unique (up to renaming of

bonnd variables) m o s t general matcher. I n a second-order term

language this statement is no longer true. I.e. if t is a program

scheme and t’ s o m e procedure then there may be several

independent ways to interpret the procedure as an instance of the

scheme. Fortunate1y_the set o f all independent matches is finite,

and there is an algorithm to evaluate this set. This is not self-

evident since the unification problem is undecidable in second-

order logic [Goldfarb, 1981].

Example

The variables: V1 ={f‚u,w}

\ V 1 * = { V }

V 2 = { 4 ’ I ‘ v }

V 2 * = { K }

The substitution: on {<f,F>,<u,x>,
<v,Y‚Z>‚<w‚(Y,Z)>‚
(Ü I Ä X o X > r < Ö I Ä x 1 x 2 ° G(x2,H(xl))>,

<K,Ax1x2. x2,Ax1x2. x1>}

t t’=ot substitution rule

(1) f(u,v) ‘ F(X,Y,Z) 4.3, l., 4.1
(2) f(u,w) F(X,(Y,Z)) 4.3, 1 .

(3) ¢(Sr¢(T)) G (T ‚ H (S)) 2 . ‚ 4 -3 ‚ 1 -

(4) ¢(K(V)) < G (Y ‚ H (Z)) 2.‚ 4.2, 4.1

- T h e e x a m p l e s (1) and (2) a r e s h o w i n g th e difference between

simple variables and multivariables and how the latter can be

used t o express the idea that a function m a y have an

arbitrary number of parameters.

- a is a matcher for each pair of terms t and t’.

- T h e r e is another m a t c h e r 0 ’ fo r t and t’ in e x a m p l e (3) such

that a and o ’ are independent:
o ’ = { < ¢ , x x 1 X 2 - G (x 2 , x 1) > , < ¢ , l x . H (X) > }

I I I . The Matching Procedure

An algorithm matching two'second-order terms is described in

[Huet, Lang, 1978]. That algorithm has been implemented with the
following modifications:

1. The concept of multivariables-introduced in the previous

chapter caused some extensions of the algorithm.

2 . Introducing l i s t s a s a kind o f t e r m s a l l o w s u s to exclude that

a matched s c h e m e contains abstractions. S o function

definitions may be expressed as lists instead of using the

fixpoint operator.

3. The procedure does not look for all independent matchers at

5.

once. With each call it produces 923 substitution together

with some information that can be used by the procedure in the

next call. Given this information it will find the next

matcher (if there is any). It is assumed that a second-order

variable comprising a recursion should have a value being as

simple as possible, because many transformation rules require

for a algebraic property of the value of such a variable.

Therefore the complexity of that value determines the order of

the produced solutions [+ appendix].
A recursive operation scheme like
f (X) : = _i__f_ b (X) 353532 f (k (X)) % h(X) .
normally implies that there is no occurrence of f in the.

v a l u e s o f b, k, and h. That’s why t h e r e is a n option telling

the matching procedure that f must not occur inside the value

of any second-order variable. _
A matcher for the terms

f(x):= g(x) and F (X):= X

may contain the substitution tupel <g,Au.X>. Since X is a

p a r a m e t e r , such a substitution is not desired (w e expect

<g,Au.u>).That’s why there is an option telling the matching

procedure that no function parameter may occur in the value of

a second—order variable.

We are not using the term "matching tree" as Huet and Lang do.

However, we describe the state of the matching procedure by a

set of items still called nodes corresponding to the terminal

nodes in the matching tree. A node is a tupel (P,o) where P is

a set of pairs of terms and a is a substitution.A.node(P,o)

represents an alternative in the search for independent

matchers. 0 contains the substitution tupels already found,
ani P the pairs of terms not yet matched.

There are some restrictions to the applicability of our matching

procedure pertaining to multivariables. These restrictions do not

effect our applications but make the matching procedure simpler

and more efficient. (The following notion of the ’first

occurence’ is assuming the usual prefix notation of termsJ

10

l. The first occurence of a first-order multivariable must

not be an argument of an application.

_2. A list may contain a first—order multivariable on top

level several times but none of these occurences must be the

first one inside the term comprising the list.

3. Different applications that contain applications of the same

second-order multivariable as arguments may cause the

matching procedure to be incomplete: It will not find all

independent matchers.

4. T h e scheme to be matched m u s t not be a multivariable

application or a first-order multivariable (applying a

substitution to such terms is not defined at allL

This is the top-loop of the matching procedure given two terms

T1, T2:

Initialization: RESULT:= fi

N:=({<T1, T2>},¢

S:={N}

LOOP: S = ¢ then ready : return RESULT
= any node in S

S - N

= SIMPLIFY (N)

N = E then mismatch: 3959 LOOP
N = (¢,0)
then a matcher is found:

RESULT := RESULT + {REDUCE(O,T1)}

9939 LOOP

.
»
s

|
“

I
|
”

""

l-
h

"
n

u

"“

e lse

s:= s + {aN | o e MATCHAPPLICATION (N)}
goto LOOP

The procedure SIMPLIFY is essentially a first-order matcher

keeping second-order terms unmatched.

11

SIMPLIFY (N) :

P:= pairs (N)

pairs(N):= fi

EQE <t1,t2> e P gg
a':= SIMPLIFYI (t1‚t2,N)

ig o'= E then return E
N:= ON

P = = OP

The procedure SIMPLIFYl is matching two terms tl, t2 . It is

adding pairs of corresponding second-order subterms of t1 and t2

to the node N and yields a substitution resulting from the first-

order match of t1 and tz. If t1 and t2 do not match the value is

E. The second—order variables h i used in the following algorithm

are created by the program and must not occur anywhere else in

the nodes. Such variables are created in the procedure

MATCHAPPLICATION, too.

SIMPLIFYl (t1. t2, N):
t l = t 2 = € then €

t1=e v t2=e then E

a
n
:

m C
D

t1 eVS then <tl‚t2>(D |_
: m fl
)

IH
- I

M
IH

-
H

' I
H

IH
)

t 1 € C then

;; t1=t2 then e else E

(D .
.
.
-

a ‘D ‚H
m t1 is an application then

a d d (t l p t 2 > to N ; €

e l s e l e t (t l l ' . . . ' t l n) = t l , (t 2 1 p o - o l t 2 m) = t 2 _i_._

I
“
'

I
"
?
!

t l l 5 V 1 * then

__i_f_ n = 1 t h e n < t 1 1 1 t 2 1 l t 2 2 ' 0 0 0 ' t 2 m >

—else ‘t11't21't22'H"t2(m-n+1)’ °
S I M P L I F Y 1 ((t 1 2 " . . ' t 1 n) ' (t 2 (m . - n + 2) ' . . . ' t 2 m) ’ N)

——else 35 t11= (tllO’t111""'tlls) & t110 € V2* ___—the“
l e t O ' = < t 1 1 1 , Ä X 1 . . . X s . h 1 (X 1 , . . . , X s) ,

. . . ,

A x l . . . x s . h m _ n + l (x 1 ' o o o p x s) >

12

o ' 0 SIMPLIFYl (G't1,_t2‚ N)

else let O'= SIMPLIFYl (t l l ’ t21, N) 32

'f a F then g
e l s e 0' ° S I M P L I F Y l (G'(t12‚.„‚th1)‚ (t22‚.„,t2m)‚ N)

The procedure MATCHAPPLICATION selects a pair of terms from a

given node. Since the node is simplified the first term tl of the

pair is an application. The value of the procedure is a set of

independent substitution tupels. Each of them is representing a

different way to match the two terms given to the matching

procedure. During s i m p l i f i c a t i o n , h o w e v e r , s o m e o f t h e m m a y be

proved invalid.

If the selected term tl does not contain any application of a

multivariable MATCHAPPLICATION produces substitution tupels for

the variable being the head of tl. However, if this variable has

an a r g u m e n t that is an application o f a multivariable w e d o not

know its arity. That’s why first a substitution tupel for the

multivariable is produced. Hereby the problem about the arity may

appear again. So we have to search for the somehow inner-most

multivariable application called the ”fixed V2*—application".

FIXED-V2*-APPLICATION ((81,...,sn)):

£9; 1<i<n gg

;; sl is a multivariable application then
leg s'= FIXED-V2*-APPLICATION (Si) 32

Ä; there is such an s’
egee return 5’ elee return S i

_!ATCHAPPLICATION (N)

Select a pair <tl, t2> fran N

;; there is a fixed V2*-application ¢(q1,...,qk) in t1

ghee one substitution tupel for @ containing the folloWing

v a l u e s :

13

a) all projections (Axl...xk. xi), 1<i<k

b) all imitations

(Axl...xk. fil(hil(x1‚...‚xk),...‚hiri(x1,...‚xk)))

w h e r e (f i l ’ f i 2 ' ” " f i r i) i s a list contained in t 2 and hij

are new second—order variables

_e_1£ Size-t. t l = ¢(P1!°°01Pn) _j-_n_

;; t2 is atomic

2232 all substitution tupels (©, Xxl...x

and the imitation <¢,Ax1...xn . t z)

n . xi), l<1<n

else let (go‚gl‚...‚gm) = t2 32

all <¢,Ax1...xn . xi) and the imitation .
<¢,Ax1-..x . go(h1(x1‚...‚x„)....‚ hm(x1‚...‚x„)>>n

In this algorithm the word ”all" is t o be modified: When

producing the projections a look-ahead can be made checking

whether the result of the projection will match the corresponding

subterm of tz. In t h i s way the number of projections can be

reduced. Point 4. and 5. at the beginning of this section have to

be regarded when creating the imitations: e.g. a recursive

function call will normally not be imitated.

The last step of the matching procedure is the reduction of the

result. T h e v a l u e o f a second-order variable w i t h a multi~

variable application as an argument is an abstraction of maximal

arity created by MATCHAPPLICATION. Parameters of that

abstraction which are not used in the body may be abolished. But

the corresponding v a l u e s o f t h e multivariable m u s t be deleted,

too.

Example: Given the scheme ¢(¢(x),y) and the substitution

{<¢,Ax1x2x3. F(x1‚x3)>,<w,xx1.xl‚xx1. G(xl)>}

we may reduce the latter and have

{<¢,Ax1x3. F(xl,x3)>,<¢,xx1.x1>}

Furthermore all substitution tupels belonging to a variable hi

created by the matching procedure are eliminated by REDUCE.

14

IV. A Transformational Example'

In this section we will show how to obtain the iterative version

of the mult operation starting with the noniterative definition

mult (x,y):= ;; x=o hheh O glgg
;; y=0 hheh 0 elee add (x,mult(x,y-1))

using the rule <Z ,Z ’ ,X> with
£ E L(m):= _i_f_ B(m) gm ¢(L(K(m)). E(m)) 2.1.52 H(m)
z"; L(m)== G(m‚H(c))‚

G(m‚2)== g B(m) aeg G(K(m)‚<#(z‚E(m)‚)) 3139 z
X 5 }c: B! Aw. neq(w,c) &

V r ‚ s ‚ t : ¢ (¢ (r , s) , t) = ¢ (¢ (r r t) r s)

First we will replace the infix operators by the corresponding

prefix operators, eq for equality, and pred for predecessor:

mult (x,y):= ;; eq(x‚o) hheh O glgg
;; eq (y,0) hheh 0 elee add (x,mult(x,pred(y)))

T h e n a n o r m a l i z a t i o n procedure m u s t be performed since o u r

recursive function scheme looks like:

f(u):= i; b(u) £222 ... f ... elee h(u)
I n o u r e x a m p l e , t h i s n o r m a l i z a t i o n h a s t o c o m b i n e t h e

conditionals: . '
mult(x,y):= if and (neq(x,0),neq(y,0))

hheh add(x, mult(x,pred(y)))

.eisg o -

The term 2 is a pattern for the class of functions the rule is
applicable to. T h e pattern E’ describes the result of the

transformation in terms of the variables used in E (and X L

Additionally there is a condition X that must be fulfilled to

make the transformation semantics preserving. X contains the

variables of 2, but m a y also introduce new variables by

existential qualification.

To apply this rule to a definition the following steps are to be

done:

15

Find a matcher a such that at equals the definition. If there

are several independent matchers, try step 2. with all of

them.

Find a matcher o ’ > o such that a x is a true predicate.
Compute c’t“ to gain the result of the transformation.

The following matcher can be used here:

a’={<L,add>,<m,x,y>,<c,0,0>,

<B,Auv.and(neq(u,0),neq(v,o))>, <¢,Auv.add(v,u)>

<K,Auv.u,Auv.pred(v)>,<H,Auv.0>, <E,Auv.u> }

T h e r e a r e s e v e r a l w a y s h o w to c h e c k t h e conditixnix, and find the

substitution tupel for c:

Have a look at a knowledge base where the underlying data

types and their operators are described.Since our condition

is a rather special one we will not find it in our knowledge

b a s e . B u t w e w i l l g a i n s o m e b a s i c p r o p e r t i e s l i k e

associativity and commutativity of the operators.

Use some automated proof method to show the condition using

the basic properties of the underlying operations.(In our

simple example @ denotes the add operation. In more complex
cases © may be an arbitrary composition of many other

operations including conditionalsJ.

Ask the user whether the condition holds.

In our system w e will use all these methods. Moreover, our goal

is to m i n i m i z e the usercalls, and, when a user call is

u n a v o i d a b l e , t o p r o v i d e a l l t h e t o o l s a v a i l a b l e in t h e

specification system.

The result of the transformation is the term an“:

mu1t(x‚y) := G (x , y ‚ m ,
G(x,y,z) := 32 and (neq(x‚0)‚ neq(y‚0))

then G(x, pred(y), add(z,x))

16

Conclusion

W e described a m a t c h i n g procedure f or a second—order term—

language. Such a procedure is necessary to apply transformation

rules t o p r o g r a m s in o r d e r t o d e v e l o p t h e m t o w a r d s greater

efficiency. A lot of rules for recursion removal being a great

issue in optimizing functional programs can be found in

[Petersen, 1983] and [Bauer, Wössner, 1981] . The matching

procedure has been implemented in INTERLISP and is used by a

system for automated recursion removal [GeiBler, 1984] . It
applies to linear, cascaded and nested recursions as well as to

somespecial classes of recursions, and transforms them to tail

recursion as far as it is possible within the current state o f .

a r t .

17

Appendix : Scoring Nodes

The matching procedure contains t w o steps that are non-

deterministic so far: In the top-loop it has to select a node

representing an alternative in the search for independent

matchers. In the function MATCHAPPLICATION it has to choose a

pair of terms in order to proceed with the second-order matching

task.

In this appendix we will suggest a decision procedure suitable

'for the use in a program transformation system. If there is a

second-order variable @ in the given scheme that has a recursive

call among its arguments as well as another application of a '

second-order variable, t h e matching procedure w i l l produce the

substitution with the most simple value of @ first.

The node selection is achieved by a scoring function SCORENODE

that computes the distance between a node and the most simple

solution. The node with the best score will be selected at the

top-loop decision point.

FINDGOAL is an auxiliary function looking for the function names

that must occur in the value of a second—order variable in order

to meet the requirement that a recursive call must not be part of

the value of any second-order variable:

FINDGOALS (t):

ig t = t o (t l ‚ t o ' ‚ t n) &

to is not a recursive call &

t contains a recursive call

then {to} + U FINDGOALS (ti)
1

else {}

GOAL is calling FINDGOALS for all relevant schema variables:

18

GOALS (N) :

{<tlo,FINDGOALS (tz) > |
<t1, t 2) 5 pairs(N) &
t l = t (t l l ' ..., tk l) &

t e V2 + V 2 * &

(t l l ’ ..., t h x) contains a recursive call &

} j: t l j is a second-order application }

SCORENODE (N):
score:= 0

£2; (x,u1, ..., un) 5 subst(N) g9

gg; all atoms a in (“ 1 ' ..., un) go

i; } <x, g> e GOALS(N)

3319236189
then score := score + 999

ElEE score := score - 1

e l s i f x is not a n a m e generated by t h e matching

procedure

then score : = score + 1

SCOIP.

It depends on the selection of a pair of terms in the function

MATCHAPPLICATION how long it takes for an invalid alternative to

be shown incorrect. When selecting the pairs pertaining to auto-

matically generated function variables first,each imitation

produced by MATCHAPPLICATION is processed towards its success or

f a i l u r e b e f o r e o t h e r i m i t a t i o n s are generated. T h i s realizes a

depth-first strategy which has be shown to be very efficient.

l9

References

B m m r , F u L ” W ö s s n e r , H . : A l g o r i t h m i s c h e S p r a c h e u n d

Programmentwicklung, Springer Verlag, Berlin, 1981

Broy, M., Pepper,P.: P r o g r a m D e v e l o p m e n t a s a F o r m a l Activity,

IEEE T r . on S o f t w a r e Engineering, Vol. SE—7, No. 1,

January 1981, p. 14-22

Burstall,ILM., Darlington, J.: A T r a n s f o r m a t i o n S y s t e m for

Developing Recursive Programs, JACM 24, 1 (Jan. 77)

44—67 ’

Church, A.: A Formulation of the Simple Theory of Types, J. Symb.

Logic 5(1) (1940) . 56 -68

Geißler, C.: Ein System zur automatischen Elimination von

Rekursionen, Diplomarbeit, Bonn, Kaiserslautern,

erscheint 1984

Goldfarb, D.: The Undecidability of the Second Order Unification

P r o b l e m , J . o f Theoretical C o m p u t e r Science, 13,

1981, p. 225—230

Huet, G., Lang, B.: Proving and applying Program Transformations

E x p r e s s e d w i t h S e c o n d - O r d e r P a t t e r n s , A c t a

Informatica 11, 31-55 (1978)

Petersen,IL: Die E l i m i n a t i o n von Rekursionen, S E K I - M e m o 83-10,

Kaiserslautern, October 1983

20

11/22/1983

SEKI Memos

The following memos are available free of charge from

Mrs. Dorothea Kilgore
Universität Kaiserslautern
Fachbereich Informatik
P o s t f a c h 3 0 4 9
D-6750 Kaiserslautern
West Germany

MEMO SEKI-81-Ol

MEMOSEKI-81-03

MEMO SEKI-81-04

MEMO SEKI-81-05

MEMO SEKI-81-06

MEMO SEKI-81-07

MEMO SEKI-81-08

MEMO SEKI-82-Ol

MEMO SEKI-82-02

MEMO SEKI-82-03

U . Bartels, W . Olthoff and P . Raulefs:
A P E : A n E x p e r t S y s t e m f o r A u t o m a t i c
Programming from Abstract Specifications of
Data Types and Algorithms.

Peter Raulefs: Expert Systems: State of the
Art and Future Prospects.

Christoph Beierle: Programmsynthese aus Bei-
spielsfolgen.

E r i c h R o m e : I m p l e m e n t i e r u n g e n Abstrakter
Datentypen in terminaler Algebrasemantik.

Christoph Beierle: Synthesizing Minimal Pro-
grams from Traces of Observable Behaviour.

Dieter Wybranietz: Ein verteiltes Betriebs—
system für CSSA.

Ulrich Bartels and Walter Olthoff:
APE - Benutzerbeschreibung.

Hans Voß: Programming in a Distributed
Environment: A Collection of CSSA Examples.

Hartmut Grieneisen: Eine algebraische Spezi-
fikation des Software-Produkts INTAKT.

Christian Beilken, Friedemann Mattern and
Michael Spenke: Entwurf und Implementierung
von CSSA - Beschreibung d e r Sprache, d e s
Compilers und des Mehrrechnersimulationssyst-
ems.
P r i n t e d in 6 v o l u m e s , w h i c h c a n be ordered
individually:
Vol-A: Konzepte
Vol-B: CSSA-Sprachbeschreibung
Vol-C: CSSA-Systembenutzung
Vol-D: CSSA-Programmbeispiele

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

MEMO

SEKI-83-Ol

SEKI-83-02

SEKI-83-03

SEKI-83-04

SEKI-83-05

SEKI-83-06

SEKI-83-07

SEKI-83-08

SEKI-83-O9

SEKI-83-10

SEKI-83-ll

SEKI-83-12

SEKI-83-13

Vol-El: Programmdokumentation Teil I
Vol-E2: Programmdokumentation Teil II

Wilfried Schrupp and Johann Tamme:
tion und abstrakte Implementierung des
reitungsteils von INTAKT.

Spezifika-
Aufbe-

Frank Puppe and Bernd Puppe: Overview on
MEDl: A Heuristic Diagnostic System with an
Efficient Control-Structure.

Elisabeth Hülsmann: LISP-SP : A portable IN—
TERLISP Subset Interpreter for Mini-Computers.

FrankPuppe: MEDl - Ein heuristisches Diagno-
sesystem mit effizienter Kontrollstruktur.‘

Horst. Peter Borrmann: MODIS - Ein Experten-_
system zur Erstellung vonReparaturdiagnosen
für den Ottomotor und seineAggregate.

Harold Boley: From Pattern-Directed to
Adapter-Driven Computation via Function-
Applying Matching.

Christoph Beierle and Angi Voß: Canonical
Term Functors and Parameterization-by-use for
for the Specification of Abstract Data Types.

Christoph Beierle and Angi Voß:
Parameterization-by-use for
structured objects.

hierarchically

Christoph Beierle, Michael Gerlach and
Angi Voß: Parameterization without parameters
in : The History of a Hierarchy of Specifi-
cations.

Ulrike Petersen: Elimination von Rekursionen.

Gerd Krfitzer: An Approach to Parameterized
Continuous Data Types.

Richard Göbel: A Completion Procedure for
Globally Finite Term Rewriting Systems.

Michael Gerlach: A Second-Order Matching
P r o c e d u r e for the P r a c t i c a l U s e in a Program
Transformation System.

