vy
L
(]
=
@ =S
(%] a
o E
> o
v O
]
a. -
vl =
— o
- =
o
L “
= o
= 4
i
S
L @
— 42
O @
[1e] s
+ o
1 ~
o
a2
=
< —

Elisabeth Hilsmann
MEMO SEKI-83-03

LISP - SP

AUBWIBYD) ‘M ‘| uigIne|siasiey 05/9-g
owaw -
UJBINE|SISSIBY 1BHSISAIUN
YeWIolU| Yyolaiagyoey —:um

Abstract

This paper Aescribes the implementation of LISP-SP, a decendant of
IISPFZ, an INTERLISP ccmaptible LISP system originating from
TATALOGILABORIET, Uppsala, Sweden 1978.

fwe data types have ©been added to LISPF3, namely floating point
rurbers and arrays, and a swapping algorithm as been implemented
for data arrays.

Pecidec theocse mnew data types, a different method of storing lists
internally bhas been adopted which 13 based on the idea that in
LISPFZ each list cell consists of two memory cells, one for CAH and
cne foeor CIR, where in most cases, CDR contains o¢nly a pointer to
the surcessor 1list element, and 1list space can bpe sived when
keeping list elements “physically” adjacent as much as possible.

The CLR pointer is then aveilable implicitly by incrementing the
afdress to the internal structure carrying lists, except when the
sequenne cf elements 1is ©broken through application of LISP
functiors. In those ~cases, special pointers are used which do not
represent CTR wvalues, but are only 1inspected 1tc determine the
lccation of the next element.

This method was <selected to aveid program addressineg space proolems
on mini-computers, resulting from the expansicn of LISPF3 s
internal data structures from 16-bit to 22-bit width, as required
nv LISPF3 ucers asking for “more user address space’.

"hese enhancements of LISPF3 lead to a complete redesign of thre
svetem, where special attention was put orn producing readable and
celf-dccumenting software. The resulting system differs enough from
its predecessor to Jjustify & different name, therefore, the name
LISP-SP wes selected, reflecting the fact that sublist structures
are marked internally by (S)tored (P)arentheses.

Wren handling 1ists in this way, exemples show that the number of
memory cells allocated for & giver package of LISP functicns is
approximately the same as in LISP¥3. If, however, LISP#3’s data
structures had Ybeen widened to 32-bit elements, then twice the
amourt of program addressine space for lists would be neccessary to
store the same ©package - too nmuch for most of the mini-computers
currently available.

The system is avai]ab]e at a nominal charge from

Prof. Dr. P. Raulefs
Universitat Kaiserslautern
Fachbereich Informatik
Postfach 3049

D-6750 Kaiserslautern

West Germany

Ackneowledgements

Implemrenting a vpiece of software 1like this requires a lot cf
resources - computer time, printer paper, magnetic tapes,... and
patience c¢f the other timesharing users. Also, any help in testing
or discussing ideas is welcome.

I want to tell my thanks to all, who were involved in this work:
those wo helped me to understand the two computer systems I worked
on, at the University of Bonn as well as at AIM Computer GmbH in
¥oeln, and to those, who developed and ran the test programs.

Then, I have to thank ATM Computer GmbH for providing unlimited
computer time, the sine-qua-non conditior for this project.

And thanks to Prof. P. Rauvlefs, who gave me the opportunity to do
this dirloma thesis work, and who supported my idea feor
implementing the system in the way it is described here.

Finally, thanks to C. Wedell at ATM, who - besides discussing ideas
with me all the time - reviswed this paper.

Table of Contents

e - . e — o~ o —

N

RN

N A N
ISP

TN NN AN N RO NS TR TN IR (RN RN (RN R (N (0N

MAIDIDIDNADARARAWDR NN NN NN NN NN B s b s 1

PN N N NN
BN

L] . L] e o [. . L] . . L] e o * o

NN NI N I = 1 NN NN A a2

. e o & o o « o o e o »
o] N G NRAS N AN

NN -

. ° . . .
(NN AR A DN = S AV g
.

(A N =

Internal Presentation ..ecececececccectcoscaccccnasns

PI‘PfaCE ® ® 9 6 9 0606 % 00 20 0P 0 900G OO O PO OO0 E 000 S0 S0 00 eR e

The LISP Software system ® 0 & 8 % 2 0 0" S0 00 PP 00t a0
System Structure Overviewccecececerssaccvancnnans
Subsystem Functions and Interfaces ecc.eeecececcssasces

Furctional Description of the LISP System .ceceececcens
Input-0Output Subsystem ...ceeceecccesnnscnccasscnncas
Input Handling ...cceeancccncccctscecescssncsncnsasnanas
List HABAIIng ssvconvasssnssnencs on oo as v s 66 65 sae 06 s
Atom— and String-Handling .ececeeeevececencasosncenaces
Character Handling .eeceeeesesccecnsnsnscscssacnssssanns
Output Handling ..eeeeeeeeeeeecceccceosscoasoanannans
Expressicn Printing — PRINI ... ieiieienenecncncanans
Expression Printing = IPRINT ..cieeeneconcncrsasncnnan
Atom Printing — PRINAT .ttt ieerceeeeencsscacsscnannnsns
Buffer Flushing — TERPRI .¢.ciceiecccctccoscncoscncnsnss

Storage Managementeecececescscssassconcsnsoasacsasns
Storage Allocation ..eveeeeeccccsssescscnocancssnanss
Literal AtOmMS .eiecevescescccscacccsosnsnsssassccnaannsns
SEPINBS wivissis oo ssscsiatos dos iaososas §ases 6 apss ans

NUMDETrS ceeoecesoscnsonnsans S i e A TR E TP TR bR sea
AP raYS tteeeessascsesccstsncsscasssscsasssscssotstssssssssans
Lists ceeecesnccncanas S EE RS S G B N SR S B e B
Garbage Collection .teieieeeeeeeossvscoscsensnssssscsssss
CAR, CDR and PNP Garbage Collection ..ceeeccecccocces
PNAME Garbage Collectlon ...ccccecececccccnssocannsne
LIST Garbage Co0llection toeeceeeescsscccssccnnonnccas
Expression Analysis ce.iececscecsccscccscncsscsstccncnce
The subr SUDSYSIEM .eiceeeeesrosocsovoscosarsossasnosncnss
Internal Representation of subr’s ..eeeeeeeececonens
Exeention of SUBP S sencsssassasi s 06s 64 5W 568 58 66 ¥ 48
Txeeution of PsUBT ™S .csnssscsnsvonsusavran s ue sny es
The Roller SUDSYStEM ..eeeeesteccsoccssssassssssasan
Creating @ Binary Image .eeieeeseccoasecoscasosssnsas
Reading @ Binary Image ceieceeccecocccosocccnssnconnnsne
The Swapper SUDSYSEemM .eeeesecccrsccosssosssssonscnssns

Swapper Operation ..eeececccecocteccescccccsssasansss
Furction MKSWAP ...ceeceeceooecencssnosscssossncsannnsca
FPunction SWPOUT ccvisvnnonsnsnsansocosssssssssanssesivs
Function SWPIN ..iccissssssasissessssacsssossasnssnsssse
Furction UNSWPA .icicincocssvnssssnsasossssassasssss

Porting and Installing the SYyStem ececeeecececsccsncas
Cata Structure Configuration ...cciecieccecncccnnnncss
Operating System and non-standard FORTRAN Calls
Svstem Initialization Files ..eeeiecececcccccnccnnnns
System ENvVITOonmMent aeecescisvvosansos s @ssossssssseses

MM rnn
¢« o o

B AN

Conclusion

Portabllity ProblemMs .osus evcas ss 565505 66sneassseensn
Testing the Interpreter .cccieececessessccensncsccncans
Proposals for ImpProvementeeeececccesoosoacannss
Differences t0 INTERLISP .iiveeeecerarenconenanannans

Appendix 1:

Appendix
Appendix
Appendix
Appendix

(611N V]

%o o ase e

List of Global Variables and their Meaning
FORTRAN Elements
LISP-SP Reference Guide

INTERLISP vs.
References

LISP-SP Function Index

6¢
6¢
61
€2
63

1 Preface

Although never supported officially by any computer manufacturer,
LISP has maintained its role in the world of programming languages
since 1its ©beginning in the late 1950 °s. Beeing the second oldest
programming language after FORTRAN, LISP not only survived many
attempts to replace it (e.g, by ALGOL), but gained importance in
several application areas, especially in artificial intelligence,
through an increasing number of implementations.

What, however, 1is LISP? Does it exist at all? These questions are
raised in [DE79], entitled

THE LANGUAGE LISP DOES NOT EXIST ?

Tre problem discussed in this paper is the large set of different
implementations of LISP systems, each of which contains a dialect
of the larguage although most of them are based on McCARTHY s LISP
1.5. The main ob%ection to classifying LISP as a programming
language following [DE79] is

lack of standardization

|

lack of reference manuals

minimal syntax

large degree of freedom for implementors

No sclutior to these problems has been found so far, and there 1is
still a variety of LISP systems around. To enlighten the roots of
1LISP-SP, a short overwiew on the LISP history will be given here.

Tre “creator of LISP was J.McCARTHY, who gives a more detailed
review of the LISP development in [MC78]. The original aim of his
activities was to create a preogramming language for algebraic list
processing purposes to support artificial intelligence work.

The first approach was FLPL (Fortran List Processing Language)
which - as can be seen from its name - was based on early FORTRAN
systems and contained some of the key 1ideas, but did not have
features like conditional expressions or recursion.

At trat time, not even the LISP notation in use today was known.
Irstead, a so-called M-notation was used in pencil-and-paper
werk, and wusing this notation for input-output purposes was not
even 7possible due to te selection of symbols used in that notation.

Sevyeral new 1ideas, as for instance the desire for recursion, lead
to the implementation of the first FLPL-independent compiler system
in 1958, LISP 1. Meanwhile, the parenthesized prefiz notation was
in use for external representation of 1lists. Also, garbage
collection was 1introduced, and the function “eval’, discussed in
recursion treory, turned out to provide a LISP interpreter.

Still a 1lot a features known today were not available in LISP 1,
and in the early 1960°s, LISP 1.5 was implemented which introduced
property lists, list element insertion and -deletion, free
variables and more efficient handling of numbers than available
before. This was also the first compiler written in the language to
be compiled.

After 1962, LISP had found its place in “computer science’, and as
a consequence, different 1ideas were pursued at different places,
leading to today’s LISP babylon - INTERLISP, MACLISP, the Swedish
LISPF1 and others.

0f all these systems, INTERLISP is probably the largest. It offers
a set of features like syntax extensions, error correction and type
declarations, resulting 1ian availability of that system on larger
computer systems only.

The LISPF1 system mentioned above, was written in 19790-1971 as an
implementation of LISP 1.5, and was then rewritten conforming to
INTERLISP as much as possible until 1978. This version was named
LISPF3 ([MN78]), and this 1is the 1immediate predecessor of the
LISP-SP described in this paper.

Ir summer 1981, together with two other students, on a practical
course on software, I worked on enhancing LISPF3 by making
available an additional data type, namely floating point numbers.
As a prerequisite for this, we had to dive into the system
structure to completely wunderstand 1it, and thus becoming LISPF3
erperts , we were faced to the question by the LISPF3 users, if it
would be possible to enlarge the wuser space .

This oproblem was not only known to the students working with
LISPF3, but evidently is a general one:

"By far the most pressing problem for the user of a
symbelic computing system is the problem of storage

"

E wo{ds spoken at the 193¢ LISP conference at Stanford Uaiversity
SuUse] .

The LISPF3 system, running on a 32-bit ATM 8€-60 computer, is
implemented irn FORTRAN IV. List storage is implemented by using two
“parallel” arrays, representing the CAR and CDR of list elements.
These TFORTRAN structures use 16-bit words, and enlarging the user
space would invelve two different modifications:

- larger array dimensioning
- pointer expansion to 22-bit

since larger arrays require the latter due to the address encoding
necessary to distinguish the data types available.

What however would happen to overall system throughput, when
reserving considerably more virtual memory?

This question was raised when reviewing the results of the
practiral course, and also the idea came up to further extend the
features of LISPF3, One of the enhancements in question was making
available arrays, and additionally, a swapper mechanism.

As we had exrerienced during the practical course, the LISPF3
system structure would Dbecome overloaded by implementing these
features, and I decided to <completely rewrite the system, based
orly or vupward language compatibility, so that any LISPF3 program
ran run on the new system.

Resides, a different method of internally representing lists (with
hopefully 1less storage space requirements) and the addition of the
array data type and the swapper, a number of minor enhancements and
error corrections to LISPF3 have been implemented in LISP-SP.

Cre of the goals in rewiting the system was to implement the
<coftware in a way that making further enhancements would be
supperted by well structured software = as much structured and
clear as possible 1irn FORTRAN, the 1language chosen for the
irplementation for portability reasons. Additionally, for this
reascn, this paper is not a LISP-SP “reference-manual’, but is a
gulde thrcugh the structure of its implementation.

On the other hand, a reference guide containing all function
defiritions had to be compiled anyway during the system
implementation, since the LISPF3 documentation gives information on
the differences to INTERLISP only, and the user is either faced to
have two or three large ©books at hand ,when working at the
terminal, or act as described by scme other LISPF3 user:

“"First, I suppose the function I want to use exists. If the
interpreter returns a message “-—— UNDEFINED FUNCTION", I write
the function myself.

The lack of documentation, the need to “try it out”, is what “seems
to be one of the characteristics of LISP systems , as [DE79] says.
To assist the LISP-SP wuser as well as people who want to change
L.ISP-SP in the future, the compilation of function definlitions has
heen incluvded as appendix to this paper. It is a brief description
of the functions, however, and the user may have to refer to the
defiritions given in the literature.

In Chapter 2, the system structure 1s presented as a set of
“modules” or “subsystems’, each implementing a set of functions
available to the other subsystems through certain “primitives’ like
“~reate-an-atom’ or ‘make-an~array-swappable’ or
‘cet-the-value-of-a-number”.

Chapter 3 then describes each subsystem’s functions and interfaces
in detail, to enable the reader to understand system operation from

a furctional point of view.

As IISPFZ, the system can be ported to other computers, since it is
written 1in FORTRAN. Also, the space reserved for data storage, and
several system parameters can be adjusted, when installing the
system, to make it fit to a glven computer”s resources. Steps
involved ir “system configuration” are described in Chapter 4.

Chapter 5 1includes a description of some of the problems I faced
durinrg system implementation, some nctes on the testing strategy
and some proposals for -enhancements. Alsc, the differences to
INTERLISE are described briefly.

There are several eppendices, giving more detailed information on
1ISP- as well as implementation aspects:

- app.l == List of Global System Variables and their Meaning
- app.1 -- TFORTRAN Elements

- app.3 -—— LISP-SP Reference Guide

- app.4 -- INTERLISP vs. LISP-SP Function Index

- app.5 -- References

2 The LISP Software System

Tris chapter is intended to give a general idea about the structure
of this LISP implementation. It 1is not the my to give an
introduction 1into LISP itself however; therefore the emphasis is to
present the software structure on a global level.

The syster is described as a set of modules or subsystems, where
every subsystem provides a certain set of functions to the other
cubsystems. For each subsystem, its general purpose and the major
arcess primitives are explained.

Tre general principle of cperation of LISP systems wkich can be
presented in a very few words, ramely

LOOP (PRINT (EVAL (READ)))
(GO LOOP)

irvolves several steps of operation. Informally, these steps are:

a) accept a character stream from an input device, split it
into tokens and recognize an s—-expression,

b) store all tokens by conserving the s-expression’s structure,

c) analyze the s-erxpression by recursively searching for
executable sub-expressions and execute them, until the whole
expressicn has been evaluated, and

d) print the resulting value,

e) then, repeat this sequence.

Trom these tasks, some of the general functions of a LISP system
~ran already be glassified as belonging to a software subsystem, as
fer instance input-output or expression analysis . Other
furctions, however, can better be 1identified through a more
terchnical view on the system functions, as for instance those parts
cf the <oftware which actually perform the operations on user
defined data. Sudbsystems resulting from that are the storage
managerent and the subr subsystem.

Then, there are subsystems resulting from the fact that certain
.speclal, features are desired which may voe too complex or tco
.special to be integrated 1into other subsystems. Here, the
rocller and the swapper Dbelong to that class of functions.

input-output H subr

subsystem i subsystem

expression

——— o ——— o = o — ——— ———— o

]
]
]
|
i
|
|
[}
]
]
|
]
analyzer ! !
]
]
]
]
|
|
1
]
]
[}
]
|

storage

subsystem

swapper

I
|
]
!
i
|
I
|
]
!
|
1
management |
|
|
|
|
|
]
1
]
|
|
|
|
1

|

|

| (=
subsystem |

Figure 2.1-1
System Structure Overview

In the following section, a ©brief description of the different
subsysters will ©be given 1in terms of their purpose and the
irterfaces available to the other susbsystems.

2.2 Subsystem Functions and Interfaces

Tach subsystem offers a certain set of functions as described
above. These functions are accessible through FORTRAN-subroutines
cr -functions, or through setting global flags affecting the mode
cf operation of the subsystems. In this chapter, the term user
refers to the subsystems using features of other subsystems.

Expressior Analyzer

The expression analyzer plays the most important role in that it
controls the general flow of execution. One of its tasks is to
crganize the recursior in s-expression analysis which 1is not
availabdle implicitly in the FORTRAN language. This 1is an
implementational aspect however; the LISP related cperations to be
perfcermed are

a) “parsing’ s-expressions
¥) determining the function type
c' evaluating the arguments

@) raintaining the association list

Tre exrression analyzer consists of the main program, two
initializaticn subroutines, and a big subroutine actually
containing the expression parser. There are no ways to call the
expressior analyzer from other subsystems except by indirectly
influencing the mode of operation.

Storage Management Subsystem

Tris subsystem manages the memory space availapnle for storing the
LISP data. LISP data are stored in arrays, and if some of them are
prhausted then the subsystem tries to free space not actually in
v<e by performing a decent garbage collection automatically.

T¢ the outside world, the subsystem offers a set cof callable
functiorns for allocation and access of LISP data. These functions
include

a) MATOM: create or identify an atom described through
appropriate parameters.

b) MKNUM: create a floating point or integer number.

c) MKARRY: create an array with a specified size and initial
content.

d) CONS: create a new list cell.

e) GETPN: fetch the printname of the specified literal atom
or string.

f) GET: fetch the value of the specified property of arn
atom.

g) GETNUM: fetch a number value for a given floating point
or integer.

h) GETEL: determine the type of some given item.

1) GETARG: resolve internal pointer-to-pointer references and
deliver a valid data pointer and its type.

3) NEXT: determine starting address of the next top level
element of a given list.

Irnput-Output Subsystem

The input part of this subsystem translates s-expressions from
external ASCII representation into equivalent internal structures.
Expressions are read on a cparacte;—by—character basis, where the
characters are formed into tokens , and more complex structures,
the 1ists, conforming to a <certain set of rules specified by a
character type table.

Whenever a complete token has been recognized, it is handed over to
the storage management subsystem fcr creating the internal
representation. Input car also be influenced through several global
flags like left and right margin, and actual read position.

The cutput part translates internal representations of data into
readable form. As for input, print margins can Dbe set by the
user , and additionally, flags are "available to" affegt the
printing format. The subsystem supports fast printing and pretty
printing 5 also, printing of some special characters can be enabled
or disabled.

Access to the 1Input-output subsystem 1is through the following
FOFTRAN elements:

a) IRFAD: read a s-expression.
b) RATOM: read an ator.
c¢) SHIFT: read next character from input stream.

d) FRIN1, IPRINT: print an expression (and flush buffer).

e) PRINAT: move an atom’s printname to the printbuffer.

f) TRRPRI: flush the print buffer.

subr Subsystem

The LISP <system offers a set of built-in functions which serve as
the Dbasis to make available more complex functions. Whenever the
expression analyzer has found a call to such a function, the subr
cubsystem 1s called with appropriate parameters to execute the
diercired function. Sometimes, a subr execution can be finished only
after %teing supplied with more expression analyzer results; in
these cases, it passes the information over to the expression
analyzer for evaluation and waits for the results.

Subr-e~xecution covers all types of LISP dataj; as a consequence, it
refers to functions of all other subsystems. On the other hard,
access to 1t is only possible from the expression analyzer. The
“user irterface therefore consists of appropriate calls to the
PARTRAN subroutines containing the subr code, supplied with an
identifying funstion number and argument pointers held in certain
slebal variables, such as the stack, for instance, and the function
erecution result is also returned through a global variable.

Swapper Subsystem

One of the data types available in this LISP system, the array,
tenrds to occcupy considerable memory space when used heavily.
Scemetimes, however, it is affordable to maintain arrays on
cenondary storage, and keep arrays in main memory only for access.
Ir this case, only a buffer needs to be set aside permanently, into
whick arrays are mapped, when neccessary.

This method of managing array space is implemented in the swapper
subsystem. The functicns available to the other subsystems are:
a) MKSWPA: take away an array from access responsibility
of the storage management subsystem and put
it under control of the swapper.

b) UNSWPA: reverse of MKSWPA.

c) SWPIN: swep in an array from disk into the swap buffer.

@) SWPOUT: swap out an array currently in the swap buffer.
There are nro functions available to access an array element in the
storage managerment subsystem. The same is true for the swapper. The

reason for this is that arrey element access is only done within
the subr code fer the corresponding LISP functions.

12

Rcller Subsystem

The function of this subsystem 1is to copy binary system status
images from and tc disk. This feature 1is wused as a quick
iritialization method for system start-up. Also, it can be accessed
by any LISP user, who wants to stop tne actual terminal session,
and continue later starting with the results achieved so far teeing
available without dig effort.

Two acress primitives are available:
a) RCLLOUT: copy system status to disk.

b) ROLLIN: read back system status.

11

2]

Functional Description of the LISP System

(o2]
[N
-
=)
d
c
<t
|
(@]
=
(a4
el
(=4
t
w
=
o
w
~<
w
t
(1]
3

- —— — ——— — — O (0 (- " G G- — St

The purpose of the I/0 subsystem is to

- read LISP expressicns and data from the input channel
- convert the input to internal representation

- convert internal data into readable form

- print those data on the selected output channel.

Irput/Output 1is driven by two important internal tables, one of
which defines the semantics of single characters, and the other
carries information on the I/0 orgsnisation.

Character Semantics:

Fach character of the LISP character set is assigned a type wnich
is stored as a number in the table CHTAR. The table is addressed
usineg the ASCII character code of the character to be analyzed. The
standard character type is 1€, 1indicating that the associated
charcacters do not have a special meaning and hence can be used
directly in the names of literal atoms and strings.

Table Z.1-1 contains the 1list of legal characters and their types.

character type meaning

! | 1 | space i
i (! 2 | left parenthesis i
:) ! 3 | right parenthesis |
! < | 4 I left super bdracket '
| > ! 5 { rigth super bracket '
! ’ | 6 i quote character i
; | 4 | string delimiter |
! # | 8 | user break |
| . 9 | dot i
! others | 10 ! all other ASCII characters |
! + ' 11 i plus sign !
! - | 12 i minus sign '
! 2..9 I 13..22 | digit |
' { or na] 23 | escape character (1) i
| i 24 | rescue character '

Table 3.1-1
LISP characters and their types

e e - ———————— — S - Bon e o~

(1) Note that the escape character must be selected depending on
the terminal type available.

12

The semantics of type 8, 23 and 24 are as follows:

User Break

The user break character enables the user to interrupt the input.
Example: A#B is treated as the 3 atoms A , # and B

escape character

The escape craracter changes the type of the following character to
1¢, invalidating the meaning of special characters.

Example: (SETQQ X {") defines an atom with printname .

rescue rcharacter

The rescue character sets the interpreter into break mode.

The valid LISP characters are contained in the first record of the
file ATOMS which is read during system initialization.

Tre character types <can be changed by the user using the LISF
functiorn CHTAB.

Example: exchange the meaning of the characters "(" and "<"

(CHTAB “{((CHTAB “{< (CHTAB “{(>

The table IOTAB contains 18 global parameters wused during I-0
operation as shown 1in table 3.1-2. For both input and output, the
table keeps the actual channel to be wused, the actual buffer
pointer, ard left and right margins independently.

Additionally, the output routines can be directed to print only to
a rcertain expression nesting level; also, the number of top level
elements to be printed can be restricted.

——— ———— s o o " - — G — T ———— ——————— ———

logical input channel

The

| ! LUNIN ! !
' 2 | RDPOS | current read position |
! 3 | LMARGR | 1left read margin !
! 4 | MARGR | right read margin]
! 5 ! LUNUT | 1logical output channel |
! 6 ! PRTPOS | current print position |
' 7 | LMARG | 1left print margin !
! 8 | MARG | right print margin '
! 9 | LEVELL | # of top level elements|
! 16 | LEVELP | nestirg level '

Table 3.1-2
I-0 organisation parameters

13

LISP function IOTAB can be used to change the contents of the
table, or to fetch the actual values.

Example: (IOTAR 1) delivers the actual input channel number
(IOTAB 1 22) sets the input to channel 22

Thre

For

table can also be accessed by some LISP-expr’s which actually
use the subr IOTAB, e.g.,

(INUNIT 22) is equivalent teo
(IOTAR 1 22)

the 1last two elements of the table

available referring to the subr ICTAB:

(PRINTLENGTH n) <=> (IQOTAB 9 n)
(PRINTLEVEL n) <=> (IOTAB 1@ n)

Examples:

It

(SETQ X ‘(A (B C (D (E F) G) H) K))
(PRINTLENGTH 2) X
will print as: (A (B C cee)aes)

(PRINTLEVEL 2) X
will print as: (A (B C --- H) K)

(PRINTLENGTH 3) (PRINTLEVEL 3) X
will print as: (A (B C (D ~—- G) ...) K)

defined in the system, since IQOTAB 1is
consuming.

I0OTAB, two expr’s are

faster

and

may be useful to use the subr TIOTAB instead of the expr’s

less space

14

2.1.1 Input Fandling

——— s e o —

The input system always reads characters from the selected input
channel, until a complete s-expression has been recognized. The
input 1is split into tokens using the separators and break
characters defined in the table CHTAB. The s—expressions are stored
in irternal presentation.

Irput is always performed 4in a "stream -mode, i.e., the input is
treated as sequence of characters with no respect to line limits,
blank lines and tabulations. Therefore, s—expressions can be
entered in any format desired.

The 1input system invelves three 1levels of action which will be
described in the following sections.

3.1.1.1 List Handling

Input of s-expressions 1is <controlled by the function IREAL.
S-expressions may be 1lists, atoms or strings. A list 1is expected,
whenever the first input token is an un-escaped left paranthesis.

By wupdating a parenthesis count, IREAD analyzes the input character
sequence, splits it up 1into tokens (parentheses and atoms), and
stores the atoms using the storage management functions.

Also, IREAD sets up an internal-format list (in the array LIST),
which contains the ©pointers returned from the storage management
furctions for each atom. LIST access is done through the function
CONS (see: storage management).

2.1.1.2 Atom- and String-Handling

For reading the next token from the input string, the function
RATOM 1is wused. If the actual character is a parenthesis or super
bracket, it will be returned to IREAD directly. Space characters
are treated as separators; they are not significant unless beelng
escaped or occuring ir strings.

If the first character of a token indicates an atom, all it’s
characters will be fetched and stored using the appropriate storage
management functions (MKATOM or MKNUM). The resulting pointer is
returned to IREAD.

15

For strings, the function SHIFT will be called until the matching
double-quote 1s read. Note that strings may contain any character
except double-quotes, unless escaped. Since strings may be of any
length, SHIFT takes care of storage allocation by using MKATOM.

3.1.1.3 Character Handling

The “stream -input is performed by the function SHIFT. It converts
input records into a sequence of characters using the array RDBUFF
with respect to the left and right margins defined in IOTAB.

Besides delivering a character through a global variable (CHR),
SEIFT determines the character’s type using CHTAB. It is returned
in the global variable CHT.

when identifying the escape character, SHIFT does not return it to
the caller; instead the next character is read and returned with

CHT set to 1@.

A global flag is used tc direct SHIFT to read from PRBUFF instead
of RDBUFF. PRBUFF actually 1is the print buffer. This feature is
used for internal analysis of print images. In this mode, SHIFT
treats all characters as beeing of type 10.

16

< 0 Output Handling

——— — —— - - —— — v a—

Additionally to the features described above, the output format can
be specified by setting several global flags contained in the array
PREG. These are:

! Flag Value Meaning |
| U - S—— D A |
s |
! DREG(2) NIL fast print (no special formatting) i
! P pretty print 3
i I
| }
! TDREG(%S) NIL don’t print escape and duoble-quote |
: T print escape and duoble-quote i

]
! |
! DREG(7) NIL continue on actual line if list fits |
! U start a new line with every new list |
]]
! |

e — — —— ——— ——— " T W o T T — W ————— — ——" (o S ————— S T — — — —— — - —— ———_———

Table 3.1.2-1
Output Format Flags

If fast printing 1is specified, DREG(7) will not be examined. This
i1s the default print format. Since it is much faster then pretty
printing, fast printing is recommended except for printing complex
list structures.

Tre print flegs can be accessed through the LISP-subr SYSFLAG.

Qutput 1is done through the print buffer PRBUFF. An output line is
actually printed, if

- the length of a print item causes PRBUFF overflow
- the subroutine TERPRI is called explicitly.

Four output subroutines are available which will be described in
the following sections.

2.1.2.1 Expression Printing - PRIN1

The subroutine PRIN1 is used for writing expressions into the print
buffer in external format. If the item to be printed is an atom,
PRINAT is <called. For 1lists, PRIN1 examines the print flags
described above to determine print positions and line feeds. Also,
the type of vparenthesis to be used (normal or super bracket) is
determined.

17

Whenever the print ©buffer 1is filled to the right margin and more
has to ©be printed, TERPRI 1is called to flush the buffer. When
leaving PRIN1, the print buffer may contain more data to be printed
later.

2.1.2.2 Expression Printing - IPRINT

——— e s s O o (s D T o T — — ——— —

The subroutine IPRINT can be functionally compared to the LISP-expr
PRINT. It calls PRIN1 for filling the print buffer and, after that,
it flushes the buffer using TERPRI.

Or return from IPRINT, the buffer is always empty.

(]

.1.2.2 Atom Printing - PRINAT

The subroutine PRINAT wuses storage management functions to decode
the pointer handed over by the caller. The printname is fetched,

and it’s length is tested, whether it fits into the buffer. If not,
the buffer is flushed before the printname is transferred into it.

FRINAT examines the print flag DREG(5): if it is set to T, the
special characters (escape and double quote) have to be stored,
where neccessary.

2.1.2.4 Buffer Flushing - TERPRI

e — e Tt s B e) e e S (e S St e e S e

TERPRI is the subroutine which actually writes the contents of the
print ©buffer to the actual output channel. When output is done,
TERPRI resets the buffer to spaces and the print pointer to the
left margin.

18

S e Storage Management

This chapter 1is divided into two sections, reflecting the general
functions provided by the storage management subsystem.

In seection 3.2.1, the 1internal data structures used to implement
the data types availabdle in this LISP implementation are explained.
Also, the access functions available to the other subsystems are
described.

Durirg a LISP run, storage for data of different types is allocated
dynamically. Since memory space 1is limited, especially on small
installations, and, a 1lot of data may become unaccessible durirg
pregram execution, all unused memory chould be made available to
tre wuser. The garbage collection methods implemented in this system
are described in section 3.2.2.

2.2.1 Storage Allocation

ot o e o o e o S e b] i o e e

2.2.1.1 Literal Atoms

Literal atoms are internally represented by records containing the
fcllowing items:

- a sequence of bytes in the array PNAME for the atom’s printname
- a pointer to the first byte of the printname

- an integer number specifying the printname length

a 32 bit word of memory for keeping the atom’s value binding

a 32 bit memory word for keeping the atom’s property list

an element in the hash array, containing a pointer to the

valve / property cell.

To estadblish a link between the internal and external
representation of an atom, it’s name is used to compute the address
of the hash table element containing the pointer to the value /
property cell. This pointer also allows to access the printname
pointer and length.

A1l irput tokens which cannot be interpreted as numbers, strings or
special characters, will be stored as literal atoms. Characters
preceeded by the escape character will be treated as type 1¢
characters and will be stored directly without the escape
character.

Printrares of 1literal atoms are stored 1in the same way as
prirtnaemes of strings; they are packed to four characters per 32
bit memcry word im PNAME, and are aligned on a byte boundary, if
posssible. Since numbers are stored in the same part of PNAME,
sometimes the printnames have to be aligned on the next full-word
boundary fellowing a number.

19

The data structures, used tc represent literal atems, and their
interrelationship are shown in figure 3.2.1.1-1. They are
irplemented wusing a hash array HTAB, the array PNAME and three
parallel arrays GCAR, CIR (both 32 bit per element), and PNP (two
consecutive 32 bit words per atcm).

™e CAR cell of an atom contalns it”s value pointer which will be
inritialized to point to the atom NORIND. The CDR cell (property
cell) initially contains a pointer to the atom NIL. In PNP,
printnare peinter and length are stored.

fecess to an atom”s constituents is done either directly or through
access functions. To fetch or modify an atom’s value binding, the
corresponding CAR cell 1is wused directly; the same is true for
fetching the pointer to the property list.

Trere are more complex operators, however. If access to the
vrintrame 1is neccessary, then the function GETPN can be used. It
fetecrec the oprintname pcinter and length, and also a flag is
returned to indicate that the item is an ordinary literal atom.

1f not the entire property 1list, ©but only the value of some
indirator 1is required, the function GET, supplied with the atom
pointer and indicator name, retrleves the indicator’s value, if
defined, otherwise NIL. Addirg properties (indicators and values)
is done by the FORTRAN code for the subr PUT.

Lit®dral atoms are created by a call to the function MKATOM either
ir rescnse to user input or as part of certain functions.

e o

and the cdr cell

ALPHABETA

for example,

2.1.1-1

kS
e

Figure
Iiteral Atom Lata Structures
the atom ALPHABETA has as value a pointer to

atom printname:

]
| | | |
| [T} 1] | | | > |
| [] | | | < | .
] [1] | { 1 = | .
| i] [} | | < O |
| i " I I [=5] | [l | |
| o 1] 1 | | 2 | I —
| W i > (&) I | ~ = [} 2275} | [
| [[T] | I o) | < Ay I [
| U e > I B 3% = | I 2] ¢ | [aofycal] I [
| 1 ot] | [| Ay < | I —~
| 1] I © 23] | | (o] = i 1 e~ I |
| 1] 1] ! 1 o> g 3 | [
]]] I | Ay = | [
| i " I I a | |
] 1] i 1 i < | I~
] fl 1] I] 32 | [
| e e e] I i et | I
0 1 =
I | <
I =
I I m
| S e st e e RS e j ———— e e] I =
N\ 1 | | <
i | 1 I 3
| 1 | |~
] | 1 |
R e e e el | o e S o o S R e R e e S S I] i
I [|] 1 | [1 | | I
| P 1 1 1 [! 1 | <)
| [I | s | [] | [} I o
I w Py | i I [| | | | =
| — [| | [<= I I [| =
(= Mmoo | 1 | | | | o= |~
| © [| | | (& | |] | {
| + < | | | | 1 | | | | I
| I | |] e e e e e e |
| = [| I 1] 1 1 | 1
I «n I | I [y | | | | |
| © x| | | I © I | 1 | |
1 <] | I 1 & < | | [| |
| | | i . 1 [| | i =]
| | | | | © [S I [1 |]
| I | |] | [| | I ™wn
o e sk S o s v S s e st} R oo s s e s o o i A | ©
T
A0 | &
K<] I o
wvi | L I
ag | ~ | ———=
£l S S
I =y
llllllll — a

the above figure,
other atom which may be UNBOUN,

In
come

pcints to a property 1list containing a function definition.

21

z2.2.1.2 Strings

Strirgs are 1internally represented as reccrds containing tne
following items:

a printname in PNAME
a poirter to the first byte of the printname
a number specifying the printname length

- a value cell in CAR
a pointer cell in CDR
for substrings, a list of a special format.

On 1input, strings are idertified by enclosing double quotes. Inside
strings, all characters except the double quote are treated as type
12 rbaracters. To 1inhibit the special meaning of the duoble quote
within strings, it must be preceeded by the escape character.

Strines are stored in nearly the same way as literal atoms, except
that they do not use a hash table entry, and that substrings use a
list. Figure Z.2.1.2-1 shows the data structures involved 1in
stering strings.

plso, the value cell is not used to store values like in atoms, but
instead, a pointer to the atom STRING or SUBSTRING is stored
permanently in the corresponding CAR cell. The CDR cell contains
NIL for strings, and a pointer to the list mentioned above for
substrings.

Tris 1ist has the following structure:
(main start . length)

where <maind> is a pointer to the string which the substring is part
of, and <start> and <length> are coded numbers specifying the
cffset and number of bytes of the substring.

brcess to the CAR cell 1is cone directly, as to the CDR cell. To
ohtair the prirtname, the function GETPN can be used as for literal
atoms.

Strings are created by a call to the function MKATOM. Substrings
are rormally created within the subr code of the corresponding LISP
function.

22

(SETQ X "ABCDEFG")
(SETC Y (SUBSTRING X 4 5))

C AR CTR P NP
oo mm oo meS S
| | | | 1
1] |] [}
] | 1 1]
CAR(X) | _________ b | b e e |
_____ S ! ! } ! mirsmaaie]
———————— > | STRING | NIL ! ! 7 ! {
! —— [— | [——— ; ;
] i]) I I]
' !] 1 | | [}
{]] 1 | | |
1 ! ! |] [} [}
] |]] | | |
! | | P [} b e e e ——— [} |
! CAR(Y) ! ! i | unused | i
| ———— > ISUBSTRING| — —=——- = i unused : :
| oo e L | —mm oo | :
| f | | i i i i
1 | 1] | |] |
! 1 |] 1] | |
| | |
! . . . i . . |
| | |
' . . .] 3 . [}
| 1 |] | | | |
! ! [} 1 [}]) |
L e I I
! | [}
i | |
! | |
L e e e |
] {
' e e e e e e e e
| |
| |]
! | !
g — O ———
! ! array INIL V i
: i PNAME i XABCLETGY E
| | | |
! { 1 1
i L e e
[l !
| |
| |
! :
! | BTTHY = i o o o e e et
! ! LIST | !
| | | :
| e I-—->(4 . 2) :
|]]
']]
|

Figure 3.2.1.2-1
String Data Structures

The figure 1is somewhat simplified, as it does not show all data
involved 1ir the given example; for a complete overview, the atoms
X, Y ané TUNBOUN also had to be shown. They do not give useful
information on string and substring data structures, and therefore,
they have been ommitted.

The CAR and CDR cells in the above figure actually contain pointers
to the atoms STRING, SUBSTRING and NIL instead of the names. These
peinters are addresses to the parallel arrays CAR, CDR and PNP.

23

2.2.1.2 Numbers

Two numerical data types are available in this LISP system:
- intepers (32 bit)
- flcatirg point numbers (32 bit)

Fer reasons of storage egficiency. .integer numbers are stored
either as small 1integers or as large integers’ . The “small
integers are encoded wusing a function explained later. No PNAME
space is reserved, but the encoded number is stored in the desired
atom valvue cell, 1ist cell or array element directly. If stored as
a large integer , a 32 bit word in PNAME is allocated into which
the nrumber 1is stored in Dbinary format, and a pointer is encoded
which then is put into the desired atom, list or array cell.

All numbers evaluate to themselves, when presented to the
erpression aralyzer, therefore, their printnames never need to be
quoted.

Encoding numbers is done in the following way:

Small Integers

If an integer number is in the range of [-NSMIN..NSMIN], then it
i¢ handled as small integer. Let x be the value of the integer,
then it is encoded by

X+ NPNP size c¢f array PNP
+ NLIST * 2 size of array LIST, twice
+ NPNAME size of array PNAME (without swap buffer)
+ NSMIN small integer limit

Large Integers

If the 4integer 4is not in the range [—NSMIN..NSMIN], then it is
treated as large integer. In this case, a PNAME cell is allocated
on a word boundary, the binary value is put into that cell, and the
nimber pointer is calculated as follows:

Tet j be the address of the cell allocated in PNAME to carry the
inteper’s value, then the pointer is:

i+ NPNP size of array PNP
+ NLIST size of array LIST

Note that large integers are allocated in the same part of PNAME as
<trings ard 1literal atoms; therefore, two different allocation
pointers JRP and NUMBP are used, and the printnames of strings /
atoms and binary numbers are packed as much as possible to reduce
the amount unused memory.

24

Flcating Point Numbers

Floating point numbers are stored in the same way as 1large
irtegers. Pointers to these numbers are set up in a slightly
different way, however. Let j be the address of the PNAME cell
rontaining the real number in binary format, then the pointer is
calculated as:

jo+ NPNP size of array PNP
+ NLIST size of array LIST
+ #800220@ which sets the first bit to one.

A1l nurbers are created by the function MKNUM which is supplied
with the binary value of the number and a flag indicating a real or
integer number to be created. Access to a number is done using the
functicn GETNUM, wich is supplied with a number pointer or encoded
small 1integer, and it returns the binary value and a number type
indirator.

LTISP provides three types of numeric functions:
- integer functions
- real functions

- functionrs with value depending on the argument’s types.

For 1integer functions, all arguments will be converted to integer,
if not already, and the result returned is of integer type. For
real functions, all arguments are converted to real, if neccessary,
ard the type of the result is real. For the third function type,
the result 1is integer, if all arguments are integer, otherwise the
result is real.

The type of a given numeric furgtion can be derived from it’s name:
if the first character is an I, then i1t is an integer function.
If it s F , then it is real, otherwise it is a function of the
third type.

25

Arrays are contiguous regions of PNAME space. They copsist of a
4-word header, a number of cells reserved for unboxed numbers,
and a numbder of cells containing any LISP pointer.

The arrays are stored in the upper part of PNAME; allocation of
arrays 1s ~contrclled by the global variable NARRYP. The header
contains the total array size, the number of unboxed number
cells, and two words normally set to ©. These cells are used by the
swapper.

The unboxed number section may be of 1length @, as may be the
pointer section. This is specified by appropriate arguments to the
subr ARRAY.

The purpose of the unboxed number region is to store integers in
birary format, where it is up to the user to interpret these data
in the desired way. Each pointer cell in an array can have a <car>
and & <z:dr>, therefore, the total array size computes to

4 size of header
+ D number of unboxed number cells
+ 2 %] where j 1s the number of pointer cells.

trrays are created through the function MKARRY which allocates the
neccessary PNAME space and initializes the header with the values
mentioned above. Also, the unboxed number region is initialized to
zero, and the pointer region (both <car> and <cdr>) is initialized
to the value specified in the subr ARRAY arguments (which may be
NIL).

After setting wup the array, it’s pointer 1is calculated in the
fcllowing way: Let j be the address of the first header cell of the
arrav in PNAMES then the pointer is

i+ #4000000

Arravs also have printnames; these are formed by converting their
pcinter te ASCII hexadecimal presentation. Arrays cannot be read in
veing the interpreter’s input functions, they can only be created
by tre function ARRAY.

Accecs to array elements can be done with the corresponding subr’s
*LT, ELTD, S®TA and SETD.

In the LISP literature, the representation of lists is normally
explained using the box mnotation , where each 1list element
consists of to cells, each of which carries a valid LISP pointer.

These dcuble cells are implemented using two parallel arrays, CAR
and CDR, where the CAR cell of a 1list element contains a pointer to
its value, and the CDR cell points to the next list element.

In this 1implementation, however, each list element is represented
by only one memory cell (in the array LIST) containing the value
peinter. Lists are constructed through the subroutine CONS which
allocates a cell of LIST space and erters the value to be CONS“ed.

The successor pointer 1s available through incrementing the LIST
array address by one. There are several special constructs however;
therefore, the internal representation of 1lists and the basic list
nperaters are explained in detail in the following sections.

Sirce the ©box notation functionally remains valid also for this
inplementation, all constructs are explained both in box-notation
and in a grafic representation equivelent tc the internal
structure.

T. Iist Structures

a) In ©box-notation, each 1list cell contains two pointers, one of
which points to the value of the cell (which may be an atonm,
string, sublist or array), the other points to the next list
element constituting the start of the tail of the list.

| carl | cdr1 }|----- >! car2 | cdr2 |----- > car3 | NIL |
LT T T
! } !
v v v
value 1 value 2 value 3

bp) In this LISP implementation, there is only one memory cell for:
each 1list element, containing the car. The successor is defined in
cne of two ways: by either the next LIST cell or by the contents of
the nrext cell which is called "continuation marker .

In the pgrafic representation, these markers are shown as cells
containing ar asterisk: * |

27

Successor determined by next LIST address:

———— e ——————— ————— —— —————— ————— —— t—— ———— — — —

B e T e]

Mete also that Dbeginning and end of any list 1s represented by a
left c¢r right parenthesis, respectively. This 1is true also for
sublists, as shown in the next figure.

Sublists

a) In Dbox-notation, a sublist 1is determined by a car-pointer of
seme list element pointing to another list element:

—————— o — ot o G oot i S e ————— ——— o S ——— o — — ——— o ———— ot - o—

! earl !} cdrl !--—-->) car2 | cdr2 }----->! car3d | NIL |
o e mmeesm e
|
i
! car1l |} cdr1l }|--—-- >} carl12 | NIL |
e e e
[} 1
i v

hY In this system, the sublists are identified in two ways. Since
the start and end of a 1list 1s always marked by appropriate
perentheses, every left parenthesis within a 1list indicates the
cecurance of a sublist - which 1s the same in the external
representation.

Ir the second case, a ncermal poelinter to some LISL element Indicates
the start ¢f the sublist, if this cell contains a left parenthesis.

N
[¢ V]

Embedded sublist:

. e o " Tt o o S e S e S o e S b P o — — - ——— - t— " — — — - - o o o 7o

o e o S o e e B ot e e e ot e et e o S S B W St S St W i S o S S S T S T — " (- o o ————— 1

Vo ! carl | car2 | car3 !) '
n !
S ———————
-—=>1 ! carll | carilz |) !
m m+1 m+2 m+3

Note that in the first case, the sublist may be pointed to by a
continvation marker, demonstrating that embedded sublists do not
need to be physically embedded in the surrounding list elements.

Dotted Pairs

P T e ppEp——

a) In Dbor-notation, a dotted pair consists of a double cell, where
the right cell does not point to a list. Lists can be thought of as
construrted from dotted pairs, and hence, an equivalent has to be
availadle in this system.

b) Here, a dctted pair i< implemented as a 1list with a dot

specified as rcharacter code directly, the dotted pair (A . B) will
be stered as:

—— e e T e e e s e P T g P s e B s S B S . S S — — ——— o s S S o T

Note that the 1list (A . (B)) 1is equivalent to (A . B) - since
rarentheses are stored, it is up to the expression analyzer to skip
superfluous parentheses.

29

1T1. List Acress Functions

Li<t access functions are neccessary in this system, since for
instance a search in LIST may be neccessary to find the next top
level element 1in a list - which is simply done by fetching the cdr
of a 1list element in box-notation systems. The access functions
available here are:

Fird next top level element

—————— —— o ———— — —— T —— T — - — - —

The function NEXT, supplied with a pointer to the current list
element, returns a pointer to the next 1list element. It resolves

all embedded-sublist-skipping and continuvation-marker evaluation.

Tetermine value of actual list element

To cbtain the value of a list element in box—-notaticn systems, only
the car of the element has to be fetched. Here, a car-value may
peint to a LIST rell containing another pointer (to a pointer ...).
Tte functionr GETEL just returns the contents of the specified cell
after determining its type. The pointer returned may be a
continuation marker.

The function GETARG resolves all pointer-to-pointer references
including continuation markers and returns the real list element

value and its type.

Arcessing the first element of a list

Whenever the next top level element of a 1list has been identified
as beeing a sublist (after finding it through NEXT), and this
sublist has to be analyzed, access to the first element 1s done by
ircrementing the LIST address by one and using SETEL or GETARG,
depending on what has to be done.

K1)

when reading 1lists from the input channel, they can be stored
sequentially 1in LIST, and no continuation markers are neccessary.
There are several LISP functions, however which manipulate and
coenstruct 1lists 1internally. For these functions, the resulting
structures are explained in tkis section.

The funecticn CDR

a' In Dbox-notation systems, the result of the CDR function applied
te a 11st 1is just the <contents of the CDR cell of the first
element.

b) Y¥ere, the address of the next top level element of the list is
fetcked wusing NFXT, anrd then a list is constructed CONSing a left
parenthesis ard a continuation marker to this address. The result
of the function CDR then is a pointer to the new list:

(SETQ X “(A B (C D)))
(SETQ Y (CDR X))
X =>4 (' & § B 4 (4 c D 4) 1)

The function CONS

a) A double cell 1is allocated, and its CAR cell is filled with a
pcinter tc the first argument, and the CDR cell receives the second

arpument.

) A new 1list has to ©be created defining a dotted pair, if the
secord argument is not a list. If it is a 1list, then the result of
CONS 1is a list which has argument 1 as the first top level element,
ard the top level elements of the second argument are also top
level elements of the new list. The result of CONS in this case is:

(SETQO X (CONS “a4 “(B C)))

Y —==> 1 (1 A} %
-____--__-_-___T-__
v
(v B Y oCco)

Note that the adove examples, the 1list elements contain pointers to
the atems A, B and C. For reasons of simplicity, these are
represented by the atom names.

Noete also that in the CONS erample, no dot has to be specified,
cince a dot and a following parenthesis palr eliminate each other.

The functior APPEND

a) 1in box-notation systems, a copy 1is made of all top level
elements of the first argument. The CDR-cell of the last top level
element is then filled with a pointer to the second argument.

(SETQQ X (A (B C)))
(SEYQQ Y (U (V) W))
(SETQ Z (APPEND X Y))
X ey | A | meefeme=l | | NIL |
_________________ |
;
v
====> 1 B | =—--l-===>{ ¢ | NIL |
i __________________________
O
7 -—> 1 A | =l | ' |
e P—
e
|
v
Y smmd | U | sees|eeese) | . I —==j=—==> 1 & | NIL |
________________ E_________ S
v
vy b NIL

b} Ir this system, a new list is made from the top level elements
of sudblist, a pointer to the original subdblist will be put in the
corresponding position in the new 1list. Following the last top
level element, a dot and a pointer tc the second argument and a
right parenthesis are stored. For the above example, the following
structure results:

X--—=—>41 1t a2 1 C t Bt C 1) i) i
|
_______________ :_______________-_____
2>t (1 & | Pooe b
___________________________ =_________
e
!
v

- e e e . ——————— ———— ——— —— — T —— — . — o o T T T

33

The function NCONC

a) In box-notation, the CDR cell of the first argument’s last top
level element receives a pointer to the second argument.

(SETQQ X (A B C))

(SETQQ Y (U V))

X =——=> 1 A | —==l====>1 B | ===j====> 1 ¢ | NIL |
Y ——> ! U | eeeleee> Vv NIL

o e o —— e o e . e S s S s e ——— — — ——— ——————

e T e e - it A B
N NUON S /A AT S O N S p—
e —
v
V-——>1 U | ===i-===>1 V | NIL |

————— - — o ——— ——————— —— —— v~ —

b} Here, the end of the first argumert is searched. Let j be the
address of the list element preceeding the right parenthesis, then
LIST(i) i< CONS’ed into a new cell, ard a continuation marker to
this rell 1is put into LIST(j). Then, a ©pointer to the second
argument, a dot and a continuation marker, pointing to the last
rieht parenthesis of the first argument, are CONS“ed. For the above
example, we have:

X --—=> ! 4}y & VvV Bt C Vo) |
Y =>4V (v o obovoro)
X, 2 -——=> "' (} a ' B Vo ox 1oy |
S e e
|
______________________]
]
I]
' !
)y TETEETT T T T T e | =
-—=>1! ¢ I . | bR
_______________ l.._.__._......._
:
v

— —— — o — - — ————— — —— - o G — G T o

———— ———————— - —— ——— ———— —

34

The function NCONC1

a) In Dbox-notation, a new cell is allorcated, and a pointer to this
cell replaces the contents of the CDR cell of the first argument’s
last element. The CAR of the new cell receives a pointer to the
secord argument, and the CDR receives NIL.

(SETQQ X (A B C))
(SETQO0 Y (U V))
See the NCCNC example for box representation.

(SETQ Z (NCONC1 X Y))

X2 -—=> | A | ===l=-=—=> 1 B | -=—=le===> 1 c | |
[}
—————————— e L —
o
I
v
| I NIL !
et s o : _________
=
|
v
Y -—==> 1 U | —==l==-=>1 Vv | NIL |

—— e — — ot i o — o e e e e e et oy e

b) Here, the same 1s done as in NCONC, except that no dot is
CONS “ed.

For the above example, we have:

B DT S ———

—— - —— — — | o —— —— —_————

——— e o o T ————— —— ——— ———— — ——

————— — — ——— o~ — S — o, P e, B S o S T — —

35

The function RPLACA

a) In box-notation, the contents of the CAR part of the element
pointed to by the first argument is replaced by the pointer to the
second argument.

Example 1:

(SETOO X (A B C))

(SETOQ Y (U V))

See the NCONC example for box representation.

(RPLACA X Y)

X ---> | | ===l-===> | B | ==={-===> | ¢ | NIL |
__._I: ___________________________________
|
v
Y s==3 | W | ===|====3 | ¥ | RIL |
¥rample 2:

(SETOQ X ((A B) C))
(SETQO Y (U V))

X -==> | | ==—=j==—=> 1 ¢ | NIL |

———— — ———— i ——— ———— o ———— —— ——
———— e —— s —————— —— ————— — — ——

s e e e e o —— e 0 S s e e . e S et S S

Y == 1 U} --=le==s> LV ONIL

(RPLACA X Y)

——— e e o —— o — ————— ————————t— q{—

X =) ! | ===l-===> 1 C | NIL |

——— ——— ———— ———— —— ———— — ———————

————— — - s ot ——— o — ———— v

Y oe=b f U | =——j==—=3 | ¥ | NIT |

—— - g O — — o — T

b) In this implementation, action depends of the type of the first
teco level element of the first argument., If it is & pointer to a
rumber, string/substring, array or atom, this pointer is replaced
by the second argument. This applies also for sublist pointers.

Erarple 1:
(SETQQ X (A B C))
(SETQQ Y (U V))

See the NCONC example for internal representation.
(RPLACA X Y)

——— —— — ————————— — —————— ——— —

For embedded sublists, a different method is used. The first left
parenthesis of the 1ist pointed to by the first argument is
replaced by a contipuation marker pointing to a new CONS“ed left
parenthesis. Then, the pointer to the second argument and a
continvation marker to the second top level element of the first
argument are CONS‘“ed.

Txample 2:

(SETQQ X ((A B) C))

(SETQQ Y (U V))

x =>4 (0 (L a LB 1) ¢ 1y
Y-t (b U v)

e e e - T — — ———— ——— — ————— —

——— — —————— ————— —— —— ——— — — — —— — —————— — ——— ——o—————

——— o — ——— " —— —— —— — — ——— —— - ——— ————— ——— —— — — — — o — ——

—— . ——————————— — ————— o ———

37

Tre function RPLACD

e e B e B e S S o S

a) In ©box-nctation, the <contents of the CDR cell of the element
peinted to by the first argument is replaced by the pointer to the
second argument.

Example 1:

(SETGQ X (A B C))

(SETOQ Y (U V))

See the NCONC example for box representation.

(RPLACT X Y)

——— — —— — —————— ——— o —— ———————

Erarple 2:
(SETQQ X ((A B
(SETQQ Y (U V)

) C))
)
See example 2, function RPLACA for box representation.

(RPLACT X Y)

X ——=> | | ! i C | NIL |
..--: _____ : ________________
| |
' 1
V‘ _____________________________
__________________________ :
I A | =—=je===} | B | NIL | :
__________________________ :
T __________________________________
v

——— ——— o ————— ————— ——— ———— — —

b) Here, the 1last LIST cell belonging to the first top level
element of the first argument has to be searched. Its contents is
CONS‘ed and replaced by a continuation marker pointing to the new
CONS‘ed cell. Then, the pointer to the second argument and a
~ontinuation marker pointing to the last right parenthesis of the
first argument are CONS ed.

Example 1:

(SETQQ X (A B C))

(SETQQ Y (U V))

See the NCONC example for internal representation.
(RPLACD X Y)

——— s — — — ——— —— —— — —— — — — ——— T —— G — —— — -

X==>1{ (} = | B { ¢ |) |
_________?_____________-___:_-_
v |
................... =
oA i ¥ ==
- -
d
v
Y-—-—->1 ({ u { v i) |

Exarple 2:

(SETQQ X ((A B) C))

(SETQO Y (U V))

See exarple 2, function RPLACA for internal representation.

(RPIACD X Y)

—— o ——— T T T — " —— T ——— — P T — G T S > S G G T e G — G
—— - —— —— —— T —— — ——— ——— —— S T — G —— —— — G — S — — —— ————

—— e S S — T G G . S G ——— ———

——— — — — o - —- > S S ———— —— —————

2.2.2 Garbage Collection

——————— et St G ot S o e W

Consider the sequence

(SETQ X 4000)
(SETQ ¥ 5¢20)

In execution of the first expression, storage will be allocated for
the number 4@@@, and a pointer to that cell will be returred and
beunéd to the atom X. The PNAME cell used for the number will be
used only as long as the atom X remains bound to it; the execution
of the second expression will 1lead to the allocation of another
PNAME cell receiving the value of 5000.

Then, the first «cell will no longer be reachable, therefore, this
¢e1l should be freed for later re-—allocation. Such a situation may
arise for any data type, and hence, for each FORTRAN data
structures involved in LISP storage management, a decent garbage
collection method has to be available.

The arrays used for representating LISP data can be grouped for
garbage collecting purposes as follows:

- CAR, CDR, PNP
- FNAME
= LIST

Whenever space in one of these groups 1s exhausted, the garoage
cellector is called to free any unused space. Also, the user can
eyplicitly activate garbage collection. The garbage collection
methods are described in the followlng sections.

z.2.2.1 CAR, CDR and PNP Garbage Collection

— ————— 1 —— 1 S " S o T — S " ot W e (B Bt W W o S o G St

A1l 1literal atoms and strings currently in use are marked by
regating their CDR-cell. Then, the active cells are compacted by
shifting tec the top as much as possible.

This i accomplished by searching for positive CDR cells and
testing whether the corresponding CAR cell contalns a pointer to
NOBIND, STRING or SUBSTRING. If an unused cell is found, the next
ueed cell is searched from the end, and its contents is filled into
the unvsed cell. Let J be the address of some used cell, then
HTAB(J) will receive the new or old address.

When all active cells are compacted, all data structures are
searched for pointers to atoms, and the old pointers will be
replaced by the values stored in HTAB. Firally, the hash table has
to be refilled by a call to the subroutine REHASH.

4¢

2.2.2.2 PNAME Garbage Collection

——— — — —— ————— — O T ——— ———— —— ——

The array PNAME contains four kinds of data:

- printnames of literal atoms
- printnames of strings

- numbers

- arrays

There 1is no need for marking printnames of strings and literal
atoms, since only printnames are accessible which have a PNP entry.
¥or marking numbers and arrays, an additional array MARK is used as
a bit-map, where each bit represents one PNAME word. Each number
occupies one PNAME word, and the corresponding MARK bit is set to
one, if the number cell 1is active. For arrays, the bit
rorresponding to the first header cell is set to one, and also,
tris header word will be marked by setting bit 4, if the array is
active.

For literal atom, string and number garbage <collection, the
following compression algorithm is wused: starting with the
printname following that of the atom T, string and atom printnames
will be compacted by packing as much as possible through
cverwriting unused space.

Wenever an active number 1is found between printnames, it will be
stored in the swap buffer which has ©been emptied on entry to
garbage collection. Normally, the swap buffer will be large enough
to receive all active naumbers, but, if not, printname compaction
will be 1interrupted, and the numbers collected in SWPBUF will be
copied to the next free PNAME cells.

Fer each block of numbers, an entry is made in high HTAB which
consists of the old address of the first number of the block and
the 1length of the block. For printnames, the new address 1s written
into the corresponding PNP cell immediately.

After emptying the SWPBUF, printname compaction and number
cellection can proceed in the way described above wuntil all
printnames and numbers are moved.

Since the printname pointers have been updated during compaction,
only number pointers have to be changed in all data structures. For
a given rumber pointer, this 4is done by calculating the block
address and offset of the new number cell using the old address,
the MARK bit-map and the entries made in HTAB for each block of
numbers.

Arrays will be compacted by shifting their contents to the end of
PNAME as much as possible. Active arrays are recognized by the MARK

bit corresponding to the first header word being set - the size of
a given array can be determined from its header.

41

when updating the array pointers, the new address for a given array
is calculated using the array free space pcinter NARRYP, the
arraysize information, contained in each array header, and the MARK
array.

If an array specified by some old address, ¥ is determined as being
the j-th array 1in sequence, then the new array address can be
raleulated from NARRYP and the length of the arrays preceeding it,
<ince after compaction, all cells are active in the PNAME array
space from NARRYP to NPNAME.

Both number and array pointer updating requires repeated sequential
cparch 1in the MARK array which may cause considerable garbage
rcllection execution time, especially for number—-crunching
applications. Suggestions for enhancements are made in chapter 5.

2,2.,2.2 LIST Garbage Collection

Fer 1lists, all active elements are marked by setting bit 4 of the
rorresponding LIST cells. LIST compression is performed in a way
similar to printname compaction: starting at the top, free space is
cearched and fillled with contents of active cells which are
sparched starting at the end of LIST.

For each unused Dblock of 1length, j>3, (j-1) active cells are
<parched from the bottom, their contents is replaced by a pointer
to an unused cell, where the old value is stored. The j-th cell
then 1is filled with a continuation marker which points to the olock
n® active rcells just copied.

After that, the next free and active Dblocks are searched and
hardled in the same way, until the array is compacted completely.

Iist pointers then <can be wupdated through replacing them by the
ronterts of the LIST cell they are pointing to.

42

A

o3 Expression Analysis

The expression analyzer is the main part of the system. It controls
all actions and calls the other subsystems, whenever needed. This
chapter explains the functional structure of the expressicn
aralyzer. More detalls on its operation can be found in appendix 2,
where flow of control and data is <shown using an example LISP
pregram.

Set svster to initial state

Refore starting a program run, or after occurance of fatal errors,
several glocbal variables and the stack have to be reset to bring
the system into a clean status.

Read rext item

After 1initialization or printing the result of the last expression
evaluated, the interpreter requests the next expression to be input
bv calling the I-0 handling subsystem which reads a complete
expression, stcres it in internal format and returns a poilnter
which enables the expression analyzer to access that structure.

Aralyze item

Using storage management functions, the type of the item will ve
identified, and the expression analyzer acts depending on that
tvpe.

¥or numbers, strings or array pointers, nothing has to be done to
evaluate them, because they evaluate just to themselves. Control is
transferred to the function recursion: popping .

Tor literal atoms, the actual binding has to be checked which may
be either 1local on the actual association 1ist (ALIST), or global
through tre atom”s value cell, if it does not occur on the ALIST.
I¢# there 1s no value specified for the atom on the ALIST, and the
value cell contains a pointer to UNBOUN, then contrecl 1is
transferred to the error handling sectior.

If a value is defined, then control is transferred to the function
recursion: poppirng as above.

"or lists, the global variables ARG1 and ARG2 are set to point to
the first ard second top 1level element, respectively. The first
element always has to be a function name - if it is not, control is
transferred tc error handlirg.

p furctior car be a subr or an expr (one of their variants). If it
is a subr, a new recursion level is initialized by setting up the
stack greperly, and then control is transferred to the
subhr-treatment.

If it is an expr, the atom has a property list, and the functicn
definition 1is fetched from the property FNCELL. Zach functicn
defirition is either LAMBDA or NLAMBDA; 1in the first case, the
arepuments have to be evaluated, therefore, control is transferred
to the function recursion: pushing , otherwise, to the function
"TAMFDA/NLAMBDA treatment .

Pecursion: pushing

The <vetem uses two stacks, both implemented in an array STACK:

- the furction stack
~ the argument stack

¥renever a functicn has to be executed and the arguments have tc be
evaluated Ybefore execution, a function <code 1is stored 1in the
furction stacrk. In the argument stack, all argument Dpoilnters
belonping to the function code are stored.

In seme cases 1t cannot be predicted, how many arguments will be
<tered fer a certain function code. In this case, a pointer to the
argurent stack cell containing the first argument will be pushed
irto the furction stack.

tfter pushing the function <code, the expression gnalyzer has to
pvaluate the next item: it branches to the function analyze item .

Recursion: popping

A funetion <code has to ©be popped from the top of the stack.
Teperding on this function code, control is transferred to:

- LAMBTA/NLAMBDA treatment
- argument treatment

- subr-treatment

- error handling

- result printing

IAMBTA-NLAMEDA treatment

Recursion will continue wuntil all ©bindings are established. The
variable names (actually: pointers) and the associated values are
<tored in ALIST. Then, the function definition will be fetched, and
a function code will be pushed, indicating the fact that multiple
erpressions mayv have to Dbe evaluated due to the nature of LAMBTLA
and NLAMELA bod{es. Contrel 1is transferred to the function
"recurcion: pusking”.

44

Argument treatment

- ————— ————— — ———

For earh argument in the expregsion actually evaluated, control is
transferred to the function recursion: pushing which leads to
evaluation of that argument, and a pointer to the result will te
stecred in the argument stack. After all arguments have ©been
evaluated, control is transferred to the subr-treatment.

subr-treatment

——— —— ——— — —— —— —

If the function 1s a fsubr, the subr-subsystem will be called to
perform all neccessary actions. For subr’s, the argument treatment
has to be activated to analyze the expression’s top level elements.

After argpument evaluation, the result pointers are stored in the
global variables ARG1..ARG3 or in the stack, and the subr-subsystem
is called to execute the function.

Trror treatment

There are two %Xinds of errors:

- hard errors, the system has to be reset fo initial statg
- soft errors, a message is printed, then read next item

Print result

The input has been completely analyzed - the result is handed over
to the I-0 handling subsystem which performs the output. Control is
transferred tec read next item .

Note that the subr subsystem decides itself, where to return to,
since execution of subr code may request evaluation of expressions
before completing, and, on return from a subr, error handling or
result printing may be neccessary, for example.

45

2.4 The subdbr Subsystem

The subr subsystem consists of data structures and the FORTRAN code
implementing a set of LISP functions which <can either be used
directly or as a basis for implementing more complex fgnctions.
These functions are sometimes referred to by the term built-in
functions” in analogy to predefined ~functions in other language
Processors.

Ir 1ISP systems, normally the term “subr” is used to indicate that
a certain funection is defined internally, as opposed to expr for
functions defined as s-expressions. The term subr 1s sometimes
preceeded by f , 1indicating that the function is NLAMBDA which
means, 1it’s arguments are not evaluated before execution, and
scmetimes the character % is attached to the term subr ,
irdicating that the function allows for a variable number of
arguments. These additional attributes are also posssible for
expr -functions.

S | Internal Representation of subr’s

——— e s ot o o o " S S i S — — "~ —) W G oo o

Fcr each subr, not only the FORTRAN cocde implementing the function
has to be supplied, but also this code must be identifiable by the
nare of the function. Therefore, several lists of subr—names are
provided in the file AT OMS which 1s read during system
initialization.

Each of the 7 1lists contains the names of functions of a certain
type, which is defined by the number of arguments and other
attributes. When reading the ATOMS initialization file, for each
tvpe, numbers are assigned to function names and saved in a global
variable dedicated to that type. The names of these variables and
their meaning are listed in table 3.3.1-1.

The functicn numdbers are actually the numbers assigned internally
to the atoms, whose names were read from the ATOMS file during
initialization. When analyzing a LISP expression, the function name
is used to determine the function number which is then matched to
one of the above types. The interpreter can then identify the
subroutine which contains the function code and transfer control to
it.

The suvbr code 1s contained in the 6 subroutines listed in tabdle
2.,2.1-2., Also, for each subr this table shows the LISP function
type of the functions contained in the corresponding subroutine.

! variable | meaning i
i\ SUBR® | number of functions with @ arguments)
[}] |
!] [}
| SUBR11 | highest number of numeric functions |
E E with one argument (add to SUBR®) i
]])
! SUBR1 | highest number of functions with]
! i one argument (add to SUBR11) |
| 1 |
[}] }
! SUBR2 ! highest number of functions with i
E i two arguments (add to SUBR1) i

|
] 1 1
| SUBR3 | highest number of functions with i
E E three arguments (add to SUBRZ2) '

|
\] [}
! SUBR | highest number of functions with i
! | arbitrary many arguments |
| ! (add to SUBR3) i
] [} |
!] |
! FSUB ! highest number of NLAMBDA functions |
]] |
| ! [}

(add to SUBR)

——— - ————— — — S S o — —— T — — — —— - So6 " G G S . - b T - " S G e e S o S S S W - - -

Table 3.3.1-1
Identificatior of functions by numbers

| subroutine ! LISP function type |
! ISUBR® ! subr , @ arguments |
| ISUBR1 | subr , 1 argument |
! ISUBR2 | subr , 2 arguments |
! ISUBR3 | subr , 3 arguments |
i ISUBRN | subr* '
! IFSUBR i fsubr, fsubr* |

Table 3.3.1-2
FORTRAN subroutines containing subr code

47

2 Execution of subr’s

—— e — ————

3.

A

Whenever the expression analyzer has found an executable list
containing a subr’s function name, the function number is computed
as described abdbove, and the arguments are evaluated. Their values
then are put into the corresponding global variables (ARGl .. ARG3
fer subr or argument stack for subr*), and, using the function
number, control is trarsferred to the appropriate subroutine.

Since the argument values are pointers to the actual values, the
latter are fetched using the storage—-management function
corresponding to the argument type. Then, the function number is
used to bdranch to the requested function code via a table of
FORTRAN statement labels.

In most cases, the function code covers all actions neccessary to
perfcrm the function, sometimes however, it is neccessary to use
features implemented 1in the expression analyzer. In this case, the
stack 1s set up properly to allow for a decent return to the subr
rode as well as the expression analyzer after the function
execution is completed.

For a normal return, a pointer to the value resulting from the
functicn execution 1is returned via the global variable ARGl. For
error conditions, return is via the error handling section defined
in each subroutine.

233 Execution of fsubdbr’s

For the fsubr’s, function execution 1is similar to the subr
handling. However, the arguments are not evaluated before the
function 1is activated. The fsubr code contained in the subroutine
IFSUBR handles arguments in one of two different ways:

a) the arguments are not evaluated by the expression analyzer,
but they are scanned directly within the function code. This is
true for the functions QUOTE and SELECTQ, for example.

b) The arguments are evaluated under control of the function
code by wusing the expression analyzer. This is the case for
functions like PROG, where the arguments have a special
meaning, as for instance the local variable bindings which have
to be evaluated before execution of the sequence of
s—expressions defining the PROG body.

48

2.5 The Roller subsystem

The roller subsystem allows for quick initialization of the LISP
system. Once the user environment is set up by defining the desired
set of LISP functions and data structures, a binary image of the
system data can be stored on an external file for later use by
calling the subr ROLLOUT.

This 1image can then be read back in during system start-up, or by
calling the subr ROLLIN.

3.5.1 Creating a Binary Image

The subr ROLLOUT first calls the garbage collectcr (see: storage
management) to free any unused space, thus minimizing the amount of
data to be written to disk. Then, all global variables defining the
actual system status are written in binary format to a logical
channel specified by the user:

coMA -= dynamic pointers to different FORTRAN arrays
COMB -- COMMON area /B/ up to the system flags (DREG(7))
COMCH -- COMMON area containing the character variables
CHTAB -= character type table

HTAB -- hash table

CAR,

CDR,

PNP -- values defining atoms and strings

IMESS -— message array

STACX -- function- and argument stack

LIST --— lists

PNAME --= atom printnames, numbers and arrays

The output is actually performed by the subroutine DMPOUT.

& D2 Reading a Binary Image

A binary 1image created by the function ROLLOUT can be read back by
the function ROLLIN. It first reads the dynamic array pointers
(COMA) and checks them on consistency to the actual interpreter
structure.

If the actual system lay-out allows to read in the data from the
roller file (all dynamic pointers less than array bounds), the
image 1is transferred to main memory, otherwise a message is issued.

Input is performed by the subroutine DMPIN.

49

(93]

.6 The Swapper Subsystem

————— —— T — S —— — - ~—" w—

The swapper subsystem provides all neccessary features to extend
the memory space available for one of the LISP data types, namely
the arrays.

These are allocated in PNAME, as described in chapter 3.2 (storage
maragement). Since PNAME space may be too restricted on a certain
implementation, arrays can be maintained on a disk file instead of
in mair memory, transparent to the user. Once an array has been
created using the appropriate LISP functionm, it can Dbe made
swappable through the function MKSWAP. Also, swappable arrays can
be made resident in main memory.

Access to swappable arrays (i.e., retrieving the contents of array
elements, or changing) 1is done by the normal array access
functions. Additionally, the subr subsystem contains predicates to
test array attributes.

3:6.+1 Internal Presentation

————————— —— T) — S - S

Arrays are represented by pecinters to their headers. For normal
arrays, the header 1is followed physically in PNAME by the array
body. For swappable arrays, there 1s also a header (of the same
format) which Jjust carries some additional information. The array
body, however, is not allocated in PNAME, but on the swap file.

Whenever body of a swappable array has to be accessed (and, if it
is not already swapped in), it is fetched from disk and transferred

to the swap buffer (actually part of PNAME). The swapper data
structures are shown in figure 3.6.1-1.

The swap table SWPTBL

— o —— - — —— - S ——— — —

The swap table 1is an array containing an installation dependent
rumber of four-word entries. B®ach entry, when in use, contains
information on a swappable array actually swapped in (body in the
swap buffer).

Fach entry consists of:

a peirter to the array header in PNAME

a pointer to the first swap buffer block allocated for the body
the rumber of blocks allocated

an additional cell, currently unused

I

Tntries in SWPTBL are allocated dynamically, whenever an array has
to be swapped in, and are freed, when swapping out the
corresponding array.

50

ET
ET

(MKSWAP X))

(=
=]
o d
] | = e e e e e
~ @ I |
< < | |
i] I -1 | ——————
S e e —————— e 0 ¢ 8 8 ® e e —— —————— —— [}]]]
[]] I |] [At >l 0=
i I | M o [1~ | |
] [| | 2] 2 [I~ | |
1] | —~ 1] o [I~ ! |
[T T | M| o] » 11 [I] .
[INTO NN | i = | > | [T] | L4
1} | 0 < | Mo M I [o I B | .
" | 1] = | MO K 1 I o~ |
1] | 1] 2PN | x4 MO K] | I — | |
[l B || = | Lo |] M D | I~ 1 I
| I} ~ | m (3 [T m] e o o o . .
Q| 1] m | ny [) o, 1 e o o o . .
et |] = i = T M = 1 e s s . . .
" | 1] < | [7p} [l ,] [7p] I | | |
1]] =1 LN [I o=t |
1 [] -V | Mo e []~ | |
1] [| " " [I «— | |
W 1 n | " [i I o~ | |
et Lo |] L] | I — | e | .
¢ e e —— e 4 % § e —— - -1 I | .] .
1 [I B | .
N AN ANNAN I | |
| [| I I | |
| 1 =-—— [I | |
| [] [| [= B B I .
| (I | [I ~ 1 | .
| [} I b | [= B I | .
| | [] I w1 |
Ay~ I B [e U T I | It | |
> Ll | [11 I I~ |
m ~ | Vol Il A0 * | | — | e | .
=] ~ | | 11 1 | | e | .
<! < | T et LI | I I et | T B | .
= o | | [T A |] | | I~ 1 |
| | ([| i | | N\ 1 | |
| | [T | 1] | | I I | |
I | 1] | 1} | | | ~ | Il |l --= |
| | [} | 1 | L e | — | 1 Q| === w0 O
i I] b == | (=] - | =——-=> |
1 | il] I | (=] | -1 WL OW
| | H-=—1 vl | = | | ——= |
| I] [| 75] |- v emm
[} i 1] [S | e B Bt — |
| | 1] | ot | Al l-—-21 +~0CH
I 3l H I — [} | | |
I m | [T T < I E | (700 Bt | | ———————e
I & | Wi 1] | (=]
I A [I S} |
| [T |] |
b | osemmmm e ee)
| |
I |
| [
R e |

(SETQ X (ARRAY 10¢ 5@))
(SETQ Y

3.6.1-1

Figure
Swapper Data Structures

Tre array header in PNAME

Fach array header consists of four words in PNAME. For normal
arrays, only the first two words are used to store the arraysize
and the size of the unboxed number region.

For swappable arrays, the first header word contains two additional
flags, one of them indicating the array being swappable, the other
marking the array as swapped in or swapped out.

The third header <cell <contains a pointer to the swap table entry
allorated fecr that array, when it is swapped in. The fourth cell
contains a pointer to the first record allocated on the swap file.
fer that array.

The swap buffer

The swap buffer 1is organized as a sequence of 256-byte blocks in
PNAME. Whenever an array is swapped in, the swap buffer contains a
complete copy of the array contents, including the original header.

The number of Dblocks allocated for an array depends on it’s size
(first word of header). Only arrays smaller than the swap buffer
can be made swappable. On the other hand, more than one array can
be in the swap Dbuffer at the same time, thus reducing swapper
cverhead.

The swap buffer directory

The swap directory SWPDIR is used to keep track of used/free blocks
in the swap buffer. It 1is actually a bit-map: for an allocated
block, the corresponding bit is off (@), and free blocks are marked
by a 1-bit.

The swap file

For each swappable array, a number of 256-byte records is allocated
cn the swapper’s disk file. The space allocated for an arrday is
kept reserved for it, until it eventually is made resident again,
cr tre swap file is initialized.

The swaprer disk file directory

The array DSKDIR is used as & bit-map to indicate used/free blocks
ir the same way as SWPDIR for the swap buffer. In this
implementation, the Dbinary image of DSKDIR is written to the first
record of the swap file, whenever it has been updated. This allows
for keeping the swap file contents between different system runs.

52

2:6:2 Swapper Operation

The swapper subsystem contains four major functions resembling the
possible status transitions of arrays:

MESWAP ~ ————mm—mmmee
———————————— i resident |
f P — >/ array |
EE
| | MKUNSWAP
L
—————————————— SWAPOUT —————————————
' array | e > array |
| swapped=-in | {~—=——m—————w—- | swapped-out |
—————————————— SWAPIN e il

Figure 3.6.3-1
Array Status Transitions

The swapper functions are <called either during execution of the
corresponding LISP functions or as a consequence of «certain
interpreter 1internal events, as for instance garbage collection.
Therefore, the most swapper FORTRAN code 1is separated from the
ISUBR’s and put 4into a set of FORTRAN subroutines and functions.
These functions are described in the following sections.

The FORTRAN function MKSWAP serves to

- allocate space for the array on the swap file
- copy the contents of the array from PNAME into SWPBUF.

Allocation of disk space 1is performed by calling the function
FPSPAC which tries to find a proper number of consecutive blocks
(records) iIn the disk file by inspecting the array DSKDIR.

If enough space is availadble, the records are marked as allocated,
and the disk 1image of DSKDIR is updated. If not enough space is
available, an error message is returned to the user.

Next, the function FBSPAC 1is used to provide space in the swap
buffer. ZEventually, other swapped-in arrays have to be swapped out
before the array can be copied. Also, FBSPAC allocates a swap taole
ertry and 1links it to the array header. Shortage of swap table
entries will also force some swapped-in array to be swapped out.

MKSWPA then sets up more array header and swap table information,
and then the array 1s copied from PNAME to SWPBUF using the
function MVARRY. The array header remains valid: all pointers to it
will now point to a swappable array. T'he former array body however,
will be lost during garbage collection.

3.6.3.2 Function SWPOUT

o — — ——— — ——— f——

The function SWPOUT is called in the following cases:

swap buffer space needed during MXSWAP or swap-in
swap table entry needed for MKSWAP or swap-in

the subr ROLLOUT has been called

the subr EXIT has been called

garbage collection is called

[BE= T TS e]
e e e et

The function SWPOUT fetches all neccessary information on the array
te be swapped out from it’s header and swap table entry. Starting
at tre SWPBUF address (fetched from SWPTBL), the appropriate number
of blocks (also fetched from SWPTBL) is written to the swap file
starting at the first record allocated for the array (fetched from
the header).

Next, the swap buffer directory SWPDIR is updated, the swap table
entry 1s freed and the array 1is marked as swapped out in it’s
header.

3.€.2.3 Furction SWPIN

This function is rcalled during execution of the LISP functions EL!,
FLTD, SETA, SE®TD and MKUNSWAP. It first checks, whether the array
is already swapped in. If not, space is allocated in SWPBUF through
a cell to FBSPAC which may cause swap-out of other arrays, as
described above.

The swap table entry and the array header are set up, and the array
contents is read into the swap buffer from disk. SWPIN returns a
pcinter to the first word of +the array header in SWPBUF which
allows the <caller to treat the array as a normal resident one in
the fellowirg array operations.

94

3.6.3.4 TFunction UNSWPA

This function 1is used to make a swappable array resident. It first
swaps the array in wusing SWPIN, then PNAME space is allocated
through MKARRY (see: storage management) and the array contents are
moved to the space allocated by a call to MVARRY. The swap table
entry and the space allocated on disk and in the swap buffer are
freed by wupdating SWPDIR and ©DSKDIR. The LISP function MKUNSWAP
returns a pointer to the new array; the old array header is still
available, however, if there are any bindings to it occuring in
variables, lists or arrays.

4 Porting and Installing the System

The LISP system 1s implemented in FORTRAN-IV as its predecessor
LISPF3 to provide a high degree of portability. Therefore, to
install the system on a given computer, only a few modifications of
the source code have to be made, mostly where functions provided by
the operating system are referenced.

The LISP system is 1implemented on two different computers
currently, namely the MODCOMP CLASSIC (ATM 73) and the ATM B80-60.
Operating system dependent features are therefore clearly
identified in the source code already by providing a file for each
computer containing the critical functions and subroutines.

To 1irstall the system on another computer, a file of subroutines
and. functions has to be provided which interface between the LISP
and the operating system. Also, for other FCRTRAN-IV versions, it
may be neccessary to modify the system source elsewhere, as for
instance to change statement ordering, or character translation and
storage.

Once the source code 1is accepted by the FORTRAN compiler of the
computer system in question, the software has to be configured to
define the sizes of the 1internal data structures. Since FORTRAN
allows only static data structures, all arrays have to Dbe
dimensioned properly, and a number of variablas have to be preset,
which enable the system tc know about the software configuration.

A1l prcgrams involved in system initialization are collected in one
file, namely the file INIT. In most cases it will therefore only be
neccessary to modify the contents of this file to tailor the
system. Only, when changing the system structure (e.g., to enhance
the subr set), other subroutines might be affected. This especially
applies when changing the system data base , the COMMON structure
which on the ATM 78 system 1is held in a separate file, but is
availadble 1in each subroutine directly for the ATM 82-60 system due
te the missing include facility.

In the following sections, the steps 1involved 1in system
installation are describved.

56

4.1 Data Structure Configuration

The subroutine INIT1, contaired 1in the INIT file, presets all
variables related to data structure lay-out and variables relating
to machine dependent features. Here, the data structure lay-out
will be described. For a specification of machine dependent
variables, refer to appendix 1.

Note that for changing any array declarations, they have tg be
changed, wherever they occur, - 1in file VAR, 1if include 1is
avallable, and in each subrcutine or function, if not.

Array ILIST

Since 1in this array, all 1lists created during system executlon are
stored, it should be dimensioned as large as possible. A minimum
size of 10000 elements 1s recommended for systems providing the
complete expr package to the user. Set the variable NLIST to the
value desired, and change the declaration of LIST appropriately.

In this version, no data structures are equivalenced to LIST, and
therefore nothing else has to be done.

Arrays CAR, CDR, PNP, HTAB

Since these arrays are all used to store literal atoms, their sizes
depend on each other. The array HTAB is used as hash table, and
must therefore provide more elements than the expected number of
atoms used in a system run. Let n be this number, then CAR and CDR
each have to be configured to n elements. The size of HTAB then
should be n*1.5 or more.

Also the size of the array PNP depends on the size of CAR and CDR:
it must be configured to 2%n+l1. Besides declaring the arrays
appropriately, the variable NHTAB has to be set to the size of
HTAB, and the variable NPNP has to be set to 2%n.

Array STACK

This array is wused to maintain the two stacks (function- and
argument stack). It should be declared to not less than 500
elements. The variable NSTACK has to be set to the size of the
array. There is no relation to other data structures.

57

Array PNAME

This array is used to store atom and string printnames, numbers and
arrays, and therefore should also be configured as large as
possible. Also it contains the swap bduffer which is equivalenced to
its upper part. The variable NPNAME specifies the wupper data
storage 1imit, where NSWPBW gives the size of the swap buffer in
PNAME elements. PNAME must be declared to the desired size, and the
variables NPNAME and NSWPBW have to be set appropriately (see also
swapper data structures).

Nete also that real values will be stored in PNAME and to inhibit
data conversion by FORTRAN, a REAL array RPNAME of the same size as
PNAME is equivalenced to the latter. The RPNAME declaration has to
be changed.

Swapper Data Structures

—————— —————— — — ———— — —— = - ——

The swap buffer SWPBUF mentioned above is equivalenced to PNAME as
follows:

SWPBUF(1) = PNAME(NPNAME+1)
= PNAME(NSWPBB)
SWPBUF(NSWPBW) = PNAME(NSWPBE)
and therefore,
NSWPBW = NSWPBE — NSWPEB + 1

Tre variables NSWPBW, NSWPBE and NSWPBB have to be set
ronformingly. :

The swap buffer and the disk file are accessed on a record basis
for data transfer and storage management purposes. The number of
records or blocks 1in the swap buffer is then:

NSWBLK = NSWPBW / (NBPREC / BYTES)
where NBPREC and BYTES are machine dependent values.
The array SWPDIR must be declared to provide one bit for each block
in the swap buffer, and 1its size has to be specified in the
variable NSWPDI as:

NSWPDI * 32 =,> NSWBLK
Fer each swpped—-in array, a four—element entry is used in the array
SWPTBL, sc that its length, specified in the variable NSWPTB, must
be

NSWPTR = 4 % NSWPTE

where NSWPTF then specifies the number of swap table entries
available.

o8

¥inally, the array DSKDIR has to provide one bit for each record in
the swapper’s disk file. It is reasonable to dimension the DSKDIR
to a multiple of the record size, since it is maintained on the
first records in the swap file for re-initialization. Let NDIRSC be
the number of disk records used for the disk directory, then DSKDIR
must be declared to

NDSKDI = NDIRSC * (NBPREC / BYTES)

elements.

Buffers

The wvariable I0BUFF has to be set to the size of the arrays ABUFF,
RDRUFF and PRRUFF. These arrays are statically initialized in the
block data segment.

Array IMESS

————— —— — o ——

This array keeps all system messages, and it has to be declared to
MAXMESS * (NBMESS / BYTES)

where MAXMESS is the number of messages avallable, and NBMESS is
the maximum message length.

Array CHSET

This array is equivalenced with the variables keeping characters of
special meaning. Besides proper CHSET declaration, the variable
NCHTYP has to be set to the size of CHSET.

4.2 Operating System and non-standard FORTRAN Calls

——— i — —— ———— — — —— - — —— —— S T T U G —— —— " T S S i —— o —

For several purposes, bit manipulation is used internally. This is
done by four functions:

SETBT SETBF TESTB ISHFT

Conforming to bit ordering and true/false value assignment,
appropriate FORTRAN functions have to be provided.

For direct disk access (swapper), two routines RDREC and WRREC have
tc be supplied. The system time has to be delivered through the
routine TIMDT4.

Finally, character fetching and stuffing is expected to be done by
GETCH and PUTCH. Different versions are supplied with the system.
The ATM-80-6@ version can be used for systems supporting LOGICAL*1
data type.

58

4,2 System Initialization Files

——— . —— T S — ————— S — — —— . —

The file ATOMS contains character definitions, the subr names, some
variable names and the system messages. It is read during initial
system start-up, when no ROLLIN file 1s avalilable. Of special
interest are the <character definitions which might have to be
changed on a given system.

In this case, also the file SYSPACK might have to be inspected, and
possibly characters may have to be changed there also.

The SYSPACK file contains all expr definitions available as
described in appendix 3. More function definiticns may be added, or
functions may be deleted or modified without affecting the system
structure.

The functions available are packaged in the following way:
BASIC1 BASIC? 101 FUNC1
DEBUG1 DEBUG?2 EDIT MAKEFILE
IS&F-PACKAGE

Packege functions may refer to functions defined in other packages,
so care must be taken, when deleting any function definition.

4.4 System Environment

Several files and devices have to be provided for proper system
oneration. These are:

standard input device (LUNIN)
standard output device (LUNUT)
ATOMS file (LUNSYS)
SYSPACK file

roller file (LUNROL)

swapper direct access file (LUNSWP)
Additionally, there may be

alternate input / output files
alternate roller files
MAKEFILE files

WVhen starting a new run, the wuser is asked for the type of the
system desired which may be either clean (only subr’s defined),
or a predefined birary 1image provided by the standard roller
file. When wusing the first type of system, a direct call to ROLLIN
may be used with the appropriate logical channel number to read in
8 user specific binary image.

The initialization method may Ddbe changed, however, by adding or
deleting cede in the main program INI.

€¢

5 Conclusion

5.1 Portability Problems

The system is implemented in “pure” FORTRAN IV, avoiding the use of
the extensions in the ATM-78 FORTRAN, and all critical operating
system functions have ©been collected in system dependent files, 1
experienced <ome surprise, when installing the software on the
ATM-8060 .

Nearly no one of the 2@ or more source files was compiled correctly
or the first attempt. Most of the problems came from the fact that
the ATM-826¢ FORTRAN performs some type-checking for subroutine and
furction parameters, as long as these are collected in one file and
cempiled together - a nice feature for those, who can afford to use
it.

There are more serious prodblems, howevery as for instance the
rejectior of statement functions within functions, or problems
related to FORTRAN internal storage lay-out, documented nowhere -
at least not in accessible documentation.

Ore of these storage problems on the AEG-8¢60 is the limitation on
array sizes, where no FORTRAN array may be larger than 64 k bytes.
This restriction is not applicable, when running LISP-SP on other
machines.

Originally, I implemernted the swapper in a way that the swap buffer
was vpart of the LIST array as well as PNAME - thereby providing the
basic< for 1later implementation of swappable function definitions.
This was achived on the ATM-78 by overlaying LIST and PNAME
partially, ©but as a side effect of the size restriction for arrays,
it was not possible to implement on the ATM-8060, and therefore 1is
not availadble on the latter.

This 1is no real serious problem, however, since very likely, a
better way to implement swappable functions 1s to provide a
separate swapper for LIST, 1involving a different swap Dbuffer
ranagement algorithm reflecting the need to keep a function
definition in memory until it is completely executed.

51

5 ol Testing the Interpreter

. ———— —— o ——— —_————— — ————

IISP is a very friendly system, seen from the tester’s point of
view, since system operation can be verified beginning at a very
early development stage. Once the expression analyzer allows for
callirng subr’s, each subdbr can be implemented and tested
immediately. Also, 1f the subr code is known to perform correctly,
it can be used to test the expression analyzer which can be
ctabilized with reasonable effort only by additionally using some
tracing mechanism.

Pesides throughput aspects, the availability of a symbolic tracer
cr the ATM-78 was one of the reasons for originally implementing
the system on this machine.

Cnce the system seemed mature enough, more complex tests were
derived from example programs in [EP79] and ([WHB1], the biggest one
being the animal identification problem. Some changes to the
pregrar had to be made, however, to convert MACLISP into INTERLISP.

More test ©packages then where drawn from the LISPF3 expr package,
e.g., the editer, and a number of problems were identified and

fixed.

Since no fully symbolic debugger was available, two additional
features have been implemented to aid in testing. One is the WSTACK
routine which can be called anytime to print the contents of the
arpument and function-stack, and which can be activated at the most
important places in the program by Jjust setting the sysflag 3
(PREG[3]) to T.

fncther wuseful assistant 1s the “debugger” which, when activated
trrough a backslash in column 1 in the input, accepts command lines
specifying global varlable names (system status) and prints their
sontents 1in any format desired. This feature is always available,
and the debugger’s symbol table is installed as a normal LISP
array, and ran as such be made swappable, or deleted, of course.

There 1is one function in the system which is more difficult to
test, mnamely the garbage collector. Especially for testing it, the
‘debngeer’ was of great importance. Once the garbage collector was
stabilized enough to do so, the ackermann function was used tc
create heavy storage management activity, and then a more complex
program was written to test especlally list management.

This program allowed for relaxing a bit in the most difficult
implementation phase: 1t required to sit in front of a character
driven color grafics terminal, generating circles of growing sizes
ard different colors. Whenever the sequence of colors was out of
the expected crder, a problem had been found in garbaged list
structures.

€2

———— ————— ————— T - (o —— s 2 o {——

Software never is perfect - this applies to LISP-SP as to any other
precgram. The problem Just is that time is limited, and new ideas
cannot be implemented 1if work 1s ever planned to be ended. If
somecne wants to pick up LISP-SP and make it better - here are some
hints about what can be done.

First of all, swappable lists would probably add most to LISP-SP’s
attractiveness, and, based on the FORTRAN elements available for
array swapping, it should not be too hard to do.

Then, it may be reasonable to change the storage management for
numbers: in the current version, due to the 1limited hardware
environrent which was available, numbers are stored interleaving
with atom end string printnames. This leads to a garbage collection
aleorithr involving sequential searches for number positions, and
in “heavy number crunching’ applications can imply high overhead.

If LISP-SP 1is ever going to be used for that purpose, it might be
worth to set up a separate array for storing those numbers, change
MKNUM, GETNUM and the other related functions appropriately, and
then - the most complicated part of the job - change also garbage
rcllection.

Also LIST garbage collection might be changed: pointer-to-pointer
references might be resolved to compact lists by trying to store
all elements of 1lists sequentially without wuse of continuation
markers. This will require a highly sopkisticated algorithm, if it
is possible at all. There is no doubt, however, that list garbdage
collectior will take more time in this case, and no estimates can
be made or the amount of space freed additionally.

Ancther, and again, far more interesting enhancement might be to
change the ALIST and property list management to avoid sequential
searches for variables and properties.

Also, the user may wish to add sudbr’s to the system - this is only
as complicated as the functions themselves are. Embedding new subr
ccde into the system can easily been done by using the FORTRAN
elements and documentation available.

Finally, 1implementation of some sort of “compiler” would be an
enhancement of major importance - <certainly a project requiring

quite some amocunt of time.

63

5.4 Differences to INTERLISP

LISP-SP implements only a subset of INTERLISP for use on today’s
‘mini-corputers’. All functions of major importance are available,
and can be used to implement more complex features. This can be
seen by inspecting the expr package, containing an editor,

debugger, makefile and others.

Some of INTERLISP s features require additional FORITRAN coding,
however: hash-functions and -arrays, and CLISP features, as the

record data type, for example.

The INTERLISP functions not implemented in LISP-SP are marked in
the comparative function 1list, appendir 4.

Apperdix 1 : System Global Variables

page

COMMON SWP

Tre variables belonging to this COMMON-block carry information
about the swapper.

NSWBLK == number of the swap-blocks

NSWPEB - number of the swap-buffer-begin
NSWPRE - number of the swap-buffer-end
NSWPEW - number of the swap-buffer-words
NSWPDI e number of the swap-directory-words
NSWPTR == number of the swap-table-words
NSWPTE -- number of the swap-table-entries
NBPREC e number of bytes per record
NDIRSC i number of directory-sectors
NISKDI -- number of disk-directory-words
DSKDIR -— disk-directory

SWPDIR - swap-directory

SWPTBL == swap-table

COMMON CHARS

The wvariabdles Dbelonging to this COMMON-block carry the single 24
character which the interpreter used.

SPACE -- blank -

LPAR -- left parenthesis - 0.

RPAR -- right parenthesis -).
ILECHR -- left bracket character - K
IRBCHR S right bdracket character =- ¥
STRCFR -- string character - "

IQCHR -- quote character -

URR -- user break - K,

1OT -- dot character -— ..

ITCHR - letter character - T,

IPLUS = plus-sign - o

IMINUS -- minus-sign -— T+ .
IFIG -- array for the digits - 0, .. 9
ATEND -— escape character —— {.
SOFTRR -- input-break character -— "}

CHTAB - character—table

CCMMON &

BYTES --
LUNROL --
LUNSWP —
MAXINT ==
CHDIV o

In ROLLIN

and

page 2

number of BYTES per word

logical channel number for the rollin/rollout
logical channel number for the swapper

limit of same do-loops

using for shift a byte (2%%24)

ROLLOU the following 6 variables are equivalenced

with the array COMA. They contain all the dynamic pointers.

NATOMP i
NLISTP -
NARRYP i
JBP e
NUMBP s
VNAMSP e

NSMIN i
NPNP o
NLIST --
NPNAME -=
NSTACK -=
NHTAR --
NATHSH --=
NBYTES --
MAXREC -
NCHTYP -=
NRMESS -
MAXMES -=

each
counted.

Fer
are

of PNP

of LIST

of PNAME (array-part)
byte-pointer of PNAME (litatom-part)
dynamic pointer of PNAME (number-part)
pointer of PNAME (variable-names)

dynamic pointer
dynamic pointer
dynamic pointer

upper limit for small integers
size of PNP

size of LIST

size cf PNAME

size of STACK

size of HTAB

usirg for compute the hashaddress
size of a paysical record

size of a logical record

number of different charecter-types
number of messages

maximral number of messages

irterpreter-run the number of the different garbage-types

The follwing 5 variables store the number of

garbage-calls for type:

GARBS e
LAGARBS i
PNGARR ==
AAGARBE =
LIGARE --

NP,

page 3

CCMMON B

The next 12 variables <contain pointers actually worked on that
means all information for the garbage collector which are needed
for rot destroying some still used items.

ARG1 -— first element of the actual expression
ARG2 -— second element of the actual expression
ARG3 -— third element of the actual expression
ALIST -— local variable-1list

FORM -— start of the actual 1list

TEMP1 -- temporal variable for storing

TEMP2 -- temporal variable for storing

TEMPZ ~— temporal variable for storing

[1CONS -- start of a new created list

I2CONS -—- rpnext item to be put into the array LIST
NARGS —~- number of the above variables

The following wvariables contein lisp-litatoms which are needed by
the interpreter.

NIT -— NIL
ERROR -~ SYSERROR
PROG -- PROG
LAMBLA -- LAMBDA
FUNARG -~ TFUNARG

Y PR -- SUBR

FEXPR -- FSUBR

T — T

GENNUM -~ GENNUM
UNUSED -— NORIND
QUOTF -~ QUOTE

ACO0 - A

LISPX -- LISPX

EVAL -- EVAL

APPLY -~ APPLY
RSTALE -~ RANDSTATE
TNBOUN -~ NOBIND
STRING -- STRING
FNCELL -~ FNCELL
RTRACE -~ *BACKTRACEFLG
RLIST -~ *BACKTRACE
NLAMBD -~ NLAMBDA
SUBTSTR -- SUBSTR

The following variables contains the number of built-in functions.

SUBR® -- with @ argument
SURR11 -~ with @ and 1 argument (only for numerical functions)

page

SURR1 -~ with 2 and 1 argument

SUBR? -- with @ and 1 and 2 arguments

SURR3 --— with © and 1 and 2 and 3 arguments

SUEBR -- with @ and 1 ard 2 and 3 and n arguments

FSUBR -— qumber c¢f all built-in functions

IpP -- dynamical pointer of the function-part of STACK

JP -—- dynamical pointer of the argument-part of STACK

IPP --— dynamical pointer to the function-code of PROG-values
JPP -— dyramical pointer to the argument-part of PROG-values
MITDL —— allocation of the array STACK

ABRUP1 —- dynamical pointer of ABUFF

CHT -~ character-type

CHR -— —character

ASA -- carriage control character

IUNUTS -—- storing logical channel number for input

LUNINS -—- storing logical channel number for output

The following 12 varliables are equivalenced with the array
ccntairing the i/o-values which are changeable by the user.

LUNIN -- logical channel number for input
RLPOS -— dyramical pointer in RDBUFF, reader position
LMARGR -- 1left margin for input
MARGP -- right margin fcr input
1UNOT -- logical channel number for output
FRTPOS -— dynamical pointer in PRBUFF, printer position
LMARG -- left margin for output
MARG -— right margin for output
LFVELL -- maximal number of top level elements to be printed
LEVELP -- maximal bracket-depth for printing
LUNSYS -- logical channel number for
NSYM -- number of symbols
FRFLG -— bracket flag
RRLEV -—- Dbracket level
T¥LAG -- flag for printing
IBREAK -=— 1input bdrak
MAYLUN ~- maximal number of logical channel number
I0BUFF -- size of PRBUFF, RDBUFF and ABUFF
ERRTYP -~ actual error-code
RFLG -— backtrace—-flag
LREG -- bduffer for system-flags
CREG(1) -- garbage collector messages printing
DREG(2) ~-- pretty printing?
PREG(3) -- print stack-contents?
DREG(4) -- unused
DREG(S) -- escape- and string-character printing?
LREG(6) -- unused
DREG(?) -- start a rnew line at each occurence of

a left parentheses

The following

ARIFF
PREUFF
REBUFF
IMESS
CAR
CDR
PNP
HTAB
STACK
PNAMT
RPNAME
SWPBUF
LIST
VNAMS

page

variables are the "big arrays :

storing i1/o0-data

printer-buffer

reader-buffer

message—-buffer

array containing the car of a litatom
array containing the cdr of a litatom
array containing pointer to litatom-printnames
hashtable

stack

array containing printnames
equivalenced with PNAME

swap-buffer

array for storing lists

array containing the global variables

Apperdix 2: TFORTRAN Elements

1 File INIT

Contents:
PRCGRAM INI
SURROUTINE INIT1
SUFRRCUTINE INIT2
ELOCK [LATA

1.1 PROGRAM INI

The main vprogram 1s very shert. It just calls the initialization
subroutines, the interpreter LISPSP and the exit routine LSPEX. The
LISP system can be initialized in two different ways:

a) After calling INIT1, the main program invokes INIT2 which
creates a ‘fresh” system by reading in the atoms-file. Only
the FORTRAN defined functions will be available in such a
system. This kind of initialization has to be performed at
least once to create a (minimum) environment for the second
initialization method.

b) After calling INIT1, the interpreter calls the function
ROLLIN, which normally provides a more complete environment
insluding TORTRAN and LISP defined functions (expr, fexpr)
by reading in a binary 1image of previously defined
functions. If selecting this kind of start, a “rollout’ file
must be available, from which the interpreter can read the
image (via logical channel LUNROL). Rollout-files are
crrrated by

- system initialization type a)
- (optionally) defining more functions (expr/fexpr)

- executing the rollout function (ROLLOUT “LUNROL”)

Fefore generating the Lisp system from source code, the main
pregram should be modified appropriately to provide the desired
environmrent.

1.2 SUBROUTINE INIT1

This subroutine performs all mandatory variable initializations.
Variables affected include:

a) array limits

b) lcgical channel numbers

c) system dependant variables

d) variables used by the function ROLLIN
e) variables nct affected by ROLLIN

1.2 SUBROUTINE INIT2

———— s o 1 — o 2 > o s S

This initialization-routine provides the subr/fsubr-environment
neccessary to create more “intelligert” LISP systems. This is
accomplished by:

a) initializing all dynamic pointers to internal structures
b) reading in the set of predifined symbols and atoms

c) initializing the swapper data structures

d) reading in the subr/fsubr-names and assigning function

numbers
e) assigning some lisp-names, e.g. LAMBDA, FNCELL and T

1.4 RLOCK LATA

The BLOCK DATA segment contalins some compile—-time array
initializations.

nN

File LISPSP

contents:

SUBROUTINE LISPSP

% | SUBROUT INE LISPSP

Parareters are:

IREER —— interpreter entry code

IREE = 1 Start a new run and print some messages, €.8.,
the user space available for different data types.

IREE > 1 Interpreter restart - no messages printed

This subroutine 1is the interpreter which analyzes and executes the
vser input. The steps 1involved in interpreting LISP programs are
explaired 1ipn the follewing sections. First, a 1ist is created
irternally which would read as:

(LISPX)

The interpreter then executes the LISPX subr which functionally
resembles the LISP program

(PROG NIL
LOOP (PRINT (EVAL (READ)))
(GO LOOP)).

Tris LISP form describes the whole principle of the interpreter.
The cverall evaluation algorithm will now ©be illustrated by an
example. Tnitially, the interpreter sets the following variables:

FORM = (LISPX)
ARG1 = LISPX

L = LISFX
ARG2 = NIL
EVALSW = NIL

It then jumps to the function-analyzing part.

Here it 1s determined, whether it°s a ©built-in (subr/fsubr) or a
vser defined (expr/fexpr) function. This is done by using the
function GET with the actual parameters LISPX and FNCELL (FunctioN
(RLL). If GET returns NIL, then there is no indicator FNCELL in the
property 1list of the atom LISPX and hence, LISPX is a FORTRAN
defined funntion.

Next, it is determined, whether this functiocn is a subr or a fsubr.
Ir this case it is a subr,

The evaluation-flag 1is NIL which means the arguments have to be
evaluvated first. 1In this case there are no arguments (ARG2 is NIL)
- evaluation can proceed.

The next step 1s to determine the FORTRAN subroutine (ISUBRx),
which ccntains the definition of LISPX. LISPX has no arguments and
therefcre, the <subroutine ISUBRZ will be called. Within ISUBRZ the
ccde for LISPX 1is executed, and ISUBR® returns with exit code 3 -
this means execution of the read-section (call the input-routine)
i< requested.

Mow the 1Input-secticn reads the rnext lisp—expression and returns
the starting address of the expression.

Tet the input be:
(MINUS)
The important variable-values then are:

(MINUS 3)
(LISEX)

ARG1
FORM

"hen startirg the evaluation of the new expression, the o0ld
eypression will be saved. This is done in the following way:

a) Push “end-of-evaluation” indicator on function stack.

b) Push contents of FORM (last expression) onto argument
stack.

Then, the following varlables are set:

FORM = (MINUS 3)
ARG1 = (MINUS 3)

Now ARGl is analyzed:

a) ARGl is a 1litatom. Fetch the binding of the atom. If
there 1is an ALIST (association 1list), search fecr this atom.
If it 1is opresent, fetch 1its binding, otherwise fetch the
binding from the cell of the array CAR corresponding to the
litatom. If the value of that cell is equal to UNBOUN, an
error has occured - unbourd variable. The interpreter will
jump to the error handling section.

After successfully retrieving a binding, a value is popped
from the function stack indicating the next function to be
pyecuted.

b) ARG1 is neither a litatom nor a list. A value is popped
frecm the function stack indicating the next function to be
executed.

o

c) ARGl is a list. This is true in the above example - the
interpreter’s action will be explained in more detail.

The following variables are set by “parsing’ the list:

MINUS
3

ARG1
ARG?Z2

0o

Next, the function type (FORTRAN or LISP) 1is determined: the
functicr GRT returns an address that represents a user defined
funetion. In this case it hands Dback the definition for the
function MINUS:

(LAMRDA (X)
(DIFFERENCE @ X))

The irterpreter now acts, as if the input has been

((LAMBDA (X)
(DIFFERENCE ¢ X))

)
The next step is the binding of the LAMBDA-variable X to the value
2, therefore control 1is transferred to the lambda-section cf the
interpreter.

Trere, the Dbeginning of the list of lambda-variables is saved on
the argument stack and their bindings are fetched. While
nlambda-bindings are passed directly to the calling function,
lambda-bindings have to be evaluated before executing the function.
The example 1involves 1lamhda-bindings, therefore all important
values are stacked, and the lambda-binding is treated as new input.

For rumders, it 1is easy to find out, what the interpreter does.
"inally, the functlion-code 1s popped which brings the interpreter
back to the LAMBDA-part. There, the result will be stored in a new
list, and it is tested, if there are more bindings.

In the exarple, all bindings are evaluated. Next, the type cf
parameter—argument—-association is determined:

a) new ALIST = ((X . 1)(Y . 2) .. . 0old ALIST)
(spread)

b) new ALIST = ((X . 1) .. (Y . (2 34) . old ALIST)
(half-spread)

r) new ALIST = (X . (1 2 3) . 0ld ALIST)
(no-spread)

'he example will produce the simple case:
new ALIST = ((X . 3) . old ALIST)
After setting wup the ALIST, the irterpreter must prepare for more

than one expression in the bedy of the lambda-expression. This is
dcne by prushing an appropriate code on the function stack.

6

New, FORM and ARGl are set:

FORM
ARG1

(DIFFERENCE 2 X)
(DIFFERENCE & X)

o

The 1interpreter starts eavluation of the lambda body. First, the
furction DTIFPFERENCE will be analyzed - the function GET returns NIL
- DIFFERENCE is a FORTRAN defined function. The evaluation-flag is
set, so the interpreter jumps to the section testing for arguments.

The current pointer of the argument-stack will be stored into the
function-stack, because all following 1items in the argument-part
belorg to the actual function. Next, an end-of-evaluation indicator
i« pushed tec the function stack.

Mew, a pointer to the list cell containing the next argument (X)
ard a cpeinter to the start of this function will be pushed on the
arpument stack.

Since ARG1 is @, no evaluation has to be done - it’s a small
irteger. The last function code stored on the stack is popped.

The next aregument 1is popped from the stack and the value just
romputed 1is pushed into the stack. The argument is not the end of &
lict but a real number (X), so it is also pushed on the stack.

AR31 - pointing to the LIST-cell <containing X - will now oe Z.
After fetching the value for X out of the ALIST, the function-code

just stored is popped.

Tre next argument will ©be fetched from the stack, and the value
just computed will bpe saved. In this <case there are no more
arguments and the dinterpreter fetches the first argument-address
from the function-part of the stack.

FOBM <till cortains the pointer to the beginning of the function.
Using this fact, the number of the function to be executed is
determined, defining alsc the subroutine which has to be called,
TSUBR2 in tkis case. After executing the code for DIFFERENCE,
TSUBR? returns the value -3 1in ARGl (small integer). The
interpreter now pops the next function ccde from the stack.

This nurher drives the interpreter to look, whether there is more
than one statement in the LAMBDA-expression. This example involves
orly one, and therefore the ALIST has to be changed into its old
value,

The next furction—-code makes the interpreter jump to the
cutput-routines. At this time FORM points to the old LIST-cell,
coentaining (LISPX).

Mew tre next input is requested. The interpreter analyzes the
input. It searches for the first pair of parentheses (expression)
whict can be interpreted. The next function code 1is popped
irdicating the acticn to be taken.

Also the embedding 1lisp-statement 1is fetched from the argument
stack. The result of the statement just computed now replaces the
criginal function.

A pumber of statements in LISPSP doesn’t belong to the interpreter
directly. Instead, they are - functionally - part of the ISUER s.
Sometimes however, it 1is impossible to execute a lisp-function in
ceme ISURR internally, but execution involves multiple calls to the
cubroutine with 1interleaving interpreter action. This is true for
the MAP functions, as an example.

The sections of the 1interpreter dedicated to execute those
functions car easily be identified in LISPSP. They are reached only
by exeruting some ISUBR function and are treated, as if they were
part of scme ISUBR.

To obtain a general understanding of the interpreter’s operatior,
it is not neccessary to investigate these sections.

N

File ISUBR@

rontents:

SUEROUTINE ISUBRQ

3.1 SUBROUTINE ISUBR®

—— - ———————— —— ————

Parameters are:

L -- number of function
JUMP -— exit-code
JUMP =1 start at the beginning, reset the system

JUMP = 2 execution of the function has been finished,
continue with execution of the next or
embedding function.

¢}

JUMP = read next item

JUMP = 4 error has occured, branch to error section.

ISUBR® contains the FORTRAN code for the LISP functions with no
parameters. The function number is used to select the appropriate

section via a computed GOTO. Return is normally directly from the
selected section, except, if an error occured.

The actions 1involved 1in function execution are best understood by
reading the source code directly. ARGl returns the result of tke
funetion.

4 File ISUBRI1

contents:

SUBROUTINE ISUER1

4.1 SUBRROUTINE ISUBR1

—— - ———— ——— o ————

Perameters are:

L -== number of function

JUMP -- exit-code

JUMP = 1 start at the beginning, reset the system

JUMP = 2 erxecution of the function has been finished,
continue with execution of the next or
embedding function.

JUMP = 3 evaluation of the argument requested

JUMP = 4 evaluation of the argument-list requested

JUMP = 5 error has occured, branch to error section

ISURR1 contains the FORTRAN <code for the LISP functions with one
parameter which is passed in ARG1l. The function number is used to
select the appropriate section via a computed GOTO. Return is
ncrmally directly from the selected section, except, if an error
occured.

The artions 1involved 1in function execution are best understood by
reeding the source code directly. ARGl returns the result of the
furction.

1¢

5 ¥ile ISURR2

certents:

SUBROUTINE ISUBRZ

5.1 SUBROUTINE ISUBR2

Parareters are:

L -- number of function
JUMP -- exit-code
JUMP = 1 execution of the function has been finished,

continue with execution of the next or
embedding function.

JUMP = 2 make a dotted pair of ARGl and ARG2 which
will be interpreted as a function

JUMP = 3 evaluation of the argument requested

JUMP = 4 ALIST has been destroyed

JUMP = 5 error has occured, branch to error section

TSUBR2 contairs the FORTRAN code for the LISP functions with two
varameters, passed in ARGl ard ARG2. The function number is used to
select the appropriate section via a computed GOTO. Return is
normally directly from the selected section, except, if an errcr
occured.

The actions 1involved in function execution are best understood by
reading the source code directly. ARG1 returns the result of the
function.

11

€ File ISUBR3

ccntents:

SUBROUTINE ISUBR3

6.1 SUBROUTINE ISUBR3

——————— - —— ———— S T G

Parameters are:

L -- number of function

JUMP -- exit-code

JUMP =1 start at the beginning, reset the system
JUMP = 2 execution of the function has been finished,

continue with execution of the next or
embedding function.

JUMP =

9]

make a dotted pair of ARGl and ARG2

JUMP = 4 error has occured, branch to error section

ISUBR? contains the FORTRAN code for the LISP functions with three
parameters, passed in ARG1, ARG2 and ARG3. The function number is
vsed to select the appropriate section via a computed GOTO. Return
is ncrmally directly from the selected section, except, if an error
occured .

The actions involved 1in function execution are best understood by
reading the source code directly. ARGl returns the result of the
function.

12

? File ISURRN

corterts:

SURROUTINE ISUBRN

Pl SURROUTINE ISUBRN

Parameters are:

I —-- number of function
JUMP == exit-code
JUMP = 1 execution of the function has been finished,

continue with execution of the next or
embedding function.

JUMP = 2 error has occured, branch to error section
EJP —-- stack pointer to the first argument
TARGS -- uaumber of arguments

ISUBRN ceontains the TFORTRAN code for the LISP functions with a
variable number of parareters, passed in the stack. The function
number is used to select the appropriate section via a computed
GOTO. Return 1s normally directly from the selected section,
except, if an error occured.

The actiorc irvolved in function execution are best understood by
reading the source code directly. ARG1 returns the result of the
function.

contents:

SUBROUTINE IFSUBR

Parameters are:

File IFSUBR

13

SUBROUTINE IFSUBR

I -— function number or return code for repeated
function call
JUMP -— exit-code
JUMP = 1 start at the obeginning, reset the system
JUMP = 2 execution of the function has been finished,
continue with execution of the next or
embedding function.
JUMP = 3 save the function-code and evaluate the
argument
JUMP = 4 evaluate the argument
JUMP = 5§ jump to the condition-part in LISPSP
JUMP = 6 fetch the next function
JUMP = 7 ALIST has been destroyed
JUMP = 8 error has occured, branch to error section
IFSURR contains the FORTRAN code for the LISP functions with
ron-evaluated parameters, ARG2 pointing to the beginning of the
argumert The function number 1is wused to select the
appropriate section via a computed GOTO. Return 1is normally

directly from the selected section, except, if an error occured.

The actions
the

reading

function,

involved
source

in function execution are best understood by
code directly. ARG1 returns the result of the

14

9 File INFN

contents:

INTEGER FUNCTION NEXT
SUBROUTINE CONS

INTEGER FUNCTION EOQUAL
INTEGER FUNCTION NCHARS
INTEGKR FUNCTION LENGTH
INTEGFR FUNCTION COMPPN

2.1 INTEGER FUNCTION NEXT

Parameters are:
TARG -— pointer to some LISP object

NEXT returns the address of the next top level element of the list
pointed to by IARG.

NEXT determines the type of the structure pointed to by IARG by
callirg GETEL. If GETEL returns a value in the range [1,2,3,4,5,7],
then TIARG is not a pointer to a list, and NEXT returns with value
NIL.

I# GETEL returns 6, then IARG contains a pointer to a list.
Pcinter-to-pointer references are resolved by GETARG, then the
first element of the referenced list is examined.

If it is a 1left parenthesis, then the corresponding right
parerthesis 1is searched, and NEXT returns the pointer to this LIST
cell, incremented by 1.

If it does not <contain a left parenthesis, then NEXT returans the
pointer to this cell, incremented bdy 1.

If the type of IARG 1is determined to be 8 (by GETEL), then IARG
contains a ‘continuation-marker - the 1list actually continues on

some other LIST <cell. This reference is resolved resulting in a
pointer of type 6, so processing continues, as if IARG contained a
rcinter of type €.

Q.2 SUBROUTINE CONS

Parameters are:

11 -- polnter to some LISP structure

CONS puts the contents of parameter Il into the LIST cell pointed
tc by NLISTP after incrementing. If the LIST space is exhausted,

then garbage collection is initiated.

9.3 INTEGER FUNCTION EQUAL

o e e . e e e S e D et b S —

Parameters are:

I -- pointer to some LISP structure

J —- pointer to some LISP structure

EQUAL compares the two expressions vpointed to by I and J on
structural equelity. It happens by analyzing each used LIST cell of

I and J. This involves several steps:

1) First the LIST <cells will be fetched which have to be
examine next. Then the number of top level elements of the
erpressions pointed to by I and J are calculated (call to

function LENGTH). If they are not the same, goto Step 4.

2) Analyze the expression-types and, in case of equality,
jump to the section corresponding to that type, described in
3). If they are different, see whether one or both contains
a dot followed Dby a left parenthesis {note: (A . (B)) = (A
B)}, in this case continue at 1), otherwise goto 4).

3) Tvpe dependant actions

3.1) LITATOM
They are compared by using the integer function COMPPN. If
the result is zero goto 1), otherwise goto 4).

2.2) NUMBER
Fetch the numbers. If they are equal goto 1), otherwise goto
4).

16

3.3) LEFT PARENTHESIS

There are sublists which also have to be analyzed. Save
their addresses and start the comparison with their first
top level element: goto 1).

3.4) RIGHT PARENTEESES

Fetch the address of the sublist just analyzed and get the
next top 1level element of the embedding list with the help
of the integer function NEXT, then goto 1).

3.5) ARRAY-POINTER
If they are equal, goto 1), otherwise goto 4).

4. The expressions pointed to by I and J aren’t equal,
therefore EQUAL returns with value NIL.

At the enrd of each type dependant section it is checked, if more
has to be compared. If there is, then continue with 1), otherwise
ECUAL returrns with value T.

9.4 INTEGER FUNCTION NCHARS

Parameters are:

INPUT —— pointer to some LISP structure
IFLG -- a flag

NCHARS returns the number of characters in the PRIN1-printname of
the erpression pointed to by INPUT.

At first the 1type of the expression pointed to by input has to be
analyzed by wusing the integer function GETARG. NCHARS is initially
set to zerc, and for each item in the (possibly recursive)
evaluation 1t’s length is added to NCHARS. Depending on the type of
the expressicn, the following action is taken:

The 1item is a literal atom, string or substring. The integer
function GETPN returns the number of characters of this item
In the wvariable IPL. If it is a string or substring, GETPN
returns 1, and, 1if the flag isn’t equal to NIL, the length
of this item is larger than 2. Return NCHARS + IPL [+2].

Item is a8 dot. Return NCHARS + 1.

Item is a number. Depending on the type of the number
(integer or real), return NCHARS +

= for the 1integer number, the number of significant
characters

- for a real number,
[1 for sign]
+ number of digits of mantissa
+1 for radix point
+ 7 for digits of fraction
+ 2 for exponent
[+1 for a larger exponent]
[+1 for a negative exponent]
TYPE 4

——————

ITtem 1is right parenthesis. If necessary, fetch the address
of the next item to be analyzed. Return NCHARS + 1.

Ttem is a 1list-pointer. The pointer is saved in the stack,
and the 1list-elements are analyzed one-by-one. For each
tvpe, the actions described above and below are taken. The
lengths of the elements are added. Note that the elements
are separated by blanks 1in their printnames, so for each
element, 1 is added.

Ttem 1s an array-pointer. The printnames of arrays are
always of length 9, therefore return NCHARS + 9.

17

18

9.5 INTEGER FUNCTION LENGTH

Parameters are:
I -— pointer to a list

LENGTH returns as value the number of top level elements of the
list pointed to by I. Note that lists of the form

(A . (BC))
are the same as
(4 B C)

and for both types of lists, LENGTH will return 3.

Q.f% INTEGER FUNCTION COMPPN

o ——— —— v ——— ——————————— - oo

Parameters are:

I -- polinter to a printname

J -- pointer to a printname

COMPPN compares the printnames of I and J, on alphabetic order. It
returns the following values:

@ ===> I =4

-1 ===> I < J
1 === I >J

=2 ===) I is illegal
2 ===} J is illegal

sineg GETPN the length and the byte address in PNAME will be
fetched. Then the 1lengths are tested. If both printnames are of
lergth @, then COMPPN returns @. If one printname is of length @
ané the other is >@, then the latter is larger than the first, and
the epprcpriate code 1s returned.

If both printrames are of length >@, then they are compared
bytewise wusing the normal string comparison algorithm, and COMPPN
returns the appropriate result.

19

12 File GTFN

contents:

INTEGER FUNCTION GETPN
SUBROUTINE GETNUM
INTEGER FUNCTION GETEL
INTEGER FUNCTION GETARG
INTEGER FUNCTION GET

10.1 INTEGER FUNCTION GETPN

—— e e e G G S S T S S - W S

Parameters are:

1 -- pointer to a litatom/string/substring
MAIN -— returns the address of the main-string
JE -- returns the byte-address of string I
IPL -— returns the length of I

GETPN returns the printname of a string or substring in the
parameters described above.

First, GRTPN fetches the byte address and length of the printname
from PNP. Ther, CAR(I) is tested. If it does not contaln the value
SURSTRING, then GETPN returns.

Substrings are stored in the following way: CDR(I) points a list
with the following structure:

(MAIN JB1 . IPL)

where JB1 1is the address of the first substring-byte of the main
string. If CAR(I) does contain SUBSTRING, then the list polinted to
by I 1is checked for the above structure. After verifylng it, the
bvte address and byte count are passed back in JB and IPL.

GETPN returns:
-1 I does not point to a litatom/string/substring

@ I points to a litatom
1 I points to a string or a substring

12.2

SUBROUTINE GETNUM

Parameters are:

-- pointer to a number, on exit contains the
integer

-- returns a real number

-- indicates the type of the number returned

GETNUM returns the number pointed to by I in I or R, depending on
type of the number. The parameter L indicates the type: it is
set to “true’ for a real, and “false” for an integer number.

the

Numbers are decoded in the following way:

Integer Numbers

If the first ©bit of I 4is off (zero), then I points to an
integer. In this case,

I - NLIST - NPNP

is checkei on 1less than NPNAME. If it is, then it is taken
as an address to PNAME, and the value of the integer is
fetched from the corresponding PNAME cell. If it is larger
ther NPNAME, then it is a small integer, defined as integer
in tre range of [-2000 .. 2000]. The number in this case
is calculated as

I - NPNAME - NLIST - 2000

In both cases, the result is returned in I, and L 1is set to
false.

Real Nurbers

If the first bdit in I 41is on (one), then the number is a
real. The value I - NLIST - NPNP is used as an index to
PNAME to fetch the real number which is returned in R. L is
set tc “true’ to indicate the return of a real number.

21

1.3 INTEGER FUNCTION GETEL

Parameters are:
1 -— pointer to some LISP structure

GETEL determines the type of the structure pointed to oy I. sLach
tvpe 1s assigned a subrarnge of the set of integers in the interval
"¢ .. 2732-1]. Since numbers with the first bit set to one are
ncrmally treated as negative numbers by FORTRAN systems, this fact
is used tc recognize real numbers. The following tables show the
Aistrivbution of data types on the above interval.

st s s st e e ke s sl st el st st s 3 o ik ko o ok e st o ok ok e e e s ok e e 3 o e 3k 3 3 36 3k e e 3k e A e e ek A oK e e B el e sk AR

e %*
¢ ”
* o a----- b [siemeenm i o= f s J s s s) *
% | i | 5 % | | --> real numbers ¥
* ! ! ! ! ! ! --> array pointer %*
% ! | | i | --> special markers: [(,),.] *
* | i | ' --> small integers %
% ! ! ' --> continuation markers %
* 5 l --> integer numbers *
% ! --> pointers to LIST *
i --> strings / litatoms :
LS %
e a e %
* b NPNP *
x c NPNP + NLIST %
* d NPNP + NLIST + NPNAME *
* e NPNP + NLIST + NPNAME + NLIST *
% £ #20000000 [“() . "] %
% e #4000000Q *
% h #80000000 %
i 3

sl i o e e sl o o ek 3 Sl o e o 34 ik ook o o 3k 3k ok e 3¢ 3 3k o 3ic e o dbe e 44 o e e o e e k3 R 3k e e e Ak A Ak ¢ A e e K Kok e o A Ak

Table 1€.3-1 LISP Data Types _
Distributior on the interval [@ .. 2 32-1]

2e

Fach data type 1is assigned a number by GETEL as shown in table
10.3-2.

e e e e ie e 3¢ e e Re e Ak 3k e e A Fe e R ¢ 3j¢ 3 3¢ 4 3<% e Ak (A AN Ak 3 e 03 3K 3K K 40K A e A A X

* X
* 1 litatom or string *
% i dot e
* S number *
" 4 left parenthesis *
* 5 right parenthesis *
x € list pointer *
* 04 array pointer *
: 8 continuation marker :

e Re 3 e 3 e e e Ko e e e K¢ e e e 3 sk ok e A A R 34 e A He e e e e A A 348 e e e R ok A e e N R R R AR

Tahle 10.2-2 Data Type Identificatiorn

1.4 INTEGER FUNCTION GETARG

Parameters are:

I -- pointer to be analyzed

TYP -- returns GETEL(I)

GETARG is the function used to Tresolve pointer-to-pointer
references within lists, whenever the 1interpreter needs tc
ietermine the type of a sudbstructure in the LIST array.

I+ a continvation marker has been found in following the pointer
shair, I will ©be changed to point to the LIST cell pointed to by

the contiruation marker.

If OG®TARG finally determines that I points to a sublist (a
<tructure starting with a left parenthesis), then the parameter TYP
is set to €, and GETARG returns the direct pointer to the left

parenthesis.

If I does not finally point to a sublist, then TYP is set to the
type of the structure found, and GETARG returns that item.

1¢.5 INTEGER FUNCTION GET

Parameters are:

HFAL -— pointer to a litatom
TAIL -- pointer to a litatom
4FT returns the value of the property TAIL on the property list of
BEAD. If the 1litatom HEAD does not have a property-list, GET
returns NIL.
Rach property-list has the following form:
(indicator value indicator value .o)

Neote that property list are normal 1lists and may contain
peinter-teo-pointer references and continuation markers.

11 File DEBU

ccntents:

SUBROCUTINE LERUG
INTEGER FUNCTION POS

INTEGER FUNCTION GETSYM

11.1 SUBRRCUTINE DEBUG

DERPUG 1is a debugging tool giving symbolic access to the systems
global variables collected in the various COMMON areas.

When the symbol "\" has been found in column 1 of an input record,
TERUG 1s called. It then reads command lines from logical channel

LUNIN, and output 1is written to channel LUNUT. The comman line
cyntax is as follows:

flobal-variabdle [format] [first array—cell]
last array-cell

KFach of these input data will be analyzed one after the other by
using GETSYM. The 1integer function POS returns the number of the
varieble in the lisp—-array VNAME which is stored in PNAME.

Ry the aid of this number the debugger jumps to a statement, which
calls the subroutine OUTPUT with the name of this variable.

©yit from TDEBUG 1is done by entering "\ in column 1 of an input
lire.

11.2 INTEGER FUNCTION POS

Parameters are:

SYMBOL -—- global variable name

TARADR -- table address

The result of this function is the position of the global variable
in the array VNAME.

11.3 INTEGER FUNCTION GETSYM

——— ————————————— ——— i —— - -

Parameters are:

LINE —— buffer with the input data

C -- current position of LINE

SYMBOL —— variable for storing the symbol
NUMBER --— variable for storing the number
L ~— length of the string

GETSYM scans the input line for the next symbol. If it is a number,
then it is stored into NUMBER, and GETSYM returns 2.

If 41t 1is a string, then it is stored into the variable SYMBOL and
GRTSYM returns 1.

26

12 File DOUT

contents:

SUBRROUTINE OUTPUT
INTEGER FUNCTION GETTYP

12.1 SUBROUTINE OUTPUT

Parameters are:

FIELT —-- array which elements have to be printed
FIRST -— first to print element of FIELD

LAST -— last tc print element of FIELD

TYPE --— format for printing

OUTPUT prints the value of the variable specified in the DEBUG
command line in the specified format. Depending or the format the
maximal number of printing elements 1is:

RS - 60
R4 - 10e
ZR - 160
z4 -= 322
14 - 10¢
12 - 160
A4 - 16¢
A2 - 320
Al - 160

If the desired number c¢f values 1is greater than the maximal number,
the debugger will print only the format depending number.

This routine does not check variable types and bounds. It Jjust
treats the variable as an array and prints all elements from FIRST
tc LAST.

27

12.2 INTEGER FUNCTION GETTYP

——— — ——— ———— — — G — — — —— — — —

Parameters are:
SYMROL -—- input token describing the printing format

This function gives each format type a number. This number is
returned to the <calling program. If the format is illegal, zero

will be returned.

28

13 File STCK

contents:

SURROUTINE FPUSH
SURROUTINE APUSH

SUBROUTINE APOP

18.1 SUBROUTINE FPUSH

Parameters are:

I -— 1item to be pushed on function stack

FPUSF is wused to push one item on the function stack. The function
stack 1is the upper part of the array STACK. If the stack is full,
the code 21 is pushed instead of I.

13.2 SUBROUTINE APUSH

Paramreters are:

11 -— value which has to be pushed into stack
1?2 --— value which can be pushed into stack
13 -— wvalue which can be pushed into stack
I -- number of values which must be pushed

This subroutine pushes values 1into the 1lower part of the array
STACK. This part contairs the arguments actual function. 1 - 2
values will be pushed into the array depending on I.

If the stack is filled up, the code 21 is pushed into the function
stack.

29

12.3 SUBROUTINE APOP

—— e ——— o —_— ———— -~

Parameters are:

I1 -— first value from stack

I2 -- second value from stacxk

13 -— third value from stack

I -- number of items to be popped

The subroutine 1is the opposite of the subroutine APUSH. It works
also on the lower part of the STACK and pops the values which have
been stored wusing APUSH. 1 - 3 values will be popped depending on
I.

If the upper part is empty, the code 22 will be stored in the
function part of STACK.

32

14 File 17845

rentents:

SUBRCUTINE RDREC
SUBROUTINE WRRTC
SUBROUTINE GETCH
SUBRCUTINE PUTCH

14.1 SUBROUTINE RDREC

Parameters are:

LLUN -- logical cannel number for the input
RECNO -— record-number of the reading record
BUFATLR -= Dbuffer for writing

This routine reads a record, whose record-number is given by RECNO,
into the ©buffer BUFADR via 1logical channel LLUN. The read is
handled by the operating system subroutine READ4.

14.2 SUBROUTINE WRREC

Parameters are:

LLUN -~ logical channel number for the output
RECNO -— record-number of the record to be written
BUFADR -- buffer fokr reading

This routine writes ©buffer BUFADR to the record, whose number is
giver by RECNO, via logical channel LLUN. The writing is handled by
the operating system subroutine WRITE4.

31

14.3 SUBROUTINE GETCH

———— —— — ————— o~ ————

Parameters are:

LTEXT —-— array with the desired character
ICH —— returns the required character
I -— byte-number of the desired character in LTEXT

This routine fetches the character at the byte-number I from the
buffer LTEXT into ICH. The last 3 bytes are filled up with olanks.

14.4 SUBROUTINE PUTCH

LTEXT -— array for storing the character
ICH -- character to be stored (leftbound)
I ~— Dbyte position

This routine stores the first character from ICH into the array
ITEXT at the byte-number I.

15 File 18260

contents:

SUBROUTINE TIMDT4

LOGICAL FUNCTION TESTB

SUBROUTINE SETBT
SUBROUTINE SETBF
INTEGER FUNCTION
SUBROUTINE RDREC
SUBROUTINE WRREC
SUBROUTINE GETCH
SUBROUTINE PUTCH

ISHFT

15.1 SUBROUTINE TIMDT4

————— ——— —— — ——_— — o - ——

Parameters are:

KCLOCK

this array returns:

KLOCK(1)
KLOCK(2)
KLOCK(3)
KLOCK(4)
KLOCK(5)
KLOCK(6)
KLOCK(7)
KLOCK(8)

-- hours

--— minutes

-- seconds

-- seconds / 200
-- day

-— month

-- year

-— 200

dummy parameter for the AEG 80690

This routine converts the
MARTCS TIME and DATE calls.

MAX/IV TIMDT4 bdbuilt-in sudbroutine into

33

15.2 LOGICAL FUNCTION TESTE

——— e ——— e 1 o o o S B o G S

Parameters are:

I -=- word which has to be tested

J -— bit-number, 1 .. 32
The MAX/IV bit test returns “true”, if the J-th bit of the word I
is =zero. The MARTOS starts at the other end of the word, therefore

the bit 32-J has to be tested, and it returns “false”, if the bit
is zero. These two differences have to be corrected.

16.3 SUBROUTINE SETBT

——— s S T — o o

Parameters are:

I -- word to be affected

J ~-— Dbit to be affected
SETBT 1is a MAX/IV setting a bit in a word to logical “true’ which
is implemented as @. Therefore, when running the system on the

8¢-6¢, this call has to be replaced by a <call to the MARTOS
function BCLR. Also, the bit number has to be reversed.

1.4 SURROUTINE SETBF

Parameters are:

I -~ word to be affected

J -~ bit to be affected

SETBF 1is the MAX/IV subroutine to set a bit in a word to “false’
which is implemented as 1. When running the system on the 32-67,
this call has to be converted into a call to the MARTOS furction
BSET. Also, the bit number has to be reversed.

15.5 INTEGER FUNCTION ISHFT

——— " —— —— — — —— T —— o o f T

I --— word whose bits have to be shifted
J -— number of bit-shifts:
J > 0 left shift

==>
==> right shift

non

J e

The MAX/IV call has to be replaced by the MARTOS call ISHL.

18 .6 SUBROUTINE RDREC

—— . . . o e e e o e G S S o

Parameters are:

ILUN -- logical channel number for input
IREC -- record-number for the record to be read
IRUF -- buffer to store the input

This subroutine calls only the MARTOS built-in routine RDRW feor
readirg a 256 bdbyte reccrd.

15.%7 SURROUTINE WRREC

Parameters are:

ILUN —— logical channel number for the output
IRECC - record-number of the record to be written
IRUF -— Dbuffer for reading

This subroutine calls only the MARTOS bdbuilt-in routine WRTRw for
writinge a 256 byte record.

35

1.8 SUBROUTINE GETCH

Parameters are:

LTEXT -—- array with the desired character
ICH -- returns the required character
I -- Dbyte-number of the desired character in LTEXT

This routine fetches the character at the byte-number I from the
buffer LTEXT into ICH. The last 3 bytes are filled up with blanks.

15.9 SUBRQUTINE PUTCH

Parameters are:

LTEXT -— array for storing the character
ICH -- contains character to be stored (leftbouni)
I —- Dbyte position

This routine stores the first character from ICH into the array
LTEXT at the byte—-number I.

1€ File SWP1

contents:

INTEGER FUNCTION SWPIN
INTEGER FUNCTION SWPOUT
INTEGER FUNCTION MKSWAP
INTEGER FUNCTION UNSWAP
SUBROUTINE MVARRY

16.1 INTEGER FUNCTION SWPIN

————— — e ——————— —— — ———

Farameters are:
ARRAY -- pointer to header of array to be swapped in

If the array 1is not a swappable, then SWPIN returns with no other
actiors and value of SWPIN 1is ARRAY. If the array is swappable,
then it is read into the swap buffer (if neccessary), and the value
cf SWPIN 1is the pointer to the first word of the array-header now
in the swap buffer.

Sirce the swap buffer 1is part of PNAME, the array functions can
access swappable arrays 1in the same way as non-swappable arrays
after making sure by a call to SWPIN that the array is resident in

memory .

1€.2 INTEGER FUNCTION SWPOUT

Parameters are:
SWPARR -—- pointer to first word of header of the array.

This routine will be called, whenever it is neccessary to remove a
swappable array from the swap buffer. The value of SWPOUT is the
rurber of 256-Ryte blocks freed in the swap buffer.

Tf SWPOUT s called with SWPARR negative, then SWPARR contains the
(negative) starting position of a sequence of free swap buffer
blocks. In this case, SWPOUT returns the number of free blocks

starting with block —-SWPARR.

37

16.3 SUBROUTINE MKSWPA

Parameters are:

ARRAY —— polinter to first word of the array header

This functicn <converts a non-swappable array 1into a swappable
array. First, the size of the array is checked against the total
size of the swap buffer to make sure,that it fits into the latter -
if not, an error is generated, and the array remalins unswappable.

Next, the function allocates disk space on the swap file - if not
enoush space 1is available, an error is generated, and the array
remains unswappable.

Finrally, the function allocates space 1in the swap buffer (other
arrays may be swapped out), moves the array into the swap buffer,
markes the array header and returns as value the original array
poeinter.

1€.4 SUEROUTINE UNSWPA

Parameters are:
ARRAY -- pointer to first word cf array header

After swapping in the array, space 1is allocated 1in PNAME to
ronstruct a non-swappable array (that may cause garbage
collection!). The array contents are moved to the new array,
including the header information. Then, the disk and swap buffer
areas are cleared. UNSWPA returns as value the pointer to the new
header.

16.5 SUBROUTINE MVARRY

Parameters are:

SWPTEP -- polnter to a swap table entry
ARRAY -— pointer to an array header
ATOB —-— indicates direction ov move

Depending on the value of ATOB (true or false), the array is moved
to/from swap buffer from/to array space in PNAME.

17 File SWP2

contents:

SUBROUTINE INISWP
INTEGER FUNCTION FBSPAC
INEGER FUNCTION FDSPAC
INTEGER FUNCTION FSWPTE
INTEGER FUNCTION ARRINX
SUPROUTINE SWPALL

INTEGER FUNCTION IRAND

17.1 SUBROUTINE INISWP

Parameters are:

RTBACK -- read back swap file directory or initialize

INISWP is called during system start up. Depending on the value of
RDRACK, the swapper’s disk file directory is initialized or read
back from disk.

17.2 INTEGER FUNCTION FBSPAC

Parameters are:

IRLXS -~ number of blocks to be allocated

This function allocates space in the swap buffer. If neccessary, it
swaps out other arrays. Only as many arrays will be swapped ocut as
reeded tc provide enough space. The position of the first array tec
be swapped out is determined by a random number.

The function returns as value the pointer to the swap table entry
(allocated by a call to FSWPTE) which will be used to reference the
swaprable array, while it is swapped in.

33

17 .4 INTEGER FUNCTION FDSPAC

Parameters are:
IFLKS -— number of 256 Byte blocks to be allocated

This function searches the swap file directory for array space. In
contrast to swap buffer space allocation, only an error can be
reported, if no more space is available. The function returns as
value the number c¢f the first record allocated on the disk.

The swap file must be of fixed size, since the first record(s) on
disk contain tre 1image of the swap file directory (which is

actually a bit-map of free/allocated disk records).

17.5 INTEGER FUNCTION FSWPTE

Parameters are:
ITUMMY -- guess, what it does.

Tcr all swappaole arrays currently swapped in, the system needs an
ertry in the swap table (consisting of 4 words). If no entry is
available, then the function selects one of the allocated entries
by wusing a random number to determine a swap-out candidate. By
swepping ocut that candidate, the entry is freed and can then be
reused. the value of this function is the pointer to the swap table
entry.

17.7 SUBROUTINE ARRINX

Parameters are:
IRLENO -- index to swap buffer

This function determines the pointer to the swap table entry
describing the swappable array which 1is currently in the swap
buffer starting with ©block number IBLKNO. If ©block IBLKNO is
currently net allocated, then the function returns -IBLKNO.

17.8 SURROUTINE SWPALL

This subroutine searches the swap table for arrays currently
swapped in and swaps them out. The swap table entries are freed.
Finally, tre swap file directory is written to disk to allow for
preper re-initialization. This subroutine will ©be called during
svstem shut-down and garbage collection.

17.9 INTEGER FUNCTION IRAND

Parameters are:

IX -- left interval margin

IY --— right interval margin

IRANT is used to determine random numbers for swapper internal use.

41

1P File INPT

centents:

INTEGER FUNCTION IREAD
INTEGER FUNCTION RATOM
SURROUTINE SHIFT
INTEGER FUNCTION MATOM
INTEGER FUNCTION MKNUM
INTEGER FUNCTION MKARRY
INTEGER FUNCTION COPARR

1R.1 INTEGER FUNCTION IREAD

Parameters are:

ITUMMY ~-- guess, what it does
Pefore starting a new input, a function-code 1is saved in the
function stack.

IREAT reads a LISP expression from the actual input channel.

The functicn calls the routine RATOM which returns two different
iteme:

a) separators (parentheses or blank)
b) atoms

If IR%WAT gets an atom, then this atom is stored, and it’s address
is passed back to the calling program.

1# the first non-blank input character is a left parenthesis or a
left <uper bracket, the 1input 1is expected to be a list, and the
1ist will be stored in thre array LIST.

The preeess of creating a list is as follows:

4z

a) actval character : LEFT PARENTHESIS

RATOM returns 1 and CHT the charactertype, CHT = 2. Using
CONS a left parenthesIs will be put into the array LIST. The
bracket level BRLEV is increased by 1.

b) actual character: RIGHT PARENTHESIS

RATOM returns 1 and CHT the charactertype, CHT = 3. Usling
CCNS a right parenthesis will be put into the array LIST.
The bdracket level BRLEV is decreased by 1.

c) actual character: LEFI SUPER BRACKET

RATOM returns 1 and CHT the charactertype, CHT = 4. lhe
bracket 1level ané a code for the super bracket will be
pushed on the stack, and bracket level BRLEV will be set to
zero. Then IREAD acts, as if the 1item has bteen a left
parenthesis,

d) actual character: RIGHT SUPER EBRACKET

RATCM returns 1 and CHT the chareactertype, CHT = 5. A flag
(PRFLG) will ©be set indicating that all open parentheses
have to Ye closed. This drives IREAD to call CONS repeatedly
with parameter RPAR and decrement BRLEV by one until it
finally becomes zero. Then, the 1last 1item pushed on the
funetion stack 1is ©popped. Depending on 1t’s value, the
fcllowirg action cccurs:

1 -- returr with value address of expression read
2 —— the super tracket is already executed
3 —— take care of the function QUOTE:

‘A is the same as (QUOTE A).
A right parenthesis has to be put into LIST.

4 -— take care of the construction " . (°
There is a right parenthesis in the 1nput
buffer which must not be CONS’ED into LIST.

RATOM returns 2 and the address of the atom. Using CONS the
address will be put dinto the array LIST. If the atom is
quoted, ther the LISP furction QUOTE has to be closed with a
right parenthesis.

>
(¢

1.2 INTEGER FUNCTION RATOM

Parameters ere:

X -— returns the address of the atom
I0P -- a flag to indicate, whe called
I0P =@ call from the LISP function RATOM
IoOP =1 internal call

RATOM calls tre vroutine SHIFT to get the next character from the
input buffer. Blanks are separators, they are treated as
nen-significant characters, except, if they occur within strings or
are preceded by the escape character. Therefore the subroutine
SHIFT will be called until there is a character, which is not equal

te blank, CET > 1.

If the character returned by SHIFT is a separator other than blank,
RATOM returns it back to the calling program. In all other cases,
it 4s a 1litatom, number or string. The followlng actions occur,
when finding the corresponding characters:

a) actual character:

The next item in the buffer is a string. The whole string
will be read. If the string has more than 8@ characters, it
is greater than one input 1line, SHIFT returns the
charactertyre @. In this case SHIFT will be called with
actual parameter 3 to drive it to store the 8¢ characters in
PNAME before continuing reading. wWhen finally the matching
~character is found, SHIFT will be called to complete the
string. The address of the string will be returned to the

caller.

b) actual character:

—— - —— T . o — T o —— ——

The next 4item 1in the buffer is a quoted item. Ratom has to
create a 1list containing the function QUOTE.

(QUOTE A)

Remember: ‘A
’ (QUOTE (A B))

(A B)

Using CONS a 1left parenthesis and the coded QUOTE will oe
put into LIST. The bracket level BRLEV and a function code

‘will ©be pushed into the stack, anéd the bracket level will be
set to 1. Then next item will be read.

c¢) actual character: user break

MATOM is <called for making an atom of the wuser break
character, and the address of the atom is returned to the
~alling program.

4) actual character: .

- e — e ———— - — S o

A decision is made, whether this character is a radix point,
a litatom or the dot in a dotted pair. This can be done by
analyzing the next character of the input buffer.

1.1) radix point

The rext character has to be a digit; the radix-flag RFLG is
set to T, and a jump to the atom section in RATOM is
performed.

d.2) litatom ‘
The next character is neither a digit nor a olank, set the

nurber—-flag NUMFLG to NIL and jump to the atom part of
RATOM.

d.2) dot in a dotted pair
The next character is a blank. Take care of the
construction:

(A . (B C

))
(A . <B (C

= (A BC)

D>) = (A B (C D))

The nert mnon-blank character will be read. If it is a right
parenthesis or a right super bracket, the dot doesn’t belong
to a dotted pair. The dot 1is returned as an atom to the
raller.

If this character isn’t a left parenthesis nor a left super
bracket, the reader position RDPOS is decreased by one, and
the dot is returned as an atom to the caller.

If 1t is.a left super bracket, the bracket level BRLEV and a
function code 1s pushed 1into the stack; BRLEV is set to
zero, and RATOM acts, as if it was a left parenthesis: BRLEV
and a furcticn code is pushed on the stack, BRLEV 1is set to
-1, and the next item is read.

A decision has to made, whether the character is part of an
atom or a sign. The next character is fetched, and, if it is
a digit, the number flag 1is set tc T. Then a jump to the
atom part is performed.

44

f) actual character: €..9

- ———————— - - ——— —— —

A pumber is created using the digit, and a jump to the atom
part with number-flag NUMFLG equal to T is performed.

g) atom part

The next character 1is fetched, and the old character is
saved ir ABUFF.

g.1) If the character-type 1is 1less than g, the whole
expression is read.

For 1litatoms, MATOM 1is called for creating a literal atom,
and i1ts address is returned to the calling program.

For numbers, MKNUM 1is wused to create the number, and it’s
address is returned tc the calling program.

#.2) If the atom {is a 1litatom (NUMFLG = NIL), the next
character 1is fetched, and the old is saved in ABUFF, until
CHT < Q.

g.%) 1If the character-type is equal to 9, the character .~
has beer read. If it is the first dot in this expression,
and, 1if there hasn’t been an exponent, the radix-flag RFLG
is set “true’. Otherwise, NUMFLG 1is set to NIL, arnd the
input is taken as a litatom.

#.4) 1¢ the character "E has been read, and, if the
erponent-flag EFLG 1is .true., NUMFLG is set to NIL, and the
input is taken as a litatom. Otherwise, the exponent- and
tre radix-flag are set to .true., and the digit is saved
into R1SU. BRSU is set =zero, and the exponent is expected
next.

g.5) If the EFLG is .true., the number of digits 1is
ircremerted. If there are more than two digits, the number
will be treated as a 1litatom, because it is out of range
(now: NUMFLG = NIL).

g.f) If the next character is a digit, all digits are
shifted by 1 place to the left, (multiply with 1), and the
rew digit is added. Then, the next character is read.

g.7) If none of the above cases occurs, then the expression
is a 1litatom: NUMFLG is set to NIL, and the next character
is read.

45

46

18.3 SUBROUTINE SHIFT

Parameters are:
I -—— SHEIFT control value

SHIFT supplies the <caller with the next character and it“s type
from the input channel.

If the control parameter value 1is 1, then the old character is
stored in ABUFF, and SHIFT cortinues, as if the value was 2.

If the control value is 2, then depending on IFLG2 the next actions
are:

IFLG2 = T: SEIFT has to read from the printerbuffer PRBUFF, this is
reccessary, e.g. in case the wuser has called the LISP function
PACK. SHIFT sets CHR (the character 1itself) and the CHT (the
character—type). The last character read is in PRBUFF(ARG2).

IFIG2 = NIL: The normal input buffer is used, the next character is
fetched from the readerbuffer RDBUFF.

If T =3, then some special action has to be performed. First, all
characters in ABUFF are put into PNAME, and, in case the characters

are part of a string, the string length is updated.

The normal input buffer is used (RDBUFF).

If RDPOS <= MARGR, the next character 1is fetched from RDBUFF and
arelvzed. If 1t is of type 1..22, CHT and CHR are set. If it is of
type 22, the next character is fetched, and the type 10 is assigned
te it. If it 1is of type 24, an input break is requested, so all
neccessary variables are set.

If RDPOS > MARGR, RDA 1is called which fills up the readerbuffer
RDBUFF with a new input 1line. The readerposition is set to the
beginring and the charatertype to zero, so that the calling program
kncws about the new input. This is important for creating strings,
because there the characters from the previous input line have tc
be stored into PNAME.

4%

13.4 INT®EGER FUNCTION MATOM

———— ———————— —————— ———{— -

Parameters are:

LP -— MATOM control value

MATOM 1is the function to create atoms. If LP is negative, MATOM has
toc create a string, otherwise a litatom.

If LP 1is positive, the atom 1is searched in PNAME. First, the
bhashaddress of the 1litatom is determined. If the computed address
of the hashtable HTAB contains UNBOUND, the atom isn’t in PNAME.

1f it i1s, the atoms are compared. If they are equal, the address is
returned, otherwise the following atoms are compared until either
the atom is found or the hashtable entry is equal to UNBOUND.

If the atem 1s not yet known to the system, it is examined, if
there 1is enough space for the new entry. If this test is negative,
the garbage collector is called.

After finally space 1is provided for the atom, the different
array-cells belonging to this input are set. Also, the
printname-pcinters which contain the byte-address and the length of
the token, are set. The CAR-cell is set to STRING or UNBOUN (marker
for string or 1litatom), and the CDR-cell is set to NIL. Then, the
characters are transferred from ABUFF to PNAME.

48

18.5 INTEGER FUNCTION MKNUM

N -— number to be stored (binary)

M -— type of the number

M o= 1 number is integer

M = 2 number is real

M = 2 number is integer, use spare PNAME space

MENUM is the function to store “make’ numbers, i.e., encoding them
and stcring them into the appropriate space.

MKNUM allocates the next free PNAME-element, and, if necessary,
ralls the garbage collector.

If N contains a small integer, (range currently [-2000.. 220¢]),
the nurber 1s encoded by adding the length of array PNP, array
LIST, array PNAME, array LIST and 200@ to the number itself.

Otrerwise, the number is saved in PNAME and coded by adding NUMBP,
NPNP and NLIST. If it is a real, bit 1 1is set in the coded number.

This encoded number will be returned to the calling program.

49

1.5 INTEGER FUNCTION MKARRY

Parameters are:

S -- size of the new array

P -— size of the unboxed number part of S
v -- value for initialization

INIT -- irnitialization desired?

MKARRY 1is the function to create an array which may be requested
explicitly by the LISP user (MKARRAY) or internally by the system
(part of MKUNSWAP, no initialization).

First, using the arraysize parameter, it is checked, if there is
enough space for the array. If there 1i1s not, then garbage
rollection is invoked.

If 1initializatior of the array 1is desired, MKARRY builds up the
header. The first element contains the arraysize, the second the
<ize of the wunboxed number part and the following two are set to
zero. MKARRY then 1initializes each arrayelement in the unboxed
rumber part with @ and all other elements are set to V which may bte
any valid LISP pointer.

MKARRY returns the address of the first word of the array header,
encoded by setting bit 2 of the address to 1.

12.6 INTEGER FUNCTION COPARR

Paramreters are:

IARG —-— array pointer

CCPARR is wused to create an array as a copy of an existing one.
This function is used whithin the LISP function CCPYARRAY.

First, the header of array IARG is fetched and space is allocated
in PNAME (wrich may cause garbage collection).

Then, a new header is created with the same contents as the header
ocf TARG, and all elements are copied.

COPARR returns the address of the new array, encoded by setting the
bit 2 of the real address to 1.

19 File OUTP

contents:

SUBRCUTINE PRIN1
SURRCUTINE LSP®X
SUBROUTINE IPRINT
SUBRROUTINE TERPRI

SUBROUTINE PRINAT

19.1 SUBROUTINE PRIN1

Parameters are:
S --— 1item to be printed

PRIN1 prints the LISP structure pointed to by S.

If S 1is net a list, PRIN1 calls only PRINAT and, in case of pretty
printing (DREG(2) <,> NIL), also the routine TERPRI.

In case S 1is a 1list, PRIN1 looks at the LIST element physically
fcllowing the item just printed. This must have one of the 8 types,
returned by GETEL.

Refore the type-depending actions are explained, it is usefull to
knew about the type independant actions which therefore will be
erplaired first:

a) If the 1item to be printed does not fit into the actual
print 1line, then TERPRI is called to print a line,contents
of PRBUTFF.

b) It is tested, if the number of top level elements of a
list (LTOP) is greater than the desired number (LEVELL).

Wren a top level element is put into the printerbuffer, LTOP
is increased by 1. If the next top level element is a left
parenthesis, LTOP and a function code will be saved, and
LTOP will bve set to @.

If LTCP 1is greater thap LEVELL, PRIN1 <calls PRINAT for
storinge the characters ‘oo into PRBUFF and searches for

the end of the 1list, the corresponding right parenthesis.

Then the right parenthesis will be stored into PRBUFF, and
PRIN1 starts with the analyzing of the next element of the
1ist.

c) If LDEPTH (the number of open parentheses) is greater
than LEVELP (the desired parentheses nesting level during
print), the characters =--- are put into the printerbuffer,
and analysis of the next top level element is started.

d) Pretty printing.

d.1) If DREG(2) is not set to NIL, pretty printing is
requested. If a left parenthesis is the next element of the
1ist, tke number of open left parentheses will be fetched
and saved into IREE. If IREE 1is greater than 4, super
brackets will be printed instead of normal parenthesis.

If DREG(?) 1is equal to T, the number of characters to be
printed 1is fetched. If this whole list can’t be written into
the printerbuffer, or, 4if DREG(?7) 1isn’t equal to T, scme
tests rave to be done:

Has the 1left margin (LMARG) been changed? If so, then reset
the left margin.

Has something been written into the printerbuffer? If so,
TRRPRI is called for printing.

Does the whole 1list fit 1into the actual line? If not, a
function code, meaning the 1list, has to oe pretty printed is

stored.

I< the left margin greater than half an output line? If so,
reset the margin as necessary.

Now all pretty printing information for this list is defined
and pushed into the argument stack (3 cells). JP points to
the last used cell:

STACK(JP) =g ===> normal parenthesis

=1 ===) super bobracket
STACK(JP+1) = @ ===) list fits on one line

= 1 ===) list doesn’t fit on line

"

STACK(JP+2) left margin
Now, the 1list <containing this list is tested, if 1t has to
be split up. If necessary, the left margin is reset.

d.2) There is one 1important variable by the pretty
orinting: 1II. At all times this variable contains the number
of atoms stored 1into the printerbuffer. If II is greater
than 1 and the actual 1list has to be split up, PRIN1 calls
TERPRI. If 1II 1is equal to 1 and a new item is put into the
printerbuffer, the left margin will be updated.

51

The different types will be handled in tre following way:
a) TYPE 1

If the litatom 1is QUOTE, the last character in

printerbuffer PRBUFF is tested. If it is a left parenthesis,
PRTPOS and LDEPTH are decreased by one. Then the number of
top level elements 1s updated and a function code and the

number of open parentheses are saved in the stack. Then,
charachter ° 1s put into PRBUFF.

If it is a normal atom, PRINAT is called for printing the

atom, ard the next element of the list is analyzed.

b) TYPE 2

The symbol "." 1is put into the printerbuffer, and the next

iter of the 1list is fetched.

c.) TYPE 2

Numbers are treated in the same way as normal literal
atoms.

) TYPE 4

—— e —— ———

The 1list-element 1is a left parenthesei, so it is tested,
whether the 1last character in PRBUFF is a DOT of a dotted
pair. In this case, the printer pocsition and the number of
tep level elements are decreased by 1, and the global level
of parertheses GLLEV and a function code are saved into the
stack. GLLEV is set to 1. Then the next element of the list

ic analyzed.

1f the 1last character in PRBUFF is not a dot, the number of
top level elements and a function code are saved into the
stack, and LTOP 1is set to zero. Then it 1is tested, whether

pretty printing 1is desired Depending on IRET, a
parenthesis or a left super bracket are put into PRBUFF.

e) TYPE 5

It is tested, whether this right parenthesis shouldn’t be

stored into PRBUFF: (QUOTE A) —-> ‘A and (A . (B C))
--> (A B C). After pretty printing has been tested, elther

the parenthesis or the bracket are put into PRBUFF.

If GLLEV 1is equal to zero, a function code is popped out of
the stack. In any case, printing is started with the first

element of the list.

(@)

53

£f) TYFE 6

The next element of the array LIST is a list-pointer. The
nurber of open parentheses (GLLEV) , the actual address of
the array LIST and a function code are saved. Then GLLEV is
st to zero. The next LIST cell to be examined is pointed to
by the 1list-pointer. Wwhen this part 1is put into PRBUFF,
GLLEV will ©be -equal to zero, and then the list containing
this list-pointer will be analyzed.

g) TYPE 7

Tre next element 1is an array pointer which is treated as a
norral literal atom.

h) TYPE 8

Using GETARG the next 1list-element will be fetched. Tken
this and the following LIST element is analyzed.

10.2 SURROUTINE LSPEX

LSPEX 1is the normal interpreter exit routine. It calls TERPRI for
printing the contents of the printerbuff PRBUFF and writes some
information about the garbage <collection and then stops the
interpreter.

19.3 SUBROUTINE IPRINT

Farameters are:

1 --— 1tem to be printed

IPRINT calls PRIN1 for storing I into PRBUFF and TERPRI for
printing the printerbuffer.

12.4 SUBRROUTINE TERPRI

This subroutine writes the contents of the printerbuffer PRBUFF via
actual output channel LUNUT.

o4

19.5 SUBRCUTINE PRINAT

Parameters are:

X -- item to be printed

GILEV -- number of open parentheses

PRINAT 1is the subroutine used to print an atom. First it is tested,
whether the number of the top level elements or open parentheses
has been overstepped. In this case, either the character ". or "="
is printed. Then, for the different types of atoms, the fcllowing
occurs::

a) Literal atom or string

Using GETPN, the Dbyte—address and the 1length of the atom is
fetched. PResides this GETPN returns, whether the item is a literal
atecm or a string. If the normal printing is desired which means
PREG/5) 1s equal to NIL, a string will be printed as a literal
atem. If the atom does not fit into the actual line, TERPRI will be
called. If the atom still doesn’t fit in the line and the left
margin IMARG has been changed during this printing, LMARG will be
recet to the saved 1left margins until LMARG is equal to 1 or the
item will fit in the line.

A1l characters and, if necessary, the docuble quote (") is put into
the printerbuffer PRBUFF. If the printerposition PRTPOS is greater
than the right margin MARGR, the printerbuffer will be printed, and
the next cheracters will be put into PRBUFF.

b) number

Using GETNUM PRINAT will get the decoded number. If it 1s the
number @€.¢, these 3 characters are put into the printerbuffer, ard
PRINAT returns. It the number 1is negative, the variable SIGN is
set, and the number is made positive. If the numbdber is a real, the
inteper part of the number is rounded and saved.

In beth cases the integer will be put into the printerdbuffer first.
The digits will saved in reversed order into the buffer ABUFF. It
is tested, whether the number will fit in the actual line. If
necessary, the sign and then the digits from ABUFF are put iunto
PRRUFF. For a real, a radix point 4is put into PRBUFF, and the
fraction 1is multiplied by 1@%%*5 and rounded. The first 5 digits are
saved into an 1integer, and the same mechanism 1is applied for
stering these 5 digits into ABUFF as for the integer part of the
number. If an exponent has to be written, it is put into the
printerbuffer.

c) an array-pointer

If the printerbuffer is filled, TERPRI 1is called. Then, the
hexadeciral representation of the array vpointer is put into tke
rrirterbuffer.

55

z2e File IOFN

contents:
SUBRQUTINE RDA
SURRCUTINE WSTACK

SUBROUTINE MESS

20 .1 SUFROUTINE RDA

Pararmeters are:

LUN -- logical channel number for input

CARD -- buffer to be write on

11 -- first element of CARD which has to be write on
12 -- last element of CARD which has to be write on
I¥OF -- exit-code

RDA reads a 1line 1into the array CARD via logical channel LUN. If
tre zontents of the first cell of CARD is the symbol \ , the
debugger is called.

7.2 SUBROUTINE WSTACK

——— —————— ——— — . —t— ——

WSTACK prints the contents of the function and argument stack.

Following & header, on the 1left the function stack contents is
rinted [STACK(1..IP)], and on the right the argument stack
STACK(JP..NSTACK)].

2¢.3 SURROUTINE MESS

Parameters are:

I -— MESS control value
I = @ read the messages into the message buffer IMESS
I > ¢ print IMESS(1I)

MESS is <called either to initialize the IMESS array during system
startup, or to print a message.

21 ' File ROLL

contents:

INTEGER FUNCTION ROLLIN
SURROUTINE ROLLOUT
SUBRCUTINE LMPIN
SURRQUTINE DMPOU

21.1 INTEGER FUNCTION ROLLIN

Parameters are:

K -- logical channel number for input
ROLLIN reads a binary 1image of a previously defined interpreter
status back into memory.
First, the array COMA will ©be read which contains the dynamic
peinters. If their values do‘nt fit in the corresponding

arraysizes, ROLLIN returns -1, indicating unusable data on disk.

Using DMPIN the following arrays will be filled:

the first 83 variables of COMMON B -- (COMB
the 24 characters of the interpreter -- (COMCH
the character table -— CHTAB
the hash table -- HTAB
infcramtions about cne atom or string -— (AR
-- CDR
-— PNP
the interpreter messages -— IMESS
the stack -— STACK
the 1isp-lists -— LIST
the printnames, real numbers and arrays -- PNAME

Then ROILIN rewinds the file and returns the 1logical channel
number,

57

21.2 SURROUTINE ROLLOU

Parameters are:

X -— logical channel number for output

ROLLCU saves the current interpreter status on a disk file.

First, all swappable arrays will be swapped out, and then the
garbage collector will be called, because it isn’t necessary to
save unused¢ spare., Using DMPOU the contents of following arrays
will be saved:

tre first 83 variables of COMMON B -— (COMB
the 24 characters of the interpreter -- COMCH
the character table -— CHTAB
the hash table -- HTAB
inforamtions about one atom or string -— CAR

-— CDR

-— PNP
the interpreter messages -- IMESS
the stack -- STACK
the lisp-lists -- LIST
the printnames, real numbers and arrays -- PNAME

21.3 SUBROCUTINE LMPIN

Parameters are:

LUN -~ logical channel number fcr input

AREAZ --— array which will be filled depending on I3
AREA4 -- array which will be filled depending on I3
I1 -— first cell which will be filled

12 -— last cell which will be filled

T2 -— 1indicates buffer to be used

I3 = 1 AREAZ has to be filled

12 = 2 AREA4 has to be filled

IMPIN reads from the logical channel I2-I1 words or halfwords into
an array. The vparameter I3 states, whether the array AREA2 has to
be filled with halfwords (I3 = 1) or the array AREA4 has to be
filled with words (I3 = 2).

21 .4

SUBROUTINE LMPOU

Parameters are:

LUN
ARTA2
AR¥A4

I1

-— logical channel number for output

-— array which contents will be saved depending on I3

-- array which contents will be saved depending on I3

-— first cell which will be saved

== last cell
== 1indicates
1 AREA2 has
2 AREA4 has

which will be saved
buffer to be used
to be saved

to be saved

CMPOU writes on the logical channel I2-I1 words or halfwords from
an array. The parameter I3 states, whether the array AREA2 has to
be saved (I3 = 1) or the array AREA4 has to be saved (I3 = 2).

22 File GEC

contents:

INTEGER FUNCTION GARB

SUBRCUTINE REHASH

22.1 INT®GER FUNCTION GARB

FParameters are:

IGARB -— garbage collection type

IGARR = 1 compress litatom and string polnter space
IGARBR = 2 compress printname and array space

JGARR = 3 compress atom, string and array space
IGARER = 4 compress list space

IGARB = 5 compress all arrays

GARB 1is the garbage collector subroutine. It functicnally contains
2 major sections:

a) All active cells will be marked which means all
array-cells, which can be reached.

b) Depending on the garbage type tne array will be
compressed.

c) The pointers will ©be corrected and the array-cells
unmarked.

These % sections will be explained in more detail below.

ee

a) Marking all active cells

An active «c¢ell 1is an element of some FORTRAN array which can te
reached by evaluation of some wuser input. There d4re various
~onditions for the different data types, which cause cells to be
artive:

litatom -- Dbound variable
—--— function-name
-~ value becund to another atom
-—- element of an active LISP array
-- element of an active LISP 1ist

ctring -— bound to a variable
-— element cof an active LISP array
-— element of an active LISP list

number -~ bcund to a variable
-- element of an active LISP array
-- elerment of an active LISP list

list -- function definition
-— bound to a variable
-- element of an active LISP array
—-—~ element of an active LISP list
—-— 1list currently worked on

array -- beound to a variable
-- element of a LISP array
-- element of a LISP list

For finding all active <c¢ells, the follcwing arrays and variables
have tc be inspected: :

Variables

ARG1 ARG2 ARGZ ALIST FORM
TEMP] TEMP2 TEMP3 T1CONS I2CONS

These variables are equivalerced with the 1d-element FORIRAN array
ARGS.

Arrays

STACK(JP) . STACK(NSTACK) (argument stack)
(ARGS(1) .. ARGS(1@2))

CAR(1) . CAR(NATOMP/2+1)

CDRI(1) .. CDR(NATOMP/2+1)

LIST(1) .. LIST(NLISTP) (every active cell)

PNAME(NARRYP) .. PNAME(NPNAME) (active elements)
FNAME swap buffer section for each swappable array

61

GARB scans the 4 arrays and marks the different data in the
follewing way:

litatom or string =- set CDR(litatom) negative

number -— the bit-number of MARK is less or equal to
the size of PNAME. If a number 1is active,
with it“s value stored PNAME cell number
I, bit number I of MARK will be set to 1.

array -— Bit number 4 of the first word of its
header will be set to 1.

list -- Each element of the 1list will be marked by
setting bit 4 to 1.

1f a LISP 1list or =-array 1is reached, GARB has to examine each
element and mark the different items. Passing through is performed
in the following way:

LISP 1lists

It is tested, whether this 1list 1s already marked. If it is,
return. If not, a function code specifying the array containing the
pointer to this 1list-cell 1s saved on the stack. The cell is then
marked and will be inspected.

Peperding on the data type of the item, control is transferred to
the corresponding marking section. If it 1s neither a litatonm,
string, number or array, GARB acts in the following way.

If it is a dot, the next list-element is fetched.

If 1t 1is a left parenthesis, GARB has to examine, whether the left
parenthesis 1is reached by a 1list-pointer. If this is true, the
address of the list-pointer is saved, otherwise a left parenthesis
will be stored. Then the next element will be fetched.

If it is a right parenthesis, it is tested, whether the whole list
is marked. If necessary, the next element is popped from the stack.
I# it 1is a parenthesis, the scan continues with the following LIST
cell, otherwise with the address fetched, increased by 1.

If it 1is a 1list-pointer, its address is saved and the referenced
rell 1s tested.

list-element are replaced by the new address.

If it is a cell which already is marked, the next unmarked cell is
searched.

Ir all cases it must be tested, whether this list is the physically
last one in LIST, which also is not neccessarily complete. This
means that the 1list (currently under construction) does not have
the same number of left parentheses as right ones.

LISP arrays

It is tested, whether this array 1is already marked. If it is ,
return.

Otherwise a function code 1is saved on the stack specifying the
FORTRAN array containing the pointer to this array. The array is
marked, and the high and low PNAME address of the array is fetched.

Mow the array elements in the pointer region are tested. If such a
rell contains a litatom, string, number or a list-pointer, controcl
is transferred to the corresponding marking section.

If an element holds a pointer to another array, it”s address and
the high address of te actual array will be saved.

I¥ the whole array has been marked, it is tested by inspecting the
stack, whether this array 1is pointed to by an element of another
array. If it is, the scan continues with the elemert following the
ore, whese address was popped from the stack.

t) Ccrpressing the FORTRAN arrays

Tre FORTRAN arrays CAR, CDR und PNP have to be compressed. All cell
contents belonging to the litatoms have to be moved to the top of
the ccrresponding TFORTRAN arrays. GARB passes through the arrays
CAR anrd CDR and looks for addresses where the CAR-cell contents is
equal to UNBOUND, STRING or SUBSTRING, and the CDR-cell is positive
which indicates passive litatoms.

Then GARB looks for the next active litatom as a starting point for
tte move. For each active litatom, HTAB contains at the old address
the new address, equal whether it had been moved or not. Starting
at this address the same action will be taken until all active
litatem-cells are moved.

b.2.1) Compressing the litatom-part of PNAME.

Pecause the swap-buffer will ©be wused, GARB swaps all swapable
arrays. Then, all active numbers (with corresponding bit-numbers in
MARK equal to 1) will ©be stored into SWPBUF until the buffer is
filled up.

)]
oW

Startinreg at the byte in PNAME containing the first character of the
first atom following the atom T, all characters belonging to active
litatoms will ©be stored sequentially one after the other until the
first byte of an active number not stored in SWPBUF is reached, or
all active 1litatom=bytes are moved. The old byte-pointers in PNP
have to be replaced by the new ones.

Now, the nrumbers in SWPBUF are restored to PNAME starting at the
next word address. The size of the array HTAB is greater than the
array CAR, so the 1leftover cells are used for saving the new
rumber— addresses as two-byte entries: the first cell contains the
word address and the second the number of words in the actual
block.

If trere are more active numbers, they are handled in the described
way. If there are more active 1litatom-bytes, they are moved as
described abtove.

b.2.2) Compressing the array-part of PNAME.

A1l active 1lisp-arrays are moved to the end of PNAME. I'his is done
by searching active arrays and non-active cells starting at the end
of PNAME and shifting the array contents to the end as much as
pessibvle.

b.2) TYPE 2

Tre arrays CAR, CDR, PNP and PNAME are compressed in the way
Aescribed above. This is a combination of garbage collection type 1
ard 2.

b.4 TYPE 4

Compressing the array LIST.

b.4.1) Starting from the top, a block of more than 3 contiguous
passive cells is searched, and the length is saved in J.

b.4.7) Starting from the bottom, (J-1) active cells are searcheaq.

h.4.2) The active cells are moved into the block of passive cells.
Into the last passive cell, a continuation marker is put, pointing
to the Dbdlcck last moved. The new addresses of the cells are stored
into the corresponding old cells.

b.4.4) Continue with b.4.1 until all active cells are compacted.
MNote that two addresses have to be handled in a special way:
1. The new address of the o0ld 1last cell. Into this
cell a continuation marker to the new next free LIST-cell
has to be written.

2. The new address of the block last moved, Dbecause a
rontiruation marker must be in the 1last used cell after the

garbage collerter has finished.

€4

b.5) TYPE 5

—— ——— e e ——

CAR, CDR, PNP, PNAME AND LIST have to be compressed in the way
described above. This 1is a conbination of garbage collection of
tvpe 3 and 4.

c) Updating the pointers and unmarking the array-elements

———— —————————————————_— ———] - — —— -~ — — —_— - - —— —— — ———— -~ — ———— - —

GARB vpasses the 4 arrays as in part a) and updates the pointers in
the following way:

Litatoms and strings

If the garbage type is equal to 1, 3 or 5, the new litatom
address 1s fetched from the HTAB cell, whose number is equal
to the old address.

Numbers

If the garbage type 1s equal tc 2,3 or 5 and it is not a
small integer, the new address is computed from the contents
of the last part of HTAB.

First, the MARK ©bits equal to 1 are counted, until the bit
corresponding to the number 1is reached. HTAB contains
two-word entries, giving information about contiguous blocks
of numbers. The new address is found by calculating the
block number and the offset within the block, where the
number has been stored.

Arrays

If garbage type 1is equal to 2, 3 or 5, the new address
will ©be computed from the number of bits equal to 1 and
the 1length of the arrays, whose addresses are higher than
the one of the actual array. Starting at the bit, whose
number 1is equal to NARRYP, the number of bits equal to 1 are
ccunted until the bdit is reached, whose number 1is equal to
the desired array address.

Using NARRYP the length of the first array will be fetched.
Adding the length to NARRYP the next array will be
reached, and 1its length added to its address for getting
the next array until the new address of the actual
one 1is reached.

Lists

If pgarbage type 1s -equal to 4 or 5, the new address of
the LISP 1ist has to be fetched from the old address,
if it has changed.

65

IJf a LISP 1ist or =—-array is reached, GARB has tc examine every
element and to wupdate the pointers of the items. Passing
through is done in the same way as described in part a.

Yhen reaching an atom, array or a list, all active cells will
be reset. The bits will be set to @, and the CDR-cells will be
cet positive.

After the 3 sections are executed, the hashaddresses will be
reset. If desired, GARB prints some information and increments
the type-dependant garbage collection count variable by one.

222 SUBROUTINE REHASH

REFASH resets the hash table by scanning through the FORTRAN
ctructures describing the atoms.

First the hash table HTAB is initialized by setting all cells to
UNUSED.

Tren the arrayv CAR will pass through fcr computing a new
tashaddress of each 1literal atom. The length and the characters
will be fetched, and the address will be computed as in the
function MATOM.

FORTRAN

s o

Element Index

) 0 D 1 e
PROGRAM INI cicececcrcvseseccansccsnsanssacassasnanns
SUBROUTINE INIT1 ..cceceececenscconcescrscnnsccsacns
SUBROUTINE INITZ2 ..cccececccectsccssossosccssssnscnse
BLOCK DATA .eeieeeecroeceanstctoassocascssocsncscnons
File LISPSP .ieececccceccscassscscsstcscccscnsnnansans
SUBROUTINE LISPSP e
File ISUBRG ceeeeeecnerncrococsnsocscncnsacacncsanse
SUBROUTINE ISUBRG ..ccoceceeocsocsccnsncssssncsscncs
Flle ISUBRl ..ceeeecevcccsccsesecacssccansasnnssoas
SUBROUTINE ISUBR1 ...cccecenccsncactcccscscsnsoscnans
File ISUPRZ .iceeeececccccntsesscssacsncsacscsssnssase
SUBROUTINE ISUBR2 ...vceecevccsccvcscssccoasscascnes
File JSUBR3 +ecececcetoccceteastsccssscssscsrsccanns
SURROUTINE ISUBR3 .cceeeceosssssosonconcsscncssssnns
File JSUBRN ceceecccescecssosseosccccnnscsscnsnnnsne
SUBROUTINE ISUBRN .eeeeecrcccocacscocccoccsacsacsnns
Fille TFSUBR teeeeeeeeeenssossssnsnsoscsscssnsnnsonns
SUBROUTINE IFSUBR .cccccvcosocnsccscsoscccscssssccns
File INFN L it eieeeeretcescoscosscssansccosnccnnsancs
INTEGER FUNCTION NEXT ..ceeeeveecececacsoconcccnnns
SUBROUTINE CONS ceccecetces ettt enteetssctennon
INTEGER FUNCTION EQUAL .ecveeeccecacocasscnscnscnns
INTEGFR FUNCTION NCHARS ..cevececcacnnosccccnaccannns
INTEGER FUNCTION LENGTH ..ceceecceccocccecsosoncosnan
INTEGFR FUNCTION COMPPN ..eeeesececncsoseccnsonanses
File GTFN iceeeeececeossassssasscsccrsscncsassccnnsnse
INTEGER FUNCTION GETPN ..cceceecceccoscscscccsacansns
SUBROUTINE GETNUM . ..iieeteecrevsncossoscocessscsnns
INTEGER FUNCTION GETEL ..cieeescescncsnccssscsacsnnse
INTEGFR FUNCTION GETARG ..eeeeeeeccecsceccsnnccacas
INTEGER FUNCTION GET ceveeecacecoccosacacssnsasonsnes
File DFBU L. ieetereceeocsoasssssasccsasasscsscsscnns
SURROUTINE DEBUG ...eveececocscosssccosassccnsaccns
INTEGER FUNCTION POS teieeecececceccesossnscnacsnnas
INTEGFR FUNCTION GETSYM (eeeececctcceacscasscnnnncns
File DOUT . iieveeeeecescasosccsssacsconssscssssonsse
SUBROUTINE OUTPUT .ieeutieecosacccnsescsscnncnsscns
INTEGER FUNCTION GETTYP .ceeeeecccenscccenansscnnnse
File STCEK .iciecccccscecccssescsoccostsossncscsncsans
SUBRROUTINE FPUSH ..cecceverccrecrscccncncscnscnncsas
SUBROUTINE APUSH ..ceeevecocsassosascssssscsnosnnscns
SUBROUTINE APOP tectecesescsecsencesssssesesnne
File L7845 ittt eceeeesecssasancosscccsasssnnsssnns
SUBROUTINE RDREC ..cccecicececnsccssacoscecanscscsnns
SUBROUTINE WRREC ...ceeceeccoccccccacscssnsncsnscnns
SUBROUTINE GETCH ..ieeececosceoccasasccssanccssasncs
SURROUTINE PUTCH +ececeveetancasnencssascssnssosanans
File LBOFG
SURROUTINE TIMDT4 ..eceeeeccecoscscssnssoscnsncnans
LOGICAL FUNCTION TESTB .cceeeecccececencccacsnannns
SUBROUTINE SETBT ... eeeececscoscscoaosscesnssnncsscsns

© ® 6 06 0 00 000600600 0000008000000 00000000

QCOODOIEWONIN -

12.4
15
15
15,
15
1F
16
16
16.
16.
16.
17

17.
17.
17.
17.
17.
17.
17.
18

e e o

O©W~TIMH N

P AN =

[(o 50 S NEN IS) BN -N L WY

18,
18,
18.
18,
1],
18,
19

19.
19.
19.
19.
19.
20

20.
e,
2R,

~

21

21.
21,
21.
21.
22

22 .

~n
[

AN AN

AN PN~

R, B R

e

SUBROUTINE SETBF +ceieeececcececcesccccoccsssccconns
INTEGER FUNCTION ISHFT .eeeececocncscacesccosssccsans
SUBROUTINE RDREC ® 6 ¢ 8 ¢ 8 % 0 5 0 0 O OB SO E OO O OO OO e e
SUBROUTINE WRREC ...iceeeececceccnscccecssconsanssncne
SUBROUTINE GETCH .eiceecececonecccocsccsosscssncccncns
SUEROUTINE PUTCH .c.eieeeeeesosccccccrssnscoscassansas
File SWP1 it eieereeeececosascnsccsossssassccnnsocssocs
INTEGER FUNCTION SWPIN .cceeeeeccccscccrcsasscnccnas
INTEGER FUNCTION SWPOUT .eecececncoccscocssosncsncnns
SUBRCUTINE MKSWPA . .iiieeeseocssrsescsrsassccncscnnnnse
SUBROUTINE UNSWPA . ceieecesetesecnocasccssnsncscnsns
SUBROUTINE MVARRY ® © 0 8 9 0 0 0 0 0 9 ° 000 SO 00N OO0l et o
Fille SWP2 . iieieeeieeecsecescrsossssoncsasasssacssccscs
SUBROUTINE INISWP .ceceeecocscccecscoccossssoccscnnss
INTEGER FUNCTION FBSPAC .eeeeececcctcccssrsaccccnnncns
INTEGER FUNCTION FDSPAC .teieececececcocoscnnccscnnnas
INTEGWR FUNCTION FSWPTE cececececoccrsccnconcncccans
SUBROUTINE ARRINX € 0 0 0 0 0 9 0 00 0 00T O PSS ST OO e
SUBROUTINE SWPALL ..iiceiceeecocooserccosconscncncnnnns
INTFGER FUNCTION IRAND ‘ceceececcecvscccccacocnccanns
File INPT ® ® 9 & ¢ 0 0 0 s e 0 @ 0 9 © 8 0 0 00 S 00 e 0O e D
INTEGFR FUNCTION IRFAD ...ccecetvececncococonscnnans
INTEGER FUNCTION RATOM .eeececesecssceccccssccanscncs
SUBROUTINE SHIFT ..icecieeeanscseososacorsacscnscnsnnas
INTEGER FUNCTION MATOM . ieivecetscccccscocnacsoncnns
INTEGRR FUNCTION MKNUM i eecececccccsccoccncsaccacs
INTEGFR FUNCTION MKARRY .ccececscencssccocnsscsnnnaes
INTEGFR FUNCTION COPARR ceeceveccccocersccacoscnssnns
File OIJTP © 0 00 060 0 ¢ 0 0 0 06 00 00 0 0 00 0 000 0000000 000 e 00
SUBROUTINE PRINl OQ‘.I...."."..Q.I......I...'.Q...
SUBROUTINE LSPEXY . .ieiieerceooserccnsscsnssscsonnscns
SUBROUTINE IPRINT .eeeeeceotecsococsosconcsssnsssass
SUBROU’I‘INE TERPRI ® 8 8 © 0 0 8 9 8 0 ¢ 00O SRt e 0NN e e a0
SUBROUTINE PRINAT ..eceeeeececccccccosccccansaonnsnss
File IOFN @ 6 8 © 8 0 0 8 0 0 0 00 0 0 0 00 00 9T 9% 000t e e e 0o
SUFROI}TINE RDA ® 8 8 & 0 6 0 ¢ 00 0 0 00 0000 e e O et
SUBRROUTINE WSTACK .cecveecernveeroscecscscacccosnscnsnse
SURROUTIN® MESS cuieevresosssccsssossecsssccnssonas
F'i]e FOLI‘ ® ® 0 © 0 9 0 6 0 0 8 0 8 0 0SB T OO LSS E O OO 00N 000
INTEGER FUNCTION ROLLIN .eecevececceccccconcsccanas
SURBOUTINE ROLLOU +eeeveverecscceosssccscosscnscnnons
SUBRO{JTINE DMPIN 9 ¢ 5 8 0 0 0 9 0 0 © 0 0 0 0O T QOO et e oo
SUBROUTINE DMPOU . .ieeeeceseccoccoscscscsansscscnsnscas
File GBC @ ® 8 0 ¢ 0 0 0 0 8 S0 0 5 0 00 O 0 0 00 OO0 000 0000 0% 0000
INTEGFR FTJNCTION GARB ® 8 8 0 0 0.0 0 0 0 00 2 800 00 00N E e 0o
SUBROUTINE REHASH ...t cieeeerecesecsonsssccsccsnsnnse

39
9
39
40
40
41
41
43
46
47
48
49
49
50
57
o}

53
53
54
55
515
55
59
56
56
o7
57
58
29
59
66

57

Appendix 3: LISP-SP reference guide

—— o —— v ———— — T — T —{— " — T — (o ———

LISP-SP REFERENCE GUIDE 1

(pl,p2,..,pPn] fsubr

An s-expression beginning with * is interpreted as a comment.
Since * 1is interpreted in the same way as QUOTE (i.e., returns
its first ergument), comments should be placed, where they will
not harm computation. If SYSFLAG[4] 1is set to I, then all
comments will ©be discarded on input in order to save
PNAME-space.

abs [x] expr

returns x, if x>¢; otherwise -x.

addl "x) subr

returns x + 1

afdlistfa,l] subr

if MEMB[a,l], returns 1 else returns CONS[a,1]

addproplatm,prop,new,flg] expr

adds the value new to the 1list which is the value of property
prop on property list of atm. If flg is T, new is CONSed to the
front of value of prop, otherwise +to the end. If atm does not
have the vproperty prop, or if the value of prop isn’t a list,
then oprop will Dbe added with the value LIST[new] to the
oroperty list of atm. Returns new,

advise [fn,when,where,what] expr

advises fn, when=BEFORE or AFTER, where specifies, where among
the advises this new advise is put, can be specified as LAST
(NILY or FIRST or by editor commands, what specifies, what code
to put in.

LISP-SP REFERENCE GUIDE 2

alist subr

returns the current value binding stack.

alphorder(a,b] subr

returns T, 1if arguments are in alphabetical order. Numbers
come Dbefore 1literal atoms, and are ordered by magnitude.
Literal atoms are ordered by comparing their pnames. If neitner
a cr b are atoms or strings, the value of ALPEORDER is T.

and [x1,x2,..,xn] fsubr*

If all arguments are non-NIL, then AND returns its 1last
arcument. If some argument evaluates to NIL, then evaluation

stops and NIL is returned.

antilog[x] subr

value is floating point number, whose logarithm is x. X can oe
irteger or floating poirnt.

appenrd [x1,x2) subr

copies the top level of 1list x1 and appends to this x&.
APPEND[x1] <can be used to copy the top level of x1. For
ncn-lists you get:

APPEND[A,(B C D)]
APPEND[(A B C . D
APPEND[(A B C),D]
APPFND[(A B C . D

),(E F G)]
)]

wowonon

LISP-SP REFERENCE GUIDE S

applv(fn,args] subr

applies the function fn to the arguments collected in args.
The arguments are nct evaluated by apply; their evaluation
depends only on fn. APPLY returns as ists value the value of fn
applied to args. APPLY['CONS,“ (A B)] = (A . B)

apply*[fn,argl,arg2,..,argn) expr

equivalent to APPLY([fn,LIST([argl,..,argn]]. Returns as value
the value of fn applied to argl..argn.

applya(fn,l,ass) subr

Variable bindings are stored 1im an association 1ist, which
simulates a push-down stack (see Interlisp). TIhis list is
passed to EVAL, APPLY and EVLIS implicitly. 1If however
evaluation is to be performed in a special wvariable
ervironment, ther ar association 1list can be passed explicitly.
APPLYA[fn,l,ass] 1s wequivalent to APPLY[fn,1], but uses ass as

the push-downr stack.

arccosx,radiansflag) subr

returns arc cosine of x in degrees unless radiansflag=T. Range
is 2..18¢, @ to pi.

arrsin[x,radiarsflag] subr

returns arc sine of x in degrees unless radiansflag=T. Range
i< -02.,.90, -pi/2..pi/2.

arectanlx,radiansflag) subr

returns @érec tangent of x in degrees unless radiansflag=T.
Range 1s €..18¢, @ to pi.

ITSP-SP REFFRENCF GUIDE 4

arrav([n,p,v] subr

allocates ar array of n elements. If p is NIL, then all
elements will <contain pointers, 1initialized to v. Note that
both car and cdr are avallable for storing information. If p>2,
then the first p elements will be unbexed numbers, initialized
to @. The wvalue of ARRAY 1is the so-called array-pointer which

has 2s pname the hexadecimal presentation of the array’s
acddress, preceded by a # . Note that the array pointer is not
an atom,

arraybeg[x] subr

returns x, if ¥ i1s an array; otherwise NIL.

arrayp(x] subr

returns x, if ¥ is ar array; otherwise NIL.

arraysize[x] subr

returrs, the size of array x. Generates an error, if x 1is not
an array.

arraytyp(x] subr

returns a value corresponding to the second argument to ARRAY,
i.e., the number of unboxed number elements in x.

assoclkey,alst,fn] expr

alst 1is a 1list of dotted pairs. The value of ASSOC is the
first <sublist of alst, whose car is EQ to key, if fn is NIL. If
fn 1is mnon-NIL, then the value of ASSOC is the first sublist y
with fn[x,v]="T.

LISP-SP REFERENCE GUIDE 5

atom(x) subr

returns T, if x is an atom; otherwise NIL.

break(fn1,fn2,..,fnn] fexpr*
applies BREAK? to each argument. For atomic arguments,

RREAK@ [fni,T] is performed. For lists, APPLY[BREAK®,fni]] is
performed.

break@(fn,wher,coms] expr

modifies the definition of fn by replacing its body to a
BRFAK1-call, where:

brkexp = PROGN([fn-body]
brkwhen = when’

brkfn = fn’

brkcoms = coms

The original function definition will be put as value to the
property VIRGINFN of fn. If the value of property BROKEN is
NIL, then (fn when coms) will be stored under BROKEN; otherwise
the definition of fn will ©be rplaca’d to BROKEN. fn will bpe
added to the front of BROKENFNS. If fn is not a function,
RRFAK® returns NIL, otherwise fn.

breakl(fn1,fn2,..,fnn] fexpr*

perforrs APPLYA[“BREAK11 ([fnl,..,fnn,CDR[ALIST]}]]. Note that
RREAK11 is an expr with 4 arguments. See BREAK11.

LISP-SP REFERENCE GUIDE 6

breakl1[brkerp,brkwhen,brkfn,brkcoms] expr

If brkwhen 1s non-NIL, and brkcoms does not contain
break-commands, then a message of the form (brkfn BEROKEN) is
printed and commands are read from the terminal. If brkcoms
rontains break-commands, then these commands are executed
ore-by-one. Commands are:

! ¢ return to previous break, if any; otherwise reset.

GO : print broken form and continue.
CK : continue.
RETURN x : return the value of x.

VAL : evaluate broken form and break afterwards.
The value of the form is stored under VALUE.

1EVAL : as EVAL etc., out the function

1GO ¢ 1s first undbroken

'0K : then rebroken.

UB : unbreaks the function

BR : breaks the function

BT : backtrace of function calls (only LAMBDA and NLAMBDA).
This is only possible, if you have performed
SETQ[*BACKTRACEFLG,T] before evaluation.

ALIST ¢ print current value-binding stack.

(except for variables bound in BREAK1l and SYSERROR)

Any other input is evaluated and the value is printed.

LISP-SP REFERENCE GUIDE 7

car (7] subr

CAR gives the first element of a list x, or the left element
cf @ dotted pair x. CAR[NIL] is NIL. For all other non-lists,
CAR[x] s wundefined. Note that successive CAR”s and CDR’s can
be specified in short-hand up to CDDDR.

cdr [»] subr

CDR gives the rest of a list (all but the first element). This
is also the right member of a dotted pair. CDR[NIL] is always
NIL. For other non-lists, CDR 1is undefined. *% NOTE %%
Successive CAR’s and CDR’s can be specified in
short-hand up to CDDDR.

chtab[x,n] subr

returns the character type of the first character of the atom
x, if n is NIL. Otherwise, the type of the first character of x
is set to n (which changes the meaning of character). Default
character types are:

: 1 space @ 6 11 + :
: 2 (: 4 ‘ : 12 - :
: 3) : 8 break(.) : 13-22 ¢-9 :
: 4 < : 9 3 : 23 (1)
: 5 > s 10 alfanum 24 :

e — ———————— —— — - (1 —— - ot —— T S T T — o G —— T — S — — 0 " ——

(1) note that the type 34 must be selected depernding on the
terminal type available (ATM-806@: ~ ,ATM 7845: {).

clock subr

returns time as a dotted pair (hours . minutes).

rlose[f] expr

close file f. f is the symbolic name of the file.

LISP-SP REFERENCE GUIDE 8

concat(x1,x2,..,xn] subr*
concatenates copies of the strings x1..xn. If the arguments

aren’t strings, they are converted. CONCAT[] is , the empty

strirng.

cond(rl1,c2,..,cn] fsubrx

The arguments of COND, cl..cn, are called clauses. Each clause
ci i1s a 1list (pi,eil,..,eim), where pi is the predicate, and
eil..eim are the consequents. COND evaluates pi, i=1..n until
it finds scme pi as non-NIL. Next, the following expressions
eil,ei?.. are evaluated, and the value of COND 1is the value of
the 1last expression evaluated. If some pi evaluates to non-NIL
and no expression follows in that clause, then the value of
COND is pi. If no pi evaluates to non-NIL, then the value of
CCND is NIL.

cors(x,y] subr

constructs a dotted pair of x and y. If y is a 1list, x becomes
the first element of that 1list.

copy [x] expr

makes a new list which is a cepy of ¥ and EQUAL to x but rnot
EQC to v. All levels will be copied except strings and arrays.

copyarray[a] subr

creates a new array of same size and type as a, i.e., the same
Aistribution of pointers and unboxed numbers, and with the same
contents as a. Value 1is new array. If a is not an array, an
error is penerated.

cos[r,radiarsflag] subr

x must be in degrees unless radiansflag=T. Returns cosine of x
as a flcating point number.

LISP-SP REFERENCE GUIDE 9

curfilefile] fexpr

defines file as current file. All subsequent function
definitions tbhelong to this file and are added to fileFNS. If
CURFILE[file] 1is not evaluated, the name of the current file is
CUR and the function names are saved on CURFNS. To define some
funetions and save them as MYFILE on 1loglical unit 25 you write:

(OPEN “MYFILE ‘0 25)
(CURFILE MYFILE)
(DE...>

(PE...> etc.
(MAKFFILE ‘MYFILE T)

This pretty-prints a version of all definitions to logical
unit 25.

Ae [fn,args,body] fexpr*

ascsigns a function definition of type LAMBDA to the atom fn.
args is the 1ist of ©parameters for spread or half-spread
functions (type expr) or an atom for nospread functions (type
eypr*),

defireq[x1,x2,..,x10] fexpr*

Aefines functions as specified by =x1..xn. Each xi is an
expression of the form

(fn-name (LAMBDA ...)) or
(fn-name (NLAMBDA ...))

No message is given, if some fn-name has been used for a
functicn definition before.

deflist[1,prop] expr

puts values under the same property name prop on the property
lists of several atoms. 1 is a list of two-element 1lists, the
first element of which is a literal atom, and the second is the
value to put to property prop of that atom. The value of
deflist is NIL.

LISP-SP REFERENCE GUILE 1¢

df[fn,args,body] fexpr
assigns a function definition of type NLAMBDA to the atom fn.
args 1is the 1ist of parameters for spread or half-spread

funetions (type fexpr) or an atom for nospread functions (type
fexpr¥*).

differencelx,y] subr

returns x - v.

dsort[1] expr

destructively sorts 1.

editf[ad) fexpr
edits a function. The argument 4 is a dotted pair (fn . edcon),

wvhere fn 1is the name of the function to be edited, and edcom
is a 1ist of edit commands. For edit commands see EDITS(].

edits[s,edeom] expr

edits any s-expression s with edit-commands in 1list edcom. For
edit commands see next two pages.

LISP-SP REFERENCE GUIDE 11

Edit comrmands

—— ————— 1 —— s o e T P T B D s B . D S P s D s T . S e D et S s D e VD e U i D . P e T e e s e e e D St D i WD e e e

P : print to level 2
PP ¢ pretty-print to level 2
? : print to level 1000
77 : pretty-print to level 1000
0K : leave editor.
UpP : new cexpr (current expression) is expression
¢ with 0ld cexpr as car.
F expr ¢ if expr is an atom, top level of cexpr
: 1s searched for expr and cexpr is set to the
: expression with expr as car. If expr is not
: found on top level, then all levels are
¢ searched from the beginning. If expr is a list,
: then the new cexpr is the first expression
: which matches expr, regardless of its level.
F s o
NX : sets current expression to next expression.
! : sets current expression to top level expression.
S x : set x to the current expression. Useful in
: combinations with US.
n : if positive, sets cexp to the n"th element

: of cexpr. If negative, search starts at
: the end. If n=@ ?77?°?

LISP-SP REFERENCE GUIDE

more edit commands

12

- e o ——— T —— ———— T — — — —— — — —— e ——— O —————— T ——— —— — (o "

(n el..em)

(-n el..em)
(N el..em)

(R xy)

(PI n m)

(PRI n)

(R0 n)

(LO r)

(RO n)

(: el..en)
(US x roms)
(MARK x)

(\ x)

*e se o0 co e

n>=1 deletes the n“th expression of cexpr.
n>=1 replaces the n’th expression by el..em
n>=1 inserts el..em before n'th element.

adds el..em to the end of cexpr

replaces all occurances of x in cexpr by y.
both in. Inserts a left parenthesis before

the n“th element and a right parenthesis after
the m“th element.

same as (BI n)

both out. Removes both parentheses from
n“th element.

left in. Inserts a left parenthesis before
the n“th element and a corresponding right
rarenthesis at the end.

left out. Removes the left parenthesis from
the n“th element. All elements after the

n“th element are deleted.

right out. Removes right parenthesis from

the n“th element, moving it to the end of

the current expression. All elements following
the n“th element are moved inside the n”th
element.

replaces cexpr by el..en.

Use a copy of the saved value of x in commands.
save the current chain in x.

reset the edit chain to x.

Nete: the Irterlisp print commands are not exactly like these.

LISP-SP REFERENCE GUIDE 13

eject subr

do a form-feed to current output channel

elt[a,n] subr

returns the n’th element of array a. If a is not an array, an
srror 1is generated. If n corresponds to the unboxed number
region of a, then the value is returned as boxed integer. If n
corresponds to the pointer region of a, then the value of ELT
is the car half of the corresponding element.

eltd [a,r] subr

returns same as ELT for unboxed region of array a, but returns
cdr half of the n“th element, if n corresponds to the pointer
reelion of a.

ec[x,y] subr

The value of EQ is T, if x and y are pointers to the same
<tructure in memory, and NIL otherwise. For equal numbers, EQ
gives T only, if x and y are in the range -2000..2000.

pqp(x,y] subr

if x and y are pointers to the same structure 1in

returns T,
if ¥ and y are numbers with the same value.

memory, Cr

equal(x,v] subr

evalvates to T, if EQ[x,y] 1is T, or EQP{x,y] is T, or if
STREQUAL([x,y), or if x and y are lists and EQUAL(CAR[x],CAR([y]]
and EQUAL[CDR([x],CCR[y]]. Otherwise the value of EQUAL is NIL.

LISP-SP REFERENCE GUIDE

errordb
is a programmed return from
cccurreéd under FERRORSET, then

otherwise a RESET is performed.

errormess [n]

prints error message, Whose

messages are listed.

errorn

returns the number for the last

errorset [form,flg]

performs EVAL[form]. Note
and therefore 1its argument are
Tris means that EVAL
error occurs in
is the value of EVAL[form].
value cf ERRORSET is NIL.

eval(x]

the
way
LAMBDA

evaluates
provides a
itself a
evaluated.

expression
of

type

evala[x,a]

evaluates x wusing a as an
which appears free 1in

of a, will be given the value of

is called with the value of form.
the evaluation of form,

x and returns this value,i.e,
calling the interpreter. Note that
version,

—
W

exprx

an error situation. If the error

ERRORB returns with value NIL,
subr
number is n. If n=3, then all
expr*
error occurred.
expr

that ERRORSET is a LAMBDA-function

evaluated, before it is entered.
If no
ERRORSKET
then the

the value of

If an error occurred,

subr

BVAL
EVAL 1is
its is first

SO argument

subr

association list. Any variable,

x and also appears as car of an element

the cdr of that element.

LISP-SP REFERENCE GUIDE 1b

evlis[x] subr
perfecrms a MAPCAR[x, EVAL],i.e., EVLIS evaluates the elements

of x one-by-one and returns a 1list which has as top level
elements the results of the corresponding evaluation.

exit subr

exits the LISP system and returns to whichever environment it
was entered from.

expt[m,n] subr
value is m ** n, If m is an integer and n is a positive

irteger, then the value is an integer, otherwise the value 1is a

floating point number. If m is negative and n is fractional, an

error 1s generated. If n is floating and either too large or
too small, an error is generated.

fdifference(lr,y] expr

difference x — y of two floating point numbers.

fereaterp[x,v] expr

returns T, if x > y, otherwise NIL.

fix[r] subr

ronverts x tc an integer by truncating fractional bits.

fleat[x] subr

ronverts x to a floatinge point number.

11SP-SP REFERENCE GUIDE 1€

floatp[x] subr

returns T, if x is a floating point number, NIL otherwise. It
does not give an error, if x is no number.

frinus [x] expr

returns =¥

fplusfl»1,x2,..,xn] subr*

returns sum of flcating point numbers x1..xn.

fquotient Ix,y] expr

returns x / y.

ftimes(x1,x2,..,xn] subr*

returns product x1 * x2 * .. * xn.

function [fn,env) fsubr*

i an NLAMBDA function. If env=NIL, the value of FUNCTION is
jdentircal tc OQUOTE. If env 1is not NIL, it can be a list of
variables which are presumably used freely by fn. In this case,
the value of FUNCTION is an expression of the form (FUNARG fn
pes), where pos contains the variable ©bindings for those
variables which are not in the argument 1list of fn.

gcpag[message] expr

_affects pessage printing by garbage collector. If message=T,

collecting is printed, followed Dby the type of the
ccllection. When garbage collection is completed, free space
irformation 1is ©printed in a format depending on the garbage
collertion type. See RECLAIM.

LISP-SP REFERENCE GUIDE 17

gensym subr

gernerates a new atom of the form Annnn, where each of the r’s
is a digit. Thus, the first one generated is A@€@, the second
onme A@@1, etc. The value of the atom GENNUM determines the next
GENSYM, e.g. 1if GENNUM is set to 10023, then GENSYM[] yields
LO@2Z.,

getd [r] subr

gets the function definition of x. Value either its definition
or NIL (if ¥ is net a literal atom, or has no definition).

cetintls,f) subr

gets an integer value from a string. The string or substring
to be used 1is s. The arpument f is used to control the format
cf the string. If f is T, then the integer is taken from the
strirg as binary value, otherwise as sequence of ASCII digits.

getplatm,prop] subr

gets the property value for prop from the property list of
atm. The value of GETP is NIL, if atm is not a literal atom, or

rrep is not found.

golx] fsubr*

transfers control in a PROG. (GO L) will cause the program to
rentinue at the label L. A GO can be used at any level in a
FROG. If the label is not found, GO will search higher PROG s
withir the same function. If the label is not found, GO informs
about the error.

go*[x] fsubr*

searches all current PROG’s for the label x. If it is found, a
Jump 1s performed. If not, NIL is returned and no other action
takes place. GO* can be used to jump to a label defined in
some other currently active function.

LISP-SP REFERENCE GUIDE 18

greaterp(x,y] subr

returns T, i1f x > y; NIL otherwise.

idifference[x,y] expr

returns ¥ — y for twe integers x and y.

igreaterp(x,y] expr

returns T, if x > y for two integers x and y, otherwise NIL.

iminus [x] expr

returrs - ¥ for integer x.

inunit [n] expr

sets input channel to n. If n is NIL, then the current channel
number is returned.

ictab[i,n] subr

sets element 1 in IOTAB. This is a 12 element structure with
the following contents:

element 1 : 1logical input channel
2 ¢ current read position
3 : left mardin - input
4 : right margin - input
5 : 1logical output channel
6 : current print position
7 : left margin - output
8 : right margin - output
9 : print length
10 ¢ print depth

If n 1is NIL, then the current value of the specified element
is returned. If n is T, the element is set to it’s default
value. Otherwise, the value of n is put into the table.

1ISP-SP REFERENCE GUIDE 19

iplus(x1,x2,..,%xn] subr*

returrs the sum x1 + .. + xn, x1..xn integers.

iquotient [x,y] expr

returns x / v truncated, x and y integers.

itimes[x1,x2,..,xn] subrx

returrs the product x1 * .. * xn, xl1..xn integers.

last [x] expr
returns a pointer to the last node in a list. Value is NIL, if

¥ %s not)a list. Example: LAST[(A B C)] is (C), LAST[(A B . C)]
is (B . C).

length(x] subr

returns the 1length of the 1list x defined as the number of
CPR”s required to reach a non-list.

lessplx,y] subr

returns T, if x < y, NIL otherwise.

LISP-SP REFERENCR® GUIDE 20

lispx subr

iefined as: LOOP PRINT[EVAL[READ]] GO[LOOP]

list[x1,x2,..,xn] subr*

returns the list of the values of it’s arguments.

listplx] subr

returns T, if x is a 1list; otherwise NIL.

litatom[x] subr

returns T, if ¥ is a 1litatom; otherwise NIL.

load [f] expr

reads successive s—expressions from file f and evaluates each
as it is reed, until it reads STOP. Returns f.

leg(x] subr

returns natural logarithm of x as a floating point number. x
can be integer or floating point.

LISP-SP REFERENCE GUIDE 21

makefile[f,flg] expr

takes a number of variables, functions and properties and
writes them out to the previously opened file f. These
definitions can then be read back later by LOAD. MAKEFILE reads
commands of the form

(P cee)
(PROP ...)
(% vee)

wrere (P el,..,en) specifies expressions to be printed on the
file, (PRCP p atom ...) defines values on atoms under property
P and (E el,..,en) specifies expressions which will ©be
evaluated end their values written to the file. See [HA7S5] for
more information on the MAKEFILE package. If flg=T, then pretty
printing is used.

map[mapx,mapfnl,mapfn2) subr

If mapfn2 is NIL, then MAP applies mapfnl to successive tails
0f the 1list mapx. That is, first it computes mapfnl[mapx], and
then mapfnl(CDR[rapx]], wuntil mapx is exhausted. If mapfn2 is
previded, mapfn2[mapx] 1is |wused instead of CDR[mapx] for the
next call for mapfnl, e.g. if mapfn2 were CDDR, alternate
elements of the 1ist would be skipped. The value of MAP is NIL.

mapc [mapx,mapfnrl,mapfn2] subr
Identical to MAP, except that mapfnl[CAR[mapx]] is computed at

each iteration 1instead of mapfnl([mapx], e.g. MAPC works on
elements, MAP on tails. The value of MAPC is NIL.

mapcar [mapx,mapfnl,mapfn2] subr

computes the same values MAPC would compute, and returns a
list consisting of those values.

LISP-SP REFFRENCE GUILE 4

maplist[mapx,mapfnl,mapfn2] subr

computes the same values MAP would compute, and returns a list
consisting of those values.

memb [x,v] subr
determines, if x is a member of the list y, i.e., if there 1is

an element of y EQ to x. If so, its value is the tail of the
list y starting with that element. If not, 1t’s wvalue is NIL.

member [x,y] subr

is identical to MEMB except that it uses EQUAL instead of E£Q
tc check membership of x in y.

minus [x] expr
returns - X
minusp[x] expr

returns T, if x is negative; NIL otherwise. It works for both
integers and floating point numbers.

mkatom([x] expr

creates an atom, whose pname is the same as that of the string
y, or if x iesn’t a string, the same as that of MKSTRING[x].

mkstring(x] . expr

returns as value a string corresponding to the prinl-pname of
Y.

LISP-SP REFERENCE GUILE 23

mkswap [a] subr
makes array a swappable, i.e., the array is put on disk. Only
the array header remains in the array space in memory. If a is

rot an array, or the array is bigger than the swap buffer, arn
error is generated.

mkunswap [a] subr

mekes a swappable array memory resident. An error is
generated, iIf a is not an array.

rchars [x] subr

returns number of characters in pname of x.

rconc(x1,x2) subr

returns the same value as APPEND([x1,x2], but actually modifies
the 1list structure of x1 and x2.

rconcl [1st,x) subr

performrs NCONC[1st,LIST[x]]

neqlx,y) suor

returns T, if x is nct EQ ty y; NIL otherwise.

nil subr

returns NIL.

LISP-SP REFERENCE GUIDE 24

nlistplx] subr

returns T, if ¥ is not a list.

nth[x,n) expr

returns tail of x beginning with the n”th element.

nulllx] subr

returns T, if x EQ to NIL; NIL otherwise.

numberyp [x] subr

returns T, if x is a number; NIL otherwise.

cblist [x] subr

~reates a new list of atoms, with the last atom created as the
first member of the 1list, and the atomic argument x as the last
onre. As NIL 1is the very first atom created, (OBLIST) gives a
list all atems and as T 1s the last atom defined by a clean
system, (OBLIST T) gives all atoms but SUBR’s ani FSUBR’s.

open(f,ic,n] expr

cpens the file with symbolic name f, with io=I for 1input and
ic=0 for output, where n is used as the logical <channel number.

er[x1,x2,..,1x1] ’ fsubr*

returns as value that of the arguments, whose value is not
NIL; ctherwise NIL, if all arguments have the wvalue NIL.

Fvalvation stops at the first argument, whose value 1s not NIL.

I1T1SP-SP REFERENCE GUIDE 22

cutunit(n] expr

sets logical channel for output to n.

peck[x] subr
If x 1is a 1list of atoms, the value is a single atom, whose
pname is the concatenation of the pnames of the atoms in x. If

the pname of the value 1s the same as that of a number, the
value will be that numbder.

plus [x1,x2,..,xn) subr*

returns the sum x1 + .. + xn of the numbers x1..xn.

PE[XL X2 5 « yXN] fexpr¥*

prettyprints xl..xn.

prin?(>x,a,b] subr

prints x with no TERPRI before or after. If a=NIL, does not
print escape- or string-character.If a=T, then these characters
are printed, then reading back properly is possible. If b=NIL,
then 1t”s an ordinary print. If b»=T, then ?

prinifx] expr
rrints x.
prin?[x] expr

print x with escape- and string-character 1inserted, where
required for it to read back in properly by READ.

LISP-SP REFERENCE GUITDE 26

print[x] expr

prirts x using prin2 followed by carriage-return / line-feed.

printdef [x] expr

pretty prirt x with escape- and string-character.

printl(x1,x2,..,xn] expr*

rrint ¥1,..,xn usirg printil.

printlength([x] expr
returns the maximum number of top elements to be printed, if x

is NIL. If x 1s mnot NIL, then the printlength 13 set x.
Elements beyond the current printlength are printed as ---.

printlevel [x] expr
returns the maximum number of levels to be printed, if x 1is

NIL. If x is mnot NIL, then the printlevel is set to x. Lists
below the current printlevel are printed as

printpos [x] expr

returns the current print-position, if x is NIL; otherwise it
sets the current print-position to x.

LISP-SP REFERENCE GUIDE 27

progfvarlst,el,e2,..,en] fsubr

allows for writing programs consisting of expressions to be
executed. The varlst is a 1list of local variables.

If no 1local variables are to be wused, then NIL must be
specified. Each atom in varlst 1is treated as the name of a
local variable and 1s bdound to NIL. Also, varlst can contain
liste of the form (atom form). In this case, atom 1is the name
of the wvariable and is bound to the value of form. Evaluaticns
take place before any bindings are performed. An attempt to use
anytting other than a 1literal atom as a PROG variable will
cause an error.

The rest of the PROG is a sequence of non-atomic statements
aréd atoric symbols, used as 1labels for GO. The forms are
evaluated sequentially, the 1labels serve only as markers. The
twe functions GO ard RETURN alter this flow of control as
described below. The value of PROG 1s usually specified by
RETURN. If no RETURN is specified, PROG returns NIL.

progl[el,e2,..,en] fsubr*

evaluates 1it’s arguments in order, and returns the value of
it’s first argument.

prognfel,e2,..,en] fsubr*

evaluates 1t°s arguments in order, and returns the value of
it’s last argument.

ILISP-SP REFERENCE GUIDE 2¢

put[a,p,v] subr

puts v to property p on atom a. Returns v.

putd [fn,def] expr

puts the definition def into fn’s function cell. Value is def.

outint(s,x,f] subr
puts the integer x into string or substring s. If f is T, then
¥ is put 1irto s in binary format. If f is NIL, tnen the pname

of ¥ 1is put irto s left-justified. If f is anything else, then
the pname of x is put into s right-justified.

putprops(atm,propl,vall,..,propn,valn] expr

for i=1 to n puts propi,vali on property list of atm.

quote[x] fsubrx

prevents 1t”s argument from beeing evaluated. Returns x
itself.

quctient[x,y] subr

returrs x / y of two numbers x and y.

LISP-SP REFFRENCE GUIDE 29

rand [lower,upper] subr

returns a pseudo random number Dbetween lower and upper
inelnsive, 1i.e. RAND can be wused to generate a sequence of
random numbers. If ©both 1limits are integers, the value 1is an
integer, otherwise it is a floating point number.

The algorithm 1is completely deterministic, i.e., given the
same initial state, RAND produces the same sequence of values.
The internal <state of RAND is initialized wusing the function
RANDS®T described below.

randcset [x] subr

returns the internal state of RAND after RANDSET has finished
operatirg. If x is NIL, value is the current state. If x is I,
the variable RANDSTATE 1is initilalized using the clock.
Otherwise, x 1is interpreted as a previous internal state, i.e.
a value of RANDSET, and is used to reset RANDSTATE.

ratom[x] subr

reads an atom. If x is not NIL, it is interpreted as the
lcgiral channel to read from.

read [r] subr

reads an s—-expression. If x is not NIL, then it is interpreted
as the logical channel to read from.

readc [x] subr

reads the next character. If x is not NIL, it is 1interpreted
as trke logical channel te read from.

readfile [x] expr

reads successive s—expressions from logical channel x wuntil an
eTTOT ccecurs, e.8. unbound variable. Each expression is

pvaluated as it is read. Returns x.

LISP-SP REFERENCE GUIDE S0

readpos [x] expr

returns the current read position. If x is not NIL, then the
currert read position is set to x.

readvise [x] fexpr*

restores a function to it’s advised state. For each function
on X, READVISE retrieves the advise 1information from the
rroperty ADVISED for that function and performs the
corresponding advise operations. The value of READVISE is a
list of tre function names specified. If no advise information
is available for some function, then NIL is returned instead of
the function name.

rebreak [x] fexpr*

rebreaks each functiorn or x by retrieving break informaticn
for the precperty BROKEN for that function and performing the
recrresponding operation. Value is a 1list of values corresponding

to the values of BREAK@. If no break information is found for a
particular function, then NIL is returned for that function.

reclaim(x] subr
Initiates garbage collection of type x, where x is:

1 : atom pointer space compression

2 ¢+ pname space compression

3 : both atom and pname space compression

4 : list space compression

& : compresses all structures

Value 1is number of words available for the corresponding type

after the compression as a dotted pair (m . n), with number =
m*1¢¢2 + n. Type 3 returns atom pointer space, Type 5 returnas

1ist space. Note that pname space coOmpression affects tre
rnames of atoms and strings, as well as numbers and arrays.

LISP-SP REFERENCE GUIDE 31

remainder[x,v] subr

returrs modulus of x ard y. Value is integer, if both arguments
are integers, otherwise real.

remove [x,1,11] : expr
removes all occurences of x from list 1, giving a copy of 1

with all elements EQUAL to x removed. This 1ist will be bound
teo 11.

rempreplatm, prop] expr

removes the property vprop (and it”s value) from the property
list c¢f atm. Value is prop,if it was found, otherwise NIL.

reset subr

returns to top level immediately.

return[x] subr

is the normal exit from a PROG. It’s argument is evaluated and
is the value of the PROG, in which it appears.

reverse[1] suor

reverses and copies +the top level of a list. If 1 is not a
list, 1 is returned.

rewird [x] subr

rewinds logical channel x.

LISP-SP REFERENCE GUIDE 3«

rollin[x] subr

restores a saved LISP system status from logical channel x. It
is possible to perform ROLLIN even, 1if the size of the LISP
system hes ©been changed since the last ROLLOUT. If no proper
ROLLIN can be performed, then ROLLIN returns NIL, otherwise x.

rcllout [x] subr

caves the current LISP status on logical channel x. Returns x.

rplaca([x,y] subr

replaces the address pointer of x, i.e. car, with y. Value is
¥. An attempt to replace NIL will cause an error, except for
RPLACA[NIL,NIL]. An attempt to RPLACA any other non-list will
rfause an error.

rplacd [x,y] subr

replaces the cdr of x by the pointer y. The internal list
structure 1is physically changed. The only way to get a circular
list 1is by using RPLACD to place a pointer to the ©beginning of
a 1list in a spot at the end of the list. Value is x. An attempt
to RPLACD NIL will cause an error, except for rplacd [NIL,NIL].
Ar atterpt tc RPLACD any other non-list will cause an error.

rplstring(x,n,y] suor

replaces characters of string x beginning at character n with
string y. n may be positive or negative. If n is positive, then
the first characeter to be replaced is the n”th, counted from
the ©beginning, otherwise from the end. The characters are put
into x. Value is new x. An error is generated, if there is not
encugh rcomrm in x for y. Note that, if x is a substring of z,
then 2z is also changed.

L1SP-SP REFERENCE GUIDE 33

rpt [rptn,rptf] subr

evaluates the expression rptf rptn times. At any point, rptn
is the number of evaluations yet to take place. Returns the
value of the 1last evaluation. If rptn{=0@, then rptf is not
evalvated, and the value of RPT is NIL.

rptq [rptn,rptf] fexpr

as RPT(rptn,rptf], but does not evaluate rptf Dbefcore
execution.

sassoc [key,alst] expr

returns ASSOC [key,alst,EQUAL].

cavedef [fn] expr

saves the definition of fn on it’s property 1list under
prcperty EXPR. Value 1s EXPR.

selecta[x,cl1,c2,..,cn,def] fsuor*

selects a ferm or sequence of forms based on the value of it’s
first argument x. Each c¢i is a 1list of the form (si eli
e?i..eki), where si is the selected key.

If si is an atom, the value of x is tested, if it 1is EQ to si
{nct evaluated). If so, the expressions eli..eki are evaluated
in sequence, and the value of the SELECTQ is the value of tke
last expression evaluated, 1i.e., eki.

If si 1is a list, the value of x is compared with each element
(rot evaluated) of si, and, if x is EQ to any of them, then eli
tc ekl are evaluated in turn as above.

If c¢i 1s not selected in one of the two ways described, ci+1
is tested, etc., until all the clauses c¢j have been tested. If
ncne is selected, the value of the selectq is the value of def
which must be present.

LISP-SP RFFFRENCE GUIDE 34

set[x,y] subr

sets x to y. Value is y. If x is not a litatom, then an error
is generated.

setala,n,v] subr
sets the n’th element of array a. If n corresponds to the
unboxed number region of &, v must be an 1integer. If n

~crresponds to the pointer region, v replaces the car half of
element n. If a is not an array, an error is generated.

setd [a,n,v] subr
same as SETA for unboxed region of array a, but sets cdr half

of n’th element, if n corresponds to the pointer region. Value
is v.

setqlx,y) fsubr*

same as SET(x,v], but x is not evaluated.

setqqlx,y] expr*

same as SETO([x,y], but y is not evaluated.

setsbsize [x] subr

returns the swap buffer size. Changing the swap buffer size
cynamically is not implemented in this version.

sign(x] expr

returns @ or 1 or -1, depending on the sign of x.

LISP-SP REFERENCE GUIDE 33

sin[x,radiansflg] subr

x must be in degress unless radiansflg=T. Returns sire of x as
a floating point number.

spaces [n] expr

prints n spaces.

csqrt [x] subr
returns square root of x as a floating point number. x may be

integer or floating pcint. Generates aen error, if n is
regative.

stralloc(n,c] subr

allocates a new string of length n and fills that string with
the first character of the atom / string / substring c.

strequal (x,y] expr
returnas x, if x and y are both strings and equal, i.e., print

the same, otherwise NIL. Note that strings may be EQUAL without
teing EOQ.

stringp(x] expr

returns x, if x is a string, NIL othwerwise. Note that, if x
is a string, then NLISTP[x] is T but ATOM[x] is NIL.

subl[x] subr

returns x - 1.

swparrayp[x] subr

retvrns x, if x 1s a swappable array, NIL otherwise.

LISP-SP REFERENCE GUIDE 3€

subst[new,o0ld,expr] subr

Value i< the result of substituting the s-expression new for
all occurrences of the s-expression old 1in the s—-expression
expr. Substitution occurs, whenever old is EQUAL to car of some
subexpression of expr, or when old is both atomic and not NIL
and TFQ to cdr of some subexpression of expr. The value of SURST
is a copy of expr with the appropriate changes. Furtnermore, if
rew is a 1ist, it is <copied at each substitution.

substring[x,n,m] subr

Value 1is the substring of string x consisting of the n’th
through m’th character of x. If m is NIL, the substring 1is the
r’th character of x through the end of x. Both n and m can be
nepative, in which case counting begins at the end. Returns
NIL, if the substring 1is not well defined. SWPARRAYP[a]
returns a, if ¥ is a swappable array, otherwise NIL.

syserror subr

is defined as a function which prints some errormessage and
resets the system. It will be redefined, however, when reading
in the exprs, and will then cause a break, if an error occurs.
If the evaluation which caused the error was initiated by
TRRORSET, then no break will occur, and the value of the
function will be NIL.

sysflagli,x] _ subr
sets SYSFLAG(i) to x and returns the old value. If x is not
specified, only the current value is returned. x can be 1 or
NIL. Setting the SYSFLAGS means:
1 : print GBC messages

2 ¢ output is pretty printed

(@)

enable stack printing

4 : comment

tn

print escape- and string-character

€ : not used

7 : begin a new line, whenever a ' (

is found during pretty print unless
it is the first (sometimes second)
subexpression

LISP-SP REFERENCE GUILE 37

tailplx,y] expr

returns x, if x is a tail of y, i.e., x is EQ to some number
of cdr’s of y, otherwise NIL.

tan[r,radiansflg] subr

¥ is in degrees unless radiansflg=T. Returns tangent of x as a
flcating peint number.

terpri subr

prints a carriage return, value is NIL.

times[x1,x2,..,xn] subr*

returns the product x1*x2%,.%xn of the numbers x1..xn.

trace [x] fexpr*

z~auses the functions, whose names are on the 1list x to be
traced. Retunrs a 1list of the function names. If some element
i< not a funetion, then NIL i1s returned for that element.

unadvise [x] fexpr*

takes any number of functions an restores +them to their
crigiral wunadvised state, including removing the properties
added by advise. UNADVISE[] wunadvises all functions on
ADVISEDFENS.

urbreak(x) fexpr¥*

takes any number of functions modified by BREAK or TRACE and
restecres them to thelr original state. Value is the list of
function names.

T.ISP-SP REFERENCE GUIDE 38

unpack(s,fle] subr

returns a 1list consisting of the characters of string x as
atems. If fleg=T, then the prinZ2-pname is used, i.e., is made
an atom and printed as { ({ = escape-character).

unsavedef [fn] expr

restores the definition of fn from it”s property list under
property EXPR. Value is function definition.

untrace[x] fexpr*

restores the furctions on x to their original state. All
trace-information will ©be removed. Value 1is the 1list of
function names.

virginfn [x] expr

restores x to it°s original function definition, regardless of
any amount of breaks, advising etc. Value 1is function
definition.

xcall(fn,1) subr

is a nasty way to implement additional functions. Argument fn
is a number used to branch to some subroutine, and 1 is a 1list
of arguments to that subroutine. XCALL[1,T] will tell the
system to print carriage-control information, XCALL[1,F] causes
the system to omit these characters. XCALL[1,NIL] returns
current status. XCALL[2,CONS[el1,e2]] 1is equivalent (?) to
L%SSP[mkn[el],mkn[e2]]. Be careful with that one.

zerop[x] suor

i1s defined as FQ[x,@d].

FUNCTION INTEX

*[p1, f y uw g P

abs[x
add1l[x]

addlist(a,l] :
addpro [atm,prop new,flg]
advice[fn,when, where what]
alist -
alphecrder(a,

and [x1,22,.
antiloglx]

apperd [x1,x2]
apply*[fn,argl,arg2,..,argnj
apply[fn,args]

applva(fn,l,ass]

© © 9 0 ¢ 00 8 600 8 0 0 0 00 000 00050000000 ® o0

® © 6 ® 9 0 0 9 0 00 0 00 90 0 0 0T O 0 O 00 00 00 0o fsubr*
cees EXPT

@ © 5 0 © 0 9 60 0 6 60 @ 6 8 90 G 80600 0O 00 E e e 000080 Subr

© 0 © 0 060 06 0 ¢ 0 020 0 00 0000 0000 0O 0000000 SU.bI'

© ® 6 060 ¢ 0000 0000000 0000 expr

«. EXpFr
.. Subr

b] 06 06006060 00 00 0080000000000 0L e0 e SUbr

.,Xn] ® © © 86 0 ¢ 0 00 00 000 000 Q 0000 OO SO0 fSUbI‘*

arccos [x,radiansflag]
arcsin(x,radiansflag]
arctan[x,radiansflag]

array[n,p,v]

arraybeg[x]
arrayp [x]

arraysize([x]

arraytyp [x]
assoclkey,a
atom[x]

© © 0 0 2 08 00 8 00600 00 * 0000000 000 000

oo o 0 0 0

e e 06 00000000000 0

.. Subr

® © 6 0 0 © ¢ & 0 OO 00 Q0 O OO s 00O ® e 0t 00 0o Subr
«es EXPT
@ 9 6 6 0 0 @ ¢ % % 0 O 06 P 0 0 0 e 0 e e 80 00 e a0 Subr

© 80 000 009 0 00800 00000 E0 e 00 SUbr

.. SUbDr

96 © 06 0 0 © 0000000000000 0 00 00 SU.bI'

® © 80 ¢ 00 ¢85 0 0 00000 e es 0O 0 s SUbr

© © 0 9 0 © 0 06 0060 006 0008060 0000000080000 000 SUbr

cees SUbr

© 6 ¢ 06 06 0 © 006 06009 0 0060 00000 000008 00000 o0 Subr

1st, fn]

® 6 © 00 0 0 00 00 0 00 00 08 O 0000000 OO0 s o

break@ [fn,when,coms]

breakll[brkexp brkwhen, brkfn brkcoms]

breakl[fn1,

fn2,..,fnn]

break[fnl.fn?...,fnn]

car[r])
cdr[7] .
chtab[x,n)
rleck e
close(f]

8 6 06 0 0 0 06 0 © 0 606 0 00 0 0 9 00000 %0 0600 0000 0

eeses SUDT

.. Subr

® 6 ° 0690 60 ¢ 00 0006008 00000000 e o0 elpr

ees SUDT

© e 60 % 00 06 0e 0 © 000 00 00 00 e 000 expr

e e e e 0 0000 expr

v BKE S B FEEEE A Eee e s ves TEXDEY
® e 6 0 ¢ 0 & 00 ¢ 0 000 % o0 e 00t 00 0o fexpr*

© © 606 80 0 8 0 00 600 000 e o0 s00 SUbr

® ® 060 00 0 00 0600000000000 0000 00 SUbI‘

ees SUbr

®© © ¢ 6 5 00 0 0 00 00 000 00 009 OO0 0Oe OO0 "o Subr

® 00 0 006060 09 00 000 00 0

concat[x1,x?2,..,xn]

cord[ecl,c2,
cons[x,y]
copy [x]

cepyarray(a]

.,cnj

e o 0 00 00 00 000 0

cos [r,radiansflag]

curfile(file]
de[fn,args,body]

defirneq(x1,x2,..,xn]

deflist[1,prop]
df[fr,args,body]
difference[x,y]

dsort[1]
editffd)

edits[s,edcom]

eject .
e1t[a,n]
eltd [a,n]
eqrx,y]

eqp(x,y]
equal[x,y]

® ¢ 0 e 0 0000 00 00000 0000 expl‘

© 9 5 0 ¢ 0 0 8 ® 9 000008 000 0 000 0o SUDI‘*

© 6 0 0 ¢ 8 85 6 0 0 8 0 C 0O e E 000 E e OO0 000 fSU.bI'*
©© 066060608 060000600 06000 000 SU.br
@ 060 ¢ 00000 00000000000 0000 expr

® © 6 0 00 00 0 00 006 T 2 C EO 0L OEO 000080 0000 SUbI‘

® 6 06 06 006 0600 0000000000009 00 00000 SU.bI'

® 606 00 000 000000000000 00 00

© © 00 6 © 00 00 00 8 0 00 00 00000000000 e o0 fexpr

8 6 06 0 0 60 060 0 00 09 08 0000 0 e 00 B0 fexpr*

.. fexpr¥*

© © 0 0 0 0 00 00 00 000G 0000 0e o060 o expr

®© 0 0 9 0 © 0 00 © 00800 Q8 Q000 eGP 0OO 00 fexp!'

.. SUbr

© @ © 9 6 00 ° 00 5 0 000 0 0C SO0 000 00O 0 S 00 00 0SS 00 expr

@ ® 2 60 00 00 00 0 00 00 000 006 GBS0 0G0 o000 e o fexpr

© 6 ¢ 00 00 0000000000000 000 expl'

®© ® 0 0 0 00 0 00 000 000000000000 00 SUDI'

® 6 o0 00 008 080 00000000000 00

«s Subr

® 0 © 0 0 0 0 00 000 00 000 50 000 000 e 00000 0 s SU.b!'

© 6 0 5 ° 60 00 08 0 00 0000 SO0 E OO0 00 e s e0e s o0 SUbr

© 0 0 00 00 000 0 000008009 SO NS o0

® 6 0 0 0 00 0 000 0006000 0000000 00

e« Subr
subr

39

R e S
ISEERSESESESESEoN(oRToNICN0 0 o oo N N0 SRV EN IV IR NSNS I XS IS I YT S R SN O NSRSV R VRV VI VR S e

[
[V

13

FUNCTION TINLEX

errorb .

errormess [n]

ETTOTN ..
errorset[form,flg]

eval (7]
evala[x,a]
evlic[r]
exit g
exot [m,n]

fdifference(x,y]

fgreaterp(x
fix[x] .
flcat[x]
floatp[r]
fminus [x]

fplus (21,224 <5 20]

fquotient [x

ftimes[x1,x2,..,xn]

® © 9 06 0 00 ¢ 0 0 00 0 0 © 00 005 000000000000 0o expr*

© 6 0 000 0 0 0 00 068 00 0 00808 sGe 000 e SUbI‘

© 0 06 006 060 006 00 0006 0 060 0000 00000000080 0o expr*

® @0 50 00 0 069 0000006000000 0000000 expr

© © 00 ¢ 20 0 06 00 80 0 00 00 00000000 Re eSS eNe s o0 SU.bI"

® ® 00 ® 0600 6 0 000 00 00 0 00 0000000000000 SUbI‘

6 0 0 00 00 00 060 000 00 000 000 00000000000 000 SUbr

v]

L)

y V)

© 9 0 0 0 006 06060 0000000000000 00000 ee 00 SUbI‘

o e 0 0 000 0008 00 00 000000

. subr

® © 90 0 00 00 000 0800000000 e 000 0000 expl‘

® © 0 0 0 00 00 00 0 0 0 0600000 0000 0ee e expr

© 00 5 2060 00 000 90 0% 0 008000000t 0e N0 SUbP

© 0 8 ¢ 0 00 5 0 ¢ 000 0000 00 E N BE NS SUbI‘

© © 6 0 0 00 00 0 00 006 00 0000 080009 008000000 00 SUbr

e ® 00 000800

@ 0 00 ¢ 0 00 0 00 000 000 000 00000 e 0o

function(fn,env] T e P
gegag[message]

Fensym .
getd [x]
getint[s,?)

getplatm,prop]

go*[x] .

golx] .

greaterp[x,y]

idifference[x,y]

igreaterp([x
iminus [x]
irunit[n]
ictab[i,n]

' Y]

@m0 0 00 00 8000

® €0 0 0 0 6 0 0 00 0 00 00 00000 00000 e

© 60 0 0 8 0 06 0 0 00 00 0060008 0oe

© 6 060 8600 0000 % 00000 000

®© e 0 0 00000 00 00 000000

® ® 0006 060060000 000 0000 00

® s 08 00 0 00 00 000000 000

© 6 006 0 0 0 0000 0 0000000

© 00 00 0 060 00000 000 000000

iplins [%1,%2 5w o %1) B T T
iquotient(x,y]

itimes [x1,x2,..,xn]

last[x]
length [x]
lessp(x,y]

e 206 0 5 00 0 0 00 00 00000 N oo

© 0 0 0 000 0 00060600 0600000 o

1iSpX ® 6 06 0060 0 0 00 © 00 00 0 00 00 8000000

list([x1,x2,.

listp[x]
litatom(x]
load [f]

.,xn] Ceeesensseenasees

© © 0 0 00 00 2 0 0 0 ° 00 00000000 eeN e 0o

e e 9 0 0080 0 oo

e 6000000 v

© 0 ¢ 00 00 0 0 ¢ 00 ° 5 0 0 000 Q08000000000

© 6 00 @ ¢ 0 80 00 00 8% 0000000t

o e s s 000 0 00

e s 00 0800000

® o0 0 00 00 00 00

e o e 0 @3 00 000

¢ s 00 0000 0 a0

. expr

© 0 06 06 8 00 08 0 000 0000 000 e Qe e SUbI‘*

. expr
. subr*
. fsubr*
. expr

. subr

. subr

. subr

. subr

. fsubr*
. fsubr*
. subr

« €expr

. expr

. expr

. expr
subr

. subr*
« EXPr

e o0 08 000 0 o0 Subr*

© 8@ ¢ 0 00 000 060 060 00 0000 0500000000000

© 90 0 5 00 8 00 00 06 0008000

1op[x] ® @ 0 9 9 ° 00 0 © 2 0 % 00 O 0 0% e e 0 e s
makefile([f,flg]

map[mapx,mapfnl ,mapfn2]
mapc [mapx,mapfnl,mapfn2]
mapcar [map¥,mapfnl,mapfn2)

© @0 00 000 00 00008 o0

maplist[mapx,mapfnl,mapfn2] ceeenae

memdb [x,y]
member [x,y)
minus [x]
minusp[x)
mkatom([x]

® e 0 0 ¢ 00 0o

e ® 0 0 000 000

. expr
subr
. subr
. subr
subr*
. subr
. subr
. eXpr
. subr
.« expr
. subr

© 0 0 0 00 00 o000 000t oo Subr

© 0 600 000 0 00 00000 e Subr

. subr

S 9 © © 00 00 ¢ 00 00 00 0 000000000000 0o SUDI'

© 9 6 © 00 0 00 000 20 ° 80 000 0SS0 000t e e Subr

© 9 © 0 606 060 0 060 0000600000000 000000000 expr

© © 0 € @ 0 60 0 0 00 6 0 00 000 0000 000000l 00 EXpI‘

© © 0 06 000 000 00 00 0008 000000

expr

14
14
14
14
14
14
15
15
15
15
15
15
15
16

16
16
16
16
16
17
17
17
17
17
17
18
18
18
13
18
18
19
13
19
19
19
)
)
20
290
22
20
21
21

21
22
22
22
22

49

FUNCTICON INTEX

mkstring [x]
mkswap(a]
mkunswap[a]
rchars [x]

nconcl[lst,x]
nconec [x1,x2)]

neq(x,y]

nil A g

nlistp[x]
ntr[x,n]
null([x]
rumberp(x]
oblist [x]

open[f,ic,n]

cr[x1,x2,..
cvtunitn]
pack[x]
plus (71,2,
pplx1,x2,..

prin@(r,a,b]

prini(r]
prin2[x]
print[x]
printdef [r]

o e 000 00 006600000 00

© o 00 00000 000 0 00

LY

® 28 0 00 0c 8 0 0

© 0 0 0 00 0 ¢ o 0 0 o

© ® e 0 0@ 90 00 ¢ s s 0 o0 0o

, X1]

.,x1]
,Xn])

printl[x1,x2,..,%xn]

rrintlength

printlevel (7] e

printpos [x]

rroglfel,e2,

prognlel,e?,

e ©® e 000 000000000

° o e o o LY e o 0

e e e o0 0 0 e 00 o0 .

o o s 60 ¢ 00 e o o 0
LRI ° e o o

e o o 0 v 0 . LY .

® e ¢ 00 0 ® s 0 0000 00 00

[X] o 00 0 . DU N Y

., 0n]

..,en]

prog(varlet,el,e?,..,en) @

put [a,p,v]

putd [fn,def] e e o sse mdie o s

nutirt[s xr,fl . ;
putprops[atw propl vall,..,propr,valn] PR

ancte[r]

quotient [x,y] . b
rand [lower,upper)

randset [x]
ratom[x]
read [x]
readr [¥]
readfile [x]
readpos [x]
readvise[x]
rebreak [x]
reclaim([x]
remainder(x

remove[x,1,11]

rempreplatm
reset _—
return[x]
reverce[1]
rewind [x]

e o0 000 ¢ 0 00 0

® & & o 6 0 0 0 ® o & o ® o o & o 0
'''''' * o o e o s o o e e & 0 0 o
® & & 6 & 6 & & 8 0 o o ® o 0 0 0
lllll e o e o ® 0 o ¢ o
L] ® * @ o " s 00 e & o & &
,,V] e o o ¢ 00 0 00 00 .
,Prop] P i v
® & o o o v @ L] ® & 8 & o o ¢ o e o o

® 060606 060000000 000

® e 0 00 0000000 8 00

°
.
.
© 6000 00 @ 0000 0o
.
® 6o 00 00800000 e

.

® 6 000 0 000 000 s

© 8 0 0000 0o o0

" 0 0o e 0o 0000000 0000

®© e e 0 e 000 00080000

® 0000000 0000 0000

© o 6060006000000 0000

© o0 0600000 0000 0000

s 8 060 00 0 ¢ 0 o0 0 s e

e e o 000 0 0 e e oo .

® o000 0000000 00600
®© @ 0 08 0 0000 00 0o
. e e 0 . e s 0 e o 0
LY e ° o o ° o o . .
. e e 000 880 00 e
® 600 0 e % 0000 . .
.. s s 000 0 0 .

* e e 0 ® o e 0 00 00 0
e o 00 0 00 0 ¢ e o0 o0 .
e 000 o ¢ e s 0 00 00 0o
© 60 e 00500 e 8o

. e 6 0 006 0 0000 0000
. @« e 0 0000000 LK)

e o o
° o e o e e 00000 0000
® o0 0 0 0 000 000 o o 0
®© 6 06006000 a0 oc0 0000

expr
subr
subr
subr
subr
subr
supr
subr
subr
expr
subr
subr
supor
expr
fsubr*
expr
subr
subrX*
fexpr*
subr
expr
expr
exXpr
exXpr
exprx
expr
expr
expr
fsubr*
fsubr*
fsuor*
subr
expr
subr
exXpr
fsubr*
subr
subr
subr
subr
subr
subr
expr
expr
fexpr*
fexprx
subr
subr
expr
expr
subr
subr
subr

® & 0 % 8 0 0 0 s b 00 0 o0 Subr

w

NN NN N

N o
[0 280 SR SEE VEEN IS IO PRGN

28

NN NN NN
O YWY OCmOmmw

QNN (NN A
PSSO

31
31
31
31
31

41

FUNCTICN INLEX

rcllin([x) rwraE s EE weE ne &

rellcut{x]
rolacal(x,y]
rplacd (x,vy] ceen
rplstring(x,n,y]
rpt [rptn,rptf]

rptq(rptn,rptf)
sassoc [key,alst]
savedef[fn]

o o

® 060 000 00 00 o

@8 e 000 00008 0000 e

® o 0 0000 00

e 00 e 00 00 00 00

selectq(x,c1,c2,..,cn,def) .

set[x,¥y] e
setala,n,v] i 6w e
setd[a,n,v]
setqlx,y] ceeenan
setaq(x,y] A
setsbhsize[x] cen
sienlx] 55 e s e
sin{x,radiansflg]
svaces[n] -
eqPtix] sisesisvd
strallez([n,c] e
strequal [x,v] =
stringp[x] e
subl(x] o
cubst(new,cld,expr]
suvbstring[x,n,m]
SYSETTCT vewse .o
svsflag(i,x] o siw &
tailo(x,y] ceeeen
tan([r,radiansflg]

® e e 00 00 00 00

o e e e o 00
® o 0o 00 o . .
e 0o 00 e o

e e o o o o 0
@ e 0 00 o .

e o o0 00 .

© 6 000 0 000000

® 800 e 0000 0 e

.

.

« subr

. subr

. subr

.« subr
subr

. subr

. fexpr
. expr

. expr
fsubr*

® @ 8 & & 8 O @ % 0 0 % 0 0" S 0 e
tceesce s ne eesses. SUDT
ceeescesssssesesncess SUDT

e teeseasecsseascnses SUDD

e cecesesccnesassses fsubr*
¢% 95 Eas sasen e sns s BEPEY
v o wininaie sein e eis s SUDD
cesecacscsensssessas EIPT

subr
expr

tesessenssesssesssenensesss SUDT

S B SR R S EE e D §e v SO DT
...... eseccencsssessecnsesses EXPP
ce st ecssessasctssscsssssssnees BXPT
ceseesassesssccnsecssssssssas SUDD
sl w8 wis v e e sw e wise wie wiws sies s SUDT

.is S nis s s i s i wam we e we e SUWOD
e csesecseteansssacessssasas SUDT

...... € e B E.eE se® e Gy e & SUDT
SIS S w el wle ¥ SE wis B KWE S 0E ceeses CXPT
ceececssssssasstsssscssscssss SUDD
cseasssrsensmen e ve SUDP

terpri ... cesssacenssssas

times[x1,x?,..,xn]
trace[r] e ..
uradvise [x] e
unbreak(x]
unpack[s,flg]
uncavedef [fn] . e

oo o

® e o 00 00 0 0

® ® 0 0 00000000000 000

® 00 0 000 e 000 00

untrace [x] ceecerenenceneenn

virginfn(x] cees
rcall(fn,1]
zeroplx] coieeee.n.

®© 68 ¢ 00 00 4000000 L 0L R0 OO0

® 8 0 0 0 0600 00 00 00000800 0080t 0N

® 6 6 00 ¢ 0 0 00 000000t 00 00

s o0 060 00600000 00

. subr¥*
. fexpr*
fexpr*
. fexpr*
.« subr

. expr

. fexpr*
. expr

. subr
subr

3&

N
o

o

(SN VRN
NS

O 4

O

CROA NN NN
OO Gy L U U i

(N O
~3

(N N
SRS

Appendix 4: INTERLISP vs. LISP-SP function index

- ——— o ——————— - . o T 122D T o B T o o0 e s B e ot s S e s (e G S . S —————— t—

INTERLISF vs.

ats

add1
addbuffer
addlist
addprop
addsvell
addstats
addtoromrs
addtcfile

addtofiles?

LISP-SP

afrdtoscraterlist

addtovar
adieu
afvise

advisedurp

alist
alphorder
and
antilce
append
apply*
apply
applya
arccos
arcsin
arctan
arctan?
arg
arglist
argtype
array
arraybeg
Arrayp
arravsize
arraytyp
askuser
assoc
atom
attach
au-reveir
barktrace
baktrace
brompl
bhit
bklirbuf
bkeysbuf
blipscan
blipval

function index

—— - ———— o —————— —— — - —— o— i — s SO S Tt o S

¥*

*

% 3¢ 3¢

S
3

%

*

LISP-SP

3 ¥*

3%

*

3¢ 3 3 3 3 3

3% 3% ¥ 3t

blkapply*
blkapply
blockcompile
boundp
boxcount
asreak

breakd
breakl
break11
breakcheck
breakdcwn
oreakin
breaklinks
breakread
brecompile
brkdwnresults
calls
callsccode
car

chox

ccodep

rdr
changecallers
changefront
changenare
changeprop
rhangeslice
character
chconl

chcon
checkconrertion
checknil
chooz
chtab
circlmaker
circlprint
cldisable
cleanposlst
cleanup
clearbuf
clearmap
clearstk
rlispdec
clispify
rlispifyfns
clisptran
clock

rlose
closeall
cleoseconnection
closef
closef?
closehashfile
cleser
rlrhash

LR A

3 3 3E S 5F 3¢ 3% 3 % 3 36 3F 3F 3F 3F 3 3 X 3 3t

* 3 H

36 36 SF 38 3% 36 % 3 3% 3 3 3 3%

3% 3% 3 3 3 3% 3¢

[£P79]

b3

b4

*

"

cndir
cemmerntl
compare
cemparedefs
comparelists
rompile
compilel
compilefiles
compset
coencat

cond

cons
conscount
ccenstant
rontrol

copy

copyell
cepyallbytes
cepyarray
coepybytes
copydef
copyvhashfile
copyreadtable
copystk
ccpytermtable
coreval
coroutine

ros

count
countdown
TCVEers
createhashfile
curfile

date
dateformat
derhecon
ddifference
ddt

de

declare:
declaredatatype
declof
decltype
defaultmakenewcem
deferredconstant
defeval
define
defineq
deflist
defprint
deldef
deleteccontrol
delfile
delfromeoms
delfremfiles

A

¢
b3

3 3¢

3

3

(@}

delpage
detach
detachedp
df
difference
dirertory
dismiss
display
éminus
dmphash
dobe
coccllect
dplus
dquotient
dremove
dreverse
drivble
dribblefile
dskstat
dsort
dsublis
dsubst
dtimes
dummyframep
dumpdatabase
dumpd b
dunpark
dwim

Awimfy
dwimifyfns
dwimloadfns?
dzerop

P
echocontrol
echomode
editde
edita
editcallers
editdate
editdate?
editdef
edite

editf
editfindr
editfns
2ditfpat
editl
editloadfns?
editlo
editp
pditree
edits
edituserfr
edity

eject

[TE78]

i
b3

b4

e

kY
"

A

b3

. ———— e e > . e . - ———— . o ———————— Tt o T —————— ———— o ———— T — " S S o > o o

—— . — — —— ——— - ——

— e —— . ——— o

eltd
erdccllect
endfile
ertry#
envapply
enveval

eq
eqlength
eqmemb

eqp

equal
equalall
equaln
error
error!
errorb
eTTOTMPSS
ETTOTT
errorset
Pprrorstring
errorxy
ersetq
erstr
eScape
ecubet
eval

evale
evlis
rvalqt
evalv
pvery

exit
expandmacro
eYprp

expt
pYpunge
fassoc
faultaprly
faulteval
fbox
frharacter
fdifference
fetchfield
ffilepos
reetd
fereatery
fielcélook
fildir
filecoms
filecomslist
filerreated
filedate
filefnslst

fileramrefield

£

b

Y3
"

b

LISp-SP

b3

%

filepkgchanges

filepkgcom

filepketype

filepos
files?

findrallers

findfile
fir

fixeditdate

fixp
firspell
flast
flength
flessp
float
floatp
fltfmt
flushright
fmax
fmemb
fmin
fminus
frcheck
fnth
fntyp
fontrame
fontset
ferceout
fplus
fquotient
framesecan
freevars
fremainder
frplaca
frplacd
frplnode?
frplnocde
frptqg
ftimes
ftp
fullrame
function
fzercp
Zainspace
£ra

ECEAag
gcmess
gotrp
gdate
generate
senerator
gensym
£eq

eet
getatomrval

*

(Ep79]

5

b3

b

E

LISP-SP

b3

%

+*

fetcomment
getcontrol
getd
cetdecltypeprop
getdef
getdeletecontrol
getdescroptors
getechomode
geteofptr
getfieldspecs
getfileinfo
getfilemap
cetfileptr
gathash
gethashfile
setint

getlis

getp

grptpage
getpassword
getpname
getprep
getproplist
petraise
eetreadtable
getrelation
getsepr
setsyntax
gettemplate
gettermtable
FPttopval
gettypedescription
gle

ene

go*

go

greaterp
greet

stjfr

harray
harrayp
harreysize
hasdef
hashfilename
rashfilep
hashfilerrep
hashfilesplst
hecopyall

help

nerald
histcryfind
histeorymatceh
historysave

3 3 35 3F 38 4t 3 3%

}A’.

¥R o R ¥

— e ——— s S

b3

x»

LISP=SP

E [TE78] E [EP79] i LISP-SP
"""""""""""""""" | T T T T T T T T T T T T T T T T e
hostrame ' * ' i
hestrumber] * : !
rprint ? ¥ | i
hread ' % { !
i.s.opr ! * ! '
ibox : * : 2
idate ! * | |
idifference) *) % | *
ieqp ? % | |
igeq % % ! i
igreaterry ! % : * ! *
ileq | * | |
ilessp | * . & |
imax ' * . I
imin ! * ! !
iminus ' * , * ! *
infile | * | * !
infilecomrs? ! * | |
infilep . % ! {
irput l * | * |
inreadmacprop I * | i
interrurt ! * | |
irterrugtable ! % ! |
interruptablep | * ! i
interruvtchar | % |
intercection : * { *
irunit | : *
iofile % * !
icrtabd ! | | e
iplus 3 B ! " i %
iquotient } 4 { B B
iremainder l % { *
itimes ! * ! % | #
izerop ! | * |
ifns ! * | i
Jjob# i B | I
Js | % ? |
jeys ! ¥ : |
jsyserror | * | i
kferk ' % : i
xwote - % ! % f
l-case | o 5 !
last ! * i L ! i
lastc : % ' l
lastn ! * { * |
1borx ! * ! |
leone ! * ; i !
14iff | * ! * i
1difference l %* | |
length ! * { * ! W
leq | ¥ ! |
lessp ' * ! * i -
lindbuf : * : |
linelength ! * l * |

| * } |

linktotty

linktouser
lispr
lispx/
lispxeval
lisprfind
lispxprini
lisprprin2
lisprprint
lisprprintdef
lisprxread
lisprreadp
lispxspaces
lisprstats
lisprsterevelue
lispxtab
lisprterpri
lispxurread
lispxwatch
list
listfiles
listfiles1
listget
listgetl
listyp
listput
listputl
litatom
11sh

lcad

lcad?
loadav
lecadbleck
lcadcomp
locadromp?
lecaddb
lcaddef
lcaddefs
lradfns
lnadfrom
loadvars
loc

loekmap

log

logarAd
logor
legout
legxor
lcckuphashfile
lowercase
lrch

lsh

lsubst
makebittable
makefile
makefiles

¥* 3

36 36 9% 5t 3t 3% 3F 3% 3 3¢ %

M8
"~

.
633 g 3t

3 3 3t

%

3%

3*

5%
3

3¢

LISP-SP

makekeylst
makerewcom

makenewccnnection

makesyvs

map

rap2c
rap2car
mapatoms
mapbuffercount
mapc

mapcer
mapcon
rapconc
mapdl
maphash
maphashfile
maplist
mappage
raprelation
mepprint
mapword
markaschanged
masterscope
max

memb

member
merstat
merge
mergeinsert
min

minfs

minus
rinusp
risspelled?
mkatom
rklist

rkn
mkstring
mkswap
mkswapp
mkunswap
movd

movd ?
mevdqq
meveitem
nsmarkchanged
multifileinder
nargs

nbox

rchars
nconc
ncencl
rereate
nefrate

req

3

3% 3F % 3 3 3¢

* 3% K

3% 3¢ 3 3 % 3¢

#0333t 36 3 3 3 3 3 %

[EP79]

b

%

2
~

3% 3%

x”

b

x®
b

e e = s . —— —————— ———— o ——

LISP-SP

—— — —— ———— v ——

* o3

*

b
E S

1¢

11

|
|
|
I
[« |
T
[s PR | 3¢ 3* 3+ 3 3¢ #* 3% 3¢ 3+ 3% 3¥* 3 % 36 3%
v |
— |
3 1
|
1
I
|
|
]—
[0
W(..__ 3 3% 3 3k 3 3 3 3 3¢ 3% 3 ¥* 3 ¥* 3¢ * ¥* #* 3¢ *o# * ® 3 3% ¥
=2
=1
|
1
|
I
]_
@ |
o~
E“**** 03 3 ¥ 3 R K O ¢ W 3 3% 3 3t 3k 3 3% 3 ¥ % CAR A IR R R N R * 3 3%
|
1
|
1
1
|
|
|
|
|
|
|
I -
] @ = ("2} =
| o] W w & (¥ —i
| o — = ot o [&) -
I © ot © n+ + o =
| g ~ - G [SEES 2] Cal | S SRR
| @ [) e} [T Q. U —— = oW M
I > & () [-~ A E — v w + — 3 L O = 0o A
l ~U s = o - [<3] < Fo Fu «—~ j = — o~ e e ot O F ot O T >.> >
| © V% n 2 PP = > &~ U o wn LT S iy & Py SV et 3O ¥ O % U C e Cre PP
[T, R~ N —~ 4 o T L Q A LA SO @R 4 ASNKMKNXOOVX (R)] [R I e = = =~ =]
l PP 3x xz—— QA VPP PLPPLPOUP—EEA UL LU OL S PP PP CUO00 NS W P VN R P UG WU Qe e e
] VL QG Ut O CC O+ L IO AAQAQAMRANLDSSSI3 @O ®©@MMOTLTHEG OO O Oy ft o fu b £y §y F= £y
|l S oL eSS ENEESN S EE R fFRFCcCOO0OCOOCUCOCCOORARAQAAOARARADAAINARLAORQAQRAA

print
printbells
printbindings
printdate
printdef
vrintfns
printhistory
printl
printlength
printlevel
printnum
printrara
printpregs
printpos
rrcduce
preg

preel
rrog?
rregr
promptchar
Dropnames
pstep
pstepn

put
putassoc
putd
putdef
putdq
putdq?
pruthash
puthashfile
putint
putprop
putprops
qucte
guctient
radirx
ralse

rand
randececessy
randset
ratest
ratom
ratoms
read

readc
readfile
readline
readmacros
readp
readpos
readtablep
readvise
readframrep

3 3% 3% 96 3 3 ¢ 3 3¢

3 3% 3 3t

3* % 3%

b

¥* ¢

3% 3 3¢ % % 3¢ 3¢

3 % 3t 3 ¥ 3%

* 3%

3 3% 3% 3 3 S 3¢ 3

E.3
~

LR

ES

* 3

¢

%

. . o T —— — —— ——— i —— —— o = — T —— " 1 " e e o . > e e o = o T o T e = — o = T e " e o ——

LISP=SP

b <3

3

realstknth
rebreak
reclaim
recloock
recompile
recordarcess
recordfieldnames
rehash
rehashfile
relblk
relink
relstk
relstkp
remainder
remove
TEMProp
remproplist
renanme
renarefile
replacefield
reset
resetbufs
resetforrm
resetlst
resetreadtable
resetsave
resettermtable
resetundo
resetvar
resetvars
results
resume
retapply
reteval
retfrom
retto
return
reverse
rewind
rlifn
rellin
rollcut
rpagq

rpaqq
rplaca
rplacd
rplnode
rplnode?
rplstring
rpt

rptq

rsh

rstring
545500

save

[TE?8]

s

* %

St 3 3 3 3 % 4 % 3 % o2 % ot

* o o

K4
~

b

(EP79]

— i ———— ——— —

b3

b3

LISP-SP

%

3

E

3¢

savedef
saveput
saveset
savesetq
savesetqq
scecdep
scratchlist
seerchpdl
selertq
sepraoase

set

seta

setarg
setatomval
setblipval
setbrk

setd
setdecltypeprop
seterrorn
setfileinfo
setfileptr
setiritials
setlinelength
setn
setproplist
setq

setqq
setreadmacroflg
setreadtable
sptshsize
setsepr
setstkarg
setstkargname
setstkname
setsyrcnym
setsyntax
settemplate
settermchars
settermtable
settepval
csettypedescription
setwordecnternts
shouldnt
showdef
showprint
showprin?
sign

sin
singlefileindex
skor

skread

smallp
smarterglist
smashfileconms
some

[TE78]

O3 3 3F 9% 3 3 3E 3 3¢ 3 3 3% 3 3 %

O3 3 3t 3 3¢ X %

£

x

3¢

b

IS

3

14

sort
spaces
spellfile
sgrt
stackp
stkapply
stkarg
stkarguname
stkares
stkeval
stkname
stknares
stknth
stknthname
stkpos
stkscan
storage
strallor
strequal
stringp
strpos
strposl
subatom
sublis
subpair
subrp
subhset
subl
subst
substring
subsys
subtypes
supertypes
swparray
Swparrayr
syntaxp
sysbuf
sysin
sysout
sysoutp
systemtype
syserror
sysflag
tab

tailp

tan
tcompl
tconc
telnet
tenex
termtablep
terpri
testmode
time
times
trace

3+ 3¢

3%

#3333 3+ 3¢

P2

* 3% 5E 3% O 3 % %

R S

3 3¢

3 * 3¢ ¢

% 3¢

3 3t ¢

¥* 3¢

3* 3%

¢
b 44

3 3t 3¢

transorset
trynext
tty#
typename
typenamefromnumber
tvpenamep
tvperumberfromname
typep
typesof
unadvise
u-case
u-casep
unbox
unbreak
unbreak?d
undbreakin
undolispx
undolispxl
undonlsetq
undosave
union
unlockmar
unmarkaschanged
unpack
urnpackfilenamre
vnsavecdef
unsavefns
urset
vpdatechanged
updatefiles
updatefn
uread
userdatatypes
userexec
userlispxprint
username
usernumber
untrace
vag
valueof
variables
vars
virginfn
walitforinput
whenclose
whereis
widepaper
wvordcontents
wordoffset
writefile
¥call
xwd
Zerop
##t
/delfile
/rplnode
/rplnede?
/undelfile

=3

%03 3 3 %

* 0 3% ¥*

* %

¥* 3 3 3 32 3% 3¢ 3 3 %

#* *

%3 3 S S 3 3E 3 3 g6 o+ ¢

o3 ¢ 3 % %

3
~

3%

E3

3*

%

LISP-SP

%

16

Apperndix 5: References

Feferences

[PE79] Derensat, P.
The Language LISP does not Exist?
Sigplane Notices Vol.14, Number 5
May 1979

[EP?79] Epp, B.
Interlisp Programmierhandbuch
Institut fuer deutsche Sprache
D-68¢2 Mannheim
Friedrich-Karl-Str. 12

[HA75] Haraldson, A.
LISP-detalls
INTERLISP/360-37¢
Datalogilaboratoriet
Sturegatan 1
§-752 23 Uppsala

[Mc?7Q] McCarthy, J.
History of LISP
Proceedings of the ACM Conference on the History
of Frogramming Languages, Los Angeles 1978
Sigplan Notices Vol. 13 Number 8
Aug. 1878

[NM?78] Nerdstrom, M.
Users Guide
Datalogilaboratoriet
Sturegatan 2 B
§-722 23 Uppsala

[NO72] Nordstrom, M.
LISPF2
Implementation Guide and System Description
Dataloesilaboratoriet
Sturegatan 2 B
S-752 23 Uppsala

[sUeg] Conference Record of the 1980 LISP Conference
Papers presented at Stanford Unfiversity,
Stanford, Califeornia August 25-27, 1980

(TE?]] Teitelman, W.
Irterlisp Reference Manual
Yerox Palo Alto Research Center
2332 Coyote Hill Road / Palo Alto / California 94304

[Wg81] Winston, P., Horr, B.
Massachusetts Institute of Technology
LISP
Addison-Wesley Publishing Company
Reading, Massachusetts 1981

