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Abstract

Partial differential equation models and their associated variational energy formulations
are often rotationally invariant by design. This ensures that a rotation of the input
results in a corresponding rotation of the output, which is desirable in applications such
as image analysis. Convolutional neural networks (CNNs) do not share this property,
and existing remedies are often complex. The goal of our paper is to investigate how
diffusion and variational models achieve rotation invariance and transfer these ideas to
neural networks. As a core novelty, we propose activation functions which couple
network channels by combining information from several oriented filters. This
guarantees rotation invariance within the basic building blocks of the networks while
still allowing for directional filtering. The resulting neural architectures are inherently
rotationally invariant. With only a few small filters, they can achieve the same invariance
as existing techniques which require a fine-grained sampling of orientations. Our
findings help to translate diffusion and variational models into mathematically
well-founded network architectures and provide novel concepts for model-based CNN
design.

Keywords: Partial differential equations, Variational methods, Neural networks,
Rotation invariance, Coupling

1 Introduction
Partial differential equations (PDEs) and variationalmethods are core parts of various suc-
cessful model-based image processing approaches; see, e.g., [6,11,75] and the references
therein. Suchmodels often achieve invariance under transformations such as translations
and rotations by design. These invariances reflect the physical motivation of the models:
Transforming the input should lead to an equally transformed output.
Convolutional neural networks (CNNs) and deep learning [31,42,43,66] have revolu-

tionised the field of image processing in recent years. The flexibility of CNNmodels allows
to apply them to various tasks in a plug-and-play fashion with remarkable performance.
Due to their convolution structure, CNNs are shift invariant by design. However, they lack
inherent rotation invariance. Proposed adaptations often inflate the network structure and
rely on complex filter design with large stencils; see, e.g., [80].
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In the present paper, we tackle these problems by translating rotationally invariant PDEs
and their corresponding variational formulations into neural networks. This alternative
viewon rotation invariancewithin neural architectures yields novel design conceptswhich
have not yet been explored in CNNs.
Since in the literature, multiple notions of rotation invariance exist, we define our ter-

minology in the following.We call an operation rotationally invariant, if rotating its input
yields an equally rotated output. Thus, rotation and operation are interchangeable. This
notion follows the classical definition of rotation invariance for differential operators.
Note that some recent CNN literature refers to this concept as equivariance.

1.1 Our contributions

We translate PDE and variational models into their corresponding neural architectures
and identify how they achieve rotation invariance. We start with simple two-dimensional
diffusion models for greyscale images. Extending the connection [2,63,86] between
explicit schemes for these models and residual networks [36] (ResNets) leads to neural
activation functionswhich couple network channels. Their result is based on a rotationally
invariant measure involving specific channels representing differential operators.
By exploring multi-channel and multiscale diffusion models, we generalise the concept

of coupling toResNeXt [84] architectures as an extension of theResNet. Activationswhich
couple all network channels preserve rotation invariance, but allow to design anisotropic
models with a directional filtering.
We derive three central design principles for rotationally invariant neural network

design, discuss their effects on practical CNNs, and evaluate their effectiveness within
an experimental evaluation. Our findings transfer inherent PDE concepts to CNNs and
thus help to pave theway tomoremodel-based andmathematicallywell-founded learning.

1.2 Related work

Several works connect numerical solution strategies for PDEs to CNN architectures [2,44,
46,55,87] to obtain novel architectureswith better performance or provablemathematical
guarantees. Others are concerned with using neural networks to solve [16,34,59] or learn
PDEs from data [45,62,64]. Moreover, the approximation capabilities [17,32,40,71] and
stability aspects [2,10,33,61,63,70,86] of CNNs are often analysed from a PDE viewpoint.
The connections between neural networks and variational methods have become a

topic of intensive research. The idea of learning the regulariser in a variational framework
has gained considerable traction and brought the performance of variational models to
a new level [23,47,52,58,60]. The closely related idea of unrolling [50,69] the steps of a
minimising algorithm for a variational energy and learning its parameters has been equally
prominent and successful [1,5,8,13,35,38,39].
We exploit and extend connections between variational models and diffusion processes

[65], and their relations to residual networks [2,63]. In contrast with our previous works
[2,4] which focussed on the one-dimensional setting and corresponding numerical algo-
rithms, we now concentrate on two-dimensional diffusionmodels that incorporate differ-
ent strategies to achieve rotation invariance. This allows us to transfer concepts of rotation
invariance from PDEs to CNNs, which yield hitherto unexplored CNN design strategies.
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A simple option to learn a rotationally invariant model is to perform data augmentation
[68], where the network is trained on randomly rotated input data. This strategy, however,
only approximates rotation invariance and is heavily dependent on the data at hand.
An alternative is to design the filters themselves in a rotationally invariant way, e.g. by

weight restriction [12]. However, the resulting rotation invariance is too fine-grained: The
filters as the smallest network component are not oriented. Thus, the model is not able to
perform a directional filtering.
Other works [24,41] create a set of rotated input images and apply filters with weight

sharing to this set. Depending on the amount of sampled orientations, this can lead to
large computational overhead.
An elegant solution for inherent rotation invariance is based on symmetry groups. Gens

and Domingos [28] as well as Dieleman et al. [21] propose to consider sets of feature
maps which are rotated versions of each other. This comes at a high memory cost as four
times as many feature maps need to be processed. Marcos et al. [49] propose to rotate
the filters instead of the features, with an additional pooling of orientations. However, the
pooling reduces the directional information too quickly. A crucial downside of all these
approaches is that they only use four orientations. This only yields a coarse approximation
of rotation invariance.
This idea has been generalised to arbitrary symmetry groups by Cohen and Welling

[15] through the use of group convolution layers. Group convolutions lift the standard
convolution to other symmetry groups which can also include rotations, thus leading to
rotation invariance by design. However, also there, only four rotations are considered.
This is remedied byWeiler et al. [78,80] who make use of steerable filters [27] to design a
larger set of oriented filters. Duits et al. [22] go one step further by formulating all layers
as solvers to parametrised PDEs. Similar ideas have been implemented with wavelets [67]
and circular harmonics [83], and the group invariance concept has also been extended to
higher dimensional data [14,57,79]. However, processing multiple orientations in dedi-
cated network channels inflates the network architecture, and discretising the large set of
oriented filters requires the use of large stencils.
We provide an alternative by means of a more sophisticated activation function design.

By coupling specific network channels, we can achieve inherent rotation invariance with-
out using large stencils or group theory, while still allowing for models to perform direc-
tional filtering. In a similar manner, Mrázek andWeickert proposed to design rotationally
invariant wavelet shrinkage [51] by using a coupling wavelet shrinkage function. However,
to the best of our knowledge coupling activation functions have not been considered in
CNNs so far.

1.3 Organisation of the paper

We motivate our view on rotationally invariant design with a tutorial example in Sect. 2.
Afterward, we review variational models and residual networks as the two other basic
concepts in Sect. 3. In Sect. 4, we connect various diffusion models and their associated
energies to their neural counterparts and identify central concepts for rotation invariance.
We summarise our findings and discuss their practical implementation in Sect. 5 and
conduct experiments on rotation invariance in Sect. 6. We finish the paper with our
conclusions in Sect. 7.
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2 Two views on rotational invariance
To motivate our viewpoint on rotationally invariant model design, we review a nonlin-
ear diffusion filter of Weickert [73] for image denoising and enhancement. It achieves
anisotropy by integrating one-dimensional diffusion processes over all directions. This
integration model creates a family of greyscale images u(x, t) : Ω × [0,∞) → R on an
image domain Ω ⊂ R

2 according to the integrodifferential equation

∂tu = 2
π

∫ π

0
∂eθ

(
g
(∣∣∂eθuσ

∣∣2) ∂eθu
)
dθ , (1)

where ∂eθ is a directional derivative along the orientation of an angle θ . The evolution
is initialised as u(·, 0) = f with the original image f , and reflecting boundary conditions
are imposed. The model integrates one-dimensional nonlinear diffusion processes with
different orientations θ . All of them share a nonlinear decreasing diffusivity function g
which steers the diffusion in dependence of the local directional image structure

∣∣∂eθuσ

∣∣2.
Here, uσ is a smoothed version of uwhich has been convolved with aGaussian of standard
deviation σ .
As thismodel diffusesmore along low contrast directions than along high contrast ones,

it is anisotropic. It is still rotationally invariant, since it combines all orientations of the
one-dimensional processes with equal importance. However, this concept comes at the
cost of an elaborate discretisation. First, one requires a large amount of discrete rotation
angles for a reasonable approximation of the integration. Discretising the directional
derivatives in all these directions with a sufficient order of consistency requires the use of
large filter stencils; cf. also [9]. The design of rotationally invariant networks such as [80]
faces similar difficulties. Processing the input by applying several rotated versions of an
oriented filter requires large stencils and many orientations.
A much simpler option arises when considering the closely related edge-enhancing

diffusion (EED) model [74]

∂tu = ∇�(D(∇uσ )∇u) , (2)

where ∇ = (
∂x, ∂y

)� denotes the gradient operator and ∇� is the divergence. Instead of
an integration, the right-hand side is given in divergence from. Thus, the process is now
steered by a diffusion tensor D(∇uσ ). It is a 2 × 2 positive semi-definite matrix which
is designed to adapt the diffusion process to local directional information by smoothing
along, but not across dominant image structures. This is achieved by constructingD from
its normalised eigenvectors v1 ‖ ∇uσ and v2⊥∇uσ which point across and along local
structures. The corresponding eigenvalues λ1 = g

(|∇uσ |2) and λ2 = 1 inhibit diffusion
across dominant structures and allow smoothing along them. Thus, the diffusion tensor
can be written as

D(∇uσ ) = g
(|∇uσ |2) v1v�

1 + 1 v2v�
2 . (3)

Discretising the EEDmodel (2) is much more convenient. For example, a discretisation
of the divergence term with good rotation invariance can be performed on a 3× 3 stencil,
which is the minimal size for a consistent discretisation of a second order model [77].
This illustrates a central insight: One can replace a complex discretisation by a sophisti-

cated design of the nonlinearity. Thismotivates us to investigate how rotationally invariant
design principles of diffusion models translate into novel activation function designs.
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3 Review: variational methods and residual networks
Wenow briefly review variational methods and residual networks as the other two central
concepts in our work.

3.1 Variational regularisation

Variational regularisation [72,82] obtains a function u(x) on a domainΩ as theminimiser
of an energy functional. A general form of such a functional reads

E(u) =
∫

Ω

(D(u, f ) + αR(u)) dx. (4)

Therein, a data term D(u, f ) drives the solution u to be close to an input image f , and
a regularisation term R(u) enforces smoothness conditions on the solution. The balance
between the terms is controlled by a positive smoothness parameter α.
We restrict ourselves to energy functionals with only a regularisation term and interpret

the gradient descent to the energy as a parabolic diffusion PDE. This connection serves
as one foundation for our findings. The variational framework is the simplest setting for
analysing invariance properties, as these are automatically transferred to the correspond-
ing diffusion process.

3.2 Residual networks

Residual networks (ResNets) [36] belong to themost popular neural network architectures
to date. Their specific structure facilitates the training of very deep networks and shares
a close connection to PDE models.
ResNets consist of chained residual blocks. A single residual block computes a discrete

output u from an input f by means of

u = ϕ2(f + W 2 ϕ1(W 1f + b1) + b2) . (5)

First, one applies an inner convolution to f , which is modelled by a convolution matrix
W 1. In addition, one adds a bias vector b1. The result of this inner convolution is fed into
an inner activation function ϕ1. Often, these activations are fixed to simple functions such
as the rectified linear unit (ReLU) [53] which is a truncated linear function:

ReLU(s) = max(0, s). (6)

The activated result is convolved with an outer convolution W 2 with a bias vector b2.
Crucially, the result of this convolution is added back to the original input signal f . This
skip connection is the key to the success of ResNets, as it avoids the vanishing gradient
phenomenon found in deep feed-forward networks [7,36]. Lastly, one applies an outer
activation function ϕ2 to obtain the output u of the residual block.
In contrast with diffusion processes and variational methods, these networks are not

committed to a specific input dimensionality. In standard networks, the input is quickly
deconstructed into multiple channels, each one concerned with different, specific image
features. Each channel is activated independently, and information is exchanged through
trainable convolutions. While this makes networks flexible, it does not take into account
concepts such as rotation invariance. By translating rotationally invariant diffusionmodels
into ResNets and extensions thereof, we will see that shifting the focus from the convo-
lutions towards activations can serve as an alternative way to guarantee built-in rotation
invariance within a network.
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4 From diffusion PDEs and variational models to rotationally invariant
networks
With the concepts fromSects. 2 and3 ,we arenow in aposition toderive diffusion-inspired
principles of rotationally invariant network design.

4.1 Isotropic diffusion on greyscale images

We first consider the simplest setting of isotropic diffusion models for images with a
single channel. By reviewing three popular models, we identify the common concepts for
rotation invariance, and find a unifying neural network interpretation.
We start with the second order diffusionmodel of Perona andMalik [56], which is given

by the PDE

∂tu = ∇�(
g
(|∇u|2) ∇u

)
, (7)

with reflecting boundary conditions. This model creates a family of gradually simplified
images u(x, t) according to the diffusivity g(s2). It attenuates the diffusion at locations
where the gradient magnitude of the evolving image is large. In contrast with the model
of Weickert (1), the Perona–Malik model is isotropic, i.e. it does not have a preferred
direction.
The variational counterpart of this model helps us to identify the cause of its rotation

invariance. An energy for the Perona–Malik model can be written in the following way
which allows different generalisations:

E(u) =
∫

Ω

Ψ
(
tr

(
∇u∇u�))

dx, (8)

with an increasing regulariser function Ψ which can be connected to the diffusivity g by
g = Ψ ′ [65]. Comparing the functional 8 to the one in (4), we have now specified the form
of the regulariser to be R(u) = Ψ

(
tr

(∇u∇u�))
.

The argument of the regulariser is the trace of the so-called structure tensor [26], here
without Gaussian regularisation, which reads

∇u∇u� =
(

u2x uxuy
uxuy u2y

)
. (9)

This structure tensor is a 2× 2 matrix with eigenvectors v1 ‖ ∇u and v2⊥∇u parallel and
orthogonal to the image gradient. The corresponding eigenvalues are given by ν1 = |∇u|2
and ν2 = 0, respectively. Thus, the eigenvectors span a local coordinate system where the
axes point across and along dominant structures of the image, and the larger eigenvalue
describes the magnitude of image structures.
The use of the structure tensor is the key to rotation invariance. A rotation of the image

induces a corresponding rotation of the structure tensor and the structural information
that it encodes: Its eigenvectors rotate along, and its eigenvalues remain unchanged. Con-
sequently, the trace as the sum of the eigenvalues is rotationally invariant.
In the following, we explore other ways to design the energy functional based on rota-

tionally invariant quantities and investigate how the resulting diffusion model changes.
The fourth-order model of You and Kaveh [85] relies on the Hessian matrix. The cor-

responding energy functional reads

E(u) =
∫

Ω

Ψ
(
(tr(H (u)))2

)
dx. (10)
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Here, the regulariser takes the squared trace of the Hessian matrix H (u) as an argument.
Since the trace of the Hessian is equivalent to the Laplacian Δu, the gradient flow of (10)
can be written as

∂tu = −Δ
(
g
(
(Δu)2

)
Δu

)
. (11)

This is a fourth-order counterpart to the Perona–Malik model. Instead of the gradient
operator, one considers the LaplacianΔ. This change was motivated as one remedy to the
staircasing effect of the Perona–Malik model [85].
The rotationally invariant matrix at hand is the Hessian H (u). In a similar manner as

the structure tensor, the Hessian describes local structure and thus follows a rotation of
this structure. Also in this case, the trace operation reduces the Hessian to a scalar that
does not change under rotations.
To avoid speckle artefacts of the model of You and Kaveh, Lysaker et al. [48] propose

to combine all entries of the Hessian in the regulariser. They choose the Frobenius norm
of the Hessian ||H (u)||2F together with a total variation regulariser. For more general
regularisers, this model reads [20]

E(u) =
∫

Ω

Ψ
(||H (u)||2F

)
dx, (12)

which yields a diffusion process of the form

∂tu = −D�(
g
(||H (u)||2F

)Du
)
, (13)

where the differential operatorD induced by the Frobenius norm reads

D = (
∂xx, ∂xy, ∂yx, ∂yy

)� . (14)

This shows another option how one can use the rotationally invariant information of
the Hessian matrix. While the choice of a Frobenius norm instead of the trace operator
changes the associated differential operators in the diffusion model, it does not destroy
the rotation invariance property: The squared Frobenius norm is the sum of the squared
eigenvalues of the Hessian, which in turn are rotationally invariant.

4.2 Coupled activations for operator channels

In the following, we extend the connections between residual networks and explicit
schemes from [2,63,86] in order to transfer rotation invariance concepts to neural net-
works. To this end, we consider the generalised diffusion PDE

∂tu = −D∗(g(|Du|2)Du
)
. (15)

Here, we use a generalised differential operatorD and its adjointD∗. This PDE subsumes
the diffusion models (7), (11), and (13). Since the diffusivities take a scalar argument,
we can express the diffusivity as g(|Du|2). The differential operator D is induced by the
associated energy functional.
To connect the generalised model (15) to a ResNet architecture, we first rewrite (15) by

means of the vector-valued flux function Φ(s) = g(|s|2) s as
∂tu = −D∗ (Φ(Du)) . (16)

Let us now consider an explicit discretisation for this diffusion PDE. The temporal deriva-
tive is discretised by a forward difference with time step size τ , and the spatial derivative
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operatorD is discretised by a convolution matrix K . Consequently, the adjointD∗ is dis-
cretised byK�. Depending on the number of components ofD, the matrixK implements
a set of convolutions. This yields an explicit scheme for (16)

uk+1 = uk − τK�Φ
(
Kuk

)
. (17)

where a superscript k denotes the discrete time level. One can connect this explicit
step (17) to a residual block (5) by identifying

W 1 = K , ϕ1 = τΦ, W 2 = −K�, ϕ2 = Id, (18)

and setting the bias vectors to 0 [2,63,86].
In contrast with the one-dimensional considerations in [2], the connection between

flux function and activation in the two-dimensional setting yields additional, novel design
concepts for activation functions. This yields the first design principle for neural networks.

Design Principle 1 (Coupled Activations for Rotational Invariance) Activation func-
tions which couple network channels can be used to design rotationally invariant networks.
At each position of the image, the channels of the inner convolution result are combined
within a rotationally invariant quantity which determines the nonlinear response.

The coupling effect of the diffusivity and the regulariser directly transfers to the activa-
tion function. This is apparent when the differential operator D contains multiple com-
ponents. For example, consider an operatorD = (D1,D2)� with two components and its
discrete variant K = (K 1,K 2)�.
The application of the operator K transforms the single-channel signal uk into a sig-

nal with two channels. Then the activation function couples the information from both
channels within the diffusivity g . For each pixel position i, j, we have

Φ

((K 1uk)
i,j(K 2uk)
i,j

)
= g

(∣∣∣K 1uk
∣∣∣2
i,j

+
∣∣∣K 2uk

∣∣∣2
i,j

)((K 1uk)
i,j(K 2uk)
i,j

)
. (19)

Afterwards, the application of K� reduces the resulting two-channel signal to a single
channel again.
In the general case, the underlying differential operatorD determines how many chan-

nels are coupled. The choice D = (
∂xx, ∂xy, ∂yx, ∂yy

)� of Lysaker et al. [48] induces a
coupling of four channels containing second order derivatives. This shows that a central
condition for rotation invariance is that the convolution K implements a rotationally
invariant differential operator. We discuss the effects of this condition on the practical
filter design in Sect. 5.
We call a block of the form (17) a diffusion block. It is visualised in Fig. 1 in graph form.

Nodes contain the state of the signal, while edges describe the operations to move from
one state to another. We denote the channel coupling by a shaded connection to the
activation function.
The coupling effect is natural in the diffusion case. However, to the best of our knowl-

edge, this concept has not been proposed for CNNs in the context of rotation invariance.

4.3 Diffusion onmulti-channel images

So far, the presented models have been isotropic. They only consider the magnitude of
local image structures, but not their direction. However, we will see that anisotropic
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o
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b
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Fig. 1 Diffusion block for an explicit diffusion step (17) with activation function τΦ, time step size τ , and
convolution filters K . The activation function couples the channels of the operator K

models inspire another form of activation function which combines directional filtering
with rotation invariance.
To this end, we move to diffusion onmulti-channel images. While there are anisotropic

models for single-channel images [75], they require a presmoothing as shown in the EED
model (2). However, such models do not have a conventional energy formulation [81].
The multi-channel setting allows one to design anisotropic models that do not require a
presmoothing and arise from a variational energy.
In the following, we consider multi-channel images u = (u1, u2, . . . , uM)� with M

channels. To distinguish them from the previously considered channels of the differential
operator, we refer to image channels and operator channels in the following.
A naive extension of the Perona–Malik model (7) to multi-channel images would treat

each image channel separately. Consequently, the energy would consider a regularisation
of the trace of the structure tensor for each individual channel. This in turn does not
respect the fact that structural information is correlated in the channels.
To incorporate this correlation, Gerig et al. [29] proposed to sum up structural infor-

mation from all channels. An energy functional for this model reads

E(u) =
∫

Ω

Ψ

(
tr

M∑
m=1

∇um∇u�
m

)
dx. (20)

Here, we again use the trace formulation. It shows that this model makes use of a colour
structure tensor, which goes back to Di Zenzo [18]. It is the sum of the structure tensors
of the individual channels. In contrast with the single-channel structure tensor without
Gaussian regularisation, no closed form solution for its eigenvalues and eigenvectors are
available. Still, the sum of structure tensors stays rotationally invariant.
The corresponding diffusion process is described by the coupled PDE set

∂tum = ∇�
(
g
( M∑
n=1

|∇un|2
)

∇um

)
(m = 1, . . . ,M) , (21)
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with reflecting boundary conditions. As trace and summation are interchangeable, the
argument of the regulariser corresponds to a sum of channel-wise gradient magnitudes.
Thus, thediffusivity considers information fromall channels. It allows to steer thediffusion
process in all channels depending on a joint structure measure.
Interestingly, a simple change in the energy model (20) incorporates directional infor-

mation [76] such that the model becomes anisotropic. Switching the trace operator and
the regulariser yields the energy

E(u) =
∫

Ω

tr Ψ

( M∑
m=1

∇um∇u�
m

)
dx. (22)

Now the regulariser acts on the colour structure tensor in the sense of a power series. Thus,
the regulariser modifies the eigenvalues ν1, ν2 toΨ (ν1) ,Ψ (ν2) and leaves the eigenvectors
unchanged. For the 2 × 2 colour structure tensor we have

Ψ

( M∑
m=1

∇um∇u�
m

)
= Ψ (ν1) v1v�

1 + Ψ (ν2) v2v�
2 . (23)

The eigenvalues are treated individually. This allows for an anisotropic model, as each
eigenvalue determines the local image contrast along its corresponding eigenvector. Still,
the model is rotationally invariant as the colour structure tensor rotates accordingly.
Consequently, the trace of this regulariser is equivalent to the sum of the regularised
eigenvalues:

tr Ψ

( M∑
m=1

∇um∇u�
m

)
= Ψ (ν1) + Ψ (ν2) . (24)

This illustrates the crucial difference to the isotropic case, where we have

Ψ

(
tr

M∑
m=1

∇um∇u�
m

)
= Ψ (ν1 + ν2) , (25)

Both eigenvalues of the structure tensor are regularised jointly and the result is a scalar,
which shows that no directional information can be involved. At this point, themotivation
for using the structure tensor notation in the previous models becomes apparent: Switch-
ing the trace operator and the regulariser changes an isotropic model into an anisotropic
one.
The gradient descent of the energy (22) is an anisotropic nonlinear diffusion model for

multi-channel images [76]:

∂tum = ∇�
(
g
( M∑
n=1

∇un∇u�
n

)
∇um

)
(m = 1, . . . ,M) . (26)

The diffusivity inherits the matrix-valued argument of the regulariser. Thus, it is applied
in the same way and yields a 2×2 diffusion tensor. In contrast to single-channel diffusion,
this creates anisotropy as its eigenvectors do not necessarily coincide with ∇u. Thus, the
multi-channel case does not require Gaussian presmoothing.
We have seen that the coupling effect within the diffusivity goes beyond the channels

of the differential operator. It combines both the operator channels as well as the image
channels within a joint measure. Whether the model is isotropic or anisotropic is deter-
mined by the shape of the diffusivity result: Isotropic models use scalar diffusivities, while
anisotropicmodels requirematrix-valued diffusion tensors. In the following,we generalise
this concept and analyse its influence on the ResNet architecture.
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4.4 Coupled activations for image channels

A generalised formulation of the multichannel diffusion models (21) and (26) is given by

∂tum = −D∗Φ(u,Dum) (m = 1, . . . ,M) . (27)

As the flux function uses more information than only Dum, we switch to the notation
Φ(u,Dum). An explicit scheme for thismodel is derived in a similar way as before, yielding

uk+1
m = uk

m − τK�Φ
(
uk ,Kuk

m

)
(m = 1, . . . ,M) . (28)

The activation function now couples more than just the operator channels, it couples all
its input channels. In contrast to Design Principle 1, this coupling is more general and
provides a second design principle.

Design Principle 2 (Fully Coupled Activations for Image Channels) Activations which
couple both operator channels and image channels can be used to create anisotropic,
rotationally invariant models. At each position of the image, all operator channels for all
image channels are combined within a rotationally invariant quantity which determines
the nonlinear response.

Different coupling effects serve different purposes: Coupling the image channels
accounts for structural correlations and can be used to create anisotropy. Coupling the
channels of the differential operators guarantees rotation invariance.
This design principle becomes apparentwhen explicitly formulating the activation func-

tion. Isotropic models use a scalar diffusivity within the flux function

Φ

(
uk ,

(
Kuk

m

)
i,j

)
= g

( M∑
m=1

∣∣∣Kuk
m

∣∣∣2
i,j

) (
Kuk

m

)
i,j

(m = 1, . . . ,M) , (29)

which couples all channels of u at the position i, j, as well as all components of the
discrete operator K . Anisotropic models require a matrix-valued diffusion tensor in the
flux function

Φ

(
uk,

(
Kuk

m

)
i,j

)
= g

( M∑
m=1

(
Kuk

m

)
i,j

(
Kuk

m

)�
i,j

)(
Kuk

m

)
i,j

(m = 1, . . . ,M) , (30)

This concept is visualised in Fig. 2 in the form of a fully coupled multi-channel diffusion
block. To clarify the distinction between image and operator channels, we explicitly split
the image into its channels. We see that all information of the inner filter passes through
a single activation function and influences all outgoing results in the same manner.
Design Principle 2 shows that coupling cannot only be used for rotationally invariant

design, but also makes sense for implementing modelling aspects such as anisotropy.
This is desirable as anisotropic models often exhibit higher performance through better
adaptivity to data.

4.5 Integrodifferential diffusion

The previousmodels work on the finest scale of the image. However, image structures live
on different scales of the image. Large image structures are present on coarser scales than
fine ones. Generating a structural measure which incorporates information frommultiple
image scales can be beneficial.
To this end, we consider integrodifferential extensions of single scale diffusion which

have proven advantageous in practical applications such as denoising [3]. In analogy to the
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Fig. 2 Fully coupled multi-channel diffusion block for an explicit step (28) with a fully coupled activation
function τΦ, time step size τ , and convolution filters K . The activation function couples all operator and
image channels of its input jointly. Depending on the design of the activation, the resulting model can be
isotropic or anisotropic

multi-channel diffusion setting, these models inspire a full coupling of scale information
for a variation in residual networks.
We start with the energy functional

E(u) =
∫

Ω

Ψ

(
tr

∫ ∞

0

(
D(σ )u

) (
D(σ )u

)�
dσ

)
dx. (31)

We denote the scale parameter by σ and assume that the differential operators D(σ ) are
dependent on the scale. This can be realised for example by an adaptive presmoothing of
an underlying differential operator; see e.g. [3,19].
Instead of summing structure tensors over image channels, this model integrates gener-

alised structure tensors
(
D(σ )u

) (
D(σ )u

)�
overmultiple scales.This results in amultiscale

structure tensor [3] which contains a semi-local measure for image structure. If D(σ ) are
rotationally invariant operators, then the multiscale structure tensor is also invariant.
The corresponding diffusion model reads

∂tu = −
∫ ∞

0
D(σ )∗

(
g
(∫ ∞

0

∣∣∣D(γ )u
∣∣∣2 dγ

)
D(σ )u

)
dσ , (32)

where g = Ψ ′. Due to the chain rule, one obtains two integrations over the scales: The
outer integration combines diffusion processes on each scale. The inner integration,where
the scale variable has been renamed to γ , accumulates multiscale information within the
diffusivity argument.
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This model is a variant of the integrodifferential isotropic diffusion model of Alt and
Weickert [3]. Therein, however, the diffusivity uses a scale-adaptive contrast parameter.
Thus, it does not arise from an energy functional.
As in the multi-channel diffusion models, switching trace and regulariser yields an

anisotropic model, which is described by the energy

E(u) =
∫

Ω

tr Ψ

(∫ ∞

0

(
D(σ )u

) (
D(σ )u

)�
dσ

)
dx. (33)

In analogy to the multi-channel model, the regulariser is applied directly to the structure
tensor, which creates anisotropy. Consequently, the resulting diffusion process is a variant
of the integrodifferential anisotropic diffusion [3]:

∂tu = −
∫ ∞

0
D(σ )∗

(
g
(∫ ∞

0

(
D(γ )u

) (
D(γ )u

)�
dγ

)
D(σ )u

)
dσ . (34)

The anisotropic regularisation is inherited by the diffusivity and results in a flux function
that implements a matrix-vector multiplication.

4.6 Coupled activations for image scales

Both the isotropic and the anisotropic multiscale models can be summarised by the flux
formulation

∂tu = −
∫ ∞

0
D(σ )∗ (

Φ
(
u,D(σ )u

))
dσ . (35)

To discretise this model, we now require a discretisation of the scale integral. To this end,
we select a set of L discrete scales σ1, σ2, . . . , σL. On each scale σ�, we employ discrete
differential operators K �. This yields an explicit scheme for the continuous model (35)
which reads

uk+1 = uk − τ

L∑
�=1

ω� K�
� Φ

(
uk ,K �uk

)
. (36)

Here, ω� is a step size over the scales, discretising the infinitesimal quantity dσ . It is
dependent on the scale to allow a non-uniform sampling of scales σ�. A simple choice is
ω� = σ�+1 − σ�.
Interestingly, an extension of residual networks called ResNeXt [84] provides the cor-

responding neural architecture to this model. Therein, the authors consider a sum of
transformations of the input signal together with a skip connection.We restrict ourselves
to the following formulation:

u = ϕ2

(
f +

L∑
�=1

W 2,� ϕ�(W 1,�f + b1,�) + b2,�
)
. (37)

This ResNeXt block modifies the input image f within L independent paths and sums up
the results before the skip connection. Each path may apply multiple, differently shaped
convolutions. Choosing a single path with L = 1 yields the ResNet model.
We can identify an explicit multiscale diffusion step (36) with a ResNeXt block (37) by

W 1,� = K �, ϕ1,� = τ Φ, W 2,� = −ω�K�
� , ϕ2 = Id, (38)

and all bias vectors b1,�, b2,� are set to 0, for all � = 1, . . . , L.
In contrast with the previous ResNet relation (18), we apply different filters K � in each

path. Their individual results are summed up before the skip connection, which approx-
imates the scale integration. While the ResNeXt block allows for individual activation
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Fig. 3 Fully coupled multiscale diffusion block for an explicit multiscale diffusion step (36) with a single
activation function τω�Φ, time step size τ , and convolution filters K � on each scale. The activation function
couples all inputs jointly. Depending on the design of the activation, the resulting model can be isotropic or
anisotropic

functions in each path, we use a common activation with a full coupling for all of them.
This constitutes a variant of Design Principle 2, where one now couples image scales.

Design Principle 3 (Fully Coupled Activations for Image Scales) Activations which cou-
ple both operator channels and image scales can be used to create anisotropic, rotationally
invariant multiscale models. At each position of the image, all operator channels for all
image scales are combined within a rotationally invariant quantity which determines the
nonlinear response.

Also in this case, the combinedcoupling servesdifferentpurposes.Coupling theoperator
channels yields rotation invariance, and coupling of scales allows to obtain a more global
representation of the image structure. Isotropic models employ a coupling with a scalar
diffusivity in the flux function

Φ

(
uk ,

(
K �uk

)
i,j

)
= g

( L∑
�=1

∣∣∣K �uk
∣∣∣2
i,j

) (
K �uk

)
i,j
, (39)

and a matrix-valued diffusion tensor in the flux function

Φ

(
uk ,

(
K �uk

)
i,j

)
= g

( L∑
�=1

(
K �uk

)
i,j

(
K �uk

)�
i,j

) (
K �uk

)
i,j

(40)

can be used to create anisotropic models.
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We call a block of the form (36) a fully coupled multiscale diffusion block. This block
is visualised in Fig. 3. Comparing its form to that of the multichannel diffusion block in
Fig. 2, one can see that different architectures use the same activation function design,
however, with different motivations.

5 Discussion
We have seen that shifting the design focus from convolutions to activation functions can
yield new insights into CNN design. We summarise all models that we have considered
in Table 1 as a convenient overview.
All variational models are rotationally invariant, as they rely on a structural measure

which accounts for rotations. This directly transfers to the diffusion model, its explicit
scheme, and thus also its network counterpart, resulting in Design Principle 1. Moreover,
the different coupling options formodels withmultiple scales andmultiple channels show
how a sophisticated activation design can steer the model capacity. This has led to the
additional Design Principles 2 and 3 .
The coupling effects are naturallymotivated for diffusion, but are hitherto unexplored in

the CNN world. While activation functions such as maxout [30] and softmax introduce a
coupling of their input arguments, they only serve the purpose of reducing channel infor-
mation. Even though some works focus on using trainable andmore advanced activations
[13,25,54], the coupling aspect has not been considered so far.
The rotation invariance of the proposed architectures can be approximated efficiently

in the discrete setting. For example for second order models, Weickert et al. [77] present
L2 stable discretisations with good practical rotation invariance that only require a 3 × 3
stencil. For models of second order, this is the smallest possible discretisation stencil
which still yields consistent results.
In a practical setting with trainable filters, one is not restricted to the differential oper-

ators that we have encountered so far. To guarantee that the learned filter corresponds
to a rotationally invariant differential operator, one has several options. For example, one
can design the filters based on a dictionary of operators which fulfil the rotation invari-
ance property, which are then combined into more complex operators through trainable
weights. In a similar manner, one can employ different versions of a base operator which
arise from a rotationally invariant operation, e.g. a Gaussian smoothing. We pursue this
strategy in our experiments in the following section in analogy to [3].
Apart from the coupling aspect, the underlying network architecture is not modified.

This is a stark contrast to the CNN literature where a set of orientations is discretised,
requiringmuch larger stencils for a good approximation of rotation invariance.Weneither
require involved discretisations, nor a complicated lifting to groups. Thus, we regard the
proposed activation function design as a promising alternative to the directional splitting
idea.

6 Experiments
In the following, we present an experimental evaluation to support our theoretical consid-
erations. To this end, we design trainable multiscale diffusion models for denoising. We
compare models with and without coupling activations, and evaluate their performance
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on differently rotated datasets. This shows that the Design Principle 1 is indeed necessary
for rotation invariance.

6.1 Experimental setup

We train the isotropic and anisotropic multiscale diffusion models (32) and (34). Both
perform a full coupling of all scales, i.e. they implement Design Principles 1 and 3 . As a
counterpart, we train the same multiscale diffusion model with the diffusivity applied to
each channel of the discrete derivative operator separately. Thus, the activation is applied
independently in each direction. This violatesDesign Principle 1.Hence, themodel should
yield worse rotation invariance than the coupled models.
Still, all models implementDesign Principle 3 by integratingmultiscale information. For

an evaluation of the importance of this design principle we refer to [3], where multiscale
models outperform their single scale counterparts.
The corresponding explicit scheme for the considered models is given by

uk+1 = uk − τ

L∑
�=1

ω� K�
� Φ

(
uk ,K �uk

)
(41)

The choice for ω� is set to σ�+1 − σ�.
As differential operators K �, we choose weighted, Gaussian smoothed gradients β�∇σ�

on each scale σ�. The application of a smoothed gradient to an image via ∇σu = Gσ ∗ ∇u
is equivalent to computing a Gaussian convolution with standard deviation σ of the image
gradient. Moreover, we weight the differential operators on each scale by a scale-adaptive,
trainable parameter β�.
A discrete set of L = 8 scales is determined by an exponential sampling between a

minimum scale of σmin = 0.1 and a maximum one of σmax = 10. This yields discrete
scales [0.1, 0.18, 0.32, 0.56, 1.0, 1.77, 3.16, 5.62].
To perform edge-preserving denoising, we choose the exponential Perona–Malik [56]

diffusivity

g(s2) = exp
(

− s2

2λ2

)
. (42)

It attenuates the diffusion at locations where the argument exceeds a contrast parameter
λ. This parameter is trained in addition to the scale-adaptive weights.
Moreover, we train the time step size τ and we use 10 explicit steps with shared param-

eter sets. This amounts to a total number of 10 trainable parameters: τ , λ, and β1 to
β8.
In the practical setting, a discretisation with good rotation invariance is crucial. We use

the nonstandard finite difference discretisation of Weickert et al. [77]. It implements the
discrete divergence term

A(uk ) = K�
� Φ

(
uk ,K �uk

)
(43)

on a stencil of size 3×3. For isotropic models, it has a free parameter α ∈ [
0, 12

]
which can

be tuned for rotation invariance, with an additional parameter γ ∈ [0, 1] for anisotropic
ones. We found that in the denoising case, the particular choice of these two parameters
constitutes a trade-off between performance and rotation invariance.
We train all models on a synthetic dataset which consists of greyscale images of size

256×256 with values in the range [0, 255]. Each image contains 20 randomly placed white
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Fig. 4 Denoising quality on differently rotated versions of the test dataset. The models have been trained on
a dataset with 30◦ orientation. The models with coupling approximate rotation invariance significantly better
than the uncoupled model

rectangles of size 140 × 70 on a black background. The rectangles are all oriented along
a common direction, which creates a directional bias within the dataset. The training set
contains 100 images and is oriented with an angle of 30◦ from the x-axis. As test datasets,
we consider rotated versions of a similar set of 50 images. The rotation angles are sampled
between 0◦ and 90◦ in steps of 5◦. To avoid an influence of the image sampling on the
evaluation, we exclude the axis-aligned datasets.
To train the models for the denoising task, we add noise of standard deviation 60 to the

clean training images andminimise the Euclidean distance to the ground truth images.We
measure the denoising quality in terms of peak-signal-to-noise ratio (PSNR). All models
are trained for 250 epochs with the Adam optimiser [37] with standard settings and a
learning rate of 0.001. One training epoch requires 50 seconds on an NVIDIA GeForce
GTX 1060 6GB, and the evaluation on one of the test sets requires 7 seconds.

6.2 Evaluation

A rotationally invariant model should produce the same PSNR on all rotations of the test
dataset. Thus, in Fig. 4 we plot the PSNR on the test datasets against their respective
rotation angle.
We see that the fluctuations within both anisotropic and isotropic coupled models

are much smaller than those within the uncoupled model. A choice of α = 0.41 and
γ = 0 yields a good balance between performance and rotation invariance. However,
rotation invariance can also be driven to the extreme: A choice of α = 0.5, which renders
the choice of γ irrelevant, eliminates rotational fluctuations almost completely, but also
drastically reduces the quality. The reason for this is given byWeickert et al. [77]: A value
of α = 0.5 decouples the image grid into two decoupled checkerboard grids which do not
communicate except at the boundaries.
For the balanced choice of α = 0.41, the anisotropic model consistently outperforms

the isotropic one, as it can smooth along oriented structures. As the uncoupledmodel can
only do this for structures which are aligned with the x- and y-axes, it performs better the
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ground truth noisy,
PSNR 15.6 dB

uncoupled,
PSNR 27.0 dB

coupled isotropic,
PSNR 28.1 dB

coupled anisotropic,
PSNR 29.2 dB

Fig. 5 Visual comparison of denoising results for a rotation angle of 45◦ . The coupled models achieve better
denoising quality as they generalise better to the rotated data

closer the rotation is to 0◦ and 90◦, respectively. Hence, it performs worst for a rotation
angle of 45◦. Thus, it does not achieve rotation invariance.
We measure the rotation invariance in terms of the variance of the test errors over

the rotation angles. While the isotropic and anisotropic coupled models with α = 0.41
achieve variances of 0.035 dB and 0.014 dB, the uncoupled model suffers from a variance
of 1.25 dB. The extreme choice of α = 0.5 even reduces the variances of the coupled
models to 0.013 dB and 8.7 · 10−4 dB, respectively.
A visual inspection of the results in Fig. 5 supports this trend. Therein, we present

the denoised results on an example from the test data set with 45◦ orientation. The
uncoupled model suffers from ragged edges as the training on the differently rotated
dataset has introduced a directional bias. The coupled isotropicmodel preserves the edges
far better, and the coupled anisotropic model can even smooth along them to obtain the
best reconstruction quality.
These findings show that the coupling effect leads to significantly better rotation invari-

ance properties.

7 Conclusions
We have seen that the connection between diffusion and neural networks allows to bring
novel concepts for rotation invariance to the world of CNNs. The models which we
considered inspire different activation function designs, which we summarise in Table 1.
The central design principle for rotation invariance is a coupling of operator channels.

Diffusionmodels and their associated variational energies apply their respective nonlinear
design functions to rotationally invariant quantities based on a coupling of multi-channel
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differential operators. Thus, the activation function as their neural counterpart should
employ this coupling, too.Moreover, coupling image channels or scales in addition allows
to create anisotropic models with better measures for structural information.
This strategy provides an elegant andminimally invasivemodification of standard archi-

tectures. Thus, coupling activation functions constitute a promising alternative to the
popular network designs of splitting orientations and groupmethods in orientation space.
Evaluating these concepts in practice and transferring them to more general neural net-
work models are part of our ongoing work.
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