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A B S T R A C T

Adverse drug reactions depict one of the leading causes of death in
developed countries and can often be attributed to drug-drug, drug-
gene and drug-disease interactions. However, due to the very large
number of combinations and ethical concerns, coverage of all real-
world scenarios in clinical studies is infeasible and therefore, treat-
ment guidelines cannot reflect all patients. Especially regarding the
involvement of renal membrane transporters in drug pharmacokinet-
ics and related efficacy and safety, knowledge gaps exist. Whole-body
physiologically based pharmacokinetic (PBPK) models are valuable
tools to tackle the problem of studying complex drug-gene-disease
interaction scenarios and to provide personalized treatment options.

In this thesis, comprehensive PBPK models of the renal transporter
inhibitors trimethoprim, pyrimethamine and cimetidine as well as of
the clinical substrate metformin and the endogenous substrates crea-
tinine and N1-methylnicotinamide have been built and thoroughly
evaluated. Models have been successfully applied to describe and
predict the effect of drug-gene-disease interactions and diurnal varia-
tion on (pharmaco-)kinetics of the exogenous and endogenous renal
transporter substrates within an interaction network, also including
hypothesis generation and testing. The newly developed models can
support future investigations during drug development or calculation
of dose adaptations, to facilitate an effective and safe pharmacother-
apy for patients.
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Z U S A M M E N FA S S U N G

Unerwünschte Arzneimittelwirkungen gehören zu den häufigsten
Todesursachen in Industriestaaten und lassen sich oft auf unterschied-
liche Arzneimittelinteraktionen zurückzuführen. Aufgrund der gro-
ßen Vielfalt denkbarer Interaktionsszenarien sowie ethischer Beden-
ken ist es nicht möglich, alle möglichen Fälle in klinischen Studien
abzudecken. Therapieleitlinien können daher nicht alle Patienten be-
rücksichtigen. Ein aktuelles Forschungsthema ist die Untersuchung
des Einflusses von renalen Membrantransportern auf die Pharmako-
logie und damit verbundene Wirksamkeit und Sicherheit von Arznei-
stoffen. Physiologie-basierte Pharmakokinetik Modellierung ist hier
ein wertvolles Instrument, um komplexe Arzneimittelinteraktionen
abzubilden und personalisierte Therapieoptionen zu ermöglichen.

In dieser Arbeit wurden, mit Fokus auf Nierentransporter, umfas-
sende Physiologie-basierte Pharmakokinetik Modelle der Arzneistof-
fe Trimethoprim, Pyrimethamin, Cimetidin (jeweils Hemmstoffe) und
Metformin (Substrat) sowie der endogenen Substrate Kreatinin und
N1-Methylnicotinamid entwickelt. Mit Hilfe dieser Modelle konnten
Effekte von komplexen Interaktionen als auch von zirkadianer Rhyth-
mik auf die (Pharmako-)Kinetik der exogenen und endogenen Sub-
strate beschrieben und vorhergesagt werden. Die neuen Modelle kön-
nen zukünftig zur Unterstützung in der Arzneimittelentwicklung so-
wie zur Berechnung von Dosisanpassungen herangezogen werden,
um zu einer wirksamen und sicheren Therapie beizutragen.
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Graphical abstract. Illustration of the kidney was taken from Servier [5], licensed under CC BY 3.0 (https://creativecommons.org/licenses/by/
3.0/). GIT, gastrointestinal tract; MATE, multidrug and toxin extrusion protein; NMN, N1-methylnicotinamide; OCT, organic cation transporter.
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1
I N T R O D U C T I O N

1.1 motivation

Adverse drug reactions (ADRs) depict one of the leading causes of
death in developed countries, e.g., the United States of America (U.S.)
[6], and regularly lead to hospitalization, especially concerning el-
derly patients [7]. However, about half of outpatient ADRs are as-
sumed to be preventable [8]. In this context, polypharmacy, defined
as the concomitant use of five or more medications [9], is a known risk
factor, as it is assumed, that in total more than 65% of ADRs are related
to drug-drug interactions (DDIs) [10]. For instance, 36% of elderly U.S.

citizens take more than five prescribed medications and even 67% use
five or more prescribed and over-the-counter medications or dietary
supplements at the same time [11]. With increasing number of med- Adverse drug

reactions in
polymedicated,
genetic heterogenous
patients with one or
more diseases

ications, also the incidence of potential DDIs increases, while 15% of
older U.S. citizens may be at risk for an interaction of major or life-
threatening severity [11]. Moreover, inadequate prescriptions due to
genetic heterogeneity and diseases can affect drug efficacy and safety
by increasing the risk and severity of ADRs. For instance, more than
60% of ADRs are related to drug-gene interactions (DGIs), triggered
by variants in pharmacogenes [12]. In addition, the kidney plays a
special role with regard to pharmacology, highlighted by the fact that
about one third of drugs prescribed in the U.S. are excreted renally
[13]. Patients with chronic kidney disease (CKD) often experience ther-
apies with inadequate drugs or improper doses [14], resulting in an
incidence of 18% for ADRs [15]. Furthermore, CKD depicts a frequent
comorbidity in patients with type 2 diabetes [16], a metabolic disease
concerning about 6% of the world’s population [17].

Contribution of membrane transporters to drug pharmacokinet-
ics and related drug efficacy and safety is a recent research topic
in pharmaceutical industry and academia. Inhibition or induction
of transporters as well as modulated functionality due to polymor-
phisms or disease can lead to ADRs [18]. However, quantification of
transporter-related ADRs is challenging due to limitation of data and Role of membrane

transporters in
pharmacology

close connection to metabolism, making differentiation of transporter-
and metabolism-related ADRs challenging. Especially if transporters
are involved, drug interaction risk assessment from in vitro tests is
impeded. Here, investigations of endogenous transporter substrates,
serving as biomarkers, can provide valuable insights into interaction
mechanisms [19]. A prime example for organic cation drugs is met-
formin, depending heavily on active transport to cross membranes

1



2 introduction

and to be eliminated. It is used as first-line therapy for type 2 dia-
betes [20] and ranks fourth of the most frequently prescribed outpa-
tient medications in the U.S. with almost 86 million prescriptions in
2019 [21]. A serious but rare adverse effect is lactic acidosis, generally
correlated with metformin accumulation [22]. As metformin is not
metabolized and mainly excreted renally [23], it is contraindicated in
patients with impaired renal function [24, 25].

To advance drug and biomarker characterization and to support
drug development, mechanistic mathematical models are used. Thor-
oughly built and evaluated mechanistic pharmacokinetic models are
established tools to assess underlying processes. Furthermore, inves-
tigations of various drug-gene-disease interaction scenarios in clin-
ical studies are only possible to a limited extent owed to the very
large number of combinations and ethical concerns due to the riskMechanistic

pharmacokinetic
models

to which study participants would be exposed. Consequently, sig-
nificant knowledge gaps exist, and current guidelines are not capa-
ble of reflecting all real-world scenarios [26]. Here, physiologically
based pharmacokinetic (PBPK) models can be utilized to investigate
also complex drug-gene-disease interaction scenarios and to provide
personalized treatment options [27]. Especially regarding membrane
transporters and related biomarkers, PBPK models supporting drug
development and contributing to patient safety are lacking [28, 29]
and therefore, new mechanistic models are highly required.

In the following sections, background information about membrane
transporters (Section 1.2), DDIs and drug-biomarker interactions (DBIs)
(Section 1.3), DGIs (Section 1.4), drug-disease interactions (Section 1.5),
diurnal variation (Section 1.6) as well as pharmacokinetic modeling
(Section 1.7) will be provided.

1.2 membrane transporters

1.2.1 Overview

Membrane transporters are proteins responsible for transport of en-
dogenous compounds as well as drugs and other xenobiotics across
cell membranes, consequently controlling their concentrations at var-
ious body sites. More than 400 transporters from two major super-
families of membrane transporters, ATP-binding cassette (ABC) and
solute carrier (SLC) [30], have been described, differing in structureMembrane

transporter
superfamilies

and function. Transporters of the ABC family depend on adenosine
triphosphate (ATP) hydrolysis (primary active transport), transporters
of the SLC family rely on an electrochemical gradient (secondary ac-
tive transport) or an antiport of e.g., protons [31]. Furthermore, trans-
porters can act as efflux or uptake transporters. While ABC trans-
porters are generally efflux pumps, SLC transporters mainly mediate
uptake but also efflux transport [30].
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Transporters affect absorption, distribution, or excretion processes
or can be drug targets themselves [32] and hence, contribute to drug
efficacy and toxicity. Important membrane transporter sites, as they
represent physiological barriers, are the intestinal, blood-brain, hep-
atic and renal barriers [30, 33], responsible for absorption, distribu- Important

transporter sitestion into tissues and elimination [34]. A further function includes
protection against permeation into vulnerable tissues, especially rep-
resented by the prime example blood-brain barrier, due to efflux
mechanisms [31]. The focus of this thesis lies on the renal barrier
and transporter-mediated drug elimination.

Investigation of transporter effects on drug disposition is a quite
new research topic and the number of publications has increased over
the last two decades. To support drug development, the International
Transporter Consortium (ITC) was established in 2007 [35], involving
scientists from academia, industry and regulatory agencies. Members
of the ITC regularly evaluate how to investigate the impact of relevant
transporters during drug development. Their recommendations and International

Transporter
Consortium and
regulatory agencies

guidances for action are published in established journals and their
agreements are summarized in decision trees [36], which are con-
stantly updated and incorporated in recent guidelines of regulatory
agencies [37]. Additionally, to serve as informative tool during drug
development, the UCSF-FDA Transportal [38] has been established
as public transporter database, including details on transporters rec-
ommended by the ITC or incorporated in guidelines of regulatory
agencies [39]. Transporter-mediated DDIs are described in detail in
Section 1.3.2, also specifying the transporters incorporated in current
guidelines for DDI investigations.

1.2.2 Renal membrane transporters

About one third of drugs prescribed in the U.S. show a fraction
excreted unchanged in urine greater than or equal to 25% [13]. Uri-
nary excretion is the result of passive glomerular filtration, tubu-
lar secretion (active, i.e., transporter-mediated) and tubular reabsorp-
tion (active or passive). In the nephron, transporters are expressed
on basolateral and apical epithelial membranes of proximal, distal
and collecting tubule cells [32], with highest amount of transporters Active renal drug

excretionin proximal tubules [40]. An overview of membrane transporters lo-
cated at the basolateral membrane (BLM) and apical site of proximal
tubule epithelial cells (brush border membrane (BBM)) proposed for
evaluation during drug development by ITC [41] is shown in Fig-
ure 1.1. Of the SLC family, organic anion transporter (OAT) 1 (SLC-
22A6), OAT3 (SLC22A8), organic cation transporter (OCT) 2 (SLC22A2)
and multidrug and toxin extrusion protein (MATE) 1 (SLC247A1) and
of the ABC family, P-glycoprotein (P-gp) (also called multidrug resis-
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tance protein (MDR) 1, ABCB1) show the highest expression in human
kidney cortex [42].

Kidney

Nephron Blood Tubule cell Urine

THTR1

Interstitium

OATP

4C1

OCT2

OAT1

OAT2

OAT3

THTR2

URAT1

PEPT1/
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MRP2/ 

4

MATE1/ 

2-K

P-gp

ENT2

OAT4

OCTN1/ 

2

ENT1

*

*

*

*

*

Figure 1.1. Overview of membrane transporters located at the basolateral
and apical site of proximal tubule epithelial cells adopted from Zamek-
Gliszczynski et al. [41]. Transporters belonging to the solute carrier (SLC)
and ATP-binding cassette (ABC) superfamilies are shown in red and purple,
respectively. The direction of transport is indicated by arrows. Asterisks indi-
cate transporters currently recommended for evaluation during drug devel-
opment by the International Transporter Consortium (ITC) [41] and incorpo-
rated in guidelines of the U.S. Food and Drug Administration (FDA) [37, 43].
Illustrations of kidney, nephron, blood and cells were taken from Servier [5],
licensed under CC BY 3.0 (https://creativecommons.org/licenses/by/3.
0/). ENT, equilibrative nucleoside transporter; MATE, multidrug and toxin ex-
trusion protein; MRP, multidrug resistance-associated protein; OAT, organic
anion transporter; OATP, organic anion transporting polypeptide; OCT, or-
ganic cation transporter; OCTN, organic cation/carnitine transporter; PEPT,
peptide transporter; P-gp, P-glycoprotein, THTR, thiamine transporter; URAT,
urate transporter.

About 40% of orally administered drugs as well as many endoge-
nous compounds like choline and N1-methylnicotinamide (NMN) are
organic cations at physiological pH [31, 44, 45]. As passive diffusion
across membranes is limited for these compounds, they rely on ac-
tive transport via membrane transporters. A subgroup of SLC trans-
porters are OCTs, including OCT1–3 (SLC22A1–3), organic cation/car-
nitine transporter (OCTN) 1/2 (SLC22A4/5), plasma membrane mono-
amine transporter (PMAT) (SLC29A4) and MATE1/2-K (SLC47A1/2) [46].

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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For renal excretion of organic cations in proximal tubules, OCT2 and
OCT3 are the main contributing transporters at the basolateral mem-
brane while the cation-proton exchanging transporters MATEs are as-
sumed to be the most important contributors at the luminal mem-
brane [46], working in sequential action with OCTs. MATEs depict a
special case of SLCs, as their transport direction is pH dependent and
at physiological urine pH < 7.4, they act as efflux pumps [32, 40].
However, information about transporter localization and abundance Organic cation

transportersare often controversial. For instance, although existence of MATE2-K,
a kidney-specific variant of MATE2, has been reported previously [47,
48], a recent analysis reported MATE2-K levels below the lover limit
of quantification in human kidney cortex [42]. Current recommenda-
tions by the ITC and guidelines by regulatory agencies include OCT2

and MATEs, to investigate their contribution to pharmacokinetics and
associated interaction potential during drug development [37, 41, 43,
49]. Due to their clinical importance, this thesis focuses on OCT2 and
MATEs and their related interactions.

1.3 drug-drug and drug-biomarker interactions

1.3.1 Interaction mechanisms

In general, DDIs can occur during concomitant administration of
two or more drugs, one drug acting as the perpetrator and affecting
the so-called victim, which can also be an endogenous compound.
However, in real-life scenarios, often multiple perpetrators and vic- Major interaction

mechanismstims are involved. Major mechanisms of DDIs include pharmacoki-
netic (effect on absorption, distribution, metabolism, and excretion
(ADME) processes) and pharmacodynamic interactions (synergism or
antagonism) as well as pharmaceutical incompatibilities (e.g., due to
acid-base reactions or altered pH) [50].

This thesis focuses on pharmacokinetic DDIs, which can lead to in-
creased or decreased area under the plasma concentration-time curve
(AUC) or maximum plasma concentration (Cmax) values of the victim
due to altered absorption, biotransformation or clearance, resulting in
loss of efficacy or increase of toxicity. Regularly, pharmacokinetic in-
teractions rely on the interaction of a perpetrator with proteins essen- Pharmacokinetic

interaction due to
inhibition and
induction

tial for metabolism or transport of the victim and can be divided into
the major groups of inhibition or induction mechanisms. Regarding
inhibition, reversible and irreversible processes are known. Reversible
inhibition can either occur due to binding of an inhibitor (i) to the ac-
tive site of an enzyme or transporter, competing for binding with
the substrate (competitive inhibition); (ii) to an allosteric, from the ac-
tive site differing binding site of an enzyme or transporter, leading
to conformation change of the active site (non-competitive or mixed
inhibition) and (iii) to the enzyme- or transporter-substrate complex
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(uncompetitive inhibition) [51, 52]. An example of irreversible inhibi-
tion is mechanism-based inactivation (also called suicide inhibition),
where the inhibitor tightly binds to the enzyme or transporter, lead-
ing to inactivation of the protein and requiring de novo synthesis to
restore activity [53]. Induction is characterized by increase of protein
biosynthesis due to interaction with transcription factors.

Investigation of DDIs is an essential part of drug development to
ensure drug efficacy and safety [30], assessed by a combination of in
vitro tests, in vivo studies in preclinical animal species and humansInvestigation of

drug-drug
interactions during

drug development

with proven, so-called index perpetrators and substrates [54] and in
silico techniques [28]. To support in this process, guidelines have been
published by regulatory agencies [37, 43, 49], proposing strong in-
hibitors and sensitive substrates for the use in clinical studies.

1.3.2 Transporter-mediated interactions

Transporter-mediated DDIs are a research topic of increasing in-
terest over the last decades due to importance of transporters in
drug disposition and response [55]. Recommendations on transporter-
mediated DDIs were first included in guidelines by the FDA in 2006

[33]. It is assumed that cytochrome P450 (CYP)-mediated DDIs are gen-Transporter-
mediated drug-drug
interactions in drug

development

erally better understood than transporter-mediated DDIs [56], empha-
sizing the need of further research in this area. Regarding transporter-
mediated DDIs, recent guidelines on DDI investigations focus on the ef-
flux transporters P-gp, breast cancer resistance protein (BCRP) (ABCG2)
and MATEs and the uptake transporters organic anion transporting
polypeptide (OATP) 1B1/3 (SLCO1B1/3), OAT1/3 and OCT2 [28, 37, 43].

During drug development, investigations of transporter-mediated
DDIs include the determination of elimination routes of new drugs
and their related transporters as well as the interaction potential of
new drugs with transporters [33] based on in vitro and in vivo tests.
For inhibitors, the FDA and the European Medicines Agency (EMA)
recommend in vivo studies based on in vitro results if the quotient of
unbound maximum plasma concentration (Cmax,u) of the perpetrator
drug and the half maximal inhibitory concentration (IC50) equals orChallenges in

investigations of
transporter-mediated

drug-drug
interactions

exceeds 0.1 and 0.02, respectively [37, 49]. If the investigational drug
is assumed to be a substrate of a specific transporter, clinical DDI

studies are indicated if 25% or more of the systemic clearance can
be attributed to this process [37, 43]. Effects of transporter-mediated
DDIs can be versatile, including changes in systemic exposure and
clearance. However, investigations of transporter-mediated DDI are
impeded by different factors. For instance, in vitro to in vivo correla-
tion and estimation of clinical significance is often challenging, e.g.,
due to false positive (leading to unnecessary studies in humans) or
false negative results (possible oversight of potential interactions) [57,
58]. Late-stage failures might occur, e.g., if information about DDI
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mechanisms were lacking earlier [59]. Furthermore, substrate depen-
dency of transporter inhibitors has been described [60], complicating
extrapolation of results from one to another perpetrator-victim com-
bination [19, 55]. Additionally, there is a lack of recommended clinical
index transporter inhibitors and substrates with predictable exposure
change due to transporter inhibition [28, 54].

To support investigations of transporter-mediated DDIs, the ITC has
published decision trees [36], which have been adapted by the FDA Assessment of

transporter-mediated
drug-drug
interactions

[61–67]. Furthermore, a biomarker-informed approach (Section 1.3.4)
or in silico techniques, which are already established in drug develop-
ment (Section 1.7), depict promising ways to improve investigations
of transporter-mediated DDIs and are further highlighted in this the-
sis.

1.3.3 Renal transporter-mediated interactions

According to recommendations by the ITC [41] and guideline docu-
ments on DDI investigations by the FDA [37, 43], renal transporters that
should be considered during DDI assessment are P-gp, MATEs, OAT1/3

and OCT2 (Figure 1.1). This thesis focuses on the renal secretion axis
of organic cations, which is represented by consecutive action of OCT2

and MATEs [40], and their related DDIs. Trimethoprim, pyrimethamine
and cimetidine are recommended OCT2 and MATE inhibitors and met-
formin the only recommended OCT2 and MATE substrate for the use in Renal

transporter-mediated
drug-drug
interactions in the
scope of this thesis

clinical DDI studies by the FDA [43, 54]. Generally, interactions with re-
nal transporters can affect the clearance of their substrates and conse-
quently their efficacy and toxicity. Inhibition of OCT2, expressed at the
basolateral site of tubule epithelial cells, can lead to decreased clear-
ance and increased exposure, while inhibition of MATE1, expressed at
the apical site, can lead to decreased clearance but also to accumula-
tion in renal cells [34]. Although inhibition of both OCTs and MATEs

by trimethoprim, pyrimethamine and cimetidine has been described,
comparison of IC50 values with therapeutic Cmax values as well as un-
bound concentrations in plasma and kidney cells reveals that MATE

inhibition is the main contributor to these interactions [46].
The effect of trimethoprim, pyrimethamine and cimetidine on sys-

temic exposure and renal clearance of metformin as observed by sev-
eral studies is illustrated in Figure 1.2. Trimethoprim co-administration
results in 28% higher metformin AUC and 26% lower renal clearance Metformin

drug-drug
interactions

compared to metformin alone [68]. Combining therapeutic doses of
pyrimethamine and metformin leads to an increase of metformin AUC

up to 158% [58, 69, 70] and decrease of renal clearance up to 72% [58,
70]. During co-administration of cimetidine, a mean increase in AUC
of 58% [71, 72] and a 45% decrease of metformin renal clearance [71]
have been reported.
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Figure 1.2. Renal transporter-mediated drug-drug interactions (DDIs) of
trimethoprim, pyrimethamine and cimetidine with metformin. Metformin
is actively secreted into urine via consecutive action of organic cation trans-
porter (OCT) 2, an influx transporter located at the basolateral site, and mul-
tidrug and toxin extrusion protein (MATE) 1, an efflux transporter located at
the apical site of tubule epithelial cells. Trimethoprim, pyrimethamine and
cimetidine are competitive inhibitors of OCT2 and MATE1, demonstrated by
red lines. Bold lines indicate that MATE1 inhibition is the main contributor to
DDIs due to magnitude of interaction constants. Chemical structures show
the predominant form at physiological pH. Illustration of the kidney was
taken from Servier [5], licensed under CC BY 3.0 (https://creativecommon
s.org/licenses/by/3.0/).

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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1.3.4 Biomarker-informed approach to investigate renal transporter-mediated
drug-drug interactions

Endogenous compounds quantified in blood or urine can serve as
biomarkers by shedding light on physiological and pharmacological
processes. Differences in biomarker levels can indicate pathophysio-
logical changes or interaction of a perpetrator drug with absorption,
synthesis, distribution, metabolism or excretion of the biomarker, re-
ferred to as DBI. Observations of endogenous biomarkers can com-
plement recent DDI investigation techniques, as they can support in
understanding interaction mechanisms, evaluating DDI risks in early Endogenous

biomarkers as
supportive tool for
conventional
drug-drug
interaction
investigations

stage in vivo studies as well as study planning and prioritization
[59, 73, 74]. Various factors need to be considered to identify and
select eligible biomarkers for DDI assessment, like sensitivity, speci-
ficity, predictivity, robustness and ease of accessibility [59, 75, 76].
Here, investigations with mechanistic pharmacokinetic modeling can
provide helpful insights. With respect to OCT2- and MATE-mediated
DDIs, the endogenous biomarkers creatinine and NMN have been iden-
tified as suitable OCT2 and MATE substrates [77–80]. Recently, a fur-
ther biomarker for renal SLC transporter-mediated DDIs has been pro-
posed, N1-methyladenosine, a nucleotide from transfer ribonucleic
acid (RNA), as plasma concentrations and renal clearance are affected
by pyrimethamine administration [58, 81]. However, studies in hu-
mans are rarely available, to assess its potential applicability for trans-
porter-mediated DDI investigations.

Creatinine, an endogenous breakdown product from muscle and
protein metabolism, is formed non-enzymatically during ATP-depen-
dent conversion of creatine and phosphocreatine via creatine kinase
in muscle cells. Creatine precursors are the amino acids arginine and
glycine, converted to guanidinoacetate in the kidney, which is further
methylated in the liver [82]. Creatinine is excreted renally mainly by
passive filtration but also active tubular secretion (10–40% of renal
clearance [83]), predominantly via OCT2 and MATEs, but also contri-
bution of other renal transporters, e.g., OAT2, has been described [84, Creatinine

85]. Tubular reabsorption of creatinine is controversial [83]. Creatinine
plasma concentration time profiles exhibit diurnal variation, showing
highest levels during the night and greatest clearance in the afternoon
[86]. Endogenous creatinine levels are increased during administra-
tion of trimethoprim, pyrimethamine and cimetidine by 29% [87–93],
15% [58, 69, 94] and 22% [95, 96], respectively. Simultaneously, de-
creased renal clearance by 23% [68, 89–93], 19% [58, 69] and 15% [96]
could be observed. Interestingly, creatinine clearance becomes simi-
lar to glomerular filtration rate (GFR), if tubular secretion is inhibited,
e.g., shown for cimetidine [97].

NMN is a molecule formed during metabolism of tryptophan and
vitamin B3 (consisting of nicotinic acid and nicotinamide) (Figure 1.3).
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It is excreted unchanged into urine as well as in form of its carbox-
amide metabolites, while passive filtration, tubular secretion mainly
via OCT2 and MATEs as well as concentration-dependent tubular reab-
sorption [98] of NMN have been described. NMN plasma levels exhibit
a pronounced diurnal variation, which could be attributed to nicotin-
amide adenine dinucleotide (NAD) degradation [99]. A possible pitfall
concerning NMN is inconsistent nomenclature, as NMN is also abbrevi-N1-

methylnicotinamide ated with "MNA", "meNAM" or "MNAM in literature reports. Renal
clearance is decreased by 27% [68] and up to 70% [58, 77] during ad-
ministration of trimethoprim and pyrimethamine, respectively. How-
ever, plasma concentrations are not increased (as expected from other
renal transporter substrates) but decreased during trimethoprim and
pyrimethamine administration [58, 68, 77]. An inhibition of synthe-
sis has been proposed [74], but the underlying mechanisms have not
been identified yet.
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Figure 1.3. N1-methylnicotinamide (NMN) synthesis involving tryptophan,
nicotinic acid and nicotinamide from nutrient sources [100, 101]. As last step,
nicotinamide is methylated by nicotinamide N-methyltransferase (NNMT)
with S-adenosyl methionine (SAM) as methyl donor. NMN is metabolized via
aldehyde oxidase (AOX) to N1-methyl-2-pyridone-5-carboxymide (2PY) and
N1-methyl-4-pyridone-5-carboxymide (4PY) [102]. NAD, nicotinamide ade-
nine dinucleotide; SAH, S-adenosyl homocysteine.

Mathialagan et al. [19] described challenges of in vitro to in vivo
translation for OCT2- and MATE-mediated DDIs and pointed out theClinical risk

assessment for renal
OCT2 and MATE

drug-drug
interactions using a
biomarker-informed

strategy

advantages of a biomarker-informed approach to support DDI risk as-
sessment by studying the impact of the drug of interest on the renal
clearance of the biomarkers in phase I studies prior to performing a
dedicated DDI study (Figure 1.4). In comparison, recent DDI risk as-
sessment is performed by calculating the ratio of known or projected
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Cmax,u/IC50 of the drug of interest, e.g., a new molecular entity (NME),
with no requirement for a clinical DDI study for values below 0.1 and
0.02 according to FDA and EMA [37, 49], respectively.
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Figure 1.4. Drug-drug interaction (DDI) risk assessment workflow incorpo-
rating a biomarker-informed strategy adopted from Mathialagan et al. [19].
Cmax,u, unbound maximum plasma concentration; Cu, unbound plasma con-
centration; EMA, European Medicines Agency; FDA, U.S. Food and Drug Ad-
ministration; IC50, half maximal inhibitory concentration; MATE, multidrug
and toxin extrusion protein; NME, new molecular entity; OCT, organic cation
transporter.

1.4 drug-gene interactions

1.4.1 Overview

DGIs can occur when a drug’s pharmacology is affected by one
or multiple variations in pharmacogenes coding for metabolizing en-
zymes, transporters or other target structures [103]. Variations in phar-
macogenes can lead to different phenotypes compared to the so-called
wild-type due to alteration of protein expression, enzyme or trans-
porter activity or inducibility [104, 105]. Various causes of genetic
variations are known, but difference in one single position in the
deoxyribonucleic acid (DNA) sequence, single nucleotide polymor-
phisms (SNPs), depict the most common type of genetic variations
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[106]. Genotypes can be determined with a variety of biological as-
says [107]. From these, translation into the respective phenotype is
possible for many relevant pharmacogenes, e.g., by making use of an
activity score-based system. Phenotyping without genotyping can be
performed by administering a probe drug and determining the uri-
nary excretion ratio of unchanged compound to its metabolite. TheVariants in

pharmacogenes Clinical Pharmacogenetics Implementation Consortium (CPIC) pro-
vides an overview of definitions, contributing to a uniform nomen-
clature of phenotypes [108]. DGIs are closely connected with intereth-
nic variability, e.g., the dominant CYP3A5 allele in Caucasians is the
CYP3A5*3 (no-function) allele, while the functional CYP3A5*1 allele
occurs only with low frequency. In contrast, other ethnicities like
African Americans or Asians exhibit higher frequencies of the func-
tional allele [109, 110].

The labels of more than 350 drugs approved by the FDA include
information on pharmacogenetics [111], to improve effectiveness and
safety of pharmacotherapies. Furthermore, dosing guidelines, e.g., byGuidelines

providing
information on

drug-gene
interactions

the CPIC or the Dutch Pharmacogenetics Working Group (DPWG), are
constantly developed as well as other information resources like the
Pharmacogenomics Knowledgebase (PharmGKB), providing an over-
view of 68 important pharmacogenes significantly affecting ADME of
one or several drugs (“Very Important Pharmacogenes” [112–114]).

Pharmacokinetic and also pharmacodynamic interactions may be
genetically modulated [50] and so-called drug-drug-gene interactions
(DDGIs) can result in further changes in the victim drug’s pharmacoki-
netics or pharmacodynamics compared to the DGI or DDI alone. DDGIs

can be categorized, if a perpetrator drug either (i) inhibits or inducesDrug-gene
interactions

affecting drug-drug
interactions

the same enzyme or transporter as influenced by a genetic variant;
(ii) affects an enzyme or transporter divergent from the enzyme or
transporter influenced by a genetic variant or (iii) is affected by a ge-
netic variant in an enzyme or transporter gene not directly interfering
with the victim drug’s pharmacokinetics or pharmacodynamics but
indirectly leading a to more or less pronounced interaction effect [27].

1.4.2 Renal transporter drug-gene interactions

Several genetic polymorphisms of renal transporters affecting drug
pharmacokinetics have been reported. As this thesis focuses on OCT2

and MATE1 interactions, common variants and their effect on drug
pharmacokinetics are discussed below.

OCT2 (SLC22A2) c.808G>T (p.270Ala>Ser, rs316019) [115] depicts
the most frequent variant with 15% over different ethnicities [22].
Reports on the consequences for transporter activity are controver-
sial, as decreased [116], equal [117] or increased [118] transport ve-
locity for the variant OCT2 protein compared to wild-type has been
observed during in vitro studies. The same applies for in vivo, where
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either decreased [71, 116] or increased [118, 119] renal clearance of the
important substrate metformin are reported. Regarding pharmacody-
namics, no data investigating the polymorphism effect on metformin
glucose-lowering effect are currently available [22]. Interestingly, the
variant protein seems to be less sensitive to the effect of known OCT2

inhibitors, as varying IC50 values in wild-type and variant OCT2 have SLC22A2
polymorphismsbeen determined for several inhibitors [117]. Another important OCT2

substrate depicts the chemotherapeutic cisplatin and, due to basolat-
eral uptake into tubule epithelial cells, OCT2 is related to the extent of
nephrotoxicity [120]. Also here, conflicting effects of SLC22A2 poly-
morphisms in terms of this serious adverse event have been observed
and studies based on cell lines, animals or humans report either lower
nephrotoxicity [120–122] or no association of this variant with nephro-
toxicity [123].

For MATE1 (SLC47A1), a polymorphism located in the promoter
region, SLC47A1 g.-66T>C (rs2252281) [124], shows a frequency be-
tween 23% (Asians) and 45% (Africans) [125]. Here, a reduced tran-
scriptional activity can be suggested from in vitro experiments [125]. SLC47A1

polymorphismsAnother variant located in an intronic area, SLC47A1 rs2289669 G>A,
shows a global frequency around 40% [126]. For this variant, a posi-
tive influence on the glucose-lowering effect of metformin has been
found in diabetes patients [127].

To assess the influence of genetic polymorphisms involved in met-
formin pharmacokinetics, determination of variants in genes of both
OCT2 and MATE1 seems to be important. For instance, a study on
the effect of the SLC22A2 c.808G>T variant reported an increased
metformin clearance in subjects carrying the reference SLC47A1 g.-
66T>C variant compared to a reduced clearance in carriers of both Combination of

SLC22A2 and
SLC47A1
polymorphisms

variants [119]. This importance is further underlined by two DDGI

studies. During the DDI with the OCT2 and MATE inhibitor cimeti-
dine, a lower effect of the inhibitor has been determined in SLC22A2
c.808G>T variant carriers [71]. However, the SLC47A1 genotype was
not reported in this study. In contrast, during DDI with the OCT2 and
MATE inhibitor trimethoprim, presence of both SLC22A2 (rs316019)
and SLC47A1 (rs2289669) variants leads to a reduced DDI effect com-
pared to SLC22A2 wild-type or single polymorphism carriers [91].

1.5 drug-disease interactions

1.5.1 Effect of drug-disease interactions on pharmacology

The disease state of a patient can have a strong impact on the med-
ication, while it can be distinguished between acute and chronic dis-
eases [128]. For instance, inflammation has been shown to negatively
affect the activity of metabolizing enzymes and transporters [128].
Chronic diseases like hepatic or renal impairment can also influence
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drug metabolism and excretion, leading to an increased risk of ad-
verse drug events or safety issues when neglected. The following sec-
tion takes a closer look at CKD.

1.5.2 Chronic kidney disease

The progressive reduction of renal function, CKD, is one of the lead-
ing public health problems worldwide with a global prevalence ofClassification of

chronic kidney
disease

about 13% [129]. CKD can be classified into 5 stages based on GFR as
surrogate for renal function [130] (Figure 1.5).
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Figure 1.5. Classification of chronic kidney disease (CKD) according to Levey
et al. [130] and the CKD evaluation and management guideline by the Kidney
Disease: Improving Global Outcomes (KDIGO) [131]. GFR, glomerular filtra-
tion rate.

Administration of appropriate drugs and adequate doses is crucial
in CKD patients, to avoid overdosing or safety issues. Therefore, an
essential part during drug development is to evaluate the influence
of decreased renal function on drug pharmacokinetics. It has been
observed that CKD not only affects renal excretion but also other phar-
macokinetic processes due to accumulation of uremic toxins, inflam-
matory cytokines and parathyroid hormones [132–134] and therefore,Effect of chronic

kidney disease on
pharmacokinetics

also influences pharmacokinetics of non-renally excreted drugs. For
instance, renal impairment can lead to modulated function of CYP en-
zymes [132] and changes in albumin concentration [135], emphasiz-
ing that also effects on hepatic metabolism, active transport and pro-
tein binding need to be considered. For the OCT2-mediated secretory
clearance, a decrease in parallel with GFR from CKD stage 2 to 4 hast
been reported [136], being in contrast to findings for OAT1 and OAT3,
where a faster deterioration than for GFR has been observed [137]. For
MATE1, decreased levels in rats with CKD have been described [138].
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However, a recent analysis in hyperuricemic rats showed an induc-
tion of rOCT2 and rMATE1 [139], but equivalent studies in humans are
lacking.

Several guidelines of regulatory agencies are available to support
drug development with respect to the impact of CKD [140, 141]. To
assess the need to conduct dedicated studies in renally impaired in-
dividuals, a “totality of evidence” approach has been proposed [142, Investigation of

decreased renal
function during
drug development

143], including knowledge from (pre-)clinical studies, information on
mass balance, bioavailability and DDIs, as well as in silico approaches
like exposure-response analyses, population pharmacokinetic (PopPK)
and PBPK modeling [143]. The FDA guideline on investigations of phar-
macokinetics in patients with impaired renal function also recom-
mends to apply modeling and simulation strategies like PBPK mod-
eling during consideration of renal impairment studies [140].

1.6 diurnal variation

1.6.1 Chronopharmacology

Many physiological processes exhibit an intraday variation. This
can be attributed to hierarchical organized endogenous clocks [144],
while the suprachiasmatic nuclei of the hypothalamus represent the
superordinate clock with subsequent peripheral clocks in the organs
[145]. Chronopharmacology plays an important role, as different drugs
show varying pharmacokinetics and pharmacodynamics when ap-
plied at different daytimes. For instance, the extent of nephrotoxicity
due to cisplatin therapy is differently pronounced comparing morn-
ing or evening drug administration [146–148]. In different fields (e.g.,
cancer treatment), personalized chronotherapy has been emphasized
as advantageous treatment option [149]. However, for most drugs, no
dedicated studies have been performed on investigating chronophar-
macology, although results might contribute to more effective and
safe therapies.

1.6.2 Diurnal pharmacokinetics

Circadian clocks influencing ADME-relevant processes can lead to
diurnal variation in pharmacokinetics [144] and thus to changes in
drug exposure and correlated efficacy or toxicity. Drug absorption
can be influenced by varying gastric pH [150], gastric emptying [151]
or gut motility [152]. In the liver, daytime-dependent activity of drug
transporters, metabolizing enzyme and hepatobiliary elimination has
been determined [144] as well as changes in hepatic blood flow [153].
In the kidney, renal blood flow, GFR as well as urine pH show diurnal
variation [86, 97, 154, 155]. Variability of GFR cannot be explained
solely by fluctuation of renal blood flow [86], as the oscillation phases
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are not completely synchronized for GFR and renal plasma flow (RPF).
Furthermore, it has been shown in mice, that the intrinsic clock in
podocytes contributes to diurnal rhythmicity of the GFR [156], but the
involvement of the kidney clock is not completely understood, yet
[157]. Regarding renal transporters, especially OCTs, diurnal variation
has not been shown in humans yet, but OCT2 messenger RNA and
protein exhibit diurnal variation while this does not apply to MATE1

in mice kidney [158].

1.7 mechanistic pharmacokinetic modeling analyses

1.7.1 Pharmacometrics

Pharmacometrics is defined as a “branch of science concerned with
mathematical models of biology, pharmacology, disease, and physiol-
ogy used to describe and quantify interactions between xenobiotics
and patients, including beneficial effects and side effects resultant
from such interfaces” [159] and "the science of developing and ap-
plying mathematical and statistical methods to characterize, under-
stand, and predict a drug’s pharmacokinetic, pharmacodynamic, and
biomarker-outcomes behavior" [160]. Pharmacometric approaches in-
clude pharmacokinetic and pharmacodynamic modeling techniques
as well as disease progression models [161].

1.7.2 Physiologically based pharmacokinetic modeling

Pharmacokinetic models aim to describe and predict ADME-related
processes and resulting concentration-time profiles of a compound
of interest. An overview of different compartmental pharmacokinetic
model structures is illustrated in Figure 1.6.

Whole-body PBPK modeling is a compartmental modeling approach
where each compartment represents a different organ, mimicking
the (human) body. These compartments are further divided into sub-
compartments, e.g., cellular space, interstitium, blood plasma andPhysiologically

based
pharmacokinetic
model structure

red blood cells (Figure 1.6). Compartments are connected by blood
flow and distribution between (sub-)compartments is accomplished
passively or by implementing directed transport. The change of com-
pound concentration over time in (sub-)compartments is described by
differential equations [162].

PBPK models are usually developed by a “bottom up” approach,
implementing anatomy- and physiology-related parameters as well
as compound-related information and subsequently, optimizing un-
known model parameters [162]. Model building is usually supported
by data derived from clinical studies, mostly concentration measure-
ments in easily accessible body fluids like blood and urine. Tissue
concentrations measured by e.g., positron emission tomography (PET)
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are helpful, especially during development of transporter-based PBPK

models, but only rarely available [163]. PBPK models can predict com-
pound concentrations in all integrated tissues, however, comparison
against clinical data is often difficult. A further shortcoming of PBPKPhysiologically

based
pharmacokinetic

model development

models might be that they require a large number of model input pa-
rameters to mechanistically portray complex physiological and ADME-
related processes, which is often associated with assumptions. How-
ever, PBPK modeling depicts a mechanistic approach among pharma-
cometrics, allowing investigation of underlying processes affecting
compound ADME including hypothesis testing.

1.7.3 Physiologically based pharmacokinetic model applications

An increasing interest in PBPK modeling, measured by the number
of publications including PBPK analyses, has been shown over the last
two decades [164]. The same trend has been observed for PBPK model
submissions to the FDA, where application areas include enzyme-
based DDIs (60% of submissions), pediatrics (15%), transporter-based
DDIs (7%), hepatic impairment (6%), renal impairment (4%), absorp-
tion/food effect (4%) and pharmacogenetics (2%) [165]. Next to the
mentioned application areas, PBPK models are further valuable tools
to perform cross-species extrapolation, e.g., from preclinical animals
to humans [166] or to extrapolate from healthy individuals to spe-
cial populations like patients by taking their pathophysiological back-
ground, polymedication and (genetic) heterogeneity into account [166].
Models can be further extended, e.g., to investigate drug pharmaco-
dynamics [166]. Another interesting application area is assessing the
effect of chronopharmacology. The comprehensive models can finally
be utilized to guide personalized treatment by calculating dose adap-
tations with the aim to achieve the same drug exposure in patients
as in a typical healthy individual without co-medication and genetic
polymorphisms [1, 26, 167].

1.7.4 Pharmacokinetic modeling to support model-informed drug discovery
and development as well as precision dosing

Applications of pharmacokinetic models for model-informed drug
discovery and development (MID3) are versatile, comprising support
during different stages of drug development. Selection of the appro-
priate modeling technique depends on the research question, e.g., in-
formation of trial design, dose calculations or extrapolation to special
populations [168]. For instance, pharmacokinetic models alone or in
combination with pharmacodynamic models are suitable in discovery
phase, preclinical and clinical development and lifecycle management
[169]. During discovery, preclinical and clinical phases, also more spe-
cialized models, like systems pharmacology models and allometric
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scaling techniques as well as PBPK and PopPK models are required
[169]. Pharmacometrics is represented in several guidances provided
by regulatory agencies to support MID3 [170–174]. Next to their use-
fulness in drug development, models can be utilized to improve pa-
tient therapies by treatment personalization (model-informed preci-
sion dosing (MIPD)), requiring not only reliable models but also ac-
cess via decision-support systems to make models available for non-
pharmacometricians [27].





2
O B J E C T I V E S

The overall objective of this thesis was to apply mechanistic phar-
macokinetic modeling techniques to investigate the effect of transpor-
ter-mediated DDIs, DBIs, DGIs as well as of CKD and diurnal variation
on the pharmacokinetics of exogenous and endogenous renal trans-
porter substrates, to demonstrate their potential suitability in support-
ing drug development or individualization of pharmacotherapy by
dose adaptations. The thesis’ objective was realized within the scope
of the following three projects:

2.1 project i - physiologically based pharmacokinetic

modeling of metformin and cimetidine

The objectives of project I were (i) to develop whole-body PBPK

models of the renal transporter substrate metformin and the renal
transporter substrate and inhibitor cimetidine, metformin recommen-
ded by the FDA as OCT2 and MATE substrate and cimetidine as MATE

inhibitor to use in clinical drug interaction studies; (ii) to extend the
metformin PBPK model with metformin-SLC22A2 808G>T DGI predic-
tions; (iii) to predict the cimetidine-metformin DDI and DDGI; (iv) to
investigate metformin exposure in subjects with different stages of
CKD and (v) to provide model-based dose adaptations in patients
with CKD and to compare them to existing dosing guidelines.

2.2 project ii - physiologically based pharmacokinetic

modeling of trimethoprim

The objectives of project II were (i) to develop a whole-body PBPK
model of trimethoprim, recommended by the FDA as CYP2C8 and
MATE inhibitor to use in clinical drug interaction studies; (ii) to model
the rifampicin-trimethoprim DDI, to gain insights into unidentified
trimethoprim metabolism and transport processes; (iii) to predict DDIs

and DDGIs of trimethoprim with the OCT and MATE victim drug met-
formin in SLC22A2 wild-type and 808G>T polymorphic subjects and
(iv) to further challenge the DDI performance of the trimethoprim
model as CYP2C8 inhibitor during DDIs with repaglinide and pioglita-
zone, including DDGI predictions of pioglitazone in CYP2C8*3 allele
carriers.

21
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2.3 project iii - physiologically based pharmacokinetic

modeling of endogenous biomarkers

The objectives of project III were (i) to develop whole-body PBPK

models of the endogenous OCT2 and MATE substrates and proposed
biomarkers creatinine and NMN, mechanistically describing their ab-
sorption, synthesis, biotransformation and transporter-mediated ex-
cretion, also generating hypotheses for underlying causes of observed
diurnal variation, to contribute to biomarker characterization and (ii)
to predict biomarker kinetics during DBIs by linking the new models
with previously evaluated perpetrator models of the potent OCT and
MATE inhibitors trimethoprim, pyrimethamine and cimetidine, estab-
lishing a comprehensive PBPK DDI/DBI network, underlining the abil-
ity of the biomarker models to support transporter-mediated interac-
tion predictions.
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M E T H O D S

3.1 physiologically based pharmacokinetic modeling

The whole-body PBPK modeling workflow applied in projects I–III
is illustrated in Figure 3.1 and described in detail below.
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Figure 3.1. Whole-body physiologically based pharmacokinetic (PBPK) mod-
eling workflow adopted from Türk et al. [27]. Illustrations of cell compo-
nents were taken from Servier [5], licensed under CC BY 3.0 (https://
creativecommons.org/licenses/by/3.0/). ADME, absorption, distribution,
metabolism, and excretion; GIT, gastrointestinal tract.

3.1.1 Model building

Model building was initiated with acquisition of system-dependent
(i.e., physiological and anatomical information) and compound-de-

23
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pendent parameters for the compounds of interest (i.e., physicochem-
ical properties and information about ADME processes). Additionally,
studies reporting concentrations in whole blood, plasma and serum
(in the following referred to as “plasma”) and relevant organs and
tissues as well as studies quantifying compound excretion, e.g., by
providing amount in urine, urinary excretion rate or renal clearance,
were collected. Furthermore, information from clinical studies about
drug formulation and dosing regimen were extracted. Data were di-Data acquisition

vided into a training dataset for model building and a test dataset
for model evaluation. For model building, studies were preferably
selected to include (pharmaco-)kinetic profiles of frequent data sam-
pling as well as measurements after administrations of various routes
and doses. To simulate compound concentrations in the different com-
partments, virtual twins of study individuals were created accord-
ing to the demographics reported by the respective clinical studies,
namely ethnicity, sex, age, body weight, and height. Information on
renal function (i.e., GFR) was incorporated whenever available.

Subsequently, protein expression data, and metabolism, transport
and binding rates of relevant enzymes, transporters and targets wereProtein expression

and localization implemented in the model according to current literature. Detailed
information about expression and localization of relevant enzymes
and transporters is provided in Table 3.1.

Metabolism and transport processes were implemented with first-
order kinetics (Equation 3.1) or, if saturable, Michaelis-Menten kinet-Implementation of

ADME processes ics (Equation 3.2). For endogenous compounds, a synthesis rate (Rsyn)
was implemented as synthesized amount per time in relevant organs
in accordance with literature reports.

v = CLspec · [E] · [S] (3.1)

with v = reaction velocity, CLspec = specific enzymatic clearance, [E]

= enzyme concentration and [S] = free substrate concentration.

v =
vmax · [S]
KM + [S]

=
kcat · [E] · [S]
KM + [S]

(3.2)

with v = reaction velocity, vmax = maximum reaction velocity, [S] =
free substrate concentration, KM = Michaelis-Menten constant, kcat =
catalytic or transport rate constant and [E] = enzyme or transporter
concentration.
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Table 3.1. Expression and localization of relevant enzymes and transporters.

Enzyme/transporter Reference concentration a Relative expression b Localization Direction Half-life [h]

AOX1 1.00
c [175] RT-PCR [176] Intracellular - 36 (liver), 23 (intestine)

CYP3A4 4.32 [177] RT-PCR [178] Intracellular - 36 (liver), 23 (intestine) [179, 180]

MATE1 0.13
d [42, 181] Kidney only [48, 182] Apical Efflux -

OAT3 0.09
d [42, 181] RT-PCR [183] Basolateral Influx 36 (liver)

OCT1 0.16
e [184, 185] ArrayExpress [186] f Basolateral g Influx 36 (liver), 23 (intestine)

OCT2 0.19
d [42, 181] Expressed Sequence Tag [187] Basolateral Influx -

P-gp 1.41 [188] RT-PCR [183] h Apical Efflux 36 (liver), 23 (intestine)

PMAT 1.00
c [175] RT-PCR [183] f Basolateral g Influx 36 (liver), 23 (intestine)

Tubular reabsorption 1.00
c [175] Kidney only Basolateral Efflux -

-, not applicable; AOX, aldehyde oxidase; CYP, cytochrome P450; MATE, multidrug and toxin extrusion protein; OAT, organic anion transporter; OCT, organic cation

transporter; P-gp, P-glycoprotein; PMAT, plasma membrane monoamine transporter; RT-PCR, reverse transcription-polymerase chain reaction; a µmol protein/L

in tissue of highest expression; b relative expression in different organs (PK-Sim® expression database); c if no information was available, mean reference concen-

tration was set to 1.00 µmol/L and catalytic or transport rate constant (kcat) was optimized according to Meyer et al. [175]; d calculated from transporter per mg

membrane protein · 26.2 mg human kidney microsomal protein per g kidney [181]; e calculated from transporter per mg membrane protein · 37.0 mg membrane

protein per g liver [184]; f large intestinal mucosa→ 0; g in enterocytes apical [189–191]; h intestinal mucosa→ factor 3.57 [188].
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3.1.2 Model evaluation

PBPK models were evaluated by comparison of (i) predicted and ob-
served plasma and urine profiles over time, (ii) all plasma and urine
predictions to their corresponding observed values in goodness-of-fit
plots and (iii) predicted and observed AUC and Cmax values, whereGraphical model

evaluation AUC was calculated from the time of compound administration to the
time of the last concentration measurement (AUClast) for predicted and
observed plasma concentration-time profiles.

As quantitative measures of model performances, mean relative
deviations (MRDs, Equation 3.3) of all plasma predictions and geo-Quantitative

measures of model
performance

metric mean fold errors (GMFEs, Equation 3.4) of all AUClast, Cmax and
urine predictions were calculated, assuming an adequate model per-
formance for MRD and GMFE values 6 2.

MRD = 10x; x =

√√√√1

k

k∑
i=1

(log10 Cpred,i − log10 Cobs,i)2 (3.3)

with Cpred,i = ith predicted concentration, Cobs,i = ith observed con-
centration and k = number of observed values.

GMFE = 10x; x =
1

m

m∑
i=1

|log10(
PKpred,i

PKobs,i
)| (3.4)

with PKpred,i = ith predicted pharmacokinetic parameter, PKobs,i = ith

observed pharmacokinetic parameter and m = number of studies.

Local sensitivity analyses were performed to investigate the effect
of model parameters on the predicted AUClast. Parameters were con-
sidered during analyses if they have been optimized during parame-
ter identifications, if they were associated with optimized parameters
or if they might have a strong impact on model predictions, e.g., as
they are included in equations to calculate permeabilities or partitionSensitivity analysis

coefficients. Sensitivity analyses were performed using the highest
recommended or reported compound doses and a relative parameter
perturbation of 1000%. The threshold value for sensitivity was set to
0.5, implying that a 100% change of the investigated parameter value
causes a 50% change of the predicted AUClast. Sensitivity was calcu-
lated according to Equation 3.5.

S =
∆AUClast

AUClast
· p
∆p

(3.5)

with ∆AUClast = change of the AUClast, AUClast = simulated AUClast with
the original parameter value, p = original parameter value and ∆p =
change of the original parameter value.
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3.1.3 Modeling of drug-drug and drug-biomarker interactions

To describe the impact of the perpetrators on the victims in projects
I–III, base PBPK models were extended to mechanistic DDI or DBI mod-
els according to the workflow provided by the FDA [192]. Perpetrator
models were linked to victim models by including all relevant inter-
action mechanisms, i.e., competitive inhibition in the scope of this
thesis, while competition of substrate and inhibitor for binding to an Competitive

inhibitionenzyme or transporter due to reversible binding of the inhibitor to
the active site was assumed. During perpetrator (co-)administration,
the affinity of the victims to the respective enzyme or transporter,
parametrized with Michaelis-Menten constant (KM) values, was de-
creased, which is described by an apparently increased value for
KM (KM,app, Equation 3.6), while maximum reaction velocity (vmax) re-
mained unchanged. The altered reaction velocity of the victim was
modeled according to Equation 3.7.

KM,app = KM ·
(
1+

[I]

Ki

)
(3.6)

v =
vmax · [S]

KM,app + [S]
=
kcat · [E] · [S]
KM,app + [S]

(3.7)

with KM,app = Michaelis-Menten constant in the presence of inhibitor,
KM = Michaelis-Menten constant, [I] = free inhibitor concentration, Ki

= dissociation constant of the inhibitor-enzyme/-transporter complex,
v = reaction velocity, vmax = maximum reaction velocity, [S] = free sub-
strate concentration, kcat = catalytic or transport rate constant and [E]

= enzyme or transporter concentration.

Relevant dissociation constant of the inhibitor-enzyme/-transporter
complex (Ki) values were extracted from in vitro references when-
ever available and integrated in the perpetrator models of trimetho-
prim, pyrimethamine and cimetidine, to simulate renal transporter-
mediated DDIs and DBIs with metformin, creatinine and NMN. Inhi- Drug-drug and

drug-biomarker
interaction model
building

bition of OCT1, the transporter mainly responsible for intestinal and
hepatic uptake of metformin, was described for all three modeled
perpetrators and was therefore also incorporated in the DDI models
with metformin. Models of trimethoprim and cimetidine were further
evaluated by DDI predictions with CYP substrates, which is described
in detail in the respective publications of projects I and II [1, 2].

Resulting DDI and DBI simulations were subsequently evaluated
graphically by comparison of (i) victim plasma and urine predictions Drug-drug and

drug-biomarker
interaction model
evaluation

alone and during perpetrator (co-)administration to observed data
and (ii) predicted to observed DDI or DBI ratios, calculated as ratio
of the respective DDI or DBI (pharmaco-)kinetic parameter and the re-
lated control parameter. As quantitative measures of the DDI or DBI
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model performance, GMFE values of the predicted DDI or DBI ratios
were calculated (Equation 3.4).

3.1.4 Modeling of drug-gene interactions

To model the impact of genetic polymorphism on metformin phar-
macokinetics in projects I and II, parameters describing the expres-
sion or activity of variant SLC22A2 were taken from literature reports
according to Türk et al. [27]. Polymorphic transporters were imple-
mented as two separate proteins with half of the original reference
concentration each, to mimic two homologous chromosomal alleles.Drug-gene

interaction model
building

Homozygous wild-type alleles were modeled with the kcat value iden-
tified during the base model development, variant alleles with ad-
justed kcat values identified during parameter optimizations based on
information from clinical studies considering homozygous variant al-
lele carriers. Heterozygous variant allele carriers were modeled by
combination of one wild-type and one variant allele.

Resulting DGI simulations were subsequently evaluated graphically
by comparison of (i) plasma and urine predictions in homozygote
wild-type allele carriers and variant allele carriers to observed dataDrug-gene

interaction model
evaluation

and (ii) predicted to observed DGI AUClast and Cmax ratios, calculated
as ratio of the respective AUClast or Cmax during DGI and the related
wild-type parameter. As quantitative measures of the DGI model per-
formance, GMFE values of the predicted DGI AUClast ratios and Cmax

ratios were calculated (Equation 3.4).

3.1.5 Modeling of chronic kidney disease

A literature search was performed to identify pathophysiological
changes related to renal impairment, also taking their extent at differ-
ent stages of CKD into account (Section 1.5.2). To subsequently expandDrug-disease

interaction model
building

the metformin base model to a drug-disease model in project I and
to model pharmacokinetics in renally impaired individuals, system-
dependent parameters were adapted to cover identified differences in
anatomy and physiology.

Drug-disease interaction model performance was evaluated graph-Drug-disease
interaction model

evaluation
ically as described in Section 3.1.2 as well as quantitatively, calculat-
ing MRDs of all plasma predictions (Equation 3.3) and GMFEs of all
predicted AUClast and Cmax values (Equation 3.4).

3.1.6 Modeling of diurnal variation

A literature search was performed to identify relevant physiolog-
ical processes that underlie diurnal variation and therefore possibly
affect (pharmaco-)kinetics (Section 1.6.2). To model the impact of di-
urnal variation on creatinine and NMN in project III, base models
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were extended by multiplication of respective model process equa-
tions with an oscillation function according to Equation 3.8, assuming
a 24 hour-rhythm. Amplitude and acrophase (i.e., clock time of max-
imal activity) were informed from measurements in humans where
available or optimized using observed plasma and urine measure-
ments.

f(t) = amp · sin(2π
24
· (t+ shift)) + 1 (3.8)

with t = time, amp = amplitude and shift = shift in time.

3.2 software

PBPK models of cimetidine, creatinine, metformin, NMN, trimetho-
prim and pyrimethamine were developed in projects I–III using PK-
Sim® and MoBi® modeling software (Open Systems Pharmacology
Suite 8.0 (projects I–II) and 9.1 (project III), Open Systems Pharma-
cology, 2019–2020). Plasma and urine measurements from literature
were digitized with GetData Graph Digitizer 2.26.0.20 (project I) (©
S. Fedorov, 2013) and Engauge Digitizer 10.12 (projects II–III) (© M.
Mitchell [193], 2019) according to best practices [194]. Model parame-
ter optimization and sensitivity analysis were performed within PK-
Sim® and MoBi®. Pharmacokinetic parameter calculation, quantita-
tive model performance assessment and plot generation were accom-
plished using R 3.6.1 (project I), 3.6.2 (project II) and 4.1.1 (project III)
(R Core Team. R: a language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2019–
2021) and RStudio 1.1.423 (project I), 1.2.5033 (project II) and 1.4.1717

(project III) (RStudio, Inc., Boston, MA, U.S., 2019–2021).
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4.1 project i - a comprehensive whole-body physiologi-
cally based pharmacokinetic drug-drug-gene inter-
action model of metformin and cimetidine in heal-
thy adults and renally impaired individuals
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Figure 4.1. Whole-body physiologically based pharmacokinetic (PBPK) mod-
eling of metformin and cimetidine for drug-drug-gene-disease interaction
predictions. Illustrations of organs were taken from Servier [5], licensed
under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/). CKD,
chronic kidney disease; GIT, gastrointestinal tract; MATE, multidrug and toxin
extrusion protein; OCT, organic cation transporter; PGx, pharmacogenetics;
PMAT, plasma membrane monoamine transporter.
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Abstract
Background Metformin is a widely prescribed antidiabetic BCS Class III drug (low permeability) that depends on active 
transport for its absorption and disposition. It is recommended by the US Food and Drug Administration as a clinical sub-
strate of organic cation transporter 2/multidrug and toxin extrusion protein for drug–drug interaction studies. Cimetidine is 
a potent organic cation transporter 2/multidrug and toxin extrusion protein inhibitor.
Objective The objective of this study was to provide mechanistic whole-body physiologically based pharmacokinetic models 
of metformin and cimetidine, built and evaluated to describe the metformin-SLC22A2 808G>T drug–gene interaction, the 
cimetidine-metformin drug–drug interaction, and the impact of renal impairment on metformin exposure.
Methods Physiologically based pharmacokinetic models were developed in PK-Sim® (version 8.0). Thirty-nine clinical stud-
ies (dosing range 0.001–2550 mg), providing metformin plasma and urine data, positron emission tomography measurements 
of tissue concentrations, studies in organic cation transporter 2 polymorphic volunteers, drug–drug interaction studies with 
cimetidine, and data from patients in different stages of chronic kidney disease, were used to develop the metformin model. 
Twenty-seven clinical studies (dosing range 100–800 mg), reporting cimetidine plasma and urine concentrations, were used 
for the cimetidine model development.
Results The established physiologically based pharmacokinetic models adequately describe the available clinical data, 
including the investigated drug–gene interaction, drug–drug interaction, and drug–drug–gene interaction studies, as well as 
the metformin exposure during renal impairment. All modeled drug–drug interaction area under the curve and maximum 
concentration ratios are within 1.5-fold of the observed ratios. The clinical data of renally impaired patients shows the 
expected increase in metformin exposure with declining kidney function, but also indicates counter-regulatory mechanisms 
in severe renal disease; these mechanisms were implemented into the model based on findings in preclinical species.
Conclusions Whole-body physiologically based pharmacokinetic models of metformin and cimetidine were built and quali-
fied for the prediction of metformin pharmacokinetics during drug–gene interaction, drug–drug interaction, and different 
stages of renal disease. The model files will be freely available in the Open Systems Pharmacology model repository. Cur-
rent guidelines for metformin treatment of renally impaired patients should be reviewed to avoid overdosing in CKD3 and 
to allow metformin therapy of CKD4 patients.

1 Introduction

Metformin is an oral antidiabetic that reduces blood glu-
cose levels. It is the first-line therapy for type 2 diabetes 
mellitus (T2DM) and the fourth most commonly prescribed 
outpatient medication in the USA, with almost 80 million 
prescriptions in 2017 [1].

Metformin is a BCS Class III drug of high solubility and 
very low permeability, positively charged at physiologi-
cal pH and depends on active transport to cross biological 
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membranes. The metformin rate of absorption is slower than 
its rate of elimination [2] and the absorption is restricted 
to the upper intestine [3], leading to incomplete absorption 
of metformin, an oral bioavailability of 50–60%, and the 
excretion of approximately 30% of an oral dose, unabsorbed, 
with the feces [2, 4]. Furthermore, the absorption of met-
formin is saturable, with higher doses showing decreased 
dose-normalized plasma concentrations and a decreased 
fraction excreted to urine [4, 5]. Following its absorption, 
metformin is not bound to plasma proteins [2, 4, 6], not 
metabolized [2, 6], and not secreted to bile [2, 4, 7], but 
excreted unchanged with the urine by passive glomerular 
filtration and active renal secretion through the sequential 
action of organic cation transporter 2 (OCT2) and multidrug 
and toxin extrusion protein 1 (MATE1). Although there are 
early reports of MATE2-K expression in the human kid-
ney [8, 9], a recent quantitative study found only negligible 
amounts of MATE2-K compared to MATE1 [10]. Renal 
clearance is approximately 500 mL/min [11] with a strong 
correlation between the renal clearances of metformin and 

creatinine [4]. Patients with renal impairment show a marked 
increase in metformin exposure, with three- to ten-fold 
higher plasma trough concentrations in chronic kidney dis-
ease (CKD) stages 3A-5 [12]. As a consequence, metformin 
is contraindicated in patients with a glomerular filtration 
rate (GFR) < 30 mL/min (i.e., CKD stages 4 and 5) [13, 14], 
depriving these patients of metformin as a treatment option.

The impact of genetic polymorphisms on the absorp-
tion and disposition of metformin (drug–gene interactions 
or “DGIs”) has been investigated in a multitude of clini-
cal trials, yielding to some extent contradictory results. The 
transporters of primary interest in these studies were the 
plasma membrane monoamine transporter (PMAT), OCT1, 
OCT2, and MATE1, where variations in OCT2 seem to 
have the largest impact on the plasma concentrations of met-
formin [15–19]. The most common polymorphism in the 
gene encoding for OCT2 is the SLC22A2 808G>T single-
nucleotide polymorphism [20], which results in an amino 
acid exchange from alanine to serine (A270S) and presum-
ably increased function, leading to decreased exposure 
with ~ 13–20% decreased maximum concentration (Cmax) 
[17, 18, 21].

A third factor that impacts metformin exposure is 
drug–drug interactions (DDIs). Metformin displays a list 
of 333 DDIs, with 13 major and 293 moderate interactions 
[22]. Even though some of these occur on the pharmacody-
namic level, pharmacokinetic DDIs are clinically relevant 
and may call for an adjustment of the co-administration regi-
men. As metformin is exclusively eliminated by glomeru-
lar filtration and secretion through the renal organic cation 
transport system, co-treatment with a potent inhibitor of this 
transport pathway, such as cimetidine, decreases the renal 
clearance of metformin and increases metformin exposure 
(+ 50% area under the curve [AUC]) [21, 23]. Metformin is 
recommended by the US Food and Drug Administration as 
an OCT2/MATE victim drug for clinical DDI studies [24].

The aim of this study was to build and evaluate a whole-
body physiologically based pharmacokinetic (PBPK) model 
of metformin, applicable (1) to describe the impact of the 
metformin-SLC22A2 808G>T DGI on metformin exposure, 
(2) to dynamically model the cimetidine-metformin DDI, 
and (3) to analyze the impact of renal impairment on met-
formin exposure and generate dose recommendations for dif-
ferent stages of CKD. The newly developed and thoroughly 
evaluated metformin and cimetidine models will be freely 
available in the Open Systems Pharmacology PBPK model 
repository (https ://www.open-syste ms-pharm acolo gy.org), 
and the Electronic Supplementary Material (ESM) to this 
article is compiled to serve as a comprehensive and transpar-
ent documentation and reference.

Key Points 

A whole-body physiologically based pharmacokinetic 
model of metformin, the fourth most commonly pre-
scribed drug in the USA, has been carefully developed 
and evaluated to describe the metformin concentrations 
in blood, kidney, and urine. In addition, a whole-body 
physiologically based pharmacokinetic model of cime-
tidine, a potent multidrug and toxin extrusion protein 1 
inhibitor used in drug–drug interaction studies, has been 
established.

These models have been applied to describe and predict 
the metformin-SLC22A2 808G>T drug–gene interaction, 
the cimetidine-metformin drug–drug interaction, and a 
combined drug–drug–gene interaction study, in which 
different SLC22A2 genotypes were additionally chal-
lenged with cimetidine co-administration.

Furthermore, the pathophysiological changes during 
renal impairment have been assessed and implemented 
to describe the increased metformin exposure of patients 
with different stages of chronic kidney disease. For 
severe chronic kidney disease, this analysis indicates an 
induction of organic cation transporter 2 and multidrug 
and toxin extrusion protein 1, possibly as an adapta-
tion to progressing uremia/hyperuricemia. The final 
pathophysiologically based pharmacokinetic model was 
applied to generate metformin dosing recommendations 
for CKD3A-4 patients.

34 results



1421PBPK Modeling of Metformin during DGI, DDI, and Renal Impairment

2  Methods

2.1  Software

Physiologically based pharmacokinetic models were devel-
oped using PK-Sim® and  MoBi® modeling software (Open 
Systems Pharmacology Suite 8.0, https ://www.open-syste 
ms-pharm acolo gy.org). Published clinical study data were 
digitized with GetData Graph Digitizer 2.26.0.20 (© S. 
Fedorov). Model input parameter optimization (Leven-
berg–Marquardt algorithm, multiple starting values) and 
sensitivity analysis were performed in PK-Sim®. All phar-
macokinetic parameters and model performance measures 
derived from simulated and/or observed data were calculated 
in R 3.6.1 (The R Foundation for Statistical Computing, 
Vienna, Austria). Plots were generated in R and RStudio 
1.1.423 (RStudio, Inc., Boston, MA, USA).

2.2  Physiologically Based Pharmacokinetic Model 
Building

Physiologically based pharmacokinetic model building was 
started with an extensive literature search to collect physico-
chemical parameters, mechanistic information on absorp-
tion, distribution, metabolism, and excretion processes, as 
well as published clinical studies. The general procedure of 
PBPK model building, including parameter optimization and 
generation of virtual individuals and virtual populations, is 
described in the ESM.

2.3  Physiologically Based Pharmacokinetic Model 
Evaluation

Model performance was evaluated with multiple methods. 
First, predicted population plasma concentration–time pro-
files were compared with the data observed in the respec-
tive clinical studies. As the clinical data from literature is 
mostly reported as arithmetic means ± standard deviation, 
population prediction arithmetic means and 68% prediction 
intervals were plotted, which corresponds to the range of ± 1 
standard deviation around the mean, if normal distribution 
is assumed. In addition, the predicted plasma concentration 
values of all studies were plotted against their corresponding 
observed values in goodness-of-fit plots.

Furthermore, model performance was evaluated by com-
parison of predicted to observed AUC and Cmax values. All 
AUC values were calculated from the time of drug admin-
istration to the time of the last concentration measurement 
(AUC last).

As quantitative measures of model performance, mean 
relative deviation (MRD) of all predicted plasma concentra-
tions (Eq. 1) and geometric mean fold error (GMFE) of all 

predicted AUC last and Cmax values (Eq. 2) were calculated. 
MRD and GMFE values ≤ 2 characterize an adequate model 
performance.

where cpredicted,i is the predicted plasma concentration, 
cobserved,i is the corresponding observed plasma concentra-
tion, and k is the number of observed values.

where predicted PK  parameteri is the predicted AUC last 
or Cmax value, observed PK  parameteri is the correspond-
ing observed AUC last or Cmax value, and m is the number 
of studies.

Finally, the physiological plausibility of the param-
eter estimates and the results of sensitivity analyses were 
assessed. A detailed description of the sensitivity calculation 
is given in the ESM.

2.4  Modeling the Impact of Polymorphism

The impact of genetic polymorphism on the pharmacokinet-
ics of metformin was implemented by splitting the polymor-
phic transporter in question into two transporters with half 
of the initial reference concentration each, corresponding to 
the two homologous chromosomal alleles in diploid humans. 
Each “wild-type” allele present in the simulated population 
(one in heterozygous individuals and two in homozygous 
individuals) was modeled with the transport rate constant 
identified during the initial model development. Each “vari-
ant” allele was modeled with an adapted transport rate con-
stant that was identified based on clinical studies of met-
formin in homozygous “variant” individuals.

2.5  Drug–Drug Interaction Modeling

For mechanistic DDI modeling, the type of interaction (com-
petitive inhibition, mechanism-based inhibition, induction) 
and the interaction parameters were extracted from in-vitro 
literature. These parameters were incorporated into the per-
petrator PBPK model, to dynamically describe the impact of 
the perpetrator on the victim drug. The mathematical imple-
mentation is shown in the ESM.

The DDI modeling performance was assessed by com-
parison of predicted vs observed victim drug plasma con-
centration–time profiles when administered alone and during 
co-administration. In addition, predicted DDI AUC last ratios 
(Eq. 3) and DDI Cmax ratios (Eq. 4) were evaluated.

(1)

MRD = 10x; x =
�

∑k

i=1(log10 cpredicted,i − log10 cobserved,i)2

k
,

(2)
GMFE = 10x; x =

∑m

i=1
����log10

�
predicted PK parameteri

observed PK parameteri

�����
m

,
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As a quantitative measure of the prediction accuracy, 
GMFE values of the predicted DDI AUC last ratios and DDI 
Cmax ratios were calculated according to Eq. (2).

2.6  Modeling of Renal Impairment

To model the impact of renal impairment on the pharma-
cokinetics of metformin, a literature search was conducted 
to identify the pathophysiological changes that occur in con-
junction with renal impairment, including their extent at the 
different stages of CKD. In a next step, these differences in 
anatomy and physiology were implemented to create renally 
impaired individuals and to describe the published clinical 
studies of metformin in patients with CKD.

3  Results

3.1  Metformin Physiologically Based 
Pharmacokinetic Model Building 
and Evaluation

A whole-body PBPK model of metformin has been suc-
cessfully developed. Thirty-nine clinical studies of intrave-
nous or oral administration covering a broad dosing range 
(0.001–2550 mg), 22 studies thereof with corresponding 
metformin fraction excreted to urine data, were utilized for 
PBPK model building and evaluation. In addition, human 
11C-metformin tissue concentration positron emission 
tomography (PET) measurements in the kidneys, liver, skel-
etal muscle, and intestines were included. Clinical studies 
are listed in the ESM.

To describe the pharmacokinetics of metformin, active 
transport processes by PMAT, OCT1, OCT2, and MATE1 
were implemented. These transporters were distributed and 
localized according to the current state of the literature, with 
their main sites of action illustrated in Fig. 1. PMAT was 
chosen to model the saturable absorption of metformin based 
on its good apparent affinity, high expression in the human 
small intestine, and localization at the luminal surface of 
enterocytes [25, 26], though the thiamine transporter 2 is 
also a likely candidate to contribute to the intestinal absorp-
tion of metformin [27, 28]. Renal excretion is modeled as 
passive glomerular filtration and active secretion through the 
sequential action of OCT2 and MATE1. Transporter distri-
bution, localization, and transport directions are summarized 

(3)

DDI AUClast ratio =
AUClast victim drug during co-administration

AUClast victim drug control
.

(4)

DDI Cmax ratio =
Cmax victim drug during co-administration

Cmax victim drug control
.

in the system-dependent parameter table in the ESM; trans-
port parameters are summarized in the metformin drug-
dependent parameter table in the ESM.

The good model performance is demonstrated in Fig. 2, 
using representative studies. Population predictions of all 39 
clinical studies compared to observed data, shown in semi-
logarithmic as well as linear plots, goodness-of-fit plots, and 
MRD values, are presented in the ESM. Predictions of met-
formin fraction excreted to urine are shown for all studies 
that provided observed data. For further evaluation of the 
model performance, predicted compared to observed AUC last 
and Cmax values, AUC last and Cmax GMFEs (1.20 and 1.24, 
respectively), and the results of the sensitivity analysis are 
documented in the ESM.

An important and novel feature of the presented model is 
the use of human 11C-metformin tissue concentration PET 
measurements for model development. As metformin is not 
metabolized, these PET images are unbiased by labeled 
metabolites. The unique transporter-controlled distribution 
of an intravenous 11C-metformin microdose over time [7] is 
shown in the upper part of Fig. 3. Noteworthy are the very 
high concentrations in the kidney, bladder, and liver, and the 
low permeation into other tissues. Population predictions 
of the quantified tissue concentrations are presented in the 
lower part of Fig. 3 and in the ESM. Metformin plasma, 
whole blood, kidney, and muscle concentrations are accu-
rately described by the model, governed by the implemented 
transport processes and the low passive permeability of 
metformin.

3.2  Impact of Organic Cation Transporter 2 
Polymorphism

The impact of the SLC22A2 808G>T single-nucleotide poly-
morphism on metformin exposure (DGI) was implemented 
using the same Michaelis–Menten constant for both isoforms 
[17, 20, 29], but an increased transport rate constant for each 
minor OCT2 allele (808T) present in the simulated popula-
tion. The 2.67-fold higher transport rate constant to describe 
the activity of the variant OCT2 (see metformin  drug-
dependent parameter table in the ESM) was optimized, 
based on the metformin plasma profiles of the homozygous 
808TT populations studied by Christensen et al. and Wang 
et al. [18, 21]. The metformin plasma concentrations of all 
other 808TT and 808GT study populations were predicted 
and are presented in Fig. 4. Except for one study reporting a 
higher metformin exposure with the variant OCT2 [29], the 
DGI AUC last ratios for the hetero- and homozygous groups 
are well predicted, with 6/7 within two-fold of the observed 
ratios (see the ESM).
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3.3  Drug–Drug Interaction Modeling 
with Cimetidine

In addition to the metformin model, a whole-body PBPK 
model of the potent MATE1 inhibitor cimetidine was 
developed. A detailed description of the cimetidine model 
development and evaluation is given in the ESM. The good 
model performance is demonstrated by population simula-
tions compared to observed data, a goodness-of-fit plot, and 
MRD values. Furthermore, predicted AUC last and Cmax val-
ues are documented, which are in good agreement with the 
observed data with GMFEs of 1.14 and 1.17, respectively.

The cimetidine-metformin DDI was modeled as competi-
tive inhibition of OCT1, OCT2, and MATE1 by cimetidine, 
using inhibition parameters from the literature [30]. How-
ever, cimetidine also is a BCS Class III drug (high solubility 
and low permeability) that is primarily excreted unchanged 
in the urine (renal clearance of approximately 400 mL/min 
[31]), indicating an important role of active transport in its 

distribution and excretion. As the only published informa-
tion on cimetidine kidney concentrations is a postmortem 
tissue-to-serum partition coefficient of 14.9 [32], which is 
not applicable for parameter optimization, the cimetidine 
interaction parameters were fixed to literature values and 
one of the cimetidine-metformin DDI studies [33] was uti-
lized to inform the intracellular kidney concentration in the 
cimetidine model parameter optimization. Population pre-
dictions of all clinical cimetidine-metformin DDI studies 
are presented in Fig. 5a–d. Predicted DDI AUC last and Cmax 
ratios are close to the observed values, with low GMFEs of 
1.22 and 1.20, respectively (see the ESM).

In the OCT2 polymorphism study by Wang et al. [21], the 
different SLC22A2 genotypes were additionally challenged 
with cimetidine co-administration, to show the combined 
effects of SLC22A2 808G>T DGI (decreased metformin 
plasma concentrations) and cimetidine DDI (increased 
metformin plasma concentrations). The predictions of this 
drug–drug–gene interaction (DDGI) are presented in Fig. 5e, 

PMAT

OCT1

OCT2 MATE

Renal cell

Hepatocyte

EnterocyteIntes�ne

Liver

Kidney

Lumen Blood

Blood Bile

Blood Urine

Fig. 1  Metformin transporters. Main sites of action of the transport-
ers that were implemented to model the absorption, distribution, 
and excretion of metformin. Several different studies report that they 
found no secretion of metformin to bile [2, 4, 7]. Drawings by Servier 

Medical Art, licensed under CC BY 3.0. MATE multidrug and toxin 
extrusion protein, OCT organic cation transporter, PMAT plasma 
membrane monoamine transporter
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f. Comparison of the metformin exposure of the three differ-
ent genotypes during cimetidine treatment (Fig. 5d–f, red tri-
angles) shows that the impact of the polymorphism becomes 
more pronounced with inhibition of MATE1. Quantitative 
evaluation of all DDI and DDGI predictions with plots of 
predicted vs observed AUC last and Cmax ratios are presented 
in the ESM.

3.4  Modeling of Renal Impairment

The impact of renal impairment on metformin pharma-
cokinetics was modeled by implementation of pathophysi-
ological changes for individuals with a GFR < 60 mL/min 
(CKD3A-CKD5). First, the actual individual GFR was used 
as reported. Second, renal secretion through OCT2 and 
MATE1 was decreased in proportion to the decrease in GFR, 

according to the “intact nephron hypothesis” [34–36]. Third, 
as metformin does not bind to plasma proteins, the levels of 
albumin and alpha-1-acid glycoprotein were not changed, 
but the hematocrit was gradually decreased with progressing 
stages of CKD [37]. As observed in previous PBPK analy-
ses of drug pharmacokinetics during renal impairment [36, 
38], these changes were not sufficient to describe the high 
metformin plasma concentrations in patients with CKD, 
suggesting the inhibition of further elimination pathways 
by uremic solutes that accumulate during renal impairment.

To incorporate this hypothesis by inhibition of basolateral 
OCT1 (liver uptake) and PMAT (skeletal muscle uptake), 
observed data of intravenously administered metformin in 
CKD3A-5 patients [6] were used to adjust the transport 
activities of OCT1 and PMAT for the different stages of 
CKD, yielding a linear correlation between transporter 
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Fig. 2  Metformin plasma concentrations. Population predictions 
of metformin plasma concentration–time profiles of representative 
intravenous (iv) and oral (po) studies, compared to observed data [2, 
4–6, 39, 52–54]. Population prediction arithmetic means are shown as 
lines; the shaded areas illustrate the 68% population prediction inter-
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ther studies, and quantitative model performance measures are pro-
vided in the ESM. bid twice daily, qd once daily
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inhibition and GFR. This correlation was implemented and 
used to predict orally administered metformin in CKD. Fur-
thermore, to capture the broader shape of the metformin 
plasma concentration–time profiles in patients with CKD, 
the permeability at the basolateral side of the small intestinal 
mucosa cells was decreased. This permeability was already 
adjusted in the model for healthy individuals, to release the 
metformin from the enterocytes into the blood. Considering 
the negligible passive permeability of metformin, there are 
probably transporters involved at this membrane barrier as 
well, but because of the current lack of information on the 
identity of such transporters, the local passive permeability 

was adjusted in the model. Decreasing the basolateral small 
intestinal permeability in CKD might well be a surrogate 
for the inhibition of these unknown transporters by accu-
mulating uremic solutes, consistent with their inhibition of 
basolateral transporters of the liver.

Finally, although one would expect a progressive or even 
exponential increase of metformin plasma concentrations 
with decreasing kidney function, no apparent difference 
in the exposure of CKD3B and CKD4 patients could be 
observed in the available clinical data [12, 39], indicating 
adaptive processes in severe renal disease. Therefore, induc-
tion of OCT2 and MATE1, as observed in hyperuricemic 
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tion prediction arithmetic means are shown as lines; the shaded areas 

illustrate the 68% population prediction intervals. Observed data 
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Fig. 4  Impact of organic cation 
transporter 2 (OCT2) polymor-
phism. Population predictions 
of metformin plasma concentra-
tion–time profiles in different 
SLC22A2 genotypes, compared 
to observed data [17, 18, 21, 
29]. Population prediction 
arithmetic means are shown as 
dark blue (SLC22A2 808GG, 
reference genotype) or lighter 
blue (SLC22A2 808GT and 
808TT, variant genotypes) lines. 
The shaded areas illustrate 
the respective 68% population 
prediction intervals. Observed 
data are shown as dots ± stand-
ard deviation. Details on the 
study protocols, semilogarith-
mic plots, and quantitative 
model performance measures 
are provided in the ESM. GG 
SLC22A2 808GG genotype, 
GT SLC22A2 808GT genotype, 
po oral, TT SLC22A2 808TT 
genotype
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Fig. 5  Impact of drug–drug interaction (DDI) and drug–drug–gene 
interaction (DDGI). Population predictions of metformin plasma 
concentration–time profiles before and during cimetidine co-treat-
ment of different SLC22A2 genotypes, compared to observed data 
[21, 23, 33]. Population prediction arithmetic means are shown as 
solid blue (metformin only) or dashed red (DDI or DDGI) lines; the 
shaded areas illustrate the respective 68% population prediction inter-

vals. Observed data are shown as dots (metformin only) or triangles 
(DDI or DDGI) ± standard deviation. Details on the study protocols, 
semilogarithmic plots, and quantitative DDI and DDGI prediction 
performance measures are provided in the ESM. bid twice daily, GG 
SLC22A2 808GG genotype, GT SLC22A2 808GT genotype, po oral, 
qd once daily, qid four times daily, TT SLC22A2 808TT genotype
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rats [40], was assumed and incorporated for CKD4-5 
patients, greatly improving the predictions in severe renal 
disease (Fig. 6a, b). These changes in system-dependent 
parameters to model CKD3A-5 are summarized in Fig. 6 
(left table). The model performance for all available clini-
cal studies of metformin in renal disease is documented in 
the ESM.

The developed model of metformin in renal impairment 
was applied to generate dose recommendations for patients 
with CKD, that match the steady-state AUC of renally 
healthy individuals. Simulations of metformin plasma con-
centrations in CKD3A-5 patients compared to healthy vol-
unteers, all treated with 1000 mg of metformin three times 
daily, are shown in Fig. 6c. Simulations of metformin in 
patients with CKD administered with the model-based dose 
recommendations are shown in Fig. 6d. In the table below, 
these recommendations are compared to the guidance in 
the US and German labels. While the US label provides 
no quantitative advice [13], the German label recommends 
a reduction to 67% of the dose for CKD3A and to 33% for 
CKD3B patients [14]. Based on the scarce clinical data of 
metformin exposure in renally impaired patients, the pre-
sented model suggests much lower doses of about 30% for 
CKD3A and of 20% for CKD3B and 4.

4  Discussion

A comprehensive whole-body PBPK model of metformin 
has been thoroughly built and evaluated, integrating the cur-
rent knowledge on the mechanisms controlling the pharma-
cokinetics of this widely prescribed drug. The established 
model has been evaluated for prediction of the effects of 
the SLC22A2 808G>T polymorphism, the cimetidine-met-
formin DDI, and the impact of renal impairment, a frequent 
co-morbidity in patients with T2DM.

Several other PBPK models of metformin have been pub-
lished previously [41–44], but our newly developed model is 
the first to integrate PET-measured human in-vivo metformin 
kidney concentrations, clinical data of microdose studies, 
and a mechanistic description of the saturable transporter-
dependent absorption of metformin. The limitations of the 
presented model result from our lack of knowledge regarding 
the metformin pharmacokinetic processes in the liver and the 
expression levels of the different transporters throughout the 
body. As shown in Fig. 3d, the liver concentration–time pro-
file following the intravenous 11C-metformin microdose is 
not adequately described. The uptake of metformin into the 
liver is modeled via OCT1, but, in accordance with the lit-
erature, no process for metformin metabolism or secretion to 
bile has been implemented. An unspecific hepatic metabolic 
clearance was tested, but did not improve the model (causing 
underestimation of the plasma concentrations in studies with 

therapeutic doses), supporting the idea that metformin is not 
metabolized. The plasma concentrations following the oral 
11C-metformin microdose, and consequently also the meas-
ured tissue concentrations, are underpredicted for the 2 h 
of the oral PET study (see the ESM). However, the admin-
istered microdoses (1.445 µg intravenously and 0.856 µg 
orally) were more than 300,000 and 500,000 times below 
the lowest therapeutic dose of 500 mg. Given that the met-
formin pharmacokinetics are completely governed by satu-
rable transport processes and that the plasma, whole blood, 
kidney, and muscle concentrations following the intravenous 
microdose are well described, this underprediction might 
be caused by a missing process for metformin absorption.

The effect of the SLC22A2 808G>T polymorphism is 
difficult to assess from the literature. In-vitro studies report 
a decreased metformin transport rate [29], equal activity 
[20], as well as increased transport velocity [17] for the 
variant OCT2 protein. In-vivo, two studies report decreased 
clearance by renal secretion in Korean and Chinese 808TT 
individuals [21, 29], whereof the Chinese study neverthe-
less shows a non-significantly lower metformin plasma 
Cmax for the 808TT group. However, two different studies 
report increased clearance by renal secretion in American 
and European individuals [17, 18], with corresponding 
decreases in metformin exposure in association with the 
minor allele. Given that OCT2 and MATE1 are working 
sequentially to transport metformin through the kidney, it 
is difficult to distinguish their impacts on renal secretion. 
Therefore, statements regarding the effect of polymorphisms 
or co-medications on OCT2 function should not be based on 
plasma concentrations or renal secretion alone, without con-
comitant assessment of MATE1 genotype/activity or kidney 
concentrations. This also holds true for the DDGI results 
by Wang et al. [21] (Fig. 5f), where the observed lack of 
cimetidine-metformin DDI in SLC22A2 808TT individuals 
is difficult to explain, because (1) this DDI is mainly caused 
by inhibition of MATE1, (2) the MATE1 genotypes were 
not analyzed in this study, and (3) so far there are no in-vitro 
results available on the impact of cimetidine on MATE1 var-
iants. Another explanation for the weak effect of cimetidine 
in the SLC22A2 808TT group might be reduced transport of 
cimetidine by this OCT2 variant into the kidney and there-
fore less inhibition of MATE1, as previously proposed [30].

To model the renal impairment, renal secretion was 
decreased in proportion to the impaired GFR, based on the 
“intact nephron hypothesis”, which postulates that structur-
ally damaged nephrons stop contributing to both passive 
renal filtration and active secretion, and that the remaining 
intact nephrons continue to function in glomerulo-tubular 
balance with appropriate adaptation to the patient’s needs 
[35]. This hypothesis has been successfully applied in pre-
vious PBPK analyses of renal impairment [36, 42, 45, 46]. 
The inhibition of liver drug uptake by uremic toxins in renal 
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impairment has been postulated by Zhao et al. [38], based 
on the fact that the clearance of many nonrenally eliminated 
drugs is decreased in CKD, and based on their PBPK analy-
sis of repaglinide in CKD4.

We used an empirical approach to model the inhibition 
of liver and muscle uptake as a function of the degree of 

renal impairment. The inhibition of the basolateral intestinal 
permeability/transport in CKD is purely hypothetical, but 
was essential to describe the shape and elimination phase 
of the clinically observed data. The induction of OCT2 
and MATE1 was demonstrated in hyperuricemic rats [40]. 
To confirm and refine these hypotheses, in-vitro studies of 

a b

c d

Fig. 6  Impact of renal impairment and model-based chronic kidney 
disease (CKD) dose recommendations. a, b Population predictions 
of metformin plasma concentration–time profiles in different stages 
of CKD, compared to observed data [12, 39]. Population prediction 
arithmetic means are shown as black (healthy) or colored (CKD3A-4) 
lines. The shaded areas illustrate the respective 68% population pre-
diction intervals. Observed data are shown as dots in corresponding 
colors. c Simulations of metformin exposure in CKD3A-5 patients 
compared to healthy individuals using an oral (po) dose of 1000 mg, 

three times daily (tid). d Simulations of metformin exposure in 
CKD3A-5 patients to match the steady-state area under the curve 
(AUC) of 1000  mg po, tid in healthy individuals. The tables show 
the implementation of renal impairment (on the left) and the model-
based dose recommendations compared to the guidance in the US and 
German labels (on the right). contraind. contraindicated, GFR glo-
merular filtration rate, HKT hematocrit, intest. perm. intestinal per-
meability, MATE multidrug and toxin extrusion protein, OCT organic 
cation transporter, PMAT plasma membrane monoamine transporter
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OCT1 and PMAT inhibition by uremic solutes are needed, 
to identify the toxins involved and to assess their inhibitory 
potential; the expression and role of transporters at the baso-
lateral membrane of the intestinal mucosa has to be inves-
tigated; and the clinical relevance of OCT2 and MATE1 
induction by uric acid in humans needs to be established.

Future applications include the modeling of further DGIs 
and DDIs, and ultimately, the individualized dose recom-
mendation for real patients with multiple polymorphisms, 
co-medications, and co-morbidities. Although the effects 
of some of these interactions do not reach statistical sig-
nificance in the blood, their impact on kidney or liver con-
centrations might well be substantial and of therapeutic 
relevance. The model application with the most immediate 
medical benefit is the generation of dose recommendations 
for renally impaired patients with T2DM. Chronic kid-
ney disease is a frequent co-morbidity, but physicians are 
reluctant to prescribe metformin to patients with reduced 
renal function because of the contraindication given in most 
guidelines and fear of lactic acidosis caused by metformin 
accumulation [47]. These contraindications are based solely 
on the estimated GFR of the patient, even though for patients 
with stable renal disease, a dose adjustment based on renal 
function, with monitoring of the metformin plasma con-
centrations, would be perfectly feasible. A reduced dose of 
500 mg metformin daily was reported to be safe for creati-
nine clearances as low as 20 mL/min [48] and in a group 
of CKD4 patients [12], which is in line with the presented 
model-based recommendation of 200 mg three times daily 
for CKD4 patients with T2DM.

5  Conclusions

Mechanistic whole-body PBPK models of metformin and 
cimetidine have been carefully developed and evaluated to 
integrate the current pharmacokinetic knowledge on these 
drugs and to describe the impact of the SLC22A2 808G>T 
polymorphism, the cimetidine-metformin DDI, and the 
pathophysiological changes during renal impairment on the 
exposure of metformin. Both models will be released open-
source (https ://www.open-syste ms-pharm acolo gy.org) [49], 
to support metformin therapy, OCT2/MATE DDI studies 
during drug development, and to be used as input for phar-
macodynamic glucose-homeostasis models [50, 51] and 
other PBPK/pharmacodynamic analyses. The presented 
analysis has generated insights into the pharmacokinet-
ics during renal impairment, indicating that the kidneys of 
patients with severe renal disease might be able to adapt to 
uremia/hyperuricemia by induction of OCT2 and MATE1, 
as has been shown for hyperuricemic rats [40].
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Figure 4.2. Whole-body physiologically based pharmacokinetic (PBPK) mod-
eling of trimethoprim for drug-drug-gene interaction predictions. Illustra-
tions of organs were taken from Servier [5], licensed under CC BY 3.0
(https://creativecommons.org/licenses/by/3.0/). CYP, cytochrome P450;
GIT, gastrointestinal tract; MATE, multidrug and toxin extrusion protein; OCT,
organic cation transporter; PGx, pharmacogenetics; PMAT, plasma membrane
monoamine transporter.
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Abstract: Trimethoprim is a frequently-prescribed antibiotic and therefore likely to be co-administered
with other medications, but it is also a potent inhibitor of multidrug and toxin extrusion protein
(MATE) and a weak inhibitor of cytochrome P450 (CYP) 2C8. The aim of this work was to develop a
physiologically-based pharmacokinetic (PBPK) model of trimethoprim to investigate and predict
its drug–drug interactions (DDIs). The model was developed in PK-Sim®, using a large number of
clinical studies (66 plasma concentration–time profiles with 36 corresponding fractions excreted in
urine) to describe the trimethoprim pharmacokinetics over the entire published dosing range (40 to
960 mg). The key features of the model include intestinal efflux via P-glycoprotein (P-gp), metabolism
by CYP3A4, an unspecific hepatic clearance process, and a renal clearance consisting of glomerular
filtration and tubular secretion. The DDI performance of this new model was demonstrated by
prediction of DDIs and drug–drug–gene interactions (DDGIs) of trimethoprim with metformin,
repaglinide, pioglitazone, and rifampicin, with all predicted DDI and DDGI AUClast and Cmax ratios
within 1.5-fold of the clinically-observed values. The model will be freely available in the Open
Systems Pharmacology model repository, to support DDI studies during drug development.

Keywords: physiologically-based pharmacokinetic (PBPK) modeling; trimethoprim; drug–drug
interaction (DDI); multidrug and toxin extrusion protein (MATE); organic cation transporter (OCT);
cytochrome P450 2C8 (CYP2C8)

1. Introduction

Trimethoprim is an inhibitor of bacterial folic acid metabolism used to treat bacterial infections.
It is either applied as monotherapy or in combination with sulfonamides, e.g., sulfamethoxazole
(“cotrimoxazole”). Trimethoprim is one of the most frequently-used antibiotics worldwide, ranking fifth
after penicillins, cephalosporins, macrolides, and fluoroquinolones, with a global consumption of
5 × 109 standard units in 2010 [1].

Due to the frequent prescription of trimethoprim, investigation of its drug–drug interaction (DDI)
potential is clinically relevant. The antibiotic is a potent inhibitor of multidrug and toxin-extrusion
protein (MATE) 1 and MATE2-K [2], and therefore recommended by the FDA as a clinical MATE inhibitor.
Furthermore, trimethoprim less potently inhibits organic cation transporter (OCT) 1 and OCT2 [3,4].
This combined inhibition potential can be observed during clinical studies of trimethoprim with
metformin, where co-administration of trimethoprim increases the area under the concentration–time
curve (AUC) of metformin by 30% [4]. Metformin is listed by the FDA as the only recommended
MATE1, MATE2-K, and OCT2 substrate for clinical DDI studies [2].

Pharmaceutics 2020, 12, 1074; doi:10.3390/pharmaceutics12111074 www.mdpi.com/journal/pharmaceutics
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In addition to its inhibition of transporters, trimethoprim is a weak inhibitor of cytochrome P450
(CYP) 2C8 [2]. Co-administration of trimethoprim increases the AUC of repaglinide and pioglitazone
by 61% and 42%, respectively [5,6]. Both victim drugs are mainly metabolized by CYP2C8 and
listed as sensitive CYP2C8 index substrate (repaglinide) or moderately-sensitive CYP2C8 substrate
(pioglitazone) for the use in clinical DDI studies [2].

Similar to DDIs, polymorphisms in transporters or metabolizing enzymes can affect the
pharmacokinetics of a drug (drug–gene interactions, DGIs), leading to loss of efficacy or adverse
drug reactions. Naturally, DDIs and DGIs may occur simultaneously (drug–drug–gene interactions,
DDGIs), counteracting or adding their respective effects on drug exposure, which urgently needs to
be considered in clinical practice as it can lead to very strong interaction effects. Two DDGIs with
trimethoprim as the perpetrator, co-administered with metformin in SLC22A2 808G>T polymorphic
subjects or with pioglitazone in CYP2C8*3 polymorphic volunteers, are reported in the literature [6,7].
The SLC22A2 808G>T allele frequency is between 10 and 14% in most populations [8]. This missense
variant is associated with decreased metformin maximum plasma concentrations (Cmax) in vivo [7,9–11]
and might be associated with cisplatin-induced ototoxicity [12]. The CYP2C8*3 allele frequency varies
between populations and is reported at 13% in Caucasians and 2% in African Americans [13]. In vitro
data suggest that the CYP2C8*3 allele is associated with decreased metabolism of e.g., paclitaxel [13].
However, clinical data showed controversial results with increased metabolism of repaglinide and
pioglitazone [6,14].

In addition to its DDI liability as a perpetrator drug, trimethoprim can also be the victim drug in
polypharmaceutical drug regimens. Co-administration of trimethoprim with rifampicin, an inducer of
CYP enzymes and P-glycoprotein (P-gp) [2,15], has been shown to increase the urinary excretion of
trimethoprim due to increased expression of P-gp [16].

The aims of this study were (1) to develop a whole-body physiologically-based pharmacokinetic
(PBPK) model of trimethoprim that accurately describes the observed concentrations in plasma and
urine over time, (2) to predict the DDIs of trimethoprim with the victim drugs metformin, repaglinide
and pioglitazone, (3) to predict the clinically-significant DDGIs of trimethoprim with metformin
in SLC22A2 808G>T carriers and with pioglitazone in CYP2C8*3 carriers, and (4) to describe the
rifampicin–trimethoprim DDI with trimethoprim in the role of the victim drug. The newly-developed
trimethoprim model will be freely available in the Open Systems Pharmacology model repository
(www.open-systems-pharmacology.org) and the Supplementary Materials to this manuscript were
compiled as one comprehensive reference manual with transparent documentation of the model
performance to support DDI investigations during drug development, labeling, and submission for
regulatory approval of new drugs.

2. Materials and Methods

2.1. Software

The PBPK model of trimethoprim was developed using PK-Sim® modeling software
(Open Systems Pharmacology Suite 8.0, www.open-systems-pharmacology.org, 2019). Clinical study
data from literature were digitized with Engauge Digitizer 10.12 (©M. Mitchell [17], 2019) according
to best practices [18]. Model parameter optimization (Levenberg–Marquardt algorithm) and sensitivity
analysis were performed within PK-Sim®. Calculation of pharmacokinetic parameters, quantitative
model performance analysis, and generation of plots were accomplished using R 3.6.2 (The R Foundation
for Statistical Computing, Vienna, Austria, 2019) and RStudio 1.2.5033 (RStudio, Inc., Boston, MA,
USA, 2019).

2.2. Trimethoprim Clinical Data

Plasma or whole blood concentration–time profiles and fraction excreted unchanged (f e) in urine
data of single- and multiple-dose trimethoprim studies were collected from literature and digitized.
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The obtained profiles were divided into a training dataset and a test dataset, which were used for
model building and model evaluation, respectively.

2.3. Trimethoprim PBPK Model Building

Model building was started with an extensive literature search to gain information about
physicochemical parameters as well as absorption, distribution, metabolism, and excretion (ADME)
processes of trimethoprim.

To simulate trimethoprim in the different organs of the body, virtual individuals were created
according to the demographics of the respective clinical studies (ethnicity, sex, age, body weight,
and height). If no information was provided, a European, male, 30-year-old individual was assumed,
with body weight and height characteristics taken from the PK-Sim® population database.

Transporters and enzymes involved in trimethoprim ADME were implemented according to
current literature, using the PK-Sim® expression database [19]. Details on their expression and
localization in the different organs of the body are provided in the system-dependent parameter table
in the Supplementary Materials (Table S19).

Model parameters that could not be informed from literature were optimized by fitting the model
simultaneously to all plasma or whole blood concentration–time profiles and f e in urine data of the
training dataset.

2.4. Trimethoprim PBPK Model Evaluation

Trimethoprim model performance was evaluated by comparison of (1) the predicted plasma
or whole blood concentration-time and f e in urine profiles to the clinically-observed data of the
respective clinical studies, (2) predicted plasma or whole blood concentration values of all studies to
their corresponding observed values in goodness-of-fit plots, and (3) predicted to observed f e in urine,
AUC, and Cmax values, where AUC was calculated from the time of drug administration to the time of
the last concentration measurement (AUClast) for both predicted and observed plasma or whole blood
concentration–time profiles.

As quantitative measures of the model performance, the mean relative deviation (MRD) of all
predicted plasma and whole blood concentrations and the geometric mean fold error (GMFE) of all
predicted f e in urine, AUClast, and Cmax values were calculated according to Equations (1) and (2),
respectively. MRD and GMFE values ≤ 2 characterize an adequate model performance.

MRD = 10x; x =

√ ∑k
i = 1 (log 10cpredicted,i − log10 cobserved,i

)2

k
(1)

where cpredicted,i = predicted plasma (or whole blood) concentration, cobserved,i = corresponding
observed plasma (or whole blood) concentration, and k = number of observed values.

GMFE = 10x; x =

∑m
i = 1 | log10

(
predicted PK parameteri
observed PK parameteri

)
|

m
(2)

where predicted PK parameteri = predicted f e in urine, AUClast, or Cmax value; observed PK
parameteri = corresponding observed f e in urine, AUClast, or Cmax value; m = number of studies.

2.5. DDI and DDGI Modeling

In addition to the previously-described methods for PBPK model evaluation, the ability of
the trimethoprim model to adequately predict DDIs was tested. Trimethoprim DD(G)I modeling
was performed with three different victim drugs (metformin, repaglinide, and pioglitazone) and
one perpetrator drug (rifampicin). The parameters of the previously-developed PBPK models of
metformin [20], repaglinide, pioglitazone [21], and rifampicin [22] that were applied for DDI modeling
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are reproduced in Tables S8, S11, S14 and S17 and DDI model processes are illustrated in Figures S14,
S18, S21 and S25 of the Supplementary Materials.

To predict the trimethoprim–metformin DDI, competitive inhibition of MATE1, OCT1, and OCT2
by trimethoprim was implemented, using Ki values of 4.45 µmol/L, 32.20 µmol/L, and 47.82 µmol/L,
respectively [3,4,23–27]. The trimethoprim–repaglinide and trimethoprim–pioglitazone DDIs were
predicted as competitive inhibition of CYP2C8 by trimethoprim with a Ki value of 4.85 µmol/L [28].
All trimethoprim Ki values and in vitro references are listed in the trimethoprim drug-dependent
parameter table in Section 3.1.

To predict the published trimethoprim DDGI studies with metformin (SLC22A2 808G>T,
increased metformin transport) and pioglitazone (CYP2C8*3, increased pioglitazone metabolism),
the trimethoprim model was applied with previously-built and evaluated DGI models of metformin
and pioglitazone [20,21]. For the competitive inhibition of the variant OCT2 or CYP2C8 isoforms by
trimethoprim, the same Ki values as for the wildtype transporter or enzyme were applied.

The rifampicin–trimethoprim DDI was modeled as induction of P-gp trimethoprim transport and
CYP3A4 trimethoprim metabolism by rifampicin, with simultaneous competitive inhibition of P-gp
and CYP3A4. The parameter values to model these interactions were taken from literature (values
and references are listed in the rifampicin drug-dependent parameter Table S17 in the Supplementary
Materials) and have been evaluated in previous DDI analyses [21,22]. Due to the lack of in vitro
information regarding the metabolism of trimethoprim, the clinical data of the rifampicin–trimethoprim
DDI were included into the training dataset, and the inducible fraction of trimethoprim metabolism
was attributed to metabolism by CYP3A4.

The mathematical implementation of competitive inhibition and rifampicin-dependent induction
is shown in Section 1.5 of the Supplementary Materials.

2.6. DDI and DDGI Model Performance Evaluation

The DDI and DDGI modeling performance was evaluated by comparison of predicted to observed
plasma concentration–time profiles of the respective victim drugs metformin, repaglinide, pioglitazone,
or trimethoprim, administered alone and during perpetrator drug co-treatment (trimethoprim or
rifampicin). Furthermore, predicted DDI or DDGI AUClast ratios (Equation (3)) and DDI or DDGI Cmax

ratios (Equation (4)) were calculated, and compared to the observed ratios.

DDI or DDGI AUClast ratio =
AUClast victim drug during co− administration

AUClast victim drug control
(3)

DDI or DDGI Cmax ratio =
Cmax victim drug during co− administration

Cmax victim drug control
(4)

As a quantitative measure of the DDI and DDGI model performance, GMFE values of the predicted
AUClast ratios and Cmax ratios were calculated according to Equation (2).

2.7. Sensitivity Analysis

Local sensitivity analysis was performed on the trimethoprim model to investigate the impact
of single-model parameters on the predicted AUC, Cmax, and tmax at steady state. Parameters were
included in the analysis if they have been optimized, if they were associated with optimized parameters
or if they might had a strong impact on the model predictions due to their use in the calculation of
permeabilities or partition coefficients. A list of the analyzed parameters is provided in Table S6 of the
Supplementary Materials.
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Sensitivity was calculated as the ratio of the relative change of the simulated AUC, Cmax, or tmax to
the relative variation of the tested parameter around the parameter value used in the model, according
to Equation (5):

S =
∆PK
PK
· p
∆p

(5)

where S = sensitivity of the AUC, Cmax, or tmax to the tested model parameter; ∆PK = change of the
AUC, Cmax, or tmax; PK = AUC, Cmax, or tmax predicted with the original model parameter value;
p = original model parameter value; ∆p = change of the tested model parameter value.

Sensitivity analysis was performed using the highest recommended dose and a relative parameter
perturbation of 1000%. The threshold value for sensitivity was set to 0.5; this value signifies that a 100%
change of the investigated parameter value causes a 50% change of the predicted AUC, Cmax or tmax.

3. Results

3.1. Trimethoprim PBPK Model Building and Evaluation

The trimethoprim whole-body PBPK model was built and evaluated using a total number of
66 trimethoprim plasma or whole blood concentration–time profiles and 36 f e in urine profiles
(intravenous and oral, single-, and multiple-dose administration), covering a broad dosing range
from of 40 to 960 mg. In 47 of the 66 clinical studies, trimethoprim was administered as
“cotrimoxazole”, i.e., in combination with sulfamethoxazole. According to literature [29,30] and our
own analyses, trimethoprim pharmacokinetic profiles are not altered by simultaneous administration
of sulfamethoxazole (see Figure S2 in the Supplementary Materials). Consequently, studies with
co-administration of trimethoprim and sulfamethoxazole were included for model development.
A table listing all utilized clinical studies is provided in the Supplementary Materials (Table S1).

The final trimethoprim PBPK model applies active efflux via P-gp (most strongly expressed in
the intestine and kidney), metabolism by CYP3A4 (mainly in the liver with lower expression in the
intestine), an unspecific hepatic clearance, and passive glomerular filtration. Trimethoprim is primarily
excreted unchanged in the urine (46–67% of an oral dose [30–32]). The implemented ADME processes
are visualized in Figure 1 and in Figure S3 of the Supplementary Materials. The drug-dependent
parameters of the final model are given in Table 1 and in Table S2 of the Supplementary Materials.
The model-specific, system-dependent parameters, with the expression profiles of the incorporated
transporter and metabolizing enzymes, are summarized in the system-dependent parameter table in
the Supplementary Materials (Table S19).

The good descriptive (training dataset, 13 studies) and predictive (test dataset, 53 studies)
performance of the trimethoprim model is demonstrated in Figure 2, showing representative population
predictions of plasma concentration–time profiles and f e in urine, compared to observed data.
The population predictions of all 66 analyzed clinical studies, compared to their respective observed
data, are shown in Figures S4–S9 of the Supplementary Materials (semilogarithmic as well as linear
plots). Furthermore, goodness-of-fit plots with predicted versus observed (a) plasma or whole blood
concentrations and (b) f e in urine values, are presented in Figure 3 and in Figures S10 and S11 of
the Supplementary Materials, where 93% of all predicted plasma or whole blood concentrations and
100% of all predicted f e in urine values are within 2-fold of the observed data. MRD values for all
predicted plasma or whole blood concentration–time profiles (58/66 with MRD ≤ 2) and GMFE values
for predicted f e in urine (overall GMFE of 1.19) are documented in the Supplementary Materials
(Tables S3 and S4).
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Figure 1. Schematic illustration of the trimethoprim absorption, distribution, metabolism, and excretion
(ADME) processes in the model. Trimethoprim is absorbed in the intestine with counteractive efflux via
P-gp. About 20% of a trimethoprim dose is metabolized [33] (modeled via CYP3A4 and an additional
CLhep). The main route of trimethoprim elimination is urinary excretion (46–67% of an oral dose [30–32])
via glomerular filtration and active tubular secretion via P-gp. Drawings by Servier, licensed under
CC BY 3.0 [34]. CLhep: hepatic metabolic clearance, CYP: cytochrome P450, P-gp: P-glycoprotein,
TMP: trimethoprim.
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Table 1. Trimethoprim drug-dependent parameters.

Parameter Value Unit Source Literature Reference Description

MW 290.32 g/mol Literature 290.32 [35] Molecular weight
pKa (base) 7.12 - Literature 6.60, 7.12, 7.30 [35–37] Acid dissociation constant

Solubility (pH 7.0) 0.40 g/L Literature 0.40 [35] Solubility
logP 1.01 - Optimized 0.60, 0.73, 0.91, 1.43 [35,38–40] Lipophilicity
f u 56 % Literature 42–65 [41–47] Fraction unbound plasma

P-gp KM 195.75 µmol/L Optimized - - Michaelis –Menten constant
P-gp kcat 1.44 1/min Optimized - - Transport rate constant

CYP3A4 KM 375.57 µmol/L Optimized - - Michaelis–Menten constant
CYP3A4 kcat 0.56 1/min Optimized - - Catalytic rate constant

CLhep 1.61 × 10−2 1/min Optimized - - Hepatic metabolic clearance
GFR fraction 1 - Assumed - - Fraction of filtered drug in the urine

EHC continuous fraction 1 - Assumed - - Fraction of bile continually released

MATE1 Ki 4.45 µmol/L Literature 0.51, 2.64, 3.29, 3.94, 4.06,
4.58, 6.30, 6.73, 7.99 * [3,4,23–25] Conc. for 50% inhibition (competitive)

OCT1 Ki 32.20 µmol/L Literature 27.70, 36.70 * [3,4] Conc. for 50% inhibition (competitive)

OCT2 Ki 47.82 µmol/L Literature 13.20, 19.80, 27.20, 32.30,
57.40, 137.00 * [3,4,23,26,27] Conc. for 50% inhibition (competitive)

CYP2C8 Ki 4.85 µmol/L Literature 2.25, 3.80, 8.50 * [28] Conc. for 50% inhibition (competitive)
Partition coefficients Diverse - Calculated Berezhkovskiy [48] Cell to plasma partition coefficients
Cellular permeability 4.96 × 10−4 cm/min Calculated CDS [49] Permeability into the cellular space

Intestinal permeability 1.24 × 10−2 cm/min Optimized 1.36 × 10−6 Calculated Transcellular intestinal permeability
Formulation Weibull ◦ - Optimized - - Formulation used in predictions

* if half maximal inhibitory concentrations (IC50) were reported, Ki values were calculated using the Cheng–Prusoff equation [50], and then the mean Ki was used in the model; ◦ Weibull
function with a dissolution time of 53.47, 94.86, 71.83, or 52.59 min (50% dissolved) and a dissolution shape of 0.91, 0.91, 0.89, or 1.00 (all optimized) for oral suspension fasted [51,52],
oral suspension fed [53], for capsule fasted [51], and tablet fasted [33,54–57], respectively. Berezhkovskiy, Berezhkovskiy calculation method; CDS, charge-dependent Schmitt calculation
method; CLhep, hepatic metabolic clearance; conc., concentration; CYP, cytochrome P450; EHC, enterohepatic circulation; GFR, glomerular filtration rate; MATE, multidrug and toxin
extrusion protein; OCT, organic cation transporter; P-gp, P-glycoprotein.
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Figure 2. Trimethoprim in plasma and urine. Population predictions of trimethoprim (a–f) plasma
concentration–time profiles and (g–i) fraction excreted unchanged in urine profiles compared to
observed data [43,54,55,57,58] of representative intravenous and oral studies. Population prediction
arithmetic means are shown as lines; the shaded areas illustrate the 68% population prediction
intervals. Observed data are shown as triangles (training dataset) or dots (test dataset) ± standard
deviation. Details on the study protocols and model simulations of all 66 clinical studies used for model
building and evaluation are provided in the Supplementary Materials. bid, twice daily; f e in urine,
fraction excreted unchanged in urine; iv, intravenous; po, oral; qid, four times daily; sd, single dose.

Correlations of predicted with observed AUClast (97% within 2-fold) and Cmax values (98% within
2-fold) are presented in Figure 4 and in Figure S12 of the Supplementary Materials. The plotted values
for all studies are provided in the Supplementary Materials (Table S5), including calculated GMFE
values, with overall GMFEs of 1.29 and 1.20 for AUClast and Cmax, respectively.
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Figure 3. Trimethoprim physiologically-based pharmacokinetic (PBPK) model performance. The
goodness- of-fit plots show predicted compared to observed (a) plasma or whole blood concentrations
and (b) fractions excreted unchanged in urine of all studies used for model building and evaluation.
The solid line marks the line of identity and dotted lines indicate 1.25-fold and dashed lines indicate 2-fold
deviation. Data are shown as triangles (training dataset) or dots (test dataset) [30,31,33,37,41,43,46,51–73].
Details on the predicted clinical studies and the individual fraction excreted unchanged in urine values
are provided in the Supplementary Materials. WB, whole blood.
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Figure 4. Trimethoprim PBPK model performance. The goodness-of-fit plots show predicted compared
to observed (a) AUClast values and (b) Cmax values of all studies used for model building and evaluation.
The solid line marks the line of identity and dotted lines indicate 1.25-fold and dashed lines indicate 2-fold
deviation. Data are shown as triangles (training dataset) or dots (test dataset) [30,31,33,37,41,43,46,51–73].
Details on the predicted clinical studies and the individual AUClast and Cmax values are provided in
the Supplementary Materials. WB, whole blood.

Sensitivity analysis of a simulation of 160 mg trimethoprim twice daily, using a parameter
perturbation of 1000% and a sensitivity threshold of 0.5, showed that the only parameter value the
model predictions are sensitive to is the trimethoprim fraction unbound in plasma, for which a literature
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value is used in the model (56% [44]). The full quantitative results of the sensitivity analysis are shown
in Section 2.5 (Figure S13) of the Supplementary Materials.

3.2. Trimethoprim DDI and DDGI Modeling

Trimethoprim DD(G)I modeling was performed with three different victim drugs (metformin,
repaglinide, and pioglitazone) and one perpetrator drug (rifampicin). Tables listing all utilized clinical
DDI studies are provided in the Supplementary Materials (Tables S7, S10, S13 and S16). The resulting
trimethoprim DDI network with the affected transporters and enzymes is illustrated in Figure 5 and in
Figure S1 of the Supplementary Materials.

OCT2
CYP
2C8

Repaglinide

Trimethoprim 

MATE1

MetforminPioglitazone

OCT1

Rifampicin 

Trimethoprim 

P-gp P-gpP-gp
CYP 
3A4

Competitive inhibition Induction Transport/metabolism

a) b)

CYP 
3A4

Figure 5. Trimethoprim drug–drug interaction (DDI) network. (a) Trimethoprim is a MATE1,
OCT1, OCT2 and CYP2C8 inhibitor that impacts the pharmacokinetics of metformin, repaglinide,
and pioglitazone. (b) On the other hand, trimethoprim is a victim drug in the DDI with
rifampicin. Rifampicin inhibits and in the long term induces P-gp and CYP3A4, and thereby
impacts the pharmacokinetics of trimethoprim. Drawings by Servier, licensed under CC BY 3.0 [34].
CYP: cytochrome P450, MATE: multidrug and toxin extrusion protein, OCT: organic cation transporter,
P-gp: P-glycoprotein.

The good DDI model performance is demonstrated in Figure 6, showing representative population
predictions of victim drug plasma concentration–time profiles before and during the four different DDIs,
compared to observed data. For the rifampicin–trimethoprim DDI study, no plasma concentrations
of trimethoprim without rifampicin co-administration were reported. Instead, day 1 and day 8 of
the rifampicin–trimethoprim co-administration were shown, and therefore modeled and evaluated.
Semilogarithmic as well as linear plots of population predicted compared to observed victim drug
plasma concentration–time profiles of all DDI and DDGI studies are shown in Figures S15, S16, S19,
S22, S23, S26, and S27 of the Supplementary Materials.
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Figure 6. Trimethoprim DDI victim drug plasma profiles. Population predictions of victim drug
plasma concentration–time profiles of the (a) trimethoprim–metformin, (b) trimethoprim–repaglinide,
(c) trimethoprim–pioglitazone, and (d) rifampicin–trimethoprim DDIs, compared to observed
data [5–7,16]. Population prediction arithmetic means are shown as lines (solid, victim drug alone and
dashed, victim drug during perpetrator co-administration); the shaded areas illustrate the respective
68% population prediction intervals. Observed data are shown as triangles (training dataset) or dots
(test dataset) ± standard deviation. Perpetrator application starts at (a) 83 h or (b–d) 0 h. Details on the
study protocols and model simulations of all clinical DDI and DDGI studies used to evaluate the DDI
performance of the trimethoprim model are provided in the Supplementary Materials. bid, twice daily;
po, oral; sd, single dose; tid, three times daily.

For a quantitative evaluation of the DDI performance, predicted and observed DDI and DDGI
AUClast, and Cmax ratios are compared in Figure 7 and listed in the Supplementary Materials,
showing overall GMFEs of 1.08, 1.27, 1.32, and 1.08 (AUClast ratios) and of 1.14, 1.11, 1.04, and 1.30
(Cmax ratios) for the four modeled DDIs (trimethoprim–metformin, trimethoprim–repaglinide,
trimethoprim–pioglitazone, and rifampicin–trimethoprim), respectively. All predicted DDI and
DDGI AUClast and Cmax ratios are within 1.5-fold of the observed values. The full quantitative
evaluation showing all ratios and GMFE values with ranges is presented in the Supplementary
Materials (Tables S9, S12, S15 and S18 and Figures S17, S20, S24 and S28).
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Figure 7. Trimethoprim DDI model performance. Predicted compared to observed DDI and DDGI
(a) AUClast ratios and (b) Cmax ratios of all clinical studies used to evaluate the DDI performance
of the trimethoprim model. The straight solid line marks the line of identity and the curved solid
lines show the DDI prediction acceptance limits proposed by Guest et al. [74]. Dotted lines indicate
1.25-fold and dashed lines indicate 2-fold deviation. Data are shown as dots [4–7,16]. Details on the
predicted clinical studies and the individual DDI and DDGI AUClast and Cmax ratios are provided in
the Supplementary Materials.

4. Discussion

A whole-body PBPK model of trimethoprim for the investigation and prediction of DDIs has been
successfully built and evaluated. The model reliably captures the trimethoprim plasma and urine
concentration–time profiles over a broad dosing range, for intravenous and oral administration as
well as for single- and multiple-dose regimens. Good model performance has been demonstrated by
(1) comparison of population predicted plasma or whole blood concentration and f e in urine profiles
to observed data, (2) a goodness-of-fit plot and MRD values of the predicted plasma concentrations,
(3) goodness-of-fit plots and GMFE values of the predicted f e in urine, AUClast, and Cmax values,
and (4) the good DDI and DDGI performance.

The processes involved in the absorption, distribution, metabolism, and excretion of trimethoprim
are not completely characterized or understood. It is known that trimethoprim is mainly excreted
unchanged in urine (46–67% of an oral dose [30–32]), via glomerular filtration and tubular secretion.
In vitro, trimethoprim is a substrate of P-gp [75], MATE1, and MATE2-K [76], but MATE2-K expression
in the human kidney is extremely low [77]. The active tubular secretion of trimethoprim via
MATE1 also seems unlikely, because the renal clearance of trimethoprim increased after eight days of
rifampicin co-administration [16], and induction of MATE1 by rifampicin has not been demonstrated,
yet. Furthermore, about 20% of a trimethoprim dose is reported to be metabolized [33], but there
is no information available, as to which enzymes are involved in vivo. Implementation of P-gp
and CYP3A4 into the trimethoprim model resulted in a good description of the trimethoprim
concentration–time profiles observed in plasma and urine. In addition, the trimethoprim plasma
concentrations measured during the first and eighth day of rifampicin co-administration and the
observed increase in trimethoprim renal clearance on the eighth day of this DDI [16] are well captured
by the model after implementation of P-gp and CYP3A4. Another candidate enzyme for trimethoprim
metabolism in vivo is CYP2C9 [78], but co-administration of high doses of the CYP2C9 inhibitor,
sulfamethoxazole (Ki = 271 µM [79]) showed no effect on trimethoprim plasma concentrations
(see [29,30] and Figure S2 in the Supplementary Materials). In addition, the induction of CYP2C9 by
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rifampicin is not as strong as that of CYP3A4 and using CYP2C9 as the main enzyme for trimethoprim
metabolism in the model resulted in an underprediction of the rifampicin DDI effect.

One shortcoming of the presented model might be that according to literature, about 20%
of a trimethoprim dose is metabolized [33], but fitting the model to this low value (CYP3A4
metabolism assumed) led to an overprediction of the urinary excretion and to an underprediction
of the rifampicin-trimethoprim DDI. By implementation of CYP3A4 metabolism and addition of an
unspecific hepatic clearance process, both urinary excretion and rifampicin–trimethoprim DDI could
be well described, accepting a higher total fraction metabolized of 30–40%. Summed up, these 30–40%
match well with the observed 46–67% of trimethoprim excreted unchanged in urine [30–32] and the
reported fraction excreted in feces of 4% [80]. Unfortunately, the in vivo trimethoprim metabolism is
not completely understood, which led us to include an unspecific clearance into the model. It might
be speculated that trimethoprim undergoes tubular reabsorption, which was not implemented in
our model but could reduce the slight overprediction of trimethoprim urinary excretion that we see
without the unspecific hepatic clearance. However, no transporters involved in tubular reabsorption of
trimethoprim are described in the literature, so far. Therefore, the extent of trimethoprim metabolism
and the involved enzymes, as well as possible tubular reabsorption mechanisms need to be further
investigated experimentally, to confirm or reject our model assumptions.

The presented trimethoprim model is able to adequately predict the MATE1, OCT1, and OCT2
DDI (metformin) as well as the CYP2C8 DDIs (repaglinide and pioglitazone), shown by comparison
of predicted to observed plasma concentration–time profiles and predicted compared to observed
DDI AUC and Cmax ratios, with all predicted ratios within 1.5-fold of the observed ratios. Metformin,
the only recommended MATE1, MATE2-K, and OCT2 substrate for clinical DDI studies [2], is frequently
prescribed (almost 80 million prescriptions in the USA in 2017 [81]) to treat type 2 diabetes mellitus.
Also, as trimethoprim is regularly prescribed, co-administration with metformin, leading to increased
metformin exposure, can frequently occur. The resulting increased risk of adverse drug events,
e.g., in patients treated with high metformin doses or patients with impaired renal function, could
be mitigated by applying the model to calculate metformin dose adaptations for the duration of
this co-administration.

In addition, the model was successfully applied to predict plasma concentration–time profiles of
metformin and pioglitazone in carriers of the SLC22A2 808G>T and CYP2C8*3 alleles, respectively,
during co-administration with trimethoprim. The SLC22A2 808G>T allele investigated in this study
occurs with a global frequency of 10–14% [8]. Therefore, investigation of its related DDGIs is clinically
relevant. Plasma concentration time–profiles are well predicted using an OCT2 Ki value from in vitro
literature (same value assumed for wildtype and polymorphic transporter), resulting in predicted DDGI
AUC and Cmax ratios within 1.5-fold of the observed values. The second variant allele investigated is
the CYP2C8*3 allele, occurring with a frequency of 13% in Caucasians [13]. The model was applied to
predict the trimethoprim–pioglitazone DDGI using a CYP2C8 Ki value taken from in vitro literature.
For the DDGI, no plasma concentration–time profiles were reported and therefore, only predicted and
observed DDGI AUC and Cmax ratios were compared, resulting in predicted DDGI AUC and Cmax

ratios within 1.5-fold and 1.25-fold of observed values, respectively.
Regarding previously-published PBPK models of trimethoprim, there are four earlier models of

trimethoprim described in the literature [82–85]. These models have been built to predict the CYP2C8
DDI and DDGI with rosiglitazone (whole-body PBPK model) [82], to investigate the basolateral and
apical kidney transporter DDI with creatinine (two semi-PBPK models) [83,84], or for pediatric scaling
(whole-body PBPK model) [85]. The trimethoprim–rosiglitazone DDGI model [82] well describes the
rosiglitazone plasma concentration–time profiles in CYP2C8 wildtype and carriers of the CYP2C8*3
allele. Also, the two minimal PBPK models built to describe the creatinine plasma concentration–time
profiles during trimethoprim co-administration show a good DDI performance [83,84], without taking
SLC22A2 polymorphism into account. Our model was built and evaluated to assess DDIs mediated
via CYP2C8, MATE1, OCT1, and OCT2, as well as DDGIs caused by CYP2C8*3 and SLC22A2808G>T
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polymorphisms, applying one and the same whole-body PBPK model. Our model differs further
from the previously-published models, as (1) none of these models was developed using such a large
number of clinical studies (66 blood and 36 urine profiles) and (2) this is the first model which attempts
to mechanistically describe the tubular secretion of trimethoprim. The good ability of the presented
model to describe these different DDIs and DDGIs increases the confidence regarding the modeled
trimethoprim concentrations at different sites of action (liver and kidney) and its general applicability
for future investigations.

5. Conclusions

In this study, a carefully-developed mechanistic whole-body PBPK model of trimethoprim is
presented. The model adequately predicts the trimethoprim pharmacokinetics following intravenous
and oral administration over a broad range of dosing regimens. In addition, the model was qualified
by prediction of DDI studies with the victim drugs metformin, repaglinide, and pioglitazone and by
prediction of DDGI studies with metformin and pioglitazone. The model evaluation is transparently
documented in the Supplementary Materials, showing the model performance for all 66 analyzed
trimethoprim studies as well as for all DDI and DDGI studies utilized for model evaluation. The model
will be shared with the research and drug development community via the Open Systems Pharmacology
repository (www.open-systems-pharmacology.org) [86], for the investigation of new DDI scenarios
with MATE1, OCT1, OCT2, and CYP2C8 victim drugs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/11/1074/s1,
Supplementary Materials: Comprehensive reference manual, providing documentation of the complete model
performance assessment. Table S1: Clinical studies of trimethoprim; Table S2: Drug-dependent parameters
of the final trimethoprim PBPK model; Table S3: MRD values of trimethoprim plasma (or whole blood)
concentration predictions; Table S4: Predicted and observed trimethoprim fractions excreted unchanged in urine;
Table S5: Predicted and observed trimethoprim AUClast and Cmax values; Table S6: Parameters evaluated during
trimethoprim sensitivity analysis; Table S7: Clinical studies investigating the trimethoprim-metformin DDI and
DDGI; Table S8: Drug-dependent parameters of the metformin PBPK model; Table S9: Predicted and observed
trimethoprim-metformin DDI and DDGI AUClast and Cmax ratios; Table S10: Clinical studies investigating
the trimethoprim-repaglinide DDI; Table S11: Drug-dependent parameters of the repaglinide PBPK model;
Table S12: Predicted and observed trimethoprim-repaglinide DDI AUClast and Cmax ratios; Table S13: Clinical
studies investigating the trimethoprim-pioglitazone DDI and DDGI; Table S14: Drug-dependent parameters
of the pioglitazone PBPK model; Table S15: Predicted and observed trimethoprim-pioglitazone DDI and
DDGI AUClast and Cmax ratios; Table S16: Clinical studies investigating the rifampicin-trimethoprim DDI;
Table S17: Drug-dependent parameters of the rifampicin PBPK model; Table S18: Predicted and observed
rifampicin-trimethoprim DDI AUClast and Cmax ratios; Table S19: System-dependent parameters; Figure S1:
Trimethoprim DDI network; Figure S2: Comparison of trimethoprim administered alone or together with
sulfamethoxazole as “cotrimoxazole”; Figure S3: Schematic illustration of the trimethoprim ADME processes
in the model; Figure S4: Trimethoprim plasma concentration-time profiles (semilogarithmic); Figure S5:
Trimethoprim plasma concentration-time profiles after “cotrimoxazole” administration (semilogarithmic);
Figure S6: Trimethoprim plasma concentration-time profiles (linear); Figure S7: Trimethoprim plasma
concentration-time profiles after “cotrimoxazole” administration (linear); Figure S8: Trimethoprim fraction
excreted unchanged in urine profiles; Figure S9: Trimethoprim fraction excreted unchanged in urine profiles
after “cotrimoxazole” administration; Figure S10: Trimethoprim predicted compared to observed plasma
concentration values; Figure S11: Trimethoprim predicted compared to observed fractions excreted unchanged
in urine; Figure S12: Trimethoprim predicted compared to observed AUClast and Cmax values; Figure S13:
Trimethoprim sensitivity analysis; Figure S14: Trimethoprim-metformin DDI model processes; Figure S15:
Metformin plasma concentration-time profiles before and during trimethoprim DDI and DDGI (semilogarithmic);
Figure S16: Metformin plasma concentration-time profiles before and during trimethoprim DDI and DDGI
(linear); Figure S17: Metformin predicted compared to observed DDI and DDGI AUClast and Cmax ratios;
Figure S18: Trimethoprim-repaglinide DDI model processes; Figure S19: Repaglinide plasma concentration-time
profiles before and during trimethoprim DDI; Figure S20: Repaglinide predicted compared to observed
DDI AUClast and Cmax ratios; Figure S21: Trimethoprim-pioglitazone DDI model processes; Figure S22:
Pioglitazone plasma concentration-time profiles before and during trimethoprim DDI and DDGI (semilogarithmic);
Figure S23: Pioglitazone plasma concentration-time profiles before and during trimethoprim DDI and DDGI
(linear); Figure S24: Pioglitazone predicted compared to observed DDI and DDGI AUClast and Cmax ratios;
Figure S25: Rifampicin-trimethoprim DDI model processes; Figure S26: Trimethoprim and rifampicin plasma
concentration-time profiles of the rifampicin DDI (semilogarithmic); Figure S27: Trimethoprim and rifampicin
plasma concentration-time profiles of the rifampicin DDI (linear); Figure S28: Trimethoprim predicted compared
to observed DDI AUClast and Cmax ratios.
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Figure 4.3. Whole-body physiologically based pharmacokinetic (PBPK) mod-
eling of the endogenous organic cation transporter (OCT) 2 and mul-
tidrug and toxin extrusion protein (MATE) 1 substrates creatinine and N1-
methylnicotinamide (NMN) for drug-biomarker interaction predictions, in-
corporating the effect of diurnal variation. Illustrations of organs were taken
from Servier [5], licensed under CC BY 3.0 (https://creativecommons.org/
licenses/by/3.0/). GIT, gastrointestinal tract.
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Renal Transporter- Mediated Drug- Biomarker 
Interactions of the Endogenous Substrates 
Creatinine and N1- Methylnicotinamide: A PBPK 
Modeling Approach
Denise Türk1 , Fabian Müller2, Martin F. Fromm2 , Dominik Selzer1, Robert Dallmann3  and 
Thorsten Lehr1,*

Endogenous biomarkers for transporter- mediated drug- drug interaction (DDI) predictions represent a promising 
approach to facilitate and improve conventional DDI investigations in clinical studies. This approach requires high 
sensitivity and specificity of biomarkers for the targets of interest (e.g., transport proteins), as well as rigorous 
characterization of their kinetics, which can be accomplished utilizing physiologically- based pharmacokinetic 
(PBPK) modeling. Therefore, the objective of this study was to develop PBPK models of the endogenous organic 
cation transporter (OCT)2 and multidrug and toxin extrusion protein (MATE)1 substrates creatinine and N1- 
methylnicotinamide (NMN). Additionally, this study aimed to predict kinetic changes of the biomarkers during 
administration of the OCT2 and MATE1 perpetrator drugs trimethoprim, pyrimethamine, and cimetidine. Whole- body 
PBPK models of creatinine and NMN were developed utilizing studies investigating creatinine or NMN exogenous 
administration and endogenous synthesis. The newly developed models accurately describe and predict observed 
plasma concentration- time profiles and urinary excretion of both biomarkers. Subsequently, models were coupled to 
the previously built and evaluated perpetrator models of trimethoprim, pyrimethamine, and cimetidine for interaction 
predictions. Increased creatinine plasma concentrations and decreased urinary excretion during the drug- biomarker 
interactions with trimethoprim, pyrimethamine, and cimetidine were well- described. An additional inhibition of NMN 
synthesis by trimethoprim and pyrimethamine was hypothesized, improving NMN plasma and urine interaction 
predictions. To summarize, whole- body PBPK models of creatinine and NMN were built and evaluated to better 
assess creatinine and NMN kinetics while uncovering knowledge gaps for future research. The models can support 
investigations of renal transporter- mediated DDIs during drug development.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Investigations on renal transporter- mediated drug- drug in-
teractions (DDIs) are impeded due to challenging in vitro to in 
vivo translation.
WHAT QUESTION DID THIS STUDY ADDRESS?
 How can the application of a biomarker- informed approach sup-
port conventional investigation on DDIs and how can mechanistic 
mathematical modeling contribute to assess biomarker kinetics?
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 The endogenous biomarkers creatinine and N1- 
methylnicotinamide have been proposed as biomarkers to 

support investigations on renal transporter- mediated DDIs. 
Whole- body physiologically- based pharmacokinetic mod-
els have been developed and successfully applied for inter-
action predictions with three established renal transporter 
inhibitors.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 Mechanistic pharmacokinetic modeling has been shown 
to support characterization of endogenous compounds and a 
biomarker- informed strategy for investigations on interactions 
might be a promising approach during drug development.
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Endogenous compounds measured in blood or urine can serve 
as biomarkers, providing information about physiological and 
pharmacological processes. Pathophysiological conditions or in-
teraction of a perpetrator drug with the synthesis, distribution, 
metabolism, or excretion of a biomarker can result in changes of 
plasma, tissue, or urine levels. Measuring biomarkers can com-
plement investigations on drug- drug interactions (DDIs) by 
broadening and augmenting the understanding of underlying in-
teraction mechanisms, thus, estimating DDI risks in early- stage 
in vivo studies and supporting study planning and prioritization.1 
Mathialagan et al.2 pointed out challenges of in vitro- in vivo 
translation for renal transporter- mediated DDIs and emphasized 
the need for a biomarker- informed strategy to improve DDI risk 
predictions from in vitro data. For the renal organic cation se-
cretion axis, represented by consecutive action of organic cation 
transporter (OCT)2 and multidrug and toxin extrusion proteins 
(MATEs),3 two endogenous compounds have been identified as 
potential biomarkers to investigate interactions: creatinine and 
N1- methylnicotinamide (NMN).4 Creatinine, a breakdown prod-
uct of muscle creatine, is mainly excreted passively via glomerular 
filtration, but 10– 40% are actively secreted,5 mainly by OCT2 
and MATEs,6 whereas no metabolism of creatinine has been de-
scribed previously. NMN, a molecule formed during tryptophan 
and vitamin B3 metabolism, is metabolized via aldehyde oxidase 
(AOX)7 and passively renally cleared as well as actively transported 
into urine by OCT2 and MATEs.8,9 NMN renal clearance is 
concentration- dependent comparing intravenous administration 
to endogenously synthesized NMN, attributed to saturable re- 
absorption from urine.10

When identifying and selecting a biomarker for interaction 
studies, various factors need to be considered, such as sensitivity, 
specificity, predictivity, robustness, and ease of accessibility.11,12 
Furthermore, biomarkers need to be well- characterized regard-
ing their kinetics, including their endogenous synthesis, active 
transport, and metabolic transformation. However, detailed in-
formation on these processes is often lacking (e.g., due to the 
complex interplay of transport and metabolism as well as require-
ments for dedicated studies and analytical procedures12,13). Here, 
physiologically- based pharmacokinetic (PBPK) modeling can help 
to support investigations on endogenous compounds and to gain a 
mechanistic understanding of the underlying kinetics.12 Over the 
past years, PBPK modeling has become an increasingly important 
tool during drug development,14 and has shown its strengths and 
advantages (e.g., in accurately describing and predicting (pharma-
co- )kinetics of victims during perpetrator co- administration15 or in 
assessing the influence of genetic polymorphisms16). Furthermore, 
PBPK models have proven their capability for hypothesis testing 
(e.g., regarding causes for altered renal transport of drugs in pa-
tients with chronic kidney disease17). For endogenous biomarkers, 
there are examples of successfully utilizing PBPK models, to assess 
and understand transporter- mediated interactions using copropor-
phyrin I or creatinine.18- 23 However, there is still an apparent lack 
of PBPK models for endogenous compounds to overcome,12 in 
particular for renal OCT2/MATE substrates.

Biomarker PBPK models can support investigations on 
transporter- mediated DDIs. A PBPK model for an investigational 

drug (and potential OCT2 and/or MATE inhibitor) can be linked 
with biomarker PBPK models in early clinical phases during drug 
development, to assess the interaction potential. For instance, in-
hibitory constant (Ki) values from in vitro tests can be implemented 
and model predictions can be compared with biomarker plasma 
and clearance measurements from phase I studies, to complement 
the workflow for utilization of endogenous biomarkers in drug de-
velopment, as proposed by Mathialagan et al.2 This includes assess-
ing the influence of a new drug on biomarker renal clearance before 
performing a metformin DDI study, if in vitro inhibition studies 
hint toward OCT2 and/or MATE inhibition potential.

The objectives of this study were (1) to develop whole- body 
PBPK models of the endogenous biomarkers creatinine and NMN 
that mechanistically describe their absorption, synthesis, meta-
bolic transformation, and active transport also considering causes 
of observed diurnal variation, and (2) to test the ability of the 
newly developed models to adequately describe drug- biomarker 
interactions (DBIs) with the potent OCT2 and MATE inhibitors 
trimethoprim, pyrimethamine, and cimetidine,24 by coupling the 
biomarker models to already evaluated and published perpetrator 
models within a PBPK DDI/DBI modeling network.17,25,26

METHODS
Software
PBPK models of creatinine and NMN were developed using the PK- Sim 
and MoBi modeling software suite (Open Systems Pharmacology Suite 
9.1, www.open- syste ms- pharm acolo gy.org). Plasma and urine measure-
ments from literature were digitized with Engauge Digitizer 10.12 (M. 
Mitchell27) according to best practices.28 Model parameter optimiza-
tion and sensitivity analysis were performed within MoBi. Calculation 
of (pharmaco- )kinetic parameters, quantitative model performance 
analysis, and generation of plots were accomplished using the statisti-
cal programming language R 4.1.1 (The R Foundation for Statistical 
Computing, Vienna, Austria) and RStudio 1.4.1717 (RStudio, Boston, 
MA).

PBPK model building
An extensive literature search was performed to gather physicochemical 
information about creatinine and NMN as well as information about 
important kinetic processes, such as absorption, synthesis, distribu-
tion, metabolism, and excretion (compound- dependent parameters). 
Additionally, studies reporting human blood and urine measurements 
after intravenous and oral administration in single-  and multiple- dose 
regimens were collected alongside concentration measurements of en-
dogenous creatinine and NMN. For creatinine, studies investigating its 
kinetics after ingestion of cooked meat were also included by calculating 
creatinine intake from the amount of ingested meat considering the an-
imal source and method of preparation (e.g., 1.5 mg creatinine per gram 
of boiled beef29). Profiles extracted from clinical studies were digitized 
and subsequently divided into a training dataset for model building and 
a test dataset for model evaluation. Data for model building were selected 
to include plasma and urine measurements after exogenous administra-
tion of different doses and regimens of creatinine or NMN (corrected 
for endogenous levels) as well as endogenous concentrations. Virtual 
twins of (mean) study subjects were created with demographic infor-
mation taken from the respective study reports. Detailed information 
about virtual individuals and system- dependent parameters is provided 
in Supplementary Section  S1.1. Endogenous synthesis of creatinine 
and NMN was implemented in the respective organs in agreement with 
literature reports. Diurnal variation of kidney- related processes has been 
recently observed to affect the pharmacokinetics of the renal transporter 
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substrate metformin (D. Türk et al., unpublished data) and was there-
fore implemented for both creatinine and NMN (Supplementary 
Section S1.1). Creatinine and NMN model parameters which could not 
be based on published values, were optimized by fitting training simula-
tions to their respective observed data. Details on parameter optimiza-
tions are provided in Supplementary Section S1.1.

PBPK model evaluation
Creatinine and NMN model performances were evaluated by com-
parison of predicted to observed plasma concentration- time and urine 
profiles as well as by goodness- of- fit plots. Quantitative model perfor-
mance was evaluated by calculating mean relative deviations of pre-
dicted plasma concentrations and urinary excretion rates (Aeurine rates) 
as well as geometric mean fold errors (GMFEs) of predicted area under 
the concentration- time curve calculated from the time of compound ad-
ministration (or first data sampling point) to the time of the last con-
centration measurement (AUClast) and maximum plasma concentration 
(Cmax) values, amounts excreted unchanged in urine (Aeurine) and renal 
clearances, as described elsewhere.17,25 Local sensitivity analyses were 
performed for the creatinine and NMN models to investigate the impact 
of single parameter changes on predicted AUClast values.

Drug- biomarker interaction modeling
Models of trimethoprim,25 pyrimethamine,26 and cimetidine17 have 
been recently or, in the case of pyrimethamine, during this analysis 
(Supplementary Section S5), successfully applied to predict DDIs with 
the OCT1, OCT2, and MATE substrate metformin using interaction 
parameters from the literature. Hence, these models were considered eli-
gible for interaction predictions with the newly developed creatinine and 
NMN models. Model parameters are reproduced in Tables  S18, S21, 
S28, and S32.

DBI model performances were evaluated by comparison of predicted to 
observed plasma concentration- time or urine profiles before and during, 
or without and with perpetrator drug administration, depending on the 

respective observed dataset. Furthermore, comparison of predicted to ob-
served DBI AUClast, Cmax, and urinary excretion ratios, calculated as ratio 
of the respective DBI kinetic parameter to the respective control kinetic 
parameter, was displayed in goodness- of- fit plots and GMFEs were calcu-
lated as quantitative measures.

RESULTS
Creatinine PBPK model building and evaluation
A total of 26 studies were included to develop a whole- body cre-
atinine PBPK model, covering creatinine kinetics of endogenous 
creatinine as well as kinetics after intravenous and oral adminis-
tration and after dietary meat consumption. All clinical studies 
used for model building and evaluation are listed in Table S2.

The final creatinine PBPK model covers its synthesis in muscle 
cells (individually optimized for each study, range synthesis rate 
(Rsyn) 6.50– 11.88 µmol/min; Table S5) based on endogenously 
synthesized creatinine. Creatinine is mainly excreted passively 
via glomerular filtration, but to a lower extent actively secreted 
by sequential action of OCT2 and MATE1. Tubular secretion 
accounts for about 17% of renal clearance in the model. This is 
in accordance with the literature, which reports a contribution 
of tubular secretion by 10– 40% to renal creatinine clearance 
(CLcr).5 An increase in serum creatinine by meat ingestion has 
been shown by several studies, being most pronounced for cooked 
beef.30 For instance, ingestion of 225 g cooked beef corresponds 
to about 340 mg creatinine29 and leads to a transient increase in 
plasma creatinine by 40%,31 which was reproduced by the model. 
Observed intraday variation of creatinine plasma concentrations 
was described by diurnal renal excretion comprising diurnal 
glomerular filtration rate (GFR), renal blood flow, and OCT2 

Figure 1 Synthesis of endogenous creatinine and whole- body physiologically- based pharmacokinetic (PBPK) model processes. Creatinine is 
formed as breakdown product during reaction of creatine to phosphocreatine and vice versa via creatine kinase (CK). The creatinine PBPK 
model includes creatinine synthesis in muscle cells (implemented as Rsyn, synthesis rate) and renal excretion, passively via glomerular 
filtration (not shown) and actively via consecutive action of organic cation transporter (OCT)2 and multidrug and toxin extrusion protein 
(MATE)1 in tubule epithelial cells. Diurnal rhythm is implemented for glomerular filtration rate (GFR), renal blood flow (both not shown) 
and OCT2 activity (clock symbol). Drawings by Servier, licensed under CC BY 3.0.44 Crea, creatinine; EHC, enterohepatic circulation; excr., 
excretion; GIT, gastrointestinal tract.
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activity. An overview of the creatinine synthesis, model struc-
ture, and implemented kinetic processes is illustrated in Figure 1. 
Creatinine compound- dependent model parameters are summa-
rized in Table S3.

Representative creatinine plasma concentration- time and Aeurine 
profiles are shown in Figure 2a– c, demonstrating the good perfor-
mance of the creatinine model. Profiles of all studies are provided 
in Supplementary Section S2.2. Comparison of predicted to ob-
served creatinine plasma concentration, Aeurine, CLcr, AUClast, and 
Cmax values in goodness- of- fit plots further underlines the good 
performance of the creatinine model with all predictions within 
twofold of observed values (Figure 2d– f). A local sensitivity anal-
ysis revealed that simulations of creatinine are sensitive to the frac-
tion unbound in plasma (literature value), GFR (calculated), and 
creatinine Rsyn (optimized).

NMN PBPK model building and evaluation
A total of 11 studies was used to develop a whole- body NMN 
PBPK model, covering NMN kinetics after intravenous adminis-
tration and endogenous NMN. All clinical studies used for model 
building and evaluation are listed in Table S10.

The final NMN PBPK model covers synthesis in liver cells (in-
dividually optimized for each study; Table S13), metabolism via 
AOX1 as well as glomerular filtration and active transport into 
urine by OCT2 and MATE1. Furthermore, a saturable tubular 
re- absorption process has been implemented as efflux transport 
at the basolateral site of tubule cells, whereas Michaelis- Menten 
and transport rate constants were inferred from high (intrave-
nous administration) and low (baseline) NMN plasma levels and 
the corresponding urinary excretion rates. For an intravenous 
administration of 224  mg NMN, the model predicts a metab-
olized fraction of about 40% compared with 33% reported in 
literature.32 Regarding endogenously synthesized NMN, renal 
clearance accounts for 18– 36% of total clearance (depending 
on the daytime), which is in accordance with the observed data, 
where 35% of NMN and its carboxamide metabolites in urine are 
unchanged NMN.7 Observed intraday variation of NMN plasma 
concentrations was described by a combination of diurnal NMN 
synthesis and renal excretion comprising diurnal GFR, renal blood 
flow, and OCT2 activity, using a modified equation33 for NMN 
Rsyn (Supplementary Section  S1.1). An overview of the NMN 
synthesis, model structure, and implemented kinetic processes is 

Figure 2 Creatinine physiologically- based pharmacokinetic (PBPK) model performance. Predictions of creatinine (a– c) plasma concentration- 
time (blue) and cumulative amount excreted unchanged in urine (Aeurine, green) profiles compared with observed data of representative 
studies31,45,46 of exogenous creatinine application a initial oral dose of 8 g creatinine followed by 0.5 g every hour; b ingestion of 225 g 
cooked beef, or c endogenous measurements. Time refers to the time after dose (exogenous) or time after first concentration measurement 
(endogenous). Goodness- of- fit plots showing predicted compared with observed creatinine (d) plasma concentration, (e) Aeurine, and renal 
creatinine clearance (CLcr) and (f) area under the concentration- time curve (AUClast) and maximum plasma concentration (Cmax) values of 
all studies used for model building and evaluation. The solid line marks the line of identity and dotted lines indicate 1.25- fold and dashed 
lines indicate 2- fold deviation. Data are shown as blue triangles (plasma), green squares (Aeurine), and purple diamonds (CLcr); filled symbols 
indicate creatinine administration, empty symbols indicate endogenous creatinine. Details on the clinical studies and individual values 
alongside mean relative deviations (MRDs) and geometric mean fold errors (GMFEs) are provided in Supplementary Section S2. Crea, 
creatinine; endo, endogenous; iv, intravenous; n, number of individuals studied; obs., observed; pred., predicted.
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illustrated in Figure  3. NMN compound- dependent model pa-
rameters are summarized in Table S11.

Representative NMN plasma concentration- time, Aeurine rate 
and Aeurine profiles are shown in Figure  4a– c, demonstrating 
the good performance of the NMN model. Profiles of all studies 
are provided in Supplementary Section  S3.2. Comparison of 
predicted to observed NMN plasma concentration, Aeurine rate 
and Aeurine and AUClast and Cmax values in goodness- of- fit plots 
further underlines the good performance of the NMN model 
with about 90% of predictions within twofold of observed 
values (Figure  4d– f). A local sensitivity analysis revealed that 
both simulations of intravenously administered and endogenous 
NMN are sensitive to the fraction unbound in plasma (litera-
ture value) and simulations of endogenous NMN are sensitive to 
OCT2 activity (optimized), AOX1 clearance (optimized), and 
organ permeability (calculated).

Drug- biomarker interaction modeling
A renal transporter DBI network was established (Figure  5) by 
linking the biomarker models with models of trimethoprim, py-
rimethamine, and cimetidine. Specifically, OCT2 competitive 
inhibition was modeled with literature Ki values of 47.8 µmol/L, 
0.61  µmol/L, and 124  µmol/L, and MATE1 competitive in-
hibition was modeled with literature Ki values of 4.45  µmol/L, 
0.02  µmol/L, and 3.80  µmol/L for trimethoprim, pyrimeth-
amine, and cimetidine, respectively (Tables S18, S21, S32). For 
all perpetrators, the same inhibition constants were used as for 
previous interaction predictions with metformin.

To evaluate the drug- creatinine interactions, eight, three and 
two studies with trimethoprim, pyrimethamine, and cimetidine, 
respectively, have been utilized and are listed in Tables S34, S37, 
and S40. During administration of trimethoprim, pyrimethamine, 
and cimetidine, an increase in serum creatinine and a decrease of 
creatinine Aeurine and CLcr has been observed. This kinetic inter-
action can be attributed to inhibition of tubular secretion of cre-
atinine. Observed plasma concentration- time and urine profiles 
are well- described, indicating a good drug- creatinine interaction 
model performance. Representative predicted creatinine profiles 
before and during trimethoprim or cimetidine and without and 
with pyrimethamine compared with observed data are shown 
in Figure  6. Plots of all profiles are provided in Supplementary 
Section S7.

Predicted DBI AUClast, Cmax, Aeurine, and CLcr ratios are all 
within twofold of observed ratios and within prediction limits 
proposed by Guest et al.34 (Figure  6). Corresponding values for 
all clinical studies are provided in Tables S35, S36, S38, S39, and 
S41, including calculated overall GMFEs.

To model the drug- NMN interactions, one trimethoprim and 
two pyrimethamine studies were incorporated and are listed in 
Tables  S42 and S46. During administration of trimethoprim 
and pyrimethamine, a decrease of NMN Aeurine has been ob-
served, resulting from inhibition of NMN transport by OCT2 
and MATE1, which the model was able to (partially) reproduce. 
Conversely, NMN plasma concentration time profiles during tri-
methoprim and pyrimethamine interaction result in lower mean 
NMN concentrations compared with control profiles8,9,35 and 

Figure 3 Synthesis of endogenous N1- methylnicotinamide (NMN) and whole- body physiologically- based pharmacokinetic (PBPK) model 
processes. NMN is synthesized from nutrients via various intermediates. The direct precursor nicotinamide is converted to NMN via 
nicotinamide N- methyltransferase (NNMT), which is mainly expressed in liver cells.47 The NMN PBPK model covers NMN synthesis in the 
liver (implemented as Rsyn, synthesis rate) and metabolism by aldehyde oxidase (AOX)1, where resulting carboxamide metabolites are not 
included in the model (“sink” process). NMN is passively excreted in urine via glomerular filtration (not shown), actively secreted via organic 
cation transporter (OCT)2 and multidrug and toxin extrusion protein (MATE)1 and re- absorbed from urine via a saturable process (“N.N.”), 
implemented at the basolateral site of tubule cells. Diurnal rhythm is implemented for glomerular filtration rate (GFR), renal blood flow (both 
not shown), OCT2 activity, and NMN Rsyn (clock symbols). Drawings by Servier, licensed under CC BY 3.0.44 EHC, enterohepatic circulation; 
excr., excretion; GIT, gastrointestinal tract; metab., metabolism, NAD, nicotinamide adenine dinucleotide.
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also an apparently decreased diurnal variation. The mechanisms 
underlying these observations have not been described. Thus, it 
was hypothesized that trimethoprim and pyrimethamine inhibit 
nicotinamide N- methyltransferase (NNMT), and, hence, NMN 
synthesis. Consequently, an additional inhibition process of NMN 
Rsyn was implemented (equation provided in Supplementary 
Section  S1.3). After applying this hypothetical NNMT in-
hibition using optimized values for the inhibitory constant of 
NMN synthesis (Ki,syn), with Ki,syn = 32.61  µmol/L and Ki,syn = 
1.39 µmol/L for trimethoprim and pyrimethamine, respectively, in 
addition to inhibition of OCT2 and MATE1, urine and plasma- 
concentration- time profiles were well described, indicating a good 
drug- NMN interaction model performance. Representative pre-
dicted NMN profiles without and with inhibitor compared with 
observed data are shown in Figure 7. Plots of profiles are provided 
in Supplementary Section S8.

Predicted DBI AUClast, Cmax, and Aeurine ratios are all within 
twofold of observed ratios and within prediction limits proposed 
by Guest et al.34 (Figure 7). Corresponding values for all clinical 
studies are provided in Tables S43, S44, S45, S47, S48, and S49, 
including calculated overall GMFEs.

DISCUSSION
Whole- body PBPK models of the endogenous OCT2 and 
MATE1 substrates creatinine and NMN were built and thor-
oughly evaluated, accurately simulating and predicting plasma 
as well as urine profiles of both compounds. Two important 
scenarios were evaluated: (1) simulation and prediction of en-
dogenous baseline creatinine and NMN as well as (2) creatinine 
and NMN kinetics after exogenous intake and administra-
tion. For this, PBPK models implemented relevant metabolism 
and transport processes and covered the influence of diurnal 
rhythm on significant physiological processes. These models 
have been successfully applied to simulate and predict the fate 
of creatinine and NMN during administration of trimetho-
prim, pyrimethamine, and cimetidine, focusing on renal trans-
porter inhibition.

Since creatinine concentrations are not only affected by (co- )ad-
ministered drugs, but also by important covariates, such as sex, age, 
body and muscle mass, diet, and disease state,36 a holistic pharmaco-
kinetic modeling approach is required to incorporate these factors. 
In lieu of previously published creatinine PBPK models that only 
focused on a specific topic (e.g., prediction of creatinine transporter 

Figure 4 N1- methylnicotinamide (NMN) physiologically- based pharmacokinetic (PBPK) model performance. Predictions of NMN (a– c) plasma 
concentration- time (blue), urinary excretion rate (Aeurine rate, orange), and cumulative amount excreted unchanged in urine (Aeurine, green) 
profiles compared with observed data of representative studies7,9,10 of a intravenous NMN administration of 8.3 mg loading dose followed 
by a 30.9 mg 3- hour infusion or b and c endogenous measurements. Time refers to the time after dose (exogenous) or time after first 
concentration measurement (endogenous). Goodness- of- fit plots showing predicted compared with observed NMN (d) plasma concentration, 
(e) Aeurine and Aeurine rate, and (f) area under the concentration- time curve (AUClast) and maximum plasma concentration (Cmax) values of all 
studies used for model building and evaluation. The solid line marks the line of identity and dotted lines indicate 1.25- fold and dashed lines 
indicate 2- fold deviation. Data are shown as blue triangles (plasma), orange dots (Aeurine rate), and green squares (Aeurine); filled symbols 
indicate NMN administration, and empty symbols indicate endogenous NMN. Details on the clinical studies and individual values alongside 
mean relative deviations (MRDs) and geometric mean fold errors (GMFEs) are provided in Supplementary Section S3. Endo, endogenous; iv, 
intravenous; n, number of individuals studied; obs., observed; pred. predicted.
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interactions20- 23 or creatinine in chronic kidney disease37), the 
presented whole- body PBPK model is the first to mechanistically 
describe creatinine synthesis in muscle cells with respect to varying 
muscle mass while incorporating diurnal renal elimination as well 
as renal transporter- mediated DBIs. Optimized values for creati-
nine synthesis in muscle cells exhibit a large intra-  and interstudy 
variability, which is plausible due to the influence of the aforemen-
tioned covariates. Moreover, the effect of a creatinine- rich diet on 
plasma levels and urinary excretion is covered by the model, allow-
ing simulation of creatinine kinetics after ingestion of differently 
prepared meat meals. Creatinine intake was implemented as an oral 
solution by calculating the ingested amount from the meal- specific 
creatinine content informed by the literature.29 For this, creatinine 
must be absorbed from the gastrointestinal tract. Due to its hydro-
philic properties, creatinine has been discussed as organic cation and 
anion transporter substrate,6 which might also be relevant for the 
intestinal barrier. A significant increase in intestinal permeability 
has been observed after fitting simulations regarding oral creatinine 
intake in comparison to quantitative structure- activity relationship 
estimated permeability and might hint toward additional unspec-
ified transport processes in the gut. At the renal barrier, organic 
anion transporter (OAT)2, OCT2, MATE1, and MATE2- K have 
been shown to transport creatinine in vitro6 with OAT2 also dis-
cussed to be involved in creatinine re- absorption.38 However, only 

tubular secretion via OCT2 and MATE1 has been implemented in 
the model, as they show the most pronounced creatinine uptake in 
vitro.6 Furthermore, a distinction between two transporters at the 
same membrane (i.e., OAT2 and OCT2), is challenging without 
knowledge of the amount transported and MATE2- K expression is 
controversial, as in a recent study, MATE2- K was below the lower 
limit of quantification in human kidneys.39

For the transporter substrate metformin, which is exclusively re-
nally excreted, about 75% of clearance can be attributed to active se-
cretion,2 and diurnal variation of GFR, renal blood flow, and OCT2 
activity have been observed to affect metformin pharmacokinetics 
(D. Türk et al., unpublished data). As the same renal excretion axis 
is also relevant for creatinine, insights from metformin were trans-
ferred to the biomarker model. For creatinine, diurnal variation ob-
served in plasma can be fully explained by varying GFR and renal 
blood flow, whereas only a neglectable amount can be attributed to 
varying OCT2 activity. This is in accordance with literature, as a 
much smaller extent of creatinine is actively secreted compared with 
metformin.2 Fluctuation in creatinine synthesis attributed to vary-
ing activity of creatine kinase (e.g., due to physical activity40) might 
contribute to observed intraday variation in plasma concentrations 
and modeled diurnal synthesis showed expected plasma level pat-
tern. However, varying GFR and renal blood flow already lead to an 
adequate description of observed data with parametrization derived 

Figure 5 Renal transporter drug- biomarker interaction network. Creatinine and N1- methylnicotinamide (NMN) are actively secreted into urine by 
sequential action of organic cation transporter (OCT)2, an influx transporter located at the basolateral membrane of proximal tubule epithelial 
cells, and multidrug and toxin extrusion protein (MATE)1, an efflux transporter located at the apical site of the same cells. Trimethoprim, 
pyrimethamine, and cimetidine are competitive inhibitors of OCT2 and MATE1, resulting in decreased renal excretion of creatinine and NMN. 
Gray arrows represent active transport, and red lines indicate transporter inhibition. Drawings by Servier, licensed under CC BY 3.0.44

N

O

NH2

H3C
B

lo
od

Tu
bu

le
 c

el
l

U
rin

e

OCT2

Trimethoprim CimetidinePyrimethamine

NMN Creatinine

MATE1

OCT2

MATE1

Kidney

Nephron

N

O

NH2

H3C

+

+

ARTICLE

4.3 project iii - pbpk modeling of endogenous biomarkers 77



VOLUME 0 NUMBER 0 | Month 2022 | www.cpt-journal.com8

from previously reported values. Therefore, diurnal synthesis has 
not been implemented in the final model.

The implementation of only two renal transporters for tubular 
secretion might limit the creatinine model regarding physiological 

precision, which could be overcome by further research in this 
area, especially regarding transporters involved in re- absorption. 
Moreover, the number of well- controlled creatinine studies, espe-
cially with nonaggregated data, is limited and many older studies, 

Figure 6 Drug- creatinine interaction model performance. Predictions of creatinine plasma concentration- time (blue), renal creatinine 
clearance (CLcr, purple), and cumulative amount excreted unchanged in urine (Aeurine, green) profiles of the (a, b) trimethoprim– creatinine, 
(d, e) pyrimethamine- creatinine, and (g, h) cimetidine- creatinine interactions, compared with observed data.35,48,49 Predictions are shown 
as lines. Predicted compared with observed DBI area under the concentration- time curve (AUClast), maximum plasma concentration (Cmax), 
Aeurine, and CLcr ratios of all clinical studies used are shown to evaluate the performance of the (c) trimethoprim- creatinine, (f) pyrimethamine- 
creatinine, and (i) cimetidine- creatinine interaction models. The straight solid line marks the line of identity and the curved solid lines show 
the DBI prediction acceptance limits proposed by Guest et al.34 Dotted lines indicate 1.25- fold and dashed lines indicate 2- fold deviation. 
Data are shown as blue triangles (DBI AUClast and Cmax ratios), green squares (DBI Aeurine ratios) or purple diamonds (DBI CLcr ratios). Details 
on the study protocols, model simulations and individual DBI AUClast, Cmax, Aeurine, and CLcr ratios of all clinical studies used to evaluate the 
DBI performance of the creatinine model are provided in Supplementary Section S7. DBI, drug- biomarker interaction; endo, endogenous; n, 
number of individuals studied.
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used in model development and evaluation, measured creatinine 
by varying analytical methods which might contribute to inter-
study variability of creatinine levels that are already prone to large 
inter-  and intraindividual differences, including diurnal variation. 
Nevertheless, the final model met the required model performance 
evaluation criteria, typically applied to drug models17,25 and all pre-
dicted plasma and urine concentrations deviated less than twofold 
from the observed data.

The NMN PBPK model presented in this work is the first kinetic 
model of this biomarker, mechanistically describing its synthesis, 
biotransformation, tubular secretion, and re- absorption. Because no 
NMN Rsyn has been reported yet, an approximate value for NMN 
Rsyn has been calculated from measurements of NMN and its car-
boxamide metabolites in urine,7 assuming no further metabolization. 
This revealed an NMN Rsyn of about 77 µmol per day, which is much 
lower than the creatinine synthesis of about 18 mmol per day.41

NMN is metabolized by AOX1 and urinary excretion rates of 
NMN and its metabolites in urine were also utilized to assess the 
fraction of endogenous NMN metabolized, revealing that about 

65% of NMN undergo further biotransformation.7 Regarding 
renal excretion, a saturable tubular re- absorption process has 
been described in addition to tubular secretion via OCT2 and 
MATEs, as the ratio of renal NMN clearance and creatinine 
clearance is concentration dependent.10 A transport process has 
been implemented at the basolateral site of tubule epithelial cells, 
informing Michaelis- Menten and transport rate constant values 
by simultaneously fitting observed plasma and urine data to sim-
ulations of endogenous NMN and after intravenous administra-
tion, leading to an accurate description of NMN levels. However, 
involved transporters, their location in the kidneys, the mecha-
nism of transportation, and real NMN concentrations in kidney 
cells remain unknown. Moreover, sequential actions of two trans-
porters are also plausible, which requires further investigations.

In contrast to modeling metformin (D. Türk et al., unpublished 
data) and creatinine, the pronounced diurnal variation in observed 
NMN plasma concentrations could not be sufficiently described 
by solely implementing a diurnal rhythm of GFR, renal blood flow, 
and OCT2, as each of these accounted for only 0%, 1%, and 9% of 

Figure 7 Drug- N1- methylnicotinamide (NMN) interaction model performance. Predictions of NMN plasma concentration- time (blue) and 
cumulative amount excreted unchanged in urine (Aeurine, green) profiles of the (a, b) trimethoprim- NMN and (d, e) pyrimethamine- NMN 
interactions, compared with observed data.8,9 Predictions are shown as lines. Predicted compared with observed DBI area under the 
concentration- time curve (AUClast), maximum plasma concentration (Cmax), and Aeurine ratios of all clinical studies used are shown to evaluate 
the performance of the (c) trimethoprim- NMN and (f) pyrimethamine- NMN interaction models. The straight solid line marks the line of identity 
and the curved solid lines show the DBI prediction acceptance limits proposed by Guest et al.34 Dotted lines indicate 1.25- fold and dashed 
lines indicate 2- fold deviation. Data are shown as blue triangles (DBI AUClast and Cmax ratios) or green squares (DBI Aeurine ratios). Details 
on the study protocols, model simulations and individual DBI AUClast, Cmax, and Aeurine ratios of all clinical studies used to evaluate the DBI 
performance of the NMN model are provided in Supplementary Section S8. DBI, drug- biomarker interaction; endo, endogenous; n, number of 
individuals studied.
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the observed amplitude, respectively. This variation could be ex-
plained, however, by the large influence of varying synthesis due to 
nicotinamide adenine dinucleotide utilization and, hence, affected 
nicotinamide levels.7 Therefore, a mixed effect of diurnal synthesis 
and elimination was assumed to model NMN in plasma and urine. 
For this, the model implements an additional intermittent syn-
thesis process with study- specific optimized values for amplitude 
and acrophase to address the observed large interstudy variability 
(Table S13). These differences might be attributed to expected in-
tersubject variability in activity levels before the first NMN mea-
surement that are correlated to NAD utilization. Additionally, a 
diurnal pattern of AOX4 activity has been observed in Harderian 
glands of mice,42 but was not considered in the model, as data in 
humans are lacking and effect separation (e.g., from diurnal elimi-
nation) is not possible analyzing the available clinical data on urine 
measurements of NMN carboxamide metabolites.

Due to lack of information and data, some assumptions have 
been made during the development of the NMN model. This in-
cluded uninformed priors regarding the extent of synthesis and 
involved transporters at the renal barrier as well as the diurnal 
processes to cover highly variable intraday NMN plasma levels. 
Moreover, the large observed interindividual differences in NMN 
plasma levels have been modeled by implementing a varying ex-
tent of NMN synthesis. However, only a limited number of stud-
ies could be included during model development, because many 
studies reported only very sparse NMN plasma data without 
specification of clock time. Furthermore, only studies on healthy 
subjects could be included, as increased expression of NNMT has 
been described (e.g., in patients with cancer, metabolic, and car-
diovascular diseases43), where NMN levels should be interpreted 
with great caution. Despite these challenges, the PBPK model met 
the performance evaluation criteria with about 90% of predicted 
plasma and urine concentrations within twofold of observed data.

Sensitivity analyses of both biomarkers reveal highest sensitiv-
ity to the fraction unbound in plasma, where a literature value of 
100% was used in both models. Furthermore, the analyses highlight 
the most important model processes, showing that transporter- 
mediated tubular secretion plays a minor role for creatinine phar-
macokinetics compared with NMN.

This work was complemented by the development and eval-
uation of a DDI/DBI network involving three perpetrators of 
OCT2 and MATE1, trimethoprim, pyrimethamine, and cimeti-
dine, all previously evaluated for DDI predictions with metformin, 
and extended by models of the endogenous substrates, creatinine 
and NMN. According to the magnitude of Ki values and simulated 
(unbound) plasma and kidney concentrations, the main contrib-
utor to DDIs/DBIs is MATE inhibition. Whereas interactions 
lead to an expected decrease in renal clearance and increase in 
plasma levels of creatinine, similar interaction scenarios lead to a 
decrease in NMN renal clearance with simultaneously paradox de-
crease in plasma levels. Previously, this effect has been attributed 
to a possible inhibition of NMN synthesis by trimethoprim and 
pyrimethamine with unclear underlying mechanisms.1 Hence, 
recent recommendations suggest focusing on NMN renal clear-
ance instead of plasma concentrations during renal transporter 
perpetrator drug administration.1,8,11 To apply PBPK models for 

transporter- mediated interaction predictions, a close interdisci-
plinary collaboration between pharmacometricians and laboratory 
scientists should be enforced, to obtain reliable Ki values.

Because PBPK modeling is helpful for hypothesis generation 
and testing, inhibition of NMN synthesis by trimethoprim and 
pyrimethamine was implemented, leading to a satisfactory de-
scription of observed data by including Ki values at the same scale 
as OCT2 inhibition. Underlying effects, such as direct inhibi-
tion of NNMT, indirect NNMT inhibition due to reduction 
of the methyl donor S- adenosylmethionine by interference with 
human folate metabolism (trimethoprim and pyrimethamine are 
both inhibitors of bacterial folate metabolism), or direct interac-
tion with the methionine cycle might be plausible. To verify or 
reject these hypotheses, additional in vitro inhibition assays and, 
especially, in vivo metabolomic investigations are necessary.

The previously mentioned covariates, such as muscle mass and 
disease state, might compromise the suitability of creatinine as a 
biomarker to assess transporter- mediated DDIs. However, the new 
creatinine PBPK model can compensate for these shortcomings. 
Standardized measurements of this low- cost and easily detectable 
marker supported by model- based analyses in early drug develop-
ment will allow to gain insights into possible transporter- mediated 
interactions. NMN has been previously proposed to be a more 
suitable biomarker, due to the higher proportion of active secretion 
compared with creatinine (70% vs. 10– 40%2,5) and good correla-
tion of NMN and metformin renal clearances,35 also applying to 
the trimethoprim- induced reduction of renal clearances.9 The 
newly developed NMN PBPK model can support NMN mea-
surements in context of a biomarker- informed strategy during drug 
development, as changes in NMN urine as well as plasma during in-
teractions can be assessed and further strengthens the validity of the 
whole interaction network of three perpetrators and three victims.

In summary, whole- body PBPK models of the currently proposed 
biomarkers for OCT2 and MATE1 activity, creatinine, and NMN, 
have been developed that support the vision of a biomarker- informed 
strategy to improve DDI investigations during drug development. 
Here, all perpetrator and victim models were thoroughly studied and 
validated in a comprehensive interaction network. During develop-
ment and evaluation stages, knowledge gaps could be identified as 
starting point for future research. The comprehensive models can 
be further extended (e.g., to include predictions in renally impaired 
individuals) and will be shared with the research and drug develop-
ment community (www.open- syste ms- pharm acolo gy.org), to assist 
in future OCT2 and MATE interaction studies. Next to depicting a 
complement to a proposed biomarker- informed workflow,2 a further 
biomarker model application might be the estimation of in vivo Ki 
values from phase I biomarker measurements without prior knowl-
edge of interaction potential from in vitro tests.
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5
D I S C U S S I O N A N D P E R S P E C T I V E

Different research questions have been addressed in this thesis by
applying mechanistic pharmacokinetic modeling techniques to (i) pre-
dict transporter-mediated DDGIs, (ii) suggest dose adaptations in re-
nally impaired individuals and (iii) assess the impact of diurnal vari-
ation on ADME processes. PBPK models of the renal transporter in-
hibitors trimethoprim, pyrimethamine and cimetidine and of the sub-
strates metformin (exogenous), creatinine and NMN (endogenous) have
been successfully developed. These models mechanistically describe
absorption, synthesis, biotransformation and transporter-mediated re-
nal clearance, taking the current state of knowledge about pharma-
cokinetic processes and localization of involved transporters into ac-
count. Modeling revealed knowledge gaps that can be starting points
for future research activities, to test generated hypotheses.

5.1 membrane transporters

Membrane transporters mediate compound transport to cross bio-
logical membranes and thus, contribute to pharmacokinetics by af-
fecting absorption, distribution and excretion. The renal barrier is
one of the most important transporter sites, controlling compound
excretion as well as reabsorption. However, knowledge gaps exist,
including controversial reports of membrane transporter expression
(Section 1.2) as well as unknown transporter abundance and func-
tion. High variability in transporter abundances reported by differ-
ent laboratories has been described, presumably due to a lack of har- Availability of

experimental datamonized guidelines for sample analyses [196]. Furthermore, several
transporters are involved at the same barrier and hence, distinguish-
ing their activity and determining specific substrates is challenging.
Accordingly, index perpetrators and substrates, as available for CYP

enzymes, have not yet been defined for transporters [28, 54]. Knowl-
edge of actual intracellular concentrations of transporter substrates
and perpetrators, e.g., accessible by PET measurements as reported
for metformin [195], as well as tissue-specific inhibition information
are also rarely available.

PBPK modeling requires various input data and informative in vitro
and in vivo measurements are crucial to increase model reliability and
versatility. With PBPK modeling, it is possible to test different assump-
tions and optimize parameters if knowledge gaps exist, e.g., with re-
spect to protein abundances or the extent of ADME processes. For
instance, unknown transporter abundance could be estimated using

83
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pharmacokinetic information from multiple substrates and/or perpe-
trators of the transporter of interest. Tissue distribution of substrates
and inhibitors could be informed by assessing intracellular concentra-
tions of perpetrators and substrates using plasma concentration-timeOpportunities of

transporter
physiologically based

pharmacokinetic
modeling

profiles from various interaction studies. These assumptions were
made for the cimetidine model in project I, to accurately model cime-
tidine concentrations at sites of inhibitory action in the liver (CYP and
transporter inhibition) and kidneys (renal transporter inhibition), tak-
ing one interaction study each with midazolam and metformin into
account while incorporating Ki values from experimental reports.

5.2 renal transporter-mediated drug-drug and drug-bio-
marker interactions

DDI models account for 67% of PBPK model submissions to the FDA.
However, only 10% of these DDI submissions could be attributed to
transporter-based DDIs [165]. This apparent underrepresentation em-
phasizes the need for further modeling activities in this research area.
The presented perpetrator models of trimethoprim, pyrimethamine
and cimetidine and victim models of metformin, creatinine and NMN

have been successfully applied to establish an OCT and MATE DDI/DBIRenal transporter
drug-drug and

drug-biomarker
interaction network

network (Figure 5.1). First, the perpetrator models have been eval-
uated for DDI predictions with metformin (projects I–III) and were
therefore considered qualified for further OCT- and MATE-mediated
interaction predictions. Second, the interaction network was extended
by including models of the biomarkers creatinine and NMN (project
III), to advance the vision of biomarker-informed DDI investigations
during drug development and to serve as additional validation of the
whole DDI/DBI network.

Transporter-mediated DDIs were successfully predicted using the
presented models, representing a cornerstone for further DDI predic-
tions involving OCTs and MATEs. Next to its inhibitory activity on
membrane transporters, cimetidine is listed as inhibitor of CYP3A4-
mediated metabolism by the FDA [54]. Therefore, the model was ap-
plied for DDI predictions with the sensitive CYP3A4 substrate mida-
zolam. Likewise, the trimethoprim model was applied for DDI and
DDGI predictions with the CYP2C8 substrates repaglinide and piogli-Metformin,

cimetidine and
trimethoprim

drug-drug
interactions

tazone. The additionally modeled CYP3A4- and CYP2C8- mediated
DDI predictions involving cimetidine and trimethoprim emphasize
the good overall interaction model performance by also extending
the previously developed DD(G)I networks with further compounds
[26, 188]. The various tested applications of the models, i.e., successful
DDI and DDGI predictions with diverse target proteins, organs and vic-
tim drugs, increased the confidence of modeled drug concentrations
at different sites of action (liver and kidney) as well as the general
applicability of the models.
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Figure 5.1. Organic cation transporter (OCT) and multidrug and toxin ex-
trusion protein (MATE) drug-drug and drug-biomarker interaction network
involving trimethoprim, pyrimethamine and cimetidine (perpetrators) and
metformin, creatinine and N1-methylnicotinamide (NMN) (victims). Illus-
trations of organs were taken from Servier [5], licensed under CC BY 3.0
(https://creativecommons.org/licenses/by/3.0/).

Creatinine plasma and urine profiles from literature were success-
fully described by the model. Additionally, the creatinine model could
predict the effect of DBIs with trimethoprim, pyrimethamine and cime-
tidine. Creatinine kinetics are susceptible to the influence of various
factors, e.g., sex, age, muscle mass, diet, and renal function [197], Drug-creatinine

interactionswhile the newly developed PBPK model incorporated most of these co-
variates. For instance, the impact of differently prepared meat meals
on creatinine concentrations in blood and urine can be assessed with
the creatinine PBPK model. Furthermore, the model holds the poten-
tial to be extended in the future e.g., for predictions in renally im-
paired individuals requiring the necessary information from clinical
studies.

To our knowledge, the NMN model developed in project III is the
first comprehensive model of this biomarker, allowing the predic-
tion of plasma and urine profiles covering endogenous synthesis,
metabolism, tubular secretion and reabsorption. Due to unexpected
lower NMN plasma concentrations during renal transporter perpetra-
tor drug administration, recent publications recommend to particu-
larly focus on NMN renal clearance in lieu of plasma concentrations
[74, 75, 77]. With our newly developed NMN model, inhibition of NMN

https://creativecommons.org/licenses/by/3.0/
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synthesis by trimethoprim and pyrimethamine was hypothesized, re-
sulting in accurate predictions of NMN in urine as well as in plasma.
As underlying mechanisms are still unclear [74], in vitro inhibition
assays and in vivo metabolomic studies are necessary to test these hy-Drug-N1-

methylnicotinamide
interactions

potheses. NMN has been previously proposed as superior biomarker
for OCT2 and MATE interactions compared to creatinine, as (i) NMN

displays a higher proportion of active secretion than creatinine (70%
compared to 10–40% [19, 83]) and (ii) NMN and metformin renal clear-
ances are in good correlation, also applying to the extent of clearance
reduction during interactions [58, 68].

The newly developed biomarker PBPK models can compensate for
potential shortcomings in suitability of both creatinine and NMN, in-
cluding apparently low contribution of transporter-mediated excre-
tion to total clearance (creatinine) and incomplete information about
absorption, synthesis, biotransformation and excretion (NMN). BothBiomarker-informed

strategy for
drug-drug

interaction risk
assessment during
drug development

including
pharmacokinetic

modeling

models can successfully describe and predict changes in urine as
well as plasma during DBIs. The creatinine and NMN models could
provide important insights into transporter-mediated interactions by
model-based analyses of biomarker concentrations in early clinical
phases of drug development, to support a biomarker-informed strat-
egy. Here, Ki and IC50 values of NMEs from in vitro tests could be in-
corporated and model predictions could be compared to biomarker
measurements in plasma and urine from phase I studies. Here, the
presented models can serve as helpful tools to implement the anal-
ysis of endogenous biomarkers in drug development for OCT2 and
MATE-related DDIs as proposed by Mathialagan et al. (Figure 1.4) [19].

Thorough characterization of biomarker kinetics is a necessary cor-
nerstone for routinely implementing biomarker analysis in the pro-
cess of drug development. Here, PBPK modeling can contribute to
the characterization of biomarkers, particularly in hypothesis gener-
ation and testing. Several examples are available, showcasing the im-
plementation of coproporphyrin I (CPI) as OATP biomarker and how
CPI could support drug development [198]. For OATP-related DDIs,
a biomarker-informed, model-driven workflow has been proposed,Future directions of

biomarker models where in vivo Ki values are determined and subsequently incorpo-
rated into PBPK model predictions with drug transporter substrates
[199]. This approach presented by Yoshida et al. also further em-
phasizes the potential of model-based biomarker analyses to assess
interaction potential of NMEs in early drug development [199]. The
presented PBPK models for creatinine and NMN have shown their pre-
dictive capabilities in DBI scenarios within a thoroughly evaluated
OCT2 and MATE DDI/DBI network. Additional biomarkers, such as N1-
methyladenosine, as well as other perpetrator and victim drugs could
expand the established network, to support future MID3.
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5.3 drug-(drug-)gene interactions

In project I, the metformin model has been successfully applied
to model the metformin-SLC22A2 808G>T DGI and was additionally
challenged with predictions in SLC22A2 wild-type and 808G>T poly-
morphic subjects during co-administration of cimetidine. Although
controversial reports from in vitro experiments and in vivo studies im-
pede the accurate assessment of the effect of the SLC22A2 808G>T
polymorphism on the pharmacokinetics of metformin (Section 1.4.2),
the presented metformin DGI model is capable of accurately predict-
ing observed metformin concentrations assuming higher transport
activity of OCT2 in SLC22A2 variant allele carriers. However, due to Modeling of

metformin
transporter-mediated
drug-(drug-)gene
interactions

sequential action of OCT2 and MATE1 contributing to metformin renal
clearance, DGI modeling results should be interpreted with caution, as
neither MATE genotypes or phenotypes nor kidney tissue concentra-
tions were investigated in the studies utilized for model development.
Moreover, the importance of considering variants in both SLC22A2
and SLC41A1 genes has been pointed out in Section 1.4.2. The pre-
sented metformin model is readily extensible to include further DGI

scenarios in the future, if required input data become available [27].
The cimetidine-metformin DDGI was modeled assuming similar in-
teraction constants for predictions in SLC22A2 wild-type and variant
allele carriers, leading to adequate prediction of observed data. How-
ever, a difference in interaction magnitude has been described for
cimetidine in the respective variants in vitro [117], but was not incor-
porated due to sparse information from literature.

In project II, the new trimethoprim model was challenged with
metformin interaction predictions in SLC22A2 wild-type and 808G>T
polymorphic subjects and, by linking our previously developed pio-
glitazone-CYP2C8 DGI model [26], to predict the trimethoprim-piogli-
tazone DDGI. Therefore, identical Ki values for OCT2 (as indicated by Modeling of

trimethoprim
drug-(drug-)gene
interactions

an in vitro study [117]) and CYP2C8 inhibition were used for wild-
type and variant proteins. This resulted in good DDGI predictions,
however, no in vitro studies investigating the effect of trimethoprim
on variant CYP2C8 were available. Assuming the same inhibitory ac-
tivity for wild-type and variant protein is often a compromise and
additional in vitro experiments determining the required parameters
for variant enzymes and transporters could improve DDGI modeling.

Clinical DDGI studies are rarely performed for risk assessment dur-
ing drug development, due to ethical concerns of putting study par-
ticipants at an increased risk of experiencing ADRs. Additionally, as
some variant alleles may occur with low frequencies, an extensive
number of eligible study participants would have to be screened for
these alleles to acquire sufficiently large study sample sizes [27, 200].
Although often assumptions need to be made, PBPK models are flex-
ible and helpful tools to predict various DDGI scenarios [27]. These
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models cannot only be helpful during drug development, but also
in performing individual dose optimizations. This aspect has been
demonstrated in an article by Wojtyniak et al., where a model-based
precision dosing approach focusing on a comprehensive network in-
volving simvastatin was chosen [167]. Nevertheless, successful DDGIPhysiologically

based
pharmacokinetic

modeling to assess
drug-drug-gene

interactions

predictions with cimetidine, trimethoprim, metformin and pioglita-
zone and different polymorphisms emphasize the validity of the pre-
sented models and interaction networks, which could be easily ex-
tended to additional DDGI scenarios in the future. A recent literature
analysis showed that in the last two decades, the interest in DGI mod-
eling has been steadily increasing [27]. According to this analysis,
published DGI models focused more frequently on polymorphisms
affecting metabolism than on transporter DGIs (SLCO1B1 and ABCB1
DGIs most frequently analyzed with respect to transporter DGI mod-
els), emphasizing the importance of further research on the topic.

5.4 drug-disease interactions

The metformin base model developed with data from healthy sub-
jects has been successfully extended to describe and predict the im-
pact of CKD, which depicts a common comorbidity in patients with
type 2 diabetes [16]. The model considers proportional decrease of
renal secretion to impaired GFR according to the “intact nephron hy-
pothesis” [201] and the effect of CKD on non-renal elimination due to
inhibited liver drug uptake by uremic toxins. These hypotheses were
tested in previous PBPK modeling analyses [202–206]. The newly de-
veloped model followed an empirical approach to also incorporate
the inhibition of hepatic and muscular uptake by OCT1 and PMAT pro-
portional to the decreased GFR. Furthermore, an inhibition of basolat-Modeling of

metformin in
patients with

different chronic
kidney disease stages

eral intestinal permeability/transport in CKD was hypothesized and
implemented in the model to describe the respective observed data.
Additionally, induction of OCT2 and MATE1, which was reported in
hyperuricemic rats [139], was included in the model for subjects with
CKD stages 4 and 5. These hypotheses require further verification in
human in vivo studies. A previously published PBPK modeling analy-
sis of creatinine in CKD patients supports our modeling results, as the
authors suggested a smaller decline of OCT2 and MATE activity com-
pared to GFR [207]. Recently, a white paper was published by the ITC,
focusing on transporter modulation in different populations such as
CKD patients, elaborating the possible clinical implications and future
directions [208]. The authors highlight the potential of thoroughly de-
veloped PBPK models as valuable tools to translate pharmacokinetics
from healthy subjects to patient populations. Additionally, the au-
thors noted the need for reliable information on pathophysiological
changes from in vivo experiments, such as tissue transporter abun-
dances in patients compared to healthy individuals [208].
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Model-based dose calculations for metformin were performed in
patients with different stages of CKD. These included a subsequent
comparison with current guideline recommendations. According to
these guidelines, metformin should be administered in a reduced
dose, or an alternative drug should be selected in patients with GFR

below 60 mL/min [24, 25]. Furthermore, a GFR below 30 mL/min
was denoted as contraindication for metformin therapy, due to an in-
creased risk of lactic acidosis [24, 25]. Model-based dose adaptations,
developed on basis of AUC in healthy subjects, suggest much lower
doses in patients with CKD stage 3A and 3B than recommended by
the guidelines, but an adapted dose of 200 mg three times daily for Model-based dose

adaptationsCKD4 patients was inferred from model simulations. This is in line
with clinical studies testing 500 mg metformin daily in patients with
stable creatinine clearances as low as 20 mL/min [209] or in a group
of CKD4 patients [210]. Additionally, the authors recommended to
monitor blood metformin regarding drug accumulation [209], to edu-
cate patients with respect to symptoms of lactic acidosis [209] and to
measure lactate levels in these fragile patients [210]. The drug-disease
interaction model developed in this work supports the approach of
integrating mechanistic modeling into investigations of drug pharma-
cology in patients. As a first step towards MIPD, the metformin model
in CKD patients was utilized to calculate dose adaptations and could
also be expanded to include concomitant drug administration and
genetic predisposition.

5.5 diurnal variation

Both modeled biomarkers, creatinine and NMN, exhibit pronounced
diurnal variation in their kinetics, which was assessed using the pre-
sented PBPK models. The observed diurnal plasma level pattern of
creatinine could be completely explained by varying GFR and renal
blood flow, with only an insignificant effect of diurnal tubular se-
cretion. This was in line with the literature, as only a small amount Modeling of diurnal

creatinine renal
excretion

of creatinine is actively secreted [19]. Additionally, intraday variabil-
ity of creatinine synthesis attributed to varying activity of creatine
kinase might contribute to the observed variation in plasma concen-
trations. However, this effect was not incorporated in the model, as
implementation of a diurnal effect on renal clearance led to an accu-
rate description of observed data with parametrization derived from
literature reports.

In contrast, the considerable diurnal variation in observed NMN

plasma concentrations was insufficiently covered by solely incorpo-
rating diurnal rhythm of renal excretion, as this effect accounted only
for a small fraction of the observed amplitude. Complex NMN synthe-
sis, consisting of multiple steps with NAD as one important intermedi-
ate (Figure 1.3), was implemented as one surrogate parameter (“Rsyn”)
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in the NMN model. Sizeable diurnal variation in NMN plasma levels
could be attributed to NAD utilization over day and correlated degra-
dation to nicotinamide, the direct precursor of NMN [99]. Implemen-
tation of an additional intermittent NMN synthesis process greatly im-
proved model performance. Here, the necessary parameters such as
amplitude and acrophase were optimized for each respective study,Modeling of diurnal

N1-
methylnicotinamide

synthesis

presumably attributed to intersubject variability in activity levels be-
fore the first NMN measurement, which are correlated to NAD uti-
lization. With respect to NMN biotransformation by AOX, a diurnal
pattern of enzyme activity was not considered, as experimental data
in humans or human cells are missing and this effect could not ad-
equately be differentiated from others such as diurnal synthesis or
elimination taking the available clinical data into account. Hence, fur-
ther in vivo measurements could contribute to an adequate analysis
of NMN and its carboxamide metabolites in urine.

For different medical conditions, such as cancer or metabolic dis-
eases, chronotherapy has been proposed as an advantageous treat-
ment option [149, 211]. Furthermore, a disrupted diurnal rhythm has
been associated with various diseases, such as cancer, cardiovascu-
lar diseases and psychiatric disorders [212, 213]. Although personal-
ized chronomodulated treatment has been suggested to contribute toPerspectives of

chronotherapy and
modeling of diurnal

variation

more effective and safe therapies, only few dedicated clinical trials in-
vestigating chronopharmacology are available for a limited number
of drugs. Here, project III demonstrated that the creatinine and NMN

PBPK models are excellent tools for generating and testing hypothe-
ses, such as the causes of diurnal variation. Insights gained with
the biomarker models regarding diurnal ADME processes could be
transferred to other biomarkers and drugs in the future, contributing
greatly to investigations of the impact of diurnal rhythm and possible
implications for chronotherapy.

5.6 mechanistic pharmacokinetic modeling - challenges

and opportunities

5.6.1 Model development

PBPK modeling depicts a mechanistic but simultaneously “data hun-
gry” approach, providing the opportunity to cover complex scenarios,
while requiring many necessary input values [27]. Reliable experi-
mental data for the compound of interest including system-dependent
data such as organ volumes and tissue composition, physicochemicalData acquisition and

availability properties and ADME-related processes are crucial components [166].
Extensive data on human and animal anatomy and physiology are
usually provided through large databases within modern PBPK soft-
ware solutions. Physicochemical properties are frequently reported
for parent drugs, but often sparsely for metabolites or biomarkers.
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Additionally, ADME-related parameters, often referred to as drug-bio-
logical properties due to interplay of a drug with the biological sys-
tem, are needed. These include cellular and intestinal permeabili-
ties, fraction unbound in plasma, and information about enzyme and
transporter affinity and activity [166]. Here, pharmacometricians are
typically confronted with missing or incomplete in vitro data, espe-
cially when models are predominantly based on reported values from
literature. However, these parameters can also be estimated using
quantitative structure activity relationship approaches or can be com-
plemented by optimizing parameters utilizing in vivo profiles [27].

Different modeling approaches come with their special advantages
and disadvantages and a combination of different approaches can
be beneficial to answer the respective research questions. This was
demonstrated in project I, where cimetidine data were analyzed with
a PopPK approach prior to a PBPK analysis, to gain knowledge about Combination of

modeling approachesthe absorption behavior of cimetidine. This example highlights the in-
terplay of different model types and how PopPK analyses can support
PBPK model development and improve reliability of input data. PBPK

modeling presents a highly flexible method, with the possibility to
extend developed models to answer additional research questions.

5.6.2 Model-informed drug development and discovery

PBPK models are established tools to support drug development
as well as regulatory submissions. Therefore, careful model building
and thorough evaluation is crucial. Here, the FDA and EMA provide
guidelines on how to report modeling results [171, 214]. The PBPK

models published during this work are accompanied by comprehen-
sive supporting information, including modeling strategy, utilized Model publication

and sustainabilitydata and performance evaluation. Furthermore, models have to be
sustainable and need continuous maintenance. To support knowledge
exchange between scientists, easy access to model files and data is
beneficial, which could be accomplished by an open-source approach.
All presented models are freely available to the research community,
to serve as a basis for future investigations involving these models.
Qualification of models and available platforms is crucial to assess
model quality and predictive capability. Recently, a white paper was
published working out how model qualification activities could be
performed and harmonized [215].

The interaction PBPK models presented in this work were evalu-
ated within DDI networks. Comprehensive interaction networks, e.g.,
focusing on CYP1A2, CYP2C19 and CYP3A4 were published [188, 216]
and maintained by the Open Systems Pharmacology consortium (www. Interaction network

modelsopen-systems-pharmacology.org), where also a generic and sustain-
able framework for model (re-)qualification [217] and a compound
library are provided. In a recent example, the nonsteroidal, selec-

www.open-systems-pharmacology.org
www.open-systems-pharmacology.org
www.open-systems-pharmacology.org
www.open-systems-pharmacology.org
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tive mineralocorticoid receptor antagonist finerenone was integrated
into the existing CYP3A4 network, to predict untested interactions
with strong CYP3A4 inhibitors [218]. Results of these PBPK modeling
analyses are included in the prescribing information of Kerendia®

(finerenone) [219]. This example highlights the importance of PBPK

modeling during drug development also from an ethical perspective,
as the knowledge obtained from model simulations can help in re-
ducing the number and costs of potentially harmful DDI studies.

5.6.3 Model-informed precision dosing

PBPK models can contribute to investigate the effect of pathophy-
siology, genetic predisposition, and co-medication, which might be
inaccessible from clinical studies. Furthermore, models can help to ex-
plain the causes of interindividual variability [27], but for reliable in-
vestigation and implementation, accessibility of individual measure-Physiologically

based
pharmacokinetic

models for
personalized dosing

adaptations

ments and related information such as demographics and genetic
polymorphisms, should be promoted. PBPK models hold a great po-
tential to provide personalized dosing adaptations for special popu-
lations like patients. However, these models are not routinely applied
in clinical practice, yet. This can typically be attributed to difficult as-
sessment of model quality, reliability and predictive performance as
well as non-trivial handling of such models, especially for potential
users without pharmacometric experience [27].

To implement models in clinical practice, interdisciplinary collabo-
ration is essential [27, 220]. These multidisciplinary consortia should
include clinical pharmacists, pharmacometricians, healthcare profes-
sionals, experts on pharmacogenetics and specialists for diseases of
interest. The development of easy-to-use software and web appli-Opportunities to

integrate models in
clinical practice

cations to provide decision support, tailored to the needs of clini-
cians, physicians and patients, should be advanced. Furthermore, ac-
countability and legal conflicts pose one major hurdle in implement-
ing models in clinical practice [220], and a legal basis regarding ac-
countability for model development, implementation and application
needs to be created [27, 220].



6
C O N C L U S I O N

The role of transporters in drug pharmacology represents an im-
portant research area, as disregard can adversely affect drug devel-
opment and safety of pharmacotherapy. New approaches to assess
transporter-mediated DDIs, DGIs and drug-disease interactions include
in silico approaches and, for DDI investigations, incorporation of a
biomarker-informed strategy. Mechanistic pharmacokinetic models,
especially whole-body PBPK models in the scope of this thesis, have
demonstrated their usefulness over time and application areas are ver-
satile. Models have been successfully applied to describe and predict
the effect of DDIs, DBIs, DGIs, drug-disease interactions and diurnal
variation on pharmacokinetics of exogenous and endogenous renal
transporter substrates even in complex interaction scenarios and for
hypothesis testing. The validity of all perpetrator and victim models
involved in a comprehensive interaction network has been empha-
sized. The newly developed models are freely available in the Open
Systems Pharmacology model repository (www.open-systems-pharm
acology.org), (i) to support investigations during MID3 and submis-
sions for regulatory approval of new drugs or (ii) to estimate dose
adaptations, contributing to an effective and safe pharmacotherapy
for patients. Furthermore, investigations of other OCT2 and MATE sub-
strates and inhibitors could benefit from findings in this work.
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