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Abstract

The first-order calculus whose well formed formulas are clauses

and whose s o l e  inference rules are f a c t o r i z a t i o n ,  resolution

and paramodulation i s  extended to a many—sorted calculus. As a

basis for Automated Theorem Proving, this many—sorted calculus

leads to a remarkable reduction o f  the search space and also to

simpler proofs. Soundness and completeness of the new calculus

and the Sort-Theorem, which relates the many—sorted calculus to

i t s  one-sorted counterpart, are shown. In addition results

about term rewriting and unification i n  a many—sorted calculus

are obtained. The practical consequences for an implementation

o f an automated theorem prover based on the many-sorted calculus

are described.
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"As a rule ,  " said Holmes,  "the more bizarre
a thing is the less mysterious it proves to
be. It is your comonplace, featureless
cases which are really  puz z l i ng . "

A.C. Doyle, The Red—Headed League

1. Introduction

Sorts are frequently used  i n  practical applications of the first-

order predicate calculus. For example we write formulas like

(i) Vx:S .  @(x)  and 3x:S .  ©(x)

and treat them formally as abbreviationsfor

(ii) Vx. S(x) D @(x) and 3x. S(x) A ©(x) .

We use umll:xn¢ed formulas, because they provide a convenient

shorthami notation for ordinary first-order formulas.But sorts

also influence the deductions from a given set of well sorted formulas.

For instance, i f  P i s  a predicate only defined on the sort.Z of

integers, we will never perform a deduction like s z .  P(x)F—P(V§) .

Proofs are simplified, because amcmy-sorted calculus is more adapted

to a many-sorted theory and hence not surprisingly deductions which

respect sorts as  well as the usage of well sorted fomlas reflect the

everyday usage of predicate logic. But which advantages do we really

have by using sorts and.umat1dnd of calculus are we actually

working in?

Let us sketch how a many-sorted (mehr‘sor‘tig) calculus is developed

from a given (sound and complete) first—order one—sorted Ufinsmflfig)
calculus: Assume we have a set of sort symbols, ordered by a given

andmortcndbr. Variable and function symbols (of our given calculus)

are associated with a certain sort symbol. The sort of a term, which

i s  different from a v a r i a b l e ,  i s  determined by the sort o f  its

outermost function symbol. In the construction of well sorted (sorten-
raflflfl formulas, we allow for each argument position.of a

function .or predicate symbol only well sorted terms o f  a certain

domainsort or of a subsort of this . d o m a i n s o r t .





The imflnwnaarmlas of the many-sorted calculus are the inference

rules of the given calculus, but with the restriction that onh/

well sorted formulas can be deduced by an application of the restricted

inference rules. Starting with well sorted formulas this guarantees

that only well sorted formulas are derived i n  a deduction. Now let

lf-é denote that ¢ is a theorem of the many-sorted calculus. We

write AX ET'¢ to indicate that there i s  a deduction of Q from the

hypotheses AX. Further let us assume that we have a no t ion  of

t ru th  for well sorted formulas. We write %7 Q to indicate the

validity of the well sorted formula Q and let AX %7 ¢ denote

the semantic implication. Obviously we are only interested i n

a many-sorted calculus which i s  sound  and complete, i.e. we

allow only definitions of PE and k? which guarantee

(1) WE ¢ iff Pf @ ,  for each well sorted formula Q.

Let u s  assume our definitions satisfy ( 1 ) .  Then we may ask,

which formulas do we expect a s  theorems of the many-sorted

calculus compared  to its one-sorted counterpart? T o  facilitate

a comparison between the calculi, we represent the relations

between the function symbols and the sort symbols a s  well a s

the subsort order by the set A2 of sort ax ioms  (Sor tenaxiome),

i.e. a set of first-order formulas. For a well sorted formula Q,

e.g. (i), the relativization 3 (Sortenbeschrh’nkung, Relat iv ierung)

of Q is the unabbrev ia t ed  version of ©,e.g. (ii), where sort

symbols are used  as unary predicate symbols to express the sort

o f  a variable. Now we can state what kind of theorems we expect

in a many—sorted calculus: Our definitions of PE and WE should

ensure

(2.1) "—2 (P iff AZ “—3

(2) and

(2.2) Ff ¢ iff A2 F— 3 , for each well sorted formula @.

Condition ( 2 )  i s  c a l l e d  the Sor t -Theorem (So r tensa t z ) ,  ( 2 .1 )  i s

its mode l theore t i c  part and (2.2) its proo f theore t i c  par t .





The Sort-Theorem also shows the advantages we have using a

many-sorted calculus: We obtain a shor t e r  deduc t ion  with sma l l e r
fo rmu las  from a sma l l e r  set of hypo theses ,  when

A
proving Ff ¢

instead of A2 k— @ .

The reason i s  that deductions about sortrelationships, which

are performed explicitly in the one-sorted calculus, are bu i l t
into the i n f e rence  mechan i sm  in the many—sorted calculus.

The connection between a first-order one-sorted calculus and

i t s  many-sorted counterpart can be summarized a s  follows:

H )
WE ¢ < > FE Q

(2.1) I (2.2)

A A
A2 W— ¢ < > A 2  p. ¢

(3)

(3)

are known. Then i n  order to show the commutativity o f  the above

Suppose soundness and completeness of the given calculus

diagram we either need a proof of both parts o f  the Sort-Theorem

( 2 .1  and 2.2) ( 2 .1  or 2.2) to-

gether with a proof of the soundness and completeness of the

or a proof o f  one o f  its parts

many-sorted calculus ( 1 ) .

In his thesis, J. Herbrand presented a many-sorted version of

his calculus and proved the prooftheoretic part o f  the Sort-

Theorem [Her30]. However Herbrand ' s  proof i s  inadequate, because

he d i d  not consider that certain deductions i n  h i s  one-sorted

calculus

c a l c u l u s .

proposed

subsorts

for this

cannot be translated to deductions i n  the many-sorted

Schmid t  [Sch38], who

a many-sorted version of  a Hilbert-Calculus without

This was pointed out by A.

and proved the prooftheoretic part o f  the Sort—Theorem

calulus [Sch38, Sch51].

H. Wang defined a many-sorted version of a Hilbert—Calculus with-

out function symbols and subsorts [Wan52]. He proved the soundness

and completeness of his calculus and the modeltheoretic part of

the Sort-Theorem.

prooftheoretic

Wang also gave an alternative proof of the

part of the Sort-Theorem by an application of

the Herbrand-Theorem.





P.C .  Gilmore pointed out that this proof i s  inadequate. He

extended the many-sorted calculus of Wang by the introduction

of subsorts and presented an improved version o f  the proof-

theoretic part of the Sort—Theorem for this extended calculus

[Gi158].

T. Hai lper in  presented a calculus which can be viewed as a

generalization of Wang 's  many-sorted calculus [Hai57]. In
this calculus sortrelationships can be expressed by arbitrary

first-order formulas i n s t e a d  o f  atomar formulas, i . e .  unary

predicates. Hai lper in  proved a theorem which corresponds to

the prooftheoretic part of the Sort—Theorem.

A. OberscheZp  [Obe62]  proposed several many—sorted versions

of a calculus of Montague and Henk in  [MH56]. In these calculi
function symbols and subsorts are admitted. OberscheZp proved

the soundness and completeness o f  his calculi and also gave

the proofs for the modeltheoretic parts o f  the Sort-Theorems.

A.V. Ideison discussed forms o f  many-sorted calculi of

constructive mathematical logic [Ide64], which are based

on the calculus o f  natural deduction [Gen34].

O O 0

With the emerging field of Automated  Theorem Prov ing  a first-

order calculus becomes a p rac t i ca l  tool to find mathematical

proofs. The advantages of a many-sorted calculus are well

recognized within this field, e.g. [Hay71, Hen72]. Also several

theorem proving programs have been based on some kind o f  a many—

sorted calculus, e.g. [Wey77,Cha78,BM79] (unfortunately without a

sound theoretical foundation). Thereby the works cited above

become of prac t i ca l  significance. Most theorem proving programs

are based on a first—order calculus whose inference rules are

factorization, re so lu t i on  and paramodu la t ion  [Rob65, WR73] and

whose formulas (called clauses) are i n  skolemized conjunctive

normal form [Lov78]. We call such a calculus an RP-ca lcu lus .





I n  this paper, we define the ZRP—calcu lus ,  i.e. a many-sorted

version o f  the RP-calculus, and introduce a notion of un-

satisfiability of sets of well sorted clauses.

We prove soundness and completeness of the XRP—calculus, as well

as the modeltheoretic part of the Sort-Theorem, i.e. we show

that the following diagram i s  commutative:

U )
s is ZE-unsatisfiable < > sE 'fiz‘fi n

( 2 . 1 )  (2.2)

A A
S U A)3 i s  E-unsatisfiable < > SE U A2 Ifi; a

(3)

Here SE denotes the extension of the set S of well- sorted clauses by all

functionally-reflexive axioms [WR73] and n denotes the empty

c l a u s e .

We consider t e rm  rewr i t i ng  under  sorts because important aspects

of paramodulation are related to term rewriting.

We exhibit that the ZRP—calculus i s  only complete provided the

subsort order imposes a certain structure on the set of sort

symbols. Moreover i n  the case of paramodulation the set o f  well

sorted clauses to be refuted has to be in a certain format to

ensure completeness. These restrictions are spec i f i c  to the ZRP-

calculus,becau&athey are imposed by the principle of mos t  generality,

which i s  e s s e n t i a l  for the R P - c a l c u l u s .

We show that these restrictions can be abandoned without loosing

completeness, i f  the ZRP-calculus i s  extended by an additional

inference rule, the so called weaken ing  ru l e .  This rule is

specific to a many-sorted calculus, because i t  cannot be applied

i f  only one sort i s  given, and hence in our formulation i s  the RP-

calculus but a special case of  the ERP—calculus. We present special

results about unification under sorts, which are necessitated by the

weakening rule.





The prac t i ca l  application of the ERP—calculus i n  Automated

Theorem Proving, leads to a drastic reduc t ion  o f  the search

space  and to shorter refutations of smaller sets of shorter

c lauses  as compared to the RP-calculus. We describe all

necessary modifications to extend an automated theorem prover

based on the R P - c a l c u l u s ,  yielding an automated theorem prover

for the ERP-calculus and i t  can be seen that the advantages o f

the ZRP—calculus hardly cause any additional costs by the new

inference r u l e s .

The practical usefulness of the ZRP—calculus has been demonstrated

by an implementation i n  an existing proof procedure [BES81,0h182].

Throughout the paper we u s e  the following standard mathematical

notation:

i d  identity function

fIM function f restricted to a subset M o f  i t s  domain

f ( t ) +  t i s  the domain o f  the function f

f(t)+ not f(t)+

o composition of functions

I negation, e.g. x $ y means not x s y

lMl cardinality o f  s e t  M

M\N set theoretic difference o f  M and N

M—L abbreviates M\{L}

m end of case i n  a proof by cases

8 end o f  an example, definition or proof

V contradiction





2. Bas i s  No t ions  of the RP-Ca lcu lus

Syn tac t i c  No t ions  Given pairwise disjoint alphabets, the

infinite s e t  o f  variable symbo l s  D ,  the non-empty s e t  of

function symbo l s  F and the non-empty set of pred ica t e  s ymbo l s  P,

together with an ar i t y—func t ion  for function and predicate

symbols, we let T denote the s e t  of a l l  well formed terms over

v and F and let AT denote the s e t  of a l l  well formed a toms  over D ,

F and P. C stands for the set of all cons tan t  symbols, i.e.

function symbols with arity 0.

A literal is an atom (also called a positive literal) or an

expression o f  the form not A ,  where A i s  an atom (also called

a negative literal). A pair of literals is called complemen tary ,
i f  one of the literals i s  positive and the other i s  negative.

Given a literal L,|IA denotes the a tom o f L and LC denotes L's

complemen t .  The pred ica t e  letter of L i s  P iff ILI = P(t1...tn)

for some tiEET. LIT denotes the s e t  o f  all literals. As usual a

c lause  is a finite set of literals and [3 denotes the empty  c lause .
The c lause  l anguage  L i s  the set of all clauses over D, F and P.

For a s e t  D of terms, literals or clauses, vars(D) i s  defined as

the set of all variable symbols i n  D. D is variable disjoint iff
for a l l  q,rEED,vars({q}) n vars({r}) = ¢ ,  provided that q #:r.

The subscript gr abbreviates ground ,  which stands for variable

free, e.g. a ground  term is a variable free term and Tgr is the

s et  of a l l  ground terms. A T g r ’  LITgr and E g r  are deflned 1 n  a

similar way.

When concerned with equality reasoning, we u s e  E as the syntactic

equality sign and assert BEEP. SE denotes the ex t ens ion  of the

clause s e t  S by a l l  functionally-reflexive axioms [WR73]. The

set of all equality a toms  ATE i s  defined as ATE = {E(q:r)h;gr€ T}.

Subs t i t u t i ons  and Unfifiers A substitution 0 i s  a function which

maps terms to terms and satisfies

(1) coo = 0 ,

(2) O I C  = 1 d  ,

(3) 0f(t1...tn) = f(0t1...ctn) , and

(4) { xev lox  =t x} i s  finite





By conditions ( 1 ) ,  (2) and (3) each substitution 0 i s  completely

determined by i t s  restriction 0 | ” .  We make frequently use of

this property, for instance we write {x1+t1,...,xn+tn} to represen t
a substitution 0 with 0|n xi = ti. 8 i s  the identity substitution

and SUB denotes the s e t  o f  a l l  substitutions. Applications o f

substitutions to literals, to sets of terms and to sets of

literals are defined i n  the obvious way.

The domain  o f  a substitution 0 ,  denoted DOM(0), i s  the s e t  of

all variable symbols x with ox firx. The codomain  of o, denoted

COD(0), i s  defined as 0(DOM(0) ) .  We say two substitutions e and

A agree  on a subset V of D, denoted 9==A[V] iff 6x = Ax for each

xEEV.  The following lemma i s  frequently used throughout this

paper:

Lemma 2.1 Let 8 , A € S U B ,  t E T  and V , W C  10. Then

(1) = [V] i s  an equivalence relation ,

(2) 6 A[VLJW] iff 8 = A[V] and 6 = A[W] , and

(3) i f  vars({t})c2V and e = A[V], then a t  = At .

For a given subset V of v, a renaming substitution for V is a

substitution v satisfying

(1) DOM(v) V I

(2) COD(V)  C D , and

(3) V I V  i s  injective

A renaming substitution for a clause C or for a s e t  of clauses S

i s  a renaming substitution for the set of variable symbols i n  C

or i n  S .

We say a substitution 0 i s  a ground  substitution iff COD(0)<: T g r '

SUBgr denotes the s e t  o f  a l l  ground substitutions. For a clause C

and a substitution 0 ,  0C i s  called an instance of C .  If 0C€E£gr,

then 0C i s  a ground  instance of C.

Given a non—empty s e t  D o f  terms or atoms, we c a l l  a substitution

0 a unifier of D and say that D is un i f i ab l e  iff l oD l  = 1. o is
called a mos t  genera l  unifier (or mgu) of D iff o unifies D and

satisfies 6 = 800 for each unifier e o f  D .





Sub te rm  se l ec to r s  A partial function a which maps terms to

terms i s  called an argument selector i f f  there exists a natural

number k for a such that for each term f(t1,...,tn),a(f(t1...tn))==tk,

provided ksn.SEL denotes the s e t  of a l l  argument selectors. The

identity function on terms, an argument selector or a finite

composition o f  argument selectors i s  c a l l e d  a subterm s e l e c t o r ,

or selector for short. We let SEL*‘deno te  the s e t  o f  all selectors

and define SEL+ as SEL*\ {1l
occurrences  or pos i t i ons  i n  the literature and are often re-

}. Selectors are sometimes called

presented by finite strings of natural numbers (cf. [R0573]).

Each selector a induces a symmetric and transitive relation 3 on

T by q E r i f f  a(q)+, a(r)+ and q differs from r at most on the

subterms of q and r selected by a. 4 is a partial order  on SEL*
defined as 3‘18 iff a = 608 for some 6 ESEL+, i.e. a selects a

subterm of the subterm selected by B.

A pair of selectors a and B are called weak ly  independent, denoted

a i 8, iff a + B and a‘i B. a and B are strongly independent,
written a i 8 ,  i f f  a f 8 and a é B,where a g B abbreviates a 6 B

or a = B .

For a given s e t  of literals I ,  a pair o f  terms qpr and a selector

a ,  the expression q EaI r i s  an abbreviation for q a r and

E(a(q)a(r))EEI. The following lemma i s  frequently used i n  the

subsequent sections (cf. [Ros73]):

Lemma 2 . 2  Let q , r € T ,  a , B € S E L * ' ,  I C L I T  and OESUB.  Then

(1) i f  q 3 r and a(q) = a(r), then q = r ,

(2) q Bga r 1ff a(q) E a(r) and q E r ,

(3) q 3:641 r 1 f f  a(q) gal a(r) and q a r ,

(4) i f  q a r ,  then oq E o r  ,

(5) i f  a(q)+, then 0a(q) = a(oq) ,

(6) i f  a i B and q E r ,  then a(q) = a(r) , and

(7) 1 f  a i B and q 5+1 q gwlr for some q£?P,

-—-) ' lt h e a I r  C — F I r f o r  s o m e r  E T
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Selectors different from id are applied to atoms as to terms.

For a literal L we assert mtg) = a( lL l ) .  For a pair of literals

L and K ,  we define L a K as for terms but with the proviso that

either both literals have to be positive or both have to be

negative. Additionally we assert that for a literal L ,  i l ( L ) +

i s  always false. Then for a pair of literals L and K ,  L E61 K i s

defined as for terms and Lemma 2 . 2  holds for literals as w e l l .

Term Rewr i t i ng  A (g round)  term rewr i t i ng  s y s t em  is a set of

directed equations R = {E(qiri) EATgrli  € J }  where Jc i lN .  We define

”R by q =>Rr 'iffE(q r) E R and we use —->R to denote the reduc t ion
relation associated with R, that i s  q —+R r iff q awR r for some

aEESEL*. We use the standard notation —i+R for the transitive
*

c losure  o f  —+R and ——»R for the re f l ex i ve  c lo sure  of —:»R.  I f

for two ground terms q and r there exists a sequence q1,...,qn+1
*€ Tgr and a sequence a 1 , . . . , a n E E S E L  such that

q = ‘11 (ac—1"}? q 2 " ' q n  cT’R qn+1=  r '  we call q1 oT’ 62""qn+1n . 1 n
an R-rewr i t e  of r f rom q with l eng th  n.

a
R is called symmet r i c  iff a n  is a symmetric relation. ——+R is

an equ iva l ence  relation if R i s  symmetric.

We like to manipulate ground  literals by a term rewriting system

and extend —»R i n  the obvious way, i.e. L —+R K for a pair o f

ground literals L and K i f f  L EeR K for some GEESEL+.

For a set of literals I ,  the t e rm  rewr i t i ng  s y s t em  R(I) con ta ined
i n  I i s  defined as R ( I )  = I f 1 A T g r .

In f e rence  Ru le s  and Deduc t ions  Res(C,L,D,K,O) = c (C-L) l J0 (D—K)

i s  the re so l ven t  of clauses C and D upon literals L and K ,  where

o is an mgu of {|L|,IK|}. A substitution 0 f ac to r s  a clause C and
0 C  i s  a f ac to r  of C i f f  o i s  an mgu o f  some subset o f C or c = yer,

T factors C and y i s  an mgu o f  some subset o f  1C.

Par(C,L,D,E(q r),a,o) = 0(C—L) U o(D-E(q r))U {UK} i s  a paramodu lan t

o f  clauses C and D upon L and E(q r )  i f f  o i s  an mgu o f

{a(L),q}, 0L 3 OK and a(0K)==or (or o is an mgu of {a(L),r},
0L 3 UK and a(oK) = oq), where 0K is the modulant literal [Lov78].

Given a variable disjoint set S of clauses and a clause C, S F—C

denotes the existence of a deduc t ion  of C from S, i.e. there

exists a l i s t  o f  clauses <B1" " 'Bn>  such that Bn = C and 8 1 6 5 8
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or Bi = v i R ,  where 1 : s i : ; n ,  R i s  a resolvent, paramodulant

or factor of clauses preceeding Bi i n  the list and vi i s  a

renaming substitution for SlJ{B1,...,Bi_1}. As usual, a
re fu ta t i on  of S i s  a deduction of the empty clause from S.

S r§»C i s  a deduction without paramodulation and 5 L5 is a

deduction without r e s o l u t i o n .

Seman t i c  No t ions  Given a s e t  o f  clauses S ,  Sgr denotes the

set of all ground  in s tances  of the clauses i n  S. Computing

Sgr for a given clause s e t  S ,  we will agree that F and P are

minimal, i.e. each symbol from F and I’ i s  used i n  at least

one o f  the clauses o f  S .  This guarantees that Tgr i s  the

Herbrand  Universe of S and ATgr i s  the Herbrand  Base  of S

[Lov78], i f  we assume i n  addition that C=={C} for the case

that S contains no constant symbol at all.

A (possibly infinite) subset I of LITgr i s  called an

interpretation iff for each L E  I ,  L c $  I. I is called re f l ex i ve

iff for each t E T g r ,  E(tt)€ I. We say that I is E-cZosed  iff

for each L E  I ,  K E L I T g r  and some on E S E L + ,  K E  I whenever L 671 K .

A reflexive and E-closed interpretation is an E- in t e rpre ta t i on .
The following lemma i s  used  constantly:

Lemma 2 . 3  Let I C I L I T g r  be E - c l o s e d .  Then

(1) i f  I i s  reflexive, then E(q r ) € I  i f f  E ( r q ) € I  , and

3(1 )  K ,  then K E I(2) if LEI, KELITgr and L 1-»

An interpretation I sa t i s f i e s  a g round  c lause  C iff IFIC #=¢.

I sa t i s f i e s  a c lause  C iff I satisfies each ground instance

0C of C. I sa t i s f i e s  a set of c lauses  S iff I satisfies each

clause i n  S. In this case I i s  a mode l  of S and S is satisfiable.
If I i s  an E-interpretation, I E-sa t i s f i e s  S, I is an E-mode l
of S and S i s  E—sa t i s f i ab l e .
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3. Bas ic  Notions of the XRP-Ca lcu lus

Sorts and Signatures Let S be a finite and non-empty set of

sort symbo l s .  The subsort order  :5 imposed on 5 is a partial
order on S. We say 51 i s  a subsort of $ 2  and 52 i s  a super—

' ' ' fs o r t  o f  s 1  1 f f  s 1  3 5  5 2 .  We u s e  5 1  < 5  3 2  as an abbreV1at10n o r

s andgart 52. s1 i s  a d i rec t  subsor t  of 5 2 ,  s1 ‘«3 5 2 ,s s1 S 2
i f f  s < 5 2  and there i s  no 5 with 5 < 5  5 < 5  5 2 .  I f  S i s1 S 1
knownifixmlthe context we s h a l l  sometimes omit the i n d i c e s ,

e.g. we write 5 for 5 5 '

<$ ,<  > is a well f ounded  set, because 5 is a finite and < is

irreflexive and assymmetric. This fact will be used i n  later

proofs. Subsequently we only consider ordered sets of sorts

symbols <5 ,s> ,  which posess a max ima l  e l emen t  5 0 '  i.e. s 5 s 0

for each 5635 .  We say that <5 ,s>  i s  a t r e e  s t r u c t u r e ,  when—

ever 51 2 s s 5 2  implies s1 5 5 2  or 51 2 5 2  for all sort symbols

5 ,  S 1 !  3265 '

For a given <S ,s>  let 5 *  be the s e t  of a ll finite strings from

5 ,  including the empty string e .  Now for each 5655 and for each

mr€5*  let Us be a s e t  o f  variable symbols, 7w 5 a s e t  o f  function
I

symbols and PW a s e t  of predicate symbols such that all these

sets are pairwise disjoint. Additionally we shall assume, that

for each s which i s  minimal i n  <$ ,s> ,  Fe ,s  ¢ w and we assert

that Efi iP soso .  Then an 5—sorted s igna ture  2 is a family 2W
o f  sets such that z w , s  = ”s U F w , s  U PW. Setting v = U ”s’

z : = *F U F w , s ’  C Fe ,s  and P U PW for each 3 E S  and each w € $  ,

we d e f i n e  terms, atoms, l i t e r a l s  e . t . c .  as i n  s e c t i o n  2 .

, S

Syn tac t i c  No t ions  For a variable or function symbol a, the

rangesor t  [a] of a is 5 iff aEEDS U FW 5 (for some wEES*).  For
I

a function or predicate symbol m, the ith domainsor t  [m]i of m

1 5  Si 1 f f  mEEFS1 . . . sk ,s  U P s 1 . . . s k ’  prOV1ded 1:Sl 5 k .  The sort

[ t ]  of a term t i s  3 i f f  tGEDS U Fe 5 or t = f(t1...t and)r k
[f] = s.

For a term t and a selector a with a(t)+ we define the a—max imaz

sort of t, denoted [ t l a '  by
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[ t ] :  i f  0!. = i d
(1) [ t ] a  IT

[f]i, 1 f  t = f(t1...tn), a(t) = ti and aEESEL , and(2) [ t JG

(3) [t]a [5(t)]B, i f  on = 805 with B E S E L  and 6 E S E L +  .

For aEESEL+ we apply this definition to atoms as well and assert

for each literal L that [ L ] a  = [ IL | ] a '  The following lemma is

easy to prove:

Lemma 3 . ]  Let q , r € T ,  0L,B€SEL* and O E S U B .  Then

. + _
(1) 1f 8 E SEL , then [q JBoa  — [a(q)]B ,

(2) i f  q ¢ D and a(q)+, then [q l a  = [oq l a  ,

(3) i f  q g r and a f B ,  then [ a (q ) ]  = [a (r ) ]  , and

(4) if q E r and a % B, then [q]a = [r16 .

Given an S-sorted signature 2 ,  a term t i s  c a l l e d  a w e l l  sor t ed

term or a Z- t e rm  i f f  [a(t)] s [ t ] a  for each  selector a with a(t)+.

We say an atom A i s  well sor t ed  or A i s  a Z—atom i f f  AEEPe or

[a(A)] s [A]a for each  selector a with a(A)+. T Z  denotes the

s e t  o f  a l l  Z - t e r m s ,  ATZ denotes the s e t  o f  a l l  Z-atoms and LITz

is set of all Z—Ziterals. Later we shall frequently use the

following lemmata:

Lemma 3.2 Let q E T z ,  r E T  and aESEL*.

I f  q a: r ,  a(r) E T  and [ a ( r ) ]  s [ r ] a ,  then r E T Z .2

Lemma 3.3 Let s€$ ,  fEJFS  s and f(q1...qn) E T .  Then
1 . . .  n ,

( 1 )  ” S  U Fe S C T E  ,and

(2) f(q1...qn) ET):  iff qi E'I‘Z and [qi] 5 Si for each i with 1 3 1  5 n .
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Obviously these lemmata hold for literals as well. A well sorted

clause or a X—cZause is a finite set of Z—literals. The many-

sor t ed  l anguage  L2 is the set of all 2-c1auses. nr denotes the

s e t  o f  a l l  varlable free Z - t e r m s .  A T Z g r '  L I T Z g r  and L Z g r  are

defined i n  a similar way.

Sometimes we use sort symbols also as unary predicate symbols.

We assume that s 6 P S  for each 5 E S  and define LI'I's ( L I T ? )  as the s e t

of all (E—)literals :in the ex t ended  language  £5 (5:). An atom or

a literal whose predicate letter i s  a sort symbol i s  called a

sort a tom or a sort literal respectively.

Sort Ax ioms  and Relativizations Given an 5-sorted signature 2 ,

we define the s e t  A2 of a l l  sort ax ioms  of  X as the smallest

subset o f  L: which satisfies

)3 .
(1) { 3 ( a ) } E A , 1 f a € F e S  ,

I

Z
(2) {not s1(x1),...,not sk(xk), s(f(x1...xk))}€A ,

i f x i e n s . ’ f € F s . . . s , s  a n d x i  * x j  ,
1 1 k

(3) { n o t  51 (y), 52(y)} 6 A 2 ,  i f  yEDS and s1<<  5 2  , and
1

( 4 )  no clause i n  AZ i s  a variant ( i . e .  can be obtained by a
. . . . Z .

renamlng s u b s t l t u t l o n )  o f  another clause 1 n  A Z  and A 1 8

variable disjoint.

I f  13 i s  finite, by condition (4) AZ i s  finite.

A
For a E—clause C, the relativization C)3 of c lause  C is a clause
in L: and defined as

A):

C — {not s1(x1),...,n0t Sn (xn )} l JC

where xiéivs and {x1,...,xn} = vars(C). The relativization of a
- A

E—clause  s e t l s ,  denoted S E ,  i s  the subset of L: defined as

A A
s2 = {czeng‘lces}

A A A
I f  E i s  known from the context we write C instead o f  C E  and S for
AS):





15

Subs t i t u t i ons  and Unifiers A 2- subs t i t u t i on  o is a substitution
satisfying C(TZ)C:T2’  SUBZ denotes the set of all E-substitutions.

A Z—renaming  substitution v for a s e t  D o f variables, literals or

clauses i s  a renaming substitution for D such that [vx] = [x] for

each x650 .  A Z-ground  substitution 0 i s  a X-substitution with

COD(o)<:T  . SUB denotes the s e t  of a l l  Z-ground substitutions.Zgr Zgr

For a E—clause C and a Z—substitution 0 ,  0C  i s  called a 2- in s tance

of C .  I f  U C E E Z g r ,

following lemma i s  easily shown:

then 0C  is a z -ground  instance of C. The

Lemma 3 . 4  Let 8 , 0  ESUB}3 and A E SUB.  Then

( 1 )  i f  e o o  E S U B ,  then G o o  ESUBZ ,

( 2 )  i f  e = A o o , t h e n  6 = G o a  for some GEESUBZ ,

( 3 )  0 ( L I T Z )  c LITZ , and

(4) C(52)  C 132 .

A set D of Z-terms or Z-atoms is Z—unifiable iff D is unifiable

with a Z-substitution 0. Then a is a Z-un i f i e r  of D. o is a Z—mgu
o f D i f f  o i s  mgu o f  D and oEESUBE.

A E—substitution 11 i s  a weaken ing  substitution for a set V c D

iff11 s a t i s f i e s

(1) COD(u)  c D ,

( 2 )  CODUJ)  n V = ¢ I

(3) u l v  i s  injective , and

(4) [uX] < [X], if xEEDOM(u )  .

For each V c D ,  WSUB(V) denotes the s et of all weakening

substitutions for V .  Obviously eGEWSUB(V) and WSUB(V) c SUBZ.
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Term Rewritiflg For a (ground) term rewriting system R we define

the Z—reduc t ion  relation #23 associated with R and a signature 2
+ . . .

= . —-e s the tran51t1ve closure of
by *2}: fa n ( T Z g r  x T Z g r )  2:12 1 + .
42R and _ Q Z R  i s  the reflexive closure o f  ——»ER. R i s  a Z—maxzmal

+ .
term rewriting system i f f  ”R = ——»ZR. Note that 1 n  general a E-

maximal term rewriting system is i n f i n i t e .  The following lemma is

frequently used throughout this paper:

Lemma 3.5 Let I! be a Z-maximal term rewriting system, q,rEETZ ,

t € { q , r }  and a , B € S E L * .  Then
gr

(1) 1 f  q =>R r ,  then t E T Z g r  , and

(2) i f  q EaR r ,  a < B and a(t)+, then [a(t)] s [ t 1 a  .

In f e rence  Ru le s  and Deduc t ions  A resolvent R of two X—clauses is

a Z—reso lven t  iff the substitution used  to form R is a Z-substitution.

I f  a Z-substitution factors a Z-clause, then this factor i s  a X-

f ac to r .  I f  P = Par(C,L,D,E(q1fi,a,o) i s  a parmodulant of  the E-

clauses C and D, o E S U B Z  and [orl:s[oIJa (or [cq]:s[cL]a if  we

replace o r  by oq), then P i s  called a Z-paramodu lan t .  I f  C i s  a

Z-clause and u i s  a weakening substitution for some V:>vars(C),

then u C  i s  a weakened  var ian t  o f C .  Obviously, each Z-resolvent,

Z-factor, Z-paramodulant and each weakened variant i s  a Z-clause.

Given a variable disjoint s e t  of  Z—clauses S ,  S Lf-C denotes the

existence o f  a Z-deduction o f  C from S ,  i . e .  there e x i s t s  a l i s t

o f  Z - c l a u s e s  < B  , . . . , B  > such that B = C and B.€ES  or B. = v . R ,1 n n 1 1 1
where 1:;i:;n, R i s  a Z-resolvent, Z-factor, Z—paramodulant or

a weakened variant o f  clauses preceeding Bi i n  the list and vi i s

a E-renaming substitution for SlJ{B1,...,Bi_ }..A Z-refutation is1

a Z-deduction o f  the empty clause. S #33 C denotes a Z-deduction

without Z-paramodulants and S FEE C i s  a Z-deduction without 2 -

r e s o l u t i o n .
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Seman t i c  No t ions  Given a set of z-clauses S ,  SZgr denotes the

set of a l l  Z—ground instances of  the Z-clauses i n  S .  An inter—

pretation I Z-sa t i s f i e s  a Z -cZause  C iff I satisfies each Z~

ground instance 0C of C. I E—sa t i s f i e s  a set of Z-cZauses  S iff

I 2-satisfies each clause i n  S. In this case, I i s  a Z-modeZ of

S and S i s  Z-sa t i s f i ab l e .  If i n  addition I i s  an E-interpretation,

then I ZE-sa t i s f i e s  S ,  I i s  a ZE-modeZ of S and S is ZE-

satisfiable. It is easy to prove that:

Lemma 3.6 Let S c £2 and 1': LITgr be an interpretatiOn. Then

( 1 )  S i s  Z-unsatisfiable i f f  S z g r  i s  unsatisfiable ,

( 2 )  S j A B Z E - u n s a t i s f i a b l e  i f f  S Z g r  i s  E-unsatisfiable ,

(3) S Z g r  c Sgr , and

( 4 )  i f  I Z - s a t i é f i e s  S ,  then I f l L I n r  z - s a t i s f i e s  S

Note that 3.6 (4) i n  general does not hold for ZE-satisfiability,

i.e. there exist E—interpretations I such that I n L I T Z g r  neither

i s  reflexive nor i s  E-closed and hence i s  no E-interpretation.

Throughout the paper <S ,s>  i s  a partially ordered s e t  of sort-

symbols, 2 i s  some S-sorted signature and S stands for any

variable disjoint set of E-clauses.
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4. Two Examples

The following examples should provide some motivation for our

work illustrating also the notions introduced so far. Also the

examples demonstrate that the ZRP-calculus i s  incomplete with-

out the weakening rule. Essentially there are two reasons for

this incompleteness:

- the Unification Theorem does  not hold in the ZRP-calculus,

- paramodulation is incomplete in the ZRP—calculus (without

the weakening rule).

Example  4.1 Let S = {A,B,C,D} with D << B «Z A and D «1 C «i A.

Let P E P A ,  dEFe  D ’  u E D B ,  VEDC and W E v D .  Now consider the set

of Z—clauses S = {{P(u)}, {not P(v)}}. S is Z-unsatisfiable,
because S = {{P(d)}, {not P(d)}} is unsatisfiable. But neither

Zgr
o .  with 0 ] ” {u+v} nor 'r with 1]” = {v+u} are Z-substitutions,
i . e .  no Z—resolvent can be derived from the two clauses in S .  But

with the weakening rule, we find a Z-refutation from S :

(C1) Vu. {P(u)} , giVen

(C2) Vv. {not P(v)},given

(R1 )  Vw. {P(w)} , weakened variant uC1 of C 1 ,  where u!” = {u+w}

(R2) n , Z-resolvent o f  C 2  and R 1 ,  because 0 with
0 | ”  = {v+w} is a Z-substitution.

Now let us consider the RP-calculus. Firstly we replace S by i t s
. . . A :

relat1v1zat10n S :

(C1 ' )  Vu. {not B(u), P(u )}  r 812

(c2') VV. {not C(v), not P(v)} , 323

The s e t  o f  sort axioms Az i s  obtained a s

(C3 ' )  Vx. {not D(x), B(x)} , since D‘« B

(C4 ' )  Vy. {not D(y), C(y)} , since D<K C
(C5') {D (d ) }  , since dEFe ’D

(C6 ' )  Vi. {not B(i), A(i)} , since B<K A

(C7 ' )  Vj. {not C(j), A(j)} , since C<K A

A .
Here i s  a refutation o f  (SZ l JAz ) :
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(R1') VW. {not D(w), P(w)} , Res(C1',C3')
(R2 ' )  Vv. {not C(v) .  not D(v)} , Res(R1',C2')
(R3') Vy. {not D(y)} , Res(R2',C4')

(R4') 0 , Res(R3',C5')

I f  we remove the literals whose predicate letters are sort symbols

from the clauses C1 ' ,  C2 ' ,  R1' and R2' we obtain the previous 2—

refutation o f S .  The advantage o f  the ZRP-calculus i s  obvious now:

We get a shorter refutation(R1 and R2 instead of R1',...,R4') of

shor t e r  clauses (Ci,R. instead of Ci,Ri) o f  a sma l l e r  set o f
A

clauses ( S  instead of (S2 U Az)).

Note that we propose the weakening rule as an additional inference

rule only in order to isolate the crucial point and to obtain

completeness results. In  a proof procedure  this rule i s  realized

by a modification of the unification a lgor i t hm  (see section 11),i.e.in our

system [BE581, Oh182] the empty clause is;,d.erived from C1 and C2

by a single resolution step using the substitution Gougn=={u+w,v+w}.

In order to compare the Search spaces involved with the many—sorted

calculus and i t s  one—sorted counterpart we find one initial resolvent

in S in contrast to S Q W W Z i n i t i a l  resolvents in (Q2 U AZ). This

demonstrates particularily well the drastic reduction o f  the

search space, when working in the ZRP-calculus instead o f  the

RP-calculus. 8

However the modification of the unification algorithm only covers

applications of the weakening rule as in the above example. Un-

fortunately there are cases which cannot be solved by the modified

unification (Cf. section 11 ) :

Example 4.2 Let s :  {A,B} with B <.<.Aand let P E  PB, {b1,b2} c Fe’B,
{x,y} c ”A and 2008 .  S = {{P(b1)}, {E(x y)}, {V101 P(b2)}} is a 2E-
unsatisfiable set of Z-clauses because S Z g r  = {{P(b1)}AIHb1kb)}pn.,
{ n o t  P(b2)}}is E-unsatisfiable. We can derive four paramodulants
from S, namely {P(X)}, {P(y)}, {not P(x)} and {not P(y)} neither
of which i s  a Z-clause, 1.9. not a Z-paramodulant. But with the

weakening rule we find a Z-refutation of S :

(C1) {P (b1 ) }  , given

(C2) Vx,y. {E(x y)} , given
(C3) { n o t  P ( b 2 ) }  , given
(C4). Vx,z. {E(x 2)} , weakened variant uC2 of C2,where p l v= {y+z }
(C5) Vz. {P(z)} . , E-paramodulant of C1 and C4

(C6) 0 , Z-resolvent of C 5  and C 3 .

E
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5. Term Rewr i t i ng  under  Sorts

Since certain aspects o f  paramodulation can best be described

using term rewr i t i ng  s y s t ems ,  we present some results for term

rewriting under sorts. For our purposes we can restrict our—

selves to the ground case. In this section we prove the

Z-Rewr i t e  Theorem If R is a Z—maximal term rewriting system,

t h e n - 1 +  n ( T  x T  )-_-_'.'.'._,
R Zgr Zgr Z R

For each pair q by the Z—Rewrite. +
Wlth q 1  _—#R q n + 11 ’qn+1  E T Z g r

from q 1  such that eachTheorem we can find an R—rewrite  of qn+1

term i n  this R—rewrite i s  a Z-ground term, provided R is Z-maximal.

This i s  illustrated i n  the following diagram:

Zgr

Figure  5.1 The Z-Rewrite Theorem
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Let u s  sketch the proof o f  the Z-Rewrite Theorem before we go

into details. The main problem i s  to prove that q1 L L Z R , q n + 1 ’  i f

{q2,...,qn} ¢ T Z g r '  We give a constructive proof to find an R-
rewrlte q1 » r 2  » ... » rn_1 » qn+1, Wth l S  shor t e r  than

the initially given R-rewrite

(1) q1 a? q2 . . .  qn a; qn+1 .

So we can successively remove  those terms in the R-rewrite, which

are not in T .
Zgr

The construction works as follows: By the E-Rewr i t e  Lemma we can

single out from (1) a certain R—rewrite

( 2 )  q i - 1  a;:: q i  . . .  q j_1  53:? q j ,  ( 2 $ 1 < j s n + 1 )

and it is shown in the Shift—Up Lemma that (2) is still an R—
rewrite, i f  we replace each selector ah (ishsj-1) by the selector

ai_1, prov1ded that ah < ai_1.

By the Sh i f t -Le f t  Lemma the selector a j_1  can be moved to the left

yielding a new R—rewrite

‘3) qi-1 073—: r i  071:: r1+1 ° r3—1 OT; q j  '
Additionally we can show that a .  = a. , i.e

3-1 1-1

(4) q._ ——» r. -——» . .. r._ ——. q.1 1 ai_1 1 ai_1 1+1 3 1 aj_2 3

is an Ikrewrite. Finally we use the Reduc t ion  Lemma to reduce (4)
to

(5) q ——-’R r._ ... r. ——-+ q. .1 1 ai_1 Ri+1

Thus we have found an R-rewrite

(6) q1 ET q2 ... qi_1 5;:T ri+1 ... r. —T—» q....qn_1 a» q n

o f  length n-1 .

Lemma 5.1 (Z—Rewrite Lemma) Let R be a E-maximal term rewriting

system and q1 a» q2 ... qn 5+ qn+1, n21, be an R—rewrite such that

q1,qn+1EEnr. If {q2,...,q:} ¢ T Z g r  then there exist indices 1

and j with 251<jsn+1 such that for each h with ishsj-1

I(1) aj_1 = ai_1

(2) ai_1(qh) € T Z g r  , and

(3) [ai_1(qh)] $ [ q h ] a .  .
1 - 1
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Proo f  Since {q2,...,qn} ¢ T i g r '  we know for some qEE{q2,...,qn}

and some BEESEL* that B(q)+ but [B(q ) ]  $ [q]B. Among those selectors
B we can choose a selector a which is minimal w.r.t. 4 .  Let qm be

a term o f  the R-rewrite with

(4) oc(qm)+ and [a(qm)] i [qm]a, (where Z s m s n )

Now starting on qm we move  left in the R-rewrite until we find the

f i r s t  term qi_1 with

(5) [a(qi_1)] s [ q i - 1 1 a '  if a(qi_1)+ (where i-1<m)

and starting again on qm we move  r igh t  in the R-rewrite until we

find the f i r s t  term qj with

(6) [a(qj)] s [ q j l a '  if a(qj)+ (where m<j).

The existence of qi_1 i s  guaranteed, because the leftmost term q1

in the R-rewrite is a Z—term and hence satisfies [ a (q1 ) ]  s [q1]a,
if a (q1 )+ .  By the same argument the r igh tmos t  term qn+1 in the R-

rewrite guarantees the existence o f  q j .

Suppose that a(qi_1)+. Since qi_1 is the first term to the left

of qm which satisfies ( 5 ) ,  we know that a(qi)+ and [a(qi)]:¥[qi]a.

Case  (t) a 4 “1-1 :  U51ng qi_1 &;::R qi and a(qi)+ we infer by

Lemma 3.5 (2) that [a(qi)] s [ q i l a '  ‘Vm

Case  (1%) a-z “1—1:  From qi_1 57—»q we 1nfer that a i — 1 ( q i ; fl + ” t m m c e

3 ( q i _ 1 ) + .  V m 1 — 1

Case  ( i i i )  a i a From q. R qi we infer by Lemma 2.2 (6)1-1 :  1 - 1  a .  -
1 - 1

that a(qi_ = a(qi) and with a(qi)+ we obtain a(qi_1)+. V m1 )

Hence we have proved that a(qi_1)+ and using (5) we can write

(7) a(qi_1)+ and [a(qi_1)] s [ q i - 1 ] a  (where 1-1<m)

By a similar argument we prove that a(qj)+ and using (6) we can

write

(8) a(qj)+ and [a(qj)] s [qjla (where m<j)

Now suppose that for some h' with ish'sj-1 [ a (qh . ) ] s ; [qh . ] a ,
provided a (qh , )+ :
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Case  ( i )  i s h '  < m :  Then q h .  inétead of  qi_1 i s  the f i r s t

term to the left of qm with [0L(qh.)] s [qh '1a '  i f  a(qh , )+ .  V [2

Case  (ii) h' = m: This case i s  impossible by (4 ) .  V'w

Case  ( i i i )  m < h' s j - 1 :  Then qh, instead of q .  is the f i r s t
term to the r igh t  of qm with [a(qh.)]:s[qh,]a, if a(qh , )+ .  V w

Thus we have proved

(9) a(qh)+ and [ a (qh ) ] : ; [ qh ]a  , for each h with i:sh:sj—1.

Let us assume by way of contradiction that a (qh . )  ¢ T Z g r  for

some h' with i:sh':sj—1. Since a (qh . )+  by (9), there exists

some (SEESEL+ such that 6a(qh,)+ and [cSoMt]at[o¢(qh.)](s==[qh.](S

But 60a 4 a contradicts the minimality of a .  V Thus we have

established that

0 C 1 .

( 10 )  a (qh )  E T Z g r ’  for each h with i:sh:s3-1.

Now suppose that a * ai_1. Then a é'di_1, a i ai_1 or a-> ai_1,

i . e .  a < a or a ' a .  :1 $ 1—1

Case  (i) a 4 ”1 -1 :  Since qi -——#R qi and a(qi)+ by (9),
‘1 “1-1

we can use Lemma 3.5 (2) to infer that [a(qi)]‘s[qi]a which

contradicts (9 ) .  V m

Case  (tt) a fi ai_1: 051ng qi R qi we obtaln
‘1 O‘1-1

[a(qi_1)]==[a(qi)] by Lemma 3.1 (3) and [ q i - 1 ] a = [ q i ] a  by Lemma

3.1 (4 ) .  Hence by (7) [a(qi)] s [ q i ] a  which contradicts (9). v 8

Hence

( 11 )  a a
i-1

and by a similar argument we can prove that

(12) CL 0..3-1'
From ( 11 )  and ( 12 )  we infer ( 1 ) ,  ( 11 )  and ( 10 )  gives us (2) and

finally we obtain (3) by (11)  and (9). E





2 4

Lemma 5.2 (Shift-Up Lemma) Let R be a Z-maximal term rewriting

system and q 1  5—» q 2  ... q n21, be an R—rewrite. If
1 n 5;# q n + 1 ’

' *{a1(q1),...,a1(qn+1)} c T Z g r ’  then there ex1st B1,...,BnEESEL

such that for each h with 1 S b  5 n :

( 2 )  B h  = a 1 ,  i f  a 4 a 1  , andh

(3) Bh = a h ,  i f  ah 4:- 0.1

Proo f  The proof i s  by induction on n.

Base  Case  n = 1 :  The lemma holds trivially. m

Induc t ion  Stqp: Let q1 5—» q 2  ... q n  a—+ qn+1 a——» qn+2 be an
1 n n+1

R _  l Irewrlte Wlth {a1(q1),...,a1(qn+1),a1(qn+2)} c T Z g r '  Our
induction hypotheses i s  to assume, that there exist some
B1,...,Bn€ESEL* such that conditions ( 1 ) ,  (2) and (3) are
s a t i s f i e d  for each h with 1 s h  s n .

For a % a1, we define B is a sequencen+1 n+1 = oLn+1 and B 1 " " ’ 8
of selectors with the desired properties.

n+1

I f  a 1 4 a 1 ,  then a = Boa1 for some BEESEL+, i.e. qn+ n + 1  n+1  Boa1  a+2 '

Now by Lemma 2.2(3) a1(qn+1)  7¥R a1(qn+2)  and qn+1 (ii qn+2. Since

a1 (qn+1 ) ,  a 1 ( q n + 2 ) € E n r  by assumption, we can wr1te

a1 (qn+1 )  _ * Z R  a1 (qn+1 )  and because R i s  Z-maximal we have

a1(qn+1)  ’R O‘1“‘1n+2)'

With qn+1  
071 qn+2, we obtain qn+1 611—912 qn+2 and setting Bn+1  = a1 ,

B1” " 'Bn+1  i s  a sequence o f  selectors such that for each h with

1 sh : sn+1  conditions ( 1 ) ,  (2) and (3) are satisfied. E E
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Lemma 5.3 (Shift-Left Lemma) Let kaatennrewriting system and

q1 a?» q 2  ... q n  a;+ q n + 1 ,  n21, be an R—rewrlte. I f  for each 1

wuth .1  s l z s n . a i  é a n ,  then there ex1st r 2 , . . . , r n E E T g r  such that

q1 an’n r 2  d‘f’R r 3  rn an'_1"R qn+1 '

Proo f  The proof i s  by induction on n .

Base  Case  n = 1: The lemma holds trivially. m

Induc t ion  Step: Let q1 5—» q 2  be an R-rewrite... q ————» q
n+1 “n+1  n+2

such that a .  i a for each i with 1 : s i : s n + 1 .
1 - n+1

Our induction hypotheses i s  to assume that the lemma holds for

all R—rewrites with length at most n .  Hence we are allowed to

assume that q 2  ———:eR r3 agaR r 4  ... rn+1 a—eR qn+2 for some
n+ n

r3,...,rn+1EETgr. From q1 qh q 2  5;:TeR r3 and a1 i an+1 we

infer by Lemma 2 . 2  (7) the existence o f  some rzéiTgr such that

q1 5;:74R r 2  Eqfih r 3. Hence we have found some r2,r3,...,rn+1EETgr

such that q1 5;:qfik r 2  37*2 r3 ... rn+1 5;»R qn+2. m K

Lemma 5.4 (Reduction Lemma) Let R be a Z—maximal term rewriting

system and q 1  7; q 2  . . .  q n 2 1 ,  be an R-rewrite. Thenn 7? qn+1 '

9‘1 3’3 qn+1 '

Proo f  For each i with 1s;i:;n we know that qi and
+

“(qi) ”R O‘(qi+1)' hence G i g i )  "”ZR 0‘(qi+1

max1mal. But then a (q1 )  ——»ZR a(qn+1) Slnce ——»ZR lS tran51t1ve

a q i + 1

) because R i s  Z -

and finally a (q1 )  Q R  a (qn+1 )  by the Z-maximality of R. Because

Of qi'az
with a (q1 )  Q R  a (qn+1 )  we infer q1 TVR qn+1 .  E

. and 51 ~ ' r i ive we hav ~ ncq1+1 nce a i s  t ans t e q1 a qn+1, he  e
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Theorem 5.5 (Z-Rewrite Theorem) I f  R i s  a Z-maximal term rewriting

system, then —:»R n ( T Z g r  X T Z g r )  = —i9£R

I! II ' + + +Proof 3 ObV1ous, because ——»ZR c ——»Rand ——+ERC=(nr X T Z g r )

"c" Let us assume by way of contradiction that there exists a pair
- +

o f  Z—ground termsq1 andqn+1 such that q 1  —+_->R q n + 1  but q1—+——»ZR q

Let
n+1 '

q 1  E—q q 2  " '  q n  E_g q n + 1

1 n

be an R-rewrite of qn+1 from q 1  with min ima l  length. We know that

n22, since q1, q n + 1 E E T Z g r  and q1 —+:»ZR qn+1. But then {q2,...,qn}¢:T
and by the Z—Rewrite Lemma ( 5 .1 )  there exist indices i and j with

2 s i < j s n+1 such that for each h with i s h s j-1

391-"

(1) aj_1 = a

(2) ai_1(qh) 6 T2
i-1

gr , and

(3) [oni_1(qh)] $[qh1a'
1 — 1

Consider the R—rewrite

(4) qi_1-———-’q

a .  q .
1 - 1

i ... qj_1 a j - 1  
J .

i _ 1 ( q i )  and a j_1 (q j_1 )  ”R aj_1(qj), we know
by Lemma 3.5 (1) that ai_1(qi_1) E T Z g r  and that aj_1(qj) E T

because R is Z-maximal. Now by (1) and (2) {ai_1(qi_1),... oni_1(q.)}cT
and hence by the Shift-Up Lemma (5.2)there exist %:4,.H,BT4 EEEL*
such that for each h with i-1:sh:sj-1

Since ai_1(qi_1) 3 R  a

‘5) qi-1 §——"”R qi 3;”2 qi+1 "' qj-1 §;:7*R q j  '
(6) s h  = a. , i f  a «t a .1-1 , and

h

(7) 8h = och , i f  ah4! 0&4

From (1) and (7) we infer

‘8) Bj-1 = “1-1





27

Now we prove that Bh i ai_1 for each h with i : S h : s j — 1 :

Case  ( i )  > a_1 Then by (6) 8h = ai_1, 1.e. Bh i a
by definition1 of 1 .

i-1

S
I
T

Case (ii) a i a : Then ah # mi _1, hence by (7) 8h ah,
i-1

i.e. ah i ai_1.

Case  ( i i i )  a.1-1 4 ah: Using qh EEQR qh+1 and ai_1(qh)+ by (2),

we obta1n by Lemma 3.5 (2) that [ai_1(qh)]:s[qh]ai_1, i.e. a

contradiction to (3). V m

Hence, using (7) and (8), we can write

(9) 8 h  i B. , for each h with i-1srlsj-1
3—1

Now with (5) and (9) we can use the Shift-Left Lemma (5.3) to

1nfer the ex1stence of some ri,...,rj_1€Tgr such that

(10) qi_1 53:?»R ri §;::fiR ri+1 ... rj_1 §;:;9R qj and in particular

(11) q i —  1 a. _1"12 1 a.
i -

j-_1 = ai_1 by (8) and 8 1 - 1  = ai_1 by (7). But with (11)
we can use the Reduction Lemma ( 5 . 4 )  to obtain

because 8 .

(12) 911-1 ——»R r
a i _ 1  1 + 1

Summarizing we have found an R—rewrite

q - fi q u q _ — — H :  a n  . r  q . u q - H q1 a1 2 1 1 ai_1 1+1 Bi 1+2 j--1 Bj _2 q j  aj 3+1 n an n+1

of q from q with length n-1, i.e. the R-rewrite
n+1 1

q 1  57* q 2  . . .  q n  5;» q n + 1  1 n 1 t 1 a l l y  glven was not w1th m1n1ma1

length. V 3

Note that the Z-Rewrite Theorem obviously also holds for R-

rewrites o f ground literals, i.e.

+ _ +—-»R n (LITZgr x LInr) —— an
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6. Comple t enes s  of the XRP—Calcu lus  - The Ground  Case

The following main theorem i s  shown i n  this section:

Ground  Comple t enes s  Theorem for ZRP If S E  r is E—unsatisfiable,

then SE }— n. g
Zgr 22

At the Z-ground level there i s  no difference between resolution

and E-resolution. Hence the main effort i s  i n  showing the result

for paramodulation, i.e. to prove a result which links 2 -

deductions -—- to deductions LF-from a set of Z-ground clauses.Z P
To this effect we d e f i n e :

Def in i t i on  6.1

_ E —Par(S) - { C E I S n S Z g r  [P C }  ,

Par (S) ={cec  IsE I—C} andZ Egr Zgr' 2P ’

— E _ I — I URPar(S)--{C€E£grlszgr E, C ,  such that no clause 1 n  IP 1 3  obtalned

by paramodulating into a positive equality literal}. 8

As a prerequisite for the proof of the Ground Completeness Theorem

we show that i f  ParZ(S) i s  satisfiable, then RPar(S) i s  satisfiable.

This i s  achieved i n  the following way:

First we introduce the notion of a EE—res t r i c t ed  interpretation

and we show that ParZ(S) possesses a model, which i s  a ZE-

restricted i n t e r p r e t a t i o n ,  whenever P a r E ( S )  i s  s a t i s f i a b l e .  Next

we prove that each ZE—restricted interpretation contains a Z -

maximal and symmetric term rewriting system. This fact i s  used

to introduce the rewrite-closure I* of a EE—restricted interpretation

I and to prove that 1* i s  again an interpretation. Moreover we

show that the rewrite-closure 1* of I is a model of RPar(S),

provided I satisfies Parz(S).

For each E-interpretation I, I n L I T Z g r  is a E-restricted

interpretation. But i t  i s  more useful to define:
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Def in i t i on  6.2 An interpretation I is called Z-reflexive iff

E(q q)  E I for each q E T Z g r '  We say that I is ZE-cZosed  iff for

each L G  I and for each K E L I T Z g r ’  K E  I whenever L 071 K for some

GEESEL+. I i s  called a ZE-res t r i c t ed  interpretation i f f  I i s  Z -

reflexive, I i s  ZE-closed and I c L I T Z g r

Lemma 6.1 I f  Parz(S) i s  satisfiable, then i t  possesses a model,

which i s  a ZE-restricted interpretation.

Proof Let M be a minimal model of ParZ(S). We ShOW that M is a

ZE-restricted interpretation:

M i s  E—reflexive: Obvious, because {E(q q ) }€E  S g g r  c ParZ(S) for

each q E T Z g r '  E]

M i s  Z E - c l o s e d :  Let L E M  and K E  L I T Z g r  such that L WM K for some

GEESEL+. Now assume by way of contradiction, that M n C # {L} for
each C € P a r 2 ( S )  . With M n C  4r (5 for each C EParE(S) we obtain that

(M—L) n C #- ¢ ,  i.e. M — L  satisfies ParZ(S) and therefore M i s

not m i n i m a l .  V Hence

(1) M n CL = {L}, for some CLEParZ(S),

and by an analogue argument

(2) M n CE = {E(G.(L)OL(K))}, for some C E E P a r E ( S ) .

Let C be the paramodulant of CL and CE upon L and E(a(L)a(K)), i.e.

(3) C = (CL-L) U (CE-E(a(L)a(K)) U { K }

.We know that [a (K) ]  i [KJG because KEELITZgr and that [Kla  = [L la

by Lemma 3.1 (4), i.e. [a(K)] s [L1a '  Hence C is a Z-paramodulant,
i . e .  C E E P a r Z ( S )  and therefore

(4) M n c ¢ ¢.

Using ( 1 ) ,  (2) and (3) we infer that M n C = M n {K}, hence by (4)

K E M ,  thus M i s  EE—closed. [Z

M c: LITZgr: Suppose that L E M for some L ¢ L I T Z g r '  Then L 6 M  n C for
each CEEParZ(S), because each clause i n  Parz(S) contains only 2 -

literals. Hence M — L  i s  also a model of Parz(S), i.e. M i s  not

minimal. V E K
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Lemma 6 . 2  I f  I i s  a ZE-restricted interpretation, then R(I)

i s  a Z—maximal and symmetric term rewriting system.

Proo f  First we prove that R(I) i s  Z—maximal, i.e.
+

”12(1) = _"2R( I ) ‘

"c" Obviously a c -+ and # C (T X T ) because
I c LIT Henc:(:) cfgia. R( : )—:a  Zgr m Zgr

Zgr' R(I) ER(I) ZR(I)'

"a" Let q1,qn+1 E T Z g r  such that q1 — : * Z R ( I )  qn+1, i.e. there

e x i s t s  an R ( I ) — r e w r i t e

‘ 11—" q ... q ——» q .
a1 2 n an n+1

We prove by induction on the length n of the R(I)-rewrite, that

‘11 ” a m  q n + 1

Base  Case  n=1:  Let 0L6 SEL+ such that 0L(E(t1 t 2 ) )  = t 2 .  Then

we infer by Lemma 2.2 (3) that

E(q1q1)a’1'é'a"12(1) E(‘11 ‘12)

Since q1,q2  E T Z g r  we know that E ( q 1 q 2 )  € LIT and by the X—
Zgr

reflexivity of  I we obtain E(q1< ;1 )€  I .

Hence E(q1< ;2 )€  I, because I is ZE-closed, i.e. q1 aR( I )  qz. M

Induc t ion  Step: Our induction hypotheses i s  to assume that

for each R(I)—rewrite o f  q from q 1  with length n ,q 1  Q R ( I )  q n + 1  n+1
provided q 1  — _ * Z R ( I )  qn+1. Let

q 1  a 1  q 2  " '  q n + 1  an+1  q n + 2

be an R ( I ) - r e w r i t e  such that

+

q 1  ’zR(I) q n + 2

Then with the same argument as i n  the base case we infer that

EHq4< ;2 )E  I and by the induction hypotheses we obtain that
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912 =12”) can ” ,  i . e .  E ( q z q n + 2 )  E I.

Since 3 1 ,  qn+2 E T Z g r ’  we know that E ( q1qn+2)  € L I T Z g r  and ch0051ng

a E SEL as i n  the base case we obtain E ( q 1 q 2 )  BE E(q1qn+2) and

E(a(E(q1q2)) a(E(q1qn+2))) = E(q2 qn+2) E 1 :  i . e -

E“11%)  E’I E(‘?'~1qn+2) °
But then by the ZE-closure of I ,  E(q1qn+2)  E I ,  i . e .

‘11 ”12(1) q n + 2 '  EZI

To prove that R(I) is symmetric, suppose that q g R ( I )  r for any
+ .—Zgr' Let OLESEL such that a (E ( f : 1 t2 ) )— t1. Then

E ( q q )  8E E ( r  q)and E(oa(E(qq)) a ( E ( r q ) ) )  =E(q  r )  E I .  i . e .

q,r€ET

E ( q q )  
3’1 

E ( r q )  -

Obviously E ( r q n  E L I T Z g r  and by the Z—reflexivity of I ,  E(qc ; )€  I .

Hence E ( r  q)€EI, because I i s  ZE—closed, i.e. r ”E( I )  q . M Q

Def in i t i on  6.3 For a ZE-restricted interpretation I we define

the rewr i t e - c lo sure  I *  o f  I as

E ** _ f .I _ I U {KELITgr\ATgr|L -—-+R(I) K or some LEI} &

An important property of the rewrite—closure i s  that we do not

introduce any new Z-ground literals:

Lemma 6.3 I f  I i s  a ZE—restricted interpretation, then

I = I *n  LIT .
Zgr

Proo f  "c" Obvious, because I c : I *  and I c s g r .

"2:" Let K 6  1* n L I T Z g r '  If K E  I we are finished. For K E  I*\I,

there exists some LEEI  such that L —:»R(I )  K .  By assumption

K E L I T Z g r  and w1th I c I T Z g r  we know that L E L I T Z g r '  By Lemma 6 . 2

we find that R(I) i s  Z—maximal, hence by the Z-Rewrite Theorem (5.5),

L _ : * Z R ( I )  K ,  i . e .  there exists an R ( I ) - r e w r i t e

L = L 1 0 ?  L2 Ln a—-> Ln+1= K, such that {L1,...,Ln+1}cLInr.
n
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I t  i s  easily verified by induction on n using the ZE-closure

of I, that {L1,...,Ln+1}cI, hence K E I .  8

Now we prove that the rewrite closure of a ZE-restricted

interpretation i s  always an interpretation:

Lemma 6 . 4  I f  I i s  a ZE-restricted interpretation, then

I* i s  an interpretation.

Proo f  Assume by contradiction that 1* i s  not an interpretation,

i.e. {QIQC} c 1* for some ground literal Q .  Then by Definition 6 . 3

there exist l i t e r a l s  L and Kc i n  I such that

* c * cL _ _ 9 R ( I )  Q and K — _ # R ( I )  Q .

. c * c . * . * .
With K — _ # R ( I )  Q we obtaln K ——+£(I) Q and Slnce _ _ % R ( I )  1:

symmetric by Lemma 6 . 2  we have Q _—»R(I )  K .  Finally with L —-»R( I )C2
a: :1:

we find by the transitivity of _ _ * R ( I )  that L ——4 K .
R(I)

Now suppose that K E A T S r .  Then Q EATS]: and by Definition 6 . 3  Q E  I .
. c 0

But then Q E L I T Z g r ,  1 . e .  Q E L I n r ,  hence by Lemma 6 . 3  Q E I

contradicting that I i s  an interpretation. V

So let us assume that K ¢ A T § r .  Then by Definition 6 . 3  K E  1* and

since KCEI, KCELITZ , i.e. KELIT .
gr Zgr

and again I would not be an interpretation. V 8
Hence by Lemma 6 . 3  K E  I

Using Lemma 6 . 4  we can construct a model o f  RPAR(S) from a model

o f  P a r E ( S ) :

Lemma 6 . 5  If ParE(S) i s  satisfiable, then RPar(S) i s  satisfiable.

Proof By Lemma 6 . 1  there exists a model M o f  P a r E ( S ) ,  which i s  a

ZE-restricted interpretation. Hence by Lemma 6 . 4 ,  M* i s  an

interpretation. We prove by induction on the length n of a

deduction SE C ,  that M* s a t i s f i e s  each clause C G E R P a r ( S ) .Zgr Pf
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Base  Case  n=O: Then C E E S E g r c z P a r Z ( S )  and M* n C ¢ ¢ ,  because M

satisfies ParZ(S) and Mc:M*.  W '

Induc t ion  S t ep :  Let C = (CL'L) lJ (CE—E(a(L)a (K) ) )  u { K }  be a

paramodulant of the clauses C L '  CEEERPar(S) upon L and

E(a(L)a(K)).Then

L ~ K and L $ A T Ea gr

by Definition 6 .1 .  Our induction hypotheses i s  to assume that
It II:M n CL # ¢ and M n CE ¢ ¢.

I f  M* n (CL-L) =h¢ or M* n (CE-E(a (L)a (K) ) )  # Q) then

M* n C ¢ ¢ and we are finished.

So let us assume that M* n(CL—L) = ¢ .and  M* n (CE—E(a(L)a (K) ) )  = ¢.

Then L€M* and E(OL(L)OL(K)) E M *  and by Definition 6.3 E(0L(L)0L(K)) E M .
* ‘

U51ng  L a K we obtaln L ?I*M K ,  1 . e .  L —-»R(M)  K .

1 *
With L E M "  we find some Q E M  such that Q ——-»R(M) L ,  hence Q ————=~R(M) K .

From L $ A T g r  we obtain KQZATgr. Hence by Definition 6 . 3  K€M* ,  i.e.

M*nc=  {K} 4:9). [21%

Using Lemma 6 . 5  we can prove

Thebrem 6.6 (Ground Completeness Theorem for ZRP)
E

I f  S Z g r  l S  E — u n s a t l s f l a b l e ,  then S Z g r  bf D .

Proo f  I f  S i s  E-unsatisfiable, then Par(S) i s  E—unsatisfiable

because S
Zgr

Zgr C Par(S). By Theorem 1 from [WR73] we infer that
Par(S) is unsatisfiable, hence RPar(S) is unsatisfiable [Lov78].

But then by contraposition o f Lemma 6 . 5  ParZ(S) i s  unsatisfiable

and there exists a finite and unsatisfiable subset P of ParZ(S)

by the Compactness Theorem [Lov78]. Hence P LE 0 by the

completeness of the RP-calculus [Rob65] and since there i s  no

difference between a Z—deduction and a d e d u c t i o n . h fi  from a"272
Z-ground clause s e t ,  we can write P 'Efi D .  From Pc:Parz(S) we

infer that S g g r  If? C for each C E P  and we obtain finally

SE |— n EZgr Z '
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7. Unification under  Sorts

An important result o f  first-order unification theory i s  the

Unification Theorem [Rob65] which states the existence of a

most general unifier for a set o f  unifiable terms.

Unfortunately for u n i f i c a t i o n  under s o r t s ,  the Unification

Theorem only holds for signatures, where <5 ,s>  i s  a tree

structure. In general we must content ourselves with a weaker

r e s u l t .

We start with a lemma, which allows to distinguish Z—substitutions

from ordinary substitutions by inspecting their restriction on 0:

Lemma 7.1 I f  O E S U B ,  then U E S U B  i f f  OXET and [0x] 5 [ x ]

for each x 6  D .
Z 2

Proo f  "a" Since GEESUBZ iff 0(Tz)c:Tz, we know that 0(D)c:Tz,

i.e. oxEETz for each xEED.  Now assume by way of contradiction

that [0x0 ]  i [x0] for some x06  0. If f 6  F
then f(xo) 6 T 2

[0x0 ]  $ [X0] = [ f ] 1 .  Hence 0(TZ) ¢ T Z '  i.e. 0$SUBZ-  V {2]

[ x  ] , s  fo r some 565 ,

but Gf(XO) = f(0xo) ¢ T E  by oLemma 3.3 because

"w" We prove by structural induction on t that a t  6 T 2  for each

1: 6 T E  :

Base  Case  tEC :  Then at = tE'I‘)I by Lemma 3.3 ( 1 ) .  [2]

Base  Case  t E D :  Then otET>3 by assumption. [2]

Induc t ion  S t ep :  Suppose that t = f(t1...tn)€ETZ and otiEETE for

each i with 1 3 1  s n .  I f  ti €10, then [oti] 5 [ t i ]  by assumption, and

if tidED, then [oti] = [ti] by Lemma 3.1 (2). Hence [Gti] s[t.i]:s[f]i
for each i ,  i.e. GtGE-ITZ by Lemma 3.3 (2 ) .  E E

Coro l la ry  7.2 If GESUB and t E T ,  then [Gt] 5 [t].2

Proof I f  t e l ) ,  then [Gt] 5 [ t ]  by Lemma 7.1 and i f  t $10 ,  then

[at] = [t] by Lemma 3.1 (2). E
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For unification under sorts, the notion of Z—compatibility plays

a central r o l e :

Def in i t i on  7.1 Let D G T z  be unifiable. D is Z-compa t ib l e  iff

[x] s [y] or [x] 2 [y] for all x,y€vars(D) with TX = Ty, where

T i s  an mgu of D. 8

Note that this definition i s  independent o f  the choice o f  the

mgu T of D .

We show that each Z-unifiable s e t  of Z-terms which i s  2 -

compatible possesses a Z-mgu:
fi-rv

Lemma 7.3 Let Dc:TZ be Z—unifiable. I f  D i s  Z—compatible,
then there exists a Z-mgu of D .

Proo f  Let 6 E SUB)3 be a unifier of D and T E SUB an mgu of D.

Then there exist T 1 , . . . , T n £ E S U B ,  n 2 1 ,  such that

(1) T = T10 . . . °T  ,

(2) COD(Ti) = {y.} , for each i with 1 s i <  n and some yi E ”

(3) COD(Tn) n D = ¢ ,

(4) COD(Ti)r1COD(Tj) for each i , j  with 1:si,j <n .and  i * j ,  andI
I

‘
9
.

(5) DOM(Tk)f1DOM(T for each k ,  l with 1 :sk  , l : s n  and k * 1 .I
I S

1 )

For each i with 1:si‘<n we define an order  relation S i  on

DOM(Ti)lJ{yi} by

(6) u S i  v iff [U] S[VJ, for each u , v E E D O M ( T i ) l J { y i } .

S i  i s  connex ,  i.e. u Si V or u Z i  v for each u,v€EDOM(Ti) U {yi},
because T u  = Tiu == yi =‘TiV = TV'and  hence by the Z-compatibility
of D,[u] s [v] or [u] 2 [v].

Since Si i s  connex, there exists at least one minimal element xi

w . r .  . s .  ' . . .t 1 1n DOM(T1) U { Y 1 }
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We define U1” " ’On—1 'O  E SUB by

(7) 01‘” = {yi+xi}<>Tiln, for each 1 w1th 1:§1<:n, and

(8) o = U1°" ' °0n -1

Since we have obtained Oi from Ti by a variable renaming, we

know from the unification theory that 01,...,0n_1,0 are in fact
substitutions and that

(9) 0 O T n  i s  an mgu of D .

We show that

( 10 )  [oix] s [ x ] ,  for each x E D  and for each i with 1 s i  < n .

Case (75) x¢DOM(Ti) U {yi}: Then Tix = x*'yi, i.e. oix = x
and i n  particular [oix] = [x ] .  m

Case (ii) xEEDOM(Ti) U {yi}: Then by ( 2 ) ,  T i x  = yi, and by
(7), c i x  = x i .  We know that xi S i  x ,  because xi i s  minimal

w.r.t. S i  in DOM(Ti)lJ{yi}, hence [oix] = [xi] 5 [X]. E

From (2) and (7) we can infer that COD(oi)= {xi}, i.e.

oix-E D c T 2  for each x65”. Now using (10)  we obtain by Lemma 7.1

that

(11 )  O i  ESUB for each i with 1 5 1  < n ,z I

and using (8) we have by Lemma 3 . 4  (1)

( 12 )  ( J E S U B Z  .

Suppose that TnX E D for some x650 .  Then by (3) TnX = x ,  i.e.

[CInX]==[ox] S [x]

by ( 12 )  and Lemma 7 .1 .

If TnX $ D for some x E D, then °Tfix ¢ D and therefore

[OT x ]  = [Bornx ]  = [8X] 3 [x]
n

by Lemma 3.1 (2) and Lemma 7.1 using (9).
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Thus we have established that

(13) [OTnx] s [x] for each x639.

We prove that

( 14 )  O T n X E T E  for each X E D  ,

. + . .
1.e. [ a (o rnx ) ] : s [0Tnx]a  for each GEESEL w1th a(0TDX)+ .

Case  (i) a(ornx)div: Then OTnxtED and by Lemma 2.2 (5)

a(eornx)+. From Lemma 3.1 (2) we know that

[a(ornx)]==[8a(ornx)] = [ a (801nx) ]  and that [OTnX]a==[BOTnX]a .

But 8 = 9°G°Tn by (9), hence [ a (o rnx ) ]  = [ a (9x ) ] :§ [8x ]a  = [GTnX1ay
because G X E T Z  and oc (6x )+ .  E]

Case  (ii) a (OTnx)  619: Then oc('rnx) El) and since T i s  an mgu of D,

there exists a subterm q o f  some term i n  D such that

( 15 )  Tq = TnX == TX , and

(16) a (q )+

From D c T z  and 0L E SEL+ we obtain that q E T Z \ D  and i n  particular

[ a (q ) ]  S [ q 1 a = = [ o r q ] a  = [GTnX]a, i.e.

(17)  [a(q)] S [o rnx la

[ca(q)] S [ a (q ) ]
[OT x] and wen a

If a (q )  = a(Tnx), then [ a (0Tnx) ]==[Oa(Tnx) ]

IAby Corollary 7.2, i.e. using (17)  [ a (UTnx) ]
are f i n i s h e d .

So let us assume that a(q) * a(Tnx). Since a(q)+ and

Ta(q )  = a(Tq) = a(Tnx)EED,  we know that a(q)€EDOM(Ti), a(Tnx)  = yi
and [xi] 5 [a(q)] for some i with 1 S i  <IL

Hence [ a (o rnx ) ]  = [oa(1nx)] = [oyi] = [oiyi] = [xi] 5 [ a (q ) ]  and

with (17)  we obtain [a(GTnx)] s [OTnXJa '  m

From ( 13 )  and ( 14 )  we obtain with Lemma 7 . 1  that c o r n E E S U B Z ,

hence by (9) UOTn is a E—mgu of D. E
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Now we can prove that the Unification Theorem holds for

s i g n a t u r e s ,  where <S ,s>  i s  a tree structure:

Theorem 7.4 Let Dc:TE be Z—unifiable. If <$ ,S>  i s  a tree

structure, then there exists a Z-mgu o f  D .

Proof We show that D i s  Z-compatible: Let BGESUBZ be a

unifier o f  D and let x,yEEvars(D) such that TX = Ty for an

mgu T o f  D .  Then 8 x  = By and with 6 E S U B Z

[x] 2 [ex] = [8y ]  5 [y ] .  But then [ x J : s [ y ]  or [x] 2 [y] since
we have by Lemma 7.1

<s ,s>  i s  a tree structure. Hence D is E-compatible and by

Lemma 7.3 there exists a Z—mgu of D. E

For signatures, where <S ,s>  i s  not a tree structure we enforce

the existence o f  a Z-mgu for a s e t  o f  Z—unifiable terms using

a weakening substitution:

Theorem 7 . 5  ( Z — U n i f i c a t i o n  Theorem) Given D c : T  , V c : D  andZ
8€ESUBE with vars(D) c V and 8 unifies D ,  there exist u,om..)\EESUB)3

such that

(1) u E W S U B W )  ,

(2) O i s  an mgu of uD , and

(3) 6 = Aooou[V]

P r o o f  Let { x 1 , . . . , x n }  be the s e t  o f  a l l  variables o f  v a r s ( D )

such that [Bxi] < [xi] and let {z1,...,zn} be a subset of ”\V

satisfying ziEED[8x ] '  where 1:;i:;n. We define two Z-substitutions

u and H by l

(4) “I” = {x1+z1,...,xn+zn} , and

(5) fi l m  = {z +ex ,zn+8xn} .1 1 ’ . . .

Obviously uEEWSUB(V), i.e. condition (1) is satisfied. We prove

that

e[v] ,5(6) Gofiou

i . e .  B fi u x  6}: for each xEV:
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Case  (71) X E D O M W ) :  Then x = xi for some i with 1 s i  s n

and using (4) and (5) we obtain efiuxi = efizi = eexi = exi. w

Case  ( i i )  1: (£DOM(u): Since x E  V and u €WSUB(V) we know that

x¢COD(u)  = D O M G ) ,  hence e fi u x = e fi x = 6 x .  l2

Since 6 unifies D ,  by (6) Sc ion  unifies D ,  hence 905 i s  a

unifier of uD.

We show that

(7) [S ix ]  = [x] for each x E D\DOM(u) .

Case  (73) XEDOM(1-J) :  Then x = zi for some i with 1 5 1  s n  and

using (5) we obtain [Bfizi] = [86x1]  = [Bxi] = [2i]. m

Case  (7373) X$DOM(-1-l) :  Then [Bfix]  = [6x ]  = [ x ]  because x$DOM(u) .  m

Now we can prove that u D  i s  Z-compatible: Let x,y€Evars(uD) such

that T X  = T y  for an mgu T o f  u D .  Then Gfix = e fi y  because G o fi  unifies

uD and with vars(uD) n DOM(u) = ¢ we obtain by (7) that

[x] = [ efix]  = [85y] = [y], i.e. uD i s  Z-compatible.

Obviously 6°E€ESUBZ, i.e. uD is Z-unifiable, hence by Lemma 7.3
there exists a Z-mgu o o f  u D  and condition (2) i s  satisfied. Since

eofi unifies uD and o is an mgu of uD, we know that @0500 = eofi,
hence eofiooou = eofiou and using (6) we obtain eofiooou = 6[V].
Setting A = GouGESUB condition (3) i s  satisfied. 8Z

Note that the E-Unification Theorem obviously also holds for Z -

unifiable sets of Z - a t o m s .
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8. Comple t enes s  of the ZRP-Ca lcu lus  — The Genera l  Case

In this section the completeness theorem for the general case

i s  shown, i.e. we prove

Comple t enes s  Theorem for ZRP

I f  S i s  Z E - u n s a t i s f i a b l e ,  then SE Ff D .

This completeness theorem i s  shown as usual for the one-sorted

calculusz'We prove the Lifting Lemmata for E-Resolution and

for zéParamodulation i n  order to justify the Lifting Theorem

for z-Deductions. To ease notation we shall omit i n  2-deductions

the explicit mentioning of Z—renaming substitutions and assume

instead that the s e t  o f  clauses i n  a Z-deduction i s  always variable

disjoint.

Lemma 8.1 (Lifting Lemma for Z-Resolution) Given A , B €  £2, L A e A ,

LB 6 B and e E SUBZ such that A and B share no variable symbols,

L and L are complementary and E3 unifies {ILA|,ILB|}, there

eiist a g - f a c t o r  A* of a weakened variant of A ,  a E-factor B*

o f  a weakened variant of B ,  a pair o f  complementary literals

LKEA’I‘ and LE 6 B * ,  weakened variants pA* and pB* and some

A: 0 E SUB)3 such that

Res(eA,eLA,8B,6LB,e) = A ReS(pA*,pLR,pB*,pLE,G).

The statement o f  this lemma can be summarized by a diagram. The

expressions i n  the diagram are defined as i n  the lemma:

W+F+W+R
A I B  _ '__—’  R e S ( p A * I p L 3 ! p B * I p L E I O )

Z—instance Z - i n s t a n c e

A.ReS(pA*,oL3:pB*.pL§.0)

H

R
8 A , 6 B  ———————+ R e S ( 6 A , 8 L A , G B , 6 L B , e )

Figure  8.1 Lifting Lemma for Z—Resolution
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Proo f  Setting V = vars(A U B), by the z-Unification Theorem (7.5)

there exist some u,y,A (ESUBZ such thatA

( 1 )  u G E W S U B ( V )

(2) y factors u A

(3) 6 = A A O Y o u l v l  , and

(4) YLJL = Y u K  for all L , K € A  with 8 L GK .

By (1) u A  i s  a weakened variant of A and by (2) y u A  i s  a 2 -

factor of uA. By the same argument there exist some v,6,ABEESUBZ,

such that v B  i s  a weakened variant of B ,  GvB i s  a E-factor of vB,

and

(5) 6 = ABOSOv [ V ]  .

Since we are allowed to assume that y u A  and 5vB have no variables

i n  common by (3) and (5) there exists some A*€ SUB:  such that

(6 )A* A A  [vars(yuA)] , and

(7 )A*  A [vars(6vB)] .
B

Let A* = yuA, B* = SvB, V* = va r s (A* l JB*)and  L* an abbreviation

for y u L  i f  L E A  or for 6 v L  i f  L E B .  Then for each L E A ,

A*L* = x*yuL==AAyuL =£HLby (6) and (3), and by an analogue

argumentation A*L* = 6 L  for each L E B ,  i.e.

(8) A*L* = 6 L  , for each L E  ( A  U B )

Hence A* ILR I  = e lLAl  = BILB I  = A*IL§I, i.e. A* is a Z-unifier

of { I L3 | , I LE I } ,  and by the Z-Unification Theorem (7.5) there

exist p ,o , ) \  E SUB}3 such that

( 9 )  p €WSUB(V*)  r

(10)cris an mgu of { p ILK I , p |L§ | }  , and

( 11 )A*  = AOGOp [v* ]  .

By (9) we know that pA* and pB* are weakened variants and by

( 10 )  we can form a Z—resolvent o f  pA* and pB*

* and pL* .upon pLA B
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Now suppose that A*(A* — Li) #r A*A* — A*L$:  Then for some

literal L*€EA* we find L*#=LR but A*L* = A*L*. From (8) we
A

obtain 6 L  = B L A ,  Vhence by (4) L* = y u L  = yuLA = Li.

Thus we have proved that

* 1 _ a = * * _ * . *( 12 )  A ( A  LA) A A A LA

and we obtain by a similar argument that

* x _ * = * * _ * *( 13 )  A ( B  L B )  A B )t LB .

But then

A R e S ( p A * : p L i p p B * : p L § , d )

3|: _ * * .. :lrA0(pA  OLA) U ko(pB oLB) ,

A0p(A*  — Li) U kap (B*  — LE) , because p1v*  i s

injective by (9),

A*(A*  - L3) U A’HB“  - LE) , by ( 11 )

(X*A* - X*L£) U (A*B* - A*LE) , by (12)  and (13)

(eA_— BLA) U (6B — eLB) , by (8)

Res(6A,6LA:BB:eLB:e) . 8

Lemma 8 . 2  ( L i f t i n g  Lemma for Z-Paramodulation) Given A , B E E £ £ ,

LAEA, LB == E(q r) e B, a e SEL+ and e e SUBZ such that A and B share
no variable symbols, 9 unifies {a(LA),q} and [er] s [ e L A J a ’

there exist a Z-factor A* of a weakened variant o f  A ,  a Z-factor

B* of a weakened variant of B ,  a pair of literals L*€EA* and
A

LE = E(q*r* )€EB* ,  weakened variants pA* and pB* and some

A,c :€  SUBZ such that

Par(6A,6LA,8B,6LB,a,e) = A Par(pA*,pL*,pB*,pL"B:,a,o) and [001*]S[ODLR]G.

We illustrate the statement of this lemma by a diagram:

A . B  Uifiifliflé P a r ( p A * , p L * , p B * , o L g , a , 0 )

Z—instance 2-instance

A.Par(pA*,oL3.pB*,pL§,a,o)

l, =
P

6 A , 6 B — — — — >  P a r ( 6 A , 6 L A , e B , 6 L B , a , € )

Figure  8.2 Lifting Lemma for Z-paramodulation
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Proof  Suppose that rEED and [r] $ [9LA1a '  Let V = vars(ALJB),

r '  E v [ e r ] \ § ,  and “ LBJESUBZ such that T I ”  = {r<—r'}, ¥ I D = { r ' < - e r }

and E = 60?. Since GEESUBZ we know that [er] s [r]. I f

[er] = [r],.then [r] s [ 6 L A 1 a ’  because [ e r ]  s [BLA]a. V
Hence [Tr] =.[r'] = [6r] < [r] and therefore

(1) TEWSUBW’)

I t  i s  easily verified that

(2) '6’ = e [V]

and that

(3) '6‘.” = e [V].

For r € D  or [ r ]  s [ 6 L A 1 a  we let T = ¥ = e and 6 = '6’. Then

obviously ( 1 ) ,  (2) and (3) still hold and i n  either case

T B  i s  a weakened variant o f  B .

From (2) and (3) we infer that 3 i s  a Z—unifier o f {a(LA),Tq}.

By the same argument as i n  the proof o f  the Lifting Lemma for

Z—Resolution ( 8 .1 ) ,  there exist u ,y , v ,6 ,p ,  A and A*€EHH%:such

that u A  and vTB are weakened variants of

A and T B  respectively, A* = y u A  i s  a Z-factor o f  uA, B* = 5VTB

i s  a Z—factor o f  VTB,

( 5 )  p €WSUB(V*)  I

(6) o is an mgu of {pa(Lz):oq*} ,

(7) K *  = A°0°o  [V*]  ,

(8) A‘L“ ='é'L , for L e  (AUTB) ,

* * _ * = # * _ t *(9) A (A LA) A A A LA , and

* * _ * = * * _ * *(10) A (B LB) A B A LB ,

where V* = vars(A*lJB*), q *  = Yuq and L* abbreviates y u L  or

6 e  for L E A  or L E B  respectively.

Let K , K '  E LIT such that L

where r* = t r .

g K,a(K) = r, L” ~ K' and a (K ' )  = r*,
A A a
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( 11 )  6 L A  a: 6 K  and a (eK)  = 6 r  ,

( 12 )  cg 3 UpK '  and a (opK ' )  = apr* , and

( 13 )  A*LA 3 A*K' and a (A*K ' )  = k*r*

Using (8) we obtain from ( 13 )  3LA 3 A*K' and a (k*K ' )  = a r r ,

hence by (2) and (3) GLA

( 11 )  we infer A*K'g  6 K  and a (A*K ' )  = a(eK) .  Hence

( 14 )  A*K' = G K V

But then

A Par(pA*,pL3

= * _  *A N D A  OLA)

:Iv _ a:lap ( A  LA)

* 3k _ a:x ( A  LA)

.1: **_**( A A A L A )

1 0 3 *  I D L E I G I

3 A*K' and a(A*K') =

a )

U Aa(pB* - pL§)lJA{opK'},

U AOp(B* - LE) U{AOpK ' }  ,

U A*(B* - FE) U {A*K ' }  :

U (A*B*  - A*LE) lJ {A*K ' }  :

= ( 6 A  - B L A )  U ( S E  - B L B )  U { 6 K }  ,

= P a r ( 9 A , 9 L A , 9 B , 9 L B , a , E )  (

In order to prove that [ cpr* ]  s [ c i ]  we infer
a

[ op r * ]  = [ G v T r l  S[Tr] ,

[ T r ]  S [ 6 L A 1 0  I

[BLAJa  = [UpyuLA ] a= [GOL; \ ] a  I

e r , and using

by Lemma 2.2 (1)

by (12)

because p |V*

is injective by (5)

by (7)

by (9) and (10)

by' (8), ( 2 ) :  (3)

and (14)

by ( 11 ) .

by Corollary 7.2,

by definition of r

and by assumption,and

by Lemma 3.1 (2). E
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Theorem 8.3 (Lifting Theorem for E—Deductions) For each x-

deduction < B 1 , . . . , B n >  from SE there exists a E-deduction
E g r

<C1,...,Cm> from SE such that for each clause B i ’  1 S i  s r u

there eX1sts a clause C k '  1 s k  5 m ,  and some Ak E S U B z g r  Wlth

Bi = A k .

Proo f  The proof i s  by induction upon the length n of the Z—

deduction < B  ,...,B > from SE :1 n Zgr

Base  Case  n=1:  Then B 1 € S § g r ,  1.9.. B1 = k c  for some C E S E

and some A E E S U B Z g r .  <C> i s  a Z-deduction from SE with the

desired properties. E

Induc t ion  Stgg n>1 :  Our induction hypotheses i s  to assume that

the theorem holds for a l l  Z-deductions from S E g r  with length

less or equal to n :

Case  (i) B E SE : As for the base case we find some C E S E———————— n+1 Egr
and some AEESUBZgr such that Bn+1

hypotheses <C1,...,Cm,C> i s  a 2-deduction from SE with the

= AC. By the induction

desired properties. m

Case  (at) Bn+1  = Res(Bi,Li,Bj,Lj,e) w1th 1 ,  3 : ;n :  By the

induction hypotheses there exist clauses Ck,Cl,1:sk, l:§m,

and some A k ' A l E E S U B E g r  such that Bi = A k c k  and Bj = AlCl.

Since Ck and Clshare no variable symbols, there exists some

GEESUBZgr such that eCk = Ak = Bi and 6 C l  = A l c l  = B j '

Now by the Lifting Lemma for Z-Resolution ( 8 .1 ) ,  there exist

weakened varlants Cm and C m + 2  of Ck and C 1  respectlvely,

m+3 4 o f  Cm+1 and Cm+2 respectlvely,

weakened varlants Cm+5 and Cm+6 o f  Cm+3 and Cm+4

a Z-resolvent Cm o f  C and C and some AEESUBZgr such+7 m+5 m+6'
that Bn+1 = ACm+7. By the induction hypotheses

<C1,...,C ,Cm m+1 ' ° " 'Cm+7
desired properties. E

+1
Z - f a c t o r s  C and Cm+

respectively,

> i s  a Z-deduction from SE with the
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Case  ( i i i )  B = Par(Bi,Li,B.,Lj,a,e) with i ,  j s r n
n+1 j

Lj = E(q1fl and [r] s [ L i ] a :  By the induction hypotheses

there ex1st clauses CkIClr 1 5k, l s m  and some K k A I E S U B E g r

such that B1 = Ak and B j  = AlCl. Slnce ck and lhare no

variable ‘symbols, there exists some GEESUBZgr such that

BCk = Ak = Bi and 6 C l  = x l C l  = B j .

Moreover, since SE contains a functionally—reflexive axiom

for each function symbol i n  Bi we are allowed to assume that

' = = ' 'a(Lk)+ for some L k E C k  Wlth eLk L i '  Let L l  E(q r ) E C

such that 8 L  = L . .
l J

1

Then [er'] = [r] s [Lila = [ eLkla  and by the Lifting Lemma

for Z—paramodulation (8.2), there exist weakened variants

C and Cm of C and C
m+1 + 2  k l

Cm+4 Of C m + 1  and C m + 2

and C of C and Cm+4 respectively, a Z-paramodulant
m+6 m+3

Cm+7 o f  Cm+ and C and some A E E S U B Z g r  such that

B = A

5 m + 6 ’

n+1 Cm+7 '

respectively, Z-factors C andm+3
respectively, weakened variants Cm+5

By the 1nduct10n hypotheses < C 1 " " ’ C m ’ C m + 1 " " ’ C m + 7 >  1 5  a

Z-deduction from SE with the desired preperties. m 8

Now we are prepared to prove the completeness o f  the ZRP-

c a l c u l u s :

Theorem 8.4 (Completeness Theorem for ERP)  I f  S i s  2E-

u n s a t i s f i a b l e ,  then SE LED.

Proo f  If S is ZE-unsatisfiable, then S Z g r  is E-unsatisfiable

and S g g r  PE 0 by the Ground Completeness Theorem for ZRP (6.6),

i . e .  there exists a Z-deduction < B 1 , . . . , B n >  from S E g r  such that

B = D .n

Now by the Lifting Theorem for Z-deductions (8.3), there exists
E

k , . . . , C m >  from S and some A k E S U B Z g r

such that Bn = A k .  With Bn = U ' C k  must be the empty clause

a l s o .  Hence < C 1 , . . . , C k >  i s  a Z—refutation (If S E ,  i . e .

S E  I f  D .  E

a Z—deduction < C 1 , . . . , C
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Remarks

Functionally—Reflexive Axioms‘ The completeness of the ZRP-

calculus i s  proved here only for sets o f  Z-clauses, which

contain a l l  functionally-reflexive axioms. For the RP—calculus

i t  i s  known that these axioms are not a necessary prerequisite

for the completeness results to hold [Bra75]. We conjecture

that this result holds for the ZRP-calculus also.

The Weaken ing  Ru le  In section 4 i t  is shown that the ZRP-calculus

i s  incomplete without the weakening rule. We believe that the

introduction of the weakening rule is the weakes t  e x t ens ion  of

the RP-calculus which guarantees completeness:

I n  particular the RP-calculus i s  nothing but a special case o f

the Z R P - c a l c u l u s ,  where the s e t  of s ort symbols $ i s  a singleton

{so}. For each weakening substitution u, [ux ]<<[x ]  has to be

satisfied for every x (E DOM(u). But [ux] < [x] is always false

i f  only one sort symbol i s  present, hence 11 must be the empty

substitution 5 .  But then each weakened variant o f  a clause i s

the clause i t s e l f  and we are back to the R P — c a l c u l u s .

I f  the weakening rule i s  abandoned, completeness can be maintaine

by some restrictions:

A many—sorted resolution calculus (i.e. without paramodulation)

i s  complete, i f  <$ ,s>  i s  a t r e e  s t ruc ture .  T h i s  i s  an

immediate consequence o f  Theorem 7.4.

The f u l l  ZRP—calculus i s  complete without the weakening r u l e ,  i f

<5 ,s>  i s  a tree structure and the s e t  S o f  Z - c l a u s e s  to be

‘ refuted contains a l l  functionally-reflexive axioms and all

cons tan t - r e f l ex i ve  ax ioms  (i.e. clauses of the form {E(c c)}

for each c E C), whenever S contains at  least one literal of

the form E (x  t )  or E(t x ) ,  where x i s  a variable symbol:

I n  the proof o f  the Lifting Lemma for Z-Paramodulation (8.2) we

have seen that (in contrast to Z—resolution)in general a n

additional application o f  the weakening rule i s  necessary, i f

by a paramodulation step some term is replaced by a var iab l e .
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I t  i s  easy to see that such a paramodulation can always b e

avoided, i f  a l l  reflexive axioms are present, i.e. the

additional application of the weakening rule i s  not necessary

then.

Re f inemen t s  E-Paramodulation i s  s o  restrictive that we loose

an important refinement: The RP—calculus i s  still complete, i f

we never paramodulate into positive equality literals [Lov78].
The consequence i s ,  that the transitive closure o f  the predicate

E need  not be computed, i.e. i n  the RP-calculus we do not need

deductions of the form: E(q r), E(r s) F— E(q 3). But unfortunately

these deductions are necessary i n  the ZRP-calculus:

Example  8.1 Let S = {{P(b1)},{not P(b2)},{E(b1a)},{E(a b2 ) } }

be a s e t  of z-clauses such that 5 = {A,B}, B «:A, PEEPB,

{ b  ,b } c F and aEEF . Obviously neither {P(a)} nor {not P(a)}1 2 e , B  e,A
i s  a Z-clause, i . e .  they can not be obtained from S by Z -

paramodulation. But with the Z—paramodulant {E(b1b2)} of {E(b1a)}

and {E(a bzf}we obtain the Z—paramodulants {P(b2)} and

{ n o t  P(b1 ) }  each o f  which leads to a Z—refutation of S .  E

The problem i s  the transitive closure o f  E ,  hence we conjecture

that Z-paramodulation i s  still complete i f  we never paramodulate

into subterms o f  positive equality literals unless these sub-

terms are i n  an argumen t  pos i t i on .
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9. Soundness  of the ZRP-CaZcuZus

I n  the following i t  i s  shown that the ZRP-calculus i s  sound,

i.e. we prove the

Soundness  Theorem for ZRP If S LE-D, then S i s  ZE-unsatisfiable.

To ease notation we shall omit i n  X-deductions the explicit

mentioning o f  Z—renaming substitutions and assume instead that

the clauses i n  a Z-deduction share no variable symbols.

The following lemma i s  frequently used  i n  this section:

Lemma 9 . 1  Let A , B €  £ 2  and e E S U B Z  such that A c B  and B A E  £ 2

Then there exists some A E E S U B E  such that

g r '

(1) e = A[vars(A)] , and

(2) AB  6 E Z g r '

Proo f  Let {x1,...,xn} = vars(B)\vars(A) and let A,<S€ESUBZ

such that A = 605, where 5'” = {x1+t1,...,xn+tn} for some

t . € E T
1 E g r

s a t i s f i e s  conditions ( 1 )  and ( 2 ) .  K

with [ti]:s[xi],1.si:sn4 It is obvious that A

Although this lemma i s  trivial, i t  exhibits a crucial point

regarding the soundness of ZRP:

The existence o f  the above terms ti i s  quaranteed, s i n c e  for

each sort symbol 5 which i s  minimal i n  5 ,  there exists a

constant symbol CEEFe ,s  (see section 3). I f  this requirement

i s  not fulfilled, i . e .  there do exist "empty" sorts, then

this lemma and i n  turn the results of this section do not

hold. The ZRP-calculus i s  then not sound ,  because for a non—

empty Z—clause set S ,  S may be empty.Xgr

Note that for the RP—calculus a similar requirement, i.e.

C = {c} if S contains no constant symbol (see section 2),

prevents that Sgr i s  empty for some non-empty clause set S ,

thus guaranteeing the soundness o f  the RP-calculus.
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To prove the soundness of the ERP-calculus we u s e

Lemma 9.2 (Soundness Lemma for ZRP) Let M be an E-interpretation

and CEEEZ. If M Z-satisfies S and S LE C ,  then M Z—satisfies C.

Proo f  The proof i s  by induction on the length n of the z -

deduction o f  C from S .

Base  Case  n=1:  Then C638  and M Z—satisfies C by assumption. E

Induc t ion  Stgp n>1 :  Let Cn+1€£E such that the length of the

2-deduct10n S 5? Cn+1 l S  n+1 .  I f  Cn+1EES,  then M Z—satlsfles

C n + 1 by the same argument as i n  the base case, hence we suppose

that Cn+1  $ S .

Our induction hypotheses i s  to assume that M Z—satisfies each

E-clause Ci with S P— C i ’  where i:;n. Let BEESUBE such that
Z

eCn ESEZ . We prove that M n 8C 4r¢=
+1 gr

Case  ( 6 )  Weakening and Factoring: Let C

that S k- C. and C
E 1 n

= o . ' sn+ 1 C 1 ,  1 n ,  such

+ 1  i s  a weakened variant or a E - f a c t o r  o f  C i '

Then BoCi E L Z g r

hypotheses. E

and M n 8Cn+ = M n ecCi #=¢ by the induction1

Case  (ii) Resolution: Let Cn+1 = Res(Ci,Li,Cj,Lj,o), i,jsn,

such that S l— C. , S |-- C .  and o E SUB .
Z 1 E j 2

Since C C 0(CilJCj), by Lemma 9.1 there exists some AESUB

and )\CI(Ci U Cj) E Ez 'g r '
n+ 1 2

such that 8 C n +  = A C1 n + 1

From our induction hypotheses we obtain that M n AcCi #: w and

that M n AOCj #= ¢.

Case  ( i i . 1 )  AULi $ M :  Then M n A0(Ci - Li) #= ¢ and with

A0(Ci - L i )  c 6Cn+1 we obtaln M n 6Cn+1 ¢’ ¢. M

Case  ( i i . 2 )  koLi E M :  Then AoLj ¢ M because AOL: = AoLj, hence

M n A C .  - L .  # and with A 0  C .  - L .  c 8 C0 (  j 3 )  ¢ ( J J )  n
M n eCn+1 4:¢. E a

+ 1  we obtaln
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Case  ( i i i )  Paramodulation: Let Cn = Par(Ci,L,Cj,E(q r),a,c),+1
i ,  a ,  and KELIT)3 such that S l-E- C i '  S I-z- C j ’  GESUBZ,  0 L 3 :  0 K

and a (oK)  = o r .

Since C c 0(Ci U C j  U {K}), by Lemma 9.1 there exists some

= A C n  and )\<)‘(Ci U C j  U {K}) E E Z g r '
n+1

A E SUB: such that B C n+1 +1

From our induction hypotheses we obtain that M n loci #~ ¢ and

that M n A c  =t ¢.

Case  ( i i i . 1 )  LoL $ M or AoE(q r) $ M. Then by the same argument

as i n  case (ii.1), M n A0(Ci - L) #- ¢ or M n Ao(Cj - E(q r)) ¢ ¢ ,

hence M n 6Cn+1 # ¢. m

Case  (iii.2) A U L E M  and AOE(q r) E M. Then by Lemma 2.2 (4)

A o L  3 A c K  and by Lemma 2 . 2  ( 5 )  a ( A o L )  = A o q  and a ( A o K )  = A o r ,

i . e .  A o L  EqM A o K ,  hence A G K E E M  because M i s  E - c l o s e d .

But then M n {AoK} ¢= ¢ and with {AoK} c eCn+1 we obtain that

M n eCn+1 4- ¢ -  m m a

The soundness of the ZRP-calculus i s  now an immediate consequence:

Coro l la ry  9.3 (Soundness Theorem for ZRP) If S FE a, then S

i s  Z E - u n s a t i s f i a b l e .

Proo f  From S Li D we infer by the Soundness Lemma (9 .2 )  that

no E—interpretation Z-satisfies S ,  i.e. S is ZE-unsatisfiable. w
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1 0 .  T h e  Sor t -Theorem

I n  this section the connection between the RP— and the Z R P -

calculus i s  established, i.e. we prove the

Sor t—Theorem for the ZRP—Calcu lus
As is ZE—unsatisfiable iff (s u A2) is E—unsatisfiable.

We prove both directions of this equivalence independently

using

A
Lemma 1 0 . 4  I f  M ' i s  an E—model of ( S  U A z ) g r ’

then M E - s a t i s f i e s  S .Zgr

and

A
Lemma 10.7 If S; is E—satisfiable, then (s u Az)gr
i s  E - s a t i s f i a b l e .

gr

I n  order to j u s t i f y  Lemma 1 0 . 4 ,  we start with some facts about

models o f  the s e t  A2 o f  a l l  s o r t  axioms.

Lemma 10 .1  I f  M i s  a model o f  A Z ,  C E C  and s 6.5 such that

[ c ]  s S ,  then s(c) E M .

Proo f  We prove by structural induction on s that s (c )€EM.

Base  Case  5 i s  minimal i n  <S ,s> :  Then [ G ]  = 5 ,  hence

{ s ( c ) }  E A2 by definition o f  Az and 5(0) 6 M because M satisfies
2

A . m

Induc t ion  Step 5 i s  not minimal i n  <$ ,s> :  Our induction

hypotheses i s  to assume that the lemma holds for each 31655

such that si << 3. If [c] = s ,  then s(c) E M by the same

argument as i n  the base case and we are finished.
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S o  let us assume that [ c ]  < s .  Then [ c ]  5 S1 for some 51655

with si «1 s and { n o t  s i ( x ) , s ( x ) } € A 2  by definition o f  A Z ,  i.e.

2
{not Si (c) ,s (c)} E Agr

By the induction hypotheses we obtain si(c) E M ,  i.e. not si(c) 42M

because M i s  an interpretation. But then s (c )EEM,  because M

satisfies AZ. m 8

Lemma 10 .2  I f  M i s  a model of A Z ,  t E T g r  and 31,3  E S  such that

231 s s and 31 (t) E M ,  then s(t) E M .

Proo f  We prove by structural induction on s that s(t)€ M.

Base  Case  5 i s  minimal i n  <$ ,s> :  Then 31 = s and s ( t )EEM by

assumption. M

Induc t ion  Step 5 i s  not minimal i n  <$ ,s> :  Our induction hypo-

theses i s  to assume that the lemma holds for each s i E E S  such

that 51 « s .  I f  s = s ,  then s(t)€EM by the same argument as1
i n  the base case and we are f i n i s h e d .

S o  let us assume that 51 < s .  Then 51 5 S1 for some siEES with

si << 5 and { n o t  si(x),s(x)}€EAZ by definition of A Z ,  i.e.

2
{ n o t  si (t)  , s(t)} E A g r

By the induction hypotheses we obtain si(t)£EM, i.e. not si(t)€Dd

because M i s  an interpretation. But then s(t)€EM, because M

satisfies AZ. M 8

Def in i t i on  10.1 The kerne l  M)3 of AZ is defined as

z __ s __ fM - { L € L ; n r [ L  — s(q) and [q] s s for some 5 6 3  and q E n r } .  .«

The kernel M2 i s  an interpretation, because i t  contains only

positive literals. Moreover M2 i s  contained i n  every  model of AZ:
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Lemma 10 .3  I f  M i s  a model o f  A Z ,  then M 2  c M .

Proo f  Let M be a model of A: and q E T X g r '  We show by structural

induction on q that s(q) E M  for each s 6 5  satisfying [q] s 5.

Base  Case  qEC:  Then s(q) E M  by Lemma 10 .1 .  [2]

s1...sk,sk+1 'Sk+1 S S '
and [qi] 5 Si for each i with 1 s i s k .  Our induction

Induc t ion  S t ep :  Let q = f(q1...qk), ftEF

q i  E T Z g r

hypotheses i s  to assume that si (qi )EEM for each i with 1-<i < k .

By definition of A2 we know that {not s1 (x1 ) , . . . , no t  sk(xk),

sk+1(f(x1...xk))}€Az, i .  e.

2
{not s1 (q1 ) , . . . , no t  sk(qk),sk+1(f(q1...qk))}(EAgr .

By the induction hypotheses we obtain that not si (qi )££M, hence
__ 1 2 2

sk+1(f(q1...qk)) — sk+1(q)EEM because M satisfies A . With
Sk+1  s s we finally infer by Lemma 10 .2  that s(q)€EM. M 8

With the following lemma we can prove one direction o f the

equivalence stated i n  the Sort—Theorem:

ALemma 10.4 If M is an E-model of (s u A2)gr
then M E - s a t i s f i e s  S .zgr

Proo f  Let C 6 8  and e € S U B Z  such that B C E S Z g r '  Then

6 — H :  ( t ( }UC)€'§e — no 51 q1),...,n0 s n  q n )  9 gr ,

where q. E T Z g r ’  si 6 5  and [qi] 3 S1 for each i with 1 3 1  g m .

Let M be an E-model of ( S  U A 2  ) g  . Then M i s  a model of A Z  and

by Lemma 10 .3  M2 c M. Hence by Definition 10 .1  si (qi )EEM, i.  e.

not si (qi ) ¢ M because M i s  an interpretation, and therefore

Mr1661=  Mr16C .  Since e e E E S g r  we know that M s a t i s f i e s  B e ,

hence M n 8C =l= (25. 8





5 5

To  prove the other direction o f  the equivalence stated i n  the

Sort—Theorem, we construct an E—model M* o f  ( Q  U A Z ) g r  from

an E-model M o f  S z g r ‘  This construction i s  carried out i n  two

steps:

First we extend M to an E-interpretation M '  which satisfies

( a  U A z ) z g r '  I n  the second step M '  i s  extended to an E -

interpretation M* i n  which each sort atom L i s  false, i.e.

L C E M " ,  i f  L i s  not true i n  M ' ,  i.e. L é M ' ,  and we prove i n
A

Lemma 10 .7  that M* satisfies ( S  U Az)gr.

Def in i t i on  10.2 Let I be an E-interpretation. The I-kernel [I]

o f  AZ i s  defired as

[ I ]  = {LELITSrlL = s(t) such that s(q) E M :  and E(q t) £ 1

for some s € $ ,  t E T g r  and q E n r } .  81

Def in i t i on  10 .3  Let I be an E-interpretation. The S-complemen t
o f I ,  denoted I c ,  i s  defined as

IC = {LELITgrlL = not s(t) and s(t) $ I  for some $ 6 5  and t E T  }. 8gr
I

I f  we extend an E-interpretation I by the I-kernel or by the

S-complement of I ,  we obtain an E—interpretation. This i s  proved

by the following two lemmata:

Lemma 10 .5  If I c LITgr is an E-interpretation, then(I U [1 ] )
i s  an E-interpretation.

Proof (I U [I])is an interpretation: We prove that LG €(I U [1])
for each L€(IU [1]).

Case  ( i )  1161}  Then LC $ I because I i s  an interpretation.

Lc $ [I] since [I] contains only sort atoms, but LC cannot be
a sort atom because L E L I T g r  by assumption. Hence LC Q (I U [1 ] ) .  [Z]
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Case (ii) L E [I]: Then LC $ [I] because [I] contains only

positive literals. LC ¢ I because LC i s  a sort literal and

I c I T g r  by assumption. Hence LC $(I U [1]). 91%

I U [I] is reflexive: Obvious, because I is. m

I U [I] is E—closed: Let L E  (I Ul'Il), KELITgr and on E SEL+ such
that L 3-» (1  u “ W K .  Then E(a(L)a (K) )  e (I  U [1 ] )  ,and since [1]
contains only sort atoms we obtain E(a(L)a(K)) E I ,  i.e.

L F I K  .

I f  L E  I ,  then R E  I by the E-closure o f  I and we are finished.

So let us assume that L 6  [I], i.e. by Definition 10 .2  there
ex1st s E 3 ,  t € T g r  and q E T Z g r  such that

L = s(t), s(q) E M Z  and E(q t) 6 1 .

From L a» K we obtain L a K ,  hence
I

K = s(r)

for some r E T g r .  Let (11,0.2 E S E L  such that a1(s(t)) = t and

a2(E(q t)) = t .  Then a = Boa1 for some BEESEL’Ir and with L 5+1 K

we obtain by Lemma 2.2 L3) t gal r. Hence a2(E(q t)) E41 a2(E(q r))

and with E(q t )  &” E(q r )  we infer by Lemma 2.2 (3)
2

E(q t )  W I  E ( q  r ) -

Hence E ( q  r )  E I ,  because E ( q  t )  E I and I i s  E — c l o s e d .  U s i n g

s(q) 6M2, by Definition 10 .2  we finally obtain s(r) = K E  [I]. [21

Lemma 10.6 If IcLIT;r  is an E—interpretation, then (IU Ic) is an

E-interpretation.

Proof (I U IC) is an interpretation: Let L E (I U IC)- If LE 1, then
LC ¢ I because I i s  an interpretation, and LC ¢ I C  by Definition

10 .3 .  I f  L E  I C ,  then LC $ I by d e f i n i t i o n ,  and LC $ I c  because I C

contains only negative literals. Hence i n  either case LC $ ( IU  IO)- E]
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( I U  Ic)hs reflexive: Obvious, because I i s .  w

(I U I C )  is E — c l o s e d :  Let L € ( I  U I C ) , K  E LI'Isgr and a E S E L +  such

that L 571 U IC)K' Then E(a(L)a(K))EHILJIC),and since IC contains
only negative literals we obtain E(a(L)a (K) )  E I ,  1 . e .

L gal K o

I f  L E  I ,  then K E  I by the E-closure of I and we are finished.

So let us assume that L 6 IC. Suppose that KC: 6 I. From L oT’I K we

obtain LC 5*I KC, hence by Lemma 2.3 (1) KC 5*I LC, 1.e. LCGEI

because I i s  E-closed. But then LG: IC. V Hence KCGI I ,  i.e.

K61? m m

. . . A 2Lemma 10 .7  I f  S Z g r  1 8  E s a t l s f l a b l e ,  then ( S  U A ) g r

i s  E - s a t i s f i a b l e .

Proo f  Let M be an E—model of S Z g r ‘  Slnce S Z g r  C L X g r ’  we are

allowed to assume that M c L I T g r '  Hence by Lemma 10.5(M U [M])
i s  an E-interpretation and using Lemma 10 .6  we obtain that

M* = (M u [M]) u (MLJ[M])°

. . . A Z .
1 3  an E-lnterpretatlon. Let CEE(S  U A ) ,  1.e.

C = { n o t  s1 (x1 ) , . . . , no t  sn(xn)} U D

where DEELE and no literal i n  D i s  a negative sort literal,

vars(D) = {x1,...,xn} and [xi] = Si for each i with 1 S i  srh

. and let BEESUB such that 8'” = {x1+t1,...,xn+tn} and COD(6)€ETgr,

1 . e .

A X9C —({not s1(t1),...,not sn(tn)}lJeD)€(S U A )gr

We prove that M* satisfies 6 C .

Case (i) S i ( t i )  ¢ [M] for some i with 1:si:sn: Then
S i ( t i )  ¢ (M l J [M ] )  because M contains no sort literals, hence

not si(ti) E (M U [M1f3by Definition 10 .3 .  But then

not si(ti) E M* n 9 C ,  i.e. M* satisfies 8C. M
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Case  (ii) si(ti) E [ M ]  for each i with 1 S i  S n :  Then by

Definition 10.  2 there exist q 1 ,  . . . ,qn E T Z g r  such that

ZS i ( q i )  E M  and E(qi ti) E M

for each i with 1 s i  5 n .  Let A E S U B Z  such that Aiv={x1+q1,...,xn+qn}.

We prove that

(M U [M]) n XD ¢ ¢

Case  (737$.1) s(r) E D  for some 5 6 5  and some r E T .  Then r E T Z  and

[r] s 5 since D E E ;  Hence s(xr) E AD, A r E n r  and [Ar] s 5. By
Definition 10 .1  we obtain that s(Ar) EMZ,  hence by Definition 10 .2

s(Ar) EfM] ,  i.e. s(Ar) E (M U [MD n AD. [2]

A
Case  (7173.2) s(r) 62 D for each 5 6 $  and each r E T :  Then C = D ,

i . e .  D E S  and ADES . Since M s a t i s f i e s  S we know thatXgr Zgr
M n AD ¢ ¢, i.e. (M U [M]) n AD ¢ ¢. w

Let LED such that ALE (M U [M]), let {a1,...,ah} =
{0L €SEL+]a (L)  = x .  for some x .  E v a r s ( D ) }  and let K , . . . , K  E L I T s1 1 1 h+1 gr
such that K1 = AL, K j  O‘Nj K j + 1 ’  ocj(Kj) = Aaj(L) and

a . (K  = 6aj(L) for each j with 1s jsh .j j +1 )

Then Kh+1  = 8 L  and K 1  &—1—, (MUrMD.K2  Kh WWUI 'M- I )  Kh+1 ’  1 . e .

a:
KK1 “*R(MtJ[M]) h+1

because aj(Kj) = Axi = q i ,  aj(Kj+1) = exi = ti and E(qi ti) E M .

With K1 = AL 6 (M U [M]) we obtain by Lemma 2.3 (2)that
Kh+1 = 8L 6 (M u [M]). Hence eL e (M u [M]) n 6D, i.e. M*
satisfies 6C. M 8

The Sort-Theorem i s  now an immediate consequence:
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Theorem 10 .8  (Sort—Theorem for the Z R P — C a l c u l u s )  S i s  B E “
A

unsatisfiable i f f  ( S  U A Z )  i s  E-unsatisfiable.

Proo f  " » "  I f  S i s  ZE—unsatisfiable, then S z g r  i s  E-unsatisfiable,
A

hence by contraposition o f  Lemma 10 .4  ( S  U A z ) g r  i s  E-un—
A

satisfiable, i.e. ( S  U AZ) i s  E—unsatisfiable. M

A A
"a" I f  ( S  U A Z )  i s  E-unsatisfiable, then ( S  U A z ) g r  i s  E-un-

satisfiable, hence by contraposition of Lemma 10 .7  S Z g r  i s  E—

unsatisfiable, i.e. S i s  EE—unsatisfiable. w H
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11. An Automated  Theorem Prover  for the ZRP-Ca lcu lus

I n  this section a brief overview i s  presented of how an automated

theorem prover ATP based on the RP-calculus can be modified to

obtain an automated theorem prover ATPZ for the ZRP-calculus. The

necessary modifications o f  the ATP concern

- the input-language compiler ,

— the skolemization routine ,

- the unification algorithm , and

- the computation o f  factors, resolvents and paramodulants.

A protocol of an example run of an existing ATPz is exhibited at

the end of this s e c t i o n .

The Compiler The compiler tests whether a given input string

satisfies the rules o f  syntax and those of the 'static semantics'

(i.e. that function symbols are used with a proper arity e.t.c.)

of a (somewhere defined) first-order language K with the usual

junctors, universal and existential quantifiers (and produces as

' c ode '  a first-order formula i n  a certain representation, but

this i s  o f  course irrelevant h e r e ) .

The rules o f  the static semantics have to be extended such that

only formulas from the s e t  o f  a l l  well sor t ed  first-order

formulas K2 c K will be accepted: For each atomar formula A i n

a formula given as input, the compiler has to determine whether

A i s  a well sorted atomar formula, i . e .

[a(A)] 5 H u m  for each on ESEL+ satisfying or.(A)+, or A 6  Pe.

This problem i s  the same as for programming languages with sorts

(often called types), e.g. PASCAL or ADA, and hence can be solved

using the well known techniques of compiler construction.

I n  addition a device i s  required to define a s e t  o f  sort symbols

$ ,  a subsort order S S  and some S-sorted signature 2. This i s

achieved extending the language KZ by certain constructs which

allow the definition of S ,  S S  and Z [Wal82]. For this extension

the compiler has to perform additional 'semantic' tests, e.g. to

check whether S S  i s  i n  fact an order  relation.
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The Sko lemi za t ion  Routine On Skolemization of a first-order

formula (given i n  a certain format) each occurence of an

existentially quantified variable symbol y i n  an atomar formula

i s  replaced by a ska l em  term t ,  and a l l  existential quantifiers

are removed.

The skoZem term t consists o f  a new function symbol f followed

by a (possibly empty) sequence x1,...,xn of variable symbols as

arguments, where each xi i s  a universally quantified variable

symbol and the variable symbol y ,  which was replaced by t ,  i s

i n  the scope of exactly the universal quantifiers for the variable

symbols xi.

For the Z—skolemization, i.e. Skolemization under sorts, this

process i s  the same for each formula i n  K but i n  addition theZ ,

signature 2 has to be extended, yielding a signature 2* for the

new function symbols introduced by the Skolemization: We assert

f 6 FS . . . s  :5 1ff [xi] = Si and [y] = s ,
1 n

where f ,  xi and y are defined as above, and i t  i s  obvious that

E-skolemization transforms well sorted formulas (of K2) into

well sorted formulas (of KZ*) '

To be correct, we have to show that Z—skolemization main ta ins

E—(un)satisfiability: From [Obe62] we obtain the semantic notions

for K 2 ,  and i n  particular a notion of Z-unsatisfiability for

formulas ¢€EKZ. Let K 5  be the extended language o f  K ,  where sort

symbols may be used as unary predicate symbols. Then by the

Sort-Theorem of [Obe62], each formula

¢€EKZ i s  Z—unsatisfiable i f f  ( { $ }1JAZ)  c K 5  i s  unsatisfiable.

Consider the following diagram:

U )
<¢ 6: K2,» ———-» HES} u AZ) c: K5

(5) (2)

M Q 2* 7 Z s<d> E “2““) -———-——-—-———> ({cp} U A ) z ({¢} u A )  c: K

A(4) 3)

Figure  11.1 Skolemization and E—Skolemization
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Here $ denotes the formula which i s  obtained from the formula ¢

by (Z-)skolemization on (2) and (5). On (1) and (4) a formula i s

replaced by i t s  relativization and the s e t  o f  sort axioms.

With a proof of the equivalence (3) (which i s  technical and

omitted here), we obtain from figure 11 .1  that each Z-skolemized

formula $ E K:* is Z*—unsatisfiable iff ¢ 6 K2 is Z-unsatisfiable,
because (1) and (4) maintain (un)satisfiability by the Sort-

Theorem of [Obe62], and (2) i s  the skolemization i n  the one-

sorted calculus and hence leaves (un)satisfiability unchanged

[Lov78].

The Unification Algor i thm  At the very heart of each (Robinson)

unification algorithm, variable symbols x have to be unified

with terms t. The resulting substitution, represented by {x+t},

i s  composed with other substitutions o f  this kind, yielding

finally an mgu for the set of terms (or atoms) initially given

to the unification algorithm (provided the s e t  i s  unifiable).

Hence each unification algorithm contains a sequence o f  statements

like

(1) 16 x = t; then detain ( { } )
(2) £6 x E vars({t}) than step/failure
(3) netunn ({x+t})

Figure  11.2 Unification of variables and terms

On unification under sorts. by the Z-Unification Theorem a Z-mgu

may exist for a s e t  o f  Z-unifiable terms only after an

application of a weakening substitution. We modify the unification

algorithm to obtain a Z-un i f i ca t ion  a lgor i t hm  by replacing

statement (3) i n  figure 11 .2  by the sequence of statements

(3 .1 )  L5 [t] 5 5  [x] then aetuhn ({{x+t}})
(3.2) L6 tdED 0k [t]"$[x] = ¢ than Stop/failure

(3.3) L6 [x] <5 [t] then detain ({{tfix}})

(3.4) Kat {s1 ..... sk} = max([t] " s [x])

(3.5) £21 {21 . . . . , zk }c :D  such that no 21 is used before and [zi]==s

(3.6) Retain ({{x+z1,t+z1},...,{x+zk,t+zk}})

where 51 r15 5 2  = {SES lssss1  and 5 : 5  52} and

max(S) = { $6815  *5 s' for each 3' ES}

Figure  11 .3  E-un i f i ca t ion  of var iab l e s  and t e rms
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For each Z-unifiable s e t  o f  E—terms the Z—unification algorithm

returns a s e t  of Z—unifiers and not a single unifier as usual,

because a unification problem may have several most general

solutions under s o r t s .

I t  can be verified that for each s e t  D of Z-terms (or Z-atoms)

given as input, the E-unification algorithm terminates with a

failure indication, i f  D i s  not E-unifiable, and else terminates with

a finite set o f  Z-substitutions U(D) = {T1,...,Tn} as output,

such that for each i with 1 $ 1  s r n

(1) “i E WSUB(vars(D)) ,

(2) C i  1 8  a Z-mgu of uiD ,

(3) Ti = oioui [vars(D)] , and

( 4 )  for each z — u n i f i e r  8 o f  D .  there e x i s t  some A E E S U B Z  and

some r j E I J fl n  such that

8 = AOTj[vars(D)]

If D i s  Z-unifiable and i n  addition is Z—compa t ib l e ,  then

U(D) = {T}, where 'r i s  a E—mgu of D ,  because by the Z—compatibility

exactly one o f  the conditions i n  the statements ( 3 .1 )  and (3.3)

of figure 11 .3  i s  always satisfied.

Computation qf Factors, Reso lven t s  and Paramodu lan t s  We outline

an implementation of an ATP which avoids the explicit computationZ ,

o f  weakened v a r i a n t s :

Let A be a clause i n  a Z-deduction and let BczA such that IB IZZ
and

U(B) == {T1,...,'r } .
n

Then i n  order to be complete, the ATPZ has to compute each E—clause

T . Al I

each o f  which i s  a Z—factor of weakened variant o f  A .  This i s  an

immediate consequence of the Lifting Lemmata for Z—Resolution and

Z-Paramodulation.
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Let A ,  B be clauses i n  a Z-deduction, LAEEA and LBEEB such

that LA and LB are complementary and

U( { | LA I , | LB I } )  = {T1,...,Tn} .

To be complete, the ATPZ has to compute each  Z-clause

T i ( A  - L A )  U T i ( B  — LB) ,

each o f  which i s  a z — r e s o l v e n t  o f  some weakened variants o f  A

and B .  This i s  justified by the Lifting Lemma for Z-Resolution.

Let A ,  B be c l a u s e s  i n  a Z — d e d u c t i o n ,  L E A ,  E ( q  r )  E B  and

a E SEL+ such that { a  (L) ,q} is E - u n i f i a b l e .  If rev and [r] “5 [L]a=¢0r  1 3 $ ”

mmi[r]$$[LL1,then there exists no Z-paramodulant of A and

(possibly some weakened variant of) B, because [8r] $5 [6L]a

for each 8 € S U B Z .

Hence a Z-paramodulant can only be obtained, i f  r650 implies

[r] ”s [L]a  ¢= ¢ and r $ D implies [r] 35 [L1a .  Let
{s1,...,sk} = max([r] ” s  [L ] ;  and {z1,...,zk} c D such that

each zi i s  never used before and [ zi] = Si. I f [ r ] $ $ [ L w e < k fi i n e

s
u1 = a .  I t  i s  obvious that “ j  E i s  a weakened variant o f  B and

that [ujr] s [L]a for each j with 1 s j  5k”

u1,...,uk E SUB>3 by u l  = { r + z j } .  For Er] s [L]OL, we set k=1 and

We know from the proof of the Lifting Lemma for Z-Paramodulation

that {a(L),ujq} i s  Z—unifiable, hence

U({a(L),u.q}) = {Tj,...,TJ }j 1 nj

i s  not empty. To be complete, the ATPZ has to compute for each

j and i with 1 s j z s k  and .1  s i  s n j  the Z-clauses

j _ j _ jTi(A L) U Ti(B E(q r)) U {Ti K}

Gimme T3 K i s  a modulant literal), each o f  which i s  a Z-paramodulant

o f  some weakened variants of A and B by the Lifting Lemma for Z -

Paramodulation.

After the computation o f  a Z—factor, Z—resolvent or Z-paramodulant

the variable symbols of these Z-clauses have to be renamed using

an appr0priate Z—renaming substitution.
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The Markgraf Karl Refutation Procedure [BES81, Oh182], a theorem

proving system developed at the University of Karlsruhe, was adapted

to the ZRP—calculus according to the modifications stated above.

We exhibit a proof protocol of the new system, proving a many—sorted

version of thexmfll known monkey -banana-prob lem [Lov78]:

a t t a i u l n t a l s r x x a a l l l u : n i t : a t t l u u i x u s s n u t x x t i t t u p : x t x t u t t t t t t x t t t fi t x t a a x x l r u l u x t t l x n t a u u n n u t t n u n u n u t n fl

I t

* ATP SYSTEM: MARKGRAF KARL REFUTATION PROCEDURE, UNI KARLSRUHE, VERSION 12—OCT—82 .
t t

. DATE: 2-NOV-82 16:46 :27  *
i I

I In u t t t t n u t u a t u n t t u - u u u t u n u t t t t t t i t t a t t t t x t t t t u t x x t t t t t i t u t t t t t u t t t x t a t u i t t u n i t s : u t u x s t t u l t t I - t u u u u u l

FORMULAE GIVEN TO T H E  THEOREM PROVER:

AXIOMS: SORT ANIMAL,TALL:IN.ROOM
TYPE BANANA,FLOOR:IN.ROOM
TYPE CHAIR:TALL
TYPE MONKEY:ANIMAL
TYPE CAN.REACH(ANIMAL IN.ROOM)
TYPE CLOSB.TO{IN.ROOM IN.RO0M)
TYPE 0N(IN.R00M IN.ROOM)
TYPE UNDER(IN.ROOM IN.ROOM)
TYPE CAN.MOVE.NEAR(ANIMAL IN.ROOM IN.ROOM)
TYPE CAN.CLIMB(ANIMAL TALL)
ALL X:ANIMAL ALL Y:IN.ROOM CLOSB.TO (x y) IMPL CAN.REACH (x Y)
ALL X:ANIMAL ALL Y:TALL ON (x Y) AND UNDER (y BANANA) IMPL CLOSE.TO (x BANANA)
ALL X:ANIMAL ALL Y,Z:IN.ROOM CAN.MOVE.NEAR (x Y 2)

IMPL (CLOSE.TO (z FLOOR) OR UNDER (y 2))
ALL X:ANIMAL ALL Y:TALL CAN.CLIMB (x Y) IMPL OH (x Y)
CAN.MOVE.NEAR (MONKEY CHAIR BANANA)
NOT CLOSE.TO (BANANA FLOOR)
CAN.CLIMB (MONKEY CHAIR)

THEOREM: CAN.REACH (MONKEY BANANA)

t i l i i l t fl t i t l i i i l l fl fi fl t i l i fi fl

* INITIAL GRAPH *
l u l t t n a s u n t t t i t u t t t l x u t t t t

CLAUSBS:

AXMI : ALL X:ANIMAL Y:IN.ROOM NOT CLOSE.TO(X Y) OR CAN.REACH(X Y)
AXMZ : ALL X:ANIMAL Y:TALL NOT ON(X Y) OR NOT UNDER(Y BANANA) OR CLOSE.TO(X BANANA)
AXM3 : ALL X:ANIMAL Y:IN.ROOM Z:IN.RO0M NOT CAN.MOVE.NEAR(X Y 2) OR CLOSE.TO(Z FLOOR)

- OR UNDER(Y Z)
' AXM4 : ALL X:ANIMAL Y:TALL NOT CAN.CLIMB(X Y) OR ON(X Y)

AXMS : CAN.MOVE.NEAR(MONKEY CHAIR BANANA)
AXM6 : NOT CLOSE.TO(BANANA FLOOR)
AXM? : CAN.CLIMB(MONKEY CHAIR)
THMS :. NOT CAN.REACH(MONKEY BANANA)

AXMZ AND AXM3 IMPLIES RESl : ALL X:ANIMAL Y:TALL Z:ANIMAL CLOSE.TO(X BANANA) OR NOT 0N(X Y)
0R CLOSB.TO(BANANA FLOOR)
OR NOT CAN.MOVE.NBAR(Z Y BANANA)

RESl AND AXMS IMPLIES RESZ : ALL X:ANIMAL CLOSE.TO(BANANA FLOOR) OR NOT ON(X CHAIR)
OR CLOSE.TO(X BANANA)

AXMI AND RESZ  IMPLIES RESB : ALL X:ANIMAL CAN.REACH(X BANANA) OR NOT ON(X CHAIR)
OR CLOSE.TO(BANANA FLOOR)

AXMG AND RES3 IMPLIES R354 : ALL X:ANIMAL NOT ON(X CHAIR) OR CAN.REACH(X BANANA)
THMB AND RES4 IMPLIES RESS : NOT ON(MONKEY CHAIR)
RESS AND AXM4 IMPLIES RESG : NOT CAN.CLIMB(MONKEY CHAIR)
RESG AND AXM7 IMPLIES RES7' :  EMPTY

(continue next page)
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GRAPH SUCCESSFULLY REFUTED .

C P U - T I M E  USED:  ‘ 3 . 3 2 9 0 0 9  SECONDS.

NUMBER O F  STEPS  EXECUTED:  7

N U M B E R  O F  L I N K S  GENERATED:  2 2

RLINKS: 2 2

PLINKS:  fl
FLINKS:  5
N U M B E R  O F  L I N K S  I N  I N I T I A L  G R A P H :  8
RLINKS:  8
PLINKS:  fl
FLINKS:  9

NUMBER O F  C L A U S E S  G E N E R A T E D :  1 5

I N I T I A L  C L A U S E S :  8
DEDUCED C L A U S E S :  7

R E S O L V E N T S :  7
P A R A M O D U L A N T S :  fl
FACTORS: 0

NUMBER O F  CLAUSES DELETED:- lfl
LEVEL O F  PROOF: 7
NUMBER O F  C L A U S E S  I N  PROOF:  1 5

I N I T I A L : -  8
DEDUCED:  7

G - P E N E T R A N C E :  1 . 6 6 3 6 6 3  ( #  0F CLAUSES I N  PROOF / # OF C L A U S E S  G E N E R A T E D )

D—PENETRANCE: 1.000606 ( #  O F  DEDUCED CLAUSES IN PROOF / # O F  CLAUSES DEDUCED)
R-VALUE:  6 . 6 6 6 6 6 7  ( #  OF CLAUSES DELETED / # O F  C L A U S E S  GENERATED)

THE FOLLOWING CLAUSES WERE USED I N  T H E  PROOF:

AXM? AXM4 AXMS AXM3 AXMZ RESI RESZ AXMl RES3 AXMG R354 THMS BESS R556 RES? .

T H E  THEOREM IS PROVED.
END OF PROOF: 2-NOV-82 16:47 :22

Figure  11.4 A proof o f  the monkey-banana problem, using a many-

sorted axiomatization

In our system, we use the expressions (Cf. [Wal82])

SORT S1,...,Sn:S to denote s1 <<s s....sn<<:s s ,

TYPE C1,...,Cn:S to denote c 1 € F e , s ” ' C n € F e , s  ,

TYPE P(s1 . . . sn )  to denote PEEPS1 . . . sn  ’ and

ALL x zs to denote the universal quantification of a variable symbol

XEDS.

I n  the proof statistics, the value for 'number of links generated'

corresponds to the size of  the search space, the value for 'number

of steps executed' i s  a measure for the expense of the actual search

and 'level o f  proof' represents the search depth.

L e t  us compare the above protocol with a proof protocol o f  the

same problem, using the one-sorted axiomatization obtained from

[Lov78]:
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g u n n u x t t l l l I I I l k x x x t a l x l x t k l l x l t l fi fl fl l fl i l t fl i I i fi fl i t i fl fl i fl i t fl i t t t t fl x x t t i t l t l fl t i i x fl t t * t fl i l fl l K i t t fl k i fl t fl l t l i

2
3
"
“
!

t u n t t t t i t fi n l t t t t n t t i n t w l I t t i k l t i r t l t u t t i t t u t l t t t t t t t a a u t t i t t u u u t u l t t u t t t t u l u t t t t i n t a t t x u t l u t s n t i t a n :

ATP SYSTEM:

DATE:

MARKGRAF KARL REFUTATION PROCEDURE, UNI KARLSRUHE, VERSION lZ-OCT-82

2-NOV-82  16 :48 :31

i
a
i
t
i
a

FORMULAE GIVEN TO T H E  THEOREM PROVER:

AXIOMS:

TH

fi t t fl t l t i i t i t l

* INITIAL G
* i I * I * I l I l I I I

CLAUSES:

AXMI
AXMZ
AXM3

AXM4
AXMS
AXM6
AXM7
AXMB
AXM9
AXMIB
AXMll
AXMIZ
THM13

.
0t
o

I
.

O
.

I
.

I
.

AXM3

AXM3

AXM3

AXM3

AXMI AND AX
THM13 AND R E
RESZ AND AX

£83 AND AXM4

E54 AND AXMIZ
555 AND AXH3

356 AND AXM9

:57 AND AXMB

358 A N D  A X M B

IMll AND RES9
‘519 AND AXM10
*11 AND AXM?

ALL X,Y ANIMAL (X) AND CLOSE.T0 (X Y) IMPL CAN.REACH ( X  Y)
ALL X,Y 0N (X Y) AND UNDER ( Y  BANANA) AND TALL (Y) IMPL CLOSE.T0  (X BANANA)
ALL X,Y,Z IN.ROOM (X) AND IN.ROOM (Y) AND IN.ROOM (Z) AND CAN.MOVE.NEAR (X Y Z)

IHPL (CLOSE.T0 ( Z  FLOOR) OR UNDER ( Y  2))
ALL x,y CAN.CLIMB (x Y) IMPL 0N (x Y)
ANIMAL (MONKEY)
TALL (CHAIR)
IN.ROOM (MONKEY)
IN.ROOM (BANANA)
IN. ROOM (CHAIR)
CAN. MOVE. NEAR (MONKEY CHAIR BANANA)
NOT CLOSE. TO (BANANA FLOOR)
CAN. CLIMB (MONKEY CHAIR)

EOREMQ CAN.REACH (MONKEY BANANA)

* n x t fi t l t t i t t t

RAPH *
l i k t t t fi t l ’ l fl l fl

ALL X:ANY Y:ANY
ALL X:ANY Y:ANY
ALL X:ANY Y:ANY

ALL X:ANY Y:ANY
ANIMALtMONKEY)
TALL(CHAIR)
IN.ROOM(MONKEY)
IN.ROOM(BANANA)
IN.ROOM(CHAIR)

NOT ANIMAL(X) OR NOT CLOSE.TO(X Y) OR CAN.REACH(X Y )
NOT ON(X Y) OR NOT UNDER(Y BANANA) OR NOT TALL(Y) 0R CLOSE.TO(X BANANA)
Z:ANY NOT IN.ROOM(X) OR NOT IN.ROOM(Y) OR NOT IN.ROOM(Z)

OR NOT CAN.MOVE.NEAR(X Y Z) OR CLOSE.T0(Z  FLOOR) OR UNDER(Y 2)
NOT CAN.CLIMB(X Y) OR ON(X Y)

CAN.MOVE.NEAR(MONKEY CHAIR BANANA)
NOT CLOSE.TO(BANANA FLOOR)
CAN.CLIMB(MONKEY CHAIR) '
NOT CAN.REACH(MONKEY BANANA)

IMPLIES

IMPLIES

IMPLIES

IMPLIES

M5 IMPLIES
Sl IMPLIES
M2 IMPLIES

IMPLIES

IMPLIES
IMPLIES

IMPLIES

IMPLIES

IMPLIES

IMPLIES
IMPLIES
IMPLIES

AXM3.FAC1 : ALL X:ANY UNDER(X X) 0R CLOSE.TO(X FLOOR)
OR NOT CAN.MOVE.NEAR(X X X) OR NOT IN.ROOM(X)

AXM3.FAC2 : ALL X:ANY Y:ANY UNDER(X Y) OR CLOSE.TO(Y FLOOR)
OR NOT CAN.MOVE.NEAR(Y X Y) OR NOT IN.ROOH(Y)
OR NOT IN.ROOM(X)

AXM3.FAC3 : ALL X:ANY Y:ANY UNDER(X X) OR CLOSE.TO(X FLOOR)
OR NOT CAN.MOVE.NEAR(Y X X) OR NOT IN.ROOM(X)
OR NOT IN.ROOM(Y)

A X M 3 . F A C {  : ALL X:ANY Y:ANY UNDER(X Y) 0R CLOSE.TO(Y FLOOR)

RESl
RESZ
RES3

R384

RESS
R356

RES?

RESB

RESQ

RESlB
RESll
RESl2

0
I

I
o

O
I

OR NOT CAN.MOVE.NEAR(X X Y) OR NOT IN.ROOM[Y)
OR NOT IN.ROOM(X)

: ALL X:ANY CAN.REACH(MONKEY X) OR NOT CLOSE.TO(MONKEY X)
: NOT CLOSE.TO(MONKEY BANANA)
: ALL X:ANY NOT TALL(X) OR NOT UNDER(X BANANA) OR NOT ON(MOHKEY X)
ALL X:ANY NOT UNDER(X BANANA) OR NOT TALL(X)

OR NOT CAN.CLIMB(MONKEY X)
NOT TALL(CHAIR) OR NOT UNDER(CHAIR BANANA)
ALL X:ANY NOT TALL(CHAIR) OR CLOSB.TO(BANANA FLOOR)

OR NOT CAN.MOVE.NEAR(X CHAIR BANANA) OR NOT IN.ROOM(BANANAJ
OR NOT IN.ROOM(CHAIR) OR NOT IN.ROOM(X)

ALL X:ANY NOT IN.ROOM(X) OR NOT IN.ROOM(BANANA)
OR NOT CAN.MOVE.NEAR(X CHAIR BANANA)
OR CLOSE.TO(BANANA FLOOR) OR NOT TALL(CHAIR)

ALL X:ANY CLOSE.TO(BANANA FLOOR) OR NOT CAN.MOVE.NEAR(X CHAIR BANANA)
OR NOT IN.ROOM(BANANA) OR NOT IN.ROOM(X)

ALL X:ANY NOT IN.ROOM(X) OR NOT CAN.MOVE.NEAR(X CHAIR BANANA)
OR CLOSE.T0(BANANA FLOOR)

A L L  X:ANY NOT CAN.MOVE.NEAR(X CHAIR BANANA) OR NOT IN.RO0M(X)
NOT IN.ROOM(MONKEY)
EMPTY

(continue next page)
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GRAPH SUCCESSFULLY REFUTED .

C P U - T I M E  USED:  . 1 1 . 3 7 5 9 9 9  SECONDS
N U M B E R  O F  STEPS  EXECUTED:  1 6
NUMBER O F  L I N K S  GENERATED:  I 9 9

RLINKS: 9 5
PLINKS:  - B
F L I N K S :  4
N U M B E R  OF LINKS I N  I N I T I A L  GRAPH:  2 3
RLINKS:  _ . 1 9
PLINKS:  _ fl
FLINKS: . 4

N U M B E R  O F  CLAUSES GENERATED:  2 9
I N I T I A L  C L A U S E S :  1 3
DEDUCED C L A U S E S :  ' 1 6

RESOLVENTS:  1 2
P A R A M O D U L A N T S :  0
F A C T O R S :  4

N U M B E R  O F  CLAUSES DELETED:  2 2
LEVEL O F  PROOF:  ' 1 2
N U M B E R  O F  C L A U S E S  I N  PROOF:  2 5

I N I T I A L :  1 3
DEDUCBD:  1 2  -

G - P E N E T R A N C E :  6 .862369  ( #  O F  C L A U S E S  I N  PROOF / # O F  C L A U S E S  G E N E R A T E D )D - P E N E T R A N C E :  ‘ _ 9 . 7 5 9 6 9 3  ( #  OF DEDUCED CLAUSES I N  PROOF / # 0F C L A U S E S  DBDUCED)R—VALUE:  _ 3 .758621  ( #  O F  CLAUSES DELETED / 9 O F  C L A U S E S  G E N E R A T E D )

THE FOLLOWING CLAUSES WERE USED IN THE PROOF:

AXM? AXMIB AXMB AXMG AXMQ AXMB AXM12 AXM4 AXMZ AXMS AXMI RESl THMlB RESZ R853  RE54 RESS RESG RES? RESB RES9AXMll R8513  RESll RESIZ  . ‘

T H E  THEOREM I S  PROVED.
END OF PROOF: 2-NOV-82 16 :42 :13

Figure  12.5 A proof of the monkey—banana problem, using a one-

sorted axiomatization

A comparison between the statistical values of both protocols

immediatelyreveals the advantages using an automated theorem

prover based on the ZRP—calculus.
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1 2 .  Conc lus ion

For the RP-calculus many refinements like set-of-support,

linear resolution, hyperresolution e.t.c. have been preposed

and their behaviour regarding completeness was investigated

[Lov78]. Instead of reinvestigating these results for the ZRP—

calculus, i t  seems advantageoustolmwe a d i rec t  proof of the

prooftheoretic part of the Sort—Theorem, i.e.

A E  Es UAEl-uiffs I—u rE

for each signature 2 and each z—clause s e t  S.

This direct proof would provide a constructive way to translate

a refutation i n  the RP—calculus to a refutation i n  the ZRP-

calculus (whenever this i s  possible). We conjecture that such

a construction would show (in  most cases), whether completeness

results for refinements i n  the RP-calculus also hold for the

E R P - c a l c u l u s .

At present the fi—Logik, the Z-Log ik  and the S-Log ik  of Obersche lp

appear to be the most expressive many-sorted calculi, for which

soundness, completeness and the Sort—Theorem have been proved

[Obe62 ] ;

Sets of function symbols do not need to be disjoint i n  the fi-Logik.

For instance scalar—addition and vector-addition may share the

same function symbol, e.g.

plus E F33 ,s  n Fvv , v  , where 8 ”51) = ¢

I t  i s  obvious that the respective 'intended' function symbol can

be determined by inspecting the sorts o f  the arguments i t  i s

applied to. (Note that i n  this paper we have made frequent use

of this feature. For instance lDl were used  to denote the

cardinality of the set D while ILI stood for the atom of the

literal L.)
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We believe that this useful practical device should not be

incorporated i n  a calculus and i t s  inference machinery. It

would be reasonably implemented i n  an automated theorem prover,

i f  shared function symbols are renamed by a compiler on input

and are re-renamed by the protocol facility on output.

The Z-Log ik  is not a many-sorted calculus i n  the strong sense}
because non-we l l  sorted formulas are admitted as axioms and

hence appear as theorems. OberscheZp  gave an example for a non-

well sorted formula which nevertheless i s  a meaningfull expressio

i n  the given context.

However we believe that this proposal i s  not advantageous for

Automated Theorem Proving, because i t  destroys (especially for

paramodulation) the advantages o f  a strongly restricted search

space by the restriction o f the inference rules to well sorted

formulas.

The S-Log ik  corresponds directly to the EFF-ca lcu lus ,  however

with one exception: The sets of function symbols may have non—

empty intersections. For instance one may assert

plus 6 F n F , where n < a .
zzlz nn,n S

If p lus  i s  applied to a pair o f  terms such that at least one

o f  t h i s  terms has sort a ,  then the whole term has s o r t  3 .  But

i t s  sort i s  n,:Lfboth arguments have sort n .

By such an extension the sorts o f  all subterms of a term have

to be computed to determine the sort o f  the given term. (Note

that i n  the ERP-calculus the sort o f  a term i s  independent o f

i t s arguments, because i t  i s  determined by the outermost symbol

o f  the term.)

Obviously this feature enriches the expressive power of a many

sorted calculus. In the ZRP—calculus we need add i t i ona l  ax ioms

(and also additional function symbols) to state similar facts.
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For i n s t a n c e

plus E F é z , z  ,

add 6 F 5 n , r z  , and

Vx,ym. p1us(x y) 5: add(x  y) , where 7: <5 3 r

i s  an equivalent formulation i n  the ZRP-calculus for the fact

stated i n  the example above. All inferences (within the ZRP—

calculus) using the above equality are shifted to the i n f e rence
mechan i sm  i n  the S-Logik.

To ensure completeness, a s i m i l a r  extension o f  the ZRP-calculus

presupposes a corresponding reformulation of the Z-Rewr i t e

Theorem and of the Z-Uni f i ca t ion  Theorem, which does not appear

to be straightforward.

T h e r e  are other proposals for various kinds of many-sorted

calculi which are superior in their expressive power (at least

on certain aspects). For instance Hailperin's ' Theory  of

Restricted Quantification’ [Hai57] allows to express sortrelationships

using arbitrary first—order formulas, whereas usually the only

relationship between sort symbols i s  given by the subsort order.

Moreover i t  i s  possible to write formulas like (in our notation)

Vx :§  . @(x)

with the intended meaning that x may have every sort, excep t

sort 3 .  One should take great care i n  adapting these (fundamental)

extensions for Automated Theorem Proving, because they generally

involve that deductions about sortrelationships can no longer

be built into the inference mechanism o f  the system.

[ I n  fact, Hailperin's calculus contains the one-sorted calculus

and hence a translation o f  a many-sorted version o f  a theorem

to the one—sorted version o f  the theorem (and vice versa) i s

effected wi th in  his calculus rather then by a translation from

one calculus to another using sort axioms and relativizations.





7 2

Acknowledgemen t s

I would like to thank my colleagues K.—H.Bs ius ,  N. Eis inger ,

H.J .  Ohlbach  and W. S tephan  for their support during the pre—

paration of this work. Also I would like to acknowledge great-

fully the discussions with A. Hero ld  on Unification Theory.

J .  S iekmann  read an earlier draft of this paper. His helpful

criticism and support contributed very much to the present form

of this report.





Re fe rences

[BES81]

[BM79]

[Bra75]

[Cha78]

[Gen34]

[Gilss]

[Ha157]

[Hay71]

[Hen72]

[Her30]

[Ide64]

[Lov78]

[MH56]

7 3

Blfisius, K., Eis inger ,  N., S iekmann ,  J., Smolka ,  6.,

Hero ld ,  A., and C. Walther The Markgraf Karl Refutation
th

Procedure. P r o c .  of the 7 International Joint Conference

on Artificial Intelligence (1981)

Boyer ,  3.8. and J S. Moore  A Computational Logic.

Academic Press (1979)

Brand ,  D. Proving Theorems with the Modification Method.

SIAM J. Computing 4(1975)

Champeaux ,  D. de A Theorem Prover Dating a Semantic

Network. Proc. of AISB/GI Conference, Hamburg (1978)

Gentzen, G. Untersuchungen fiber das logische SchlieBen.

Mathematische Zeitschrift 39 (1934 )

Gilmore, P.C. An Addition to "Logic of Many-Sorted

Theories". Compositio Mathematica 13 (1958)

Hailperin, T. A Theory of Restricted Quantification I.

The Journal of Symbolic Logic 22 ( 1957 )

Hayes ,  P. A Logic of Actions. Machine Intelligence 6 ,

Metamathematics Unit, University of Edinburgh ( 1971 )

Henschen ,  L.J .  N—Sorted Logic for Automatic Theorem

Proving i n  Higher-Order Logic. Proc. ACM Conference,

Boston ( 1972 )

Herbrand ,  J. Recherches sur la théorie de la

démonstration (Thése Paris), Warsaw ( 1930 ) ,  chapter 3.

Also i n  "Logical Writings" (W.D. Goldfarb ed.),

D .  Reidel Publishing Company ( 1971 )

Ideison, A.V .  Calculi of Constructive Logic with Sub—

ordinate Variables. American Mathematical Society

Translations (2) 99 ( 1972 )  - translation o f  Trudy Mat.

Inst. Steklov. 7 2  ( 1964 )

Love land ,  D.W.  Automated Theorem Proving: A Logical Basis.

North-Holland Publishing Company ( 1978 )

Montague ,  R., and L. Henk in  On the Definition of Formal

Deduction. The Journal o f  Symbolic Logic 21 ( 1956 )





[0be62]

[0h182]

[Rob65]

[R0373]

[Sch38]

[Sch51]

[Wal82]

[Wan52]

_[Wey77]

[WR73]

7 4

Oberschelp, A. Untersuchungen zur mehrsortigen Quan—

torenlogik. Méthematische Annalen 145 ( 1962 )

Ohlbach, H.J .  The Markgraf Carl Refutation Procedure:

The Logic Engine. Interner Bericht 24/82, Institut ffir

Informatik I ,  Universitat Karlsruhe ( 1982 )

Rob inson ,  J.A. A Machine—Oriented Logic Based on the

Resolution Principle. JACM 1 2  ( 1965 )

Hosen ,  B .K .  Tree—Manipulating Systems and Church—Rosser

Theorems..JACM 20 ( 1973 )

Schmidt, A. fiber deduktive Theorien mit mehreren Sor—

ten von Grunddingen. Mathematische Annalen 115 ( 1938 )

Schmidt, A. D i e  Zuléssigkeit der Behandlung mehrsorti-

ger Theorien mittels der fiblichen einsortigen Pradika-

tenlogik. Mathematische Annalen 123 ( 1951 )

Walther, C. The Markgraf Karl Refutation Procedure:

PLL — A First—Order Language for an Automated Theorem

Prover. Interner Bericht 35/82, Institut ffir Informatik I,

Universitét K a r l s r u h e ( 1 9 8 2 )

Wang ,  H .  Logic of Many*Sorted Theories. The Journal

o f  Symbolic Logic 1 7  ( 1952 )

Weyhrauah ,  R .W.  FOL: A Proof Checker for First—Order

Logic. MEMO AIM—235.1, Stanford Artificial Intelligence

Laboratory, Stanford University ( 1977 )

W03,  L. and G. Robinson Maximal Models and Refutation

Completeness: Semidecision Procedures i n  Automatic

Theorem Proving. I n  "Wordproblems" ( W . W .  Boone,

F.B. Cannonito, R.C .  Lyndon, eds.), North*Holland

Publishing Company ( 1973 )




