
S
E

K
'

F
ac

hb
er

e i
ch

In

fo
rm

at
ik

U
ni

ve
rs

itä
t

K
ai

se
rs

la
ut

er
n

S
E

H
‘

i
H

Ü
J

M
EM

O
P°

s"
a°

“ 3
”“

0-
67

50

K
ai

se
rs

la
ut

er
n

1,
 W

. G
er

m
an

y
W‘SB-DJEISWu

memes Ieeqom

fia
t-7

E

g
g

_
_

-

VC
S?

“
-..

.

F? % % R
] %
,

0 @ ä

PROGRAM TRANSFORMATIONS IN ASPIK

Michael Gerlach

Fachbereich Informatik
University of Kaiserslautern

Postf ach 3049
D-6750 Kaiserslautern

\.Jest Germany

August 1985

MErilO-SEKI-85-04

Abstract

Program transformations need a uniform framework for expressing
algorithms as well as algebraic properties. In this paper we
present the embedding of program transformations in a software
specification system. We demonstrate the methodology by
developlng a sorting algorithm towards more efficiency, and show
h0 \" the s e mant i c s 0 f the s p e c 'j f i cat ion l a n9 u age i s the
foundation for proving transformation rules correct. We are dis­
cusslng theoretical aspects - the correctness of transformations
- a S \.J ell a s t (' c h n i c i) lis sue s, e. g. t I'J 0 k 1 nd S 0 f use r i n t e r f ace s
t 0 a pro 9 r () In t ran:, for III a t ion s y s t em.

11.	 Introduction

2.	 The Specification Language 2

2.1 The ExampLe	 2

2.2 Semantics	 6

3. Unfold-fold Operations	 8

4.	 Recursion Removal using Second-order Patterns 11

I, • 1 Over vie \'1 11

I, • 2 Ex a mp l e s 13

4.3 The Correctness Of Second-order Rules	 1 I,

4.4 Knowledge Representation	 1 6

5.	 Interfaces 1 9

6.	 Conclusion 22

Appendix: RuLes for Eliminating Linear Recursion 23

Bibliography 25

1. Introduction

Program transformations are a tool to develop reliable
software: starting with well-understood high-level programs we
get lO\oI-level programs correct III.r.t. thE high-Level programs,
supposing the tr2nsformation itself lS correct. This approach
contrasts w,th wrlting programs on different leveLs using an
ecl,tor, and proving the correctness aftenvards. Both methods are
c 0 fI1 P l e fl1 e n tin 9 e a c hot her a c cor din g tot h e f 0 l l 0 \'1 ~ n 9 d eve lop me IJ t

P il r iJ d i ~J TII :

- State some formal or informal requirements
- i·! I' 1 tea l q 0 r i t 11 fII so/) ale vel t hat ; sea s y to un d er s tan d
-. Per i 0 rill the va l i cl cl t ion 0 r the cor r e c t ne ss proof 0 f the a l go r ­

ithm'; uSlncJ flPiJropr-iate tooLs
- Develop lhcJ0rltllm~j lIS10g program transformations thus

Lc) 0 S 1 n 'J p re t' S P -j c ui t y, but s Cl v 'j n 9 cor r e c t n e ss.
Both aLqorlthl11ic and algebraic kno\'lledge is employed by

program transformQtions. Algorithms are the objects of the
t r ar, s for Pl at ion s , a L9 e bra i c pro per t ; e s are use d for s; mply
rewriting su!)terms, or to show conditions ensuring the correct­
ness of complex transformation rules. In this paper we wi lL
des cri r) e the e III b e cl cl i n 9 0 f Cl pro 9 r a m t ran s for mat ion S y s t em i n a
s p e cif i cat ion e n vir 0 n f" C n t ([BGG0 RV 84]). Sin c e S p e c ; f i cat ion S

\,1 , i t ten 1 n 0 U r s p e cif i cat ion l a n 9 u age ASP I K con s i s tot a n
a l CJ e }) r a i c El n cl El n a l 9 0 r 1 t h III i c P El r t \'J i t h i non e s y n t Cl c t 1 C t , a III e ,
tl)l~ prog,lI;" tr~:nsfor'l"ation subsystem Ili1S aCCfSS to both
\< 1)CHI led (I e s () 1I t' C C S 1 11 iJ l/ n -j 'f 0 r III \.) Cl Y •

Th (' r (' i\ r C' t \,1 I) [,1 cl J () r \'1 ay s t 0 imp l e men t pro 9 r a m t ran s ­
f () r rJJ i-l I:i 0 n <; (l L1,::J 7 9] .J : r h (' t r il n S for muti 0 n r u Le S can e 1 the r b e
ell> ~. C r 1 be cl a sal '] 0 r' i t h ms, \'} h i C h t a k e a g i ve n pro g r El III as i n put a n cl
P t' Q due e <I n e Cl 1I i V i) Le n toneElS 0 u t put ,or C i] n b e gi v e n a san
I) , cl ere cl p El 1 r of t e fJl p l ate s t 0 get her III i t h a nap p l i cab i lit Y con d i ­
tion denoting a conditional pt'oduction rule. In our program
t r cl n s f C' r rn <.1 t ion s y S tern bot h t e C h n i Cl 1I e S h a v e bee n e rJJ plo ye d , the
fo,mer for the basic trnnsfo,mations unfold, fold etc. (Chapter
3), the latter for reclIrsion reMoval (Chapter 4).

1

---- ---------

,2..., The Speci fication Lanqua.qe

In this chapter, we give a brief overview on our specifi ­
cation language ASPIK, as far as it is necessary to understand
the following examples (see [BGGORVB4] for further detai ls).

A specification denotes an abstract data type introducing
sorts and operatiorls, maybe using other specifications, thus be­
ing an enrichment or a refinement. It may also contain formulas
in first order logic stating properties about the defined or im­
ported operations. Additionally, there is an optional algor­
ithmic part, defining operations in terms of other operations in
a purely functional manner.

2.1 The Example

We shall demonstrate the various transformation methods by
applying them to specifications about sorting lists. These
specifications have been developed ln a systematical manner in
[BGV83], and are the starting point of our transformations.

Fig.1 and Z show the standard data types BOOl, NAT, ELEMr
ORDELEM and lIST. ElEM and ORDELEM are examples for so-called
loose specifications. They denote - roughly spoken - any algebra

~ BOOl
1* standard definition of the boo leans *1

endspec

~ NAT
1* standard definition of the natural numbers *1

enclspec

~ ELEM
1* just a sort with its equality *1
~ BOOl
2.Qr t s e le m
~ = elem elem ~ bool

endspec

~ ORDELEM
1* ELEM enriched with an ordering *1

1!2..t ELEM
ops ~ elem elem ~ bool

!2.C...QJ?Ji
all x,y E elem:

x~x /\
(x~y /\ y~z ~ x~z) /\
(x~y /\ y~x ~ x=y)

end spec

Fig.1: The basic data types

2

.2J2..U.. LI S T
1* lists of el~ms *1

LLEM,NATilllS..
sorts	 List
ops	 empty: ~ list

put: elem list ~ list
first: list ~ elem
rest: list ~ list
empty?, simple?: list ~ bool
in?: elem list ~ bool
append: list list -) list
length: list ~ nat
occurences: elem list ~ nat

props
all lE list, x E elem:

empty?(pU1.(x,l») = false /\
empty?(elnpty) = true /\
first(put(x,L)) = x /\
re~,t (put (x, l» - l

all l1, lZ E list:
append(L1,empty) = L1 /\
append(empty,l1) = L1 /\
appendCappendCl1,lZ),L3) =
appencl(l1,append(l2,l3»)

spec body
constructors empty, put
define ops

firstC l) = ~ ~ *empty: error-elem
*p U t Cn , l1) : n

rest(l) = case li *empty: error-elem
*p u t Cn , l 1) : l1

empty? (l) = caSe .l2. *empty: true
otherwise false

simple?Cl) = it empty?Cl) then true
else empty~CrestCl»

in?(e,L) =	 it empty?(l)
then false
~ firstCl)=e

or in?Ce,rest(l»
appendCl1,lZ) =.i..i empty?(l1)

then l2
else put(first(l1), append(rest(l1),l2»

lengthCl) =.i..i ernDtyCl)
.Lb-f1l 0
~ 1 + lengthCrestCl»

occurences(e,l) = it emptyCl)
then 0
~ if first(l)=e

then 1 + occurencesCe,rest(l»
else occurences(e,rest(l»

endspec

Fig.Z: The	 specification LIST

3

~ SORT-PREDICATES
~ LIST, ORDELEM
ODS permutation? List List ~ booL

ordered? List ~ booL
props aLL L1, l2 E List:

Cpermutation?CL1,L2) H

all e E elem: occurencesCe,l1)=occurencesCe,L2»
alL lE List: simpLe?CL) ~ ordered?(l)
alL 1 E lis t: ~S i rop le? (L) ~

Cordered?(l) H

firstCL) ~ firstCrestCL» ~ orderedCrestCL»)
endspec

2.l2ll SORT-AXIOM
~ SORT-PREDICATES
aDS sort List ~ list
props aLL L E list:

permutation?(L,sort(l» ~

ordered? CsortCl»
endspec

Fig.3: What sorting should do •••

~ SORT-PRIMITIVES
~ LIST
~ part1, part2 : list ~ list

combine: list list ~ list
props alL lE List ~sirnple?(L) ~

(ordered?(part1CL» ~ ordered?(part2(L» ~

o r d ere d? (corn bin e (par t 1 CL), par t 2 CL)) » ~

permutation? (combineCpart1 (l), part2(l» ,l)
endspec

2.lll.£. SORT-ALG
use SORT-PRIMITIVES
Q...Q.2. sort List ~ List

spec body
define ODS

sortCl) =	 i.f.. simple?(l)
then 1
else combineCsort(part1(l», sort(part2Cl»)

endspec

Fig.4: ••• and how it can be done

that provides operations and sorts with the required properties.
LIST, however, is an algorithmic specification. The structure of
the Lists' carrier set is given by the constructor clause, and
must consist of all the terms that can be constructed using the
operation symbols empty and push (or any isomorphic set). The
operations of LIST are defined in terms of the carrier's struc­
ture and of alreadY defined orpratinn~-

4

~ SELECTION-SORT-PRIMITIVES
use LIST
0ps OllnList, allbutmin, aLlbutone: list ~ list

min: List ~ eLern
spec body

define ops
min Cl) = .i..i si mp Le? CL)

then first(l)
else ~ 01= min(rest(l)) in

.iJ.. fir-stel) ~ m
then first(l)
e l se m

minlistCl) = putCminCl),empty)
allbutoneCL,e) =.i..i e=fir-stCl)

then rest< l)
e l s e
putCfirstCL),aLlbutoneCrestCI.),e»

aLlbutminCL) = aLLbutoneCL,minCl)
endspec

~ SELECTION-SORT
~ SORT-ALGCSORT-PRIMITIVES ~ SELECTION-SORT-PRIMITIVES

~ par-t1 = minlist
part2 = alLbutmin
cOli1bine = append)

endspec

Fig.5: Constructing selection sort

The first approach to solve the sorting problem is the
formalization of the probLem itself. In SORT-PREDICATES (Fig.3)
we define what it means for a list being an ordered list, and in
SORT-AXIOM we give a first specification of the sorting task:
sorting a list means finding a permutation which is ordered.

The first algorithmic solution SORT-AL~ CFig.4) employes
the \'1 ell - kn 0 \'1 n d i v i d e - and - con que r s t rat e 9 y ([Sm8 3] , [VeL 0 80]) •
Although the sort operation lS algorithmically defined, there is
sti lL a large variety of functions for its auxi liary operations
part1/2 and combine, constrained only by the propert,es stated
in SORT-PRIMITIVES. But it can be proved that for all possible
instantiations of SORT-PRIMITIVES (and, hence, for all algor­
ithmic definitions of part1/2 and combine fulfi lling the con­
s t r a i n t s) the so r tal 9 0 r i t h m 0 f SO RT- ALG i sac 0 r r e c t imp le III e n ­
tation of the sort operation specified by SORT-AXIOM.

Now we wi II perform one dedicated instantiation using
SELECTION-SORT-PRIMITIVES CFig.5). I.e. in SORT-ALG we replace
part1 by minList, part2 by allbutmin and combine by append (in­
herited from LIST), thus constructing the selection sort aLgor­
i t h n1 \'1 h i c h can bed e s cri bed as" s e l e c t the l 0 \ol est e Le men t , put
it in front of the List, and sort the rest". This instantiation
C J n b e vie \~ e d a sat y p e 0 fp" 0 9 r a m t ran s for ma t ion c ha ngin 9 the
cl 3 tat y pe. Ho \'1 eve r , i nth ere s t 0 f the pap e r \,1 e s h aLL not tal k
about transformations of \olhole abstract data types, but con­
centrate on the development of the sort operation in SELECTION­
SORT tO~lards an optimized tai L-recursive version.

5

2.2 Semantics

Specifications

A specification is a pair <~,P> where ~ is a signature and P is
a set of formulas and constructive definitions.

~iqnatures, ~-Alqebras

A signature is a pair <S,F> where S is a set of sort symbols,

and F is a family F = (Few,S)) \leSH-SeS of function symbols. For

each sort S there must be an error symbo l errors E FO, S).

'\ L-Algebra A is an algebra with a flat c .p.o. As for every sort

3ymboL s, and for every function symbol f E F(S" _.. ,Sn,5) a

function fA AS 1 •• • Asn ~ As·

T\'10 add i t 1 0 n a l con d i t ion s fil us t h 0 l d :

1.	 err 0 I" S iI () = (,J A s i s the bot tom e l e men t 0 f As.
2.	 ALL fA are continuous. (Since our carriers are flat c.p.o.'s

this is equivalent to monotonic. And a monotonic function is
elther strict or a constant function.)

AlgD:) 1S the category of all 2-Algebras. It is called the
clbstr'act data type denoted by ~.

Formulas

Let r ~ {Pl,P2' .. '} be a set of formulas in first-order predi­
ca~e calculus, using only sorts and functions of L = <S,F>. A
i-algebra is satisfying P if the interpretation of each Pi is
true in A.

Constructive Functors

A constructive definition is a pair <OP,S> where OP ~ {f, ••• f n }

1S a set of recursive equations about these functions:

.f::: {fi = Si [fl··. f n] '-i=1..n}.

The semant~cs of a constructive definition <OP,S> is the functor

sem <oP,s> ALg (L) -? Alg (~-OP)

\'/ her e

'<lA	 E Alg CL-OP) sem <OP,S> CA) ~ A U {f A I f E OP n ~}

where SA OPA ~ OPA is the functional that is
the result of the natural interpretation of S in A with
parameter set OP

and {fA I feOP} is the least fixpoint of SA'
A l-Algebra A satisfies a constructive definition <OP,S> if

sem<OP,s> (A - {fA I f E op}) ~ A

(orrectnpss 01 transformations

A transformation T is a mapping on constructive definitions. It

is correctness preserving if it does not effect the semantics of

a specification, i.e.

ALg <L, P U <oP,s» ~

P, l 9 <L, PUT <0 P'-S >>

ThlS is true if for all L-Algebras A satisfying P the following

proposition holds:

sem <OP,S> (A) ~ sem T<OP,S> CA)
r 0 l l 0 \'1 i n 9 the d e fin i t ion 0 f s e m i t is sufficient to show that
for all ~-ALgebrus A satisfying P the least fixpoint of TCS)iI is
i~rntical to the le~st fixpoint of SA restricted to A.

6

Adding and transforming singLe recursive equations

The restriction just mentioned ensures that adding a new func­

tion to a constructive definition is a correct transformation.

It wi Ll not effect the equations for the other functions. (The

formal proof is omitted here. There is no great idea behind it.)

In the next chapter we wi LL study transformations that modify

only the right hand side of ~ equation. Let it be the first

one, then

S ={ fi =Si [1, ... f nJ i=1 •• n)

is transformed to
J' ={ f 1 =S1 [f ••• f n]} U

{ f; = J'i [t •.• fnJ I i=2 ••• n}

The semantics of each equation fi = Si [f , ••• f n] is a func­

tional, and the semantics of a set of recursive equations is

c 0 [11 P Let e l y d e fin e d bY the s e mant i c s 0 fit s e q u a t ion s • Hen c e the

transformation above is correct if in any algebra A fulfilling

P, the functionals S,A and S"A have the same least fixpoint for

alL interpretations of 12 •.• fn'

nany t ran s 10 r III Cl t ion s 2 t' e c rea tin 9 new operations and are ex­

I) res sin 9 a n 0 l cl fun c t ion -j n t e r ms 0 f the new operations. I.e.

S = {t; = S, If., ... fnJ I i=1 .. n}

i s t t' an s for m(- d t 0

.I' = {f , = S,' [f 1 ••• f n +"\J) u
{f; = S, [f 1 _ ... "f n] \ i=2 ..n} u
{f j = J i l of 1 • • • 'f ('\ + III] I j =n + 1 . . n + m)

\'1 h e I' e 'if j E n + 1 • • n + fll V-j E 2.. n f i l' f j

This transformation is correct if the least fixpoint of Si
restricted to 1, •. f n is equal to the least fixpoint of S. We may
consider S'-S as a functionaL mapping [f , •.• f n + mJ to
[t 1 ' f n + 1 • • .f n + 11\ J. Top r 0 vet het r Cl n s f 0 t~ ma t ion S -?S'c 0 r r e c t \'1 e
III U S t s h 0 t,1 t 11 a t 1 1 i nth e Lea s t fix P0 i n t 0 f S' - S i s e q u a L tot h e
Lenst flxpoint of S1 (for aLL f2 •.. fn as described above).

7

3.	 Unfold-fold operations

There are two major ways to implement program trans­
formations The transformation rules can either be described in
the form of algorithms, which take a given progrum as input and
produce an equivalent one as output, or can be given ClS Cll)

ordered pilir of templates together ~Jith an applicability condi­
tion denoting a conditional production rule. In our program
transformation system both techniques have been employed, the
former for the basic transformations unfold, fold etc., the lat ­
ter for recursion removal (see Chapter 4).
The unfold-fold method has been developed by Burstall and
Darlington [BuDa77]. It provides a small set of substitution
rules as a formal tool for the stepwise refinement of functional
programs.
1.	 Definition:

Introduce an equation for a new function symbol.
2.	 Unfold:

Replace a function application by the body of the applied
function substituting formal by actual parameters.

3.	 Fold:
The inverse operation to unfold. Replace the occurence of a
function's body by an application of the function with the
appropriate actual parameters.

4.	 Using la\~s:

Use an equation for rewriting a term. In our specification
environment the equations are provided by the algebraic por­
tion of the specifications.

5.	 Abstraction:
We may introduce a let-clause abbreviating a subterm of a
definition by a new variable. This is a purely syntactical
operation. It is correctness preserving by its definition.

Definjtion

The introduction of new functions has been handled in the previ­
ous chapter.

Un f 0 l d

A recursive definition is written as
F :: -dFJ

where T[F] is a composition of the function variable F and other
function symbols which are considered as free variables all over
the following proofs. We say that F is less defined than G - FsG
- i f the f 0 l l 0 \'J i n 9 con d i t ion h 0 l d s: 'rJ x : F (x) t 0) -') G (x) = F (x) •
Since F,G are said to be equal - F::G - if for all x they have
the same value or are both undefined, it is clear that

F::G H (FsG ~ GsF)
F is the least fixpoint of the functional T if FT ~ T[F T], and,
f~r any g, 9 :: L[g] implies FTsg.

Given two functionals F :: T[F,G], G - ~[F,G], the result of un­
folding T ~Jith ~ is the definition

F :: L[F,~[F,G]]

Let us define T1[F,G] = L[F,~[F,G]].

To prove the correctness of the unfold operation we have to show

that FT :: FT 1.

8

a)	 F,1 S F, ­
F-e	 - T[F"G~] (F, is fixpoint)

- -d F-c,(f[F-c,Go-]] (Go is fixpoint)

- T1 [F -e,G:;]

I. e • F, i S d fixpoint of T1 • Since F,1 i s the Leas t one, we
have F-e1 '= F, .

b) FT s: FT 1

We wi lL show that P(F"F-c1,G o) holds where
P(F,F 1 ,G) " F s F 1 A F S T[F,G] A G S (f[F,G]
using the computational induction method ([MNV72]). This
method is valid only if (f and T are continuous functionals,
but this is ensured by the semantics of our specification
language.
Starting the induction we hav~ to show P(o,o,o) where 0 is
the never defined function: Since T and (f are continuous this
is true.
Then we must prove
liF,F"G: P(F,F1,G) ~ P(T[F,G],T1[F,G],(f[F,G])
First inclusion:

T1[F,G] - T[F,(f[F,G]] (Definition of T1)
2 T[F,GJ (Ind. Hyp., continuity)

The other two inclusions follow immediately since T and (f
both are known to be continuous.

Given two functions F " T[F,G], G = (f[F,G], folding F with G is
possible only if there is a functional T1 with

T[F,G] = T1[F,(f[F,G]]
The result of folding is the definition

F = T1[F,G]

a)	 F,1 <:=: F,
This proposition ensures partial correctness of folding. When
renaming T1 to T and vice versa it is identical to the state­
ment b) in the previous proof.

b)	 You ma y Loo set e r 111 i n a t ion Iv hen a p ply i n 9 the f 0 l d 0 per a t ion •
But there is a simpLe condition ensuring that this wi II not
happen: (f must be independent of F, i.e.
VF 1 ,F2,G: If[F 1 ,G] - (f[F2,G].
With this condition we can show that F, S FT1 :
F-c1 - T,[F,1,G oJ CF,1 is fixpoint)

- T1[F T1 ,(f[F-c,G,,]] CG:; is fixpoint)
- T,[F-c,,(f[F,1,Go-JJ «f is independent of F)
- T [F, 1 ' G:.,] (cl e fin i t ion 0 f T 1)

I.e. F,1 is a fixpoint of T. Since F, is the Least one we
have F,<:=: F-.: 1 •

Using LC!lo/S

The application of laws is correct if they come from the speci­

fication which is the source of the constructive definition.

Given

- a specification <I,P>

- a formula liX1 ••• Xn t1 (X1 ••• Xn) = t2 (X1 ••• Xn) in P

- and an equation f; = Si (f 1 ,12 •••)

we may substitute t, by tz in Si and vice versa without modify­

i n 9 the se 10 ant i c S 0 f S; i n any L: - Al 9 e bra sat i sf Yi n g P. (Not e ,

t hat by d e fin 1 t ion den 0 t est hest r 0 n g e q U a lit Y wher e (,) :: (,) i s
I ::'

true.)

9

Remark

A quite different approach has been taken by [KoB2]. His work is
based on the algebraic semantics of recursive programs, and con­
tains some interesting results about unfold-fold operations.
Slnce he is considering continuous functions on partialLy
ordered sets as we do, we may apply some of his results to our
pro 9 r a m t ran s for 10 a t ion f r a me 1110 r k :
Consider a sequence of unfolds, foLlollled by appLications ot
l a \./ s, and fin all y s 0 rn e f 0 Ldin 9 s, all t 0 get her mod i t y i n 9 0 n l y 0 n e
recursive equation F ~ T[F 1 ••• F"].
a) If the Last foLding is not using T then the sequence of

t ran s for III a t ion s i s tot all y cor r e c t •
b)	 If the last folding is using T, and this is the only folding

with T in the whoLe sequence, and the number of all unfolds
is greater than or equal to the number of all folds, then the
transformation sequence is correct, too. This proposition is
true onLy if alL functions are strict. FoLlowing the notions
on I-Algebras in chapter 2 this is true, as Long as no con­
stant functions are invoLved in the transformation sequence.

Fxample

Let us have a look on our example now. We start with the defini­
tion of sort in SELECTION-SORT:

sortCL)= i..:L sirnple?(l) then l
else append (sort (rninlist (l),

sort (allbutmin Cl))

All the foLlowing transformations apply only to the term
sortCminlistCl»:

sort (minlist CL»
[unfoLd sort]

= if simple? (minlist(l» then minlist (l) •••
[unfold simple?]

= if (if empty? (minlist Cl»
then true eLse empty? Crest (minlist CL»)) •••

[unfold minlist]
= if (if empty? (put (l,empty))

then true eLse empty? (rest (minList Cl))) •••
[apply lal" Cempty?(put(x,y» = false)]

= if (if false then true else empty? (rest (minlist (l)) •••
[appLy Law (if false then x eLse y = y), unfold minlist]

= if empty? Crest (put Cl,empty») then rninlist CL) •••
[apply law Crest(put(x,y» = y) and (empty?Cempty) = true)]

= if true then rninList Cl) •••
[appLy law (if true then x else y = x)]

= minlist CL)

Hence, this sequence transforms the cascaded recursion (two

recursive calls of sort) into a linear recursion. In the next
chapter we wi II go one step further by converting this defini­
tion lnto ta; l recursion, and use the unfold-foLd method agaln
to simplify the resuLt.

la

L Recurs'ion removaL,u5iD.~cond-~orderpatterns

4 • 1 0v e r vie \·1

Let us start with a classification of recursive functions. A
function is called recursive if it is defined using itself. If
the body of a procedure f contains a term l'j ke f(... f • ••) we
have a nested recursion. The best knovJn example of this type of
r e cur sic n i s the 9 1 - fun c t ion ([r~ NV 7 2]) :

f 9 1 (x) ::: i..i x >1 0 0 the n :< - 1 0 e l s e_ f 9 1 (f 91 (x + 1 1))

If i contains several calls of f and is not nested We call the
recursion cascaded. The definition of sort in Fig.4 shows a
cascaded recurS10n. A recursion that is neither nested nor
cascaded is llnear. C.f. the sort definition that is the result
of the previous chapter. A linear recursion is in iterative form
1f the recursive call is the dynam1cally Last act10n in i' ~

body. Iterative recursions can be translated to Loops in a very
simple manner according to the following rule:

f(xL= iJ.. b(x) th~1J. f(9(X» else hex)

------1-------­
f (x) : = !illil-f. :) (x) 2.2 y.: = 9 (x); h (x)

This transformations, however, can not be performed on the
specification Level, since loops and assignments are not allowed
1n our purely functional language. Indeed, our system supports
the Pascal implementation of algorithmic specificat10ns, and
during that implementation iterative recursions may be replaced
by loo ps. Th u s tt) e 9 e n era t ion 0 fit era tl ve re cur si 0 n s fro m m0 r e
complex functions on the abstract level results 1n programs
\lritten in a procedural Language, and less time and space con­
sum1ng than recursive functions.
[ach recursive procedure can be transformed to an equ1vaLent
non-recursive proc~dure ,)5 any Lisp and Pascal compi ler does.
Th 0 sec 0 mp i l t r Cl e n era t e pro c e d u res , h 0 \'1 eve r , are Lt singas t a c k
10r storing p~rameter v~Lues and return addresses. I.e. the
Pt' 0 iJ r a 10 I S re cur s i v i t Y ism ere l y t ran sf err e d tot h e d a t a s t r Lt c ­
tu re.
But what's about the c Lass of functions that can be transformed
to iterative functions l'lhich lIse only a fixed number of storage
all 0 cat ion s ? (Wa S t 73] ca l l t h 0 S e f LI n c t ion s "f low ch art ab le" unci
s h 0 ~I S 0 me 9 e n e r' a l res u l t s a b 0 u t f low c h art a b i lit Y :
1.	 Each linear recursion is flol~chartBble.

2.	 The g e n era l s c h e 10 e for a cas cad e d re cur s ion 1 5 not
f lowchartab le.

3.	 The f lO\·Jchartabi lity of a given procedure is undecidable.

However, there Jre some critical notions about those results:
- The 9 e n era l r u Let 0 f l 0 vJ C h art l i n ear r e cur s ion s [p a t 7 0] lea d s

to very 1neff~cient calculations. Therefore an implrmentation
u~ing a stuck must be preferred in the general ca5C. Stor1ng
tile return addresses is unnecessary \·}ith linear recut'sions.

- When developing a system for the automated elimination of
recursions it is very important to use knowledge about the
o I) era t 10 n sac cur i ngin a 9 i v e n pro c e cl u re. W~ t h k n 0 1'1 led gel i ke
this it is often possible to flowchart even compL~cated recur­
s 1 0 n s \'1 i t h 0 uta n y s t a c k 0 rat lea s t ~I i t has i '01 n 1 f i can t l Y
smaller one.

11

- A campi ler can implement the stack operations that are asso­
r. i Cl t e ,I t!1 t h a function call. very efficiently b e c a u s ei t can
u~e Machine instructions. Therefore the usaQe of a stack on
the abstract level ,vill increase the efficiency of tile
resuLtlng program only if the stack becomes much sirnplei~ than
the full. compi Ler generated one.

The unfold/fold method can be employed for recursion removal,
too. In this chapter, however, we follow an approach based on
second-order patterns (c.f. [HuLa78]). f\ transformation rUle is
a tripeL <L,X,~'> containing:
- a scheme I denoting the class of programs the rule is applica­

ble to
- a condition X which must be true to make the transformation

semantics preserving
- a scheme l' denoting the result of the transformation.

J, X, I' are terms in a second-order language which is described
in full detai l in [Gerl83]. Using denotationaL semantics we can
pro vet ran s for In a t ion r u l e s cor r e c t by the i n due t j \/ e met h0 cl s
(especially computationaL induction) given ~n [MNV72].
The starting point in the development of our ruLe data base was
the col. I. e c t ion of r u l e s pro v i cl e cl b Y [8 a ~J 0 8 1] for the (I P - L I. a n ­
~JlIage. [Pet83] performed the correctness pt'oofs, found some
generalizations and brought the rules together in a production­
rule like, though semi-formal representallon. [Geiss84J adapted
these rules to our specification language ASf' IK and put tI!efll
i n t 0 a for ma l net ,-I 0 r k rep res e n tat ion (s e e bel 0 "I) s. t. i t 1 spa s ­
slble now to perform these transformatlons automatically In our
specification environment.

Our knowledge base contains ruLes for the simplification Gnd
e l i mi n a t ion 0 f l i n e a l' , cas cad e cl () n d n est e d r c cur s ion s • 1. nth e
appendix we show the complete set of rules for eliminatlng
linear recursions. The rules for cascaded and ()ested recursion,
however, are not presented here since they are rather comp~ex

(see the papers cited above for all detai ls).
There are several rules known from Literature which are not part
of our knowledge base:
1.	 [Ar79], [Au78], [Bi77] and [R08D] are based on procedural

languages, [GaLu], [PaHe70] and [St71] use flovlchart~~ as the
go a l "l an 9 U i'l 9 e". So the y are 0 ut s i cl e the s cop e 0 f 0 u r 1 n t t:' r .­
est.

1'.	 Special transformation rules for arithmetic functions havf:
been developed by [PaPe76] and [Hi79] Llnd al'f: a topic for our
future wOt'k.

3.	 The first rules for recursion removal were published in
[(066]. He investigated the ideas being the background of the
rules pertaiming to llnear recursion.

4.	 A program that automatically transforms some classes of
recurSlve LISP-functions lnto non-recursive ones is described

in [Ri73J. His transformations can be viewed as in­
stantiations of the general rules described here using the
semantics of special LISP-functions.

12

4.2 ExampLes

The following two examples ~Ji II demonstrate the transfor­
mation method described above. T~e first example wi Ll give an
idea how functions with more than one parameter are handled.
The function to be transformed is very simple:

x*y = li yta
then x+(x*(y-1»
e l"e 0

And here is the appropriate transformation rule:

F (m) B(m) then $U(k(m»,E(m» else H(m)= i.1.

i 3WVr,s,t: $(W(r,s),t) = W(~(r,t),s)

/\ 3cVm: H(m)=c /\
<!>(c,m) = WCc,m)

F(m) = G(m,c)

G(m,n) = it B(m) then G(K(m), W(n,E(m») else n

The variable bindings for t his example are:
m --). x,y
F --). *
B --). AUV. vtO
<D ~ AUV. v +u
K --). Auv • u, ,\ uv • v-1
E -7 AUV. 1I

H ~ Auv. D

And we see that the conditions are fulfi lled for <Il=W and c =0.

Hence we gain the iterative result

x*y = G(x,y,O)

G(x,y,n) = if yta

then G(x,y-1, x+n)
~n

Remarks:
1.	 The reader should not be co~fused about the mixture of infix

and prefix notations. The transformations are performed on an
internal representation which is prefix, but the user can
communicate with the system in the mixed notation via a
sophisticated interface.

2.	 B, <Il, K, E and H are second-order variables. Hence their
values are A-terms, denoting functions.

3.	 The variables m and K are so-called "multivariables" (in­
troduced in [Gerl83]) which can bind multiple values,
separated by commas in the table above.

4.	 Remember: In a procedural language the result can be ex­
pressed using loops. i1any campi lers perform that last trans­
formation step automatically.

The second example continues the development of the selection­
sort operation. The result of chapter 3 was:

13

so r t (l) = .i.1. si mp Le 'I (l) the n L

else append (minlisHl), sort(allbutmin (l»)

This is a linear recursion that can be eliminated using the
follo\ving rule:

F(m) = it B(m) then ~(F(K(m», E(m» else H(m)

-1- Vr,s,t: ~(~(r,s),t) = ~(r,~(s,t»

I\. 3e'u'r: (j)(r,e) = r

F(m) = G(m,e)
G(m,n) = it B(m) then G(K(m), ~(E(m),n»

elst. <!lCHCm),n)

Here ~ matches append which is known to be associative and to

have empty as a neutral element. So we may apply this rule, and

gain an iterative version of sort:

sort(l) = sort1(l, empty)

sort1(l,K) = it simple?(l) ~ append(K,l)

f...1..g sort1(allbutmin(l), appendCK,minlistCl»)

Remarks:
1.	 The rule application module contains a normalization

procedure. Among other tasks it must transpose the condi­
tional branches of the input function when the recursion is
in the else part, and perform the inverse operation on the
result.

2.	 The algebraic knowledge about the function append comes from
the specification LIST (Fig.2) _ Thus the rule application
module has direct access to the specification environment.

3.	 The unfold/fold method can be used again for a further
optimization of the sort1 definition above by transforming
the else-part. Unfolding allbutmin and minlist and
abstracting minCl) yields:

sort1Cl,K) = U simple'l(l) then append (K,L) eLse

kI. m= min(l) .i!l

sort1CallbutoneCl,m),

appendCK,put(m,empty»)

4.3 The Correctness of Second-order rules

Let us describe a second-order rule by a tupel <~, ~', p> where

- ~ is a recursive equation

- p is a logical formula

- ~' is a set of recursive equations.

~, ~' and p contain first-order and second-order variables. A

substitution is a mapping from variables to terms and A-abstrac­

tions. Performing a substitution ~ on a recursive equation ~

means substituting all variables and evaluating applications of

A-abstractions. (A formal treatment of second-order substitution

and III a t chi n9 has bee n per for rn e din [G e r l 83])

Applying a rule <~, ~', p> to a specification <L' P U {<OP,~»>

is defined as follows:

1.	 Find a substitution ~ s.th. there is a recursive equation

f , - S ; [f 1 ••• f n] ins e q u a I. t 0 GqJ' and GP can bed edue I" d

14

from P.
2.	 Replace {c} in ~ by ~', and extend OP appropriately.

According to the general considerations of chapter 2 this trans­
format,on is correct if
1- {f J I 3Si: fj - SiC •••] E ~.) n OP = {f;)

i.e. only f; is redefined
2.	 f; in the least fixpoint of c~' is equal to the least

fixpoint of ~

To prove the correctness of a transformation rule we have to
show that for all variable bindings the least fixpoint of ~ is
equal to the corresponding component of the least fixpoint of
~'. (The first condition above can be ensured by a generator
mechanism, and is only a technical issue.)

Examnle

The following well-known rule CCBaWo81],[C066]) transforms a

class of linear recursive functions to tai l-recursive defini­

tions:

~ = f(m): ii m~c then ~ CfCkCm), E(m)) else HCe)

p = Vr,s,t: $($Cr,s),t) = ~($Cr,t),s)

q)'= {f(m) ::: gem, H(c»,

gCm,z) : ii mte then gCKCm), ~(z,E(m» ~ z)

We can apply it to the square function:

sqCx) : ii x~1 then C2x-1)+sq(x-1) fJ~ 1

with the variable bindings

f ~ sq, m ~ x, c ~ 1,

$ ~ AUV. v+u, K ~ Au. u-1,

E ~ Au. 2u-1, H ~ Au.u

The condition p is the commutativity of + in this example. The

transformation result is

{sqCx) - gCx,1),

gCx,z) - i1. x~1 then g(x-1, C2x-1)+z) ~ z)

The semantics of '=' used above is the weak equality, i . e •
Coo=oo) ::: 00 to ensure that the defined functions become con­
tinuous. And the semantics of i1. is defined as usual:
iJ.. true then a else b - a
i1. false ~ a else b : b
i1. (,) .t hen a ~ b ::: (,)
where a and b may be any defined value or w.

NOIiI \~ e wi II prove the correctness of the rule using computa­
tional induction on the predicate Q:
OCf,g) - Vm: fCm)=g(m,HCe)) A

Vr,s,t: $(gCr,s),t)=gCr,OCs,t»)
We want to show that Q(f~, g~') holds where f~ is the least
fixpolnt of 9 and g~' the least fiypoint of the second equation
o f ~ I.

a)	 0(0,0):

This is true because all functions are supposed to be
rnonotonic.

b)	 ilf,g: QCf,g) ~ Q(~[fJ, ~'[gJ)

rirst equation

epCf]Cm)

[Definition of ~]

= if mte then ~CfCK(m)), E(m)) else H(c)

15

[Induction hypthesis, first equation]

::: if m~c then 0CgCkCm), HCc», ECm» eLse HCc)

[Induction hypothesis, second equation]

::: if mtc then gCKCm), ~(HCc), ECm») else HCc)

[Definition of cp']

::: cp'[gJCm,HCc»

Second equation
<!)(cp' [gJ Cr,s),t)
[Definition of cp']
= 0Cif r~c then gCKCr), 0Cs,E(r» else s, t)

[Semantics of if, monotony of ~J

= if riCc then ~CgCKCr), (j)Cs,ECr» ,t) eLse (j)Cs,t)
[Induction hypothesis, second equation]
= if riCc then gCKCr), $C0Cs,ECr»,t» else $Cs,t)

[Condition pJ
= if rtc then gCK(r), 0C(j)Cs,t),ECr») eLse 0Cs,t)

[Definition of cp']
= cp'[g]Cr,(j)Cs,t»

. / .
The first equation of the predicate Q impLies the correctness of

the transformation rule:

\fm: f<pCm) = 9'P'Cm,H(c» ::: fcp'(m) [Definition of 'P']

4.4 KnowLedge Representation

How to represent the rules in the transformation system? One
could think of writing a production rule system in a straight
forward manner, but this is not the best way for the following
reasons:
1.	 We must minimize the number of matches being performing

during a transformation since our terms contain second-order
variables. Matching a definition and a second-order pattern
takes typically one seconc! of CPU time.

2.	 The table of transformation rules shown in the appendix ex­
hibits the inherent structure that should be exploited during
the transformation process.

3.	 Side effects have to be performed when transforming a defini­
tion Cgenerating new names for auxi liary functions, creating
data types for stacks and tupels). This can be expressed more
naturally in a procedural framework.

Hence, we use a procedural network for the representation of our
rule data base. The nodes denote states during the application
of a transformation, the arcs are labelled with the tasks to be
performed during a transformation ste~, c.f. matching terms,
testing conditlons or creating the result.
The formalism has been taken from Wood's Augmented Transition
Networks [Wo 70J, but we use only the syntactical frame. Some
concepts essential for ATN processing, as consuming an input
stream, and the recursive call of subnets, have been omitted in
our implementation Cin ATN terminology: we have only JUMP arcs,
and the input is given as an initial register setting). However,
the concept of registers - setting a register on one arc and
using it ~Jithin an other - has heavi Ly been used.

16

1he syntax for a network is quite simple:
net Cstate*)
s tat e (n a III ear c *)
arc (condition action* goal)

The arcs' components have been developed for our specific
purposes. Important conditions are:
- matching a register's value with a second-order pattern. As a

side effect the variable bindings resulting from the matching

process are stored as register values.

calling a deduction component to prove a proposition, or to

solve an existentially qualified equation.

- testing for any other property of register values (with the
full pOI·/er of LISP).

Actions are:
- generating new names for variables or auxi liary functions,

creating data types (specifications) for stacks or tupels
- generating parts of the final result

The goal of on arc "'" '" ..
- either the name of the state where processing must continue

or a pattern made of register names and constants, denoting
the final result of the transformation.

Fig.6 shows a cut of the net\~ork in the internal representation
just described. By convention, processing starts with the first
state (INIT), the definition to be transformed is assumed to be
the value of the register INPUT. The names of variables cor­
respond to their type: The number of Leading I? expresses their
order, the '*' afterwards marks multivariables.

Algorithms

A second-order pattern matcher is described in [Gerl83]. It
elaborates [HuLa78] in the way that multivar;ables (see above)
are handled, and some heuristics have been incorporated to
ensure that in most cases the desired variable bindings (which
may be one of several possible matches) are found first.
Before matching we have to normalize the input. It has the
f 0 L l 0 III i n 9 e f f e c t s [G e i s s 8 4] :
- If there are several recursive calls in mutually exclusive

conditional branches we can replace them by one recursive call
putting the conditionalization into an auxi liary function.

- Recursive calls are moved from the else- to the then-part by
negating the condition

- Each "Let" surrounding a recurs~ve call is replaced substitu­
ing the bindings

- Each "Case" is replaced by equivaLent conditionalizations

Checking conditions performed in different ways:
Searching specifications for appropiate algebraic properties

- Accessing a knowledge base specific for the program transfor­
mation module. Of course, we must ensure the consistency of
this knowledge base and the specification environment.
Deducing the desired properties using the unfoLd/fold tech­
nique (chapter 3)
Proving the condition via the automated theorem prover ([KA
84J). However, this is only possible for first-order proposi­
tions.

17

(UNIT
(MATCH «?F ?*M)

(IF (??B ?*M)
('1'1PHI PF (?'1*K ?*M))

P?*E ?*M)
(? '1 H ? * r-l)))

INPUT)
(TO LIN)) •••)

(UN
«EQUAL ??*E ())

(SETV ?'1PSI ??PHI)

(TO LIN-(OMMUTING))

«AND	 (NEWVARS '1R 1)

(NEWVARS ? S (LENGTH ?"*U)

(NEWVARS '1T (LENGTH '1?*E»

(EX ??PSI ALL ?P ?S ?T

(??PHI (??PSI ?R ?S) ?T) =

(??PSI (??PHI ?R ?T) ?S»)

(TO LIN-COMMUTING)) •••)

(UN-COMMUTING

«EX ??(ALL ?*M

(AND (??H ?*M) = (??O

(??PHI (??() ?*r,'I) = (??PSI (??() ?*M)))

(GEN-OP ?F1 (SORT-OF ?*X)(SORT-OF ?F)(SORT-OF ?F))
(GEN-VAR ?Xn
(RETURN «(?F ?*X)

(?F1 ?*x (??C))

«?F1 ?*X ?X1)
(IF (??B ?*X)

(?F1 (??*K ?*X)
(" ? PSI ? X1 (?? * E ? *X))
?X1»»»

• • • ••	 »

Fig.6: A cut of the network representation

18

5. Interfaces

The program transformatlon system described in th-is paper is a

part of the specification system SPESY ([BGGORV84], [SoB4],

[Ma84]). SPE=SY includes the follol'Jing facilities:

- A database for ASPIK specifications, procedural programs

I,}ritten in r10dPascal [Olt84]" and maps Ci.e. relations)
between those objects

- Syntax-oriented editors for specifications, ModPascal progralos
and maps
Access to tools for validation and verification: Symbolic in­
terpreter for specifications, automated theorem prover,
r e \~ r i t e I' u l e l :J b 0 , a tor yet c •

Th 1 S S Ys t e m h Cl S I) e end eve lop e din In t e r lis p 0 n a l a r get i me ­
sharing computer prr,viding only a simple t~letype illterfuce.

The program trClnsformution module is entered by typing

PT <specnamp>

Then you are alloved to manipulate the specification with the

given name via the follOWing commands (implemented by [BeWo84],

except ELIM):

FOLD, opidl, opld2, n

Replace the nth occurrence of the body of opid2 in the defini­
tion of opidl by an application of opid2

UNFOLD, opidl, opid2, n
Heplace the nth occurence of an application of opid2 in the
clr:finition of opid2 by the body of opid2

BIN D, 0 I) -i d, v Cl r =t e r m
AI) S t t' ,] c t 1 0 n : Ins e r tal e t - c l a use i nth e d e fin i t ion of opid,
Cl !) I) rev I Cl tin g t e ;' m by v a r .

UNBIND, opld, V3,

UI1LlI)st,acl:loll: Remove the Let-clause binding var.
SHOWLA0S, opid1, op1cl2

L,st all C'Cluatlons thut 1. are valid in the current specifi ­
catlon envlronment, 2. contain opid2, 3. match any term inside
the definition of opicll. Mark each of those equations by a
U!l 1 Cl LI e n u i!l b er.

USELAI), opiLiJ ny
Apply the equation with number l to the nth matching subterm
of the deflnition of opid

EL Hl, 0 P i cl
Transform the definition of opid to tai l recursion using the
ro e t h 0 cl s des c ri \) e din c h apt e r 4. This cam In and maye rea ten e I')
f LI n c t 1 0 n s, 0 r III cl yha v e n 0 e f f e c tat all if none of the ovai la­
bLe rules iJpplies.

We want to stress the experimental character of program trans­
for fll a t ion s. I. e. 0 n e doe s not know ~} het her a s tar t e d s e que n c e 0 f
l rail s f 0 , fl1 uti 0:, s wiLL Lea d t 0 a S iJ t i s f act 0 r y res u Lt. Soy 0 u wan t
to be able to undo transformations, or to restart the transfo,­
mahon process at any earlier stage of the development.
Ue -implemented this facility by storing all versions of all
t , an s for 10 e d fun c t -i 0 n::; s. t h • for eve r y fun c t ion the r e 1 s a his ­
tory list contalnlng all the versions of that function. There is
an "actual version" defaulting to the nel,}est, but there are com­
I1lAnds to let another version being the actual one. The transfor­
milt 1 0 n c 0 ml!l a n cl s a b 0 v e a L\'1 a y s t a k e the act LI a l v e r s ion s cl ~; the i r
1nput, and .lppend their result to thE- end of the history list.
Aft e , '.'} a r cl s the t r 3 n s for 111 a ti 0 n ,e s u l t i s the n e ~J i.l C t U ,J l v e r s ion •

19

There is a quite different implementation of a program transfor­
mation system ([Ste83]). It is a standalone system, i.e. the
a L9 0 r i thin i c de fin i t ion san d e q u a t ion s don 0 t co me ft' 0 m the
specification environment SPESY, but are created withln the
I) r 0 g r a m t ran s for ma t ion s y s t em. Its ma i n t ask I·j ,J S toe x plo r e the
po s sib i lit i e s 0 f ma n -1,1 a chi ne i n t era c t ion us i ngad v Cl n c e dinput ­
output devices: A bitmap-display, highly sophisticated system
5 0 f t I,j are for d i v i din g the s c r e e n i n t 0 d; f fer e n tin t era c t 1 0 n
areas (windows), and the mouse, a device for select1ng items
d-Isplayed on the screen, e.g. starting commands by pointing at
the i r n a [11 e s •
The screen contains the following windows (Fig.?):
- A menue of prepared examples
- The menue of the avai table commands
- A menue of several help faci titles
- The main interaction area showing the already defined func­

h ons
You may enter commands in two different ways:
a) Prefix order: SeLect a c 0 [11 ma ndf r 0 m a men u e , then select the

arguments for this commands.
b) Postfix order: SeLect a term to be modified, then seLect the

t y p e 0 f t ran s for [11 2 t ion •
TI·j 0 l~ X a mp le s :
a) Select the unfold command, then point to the function call to

be unfoLded, or
b) select a function call in the definition window. Then a small

t em po r i3 r y I,j i n d 0 I~ a p p e iJ r S 0 f fer i n Q 0 per a t ion s l: hat ma y be iJ I) ­

plied to t h t se lee t e d term: Folding, u n f 0 l cl 1 ng, a b s t r cl c t 1 0 n
et c •

Not e t hat the UNF0 L D C 0 mmand i nth e fir s t imp l e [11 e n tat ion has
three arguments. In the screen oriented interaction mode, how­
ever .. one argument is enough: Se lecting a term from the sreen
uniqueLy determines the three arguments necessary \>Iith the
teletype interface.
This prototype implementation of a program transformation system
has shown the advantages of an integration of screen-orlented
editing and formal program transformation. AdditionalLy, the 1111­
portance of ergonomic issues Cc.f. [Ba83J) has been confirmed.
The quality of the user interface is essential for the
efficiency and acceptance of any software development system.

20

EQ
UR

LI
TY

OF

TR

EE

FR
ON

TI
ER

S
FA

CT
OR

IA
L

FI
8m

m
cC

I
FR

ON
TI

ER

OF

A
 T

RE
E

LI
ST

R
E
\
!
E
~
5
E

SC
RL

RR
 P

RO
DU

CT

SU
M

RN
D

SQ
UR

RE
S

OF

LI
ST

S
TR

BL
E

OF

FR
CT

OR
IR

LS

TR
EE

OP

ER
RT

IO
NS

1
~
~
~
S
r
O
~
r
.
n
I
I
O
~

~
U
l
E
S
:

D
EF

H
iIT

IO
N

IN

5T
A

fH
IR

TI
O

N

UI
'IF

OL
 D

IN
G

FO

LO
Hl

G

RB
ST

RR
CT

IO
N

UN

AB
ST

RR
CT

IO
N

RP

PL
Y

L
m
~

R
E
O
E
F
H
!
I
T
I
O
I
~

N

.

D
EF

Ifi
E

LR
W

DE

LE
TE

LR

W

DE
LE

TE

FU
NC

TI
ON

DE

LE
TE

RL

L
EQ

UR
TI

ON
S

PR
OT

OC
OL

or
~

PR
OT

OC
OL

OF

F

W
F

rX

PR
EF

IX

.'.
T

I

n
E

 i..
.
~

:

TR
RN

SF
OR

M
RT

IO
N

RU
LE

S
EX

RM
PL

ES

EX
I3

TI
N

G

LR
W

S
_

YO
UR

OW

N
D

EF
IN

IT
IO

N
S

TR
R5

Y
PR

IM
ER

»
';'

o
u

h

a
ll
e

d
~
f
l
n
e
d

th

e

fo
ll
o

w
in

g

fu
n

c
tl

'l
n

s

FI
E

'l
:

(F
IB

g)

1 F
IB

2:

(F
IB

1

)
1 F

IB
3:

(F

IB

(X

•
2

))

-=

((
F

IB

(X

+

i)
)

+

(F
IB

X

))

EU
RE

kA
:

(G

X
)

-=

((
F

IB

(X

+

1)
)

(F
IB

X

))

G
l

:

(G

g

)
­

((
F

IB

(0

+

l)
)

(F
IB

0

))

G
2:

(G

0
)

-=

((
F

IB

(1

•
g

))

(F
IB

0

))

G
3:

(G

0

)
-­

((
F

IB

1)

(F
IB

0

))

G
4:

(G

0)

-­

((
F

IB

1)

1)

G
5:

(G

0)

(1

1)

IN
ST

A
N

TI
A

TI
O

N

»
In

~
h
i
c
h

FU

N
CT

IO
N

sh

al
 I

I

in
st

a
n

ti
a
te

:
EU

RE
KA

»

Th
e

V
A

RI
A

BL
E

to

in
st

a
n

ti
a
te

i
~
:

X

»

Th
e

VA
LU

E
to

in

se
rt

fo

r
th

e
V

A
RI

A
BL

E
X

 i
s:

(x

+

1)

»

T
~
D
e

in

a

n
a
~
e

fo

r
th

e
RE

SU
LT

IN
G

FU

N
CT

IO
N

or

ty

pe

[R
ET

U
R

N
]:

F
ig

.?
:

A
 p

ro
g

ra
m

tr

a
n

s
fo

rm
a
ti

o
n

in

te
rf

a
c
e

6. CODC LusioQ

The specification language ASPIK sketched in this paper provides
a uniform framework for both algebraic properties and algor­
lthmic definitions. Thus it provides an appropriate base for
pro 9 r a m t ran s for III a t ion s wh i c h a l \,1 a y s r e l y 0 n a l g e bra i can d
algorlthmic knowledge. A program transformation system has been
implemented which employes the unfold-foLd-method as well as the
application of conditionalized second-order production rules.
Both concepts may be combined arbitrari ly thus providing a
powerful development tool. The embedding ln the specification
environment guarantees that those transformations wi LL not
clestroy the correctness of the manipulated algorithms.

22

Appendix: RuLes for eLiminating Linear recursion

The general pattern for linear recursive functions is

Fex) = i.!.. sex) ~ l!>(F(K(x», E(x» else H(x)

The arities of the admissible functions are:
F: A,	 ••• An ~ S
B: A,	 ••• ,\n .". booL
0: S l)1 ••• l)m ~ S
K: A, ,\n ~ ,\, An
E: '\1 ,\n ~ ()1 ()m

H:'\1 An ~ S

The rules (see Fig.B):

1 .1 31.lr: S l) 1 ••• ()m ~ S
l!>(W(r,s),t) = W(l!>(r,t),s)

This incLudes the simple case m=O: l!>(l!>(r» = l!>(l!>(r»

1.1.1	 H(x) :: const. :
F(x) = F1 (x,const)
F,(x,y) =.i1. Sex)

then F1 CK(x), WCy,ECx»)
e l se y

1.1.2	 Sex) := xtconst
FCx) = F1 Cx,HCconst»
F 1 as 1.1.1

1.1.3	 F(x) = F1Cx,F2CX»
F2(X) = if Sex) then F2(K(x» else H(x)
F1 as 1.1.1

1.2 m=1 A 3l.!r: l!>C<!JCr,s),t) = l!>Cr,l.!rCs,t»
W: ()1	 ()1 ~ ()1

1.2.1	 $:=W A 3e Vx: <!J(x,e) = x
F(x) = F 1 (x,e)
F 1 (x,y) =.i.1. sex)

then F1 CKCx), l!>CE(x),y»
~ (j)CHCx),y)

1.2.2	 F(x) = if Sex) then F1 CK(x),E(x» else H(x)

F1 (x,y) = iJ. Sex)

then F1(K(x),·W(E(x),y»

~ l!>(H(x),y)

1.3 3R : RCK(x» = x

1.3.1	 sex) := xtconst
FCx) = F1 (const,HCconst),x)
F 1 (x,y,z) = i1. xtz

!...b.r.n. F1 (R(x),l!>(y,E(R(x»),z)
e l s e z

1.3.2	 F(x) = F1(F2(X),HCF2(X»,X)
Fz(x) = it sex) then F2CKCx» else x
F1 as 1.3.1

23

1.4 Fex) :: gJ;,. <5,Y> = F1 (x,eOlpty) iD.
F2(S,Y)

F1 (x,s) :: iJ. B(x)

then F1 (K(x),push(s,x»

eLse <s,H(x»

F2(S,y) :: i1 ~empty(s)

then F<CpopCs),<!>Cx,ECtopCs»»

~x

The variabLe s is of type A-stack with the foLlowing operations:

empty: ~ A-stack
pus h	 : A-s t a c k A1 ••• An ~ >.. -s t a c k

pop
: A-stack ~ A1 ••• An
empty~: A-stack ~ booL

<.,.> is a tupling operation with arity

A-stack S ~ A-stack-s-tupel

1 .1
has commutative

1. 2.1
<l> has	 neutral

1 .2
has associative-- <l>1.2.2 ______

eLse ­
(two conditions)

1
Linear R.

1 .3.1

B is inequaLity

1 .3
has inverse

------------ K1 .3.2
e Lse	 ------------­

(two conditions)

1 _4
eLse

/
(stack and two loops)

Fig.B: The decision tree for Linear recursion

24

Bibliography

[Ar79] Arsac, J.:
Syntactic Source to Source Transforms and Program Manipu­
liJtion.
In: (A01 ~2,1 (1979), PP.43-53

[ArKo82J ArSnC, J., Kodratoif:
Some Tecbniqlles for Recursion Removal from Recursive Func­
tions.
In: ACM Tr. on Prog. Lang. and Systems, Vol.4, No.2, Apri l
1982, pr.295-322

[Au78] Auslandcr, M.A., Strong, H.R.:
SystemiJtic Recursion Removal.
In: CACM 21,2 (1978), Pp.127-134

[Ba 7 6] Ba Lz er" R., G0 Lcl man, 1'1 ., Wi Le, [).:
On The Transformational ImpLementation Approach To Program­
mi ng .
In: Proc. of the Second Int. Conf. on Software Engeneering,
1976

[8a79J Sauer, F.L., Broy, M., Partsch, H., Pepper, P.,
W~ssner, H.: Systematics of Transformation Rules
In: Rauer, r.l., Broy, M. (Ed.): Program Construction,
Spr'in~JL'r 1979

[8a83J BaLzert, H. (Ed.):
Softwnre-Ergonomic.
Teubnfr Verlag, Stuttgart, 1983

[BaW~81J Sauer" F.L., W~ssner, H.:
AlgorithMic Language and Program DeveLopment
Spr1nger, New York, 1981

[BeK084J Beeker, R., Koch, P.:
I III P l e rn e n tie run g e i n e s Pro 9 r a mmt ran s for ma t ion s mod u Ls fUr e i n
Sp e z i f i kat ion ss y S t em.
Studienarbeit, FG Informatik, Universitaet Kaiserslautern,
1984

[BeVoi.U] Beierle, Ch., Voss, A.:
Canonical Term Functors and Parameterization-by-use for the
Specification of Abstract Data Types.
SEKI-Projekt, MEMO SEKI-83-07, University of Kaiserslautern,
FBIn for f11 a t i k, 1 9 83 .

lBi77J Bird, R.S.:
Notes on recursion elimination.
CACM, Vol.20, No.6, PP.434-439
NeH York, 1977

[BuDa77] BurstalL, M., [)arlington, J.:
A Transformation System for Developing Recursive Programs.
in: Journal of the ACM.
Vol.24, No1, January 1977. PP.44-67.

[BGGOr.V3 /+J Bt'ierLe, Ch., Gerlach, M., GC5bel, R., Olthoff, W.,
Raulefs, P., Voss, A.:
Integrated Program Development And Verification.
1n: 11. l.. H<lusen (eeL): Symposium on Soft\'lare Validation,
North-Holland PlIbL. Co., Amsterdam 1984.

[BGV33J BeierLe, Ch., Gerlach, M., Voss, A.:
p a I~ a In e t er i 7. at i Cl n \'1 1 t h 0 LI t P a ,. a met er sin: The His tor y 0 f a
Hlfrarehy of Specifie~tions.

SEKI-Projekt, MEMO SEKI-83-09
UniversicY of KaisersLautern, 1983.

[BroPe81] Broy, N., Pepper, P.:
Pro 9 t- a 111 /) " vel 0 p men t a s a For ma lAc t i v i t y •
In: IEEE Transactions On Software Engineering.
Vol. SE-7. No.1, January 1981. pp.14-22.

2S

[C066] Cooper, D.C.:
The ~quival~nce of certa~n computat~ons.

In: Comput~ng Journal.
9/1966. pp.45-52.

[DaBu73] Darlington, J., BurstaLL, R.M.:
A System which Automatically Improves Programs.
In: Proc. of the 3rd Int. Conf. on Artificial Intelligence,
·1973

[Fe8;~] Feather, M.S.:
A System for Assisting Program Transformation.
In: AU1 Tr. on Prog. Lang. and Systems, Vol.4, No.1,
January 1982, pp.1-20

[GaLu72] Garland, S.S., Luckham, D.C.:
Translating Recursion Schemes into Program Schemes.
In: SIGPLi\N Notices, Vol.7, No.1, 1972

[Geissd4] (;~issLer, Ch.:
MARE - Method~schcr Ansatz der Rekursions-El~minat~on,

SEKI-Proje~t, MEMO SEKI-84-11
Lln1versity of Ka~serslautern, 1984

[Gerh7S] Gerhart, S.L.:
Correctness-Preserving Program Transformations.
In: Con1. Record of the Second ACM Symposium on Principles
of Prog. Lang.
PaLo Alto, 1975

[GerL83] Cer·Lach, M.:
A Second-Order Matching Procedure for the Practical Use in a
Prograrll Transformation System.
SEKI-Projekt, MEMO SEKI-83-13
University of Kaiserslautern, 1983

[Hi79] H,kita, 1.:
On a class of recursive procedures and equivalent iterative
ones.
Acta Informatica, No.12, pp.30S-320
Springer, London, 1979

[HuLa78] Huet, G., Lang, B.:
Proving and Applying Program Transformations Expressed with
Second-Order Patterns.
1n: Acta Informatica 11, pp.31-55, 1978

[KA84] KARL MARK GRAPH
The Markgraf Karl Refutation Procedure.
SEKI-Project, MEMO SEKI-84-01,
University of Kaiserslautern, 1984.

[K082] Kott, L.:
Unfold/Fold Program Transformations.
Rapports de Recherche No. 155,
INRIA, Le Chesnay Cedex, France, 1982

[L077J Loveman, D.8.:
Program Improvement by Source-ta-Source Transformation.
in: JACM 24,1 (1977), pp.121-145

: Mex 8 4] ~, a the is, H.:
":ir"\ interaktives und syntaxorientiertes Eingabesystem fuer
~! l;Jebrai sche Spezi f i kationen, Band I •
.., E,~ I - Pro j e kt, r1 Er~ 0 SEKI - 8 4 - 03 - I
University of Kaiserslautern, 1984

[MNV72J Manna, Z., Ness, S., Vuillemin, J.:
Inductive Methods For Proving Properties Of Programs.
in: Proc. of an ACM Conference on prooving assertions about
programs. SIGPLAN Notices Vol.7, No.1, 1972

[Ma Vu 72 J ~, ann a, Z., Vu ill e nl in, J.:
F1xpoint Approach to the Theory of Computation.
In: CACM 1S,7 (19729, PP.529-S36

26

[Olt84] Olthoff, W.:
ModPasca l Report.
SEKI-Projekt, MEMO-SEKI-B4-9,
University of Kaiserslautern, 1984

[PaHe70J Paterson, M.S., Hewitt, C.E.:
Comparative Schematology
Re cor d 0 f I) r 0 j e c t MAC
Conference on concurrent systems and parallel computation,
pp.119-128
ACM, New York, 1970

[PaPe76] Partsch, H., Pepper, P.:
A Family of Rules for Recursion Removal.
In: Information Processing Letters,
Vol.S, No.6, 1976, pp.174-177

[Pat70J Paterson, M.S., Hewitt, C.E.:
Comparative SchematoLogy.
in: Conf. Record on Concurrent Systems and Parallel Compu­
tat i 0 11 S, A CM, 1 9 70

[Pep81J Pepper, P.:
On Program Transformations for Abstract Data Types and Con­
cur rei, c y .
Report. No. STAN-CS-81-883, Stanford University,
October 19131

[Peti33] Petersen, U.: ELimination von Rekursionen.
SEKI-ProJckt, MEMO SEKI-83-10
University of Kaiserslautern, 1983

[Ri73] Risch, 1.:
REMREC - A program for automatic recursion removal in LISP.
Memo. DLU 73/24, University of UppsaLa, 1973

[Ro8D] RohL, I.S.:
The eliminatlon of Linear recursion: a tutoriaL Proceedings
of the 3rd AustraLian Computer Conference, 1980

[Sm83] Sloith, D.R.:
A Problem Reduction Approach To Program Synthesis.
in: Proc. of the 8th Int. Conf. on Artificial IntelLigence,
1983.

[S084J Sommer, W.:
SPESY Ein interaktives System zur Unterstuetzung in­
tegrierter Programmspezifikation und -verifikation. Band I.
SEKI-ProjeKt, MEMO SEKI-84-02-1
University of KaisersLautern, 1984.

[Str83J Stenger, B.:
Ei n i n t e I' a k t i v e s Sy s t e m z u r Tran s for ma t ion v 0 n Pro g r a mmen •
Studienarbeit, Fb lnformatik, Universitaet KaisersLautern,
1983

[St71J Strong, H.R.:
Translating Recursion Equations into Flow Charts.
in: JounLil of Computer and System Science, Vol.5 (1971),
pp.254-285

[VeLo80J Veloso, P.A.S., Lopes, M.A.:
Sorting Gy Divide-And-Conquer Data Types:
An Example Of Problem-Solving
in: VII Coni. Latinoamericana de Informatica.
Caracas, 1980

[WaSt73J \.JaLker, S.A., Strong, H.R.:
Characterlzations of Flowchartable Recursions.
In: Journal Of Computer And System Science 7,
pp. 4 0 4 - 4 (. 7, 1 9 7 3

[Wi76] Winterstein, G.:
Unificahon in Second Order Logic.
Internal Report, University of Kaiserslautern, March 1976

27

[Wo70] Woods, \.J.A.:

Netzwerkgrammatiken fUr die Analyse natUrlicher Sprachen.

in: Eisenberi], P. (Eel.): MaschlneLLe SprachanaLyse I, 1970,

pp.98-136

28

