
T H E MARKGRAF KARL REFUTATION PROCEDURE

PLL - A First-Order Language
f o r an Automated Theorem Prove:

Christoph Walther
Institut ffir Informatik 1

Universitgt Karlsruhe
Postfach 6383

D-7500 Karlsruhe 1

UNIVERSITAT KARLSRUHE
FAKULTAT FUR INFORMATIK

Postfach 63 80, D 7500 Karlsruhe1

Interner Bericht 35 /82

THE MARKGRAF KARL REFUTATION PROCEDURE
PLL - A First-Order Language

f o r an Automated Theorem Prover

Christoph Walther
Institut ffir Informatik 1

Universitét Karlsruhe
Postfach 6385

D-7500 Karlsruhe 1

g a s t r a c t

The PREDICATE LOGIC LANGUAGE (PLL), a formal language in which

first—order predicate logic formulas are formulated, is descri-

bed . In PLL axioms and theorems are represented which are given

to the MARKGRAF KARL REFUTATION PROCEDURE. Certain expressions

of PLL which reflect the special facilities of this system are

exhibited, viz.

- an inference mechanism based on a many-sorted calculus,

— the incorporation of special axioms into the inference mecha-
nism, and

- the control of the inference mechanism using special derivation

strategies.

ggn ten t s

4.1

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.2

4.2.1

4.2.2

4.2.3

4.2.4

I n t r o d u c t i o n

gn Introduction towPLL

Basic Concepts

The Many-Sorted Calculus

Attributes o f Functions and Predicates

Special Junctors and Equality Symbols

The Syntax o f PLL

Semantic Constraints for PLL

Introduction o f Symbols

Sort Symbols

Variable Symbols

Constant Symbols

Function Symbols

Predicate Symbols

Semantically correct Expressions

Semantically correct Sort Declarations

Semantically correct Type Declarations

Semantically correct Attribute Declarations

Semantically correct Terms, Atoms and Quantifications

Notes o n the PLL Compiler

Errors detected by the Compiler

Summary o f Messages o n Semantic Errors

l I n E r o d u c t i o n

This is a description of the PREDICATE LOGIC LANGUAGE (PLL)

which is used as the input language of the MARKGRAF KARL REFUTA—

TION PROCEDURE, an automated theorem prover (ATP) developed a t

the University o f Karlsruhe [BES 8 1 , BMW 81, Ohl 82].

In PLL first-order predicate logic formulas are represented

which are given a s axioms or theorems (to be proved) to the ATP.

Additionally PLL reflects some special facilities o f the Karls—

ruhe ATP system, viz.

- an inference mechanism based on a many-sorted calculus,

- the incorporation o f special axioms into the inference mecha—

n i s m , a n d

- the control of the inference mechanism using special derivation

strategies.

In chapter 2 we present an informal introduction to PLL, where

some language examples are given to provide the reader with a

general idea o f which expressions can be formulated in PLL toge—

ther with their intended meaning. Since the syntax of PLL is

relatively simple for users familiar with predicate logic or

programming languages, a careful study of these examples yields

a rapid survey o f PLL. In chapter 3 we define the syntax of PLL

b y a context free grammar. The semantic constraints (i.e. the

context dependent language features) for PLL are given in chapter

4. Finally in chapter 5 we make some remarks regarding the PLL-

compiler o f the ATP system.

2*An Introduction to PLL

2.1 Basic Concepts

In PLL the usual junctors, denoted OR, AND, IMPL, EQV and NOT,

the universal quantifier ALL, and the existential quantifier EX

are present. Junctors and quantifiers are given the following

priorities when used in a formula without parentheses :

(1) NOT

(2) AND

(3) OR

(4) IMPL

(5) E Q V

(6) ALL , EX

NOT h a s the highest priority. In a formula without parentheses

the rightmost junctor has precedence over all junctors with the

same priority left of it.

Example 2.1.1

NOT A OR B AND C i s equivalent to

(N O T A) OR (B AND C) and

A IMPL B IMPL C i s equivalent to

A I M P L (B I M P L C) .

In PLL the siqn 2 denotes the equality symbol, i.e. we use a

first-order predicate calculus with equality. As an example for

using PLL, we axiomatize a group :

Example 2.1.2

* AXIOMATIZATION OF A GROUP W I T H E Q U A L I T Y , *

* F I S T H E GROUP OPERATOR AND 1 I S T H E I D E N T I T Y E L E M E N T *

ALL X , Y E X Z F(X Y) = Z

ALL X,Y,Z F(X F(Y Z)) = F(F(X Y) Z)

A L L X F(l X) = X AND F(X l) = X

A L L X E X Y F(X Y) = l

A theorem given to the ATP could be, for instance :

* IDEMPOTENCY IMPLIES COMMUTATIVITY *

ALL X F(X X) = l IMPL (ALL X,Y E‘(X Y) = F(Y X))

The lines enclosed in asterisks are PLL-comments. We give another

axiomatization of a group:

Example 2.1.3

* A X I O M A T I Z A T I O N OF A GROUP WITHOUT EQUALITY *

* P (X Y Z) MEANS F (X Y) = Z WHERE F I S THE *

* GROUP OPERATOR . E 1 8 THE LEFTIDENTITY *

ALL X,Y EX 2 P(X Y Z)
ALL x,Y,z,U,v,w P(X Y U) AND P(Y 2 V) IMPL

(P(X v W) EQV P(U z W))
ALL x P(E x X)
ALL x EX Y P(X Y E)

Now a theorem could be, for instance:

* 'LEFTIDENTITY IS RIGHTIDENTITY *

ALL X P(X E X)

2 . 2 The Many—Sorted Calculus

Let us assume we have a finite and non-empty set of Egrt symbols

ordered by the subsort order, i.e. a partial order relation

which i s reflexive, antisymmetric and transitive. Variable,

constant and function symbols are associated with a certain sort

symbol, called the rangesort o f the respective symbol. The sort

o f a variable or constant symbol i s its rangesort and the sort

o f a term which i s different from a variable or constant symbol

i s determined by the rangesort o f its outermost function symbol.

All argument positions of a function or predicate symbol are

associated with certain sort symbols, called the domainsorts. In

the construction o f the well-formed formulas o f the many-sorted

calculus, only those terms whose sorts are subsorts o f the do-

mainsort given for an argument position o f a function or predica-

te symbol may fill this argument position of the function or

predicate symbol.

Besides the increase o f readability o f axiomatizations, the

usage o f the information given by the range and domainsorts and

b y the subsort order prevents the inference mechanism of an

~automated theorem prover from performing useless derivations.

, T h e theoretical foundation o f the many-sorted calculus which i s

t h e b a s i s o f t h e MARKGRAF KARL REFUTATION PROCEDURE c a n b e found

in [Wal 82].

As an example for an application o f a many-sorted calculus we

axiomatize sets of letters and digits and some basic operations

f o r t h e s e s e t s :

Example 2.2.1

* DEFINITION OF THE SORTS LETTER AND DIGIT, I.E. *

* A,B,...,Z ARE CONSTANTS OF SORT LETTER AND *
* U,l,...,9 ARE CONSTANTS 0F SORT DIGIT *

TYPE A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z : LETTER

TYPE fi,9,8,7,6,5,4,3,2,l : DIGIT

* LETTER AND DIGIT ARE SUBSORTS OF SORT SIGN *

SORT LETTER,DIGIT:SIGN

* DEFINITION OF THE EMPTY SET AND SET-MEMBERSHIP, *

* I .E . EMPTY I S A CONSTANT 0F SORT SET AND MEMBER *

* I S A BINARY PREDICATE DEFINED ON (SIGN SET) *

TYPE EMPTY:SET
TYPE MEMBER(SIGN SET)
ALL X:SIGN NOT MEMBER(X EMPTY)
ALL U,V:SET U = v EQV (ALL X:SIGN MEMBER(X U) EQV MEMBER(X V)

* DEFINITION OF SINGLETONS, I .E . *

* SINGLETON IS A FUNCTION MAPPING SIGN TO SET *

TYPE SINGLETON(SIGN):SET

A L L X,Y:SIGN MEMBER(X SINGLETON(X)) AND

(MEMBER(Y SINGLETON(X)) IMPL X = Y)

* DEFINITION OF SET-UNION, I.E. *

* UNION IS A FUNCTION MAPPING (SET SET) TO S E T *

TYPE UNION(SET SBT):SET

A L L X:SIGN A L L U,V:SET (MEMBER(X U) OR MEMBER(X V))

EQV MEMBER(X UNION(U V))

)

Theorems to be proved by the ATP system could be, for instance:

* UNION IS IDEMPOTENT AND EMPTY I S AN IDENTITY ELEMENT *

ALL X:SET UNION(X X) = X AND UNION(EMPTY X) = X

* SINGLETON IS INJECTIVE *

ALL X,Y:SIGN SINGLETON(X) = SINGLETON(Y) IMPL X = Y

2.3 Attributes o f Functions and Predicateg

Attributes are abbreviations for their defining axioms, i.e.

first-order axioms which axiomatize certain properties of func—

tions or predicates.

The effect of stating a certain attribute of a function or predi-

cate using an attribute declaration is formally the same as

giving the defining axiom to the ATP. At the moment the following

attributes can be declared:

attribute declaration defining axiom

R E F L E X I V E (P) ALL X P (X X)

I R R E F L E X I V E (P) ALL X NOT P (X X)

S Y M M E T R I C (P) ALL X , Y P (X Y) I M P L P (Y X)

ASSOCIATIVE(F) ALL X,Y,Z P(X F(Y 2)) = F(F(X Y) Z)

I n the MARKGRAF KARL REFUTATION PROCEDURE the defining axioms o f

attributes are incorporated into the inference mechanism of the

system (partially by using special unification algorithms) [Ohl

82].

Example 2.3.1

In example 2.1.2, for instance, the associativity o f the group

operator F could be stated by: ASSOCIATIVE(F). In example 2.2.1

we could write the following a s an axiom: ASSOCIATIVE(UNION).

_ 10 _

2.4 Special Junctors and Equality Symbols

For the junctors introduced in section 2.1, PLL offers alternati-

ve notations:

ignctor alternative notations

AND AND: , :AND o r :AND:

OR O R : , : O R o r :OR:

IMPL I M P L : , : IMPL o r : IMPL:

EQV E Q V : , :EQV o r :EQV:

The equality symbol = can be alternatively deno ted by := , =: or

The colon-notation of junctors and equality symbols is used to

influence the sequence of deductions performed by the ATP (see

[Ohl 82]). Semantically there is no difference between junctors

and equality symbols written with or without colons.

- 11 -

3 The Syntax o f PLL

The syntax of PLL is defined by the following context free gram-

m a r :

Terminal Alphabet

SORT TYPE ANY TRUE FALSE = =: := :=:
ASSOCIATIVE R E F L E X I V E IRREFLEXIVE SYMMETRIC

ALL E X EQV :EQV EQV: :EQV: IMPL : IMPL IMPL: : IMPL:

OR : O R O R : :OR: AND :AND AND: :AND: NOT

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

9 1 2 3 4 5 6 7 8 9
* ! # $ & - @ +

‘.

\

C v

A

'0

V A

§
—
—
l

‘.

Non—terminal Alphabet

Every string enclosed in angle brackets, e .q . (term).

<> denotes the empty word.

Start Symbol (expression)

Production Rules

(expression) - > <> l <comment> <expression> I

(sort declaration) (expression) I

(type declaration) <expression> I
(attribute declaration) (expression) |

<quantification> (expression)

<sort declaration) —> SORT (sort l i s t) : (sort list)

- 1 2 . .

(type declaration) - > TYPE (constant list) : (s o r t symbol) l

TYPE (function symbol)

((sort symbols)) : (sort symbol) I
TYPE (predicate symbol)

((s o r t symbols))

- - -—_-—_—-- - - - - - _ - - - - - - - -—- - - - - - - - -—-—- - - - - - - - -—‘ - - * - - - - - - - - _ - -__

(attribute declaration> - > ASSOCIATIVE ((function symbol)) l

REFLEXIVE (<predicate symbol)) I

IRREFLBXIVE ((predicate symbol)) l

SYMMETRIC ((predicate symbol>)

(quantification) -> (equivalence) l
ALL (variable declaration)

(quantification) I
E X (variable declaration>

(quantification)

(equivalence) - > (implication) I

<implication> <eqv> (equivalence)

(implication) -> (disjunction) l
(disjunction) <impl> (implication)

(disjunction) -> <conjunction> l
<conjunction> <0r> (disjunction)

(conjunction) —> <negation> l

(negation) (and) (conjunction)

(negation) —> (atomic formula) I

NOT (atomic formula)

(atomic formula) - > ((quantification)) I (a tom)

- 1 3 —

<eqv> ~> EQV I :EQV I EQV: I :EQV:

<impl> - > IMPL I : I M P L I I M P L : I : IMPL:

<or> - > OR I :OR I OR: I :OR:

<and> - > AND I : A N D I AND: I :AND:

(a tom) - > (predicate symbol) l

(predicate symbol) ((terms)) l

<term> (equality symbol) (t e r m)

. - - - - - - - - - - -—_- - -—_- -n - - - - ‘ -—-~—-—- - - - - - - - - -—- -__—- -__*_ - - -_ -—- - -

(v a r i a b l e d e c l a r a t i o n) - > (v a r i a b l e l i s t) < v a r i a b l e s o r t)

(variable sort) - > <> l : (sort symbol)

- _ - - - -—- - - -—- -—- - - - - * - - - - - - - - -~ -_——--—- - - - - _ - - - _—- - ‘ -—- - - - - _ - ‘ - - -

(term) —> (constant symbol) l (variable symbol)!
<function symbol) (<terms>)

(t e r m s) - > <term> l <term> (t e r m s)

(s o r t list> - > (sort symbol) l

<sort symbol) , (sort list)

(sort symbols) -> (sort symbol> I

(sort symbol) (sort symbols)

(constant list) —> (constant symbol) l
(constant symbol) , (constant list)

<variable list) —> (variable symbol) I
(variable symbol) , (variable list)

-14 . .

(s o r t symbol> - > ANY 1 <identifier>

(constant symbol) -> (identifier) I (number) | <name>

(function symbol) - > (identifier) I (name)

(predicate symbol) -> TRUE I FALSE I (identifier) I (name)

(equality symbol) —> = l : = l = : I :=:

(variable symbol) - > (identifier)

(identifier; -> (letter) I (identifier) (letter) I
(identifier) (digit) l

(identifier) (special sign)

(number) -> <digit> l (number) (digit)

<name> —> (special sign> I (name) <letter> |

(name) (digit) I (name) (special siqn>

(letter) - > A | B l C | D l E I F | G l H l l

J l K I | M I N I O I P l O I R l
8 | I U I IW IX I l

<digit> -> a I 1 I 2 I 3 l 4 I 5 I 6 I 7 I 8 I 9

(special sign> —> ! | # I S I & l * | — l + I ; | ? l

- 1 5 -

The keywords SORT, TYPE, ANY etc. are member o f the terminal

alphabet and hence never accepted a s an <identifier> (see also

section 5.1). The following signs act a s separator characters:

a b l a n k ,

- the parentheses, viz.) and (,

- the colon, e.g. X:Y i s the same a s X : Y and

— the comma, e.g. X,Y i s the same a s X , Y.

A sequence o f blanks is always read a s one blank. The signs *

and = may b e used in a (name) , but they have a special meaning

if they are enclosed in a pair of separator characters, viz. to

indicate a (commen t) and to deno te an (equality symbol).

- 16 -

4 S e m a n t i c C o n s t r a i n t s for PLL

In the following we state the semantic constraints (1.9. the

context dependent language features) a s defined for PLL. The

strings in angle brackets, e.g. (term), refer to the production

rules o f the PLL-grammar (see section 3).

4.1 Introduction o f Symbols

4 .1 .1 Sort Symbols

Sort symbols are introduced by their first usage in

- a (s o r t declaration), e.g. SORT LETTER,DIGIT:SIGN,ALPHABET

- a <type declaration), e.g. TYPE A,B:BOOL ,

TYPE MEMBER(§£§§,SET) or TYPE SINGLETON(SIGN):SET,

- a (variable declaration), e.g. ALL Z:INT EX N:E§$ ABS(Z) = N.

The direct subsort relation imposed on the set o f sort symbols

i s a partial, irreflexive, non-transitive and finite relation

such that the predefined sort symbol ANY i s a direct subsort of

n o sort symbol and each sort symbol different from ANY is a

direct subsort o f at least one other sort symbol.

The subsort order imposed on the set o f sort symbols is the

r e f l e x i v e and t r a n s i t i v e c l o s u r e o f t h e d i r e c t s u b s o r t r e l a t i o n .

The sort Symbols to the left o f the colon in a (s o r t declaration)

are direct subsorts o f each sort symbol to the right of the

c o l o n i n t h e (s o r t d e c l a r a t i o n > .

The sort symbols to the right o f the colon in a <sort decla-

ration) are direct subsorts o f ANY, provided t hese sort symbols

are introduced by this (sort declaration).

The sort symbols which are introduced by a (type declaration) or

b y a (variable declaration) are direct subsorts o f ANY.

Example 4 .1 .1 .1

For the (sort declaration) given above LETTER and DIGIT are

direct subsorts o f SIGN and o f ALPHABET, and SIGN and ALPHABET

are direct subsorts of ANY. Hence LETTER, DIGIT and SIGN are

s u b s o r t s o f S I G N and ANY, S I G N , ALPHABET, LETTER and D I G I T a r e

s u b s o r t s o f A N Y .

_ 18 -

4.1.2 Variable Symbols

Variable symbols are introduced by a (variable declaration) in a

(quantification).

Examgle 4.1.2.1

ALL §,3 EX 5:5 P(X Y Z)

The scogg of a (variable symbol) is the (quantification) follow—

ing the <variable declaration) in a (quantification).

In its scope each (variable symbol) has a s rangesort the sort

symbol given by the (sort symbol> following the colon in its

(variable sort) of the (variable declaration). If no (variable

s o r t) is present, the rangesort o f the <variable symbol) is the

predefined sort symbol ANY.

Example 4. l. 2._2_

We obtain for the expression given in example 4.1.2.1

r a n g e s o r t (X) = r a n g e s o r t (Y) = ANY a n d

r a n g e s o r t (Z) = S .

In each <quantification> variable symbols are consistently re—

nameg from left to right to resolve conflicts resulting from

multiple introductions o f variable symbols.

Example 4.1.2.3

A L L x , x P (X) i s t h e same a s ALL X , Y P (Y) and

ALL X (E X X P (X)) I M P L Q (X) i s t h e same a s

A L L X (E X Y P(Y)) I M P L Q (X)

- 1 9 -

3.1.3 Constant Snols

Constant symbols are introduced by their first usage

— in a (type declaration), e.g.TYPE :l'il‘INT

- a s a < t e r m > , e . g . ALL X P (X 5) 0R F(£) = 2

Each constant symbol has a s rangesort the <sort symbol) following

the colon in the (type declaration) which introduces the <con-

stant symbol). The rangesort o f a constant symbol which is intro—

duced by its first usage a s a <term> is ANY.

Example 4.1.3.1

For the expressions given above we find

r a n g e s o r t (— 1) = r a n g e s o r t (+ 1) = I N T a n d

r a n q e s o r t (A) = r a n g e s o r t (C) = r a n g e s o r t (D) = A N Y .

Note that in PLL variable symbols are always preceded by a quan -

tifier and thereby can always be distinguished from constant

symbols. As a consequence there is n o concept o f free variables

in PLL.

4.1.4 Function Symbols

Function symbols are introduced by their first usage in

— a (type declaration), e.g. TYPE §§§(INT) :NAT

- an (attribute declaration), e.g. ASSOCIATIVE(££E§)

- a (term), e.g. ALL x P(§(X)) OR g m) = A.

Each function symbol is associated with a sort symbol for each

argument position i , called its i—th domainsort, with a natural

number, called its arity, and with a sort symbol, called its

rangesort.

Function symbols which are introduced by a (type declaration>

have a s i-th domainsort the (sort symbol) given o n the i-th

position in the list o f <sort symbols) following the

(function symbol) in the <type declaration).

Example 4 .1 .4 .1

For the expression TYPE PRODUCT(SCALAR VECTOR):VECTOR we obtain

domainsort(PRODUCT 1)=SCALAR and domainsort(PRODUCT 2)=VECTOR.

A (function symbol) which is introduced by an (attribute decla—

ration) or by its first usage in a <term> has ANY as i-th domain-

sort for each argument position i.

The arity o f a function symbol is given by

- the number of sort symbols in the list of (sort symbols)

following the (function symbol) in the (type declaration)

which introduces the <function symbol)

— 2 , for a (function symbol) introduced by an <attribute decla—

r a t i o n)

- the number of arguments o n its first usage in a (term).

- 21 . .

Example 4.1.4.2

For the expressions given above we obtain arity(ABS) = 1 ,
arity(PLUS) = 2 and arity(F) = arity(G) = l .

The rangesort of a <function symbol) is defined by the <sort

symbol) following the colon in a (type declaration). Its range—

sort i s ANY if the <function symbol) is introduced by an (attri-

bute declaration) or b y its first usage in a (term).

Example 4.1.4.3

For the expressions given in the examples above we obtain

rangesort(ABS) = NAT ,

r a n g e s o r t (P R O D U C T) = VECTOR, and

r a n g e s o r t (P L U S) = r a n g e s o r t (F) = r a n g e s o r t (G) = A N Y .

- 2 2 -

3:1.5 Predicate Symbolg

A predicate symbol is introduced by its first usage in

- a (type declaration), e.g. TYPE MEMBER(SIGN SET)

- an (a t t r i b u t e d e c l a r a t i o n) , e . g . I R R E F L E X I V E (L E S S)

— an (a tom) , e . g . E X X,Y’§(X Y) AND g.

Each predicate symbol i s associated with a natural number, called

its arity, and with a sort symbol for each argument position i,

called its i-th domainsort.

The arity and domainsorts of predicate symbols are determined in

the same way arity and domainsorts are determined for function

symbols.

Each (equality symbol) is a predefined predicate symbol whose

arity i s 2 and whose lst and 2nd domainsort is ANY. They are the

only predicate symbols which are written in infix notation.

TRUE and FALSE are predefined predicate symbols with arity

B, which have the obvious meaning.

- 23 . .

4.2 Semantically correct Expressions

In this section the numbers in angle brackets, e.g. <23) , deno te

error code numbers returned by the PLL—compiler o f the MARKGRAF

KARL REFUTATION PROCEDURE (see section 5) when given a semanti-

cally incorrect (expression) a s input. Subsequently the phrase

unknown symbol denotes a string of the terminal alphabet o f the

PLL-grammar, which has never been used before.

4.2.1 Semantically correct Sort Declarations

A (sort declaration) SORT S : T i s semantically correct iff

- S and T are sort symbols or else unknown symfiols (otherwise

error message) <61,62,63,64> and S and T are different symbols

(65> and S i s a d i r e c t s u b s o r t o f T o r e l s e a t l e a s t o n e o f

the symbols S or T i s unknown <66) .

A (s o r t d e c l a r a t i o n > SORT S l , . . . , S m : T l , . . . , T n i s s e m a n t i c a l l y

correct iff each <sort declaration) in the sequence

SORT Sl:'l'l . . . SORT S m : T l SORT Sli:Tn . . . SORT S m : T n

i s semantically correct.

- 2 4 -

£ ;2 .2 n a n t i c a l l y correct Type Declarations

A (type declaration) T i s semantically correct iff

- T i s TYPE C l , . . . , C n : S and S i s a s o r t symbol o r e l s e an unknown

symbol <6l,62,63,64> and for all i=1...n Ci i s a constant

symbol with rangesort(Ci) = S <14) or Ci is an unknown symbol

(11,12,16,17> or

- T i s TYPE P(Sl...Sn) and for all i=1...n Si i s a sort symbol

o r e l s e a n unknown symbol <6l,62,63,64> and P i s a p r e d i c a t e

symbol with arity(P)=n (34> and domainsort(P i)=Si <36) or

else an unknown symbol <31 ,32 ,33 .37> or

- T i s TYPE F(Sl...Sn):S and for all i=1...n S and Si are sort

s y m b o l s o r e l s e u n k n o w n s y m b o l s <61 ,62 ,63 ,64> and F i s a func—

tion symbol with arity(F)=n (23> , rangesort(F)=S (27> and

domainsort(F i)=Si <26) or an unknown symbol <21,22,24,28>.

4.2.3 Semantically correct Attribute Declarations

An (attribute declaration) ASSOCIATIVE(F) is semantically correct

iff

— F i s a function symbol with arity(F)=2 <23) , rangesort(F) =

d o m a i n s o r t (F l) = d o m a i n s o r t (F 2) <26) o r e l s e a n unknown

symbol <21,22,24,28>.

The (attribute declaration) REFLEXIVE(P), IRREFLEXIVE(P) and

SYMMETRIC(P) are semantically correct iff

- P i s a predicate symbol with arity(P)=2 <34) and domainsort(P

1) = d o m a i n s o r t (P 2) <36) o r e l s e a n unknown symbol (31 ,32 ,33 ,

37>.

4 .2.4 Semantically correct Terms, Atoms_and Quantifications

The ESEE o f a term t , deno ted sorttt), i s the rangesort o f t , if

t is a variable or constant symbol, or else the rangesort o f the

outermost function symbol o f t .

(t e r m) T i s semantically correct iff

T is a constant symbol, a variable symbol or an unknown symbol

<11,12,l6,17> or

T i s F(Tl...Tn) and for all i=1...n, Ti i s a semantically

correct term, F is a function symbol with arity(F)=n (23> and

sort(Ti) is a subsort o f domainsort(F i) <81> or else F is an

unknown symbol < 2 1 , 2 2 , 2 4 , 2 8 > .

An (a tom) A is semantically correct iff

A i s a predicate symbol with arity(A)=fi (34) or A is an unknown

symbol <31,32,33,37> or

A i s P(Tl...Tn) and for all i=1...n, Ti i s a semantically

correct term, P i s a predicate symbol with arity(P)=n (34> and

s o r t (T i) i s a s u b s o r t o f d o m a i n s o r t (P i) <81) o r e l s e P i s a n

u n k n o w n symbol <31 ,32 ,33 ,37> o r

A i s T l =*= T 2 , T 1 and T 2 are semantically correct terms and

=*= is an <equality symbol>.

(quantification) Q i s semantically correct iff

Q i s ALL X... or EX x . . . and X is a variable symbol or an

unknown symbol <51,52,53,55> and each atom in Q i s semantically

c o r r e c t .

é Notes o n the PLL Compiler

5.1 Errors detected by the Compiler

The PLL compiler of the ATP system checks each input for syntac-

tic and semantic correctness. An input containing signs which

are not members o f the terminal alphabet is responded to by a

message

+++++ SYMBOL ERROR >>> xxx IS NO ADMISSIBLE SYMBOL

I

where 'xxx is a Sign which is not a member o f the terminal

alphabet.

For a syntactically incorrect input, the compiler responds

SYNTAX ERROR >>> xxx NOT ACCEPTED

UNEXAMINED REMAINDER OF THE INPUT >>> 222

where ’xxx’ is the Sign which causes syntactic incorrectness and

' z z z ' i s the unanalysed remainder of the given input.

For a syntactically correct but semantically incorrect input,

the compiler responds

***** SEMANTIC ERROR nnn >>> message

UNEXAMINED REMAINDER OF THE INPUT >>> 222

where ' nnn ' is the semantic error code (see sections 4.2, 5.2),

'message' is an error message explaining the kind of semantic

error and ' z z z ' is the unanalysed remainder of the given input.

2:2 Summary of Messages on Semantic Errors

Constant Symbolg - see sections 4.2.2 and 4.2.4 :

***** SEMANTIC ERROR 11 >>>

FUNCTION SYMBOL x USED A S CONSTANT

***“* S E M A N T I C ERROR 1 2 >>>

P R E D I C A T E S Y M B O L X USED A S CONSTANT

***** SEMANTIC ERROR 14 >>>

CONSTANT SYMBOL x HAS RANGE 8 AND I S USED WITH RANGE t

* * * * * SEMANTIC ERROR 16 >>>

SORT SYMBOL x USED A S CONSTANT

***** SEMANTIC ERROR 17 >>>
VARIABLE SYMBOL x USED AS CONSTANT

F u n c t i o n S y m b o l s - see s e c t i o n s 4 . 2 . 2 , 4 . 2 . 3 and 4 . 2 . 4 :

***** S E M A N T I C ERROR 2 1 >>>

CONSTANT S Y M B O L x U S E D A S F U N C T I O N

*“*** S E M A N T I C ERROR 2 2 >>>

V A R I A B L E S Y M B O L x U S E D A S F U N C T I O N

“ S E M A N T I C ERROR 2 3 >>>

m - A R Y F U N C T I O N S Y M B O L x U S E D W I T H n ARGUMENTS

***“* S E M A N T I C ERROR 2 4 >>>

P R E D I C A T E S Y M B O L X U S E D A S FUNCTION

*“**“ SEMANTIC ERROR 26 >>>

FUNCTION SYMBOL x (tl...tM) —> s APPLIED TO (Sl...SN)

***** SEMANTIC ERROR 2 7 > > >

F U N C T I O N S Y M B O L X (t 1 . . . t M) - > 5 USED W I T H RANGE t

***** S E M A N T I C ERROR 2 8 > > >

S O R T SYMBOL x USED A S FUNCTION

Egedicate Symbols — see sections 4.2.2, 4.2.3 and 4.2.4:

***** SEMANTIC ERROR 31 >>>

CONSTANT SYMBOL x USED AS PREDICATE

***** S E M A N T I C ERROR 3 2 >>>

VARIABLE S Y M B O L x USED A S PREDICATE

***** SEMANTIC ERROR 33 >>>

FUNCTION SYMBOL x USED AS PREDICATE

***** L E M N T I C ERROR 3 4 >>>

m - A R Y P R E D I C A T E S Y M B O L X U S E D W I T H n ARGUMENTS

* * " * * S E M A N T I C ERROR 3 6 >>>

PREDICATE S Y M B O L x (t 1 . . . t M) A P P L I E D TO (S l . . . S N)

***** S E M A N T I C ERROR 3 7) > >

SORT S Y M B O L x U S E D A S PREDICATE

Variable Symbols - see section 4.2.4:

***** S E M A N T I C ERROR 5 1 >>>

CONSTANT S Y M B O L X USED A S V A R I A B L E

***** S E M A N T I C ERROR 5 2 >>>

F U N C T I O N S Y M B O L X U S E D A S V A R I A B L E

***** S E M A N T I C ERROR 5 3 >>>

P R E D I C A T E SYMBOL X USED A S VARIABLE

* ‘ * * * S E M A N T I C ERROR 5 5 >>>

SORT S Y M B O L x USED A S VARIABLE

Eort Symbols - see sections 4.2.1 and 4.2.2

***** SEMANTIC ERROR 61 >>>

CONSTANT SYMBOL x USED AS SORT

***** SEMANTIC ERROR 62 >>>
VARIABLE SYMBOL x USED As SORT

***** SEMANTIC ERROR 6 3 >>>

F U N C T I O N S Y M B O L x U S E D A S SORT

* * * * * S E M A N T I C ERROR 6 4 >>>

P R E D I C A T E S Y M B O L x USED AS SORT

*“*** SEMANTIC ERROR 6 5 > > >

ATTEMPT TO E S T A B L I S H SORT S Y M B O L X

AS A D I R E C T S U B S O R T OF I T S E L F

ww*** SEMANTIC ERROR 66 >>>
SORT SYMBOL x IS NO DIRECT SUBSORT OF Y

T e r m s a n d A t o m s — s e e s e c t i o n 4 . 2 . 4

* * * ' * S E M A N T I C ERROR 8 1 >>>

n ~ A R G U M E N T OF x HAS S O R T S BUT I S U S E D W I T H AN INCOMPATIBLE

t — SORT A R G U M E N T

égknowledgemeng

I would like to thank my colleagues S. Biundo, K.-H. Blfisius, N.
E i s i n g e r , A . H e r o l d , D. H u t t e r , H . J . Ohl bach and J . S i e k m a n n f o r

their support during the preparation o f this report.

R e f e r e n c e s

[BES 81] Blasius, K., Eisinger, N., Siekmann, J., Smolka, G.,

H e r o l d , A . , a n d C. W a lther

The M a r q a f K a r l R e f u t a t i o n P r o c e d u r e .

Proc. of the 7th International Joint Conference on

Artificial Intelligence (1981)

[BMW 81] Dilger, w., Mfiller, 3., and w. Womann

Einffihrung in die Markgraf Karl Refutation Procedure.

I n t e r n e r B e r i c h t 46 /81 , F a c h b e r e i c h I n f o r m a t i k ,

Universitat Kaiserslautern (1981)

[Dbl 8 2] Ohlbach, H.J.

The Markgraf Carl Refutation Procedure -

The Logic Engine

Interner Bericht 24/82, Institut ffir Informatik 1,

Universitét Karlsruhe (1982)

[W a l 8 2] W a l t h e r , C .

A Many-Sorted Calculus Based on Resolution

and Paramodulation.

Internet Bericht 34/82, Institut ffir Informatik l,

Universitét Karlsruhe (1932)

