
EE
H

i-P
H

Ü
JE

H
T

SIOA 'V 'aT-Ia'FeEl“LD

E ä %
.

9 €}
;

F
ac

hb
er

ei
ch

 I
nf

or
m

at
ik

U
ni

ve
rs

itä
t K

ai
se

rs
la

ut
er

n
P

os
tf

ac
h

30
49

0-
67

50
 K

ai
se

rs
la

ut
er

n
1,

 W
. G

er
m

an
y

- I .

IRPLEKEBTATIOB SPECIFICArIOBS

Christoph Beierle, Angelika voa

;'·w~hherp.ich Inf()rrnlltik, Univer8itA.t KaisersJautern

Postfach 3049, 67~0 Kaiserslautern, West Germany

Ab8tract

Loose speciflc~tio~s of abstract data types (AnTs) have many non-isomorphic
algebras as models. An implementation between two loose specifications
:3hould therefore consi.der many abstraction functions together with their
source and target algebras. Just like specifications are stepwise refined to
restrict their class of models, implementations should be stepwise refinable
to restrict the class of abstraction functions. In this scen&rio
~pecification8 and implementations can be developed interwovenly.
For example, we can consider implementations of sets by lists where the seL
uimulatinp; list operations are still left open. They may be refined L'lter Oll

'la that 'In il1plementation of sets by arbitrary lists, by lists without
double entries, r)r by sorted lists is obtained, differing e.g. in the
efficiency of the set simulating operations.
We suggest to have implementation specificRtions analogously to loose ADT
:lpecifi.c'ltions: Implementations have signatures, modelfl, axioms and
:lpntpnces thus constituting an infltitution. Implementation spec:i.fications
lIre the theories of this insti tut.ion and refinement8 between implementation
:lJHCi.ficElti()n~l Ilt'<! its theory mo['phillmCl.

I. Introduction

Fixed AT'JT specifica ti0ns wi th only i.somorphic models were studied before loose ADT
Gpec:ificBticins w1 th non-isomorphic models, and several implementation concepts have
been proposed, d i.scus8ed, and revised for fixed specifications (e.g. [CTW 78]' IEhc
82 I, [EKP 781. [EKMP 82]' [Ca 83 j). By now there seems to be a basic consent tha t
such an implementation concept should incorporate the following notions:

- an abstract specification to be implemented,

- a concrete specification implementing the abstract one,

- a ~ignature morphism from the abstract to the (possibly extended) concrete

specification allowing to translate abstract terms to concrete oneJ, and
- an abstraction function from the concrete to the abstract algebra allowing to

translate the concrete value of a concrete term back to an abstract value.
Abstraction functions need not be totally defined, but must be Rurjective anrl
hom0morphic IN.r.t. their domain of definition.

In contrast, su far only one implementation concept has been proposed for loose
spec:ifications that generalizes the fixed case, namely the concept proposed by
SannellB and Wirsing in [SW 82]. Our own implementation concept generalizes that of
Sannella ~nd Wirsing f,iving room to a refinement process between implementations.
1":nrC(ive r, our RpproClch .':Ibs trac ts from a particular ADT specifica tiol1 method by uS'i ng
trl"~ nnt;on of IHl i.n~ti.tuti.on ([GB 8) I) which provides abstract characterizations of
:3; gnB t\lre~l, models, sentences etc.

In ~ection ? we outline the basic idea of our implementation concept. In Section 3 we
briefly state the assumptions about the underlying loose specifications which are
fundamental for our development. In Section 4 we introduce the institution of
implementation specifications. In Section 5 we illustrate how implementations of sets
by lists can be developed and refined stepwise hand in hand with the loose
specifications. Section 6 contains Cl summary and a comparison•

._- -_.__.-•.._------~._.- - - .--_.---_._-
t to appear in: Proc. of the 3rd Workshop on Theory and Applications of

Abstract Data Types, Inforrnatik Fachberichte, Springer Verlag (1985)

-··2
2.	 Bagic idea

As compnred to fixed specifications, in the loose case we still have specifications,
signatures, signature morphisms, etc, the essentiRl difference lying in the number of

modeL"] being considered. Therefore, an implementa tion fo r 1008e spec:i f i cat i.ons shou Id
ilt leH~lt consist of

- Rn abstract specification,
- ~ Gonerete specification, and
-.:1 nignature morphism translating the abstract siRnatllre to the (possibly

extended) concrete signature.

Since a concrete specification can always be extended before giving the
implementation, we will choose the technically simpler approach and omit 8ny

extension of the concrete specification as part of the implementation.

Havinc I;ranslated Hn ab3trar::t term i.nto a concrGte one we Are faced with the
following questions:

(1)	 In which concrete algebra shall the concrete term be evaluated, si nce there
may be many non-isomorphic algebras?

(?)	 To which abstract algebra shall we translate the value of the concrete lerm,
since there also may be many non-isomorphic algebras?

(3)	 Which abstraction function shall be used for the translation, since there may
be different ones?

Having answered these questions we may further ask:

(4)	 How can we specify the selected concrete algebras, abstract alll,ebras, 8nd
abstraction functions in an implementation?

In [SW 82] Sannella and Wirsing require that for every concrete model there should be
some abstract model and an abstraction function connecting them. If such a complete

set of triples exists, the concrete specification is said to i.mplement the abstnlct
one, otherwise it does not. This j.B .<tn implicit, non-constructive approach which

gives no room for a notion of refinement between implementations since tnere is no
way to characterize and restrict the set of triples - e.g. by constraints on the
concrete or abstract models - any further.

Sine," thcictell of loose specificatioM1 is to consider' ,qt first An ArbitrFlry]nr'''t~ ~l('~t

of model~1 and to restri.ct thi~, ~let stepwise by rf!F'i.ning the ~1recj ficflti.on, we t:h·j nk
the I'ldequate idea of implementations between] oon8 :Jp(~cific8tions is to Accept all

meaningful combinations of an abstract model, a concrete model, and an abstraction
function and to restrict them stepwise by refining the implementation.

To	 realize these ideas and answering (1) - (3) we introduce the notion of
implementation models:

A simple implementation consisting of an abstract specification, a concrete one,
and a signature translation between them denotes the set of all triples
consisting of an abstract model, a concrete one, and an abstraction function from
the concrete to the abstract modeL Such a tripel is called an implementation
2::0del. As in the fixed case, the abstraction function may be partially defined

!'\Jlrl it must be sur.iective and homomorph.i c.

Now W(~ extend the::Je simple implementations to a conct'lpt i.ncorporl1t:i.ng I' notinn 0['

- :::>

refinement between implementations. Such a refinement should restdct the set of
implementation models which can be done componentwise by

- res tric t ing the set of abstract models,

- restricting the set of concrete models,
- re:,; trictinp; the set of A.bs trl'lction functions.

III the frllrr";work of loose s[ecificntions the set of models - like the abstract and
~llP concrete ones is restr'icted by Bddj.np sen"tenc8S to the respective

"p"cjficat"ion. Thus we solve probl"~l (4) ",.r.t. the algebras by allowing RAntences
ovrr the abstract and the con~rete sj~nature to be given in an implementation.

:H n :~ ,~ t h () !:l b s t r act ion fun c t ionsop ,~ rat e () n bot h con ere tea n dab s t r act car ri e r 8 we
propose to view them as A]gebr.'1 operati.ons from concrete to abstract sorts. These

operations can be re.3tricted as uSll.31ly by adding sentences over both the concrete
srd the abstract sLgn1:ltures extended by the abstraction operation nam'?R. 'T'hus we

30lve prohlem (4) completely by admittin{< arbitrary sentences over the abstrnct and
the concrete signatures extended by the abstraction operation names. These sentencps

wilJ be called implementqti':0_s_ente~~.!'?:

SlFnmarizing we propose an ~.!"lel_e!,_~ntAtion specihcation to be
- ~ simple implement~tion

- top:ether wi th ,<1 !~pt; of imp:! emC'ntn t:i.on sen1;(')nce:J Ilun

- <ienotinr. HIt i.m~'lf,m('nt!l.t.i.on mnr],'I'l of' thf~ '3impll' i mpJ~)menl;::\l;i()n whi.ch ~'at.J8f'y

\. !l () imp 1.f" In e ntH t i () n :~ (~n t I' n(>~: 1•

Analogously to specifications which consist of a signature in the simplest C3.se, a
simrle implementation will also bp. called an im~lementation signature.

We qlready claimed that an implementation should be refinable by adding more
implementation sentences to it and thus reducing the class of implementation models.
'I'hi8 j nea is extended analogously to loose ADT specifications by admi tting a change
of si,anature: There, a specification morphism is a signature morphism such that the
tr2nslated sentences of the refined specification hold in the refining specification.

:> i ne;' ;.1 n imp 1 e men t.'J. t i () n con t f\ i n 8 t; W 0 S pP. cif j c Cl t ion s, a n j. mr 1. (, In e n tat ion m0 r p 11 i f1 m
:,,1,,),>1<1 COtlst::1t of two 'lpecificntjrHl morphjJ1m:'1, an nl'.,tr~ct one hetween the ahstract
.-111,~(·ific;~t.if)n8 and n concrete one h.,tween the c(Jncreb~ ~)pecifj.cEltionn. With the.se two
m()rp)li,,;m~1, the sentr;nce!:l ol' the refjned Lmplementation can be trfl l'31ated into senten
'>-'8 over the refining i mplementatioll by mapping the sorts and operations accornin,~ to
the two specification morphisms Rnd by mapping the abstraction operation names to the

corresponding abstraction operation names in the refining implementation.

1'hus, a refinement between two imple~entations is given by an abstract and a concrete
snecification morphism such that the translated sentences of the refined
implementation hold in the refining one.

W(, onl,Y H:\~~llm(' Uwt tlw loo~18 :ope,-i.r.icfltioTlB have equ/I'!.·inrJI11 8ir:nwtllreCl wi th orror
con:Jtllnts, denote strict. algebrAs, and are formally defined!ls the theorie>; of an
instituUon ([GB 8)]).

SPEC-ins titu tion . = <srG, EAlg, ESen, le>

is an institution where

- 4-
~n(; is 8 cater:ory of Gquatiollal siRnfltllJ:e~1 with Hn ('rrOor \>Hw!;A.nt (~['t"(ll'-:)

fo r Gf:lch so Lt s.

EAlg is fI model functor mapping a signature [to all strict E-alRebr8s,
which have flat cpos as carLiers, strict operations, and the error conRt~nts

denotinr, the bottom element.

- ESen is a sentence functor mapping a signature [to a set of ~-sentences.

I~ is the strict satisfaction relation.

SPEC denotes the category of theories in the SPEC-institution which will be
called (loose) specifications, and Sig: SPEC + SIC is the functor forgetting
specifications to their signatures.

4. The institution of implementation specifications

In order to develop our implementation concept in the framework of institutions we
will have to make precise the notions of

- implementation signatures (Section 4.1) and
- implementation models (Section 4.2).

Having determined these notions we will establish a connection between J008e
specifications and implementations in Section 4.3 which wiJl be helpful to formali~e

in Section 4.4 the remaining notions of
- j mplernentation sentences and
- ~atisfaction of an implementation sentence by an implementl1tion morlel.

3ection 4.5 contains a summary of the new institution.

4.1 Implementation signatures

The signature E of a loose specification SP <E,E> may be viewed as a simple
specification which has no sentences at all:

[:= <[,~>.

This suggested to define an implementation signature to be a simple implementation
specification which has no sentences.

According to Section 2, such a simple implementation consists of an abstract
specifLcation SPa = <Ea,Ea>, a concrete specification SPc = <l:c,Ec>, Rnn 11. signature
morphism a: [a -+ Ec translating the abstract to the concrete signature. '1'hus, an
implementation signature, or shorter i-signature lE is a triple

lE = <SPa,a,SPc>.

We already suggested that a refinement between two implementations should conslst of
two specification morphisms between the abstract specifications and between the
concrete specifications. Since an implementation comprises in particular an
i-signature, we obtain the notion of refinement or morphism between i-signatures:
An i-signature morphism

T: lE1 + IE2
hetween two i-signatures IE j = <SPaj,aj,SPcj> for j E {1,2} is a pair

T = <pa,pc>
consisting of an abstract specification morphism pa: SPa -+ SPa Rnn a concrete

1 2
::; Pe c i fi. cat ion m0 r phi s m pc: SPc 1 -+ SPc 2• The refinement requirement that the
translated sentences of lE1 must hold in 1[2 is trivially satisfied since lE, has no
sentenees at all.

-~
I!owever, ,qnother requiremtHlt shoulrl also be satisfied: Assume wC hnve an i-signature
f'l'OIll tlebJ (,vel' flr'bLtrA.T'Y eJ()iTlent:l 1;0 extended JisbJ over arbitrary elements, anrl

.' I n () I. her L- A t f.': n 11 t: 11 r (' (' r' <) m [1 0 b', 0 v re r n,'j t u r" 8 J n U In bel' II tor X t ~) n rl e d 1. i ~J t 3 0 V ern 11 t u r a 1.

number8. 'rheni t ~lhould not mlJ.ttnr whether we firtlt represent sets over arhitrary
,,].;lTii·ntll by lied,:, ov',r arbit.T'I:lr'Y elements nrlrl then refine to 118t3 0ver natural

numher~l, or if we fil'llL r;o:d'ine the 'lets over arbitrary elements to sets over natural
numher~J Hnd then reprcc1ent them ail lists over natural rll)mber'l.

In general that means that the speci Pic3tion morphisms pa and pc should be compatible

wit~ the signatur8 morphisms 0, and 02. This in turn means that the diagram

er,
- ----- --- -._---+

paT
+ °2

SPa -----_._-- ------+
2

:,hou1d commute viewinc pR nnd pc 'lA ~jgn8ture morphisms.

'I'hesl" noti.ons of i-,lignl::ltllrl'~-l and i-signature rnorphisms consti.tute a category. Tn.
fact, it is the comma categor:v induced by the functor Si_g forgetting specifications

to their signatures.

Definition 4.1 [ISIG, i-signature]

Given the forgetful functor Si,'!,: SPEC -+ Sig, the comma category

ISlG = (Sig+Si,g)

is the category of implementation signatures (i-signatures).

For an i-signatnre If. <SPa,er,SPc> t:: ISIG, SPa is called the abstract
specificatation of If., SPc the concrete specification, and er the translation. For
,3n i-signature morphism T = <pa,pc>: U:, + If. , pa is called the abstract

2
specification morphism and pc the concrete one.

0ince the category SIG is co complete and the functor Sig preserves all colimits, ISIG
I c, cocomplete, too, hy 11 general property of comma categories.

ji'Act 4.2 rcol imi b]

[src in cocomplete.

In Section 2 we already discussed the meaning of a simple implementation. Thus, for
an i-signature Ir. an Tr.-implementation model should consist of a concrete SPc-algebra
Ac, an abstract SPa-algebra Aa, and a partial, homomorphic, surjective abstraction

function a from Ac to Aa. More precisely, for f.a = <Sa,Opa> a is an Sa-indexed family

of functions as' each going into an abstract carrier Aas and starting from the

corresponding concrete carrier Aca(s).

Ib i.n. thp fi.X:f~ct cn:w, the concrete carriers and operations which Ilre not needed for
the translation can be forgotten along er so that we obtain F.Alg(er)(Ac), i.e. Ac
viewed as a [a-algebra, as the source of the abstraction function (1.

Now we could define (1: EAlg(er)(Ac) + Aa as a partial, surjective homomorphism.
However, according to Section 2 we want to introduce abstraction operations as

o['dinary oper;Jt.ion8 which are interpreted by abstrAction functions and which caD be
restricted by ordinary sentences. Since in the fram8work of the SPEC-institution the
algebra operations must be totally defi.ned, we will also require that the Ilbstraction
operations are totally defined. This is no limitation because th~ algebras are CPO:1

and there is an error constant for each sort denoting the minimum element. Thus a(x)
is mapped to error whenever a(x) is meant to be undefined.

Doing so we must only suitably restrict the homomorphism requirement
a(a(op)(x)) = op(a(x))

whi.cll ,In'ler these circumstances need to hold only if aCx) i:'l non-error.

CaLli.n" fl family of funcU.ons p.9.rtiaJly homomorphic if Lt is homomorphic ex:c;ept F,,)'
the ('['['c'r elements, we can de fi ne Fln ,~b8 trAc tion rime I:ion

Cl: b; A1g (a) (Ac) -+ AA.
tu be I(:~urjective, p.qrtially homomorphic family of function,;. Thu8 an f»

i."cpleml~ntation model, or just lE-i-model MA is fl t:r'ipel
MA = (Ac, a, Aa >•

Note that in contrast to lE, where the first component :is the abstract one and the
third is the concrete one, we now have the abstract algebra in the third component
and the concrete algebra in the first component. However, in both cases the ft r8 t
component contains the source and the third component the target of the function in
the mtddle component.

Proceeding analogously to i-sip;nature morphl~,ms, we obtA.in a notion of i-mod.;l
morphisms as a connection between two i-moaels. Given another I[-i-model

MB = (Bc, B, Ba >
an t-model morphism from MA to ME should consist of

- an SPa-homomorphism ha: Aa + Bn and
- an SPc-homomorphism he: Ac + Bc.

Analogously to i-signature morphisms the compatibility condition for i-model
morphisms should express that it does not matter whether we first abstract Ac
elements with a to Aa-elements and then map them with he to Bc-elements, or whether
we first map the Ac-elements with he to Bc-elements and then abstract them with R to
Ba. This condition may be expressed graphically by requiring thAt the square

Cl

EAlg(a)(Ac) ---------------+ Aa

EAlg(a) (hc) I
1

ha1

.j. 8 .j.

EAlg(a)(Bc) ----------------+ Ba
commutes. Note that we must forget he along a because we also forget its source flnd
target along a.

To formalize this description we first have to solve a technical problem: 1n order to
require that the square above commutes the morphisms occurring in there must belong
to the same category. However, hc and ha are homomorphisms whi le Cl ano B 8S

Hbstraction functions are functions which are surjective but which are only partiA.lly
homomorphic in general.

Since every homomorphism is partially homomorphic, but is not necessarily surjective
the appropriate category for the square should have strict algebras as objects Bnd
partially homomorphic functions as homomorphisms.

Definition 4.3 [L-p-homomorphism]

Let A, B £ E;AIg(E) wi th i: = <S,Op> E: SIC. An S-sorted family of functions

h = {he: As ~ B I s £ S }
 s
i;l H pnrtially-homomorphic L:·-homomorphism (or just [-p-homomorphism) iff

¥ 0 P: s 1 • • • S D -I- S € i: .

¥ E . •.. ¥ xn E Asn •
x1 As1

hs1(x1) * error-s1B & ... & hsn(xn) * error-snB
=> h (oPA(X1, ••• ,xn» = oPB(hs1(x1), •.• ,hsn(xn»s

Fact 4.4 [p-humomorphisms are closed under composition]

Let i: = <S,Op> £ SIC and f: A ~ B, g: B ~ C be L-p-homomorphisffis. Then their
composition

g 0 f := {gs 0 fs s £ S }: A ~ C

lS a L-p-homoffiorphisffi.

Definition 4.5 [PEAle]

The functor

P8A1e: SIC + CAToP

mllps A. si,":nature J~ to the cate~ory of strict i:-algebras with i:-p-homomorph-Lsms,
and it maps a Si,'?Dllture morphism a to the forgetful functor P8Alg(a) whi.ch is
defined analogously to EAIg(a).

Definition 4.6

F'or l: c SIC

PartialE: EAlg(l:) + PEAlg(E)

is the inclusion functor.

Fact 4.7 [Partial is a natural transformation]

Partial: EAIg ==> PEAlg

is a natural transformation.

\1ith PP.Alg formalizing the property "partially homomorphic" we are now ready to
define a preliminary moriel functor mapping an i-aignature lL: to the category of all
trip~ls TA = <Ac,a,Aa> where a i3 p-homomorphic but not neoessarily surjective.
Morphisms in that category are pairs of homomorphisms such that t.hey oommute with the
abstcaction funct.ions. Similar to i-signat.ures, this situation can be expressed
neatly as a oomma category.

Definition 4.8 [Tripel(n)]

Let IL: = <SPa,a,SPc> be an i-signature with Sig(SPa) = Ea and Sig(SPc) ~ L:c. The
comma category

Tripel(IL:):= (PartialL:a 0 EAlg(a)IEAlg(SPc) +- PartialL:a!EAlg(SPa»
is called the category of IE-tripels.

For an IE-tripel TA = <Ac,a,Aa>, Aa is called the abstract (or implemented)
algebra, Ao th~ concrete (or implementing) algebra, and a is the abstraotion
function of 'l'A.

Similar to ordinary signatures, every i-signature morphism induces a forgetful
functor between the respective model categorie8 in the reverse direction. It is
defined componentwise.

-8

Fact 4.9 [Tripel(T)]

Let T = <,Ja,pc): 11: 1 .. II: 2 f IS1G.

Tripe](T): Tripel(II: 2) + Tripel(IE)
1defin8rl on objects by

Tripel(T)«Ac,a,Aa»'= <EAIg(pc)(Ac),P~Alg(pa)(a),EAlg(pa)(An»

And on morphisms by

Tripel(T)«hc,ha» <EAlg(pc)(hc),8Alg(pa)(ha»)'E

i" !j functor.

1'he obsE::rva tions above yield a prelimi ninary model functor Tripel: ISIG + GAToP. 'wP

still have to restrict this functor to consider only tripeIs with surjective
ahstr3ction functions.

Definition 4.10 [IMod(Il:)]

For	 every 11: c ISIG the category of II:-impIementation models (or just II:-i
models)

T;'Ilod(IL)
L8 UltJ ['1]1 ;~ubc:ategoL'Y of '1'ripel(o;) geneL'atl~d by all tripellJ with .'3urj('ctil[i~

'lb3traction fun(~tion.

FRct 4.11 [IMon(T)]

For every T: l~1 + IE the restriction and cOL'estriction of Tripel(.) to
2

lMod(lI:2) and lMod(Il: 1) exists. It is denoted by

IMod(T): IMod(I[2) + IMod(II:1).

Definition 4.12 [IMod]

IMod: ISlG + CAToP

is the modelling functor for implementation signatures.

~~r~lating implementation signatures to specifications

According to Section 2, implementation sentences over an i-signature II: shall be ex
pre:J:led over the abstract signature [>1, the concrete signRture LC, and so-called ab
straction operations to be interpreted as abstraction functions. In a first approach,
implementation sentences will be all ordinary sentences over this vocabulary.

With this decision we can define the set of II:-implementation sentences to be the set
of all ordinary ljJ(lE)-sentences, where IjJ(Iz:) is a suitable equational signature
combining Ea, I:c, and the abstraction operations.

We must ctefine IjJ(IE) such that the sentences which are to restrict the abstract alge
bras do not affect the concrete ones and vice versa. Therefore, taking the set theo
retic union of signatures is not suitable, since the abstract and the concrete signa
tures need not be disjoint. Thus we take the disjoint union (or coproduct). Moreover,
for	 reasons of convenience we will use standard names for the abstraction operations:

Definition 4.13 labs-operational

For	 H = «l:a,Ea>,a,<I:c,Ec» £ ISIG and T = <pa,pc>: ll: + IE~ c /ISlC/ we define:
abs-operations(IE) "= {abs-sn:: o(s) + S I s EO Ea}
abs-ooperations(T) "= {(ebs-sU ' ab8-pa(s)IE~) I s £ La}.

I

Fact 4.14 [~]

l)i: ISIG + SIC;

defined on objects by
~(IZ) := [a ~ [c w abs-operations(IE)

and on morphisms by
~(T) := pa ~ pc w abs-operations(T)

is a colimit presepving functor.

HAving defined an lE-implementation sentence to be an ordinary l)i(IE)-sentence p 'We
must determine whether an IE-i-model MA = <Ac,o.,A.a> satisfies p. Since the abstract
symbols in ~(I[) shall be interpreted by the abstract algebra Aa, the concrete
symbols by the concrete algebra Ac, and the abstraction operations by the abstraction
function 0., we can take the disjoint union of Aa, Ac, and a to obtain a ~(n:)-algebra

interpreting lp(H).

Definition 4.15 [join U(MA)]

For an i-3iRnature I~ = ~SPa,o,SPc> and an IE-i-model MA. <Ac,a,Aa>
join (MA) := Aa w Ac ~ 0.

is the ~(rr.)-algebra A defined by

for s € Sig(SPa): As Aa s·z

for s € Sig(SPc): As .= Ac s
for op € Sig(SPa): opA'= opAa
for op £ Sig(SPc): 0PA'= opAc

- for abs-s € abs-operations(IE): aba-sA:= as'

The join operator can be extended to a functor from IE-i-models to l)i(IE)-algebras.

Fact 4.16 [joinU J

Defining ,ioinIE on IE-i-model morphisms g :, <hc, ha> by
J 0 i n 1 ,-< g") .,

l..

yields a functor
(h a

s
I S f: 0 i {!, (SPa) } w. {h c

s
I s £ S i g (S Pc) }

. join
I
[: IMod(I[) + EAlg(l)i(IE».

Generalizing over all i-signatures we obtain a natural transformation from the
implementation model functor to the model functor of the SPEC-institution composed
with the signature translation.

Fact 4.17

JOln: IMod ==> EAlg 0 ~

is a natural transformation.

Now the question whether an Ir.-i-model MA satisfies an implementation sentence p has
been reduced to the question whether join (MA) satisfies p in the framework of the

lE
SPEC-institution.

1.1 Implementation sentences and their satisfaction

According to the preceding section we define the set of lE-implementation sentences
or jus t I E-i-sentences to be the set of all ordinary l/J(n:)-sentences. Such an I E-i
sentence p is satisfied by an l[-i-model MA exactly if MA viewed as the «Ir.)-algebra

joinr [(MA) sa tisfies p.

-10

I)efini tion 4.18 l ISen]

The implementation sentence functor is given by
ISen := Sen 0 ~: ISIG + SET.

Definition 4.19 I~]

Let u: E.ISIG, MA E IMod(Il:) and p E ISen(IE). MA satisfies p, 'Hri tten
l

MA 1=If. P
iff joinu:(MA) I~~(II:) p.

Fact 4.20 rsatisfaction condition]

lJ T: IE1 + H2 E: ISIG .
V MA E: IMod(ILZ) •

lI-p£I::;en(U)
1

MA Ii: ISenh)(p) <=) IMod(T)(MA) li p.
H2 IL1

4.5 The institution

Since the satisfaction condition holds the notions defined above constitute an

institution.

Definition 4.21 [IMP-institution]

IMP-institution .= <ISIG, ISen, IMod, li)
is the institution of implementation specifications.

Like specifications are defined as the theories of the SPEC-institution,
implementation specifi.cations will be defined as the theories of this new
institution.

Defini tion 4.22 [IMP]

IMP is the category of theories of the IMP-institution and it is called the
category of implementation specifications.

Thus an implementation specification or just i-specification ISP is a pair
ISP = <lE,IE>

consisting of an i-signature lE and a set of lE-i-sentences lE, and an i
specification morphism is an i-signature morphism respecting the i-sentences.

Since lSIG is cocomplete, general institution properties tell us that IMP is
cocomplete as well.

Fact 4.23 [colimits]

IMr is cocomplete.

~~~amples: developing imlementations of sets by lists 

In our examples we will assume that the error constants are implicitly declared. As 
~entences wu will use first order formulBB where the bound variables are not 
interpreted 8S bottom elementB. Besides we need some constraint mechanism to exclude 



" 

unreachable elements (e.g. initial [HKR 80], data [BG 80], hierarchy [SW 82], or 
algori thmic constraints [BV 85 ]). 

We wi.J 1 :'1how how several well known implementations of sets by lists can be rleveloped 
:J tPfJlY i ;H) line! h~\nd in hand wi \~h the Lmplementinp: speci fieation. 

On the RbstrRct aidp we have the specification SET of sets with the empty set as 
constAnt, and operations to insert ·qn element, to determine or remove the minimum 
element in 8. set, and to tes t for the empty set or for the membership of an element. 
Beside ::'I tandard sets, there may be bags or unreachable elements of sort set. The set 
elements are described in the specification LIN-ORD which introduces a sort elem with 
an equality operation and an arbitrary reflexive linear ordering. The 
8ubspeci fica tion BOOL of LIN-ORD specifies the boo leans. 

On thp concrete side the specification LIsrr extends LIN-ORD to standard lists with 
Lhe Con:'1tllClt nil, the oper,qtions cons, car, Ilnd cdI', and a test nil? for the empty 
list. All hsts mUtlt he generated from the elements by nil and cons. LIST is extended 
to LIST-S by intruducing names for the set simulating operations, but without 
restricting these oper~tions Ln order to obtain a variety of different models. 

:~pec BOOL =
 

sorts bool
 
ops-- true, false: + bool
 
--- not: bool + bool
 

and, or: bool bool + bool
 
sentences specifying the booleans >
 

spec LIN-ORD = BOOL u 
---sorts elem 

ops eq, le: elem elem + bool 
sentences ... specifying eq as equality and le as an arbitrary reflexive 

linear ordering> 

spec S8T = LIN-ORD u
 
---sorts set
 

ops empty: + set
 
insert: elem set + set
 
min: set + elem
 
remove-min: set ~ set
 
empty?: set ~ bool
 
in?: elem set • bool 

sentences .. ' < specifying the set operations with their usual meaning, but not 
necessarily excluding non-standard sets > 

spec LIST = LIN-onD U
 

sorts list
 
?PS nil: + list
 

cons: elem list + list
 
car: list + elem
 
cdI': list + list
 
nil?: list + bool
 

sentences .•• < specifying standard lists over elem generated by nil and cons > 

spec LIST-S = LIST u
 
----0ps I-insert: elem list + list
 

--- l-min: list + list
 
l-remove-min: list + list
 
I-in?; elem list + bool
 

Fieure 5.1 The ADT specifications in the implementation of sets by lists 



-/2

Presentations of the specifications mentioned so far are given in Figure 5.1. 'rhe 
sentences parts are not elaborated since the necessary first order formulas are 
standard and Rince we did not want to go into the details of the constraint mechanism 
to be used, because our implementation concept abstracts from these details 
~ompletely. 

We CEln ",ive a first simple i-specification I:SE'l'/LIS'r-S from SE'T' to [,13'1'-3: 

~~~ec	 I:SET/LIST-S =

isig 03/L3: S~'l' + L13'r-3

with	 the signature morphism
03/LS: Sig(SET) + S1G(L1S'1'-S)

set + list
empty + nil
empty? + nil?
insert • I-insert
in? + I-in?
min ;. I-min
remove-min ;. l-remove-min
x • x for l(C ~)ig(LIN-OIlJ)

It merely defines the signature morphism as/LS trElnslating sort set to list and
translating the set operations to their simulating list operations without renaming
the signatures of the common subspecifications L1N-ORD and BOOL. Since I:S~T/LIST-S

contains no i-sentences, its i-models comprise all possible implementations of sets
by lis ts.

I:SET/LIST-S can be refined in various ways by addinp i-sentences restricting the
abstraction operations of sort set, such that e.g.

j~ IA:SET/LIS~-S = I:SP.T/LIST-S u
isentences

CV x: list. V. e: elem.
abs-set(cons(e,x» = insert(abs-elem(e),abs-set(x»)

ispec	 IS:SET/LIST-S = I:SET/LIST-S u
~~-isentences

Cv e,	 e1, e2:elem. JI. x: list.
abs-set(cons(e,nil» = insert(abs-elem(e),empty) &
le(e1,e2) = true & eq(e1,e2) = false =)

abs-set(cons(e1,cons(e2,x») =
insert(abs-elem(e1),abs-set(cons(e2,x») &

le(e2,e1) ~ true & eq(el ,e?-) = false =)

abs-set(cons(e1 ,cons(e2,x») error-set0

ispee IU:SET/LIST-S ~ I:SET/LIST-3 u

isentences

(v:	 e, e1, e2: elem . v: x: list
abs-set(cons(e,nil» = insert(abs-elem(e),empty) &
(in?(e,abs-set(x» = true =)

abs-set(cons(e,x» = error-set)

ispec	 ISU:SET/LIST-S = IU:SET/LIST-S u IS:SET/LIST-S

Figure 5.2 Some i-specifications implementing sets by lists

- all lists represent sets (IA:SET/LIST-S),

- only lists with unique entries may represent sets (IU:SET/LIST-S).

- only sorted list; may represent sets (IS:SET/LIST-S). or

- only sorted lists with ~nique entries may represent sets (ISU:SET/LIST-S).

The last i-specification refines not only I:SET/LIST-S. but also IU:SET/LJST-S and
IS:SF.T/LIST-S. The i-specifications are given in Figure 5.2 where we use abs-s:

0S/LS(S) + s 88 the abstraction operation name of sort s.

By n'strictinp.; the Flrlstraction of'erabon~J these alternative i-flpecificntions
constrain their i-models not only w.r.t. the I'Ibstraction function of sort set, but
also w.r.t. the set simulAt:i.ng list operations. Correspondingly. we CAn !)pecify four
refinements of the concrete 1,1ST-3 specification by adding sentences fixin~ the set.
simulating operations, such that they Renerate (and operate upon) exactly

- all lists (LIST-SA),

- ;11 lists with unique entries (LIST-SU),

- all sorted lis£; (LIST-SS), or

- all ;orted lists with ~nique entries (LIST-SSU).

To give an example we elaborate the specification LIST-SS:

spec LIST-SS = LIST-S u
sentences

I-min(nil) ~ error-elem

l-remove-min(nil) = nil

(¥ e: elem . l-insert(e,niJ) cons(e,nil))

(l,! x: list. lj e: eJem .

l-min(cons(e,x) = e &
l-remove-min(cons(e,cons(e,x))) l-remove-min(cons(e,x)))

(¥ x: list. ¥ e1, e2: elem .
le (e 1 , e2) = t ru e =)

l-insert(e1 ,cons(e2,x)) = cons(e1 ,cons(e2,x)) &
l-in?(e1,cons(e2,x)) = eq(e1 ,e2)) &

(eq(~1 ,e2) = false =)

l-insert(e?,cons(el,x)) = cons(e1 ,1-insert(e2,x)) ~

l-in?(e2,cons(e1,x)) = l-in?(e2,x) &
l-remove-min(cons(e1,cons(e?,x))) = cons(e?,x)))

Now we can.in turn refine each of the i-specifications IX:SRT/LIJT-S [or X I: {A, IT,

S, SU} by replacine: the concrete specification LIS'P-S by its refinement LIS'P-XS and
call1ne the resul ting i-specifications IX:SE'r/LIST-SX. Since the abst rAction
operation of sort elem is not restricted, JX:S8T/LIST-SX i-models have many non
isomorphic LIN-ORD implementations, e.g. the characters represented by the nntural
numhers or by the in tegerR. However, for each LIN-ORD implemen t,a tion there Cl re onl.v
iAomorphic IX:S8T/LTST-SX i-models as extensionp since the set sj~ul8ting operations
are fjxed by now. Thus

- IA:SET/LIST-SA specifies the imple~entation of sets by all lists,
IU:Sf,'r/LIST-SU specifies the implementation of sets by all listR with unique
entries,

- IS:SP,T/LIST-SS specifies the implementation of sets by all norted list~, And
- ISU:SRT/LIST-SSU specifies the implementation of setR by all sorted lists with

uni'1ue entries,

which are well known sets-by-lists implementations, differin~ in the time efficiency
of the set simulating operations Rnd in the amount of storage needed by the lists. As
an example we give the i-specification IS:SET/LIST-SS:

~)ec	 IS:~)E11/LIS'P-SS = IS:SET/LIs'r-s u

L8~ 08/[,:;: ~)F.:'r + LIST-SS

The ref'inement relations between the specifications ann i-speci.ficfltioml oe:3crihe ri

above arp. depicted in Figures 5.3 and 5.4:

LIST-SSU

LIST-SA LIST-SIJ	 LI3T-:3S

L1S1'-S

J
SF.:T LIST

';)

LIN-ORD

J
8001

Figure 5.3 The relations between the specifications

ISU:SET/LIST-SSU

lA: SET/L1S'r-SA IU:SET/LIST-SU IS:SET/L1ST-SSI
1SU:SET/L1ST-S]]1	 ~

IA:SET/LIST-S IU:SET/LIST-S IS:SET/L1ST-SS

~J ~
1:S.8T/LIST-S

Figure 5.4 The relations between the i-specifications

6. Conclusions

We proposed an implementation concept for loose abstract data type specifications. It
introduces the notions of implementation signatures, - models, and - specific3tions
and it formalizes the transition from a more abstract to a more concrete
specification including a change of the underlying data structures. By providing the
notion of refinement between implementations it supports to develop specifications
and implementations hand in hand. Moreover, using institutions our concept ahstracts
from the underlying ADT specification method and is applicable to different
specification techniques.

Other implementation concepts for loose specifications lack the notion of refinement.
An implementation in the approach for Clear-like specifications proposed in [SW 82]
is - in our terminology - an i-signature with the semantic condition that for every
abstract algebra there is a concrete one with an abstraction function in between.
Concepts like those of [GM 821 and [Sch 821 are based on behavioural abstraction and
have :been proposed for modules. The implementation concept for the kernel language

ASL of [SW 83] merely requires that the abstract specifi_cation is included in the
concrete one. This simple notion is based on the fact that, RS a semantical laneuage,
ASL hA:l very powerflJl npecificati0n builriing operations which however may not be
prnnenl; in H 1I'1.np;uagt~ for A.DT specifications.

In [BV 85] the implementation concept proposed here is elaborated for a particular
institution of ADT specifications. An effective procedure is given to convert an

implementation specification to a normal form which essentially consists of an
ordinary ADT specification. Referring to the normal forms associative vertical
composition operations for implementations are defined compatibly on the syntactical
and semantical levels. Horizontal composition and instantiation of parameterized
implementations are compatible with vertical composition allowing to combine

implementation specifications interchangeably in different directions with the same
result.

References

[BG 80]	 Burstall, R.M., Goguen, J.A.: '['he semantics of Clear, a specification
language. Proc. of Advanced Course on Abstract Software Specifications,
Copenhagen. LNCS Vol.86, pp. 292-332.

[BV 85]	 Beierle, C., VoB, A.: Algebraic specifications and implementations in an
integrated software development and verfication system. FE Informatik,
Univ. Kaiserslautern (to appear 1985).

[Ehc 82]	 Eh ri ch, H.-D.: On the theory of specification, lmplemen ta t ion and
Parametrization of Abstract Data Types. JACM Vol. 29, No. 1, Jan. 1982,
pp. 206-227.

[BKMP 82]	 8hrig, H., Kreowski, H.-J., Mahr, E., Padawitz, P.: Algebraic
Implementation of Abstract Data Types. Theor. Computer Science Vol. 20,
1982, pp. 209-254.

[EKP "lf3]	 8hrir., H.,Kreowski, l-I.J.,Padtlwitz, P.: Stepwise specification and
implementation of abstract data types. Proc. 5th rCALP, LNCS Vol. 62,
1978, pp. 203-206.

[Ga 83]	 Ganzinger, H.: Parameterized Specifications: Par.qmeter Passing and
I mpIe men tat ion wit h res p e Ct toO b s e r v a b i 1 i t y. ACM 'llO PLAS V0 1. ::>, No. 3,
July 1983, pp. 318-354.

[GB 83]	 Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for
Program Specification. Draft version. SRI International and University of
Edinburgh, January 1983.

[GM 821	 Goguen, .J.A., Meseguer, J.: Universal Realization, Persistent
Interconnection and Implementation of Abstract Modules. Proc. 9th ICALP,
LNCS 140, 1982, pp. 265-281

[GTW 78]	 Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to
the specification, correctness, and implementation of abstract data types,
}n: Current Trends in Programming Methodology, Vo1.4, Data Structuring
\ed. R. Yeh), Prentice-Hall, 1978, pp. 80-144.

[HKH 80 I	 Hupb.'lch, U.L., Kaphengst, H., Reichel, H.: Initial algebraic
specifications of data types, parameterized data types, and algorithms.
VEB Robotron, Zentrum rur Forschung und Technik, Dresden, 1980.

[SCh 82]	 Schoett, 0.: A theory of program modules, their specification and
implementation. Draft report, Univ. of Edinburgh.

[sw 821	 Sannella, D.T., Wirsing, M.: Implementation of parameterized
specifications, Proc. 9th ICALP 1982, LNCS Vol. 140, pp 473 - 488.

[sw 83]	 Sl'lnnella, D., Wirsing, M.: A kernel language for algebraic specification
and implementation. Proc. FC'r, LNCS Vol. 158, 1983.

