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Abstract: Modern implant designs should allow for adequate primary stability but limit mechanical
stress on buccal bone in order to prevent initial marginal bone loss. A dental implant characterized
by a shift in core diameter and thread geometry was evaluated. Polyurethane foam was used as bone
surrogate material and implant placement was performed measuring insertion torque and strain
development on buccal bone using strain gauges as well as primary stability by using damping
capacity assessments. An existing tapered bone-level implant was used as a control while the novel
experimental implant described above (n = 10) was used in the test group. Statistical analysis was
based on t-tests (α = 0.05). Both the maximum insertion torque (p = 0.0016) and maximum strain
development in buccal bone (p = 0.1069) were greater in control implants as compared to the novel
implant design. Moreover, in the control group, these were reached at a significantly later timepoint
of the insertion process, i.e., when the implant was almost fully seated (maximum insertion torque
p = 0.0001, maximum strain development p < 0.00001). The final insertion torque (p < 0.00001) and
final strain development (p = 0.0137) were significantly lower in the novel implant design while the
primary stability of both implant types did not differ significantly (p = 0.219). The novel implant
design allowed for a greater undersizing of osteotomies while not mechanically overstressing buccal
bone. Comparable primary stability was obtained from trabecular bone instead of compressing
cortical bone as occurs in conventional, existing tapered implant designs.

Keywords: insertion torque; strain development; implant design; bone damage

1. Introduction

Achieving adequate primary stability still is one of the major goals in dental implant
surgery and is governed by several parameters including bone quality [1], surgical protocol
and implant design [2–4]. Host factors such as diabetes and osteoporosis are difficult to
control for dentists but have been shown to also affect osseointegration [5,6]. Consequently,
implant manufacturers advocate drilling protocols [7] with varying levels of undersizing
depending on the bone quality present in a specific implant site [8]. As a general trend,
undersizing an osteotomy and the use of tapered implant macrodesigns compressing
cortical layers of alveolar bone [9] increases primary stability [3,10–12].

Using both clinical and animal research designs, several authors have meanwhile
reconsidered the concept of high initial implant stability being a desirable goal [13]. A
retrospective clinical study showed that excessive insertion torque in dense bone can cause
negative marginal bone responses [7] thereby confirming data from a randomized clinical
trial recording more peri-implant bone remodeling and buccal soft tissue recession in
implants inserted with high insertion torque [14]. While still concluding that high insertion
torque would not have a negative effect, De Santis and coworkers found a three-year
survival rate of only 98.6% and a considerable bone loss of up to 2.5 mm for implants
placed with high insertion torque [15]. On the other end of the spectrum, a clinical study
proved that lower insertion torques may yield favorable implant survival rates with optimal
marginal bone levels [16]. In this context, it might be anticipated that less stress is induced
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in maxillary sites as compared to mandibular sites due to their lower percentage of stiff
cortical bone. While this question certainly cannot be addressed in a clinical study, a recent
meta-analysis indeed showed greater risk for implant loss in the maxilla [17].

A clear trend depicting the negative effects of high insertion torques on alveolar bone
can be derived from animal studies. It was pointed out that underpreparation of the
implant socket compromised osseointegration of immediately loaded bone-level tapered
implants [18] and reduces crestal bone-to-implant contact at early healing stages [11]. In ad-
dition, it has been shown that the speed of new bone formation was relatively slow while the
speed of marginal bone loss was relatively fast when the final drill was excessively smaller
than the implant to be placed [19]. Two animal studies showed a correlation between
microcracks induced during implant placement and bone resorption [20,21]. Knowledge
on how immediate vs. conventional implant loading might affect bone in this context is
sparse [22]. However, similar amounts of osseointegration have been described irrespective
of the implant insertion torque applied [23]. Using various analyzing techniques up to
molecular levels, it has recently been proven that placing implants with high insertion
torque leads to a zone of dead and dying osteocytes, resulting in microfractures of bone
increasing bone resorption but decreasing new bone formation [24,25]. Insertion torque
may be seen as a common denominator for assessing implant stability [13,26] and has been
correlated with resonance frequency analysis [26] and damping capacity assessments [27].

While a certain level of peri-implant marginal bone loss during healing is widely
accepted [28,29], it may be argued that this phenomenon results from overstressing of
alveolar bone during implant installation. In response to that and as a potential alternative
to common tapered bone-level implants (Figure 1a), a novel implant macrodesign char-
acterized by an increase in the core diameter of the implant in the middle portion was
fabricated (Figure 1b). The change in core diameter coincided with a continuous change in
thread geometry starting with sharp threads in the apical region, dull, condensing threads
in the middle portion and sharp threads in the cervical portion.
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Figure 1. Bone-level implant types used in this study comprising Straumann BLT 4.1 × 10 mm (a)
and AlfaGate 4.3 × 10 mm (b).

Using a previously established study design [30–32], it was the goal of this in vitro
experiment to gain insight into the insertion characteristics of this novel implant design
with respect to insertion torque, bone strain and primary stability as compared to a well-
documented bone-level implant system.

2. Materials and Methods

Polyurethane foam material [3,4,8,9,33–36] consisting of a low-density trabecular
portion covered by a cortical layer with a thickness of 3 mm (Solid Rigid polyurethane
foam 10 pcf/40 pcf, Sawbones Europe AB, Malmö, Sweden) was used as bone surrogate
material [8,9]. Strain gauges [10] were positioned on the buccal surface of the cortical layer
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next to the osteotomy positions with the sensing elements oriented in the horizontal plane
(Figure 2). Using a measurement amplifier (Quantum X, Hottinger Baldwin, Darmstadt,
Germany) and analyzing software (jBEAM, AMS GmbH, Chemnitz, Germany) allowed for
the recording of strain development during implant insertion [30–32].
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Figure 2. Insertion of a novel design AlfaGate implant (a) and a Straumann BLT implant (b) into
osteotomies created in laminated polyurethane foam simulating alveolar bone. Strain gauges were
positioned on the buccal aspect of the bone with the sensing elements oriented in the horizontal
direction for recording deformation of the material.

The osteotomies were prepared adhering to the manufacturer-recommended protocols
and involved the steps detailed in Table 1. All implants (sample size per group: n = 10)
were placed with a final thickness of buccal bone of 2 mm extending from the implant
shoulder. Implant insertion was carried out by one experienced clinician using a surgical
motor capable of recording actual torque over time and which was set at 25 rpm (iChiropro,
BienAir, Biel, Switzerland). Following implant placement, gingiva formers 4 mm in height
were attached to the implants and damping capacity measurements (Periotest M, Mediz-
intechnik Gulden, Modautal, Germany) were performed twice, horizontally applying the
probe to the gingiva former at a distance of 1 mm.

Table 1. Description of the implant systems used in this study and the sequence of drills as recom-
mended in the manufacturer-specific guidelines for class III bone. All drills were inserted until a
depth of 10 mm was reached unless otherwise specified. All implants were inserted with the surgical
motor set at 25 rpm.

Group Name Straumann AlfaGate

Implant

Straumann Bone Level
Tapered 4.1 × 10 mm

(Institut Straumann AG,
Basel, Switzerland)

AlfaGate
Novel Design 4.3 × 10 mm

(Alfa Gate, Kfar Qara, Israel)

Drill sequence

Needle drill
2.2 mm pilot drill
2.8 mm BLT drill
3.5 mm BLT drill

Cortical drill @ conical part

Start drill @ 3 mm
2.0
2.8
3.2

3.65 @ 6 mm

For statistical analysis, the mean values of Periotest measurements were calculated
and mean maximum values, position of mean maximum values and final values were
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derived from the curves recorded for torque and strain development during the insertion
process. For comparisons between the two implant types, t-tests were applied (α = 0.05)
as the mean values could be assumed to be normally distributed according to the central
limit theorem.

3. Results

The insertion process of AlfaGate implants took approximately 30% more time as
compared to BLT implants, requiring the normalization of data for statistical analysis
by setting the duration of full insertion to 1 for each implant type independently. In BLT
implants, three fractures of bone specimens occurred due to overstressing and consequently,
these samples were excluded from comparative statistical analysis.

Torque and strain development during implant insertion was characteristic for both
implant types used. In BLT implants a continuous increase in strain and torque develop-
ment occurred during insertion reaching its maximum when the implant was fully seated.
AlfaGate implants showed maximum torque and strain development when the bulky
portion of the implant body passed the cortical layer followed by a drop in both parameters
prior to the implants being fully seated (Figures 3 and 4).

The mean values and standard deviations for all parameters determined during the
experiment are given in Table 2 as well as the results of the t-tests performed for comparing
both groups of implants. The mean maximum insertion torque was significantly greater in
BLT as compared to AlfaGate (p = 0.0016) and was reached at a significantly later timepoint
of the insertion process, i.e., when the implant was almost fully seated (p = 0.0001). The
final insertion torque was significantly lower in AlfaGate implants as compared to BLT
implants (p < 0.00001).

The maximum strain development in buccal bone was greater in BLT implants showing
high standard deviation in the range of 30% of absolute values resulting in a non-significant
difference compared to AlfaGate implants (p = 0.1069). The maximum strain develop-
ment in BLT occurred at a significantly later timepoint as compared to AlfaGate implants
(p < 0.00001). The final strain development was almost twice as high in BLT implants as
compared to AlfaGate implants (p = 0.0137). The primary stability of both implant types as
measured with the Periotest device did not differ significantly (p = 0.219).
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Figure 4. Strain development over time during implant insertion for both groups investigated with
continuously increasing strain levels for Straumann BLT. Lower maximum strain was seen in AlfaGate
implants coinciding with the bulky central part of the implant passing the cortical plate.

Table 2. Mean values and standard deviations recorded for all parameters for both implant types.
Results of t-tests for comparisons between the two implant groups are given as p-values with
significant differences (p < 0.05) written in bold.

Parameter
BLT AG

t-Test (p-Value)
Mean SD Mean SD

Maximum insertion torque [Ncm] 55.16 1.95 50.9 2.6 0.0016

Position of maximum
insertion torque 63.14 2.97 54.5 3.95 0.0001

Final insertion torque [Ncm] 52.11 2.22 30.55 5.47 <0.00001

Maximum strain [µm/m] 11,370.18 4206.6 8236.39 2176.31 0.1069

Position of maximum strain 912.29 57.48 716.9 50.59 <0.0001

Final strain [µm/m] 10,834.31 3923.14 5798.27 1868.82 0.0137

Periotest [PTV] 8.415 3.003 6.685 3.072 0.219

4. Discussion

Measuring insertion torque, primary implant stability and peri-implant strain, this
experiment attempted to compare a novel implant design characterized by a change in
core diameter (AlfaGate) to an existing, well-established tapered implant design (BLT). Of
course, any other implant system could have been chosen as a control group and would
certainly have led to a different but implant-specific insertion torque curve and strain
curve. During the insertion of BLT implants, both, emerging strains and insertion torque
continuously increased, indicating that primary stability mostly resulted from compressing
cortical bone [9,12]. In AlfaGate implants, the maximum torque was measured when
the middle portion coincided with the cortical layer indicating that primary stability was
mostly obtained by compressing trabecular bone. With the implant types not differing
with respect to primary stability, it appears that the tapered BLT implants derived stability
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from cortical bone while AlfaGate engaged the bony walls over the whole depth of the
osteotomy. Given the comparable levels of primary stability achieved, AlfaGate implants
should be applicable in the same indications as BLT implants.

Determining implant stability using the Periotest device may be considered as being
old-fashioned but appeared to be only option as neither SmartPegs nor MultiPegs were
available for the novel implant as a prerequisite for resonance frequency analysis. Akkoyun
and coworkers [37] used an identical approach in studying individually fabricated implants.

In addition, both the maximum as well as final torque and strain values were lower
in AlfaGate implants although a greater amount of undersizing of the osteotomy was
realized here as compared to BLT implants with a conical outer shape, i.e., less bone had
to be removed for inserting the implant. The slower insertion of AlfaGate implants may
be attributed to the lower thread pitch realized here and to the osteotomy size relative
to the implant size. In the BLT group, implants could be inserted into the osteotomy to
a much greater extent prior to engaging bony walls as compared to AlfaGate implants
(see Figure 2b). While it may be argued that longer insertion time is critical from a clinical
perspective, it has to be kept in mind that potentially fewer drill steps will be required for
placing the novel implant type. From a methodological point of view, the difference in inser-
tion time hindered from directly comparing whole graphs but required the determination
of specific torque and strain points for comparison.

In the past, high levels of insertion torque indicating high levels of primary im-
plant stability as required for immediate loading protocols have been considered as be-
ing desirable [11,15]. However, newer literature meanwhile shows that comparably low
levels of insertion torque may also result in the good long-term performance of dental
implants [16,23]. In addition, recent research also applying molecular analysis has provided
evidence that the compression of alveolar bone causes cell death in the surrounding of an
osteotomy [18,24,25], which may have negative effects during osseointegration and may be
a co-factor for bone loss frequently observed in the initial phase of implant healing [7,14,19].
Based on that, modern implant systems should not only minimize bone trauma during
osteotomy preparation but should also minimize peri-implant strain development during
insertion. Coinciding with these findings, implants with a triangular cross-section have
been introduced not touching buccal bone walls upon final placement in order to avoid
excessive stresses in esthetically relevant areas. As clinical studies did not find major
benefits of such designs as compared to conventionally round implant shapes [38], the
novel design investigated here may be seen as an alternative.

The methodology applied in this experiment followed comparable previous studies
on round vs. triangular [31] and wedge-shaped [32] dental implants. In order to benefit
from standardized conditions, polyurethane foam was used as a bone surrogate material
instead of using cadaver bone [30], which would have also allowed for strain measure-
ments. For future studies, the bone surrogate materials could be adapted in order to better
reflect the anatomy of the maxilla and mandible, respectively. In addition to the limited
sample size and obvious limitations in simulating the mechanical behavior of alveolar
bone, the alignment of the sensing elements of the strain gauges parallel to the occlusal
surface of the bone surrogate material as well as the positioning of the implants with a
standardized buccal wall thickness have to be seen as limitations. Due to the sensitivity of
the measurement technique applied with minor positional deviations having an impact on
the absolute readings, strain values can only be used for comparisons on a relative scale.
Moreover, all implants were placed by one surgeon and it might be expected that variation
in measurement outcomes exists among practitioners.

5. Conclusions

A novel implant design characterized by a shift in its core diameter and a simultane-
ous change in thread geometry allows for greater undersizing of osteotomies while not
mechanically overstressing buccal bone. Clinical studies will be required for verifying a
potentially positive effect with respect to initial marginal bone-level changes.
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