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INPLENENTATION SPECIFICATIONS

Christoph Beierle, Angelika VoS8
Fachhereich Informatik, Universitat Kaiserslautern
Postfach 3049, 6750 Kaiserslautern, West Germany

Abstract

Loose specifications of abstract data types (ADTs) have many non-isomorphic
algebras as models. An implementation between two loose specifications
should therefore consider many abstraction functions together with their
source and target algebras. Just like specifications sre stepwise refined to
restrict their class of models, implementations should be stepwise refinable
to restriet the class of abstraction functions. In this scenario
gpecifications and implementations can be developed interwovenly.

For example, we can consider implementations of sets by lists where the set
simulating 1ist operations are still left open. They may be refined later on
350 that an implementation of sets by arbitrary lists, by lists without
double entries, or by sorted lists is obtained, differing e.g. in the
efficiency of the set simulating operations.

We suggest to have implementation specifications analogously to loose ADT
specifications: Tmplementations have signatures, models, axioms and
sentences thus constituting an institution. Implementation specifications
nre the theories of this institution and refinements between implementation
apecifications are its theory morphisms.

Iis {ntroduction

Fixed ADT specifications with only isomorphic models were studied before loose ADT
specifications with non-isomorphic models, and several implementation concepts have
been proposed, discussed, and revised for fixed specifications (e.g.[GTw 78],[Ehc
32|, [EKP 78], [EKMP 82|, [Ga 83]). By now there scems to be a basic consent that
such an implementation concept should incorporate the following notions:
- an abstract specification to be implemented,
~- a4 concrete specification implementing the abstract one,
- a gignature morphism from the abstract to the (possibly extended) concrete
specification allowing to translate abstract terms to concrete ones, and
- an abstraction function from the concrete to the abstract algebra allowing to
translate the concrete value of a concrete term back to an abstract value.
Abstraction functions need not be totally defined, but must be surjective and
homomorphic w.r.t. their domain of definition.

In contrast, so far only one implementation concept has been proposed for loose
specifications that generalizes the fixed case, namely the concept proposed by
Cannella and Wirsing in [sw 82]. Our own implementation concept generalizes that of
Sarnella and Wirsing giving room to a refinement process between implementations.
¥oreover, our approach abstracts from a particular ADT specification method by using
the notion of an institution ([GB B83|) which provides abstract characterizations of
signatures, modela, sentences etc.

In Section 2 we outline the basic idea of our implementation concept. In Section 3 we
briefly state the assumptions about the underlying loose specifications which are
fundamental for our development. In Section 4 we introduce the institution of
implementation specifications. In Section 5 we illustrate how implementations of sets
by 1lists can be developed and refined stepwise hand in hand with the loose
gpecifications. Section 6 contains a summary and a comparison.

¥ to appear in: Proc. of the 3rd Workshop on .Theory and App]i_c-e;tions of
Abstract Data Types, Informatik Fachberichte, Springer Verlag (1985)



2. Basic idea

As compared to fixed specifications, in the loose case we still have specifications,
signatures, signature morphisms, etc, the essentiul difference lying in the number of
mnodela being considered. Therefore, an implementation for loose specifications should
at lenatl consist of

- an abstract specification,

- & concrete specification, and

- a signature morphism translating the abstract signature to the (possibly

extended) concrete signature.

Since a concrete specification can always be extended before giving the
implementation, we will choose the technically simpler approach and omit any

extension of the concrete specification as part of the implementation.

Having translated an abstract term into a concrete one we are faced with the
following questions:

(1) In which concrete algebra shall the concrete term be evaluated, since there
may be many non-isomorphic algebras?

(2} To which abstract algebra shall we translate the value of the concrete term,
since there also may be many non-isomorphic algebras?

(3) Which abstraction function shall be used for the translation, since there may
be different ones?

Having answered these questions we may further ask:

(4) How can we specify the selected concrete algebras, ahstract algebras, and
abstraction functions in an implementation?

In [sw 82] Sannella and Wirsing require that for every concrete model there should be
some abstract model and an abstraction function connecting them. If such a complete
set of triples exists, the concrete specification is said to implement the absfract
one, otherwise it does not. This is an implicit, non-constructive approach which
gives no room for a notion of refinement between implementations since there is no
way to characterize and restrict the set of triples - e.g. by constraints on the
concrete or abstract models - any further.

Sipce the idea of loose specificationag is to consider at first an arbitrary laree set
of modela and 1o restrict this uvet stepwise by refining the specification, we think
the adequate idea of implementations between loone upecifications is to accept all
meaningful combinations of an abstract model, a concrete model, and an abstraction
function and to restrict them stepwise by refining the implementation.

To realize these ideas and answering (1) - (3) we introduce the notion of
implementation models:
A simple implementation consisting of an abstract specification, a concrete one,
and a gignature translation between them denotes the set of all triples
consisting of an abstract model, a concrete one, and an abstraction function from
the concrete to the abstract model. Such a tripel is called an implementation

model. As in the fixed case, the abstraction function may be partially defined
and it must be surjective and homomorphic.

Now we extend these simple implementations to a concept incorporating o notion of
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refinement between implementations. Such a refinement should restrict the set of
lmplementation models which can be done componentwige by

- restricting the set of abstract models,

- restricting the set of concrete models,

- restricting the set of Aabstraction functions.

In the framework of loose gpzcifications the set of models -~ like the abstract and
“he concrete ones - is restricted by adding sentences to the respective
specification. Thus we solve problem (4) w.r.t. the algebras by allowing sentences
over the abstract and the concrete signature to be given in an implementation.

.

Sinae the abstraction functions op2rate on both concrete and abstract carriers we
propose to view them as algebra operations from concrete to abstract sorts. These

operations can be restricted as usually by adding sentences over both the concrete
ard the abstract signatures extended by the abstraction operation namz2s. Thus we
solve problem (4) completely by admitting arbitrary sentences over the abstract and
the concrete signatures extended by the abstraction operation names. These sentencrs
will be called implementation sentences.

Summarizing we propose an implementation specification to be
- a2 simple implementation
~ together with a aet of implementation sentences and

- denoting all implementation modela of the simple implementation which satisfy
Lthe implementation aentencen,

Analogously to specifications which consist of a signature in the simplest case, a
vimple implementation will also be called an implementation signature.

We already claimed that an implementation should be refinable by adding more
implementation sentences to it and thus reducing the class of implementation models.
This idea is extended analogously to loose ADT specifications by admitting a change
of sienature: There, a specification morphism is a signature morphism such that the
translated sentences of the refined specification hold in the refining specification.

Gince an implementation contains two specifications, an imrlementation morphian
shonold congiat of two apecification morphisms, an abstract one bhetween the abhstract
apecificationa and a concrete one hetween the concrete specifications. With these two
morphisms, the sentences ol the refined implementation can be traislated into genten-
crg over the refining implementation by mapping the sorts and operations according to
the two specification morphisms and by mapping the abstraction operation names to the
corresponding abstraction operation names in the refining implementation.

Thus, a refinement betwecn two implementations is given by an abstract and a concrete
svecification morphism such that the translated sentences of the refined
implementation hold in the refining one.

b &

b. The underlying institution of looge specifications

We only ausume that the loose apecilications have equatinual siganatures with orror
constants, denote strict algebras, and are formally defined as the theories of an
institution ([GB 83]).

Assumption: SPEC-institution := <SIG, EAlg, ESen, |@ >

is an institution where
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- 016G i3 a category of equational signatures with an error congtant erroc-n
for each sort sa.

- EAlg is a model functor mapping a signature £ to all strict I-algebras,

which have flat cpos as carriers, strict operations, and the error constants
denoting the bottom element.

- ESen is a sentence functor mapping a signature £ to a set of f-sentences.

lg i3 the strict satisfaction relation.

3PEC denotes the category of theories in the SPEC-institution which will be
called (loose) specifications, and Sig: SPEC + SIG is the functor forgetting

gpecifications to their signatures.

4. The institution of implementation specifications

In order to develop our implementation concept in the framework of institutions we
will have to make precise the notions of

- implementation signatures (Section 4.1) and

- implementation models (Section 4.2).
Having determined these notions we will establish a connection between lovae
specifications and implementations in Section 4.3 which will be helpful to formalize
in Section 4.4 the remaining notions of

~ implementation sentences and

- natisfaction of an implementation sentence by an implementation model.
Section 4.5 containa a summary of the new institution.

4.1 Implementation signatures

The signature I of a loose specification SP = <I,E> may be viewed as a simple
specification which has no sentences at all:
L 2 <L,é>.

This suggested to define an implementation signature to be a gimple implementation
specification which has no sentences.

According to Section 2, such a simple implementation consists of an abstract
gspecification SPa = <Za,Ea>, a concrete specification SPc = <(f¢,Be>, and a signature
morphism o: La » Lc translating the abstract to the concrete signature. Thug, an

implementation signature, or shorter i-signature II is a triple
I = <SPa,0,SPc>.

We already suggested that a refinement between two implementations should consist of
two specification morphisms between the abstract specifications and between the
concrete specifications., Since an implementation comprises in particular an
i-signature, we obtain the notion of refinement or morphism between i-signatures:
An i-signature morphism

t: IZ4 » Ig2
between two i-signatures II. = (SPaj,cj,SPCj> for j e {1,2} is a pair

T = <{pa,pc>
consisting of an abstract specification morphism pa: SPa1 + SPa_ and a concrete
specification morphism pc: SPci * SPcp- The refinement requirement that the
translated sentences of II{ must hold in II2 is trivially satisfied since IL{ has no
gentences at all.
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lowever, another requirement should also be satisfied: Assume we have an i-gignature

from sets over arblitrary elementa to extended liasts over arbitrary elements, and
nmolher t=algnature Crom acts over natural pumbera to extended lists over natural

vumbers, Then it should not matter whether we first represent sets over arbitrary
elements by lista over arbitrary elements nnd then refine to lisats over natural

nunhersa, or if we firatl refine the aetas over arbitrary elements to sets over natural
numbers and then represent them aas lists over natural numbers.

In general that means that the specification morphisms pa and pc should be compatible

with the signature morphisms o, and op. This in turn means that the diagram

a4
L e + SPey
pa | pcC
¥ e ¥
SPa? ................ > SPco

should commute viewing pa and pc as signature morphisms.

These notionsg of i-signatures and i-signature morphisms constitute a category. In
fact, it is the comma category induced by the functor Sig forgetting specifications
to their signatures.

Definition 4.1 [ISIG, i-signature]

Given the forgetul functor Sig: SPEC » 5ig, the comma category
ISIG = (8igt3ig)
ig the category of implementation signatures (i-signatures).

For an i-~signature IL = <8Pa,o0,5Pc> ¢ ISIG, SPa is called the abstract
gpecificatation of TEL, SPFc the concrete specification, and ¢ the translation. For
an i-signature morphism T = <pa,pc>: IL +» IL_, pa is called the abstract
specification morphism and pc the concrete one.

Since the category SIG is cocomplete and the functor Sig preserves all colimits, ISIG
is cocomplete, too, by a general property of comma categories.

IPact 4.2 {co1imjts]

[STC ie cocomplete.

4.2 Implementation models

In Section 2 we already discussed the meaning of a simple implementation. Thus, for
an i-signature IL an TI-implementation model should consist of a concrete SPc-algebra
Ac, an abstract SPa-algebra Aa, and a partial, homomorphic, surjective abstraction
function o from Ac to Aa. More precisely, for Ia = <(8a,0pa> a is an Sa-indexed family
of functions a_, each going into an abstract carrier Aag and starting from the
corregponding concrete carrier Acg(g)-

As in the fixed case, the concrete carriers and operations which are not needed for
the translation can be forgotten along o so that we obtain RAlLg(o)(Ac), i.e. Ac
viewed as a ra-algebra, as the source of the abstraction function a.

Now we could define a: EAlg(o)(Ac) » Aa as a partial, surjective homomorphism.
However, according to Section 2 we want to introduce abstraction operations as
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ordinary operations which are interpreted by abstraction functions and which can be
restricted by ordinary sentences. Since in the framework of the SPEC-institution the
algebra operations must be totally defined, we will also require that the abstraction
operations are totally defined. This is no limitation because the algebras are cpos
and there is an error constant for each sort denoting the minimum element. Thus alx)
is mapped to error whenever a(x) is meant to be undefined.

Doing so we must only suitably restrict the homomorphism requirement
a(o(op)(x)) = opla(x))

which under these circumstances need to hold only if a(x) is non-error.

Calling a family of functions partially homomorphic if it is homomorphic excepl for
the ervor elements, we can deline an abatraction funclion
a: BAlg(o)(Ac) + Aa
tuo be n surjective, partially homomorphic family of functions. Thus an V-
implementation model, or just lIfZ-i-model MA is a tripel
MA = <Ac,a,Aa>.

Note that in contrast to IL, where the first component is the abstract one and the
third is the concrete one, we now have the abstract algebra in the third component

and the concrete algebra in the first component. However, in both cases the first

component containg the source and the third component the target of the function in
the middle component.

Proceeding analogously to i-signature morphisms, we obtain a notion of i-modul
morphisms as a connection between two i-models. Given another If-i-model
MB = <Bec,8,Ba>
an i-model morphism from MA to MB should consist of
- an SPa-homomorphism ha: Aa » Ba and
- an SPc-homomorphism hc: Ac + Be.

Analogously to i-signature morphisms the compatibility condition for i-model
morphisms should express that it does not matter whether we first abstract Ac-
elements with a to Aa-elements and then map them with hc to Bc-elements, or whether
we first map the Ac-elements with hc to Be-elements and then abstract them with B8 to
Ba. This condition may be expressed graphically by requiring that the square

QL
EAlg(0>(AC) ——————————————— > Aa
l
EAlg(o) (he) | ha
¥ 8 ¥
EAlg(a)(Be) =-=vcmmmmmaaa—e > Ba

commutes. Note that we must forget hc along o because we also forget its source and
target along o.

To formalize this description we first have to solve a technical problem: In order to
require that the square above commutes the morphisms occurring in there must belong

to the same category. However, hc and ha are homomorphisms while a and B as
abgstraction functions are functions which are surjective but which are only partially
homomorphic in general.

Since every homomorphism is partially homomorphic, but is not necessarily surjective
the appropriate category for the square should have strict algebras as objects and
partially homomorphic functions as homomorphisms.

Det'inition 4.3 [Z—p—homomorphism]
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Let A, B ¢ EAlg(Z) with L = <3,0p> € SIG. An S-gsorted family of functions

h = {hg: Ag * Bg | 9 ¢ 5]
in a partially-homomorphic L~homomorphism (or just L-p-homomorphism) iff
¥ ops @amedy © 5 & D .
VX1EAS1....¥anAsn.
ns1(x1) * error-siB & ... & han(xy) # error-s, o

= hs(OPA(XW,o-',Xn)) = opB(hg1(x1),...,hsn(xn))
Fact 4.4 [p-homomorphisms are closed under composition ]

Let & = <S,0p> € SIG and f: A » B, g: B » C be I-p-homomorphisms. Then their
composition

gof:={g50fs | sesS}: A>C
is a I-p~homomorphism.

Definition 4.5 [PEAlg]|

The functor

PEAlg: SIG » CATOD
maps A signature L to the category of strict IL-algebras with I-p-homomorphisms,
and it maps a signature morphism o to the forgetful functor PREAlg(o) which is
defined analogously to EAlg(o).

Definition 4.6 [Partialy]

For I e SIG

Partialy: EAlg(L) » PEAlg(I)
is the inclusion functor.

Fact 4.7 [Partial is a natural transformation]

Partial: EAlg ==> PEAlg
is a natural transformation.

With PRAlg formalizing the property "partially homomorphic" we are now ready to
define a preliminary model functor mapping an i-signature TIL tc the category of all
tripels TA = <Ac,a,Aa> where a is p-homomorphic but not necessarily surjective.
Morphisms in that category are pairs of homomorphisms such that they commute with the
abstraction functions. Similar to i-signatures, this situation can be expressed
neatly as a comma category.

Definition 4.8 [Tripel(IZ)]

Let IZ = <SPa,0,S5Pc> be an i-signature with Sig(SPa) = f£a and Sig(SPc) = fc. The
comma category

Tripel(1Z) := (Partial . o EAlg(0) |EAlg(SPc) + Partialza
is called the category of II-tripels.

EAlg(SPa))

For an If-tripel TA = <(Ac,a,Aa>, Aa is called the abstract (or implemented)

algebra, Ac the concrete (or implementing) algebra, and a is the abstraction
function of TA.

Similar to ordinary signatures, every i-signature morphism induces a forgetful
functor between the respective model categories in the reverse direction. It is
defined componentwise.



Fact 4.9 [Tripel(rt)]

Let 17 = <{pa,per: IZ1 r [, ¢ ISIG.
Tripel(t): Tripel(IZ,) Tripel(IZ1)
deflined on objects by
Tripel(t)(<Ac,a,Aa>) := <BAlg(pc)(Ac),PRALg(pa)(a),RAlg(pa)(Aa)>
and on morphisms by

Tripel(t)(<he,ha>) 1= <(BAlg(pc)(ne),%Aalg(pa)(ha)>
ia a functor.

The observations above yield a prelimininary model functor Tripel: ISIG » CATOP. We

3till have to restrict this functor to consider only tripels with surjective
abstraction functions.

Definition 4.10 [IMod(IZ)]

For every IL e ISIG the category of II-implementation models (or just II-i-
models)

TMod(IL)
its the full aubcategory of Terel([X) generated by all tripels with surjective
abatraction function.

Fact 4.11  [IMod(t) |
For every t: If, » IZ the restriction and corestriction of Tripel(w) to
IMod(IZy) and IMod(I21) existg. It is denoted by
IMod(t): IMod(If,) » IMod(IZy).

Definition 4.12 [IMod]

IMod: ISIG + CATCP
is the modelling functor for implementation signatures.

4.3 Ttelating implementation signatures to specifications

According to Section 2, implementation sentences over an i-signature IL shall be ex-

preased over the abstract signature Ia, the concrete signature Ic, and so-called ab-
straction operations to be interpreted as abstraclion functions. In a first approach,
implementation sentences will be all ordinary sentences over this vocabulary.

With this decision we can define the set of IIL-implementation sentences to be the set
of all ordinary p(IL)-sentences, where P(IL) is a suitable equational signature
combining %a, Lc, and the abstraction operations.

We must define Y(IL) such that the sentences which are to restrict the abstract alge-
bras do not affect the concrete ones and vice versa. Therefore, taking the set theo-
retic union of signatures is not suitable, since the abstract and the concrete signa-
tures need not be disjoint. Thus we take the disjoint union (or coproduct). Moreover,

for reasons of convenience we will use standard names for the abstraction operations:

Definition 4.13 [abs-operations]

For IL = <<%&a,Ba>,0,<Lfc,Bc>> € ISIG and t = <pa,pc>: IL + II° e /ISIG/ we define:
abg-operations(IL) := {abs-s__: o(s) + s | s ¢ Ia}
abs-operations(t) := ((abs—sIZ, abs-pa(s)yp-) | s ¢ Lal.



Fact 4.14 [y]

y: ISIG + SIG
defined on objects by

$(IZ) := Ta w Lc w abs-operations(IE)
and on morphisms by
p(1) := pa w pc w abs-operations(r)

is a colimit preserving functor.

Having defined an IfL-implementation sentence to be an ordinary p(IL)-sentence p we
must determine whether an If-i-model MA = <{Ac,qa,Aa> satisfies p. Since the abstract

symbols in ¢(IZ) shall be interpreted by the abstract algebra Aa, the concrete
symbols by the concrete algebra Ac, and the abstraction operations by the abstraction
function o, we can take the disjoint union of Aa, Ac, and o to obtain a (IT)-algebra
interpreting w(IZ).

Definition 4.15 [join Tg(MA)]

For an i-signature IY = <SPa,0,3Pc> and an I1I-i-model MA = <Ac,a,Aa>
join. (MA) := Aa W Ac ¥ «a
is the w{§7) algebra A defined by
- for s ¢ Sig(SPa): Ag 1= Aag
- for s ¢ Sig(SPc): AL t= Acg
- for op ¢ Sig(SPa): OpA := OpAa
- for op € Sig(SPc): OpA := OpAc
- for abs-s ¢ abs-operations(IL): abs-sp := age

The join operator can be extended to a functor from II-i-models to P(IZ)-algebras.

Fact 4.16 [joinTr)

Defining join;. on If-i-model morphisms g = <he,ha> by

join, (g7 - (ha_ | s ¢ 5ig(SPa)} w (he_ | s e sig(spe))
elds a funcfor )
join IMod(TL) » FAlg(w(In)).

It
Generalizing over all i-signatures we obtain a natural transformation from the

implementation model functor to the model functor of the SPEC-institution composed
with the signature translation.

Fact 4.17

join: IMod ==> EAlg o ¢
is a natural transformation.

Now the question whether an II-i-model MA satisfies an implementation sentence p has
been reduced to the question whether jOinIX(MA) satisfies p in the framework of the

SPEC-institution.

4.4 Implementation sentences and their satisfaction

According to the preceding section we define the set of II-implementation sentences
or just If-i-sentences to be the set of all ordinary ¢(If)-sentences. Such an IZf-i-

sentence p is satisfied by an IZ-i-model MA exactly if MA viewed as the y(IZ)-algebra
joinIy(MA) satisfies p.
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Definition 4.18 [ISen|

The implementation sentence functor is given by
ISen := Sen o y: ISIG » SET.

Definition 4.19 [ | |

Let TL g ISIG, MA e IMod(IZ) and p ¢ ISen{If). MA satisfies p, written
MA |=rp P
iff joinyy(MA) |=¢(IZ) p.

Fact 4.20 [satisfaction condition]

¥ o1r: IZ9 » T312 € ISIC .
¥ MA & IMod(IZ,) .
¥pe ISen%IX1)

MA ‘irzz Isen(t)(p) <=> IMod(r)(Ma) |£IZ1 .

4.5 The institution

Since the satisfaction condition holds the notions defined above constitute an
institution.

Definition 4.21 [IMP-institution]|

IMP-institution := <ISIG, ISen, IMod, |% >

is the institution of implementation specifications.

Like specifications are defined as the theories of the SPEC-institution,
implementation specifications will be defined as the theories of this new
ingtitution.

Definition 4.22 [IMP]

IMP is the category of theories of the IMP-institution and it is called the
category of implementation specifications.

Thus an implementation specification or just i-specification ISP is a pair
ISP = <IL,IE>
consisting of an i-signature I and a set of If-i-sentences IE, and an 1i-

gpecification morphism is an i-signature morphism respecting the i-sentences.

Since ISIG is cocomplete, general institution properties tell us that IMP is
cocomplete as well.

Fact 4.23 [Colimits]

IMP is cocomplete.

5. FExamples: developing imlementations of sets by lists

Tn our examples we will assume that the error constants are implicitly declared. As
nentences wou will use first order formulas where the bound variables are not
interpreted as bottom elementas. Besides we need some constraint mechaniam to exclude
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unreachable elements (e.g. initial [HKR 80], data [BG 80|, hierarchy [SW 82], or
algorithmic constraints [BV 85]L

We will show how several well known implementations of sgets by lists can be developed
atepwiae nnd hand in hand with the implementing specification.

On the ababtract side we have the specification SET of sets with the empty set as
constant, and operations to insert an element, to determine or remove the minimum
element in a set, and to test for the empty set or for the membership of an element.
Beside gtandard sets, there may be bags or unreachable elements of sort set. The set
elements are described in the specification LIN-ORD which introduces a sort elem with
an equality operation and anm arbitrary reflexive linear ordering. The
aubspecification BOOL of LIN-ORD specifies the booleans.

On the concrete side the specification LIST extends LIN-ORD to standard lists with
the conatant nil, the operations cons, car, and cdr, and a test nil? for the empty
list. A1l lists must bhe generated from the elements by nil and cons. LIST is extended
to LIST-S by introducing names for the set simulating operations, but without
restricting these operations in order to obtain a variety of different models.

spec BOOL =

sorts bool
ops true, false: =+ bool
" not: bool » bool
and, or: bool bool » bool
gentences ... < gpecifying the booleans >

apec LIN~ORD = BOOL u
T sorts elem
ops eq, le: elem elem » bool
gentences ... < gpecifying eq as equality and le as an arbitrary reflexive
linear ordering >

spec SET = LIN~ORD u
sorts set
ops empty: =+ set
T insert: elem set + set
min: set » elem
remove-min: set > set
empty?: set » bool
in?: elem set » bool
sentences ... < specifying the set operations with their usual meaning, but not
necessarily excluding non-standard sets >

gpec LIST = LIN-ORD u
" sorts list
§E§ T nil: + list
cons: elem list » list
car: list » elem
cdr: list +» list
nil?: list » bool
sentences ... < specifying standard lists over elem generated by nil and cons >

spec LIST-S = LIST u
ops l-insert: elem list » list
T l-min: list » list
l-remove-min: list > list
1-in?: elem list + bool

Figure 5.1 The ADT specifications in the implementation of sets by lists
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Presentations of the specifications mentioned so far are given in Figure 5.1. The
sentences parts are not elaborated since the necessary first order formulas are
standard and since we did not want to go into the details of the constraint mechanism

to be used, because our implementation concept abstracts from these details
completely.

We can give a first simple i-specification I:SET/LIST-S from SET to LIST-S:

ispec l:SET/LIST-S =
islg 0g/pq: SET » LIST-S

with the signature morphism

GS/LS: Sig(SET) » SIG(PIST-S)
set » ligst
enpty *» nil
empty? + nil?
insert » l-insgert
in? * 1-in?
min ¥ l-min
remove-min  r l-remove-min
X r X for x ¢ Sig(LIN-ORD)

It merely defines the signature morphism oS/LS translating sort set to list and
translating the set operations to their simulating list operations without renaming
the signatures of the common subspecifications LIN-ORD and BOQOL. Since I:SET/LIST-S
contains no i-sentences, its i-models comprise all possible implementations of sets
by lists.

I:SET/LIST-S can be refined in various ways by adding i-sentences restricting the
abstraction operations of sort set, such that e.g.

}SEeC IA:SET/LIST-S = [:SET/LIST-S u
isentences
¥ x: list . ¥ e: elem.
abs-set(cons(e,x)) = insert(abs-elem(e),abs-set(x)))

ispec IS:SET/LIST-S = I:SET/LIST-S u
isentences
(¥ e, el, e2:elem . ¥ x: list .
abs-set(cons(e,nil)) = insert(abs-elem(e),empty) &
le(el,e2) = true & eq(el,e2) = false =>
abs-set(cons(ei,cons(e2,x))) =
insert(abs-elem(el),abs-set(cons(e2,x))) %
le(e2,e1) = true & eq(el,e?) = false =>
abs-set(cons(el,cona(e?,x))) = error-set )

ispec IU:SET/LIST-S = I:SET/LIST-S u
isentences

(¥ e, el, e2: elem . ¥ x: list .
abs—set(cons(e,nil)) = insert(abs—elem(e),empty) &
(in?(e,abs-set(x)) = true =>
abs-set(cons(e,x)) = error-set) )

ispec ISU:SET/LIST-S = IU:SET/LIST-S u IS:SET/LIST-S

Figure 5.2 Some i-specifications implementing sets by lists



- all lists represent sets (IA:SET/LIST-S),
only lists with unique entries may represent sets (IU:SET/LIST-S),
- only sorted lists may represent sets (1S:SET/LIST-S), or

- only sorted lists with unique entries may represent sets (ISU:SET/LIST-S).

The last i-specification refines not only I:SET/LIST-S, but also IU:SET/LIST-S and
IS:SET/LIST-S. The i-specifications are given in Figure 5.2 where we use abs-s:

0g5/L9(s) + s as the abstraction operation name of sort s.

By restricting the abstraction operations these alternative i-specifications
constrain their i-models not only w.r.t. the abstraction function of sort set, but
also w.r.t. the set simulating list operations. Correspondingly, we can specify Ffour
refinements of the concrete LIST-S specification by adding sentences fixing the set
simulating operations, such that they generate (and operate upon) exactly

- all lists (LIST-SA),

- all lists with unique entries (LIST-SU),

- all sorted lists (LIST-SS), or

- all sorted lists with unique entries (LIST-SSU).

To give an example we elaborate the specification LIST-SS:

spec LIST-SS = LIST-S u
~ sentences
1-min(nil) = error-elem
l-remove-min(nil) = nil
(¥ e: elem . l-insert(e,nil) = cons(e,nil))
(¥ x: list . ¥ e: elem

1-min(cons(e,x)) = e &
1-remove-min(cons(e,cons(e,x))) = l-remove-min(cons(e,x)) )
(¥ x: list . ¥ el, e2: elem .
le(el,e2) = true =»
1-insert(e!,cons(e2,x)) = cons(el,cons(e2,x)) &
1-in?(el,cons(e2,x)) = eq(el,e2)) &
(eq(r1,e2) = false =>
l-insert(e2,cons(el,x)) = cons(el,l-insect(e2,x)) &
1-in?(e2,cons(et,x)) = 1-in?(e2,x) &
1-remove-min(cons(el,cons(e?,x))) = cons(e?,x) ) )

Now we can in turn refine each of the i-specifications IX:SET/LI3T-S (or X e (&, 1T,
S, SH} by replacing the concrete specification LIST-S by its refinement LIST-XS and
calling the resulting i-specifications IX:SET/LIST-SX. Since the abstraction
operation of sort elem is not restricted, IX:SET/LIST-SX i-models have many non-
isomorphic LIN-ORD implementations, e.g. the characters represented by the natural
numbers or by the integers. However, for each LIN-ORD implementation there are onlv
isomorphic IX:SET/LIST-SX i-models as extensions since the set simulating operation;
are fixed by now. Thus
-~ IA:SET/LIST-SA specifies the implementation of sets by all lists,
- TU:SET/LIST-SU specifies the implementation of sets by all lists with unique
entries,
- IS:SET/LIST-SS specifies the implementation of sets by all sorted lists, and
- ISU:SET/LIST-SSU specifies the implementation of sets by all sorted lists with
unique entries,

which are well known sets-by-lists implementations, differing in the time efficiency
of the set simulating operations and in the amount of storage needed by the lists. As
an example we give the i-specification I1S:3RT/LIST-SS:



igpgg}lS:SET/LIST«SS = IS:SET/LIST-S u
isig oS/L3: SET + LIST-SS

The refinement relations between the specifications and i-specilications described
above are depicted in Figures 5.3 and 5.4:
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T Ny

LIST-SA LIST-SU LIST-38

F-\‘\\\\\\\\\§ \\ b/f///’,///’

LIST-S

]

SET LIST
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Figure 5.3 The relations between the specifications
ISU:SET/LIST-SSU
IA:SET/LIST-SA IU:SET/LIST-SU 1S:SET/LIST-SS

ISU:SET/LIST-S
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IA:SET/LIST-S TU:SET/LIST-S IS:SET/LIST-SS

I

1:SET/LIST-S

Figure 5.4 The relations between the i-specifications

6. Conclusions

We proposed an implementation concept for loose abstract data type specifications. It
introduces the notions of implementation signatures, - models, and - specifications
and it formalizes the transition from &a more abstract to a more concrete
specification including a change of the underlying data structures. By providing the
notion of refinement between implementations it supports to develop specifications
and implementations hand in hand. Moreover, using institutions our concept abstracts
from the underlying ADT specification method and is applicable to different
gpecification techniques.

Other itmplementation concepts for loose specifications lack the notion of refinement.
An implementation in the approach for Clear-like specifications proposed in [SW 82 ]
is - in our terminology ~ an i-signature with the semantic condition that for every
abstract algebra there is a concrete one with an abstraction function in between.
Concepts like those of [GM 82] and [Sch 82] are based on behavioural abstraction and
have been proposed for modules. The implementation concept for the kernel language



ASL of [sw 83] merely requires that the abstract specification ig included in the
concrete one. This simple notion is based on the fact that, as a semantical language,
AST, has very powerful specificatinn building operations which however may not be
pregent in a language for ADT specifications,

In [BV 85] the implementation concept proposed here is elaborated for a particular
ingstitution of ADT specifications. An effective procedure is given to convert an

implementation gpecification to a normal form which essentially consists of an
ordinary ADT specification. Referring to the normal forms associative vertical
composition operations for implementations are defined compatibly on the syntactical
and semantical levels. Horizontal composition and instantiation of parameterized
implementations are compatible with vertical composition allowing to combine

implementation specifications interchangeably in different directions with the same
result.
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