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Abstract

The first-order calculus whose well formed formulas are clauses
and whose sole inference rules are factorization, resolution
and paramodulation is extended to a many-sorted calculus. As a
basis for Automated Theorem Proving, this many-sorted calculus
leads to a remarkable reduction of the search space and also to
simpler proofs. Soundness and completeness of the new calculus
and the Sort-Theorem, which relates the many-sorted calculus to
its one-sorted counterpart, are shown. In addition results
about term rewriting and unification in a many-sorted calculus
are obtained. The practical consequences for an implementation
of an automated theorem prover based on the many-sorted calculus

are described.
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"As a rule," said Holmes, "the more bizarre
a thing is the less mysterious it proves to
be. It is your commonplace, featureless
cases which are really puzzling."

A.C. Doyle, The Red-Headed League

1. Introduction

Sorts are frequently used in practical applications of the first-

order predicate calculus. For example we write formulas 1like
(i) vVx:S. d(x) and 3Ix:S. o (x)

and treat them formally as abbreviations for

(ii) Vx. S(x) o @(x) and 3Ix. S(x) A o(x).

We use well sorted formulas, because they provide a convenient
shorthand notation for ordinary first-order formulas.But sorts
also influence the deductions from a given set of well sorted formulas.
For instance, if P is a predicate only defined on the sort Z of
integers, we will never perform a deduction like Vx:Z. P(x) | P(V2).
Proofs are simplified, because a many-sorted calculus is more adapted
to a many-sorted theory and hence not surprisingly deductions which
respect sorts as well as the usage of well sorted formulas reflect the
everyday usage of predicate logic. But which advantages do we really
have by using sorts and what kind of calculus are we actually

working in?

Let us sketch how a many-sorted (mehrsortig) calculus is developed

from a given (sound and complete) first-order one-sorted (einsortig)
calculus: Assume we have a set of sort symbols, ordered by a given
subsort order. Variable and function symbols (of our given calculus)
are associated with a certain sort symbol. The sort of a term, which
is different from a variable, is determined by the sort of its
outermost function symbol. In the construction of well sorted (sorten-
recht) formulas, we allow for each argument position of a

function or predicate symbol only well sorted terms of a certain

domainsort or of a subsort of this domainsort.






The inference rules of the many-sorted calculus are the inference
rules of the given calculus, but with the restriction that only

well sorted formulas can be deduced by an application of the restricted
inference rules. Starting with well sorted formulas this guarantees
that only well sorted formulas arederived in a deduction. Now let
[f ¢ denote that ¢ is a theorem of the many-sorted calculus. We
write AX l§-¢ to indicate that there is a deduction of & from the
hypotheses AX. Further let us assume that we have a notion of

truth for well sorted formulas. We write H§-¢ to indicate the
validity of the well sorted formula ¢ and let AX ”f ® denote

the semantic implication. Obviously we are only interested in

a many-sorted calculus which is sound and complete, i.e. we

allow only definitions of Lf and.HE-which guarantee

(1) Wf ® iff If ®, for each well sorted formula ¢.

Let us assume our definitions satisfy (1). Then we may ask,
which formulas do we expect as theorems of the many-sorted
calculus compared to its one-sorted counterpart? To facilitate
a comparison between the calculi, we represent the relations
between the function symbols and the sort symbols as well as
the subsort order by the set A’ of sort axioms (Sortenaxiome),
i.e. a set of first-order formulas. For a well sorted formula ¢,
e.g. (i), the relativization 8 (Sortenbeschrankung, Relativierung)
of & is the unabbreviated version of ¢,e.g. (ii), where sort
symbols are used as unary predicate symbols to express the sort
of a variable. Now we can state what kind of theorems we expect

in a many-sorted calculus: Our definitions of Lf and Wf should

ensure
(2.1) Iz ¢ iff A" |- 3

(2) and
(2.2) |= © iff A’ — 8 , for each well sorted formula ¢.

z

Condition (2) is called the Sort-Theorem (Sortensatz), (2.1) is

its modeltheoretic part and (2.2) its prooftheoretic part.






The Sort-Theorem also shows the advantages we have using a
many-sorted calculus: We obtain a shorter deduction with smaller
formulas from a smaller set of hypotheses, when proving |= ¢
instead of AZ |— 8. '

The reason is that deductions about sortrelationships, which
are performed explicitly in the one-sorted calculus, are built

into the inference mechanism in the many-sorted calculus.

The connection between a first-order one-sorted calculus and

its many-sorted counterpart can be summarized as follows:

(1)

”E $ < > IE o)
(2.1) I I (2.2)
A A
Al |— o — Al — o
(3)

Suppose soundness and completeness of the given calculus (3)

are known. Then in order to show the commutativity of the above
diagram we either need a proof of both parts of the Sort-Theorem
(2.1 and 2.2) or a proof of one of its parts (2.1 or 2.2) to-
gether with a proof of the soundness and completeness of the
many-sorted calculus (1).

In his thesis, J. Herbrand presented a many-sorted version of
his calculus and proved the prooftheoretic part of the Sort-
Theorem [Her30]. However Herbrand's proof is inadequate, because
he did not consider that certain deductions in his one-sorted
calculus cannot be translated to deductions in the many-sorted
calculus. This was pointed out by 4. Sehmidt [Sch38], who
proposed a many-sorted version of a Hilbert-Calculus without
subsorts and proved the prooftheoretic part of the Sort-Theorem

for this calulus [Sch38, Sch51].

H. Wang defined a many-sorted version of a Hilbert-Calculus with-
out function symbols and subsorts [Wan52]. He proved the soundness
and completeness of his calculus and the modeltheoretic part cf
the Sort-Theorem. Wang also gave an alternative proof of the
prooftheoretic part of the Sort-Theorem by an application of

the Herbrand-Theorem.






P.C. Gilmore pointed out that this proof is inadequate. He
extended the many-sorted calculus of Wang by the introduction
of subsorts and presented an improved version of the proof-
theoretic part of the Sort-Theorem for this extended calculus
[Gil58].

T. Hatlperin presented a calculus which can be viewed as a
generalization of Wang's many-sorted calculus [Hai57]. In
this calculus sortrelationships can be expressed by arbitrary
first-order formilas instead of atomar formulas, i.e. unary
predicates. Haizlperin proved a theorem which corresponds to

the prooftheoretic part of the Sort-Theorem.

A. Oberschelp [Obe62] proposed several many-sorted versions
of a calculus of Montague and Henkin [MH56]. In these calculi
function symbols and subsorts are admitted. Oberschelp proved
the soundness and completeness of his calculi and also gave

the proofs for the modeltheoretic parts of the Sort-Theorems.

A.V. Idelson discussed forms of many-sorted calculi of
constructive mathematical logic [Ide64], which are based

on the calculus of natural deduction [Gen34].

o o [e}

With the emerging field of Automated Theorem Proving a first-
order calculus becomes a practical tool to find mathematical
proofs. The advantages of a many-sorted calculus are well
recognized within this field, e.g. [Hay71, Hen72]. Also several
theorem proving programs have been based on some kind of a many-
sorted calculus, e.g. [Wey77,Cha78,BM79] (unfortunately without a
sound theoretical foundation). Thereby the works cited above
become of practical significance. Most theorem proving programs
are based on a first-order calculus whose inference rules are
factorization, resolution and paramodulation [Rob65, WR73] and
whose formulas (called clauses) are in skolemized conjunctive

normal form [Lov78]. We call such a calculus an RP-calculus.






In this paper, we define the IRP-calculus, i.e. a many-sorted
version of the RP-calculus, and introduce a notion of un-

satisfiability of sets of well sorted clauses.

We prove soundness and completeness of the IRP-calculus, as well
as the modeltheoretic part of the Sort-Theorem, i.e. we show

that the following diagram is commutative:

(1)
; : ; E
- < > R
S is XE-unsatisfiable S &RP a
(2.1) (2.2)
A A
SUAZ is E-unsatisfiable < > SEUAZ lﬁﬁ' o

(3)

Here SE denotes the extension of the set S of well sorted clauses by all
functionally-reflexive axioms [WR73] and o denotes the empty

clause.

We consider term rewriting under sorts because important aspects

of paramodulation are related to term rewriting.

We exhibit that the ZRP-calculus is only complete provided the
subsort order imposes a certain structure on the set of sort

symbols. Moreover in the case of paramodulation the set of well
sorted clauses to be refuted has to be in a certain format to

ensure completeness. These restrictions are specific to the IRP-
calculus,beccause they are imposed by the principle of most generality,

which is essential for the RP-calculus.

We show that these restrictions can be abandoned without loosing
completeness, if the IRP-calculus is extended by an additional
inference rule, the so called weakening rule. This rule is
specific to a many-sorted calculus, because it cannot be applied

if only one sort is given, and hence in our formulation is the RP-
calculus but a special case of the IRP-calculus. We present special
results about wnification under sorts, which are necessitated by the

weakening rule.






The practical application of the rRP-calculus in Automated
Theorem Proving, leads to a drastic reduction of the search
space and to shorter refutations of smaller sets of shorter
clauses as compared to the RP-calculus. We describe all
necessary modifications to extend an automated theorem prover
based on the RP-calculus, yielding an automated theorem prover
for the IRP-calculus and it can be seen that the advantages of
the IRP-calculus hardly cause any additional costs by the new

inference rules.

The practical usefulness of the IRP-calculus has been demonstrated

by an implementation in an existing proof procedure [BES81,0hl182].

Throughout the paper we use the following standard mathematical

notation:

id identity function

f]M function f restricted to a subset M of its domain
f£(t)+ t is the domain of the function £
£(t)+ not f(t)+

° composition of functions

| negation, e.g. x § y means not x <y

| M| cardinality of set M

M\N set theoretic difference of M and N
M-L abbreviates M\{L}

1 end of case in a proof by cases

b3 end of an example, definition or proof

\Y contradiction






2. Basis Notions of the RP-Calculus

Syntactic Notions Given pairwise disjoint alphabets, the

infinite set of variable symbols ¥, the non-empty set of

function symbols F and the non-empty set of predicate symbols P,
together with an arity-function for function and predicate
symbols, we let T denote the set of all well formed terms over

» and F and let AT denote the set of all well formed atoms over ¥,
F and P. € stands for the set of all constant symbols, i.e.

function symbols with arity O.

A literal is an atom (also called a positive literal) or an
expression of the form not A, where A is an atom (also called

a negative literal). A pair of literals is called complementary,
if one of the literals is positive and the other is negative.
Given a literal L, |L| denotes the atom of L and LS denotes L's
complement. The predicate letter of L is P iff [L| = P(t1...tn)
for some t, € T. LIT denotes the set of all literals. As usual a
clause is a finite set of literals and o denotes the empty clause.

The clause language £ is the set of all clauses over V, F and P.

For a set D of terms, literals or clauses, vars(D) is defined as
the set of all variable symbols in D. D is variable disjoint iff
for all gq,r € D,vars({g}) n vars({r}) = @, provided that q # r.

The subscript gr abbreviates ground, which stands for variable
free, e.g. a ground term is a variable free term and Tgr is the

, LIT and £ are defined in a

set of all ground terms. AT gr gr

gr
similar way.

When concerned with equality reasoning, we use E as the syntactic
equality sign and assert E € P. sE denotes the extension of the
clause set S by all functionally-reflexive axioms [WR73]. The
set of all equality atoms ATY is defined as ATC = {E(gr)lag,r€e T}.

Substitutions and Unifiers A substitution o is a function which

maps terms to terms and satisfies

(1) o0eoc = o0 "
(2) o), = id ,
(3) Of(t1...tn) = f(0t1...otn) , and

(4) {x€WV]|ox # x} is finite






By conditions (1), (2) and (3) each substitution ¢ is completely
determined by its restriction OID' We make frequently use of

this property, for instance we write {x1+t1,...,xn+tn} to represent
a substitution ¢ with Olp X3 = t,. € is the “Zdentity substitution
and SUB denotes the set of all substitutions. Applications of
substitutions to literals, to sets of terms and to sets of

li terals are defined in the obvious way.

The domain of a substitution o, denoted DOM(c), is the set of
all variable symbols x with ox # x. The codomain of 0, denoted
COD(0), is defined as o (DOM(c)). We say two substitutions 6 and
A agree on a subset V of ¥, denoted 0 =A[V] iff 6x = Ax for each
X €V. The following lemma is frequently used throughout this

paper:

Lemma 2.1 Let 6, €SUB, t€T and V,Wc V. Then

[V] is an equivalence relation .

P

—

s
Il

(2) 6 = A[VyW] iff 6 = A[V] and 6 = A[W] , and

(3) if vars({t}) cv and 6 = A[Vv], then 6t = )\t

For a given subset V of V¥, a renaming substitution for V is a

substitution v satisfying

(1) DOM(v) v '

i

(2) COD(v) = ¥ , and

(3) VIV is injective
A renaming substitution for a clause C or for a set of clauses S
is a renaming substitution for the set of variable symbols in C

or in S.

We say a substitution o is a ground substitution iff COD(o) < T

SUBgr

and a substitution o, oC is called an Znstance of C. If OCEEEg

gr’
denotes the set of all ground substitutions. For a clause C
I

r
then oC is a ground instance of C.

Given a non-empty set D of terms or atoms, we call a substitution
0 a unifier of D and say that D is unifiZable iff |oD| = 1. o is
called a most general unifier (or mgu) of D iff o unifies D and

satisfies 6 = 000 for each unifier 6 of D.






Subterm selectors A partial function o which maps terms to

terms is called an argument selector iff there exists a natural
number k for a such that for eagqch term f(t1,...,tn),u(f(t1...tn))==tk,
provided k<n. SEL denotes the set of all argument selectors. The
identity function on terms, an argument selector or a finite
composition of argument selectors is called a subterm selector,

or selector for short. We let SEL * denote the set of all selectors
and define SEL' as SEL*\ (18,

occurrences or positions in the literature and are often re-

}. Selectors are sometimes called

presented by finite strings of natural numbers (cf. [Ros73]).

Each selector o induces a symmetric and transitive relation 5 on
T by q 5T iff a(gq)¥y, oa(r)y and q differs from r at most on the
subterms of g and r selected by a. <« 1is a partial order on SEL*
defined as o« iff a = §oB for some § €SEL+, i.e. o selects a

subterm of the subterm selected by B.

A pair of selectors a and B are called weakly independent, denoted
o L B, iff o & B and o %+ B. o and B are strongly independent,
written o 1 B, iff o # B and a + B, where o < B abbreviates o < B

or o = B.

For a given set of literals I, a pair of terms q,r and a selector
o, the expression q 1 % is an abbreviation for g 5T and
E(a(g)a(r)) € I. The following lemma is frequently used in the

subsequent sections (cf. [Ros73]):

Lemma 2.2 Let q,r€T, o,B € SEL*¥, IcLIT and o € SUB. Then

(1) if g 5T and a(gq) = a(r), then q = r i

(2) g 8% r iff a(q)

- o(r) and gq ~ r ’

™

(3) g oI r 1iff a(q) 1 a(r) and g ~ r '

o
(4) if g 5 Y then og 5 oF ’
(5) if a(g)¥, then calg) = a(oqg) '
(6) if o L B and ¢gq E r, then a(q) = al(r) , and

(7) if o L B and g 1 q' —»Ir for some q'€T,

B

! 1
then g EQI r' —r r for some r' €T







10

Selectors different from id are applied to atoms as to terms.

For a literal L we assert utg) = a(|L|]). For a pair of literals
L and K, we define L 5 K as for terms but with the proviso that
either both literals have to be positive or both have to be

negative. Additionally we assert that for a literal L, id]T(L)+
is always false. Then for a pair of literals L and K, L 1 K is

defined as for terms and Lemma 2.2 holds for literals as well.

Term Rewriting A (ground) term rewriting system is a set of

directed equations R = {E(qiri) EATir[i €J} where Jc IN. We define
= by q=:ﬁ:iffE(q:r)€ R and we use g to denote the reduction
relation associated with R, that is g —p T iff g Tr T for some
a € SEL*. We use the standard notation —iaR for the transitive

*
closure of =y and —2 for the reflexive closure of —iaR. If

for two ground terms g and r there exists a sequence S TR S
%k

€ Tgr and a sequence u1,...ﬂ%1€SEL such that

q = q, aT»R COTRELE Y &;*R qn+1 = r, we call q4 &?» oo s &;ﬂ > S

an R-rewrite of r from q with length n.

*
R is called symmetric iff =p is a symmetric relation. a2 is

an equivalence relation if R is symmetric.

We like to manipulate ground literals by a term rewriting system
and extend — in the obvious way, i.e. L — K for a pair of
ground literals L and K iff L TR K for some aEﬁSEL+.

For a set of literals I, the term rewriting system R(I) contained
in I is defined as R(I) = IIWATgr.

Inference Rules and Deductions Res (C,L,D,K,0) = o(C-L) U o (D-K)

is the resolvent of clauses C and D upon literals L and K, where

o is an mgu of {|L|,|K|}. A substitution o factors a clause C and
cC is a factor of € iff o is an mgu of some subset of C or ¢ = yort,
1t factors C and vy is an mgu of some subset of =C.

Par(C,L,D,E(q r),a,0) = o(C-L) U o(D-E(qg r))U {oK} is a paramodulant
of clauses C and D upon L and E(q r) iff o is an mgu of

{a(L) ,q}, oL ~ 0K and a (oK) =or (or ¢ is an mgu of {o(L),r},

oL &~ OK and o (oK) = oq), where oK is the modulant literal [Lov78].

Given a variable disjoint set S of clauses and a clause C, S |-C
denotes the existence of a deduction of C from S, i.e. there

exists a list of clauses <B1""’Bn> such that Brl = C and Bi €S
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or Bi = viR, where 1 <i <n, R is a resolvent, paramodulant
or factor of clauses preceeding Bi in the list and Vi is a
renaming substitution for SlJ{B1,...,Bi_1}. As usual, a

refutation of S is a deduction of the empty clause from S.
S LE C is a deduction without paramodulation and S LE is a

deduction without resolution.

Semantic Notions Given a set of clauses S, Sgr denotes the

set of all ground instances of the clauses in S. Computing

Sgr for a given clause set S, we will agree that F and P are

minimal, i.e. each symbol from ¥ and P is used in at least
one of the clauses of S. This guarantees that Tgr is the
Herbrand Universe of S and ATgr is the Herbrand Base of S
[Lov78], if we assume in addition that € ={c} for the case

that S contains no constant symbol at all.

A (possibly infinite) subset I of LITgr is called an
interpretation iff for each LETI, If:€I. I is called reflexive
iff for each t.ETgr, E(tt)€I. We say that I is E-closed iff
for each L€I, K€ELIT and some a€ SEL", K€ 1T whenever L — K.
A reflexive and E-closed interpretation is an E-interpretation.

The following lemma is used constantly:

Lemma 2.3 Let ICZLITgr be E-closed. Then

(1) if T is reflexive, then E(qr)€I iff E(rg)e€I , and

*
(2) if LEeTI, K€LITgr and L — K, then K€1I .

R(I)

An interpretation I satisfies a ground clause C iff INC #* @.

I satisfies a clause C iff I satisfies each ground instance

oC of C. I satisfies a set of clauses S iff I satisfies cach
clause in S. In this case I is a model of S and S is satisfZable.
If I is an E-interpretation, I E-satisfies S, I is an FE-model

of S and S is E-satisfiable.
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3. Bastic Notions of the IRP-Calculus

Sorts and Signatures Let $ be a finite and non-empty set of

sort symbols. The subsort order S$ imposed on $ is a partial
order on $. We say S is a subsort of S, and S, is a super-

i < . i i for
sort of s1 iff s1 <5 52 We use s1 <5 52 as an abbreviation

s_ and 51* S, Sy is a direct subsort of S, Sy «S Sy

s, <

1T 7872
iff S <5 s, and there is no s with S, <$ s <S S,- If $ is
known from the context we shall sometimes omit the indices,

e.g. we write < for 55.

<§,<> is a well founded set, because $ is a finite and < is
irreflexive and assymmetric. This fact will be used in later
proofs. Subsequently we only consider ordered sets of sorts

symbols <%,<>, which posess a maximal element Sy i.e. s < S,
for each s € $. We say that <%,<> is a tree structure, when-

ever s, = s < s, implies S4 < s, or S 2 s, for all sort symbols

s, 51, 52 €%.

For a given <$,<> let $* be the set of all finite strings from

3, including the empty string e. Now for each s € § and for each
wE $* let DS be a set of variable symbols, Fw,s a set of function
symbols and Pw a set of predicate symbols such that all these
sets are pairwise disjoint. Additionally we shall assume, that
for each s which is minimal in <$%,<>, Fe,s + @ and we assert

that E GPSOSO. Then an $-sorted signature I is a family L.
of sets such that Zw,s = DS U Fw, U Pw. Setting ¥ = U DS,
F=UF c =F and P = U PW for each s € § and each w € $*,
we define terms, atoms, literals e.t.c. as in section 2.

'S

w,s’ e,s

Syntactic Notions For a variable or function symbol a, the

rangesort [al of a is s iff aed_ U Fw = (for some wE€ $*). For
’
a function or predicate symbol m, the Zth domainsort [m]i of m

is s, iff HIEFE1...sk,s U Ps1...sk’ provided 1 <i <k. The sort
[t] of a term t is s iff tE€ b, UF, S ort= f(t1...tk) and

[f] = s. '

For a term t and a selector o with o(t)Vy we define the a-maximal

sort of t, denoted [t]a’ by
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(1) [t]. = [t], if o = idIT
(2) [t]oc = [f]i, if t = f(t1...t
(3) [t] = [d(t)JB, if o =

For oe,ESEL+ we apply this definition to atoms

3

), and o € SEL.

- a(t) = ti

BoS with B € SEL and 6 € SELY

and

as well and assert

for each literal L that [L]a = [ILI]u. The following lemma is
easy to prove:
Lemma 3.1 Let q,r €T, o,B € SEL* and o € SUB. Then

(1) if B € SEL', then I[q] = [a(q)] ,
Boa B
(2) if g ¢ » and a(g)+¥, then [q]a = [Gq]a .
(3) if g B & and o ¥ B, then [a(g)] = [a(r)] , and
(4) if g ¥ T and o ¥ B, then [q]a = [r]a
Given an $-sorted signature I, a term t is called a well sorted

term or a I-term iff [a(t)] <
We say an atom A is well sorted
[a(A)] <
set of all rI-terms, ATZ denotes

[A]a for each selector

is set of all -lZiterals. Later

following lemmata:

or Ais a I-atom iff AEZPe or
a with a(A)+. TZ denotes the
the set of all r-atoms and LITZ

we shall frequently use the

[t]a for each selector a with a(t)+.

Lemma 3.2 Let g ETZ’ r €T and

If g ~ r, a(r) €T_. and [a(r)] <

2

o € SEL*.

then r € T_.

[r]O(., 5

Lemma 3.3 Let s€%, £ EFg

1...S

(1) DS U Fe,s < T,

(2) f(q1...qn) ETZ iff 93 ETZ a

5 and f(q1...q ) € T. Then

nd [qi] H

,and

for each i with 1 <i <n.
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Obviously these lemmata hold for literals as well. A well sorted
clause or a I-clause is a finite set of f-literals. The many-
sorted language L, is the set of all I-clauses. TZgr denotes the

set of all variable free r-terms. AT ’ LITZ and LZgr are

Igr gr

defined in a similar way.

Sometimes we use sort symbols also as unary predicate symbols.

We assume that s EPS for each s € § and define LITS (LIT?) as the set
of all (3-)literals in the extended language £° (E?). An atom or

a literal whose predicate letter is a sort symbol is called a

sort atom or a sort Lliteral respectively.

Sort Axioms and Relativizations Given an $-sorted signature I,

we define the set AZ of all sort axioms of ¥ as the smallest

subset of £§ which satisfies

% .
(1) {s(a)l ean”, if a€J’eS '

’

(2) (R0t s,(x7) ... 00t 5, (x S(£(xy...x))) eal,

k)’ 1-
ifxiEDS,fEFS Sandx. + X, ;
i 1Sy i J

m){mts1w),s(w}eﬁﬁifyevs and s, « s

2 1 1 2

; 2 . ; 5 :
(4) no clause in A" is a variant (i.e. can be obtained by a

, and

) . ; . T T,
renaming substitution) of another clause in A" and A 1is

variable disjoint.
If F is finite, by condition (4) A" is finite.

. . A .
For a f-clause C, the relativization CZ of clause C is a clause

in £§ and defined as

As
c” = {not s1(x1),...,n0t S, (xn)}lJC

where Xg EDS and {x .,xn} = vars (C). The relativization of a

1,--A
t-clause setlS, denoted SZ, is the subset of £§ defined as

A A
gF = {CZE:L;[CES}

A A A
If ¢ is known from the context we write C instead of CZ and S for

A
s?,






15

Substitutions and Unifiers A T-substitution o is a substitution

satisfying O(TZ)<:TZ. SUBZ denotes the set of all f-substitutions.
A r-renaming substitution v for a set D of variables, literals or
clauses is a renaming substitution for D such that [vx] = [x] for
each x € V. A I-ground substitution o is a I-substitution with

COD(c) < T SU denotes the set of all r-ground substitutions.

zgr’ BZgr

For a I-clause C and a I-substitution ¢, oC is called a f-Znstance
of C. If OCEEZgr,

following lemma is easily shown:

then oC is a I-ground instance of C. The

Lemma 3.4 Let 06,0 ESUBZ and )\ € SUB. Then

(1) 1if 600 € SUB, then (-)OOESUBZ 7
(2) 4if 6 = XAoo,then 6 = 8§00 for some § ESUBZ ’
(3) G(LITE) (= LITZ , and

(4) O(LZ) c EZ

A set D of I-terms or I-atoms is I-unifiable iff D is unifiable
with a f-substitution o. Then o is a If-unifier of D. o is a I-mgu

of D iff o is mgu of D and o ESUBZ.

A r-substitution u is a weakening substitution for a set V c ¥

iff y satisfies

(1) COD(u) = ¥ ,
(2) COD(u) NV =¢g ’
(3) ulV is injective , and

(4) [ux] < [x], if x € DOM(u)

For each V < ¥, WSUB(V) denotes the set of all weakening
substitutions for V. Obviously e € WSUB(V) and WSUB(V) c SUBZ.
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Term Rewriting For a (ground) term rewriting system R we define

the t-reduction relation >rn associated with R and a signature I

+ N
= . — is the transitive closure of
By IR ;*R f (TZgr . ngr) TR i ‘ )
2R and —sp is the reflexive closure of —sq- R is a T-maximal
+ .
term rewriting system iff *p = sgp- Note that in general a I-

maximal term rewriting system is <nfinite. The following lemma is

frequently used throughout this paper:

Lemma 3.5 Let R be a f-maximal term rewriting system, q,r€TZ ,

t € {g,r} and a,B8 € SEL*. Then

gr

(1) if g =, ¥, then t.Engr » and

(2)y if g g7g T @ <« 8 and a(t)+, then [a(t)] < [t]a :

Inference Rules and Deductions A resolvent R of two I-clauses is

a I-resolvent iff the substitution used to form R is a I-substitution.
If a I-substitution factors a rf-clause, then this factor is a I-
factor. If P = Par(C,L,D,E(qr),a,0) is a parmodulant of the I-
clauses C and D, o ESUBZ and [or] s[oL]a (or [oqgl s[oL]a if we
replace or by oq), then P is called a r-paramodulant. If C is a
Z-clause and u is a weakening substitution for some V ovars(C),

then uC is a weakened variant of C. Obviously, each r-resolvent,

t-factor, r-paramodulant and each weakened variant is a I-clause.

Given a variable disjoint set of rI-clauses S, S L; C denotes the
existence of a i-deduction of C from S, i.e. there exists a list

of f-clauses <B ,B_> such that B_. = C and B, € S or B, = v.R,
n n A " 8 1

RERE
where 1 <i <n, R is a I-resolvent, r-factor, r-paramodulant or

a weakened variant of clauses preceeding Bi in the list and vy is

a r-renaming substitution for S U{B1,...,Bi_1}. A f-refutation 1is

a r-deduction of the empty clause. S lEﬁ C denotes a I-deduction

without I-paramodulants and S IEE C is a z-deduction without I-

resolution.
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Semantic Notioms Given a set of r-clauses S,

Szgr denotes the
set of all Z-ground instances of the I-clauses in S. An inter-

pretation I I-satisfies a I-clause C iff I satisfies each I-
ground instance oC of C. I I-satisfies a set of f-clauses S iff

I t-satisfies each clause in S. In this case, I is a I-model of

S and S is I-satisfiable. If in addition I is an E-interpretation,
then I fE-satisfies S, I is a rE-model of S and S is IE-
satisfiable. It is easy to prove that:

Lemma 3.6 Let S c Ez and I < LITgr be an interpretation. Then

(1) S is z-unsatisfiable iff SZgr is unsatisfiable "
(2) Sis tE-unsatisfiable iff Szgr is E-unsatisfiable ,

(3) sZgr c Sgr , and

(4) if I r-satisfies S, then IﬂLITZgr I-satisfies S

Note that 3.6 (4) in general does not hold for fE-satisfiability,
i.e. there exist E-interpretations I such that I n LIngr neither
is reflexive nor is E-closed and hence is no E-interpretation.

Throughout the paper <$,<> 1is a partially ordered set of sort-
symbols, I is some $-sorted signature and S stands for any

variable disjoint set of r-clauses.
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4. Two Examples

The following examples should provide some motivation for our
Also the

examples demonstrate that the IRP-calculus is incomplete with-

work illustrating also the notions introduced so far.

out the weakening rule. Essentially there are two reasons for

this incompleteness:

- the Unification Theorem does not hold in the IRP-calculus,

- paramodulation is incomplete in the IRP-calculus (without

the weakening rule).

Example 4.1 Let $ = {A,B,C,D} with D « B « A and D « C « A,

Let PEPA, dEFe,D, uEDB, VEDC and WEDD. Now consider the set
of I-clauses S = {{P(u)}, {not P(v)l}}. S is I-unsatisfiable,

because SZgr = {{p(d)}, {not P(d)}} is unsatisfiable. But neither
o . with Oy = {u«v} nor 1 with Tly = {v«u} are r-substitutions,

i.e. no r-resolvent can be derived from the two clauses in S. But

with the weakening rule, we find a I-refutation from S:

(C1) wvu. {p(u)} , given

(C2) Vv. {not P(v)},given

(R1) Vw. {pP(w)} , weakened variant uC1 of C1, where My = {u«w}
(R2) a , L~resolvent of C2 and R1, because 0 with

G|D = {v<w} is a I-substitution.

Now let us consider the RP-calculus. Firstly we replace S by its

A
relativization SZ:

(C1') Vvu.
(C2') vv.

{not
{not

B(u), P(u)} "
C(v),

A
c1t

A
not P(v)} , C2°

The set of sort axioms AZ is obtained as

Here

is a refutation

(C3') Vvx {not D(x), B(x)} , since D« B
(C4') Vy. {not D(y), C(y)} , since D« C
(C5" {D(a)} , since dEEFe,D
(C6') vi {not B(i), A(i)} , since B« A
(C7') Vj {not C(3), A(F)} , since C« A

A
of (SEualy:
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(R1'") Vw. {not D(w), P(w)} y Res{Cc1',c3")
(R2') vv. {not C(v), not-D(v)} » Res(R1',C2")
(R3') Vy. {not D(y)} , Res(R2',C4")
(R4"') o , Res(R3',C5")

If we remove the literals whose predicate letters are sort symbols
from the clauses C1', C2', R1' and R2' we obtain the previous I-
refutation of S. The advantage of the ZRP-calculus is obvious now:

We get a shorter refutation(R1 and R2 instead of R1',...,R4') of
shorter clauses (Ci,Ri instead of Ci,Ri) of a smaller set of

clauses (S instead of (gz U Az)).

Note that we propose the weakening rule as an additional inference
rule only in order to isolate the crucial point and to obtain
completeness results. In a proof procedure this rule is realized

by a modification of the unification algorithm (see section 11),i.e.in our
system [BES81, 0hl82] the empty clause is derived from C1 and C2

by a single resolution step using the substitution OOU!U = {u<w,v«w}.

In order to compare the search spaces involved with the many-sorted
calculus and its one-sorted counterpart we find one initial resolvent
in S in contrast to seven initial resolvents in (gz u Az). This
demonstrates particularily well the drastic reduction of the

search space, when working in the IZIRP-calculus instead of the

RP-calculus. R

However the modification of the unification algorithm only covers
applications of the weakening rule as in the above example. Un-
fortunately there are cases which cannot be solved by the modified

unification (cf. section 11):

Example 4.2 Let $= {A,B} with B «Aand let PE€ PB, {b,,b} = F_ o
s = {({P(b))}, {E(x )}, {not P(b,)}} is a IE-
sqr = P} AE®, b)l,...,
{not P(bz)}}is E-unsatisfiable. We can derive four paramodulants
from S, namely {P(x)}, {P(y)}, {not P(x)} and {not P(y)} neither

of which is a fI-clause, i.e. not a I-paramodulant. But with the

{x,y}c:vA and z €D .
unsatisfiable set of I-clauses because S

weakening rule we find a I-refutation of S:

(C1) {P(b1)} , given

(C2) vx,y. {E(x y)} , given

(C3) {not P(by)} , given

(C4)‘ vx,z. {E(x z)} , weakened variant pC2 of C2,where u|”={y+z}
(C5) Vvz. {P(z)} , L-paramodulant of C1 and C4

(Cé6) o , L-resolvent of C5 and C3.
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5. Term Rewriting under Sorts

Since certain aspects of paramodulation can best be described
using term rewriting systems, we present some results for term
rewriting under sorts. For our purposes we can restrict our-

selves to the ground case. In this section we prove the

L-Rewrite Theorem If R is a I-maximal term rewriting system,

+
then —_ N = oty
R (TZgr 8 TZgr) IR
For each pair : + :
P qi.9,41 € TZgr with q, —2 941 by the I-Rewrite

Theorem we can find an R-rewrite of S from q, such that each
term in this R-rewriteis a I -ground term, provided R is r-maximal.

This is illustrated in the following diagram:

Figure 5.1 The I-Rewrite Theorem
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Let us sketch the proof of the I-Rewrite Theorem before we go
into details. The main problem is to prove that q4 ;LZR_qn+1’ if
{qz,...,qn} ¢ TZgr' We give a constructive proof to find an R-

rewrite qq » Yy, 2> ... > I 4> Q which is shorter than

_n+1 14
the initially given R-rewrite

(1) 94 &T 9y -+« 9y Eg A1

So we can successively remove those terms in the R-rewrite, which

are not in T .
Igr

The construction works as follows: By the I-Rewrite Lemma we can
single out from (1) a certain R-rewrite
(2) dj_1 7 Uy ek g g r Gy (2<i<j<n+1)

i1 j-1
and it is shown in the Shift-Up Lemma that (2) is still an R-
rewrite, if we replace each selector op (i<h<j-1) by the selector

o provided that oy < 0y

i-1' i-1°

By the Shift-Left Lemma the selector aj_1 can be moved to the left

yielding a new R-rewrite

(3) q e r, —— r.

i-1 g4 ia;_4 141 Jj=1 @5 2 J
Additionally we can show that B3.y = By _qu P
(4) Gu_5q = Fo =——h F, eee Yo o — (.
i-1 oy _4 ia, 4 i+1 J=1 Gs_o J

is an R-rewrite. Finally we use the Reduction Lemma to reduce (4)
to

(5) 951 778 Y ee. T, —p g

Thus we have found an R-rewrite

(6) % e, 2 70 el G Titr =00 Ty-1 a2 95901 o0 @

of length n-1.

Lemma 5.1 (Z-Rewrite Lemma) Let R be a I-maximal term rewriting
system and 91 52 95 -+ 9y 5; AW n>1, be an R-rewrite such that
q1’qn+1€'TZgr' If {q2,...,qn} ¢ TZgr then there exist indices i
and j with 2<i<js<n+1 such that for each h with i<h<j-1

(1) Oj_q T %4y ’
(2) a;_q(qy) € TZgr , and
(3) Loy _q(a) ] ¢ [q 1,

i-1
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Proof Since {q2,...,qn} ¢ TZgr’ we know for some qu{qz,...,qn}
and some B € SEL * that B(g)+¥ but [B(qg)] £ [q]s. Among those selectors
B we can choose a selector a which is minimal w.r.t. <. Let aqn be

a term of the R-rewrite with
(4) a(qm)¢ and [a(qm)] $ [qml], (where 2<m<n) .

Now starting on q, we move left in the R-rewrite until we find the

first term g, 4 with

(5) laday_4)] =< [q

1—1]a’ if a(qi_1)¢ (where i-1<m)

and starting again on q, we move right in the R-rewrite until we
find the fZrst term qj with

(6) [a(qj)] < [qj]a’ if u(qj)+ (where m<j).

The existence of q; - is guaranteed, because the leftmost term a4

1
in the R-rewrite is a I-term and hence satisfies [a(q1)] < [q1]a,

if a(q1)+. By the same argument the rightmost term g in the R-

n+1

rewrite guarantees the existence of qj.

Suppose that a(qi_1)¢. Since d4-1 is the first term to the left
of g which satisfies (5), we know that a(g,;)+ and [a(qi)] i[qi]a.

i
Case (7) o <€ 0y _qt Using 5 _1 &Z:TR q; and a(qi)+ we infer by
Lemma 3.5 (2) that [a(g.)] < [qg.] - v
i i‘a
Case (17) a2 0y 4% From q5_1 &I:7qu we infer that ai_1(qi_ﬂ¢,h@xﬁ
a(qy_q)¥. v 1@

Case (21%) o L a;_ 4

From -1 51:7R q; we infer by Lemma 2.2 (6)

that al(g ) = a(qi) and with o(g.)+ we obtain u(qi_1)+. VA

i-1 i
Hence we have proved that a(qi_1)¢ and using (5) we can write

(7) a(g;_q) ¥ and [la(g;_q)] < [g;_,],  (where i-1<m)

By a similar argument we prove that a(qj)+ and using (6) we can
write

8 )Y d : < . where m<j .

(8) a(qj) an [a(qj)] [q]]a ( )

Now suppose that for some h' with ic<h'<j-1 [a(qh.)]s [qh']a’
provided u(qh,)¢:
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Case () i < h'" < m: Then qp instead of d; _q is the fZrst
term to the left of q with [u(qh.)] S[qh‘]a’ if d(qh.)¢- v

Case (17) h' = m: This case is impossible by (4). V[

Case (117) m < h' < j=-1: Then dp s instead of 95 is the first
term to the right of q, with [a(qh,)] s[qh,]u, if u(qh,)+. v

Thus we have proved

(9) a(q,)+ and [a(qh)] s[qh]u i for each h with i <h < j-1.

Let us assume by way of contradiction that a(qh,) ¢ TZgr for
some h' with i <h' <3j-1. Since a(qh,)+ by (9), there exists
some 6 € SELT such that Ga(qh,)¢ and [Ga(qh.)] $[0L(qh,)](S =[qh,]
But §ca < o contradicts the minimality of a. V Thus we have

established that

Soa”

(10) a(gy) € TZgr’ for each h with i <h < 3j-1.

¥ . 3 P - . :
Now suppose that a oy 1 Then o < Oy _qr @ L 0y _4 OF a=> 0, .,

i.e. oo <« o, Or o ¥ o, s
1 ¥ i-1

Case (1) a < a; 43 Since q,

i T 4 and a(qi)¢ by (9),

=1 9 g

we can use Lemma 3.5 (2) to infer that [a(qi)] s[qi]u which
contradicts (9). Vv [/

Case (11) o ¢ o _q¢ Using q; ———TAR q; we obtain

-1 a.

s =
[a(qi_1)]==[a(qi)] by Lemma 3.1 (3) and [qi—1]a=[qi]u by Lemma
3.1 (4). Hence by (7) [a(qi)] < [qi]a which contradicts (9). Vv {4

Hence

(11) o = oy _q

and by a similar argument we can prove that

(12) o o .

=17
From (11) and (12) we infer (1), (11) and (10) gives us (2) and
finally we obtain (3) by (11) and (9). K
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Lemma 6.2 (Shift-Up Lemma) Let R be a I-maximal term rewriting

system and 94 g 95 --- 4 n>1, be an R~rewrite. If

1 noa, Tn+1
1 *
{a1(q1),...,a1(qn+1)} = TZgr’ then there exist 8,,...,8 € SEL
such that for each h with 1 <h <n:

(1) a, R 92 g 93 cccr 9 2 In+1

Bn

(2) Bh = a4 if o, < o and

h 1 !

(3) Bh = Oy if o { o,

Proof The proof is by induction on n.

Base Case n = 1: The lemma holds trivially. {

Induction Step: Let Iy 329 --+ 9, 5 9041 5 942 be an
1 n n+1
R- it i
rewrite with {a1(q1),...,a1(qn+1),a1(qn+2)} (s TZgr' Our

induction hypotheses is to assume, that there exist some
81,...,8r1€SEL* such that conditions (1), (2) and (3) are
satisfied for each h with 1<h <n.

For o + o, we define B = o is a seguence

n+1 n+1 n+1 and 81""'8
of selectors with the desired properties.

n+1

+ .
If Ol < Oy then a = Boa1 for some B E€ESEL , i.e.

Now by Lemma 2.2 (3) a1(qn+1) e a1(qn+2) and g

n+1 qn+1 Boa1 R9n+2°

n+1 &; In+2- Slmee

a1(qn+1)’ a1(qn+2) ETZgr by assumption, we can write

a1(qn+1) —s2 u1(qn+1) and because R is I-maximal we have
a1 (@pyq) =g gl o).

With g dppqpr We obtain q SR < SR and setting Bn+1 = a

n+l o n+1 o, 1
ByreerBhig

1 <h<n+1 conditions (1), (2) and (3) are satisfied. [ K

is a sequence of selectors such that for each h with
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Lemma 6.3 (Shift-Left Lemma) Let R be atemrewriting system and

9 7 9y - qn = qn+1, n>1, be an R-rewrite. If for each i
1 n
with 1<i<n o, L oa_, then there exist r,,...,r_ €T such that
i = "n 2 n gr
94 R T2 o, r T3 n R In+1e

“n R 1 %n-1

Proof The proof is by induction on n.

Base Case n = 1: The lemma holds trivially. [/

Induction Step: Let d4 &?ﬁ Ay vee Tpypq &;:Te 42 be an R-rewrite
such that o, L o for each i with 1 <i <n+1.
i = "n+1

Our induction hypotheses is to assume that the lemma holds for

all R-rewrites with length at most n. Hence we are allowed to

assume that q, &;:;QR ry &;*R Ty o0 Tyt &;*R qp40 for some
LareeerToig ETér’ From q, &?ah q, &;:TAR ry and ap Lo, we

infer by Lemma 2.2 (7) the existence of some r, ETgr such that

q1 &;:?»R r2 &?qk r3. Hence we have found some r2,r3,...,rn+1 ETgr
such that q, TR Y252 Y3 v Toa1 58 9peo- N &

n+1 1 n
Lemma 5.4 (Reduction Lemma) Let R be a I-maximal term rewriting
system and 97 7 9 -+ 9 T 9417 n>1, be an R-rewrite. Then

91 %R 9n+1e

Proof For each i with 1<1i<n we know that q; and

N & i+
u(qi) =z u(qi+1), hence aiqi) —sp u(qi+1) because R is I-
maximal. But then u(q1) —sp a(qn+1) since ——p is transitive
and finally a(q1) =2 a(qn+1) by the I-maximality of R. Because

of q; § 941

with a(q1) =2 a(qn+1) we infer 99 8 91 K

and since ~ 1is transitive we have q, ~ q , hence
o 1 o *n+1
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Theorem 6.5 (IL-Rewrite Theorem) If R is a I-maximal term rewriting
+ +
system, then —2 n (TZgr x TZgr) = —sn
Proof "2" Obvious, because F e X and 5 _c(T x T )
! IR R IR igr Igr

"c" Let us assume by way of contradiction that there exists a pair
+ +
of Z—groundtexmsq1andqn+1 such that 97 ——p 941 but q1—+—»ZR do41-
Let
94 o, 93 ++- 9y a In+1

be an R-rewrite of S from q, with minimal length. We know that

. +

nz2, since q4, q_ engr and q, —+—yp 9,1+ But then {qz,...,qn}¢:T
and by the I-Rewrite Lemma (5.1) there exist indices i and j with

2<i<j<n+1l such that for each h with i <h < j-1

Zgr

(1) o. = q

il i-1 !
(2) ui_1(qh) ETZgr , and
(3) lay_q(q )1 % la, 1,
i-1
Consider the R-rewrite
(4) Qi1 @ 9y = qj_1 ga T A
i-1 j-1

Since ui_1(q ) =n ui_1(qi) and a._1(qj_1) =2 aj_1(qj), we know

J
by Lemma 3.5 (1) that ai_1(qi_1) ETZgr and that aj_1(qj) ETZgr’
because R is I-maximal. Now by (1) and (2){ai;1@i—“”"ai—1@H)}CT

i-1

Lgr
and hence by the Shift-Up Lemma (5.2)there exist 61-1“"’Bj— € SEL*

1
such that for each h with i-1<h < j-1

)y 5772 % g %41 o 95-1 80 29y

i-1 i -1
(6) By = a4 1€ ap <€ oLy , and
(7) Bh = oy , 1if ah<¥ a;

From (1) and (7) we infer
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Now we prove that B, L o, 4 for each h with 1 <h=<j-1:

Case (1) a;_4 » ap: Then by (6) B, = a; 4, i.e. By L % 4
by definition of 1. [/

Case (Z7) @; 1 4 ap: Then oy % a; ., hence by (7) B, = oy,
i.e. B Lo, 4.0

Case (i117) O _q ¢ oy Using qy &;*R Ap 41 and ui_1(qh)+ by (2),

we obtain by Lemma 3.5 (2) that [ai_1(qh)] S[qh]ai_1’ i.e. a

contradiction to (3). V [4

Hence, using (7) and (8), we can write

(9) 8y L B , for each h with i = 1<h <j-1

3-1

Now with (5) and (9) we can use the Shift-Left Lemma (5.3) to

infer the existence of some r,,...,r. €T such that
i j-1 gr
(10) a5 4 78 i g & Ti+1 - 5.1 3, g 93 and in particular
j-1 i-1 j-2
)95 778 T1 o, R Ti+t
i-1 i-1
because Bj—1 = 0y 4 by (8) and 81_1 = 0y 4 by (7). But with (11)

we can use the Reduction Lemma (5.4) to obtain

(12) a; 4 3778 T;

Summarizing we have found an R-rewrite

Gy = Aowadly 7 Lo s F* Laineeels o T—FTs =F Gu. puas =g
1 o 2 i-1 o, 4 i1 Bi 342 j-1 Bj—2 ] @ 1 na, n+1

of g from q, with length n-1, i.e. the R-rewrite
n+1 1
dq &Tﬁ 9, «-- 9, &;e = S initially given was not with minimal

length. Vv R

Note that the I-Rewrite Theorem obviously also holds for R-

rewrites of ground literals, i.e.

., n (LIT x LIT. ) = ——

R Zgr rgr ZR
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6. Completeness of the IRP-Calculus - The Ground Case

The following main theorem is shown in this section:

Ground Completeness Theorem for IRP If Sy is E-unsatisfiable,

E gr
then sZgr }E o.

At the I-ground level there is no difference between resolution
and I-resolution. Hence the main effort is in showing the result
for paramodulation, i.e. to prove a result which links I-

deductions to deductions LF from a set of I-ground clauses.

53
To this effect we define:

Definition 6.1

E

Par(S) = {C€£grlszgr |§ c} .
par.(S) ={cef. |sE |=c} and
z Zgr "Igr IP !

E

RPar (S) = {C€ EgrlsZgr

IE-C, such that no clause in LE is obtained

by paramodulating into a positive equality literal}. K

As a prerequisite for the proof of the Ground Completeness Theorem
we show that if ParZ(S) is satisfiable, then RPar(S) is satisfiable.

This is achieved in the following way:

First we introduce the notion of a EE-restricted interpretation

and we show that Par.(S) possesses a model, which is a IE-

z

restricted interpretation, whenever Par_(S) is satisfiable. Next

we prove that each IE-restricted interpietation contains a I-
maximal and symmetric term rewriting system. This fact is used

to introduce the rewrite-closure I* of a IE-restricted interpretation
I and to prove that I* is again an interpretation. Moreover we

show that the rewrite-closure I* of I is a model of RPar(S),

provided I satisfies ParZ(S).

For each E-interpretation I, I N LITZgr is a I-restricted

interpretation. But it is more useful to define:
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Definition 6.2 An interpretation I is called I-reflexive iff
We say that I is IE-closed 1iff for

E(qd q) €I for each g Engr

each L€I and for each K€ LIT K € I whenever L. —_ K for some

Zgr’ o I
o€ SEL+. I is called a LE-restricted interpretation iff I is I-
reflexive, I is IE-closed and I c LITZgr' B

Lemma 6.1 If Par.(S) is satisfiable, then it possesses a model,

(
)
which is a XZE-restricted interpretation.

Proof Let M be a minimal model of Par.(S). We show that M is a

%
LE-restricted interpretation:
M is I-reflexive: Obvious, because {E(q gq)} € Sggr = ParZ(S) for
each g €ngr‘ Vi
M is IZE-closed: Let LE€M and K(ELITZgr such that L M K for some

o € SELT. Now assume by way of contradiction, that M n C % {L} for
each C:EParZ(S). With MnNC # @ for each C:EParZ(S) we obtain that
(M-1,) n C % @, i.e. M-L satisfies ParZ(S) and therefore M is

not minimal. V Hence

(1) M n CL = {L}, for some CI‘EPar (s),

z

and by an analogue argument

(2) M nCp = {E(a(L)a(K))}, for some CEGEParZ(S).
Let C be the paramodulant of CL and CE upon L and E(a (L)a(K)), i.e.
(3) C = (CL-L) U (CE—E(a(L)a(K)) U {K}

- We know that [a(K)] < [K] because K€ LIT and that [K] = [L]a

Igr
by Lemma 3.1 (4), i.e. [a(K)] < [L]a' Hence C is a I-paramodulant,

i.e. CIEParZ(S) and therefore
(4) M n C + @.

Using (1), (2) and (3) we infer that M N C = M n {K}, hence by (4)
K€EM, thus M is ZE-closed. [/

M c LITZgr: Suppose that LE€M for some L ¢ LITZgr

each CtEParZ(S), because each clause in ParZ(S) contains only I-

Then LéEMNC for

li terals. Hence M-L is also a model of Par.(S), i.e. M is not

Z(
minimal. v [ K
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Lemma 6.2 If I is a IE-restricted interpretation, then R(I)

is a I-maximal and symmetric term rewriting system.

Proof First we prove that R(I) is I-maximal, i.e.

— + L)
“Rr(1) T T IR(I)C
c Obviously =2 (1) c —ﬁgunand 2 (1) i (TZgr X TZgr) because
I c LITEgr’ Hence *2(1) © rr(1) € " Ir(I)" Vi

n " + 1
o Let dq 941 € TZgr such that 9, — i.e. there

$R(I) In+1°’
exists an R(I)-rewrite
99 3.7 92 -+ 94 5 941

o
Bl n

We prove by induction on the length n of the R(I)-rewrite, that

99 ®p(1) 9n+1

Base Case n=1: Let aEISEL+ such that a(E(t1't2))= t2. Then

a(E(gyqq)) = 9 3 %a(1) 95 = Ot(E(q1 q2)) and with E(q, q,) 5 E(q,49,)
we infer by Lemma 2.2 (3) that

E(q1‘11)a1oa’n(1) Elq, ap)

Since q49, eET we know that E(q1<32)€ LIT and by the I-

Igr
reflexivity of I we obtain E(q1<q1)€ I.

Igr

Hence E(q1<32)€ I, because I is IE-closed, i.e. q4 gR(I) q,- Vi

Induction Step: Our induction hypotheses is to assume that

d, =R(I) qn+1+for each R(I)-rewrite of Ipe1 from q, with length n,

provided q, TSR(I) Tpgq- Let
q1 o q2 ttt qn+1 a qn+2
1 n+1
be an R(I)-rewrite such that
N
94 FR(I) 9n+2

Then with the same argument as in the base case we infer that

E(q1(q2)€ I and by the induction hypotheses we obtain that
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q2 =>R(I) qn+2, i.e. E(qun+2) e T,

Since qq we know that E(q1<qn+2)€ LIT and choosing

9h+2 € TZgr’ IgE
o € SEL as in the base case we obtain E(q1<12)a E(q1qn+2)and

E(OL(E(q1 q2)) OL(E(q1 qn+2))) = E(qzqm_z) € I, i.e.
E(aqay) o1 Blagap,,) -

But then by the IE-closure of I, E(q1qn+2)€ I, 1.é:

91 ®g(1) 9p+2 Y

To prove that R(I) is symmetric, suppose that g *2(1) T for any

+
Lgr” Let o € SELL' such that a(E(t1't2))— t1. Then

E(qq) 5 E(r g)and E(a(E(gqqg)) a(E(rq))) =E(Qqr)€e I, i.e.

q,re€T

E(q q) I E(rq) .

Obviously E(rqg) € LIT and by the I-reflexivity of I, E(qqg) € I.

rgr
Hence E(r gq) € I, because I is IE-closed, i.e. r =2 (1) q . K

Definition 6.3 For a LE-restricted interpretation I we define

the rewrite-closure I* of I as

E *
* —_— 2
I = I U {KELIT_ _\AT_ _|L R(I) K for some L€ I}.HK

An important property of the rewrite-closure is that we do not

introduce any new I-ground literals:

Lemma 6.3 1If I is a IE-restricted interpretation, then
I =1I*nNn LIT

Igr’
Proof "c" Obvious, because I cI* and Ic:LITZgr.
"S>"  Tet KE I* nLITZgr' If KEI we are finished. For K € I*\I,
there exists some L €I such that L _i»R(I) K. By assumption
I(EIJTZgr and with Ic:LITZgr we know that L.EIJTZgr. By Lemma 6.2
we find that R(I) is I-maximal, hence by the I-Rewrite Theorem (5.5),
L —iAZR(I) K, i.e. there exists an R(I)-rewrite
L = L, 071" Ly ... L, 7= L,4q = K, such that {L1,...,Ln+1}cLITZgr.

n
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It is easily verified by induction on n using the IE-closure
of I, that {L1,...,Ln+1}CI, hence K€I. K
Now we prove that the rewrite closure of a IE-restricted

interpretation is always an interpretation:

Lemma 6.4 If I is a IE-restricted interpretation, then

I* is an interpretation.

Proof Assume by contradiction that I* is not an interpretation,
i.e. {0,0% < 1* for some ground literal Q. Then by Definition 6.3

there exist literals L and K€ in I such that

L —, a k€ 2, -
c ¥ c . * *
With KW — Q~ we obtain K

R(I) ——»B(I) Q and since __*R(I) lf
symmetric by Lemma 6.2 we have Q — K. Finally with L —
, o «  R(I) : R(I)
we find by the transitivity of R (1) that L —an(I) K.

Now suppose that K(EATgr. Then Q(EATgr and by Definition 6.3 Q€ I.

. c o]
But then QEZLITZgr, i.e. Q EIJTZgr, hence by Lemma 6.3 Q €1

contradicting that I is an interpretation. V

So let us assume that KQZATgr. Then by Definition 6.3 K€ I* and

since K°€1, K°€LIT. _, i.e. K€LIT
Igr Igr
and again I would not be an interpretation. v §

Hence by Lemma 6.3 K€I

Using Lemma 6.4 we can construct a model of RPAR(S) from a model

of ParZ(S):

Lemma 6.5 If Par.(S) is satisfiable, then RPar (S) is satisfiable.

5

Proof By Lemma 6.1 there exists a model M of ParZ(S), which is a
LE-restricted interpretation. Hence by Lemma 6.4, M* is an
interpretation. We prove by induction on the length n of a

= C, that M¥ satisfies each clause C € RPar(S).

deduction SE 5

Zgr
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Base (Case n=0: Then CEZSE cPar.(S) and M* N C + @, because M

Igr b
satisfies ParZ(S) and McM*, [
Induction Step: Let C = (CL—L) U (CxE(a(L)a(K))) U {K} be a

paramodulant of the clauses C
E(a(L)a (K)) .Then

L’ CEGRPar(S) upon L and

E

L ~ K and L ¢ AT
o gT

by Definition 6.1. Our induction hypotheses is to assume that
* *
M* n CL + @ and M* N CE £ 0.

If M* N (CL-IJ # @ or M¥* n (CE—E(a(L)a(K))) + @ then
M*¥* N C + ¢ and we are finished.

So let us assume that M¥* ﬂ(CL—L) = @ and M* n (CE—E(a(L)a(K))) = @.
Then L €M* and E(a(L)a(K)) € M*¥ and by Definition 6.3 E(a(L)a(K)) € M.
*

Using L ~ K we obtain L ?;» K, i.e. L — K.

M R (M)

*
K.

*
With L € M* we find some Q €M such that Q —2(M) L, hence Q 2
From L({ATgr we obtain K¢AT§r. Hence by Definition 6.3 KeM*, i.e.
M*NnC = {K} # §. B K
Using Lemma 6.5 we can prove
Theorem 6.6 (Ground Completeness Theorem for IRP)
If SZgr is E-unsatisfiable, then SZgr lZ o.
Proof 1If SZgr is E-unsatisfiable, then Par(S) is E-unsatisfiable
because SZgr c Par(S). By Theorem 1 from [WR73] we infer that

Par(S) is unsatisfiable, hence RPar(S) is unsatisfiable [Lov78].
But then by contraposition of Lemma 6.5 ParZ(S) is unsatisfiable
and there exists a finite and unsatisfiable subset P of ParZ(S)
by the Compactness Theorem [Lov78]. Hence P LE o by the

completeness of the RP-calculus [Rob65] and since there is no

difference between a I-deduction TR and a deduction rﬁ from a
Z-ground clause set, we can write P g °- From P<:ParZ(S) we
infer that Sggr Lfﬁ C for each C€P and we obtain finally

E

sZgr lZ o. B
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7. Unification under Sorts

An important result of first-order unification theory is the
Unification Theorem [Rob65] which states the existence of a

most general unifier for a set of unifiable terms.

Unfortunately for unification under sorts, the Unification
Theorem only holds for signatures, where <%,<> is a tree
structure. In general we must content ourselves with a weaker

result.

We start with a lemma, which allows to distinguish I-substitutions

from ordinary substitutions by inspecting their restriction on ¥:

Lemma 7.1 If o € SUB, then O'ESUBZ iff ox:ETZ and [ox] < [x]

for each x €V.

Proof "=" Since O'ESUBZ iff O(TZ)C:TZ’ we know that o(D)::TZ,

i.e. ox.ETZ for each x € . Now assume by way of contradiction

that [oxo] £ [xo] for some XOE V. If f€F
then f(xo) ETZ

[oxo] $[XO] = [f]1. Hence o(Tz)ctTZ, i.e. O'ESUBZ. vV

[%. T . for some s € §,
14

but Gf(xo) = f(oxo)QTZ by ©Lemma 3.3 because

"«<" We prove by structural induction on t that ot.ETZ for each
tE'TZ:

Base Case t € €: Then ot = tE’I‘Z by Lemma 3.3 (1). [/

Base Case t € ¥: Then ot €Ty by assumption. [/

Induction Step: Suppose that t = f(t1...tn)E’I‘Z and oti ETZ for

"each i with 1<i<n. If £ty €V, then [oti] s[ti] by assumption, and
iE ty ¢ ¥, then [oti] = [ti] by Lemma 3.1 (2). Hence [oti] s[ti] s[f]i

for each i, i.e. ot €T, by Lemma 3.3 (2). Z B

Corollary 7.2 1If o€ SUBy; and t€T, then [ot] < [t].

Proof If t€9Y, then [ot] <[t] by Lemma 7.1 and if t ¢ ¥, then
[ot] = [t] by Lemma 3.1 (2). K
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For unification under sorts, the notion of I-compatibility plays

a central role:

Definition 7.1 Let D c TZ be unifiable. D is I-compatible iff

[x] < [y] or [x] = [y] for all x,y € vars (D) with 1tx = 1y, where

T is an mgu of D. §

Note that this definition is independent of the choice of the

mgu 1t of D.

We show that each I-unifiable set of I-terms which is I-

compatible possesses a I-mgu:

Lemma 7.3 Let Dc'I‘Z be I-unifiable. If D is I-compatible,

then there exists a I-mgu of D.

Proof Let 6 ESUBZ be a unifier of D and T € SUB an mgu of D.

Then there exist T1,...f%1€SUB, n>1, such that

(1) © = Tqi° °T, 7

(2) COD(Ti) = {yi} , for each i with 1 <i<n and some y; €9
(3) cob(r ) n v =¢ '

(4) COD(Ti)IWCOD(Tj) =@ , for each i,j with 1<i,j<n and i #j, and
(5) DOM(Tk)IWDOM(Tl) =@ , for each k, 1 with 1<k ,1<n and k #1.

For each i with 1 <1i <n we define an order relation Si on

| DOM () U {y;} by
(6) u 5V iff [u] <[v], for each u,V’EDOM(Ti) U{yi}.

<5 is connex, i.e. u sy voru 2, v for each u,v(EDOM(Ti) U {yi},
because Tu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>