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Abstract 

Program transformations need a uniform framework for expressing 
algorithms as well as algebraic properties. In this paper we 
present the embedding of program transformations in a software 
specification system. We demonstrate the methodology by 
developlng a sorting algorithm towards more efficiency, and show 
h0 \" the s e mant i c s 0 f the s p e c 'j f i cat ion l a n9 u age i s the 
foundation for proving transformation rules correct. We are dis
cusslng theoretical aspects - the correctness of transformations 
- a S \.J ell a s t (' c h n i c i) lis sue s, e. g. t I'J 0 k 1 nd S 0 f use r i n t e r f ace s 
t 0 a pro 9 r () In t ran:, for III a t ion s y s t em. 
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1. Introduction 

Program transformations are a tool to develop reliable 
software: starting with well-understood high-level programs we 
get lO\oI-level programs correct III.r.t. thE high-Level programs, 
supposing the tr2nsformation itself lS correct. This approach 
contrasts w,th wrlting programs on different leveLs using an 
ecl,tor, and proving the correctness aftenvards. Both methods are 
c 0 fI1 P l e fl1 e n tin 9 e a c hot her a c cor din g tot h e f 0 l l 0 \'1 ~ n 9 d eve lop me IJ t 

P il r iJ d i ~J TII : 

- State some formal or informal requirements 
- i·! I' 1 tea l q 0 r i t 11 fII so/) ale vel t hat ; sea s y to un d er s tan d 
-. Per i 0 rill the va l i cl cl t ion 0 r the cor r e c t ne ss proof 0 f the a l go r 

ithm'; uSlncJ flPiJropr-iate tooLs 
- Develop lhcJ0rltllm~j lIS10g program transformations thus 

Lc) 0 S 1 n 'J p re t' S P -j c ui t y, but s Cl v 'j n 9 cor r e c t n e ss. 
Both aLqorlthl11ic and algebraic kno\'lledge is employed by 

program transformQtions. Algorithms are the objects of the 
t r ar, s for Pl at ion s , a L9 e bra i c pro per t ; e s are use d for s; mply 
rewriting su!)terms, or to show conditions ensuring the correct
ness of complex transformation rules. In this paper we wi lL 
des cri r) e the e III b e cl cl i n 9 0 f Cl pro 9 r a m t ran s for mat ion S y s t em i n a 
s p e cif i cat ion e n vir 0 n f" C n t ( [ BGG0 RV 84] ). Sin c e S p e c ; f i cat ion S 

\,1 , i t ten 1 n 0 U r s p e cif i cat ion l a n 9 u age ASP I K con s i s tot a n 
a l CJ e }) r a i c El n cl El n a l 9 0 r 1 t h III i c P El r t \'J i t h i non e s y n t Cl c t 1 C t , a III e , 
tl)l~ prog,lI;" tr~:nsfor'l"ation subsystem Ili1S aCCfSS to both 
\< 1)CHI led (I e s () 1I t' C C S 1 11 iJ l/ n -j 'f 0 r III \.) Cl Y • 

Th (' r (' i\ r C' t \,1 I) [,1 cl J () r \'1 ay s t 0 imp l e men t pro 9 r a m t ran s 
f () r rJJ i-l I:i 0 n <; ( l L1,::J 7 9 ] .J : r h (' t r il n S for muti 0 n r u Le S can e 1 the r b e 
ell> ~. C r 1 be cl a sal '] 0 r' i t h ms, \'} h i C h t a k e a g i ve n pro g r El III as i n put a n cl 
P t' Q due e <I n e Cl 1I i V i) Le n toneElS 0 u t put ,or C i] n b e gi v e n a san 
I) , cl ere cl p El 1 r of t e fJl p l ate s t 0 get her III i t h a nap p l i cab i lit Y con d i 
tion denoting a conditional pt'oduction rule. In our program 
t r cl n s f C' r rn <.1 t ion s y S tern bot h t e C h n i Cl 1I e S h a v e bee n e rJJ plo ye d , the 
fo,mer for the basic trnnsfo,mations unfold, fold etc. (Chapter 
3), the latter for reclIrsion reMoval (Chapter 4). 
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---- ---------

,2..., The Speci fication Lanqua.qe 

In this chapter, we give a brief overview on our specifi 
cation language ASPIK, as far as it is necessary to understand 
the following examples (see [BGGORVB4] for further detai ls). 

A specification denotes an abstract data type introducing 
sorts and operatiorls, maybe using other specifications, thus be
ing an enrichment or a refinement. It may also contain formulas 
in first order logic stating properties about the defined or im
ported operations. Additionally, there is an optional algor
ithmic part, defining operations in terms of other operations in 
a purely functional manner. 

2.1 The Example 

We shall demonstrate the various transformation methods by 
applying them to specifications about sorting lists. These 
specifications have been developed ln a systematical manner in 
[BGV83], and are the starting point of our transformations. 

Fig.1 and Z show the standard data types BOOl, NAT, ELEMr 
ORDELEM and lIST. ElEM and ORDELEM are examples for so-called 
loose specifications. They denote - roughly spoken - any algebra 

~ BOOl 
1* standard definition of the boo leans *1 

endspec 

~ NAT 
1* standard definition of the natural numbers *1 

enclspec 

~ ELEM 
1* just a sort with its equality *1 
~ BOOl 
2.Qr t s e le m 
~ = elem elem ~ bool 

endspec 

~ ORDELEM 
1* ELEM enriched with an ordering *1 

1!2..t ELEM 
ops ~ elem elem ~ bool 

!2.C...QJ?Ji 
all x,y E elem: 

x~x /\ 
(x~y /\ y~z ~ x~z) /\ 
(x~y /\ y~x ~ x=y) 

end spec 

Fig.1: The basic data types 
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.2J2..U.. LI S T 
1* lists of el~ms *1 

LLEM,NATilllS.. 
sorts	 List 
ops	 empty: ~ list 

put: elem list ~ list 
first: list ~ elem 
rest: list ~ list 
empty?, simple?: list ~ bool 
in?: elem list ~ bool 
append: list list -) list 
length: list ~ nat 
occurences: elem list ~ nat 

props 
all lE list, x E elem: 

empty?(pU1.(x,l») = false /\ 
empty?(elnpty) = true /\ 
first(put(x,L)) = x /\ 
re~,t (put (x, l» - l 

all l1, lZ E list: 
append(L1,empty) = L1 /\ 
append(empty,l1) = L1 /\ 
appendCappendCl1,lZ),L3) = 
appencl(l1,append( l2,l3») 

spec body 
constructors empty, put 
define ops 

firstC l) = ~ ~ *empty: error-elem 
*p U t Cn , l1 ) : n 

rest(l) = case li *empty: error-elem 
*p u t Cn , l 1 ) : l1 

empty? ( l) = caSe .l2. *empty: true 
otherwise false 

simple?Cl) = it empty?Cl) then true 
else empty~CrestCl» 

in?(e,L) =	 it empty?(l) 
then false 
~ firstCl)=e 

or in?Ce,rest(l» 
appendCl1,lZ) =.i..i empty?(l1) 

then l2 
else put(first(l1), append(rest(l1),l2» 

lengthCl) =.i..i ernDtyCl) 
.Lb-f1l 0 
~ 1 + lengthCrestCl» 

occurences(e,l) = it emptyCl) 
then 0 
~ if first(l)=e 

then 1 + occurencesCe,rest(l» 
else occurences(e,rest(l» 

endspec 

Fig.Z: The	 specification LIST 
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~ SORT-PREDICATES 
~ LIST, ORDELEM 
ODS permutation? List List ~ booL 

ordered? List ~ booL 
props aLL L1, l2 E List: 

Cpermutation?CL1,L2) H 

all e E elem: occurencesCe,l1)=occurencesCe,L2» 
alL lE List: simpLe?CL) ~ ordered?(l) 
alL 1 E lis t: ~S i rop le? ( L) ~ 

Cordered?(l) H 

firstCL) ~ firstCrestCL» ~ orderedCrestCL») 
endspec 

2.l2ll SORT-AXIOM 
~ SORT-PREDICATES 
aDS sort List ~ list 
props aLL L E list: 

permutation?(L,sort(l» ~ 

ordered? CsortCl» 
endspec 

Fig.3: What sorting should do ••• 

~ SORT-PRIMITIVES 
~ LIST 
~ part1, part2 : list ~ list 

combine: list list ~ list 
props alL lE List ~sirnple?(L) ~ 

(ordered?(part1CL» ~ ordered?(part2(L» ~ 

o r d ere d? ( corn bin e ( par t 1 CL), par t 2 CL) ) » ~ 

permutation? (combineCpart1 (l), part2( l» ,l) 
endspec 

2.lll.£. SORT-ALG 
use SORT-PRIMITIVES 
Q...Q.2. sort List ~ List 

spec body 
define ODS 

sortCl) =	 i.f.. simple?(l) 
then 1 
else combineCsort(part1(l», sort(part2Cl») 

endspec 

Fig.4: ••• and how it can be done 

that provides operations and sorts with the required properties. 
LIST, however, is an algorithmic specification. The structure of 
the Lists' carrier set is given by the constructor clause, and 
must consist of all the terms that can be constructed using the 
operation symbols empty and push (or any isomorphic set). The 
operations of LIST are defined in terms of the carrier's struc
ture and of alreadY defined orpratinn~-

4 



~ SELECTION-SORT-PRIMITIVES 
use LIST 
0ps OllnList, allbutmin, aLlbutone: list ~ list 

min: List ~ eLern 
spec body 

define ops 
min Cl) = .i..i si mp Le? CL) 

then first(l) 
else ~ 01= min(rest(l)) in 

.iJ.. fir-stel) ~ m 
then first(l) 
e l se m 

minlistCl) = putCminCl),empty) 
allbutoneCL,e) =.i..i e=fir-stCl) 

then rest< l) 
e l s e 
putCfirstCL),aLlbutoneCrestCI.),e» 

aLlbutminCL) = aLLbutoneCL,minCl) 
endspec 

~ SELECTION-SORT 
~ SORT-ALGCSORT-PRIMITIVES ~ SELECTION-SORT-PRIMITIVES 

~ par-t1 = minlist 
part2 = alLbutmin 
cOli1bine = append) 

endspec 

Fig.5: Constructing selection sort 

The first approach to solve the sorting problem is the 
formalization of the probLem itself. In SORT-PREDICATES (Fig.3) 
we define what it means for a list being an ordered list, and in 
SORT-AXIOM we give a first specification of the sorting task: 
sorting a list means finding a permutation which is ordered. 

The first algorithmic solution SORT-AL~ CFig.4) employes 
the \'1 ell - kn 0 \'1 n d i v i d e - and - con que r s t rat e 9 y ( [ Sm8 3] , [ VeL 0 80 ] ) • 
Although the sort operation lS algorithmically defined, there is 
sti lL a large variety of functions for its auxi liary operations 
part1/2 and combine, constrained only by the propert,es stated 
in SORT-PRIMITIVES. But it can be proved that for all possible 
instantiations of SORT-PRIMITIVES (and, hence, for all algor
ithmic definitions of part1/2 and combine fulfi lling the con
s t r a i n t s ) the so r tal 9 0 r i t h m 0 f SO RT- ALG i sac 0 r r e c t imp le III e n 
tation of the sort operation specified by SORT-AXIOM. 

Now we wi II perform one dedicated instantiation using 
SELECTION-SORT-PRIMITIVES CFig.5). I.e. in SORT-ALG we replace 
part1 by minList, part2 by allbutmin and combine by append (in
herited from LIST), thus constructing the selection sort aLgor
i t h n1 \'1 h i c h can bed e s cri bed as" s e l e c t the l 0 \ol est e Le men t , put 
it in front of the List, and sort the rest". This instantiation 
C J n b e vie \~ e d asat y p e 0 fp" 0 9 r a m t ran s for ma t ion c ha ngin 9 the 
cl 3 tat y pe. Ho \'1 eve r , i nth ere s t 0 f the pap e r \,1 e s h aLL not tal k 
about transformations of \olhole abstract data types, but con
centrate on the development of the sort operation in SELECTION
SORT tO~lards an optimized tai L-recursive version. 
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2.2 Semantics 

Specifications 

A specification is a pair <~,P> where ~ is a signature and P is 
a set of formulas and constructive definitions. 

~iqnatures, ~-Alqebras 

A signature is a pair <S,F> where S is a set of sort symbols,
 
and F is a family F = (Few,S)) \leSH-SeS of function symbols. For
 
each sort S there must be an error symbo l errors E FO, S).
 

'\ L-Algebra A is an algebra with a flat c .p.o. As for every sort
 
3ymboL s, and for every function symbol f E F(S" _.. ,Sn,5) a
 

function fA AS 1 •• • Asn ~ As·
 
T\'10 add i t 1 0 n a l con d i t ion s fil us t h 0 l d :
 
1.	 err 0 I" S iI () = (,J A s i s the bot tom e l e men t 0 f As. 
2.	 ALL fA are continuous. (Since our carriers are flat c.p.o.'s 

this is equivalent to monotonic. And a monotonic function is 
elther strict or a constant function.) 

AlgD:) 1S the category of all 2-Algebras. It is called the 
clbstr'act data type denoted by ~. 

Formulas 

Let r ~ {Pl,P2' .. '} be a set of formulas in first-order predi
ca~e calculus, using only sorts and functions of L = <S,F>. A 
i-algebra is satisfying P if the interpretation of each Pi is 
true in A. 

Constructive Functors 

A constructive definition is a pair <OP,S> where OP ~ {f, ••• f n }
 
1S a set of recursive equations about these functions:
 
.f::: {fi = Si [fl··. f n] '-i=1..n}.
 
The semant~cs of a constructive definition <OP,S> is the functor
 
sem <oP,s> ALg (L) -? Alg (~-OP)
 

\'/ her e
 
'<lA	 E Alg CL-OP) sem <OP,S> CA) ~ A U {f A I f E OP n ~} 

where SA OPA ~ OPA is the functional that is 
the result of the natural interpretation of S in A with 
parameter set OP 

and {fA I feOP} is the least fixpoint of SA' 
A l-Algebra A satisfies a constructive definition <OP,S> if 

sem<OP,s> (A - {fA I f E op}) ~ A 

(orrectnpss 01 transformations 

A transformation T is a mapping on constructive definitions. It
 
is correctness preserving if it does not effect the semantics of
 
a specification, i.e.
 
ALg <L, P U <oP,s» ~
 

P, l 9 <L, PUT <0 P'-S >>
 
ThlS is true if for all L-Algebras A satisfying P the following
 
proposition holds:
 

sem <OP,S> (A) ~ sem T<OP,S> CA) 
r 0 l l 0 \'1 i n 9 the d e fin i t ion 0 f s e m i t is sufficient to show that 
for all ~-ALgebrus A satisfying P the least fixpoint of TCS)iI is 
i~rntical to the le~st fixpoint of SA restricted to A. 
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Adding and transforming singLe recursive equations 

The restriction just mentioned ensures that adding a new func

tion to a constructive definition is a correct transformation.
 
It wi Ll not effect the equations for the other functions. (The
 
formal proof is omitted here. There is no great idea behind it.)
 
In the next chapter we wi LL study transformations that modify
 
only the right hand side of ~ equation. Let it be the first
 
one, then
 
S ={ fi =Si [1, ... f nJ i=1 •• n)
 

is transformed to 
J' ={ f 1 =S1 [f ••• f n ]} U 

{ f; = J'i [t •.• fnJ I i=2 ••• n} 

The semantics of each equation fi = Si [f , ••• f n] is a func

tional, and the semantics of a set of recursive equations is
 
c 0 [11 P Let e l y d e fin e d bY the s e mant i c s 0 fit s e q u a t ion s • Hen c e the
 
transformation above is correct if in any algebra A fulfilling
 
P, the functionals S,A and S"A have the same least fixpoint for
 
alL interpretations of 12 •.• fn'
 
nany t ran s 10 r III Cl t ion s 2 t' e c rea tin 9 new operations and are ex

I) res sin 9 a n 0 l cl fun c t ion -j n t e r ms 0 f the new operations. I.e.
 
S = {t; = S, If., ... fnJ I i=1 .. n} 

i s t t' an s for m(- d t 0 

.I' = {f , = S,' [f 1 ••• f n +"\J) u 
{f; = S, [f 1 _ ... "f n ] \ i=2 ..n} u 
{f j = J i l of 1 • • • 'f ('\ + III ] I j =n + 1 . . n + m) 

\'1 h e I' e 'if j E n + 1 • • n + fll V-j E 2.. n f i l' f j 

This transformation is correct if the least fixpoint of Si 
restricted to 1, •. f n is equal to the least fixpoint of S. We may 
consider S'-S as a functionaL mapping [f , •.• f n + mJ to 
[t 1 ' f n + 1 • • .f n + 11\ J. Top r 0 vet het r Cl n s f 0 t~ ma t ion S -?S'c 0 r r e c t \'1 e 
III U S t s h 0 t,1 t 11 a t 1 1 i nth e Lea s t fix P0 i n t 0 f S' - S i s e q u a L tot h e 
Lenst flxpoint of S1 (for aLL f2 •.. fn as described above). 
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3.	 Unfold-fold operations 

There are two major ways to implement program trans
formations The transformation rules can either be described in 
the form of algorithms, which take a given progrum as input and 
produce an equivalent one as output, or can be given ClS Cll) 

ordered pilir of templates together ~Jith an applicability condi
tion denoting a conditional production rule. In our program 
transformation system both techniques have been employed, the 
former for the basic transformations unfold, fold etc., the lat 
ter for recursion removal (see Chapter 4). 
The unfold-fold method has been developed by Burstall and 
Darlington [BuDa77]. It provides a small set of substitution 
rules as a formal tool for the stepwise refinement of functional 
programs. 
1.	 Definition: 

Introduce an equation for a new function symbol. 
2.	 Unfold: 

Replace a function application by the body of the applied 
function substituting formal by actual parameters. 

3.	 Fold: 
The inverse operation to unfold. Replace the occurence of a 
function's body by an application of the function with the 
appropriate actual parameters. 

4.	 Using la\~s: 

Use an equation for rewriting a term. In our specification 
environment the equations are provided by the algebraic por
tion of the specifications. 

5.	 Abstraction: 
We may introduce a let-clause abbreviating a subterm of a 
definition by a new variable. This is a purely syntactical 
operation. It is correctness preserving by its definition. 

Definjtion 

The introduction of new functions has been handled in the previ
ous chapter. 

Un f 0 l d 

A recursive definition is written as 
F :: -dFJ 

where T[F] is a composition of the function variable F and other 
function symbols which are considered as free variables all over 
the following proofs. We say that F is less defined than G - FsG 
- i f the f 0 l l 0 \'J i n 9 con d i t ion h 0 l d s: 'rJ x : F ( x) t 0) -') G ( x) = F ( x ) • 
Since F,G are said to be equal - F::G - if for all x they have 
the same value or are both undefined, it is clear that 

F::G H (FsG ~ GsF) 
F is the least fixpoint of the functional T if FT ~ T[F T], and, 
f~r any g, 9 :: L[g] implies FTsg. 

Given two functionals F :: T[F,G], G - ~[F,G], the result of un
folding T ~Jith ~ is the definition 

F :: L[F,~[F,G]] 

Let us define T1[F,G] = L[F,~[F,G]].
 
To prove the correctness of the unfold operation we have to show
 
that FT :: FT 1.
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a)	 F,1 S F, 
F-e	 - T[F"G~] ( F, is fixpoint)
 

- -d F-c,(f[ F-c,Go-]] (Go is fixpoint)
 
- T1 [F -e,G:;]
 

I. e • F, i S d fixpoint of T1 • Since F,1 i s the Leas t one, we 
have F-e1 '= F, . 

b) FT s: FT 1 

We wi lL show that P(F"F-c1,G o ) holds where 
P(F,F 1 ,G) " F s F 1 A F S T[F,G] A G S (f[F,G] 
using the computational induction method ([MNV72]). This 
method is valid only if (f and T are continuous functionals, 
but this is ensured by the semantics of our specification 
language. 
Starting the induction we hav~ to show P(o,o,o) where 0 is 
the never defined function: Since T and (f are continuous this 
is true. 
Then we must prove 
liF,F"G: P(F,F1,G) ~ P(T[F,G],T1[F,G],(f[F,G]) 
First inclusion: 

T1[F,G] - T[F,(f[F,G]] (Definition of T1) 
2 T[F,GJ (Ind. Hyp., continuity) 

The other two inclusions follow immediately since T and (f 
both are known to be continuous. 

Given two functions F " T[F,G], G = (f[F,G], folding F with G is 
possible only if there is a functional T1 with 

T[F,G] = T1[F,(f[F,G]] 
The result of folding is the definition 

F = T1[F,G] 

a)	 F,1 <:=: F, 
This proposition ensures partial correctness of folding. When 
renaming T1 to T and vice versa it is identical to the state
ment b) in the previous proof. 

b )	 You ma y Loo set e r 111 i n a t ion Iv hen a p ply i n 9 the f 0 l d 0 per a t ion • 
But there is a simpLe condition ensuring that this wi II not 
happen: (f must be independent of F, i.e. 
VF 1 ,F2,G: If[F 1 ,G] - (f[F2,G]. 
With this condition we can show that F, S FT1 : 
F-c1 - T,[F,1,G oJ CF,1 is fixpoint) 

- T1[F T1 ,(f[F-c,G,,]] CG:; is fixpoint) 
- T,[F-c,,(f[F,1,Go-JJ «f is independent of F) 
- T [ F, 1 ' G:., ] ( cl e fin i t ion 0 f T 1 ) 

I.e. F,1 is a fixpoint of T. Since F, is the Least one we 
have F,<:=: F-.: 1 • 

Using LC!lo/S 

The application of laws is correct if they come from the speci

fication which is the source of the constructive definition.
 
Given
 
- a specification <I,P>
 
- a formula liX1 ••• Xn t1 (X1 ••• Xn) = t2 (X1 ••• Xn) in P
 
- and an equation f; = Si (f 1 ,12 ••• )
 
we may substitute t, by tz in Si and vice versa without modify

i n 9 the se 10 ant i c S 0 f S; i n any L: - Al 9 e bra sat i sf Yi n g P. ( Not e ,
 
t hat by d e fin 1 t ion den 0 t est hest r 0 n g e q U a lit Y wher e (,) :: (,) i s
I ::' 

true.) 
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Remark 

A quite different approach has been taken by [KoB2]. His work is 
based on the algebraic semantics of recursive programs, and con
tains some interesting results about unfold-fold operations. 
Slnce he is considering continuous functions on partialLy 
ordered sets as we do, we may apply some of his results to our 
pro 9 r a m t ran s for 10 a t ion f r a me 1110 r k : 
Consider a sequence of unfolds, foLlollled by appLications ot 
l a \./ s, and fin all y s 0 rn e f 0 Ldin 9 s, all t 0 get her mod i t y i n 9 0 n l y 0 n e 
recursive equation F ~ T[F 1 ••• F"]. 
a) If the Last foLding is not using T then the sequence of 

t ran s for III a t ion s i s tot all y cor r e c t • 
b)	 If the last folding is using T, and this is the only folding 

with T in the whoLe sequence, and the number of all unfolds 
is greater than or equal to the number of all folds, then the 
transformation sequence is correct, too. This proposition is 
true onLy if alL functions are strict. FoLlowing the notions 
on I-Algebras in chapter 2 this is true, as Long as no con
stant functions are invoLved in the transformation sequence. 

Fxample 

Let us have a look on our example now. We start with the defini
tion of sort in SELECTION-SORT: 

sortCL)= i..:L sirnple?(l) then l 
else append (sort (rninlist (l), 

sort (allbutmin Cl)) 

All the foLlowing transformations apply only to the term 
sortCminlistCl»: 

sort (minlist CL» 
[unfoLd sort] 

= if simple? (minlist(l» then minlist (l) ••• 
[unfold simple?] 

= if (if empty? (minlist Cl» 
then true eLse empty? Crest (minlist CL»)) ••• 

[unfold minlist] 
= if (if empty? (put (l,empty)) 

then true eLse empty? (rest (minList Cl))) ••• 
[apply lal" Cempty?(put(x,y» = false)] 

= if (if false then true else empty? (rest (minlist (l)) ••• 
[appLy Law (if false then x eLse y = y), unfold minlist] 

= if empty? Crest (put Cl,empty») then rninlist CL) ••• 
[apply law Crest(put(x,y» = y) and (empty?Cempty) = true)] 

= if true then rninList Cl) ••• 
[appLy law (if true then x else y = x)] 

= minlist CL) 

Hence, this sequence transforms the cascaded recursion (two 

recursive calls of sort) into a linear recursion. In the next 
chapter we wi II go one step further by converting this defini
tion lnto ta; l recursion, and use the unfold-foLd method agaln 
to simplify the resuLt. 
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L Recurs'ion removaL,u5iD.~cond-~orderpatterns 

4 • 1 0v e r vie \·1 

Let us start with a classification of recursive functions. A 
function is called recursive if it is defined using itself. If 
the body of a procedure f contains a term l'j ke f( ... f • •• ) we 
have a nested recursion. The best knovJn example of this type of 
r e cur sic n i s the 9 1 - fun c t ion ([ r~ NV 7 2 ] ) : 

f 9 1 ( x) ::: i..i x >1 0 0 the n :< - 1 0 e l s e_ f 9 1 ( f 91 (x + 1 1 ) ) 

If i contains several calls of f and is not nested We call the 
recursion cascaded. The definition of sort in Fig.4 shows a 
cascaded recurS10n. A recursion that is neither nested nor 
cascaded is llnear. C.f. the sort definition that is the result 
of the previous chapter. A linear recursion is in iterative form 
1f the recursive call is the dynam1cally Last act10n in i' ~ 

body. Iterative recursions can be translated to Loops in a very 
simple manner according to the following rule: 

f(xL= iJ.. b(x) th~1J. f(9(X» else hex) 

------1-------
f ( x ) : = !illil-f. :) ( x) 2.2 y.: = 9 ( x ); h ( x ) 

This transformations, however, can not be performed on the 
specification Level, since loops and assignments are not allowed 
1n our purely functional language. Indeed, our system supports 
the Pascal implementation of algorithmic specificat10ns, and 
during that implementation iterative recursions may be replaced 
by loo ps. Th u s tt) e 9 e n era t ion 0 fit era tl ve re cur si 0 n s fro m m0 r e 
complex functions on the abstract level results 1n programs 
\lritten in a procedural Language, and less time and space con
sum1ng than recursive functions. 
[ach recursive procedure can be transformed to an equ1vaLent 
non-recursive proc~dure ,)5 any Lisp and Pascal compi ler does. 
Th 0 sec 0 mp i l t r Cl e n era t e pro c e d u res , h 0 \'1 eve r , are Lt singas t a c k 
10r storing p~rameter v~Lues and return addresses. I.e. the 
Pt' 0 iJ r a 10 I S re cur s i v i t Y ism ere l y t ran sf err e d tot h e d a t a s t r Lt c 
tu re. 
But what's about the c Lass of functions that can be transformed 
to iterative functions l'lhich lIse only a fixed number of storage 
all 0 cat ion s ? ( Wa S t 73] ca l l t h 0 S e f LI n c t ion s "f low ch art ab le" unci 
s h 0 ~I S 0 me 9 e n e r' a l res u l t s a b 0 u t f low c h art a b i lit Y : 
1.	 Each linear recursion is flol~chartBble. 

2.	 The g e n era l s c h e 10 e for a cas cad e d re cur s ion 1 5 not 
f lowchartab le. 

3.	 The f lO\·Jchartabi lity of a given procedure is undecidable. 

However, there Jre some critical notions about those results: 
- The 9 e n era l r u Let 0 f l 0 vJ C h art l i n ear r e cur s ion s [p a t 7 0 ] lea d s 

to very 1neff~cient calculations. Therefore an implrmentation 
u~ing a stuck must be preferred in the general ca5C. Stor1ng 
tile return addresses is unnecessary \·}ith linear recut'sions. 

- When developing a system for the automated elimination of 
recursions it is very important to use knowledge about the 
o I) era t 10 n sac cur i ngin a 9 i v e n pro c e cl u re. W~ t h k n 0 1'1 led gel i ke 
this it is often possible to flowchart even compL~cated recur
s 1 0 n s \'1 i t h 0 uta n y s t a c k 0 rat lea s t ~I i t has i '01 n 1 f i can t l Y 
smaller one. 
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- A campi ler can implement the stack operations that are asso
r. i Cl t e ,I t!1 t h a function call. very efficiently b e c a u s ei t can 
u~e Machine instructions. Therefore the usaQe of a stack on 
the abstract level ,vill increase the efficiency of tile 
resuLtlng program only if the stack becomes much sirnplei~ than 
the full. compi Ler generated one. 

The unfold/fold method can be employed for recursion removal, 
too. In this chapter, however, we follow an approach based on 
second-order patterns (c.f. [HuLa78]). f\ transformation rUle is 
a tripeL <L,X,~'> containing: 
- a scheme I denoting the class of programs the rule is applica

ble to 
- a condition X which must be true to make the transformation 

semantics preserving 
- a scheme l' denoting the result of the transformation. 

J, X, I' are terms in a second-order language which is described 
in full detai l in [Gerl83]. Using denotationaL semantics we can 
pro vet ran s for In a t ion r u l e s cor r e c t by the i n due t j \/ e met h0 cl s 
(especially computationaL induction) given ~n [MNV72]. 
The starting point in the development of our ruLe data base was 
the col. I. e c t ion of r u l e s pro v i cl e cl b Y [8 a ~J 0 8 1 ] for the (I P - L I. a n 
~JlIage. [Pet83] performed the correctness pt'oofs, found some 
generalizations and brought the rules together in a production
rule like, though semi-formal representallon. [Geiss84J adapted 
these rules to our specification language ASf' IK and put tI!efll 
i n t 0 a for ma l net ,-I 0 r k rep res e n tat ion (s e e bel 0 "I) s. t. i t 1 spa s 
slble now to perform these transformatlons automatically In our 
specification environment. 

Our knowledge base contains ruLes for the simplification Gnd 
e l i mi n a t ion 0 f l i n e a l' , cas cad e cl () n d n est e d r c cur s ion s • 1. nth e 
appendix we show the complete set of rules for eliminatlng 
linear recursions. The rules for cascaded and ()ested recursion, 
however, are not presented here since they are rather comp~ex 

(see the papers cited above for all detai ls). 
There are several rules known from Literature which are not part 
of our knowledge base: 
1.	 [Ar79], [Au78], [Bi77] and [R08D] are based on procedural 

languages, [GaLu], [PaHe70] and [St71] use flovlchart~~ as the 
go a l "l an 9 U i'l 9 e". So the y are 0 ut s i cl e the s cop e 0 f 0 u r 1 n t t:' r .
est. 

1'.	 Special transformation rules for arithmetic functions havf: 
been developed by [PaPe76] and [Hi79] Llnd al'f: a topic for our 
future wOt'k. 

3.	 The first rules for recursion removal were published in 
[(066]. He investigated the ideas being the background of the 
rules pertaiming to llnear recursion. 

4.	 A program that automatically transforms some classes of 
recurSlve LISP-functions lnto non-recursive ones is described 

in [Ri73J. His transformations can be viewed as in
stantiations of the general rules described here using the 
semantics of special LISP-functions. 
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4.2 ExampLes 

The following two examples ~Ji II demonstrate the transfor
mation method described above. T~e first example wi Ll give an 
idea how functions with more than one parameter are handled. 
The function to be transformed is very simple: 

x*y = li yta 
then x+(x*(y-1» 
e l"e 0 

And here is the appropriate transformation rule: 

F ( m) B(m) then $U(k(m»,E(m» else H(m)= i.1. 

i 3WVr,s,t: $(W(r,s),t) = W(~(r,t),s) 

/\ 3cVm: H(m)=c /\ 
<!>(c,m) = WCc,m) 

F(m) = G(m,c)
 
G(m,n) = it B(m) then G(K(m), W(n,E(m») else n
 

The variable bindings for t his example are: 
m --). x,y 
F --). * 
B --). AUV. vtO 
<D ~ AUV. v +u 
K --). Auv • u, ,\ uv • v-1 
E -7 AUV. 1I 

H ~ Auv. D 

And we see that the conditions are fulfi lled for <Il=W and c =0.
 
Hence we gain the iterative result
 
x*y = G(x,y,O)
 
G(x,y,n) = if yta
 

then G(x,y-1, x+n) 
~n 

Remarks: 
1.	 The reader should not be co~fused about the mixture of infix 

and prefix notations. The transformations are performed on an 
internal representation which is prefix, but the user can 
communicate with the system in the mixed notation via a 
sophisticated interface. 

2.	 B, <Il, K, E and H are second-order variables. Hence their 
values are A-terms, denoting functions. 

3.	 The variables m and K are so-called "multivariables" (in
troduced in [Gerl83]) which can bind multiple values, 
separated by commas in the table above. 

4.	 Remember: In a procedural language the result can be ex
pressed using loops. i1any campi lers perform that last trans
formation step automatically. 

The second example continues the development of the selection
sort operation. The result of chapter 3 was: 
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so r t ( l) = .i.1. si mp Le 'I ( l) the n L
 
else append (minlisHl), sort(allbutmin (l»)
 

This is a linear recursion that can be eliminated using the 
follo\ving rule: 

F(m) = it B(m) then ~(F(K(m», E(m» else H(m) 

-1- Vr,s,t: ~(~(r,s),t) = ~(r,~(s,t» 

I\. 3e'u'r: (j)(r,e) = r 

F(m) = G(m,e) 
G(m,n) = it B(m) then G(K(m), ~(E(m),n» 

elst. <!lCHCm),n) 

Here ~ matches append which is known to be associative and to
 
have empty as a neutral element. So we may apply this rule, and
 
gain an iterative version of sort:
 
sort(l) = sort1( l, empty)
 
sort1(l,K) = it simple?(l) ~ append(K,l)
 

f...1..g sort1(allbutmin(l), appendCK,minlistCl») 

Remarks: 
1.	 The rule application module contains a normalization 

procedure. Among other tasks it must transpose the condi
tional branches of the input function when the recursion is 
in the else part, and perform the inverse operation on the 
result. 

2.	 The algebraic knowledge about the function append comes from 
the specification LIST (Fig.2) _ Thus the rule application 
module has direct access to the specification environment. 

3.	 The unfold/fold method can be used again for a further 
optimization of the sort1 definition above by transforming 
the else-part. Unfolding allbutmin and minlist and 
abstracting minCl) yields: 

sort1Cl,K) = U simple'l(l) then append (K,L) eLse
 
kI. m= min(l) .i!l
 

sort1CallbutoneCl,m),
 
appendCK,put(m,empty»)
 

4.3 The Correctness of Second-order rules 

Let us describe a second-order rule by a tupel <~, ~', p> where
 
- ~ is a recursive equation
 
- p is a logical formula
 
- ~' is a set of recursive equations.
 
~, ~' and p contain first-order and second-order variables. A
 
substitution is a mapping from variables to terms and A-abstrac

tions. Performing a substitution ~ on a recursive equation ~
 

means substituting all variables and evaluating applications of
 
A-abstractions. (A formal treatment of second-order substitution
 
and III a t chi n9 has bee n per for rn e din [G e r l 83] )
 
Applying a rule <~, ~', p> to a specification <L' P U {<OP,~»>
 

is defined as follows:
 
1.	 Find a substitution ~ s.th. there is a recursive equation 

f , - S ; [ f 1 ••• f n] ins e q u a I. t 0 GqJ' and GP can bed edue I" d 
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from P. 
2.	 Replace {c} in ~ by ~', and extend OP appropriately. 

According to the general considerations of chapter 2 this trans
format,on is correct if 
1- {f J I 3Si: fj - SiC ••• ] E ~.) n OP = {f;) 

i.e. only f; is redefined 
2.	 f; in the least fixpoint of c~' is equal to the least 

fixpoint of ~ 

To prove the correctness of a transformation rule we have to 
show that for all variable bindings the least fixpoint of ~ is 
equal to the corresponding component of the least fixpoint of 
~'. (The first condition above can be ensured by a generator 
mechanism, and is only a technical issue.) 

Examnle 

The following well-known rule CCBaWo81],[C066]) transforms a
 
class of linear recursive functions to tai l-recursive defini

tions:
 
~ = f(m): ii m~c then ~ CfCkCm), E(m)) else HCe)
 
p = Vr,s,t: $($Cr,s),t) = ~($Cr,t),s)
 

q)'= {f(m) ::: gem, H(c»,
 
gCm,z) : ii mte then gCKCm), ~(z,E(m» ~ z ) 

We can apply it to the square function:
 
sqCx) : ii x~1 then C2x-1)+sq(x-1) fJ~ 1
 
with the variable bindings
 
f ~ sq, m ~ x, c ~ 1,
 
$ ~ AUV. v+u, K ~ Au. u-1,
 
E ~ Au. 2u-1, H ~ Au.u
 

The condition p is the commutativity of + in this example. The
 
transformation result is
 
{sqCx) - gCx,1),
 

gCx,z) - i1. x~1 then g(x-1, C2x-1)+z) ~ z ) 

The semantics of '=' used above is the weak equality, i . e • 
Coo=oo) ::: 00 to ensure that the defined functions become con
tinuous. And the semantics of i1. is defined as usual: 
iJ.. true then a else b - a 
i1. false ~ a else b : b 
i1. (,) .t hen a ~ b ::: (,) 
where a and b may be any defined value or w. 

NOIiI \~ e wi II prove the correctness of the rule using computa
tional induction on the predicate Q: 
OCf,g) - Vm: fCm)=g(m,HCe)) A 

Vr,s,t: $(gCr,s),t)=gCr,OCs,t») 
We want to show that Q(f~, g~') holds where f~ is the least 
fixpolnt of 9 and g~' the least fiypoint of the second equation 
o f ~ I. 

a)	 0(0,0): 

This is true because all functions are supposed to be 
rnonotonic. 

b)	 ilf,g: QCf,g) ~ Q(~[fJ, ~'[gJ) 

rirst equation
 
epCf]Cm)
 
[Definition of ~]
 

= if mte then ~CfCK(m)), E(m)) else H(c) 
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[Induction hypthesis, first equation]
 
::: if m~c then 0CgCkCm), HCc», ECm» eLse HCc)
 

[Induction hypothesis, second equation]
 
::: if mtc then gCKCm), ~(HCc), ECm») else HCc)
 

[Definition of cp']
 
::: cp'[gJCm,HCc»
 

Second equation 
<!)(cp' [gJ Cr,s),t) 
[Definition of cp'] 
= 0Cif r~c then gCKCr), 0Cs,E(r» else s, t) 

[Semantics of if, monotony of ~J 

= if riCc then ~CgCKCr), (j)Cs,ECr» ,t) eLse (j)Cs,t) 
[Induction hypothesis, second equation] 
= if riCc then gCKCr), $C0Cs,ECr»,t» else $Cs,t) 

[Condition pJ 
= if rtc then gCK(r), 0C(j)Cs,t),ECr») eLse 0Cs,t) 

[Definition of cp'] 
= cp'[g]Cr,(j)Cs,t» 

. / . 
The first equation of the predicate Q impLies the correctness of
 
the transformation rule:
 
\fm: f<pCm) = 9'P'Cm,H(c» ::: fcp'(m) [Definition of 'P']
 

4.4 KnowLedge Representation 

How to represent the rules in the transformation system? One 
could think of writing a production rule system in a straight 
forward manner, but this is not the best way for the following 
reasons: 
1.	 We must minimize the number of matches being performing 

during a transformation since our terms contain second-order 
variables. Matching a definition and a second-order pattern 
takes typically one seconc! of CPU time. 

2.	 The table of transformation rules shown in the appendix ex
hibits the inherent structure that should be exploited during 
the transformation process. 

3.	 Side effects have to be performed when transforming a defini
tion Cgenerating new names for auxi liary functions, creating 
data types for stacks and tupels). This can be expressed more 
naturally in a procedural framework. 

Hence, we use a procedural network for the representation of our 
rule data base. The nodes denote states during the application 
of a transformation, the arcs are labelled with the tasks to be 
performed during a transformation ste~, c.f. matching terms, 
testing conditlons or creating the result. 
The formalism has been taken from Wood's Augmented Transition 
Networks [Wo 70J, but we use only the syntactical frame. Some 
concepts essential for ATN processing, as consuming an input 
stream, and the recursive call of subnets, have been omitted in 
our implementation Cin ATN terminology: we have only JUMP arcs, 
and the input is given as an initial register setting). However, 
the concept of registers - setting a register on one arc and 
using it ~Jithin an other - has heavi Ly been used. 
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1he syntax for a network is quite simple: 
net Cstate*) 
s tat e ( n a III ear c *) 
arc (condition action* goal) 

The arcs' components have been developed for our specific 
purposes. Important conditions are: 
- matching a register's value with a second-order pattern. As a 

side effect the variable bindings resulting from the matching
 
process are stored as register values.
 
calling a deduction component to prove a proposition, or to
 
solve an existentially qualified equation.
 

- testing for any other property of register values (with the 
full pOI·/er of LISP). 

Actions are: 
- generating new names for variables or auxi liary functions, 

creating data types (specifications) for stacks or tupels 
- generating parts of the final result 

The goal of on arc "'" '" .. 
- either the name of the state where processing must continue 

or a pattern made of register names and constants, denoting 
the final result of the transformation. 

Fig.6 shows a cut of the net\~ork in the internal representation 
just described. By convention, processing starts with the first 
state (INIT), the definition to be transformed is assumed to be 
the value of the register INPUT. The names of variables cor
respond to their type: The number of Leading I? expresses their 
order, the '*' afterwards marks multivariables. 

Algorithms 

A second-order pattern matcher is described in [Gerl83]. It 
elaborates [HuLa78] in the way that multivar;ables (see above) 
are handled, and some heuristics have been incorporated to 
ensure that in most cases the desired variable bindings (which 
may be one of several possible matches) are found first. 
Before matching we have to normalize the input. It has the 
f 0 L l 0 III i n 9 e f f e c t s [G e i s s 8 4 ] : 
- If there are several recursive calls in mutually exclusive 

conditional branches we can replace them by one recursive call 
putting the conditionalization into an auxi liary function. 

- Recursive calls are moved from the else- to the then-part by 
negating the condition 

- Each "Let" surrounding a recurs~ve call is replaced substitu
ing the bindings 

- Each "Case" is replaced by equivaLent conditionalizations 

Checking conditions performed in different ways: 
Searching specifications for appropiate algebraic properties 

- Accessing a knowledge base specific for the program transfor
mation module. Of course, we must ensure the consistency of 
this knowledge base and the specification environment. 
Deducing the desired properties using the unfoLd/fold tech
nique (chapter 3) 
Proving the condition via the automated theorem prover ([KA 
84J). However, this is only possible for first-order proposi
tions. 
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(UNIT 
(MATCH «?F ?*M) 

(IF (??B ?*M) 
('1'1PHI PF (?'1*K ?*M)) 

P?*E ?*M) 
( ? '1 H ? * r-l) ) ) 

INPUT) 
(TO LIN)) ••• ) 

(UN 
«EQUAL ??*E ())
 

(SETV ?'1PSI ??PHI)
 
(TO LIN-(OMMUTING))
 

«AND	 (NEWVARS '1R 1)
 
(NEWVARS ? S (LENGTH ?"*U)
 
(NEWVARS '1T (LENGTH '1?*E»
 
(EX ??PSI ALL ?P ?S ?T
 

(??PHI (??PSI ?R ?S) ?T) =
 
(??PSI (??PHI ?R ?T) ?S»)
 

(TO LIN-COMMUTING)) ••• )
 

( UN-COMMUTING
 
«EX ??( ALL ?*M
 

(AND (??H ?*M) = (??O
 
(??PHI (??() ?*r,'I) = (??PSI (??() ?*M))) 

(GEN-OP ?F1 (SORT-OF ?*X)(SORT-OF ?F)(SORT-OF ?F)) 
(GEN-VAR ?Xn 
(RETURN «(?F ?*X) 

(?F1 ?*x (??C)) 

«?F1 ?*X ?X1) 
(IF (??B ?*X) 

(?F1 (??*K ?*X) 
( " ? PSI ? X1 (?? * E ? *X) ) 
?X1»»» 

• • • ••	 » 

Fig.6: A cut of the network representation 
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5. Interfaces 

The program transformatlon system described in th-is paper is a
 
part of the specification system SPESY ([BGGORV84], [SoB4],
 
[Ma84]). SPE=SY includes the follol'Jing facilities:
 
- A database for ASPIK specifications, procedural programs
 

I,}ritten in r10dPascal [Olt84]" and maps Ci.e. relations) 
between those objects 

- Syntax-oriented editors for specifications, ModPascal progralos 
and maps 
Access to tools for validation and verification: Symbolic in
terpreter for specifications, automated theorem prover, 
r e \~ r i t e I' u l e l :J b 0 , a tor yet c • 

Th 1 S S Ys t e m h Cl S I) e end eve lop e din In t e r lis p 0 n a l a r get i me 
sharing computer prr,viding only a simple t~letype illterfuce. 

The program trClnsformution module is entered by typing 

PT <specnamp> 

Then you are alloved to manipulate the specification with the
 
given name via the follOWing commands (implemented by [BeWo84],
 
except ELIM):
 
FOLD, opidl, opld2, n
 

Replace the nth occurrence of the body of opid2 in the defini
tion of opidl by an application of opid2 

UNFOLD, opidl, opid2, n 
Heplace the nth occurence of an application of opid2 in the 
clr:finition of opid2 by the body of opid2 

BIN D, 0 I) -i d, v Cl r =t e r m 
AI) S t t' ,] c t 1 0 n : Ins e r tal e t - c l a use i nth e d e fin i t ion of opid, 
Cl !) I) rev I Cl tin g t e ;' m by v a r . 

UNBIND, opld, V3, 

UI1LlI)st,acl:loll: Remove the Let-clause binding var. 
SHOWLA0S, opid1, op1cl2 

L,st all C'Cluatlons thut 1. are valid in the current specifi 
catlon envlronment, 2. contain opid2, 3. match any term inside 
the definition of opicll. Mark each of those equations by a 
U!l 1 Cl LI e n u i!l b er. 

USELAI), opiLiJ ny 
Apply the equation with number l to the nth matching subterm 
of the deflnition of opid 

EL Hl, 0 P i cl 
Transform the definition of opid to tai l recursion using the 
ro e t h 0 cl s des c ri \) e din c h apt e r 4. This cam In and maye rea ten e I') 
f LI n c t 1 0 n s, 0 r III cl yha v e n 0 e f f e c tat all if none of the ovai la
bLe rules iJpplies. 

We want to stress the experimental character of program trans
for fll a t ion s. I. e. 0 n e doe s not know ~} het her a s tar t e d s e que n c e 0 f 
l rail s f 0 , fl1 uti 0:, s wiLL Lea d t 0 a S iJ t i s f act 0 r y res u Lt. Soy 0 u wan t 
to be able to undo transformations, or to restart the transfo,
mahon process at any earlier stage of the development. 
Ue -implemented this facility by storing all versions of all 
t , an s for 10 e d fun c t -i 0 n::; s. t h • for eve r y fun c t ion the r e 1 s a his 
tory list contalnlng all the versions of that function. There is 
an "actual version" defaulting to the nel,}est, but there are com
I1lAnds to let another version being the actual one. The transfor
milt 1 0 n c 0 ml!l a n cl s a b 0 v e a L\'1 a y s t a k e the act LI a l v e r s ion s cl ~; the i r 
1nput, and .lppend their result to thE- end of the history list. 
Aft e , '.'} a r cl s the t r 3 n s for 111 a ti 0 n ,e s u l t i s the n e ~J i.l C t U ,J l v e r s ion • 

19 



There is a quite different implementation of a program transfor
mation system ([Ste83]). It is a standalone system, i.e. the 
a L9 0 r i thin i c de fin i t ion san d e q u a t ion s don 0 t co me ft' 0 m the 
specification environment SPESY, but are created withln the 
I) r 0 g r a m t ran s for ma t ion s y s t em. Its ma i n t ask I·j ,J S toe x plo r e the 
po s sib i lit i e s 0 f ma n -1,1 a chi ne i n t era c t ion us i ngad v Cl n c e dinput 
output devices: A bitmap-display, highly sophisticated system 
5 0 f t I,j are for d i v i din g the s c r e e n i n t 0 d; f fer e n tin t era c t 1 0 n 
areas (windows), and the mouse, a device for select1ng items 
d-Isplayed on the screen, e.g. starting commands by pointing at 
the i r n a [11 e s • 
The screen contains the following windows (Fig.?): 
- A menue of prepared examples 
- The menue of the avai table commands 
- A menue of several help faci titles 
- The main interaction area showing the already defined func

h ons 
You may enter commands in two different ways: 
a) Prefix order: SeLect a c 0 [11 ma ndf r 0 m a men u e , then select the 

arguments for this commands. 
b) Postfix order: SeLect a term to be modified, then seLect the 

t y p e 0 f t ran s for [11 2 t ion • 
TI·j 0 l~ X a mp le s : 
a) Select the unfold command, then point to the function call to 

be unfoLded, or 
b) select a function call in the definition window. Then a small 

t em po r i3 r y I,j i n d 0 I~ a p p e iJ r S 0 f fer i n Q 0 per a t ion s l: hat ma y be iJ I) 

plied to t h t se lee t e d term: Folding, u n f 0 l cl 1 ng, a b s t r cl c t 1 0 n 
et c • 

Not e t hat the UNF0 L D C 0 mmand i nth e fir s t imp l e [11 e n tat ion has 
three arguments. In the screen oriented interaction mode, how
ever .. one argument is enough: Se lecting a term from the sreen 
uniqueLy determines the three arguments necessary \>Iith the 
teletype interface. 
This prototype implementation of a program transformation system 
has shown the advantages of an integration of screen-orlented 
editing and formal program transformation. AdditionalLy, the 1111
portance of ergonomic issues Cc.f. [Ba83J) has been confirmed. 
The quality of the user interface is essential for the 
efficiency and acceptance of any software development system. 
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6. CODC LusioQ 

The specification language ASPIK sketched in this paper provides 
a uniform framework for both algebraic properties and algor
lthmic definitions. Thus it provides an appropriate base for 
pro 9 r a m t ran s for III a t ion s wh i c h a l \,1 a y s r e l y 0 n a l g e bra i can d 
algorlthmic knowledge. A program transformation system has been 
implemented which employes the unfold-foLd-method as well as the 
application of conditionalized second-order production rules. 
Both concepts may be combined arbitrari ly thus providing a 
powerful development tool. The embedding ln the specification 
environment guarantees that those transformations wi LL not 
clestroy the correctness of the manipulated algorithms. 
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Appendix: RuLes for eLiminating Linear recursion 

The general pattern for linear recursive functions is 

Fex) = i.!.. sex) ~ l!>( F(K(x», E(x» else H(x) 

The arities of the admissible functions are: 
F: A,	 ••• An ~ S 
B: A,	 ••• ,\n .". booL 
0: S l)1 ••• l)m ~ S 
K: A, ,\n ~ ,\, An 
E: '\1 ,\n ~ ()1 ()m
 

H:'\1 An ~ S
 

The rules (see Fig.B): 

1 .1 31.lr: S l) 1 ••• ()m ~ S 
l!>(W(r,s),t) = W(l!>(r,t),s) 

This incLudes the simple case m=O: l!>(l!>(r» = l!>(l!>(r» 

1.1.1	 H(x) :: const. : 
F(x) = F1 (x,const) 
F,(x,y) =.i1. Sex) 

then F1 CK(x), WCy,ECx») 
e l se y 

1.1.2	 Sex) := xtconst 
FCx) = F1 Cx,HCconst» 
F 1 as 1.1.1 

1.1.3	 F(x) = F1Cx,F2CX» 
F2(X) = if Sex) then F2(K(x» else H(x) 
F1 as 1.1.1 

1.2 m=1 A 3l.!r: l!>C<!JCr,s),t) = l!>Cr,l.!rCs,t» 
W: ()1	 ()1 ~ ()1 

1.2.1	 $:=W A 3e Vx: <!J(x,e) = x 
F(x) = F 1 (x,e) 
F 1 (x,y) =.i.1. sex) 

then F1 CKCx), l!>CE(x),y» 
~ (j)CHCx),y) 

1.2.2	 F(x) = if Sex) then F1 CK(x),E(x» else H(x) 

F1 (x,y) = iJ. Sex)
 
then F1(K(x),·W(E(x),y»
 
~ l!>(H(x),y)
 

1.3 3R : RCK(x» = x 

1.3.1	 sex) := xtconst 
FCx) = F1 (const,HCconst),x) 
F 1 (x,y,z) = i1. xtz 

!...b.r.n. F1 (R(x),l!>(y,E(R(x»),z) 
e l s e z 

1.3.2	 F(x) = F1(F2(X),HCF2(X»,X) 
Fz(x) = it sex) then F2CKCx» else x 
F1 as 1.3.1 
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----------

1.4 Fex) :: gJ;,. <5,Y> = F1 (x,eOlpty) iD. 
F2(S,Y)
 

F1 (x,s) :: iJ. B(x)
 

then F1 (K(x),push(s,x»
 
eLse <s,H(x»
 

F2(S,y) :: i1 ~empty(s)
 

then F<CpopCs),<!>Cx,ECtopCs»»
 
~x 

The variabLe s is of type A-stack with the foLlowing operations: 

empty: ~ A-stack 
pus h	 : A-s t a c k A1 ••• An ~ >.. -s t a c k 

pop 
: A-stack ~ A1 ••• An 
empty~: A-stack ~ booL 

<.,.> is a tupling operation with arity
 
A-stack S ~ A-stack-s-tupel
 

1 .1 
has commutative 

1. 2.1 
<l> has	 neutral 

1 .2 
has associative-- <l>1.2.2 ______ 

eLse 
(two conditions)
 

1 
Linear R. 

1 .3.1
 
B is inequaLity
 

1 .3 
has inverse 

------------ K1 .3.2 
e Lse	 ------------

(two conditions) 

1 _4 
eLse 

/ 
(stack and two loops) 

Fig.B: The decision tree for Linear recursion 
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