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Abstract

Program transformations need a uniform framework for expressing
algorithms as well as algebraic properties. In this paper we
present the embedding of program transformations in a software
specification system. We demonstrate the methodology by
developing a sorting algorithm towards more efficiency, and show
how the semantics of the specification language 1s the
foundation for proving transformation rules correct. We are dis-
cussing theoretical aspects = the correctness of transformations
- as uwell as technical issues, e.g. two kinds of user interfaces
to a program transformation system.
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1. Introduction

Program transformations are a tool to develop reliable

software: starting with well-understood high-level programs we
get low=Llevel programs correct w.r.t. the high=-level programs.,
supposing the transformation 1tself 1s correct. This approach

contrasts with wrating programs on different Llevels using an
ecditor, and proving the correctness afterwards. Both methods are
complementing each other according to the following development
paradigmn:
- State some formal or informal requirements
- ¥raite algorithms on a level that 1s easy to understand
- Perform the validation or the correctness proof of the algor-
sthms using appropriate tools
- Develop the . jJorathms using program transformations thus
Loosing perspicuity, but saving correctness.
Poth atgorathmic and algebraic knowledge 1s employed by
program transformations. Algorithms are the objects of the

transiormations., algebraic properties are used for sinply
rewriting subterms, or to show conditions ensuring the correct-
ness of complex transformation rules. In this paper we will

describe the embedding of a program transformation system in a
specification environment ([BGGORVE41). Since specifications
written N our specification language ASPIK consist of an
algebraic and an algorathmic part within one syntactic frame.
the prograi tronsformation subsystem has access to  bhoth
knowledge sources in a uniform way .

There are two majyor  ways to implement program trans-
formations (LR2a79l): The transformation rules can ei1ther be
described as algorithms., whach take a given program as input and
produce an equivatent one as output, or can be girven as an
ordered pair of templates together with an applicability condi -
tion denoting a conditional production rule. In our program
transformation system both techniques have been employed, the
former for the basic transformations unfold. fold etc. (Chapter
3), the latter for recursyon removal (Chapter 4).



2. The Specification Landquage

In this chapter, we give a brief overview on our specifi-
cation language ASPIK, as far as 1t 1s necessary to understand
the following examples (see [BGGORV84] for further details).

A specification denotes an abstract data type 1introducing
sorts and operationss, maybe using other specifications. thus be-
ing an enrichment or a refinement. It may also contain formulas
in first order logic stating properties about the defined or im-
ported operations. Additionally, there is an optional algor-
ithmic part, defining operations in terms of other operations 1n
a purely functional manner.

2.1 The Example

We shall demonstrate the various transformation methods by
applying them to specifications about sorting Llists. These
specifrcations have been cdeveloped 1n a systematical manner 1in
{BGV83], and are the starting point of our transformations.

Fig.1 and 2 show the standard data types BOOL, NAT, ELEM,
ORDELEM and LIST. ELEM and ORDELEM are examples for so-called
loose specifications. They denote - roughly spoken = any algebra

spec BOOL
/* standard definition of the booleans *x/

endspec

spec NAT
/*x standard definition of the natural numbers */

endspec

spec ELEM
/* just a sort with 1ts equality */

use BOOL
sorts elem
= =: elem elem > bool

E

endspec

spec ORDELEM
/* ELEM enriched with an ordering */

use ELEM
ops € : elem elem > bool
props
all xr,y € elem:
XEX A
(xSy A Yy<$Z > X<Z) A
(€Y A YSX 2> X=Y)
endspec

Fig.1: The basic data types



spe LIST
/% Lists of elems */
use CLEMANAT
sorts List
ops. empty: > List
put: elem List > List
first: Llist > elem
rest: List > List
empty?, simple?: List = bool
in?: elem list > bool
append: List list > Llist
length: Llist = nat
occurences: elem List = nat
props
all L € list, x € elem:
empty? (put (x,L)) = false s
enpty?(empty) = true N
first(put(x,1)) = ¥ A
rest(put(x,L)) = L

all L1, L2 € List:
append(L1-empty) 11 A
append(empty »L1) L1 N
appendCappend(L1-,L2),13)
append(Ll1rappend(Ll2,1L3))

spec body
constructors empty, put

define ops

first (L) = case | is Yempty: error-elem

*put (n,L1):n esac
rest (L) = case L i1s *empty: error-elem

*put (n,L1): L1 esac
empty? (L) = case L 1s *empty: true

otherwise : false esac
simple?(Ll) = 1f empty? (L) then true

else empty?(rest(l))
in?Ce,L) = if empty?(Ll)
then false
else first(l)=e
or in?(e,rest(Ll))
if empty?2(Ll1)
then L2
else put(first(L1), append(rest(l1),12))
length(Ll) = if empty (L)
then 0O
else 1 + length(rest (1))
occurences(e,L) = 1f empty (L)
then 0O
etse 1f first(l)=e
then 1 + occurences(er,rest (L))
else occurences(e,rest(l))

append(Ll1-,L2)

endspec

Fig.2: The specification LIST



spec SORT-PREDICATES
use LIST, ORDELEM
ops permutation? : list Llist > bhool
ordered? : lList > bool
props all L1, L2 € Llist:
(permutation?(t1,12) &
atlL e € elem: occurences(er,l1)=0occurences(e,L2))
all | € List: simple?(l) » ordered? (L)
alt L € List: —simple?(L) >
(ordered?(l) o
first(l) € first(rest(Ll)) A ordered(rest(l)))

endspec

spec SORT—=AXIOM
use SORT-PREDICATES
ops sort : Llist = list

props all L € Llist:
permutation?(l,sort(Ll)) A

ordered? (sort(lL))
endspec

Fig.3: What sorting should do...

spec SORT-PRIMITIVES

use LIST
ops partl1, part2 : List > Llist
combine : Llist list > Llist

props all L & List : =simple?(l) >
(ordered?(part1(l)) A ordered?(part2(l)) >

ordered? (combine(part1(L), part2(L)))) A
permutation?(combine(part1(l), part2CL)) L)

endspec

spec SORT-ALG
use SORT-PRIMITIVES

ops sort : List > list
spec body
define_ons
sort(l) = if simple? (L)
then L

else combine(sort(part1(l)), sort(part2(l)))

endspec

Fig.4: ...and how 1t can be done

that provides operations and sorts with the required properties.
LIST, however, is an algorithmic specification. The structure of
the lLists' <carrier set 1s given by the constructor clause, and
must consist of all the terms that can be constructed using the
operation symbols empty and push (or any 1somorphic set). The
operations of LIST are defined in terms of the carrier's struc-
ture and of already defined operatione.



spec SELECTION-SORT-PRIMITIVES

use LIST
ops minlist, allbutmin, allbutone: list > list
min: List > elem

spec bhody
define ops
minCLl) = 1f simple? (L)
then first(l)
else let m= min(rest(l)) in
1f first(l) € m
then first (L)
else m
minlist(Ll) = put(min(l) ,empty)
allbutone(l,e) = 1f e=first(l)
then rest (L)
else
put(first(l),allbutone(rest(l).,e))
allbutmin(lt) = allbutone(l,minCL))
endspec

spec SELECTION-SORT
use SORT-ALG(SORT-PRIMITIVES > SELECTION~SORT-PRIMITIVES
ops part1 = minlist
part?2 = allbutmin
combine = append)

endspec

Fig.5: Constructing selection sort

The first approach to solve the sorting problem is the
formalization of the problem itself. In SORT-PREDICATES (Fig.3)
we define what 1t means for a List being an ordered list, and in
SORT-AXIOM we give a first specification of the sorting task:
sorting a lList means finding a permutation which 1s ordered.

The first algorithmic solution SORT-ALG (Fig.4) employes
the well-known divide—-and-conquer strategy ([Sm83]1.,(VelLo801).
Although the sort operation 1s algorithmically defined, there 1is
still a large variety of functions for its auxiliary operations
part1/2 and combine, constrained only by the properties stated
in SORT=-PRIMITIVES. But 1t can be proved that for all possible
instantiations of SORT-PRIMITIVES <(and, hence, for all algor-
1thmic definitions of part1/2 and combine fulfilling the con-
straints) the sort algorithm of SORT-ALG is a correct implemen-—
tation of the sort operation specified by SORT-AXIOM.

Now we will perform one dedijcated instantiation using
SELECTION-SORT-PRIMITIVES (Fig.5). I.e. in SORT-ALG we replace
part1 by minlist, part2 by allbutmin and combine by append (in-=
herited from LIST), thus constructing the selection sort algor-
ithm which can be described as "select the lowest element, put
it in front of the list, and sort the rest". This instantiation
can be viewed as a type of program transformation changing the
data type. However, 1in the rest of the paper we shall not talk
about transformations of whole abstract data types., but con—
centrate on the development of the sort operation in SELECTION-
SORT towards an optimized tail=-recursive version.



2.7 Semantics

Specifications

A specification is a pair <2Z,P> where I is a signhature and P 1s
a set of formulas and constructive definitions.

Sicnatures, 3=Algebras

A signhature is a pair <S,F> where S is a set of sort symbols.,

and F is a family F = (FCW.S)) ,.sx%,5eg Of function symbols. For

each sort S there must be an error symbol errorg € FCA.S),

A S=Algebra A is an algebra with a flat c.p.o. A for every sort

symbol s, and for every function symbol f e FCST.....,8n.8) 4

function fp : Agr-wa-BAspn > Ag.

Two additional conditions must hold:

1. errorga() = 6lzs 1S the bottom element of Ag.

2. AlLL fp are continuous. (Since our carriers are flat c.p.o.’'s
this 15 equivalent to monotonic. And a monotonic function 1s
either strict or a constant function.)

Alg(z) 1s the <category of all Z-Algebras. It i1s called the
abstract data type denoted by Z.

Formulas

Let P = {pq1sP2s...> be a set of formulas in first-order predi-
cate calcutus, using only sorts and functions of I = <S,fF>. A
i-algebra 1s satisfying P 1f the interpretation of each pj 1s
true in A.

Constructaive Functors

A constructive definition is a pair <0P,p> where OP = {f,...f.2}
is a set of recursive equations about these functions:
p = 4Fs = ps [fqucuafnl | 951<am s
The semantics of a constructive definition <0P,¢> 15 the functor
sem <0OP,¢> : Alg (2) > Alg (Z-0P)
where
VA € Alg (3=0P) : sem <0P,p> (A) = A U {fp, | f € OP n 3>
where ¢p : OPap > OPp 18 the functional that 1s
the result of the natural interpretation of ¢ in A with
parameter set OP
and {f, | feOP> is the least fixpoint of p,-
A 3-Algebra A satisfies a constructive definition <O0P,p> if
sem<OP,¢> (A = {fa | f & OP>) = A

Correctness of transformations

A transformation T is a mapping on constructive definitions. It
18 correctness preserving 1f 1t does not effect the semantics of
a specification, 1.e.
Alg <3, P U <OP,p>> =
lg <3, P U T<OP,p>>
This 1s true if for all 3-Algebras A satisfying P the following
proposition holds:

sem <OP,p> (A) =2 sem T<OP,p> (A)
following the definition of sem it is sufficient to show that
for all Z-Algebras A satisfying P the least fixpoint of T(ge), 1is
1ydentical to the Lleast fixpoint of p, restricted to A.



Adding and transforming single recursive equations

The restriction just mentioned ensures that adding a new func-
tion to a constructive definition 1s a correct transformation.
It will not effect the equations for the other functions. (The
formal proof 1s omitted here. There 1s no great idea behind 1t.)
In the next chapter we will study transformations that modify
only the right hand side of one equation. Let 1t be the first
one, then

$ =< f;, = 05 [fq...fn] | i=1..n 2>
is transformed to
o =L fy, = ¢4 Lfy...fphl> U
L fy = o5 Cfvonafpnl | 1=2...n2
The semantics of each equation f; = p; [fy...fp] 18 a func-

tional ., and the semantics of a set of recursive equations 1S
completely defined by the semantics of i1ts equations. Hence the
transformation above 1is correct i1f 1n any algebra A fulfilling
P, the functionals g£4a and '3 have the same Lleast fixpoint for
all interpretations of fo...fp.

Many transformations are creating new operations and are ex-
pressing an old function 1n terms of the new operations. I.e.

g =Li; = p; Lfyacafnd | 1=1..n2
18 transformed to
= Lty = pat [faeaify,ndd U
%3 = s LFiewatfnd | 182..0) 0
{fy = g3 Lfqreeafnind | j=n+1..n+m>
where Yj € n+¥1..n+m Vi € 2..n : f; # f; .

This transformation 1s correct 1f the Least fixpoint of op°
restricted to T4..T, 15 equal to the Lleast fixpoint of p. We may
consider g as a functional mapping [fq...fnh,nd  to
Cf s fnareeafnend- To prove the transformation p>p' correct we
must show that f4 in the Least fixpoint of p'~p 1s equal to the
teast fixpoint of ¢4 (for all fs...f, as described above).



3. Unfold=-fold operations

There are two major ways to implement program trans-
formations : The transformation rules can either be described in
the form of algorithms, which take a given program as input and
produce an equivalent one as output, or can be given as an
ordered pair of templates together with an applicability condi-
tion denoting a conditional production rute. In our program
transformation system both techniques have been employed, the
former for the basic transformations unfold, fold etc., the lat-
ter for recursion removal (see Chapter 4).

The unfold-fold method has been developed by Burstall and
parlington [BuDa77]. It provides a small set of substitution
rules as a formal tool for the stepwise refinement of functional
programs.
1. Definition:
Introduce an equation for a new function symbol.
2. Unfold:
ReplLace a function application by the body of the applied
function substituting formal by actual parameters.
Xw Fo Lids
The inverse operation to unfold. Replace the occurence of a
function's body by an application of the function with the
appropriate actual parameters.
L. Using laws:
Use an equation for rewriting a term. In our specification
environment the equations are provided by the algebraic por-
tion of the specifications.
S. Abstraction:
We may introduce a let-clause abbreviating a subterm of a
definition by a new variable. This 1s a purely syntactical
operation. It is correctness preserving by Jits definition.

Definjtion

The introduction of new functions has been handied 1n the previ-
ous chapter.

Unfold

A recursive definition is written as

F = x(CF]
where Y[F] i1s a composition of the function variable F and other
function symbols which are considered as free variables all over

the following proofs. We say that F 1s less defined than G - FcG
- if the following condition holds: V¥x : F(x) # @ = G(x) = F(x).
Since F,G are said to be equal - F=G ~ if for all x they  have

the same value or are both undefined, it is clear that

F=G & (F€G A GEF) ) .
F. is the least fixpoint of the functional v if F¢ = v[F 1, and.,
for any g- g = xtlgl implies Fysg.

Given two functionals F = x[F,Gl, G = ¥[F,Gl, the result of un-
folding T with ¥ is the definition
F = v[F,s(F,G11]
Let us define *t4[F,Gl = x[F,yx[F,G1].
To prove the correctness of the unfold operation we have to show

that Fr 2 Fy4q-



a) Fygq4 < F

& B
Fe 2 TLF,Gyl (Fe 1s fixpoint)

= Y[Fer,50Fc,Gyl] (Gy 1s fixpoint)

= X9 L FTIG‘,{]
I.e. Fy 15 a fixpoint of t4y. Since Fy4 1S the least one, we

have Fi1 & Fx.

b) Fy & Foy
We will show that P(Fi ,Fy1,Gy) holds where
P(F,F4,G) £ F € Fq4 A F € t[F,G] A G < K[FIG]
using the computational induction method (IMNV72]). This
method is valid only 1f ¥ and Tt are continuous functionals.,
but this 1s ensured by the semantics of our specification
Language .
Starting the induction we have to show P(a.a,a) where o 1is
the never defined function: Since Tt and ¥ are continuous this
is true.
Then we must prove
YF,Fq1,G: P(F,F1,G) > P(xLF,Gl,c4[F,Gl,5[F,G1)
First inclusion:
v41[F,G]l = ~(F,¥x[F.,G]] (Definition of <xy4)
2 v[F,G] (Ind. Hyp., continuity)
The other two 1inclusions follow immediately since v and y
both are knoun to be continuous.

Fold

Given two functions F = ~[F,Gl, G = wlF,Gl, folding F with G is
possible only if there is a functional T4 with

t[F,G] = Tq[Fr&[FIG]]
The result of folding i1s the definition

F = v4LF.,G]

a) Fyq1 < F«

This proposition ensures partial correctness of folding. When
renaming t4q to T and vice versa it i1s identical to the state-
ment b) 1in the previous proof.

b) You may Loose termination when applying the fold operation.
But there 1is a simple condition ensuring that this will not
happen: ¥ must be independent of F, i.e.

VFa,Fo,G: 5[Fq,G] = wlFo2,G].
With this condition we can show that Fy & Fqq:

Feq = Tq[FT1IGg] (F<q 1is fixpoint)
s tq[Feq,80FcsGyl] (Gy 1s fixpoint)
= vqlFeqr80[Fcq-,Gyl] (¥ 1s independent of F)
= vlF -Gyl (definition of t4y)

I.e. Fen is a fixpoint of w. Since Fy i1s the Lleast one we
have FiSFtq.

Using Laws

The application of laws is correct if they come from the speci-
fication which 1is the source of the constructive definition.
Given

- a specification <3,P>

- a formula VUxqi...Xpn @ tq (XqaeaaXp) 2 tz (Xq...%X,) in P

- and an equation f; = ¢ (fq,fa...)

we may substitute ty by tz in p; and vice versa without modify-
ing the sewantics of g; in any 3-Algebra satisfying P. (Note,
that by definition '=' denotes the strong equality where ©zn is
true.)



Remark

A quite different approach has been taken by [Ko82]. His work 1is

based on the algebraic semantics of recursive programs, and con-

tains some interesting results about unfold-fold operations.

Since he 1s <considering continuous functions on partially

ordered sets as we dor Wwe may apply some of his results to our

program transformation framework:

Consider a sequence of unfolds, followed by applications of

laws, and finally some foldings, all together modifying only one

recursive equation F = vw[F4q...Fp].

a) If the last folding 1s not using T then the sequence of
transformations 1s totally correct.

b) If the last folding is using T, and this is the only folding
with ¥ in the whole sequence, and the number of all unfolds
is greater than or equal to the number of all folds, then the
transformation sequence 1is correct, too. This proposition is
true only 1f all functions are strict. Following the notions
on 3I-Algebras in chapter 2 this is true, as long as no con-—
stant functions are involved inh the transformation sequence.

Fxample

Let us have a look on our example now. We start with the defini-
tion of sort in SELECTION-SORT:
sort(l)= 1f sample?(l) then 1L
else append (sort (minlist (L)),
sort (allbutmin (L))

ALl the following transformations apply only to the term
sort(minlist(Ll)):
sort (minlist (L))
[unfold sortl
= if simple? (minlist(Ll)) then minlist (l)...
lunfold simple?]
= 1f (if empty? (minlist (L))
then true else enmpty? (rest (minlist (L)))...
funfold minlist]
= 1f (1f enpty? (put (Ls,empty))
then true else empty? (rest (minlist (L))) ...
Lapply law (empty?(puti(x.,y)) = false)l
= 3f (if false then true else empty? (rest (minlist (l)))...
Lapply law (if false then x else y = y), unfold minlist]
= 1f empty? (rest (put (l-empty))) then minlist (l)...
Lapply law (rest(put(x,y)) = y) and (empty?(empty) = true)l
= if true then minlist (l)...
Lapply taw (if true then x else y = x)]
= minlist (L)

Hence-» this sequence transforms the cascaded recursion (two

recursive calls of sort) into a Linear recursiop. In.the negt
chapter we will go one step further by converting this def1nj—
tion into tail recursion, and use the unfold-fold method again

to simplify the result.

10



L. Recursion removal using second=-order patterns

L.] Overview

et wus start with a classification of recursive functions. A
function is called recursive if 1t 1s defined using i1tself. If
the body of a procedure f contains a term like f(...f...) we
have a nested recursion. The best knowun example of this type of
recursicen 1s the 91-function (LMNV 721):

for(x) = if x>100 then %-10 glse foq(foa(x+11))

If f contains several calls of f and 18 not nested we call the
recursion cascaded. The definition of sort 1in Fig.4 shows a
cascaded recursion. A recursion that 1s heither nested nor
cascaded 1s Llinear. €.f. the sort definition that 1s the result
of the previous chapter. A linear recursion i1s 1in iterative form
if the recursive <call 1s the dynamically last action in 3i'=«
body. Iterative recursions can be translated to loops in a very
simple manner according to the following rule:

fix):= if bi(x) then flg(x)) else h(x)

|
-1

f(x):= while H(x) dn x:= g(x); h(x)
This transtformations, however, can not be performed on the
specification level, since loops and assighments are not allowed
in our purely functional language. Indeed, our system supports
the Pascal implementation of algorithmic specifications, and
during that implementation iterative recursions may be replaced
by loops. Thus the generation of 1terative recursions from more
complex functions on the abstract tevel results 11n programs
written 1in a procedural language, and Lless time and space con-
suming than recursive functions.
Lach recursave procedure can be transformed to an equivalent
non-~recursive procedure as any Lisp and Pascal compiler does.
Those compiler generate procedures, however., are using a stack
for storing parameter values and return addresses. LB Ehe
program's recursivity 15 merely transferred to the data struc-
e .
But what's about the class of functions that can be transformed
to 1terative functions which use only a fixed number of storage
allocations? [WaSt73] call those functions "flowchartable”™ and
show some ¢general results about flowchartability:
1. Each linear recursion 1s flowchartable.
2. The general scheme for a cascaded recursion 18 not

flowchartable.
Z. The flouwchartability of a given procedure 15 undecidable.

However ., there are some critical notions about those results:

- The general rule to flowchart Llinear recursions (Pat?70] leads
to very 1nefficient calculations. Theretfore an 1mplementation
uring a stack must be preferred in the general case. Storing
the return addresses 1s unnecessary with Linear recursions.

- When developing a system for the automated elimination of
recursions 1t 1s very important to use knowledge about the
operations occuring in a given procedure. With knowledge L[ike
this it is often possible to flowchart even complicated recur-
sions without any stack or at least with a significantly
smaller one.

11



- A compiler can 1mplement the stack operations that are asso-
ciatesd wath a function call very efficrently because 1t can
use machine instructions. Therefore the usage of a stack on
the abstract level witl increase the efficiency of the
resulting program only 1f the stack becomes much simpler than
the full compyler generated one.

The unfold/fold method can be employed for recursion removal.,

t00 . In this chapter, however., we follow an approach hased on

second-order patterns (c.f. [HuLa78]). A transformation rule 1is

a tripel <I,X,Z'> containing:

- a scheme ¥ denoting the class of programs the rule 1s applica-
ble to

- a condition X which must be true to make the transformation
semantics preserving

- a scheme X' denoting the result of the transformation.

Y, X, X' are terms 1in a second-order language which is described
in full detail in [Gerl83]1. Using denotational semantics we can
prove transformation rules correct by the inductive methods
(especially computational induction) given in [MNV72].

The starting point in the development of our rule data base was
the <collection of rules provided by [BaWog1l for the CIP~L lan-
guage. [PetB83] performed the <correctness proofs, found some
generalizations and brought the rules together 1n a production-
rute Like, though semi-formal representation. [Geiss 841 adapted
these rules to our specification language ASPIK and put them
into a formal network representation (see below) s.t. it 1s pos-
sible now to perform these transformations automatically in our
specification envaironment .

Qur knowledge base contains rules for the simplification and
elimination of lLinear., cascaded and nested recursions. In the
appendix we show the complete set of rules for eliminating
Linear recursions. The rules for cascaded and nested recursion.
however ., are not presented here since they are rather comp.ex
(see the papers cited above for all details).

There are several rules known from Literature which are not part

of our knowledge bhase:

1. [Ar79l, L[aAau78l, [Bi77] and [Ro80] are based on procedural
Languages, [GalLul, [PaHe70] and [St71] use flowcharts as the
goal "language". So they are outside the scope of our inter-
est.

2. Special transformation rules for arithmetsc functions have
been developed by [PaPe76] and [Hi79]1 and are a topic for our
future work.

3. The firsk rules f air recursion removal were published n
[Cob6l. He investigated the 1deas being the background of the
rules pertaiming to Llinear recursion.

L. A program that automatically transforms some classes of
recursive LISP-functions 1nto non-recursive ones 1S described

in [Ri73]1. His transformations c¢an be viewed as 1in-
stantiations of the general rules described here using the
semantics of special LISP-functions.

12



L.2 Examples

The following two examples will demonstrate the transfor-
mation method described above. The first example will give an
1dea how functions with more than one parameter are handled.

The function to be transformed 1s very simple:
xxy = 1f y#0
then x+(x*x(y=1))
else O

And here 1s the appropriate transformation rule:

Flm)

I

if B(m) then O(F(k(m)),E(m)) else H{m)

| JUYr,s,t: OCUCr,s),t) = UCOC(r t),s)
l A dc¥m: H{m)=c A

OCc,-m) = Ylcrm)

F(m) = G(mscC)
Glm,n) = 1if B(m) then G(K(m), Y(n,E(m))) else n

=

N2 R R A

variable bindings for this example are:
XerYy

*

AUV. VEQO

AUV. Vv+Hu

AUV. U, AUV. V=1

AUV . U

Auv. O

ImMmXe P33 A

And we see that the conditions are fulfilled for 0= and c¢=0.
Hence we gain the iterative result
X Xy = Glx,y -0
G(x,y,n) = _W_f_ )’#O
then G(Xsy=1, x+n)
else n

Remarks:

1. The reader should not be confused about the mixture of infix
and prefix notations. The transformations are performed on an
internal representation which 1s prefix, but the user can
communicate with the system 1n the mixed notation via a
sophisticated 1nterface.

2. B, o0, K, E and H are second-order variables. Hence their
values are A-terms., denoting functions.

3. The wvariables m and K are so-called "multivariables"™ (in-
troduced in [Geri831) which can bind wmultiple wvalues.,
separated by commas 1n the table above.

L. Remember: In a procedural language the result can be ex-

pressed using loops. Many compilers perform that last trans-
formation step automatically.

The second example continues the development of the selection-
sort operation. The result of chapter 3 was:

13



sort(l) = if simple?(Ll) then |
else append (minlist(l), sort(allbutmin (L)))

This 1s a linear recursion that can bhe eliminated wusing the
following rule:

Fm) if B(m) then OCF(K(m)), E(m)) else H(m)

‘ Yrrsst: Q0COCrs,s)-t) = O(r,0C(s,t))
\L A deV¥Vr: O(r,e) = r

F(m) = G(m,e)
Glmyn) = if B(m) then G(K(m), QOCE(m),n))
etse OCH(m) ,n)

Here ©® matches append which 1s known to be associative and to
have empty as a neutral element. So we may apply this rule, and
gain an iterative version of sort:
sort(l) = sorti(l, empty)
sort1(L,K) = 1f simple?(l) then append(K.,Ll)

else sort1Callbutmin(l), append(K,minlist(L)))

Remarks:

1. The rule application module contains a normalization
procedure. Among other tasks it must transpose the condi-
tional branches of the input function when the recursion 1is
in  the else part, and perform the inverse operation on the

result.
2. The algebraic knowledge about the function append comes from
the specification LIST (Fig.2)- Thus the rule application

module has direct access to the specification environment.

3. The unfold/fold method <can bhe wused again for a further
optimization of the sort1 definition above by transforming
the else-part. Unfolding allbutmin and minlist and
abstracting min(l) yields:

sort1(L,K) = if simple?(L) then append (K,L) else
let m= min(l) in
sort1(allbutone(l,m).,
append(K,put(ms,empty)))

4.3 The Correctness of Second-order rules

Let us describe a second=order rule by a tupel <p, ', p> where
- ¢ 1s a recursive equation
- p 1s a logical formula
- @' 1s a set of recursive equations.
pr o' and p contain first-order and second-order variables. A
substitution is a mapping from variables to terms and A-abstrac-
tions. Performing a substitution g on a recursive equation o
means substituting all variables and evaluating applications of
A—-abstractions. (A formal treatment of second=-order substitution
and matching has been performed in [Gerl1831)
Applying a rule <gp-, ', p> to a specification <z, P U {<OP,p>}>
15 defined as follows:
1. Find a substitution ¢ s.th. there 1s a recursive equation

f; = ;5 [fq.e.1Thd in ¢ equal to gpr and gp can be deduced

14



from P.
2. Replace {gY in o by cp', and extend OP appropriately.

According to the general considerations of chapter 2 this trans-
formation 1is correct 1f
1. {f, | 3p5: f; = ¢50...] € gp'> n 0P = {f;2
i.e. only f; 1s redefined
2. f. in the lLeast fixpoint of gg' 1is equal to the least
fixpoint of g

To prove the correctness of a transformation rule we have to
show that for all variable bindings the least fixpoint of o 1is
equal to the corresponding component of the least fixpoint of
®'. (The first condition above can be ensured by a generator
mechanism, and 1s only a technical 1ssue.)

Example

The following well=-known rule ([Bawt81],[C066]1) transforms a
class of linear recursive functions to tail-recursive defini-
tions:

e = flm)z if m#c then O (f(k(m)), E(m)) else H(c)
P = Yr,s,t: (D((D(r‘,s);t) = O((D(Plt)lS)
p'= {fm) = glms, H(C))»

g(m,z) = if m#¥c then g(K(m), 0C(z,E(m)) else z 2

We can apply 1t to the square function:
sq(x) = if x#1 then (2x-=1)+sq(x=-1) else 1
with the variable bindings

f > sqg-» m > X, ¢ > 1,

O > Auv. v+tu, K > Au. u-1.,

E > Au. 2u=1, H - Au.u

The condition p is the commutativity of + in this example. The
transformation result 1is

{sq(x) = g(x-,1)»
gixrsz) = if x#1 then g(x=1, (2x=1)+z) else z 2

The semantics of vzt used above is the weak equality, 1i.e.
(03=w)) = ) to ensure that the defined functions become con-
tinuous. And the semantics of 1f 1s defined as usual:

if true then a else b a

if false then a else b b

it oo then a else b 02

where a and b may be any defined value or m.

Wi

Now we will prove the correctness of the rule wusing computa-
tional i1nduction on the predicate Q:
Q(f,g) = ¥m: fim)=glm,H(c)) A
Yros,t: OCglr,s),t)=g(r,00(s,t))

We want to show that Q(fe, ge') holds where fe i1s the least
fixpoint of © and ge' the Lleast fixpoint of the second equation
of o@'.
a) Qlara):

This is true because all functions are supposed to be

monotonic.
b) Yf,g: Q(f,g) > Qleplfl., q:'[g])

First equation

plfl(m)

(Definition of ol

= if m#c then OCf(K(m)), E(m)) else H(c)

15



[Induction hypthesis, first equationl

= if m#c then O0C(g(k(m), H(c)), E(m)) else H(c)
Cinduction hypothesis, second equationl]

= 1f m#c then g(K{m), Q(H(c), E(m))) else H(c)
[Definition of o'l

= m'[g](me(c))

Second equation
O(p'lgl(r,s),t)

[Definition of o'l

= 0(1f r#c then g(K(r), 0(s,E(r)) else s, t)
[Semantics of 1if, monotony of 0]

= 1f r#c then Q(g(K(r), O(s,E(r)),t) else Q(s,t)
[Induction hypothesis., second equationl

= 1f r#c then g(K(r), 0(O(s,E(r)),t)) else O(s.,t)
[Condition pl

= 3if r#c then g(K(r), 0(O(s,t),E(r))) else O(s.,t)
[Definition of o'l

= @'[Q](Fl@(Slt))

wd «

The first equation of the predicate Q implies the correctness of

the transformation rule:
Ym: fe(m) = ge'(m,H(c)) = fe'(m) [Definition of «']

4.4 Knowledge Representation

How to represent the rules in the transformation system? One

could think of writing a production rule system 1in a straight

forward manner., but this 1s not the best way for the following
reasons:

1. We must minimize the number of matches being performing
during a transformation since our terms contain second-order
variables. Matching a definition and a second-order pattern
takes typically one second of CPU time.

2. The table of transformation rules shown in the appendix ex-
hibits the inherent structure that should be exploited during
the transformation process.

3. Side effects have to be performed when transforming a defini-
tion (generating new names for auxiliary functions, creating
data types for stacks and tupels). This can be expressed more
naturally in a procedural framework.

Hence, we use a procedural netuwork for the representation of our
rule data base. The nodes denote states during the application
of a transformation, the arcs are labelled with the tasks to be
performed during a transformation step, c¢.f. matching terms.,
testing conditions or creating the result.

The formalism has been taken from Wood's Augmented Transition
Networks [Wo 70], but we use only the syntactical frame. Some
concepts essential for ATN processing, as consuming an 1input
streams, and the recursive call of subnets, have been omitted 1in
our implementation (in ATN terminology: we have only JUMP arcs.»
and the 1input is given as an initial register setting). However.,
the concept of registers = setting a register on one arc and
using 1t within an other = has heavily been used.

16



The syntax for a network is quite simple:

net :: (state™)
state :: (name arc*)
arc :: (condition action™ goal)
The arcs' components have been developed for our specific

purposes. Important conditions are:

- matching a register's value with a second—-order pattern. As a
side effect the variable bindings resulting from the matching
process are Sstored as register values.

- calting a deduction component to prove a proposition, or to
solve an existentially qualified equation.

- testing for any other property of register wvalues (with the
full power of LISP).

Actions are:

- generating new names for wvariables or auxiliary functions.,
creating data types (specifications) for stacks or tupels

- generating parts of the final result

The goal of on arc 1s:

- either the name of the state where processing must continue

- or a pattern made of register names and constants, denoting
the final result of the transformation.

Fig.6 shows a cut of the network in the internal representation
just described. By convention, processing starts with the first
state (INIT), the definition to be transformed is assumed to be
the value of the register INPUT. The names of variables cor-
respond to their type: The number of leading '?' expresses their
order, the 'x' afterwards marks multivariables.

Alqorithms

A second-order pattern matcher 1is described in [Gerl83]. It
elaborates [HuLa?78] in the way that multivariables (see above)
are handled, and some heuristics have been incorporated to
ensure that in most cases the desired variable bindings (which
may be one of several possible matches) are found first.

Before matching we have to normalize the input. It has the

following effects [Geiss841:

- If there are several recursive calls in mutually exclusive
conditional branches we can replace them by one recursive call
putting the conditionalization into an auxiliary function.

- Recursive calls are moved from the else- to the then=-part by
negating the condition

- Each "Let"™ surrounding a recurstve call 1s replaced substitu-
ing the bindings

- Each ™"Case" is replaced by equivalent conditionalizations

Checking conditions performed in different ways:

- Searching specifications for appropiate algebraic properties

~ Accessing a knowledge base specific for the program transfor-
mation modulte. Of course, we must ensure the consistency of
this knowledge base and the specification environment.

- Deducing the desired properties using the unfold/fold tech=-
nique (chapter 3)

- Proving the condition via the automated theorem prover ([KA
841). However, this 1is only possible for first-order proposi-
trons .

17



(CINIT
((MATCH ((?2F 7%M)
(IF (77B ?2%xM)
(227PHI (?F (27%K ?2%M))
(?772%E 72%xM))
(?27H 2%M)))
INPUT)
(TO LIN)Y ... )

(LIN
(CEQUAL ?7%E ())
(SETV ?2?PSI ??PHI)
(TO LIN-COMMUTING))
((AND (NEWVARS 7R 1)
(NEWVARS ?S (LENGTH ?7?%E))
(NEWVARS 7T (LENGTH ?77%E))
(EX ?7PSI ALL ?R 7S 77
(7?2PHI (?2?7PS1 ?R ?8) ?7) =
C22PSLE (?27PHI 2R 72T) 2S)))
(TO LIN-COMMUTING)) ... )

(LIN=COMMUTING
(CEX 27C ALL ?%xM
(AND (?72H 2%M) = (27C)
(?2PHI (22C) 2%M) = (?22PSI (22C) ?2%M)))
(GEN-OP ?F1 (SORT~=OF ?%X)(SORT=0F ?F)(SORT=0F ?2F))
(GEN=VAR 2X1)
(RETURN (((¢?2F ?2%X)
(2F1 2%X (22C)))
((?2F1 2%X 72X1)
(IF (?72B ?%X)
(7F1 (72%K ?2%X)
(72PST 2X1 (22%E 2%X))
27%X1))))))

Fig.6: A cut of the network representation
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S. Interfaces

The program transformation system described in this paper 15 &
part of the specification system SPESY ([BGGORVS84]., [So84l.,
[(Mag841). SPESY includes the following facilities:

- A databace for ASPIK specifications, procedural programs
written in ModPascal [0olt84]1., and maps (1.e. relations)
between those objects

- Syntax-oriented editors for specifications, ModPascal progranms
and maps

- Access to tools for validation and verification: Symholic in-
terpreter for specificationss automated theorem prover.,
rewrite rule Laboratory etc.

This system has Dbeen developed in Interlisp on a large time-

sharing computer providing only a simple teletype interface.

The program transformation module 31s entered by typing
PT <specname?>

Then you are alloved to manipulate the specification with the

given name via the following commands (implemented by [BeWo84]1-

except ELIM):

FOLD, opi1dl-, op1d2, n
Replace the nth occurrence of the body of opid2 in the defini-
tion of opidl by an application of opid?

UNFOLD» opidi1, opi1d?2, n
Replace the nth occurence of an application of opid2 in the
definition of opi1d2 by the body of opid2

BIND, opid, var=term
Abstraction: Insert a let—-clause 1n the definition of opid.,
abbreviating term by var.

UNBIND, opid, var
Unabstraction: Remove the Let-clause binding var.

SHOWLAYS, opidl1, opid?2
Lyst all eguations that 1. are valid 1n the current specifi-
cation envaronment, 2. contain opid2., 3. match any term inside
the definition of opid1l. Mark each of those equations by a
unique number .

USELAW, opids, nsr L
Apply the equation with number L to the nth matching subterm
of the definition of opid

ELIM, opid
Trancform the definition of opid to tail recursion using the
methods described 1in chapter 4. This command may create new
functions, or may have no effect at all if none of the avaitla-
ble rules applies.

We want to stress the experimental character of program trans-
formations. I.e. one does not know whether a8 started seqguence of
transformations will lead to a satisfactory result. S0 you want
to be able to undo transformations, or to restart the transfor-
mation process at any earlier stage of the development.

We dimplemented this facility by storing all versions of all
transformed functions s.th. for every function there 1s a his=
tory List containing all the versions of that function. There 1is
an "actual version" defaulting to the newest, but there are com-
mands to Llet another version being the actual one. The transfor-
mAation  commands above always take the actual versions as their
input, and append their result to the end of the history List.
Afteruwards the transformation result 18 the new actual version.
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There is a quite different implementation of a program transfor-

mation system ([Ste83]). It is a standalone system, J.e. the

algorithmic definitions and equations do not come from the

specification envirohment SPESY, but are created within the

program transformation system. Its main task was to explore the

possibilities of man-machine interaction using advanced input-

output devices: A bitmap-display, highly sophisticated systen

software for dividing the screen 1into different interaction

areas (windows)., and the mouse, a device for selecting items

displayed on the screen, e.g. starting commands by pointing at

their names.

The screen contains the following windows (Fig.7):

- A menue of prepared examnples

- The menue of the available commands

- A menue of several help facilities

~ The main interaction area showing the already defined func-
tions

You may enter commands 1nh two different ways:

a) Prefix order: Setect a command from a menue, then select the
arguments for this commands.

) Postfix order: Select a term to be modified, then select the
type of transformation.

Two examples:

a) Select the unfold command, then point to the function call to
he unfolded, or

h) select a function call 1n the definition window. Then a small
temporary window appears offering operations that may be ap-
plLied to the selected term: Folding, unfolding, abstraction
ete .

Note that the UNFOLD command in the first 1mplementation has

three arguments. In the screen oriented interaction mode, how-

ever, one argument 1s enotgh: Selecting a term from the sreen

unijquely determines the three arguments necessary with the

teletype 1nterface.

This prototype 1mplementation of a program transformation system

has shown the advantages of an 11ntegration of screen-oriented

editing and formal program transformation. Additionally., the 1m-

portance of ergonomic issues (c.f. [Ba831) has been confirmed.

The qualtity of the user nterface 1s essential for the

effictency and acceptance of any software development system.
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. Conclusion

The specification lLanguage ASPIK sketched in this paper provides
a uniform framework for both algebraic properties and algor-
1thmic definitions. Thus it provides an appropriate bhase for
program transformations which always rely on algebraic and
algorathmic knowledge. A program transformation system has been
implemented which employes the unfold-fold-method as well as the
application of conditionalized second-order production rules.
Both concepts may be combined arbitrarily thus providing a
powerful cdevelopment tool . The embedding 1n the specification
environment guarantees that those transformations will not
destroy the correctness of the maniypulated algorithms.



pppendix: Rules for eliminating Llinear recursion

The general pattern for linear recursive functions 1is
F(x) = if B(x) then OC(F(K(x)), E(x)) else H(x)

The arities of the admissible functions are:
DA ee- Ap 20

A1 «-= Apnp 2 hool

S 1 e ¥n > F

Ay w=e Apn 2 Nq oaa Ag

Ay cae Ap > ¥ ean ¥p

A1 wew Ap 2>

I mXec WO

The rules (see Fi1g.8):

1.1 3VW: ¢ ¥ wee ¥n 2> §
®(w(rfs),t) = W(@(Plt)JS)
This includes the simple case m=0: Q(Q(r)) = O0C(O(r))

1.7.1 H(xXx) = const.
F(x) = Fhy{xs,const)
Filxesy) = 1f B(x)
then F,(K(x), Y(y,E(x)))

else vy
1.1.2 B(x) = x¥*const
F(x) = Fq(x,H(const))

Fq as 1.1.1

17.1.3 F(X) = Fq(x,F2(x))
Fa(x) = 1f B(x) then Fa(K(x)) else H(x)
F4 as 1.1.1

1.2 m=1 A 3VU: 0(O(r,s),t) = O0(r,U(sst))
U: ¥q1 ¥1 2> 81

1.2.1 0z=0 A Je V¥x: O(x,e) = x
FIX) = Fy(x,e)
Fe(xr,y) = 11 B(xX)
then F4(K(x), QCE(X),y))
else QOC(H(X),y)

1.2.2 F(x) = if B(x) then F,(K(x),E(x)) else H(x)
if B(x)

then Fq(K(x),UCE(X),y))

else QOCH(X),y)

1.3 3R : R(K(x)) = x

1.3.1 B(x) = x#const
F(x) = Fy(const,H(const) ,x)
Fe(xsyrz) = 1t x#z
then F1(R(X)I®(YIE(R(X)))IZ)
else z
1.3.2 F(x) = Fq(Fo(x),H(F2(x)),%x)
Folx) if B(x) then F,(K(x)) else X

Fq as 1.3.1
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1.4 F(x) = let <s,y> = Fq(xsempty) 10
Folsry)
Filxrs) = 1f B(x)

then F4(K(x),push(s,x))
else <s,H(X)>
Falssry) = if —empty(s)
then Fa(pop(s),0(x,E(top(s))))
else x

The variable s is of type A-stack with the following operations:

empty: > A=-stack
push : A-stack Aq o= Ay > A-stack
pop
A-stack = Aq ... Ap
empty?: A-stack > bool

<.,.> 1s a tupling operation with arity

A-stack p > A-stack-p-tupel

171
H is constant

Va2 1«1

B 1is inequality — " 0 has commutative
1.1.3
else

(two loops)

1.2.1

® has neutral
\ 1.2

® has associative

——
1-2-2 /

else —
(two conditions)

1
Linear R.

1.3.1
B is inequality

\ 1.3
K has inverse

"

1.3.2_—

else
(two conditions)

7

o

else
(stack and two Loops)

Fig.8: The decision tree for linear recursion
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