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Abstract

It seems pretty easy to listen to and understand someone speaking. However, our
day-to-day conversations occur under adverse listening conditions. For example,
background noise comes from di�erent sound sources, multiple people talk simul-
taneously (e.g., in a café), a poor signal connection distorts the voice of a person
talking on the other end of a telephone call, and the list goes on. Despite these
adversities, most of the time, we communicate successfully. One of the significant
contributors to our ability to understand language in adverse listening conditions
is predictive language processing.

Humans are not passive consumers of language: we use the information available
to us from a context and predict the not-yet-encountered, upcoming linguistic
events. We do not wait for a speech signal to unfold completely to decode its
meaning. This feature of human language processing is critical in understanding
speech in adverse listening conditions.

The studies in this thesis are timely in the field when the discussion about the
role of prediction in language processing is vibrant and to some extent—heated.
Some argue that prediction is a universal phenomenon, not only of language, but of
human cognition, in general. The present thesis examined the boundary conditions
of predictive language processing. We investigated if linguistic predictions are
automatic, or if they are constrained by other factors like top-down attention
regulation and bottom-up processing of di�erent speech rates in degraded speech
comprehension.

In this thesis, we examined how listeners can use context information and
form predictions while listening to speech at di�erent levels of degradation. The
central theme of the thesis is the investigation of the interactions between top-
down semantic predictions and bottom-up auditory processing in adverse listening
conditions under the theoretical framework of predictive processing and the noisy
channel model of communication. We first introduce these concepts of top-down–
bottom-up interactions in adverse listening conditions, then report the experiments
that empirically investigated di�erent aspects of degraded speech comprehension
and the top-down – bottom-up interactions. Our findings showed that to understand
a speaker’s utterance in a noisy channel (e.g., due to the degradation of speech



signal), a listener takes into account the noise in the signal as well as the context
information to form lexical-semantic predictions.

Studies have shown that lexical-semantic predictions facilitate language com-
prehension. We investigated if such a facilitatory e�ect of linguistic predictions
is observed at all levels of speech degradation. We also addressed the debate on
the nature of predictability e�ect (graded vs all-or-nothing).

The studies in this thesis concluded that comprehension of degraded speech is
predictive in nature: language processing in a noisy channel is probabilistic and
rational. Listeners weigh top-down predictive (lexical-semantic cues) and bottom-
up auditory (acoustic-phonetic cues) processes. When the speech degradation
is not severe, they can rely on the bottom-up input of an upcoming word (i.e.,
what they actually heard), regardless of the context information available to them.
When the speech is moderately degraded but intelligible enough, they generate
predictions about the upcoming word from the context information. In addition,
the weighing of lexical-semantic and acoustic-phonetic cues is also modulated by
attention regulation and speech rate.

Taken together, this thesis contributes to a better understanding of the dynamic
interaction between top-down and bottom-up processes in speech comprehension.



Zusammenfassung

Es scheint ziemlich einfach zu sein, jemandem beim Sprechen zuzuhören und ihn zu
verstehen. Unsere täglichen Gespräche finden jedoch unter ungünstigen Bedingungen
statt. Zum Beispiel kommen Hintergrundgeräusche von verschiedenen Schallquellen,
mehrere Personen sprechen gleichzeitig (z. B. in einem Café), eine schlechte
Signalverbindung verzerrt die Stimme des Gesprächspartners am anderen Ende
des Telefons, und die Liste geht weiter. Trotz dieser Widrigkeiten kommunizieren
wir in den meisten Fällen erfolgreich. Einer der wichtigsten Faktoren, der dazu
beiträgt, dass wir Sprache auch unter ungünstigen Bedingungen verstehen können,
ist die predictive language processing.

In dieser Arbeit haben wir untersucht, wie Hörer Kontextinformationen nutzen
und Vorhersagen tre�en können, während sie Sprache mit unterschiedliche starken
Signalstörungen hören. Das zentrale Thema der Arbeit ist die Untersuchung der
Wechselwirkung zwischen semantischen Vorhersagen basierend auf dem vorigen
Kontext und auditiver Verarbeitung des Sprachsignals unter ungünstigen Hörbe-
dingungen im theoretischen Rahmen der “predictive processing” und des “noisy
channel model of communication”. Es gibt zahlreiche Methoden, mit denen
Kontextinformationen und Sprachverschlechterung (ungünstige Hörbedingungen)
in einem Versuchsaufbau erzeugt und manipuliert werden können. Wir haben die
Kontextinformationen manipuliert, indem wir kurze Subjekt-Verb-Objekt-Sätze auf
Deutsch erstellt haben, in denen das Verb eines Satzes das Substantiv vorhersagt.
Zusätzlich zur Kontextinformation untersuchten wir den E�ekt der strategischen
Aufmerksamkeitszuweisung als Top-down-Prozess. Die Sprache wurde durch “noise-
vocoding” der reinen Sprache degradiert. Zusätzlich zur noise-vocoding untersuchten
wir die Wirkung von Änderungen der Sprechgeschwindigkeit als weiteren Faktor,
der die Bottom-up-Prozesse beeinflusst.

In Kapitel 5 untersuchten wir zunächst die Rolle der Top-down- Aufmerksamkeit-
sregulation für die Fähigkeit der Hörer, die Kontextinformationen zu nutzen. Unsere
Forschungsfrage lautete, ob die Aufmerksamkeit auf den Kontext unabhängig von
den Hörer, unbedingt erforderlich ist, um Vorhersagen über ein kommendes Wort
in einem Satz auf verschiedenen Degradationsstufen zu tre�en. Wir konnten zeigen,
dass die semantische Vorhersagbarkeit eines Satzes nur dann zu einem besseren
Sprachverständnis beiträgt, wenn die Hörer auf die Kontextinformationen achten.



Darüber hinaus war eine solche Erleichterung bei schweren Degradationsstufen
nicht vorhanden. Wir haben diese Ergebnisse in Kapitel 6 weiter untersucht
und festgestellt, dass der erleichternde E�ekt der Vorhersagbarkeit nur bei einem
moderaten Grad der Sprachverschlechterung zu beobachten ist. Wir untersuchten
die Art des Vorhersagee�ekts und fanden heraus, dass er abgestuft ist und nicht alles
oder nichts beinhaltet. Mit anderen Worten, wir fanden heraus, dass die Vorhersage
der Hörer über ein kommendes Wort nicht nur auf einen stark einschränkenden
Satzkontext beschränkt ist; stattdessen sagen die Hörer das kommende Wort in
Abhängigkeit von der Wahrscheinlichkeit seines Auftretens in einem bestimmten
Kontext voraus (z. B. “cloze probability”). Schließlich untersuchten wir in Kapitel
7, ob eine Änderung der Sprechgeschwindigkeit - die die Verarbeitungszeit verändert
- die in Kapitel 6 beobachtete kontextuelle Erleichterung verstärkt oder verringert.
Die Ergebnisse zeigten, dass das Hörverstehen der mäßig verschlechterten Sprache
bei normaler Sprechgeschwindigkeit am besten ist: Eine Verlangsamung verstärkte
die kontextuelle Erleichterung nicht. Bei Erhöhung der Sprechgeschwindigkeit wurde
jedoch die Verarbeitung von Sätzen mit geringer, aber nicht mit hoher Vorhersag-
barkeit beeinträchtigt. In der begrenzten Verarbeitungszeit war die Aktivierung
von Zielwörtern in einem weniger einschränkenden Satzkontext schwieriger als in
einem stark einschränkenden Satzkontext.

All diese Experimente, die mit deutschen Stimuli an jungen Erwachsenen mit
deutscher Muttersprache durchgeführt wurden, haben gezeigt, dass das Verstehen
verschlechterter Sprache prädiktiver Natur ist: Die Sprachverarbeitung in einem
verrauschten Kanal ist probabilistisch und rational. Die Hörer wägen Top-Down-
Prozesse (lexikalisch-semantische Hinweise) und Bottom-Up-Hörprozesse (akustisch-
phonetische Hinweise) ab. Wenn die Sprachverschlechterung nicht schwerwiegend ist,
können sie sich auf den Bottom-up-Input eines kommenden Wortes verlassen (d. h.
auf das, was sie tatsächlich gehört haben), unabhängig von den ihnen zur Verfügung
stehenden Kontextinformationen. Wenn die Sprache mäßig verschlechtert, aber ver-
ständlich genug ist, erstellen sie aus den Kontextinformationen Vorhersagen über das
kommende Wort. Darüber hinaus wird die Gewichtung von lexikalisch-semantischen
und akustisch-phonetischen Hinweisen auch durch die Aufmerksamkeitssteuerung
und die Sprechgeschwindigkeit moduliert.

Insgesamt trägt diese Arbeit zu einem di�erenzierten Verständnis der dynamis-
chen Interaktion zwischen Top-down- und Bottom-up-Prozessen beim Sprachverste-
hen bei.
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1
Introduction

One of the features that distinguishes us, humans, from other species is our ability

to communicate using verbal language (Hauser et al., 2002; Lieberman, 2013; Pinker

& Jackendo�, 2005). We speak. We listen. We understand. This seemingly

straightforward path of communication goes through plenty of hindrances. One

of them is an adverse listening condition caused by background noise and speech

distortion (e.g., Chen & Loizou, 2011; Fontan et al., 2015). Human comprehenders

rely on top-down predictive and bottom-up auditory processes to understand spoken

language. Language comprehension in adverse listening conditions is aptly described

by the noisy channel model of communication (Gibson et al., 2013, 2019; Levy,

2008; C. E. Shannon, 1948) schematically represented in Figure 1.1 below.

Meaning
(mi)

Signal/Utterance 
(ui)

Signal/Utterance 
(up)

Meaning 
(mp)

Noisy channel
(N)

Intended Perceived

Figure 1.1: Schematic representation of the noisy channel model of communication

The speaker produces an utterance ui with a meaning mi that she intends to send.

The utterance is encoded into a signal and sent through a channel of transmission.

During transmission, some external noise disrupts the signal. The receiver (e.g.,
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1. Introduction

a listener) perceives the signal as up and decodes it to recover the meaning as mp.

The human language comprehension system is assumed to be engaged in optimal

Bayesian decoding that uses all the sources of information (e.g., prior semantic

knowledge, context information, world knowledge, etc.) and infers the intended

meaning from the perceived utterance that it receives from a noisy channel of

communication (Gibson et al., 2013; Levy, 2008; cf. Markman & Otto, 2011).

For successful communication to occur, the message recovered by the listener

must be approximately equal to the message intended to be sent by the speaker.

Let’s take an example. X sees a spherical object flying towards Y. So, X intends

to warn Y about the spherical object which is about to hit him. To convey this

message, X utters “Ball!”. Due to external noise, X’s (i.e., the speaker’s) utterance

is distorted, so Y (i.e., the listener) perceives the utterance as “Hall!”. The listener

then interprets that the speaker’s message is intended to point him to a “building

where lectures take place”. (In this case of unsuccessful communication, or due to

the listener wrongly identifying the speaker’s intended message, Y gets hit by a ball.)

We assume that the goal of a listener is to identify the message mi that is most

likely from the perceived utterance up, taking into account the external noise (N) and

the prior likelihood of the speaker uttering ui. This can be expressed formally as1:

m̂p = argmax
mp

P (mp, up, N, ui, mi) (1.1)

This sequence of events from the intended message mi to the perceived message

mp can be graphically represented in a Bayesian network (Bruineberg et al., 2021;

Darwiche, 2010; Pearl, 1985) in Figure 1.2 (cf. Figure 1.1).

Figure 1.2 models the dependencies among the events, which shows that the

external noise and the speaker’s utterance are independent. However, the listener’s
1The mathematical formalisation presented in this thesis is intended to introduce and

conceptually clarify the noisy channel model of communication and not to simulate or model the
communication that occurs in a noisy channel. A verbal expression could also serve the purpose,
but a mathematical formalisation and potential computational modelling (e.g., Chingacham et al.,
2021) pave the way towards quantifying and predicting unobserved future events and a better
theory building (Guest & Martin, 2021).
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1. Introduction

mi ui

up mp

N

Figure 1.2: Bayesian network representation of the noisy channel model of communication

perception of the uttered message is dependent also on the noise. The communication

in the noisy channel, represented as a Bayesian network, can now be expressed as:

m̂p = argmax
mp

P (mp|up) ú P (up|ui, N) ú P (ui|mi) ú P (mi) (1.2)

Equation (1.2) can be interpreted easily from its corresponding representa-

tion in Figure 1.2.

It shows:

• P (mp|up): the probability of inferring a meaning mp (e.g., a building where

lectures take place) from a perceived utterance up (e.g., hall)

• P (up|ui, N): bottom-up auditory information, i.e., the probability of the

listener hearing a particular utterance up (e.g., hall) given that the speaker

has uttered an utterance ui (e.g., ball) in the noisy channel N (e.g., background

noise, signal distortion, etc.)

• P (ui|mi)P (mi): prior information (e.g., top-down semantic knowledge, infor-

mation about the speaker, etc.), i.e., the probability of a speaker uttering ui

with an intended message mi with the probability that the intended message

is mi

• P (mi): speaker model, i.e., the probability that the speaker intends to send a

particular message
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1. Introduction

In this thesis, we investigate in the interaction of bottom-up P (up|ui, N) and

top-down P (ui|mi)P (mi) processes. Henceforth, we focus our discussion on these

two components.

The channel of transmission can become noisy due to factors like background

noise present in a conversation, a poor signal transmission of a telephone call that

distorts the speaker’s speech, hearing loss of a listener, hearing aid or cochlear

implant worn by a listener, and so on. To understand speech in such a noisy channel

of communication, a listener puts di�erent weights on the distorted bottom-up

auditory input P (up|ui, N) vs the prior information P (ui|mi)P (mi) (e.g., context

information). This weighing of top-down and bottom-up processes is considered

as a rational process in the models of probabilistic language processing in reading

comprehension (Levy, 2008; Ryskin et al., 2018; see also van Os et al., 2021b for

an implementation of the rational approach in spoken language comprehension in

background noise). In this thesis, we also investigate to what extent listeners use their

priors from the context information when the signal is distorted at di�erent levels.

Clean speech and reading comprehension studies have demonstrated that lis-

teners and readers use prior knowledge and context information to form semantic

predictions about the linguistic events yet to be encountered.

Let’s take the following sentence, for example:

(1) The day was breezy so the boy went outside to fly a ___

Most readers would expect the final word to be kite in this sentence (DeLong et al.,

2005; cf. Nieuwland et al., 2020). Here, the words up to the final word of the sentence

provide a context: A reader can utilise their knowledge about what a boy would

ideally do outside on a breezy day. It leads the reader to predict that the sentence

continuation is most likely kite and not an improbable word like rocket. Similar

results are observed in the auditory domain as well. Listeners use context information

from what they have heard and form predictions about an upcoming word (e.g.,

Altmann & Kamide, 2007; Ankener, 2019). That is, human language comprehension
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1. Introduction

is predictive in nature, such that listeners engage in predictive language processing

(Section 2.2.1, Kuperberg & Jaeger, 2016; Pickering & Gambi, 2018).

In a noisy channel, listeners’ engagement in predictive processing is influenced

by the noise in the signal (Obleser et al., 2007; Sheldon et al., 2008a). Based on the

theoretical accounts of the noisy channel model of communication and the predictive

language processing (Christiansen & Chater, 2015; Ferreira & Lowder, 2016; Friston,

Parr., et al., 2020; Hale, 2001; Levy, 2008; McClelland & Elman, 1986; Norris et al.,

2016; Pickering & Gambi, 2018), this thesis investigates the interaction between

top-down predictive and bottom-up auditory processes. We examine how top-down

predictive processes facilitate language comprehension in a noisy channel created

by acoustic degradation of speech, and what the nature of such a facilitation is

(e.g., probabilistic, deterministic). We investigate the levels of noise in the signal

for the e�ect of top-down predictive processes to be most e�cient or facilitatory for

language comprehension. By manipulating di�erent factors of top-down as well as

bottom-up processes (e.g., speech rates, attention allocation to di�erent parts of the

speech stream), we examine their role in aiding (or interfering) the comprehension

of degraded speech. While doing so, we address the following research goals.

1.1 Research goals

(1) To replicate the predictability e�ect in a noisy channel

Almost all the disciplines of cognitive science — anthropology, computer

science, linguistics, neuroscience, and psychology — are su�ering the so-called

replication crisis (Aarts et al., 2015; Cockburn et al., 2020; Ebersole et al.,

2016; Minocher et al., 2021; Sanderson & Roberts, 2008). The results of an

experiment do not hold up consistently when another group of researchers

conduct it again: For example, DeLong et al. (2005) found that it was easier

to process the article ‘an’ when readers anticipated a phonologically congruent

word ‘airplane’ than when they anticipanted a phonologically incongruent word

‘kite’. But this e�ect was not replicated in a recent multi-lab collaborative
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study by Nieuwland et al. (2020). The first goal of this thesis is to test if

we can replicate the facilitatory e�ect of semantic predictability in language

comprehension in a noisy channel (e.g., Obleser et al., 2007; Sheldon et al.,

2008a). Replication of the predictability e�ect in comprehension of degraded

speech will help gather evidence in favour of (or against) this e�ect of interest.

It will also provide a reliable foundation to test if (and how) other factors (e.g.,

speed of information processing) influence and interact with the facilitatory

e�ect of predictability.

(2) To examine the nature of prediction

There are at least two schools of thought which argue that prediction is either

all-or-nothing (e.g., Ferreira & Clifton Jr, 1986) or probabilistic and graded

(e.g., Luke & Christianson, 2016). These debates generally centre around

reading comprehension and clean speech comprehension. The discussion about

the nature of prediction in a noisy channel like degraded speech is sparse.

Specifically, in degraded speech comprehension, only one study has empirically

investigated the theoretical postulation that prediction is restricted only to

highly predictable sentence endings (Strauß et al., 2013). Therefore, the

second goal of this thesis is to examine the nature of the predictability e�ect.

With carefully designed experiments and materials, this thesis aims to test the

distinction between all-or-nothing and probabilistic predictions in degraded

speech comprehension.

(3) To assess the boundary conditions of predictive language processing

Several authors claim that predictive processing is the fundamental nature

of human cognition and, thus, by definition, also of language processing (A.

Clark, 2013; Friston, Parr, et al., 2020; Friston, Sajid, et al., 2020; Kuperberg,

2021; Lupyan & Clark, 2015). At the same time, an increasing number

of studies are showing boundary conditions and prerequisite conditions for

predictive language processing (Federmeier et al., 2010; Huettig & Guerra,

2019; Huettig & Mani, 2016; Mishra et al., 2012). For example, prediction can
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have di�erent e�ects on unattended stimuli and attended stimuli (cf. Kok et

al., 2012). In a noisy channel (i.e., degraded speech), attention to a part of a

speech stream can modulate or limit the predictability e�ect as di�erent parts

of the speech stream contain di�erent linguistic units; each linguistic unit

(e.g., each word in a sentence) carries its own meaning that serves the entire

message (e.g., words serve in building the meaning of the entire sentence).

Therefore, the third goal of this thesis is to examine the role of auditory

attention that can act as a prerequisite for semantic predictions or limit the

automaticity of predictive processing in degraded speech comprehension.

This thesis aims to test whether attention to di�erent parts of degraded speech

stream aids or hampers facilitatory e�ects of top-down predictions.

(4) To test for the adaptation to degraded speech

Despite the di�culty in understanding speech in a noisy channel, listeners

rapidly adapt to degraded speech (Rosen et al., 1999): Their performance

improves over the course of the experiment. When the properties of speech

vary in the dimension of both acoustic-phonetic cues as well as lexical-

semantic cues, adaptation can be di�cult. The fourth goal of this thesis

is to examine if listeners adapt to degraded speech when both degradation

level and predictability of speech are varied. We test if an adaptation to

the bottom-up perceptual property of speech is influenced by its top-down

semantic property.

(5) To examine the e�ect of speech rate

Unlike the visual scene that opens in the spatial dimension, speech signal

flows in the temporal dimension. This challenges the listeners to process

information at di�erent speeds and timescales; more time is available to

process the information in slow speech, while less time is available for fast

speech (Lerner et al., 2014). Listeners build up the meaning representation as

they process the speech to predict upcoming linguistic units. The fifth goal of

this thesis is to examine whether a change in information flow, i.e., speech
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rate, a�ects the facilitatory e�ect of predictability. We test if an increase

or decrease in speech rate impedes the intelligibility of speech over a noisy

channel and whether it impedes or further aids the predictability e�ect in the

noisy channel.

(6) To assess language comprehension considering the context

Di�erent researchers have used di�erent measurement metrics in the study

of speech perception and language comprehension (Amichetti et al., 2018;

Obleser et al., 2007; Peelle, 2013; Sheldon et al., 2008a). The measurement

is inconsistent across studies which becomes a problem, especially when the

e�ect of context in comprehension is under discussion: cross-study comparison

does not give a clear picture of the predictability e�ect in this case. Therefore,

the sixth goal of this thesis is to establish and consistently use a sensitive

metric for the measurement of language comprehension that takes into account

whether participants (in)correctly use the context-evoking word in a sentence.

Studies addressing the research goals outlined above will primarily contribute to

elaborating and developing the existing theories of predictive language processing and

furthering the understanding of spoken language comprehension in a noisy channel,

especially degraded speech comprehension. Below we present the contributions

of the research presented in this thesis.

1.2 Research contributions

The research reported in this thesis examines theoretical questions of predictive

language processing and its boundary conditions when spoken language comprehen-

sion takes place through a noisy channel. It contributes to the studies of speech

perception, language comprehension, predictive coding, language science, audiology,

psycholinguistics, psychology, and, broadly, cognitive science. In an applied setting,

this informs translational/clinical researchers about language comprehension in

cochlear implantees.
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• Graded e�ect of predictability

We replicate the previous finding of the predictability e�ect showing that

predictability facilitates comprehension of degraded speech at moderate levels

of degradation (e.g., Obleser et al., 2007). Additionally, in the current debate

of all-or-nothing vs graded prediction, our findings indicate that prediction

across the noisy channel of degraded speech is graded in nature rather than

being restricted to a narrow space of highly predictable sentence endings.

Goals 1 and 2 correspond to this research contribution brought about by the

experiments described in Chapters 5 and 6.

• Attention in predictive language processing

We show that predictive processing is not always automatic, and it cannot all

by itself explain how listeners understand speech in a noisy channel. Although

top-down predictions facilitate comprehension, we show that attention to the

context is a prerequisite for such contextual facilitation. Only when listeners

attend to the context information and form its meaning representation can the

top-down predictions facilitate comprehension of degraded speech. Without

proper attention to the context, predictability e�ects cannot be observed. Goal

3 corresponds to this research contribution brought about by the experiment

described in Chapter 5.

• Absence of perceptual adaptation

We show that listeners do not adapt to degraded speech when lexical-semantic

cues are taken into consideration. This is in contrast with the previous findings

of speech perception experiments, some of which disregard the trial-by-trial

variation in sentence context (e.g., Davis et al., 2005; Erb et al., 2013). When

listeners are engaged in a linguistic task in which the lexical cues vary on every

trial, their cognitive resources are strained by lexical-semantic cues rather

than acoustic-phonetic cues. Thus, they do not show any adaptation e�ect;

every trial is e�ectively a novel trial for them. Goal 4 corresponds to this

9



1. Introduction

research contribution brought about by the experiments described mainly in

Chapters 6 and 7.

• Change in information flow and its e�ect on top-down prediction

We show that di�erent rates of information flow — increase or decrease

in the rate of speech — have di�erent e�ects on language comprehension.

Intelligibility of speech decreases with both increase and decrease of speech

rate. However, the increase in speech rate is particularly detrimental to

comprehension of degraded speech as it increases the di�culty in processing

sentences with less predictable endings. This is one of the few studies high-

lighting the role of speed of flow of information in the contextual facilitation

of degraded speech. Goal 5 corresponds to this research contribution brought

about by the experiment described in Chapter 7.

• A metric of language comprehension

We propose and successfully use a metric of language comprehension that

reflects listeners’ use of context information. This metric does not merely

measure how many words are correctly identified. Instead, it considers the

fact that in the study of the e�ect of predictability, how well a context

is recognised should also be taken into account. Thus, it measures word

recognition accuracy in the sentences in which context is correctly recognised.

Using such a metric improves the interpretation of contextual facilitation

across studies, which is lacking in the extant literature. Goal 6 corresponds

to this research contribution brought about by consistent use of this metric in

Chapters 6 and 7.

1.3 Overview of the thesis

The central theme of this thesis is the study of predictive processing in language

comprehension across a noisy channel. On the grounds of predictive language

processing and the noisy channel model of communication, we investigate how and

to what extent listeners use context information while listening to degraded speech.

10
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We replicate and extend prior findings, which claim that predictability facilitates

language comprehension at moderate levels of speech degradation. Furthermore,

the boundary conditions of predictive processing are tested, examining the e�ect

of di�erent rates of information flow in the predictability e�ect. We test for the

presence of perceptual adaptation and find evidence against the learning e�ect

and adaptation to degraded speech.

Chapter 2 provides a background on the rest of the chapters. It provides an

overview of degraded speech comprehension and predictive language processing.

The current status of the debate on these topics is also presented.

Chapter 3 describes the stimuli used in all the experiments in this thesis. It

describes the process of stimuli creation and speech processing, and provides an

overview of online data collection.

Chapter 4 describes the statistical tests employed for data analyses. Binomial

logistic mixed e�ects modelling is performed on the data from all the experiments.

This chapter provides a background on this statistical procedure and how it is

operated on the statistical software R.

Chapter 5 presents two experiments that address the first and the third research

goal. These experiments are conducted to examine the predictability e�ect in

degraded speech comprehension and the role of auditory attention. Participants

in both experiments are presented with the speech degraded at di�erent levels

of degradation and sentences of di�erent levels of predictability. Participants in

Experiment 1 are asked to type in only the final word of a sentence; this did

not bind their attention to the sentence context. In contrast, the participants

in Experiment 2 are asked to type in the entire sentence that they heard, which

required them to attend to the sentence context as well. We replicate the previously

reported predictability e�ects in the noisy channel only when participants attended

to the entire sentence, including the context. We show that top-down predictions

cannot be generated at moderate levels of degradation when insu�cient attention

is given to context. We discuss the limitation in the existing theories of predictive

language processing, which commit to the automaticity of prediction. We show
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the importance of attention in language comprehension. We end this chapter with

the note that the measurement of language comprehension can be further refined

and the nature of the predictability e�ect tested.

Chapter 6 addresses the first, the second, the fourth, and the sixth research goals.

The predictability e�ect partially replicated in Chapter 5 is further examined in this

chapter. We use a refined metric of measurement of language comprehension that

takes into consideration whether listeners correctly identified the context. We observe

predictability e�ects at a moderate level of speech degradation, thereby consistently

replicating the facilitatory e�ect of predictability. We find the predictability e�ects

to be graded in nature and discuss it in the light of existing theories of predictive

processing. We also show that regardless of the certainty about the next-trial

degradation level, listeners do not adapt to degraded speech when its lexical-

semantic property varies every trial. At the end of this chapter, we note the

intrinsic di�culty of processing degraded speech and open the question that the

predictability e�ects could be further enhanced (or limited) with more (or less)

time available to process the degraded speech.

Chapter 7 addresses the questions raised in Chapter 6. In two experiments, it

addresses the fourth, the fifth, and the sixth research goals. We use the same metric

of measurement of language comprehension as the one used in Chapter 6, which

takes into account listeners’ correct identification of the context. Listeners are

presented with the moderately degraded speech at which the predictability e�ect

is observed in Chapter 6. In Experiment 1, the moderately degraded speech is

presented at normal and fast speech rates. In Experiment 2, the speech rates are

normal and slow. For fast speech, both intelligibility and the predictability e�ect

are reduced, driven by the di�culty in processing words that are less predictable

from the context. Although more time is available to process the context of the

degraded speech at a slow speech rate, there is no increase in the facilitatory e�ect

of predictability with a reduced speech rate; instead, intelligibility is reduced in

slow speech compared to normal speech. This chapter reflects on the limitations

of predictive processing driven by the constraints in cognitive resources.
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Chapter 8 summarises the findings of all the studies. It concludes with the closing

remarks on the limitations of the the studies, theoretical and practical implications,

and the direction for future research.

1.4 Dissemination of research findings

Some of the findings reported in this thesis are presented and published elsewhere

to disseminate scientific findings to a broader audience. The presentations and

publications that report on parts of the research described in this thesis are

outlined below.

Research articles:

• Bhandari, P., Demberg, V., & Kray, J. (under review) Speaking fast and

slow: How speech rate a�ects contextual facilitation in degraded speech

comprehension.

• Bhandari, P., Demberg, V., & Kray, J. (2022). Predictability e�ects in de-

graded speech comprehension are reduced as a function of attention. Language

and Cognition, 1-18. doi:10.1017/langcog.2022.16

• Bhandari, P., Demberg, V., & Kray, J. (2021). Semantic predictability

facilitates comprehension of degraded speech in a graded manner. Frontiers

in Psychology, 12:714485. doi:10.3389/fpsyg.2021.714485

Conference presentations:

• Bhandari, P., Demberg, V., & Kray, J. (2022). The e�ect of speech rate on

contextual facilitation of degraded speech comprehension. Architectures and

Mechanisms for Language Processing, 2022-09-07–2022-09-09.

• Bhandari, P., Demberg, V., & Kray, J. (2022). Predictability e�ects in

degraded speech comprehension are reduced as function of attention. Archi-

tectures and Mechanisms for Language Processing, 2022-09-07–2022-09-09.
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• Bhandari, P., Demberg, V., & Kray, J. (2022). The e�ect of speech rate in

comprehension of degraded speech. International Max Planck Research School

(IMPRS) Conference, 2022-06-01–2022-06-03.

• Bhandari, P., Demberg, V., & Kray, J. (2022). Predictability e�ects are

reduced as a function of attention. Annual Convention of Association for

Psychological Science, 2022-05-25–2022-05-28.

• Bhandari, P., Demberg, V., & Kray, J. (2021). Predictability facilitates

comprehension but not adaptation to degraded speech in a graded manner.

Conference of the Society for the Neurobiology of Language, 2021-10-05–2021-

10-08.

• Bhandari, P., Demberg, V., & Kray, J. (2021). Predictability facilitates

comprehension of degraded speech in a graded manner. Annual Meeting of

Cognitive Neuroscience Society, 2021-03-13–2021-03-16.
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Background

In the previous chapter, we outlined the theoretical background and the research

goals of the studies in this dissertation. We stated that the central theme of this

thesis is to investigate the interaction between top-down predictive and bottom-up

auditory processes in language comprehension. Building on the noisy channel model

of communication and predictive language processing, the studies in this thesis

manipulate the auditory processes and prior information (in the form of semantic

context available in a sentence). In this chapter, we provide background on the

noisy channel that was created and used to introduce variations in the bottom-up

processing in the studies presented in this thesis. We also elaborate on the predictive

language processing in the noisy channel and the evidence of its limits and nature.

Understanding these fundamental concepts of top-down and bottom-up processes

is essential for the chapters that follow; these concepts are briefly reiterated in

the following chapters wherever relevant. Additionally, this chapter outlines the

gaps in previous research that this thesis fills in.

2.1 Speech distortion and degradation

Most of the existing frameworks of spoken language comprehension are inspired by

the experiments conducted with clean speech, the condition of “artificial normalcy”
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(Mattys et al., 2012). However, spoken language communication generally occurs

outside the artificial normalcy, alongside di�erent sources of noise and disruption.

Probabilistic models of language comprehension, like the noisy channel model of

communication (Gibson et al., 2013, 2019; Levy, 2008; C. E. Shannon, 1948) in

Figures 1.1 and 1.2 show that the speech signal uttered by a speaker gets disrupted

and distorted due to noise (ui æ up Ω N). Distortion can occur at these three

points or sources: encoding, transmission, and decoding (Mattys et al., 2012).

Speech can be distorted while encoding an utterance/signal due to the variability

in speakers’ production, like accented or slow and fast speech. Distortion can arise

while decoding the perceived signal due to listener-related factors, like hearing

loss or auditory processing disorder. It can also result from an external noise

that appears during the transmission, like ambient noise or poor transmission

medium (e.g., distortion in the telephone line). These di�erent sources of distortion

make a listening condition adverse by a�ecting the time and frequency-related

properties/cues of the speech signal, i.e., temporal envelope cues and spectral details

of speech, respectively. The temporal envelope cues are the slow variations in the

amplitude of the speech signal over time (Moon et al., 2014; Moon & Hong, 2014),

while the spectral details are the frequency-specific information about the speech.

The temporal envelope cues reflect the prosodic information of the speech and are

used in lexical-semantic and syntactic processing (Greenberg, 1996; Schneider &

Pichora-Fuller, 2001; Sheldon et al., 2008b). The spectral details provide information

about the sound production reflecting the vocal tract’s resonant properties, speech

signal frequency range, energy distribution across frequency bands, etc. (Roberts

et al., 2011; R. V. Shannon et al., 1995; R. V. Shannon et al., 2004).

In an experimental setup, a noisy channel can be created artificially by digital

signal processing (see Section 3.1.2) to investigate the response of the speech

perception system to distorted speech and to study language comprehension in

an adverse listening condition. For example, signal compression or expansion

acts upon the temporal property of the speech and makes it fast or slow (i.e.,

change its speed), and an optimal level of speech expansion/compression does not
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distort the spectral property of speech (see Section 3.1.2). In addition to speech

compression and expansion in Chapter 7, throughout the studies in this thesis,

we implement noise-vocoding to manipulate the spectral property of speech and

create a noisy channel of communication.

Noise-vocoding removes the spectral details of the speech signal in a controlled

manner, only leaving intact its temporal and periodicity cues (see Section 3.1.2).

This method of speech degradation was initially developed as a means to reduce

the information in speech signals to be transmitted through the telephone line

(Clendeninn, 1940; Dudley, 1939). Shannon and colleagues later modified and used

this technique as an analogue to cochlear implants such that the number of channels

used in a cochlear implant is similar to the number of noise-vocoding channels in

terms of their speech output and intelligibility (Loizou et al., 1999; R. V. Shannon

et al., 1995; 2004; cf. Orena & Colby, 2021). Therefore, in addition to being a

method of speech distortion to parametrically vary and control the quality of speech

signals in a graded manner, noise-vocoding is also a method of distortion that is

used to understand the speech perception and language comprehension in cochlear

implantees (e.g., Patro & Mendel, 2020; R. V. Shannon et al., 2004; Winn, 2016)

One of the main factors that determine the intelligibility of degraded speech is

the number of noise-vocoding channels.1 The higher the number of noise-vocoding

channels, the more is the frequency-specific information available in the degraded

speech, and the higher is the intelligibility compared to the speech that is degraded

with a lesser number of noise-vocoding channels. For example, listeners have been

shown shown to rate 8-channel noise-vocoded speech to be more intelligible and less

e�ortful than 2-channel noise-vocoded speech (e.g., Obleser & Kotz, 2011; Sohoglu

et al., 2012). In our studies, we create a noisy channel with di�erent degradation

levels and intelligibility by noise-vocoding the speech signal through 1, 4, 6 and 8

channels. The details of the artificial distortions are described in Chapter 3.
1Throughout this thesis, speech distortion by noise-vocoding is referred to as speech degradation,

or spectral degradation of speech.
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2.2 Prediction and comprehension of degraded
speech

In addition to the quality of speech signals, listeners rely on context information

and form top-down predictions to understand speech in adverse listening conditions.

Below, we first review the role of predictions in language comprehension in general,

and then we discuss the role of top-down predictive processes in comprehension

of degraded speech in particular.

2.2.1 Predictive language processing

Research from various domains of cognitive (neuro)science, like emotion, vision,

odour, and proprioception (the sensation of one’s body position and movement,

Tuthill & Azim, 2018), has shown that perception and cognition can be described

under the framework of predictive processing; they primarily operate by predicting

upcoming events (A. Clark, 2013; Marques et al., 2018; Seth, 2013; Stadler et al.,

2012; cf. Bowers & Davis, 2012; Jones & Love, 2011; Pierce & Ollason, 1987).

Despite a long-standing scepticism and doubt about the usefulness of prediction in

language processing (Forster, 1981; Jackendo�, 2002; Van Petten & Luka, 2012),

human language comprehension too has been claimed to be predictive in nature

from as early as the mid-twentieth century (e.g., McCullough, 1958; Miller et

al., 1951; Morton, 1964) which in recent days has received overwhelming support

from computational linguistics, psycholinguistics and cognitive neuroscience of

language (e.g., DeLong et al., 2005; Demberg et al., 2013; Heyselaar et al., 2021;

Lupyan & Clark, 2015; Pickering & Gambi, 2018). Empirical evidence from several

studies suggests that readers and listeners predict upcoming words in a sentence

when the words are predictable from the preceding context (Kuperberg & Jaeger,

2016; Nieuwland, 2019; for reviews, Staub, 2015). For instance, predictable words

are skipped and read faster than the words that are less predictable from the

context (Ehrlich & Rayner, 1981; Frisson et al., 2005; Staub, 2011). In the visual

world paradigm, studies have demonstrated that individuals show anticipatory eye
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movements towards a picture of an object (e.g., cake) that is predictable from

the preceding sentence context (e.g., The boy will eat a. . . ) even before hearing

the final target word (Altmann & Kamide, 1999; Ankener et al., 2018; Kamide

et al., 2003). Similar results have been observed in a virtual world setup with

naturalistic scenes (e.g., Heyselaar et al., 2021). The sentence-final word in a

highly constraining sentence (e.g., “She dribbles a ball.”) elicits a smaller N400

amplitude2 than a less constraining sentence (e.g., “She buys a ball.”, Federmeier et

al., 2007a; Kutas & Hillyard, 1984). Similarly, event-related words (e.g., “luggage”)

elicited reduced N400 compared to event-unrelated words (e.g., “vegetables”), which

were not predictable from the context (e.g., in the event of “travel”, Metusalem et

al., 2012). In sum, as the sentence context builds up, listeners make predictions

about upcoming words in the sentence, and these, in turn, facilitate language

comprehension. That is, individuals use the context available to them to generate

predictions that aids understanding of written and spoken language.

But, what is prediction?

The history of prediction in language science is rocky (Husband & Bovolenta, 2020).

People have been sceptical that language processing is predictive in nature. Di�erent

people mean di�erent things when they use the word prediction. As Kuperberg

and Jaeger (2016) put it, prediction has become a loaded term; it is used alongside

other similar terms like integration (Federmeier, 2007), anticipation, expectation

(Van Petten & Luka, 2012), preparedness (Ferreira & Chantavarin, 2018), etc.

This thesis uses the word prediction in the following minimal sense. As a sentence

unfolds, listeners encounter the context information in the sentence and form its

meaning representation, i.e., an internal representation of the context. Before they

hear the next word, i.e., before they encounter new bottom-up information, they

generate an expectation3 about the new word based on the meaning representation

of the context. They could form a prediction about only the semantic feature
2N400 is a negative-going ERP component that peaks around 400 ms post-stimulus and is

considered a neural marker of context-based semantic unexpectedness (Kutas & Federmeier, 2011).
3Henceforth, we use the word expectation and prediction interchangeably.
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of the next word, or they could predict the exact word (meaning prediction vs

word-form prediction).

In reading studies and clean speech comprehension, there are opposing views.

One view is that the comprehenders predictively preactivate the upcoming linguistic

unit solely based on the top-down information (i.e., predictive preactivation).

In contrast, the opposing view is that the comprehenders wait for the bottom-

up information to activate the representation (e.g., phonological and semantic

representation) of the new information and its neighbours4, then use the top-down

information to select the best representation. To clarify it further, let’s take the

example sentence (1) presented in Chapter 1 on page 4: The day was breezy so

the boy went outside to fly a___. Upon listening to this context, the listeners

can form a high degree of belief that the next word will be “kite”. Before even

hearing it, listeners preactivate the representation of “kite” in their mental lexicon.

Alternatively, they could wait until they hear the auditory input “kite”, which

activates “kite” and its phonological (and semantic) neighbours in the mental

lexicon, then use the top-down information to select the most likely word that

completes the sentence. Either way, top-down processes facilitate comprehension.

While listening in an adverse condition, it is unlikely that a listener follows the

latter strategy of waiting for the bottom-up input to activate the representations and

then selecting the most likely one based on the top-down information (Kuperberg

& Jaeger, 2016). When speech is distorted, it is di�cult to form the context

representation in the first place (cf. cue-based retrieval, Kaufeld, 2021; Martin,

2016). Once a listener has formed a meaning representation of the context, she

cannot a�ord to again wait for the bottom-up input to activate phonological and

semantic representations of upcoming words; the uncertainty about the bottom-up

information is persistent (see the phoneme restoration e�ect (Warren, 1970), the

McGurk e�ect (McGurk & MacDonald, 1976), and the Ganong e�ect (Ganong,

1980) in speech perception). Thus, once the listener has formed a representation of
4The Neighborhood Activation Model of Luce and Pisoni (1998) proposes that an auditory input

of a word activates its neighbourhood words, which can be similar acoustically. The neighbourhood
density is supposed to depend on the word frequency as well.
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the context, she uses this top-down information to predictively preactivate what

the upcoming word can be. Such predictive preactivation can take di�erent forms:

it can be a probabilistic (graded) or deterministic (all-or-nothing) prediction. These

di�erences in the nature of prediction are discussed below.

2.2.2 Facilitatory e�ect of predictability

We have discussed above that individuals make predictions about not-yet-encountered

linguistic units based on available context information as a sentence unfolds:

Top-down predictive and bottom-up perceptual processes interact dynamically

in language comprehension. When the bottom-up perceptual input is less reliable,

for example, in an adverse listening condition, it has been shown that listeners

rely more on top-down processes by narrowing down the predictions to smaller

sets of semantic categories or words (Corps & Rabagliati, 2020; Strauß et al.,

2013). Obleser and colleagues (Obleser et al., 2007; Obleser & Kotz, 2010), for

instance, used sentences of two levels of semantic predictability (high and low) and

systematically degraded speech signals by passing them through various numbers

of noise-vocoding channels ranging from 1 to 32 in a series of behavioural and

neuroimaging studies (see also Hunter & Pisoni, 2018). They found that semantic

predictability facilitated language comprehension only at moderate levels of speech

degradation. That is, participants relied more on the sentence context when

the speech signal was degraded though intelligible enough than when it was not

degraded or highly degraded. At such moderate levels of speech degradation, word

recognition accuracy was found to be higher for the words in high predictability

sentences than the words in low predictability sentences (Obleser & Kotz, 2010).

For the extremes, i.e., when the speech signal was highly degraded (making the

speech almost entirely unintelligible) or when it was the least degraded (rendering

the speech intelligible), the word recognition accuracy was similar across both levels

of sentence predictability, meaning that predictability did not facilitate language

comprehension. Sheldon et al. (2008b) estimated that for both younger and older

adults, the number of noise-vocoding channels required to achieve 50% accuracy
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varied as a function of sentence context. A higher number of channels (i.e., more

bottom-up information) was required in less constraining sentences to achieve the

same level of accuracy as highly constraining sentences. They also concluded that

word recognition is facilitated by predictability and sentence context when the

speech is degraded. Taken together, these studies conclude that at moderate levels

of degradation, participants rely more on the top-down predictions generated by a

sentence context and less on the bottom-up perceptual processing of an unclear,

less reliable, and degraded speech signal (Obleser, 2014). However, these studies are

agnostic about the nature of prediction, i.e., if it is probabilistic or deterministic.

Nature of prediction

A debate in the literature on predictive language processing pertains to this question:

Is prediction probabilistic, or is it an all-or-nothing phenomenon? For instance,

the garden path phenomenon was explained as a parser’s irreversible prediction

about the sentence structure; if its predicted parsing fails (or if it turns out to

be incorrect), then the parser reanalyzes the sentence and reformulates another

prediction (e.g., Ferreira & Clifton Jr, 1986; see also Demberg et al., 2013; Slattery

et al., 2013). In recent days, the support for the probabilistic nature of prediction

comes, for example, from ERP studies that show an inverse and graded relationship

between the magnitude of the N400 e�ect evoked by a word and its predictability

measured by cloze probability5 (e.g., DeLong et al., 2005; Federmeier et al., 2007b),

or surprisal6 (Frank et al., 2015; cf. Brothers et al., 2015).

These discussions come from reading studies and spoken language comprehension

in clear speech. Although a few frameworks of language processing speculate that

language comprehension in adverse listening conditions can be predictive (e.g.,

Lowder & Ferreira, 2016; Ryskin et al., 2018), so far, only Strauß et al. (2013)
5Cloze probability of a word is the proportion of participants who provide that word as the

next word of a sentence, in an o�ine norming task, given the preceding words of the sentence
(Staub et al., 2015; Taylor, 1953). Its value ranges from 0 to 1.

6Surprisal is a measure of the change in probability mass (or simply put, the change in
expectation) as predictions are proven wrong with an encounter of new words in a sentence,
discourse, etc. (Hale, 2001; Smith & Levy, 2008).
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have investigated the nature of prediction in degraded speech comprehension. They

proposed an “expectancy searchlight model”, which suggests that listeners form

narrowed expectations from a restricted semantic space only when the sentence

endings are highly predictable. They rule out the graded nature of predictability.

In contrast to their study, we systematically vary the predictability of the target

word and examine the graded vs probabilistic nature of prediction in degraded

speech comprehension. We argue that the facilitatory e�ect of predictability is

graded in nature; it is not an all-or-nothing phenomenon focused solely on highly

predictable sentence endings.

2.2.3 Limits of predictive language processing

It is important to note and acknowledge that the ubiquity and universality of

predictive language processing have not gone unquestioned (Huettig & Mani, 2016).

Apart from the debate on the nature of prediction, which we will come to later in

this chapter, there is compelling evidence that questions the necessity of prediction

in language comprehension. For example, Mishra et al. (2012) showed that literacy

is a critical factor that limits listeners’ predictions about an upcoming word. In

a visual world paradigm study, they found that individuals with lower literacy

showed less anticipatory eye movements than those with higher literacy. They

bolstered their finding in a neuroimaging study claiming that learning to read

fundamentally changes the neural circuitry (Hervais-Adelman et al., 2019). It is,

therefore, plausible that such structural change in the brain manifests in linguistic

behaviour. Similarly, Scholman et al. (2020) demonstrated that reading experience

is predictive of readers’ sensitivity to discourse signals available in the context

for predictiong upcoming content. Cognitive ageing is also reported as a limiting

factor in generating predictions (Federmeier et al., 2002, 2010). Another line

of argument that critiques predictive processing comes from the observations of

Huettig and Guerra (2019). They analyzed participants’ anticipatory eye movements

in the visual world paradigm and showed that listeners predict the target word

only in an artificial setup — long preview time (4000ms) and slow speech (cf.
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Fernandez et al., 2020; Heyselaar et al., 2021). When presented with a short

preview time (1000ms), such anticipatory eye movements were not significant

towards the picture of the target word.

In this thesis, we study additional top-down and bottom-up processes that

can interact with and potentially limit the facilitatory e�ect of predictability. For

example, current theories of predictive processing are poor in explaining the role

of attention in semantic prediction (e.g., Christiansen & Chater, 2015; Ferreira &

Lowder, 2016; Friston, Sajid, et al., 2020; Kuperberg & Jaeger, 2016; Pickering &

Gambi, 2018). For example, in their prediction-by-production account, Pickering

and Gambi (2018) emphasise that listeners use their speech production mechanism

in speech perception and comprehension to predict what their interlocutor will say

next. Their framework attempts to paint a big picture of prediction — using the

motor system — but it does not consider how a listener’s strategy of attending to

only a part of a speech stream in adverse listening conditions influences linguistic

predictions. We argue that attention to context information is critical in forming

semantic predictions, especially in degraded speech comprehension (cf. Kok et al.,

2012). By manipulating listeners’ attention allocation to parts of a speech stream and

information content in the sentences, we show that attention to context information

is a prerequisite for the listeners to generate predictions. We also investigate

the e�ect of bottom-up processes, like speech rate, on top-down processes (i.e.,

predictability e�ect in degraded speech comprehension). The extant findings on

the e�ects of speech rate on the facilitatory e�ect of predictability have been mixed

both in clear and degraded speech comprehension (e.g., Aydelott & Bates, 2004;

Goy et al., 2013; Iwasaki et al., 2002; Winn & Teece, 2021). We demonstrate

a scope for current theories of predictive language processing to incorporate the

instances of varying predictability e�ects at fast and slow speech rates and the

e�ects of attention on degraded speech comprehension.
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2.3 Adaptation to degraded speech

Listeners quickly adapt to novel speech with artificial acoustic distortions (Dupoux

& Green, 1997). Repeated exposure to distorted speech improves listeners’ com-

prehension improves over time (Guediche et al., 2014; for reviews, see Samuel &

Kraljic, 2009). When the noise condition, like speech degradation level, is constant

throughout the experiment, listeners adapt to it, and the performance (e.g., word

recognition) improves with as little as 20 minutes of exposure (Rosen et al., 1999).

For example, Davis et al. (2005) presented listeners with 6-channel noise-vocoded

speech and found an increase in the proportion of correctly reported words over

the course of the experiment. Similarly, Erb et al. (2013) presented participants

with 4-channel noise-vocoded speech and reached a similar conclusion. In these

experiments, only one speech degradation level (6- or 4-channel noise-vocoded speech)

was presented in one block. There was no uncertainty about the next-trial speech

degradation from the participants’ perspective. In contrast to our study, semantic

feature (i.e., target word predictability) was not varied. When multiple types or

levels of degraded speech signals are presented in a (pseudo-)randomized order

within a block, a listener is uncertain about the signal quality of any upcoming trial.

This can influence perceptual adaptation such that it might be totally absent with

the change in the characteristics of the auditory signals throughout an experiment

(Mattys et al., 2012). In addition, trial-by-trial variability in the characteristics

of distorted speech can impair word recognition (Sommers et al., 1994; see also

Dahan & Magnuson, 2006). Only a limited number of studies have looked at how

the (un)certainty about next-trial speech quality and semantic features influence

adaptation. For example, in a word-recognition task, Vaden et al. (2013) presented

words at +3dB SNR and +10dB SNR in a pseudo-random order; the goal was

to minimize the certainty about the noise level within the block. They report

that the magnitude and coherence of the activity in the cingulo-opercular network

facilitated comprehension of noisy speech in a subsequent trial, however, we cannot

make a firm conclusion about perceptual adaptation per se from their studies as
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they do not report the performance change throughout the experiment. Similarly,

Obleser and colleagues (Hartwigsen et al., 2015; Obleser et al., 2007; Obleser &

Kotz, 2010) also presented listeners with noise-vocoded sentences (ranging from 2

to 32 channels noise-vocoding) in a pseudo-randomized order but did not report

the presence or absence of perceptual adaptation. Their findings are primarily

focused on the interaction of lexical-semantic and acoustic-phonetic cues in speech

perception. On the one hand, repeated exposure is shown to lead to perceptual

adaptation to degraded speech. On the other hand, uncertainty about speech quality

is speculated to impair word recognition. We argue that a trial-by-trial variation

in a higher-level semantic feature of speech hinders listeners’ perceptual system

from retuning itself to adapt to the lower-level auditory features of the degraded

speech (cf. Nahum et al., 2008). In contrast to prior studies, we show that listeners

do not adapt to degraded speech despite repeated exposure to the same degraded

speech as long as its semantic predictability is uncertain.

2.4 Summary

In this chapter, we provided an overview of the concepts that will be repeated

in the following chapters. We introduced the concept of speech distortion and

degradation. Digital signal processing methods used in this process will be discussed

in Chapter 3 (Section 3.1.2). Importantly, we provided an overview of how predictive

language processing aids language comprehension, as well as its limitations. We

discussed perceptual adaptation to degraded speech and the role of uncertainty

about next-trial in adaptation. At each step, we presented the motivation behind

the studies in this thesis and the gaps in the literature these studies fill in. In the

next chapter, we will discuss the methods that are common in all the experiments

(Chapters 5, 6, and 7) in developing materials and collecting data.
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This chapter provides an overview of the experimental materials used in the

experiments described in Chapters 5, 6, and 7. Sentences used as experimental

material were common in all the experiments, and the signal processing method

was also common. Here, we also present an overview of online data collection.

3.1 Experimental materials

As a part of a study in the research project A4 of SFB1102, sentences of di�erent

levels of predictability were created. Digital recordings of the sentences were

degraded by noise-vocoding and used in all experiments reported in this thesis.

The speech was also distorted by its compression and expansion. Below we briefly

describe how the sentences of di�erent levels of predictability were obtained and

what methodology was used to create distorted versions of the speech.

3.1.1 Stimulus sentences

With an aim to create sentences of three levels of predictability (low, medium,

and high), a triplet of 120 sentences — a total of 360 sentences — were created

from 120 nouns. Out of 120 nouns, 6 were repeated. All sentences were in present

tense consisting of pronoun, verb, determiner, and object. These sentences were in
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Figure 3.1: Distribution of cloze probability ratings of target words in low, medium and
high predictability sentences

Subject-Verb-Object form (e.g., Er fängt den Ball. EN: He catches the ball.). Some

of these sentences were taken from Obleser and Kotz (2010). For each sentence,

cloze probability ratings were collected from a group of young adults (n = 60; age

range = 18–30 years). Mean cloze probabilities of low, medium and high probability

sentences are shown in Table 3.1 and the distribution of cloze probability across

low, medium, and high predictability sentences is shown in Figure 3.1. The cloze

probabilities of the target words in each sentence are shown in Appendix A.

Table 3.1: Cloze probabilities of low, medium and high predictability sentences

Cloze probability
Predictability Mean ± SD Range

Low 0.022 ± 0.027 0.00 – 0.09
Medium 0.274 ± 0.134 0.1 – 0.55

High 0.752 ± 0.123 0.56 – 1.00

3.1.2 Speech processing

All 360 sentences were spoken by a female native speaker of German at a normal

rate. The recordings were digitized at 44.1kHz with 32-bit linear encoding. Spoken

sentences used in Chapters 5, 6, and 7 were degraded by noise-vocoding. In addition
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to degradation by noise-vocoding, the sentences were distorted by compression

and expansion of speech signal in Chapter 7.

Noise-vocoding

Noise-vocoding is used to parametrically vary and control the speech quality in

a graded manner. It distorts a speech signal by dividing it into specific frequency

bands corresponding to the number of vocoder channels. The frequency bands

are analogous to the electrodes of a cochlear implant (Loizou et al., 1999; R. V.

Shannon et al., 1995; R. V. Shannon et al., 2004). The amplitude envelope, i.e.,

the fluctuations of amplitude within each frequency band, is extracted, and the

spectral information within it is replaced by noise. This noise-filtering makes the

vocoded speech di�cult to understand, although its temporal characteristics and

periodicity of perceptual cues are preserved (Rosen et al., 1999).

The spectral degradation conditions of 1, 4, 6, and 8 channels were achieved for

each of the 360 recorded sentences using a customized script originally written by

Darwin (2005) in Praat software (Boersma, 2001). The speech signal was divided

into 1, 4, 6, and 8 frequency bands between 70Hz and 9,000Hz. The boundary

frequencies were approximately logarithmically spaced following cochlear-frequency

position functions (Erb, 2014; Greenwood, 1990; Rosen et al., 1999). The amplitude

envelope of each band was extracted and applied to band-pass filtered white noise

in the same frequency ranges; the upper and lower bounds for band extraction are

specified in Table 3.2. Modulated noise bands were then combined to produce a

degraded speech. Scaling was performed to equate the root-mean-square value of

the original undistorted speech and the final degraded speech. This resulted in four

levels of degradation: 1-, 4-, 6-, and 8-channel noise-vocoded speech.

Spectrograms of clear speech and noise-vocoded speech for the sentence Er

löest die Aufgabe are shown in Figure 3.2. It shows that with a decrease in the

number of noise-vocoding channels, the information in speech signal reduces and

becomes noise-like.
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Figure 3.2: Spectrograms of clear speech, and degraded speech arranged with a decreasing
number of noise-vocoding channels (8, 6, 4 and 1 band) for the sentence ‘Er löest die
Aufgabe.’
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Table 3.2: Boundary frequencies (in Hz) for 1, 4, 6 and 8 channels noise-vocoding
conditions

Number of channels Boundary frequencies
1 70 9000
4 70 423 1304 3504 9000
6 70 268 633 1304 2539 4813 9000
8 70 207 423 764 1304 2156 3504 5634 9000

The primary motivation to degrade speech signals by noise-vocoding is twofold:

On the practical side, noise-vocoding simulates the frequency selectivity with a

cochlear implant or sensory-neural hearing loss. This provides insight into speech

perception and language comprehension in special populations (older adults with

hearing loss, patients with cochlear implants). On the experimental side, noise-

vocoding preserves the temporal periodicity cues of the speech; we can investigate

the importance of specific suprasegmental cues in speech perception. Noise-

vocoding reduces the fine structure cues that carry the pitch-related suprasegmental

information and allows the study of temporal amplitude envelope cues, which

carry the suprasegmental information involved in lexical processing; noise-vocoding

preserves these cues. It also provides a control over speech intelligibility by varying

the number of vocoder channels.

Speech compression and expansion

Temporal compression and expansion are used as a method to simulate fast and

slow speech, and to study the e�ect of acoustic degradation (which is the change

in speech rate) and the e�ect of increase or decrease in information flow. As early

as the mid-twentieth century, investigators reported that intelligibility does not

drop significantly when speech is speeded up to 2 times the normal speech rate

(e.g., Garvey, 1953). Speech rate was increased by chopping physical tapes. Digital

algorithms like PSOLA (Charpentier & Stella, 1986; Moulines & Charpentier, 1990)

developed in the 1980s and later (e.g., Verhelst & Roelands, 1993) now allow us to

speed up and slow down the speech rate in a controlled fashion. In Chapter 7, we

used Praat software that utilises a uniform time-compression algorithm (PSOLA) to

create slow and fast speech with the compression factor of 1.35 and 0.65, respectively.
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A schematic representation of waveforms of di�erent speech rates — normal, slow

and fast — is shown in Figure 3.3.

Figure 3.3: Schematic representation of waveforms of fast, normal, and slow speech rates
for the sentence ‘Er löest die Aufgabe’ with the duration of each speech rates in second.
Note the circled portion of the waveform, which examplifies that PSOLA eliminates and
duplicates the parts of the original waveform to create fast and slow speech respectively.

PSOLA creates fast or slow speech in three steps: analysis, modification, and

synthesis (Charpentier & Stella, 1986; Taleb, 2020). In the analysis step, it first sets

pitch marks in an audio file and then creates segments of it (i.e., it segments the signal

into successive analysis windows centred around those pitch marks). Then in the

modification step, depending on the time-compression/expansion factor, it deletes (or

duplicates) those segments and sets a new set of pitch marks. Finally, in the synthesis

step, it adds the new segments back to the audio file (i.e., it rearranges the analysis

window) and creates fast or slow speech as required. The distortion of phonemic

properties of speech signals are minimal when accelerating and slowing down within

the range of factor 2 or below (Moulines & Charpentier, 1990; cf. Longster, 2003).
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We create fast and slow versions of 120 high and 120 low predictability sentences.

These 480 recordings are then passed through 4 channels noise-vocoding to use as

experimental materials. As discussed earlier, the main aim of manipulating this

bottom-up process is to investigate the e�ect of change in the rate of information

flow (i.e., change in the speech rate) on the top-down processes of contextual

facilitation in degraded speech comprehension.

3.2 Data collection on the web

Traditionally, behavioural experiments with human participants are conducted in a

laboratory setup. In recent years, there has been a surge of experiments that are

conducted on the web (Reips, 2021). The first generation of online experiments to

study human cognition began in the mid-1990s (for reviews, Musch & Reips, 2000)

with the advent of the internet (Berners-Lee et al., 1992). Welch and Krantz (1996)

was the first online experiment that was conducted in 1995 as a part of tutorials

in auditory perception (Musch & Reips, 2000). In their survey of researchers,

Musch and Reips (2000) discovered that until 2000, there were already at least two

psycholinguistic experiments conducted online, one of which studied the e�ect of

context in shallow vs deep encoding of words. Despite the di�culty in conducting

online experiments and scepticism of journals towards publishing results of online

experiments, Musch and Reips (2000) expressed optimism:

At the moment, the number of Web experiments is still small, but a
rapid growth can be predicted on the basis of the present results. We
would not be surprised if within the next few years, a fair proportion of
psychological experiments will be conducted on the Web. (p. 85)

By 2022, there has been significant growth in online experiments as technical

and technological barriers are greatly reduced. There are many software and online

platforms which psychologists and psycholinguists can use with minimal knowledge

of computer programming to design, host and run their experiments and retrieve

the data in a fairly structured format (A. L. Anwyl-Irvine et al., 2020; Peirce et al.,

2019; Prolific, 2014; see also, A. Anwyl-Irvine et al., 2021; Peer et al., 2022). Online
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experiments have demonstrated advantages over laboratory experiments (Gadiraju et

al., 2017; Johnson et al., 2021). For example, a large pool of participants is available

online, which is usually not possible in laboratory experiments. Similarly, the

participants in online experiments are more diverse than in laboratory experiments.

Considering these advantages, psychologists and psycholinguists have conducted

online experiments for almost three decades. Scientists who only conducted

laboratory experiments and occasional online experiments were forced to conduct

their experiments almost exclusively on the web due to the restrictions imposed

by covid-19 lockdown (Gagné & Franzen, 2021; Reips, 2021). Since Welch and

Krantz (1996)’s auditory perception experiment, a number of experiments have

been conducted online in the auditory domain (Leensen & Dreschler, 2013; Seow

& Hauser, 2022; van Os et al., 2021b; Woods et al., 2017) replicating laboratory

findings (e.g., Cooke & Garcia Lecumberri, 2021). The experiments reported in

this thesis were also conducted online.

Initially, our experiments were designed to be conducted both in the laboratory

and on the web. As the laboratory was shut down due to covid-19 pandemic-related

lockdown (M. Schmitt, personal communication, March 16, 2020), we moved the

laboratory experiments to the online platform. We recruited participants online

via Prolific Academic (Prolific, 2014). We used Prolific’s filters to recruit only

native speakers of German residing in Germany who reported not having any

hearing loss, speech-language disorder, or cognitive impairment. Participants were

redirected to the experiments that were designed and hosted in Lingoturk (Pusse

et al., 2016). Lingoturk is a local hosting platform that manages crowdsourcing

experiments — it runs the experiments and stores the data. We report the details

of each experiment in Chapters 5, 6, and 7.
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General statistical approach

4.1 Linear mixed e�ects models

As the name suggests, the linear mixed e�ects model (LME) is a linear regression

model that consists of both fixed and random e�ects. It allows modelling the

underlying structure of the data, which includes the standard fixed e�ects like the

levels of speech degradation and the levels of target word predictability, as well as

random e�ects like items and participants. These random e�ects are assumed to be

random samples drawn from the general population. In this thesis, the dependent

variable (an outcome or a response variable) is binary (correct vs incorrect response).

So, we use binomial logistic mixed e�ects models with crossed random e�ects to

model the data (Baayen et al., 2008).

A linear mixed e�ects model can be written as:

y = – + u– + w– + (—1 + u—1 + w—1) · x1+

(—2 + u—2 + w—2) · x2 + ...+

(—n + u—n + w—n) · xn (4.1)

where,
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• y is the dependent variable, like participant’s response (correct vs. incorrect)

• – is the Intercept.

• Fixed e�ects: —1, —2, ..., —n are the coe�cients (or e�ects) of x1, x2, ..., xn.

• u = Èu–, u—1 , u—2 , ..., u—nÍ : Varying intercept and slopes for random e�ect

term like, subject.

• w = Èw–, w—1 , w—2 , ..., w—nÍ : Varying intercept and slopes for random e�ect

term like, item.

In contrast to linear regression models, mixed e�ects models allow to simultane-

ously account for the e�ects of two random variables, like item and participants.

The variance in the categorical dependent variable is also preserved, which would

otherwise be eliminated by averaging in linear regression models. We discuss

these issues and the motivation to use the mixed e�ects model in this thesis in

more detail below in this chapter.

4.1.1 Linear regression and its limitations

In linear regression, a dependent variable (or an outcome) is modelled as a function of

one or more independent predictor variables (factors or explanatory variables). That

is, an outcome y is modelled as a function of explanatory variables x1, x2, x3..., xn,

and an error term Á.

y = – + —1 · x1 + —2 · x2 + ... + —n · xn + Á (4.2)

Analysis of Variance (ANOVA), also a form of linear regression (Chatterjee &

Hadi, 2012; Vasishth et al., 2022), compares the means and variances of two or

more conditions. As expressed in Equation (4.2), regression models can only model

fixed e�ects. Although ANOVA can account for one random e�ect at a time, it

still averages out the variance in the second random e�ect. These problems of

using ANOVA in language sciences have been pointed out as early as the 1960s

(H. H. Clark, 1973; Coleman, 1964). We elaborate on them in the context of

the data of our experiments as follows.
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Modeling two random e�ects simultaneously, and Variability in the data

As mentioned above, a simple linear regression model, including ANOVA, does

not model the e�ect of two random e�ects simultaneously, which a mixed e�ects

model does. In the traditional ANOVA approach, researchers often run two separate

regression models (Lorch & Myers, 1990) by averaging raw data across participants,

and items. Averaging eliminates the variability in the data. Additionally, comparing

the means of a categorical variable (correct vs incorrect responses) even when

transformed into accuracy or proportion scale is hard to interpret sensibly compared

to a continuous variable like reaction time (for discussion, see Bolker et al., 2009;

Jaeger, 2008). The statistical remedy for these problems in analysing the data

of our experiments is to apply mixed e�ects models.

Unbalanced data sets

In our studies, the data sets are unbalanced. The experimental design is intended

to result in a balanced data set. However, after the removal of outliers and the trials

that do not meet the inclusion criteria (for details, see Section 6.2.3), the final data

sets become unbalanced, which introduces a bias in a regression model (Jaeger, 2008).

A mixed e�ects model is best suited for such unbalanced data (Baayen et al., 2008).

Common mean for each predictor

An intrinsic property or feature of the linear regression model is that it assumes

a common mean for each predictor. It has been shown that this is, in fact, not

true in the actual data: the e�ect of a predictor can vary depending on random

variables like participant or item. Mixed e�ects models take into account such

inter-participant and inter-item variability present in the data. For example, in

mixed e�ects models, the random e�ects term with only varying intercept, e.g.,

participant as an intercept, assumes that if there are 100 participants, then the

mean accuracy of those 100 participants is only a subset of possible global accuracies

drawn from a set of the population mean. When a slope, e.g., levels of predictability,

is included in the random e�ects structure in addition to the varying intercept
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(e.g., participants), then the model assumes that the e�ect of predictability on

response accuracy varies across participants. Such variance across participants (or

across items) is present in the real data and can be modelled in a mixed e�ects

model but not in a linear regression model.

Bounded output variable, and Homogenity of variance

Linear models assume an output variable to be on a continuous scale and not

be restricted in a narrow range. In our data, the output variable has a binomially

distributed binary outcome (correct or incorrect response) bounded on [0, 1]. For

every trial, there is a probability p (that ranges from 0 to 1) that the response will

be correct, i.e. 1 (and a probability 1 ≠ p that the response will be incorrect, i.e. 0).

The variance of sample proportion is a function of p, which is shown below.

‡2
p = p(1 ≠ p)

n
(4.3)

That is, the variance of the sample proportions is highest at p = 0.5; it decreases

symmetrically as p approaches to 0 or 1. Thus, for two samples with the proportions

p1 and p2, the variances are similar if p1 and p2 are equidistant from 0.5. Moreover,

the further away p1 and p2 are from 0.5, the more dissimilar the variances will be,

and the more it matters. Critically, we do not know a priori what the value of p

is for di�erent samples under consideration in our experiments.

In a linear model (like ANOVA), binary outcomes [0,1] can be transformed

into a proportion scale across participants or across items. Even though it is a

continuous variable, the proportion scale (i.e., response accuracy) has a range (0,1).

Additionally, such a transformation of discrete variables brings a host of problems

that we have already discussed above (e.g., loss of variability by averaging raw data).

Binomial logistic mixed e�ects models, on the other hand, transform1 the output

variable into a logit scale, log with base e, i.e. ln, with a range (≠Œ, +Œ). Therefore,
1Such transformation is brought about in a generalized linear mixed e�ects model with a

canonical logit link function (see Malik et al., 2020 for discussion).
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these mixed e�ects models do not violate the model assumptions regarding the

range of the outcome variables. In addition, this transformation in the logistic

model also capture the fact that the closer the sample proportions are to the 0.5

the less they matter (Jaeger, 2008).

Thus, Equation (4.1) can also be written as:

ln( p

1 ≠ p
) = – + u– + w– + (—1 + u—1 + w—1) · x1+

(—2 + u—2 + w—2) · x2+

... + (—n + u—n + w—n) · xn (4.4)

This is equivalent to:

p =
exp(ln( p

1≠p))
1 + exp(ln( p

1≠p)) (4.5)

where,

ln( p

1 ≠ p
) = logit(p) (4.6)

Log-odds of correct response obtained from Equation (4.4) can also be trans-

formed into the probability of correct response. Equations (4.5) and (4.6) provide

the relationship between probability, logits (or log-odds), and odds ( p
1≠p).

We have presented the advantages of mixed e�ects models over linear (regression)

models. Hence, we used the binomial logistic mixed e�ects model as the statistical

analysis tool in all experiments reported in this thesis. Below we discuss how the

model that best fits our data was selected.
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4.2 Model selection and Running mixed e�ects
models in R

The underlying structure of given data can be modelled by di�erent approximate

statistical models. We intend to select a model that best fits our data. ‘Best fit’ can

be objectively measured by Akaike Information Criterion, Bayesian Information

Criterion, and Likelihood Ratio Test, among others (Akaike, 1973; Schwarz, 1978).

In this thesis, we first build a complex (or maximal) model (e.g., by including

all predictors, like target word predictability, speech degradation level, speech rate,

their interactions, and co-variates, like trial number in the fixed e�ects) that is

justified by the experimental design (cf. Bondell et al., 2010). The model is fitted

with a maximal random e�ects structure that includes random intercepts for each

participant and item (Barr et al., 2013). By-participant and by-item slopes included

in the model are discussed in the Analyses sections of Chapters 5, 6, and 7.

Model selection was based on the backward-selection heuristics on the fixed

e�ects (cf. Matuschek et al., 2017). To find the best fitting model for the data, non-

significant higher-order interactions were excluded from the fixed-e�ects structure

in a stepwise manner. Similarly, random e�ects not supported by the data that

explained zero variance according to singular value decomposition were excluded

to prevent overparameterisation (Bates, Kliegl, et al., 2015). This gave a more

parsimonious model, which was then extended separately with: i) item-related

correlation parameters, ii) participant-related correlation parameters, and iii) both

item- and participant-related correlation parameters. Among the parsimonious

model and extended models, the model with the smallest AIC was selected as the

best fitting model for our data (Grueber et al., 2011; Richards et al., 2011).

Data preprocessing and analyses were performed in R (R Core Team, 2018) using

R-Studio (Version 3.6.1, Version 3.6.3, and Version 4.1.3). Accuracy was analysed

with Generalized Linear Mixed Models (GLMMs) with lmerTest (Kuznetsova et al.,

2017) and lme4 (Bates, Mächler, et al., 2015) packages. Binary responses (correct

responses coded as 1 and incorrect responses coded as 0) for all participants were fit
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with a binomial logistic mixed e�ects model. Contrast coding of each factor and the

model description are presented in the Analyses section of the chapters that follow.

4.3 Summary

In this chapter, we introduced the statistical tool used for data analysis in this

thesis. We discussed the limitations of traditional linear regression-based models like

ANOVA and outlined the motivations for using mixed e�ects models. To capture

the variability of our data without averaging out across participants or items, and

to account for the e�ect of two (or more) random e�ects — participant and item —

simultaneously, we fit mixed e�ects models to our data.

Details of each data set corresponding to each experiment are presented in Chap-

ters 5, 6, and 7.
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Predictability e�ects of degraded speech

are reduced as a function of attention

In adverse listening conditions, when the bottom-up perceptual input is degraded,

listeners tend to rely on context information and form top-down semantic predic-

tions, which provides contextual facilitation in understanding the degraded speech.

Importantly, it is also a�ected by the allocation of attention to the context in a

top-down manner. The aim of this study was to examine the role of attention in

understanding linguistic information in an adverse listening condition, i.e., when the

speech was degraded. To assess the role of attention, we varied task instructions in

two experiments in which participants were instructed to listen to short sentences

and thereafter type in the last word of the sentence they heard or type in the whole

sentence. We were interested in how these task instructions influence the interplay

between top-down predictions and bottom-up perceptual processes during language

comprehension. The sentences varied in the degree of predictability (low, medium,

and high) as well as in the levels of speech degradation (1-, 4-, 6-, and 8-channel

noise-vocoding). Results indicated better word recognition for highly predictable

sentences for moderate, though not for high, levels of speech degradation, but only

when attention was directed to the whole sentence.
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5.1 Introduction

When there is noise in the signal, listeners overcome the di�culty of understanding

speech by using context information. The ‘context information’ can be information

in a given situation about a topic of conversation, semantic and syntactic information

of a sentence structure, world knowledge, visual information, or even the information

about neighbouring phonemes (Altmann & Kamide, 2007; Kaiser & Trueswell, 2004;

Knoeferle et al., 2005; Xiang & Kuperberg, 2015; for reviews, see Ryskin & Fang,

2021; Stilp, 2020). For example, in the phoneme restoration e�ect (Samuel, 1996;

Warren, 1970), a phoneme of one or more words in a sentence is replaced with white

noise or a coughing sound. Participants are unable to notice such ‘noisy’ words in a

sentence, as they perceptually restore the missing sound in those words from the

context information. To utilise the context information in a sentence, listeners must

attend to it and build a meaning representation of what has been said.

Processing and comprehending degraded speech is more e�ortful and requires

more attentional resources than clear speech (Eckert et al., 2016; Hunter & Pisoni,

2018; Peelle, 2018; Wild et al., 2012). In this chapter, we examine how attention

modulates the predictability e�ects brought about by context information at di�erent

levels of spectral degradation of speech. We address the existing unclarity in the

literature regarding the distribution of attentional resources in an adverse listening

condition: On the one hand, listeners can attend throughout the whole stream of

speech and may thereby profit from the context information to predict sentence

endings. On the other hand, listeners can focus their attention on linguistic material

at a particular time point in the speech stream and, as a result, miss critical

parts of the sentence context. If the goal is to understand a specific word in

an utterance, there is a trade-o� between allocating attentional resources to the

perception of that word and allocating resources also to understanding the linguistic

context and generating predictions.

The study reported in this chapter was conducted to investigate how the

allocation of attentional resources induced by di�erent task instructions influences
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language comprehension and, in particular, the use of context information in

communication through a noisy channel, i.e., when the speech is degraded. To

examine the role of attention on predictive processing under degraded speech, we ran

two experiments in which we manipulated the task instructions. In Experiment 1,

participants were instructed to repeat only the final word of the sentence they heard,

while in Experiment 2, they were instructed to repeat the whole sentence, drawing

attention to the entire sentence, including the context. In both experiments, we

varied the degree of predictability of sentence endings as well as the degree of

speech degradation.

5.2 Background

As we discussed earlier in Chapters 1 and 2, it is generally agreed upon that human

language processing is predictive in nature, and comprehenders generate expectations

about upcoming linguistic materials based on the context available to them (for

reviews, see Kuperberg & Jaeger, 2016; Nieuwland, 2019; Pickering & Gambi,

2018; Staub, 2015). When the bottom-up speech signal is less informative in an

adverse listening condition, listeners tend to rely more on top-down lexical-semantic

cues from the context to support speech perception and language comprehension

(Amichetti et al., 2018; Ganong, 1980; McGurk & MacDonald, 1976; Obleser &

Kotz, 2010; Sheldon et al., 2008b; Warren, 1970). However, it is not just the quality

of speech signal that determines and influences the reliance and use of predictive

processing; attention to the auditory input is essential too. Auditory attention allows

a listener to focus on the speech signal of interest (for reviews, see Fritz et al., 2007;

Lange, 2013). For instance, a listener can attend to and derive information from

one stream of sound among many competing streams, as demonstrated in the well-

known cocktail party e�ect (Cherry, 1953; Hafter et al., 2007). When a participant

is instructed to attend to only one of the two or more competing speech streams in

a diotic or dichotic presentation, response accuracy to the attended speech stream

is higher than to the unattended speech (e.g., Tóth et al., 2020). Similarly, when a

listener is presented with a stream of tones (e.g., musical notes varying in pitch,
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pure tones of di�erent harmonics) but attends to any one of the tones appearing

at a specified time point, this is reflected in a larger amplitude of N11 (e.g., Lange

& Röder, 2010; see also Sanders & Astheimer, 2008). Hence, listeners can draw

attention to and process one among multiple competing speech streams, as well as

orient their attention in the temporal dimension within an unfolding sound stream.

So far, most previous studies have investigated listeners’ attention within a

single speech stream using acoustic cues like accentuation and prosodic emphasis.

For example, Li et al. (2014) examined whether the comprehension of critical

words in a sentence context was influenced by a linguistic attention probe such as

“ba” presented together with an accented or a de-accented critical word. The N1

amplitude was larger for words with such an attention probe than for words without

a probe. These findings support the view that attention can be flexibly directed

either by instructions towards a specific signal or by linguistic probes (Li et al.,

2017; see also Brunellière et al., 2019). Thus, listeners are able to select a part or

segment of a stream of auditory stimuli to selectively allocate their attention to.

The findings on the interplay of attention and prediction mentioned above come

from studies that mostly used a stream of clean speech or multiple streams of clean

speech in their experiments. They are not informative about the attention-prediction

interplay in degraded speech comprehension. Specifically, we do not know what role

attention to a segment of the speech stream plays in the contextual facilitation of

degraded speech comprehension. The studies that report predictability e�ects in

degraded speech comprehension do not systematically examine the role of attention

(e.g., Amichetti et al., 2018; Obleser & Kotz, 2010; Sheldon et al., 2008b). Their

conclusion that semantic predictability facilitates comprehension of degraded speech

is based on listeners’ attention to the entire sentence, which is not compared to any

other experimental condition manipulating attention allocation. Therefore, in two

experiments, we examined whether context-based semantic predictions are automatic

during e�ortful listening to degraded speech when participants are instructed to
1N1 or N100 is a negative-going EEG component that peaks around 100 ms post-stimulus. It is

considered as a neural marker of auditory selective attention (Näätänen & Picton, 1987; Thornton
et al., 2007).
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report either only the final word of the sentence or the entire sentence. We varied the

task instructions to the listeners from Experiment 1 to Experiment 2, which required

them to di�erentially attend to the target word; the instructions did not restrict the

participants’ attention anywhere in the speech stream. We hypothesised that when

listeners pay attention only to the contextually predicted target word, they do not

form top-down predictions, i.e., there should not be a facilitatory e�ect of target

word predictability. In contrast, when listeners attend to the whole sentence, they do

form expectations such that the facilitatory e�ect of target word predictability will

be observed replicating the prior behavioural findings (e.g., Obleser & Kotz, 2010).

5.3 Experiment 1: Attention to target word

This experiment was designed such that processing the context was not strictly

necessary for the task. Listeners were asked to report the noun of the sentence that

they heard, which was in the final position of the sentence. This instruction did not

require listeners to pay attention to the context which preceded the target word.

5.3.1 Methods

Participants

We recruited 50 participants online via Prolific Academic (Prolific, 2014). One

participant whose response accuracy was less than 50% across all experimental

conditions was removed. Among the remaining 49 participants (M age ±SD =

23.31 ± 3.53 years; age range = 18-30 years), 27 were male, and 22 were female.

All participants were native speakers of German and did not have any speech-

language disorder, hearing loss, or neurological disorder (all self-reported). All

participants received 6.20 Euro as monetary compensation for their participation

in the approximately 40 minutes long experiment.

Materials

Materials used in the experiment were created by the method described in

Chapter 3 (Section 3.1). That is, there were 120 unique sentences in each of these
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three categories: low predictability, medium predictability and high predictability.

Mean cloze probabilities of the target words of low, medium and high predictability

sentences were 0.022 ± 0.027 (M ± SD; range = 0.00-0.09), 0.274 ± 0.134 (M ± SD;

range = 0.1-0.55), and 0.752 ± 0.123 (M ± SD; range = 0.56-1.00) respectively.

All 360 sentences were then noise-vocoded through 1, 4, 6, and 8 channels to

create degraded speech.

Procedure

Participants were asked to use headphones or earphones. A sample of vocoded

speech not used in the practice trial or the main experiment was provided so that

the participants could adjust the volume to their preferred level of comfort at the

beginning of the experiment. The participants were instructed to listen to the

sentences and type in the target word (noun) using the keyboard. The time for

typing in the response was not limited. They were informed at the beginning

of the experiment that some of the sentences would be ‘noisy’ and not easy to

understand. Guessing was encouraged. Eight practice trials with di�erent levels of

speech degradation were given to familiarise the participants with the task before

presenting all 120 experimental trials with an intertrial interval of 1,000 ms.

Each participant listened to 40 high predictability, 40 medium predictability,

and 40 low predictability sentences. Levels of speech degradation were also

balanced across each predictability level so that for each of the three predictability

conditions (high, medium, and low predictability), ten 1-channel, ten 4-channel,

ten 6-channel, and ten 8-channel noise-vocoded sentences were presented, resulting

in 12 experimental lists. The sentences in each list were pseudo-randomised so

that no more than three sentences of the same degradation and predictability

condition appeared consecutively.

5.3.2 Analyses

Accuracy was analysed using Generalized Linear Mixed Models (GLMMs) following

the procedure described in Chapter 4 (Section 4.2) with lmerTest (Kuznetsova et
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al., 2017) and lme4 (Bates, Mächler, et al., 2015) packages. For the 1-channel

speech degradation condition, there were only five correct responses, one each from

5 participants. Therefore, the 1-channel speech degradation condition was excluded

from the analyses. Binary responses (categorical: correct and incorrect) for all

participants were fit with a binomial linear mixed-e�ects model. Correct responses

were coded as 1, and incorrect responses were coded as 0. Number of channels

(categorical: 4-channel, 6-channel, and 8-channel noise-vocoding), target word

predictability (categorical: high predictability sentences, medium predictability

sentences, low predictability sentences), and the interaction of number of channels

and target word predictability were included in the fixed e�ects.

We fitted a model with a maximal random e�ects structure that included random

intercepts for each participant and item (Barr et al., 2013). Both by-participant

and by-item random slopes were included for number of channels, target word

predictability, and their interaction, which was supported by the experiment design.

Based on the previous findings on perceptual adaptation (e.g., Cooke et al., 2022;

Davis et al., 2005; Erb et al., 2013), we further added trial number (centred)

in the fixed e�ect structure to control for whether the listeners adapted to the

degraded speech. We applied treatment contrast for number of channels (8-channel

as a baseline) and sliding di�erence contrast for target word predictability (low

predictability vs medium predictability and low predictability vs high predictability).

5.3.3 Results and discussion

Mean response accuracies (in percentage) for all experimental conditions aggregated

across all participants and items are shown in Table 5.1 and Figure 5.1. It shows

that accuracy increases with an increase in the number of noise-vocoding channels,

i.e., with the decrease in speech degradation. However, accuracy does not increase

with an increase in target word predictability. These observations aligned with

the results of the statistical analyses (Table 5.2).
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Figure 5.1: Mean response accuracy across all conditions in Experiment 1. Accuracy
increased only with an increase in the number of noise-vocoding channels. There is no
change in accuracy with an increase or decrease in target word predictability. Error bars
represent the standard error of the means.

Table 5.1: Response accuracy (mean and standard error of the mean) across all levels of
speech degradation and target word predictability in Experiment 1

Number of channels Target word predictability Mean Standard error
4 High 62.65 2.24

Medium 63.43 2.03
Low 63.99 1.83

6 High 95.60 0.94
Medium 95.54 1.05
Low 95.16 1.10

8 High 98.16 0.84
Medium 96.75 1.04
Low 97.91 0.97

There was a significant main e�ect of number of channels, indicating that

response accuracy for the 8-channel noise-vocoded speech was higher than for

both 4-channel (— = -3.50, SE = .22, z(4,410) = -16.19, p < .001) and 6-channel

noise-vocoded speech (— = -.70, SE = .21, z(4,410) = -3.29, p = .001), that is,
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when the number of channels increased to 8, listeners gave more correct responses

(see Figure 5.1). There was, however, no significant main e�ect of target word

predictability (— = .30, SE = .36, z(4,410) = .84, p = .40, and — = .50,SE = .43,

z(4,410) = 1.16, p = .25), and no interaction between number of channels and

target word predictability (all ps > .05). There was also no significant main e�ect

of trial number (— = .001, SE = .002, z(4,410) = .48, p = .63) suggesting that

the listeners’ performance did not improve over time.

These results indicated a decrease in response accuracy with an increase in speech

degradation from the 8-channel to the 6-channel noise-vocoding condition and from

the 8-channel to the 4-channel noise-vocoding condition. However, response accuracy

did not increase with an increase in target word predictability, and the interaction

between number of channels and target word predictability was also absent, in

contrast to previous findings (e.g., Obleser et al., 2007; Obleser & Kotz, 2011; see

also Hunter & Pisoni, 2018). These results suggest that the task instruction, which

asked the participants to report only the final word, indeed led to neglecting the

context. Although participants were able to neglect the context, there was still

uncertainty about the speech quality of each subsequent trial; hence, they could

not adapt to the di�erent levels of degraded speech.

To confirm that the predictability e�ect (or contextual facilitation) is replicable

and dependent on attentional focus, we conducted a second experiment in which

we changed the task instruction to draw participants’ attention to decoding the

whole sentence.

5.4 Experiment 2: Attention to context

Following up on Experiment 1, we conducted Experiment 2 on a separate group

of participants with a di�erent task instruction. This experiment was intended to

test the hypothesis that the facilitatory e�ect of top-down predictions is observed

only when the listeners’ attention is unrestricted so that the context information

is also included within the listener’s attentional focus.
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Table 5.2: Estimated e�ects of the model accounting for the correct word recognition in
Experiment 1

Fixed e�ects Estimate Std. Error z value p value
Intercept 4.17 .25 16.73 <.001

Noise condition (4-channel) -3.50 .22 -16.19 <.001

Noise condition (6-channel) -.70 .21 -3.29 <.001

Target word predictability (Low-Medium) .30 .36 .84 .40

Target word predictability (High-Low) .50 .43 1.16 .25

Noise condition (4-channel) ◊ -.22 .39 -.57 .57
Target word predictability (Low-Medium)

Noise condition (6-channel) ◊ -.34 .44 -.76 .44
Target word predictability (Low-Medium)

Noise condition (4-channel) ◊ -.54 .45 -1.18 .24
Target word predictability (High-Low)

Noise condition (6-channel) ◊ .04 .50 .09 .03
Target word predictability (High-Low)

Trial number .001 .002 .48 .63

5.4.1 Methods

Participants and Materials

We recruited a new group of 48 participants (M age ±SD = 24.44 ± 3.5 years;

age range = 18-31 years; 32 males) online via Prolific Academic. The same stimuli

were used as in Experiment 1.

Procedure

Participants were presented with sentences at a comfortable volume level. They

were asked to use headphones or earphones, and a prompt was presented before

the experiment began to adjust the volume to their level of comfort. Eight practice
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trials were presented, followed by 120 experimental trials. In contrast to Experiment

1, the participants were instructed to report the entire sentence, instead of reporting

only the sentence-final word, by typing in what they heard. We did not limit

the response time.

5.4.2 Analyses

We followed the same data analysis procedure as in Experiment 1. The 1-channel

speech degradation condition was excluded from further analyses. For the analyses

and results of the two experiments to be comparable, we did not consider whether

listeners reported other words in a sentence correctly; only the final words of the

sentences (target words) were considered as either correct or incorrect responses.

As in Experiment 1, we report the results from the maximal model supported

by the design.

5.4.3 Results and discussion

Mean response accuracy for di�erent conditions is shown in Table 5.3 and Figure

5.2. We found that accuracy increased when the number of noise-vocoding channels

increased, as well as when the target word predictability increased. The results of

the statistical analysis confirmed these observations (Table 5.4).

Table 5.3: Response accuracy (mean and standard error of the mean) across all levels of
speech degradation and target word predictability in Experiment 2

Number of channels Target word predictability Mean Standard error
4 High 62.71 2.14

Medium 59.58 1.88
Low 58.13 1.88

6 High 96.88 0.93
Medium 92.29 1.21
Low 91.46 1.12

8 High 98.54 0.86
Medium 95.21 1.19
Low 95.00 1.23
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Figure 5.2: Mean response accuracy across all conditions in Experiment 2. Accuracy
increased with an increase in number of noise-vocoding channels and target word
predictability. Error bars represent the standard error of the means.

We again found a main e�ect of number of channels, such that response accuracy

at 8-channel was higher than for both 4-channel (— = -3.51, SE = .24, z(4,320)

= -14.64, p < .001), and 6-channel noise-vocoding (— = -.65, SE = .22, z(4,320)

= -2.93, p = .003). Similar to Experiment 1, the main e�ect of trial number was

not significant (— = .002, SE = .002, z(4,320) = 1.11, p = .27) indicating that the

response accuracy did not increase over the course of the experiment.

In contrast to Experiment 1, there was also a main e�ect of target word

predictability: Response accuracy in high predictability sentences was significantly

higher than in low predictability sentences (— = 1.42, SE = .47, z(4,320) = 3.02,

p = .003). We also found a statistically significant interaction between speech

degradation and target word predictability (— = -1.14, SE = .50, z(4,320) = -2.30,

p = .02). Subsequent subgroup analyses of each channel condition showed that

the interaction was driven by the di�erence in response accuracy between high

predictability sentences and low predictability sentences in the 8-channel (— =

1.42, SE = .62, z(1,440) = 2.30, p = .02) and 6-channel noise-vocoding conditions
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(— = 1.14, SE = .34, z(1,440) = 3.31, p < .001); at 4-channel, the di�erence in

response accuracy between high and low predictability sentences was not significant

(— = .28, SE = .18, z(1,440) = 1.59, p = .11).

In contrast to Experiment 1, these results indicate an e�ect of target word

predictability; that is, response accuracy was higher when the target word pre-

dictability was high as compared to low. Also, the interaction between target

word predictability and speech degradation, which was not observed in Experiment

1, showed that semantic predictability facilitated the comprehension of degraded

speech already at moderate levels (like 6- or 8-channel). In line with the findings

from Experiment 1, response accuracy was better with a higher number of channels.

Table 5.4: Estimated e�ects of the model accounting for the correct word recognition in
Experiment 2

Fixed e�ects Estimate Std. Error z value p value
Intercept 4.09 .24 16.79 <.001

Noise condition (4-channel) -3.51 .24 -14.64 <.001

Noise condition (6-channel) -.65 .22 -2.93 .003

Target word predictability (Low-Medium) -.08 .34 -.23 .82

Target word predictability (High-Low) 1.42 .47 3.02 .003

Noise condition (4-channel) ◊ .02 .38 .05 .96
Target word predictability (Low-Medium)

Noise condition (6-channel) ◊ -.13 .43 -.31 .76
Target word predictability (Low-Medium)

Noise condition (4-channel) ◊ -1.14 .50 -2.30 .02
Target word predictability (High-Low)

Noise condition (6-channel) ◊ -.23 .57 -.41 .68
Target word predictability (High-Low)

Trial number .002 .002 1.11 .27
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We combined the data from both experiments in a single analysis to test whether

participants’ response accuracy changes across the experiments, that is, to test

whether the di�erence between experimental manipulations is statistically significant.

We ran a binomial linear mixed-e�ects model on response accuracy and followed

the same procedure as in Experiments 1 and 2. A full random e�ects structure

supported by the study design was modelled. The model revealed no significant main

e�ect of experimental group (— = .04, SE = .26, z(8,730) = .15, p = .88), indicating

that the overall response accuracy did not change with the change in instructions

from Experiment 1 to Experiment 2. However, the critical interaction between

experimental group and target word predictability was statistically significant (— =

.46, SE = .20, z(8,730) = 2.34, p = .02). That is, the e�ect of predictability was

larger in the group that was asked to type in the whole sentence (Experiment 2) than

in the group that was asked to type only the sentence-final target word (Experiment

1). Together, these findings suggest that the change in task instruction, which draws

attention either to the entire sentence or only to the final word, is critical to whether

the context information is used under degraded speech. Nonetheless, degraded

speech comprehension is not reduced by binding listeners’ attention allocation to

one part of the speech stream. The model summary is shown in Table 5.5.

5.5 Conclusion

The main goals of the present study were to investigate whether online semantic

predictions are formed in comprehension of degraded speech when task instructions

encourage attention to the processing of the context information or only to the

critical target word. The results of two experiments revealed that attentional

processes clearly modulate the use of context information for predicting sentence

endings when the speech signal is degraded.

In contrast to the first experiment, the results of the second experiment show an

interaction between target word predictability and degraded speech. This is in line

with existing studies that found a facilitatory e�ect of predictability at di�erent
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Table 5.5: Estimated e�ects of the best-fitting model accounting for the correct word
recognition in both experiments

Fixed e�ects Estimate Std. Error z value p value
Intercept 4.19 .20 20.72 <.001

Noise condition (4-channel) -3.56 .20 -18.19 <.001

Noise condition (6-channel) -.59 .18 -3.28 .001

Target word predictability (Low-Medium) .13 .26 .50 .62

Target word predictability (High-Low) .98 .34 2.93 <.003

Experimental group .04 .26 .15 .88

Noise condition (4-channel) ◊ -.12 .29 -.40 .69
Target word predictability (Low-Medium)

Noise condition (6-channel) ◊ -.30 .34 -.87 .38
Target word predictability (Low-Medium)

Noise condition (4-channel) ◊ -.84 .35 -2.42 .02
Target word predictability (High-Low)

Noise condition (6-channel) ◊ -.11 .38 -.29 .77
Target word predictability (High-Low)

Noise condition (4-channel) ◊ -.10 .25 -.41 .68
Experimental group

Noise condition (6-channel) ◊ -.10 .28 -.36 .72
Experimental group

Target word predictability (High-Low) ◊ -.47 .20 2.34 .02
Experimental group

Trial number .001 .001 .93 .35

levels of speech degradation when the participants were instructed to pay attention

to the entire sentence (e.g., Obleser et al., 2007). Obleser and colleagues reported

56



5. Attention-prediction interplay

that at the 8-channel noise-vocoded speech, key word recognition2 was higher in

high predictability sentences than in low predictability sentences. Listeners were

required to attend to the entire sentence in those studies as well. Therefore, the

findings of Experiment 2 replicate this facilitatory e�ect of predictability that was

observed in Obleser and colleagues’ behavioural experiments.

The important new finding that our study adds to the present literature is that

this e�ect of semantic predictability (i.e., contextual facilitation of degraded speech

comprehension) may be weakened or lost when listeners are instructed to report

only the final word of the sentence that they heard (Experiment 1). The lack of

predictability e�ect (or contextual facilitation) can most likely be attributed to

listeners not successfully decoding the meaning of the verb of the sentence, as the

verb is the primary predictive cue in our stimuli (e.g., Sie jongliert die Bälle) for

the target word (noun: Bälle). Findings from auditory attention literature also

support this explanation: When listeners’ attention is focused on one feature of an

auditory stimulus and the rest are not attended to, then they are not accessed (filter

mechanism, Lange, 2013; change detection, Sanford et al., 2006; Sturt et al., 2004).

Hence, this small change in task instructions from Experiment 1 to Experiment

2 sheds light on the role of top-down attention regulation in using context for

language comprehension in adverse listening conditions. In a noisy channel created

by degraded speech, language comprehension is generally e�ortful, so focusing

attention on only a part of the speech signal seems beneficial in order to enhance

stimulus decoding. However, the results of this study also show that this comes at

the cost of neglecting the context information that could be beneficial for language

comprehension. Our findings hence demonstrate that there is a trade-o� between

the use of context for generating top-down predictions vs focusing all attention on

a target word. Specifically, the engagement in the use of context and generation of

top-down predictions may change as a function of attention (see also Li et al., 2014).
2Notice the di�erence in measurement metrics. Obleser et al. (2007) calculated response

accuracy as the number of correct keywords identified, while we calculated it as the correct
identification of the sentence-final target word.
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This claim is also corroborated by the significant change in predictability e�ects (or

contextual facilitation) from Experiment 1 to Experiment 2 in the combined dataset.

Findings from the irrelevant-speech paradigm also support our conclusion. It has

been shown that the predictability of unattended speech has no e�ect on the main

experimental task (e.g., memorisation of auditorily presented digits). Wöstmann

and Obleser (2016) did not find predictability e�ects when the participants ignored

the degraded speech (see also Ellermeier et al., 2015). An alternative explanation

of ‘participants neglecting the context’ could be that the participants did not listen

to the context at all, or they heard but did not process the context. However,

irrelevant-speech paradigm studies show that listeners cannot avoid listening to

the speech presented to them; to-be-ignored speech has been shown to interfere

with the main experimental task (e.g., Lecompte, 1995). It is plausible that the

participants listened to the context but did not do deep processing (cf. Ferreira &

Lowder, 2016). This is not incompatible with our first explanation, as in either case,

attention to the final word leaves the listeners with limited resources to process

and form a representation of the context information.

Considering the theoretical accounts of predictive language processing (Friston,

Parr, et al., 2020; Kuperberg & Jaeger, 2016; McClelland & Elman, 1986; Norris et

al., 2016; Pickering & Gambi, 2018), one would expect that listeners automatically

form top-down predictions about upcoming linguistic units/events based on prior

context. Also, when speech is degraded, top-down predictions render a benefit in

word recognition and language comprehension (e.g., Sheldon et al., 2008a, 2008b).

Results of our study revealed new theoretical insights by showing that this is not

always the case. Top-down predictions are dependent on attentional processes (see

also Kok et al., 2012), directed by task instructions; thus, they are not always

automatic, and predictability does not always facilitate comprehension of degraded

speech. To this point, our findings shed light on the growing body of literature

indicating limitations of predictive language processing accounts (Huettig & Guerra,

2019; Huettig & Mani, 2016; Mishra et al., 2012; Nieuwland et al., 2018).
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Results from both experiments show that the e�ect of trial number is not

significant. In contrast to previous studies (e.g., Davis et al., 2005; Erb et al.,

2013), we did not observe adaptation to noise-vocoded speech. In those studies,

there was certainty about the speech quality of the next trial, as the participants

were presented with only one level of spectral degradation (only 4-channel or

only 6-channel noise-vocoding) and crucially with no specific regard to semantic

predictability. On the contrary, in our study, listeners were always uncertain about

the speech quality of the next trial as well as its semantic predictability. Because of

this changing context, the perceptual system of the participants may not retune

itself (Goldstone, 1998; Mattys et al., 2012). However, there was no experimental

condition in the current study in which participants were certain about the next-trial

speech degradation. It cannot be discarded entirely that certainty about speech

degradation would retune the perceptual system, and listeners would adapt to the

degraded speech. This is one of the limitations of the current study.

One could object to the metric of calculating accuracy in Experiment 2, but

it should be noted that for a valid comparison of the results between the two

experiments, we can only consider the accuracy of the sentence-final target word

in Experiment 2. Participants’ response of the words preceding the sentence-final

target word in Experiment 1 was not available; in fact, it was the whole point of the

instruction given to the participants: Direct their attention only to the sentence-final

target word but not to its preceding words. Hence, we find a discrepancy between

the result of prior studies (Obleser et al., 2007; Obleser & Kotz, 2010) and our study

(Experiment 2) regarding the degradation level at which contextual facilitation is

observed. Nonetheless, the conclusion from these studies and our study is consistent:

as long as listeners attend to the sentence context, semantic predictability facilitates

language comprehension, but, such a facilitatory e�ect is not observed when the

degradation is at an extreme level, like 1-channel noise-vocoding.

In conclusion, this study provides a novel insight into the modulatory role of

attention in the interaction between top-down predictive and bottom-up auditory

processes. We show that task instructions a�ect the distribution of attention to
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the degraded speech signal. This, in turn, means that when insu�cient attention is

given to the context, top-down predictions cannot be generated, and the facilitatory

e�ect of predictability is substantially reduced. The findings of this study indicate

limitations to predictive processing accounts of language comprehension.

5.6 Summary

This chapter reported studies which replicated the previous finding that semantic

predictability facilitates language comprehension when speech degradation is not at

an extreme level. That is, when the channel of transmission is noisy, listeners put

less weight on the degraded auditory input and more weight on the priors derived

from the context information that facilitates language comprehension. Importantly,

we showed in this chapter that contextual facilitation (i.e., facilitatory e�ect of

predictability) is observed only when the listeners attend to the entire sentence,

including the context. In the next chapter, we further investigate this e�ect;

specifically, we examine the granularity of the predictability e�ect at moderate

levels of speech degradation. We also examine whether (un)certainty about next-

trial speech degradation and predictability influences perceptual adaptation to

degraded speech.
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Semantic predictability facilitates

comprehension of degraded speech in a

graded manner

In the previous chapter, we concluded that in a noisy channel, predictability

facilitates comprehension of degraded speech only when listeners attend to the

context. We also pointed out a few limitations of the study. In Experiment 2

(“Attention to context”) of Chapter 5, there was an implicit assumption that all the

noun-correct responses were borne out of correctly identifying the context-evoking

words (i.e., verbs). For a comparable analysis and results between Experiment

1 (“Attention to target word”) and Experiment 2 (“Attention to context”), we

only considered the accuracy of noun identification. In this chapter, we take into

account listeners’ identification of context (i.e., the verb that precedes the noun)

while calculating the response accuracy. Importantly, we replicate the predictability

e�ects in degraded speech comprehension reported in the previous chapter, showing

a di�erence between comprehension of high and low predictability sentences. In

this chapter, we extend it further and examine if the predictability is graded or

all-or-nothing. Previously, we only showed that listeners do not adapt to degraded

speech when there is a trial-by-trial variability in speech degradation. Here we

report two experiments investigating if listeners’ adaptation to degraded speech
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is a�ected by such variability by comparing it against another condition in which

speech degradation is kept constant. The results showed that in contrast to the

“narrowed expectations” view postulated for the predictive processing of degraded

speech, listeners probabilistically preactivate upcoming words from a wide range of

semantic space, not limiting only to the highly probable sentence endings. We also

did not find any learning e�ect on repeated exposure to degraded speech.

6.1 Introduction

In the literature on speech perception and sentence processing, studies have argued

that prediction is either probabilistic and graded or all-or-nothing (e.g., Ferreira &

Clifton Jr, 1986; Kuperberg & Jaeger, 2016; Luke & Christianson, 2016). Few studies

have investigated such theoretical questions within the domain of adverse listening

conditions, specifically in degraded speech comprehension (e.g., Corps & Rabagliati,

2020; Strauß et al., 2013; cf. van Os et al., 2021b). Strauß et al. (2013) posit that

listeners cannot preactivate less predictable sentence endings in an adverse listening

condition. They propose that the facilitatory e�ect of predictability is limited to

only highly predictable sentence endings at a moderate level of spectral degradation

of speech. Although many studies support the general idea of Strauß and colleagues

that predictability facilitates comprehension of degraded speech (e.g., Hunter &

Pisoni, 2018; Obleser & Kotz, 2010; Sheldon et al., 2008a), there have been no

studies so far after Strauß and colleagues, to our knowledge, which examined the

nature of predictability specifically in degraded speech comprehension.

In this chapter, our main aim is to attempt a replication of the previous findings

of these predictability e�ects and extend them further by testing if listeners form

narrowed expectations while listening to moderately degraded speech. In line with

Strauß et al. (2013)’s argument, it is possible that listeners form predictions that are

restricted to only highly probable sentence endings. On the opposite, listeners might

generate expectations about an upcoming word based on how likely the word is to

appear in the given context and hence form a probabilistic prediction. We also test
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the presence of perceptual adaptation and its interplay with contextual facilitation.

We set a metric of measurement of language comprehension that considers whether

listeners correctly identified the context information.

6.2 Background

6.2.1 Predictability e�ects in degraded speech perception

We discussed in Chapter 2 (Section 2.2.2) that some studies (Obleser et al., 2007;

Obleser & Kotz, 2010; Sheldon et al., 2008a; see also Hunter & Pisoni, 2018) have

already shown the facilitatory e�ect of predictability in comprehension of degraded

speech. For example, Obleser and colleagues compared high and low predictability

sentences and observed contextual facilitation, in terms of the di�erence in response

accuracy between high and low predictability sentences, at 8- and 4-channel noise-

vocoded speech in their (2007) and (2010) studies, respectively. However, these

neuroimaging studies were not designed to test the nature of predictability e�ects.

In a modified experimental design, Strauß et al. (2013) varied the target word

predictability by manipulating its expectancy (i.e., how expected the target word

is given the verb) and typicality (i.e., co-occurrence of the target word and the

preceding verb). They reported that at a moderate level of spectral degradation,

N400 responses at highly predictable (strong-context and high-typical) words were

the smallest. In contrast, they found that the N400 e�ect (in terms of the amplitude

of the N400 component) was largest at the strong-context, low typical words and

the weak-context, low-typical words; the responses at the latter two were not

statistically di�erent from each other. The authors interpreted these findings as a

facilitatory e�ect of sentence predictability which might be limited to only highly

predictable sentence endings at a moderate level of spectral degradation. They

proposed it as an expectancy searchlight model and suggested that listeners form

narrowed expectations from a restricted semantic space when the sentence endings

are highly predictable. Their model posits that when the sentence endings are less

predictable, listeners cannot preactivate those less predictable sentence endings in
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an adverse listening condition, namely, a severe spectral degradation. It is similar

to the earlier observations made by Rayner et al. (2006; see Brothers & Kuperberg,

2021 for discussion), who found that reading times at low and medium predictability

words were shorter than high predictability words, but it is contrary to the view

that readers and listeners form a probabilistic prediction of an upcoming word in a

sentence. For example, Nieuwland et al. (2018)1 showed in a large-scale replication

study of DeLong et al. (2005) that the N400 amplitude at the sentence-final noun

is directly proportional to its cloze probability across a range of high- and low-cloze

words (see also Kochari & Flecken, 2019; Nicenboim et al., 2020). Heilbron et al.

(2022) also showed that a probabilistic prediction model outperforms a constrained

guessing model in predicting listeners’ neural activities in MEG and EEG. They

suggested that linguistic prediction is probabilistic, and it is not limited only to

the highly predictable sentence endings, but operates broadly in a wide range of

probable sentence endings. However, when put in perspective with our research

question, these studies were conducted in conditions without noise or degraded

speech. Furthermore, the ones that examined degraded speech comprehension used

only two levels of semantic predictability (high and low). The granularity and the

nature of prediction remain to be tested in degraded speech comprehension.

6.2.2 Adaptation to degraded speech

We discussed in Chapter 2 that studies have shown evidence for perceptual adap-

tation to artificially distorted speech. When exposed to noise-vocoded speech,

listeners’ word recognition accuracy is shown to increase over the course of the

experiment. Davis et al. (2005) and Erb et al. (2013) presented participants with

4- and 6-channel noise-vocoded speech in a single block. They found that the

proportion of correctly reported words increased over the course of the experiment.

It is important to note that in these experiments, listeners were not uncertain about

the speech quality of any upcoming trial, i.e., the global channel context was certain
1However, Nieuwland et al. (2018) could not replicate DeLong et al. (2005)’s finding that

comprehenders predict word-form. The N400 e�ect at the English articles a/an were not replicable.
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or predictable. Additionally, there was no systematic variation in the semantic

features of the words presented to the participants.

Listeners gradually map the representation of degraded lexicons around their

“true” (or clear) schema/exemplars on repeated exposure (Goldstone, 1998; Nosofsky,

1986). With repeated exposure, the representation of degraded input comes closer to

the exemplar, thereby improving the performance. This feature-mapping mechanism

proposes that the listeners map the whole feature of the sensory input. However,

the higher level features of a speech (e.g., semantic property, like predictability)

can also influence the acoustic realisation of a degraded word, i.e., bottom-up

processing of the degraded speech and perceptual adaptation (Gold & Watanabe,

2010; Goldstone, 1998; cf. Nahum et al., 2008). Listeners can assign weight to

di�erent dimensions of speech stimuli (acoustic-phonetic and lexical-semantic).

Performance improves over time when listeners give more attentional weight to the

acoustic-phonetic dimension (cf. Haider & Frensch, 1996).

Thus, when multiple levels of degraded speech signals are presented in a (pseudo-

)randomised order, then the listener is uncertain about the speech quality of any

upcoming trial, i.e., the global channel context is certain or predictable. Such changes

in the auditory features of the speech signal throughout the experiment are likely to

render the perceptual adaptation totally absent (Mattys et al., 2012). Additionally,

the trial-by-trial variability in the characteristics of speech signals can also impair

word recognition (Sommers et al., 1994; see also Dahan & Magnuson, 2006). Very

few studies have tried to study the influence of (un)certainty about next-trial speech

quality and semantic feature in perceptual adaptation. For example, in a study by

Vaden et al. (2013), participants were presented with words in background noise

at +3dB SNR and +10dB SNR in a pseudo-random order. They argued that an

adaptive control system is involved to optimise task performance when there is

uncertainty about the next trial. Similarly, Obleser and colleagues (Hartwigsen

et al., 2015; Obleser et al., 2007; Obleser & Kotz, 2010) also presented listeners

with multiple noise-vocoded speech (ranging from 2 to 32 channels noise-vocoding)

in a pseudo-random order. However, none of these studies reported a change in
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listeners’ performance over the course of the experiment. So, we cannot derive a

conclusion from these studies about the e�ect of (un)certainty of the global channel

context in perceptual adaptation and contextual facilitation.

As previously mentioned in Chapter 2 (Section 2.3), there are two conflicting

findings in the literature on perceptual adaptation: On the one hand, repeated

exposure to degraded speech leads to perceptual adaptation, consequently improving

word recognition throughout the experiment. On the other hand, uncertainty about

the next-trial speech quality is detrimental to word recognition.

6.2.3 Measurement of language comprehension

How we measure language comprehension has rarely been guided by any specific

theoretical motive in the existing literature (cf. Amichetti et al., 2018). There is a

discrepancy across studies in how language comprehension in degraded speech is

quantified. Some studies that reported contextual facilitation in degraded speech

comprehension used the proportion of correctly reported final words only (e.g.,

Hunter & Pisoni, 2018; Obleser & Kotz, 2010; Sheldon et al., 2008a). Obleser et al.

(2007) quantified language comprehension as the proportion of correctly identified

key words in SPIN sentences. Erb et al. (2013) and Hakonen et al. (2017) used

report scores (Peelle, 2013) that measure the proportion of correctly recognised

words per sentence as an index of language comprehension. Such inconsistencies

make cross-study comparison di�cult. None of the metrics outlined here take

into account if listeners have correctly identified the context, which should be

the most important factor to be considered in the first place: If the context is

misidentified, then the listeners are highly likely to misidentify the succeeding

words (Marrufo-Pérez et al., 2019).

6.2.4 The present study

Stemming from the results of Chapter 5 and the motivations outlined at the

beginning of this chapter, the goals of the present study were threefold: The first

goal was to attempt to replicate the facilitatory e�ect of predictability examining
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the nature of predictability, i.e., to test if listeners form narrowed expectations.

Obleser and colleagues (e.g., Obleser et al., 2007; Obleser & Kotz, 2010) have shown

predictability e�ects (or contextual facilitation) to appear only at a moderate level

of speech degradation by using only two levels of predictability (low and high). The

use of three levels of target word predictability (low, medium and high) will let us

test the narrowed expectations view (Strauß et al., 2013) by also taking into account

the accuracy of context. If the listeners form narrowed predictions only for the target

words with high cloze probability, then the facilitatory e�ect of semantic prediction

will be observed only at these highly predictable sentence endings. Listeners’

response to the target words with medium and low cloze probability would be quite

similar since these two fall out of the range of narrow prediction. However, if the

listeners’ predictions are not restricted to highly predictable target words, then they

form predictions across a wide context proportional to the probability of occurrence

of the target word. In addition to highly predictable sentence endings, listeners

will also form predictions for less predictable sentence endings. Such predictions

will depend on the probability of occurrence of the target words. In other words,

listeners also form predictions for less expected sentence endings; the semantic space

of prediction depends on the probability of occurrence of those sentence endings.

In contrast to prior studies (e.g., Obleser & Kotz, 2010), the inclusion of sentences

with medium cloze target words thus allows us to di�erentiate whether listeners

form all-or-nothing prediction restricted to high cloze target words or a probabilistic

prediction for words across a wide range of cloze probability.

There is a variation in the sentences we use, i.e., they are low, medium and

high predictability sentences, and they are degraded at di�erent levels of spectral

degradation. So our second goal was to investigate the role of uncertainty about the

next-trial speech features on perceptual adaptation by varying the global channel

context on the comprehension of degraded speech. To study this, we presented

sentences randomised across all levels of predictability but i) blocked by each

noise-vocoding channel, i.e. spectral degradation (predictable channel context) and

ii) pseudo-randomised across all noise-vocoding channels (unpredictable channel
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context). Based on the previous findings, we expected that in the unpredictable

channel context (i.e., when sentences are presented in a random order of spectral

degradation), participants’ word recognition performance would be worse than in the

predictable channel context (i.e., when the sentences are blocked by noise-vocoding,

Garrido et al., 2011; Sommers et al., 1994; Vaden et al., 2013). To further examine

perceptual adaptation, we also considered the e�ect of trial number in the analyses.

And third, we aimed to measure language comprehension with a metric that

reflects the participants’ correct or incorrect identification of the context. If

participants do not understand the context and we only measure the recognition of

the final word, this might not truly reflect the e�ect of contextual facilitation.

6.3 Methods

6.3.1 Participants

We recruited a group of participants via Prolific Academic (Prolific, 2014) and

assigned them to the predictable channel context (n = 50; M age ±SD = 23.6± 3.2

years; age range = 18-30 years; 14 females). Another group of 48 participants (n

= 48; M age ±SD = 24.44± 3.5 years; age range = 18-31 years; 16 females) from

Experiment 2 of Chapter 5 were recruited and assigned to the unpredictable channel

context. All participants were native speakers of German and reportedly did not

have any speech-language disorder, hearing loss, or neurological disorder. They

received monetary compensation of 6.20 Euro for participating in the approximately

40 minutes long experiment.

6.3.2 Materials

We used the same stimuli described in Chapter 3 (Section 3.1). One hundred twenty

sentences each for low predictability, medium predictability, and high predictability

sentences that di�ered in the cloze probability of sentence-final target words were

used. Their mean cloze probabilities in the low, medium and high predictability

sentences were 0.022 ± 0.027 (M ± SD; range = 0.00-0.09), 0.274 ± 0.134 (M ± SD;
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range = 0.1-0.55), and 0.752 ± 0.123 (M ± SD; range = 0.56-1.00), respectively.

All 360 sentences were then noise-vocoded through 1, 4, 6, and 8 channels to

create degraded speech.

6.3.3 Procedure

Participants were asked to use earphones or headphones. A sample of vocoded

speech not used in the practice trial or the main experiment was presented to adjust

the volume to their preferred comfort level at the beginning of the experiment. The

participants were instructed to listen and report the entire sentences by typing in

everything they heard using the keyboard. The time for typing in the response

was not limited. They were informed at the beginning of the experiment that

some of the sentences would be ‘noisy’ and not easy to understand. Guessing was

encouraged. Eight practice trials with di�erent levels of speech degradation were

provided to the participants to familiarise them with the task before presenting

all 120 experimental trials with an intertrial interval of 1,000 ms.

Each participant was presented in the unpredictable channel context with 120

unique sentences: 40 low predictability, 40 medium predictability, and 40 high

predictability sentences. Degradation level was also balanced across each sentence

type, i.e., in each of the low, medium, and high predictability sentences, 10 sentences

passed through each noise-vocoding channels — 1, 4, 6, and 8 — were presented. This

resulted in 12 experimental lists. The sentences in each list were pseudo-randomised.

No more than three sentences of the same degradation and predictability condition

appeared consecutively. This randomisation confirmed the uncertainty of next-trial

speech quality (or degradation) in the global context of the experiment.

The same set of stimuli and experimental lists were used in the predictable

channel context. Each participant was presented with 120 unique sentences blocked

by degradation level, i.e., by noise-vocoding channels. There were four blocks of

stimuli, one for each degradation level. Thirty sentences were presented in each of

the 4 blocks. In the first block, all sentences were 8-channel noise-vocoded, followed

by the blocks of 6-, 4-, and 1-channel noise-vocoded speech consecutively (Sheldon
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et al., 2008a). Within each block, 10 low predictability, 10 medium predictability

and 10 high predictability sentences were presented. All the sentences were pseudo-

randomised so that not more than three sentences of the same predictability

condition appeared consecutively in each block. This confirmed the certainty of

next-trial speech quality (within each block) and uncertainty of next-trial sentence

predictability across all four blocks.

For the present study, the data for the unpredictable channel context was the

same as the data from Experiment 2 of Chapter 5, while the data for the predictable

channel context was newly collected.

6.4 Analyses

In the sentences used in our experiment, verbs evoke predictability of the sentence-

final noun. Therefore, the e�ect of predictability (evoked by the verb) on language

comprehension can be rightfully measured if we consider only those trials in which

participants identify the verbs correctly. Verb-correct trials were considered as the

sentence in which participants identified the context independent of the succeeding

words. Morphological inflections and typos were considered as correct. We first

filtered out those trials in which verbs were not identified correctly, i.e., trials

with incorrect verbs. The 1-channel noise-vocoding condition was dropped from

the analyses as there were no correct responses in any of the remaining trials

in this condition.

Accuracy was analysed using Generalized Linear Mixed Models (GLMMs)

with lmerTest (Kuznetsova et al., 2017) and lme4 (Bates, Mächler, et al., 2015)

packages. Binary responses (categorical: correct and incorrect) for all participants

in both groups (predictable and unpredictable channel contexts) were fit with

a binomial linear mixed-e�ects model. Correct responses were coded as 1, and

incorrect responses were coded as 0. Number of channels (categorical: 4-channel,

6-channel, and 8-channel noise-vocoding), target word predictability (categorical:

high predictability, medium predictability, and low predictability), global channel
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context (categorical: predictable channel context and unpredictable channel context)

and the interaction of number of channels and target word predictability were

included in the fixed e�ects.

Separately for each group (i.e., for predictable and unpredictable channel

context), we first fitted a model with a maximal random e�ects structure that

included random intercepts for each participant and item (Barr et al., 2013). Both

by-participant and by-item random slopes were included for number of channels,

target word predictability, and their interaction, which was supported by the

experiment design. Following the procedure described in Chapter 4 (Section 4.2),

we selected the optimal model that best fit our data. We applied treatment contrast

for number of channels (8-channel as a baseline; factor levels: 8-channel, 4-channel,

6-channel) and sliding di�erence contrast for target word predictability (low vs

medium predictability and low vs high predictability) and channel context (factor

levels: unpredictable vs predictable).

6.5 Results and discussion

Mean response accuracy for di�erent conditions in both channel contexts is shown in

Tables 6.1, 6.2, and Figure 6.1. We found that accuracy increased when the number of

noise-vocoding channels increased and when the target word predictability increased.

The results of the statistical analysis confirmed these observations (Table 6.3).

Table 6.1: Response accuracy (mean and standard error of the mean) across all levels of
speech degradation and target word predictability in the predictable channel context

Number of channels Target word predictability Mean Standard error
4 Low 71.59 2.74

Medium 86.53 1.99
High 93.53 1.42

6 Low 93.73 1.33
Medium 96.21 1.08
High 98.75 1.02

8 Low 97.84 0.80
Medium 97.52 1.04
High 99.38 0.59
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Figure 6.1: Mean response accuracy across all conditions in Experiment 2. Accuracy
increased only with an increase in the number of noise-vocoding channels in both channel
contexts. Only in the unpredictable global channel context, at the 4-channel noise-
vocoding condition, a graded e�ect of prediction is observed. Error bars represent the
standard error of the means.

Table 6.2: Response accuracy (mean and standard error of the mean) across all levels of
speech degradation and target word predictability in the unpredictable channel context

Number of channels Target word predictability Mean Standard error
4 Low 72.16 2.93

Medium 85.61 2.47
High 92.94 1.96

6 Low 93.88 1.04
Medium 94.86 1.24
High 99.81 0.62

8 Low 96.14 1.02
Medium 96.59 0.97
High 99.55 0.64

We found a significant main e�ect of number of channels. The response accuracy

at 8-channel was higher than for both 4-channel (— = -2.87, SE = .22, z(6917)

= -13.1, p <.001), and 6-channel noise-vocoding (— = -.66, SE = .19, z(6917) =

-3.42, p < .001). There was a significant main e�ect of target word predictability
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suggesting that the response accuracy in low predictability sentences was lower than

in high predictability sentences (— = 2.18, SE = .3, z(6917) = 7.2, p < .001) and

medium predictability sentences (— = -.52, SE = .27, z(6917) = -1.97, p = .049).

Table 6.3: Estimated e�ects of the model accounting for the correct word recognition

Fixed e�ects Estimate Std. Error z value p value
Intercept 5.09 .24 21.38 <.001

Noise condition (4-channel) -2.87 .22 -13.10 <.001

Noise condition (6-channel) -.66 .19 -3.42 .001

Target word predictability (Low-Medium) -.52 .27 -1.97 .049

Target word predictability (High-Low) 2.18 .30 7.21 <.001

Noise condition (4-channel) ◊ -.71 .29 -2.44 .015
Target word predictability (Low-Medium)

Global channel context ◊ -.27 .14 -2.02 .043
(Unpredictable - Predictable)

We also found a significant interaction between number of channels and target

word predictability (— = -.71, SE = .29, z(6917) = -2.44, p = .015). The interaction

was driven by the e�ect of predictability at 4-channel condition: The accuracy in

high predictability sentences was higher than in medium predictability sentences

(— = 1.14, SE = .37, z(1608) = 3.1, p < .001) which in turn was higher than low

predictability sentences (— = 1.01, SE = .24, z(1608) = 4.2, p < .001). There was

no significant di�erence in response accuracy between low predictability and high

predictability sentences at both 6-channel (— = .33, SE = .32, z(2590) = 1.04, p =

.3) and 8-channel (— = -.014, SE = .32, z(2719) = -.04, p = .97) conditions.

A subgroup analysis was also performed on each channel context. There was a

significant main e�ect of global channel context which showed that the response

accuracy was higher in predictable channel context than in unpredictable channel

context (— = -.27, SE = .14, z(6917) = -2.02, p = .04).
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To further address the question of perceptual adaptation, following the findings

of Chapter 5, we also added trial number in the fixed e�ect. Note that there were

30 trials in each block in the predictable channel context (i.e., blocked design).

For comparability, we divided unpredictable channel context (i.e., randomised

design) into four blocks in the analysis. We did not find a significant main e�ect

of trial number indicating that the response accuracy did not change throughout

the experiment (— = -.0004, SE = .01, z(6917) = -.05, p = .97). It remained

constant within each block in the predictable channel context (— = -.02, SE =

.01, z(3291) = -1.43, p = .15) as well as in the unpredictable channel context (—

= .01 SE = .01, z(3291) = 1.05, p = .29).

6.6 Conclusion

The present study had three goals: i) to examine if the previously reported

facilitatory e�ect of semantic predictability is restricted to only highly predictable

sentence endings, ii) to assess the role of perceptual adaptation on the facilitation

of language comprehension by sentence predictability, and iii) to use and establish a

sensitive metric to measure language comprehension that takes into account whether

listeners benefited from the semantic context of the sentence.

Results of our study showed the expected interaction between predictability

and degraded speech. Language comprehension was better for high-cloze than

for low-cloze target words when the speech signal was moderately degraded by

noise-vocoding through 4 channels, while the e�ect of predictability was absent

when speech was not intelligible by noise-vocoding through 1 channel. Listeners

could not even identify the context at this severe degradation level. These results

align with Obleser and Kotz (2010); we partly included identical sentences from

their study in the present study (see Appendix A). Importantly, in contrast to

their study, we also created sentences with medium-cloze target words (which were

intermediate between high-cloze and low-cloze target words). We found that the
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e�ect of predictability was also significant when comparing sentences with medium-

cloze target words against the sentences with low-cloze and high-cloze target words

in 4-channel noise-vocoding condition. Recognition of a target word was dependent

on its level of predictability (measured by cloze probability), and correct recognition

was not just limited to high-cloze target words. These significant di�erences in

response accuracy between medium-cloze and low-cloze target words and between

medium-cloze and high-cloze target words at 4-channel noise-vocoding condition

show that the sentence-final word recognition is facilitated by semantic predictability

in a graded manner, especially at a moderate level of speech degradation. This is in

line with the findings from other experimental paradigms, including but not limited

to the ERP literature, where it has been observed that the semantic predictability,

in terms of cloze probability of the target word of a sentence, modulates semantic

processing, indexed by N400, in a graded manner (DeLong et al., 2005; Nieuwland

et al., 2018; Wlotko & Federmeier, 2012).

The interpretation of the observed graded e�ect of semantic predictability at the

moderate level of spectral degradation provides a novel insight into how listeners

form predictions when the bottom-up input is compromised. That is, in an adverse

listening condition, listeners rely more on top-down semantic prediction than bottom-

up acoustic-phonetic cues. Notably, such a reliance on top-down prediction is not an

all-or-nothing phenomenon. Instead, listeners form a probabilistic prediction about

the target word. The e�ect of target word predictability on comprehension is not

sharply focused solely on high-cloze target words like a ‘searchlight’ as proposed by

Strauß and colleagues. Rather, it is spread across a wide range, including low- and

medium-cloze target words. As the cloze probability of the target words decreases

from high to low, the focus of the searchlight becomes less precise.

One could argue that the participants in our experiment “guessed” the verb after

first correctly identifying the noun in a sentence, i.e., instead of forward prediction

(Bälle from jongliert), participants guessed backwards (jongliert from Bälle). To rule

out this possible explanation of our findings, we conducted an additional analysis

comparing the forward predictability e�ect (from verb to noun) to the size of the
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backward guessing e�ect (correct identification of the verb based on the final noun).

If the observed e�ect is a guessing phenomenon, then we would expect the backward

guessing e�ect to be larger than the e�ect of predictability. If, on the other hand,

understanding the verb helps to shape the predictions of the upcoming noun, and

this helps intelligibility, then the forward prediction e�ect should be larger than

the e�ect of guessing. The results of this complementary analysis (see Appendix

B) support the findings of the main analysis reported in the Results section. In

the backward guessing analysis, there was no graded e�ect of predictability, and

the backward e�ect of “guessing” the verb jongliert after recognising the noun

Bälle, if present at all, was smaller than the forward e�ect of predicting the noun

after recognising the verb in the sentence Sie jongliert die Bälle. This further

corroborates our argument that the listeners, in fact, made use of the verb-evoked

context to form predictions about the upcoming noun, not the other way around,

and did so in a graded manner when the speech was moderately degraded.

There was no learning e�ect or perceptual adaptation to degraded speech at

the trial-by-trial level. We reason that the adaptation was hampered by a constant

variation in the higher-level semantic feature (i.e., target word predictability).

The results of the analyses of trial number on the e�ect of channel context

to capture trial-by-trial perceptual adaptation showed that the response accuracy

did not increase over the course of the experiment. This suggests that listeners’

performance remained constant throughout the experiment regardless of certainty

about the next-trial spectral degradation. One way by which perceptual adaptation

occurs is when the perceptual system of a listener retunes itself to the sensory

properties of the auditory signal, which can be facilitated by feedback from higher-

level lexical information (Goldstone, 1998; Mattys et al., 2012; cf. Davis et al.,

2005). We reason that the trial-by-trial variability in the spectral resolution of the

speech signal in the unpredictable channel context prevented perceptual adaptation.

Although there was certainty about the quality of speech signal within a block

in the predictable channel context, we did not observe trial-by-trial perceptual

adaptation in this condition either. This is contrary to previous studies showing
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that listeners adapt to degraded speech when the global context of speech quality

is predictable (Davis et al., 2005; Erb et al., 2013). However, the crucial di�erence

between those studies and the study reported here is the manipulation of target

word predictability. For example, Erb et al. (2013) presented sentences with

only low predictability target words from the G-SPIN test. We, on the contrary,

parametrically varied target word predictability from low to medium and high. Note

that we presented target words in a randomised order in both channel contexts. This

alone introduces trial-by-trial uncertainty in the predictable channel context and

possibly hinders trial-by-trial perceptual adaptation. As Goldstone notes, “one way

in which perception becomes adapted to tasks and environments is by increasing the

attention paid to perceptual dimensions and features that are important, and/or by

decreasing attention to irrelevant [perceptual] dimensions and features” (Goldstone,

1998, p. 588; see also Gold & Watanabe, 2010). A similar prediction is made by

the Reverse Hierarchy Theory on auditory perception (Ahissar et al., 2009; Nahum

et al., 2008). It posits that listeners first have access to the higher-level features

of a speech signal. If their task is to comprehend language, then they may not be

able to access the lower-level perceptual features. Consequently, they cannot adapt

to the speech in an adverse listening condition. In our study, listeners paid more

attention to the semantic properties of the sentences (i.e., contextual cues and target

word predictability) than to the perceptual properties (i.e., spectral resolution or

speech quality) as the instruction focused on “language comprehension” rather

than “perception”. We speculate this might have resulted in the absence of trial-

by-trial perceptual adaptation to degraded speech, even when next-trial speech

quality was predictable. Therefore, in both predictable and unpredictable channel

contexts, perceptual learning of the degraded speech was hindered by trial-by-trial

variation of either one (target word predictability) or both properties (target word

predictability and spectral degradation level) of the speech stimuli.

We also argue that for the examination of semantic predictability e�ects during

language comprehension, the analyses of response accuracy should be based on

the trials in which context evoking words are correctly identified in the first place
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to make sure that listeners make use of the contextual cues instead of analyzing

general word recognition scores. Use of crude word recognition score, or key-word

recognition score do not reflect whether a comprehender formed a representation

of the available context information.

To conclude, we show the interaction between top-down predictive and bottom-

up auditory processes: Only when the speech is moderately degraded, predictability

facilitates language comprehension, and the nature of such predictability e�ect is

graded. We also show that listeners do not adapt to degraded speech on a trial-by-

trial basis even when the quality of next-trial speech signal is certain, which is likely

due to the interference from the higher-level semantic features (e.g., predictability).

We propose and argue for the consideration of the context use/identification in

the metric of language comprehension.

6.7 Summary

This chapter primarily investigated the nature of the predictability e�ect. The

experiment reported here provides a novel insight into predictive language processing

when bottom-up signal quality is compromised and uncertain: We showed that

while processing a moderately degraded speech, listeners form top-down predictions

across a wide range of semantic space that is not restricted within highly predictable

sentence endings. In contrast to the narrowed expectations view, comprehension

of words ranging from low- to high-cloze probability, including the medium-cloze

probability, is facilitated in a graded manner. This contextual facilitation is observed

while listening to a moderately degraded speech. Regardless of (un)certainty about

the next-trial speech quality, we found that listeners do not adapt to the degraded

speech when semantic predictability constantly varies, i.e., higher-level semantic

features interfere with the lower-level perceptual properties. All in all, these findings

revealed that the bottom-up perceptual property of speech (i.e., speech quality)

interacts with the top-down predictive processes. Together with the preceding

chapter, this chapter showed that when listeners attend to the sentence context,
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predictability facilitates comprehension of moderately degraded speech in a graded

manner. In the next chapter, we investigate the e�ect of further changes in the

lower-level bottom-up processing on the top-down semantic predictions. Specifically,

we examine how the change in speech rate a�ects semantic predictions at the

moderate level of speech degradation. We ask the question: Does an increase or

decrease in the speech rate further increase or decrease the contextual facilitation?
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Comprehension of degraded speech is

modulated by the rate of speech

On the one hand, clean speech perception and reading studies have shown that

contextual facilitation decreases with an increase in presentation rate (e.g., fast

speech), with mixed evidence on the enhancement of contextual facilitation with

a decrease in presentation rate (e.g., slow speech). On the other hand, it has

been shown that semantic predictability facilitates language comprehension at a

moderate level of spectral degradation (e.g., at 4-channel noise-vocoded speech)

while degraded speech perception is inherently e�ortful. Considering these two lines

of research and their inconsistencies, the study reported in this chapter aimed to

examine how a change in speech rate modulates contextual facilitation in language

comprehension when the speech is moderately degraded by noise-vocoding through

4 channels. To this end, we conducted two experiments: In Experiment 1, we

compared participants’ word recognition in a sentence while they listened to the

moderately degraded speech presented at a normal and fast speech rates (compressed

by a factor of 0.65). In Experiment 2, we compared a separate group of participants’

word recognition in a moderately degraded speech presented at a normal and slow

speech rates (expanded by a factor of 1.35). The sentences varied in the degree

of predictability of the sentence-final target word (high and low predictability).
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Results of this study demonstrated that fast speech limits the time for lexical

processing. This time constraint interferes with the lexical processing of words

disproportionately a�ecting the low predictability sentences on top of e�ortful

listening of the moderately degraded speech In contrast, slow speech does not

amplify the contextual facilitation — we found the lexical processing, context

representation, and semantic predictions to be optimal at the normal speech rate

when the speech was moderately degraded.

7.1 Introduction

When speech is degraded, its intelligibility and comprehension are reduced. For

example, degradation by noise-vocoding reduces the spectral properties of speech

rendering it di�cult to understand (Davis et al., 2005; R. V. Shannon et al.,

1995). Studies have shown that semantic predictability facilitates comprehension of

moderately degraded speech (e.g., 4-channel noise-vocoded speech, Obleser & Kotz,

2010), which we have also replicated in the study presented in the previous chapter

(Chapter 5). That is, listeners utilise context information and form predictions

about upcoming linguistic units, which in turn facilitates the comprehension of the

degraded speech. However, prediction is a time- and resource-consuming mechanism

(Pickering & Gambi, 2018) such that an increase or decrease in speech rate can

modulate a listener’s ability to use available context information and generate

linguistic predictions (cf. Cole, 2020; Ito et al., 2016). More processing time is

available at slow presentation rates (slow speech) and less at fast presentation rates

(fast speech). So, the contextual facilitation is reduced in fast speech. However,

the evidence of enhanced contextual facilitation in slow speech is mixed (Aydelott

& Bates, 2004; Goy et al., 2013; Koch & Janse, 2016). Specifically for degraded

speech, there is no clear evidence on how di�erent speech rates a�ect the facilitatory

e�ect (contextual facilitation) at a moderate level of degradation (Iwasaki et al.,

2002; Meng et al., 2019; Winn & Teece, 2021).
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Degraded speech is intrinsically e�ortful to listen to (Eckert et al., 2016; Wild

et al., 2012). An increase (or decrease) in listening e�ort by a change in speech

rate limits the cognitive resources available to encode the context information and

form predictions (cf. Huettig & Janse, 2016). Therefore, the present study aimed

to investigate the e�ect of a change in speech rate on listeners’ ability to generate

predictions while listening to a moderately degraded speech. One line of studies

shows that at a moderate level of degradation (e.g., 4-channel noise-vocoding),

semantic predictions facilitate language comprehension (e.g., Obleser et al., 2007).

Another line of studies shows that an increase or decrease in speech rate modulates

the predictability e�ect, i.e., contextual facilitation (e.g., Aydelott & Bates, 2004;

Goy et al., 2013). The current study is driven by an interest to bring these two lines

of research together to understand the e�ect of speech rate on the facilitatory e�ect

of predictability in degraded speech comprehension. We wanted to investigate how

contextual facilitation at a moderate level of spectral degradation is a�ected by the

change in speech rate. We expected that the contextual facilitation in degraded

speech comprehension would be reduced by an increase in speech rate, while a

decrease in speech rate would increase the contextual facilitation.

7.2 Background

7.2.1 Comprehension of fast and slow speech

A change in speech rate (by uniform time-compression or expansion) manipulates

the speech signal but does not by itself produce a spectral degradation (Charpentier

& Stella, 1986; Moulines & Charpentier, 1990; Schlueter et al., 2014; but see

Longster, 2003). Understanding fast speech is more e�ortful compared to normal

and slow speech (e.g., Müller et al., 2019; Winn & Teece, 2021; see also Simantiraki

& Cooke, 2020), and its intelligibility and comprehension are reduced (Fairbanks

& Kodman Jr., 1957; Peelle & Wingfield, 2005; Schlueter et al., 2014). With

an increased speech rate, processing demand increases as less time is available to

process the incoming information (Gordon-Salant & Fitzgibbons, 1995; Rodero,
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2016; see also Rönnberg et al., 2013). Furthermore, some authors argue that the

cognitive resources required for language processing are exhausted (Gordon-Salant

& Fitzgibbons, 2004; Janse, 2009). Since cognitive resources are also required to

encode and process the context information for generating predictions (Pickering

& Gambi, 2018), it can be expected that the e�ect of predictability is reduced

in fast speech. Studies comparing older and younger adults show that reduced

intelligibility and comprehension in fast speech is associated with the limit of the

central auditory processing system to process fast speech, identify the word, and

activate its meaning (Wingfield et al., 1999; Wingfield et al., 2006; see also Connolly

et al., 1990; Poldrack et al., 1998). Lerner et al. (2014) also show that the central

auditory-language processing system is flexible and can rescale itself according

to the speed of incoming information. That is, the information processing speed

in the auditory-language processing system can change per the change in speech

rate, however, there is an upper limit to the system’s flexibility. Beyond a certain

maximum speed of speech rate, the processing of fast speech becomes di�cult.

In contrast, the central auditory-language comprehension system is shown to

be flexible in processing slow speech without reducing its intelligibility to a certain

lower limit of its rescaling capacity (Lerner et al., 2014). So, it can be expected

that slow speech does not limit cognitive resources, and therefore processing context

information to generate predictions in slow speech is not di�erent from normal speech.

Alternatively, slow speech provides more time to bu�er the auditory information at

the lower level of the information processing hierarchy (Ghitza & Greenberg, 2009;

Vagharchakian et al., 2012) and consequently provides more time for the central

auditory-language comprehension system to use the context information and form

predictions. Studies from the visual world paradigm also support this claim that

slow speech provides more time for speech processing and semantic predictions

(Fernandez et al., 2020; Huettig & Janse, 2016). However, some studies have cast

doubt on the processing advantage of slow speech, arguing that slow speech is

perceived as overly artificial and demands high working memory (e.g., Kemper &

Harden, 1999; Nejime & Moore, 1998; see also Liu & Zeng, 2006; Love et al., 2009).
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In both younger and older adults, Sommers et al. (2020) found that slow speech

does not render additional benefit in a sentence comprehension task in noise, even

when supported by a visual context. Therefore, given these competing accounts, it

is unclear whether the e�ect of predictability increases in slow speech compared to

normal speech. Nonetheless, it is clear that a change in speech rate has di�erent

e�ects on speech intelligibility and language comprehension: Fast speech reduces

intelligibility and comprehension, but the evidence for the beneficial/neutral e�ect

of slow speech on language comprehension is mixed.

A few studies have directly examined the role of fast and slow speech in listeners’

use of and benefit from semantic context by using clean speech. For instance,

Aydelott and Bates (2004) used a priming paradigm to examine the e�ects of

contextual cues, which were target words embedded in sentences, and compared fast

speech to normal speech. Target words were either congruent to the sentence context

(100% cloze probability, i.e., in a constraining sentence context), incongruent (0%

cloze probability, i.e., in an implausible sentence), or neutral (cloze probability not

mentioned). Results indicated no reduction in the facilitatory e�ect of contextual

cues (congruent versus neutral target words) at fast speech compared to normal

speech. In contrast, they found a reduced inhibitory e�ect (incongruent versus

neutral target words). They argued that the constraining sentence context was

easy to process — fast speech did not interfere with the earlier stage of activation

of words that matched the context (i.e., in the congruent trials). In contrast,

the inhibition e�ect was reduced because there was less time to build up the

representation of words in implausible sentence contexts, so less inhibition of the

incongruent target word was needed. However, in a replication study of Aydelott

and Bates (2004), Goy et al. (2013) found that the facilitatory e�ect was reduced

in fast speech compared to normal speech. They argued that the fast speech slowed

down the activation of potential target words that matched the context, e�ectively

reducing the contextual facilitation. In a recent study, Winn and Teece (2021)

did not observe an increase in contextual facilitation for slow speech compared to

normal speech, although the intelligibility was slightly higher for slow speech among
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cochlear implantees. In another experiment, Koch and Janse (2016) presented

participants with a question-answer sequence of varying lengths across a wide

range of normal and fast speech from the clean speech of Spoken Dutch Corpus

(Oostdijk, 2000). They did not find any e�ect of predictability on word recognition.

However, their study did not systematically control target word predictability and

target word position in the sentences.

The e�ects of varying presentation rates on semantic predictability have also been

investigated with self-paced reading studies. For example, Wlotko and Federmeier

(2015) presented participants with context-evoking sentences followed by sentences

containing a target word that was either expected (mean cloze probability of 74%) or

unexpected (either same or di�erent semantic category, both with cloze probability

of approximately 0%). They found that the facilitation e�ect (as reflected in the

N400 amplitude) was reduced in the sentences that were presented fast compared

to the ones that were presented slow. They suggested that at a fast presentation

rate, predictive preactivation of words was not common: There was not enough

time to activate proper representation to process upcoming words. In the same

study, however, the semantic facilitation e�ect was not reduced when the slow

presentation followed the fast presentation in separate blocks. That is, an increase

in the flow of information did not always impair the ability to predict. They

argued that once the brain is engaged in predictive comprehension mode, for

example, first in the slow presentation rate, it then continues to allocate resources

in the same mode under a faster presentation rate. Dambacher et al. (2012) also

showed that the N400 e�ect was delayed and smaller at a fast presentation rate

compared to slow presentation rates.

To summarise, there is already some evidence from studies applying various

paradigms that the predictability of the sentence context interacts with the pre-

sentation rate of incoming information (Aydelott & Bates, 2004; Dambacher et al.,

2012; Ito et al., 2016; Sharit et al., 2003; Winn & Teece, 2021; Wlotko & Federmeier,

2015). The predictability e�ect is generally reduced for fast speech, while the

findings are inconsistent in the case of slow speech. Fast speech interferes with the
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lexical processing and activation of words that match the context, as limited time

would be available to form expectations about an upcoming word (Dambacher et

al., 2012; Goy et al., 2013). In contrast, slow speech can provide more time for

listeners to form a rich context representation and generate a prediction about an

upcoming word than a normal speech rate (cf. Huettig & Guerra, 2019).

7.2.2 Speech rate and contextual facilitation of moderately
degraded speech

Predictions about upcoming linguistic units are generated as a listener forms a

meaning representation of context information from a speech signal. Such linguistic

predictions facilitate comprehension of degraded speech when the degradation is at

a moderate level. However, the e�ect of predictability observed at the moderate

degradation level no longer exists if the listener does not understand the context.

Therefore, it is essential that the speech rate remains within the listener’s limit

to bu�er and process the auditory information (Vagharchakian et al., 2012) so

that the listener can form the representation of the context and have su�cient

time to generate predictions.

Several studies have examined the role of speech rate on the intelligibility and

comprehension of degraded speech but without considering predictability e�ects.

For example, Meng et al. (2019) found that an increase in speech rate had a much

more severe e�ect on spectrally degraded speech (4-channel sine-wave vocoded) than

on clean speech. To achieve the same level of accuracy, listeners required degraded

speech to be much slower than normal speech rate. Among cochlear implantees

whose speech input is spectrally degraded (R. V. Shannon et al., 2004), Iwasaki et al.

(2002) found that a change in speech rate from slow to fast reduced word recognition

accuracy. Their speech perception was impaired with an increased speech rate, and

it was improved when the speech rate was decreased (e.g., Dincer D’Alessandro

et al., 2018). Winn and Teece (2021)’s study showed no significant di�erence in

the facilitatory e�ect of semantic predictability between slow and normal speech

rates. This was attributed to listeners’ “repair” strategy at normal speech rate
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such that they made sensible guesses about the words that fit the given context.

Similar to the studies conducted with clean speech, these studies also indicate that

an increase in the speed of degraded speech is detrimental to its intelligibility, while

its intelligibility increases with a decrease in speech rate.

Taken together, the utility of semantic predictability in comprehension of

degraded speech is fairly established. However, the findings about the e�ect of speech

rate on predictability e�ect in degraded speech comprehension are inconsistent.

Similarly, prediction itself is a time- and resource-consuming mechanism (Pickering

& Gambi, 2018) which is a�ected by a comprehender’s processing speed (e.g.,

Huettig & Janse, 2016). However, the role of the speed of incoming information

(i.e., speech rate of a degraded speech) on a listener’s ability to form predictions,

and hence its interplay with the facilitatory e�ect of semantic predictability at

a moderately degraded speech, remains unclear. It can be speculated from the

findings of the abovementioned studies that fast speech reduces the availability

of time and resources to process the speech signal and generate predictions, in

addition to the e�ortful listening of degraded speech. It can similarly be speculated

that slow speech provides listeners more time than normal speech to process the

words and form a representation of context information, in addition to reducing

the e�ortful listening of degraded speech.

7.2.3 The present study

Semantic predictability has been shown to facilitate degraded speech comprehension

when the degradation level is moderate at normal speech rate. The aim of this

study was to investigate whether an increase (and decrease) in speech rate reduces

(and amplifies) the facilitatory e�ect of semantic predictability. We systematically

examined whether contextual facilitation at a moderate level of degradation varies

with a change in speech rate for which semantic predictability was manipulated

by varying the cloze probability of target words in a sentence, and moderate

degradation was achieved by noise-vocoding of speech through 4 channels. 4-

channel noise-vocoding has been shown to be the moderate degradation level in
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the previous chapter, similar to the findings of Obleser and Kotz (2010). Speech

rate was manipulated by time-compression (and expansion) of the moderately

degraded speech to make it fast (and slow).

To achieve our aim, we conducted two experiments in which listeners were

instructed to listen to the sentences and type in the entire sentence they heard.

Sentence comprehension (word recognition accuracy) for high and low predictability

sentences was assessed in fast speech (Experiment 1) and slow speech (Experiment

2). The processing demand increases, and a limited time is available to process the

context and generate predictions with an increase in speech rate (e.g., Aydelott

& Bates, 2004; Wlotko & Federmeier, 2015; see also Pickering & Gambi, 2018).

Therefore, we expected that the contextual facilitation (i.e., the increase in word

recognition accuracy in high predictability sentences compared to low predictability

sentences) would be reduced for fast speech compared to normal speech (Experiment

1). However, for slow speech, due to an abundance of time to process the

degraded speech and the context and reduced listening e�ort (e.g., Winn &

Teece, 2021), we expected contextual facilitation to be increased compared to

normal speech (Experiment 2). We expected that both increase and decrease

in contextual facilitation would be primarily driven by the ease of processing

high predictability sentences compared to low predictability sentences (Aydelott

& Bates, 2004; Goy et al., 2013).

7.3 Experiment 1: Normal vs fast speech

This experiment was conducted to investigate the e�ect of an increase in speech

rate on predictability e�ect in the comprehension of the 4-channel noise-vocoded

speech. We examined if the facilitatory e�ect of predictability decreased as the

speech sped up by a compression factor of 0.65.
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7.3.1 Methods

Participants

We recruited one group of participant (n=101; (M age ±SD = 23.14 ± 3.31

years; age range = 18-31 years; 66 females, 1 preferred not to say) online via Prolific

Academic (Prolific, 2014). All participants were native speakers of German and did

not have any speech-language disorder, hearing loss, or neurological disorder (all

self-reported). All participants received 6.20 Euro as monetary compensation for

their participation in the approximately 40 minutes long experiment.

Materials

In this experiment, we used a subset of materials created by the method described

in Chapter 3 (Section 3.1). One hundred twenty sentences each for low predictability

and high predictability sentences that di�ered in the cloze probability of sentence-

final target words were used. Mean cloze probabilities of the target words of low

and high predictability sentences were 0.022 ± 0.027 (M ± SD; range = 0.00-0.09)

and 0.752 ± 0.123 (M ± SD; range = 0.56-1.00) respectively. The audio recodings

of all 240 sentences were compressed by a factor of 0.65 in Praat software to create

fast speech (see Chapter 3 Section 3.1.2 for details). Then the recordings of speech

signal at fast rate and normal rate were passed through 4 channels of noise-vocoding

to create moderately degraded speech stimuli of two types: fast speech and normal

speech (see Chapter 3 Section 3.1.2 for details).

Each participant was presented with 120 unique sentences: 60 HP and 60 LP

sentences. Speech rate was also balanced across each predictability level. The

participants received 30 sentences with normal speed and 30 with fast speed in each

of the predictability conditions resulting into 4 experimental lists. The sentences

in each list were pseudo-randomised, that is, not more than 3 sentences of same

speed, or same predictability condition appeared consecutively.
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Procedure

Participants were asked to use earphones or headphones. A sample of vocoded

speech not used in the main experiment and the practice trial was provided so

that the participants could adjust the volume to a preferred level of comfort at the

beginning of the experiment. The participants were instructed to listen and report

the entire sentences by typing in the everything they heard using the keyboard.

The time for typing in the response was not limited. They were informed at the

beginning of the experiment that some of the sentences would be ‘noisy’ and not easy

to understand. Guessing was encouraged. To familiarise the participants with the

task, eight practice trials with di�erent levels of speech degradation were provided

before presenting all 120 experimental trials with an intertrial interval of 1,000 ms.

Each participant was presented 60 high and 60 low predictability sentences.

Speech rate was also balanced across each predictability condition. For each

predictability condition, 30 sentences with fast speech and 30 with normal speech

were presented. Sentences were pseudo-randomised so that no more than three

sentences of the same predictability level or speech rate appeared consecutively.

A total of four lists were constructed.

7.3.2 Analyses

We have already shown in the previous chapters that predictability e�ects, i.e.,

contextual facilitation in language comprehension can be rightfully measured only

if we consider the trials in which participants accurately identify the context. Verbs

are predictive of the nouns in our stimuli (e.g., Sie jongliert die Bälle). Therefore,

we discarded the trials in which verbs were identified incorrectly.

Accuracy was analysed using Generalized Linear Mixed Models (GLMMs)

following the procedure described in Chapter 4 (Section 4.2) similar to the preceding

chapters. Binary responses (categorical: correct and incorrect) for all participants

were fit with a binomial linear mixed-e�ects model. Correct responses were coded

as 1, and incorrect responses were coded as 0. Speech rate (categorical: fast

speech and slow speech), target word predictability (categorical: high predictability
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sentences and low predictability sentences), and their interaction were included in

the fixed e�ects. We fitted a model with a maximal random e�ects structure that

included random intercepts for each participant and item (Barr et al., 2013). Both

by-participant and by-item random slopes were included for speech rate, target

word predictability, and their interaction, which was supported by the experiment

design. We applied treatment contrast for both predictability and speech rate,

mapping low predictability and normal speech to the intercept.

7.3.3 Results and discussion

Table 7.1: Response accuracy (mean and standard error of the mean) across all levels of
speech rate and target word predictability in Experiment 1

Speed Target word predictability Mean Standard error
Fast Low 58.93 1.54

High 91.78 1.23
Normal Low 71.82 1.37

High 94.13 1.01

Mean response accuracies (in percentage) for all experimental conditions ag-

gregated across all participants and items are shown in Table 7.1 and Figure 7.1.

It shows that accuracy increases with an increase in target word predictability,

but it decreases with an increase in speech rate. The results of the statistical

analysis confirmed these observations (Table 7.2).

Table 7.2: Estimated e�ects of the model accounting for the correct word recognition in
Experiment 1

Fixed e�ects Estimate Std. Error z value p value
Intercept 1.34 .24 5.58 <.001

Speech rate (Fast) -.98 .24 -4.16 <.001

Target word predictability (High) 2.42 .28 8.55 <.001

Speech rate ◊ Target word predictability 1.06 .42 2.50 .012
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Figure 7.1: Mean response accuracy across all conditions in Experiment 1. Accuracy
increased only with an increase in the target-word predictability and a decrease in speech
rate. Error bars represent the standard error of the means.

We found a significant main e�ect of target word predictability (— = 2.42, SE

= .28, z = 8.55, p < .001) and a significant main e�ect of speech rate (— = -.98,

SE = .24, z = 4.16, p < .001) suggesting that participants’ response accuracy was

higher for the high predictability sentences than for the low predictability sentences

and for normal speech than for fast speech. We also found a significant interaction

between target word predictability and speech rate (— = 1.06, SE = .42, z = 2.50,

p = .01). These findings show that the e�ect of target word predictability, i.e.,

contextual facilitation was reduced at fast speech (see Figure 7.1).

Separate planned analyses of each predictability level were performed. There

was no significant main e�ect of speech rate at high predictability condition (—

= .02, SE = .34, z = .05, p = .96). At low predictability condition, in contrast,

we found a significant main e�ect of speech rate (— = -.99, SE = .27, z = -3.72,

p < .001). Hence, response accuracy decreased at fast speech, but only for the

low predictability sentences.

Separate planned analyses of each speech rate revealed that there was significant

92



7. Speech rate and predictability e�ects

main e�ect of predictability in both normal speech (— = 1.98, SE = .28, z = 7.05,

p < .001) and fast speech (— = 2.67, SE = .37, z = 7.14, p < .001), but the e�ect

appeared to be higher for fast speech (— = 2.67) than for normal speech (— = 1.98).

This resulted from a significant drop in accuracy at the low predictability condition

rather than a rise in accuracy at high predictability condition in the fast speech.

These results indicated an increase in response accuracy with an increase in target

word predictability only at the normal speech rate. Fast speech rate significantly

reduced the accuracy in the low predictability condition. It suggests that fast

speech incurs a cost in processing the low predictability sentences and reduces the

contextual facilitation in degraded speech comprehension. These findings also align

with previous studies conducted with clean speech, which reported that fast speech

reduces contextual facilitation (e.g., Aydelott & Bates, 2004).

We conducted another experiment to examine if slowing down the speech rate

eases the processing of both low and high predictability sentences and increases the

contextual facilitation in comprehension of moderately degraded speech.

7.4 Experiment 2: Normal vs slow speech

Following up on Experiment 1, we conducted Experiment 2 on a separate group of

participants to investigate the e�ect of a decrease in speech rate on predictability

e�ect in the comprehension of the 4-channel noise-vocoded speech. We examined

if the facilitatory e�ect of predictability increased as the speech slowed down by

an expansion factor of 1.65.

7.4.1 Methods

Participants and Materials

We recruited another group of participant (n=101; M age ±SD = 23.49 ± 3.26

years; age range = 18-30 years; 60 females, 1 preferred not to say) online via Prolific

Academic (Prolific, 2014). The same sentences were used as stimuli as in Experiment

1. Instead of compression, the auditory recordings were expanded by a factor of
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1.35 to create slow speech. The rest of the procedure, including the noise-vocoding

through 4 channels, to create stimuli were the same as in Experiment 1. This resulted

in two types of 4-channel noise-vocoded speech: slow speech and normal speech.

Procedure

The same procedure was followed as in Experiment 1. Participants were asked

to use earphones or headphones. They were instructed to report the entire sentence

by typing in what they heard.

Four experimental lists were constructed to present each participant with 60

high and 60 low predictability sentences. Speech rate was also balanced across each

predictability condition in each list. For each predictability condition, 30 sentences

with slow speech and 30 with normal speech were presented. Sentences were pseudo-

randomised so that no more than three sentences of the same predictability level

or speech rate appeared consecutively.

7.4.2 Analyses

The data analysis procedure was the same as Experiment 1. Accuracy was analysed

using Generalized Linear Mixed Models (GLMMs). We fit a model with maximal

random e�ects structure. Treatment contrast was applied for both predictability

and speech rate, mapping low predictability and normal speech to the intercept.

7.4.3 Results and discussion

Table 7.3: Response accuracy (mean and standard error of the mean) across all levels of
speech rate and target word predictability in Experiment 2

Speed Target word predictability Mean Standard error
Slow Low 70.92 1.09

High 94.25 .89
Normal Low 73.09 1.02

High 94.82 .70
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Figure 7.2: Mean response accuracy across all conditions in Experiment 2. Accuracy
increased only with an increase in the target-word predictability, but a change in speech
rate had no significant e�ect on accuracy. Error bars represent the standard error of the
means.

Mean response accuracies (in percentage) for all experimental conditions ag-

gregated across all participants and items are shown in Table 7.3 and Figure 7.2.

It shows that accuracy increases with an increase in target word predictability

but did not increase with a decrease in speech rate. The results of the statistical

analysis confirmed these observations (Table 7.4).

Table 7.4: Estimated e�ects of the model accounting for the correct word recognition in
Experiment 2

Fixed e�ects Estimate Std. Error z value p value
Intercept 1.41 .23 6.20 <.001

Speech rate (Slow) -.08 .14 -.57 .568

Target word predictability (High) 2.58 .30 8.65 <.001

Speech rate ◊ Target word predictability .44 .27 1.65 .099
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We again found a significant main e�ect of target word predictability, indicating

that participants’ response accuracy was higher for the high predictability condition

than for the low predictability condition (— = 2.58, SE = .30, z = 8.65, p < .001),

replicating the e�ect in the previous experiment. In contrast to Experiment 1,

we did not find a significant main e�ect of speech rate (— = -.08, SE = .15, z =

.57, p = .568), nor there was a significant interaction between speech rate and

target word predictability (— = .44, SE = .27, z = 1.65, p = .099). The absence

of the main e�ect of speech rate and the interaction between speech rate and

predictability suggested that there was no change in participants’ response accuracy

with a reduction in speech rate, and the contextual facilitation did not significantly

increase or decrease with slowing down of the speech rate.

In contrast to Experiment 1, Experiment 2 did not indicate a di�erential e�ect

of speech rates in the comprehension of high and low predictability sentences. While

Experiment 1 showed that speeding up the speech rate significantly reduced the

accuracy of low predictability sentences, such a reduction was not observed in

Experiment 2 when the speech rate was slowed down. Although listeners’ response

accuracy was reduced in both fast and slow speech than in normal speech, their

ability to utilise context information was only impaired by the fast speech in the

low predictability sentences.

7.5 Conclusion

The main goal of the present study was to examine whether the contextual

facilitation (i.e., the facilitatory e�ect of semantic predictability) in comprehension

of a moderately degraded speech is modulated by changes in speech rate. The results

of two experiments revealed that fast speech selectively impedes the comprehension

of low predictability sentences, while slow speech has no detrimental or beneficial

e�ect on contextual facilitation.

In both experiments, our results showed a significant main e�ect of predictability

at normal speech rate, i.e., we observed a facilitatory e�ect of semantic predictability
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at normal speech rate under moderate degradation level by noise-vocoding through

4 channels. This replicates the findings of earlier studies (e.g., Obleser & Kotz, 2010)

and the study presented in Chapter 6 in which participants were presented only

with normal speech rate, and contextual facilitation was observed at the spectral

degradation through 4-channel noise-vocoding. At this moderate degradation

level, listeners could decode the context and form its meaning representation.

Consequently, they generated predictions about the upcoming target word in a

sentence even in low predictability conditions depending on the contextual constraint

of the sentences (cf. Strauß et al., 2013).

The expected interaction between speech rate and target word predictability

in Experiment 1 showed that comprehension of degraded speech was significantly

impaired for low predictability sentences but not for high predictability sentences in

fast speech. Listening to degraded speech is e�ortful and requires more attentional

resources than clean speech (Wild et al., 2012). When presented as a fast speech,

spectral degradation imposes additional cognitive demands; and less time is available

to process the speech signal. The central auditory-language processing system does

not rescale itself according to the speed of the fast speech presented in Experiment

1 (Lerner et al., 2014). It is then di�cult to process the fast speech, decode the

context information and form its meaning representation from the degraded speech

to generate predictions about upcoming target words. This disproportionately a�ects

low predictability sentences as fast speech interferes with the lexical processing of

words, likely reducing the activation of target words in less constraining sentence

contexts (Aydelott & Bates, 2004; Dambacher et al., 2012; cf. Goy et al., 2013). As

a result, language comprehension in the low predictability condition is impaired

more than in the high predictability condition in Experiment 1.

In contrast to Experiment 1, we did not find the expected interaction between

speech rate and target word predictability in Experiment 2, i.e., a decrease in speech

rate did not di�erentially a�ect the comprehension of high or low predictability

sentences. Unlike Experiment 1, we did not observe a significant change in

contextual facilitation in the slow speech at 4-channel noise-vocoding level in

97



7. Speech rate and predictability e�ects

Experiment 2. Slowing down the speech gives listeners more time to process

the information, including the context that is important to generate predictions.

However, our findings show that the added time in slow speech does not benefit

intelligibility and comprehension of sentences more than the normally available

time at a normal speech rate. Comprehenders’ lexical processing is optimal at the

normal presentation rate (Dambacher et al., 2012). Although slow speech reduces

e�ortful listening of degraded speech, the resources thus freed up by the slow speech

are not allocated to enhance contextual facilitation. This argument is in line with

Winn and Teece (2021), who reported that contextual facilitation does not increase

when the speech is slowed down. Alternatively, it is plausible that the artificial

expansion of speech introduced distortion in the speech signal. Although speech

intelligibility and comprehension are increased by slow speech (Dincer D’Alessandro

et al., 2018; Iwasaki et al., 2002), acoustic distortion due to artificial expansion

reduces intelligibility and comprehension (Longster, 2003). As a result, we did

not observe an overall amplification of contextual facilitation in the slow speech

at the moderate degradation level in Experiment 2.

Accounts from speech perception and predictive language processing point to

a common expectation: contextual facilitation is enhanced when comprehenders

have more time to process the presented information (Huettig & Guerra, 2019; Ito

et al., 2016; Kuperberg & Jaeger, 2016). However, there is conflicting empirical

evidence on whether an increase or a decrease in speech rate benefits intelligibility,

comprehension, and contextual facilitation. Our findings show this interplay among

spectral degradation, speech rate, and semantic prediction. Although reducing

the speech rate provides time to process the information (including the context)

in the degraded speech, this does not necessarily ease the processing of high or

low predictability sentences di�erentially. Thus, no increased facilitatory e�ect is

observed at the slow speech rate. In contrast, increasing the speech rate adds more

cognitive load on top of the e�ort required to listen to the degraded speech. This

results in di�culty processing and understanding the rapidly unfolding sentences;

this di�culty further increases when the target words are not easily predictable.
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Similarly, in the “narrowed expectations” framework of degraded speech com-

prehension, Strauß et al. (2013) argue that lexical-semantic cues are more robust to

degradation and the target words can be processed faster and relatively more easily

in a highly constraining context than in a less constraining context. They posit that

listeners can activate a narrow range of most likely target words from the context

in a high predictability sentence. Our results show that when the moderately

degraded speech is sped up, the context is still robust: There is enough processing

time available in the fast speech to process the context and generate a small

range of lexical predictions about an upcoming target word in a high predictability

sentence. Therefore, the comprehension of high predictability sentences is not

reduced due to an increase in speech rate. However, in a low predictability sentence,

the range of probable sentence endings is too wide to generate enough lexical

predictions that facilitate comprehension. When the processing time is short, it

further reduces the activation of likely sentence endings, especially when the context

is less constraining (Aydelott & Bates, 2004).

An alternative explanation of our findings of contextual facilitation could be

that the listeners first identified the noun (e.g., Bälle), then integrated it with the

verb (e.g., jongliert) instead of first identifying the verb and predicting the noun. To

rule this out, we conducted an additional analysis, the results of which supported

the prediction-based explanation. We compared the e�ect (estimates) of forward-

predictability (from the verb to noun) with that of backward guessing (identifying

the verb from the correct identification of the noun). In both experiments, the

forward predictability e�ect was larger than the backward guessing. The results

of these complementary analyses (see Appendix C) favour the explanation that

the contextual facilitation we observed is due mainly to predictability rather than

backward guessing (or backward integration).

Of note, the generalisation of our results is limited. First, we tested only with

one expansion factor of 1.35 and one compression factor of 0.65. It can be speculated

that an increase in facilitatory e�ect could be observed when the speech is expanded

to di�erent levels by including other expansion factors. There could be an optimal
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trade-o� between slowing down the speech with more time to process (Fernandez et

al., 2020) and the speech still remaining intelligible. This could be further explored

in alternate experimental designs or methods: Instead of using PSOLA to create

slow speech, silent pauses can be inserted in a speech stream (in the semantic or

syntactic boundaries between the words) to create slow speech that sounds more

natural (Wingfield et al., 1999), or the speech can be recorded in a desired (slow or

fast) natural-sounding speech rate (Adank & Janse, 2009) before noise-vocoding it.

These methods have disadvantages like the omission of coarticulatory cues due to

the insertion of pauses, slow-sounding speech being di�erent from conversational

speech, and di�culty maintaining a constant speed in the slower speech rates while

recording. Nevertheless, one can reduce the additional degradation that can be

caused by algorithmic speech expansion and, at the same time, use a wide range

of slow speech rates that allow listeners to process the spectrally degraded speech

at meaningful semantic and syntactic boundaries.

Second, we only tested younger adults. We did not examine the e�ect of cognitive

ageing on contextual facilitation of comprehension of fast and slow speech. Older

adults have delayed processing speed such that slow speech generally improves their

speech intelligibility and language comprehension. Furthermore, semantic context

benefits older adults more than younger adults in adverse listening conditions.

Therefore, the e�ect of slow speech could be di�erent in older adults than what

we found in younger adults under adverse listening conditions.

To conclude, we show that access (or restriction) to lexical processing is associated

with the speed of information flow, and the constraints in attentional and cognitive

resources are key factors that influence contextual facilitation of moderately degraded

speech. Lexical processing is restricted in an e�ortful listening of the rapidly

unfolding degraded speech; consequently, understanding the words that are not

easily predictable from the context is di�cult. On the contrary, auditory-language

comprehension is optimal in the normal speech rate, and thus, slowing down the

degraded speech does not necessarily amplify contextual facilitation.
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7.6 Summary

This chapter reported studies investigating the e�ect of changes in speech rate on

contextual facilitation of a moderately degraded speech. While it was already shown

in the preceding chapter that at a normal speech rate, predictability facilitates

comprehension of degraded speech at 4-channel noise-vocoding level, in this chapter,

the e�ect of increase and decrease of speech rate on this predictability e�ect was

investigated. When the speech rate is increased, we found that activating target

words using the context information is more di�cult in the low predictability

sentences than in the high predictability sentences. This is on top of the fact that

fast speech adds further load in processing the inherently e�ortful degraded speech.

In contrast, slowing down the moderately degraded speech did not provide any

benefit in the comprehension of high or low predictability sentences. Although slow

speech reduces the e�ort on listening to degraded speech, this chapter concluded

that thus freed up resources are not necessarily used to amplify the predictability

e�ects. All in all, this chapter revealed that the bottom-up perceptual property,

like speech rate, interacts with the top-down predictive processes, in addition to

other perceptual properties, like speech degradation; however, the nature of this

interaction depends on the nature of the speech (i.e., fast vs slow).

In the next chapter, we provide a concluding remark on the studies presented in

Chapters 5, 6, and 7. We discuss the limitations of the studies, their generalisation,

and future outlook.
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In this chapter, we present an overview of the experimental findings reported in

the preceding chapters, and their conclusions are discussed in the broader context

of probabilistic accounts of language processing. The noisy channel model of

communication (see Chapter 1 for elaborate discussion) is revisited and discussed

concerning the findings of our studies. We also discuss the implications, limitations,

outlook and considerations for future research. Finally, we conclude with the closing

remarks on the interaction of top-down predictive and bottom-up auditory processes

in spoken language comprehension and the status of the thesis in the research

domain of predictive language processing.

8.1 Overview of the main findings

A prominent view in the field of language science is that readers and listeners use

context information to form linguistic predictions (for reviews, Kuperberg & Jaeger,

2016), which is akin to the view that humans are prediction machines constantly

generating predictions about upcoming events (A. Clark, 2013). Studies have shown

that it is not always the case in language processing, to the extent that some even

question the necessity of prediction (e.g., Huettig & Mani, 2016). For example,

di�erences in age and literacy have been shown to limit listeners’ ability to form
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linguistic predictions (e.g., Federmeier et al., 2010; Mishra et al., 2012; Sheldon et

al., 2008b). Chapter 5 showed that prediction does not always occur in language

comprehension. While listening to degraded speech, when listeners attended only to

the sentence-final target word but not the preceding context, the facilitatory e�ect

of predictability was absent. However, when the sentence context was attended to,

it facilitated the comprehension of the degraded speech. These results showed that

attention (or lack thereof) can limit the predictability e�ect in degraded speech

comprehension: no attention, no prediction. We also replicated prior findings that

when the bottom-up input is less reliable due to degradation, listeners rely more

on the lexical-semantic cues (e.g., Obleser & Kotz, 2010).

In Chapter 6, we further examined the e�ect of predictability and its nature

(all-or-nothing vs graded). Since we already showed in Chapter 5 that attention

to the context is necessary for the contextual facilitation, our instruction did not

restrict participants’ attention to only the target word (and away from the context)

in the studies reported in Chapter 6. Participants, thus, attended to the context

and formed its meaning representation. This chapter revealed that predictability

facilitates language comprehension in a graded manner when the speech is moderately

degraded at 4-channel noise-vocoding. At the extremes, listeners either did not

utilise the context (unintelligible at 1-channel noise-vocoding), or the context and

target word were clearly intelligible (least degradation at 8-channel noise-vocoding)

— in the latter case, listeners identified the target word based on the bottom-up

information rather than the context. That is, listeners processed the language

rationally at di�erent levels of speech degradation (see Ryskin et al., 2018 for a

similar argument). These findings also refute the claim of the narrowed expectations

framework proposed by Strauß et al. (2013). Contrary to their claim that predictions

are made only for highly predictable sentence endings, we found that listeners predict

target words across a wide range of semantic space, including the sentence endings

in the low and medium predictability sentences.

At this point, we note and clarify the seemingly discrepant findings of Chapters

5 and 6. We found a graded e�ect of predictability in Chapter 6 but not in Chapter
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5. The primary reason for this discrepancy is the di�erence in the metric of language

comprehension used in the studies in these two chapters. In Chapter 5, only the

identification of the sentence-final target word was considered. On the other hand,

in Chapter 6, context identification was also considered prior to identifying the

target word. There was no inherent qualitative di�erence in the data in these two

experiments: the data for one group of participants in Chapter 6 (in the randomised

design) was taken from the group of participants instructed to report the entire

sentence in Chapter 5. Hence, on closer inspection, the findings from Chapter 6

and Chapter 5 support our general conclusions rather than contradict each other.

After we showed in Chapter 6 that predictability e�ects are observed at the

moderate degradation level, our goal in Chapter 7 was to examine if a change

in speech rate at 4-channel noise-vocoding further increases or decreases the

predictability e�ect. In two experiments, we manipulated the bottom-up processes

by changing the speech rates: We compared the contextual facilitation at the

moderate degradation level in normal and fast speech rates, then in normal and

slow speech rates. The experiments presented in that chapter showed that slow

speech does not amplify the contextual facilitation that is observed in normal

the speech rate. Listeners already performed at their optimal level in normal

speech rate; slowing down the speech rate did not necessarily benefit the contextual

facilitation. On the contrary, fast speech impaired the processing of low predictability

sentences. These findings showed that with a restricted time in the processing

of fast speech, lexical access and activation of target words in less constraining

sentence contexts are di�cult.

Chapters 5 and 6 also showed that regardless of (un)certainty about the quality of

subsequent trials, listeners do not adapt to degraded speech across all levels of speech

degradation; their performance do not improve over the course of the experiment.

We reasoned that a constant trial-by-trial variability in the higher-level feature of

the speech stimuli (e.g., predictability) interferes with the perceptual retuning of

the auditory system to the sensory properties of the speech stimuli. Hence, the

identification of words did not improve throughout the experiment. In Chapters 6
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and 7, we argued for a new approach to calculate response accuracy that takes into

account a listener’s context identification instead of other word recognition scores

(e.g., the proportion of correctly identified words per sentence) that do not consider

whether listeners correctly identified the context. In our analyses, we included only

those trials in which the context-evoking words were identified correctly.

Taken together, the conclusion of the empirical findings from this thesis can

be summarised as, “When a listener attends to a sentence context, semantic

predictability facilitates language comprehension at a moderate level of spectral

degradation in a graded manner as opposed to being an all-or-nothing phenomenon.

Such contextual facilitation is optimal at a normal speech rate, which is not

necessarily amplified by slowing down the speech. However, increasing the speech

rate reduces contextual facilitation by restricting lexical access in the less predictable

sentence endings.”

8.2 Implications of the findings

8.2.1 Probabilistic prediction in a noisy channel

The studies in this thesis were based on the theoretical accounts of predictive

language processing and the noisy channel model of communication. Speech

degradation by noise-vocoding created a noisy communication channel that interfered

with a listener’s perception and understanding of a speaker’s utterance (schematically

represented in Figure 1.1 and formalised in Equation (1.2) in Chapter 1). The

results of the experiments presented in this thesis suggest that listeners are rational

comprehenders: They weigh the top-down and bottom-up processes to comprehend

a degraded speech. When the speech signal is degraded, and listeners have di�culty

understanding an utterance, they rely more on the context (e.g., 4-channel noise-

vocoded speech in Chapter 6). On the contrary, when this bottom-up information is

reliable, i.e., when the speech signal is least degraded, and listeners understand an

utterance, they do not necessarily rely on the top-down information. Regardless of
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their predictions from the context, the listeners’ comprehension results from what

they actually perceive (e.g., 8-channel noise-vocoded speech in Chapter 6).

Under this rational account, the present thesis showed that listeners predict

an upcoming word based on its probability of occurrence in a given context. To

our knowledge, the empirical evidence presented in this thesis is the only one since

Strauß et al. (2013) to examine the nature of the predictability e�ect in degraded

speech comprehension. We did not find prediction to be restrictive or deterministic,

as reported in Strauß et al. (2013) in degraded speech comprehension. Instead, our

findings are in line with the probabilistic accounts of predictive language processing

(DeLong et al., 2005; Kuperberg & Jaeger, 2016; cf. Nieuwland et al., 2018) proposed

in the literature on speech perception and reading studies.

8.2.2 Attention and prediction

Chapter 5 showed that attention and prediction can operate independently (i.e., they

are two separate processes) in the predictive processing of degraded speech (see also

Astheimer & Sanders, 2011; Li et al., 2017). When we restricted listeners’ attention

to the contextually predicted target word, the facilitatory e�ect of predictability

was absent. Only attention to the context provided contextual facilitation. This

role of attention is not fully addressed in the current frameworks of predictive

language processing.

In their good enough processing framework, Ferreira and Lowder (2016) speculate

that a comprehender can focus and process one part of a sentence “deeper”, and

other parts can be ignored or processed at a “shallow” level. However, their proposal

is unclear on how attention to di�erent parts of a speech stream can be strategically

allocated and how it moderates contextual facilitation. Another influential account

of predictive language processing proposed by Pickering and Gambi (2018) states

that prediction involves speech production mechanism, i.e., listeners simulate the

production of the perceived speech to predict upcoming linguistic units. It is

supposed that listeners ideally have access to all the stages of lexical processing.
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However, their account does not include the role of attention at any stage of lexical

processing in speech production, comprehension, and prediction.

In an fMRI study of visual perception, Kok et al. (2012) found a significant

di�erence in the amplitude of the BOLD signal between predicted and unpredicted

stimuli location in the visual field even when the participants did not attend to the

stimuli. This relationship between prediction and attention in visual perception

is accounted for in predictive coding models (e.g., Friston, 2009). We argue that

an elaborate and explanatory theory of predictive language processing should

also consider attention regulation that modulates the predictability e�ects in

language comprehension.

8.2.3 Speech rate

We showed that sentence context facilitates comprehension of degraded speech

presented at the normal speed. Contrary to common wisdom and previous findings

(e.g., Dambacher et al., 2012; Wlotko & Federmeier, 2015), slowing the speech

rate did not improve contextual facilitation (cf. Winn & Teece, 2021). Our results

from younger adults showed no benefit of slow speech either. Participants in

our study were neither able to better understand the degraded speech at a slow

speed nor did the slow speech help to better process the context and facilitate

comprehension compared to the speech presented at a normal rate. In contrast,

fast speech selectively impaired the processing of low predictability sentences. The

activation of target words in low constraining sentences was di�cult. These findings

have some practical implications. The speech that people with sensory neural

hearing loss and cochlear implants perceive is spectrally degraded (Parida & Heinz,

2022; R. V. Shannon et al., 1998; R. V. Shannon et al., 2004). The findings

from our study can inform the clinical and rehabilitative setup: We do not find

evidence that speaking slow benefits degraded speech comprehension. At the same

time, we provide evidence that speaking fast is detrimental to processing sentences

that are not easily predictable from the context. Therefore, in a rehabilitative

setup, auditory-verbal training for the cochlear implantees can likely benefit from
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a normal speech rate than the exaggerated slowing down of the speech. Other

studies have also shown that listeners do not prefer slow speech (e.g., Sutton et al.,

1995; cf. Winn & Teece, 2021). On the scientific aspect, our findings inform the

theories of predictive language processing, which take into account the speed of

lexical processing. For example, Pickering and Gambi (2018)’s account of predictive

language processing posits that comprehenders have access to word-form at the late

stage of lexical processing. Our findings indicate that at a fast speech rate when

the speech is degraded, processing of the less predictable words does not reach the

late stage in contrast to the highly predictable words. Replication and extension of

these findings measuring the time-course of lexical processing at di�erent speech

rates can further test the predictions of these accounts of language processing.

8.3 Limitations and outlook on future studies

8.3.1 Statistical power and sample size

The statistical inference made in the studies presented in this thesis stem from the

interpretation of statistical significance (or lack thereof) of the e�ect size of interest

primarily in terms of beta estimates from the mixed e�ects model. There was no a

priori expectation about the estimated e�ect size of the main e�ect of predictability,

the main e�ect of noise-vocoding channels, or their interactions which could be

used to determine the sample size necessary to detect those e�ects (see Meteyard

& Davies, 2020 for the discussion on the complexity of power analysis in mixed

model designs). Therefore, we determined our sample size to be approximately

equal to that of other studies that examined similar phenomenon like ours, which

was language comprehension in di�erent types of adverse listening conditions (e.g.,

Erb et al., 2013; Hunter & Pisoni, 2018; Obleser et al., 2007; Obleser & Kotz,

2010; Sheldon et al., 2008a, 2008b; Sommers et al., 2020; Strauß et al., 2013).

Although, in hindsight, a priori power analysis and sample size determination seem

to be a more robust approach, the current sample size determination method left a
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possibility of our experiments being underpowered1. Given this possibility, we follow

the advice of the statisticians: avoid making strong claims and “accept uncertainty”

(McShane et al., 2019; Vasishth & Gelman, 2021). Statistically significant findings

from a potentially underpowered experiment are not inherently wrong, as long as

the claims are not big (see Vasishth & Gelman, 2021 for discussion). Our findings

are suggestive, and provide directions for future research.

8.3.2 Measurement of predictability

Our interpretation of the experimental results to support the probabilistic and

graded nature of predictability is that listeners form expectations about an upcoming

word based on the likelihood of its occurrence given the context. The “likelihood

of occurrence” was measured with the cloze probability of the target word in a

sentence, which is widely used in sentence comprehension studies (see Staub et

al., 2015 for discussion). However, some argue that it is not the best metric to

measure the predictability of a word (e.g., Smith & Levy, 2011; Verhagen et al.,

2018): The cloze probability is an aggregated estimate of whether a group of

participants will consider a particular word as a continuation of a sentence given a

context. For example, if 40 out of 50 participants in a cloze norming study respond

that balloon is the most likely ending of the truncated sentence The child went

out to fly a red ___, then “balloon” is considered to be the highly predictable

word in this context with the cloze probability value of 0.80. However, it is also

likely that another group of 50 participants would respond with “kite” as the most

likely ending of the same sentence. This example illustrates that a cloze-based

measure is prone to be an inconsistent estimate of predictability, nonetheless, it

is still the primary measure of predictability.

In recent years, alternatives to cloze-based measures have been proposed. For

example, Lopukhina et al. (2021) demonstrated that corpus-based measures of word
1However, note that in the experiments in Chapter 7, we collected data from a large group

of participants (n=101 in each experiment) compared to relatively smaller sample size in the
preceding Chapters 5 (n=50 in Experiment 1 and n=48 in Experiment 2) and 6 (n=50 in the
predictable channel context and n=48 in the unpredictable channel context).

109



8. Discussion and conclusion

probability are better predictors of linguistic predictability than the cloze-based

measures calculated from a small group of participants in norming studies (see

also Michaelov et al., 2022). Similarly, Hofmann et al. (2021) demonstrated that

surprisal-based measures estimated from Large Language Models (e.g., GPT-2,

GPT-3) explain N400 e�ects and reading times better than cloze-based measures

(see Heilbron et al., 2022 for an implementation of surprisal calculated from GPT-2).

However, these alternatives are still being explored and developed. As growing

number of studies show that values other than cloze probability are good estimates

of predictability, these measures can also be used alongside the established measure

like cloze probability. Studies in the domain of probabilistic language processing

that we reported in this thesis can benefit from multiple predictability estimates

from language models and corpora in addition to the cloze based measures.

8.3.3 Sentence structure and context information

One of the goals of the thesis was to replicate the predictability e�ects in degraded

speech comprehension, as shown in studies like Obleser et al. (2007) and Obleser

and Kotz (2010). Therefore, we created short Subject–Verb–Object sentences

similar to Obleser & Kotz (2010)‘s stimuli. In these sentences, the verb was

predictive of the noun. However, in daily conversations, speakers’ utterances are

not structured in this short format in which only one preceding word provides a

context to predict the next word. Instead, di�erent sources of information, like the

knowledge about the speaker, topic, or discourse, build the context information

and are jointly predictive of the upcoming linguistic units. Similarly, the speaker

indicates important words or concepts via pitch contours, stress, or intonation

patterns, which then direct the listener’s attention. Hence, one could argue that

the generalisation of the findings beyond the stimuli used here is restricted or

limited. Therefore, the next step is to extend these findings using longer utterances

in which a discourse provides the context information about an upcoming word

in a sentence in the discourse (e.g., Brothers et al., 2015) and the information

about the speaker (e.g., Bhandari et al., 2020).
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8.3.4 The nature of the predictability e�ect

Strauß et al. (2013) formulated their “narrowed expectations” framework based on

an EEG study measuring the latency and amplitude of the N400 component. We

did not find support for their claims; instead, we demonstrated in our behavioural

experiments that the e�ect of predictability in degraded speech comprehension

is graded in nature. A replication and extension of our findings in an EEG

experiment would corroborate our claims. It can be expected that the N400

amplitude of the target word in the low predictability sentences will be larger than

in the medium predictability sentences, which in turn, will be larger than in the

high predictability sentences. Furthermore, these di�erences will be significantly

larger in the moderately degraded speech (4-channel noise-vocoding) compared

to the least degraded speech (8-channel noise-vocoding). We note that the EEG

experiment proposed here was initially planned as a part of this thesis. However,

due to the closure of the electrophysiology lab during the covid-19 lockdown, the

experiment was not conducted.

8.3.5 Individual di�erences

It is evident that language processing is not the same across all participants.

For example, working memory capacity, processing speed, literacy, and language

experience vary in a group of participants, which results in a di�erence in language

processing and the use of lexical-semantic cues among participants (Federmeier et

al., 2010; Mishra et al., 2012; Rommers et al., 2015; Scholman et al., 2020). However,

the general conclusions about the top-down–bottom-up interactions presented in

this thesis are based on the mean estimates of predictability (in terms of response

accuracy) across all participants. Although we controlled for variability among

participants in the mixed model analysis, the individual di�erences measures could

inform how the top-down–bottom-up interactions vary among the participants.

For example, it can be speculated that participants with faster processing speed

benefit more from the semantic context when the speech rate is fast as it was in the
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experiment in Chapter 7 (e.g., Huettig & Janse, 2016). Therefore, it is recommended

that the extension of the studies presented in this thesis include individual di�erences

measures that can moderate linguistic predictions in adverse listening conditions.

8.3.6 Online study with auditory stimuli

The experiments presented in this thesis were conducted on the web. This poses

a few methodological challenges which in turn can limit the generalisations of

the findings. Firstly, the participants listened to the auditory stimuli at their

comfort, in their computer using their own headset. This setup is di�erent from a

controlled laboratory setup in which all participants use the same device and listen

through the same headset that has a standard spectral resolution with a known

loudness level. In our experiments, the variability of spectral responses and intensity

of the sound presented through the headsets of the participants was unknown2.

Similarly, the possiblity that participants used their computer’s loudspeakers instead

of headphones could not be entirely ruled out although it has been shown that

participants in Prolific are attentive and honest to the instructions (Peer et al.,

2022). In future experiments, one could follow Woods et al. (2017)’s proposed

headphone test to confirm that stereo headphones are used, not loudspeakers.

Similarly, hearing acuity correlates with the e�ort required to perceive words

in adverse listening conditions (Cahana-Amitay et al., 2016; McCoy et al., 2005).

Therefore, we recruited only those participants who reported to not have any

hearing-related problem by using Prolific’s filter. However, an objective measure

of the participants’ hearing acuity could not be obtained (e.g., by audiometric

assessment) over the web. Since the participants in our experiments were young

adults, the contribution of hearing acuity on listening e�ort and word recognition

is not significant (Benichov et al., 2012; cf. Hunter & Pisoni, 2018). Nonetheless,
2The type of device that they used may di�er among the participants in each experimental

group in Chapters 5, 6, and 7. Nonetheless, it is unlikely that there was any systematic di�erence
between the participants in two groups that were compared in each experiment. The participants
in both the groups were recruited following the same procedure in the same recruitment platform
from the same geographical region. The exclusion criteria was also identical, and the age range of
the participants in both groups was also similar.
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future studies should consider replicating our findings in a controlled laboratory

setup assessing participants’ audiometric hearing threshold and correlating it with

their performance in the word recognition task.

It is important to note that after decades of the first psycholinguistic experiment

with auditory material (discussed in Chapter 3, Section 3.2), the doubt about the

validity of online experiments still persists. Cooke and Garcia Lecumberri (2021)

proposed that speech recognition experiments can be conducted over the web in

the same way as in the lab; they replicated the findings of the speech perception

experiments from their lab in online experiments controlling for participant-related

di�erences. They used masked speech, distorted speech, and enhanced speech.

Validating online studies using di�erent speech materials, like noise-vocoded speech,

background noise, reverberated speech, etc. in di�erent experimental paradigms

could help strengthen the conclusions of our findings, and restrict the limitations

of online studies.

8.3.7 Generalisation of the findings

It follows from the discussion above that the extent to which our findings generalise

across di�erent population and experimental setup is limited. The experiments

presented in this thesis were conducted among young adults aged 18-31 years.

With age, linguistic and world knowledge increases while hearing acuity decreases.

Thus, older and younger adults use lexical-semantic and acoustic-phonetic cues

di�erently (e.g., Sheldon et al., 2008a, 2008b). We can speculate that we would

also observe an age di�erence in the facilitatory e�ect of predictability when the

speech is degraded; older adults would likely rely on semantic context more than

younger adults (cf. van Os et al., 2021a). However, the restricted age range of the

participants does not permit us to generalise the findings of our studies across a wide

age range, including older adults. As a next step, it is recommended that the current

study be conducted on older adults, considering the e�ects of cognitive ageing and

auditory threshold on the interaction of top-down and bottom-up processes in

speech comprehension in adverse listening conditions.
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8.4 Concluding remark

At the outset of this thesis, we outlined some goals: to replicate the predictability

e�ects in degraded speech comprehension, to investigate whether the nature of

the predictability e�ect is graded, to examine if attention and speech rate limit or

moderate contextual facilitation, and if lexical-semantic properties of the speech

influence listeners’ adaptation to degraded speech. We have largely achieved these

goals. In the experiments presented in Chapters 5, 6, and 7, we have shown that

the interaction between top-down and bottom-up processes in the comprehension of

degraded speech is dynamic: Probabilistic language prediction is graded in nature

at the moderate level of speech degradation while the listeners attend to the context

information. It was also revealed that an increase in speech rate is detrimental to

processing low predictability sentences. We argued for using a metric of language

comprehension that considers listeners’ identification of context information.

Despite these findings, this thesis does not answer all the questions about

predictive language processing, especially about prediction in adverse listening

conditions. The research domain of predictive language processing grapples with

the problems like disentangling prediction from integration (e.g., Mantegna et al.,

2019) and parallel from sequential prediction (see Gibson & Pearlmutter, 2000 for

discussion). These questions are beyond the scope of this thesis to be addressed. It

would be an overstatement to claim that our findings are definitive answers to the

question of graded vs deterministic prediction in degraded speech comprehension.

Nevertheless, the evidence from our experiments lines up with the existing findings

supporting the account of graded prediction. We hold a similar position regarding

our evidence on the limitations of contextual facilitation (in Chapter 5): Our

findings align with the growing body of literature that question the automaticity of

predictions (see Huettig & Mani, 2016 for discussion). Based on these, we speculate

that although prediction undoubtedly facilitates language comprehension, it is not

a ubiquitous process in language comprehension. Listeners can strategically deploy

other top-down processes that limit or moderate linguistic predictions.
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We discussed the limitations of our experiments, widely used methods and

metrics (e.g., cloze probability, key word recognition accuracy), and provided

avenues for future research (individual di�erences, replication with EEG experiments,

context information in a discourse). This thesis has contributed to a better

understanding of spoken language comprehension and lexical-semantic predictions:

the dynamic interaction between top-down and bottom-up processes in adverse

listening conditions. Advancing the findings of this thesis will undoubtedly inform

an elaborate and comprehensive theory of predictive language processing.
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Experimental items

High, Medium, and Low predictability sentences were used in Chapters 5 and 6.

In Chapter 7, only High and Low predictability sentences were used.

Table A.1: Sentences with cloze probability of the target word (noun) and the source of
the sentences as mentioned in Chapter 5

sn predictability sentence
cloze probability of
the noun sources

1 High Er loest die Aufgabe 0.6 S
2 High Sie verweigert die Aussage 0.57 O
3 High Er verschrottet das Auto 0.84 O
4 High Er betankt das Auto 0.9 S
5 High Er blitzt den Autofahrer 0.6 S
6 High Er fliest das Bad 0.88 O
7 High Sie jongliert die Baelle 0.85 S
8 High Er dribbelt den Ball 0.95 S
9 High Er ueberfaellt die Bank 0.85 S
10 High Er faellt den Baum 0.69 O
11 High Sie bepflanzt das Beet 0.6 O
12 High Er schient das Bein 1 O
13 High Er erklimmt den Berg 0.6 S
14 High Sie bezieht das Bett 0.64 O
15 High Er zapft das Bier 0.95 S
16 High Sie rahmt das Bild 0.9 S
17 High Sie faltet das Blatt 0.65 S
18 High Sie spitzt den Bleistift 0.9 S
19 High Sie giesst die Blumen 0.7 S
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A. Experimental items

sn predictability sentence
cloze probability of
the noun sources

20 High Sie wischt den Boden 0.8 S
21 High Er lutscht das Bonbon 0.68 O
22 High Sie toastet das Brot 0.88 O
23 High Sie liest das Buch 0.68 O
24 High Sie kloeppelt das Deckchen 0.6 O
25 High Sie schleckt das Eis 0.92 O
26 High Sie errechnet das Ergebnis 0.56 O
27 High Er wuerzt das Essen 0.6 O
28 High Er tappt in die Falle 0.8 S
29 High Er berichtigt den Fehler 0.7 S
30 High Er pfluegt das Feld 0.8 S
31 High Sie putzt das Fenster 0.64 O
32 High Er veranstaltet das Fest 0.56 O
33 High Er entfacht das Feuer 0.95 S
34 High Er hisst die Flagge 0.85 S
35 High Es lodern die Flammen 0.9 S
36 High Er fliegt das Flugzeug 0.8 O
37 High Sie posiert fŸr das Foto 0.75 S
38 High Sie dichtet das Gedicht 0.6 O
39 High Er verraet das Geheimnis 0.8 S
40 High Sie zaehlt das Geld 0.8 S
41 High Sie duenstet das Gemuese 0.75 S
42 High Sie erzaehlt die Geschichte 0.81 O
43 High Sie spuelt das Geschirr 0.92 O
44 High Sie stemmt das Gewicht 0.7 S
45 High Er zerbricht das Glas 0.72 O
46 High Er maeht das Gras 0.88 O
47 High Sie pachtet das Grundstueck 0.65 O
48 High Sie buerstet die Haare 0.75 S
49 High Es kraeht der Hahn 0.8 S
50 High Sie saniert das Haus 0.66 O
51 High Er baut das Haus 0.88 O
52 High Sie hobelt das Holz 0.76 O
53 High Sie Ÿbernachtet im Hotel 0.7 S
54 High Er rupft das Huhn 0.8 S
55 High Er fuettert den Hund 0.65 S
56 High Sie pellt die Karto�eln 0.6 S
57 High Sie erzieht das Kind 0.8 S
58 High Er ermahnt das Kind 0.85 S
59 High Sie gebärt das Kind 1 S
60 High Sie naeht das Kleid 0.8 O
61 High Sie beugt die Knie 0.6 S
62 High Sie backt den Kuchen 0.95 S
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A. Experimental items

sn predictability sentence
cloze probability of
the noun sources

63 High Sie melkt die Kuh 0.95 S
64 High Sie beraet den Kunden 0.56 O
65 High Sie bereist das Land 0.76 O
66 High Er erkundet die Landschaft 0.75 S
67 High Er klagt das Leid 0.56 O
68 High Sie komponiert das Lied 0.95 S
69 High Er bohrt das Loch 0.8 S
70 High Er baendigt den Loewen 0.6 S
71 High Sie gefaellt dem Mann 0.6 O
72 High Er verschreibt das

Medikament
0.65 S

73 High Sie siebt das Mehl 0.76 O
74 High Er summt die Melodie 0.8 S
75 High Er schaerft das Messer 0.84 O
76 High Er entsorgt den Muell 0.95 S
77 High Sie schnaeuzt die Nase 0.9 S
78 High Er heizt den Ofen 0.8 S
79 High Er dirigiert das Orchester 0.6 O
80 High Sie verschickt das Paket 0.7 S
81 High Er reitet das Pferd 1 O
82 High Er besteht die Pruefung 0.67 O
83 High Sie strickt den Pullover 0.61 O
84 High Er bezahlt die Rechnung 0.65 S
85 High Sie massiert den Ruecken 0.7 S
86 High Sie verstreut das Salz 0.6 O
87 High Er kapert das Schi� 0.76 O
88 High Er schmilzt den Schnee 0.75 S
89 High Es rieselt der Schnee 0.85 S
90 High Sie paniert das Schnitzel 0.9 S
91 High Er besohlt den Schuh 0.9 S
92 High Er schlachtet das Schwein 0.76 O
93 High Sie gewinnt das Spiel 0.6 O
94 High Sie mistet den Stall aus 0.75 S
95 High Sie bewirbt sich auf die

Stelle
0.75 S

96 High Sie Ÿberquert die Stra§e 0.6 S
97 High Sie schlichtet den Streit 0.93 O
98 High Er rueckt den Stuhl 0.61 O
99 High Sie loe�elt die Suppe 0.59 O
100 High Er knetet den Teig 0.9 S
101 High Er ueberschreitet das Tempo 0.6 S
102 High Sie verschiebt den Termin 0.65 O
103 High Sie schreinert den Tisch 0.7 S
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A. Experimental items

sn predictability sentence
cloze probability of
the noun sources

104 High Sie deckt den Tisch 0.9 S
105 High Er schliesst die Tuer 0.61 O
106 High Er verriegelt die Tuer 0.95 S
107 High Sie jaetet das Unkraut 0.68 O
108 High Er vereitelt das Verbrechen 0.6 S
109 High Er unterzeichnet den

Vertrag
0.9 S

110 High Es zwitschern die Voegel 1 S
111 High Sie filtert das Wasser 0.64 O
112 High Er geht den Weg 0.86 O
113 High Er geniesst das Wetter 0.6 S
114 High Er erlegt das Wild 0.6 O
115 High Sie buchstabiert das Wort 0.76 O
116 High Er verarztet die Wunde 0.6 S
117 High Er erreicht das Ziel 0.69 O
118 High Sie raucht die Zigarette 0.9 S
119 High Er tapeziert das Zimmer 0.64 O
120 High Er verpasst den Zug 0.56 O
121 Medium Er erledigt die Aufgabe 0.35 S
122 Medium Sie vergisst die Aussage 0.23 O
123 Medium Er verkauft das Auto 0.3 S
124 Medium Er faehrt das Auto 0.54 O
125 Medium Er ueberholt den Autofahrer 0.15 S
126 Medium Er aendert das Bad 0.12 O
127 Medium Sie rollt die Baelle 0.15 S
128 Medium Er faengt den Ball 0.35 S
129 Medium Er beraubt die Bank 0.35 S
130 Medium Er stutzt den Baum 0.35 S
131 Medium Sie bearbeitet das Beet 0.12 O
132 Medium Er untersucht das Bein 0.24 O
133 Medium Er besteigt den Berg 0.55 S
134 Medium Sie beschreibt das Bett 0.16 O
135 Medium Er sieht das Bier 0.16 O
136 Medium Sie starrt auf das Bild 0.21 S
137 Medium Sie knickt das Blatt 0.5 S
138 Medium Sie zerkaut den Bleistift 0.15 S
139 Medium Sie pflanzt die Blumen 0.5 S
140 Medium Sie saugt den Boden 0.5 S
141 Medium Er kauft das Bonbon 0.24 O
142 Medium Sie verteilt das Brot 0.16 O
143 Medium Sie leiht das Buch 0.4 S
144 Medium Sie bemerkt das Deckchen 0.12 O
145 Medium Sie verwendet das Eis 0.16 O
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A. Experimental items

sn predictability sentence
cloze probability of
the noun sources

146 Medium Sie korrigiert das Ergebnis 0.5 S
147 Medium Er kostet das Essen 0.52 O
148 Medium Er sitzt in der Falle 0.15 S
149 Medium Er vertuscht den Fehler 0.3 S
150 Medium Er besaet das Feld 0.52 O
151 Medium Sie verglast das Fenster 0.5 S
152 Medium Er organisiert das Fest 0.2 O
153 Medium Er erwaehnt das Feuer 0.16 O
154 Medium Er schwenkt die Flagge 0.25 S
155 Medium Es leuchten die Flammen 0.25 S
156 Medium Er hoert das Flugzeug 0.16 O
157 Medium Sie entwickelt das Foto 0.3 S
158 Medium Sie verfasst das Gedicht 0.15 S
159 Medium Er hŸtet das Geheimnis 0.45 S
160 Medium Sie versteckt das Geld 0.15 S
161 Medium Sie kocht das Gemuese 0.15 S
162 Medium Sie schreibt die Geschichte 0.1 S
163 Medium Sie waescht das Geschirr ab 0.4 S
164 Medium Sie schaetzt das Gewicht 0.4 S
165 Medium Er oe�net das Glas 0.24 O
166 Medium Er kaut das Gras 0.2 O
167 Medium Sie bebaut das Grundstueck 0.3 S
168 Medium Sie schneidet die Haare 0.25 S
169 Medium Es stolziert der Hahn 0.2 S
170 Medium Sie erwirbt das Haus 0.16 O
171 Medium Er beantragt das Haus 0.2 O
172 Medium Sie hackt das Holz 0.2 S
173 Medium Sie bucht das Hotel 0.3 S
174 Medium Er schlachtet das Huhn 0.15 S
175 Medium Er krault den Hund 0.45 S
176 Medium Sie erntet die Karto�eln 0.15 S
177 Medium Sie schleppt das Kind 0.15 S
178 Medium Er beaufsichtigt das Kind 0.4 S
179 Medium Sie ruft das Kind 0.5 S
180 Medium Sie waescht das Kleid 0.24 O
181 Medium Sie verletzt sich das Knie 0.55 S
182 Medium Sie verziert den Kuchen 0.4 S
183 Medium Sie besamt die Kuh 0.1 S
184 Medium Sie beliefert den Kunden 0.25 S
185 Medium Sie befaehrt das Land 0.24 O
186 Medium Er malt die Landschaft 0.25 S
187 Medium Er ertraegt das Leid 0.2 S
188 Medium Sie produziert das Lied 0.16 O
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A. Experimental items

sn predictability sentence
cloze probability of
the noun sources

189 Medium Er stopft das Loch 0.45 S
190 Medium Er zaehmt den Loewen 0.2 S
191 Medium Sie operiert den Mann 0.2 S
192 Medium Er schluckt das Medikament 0.3 S
193 Medium Sie wiegt das Mehl 0.16 O
194 Medium Er pfeift die Melodie 0.3 S
195 Medium Er beachtet das Messer 0.24 O
196 Medium Er sortiert den Muell 0.35 S
197 Medium Sie pudert die Nase 0.55 O
198 Medium Er kachelt den Ofen 0.3 S
199 Medium Er leitet das Orchester 0.12 O
200 Medium Sie liefert das Paket 0.25 S
201 Medium Er pflegt das Pferd 0.16 O
202 Medium Er versaeumt die Pruefung 0.15 S
203 Medium Sie buegelt den Pullover 0.3 S
204 Medium Er begleicht die Rechnung 0.5 S
205 Medium Sie kruemmt den Ruecken 0.25 S
206 Medium Sie schmeckt das Salz 0.15 S
207 Medium Er erwartet das Schi� 0.12 O
208 Medium Er schippt den Schnee 0.35 S
209 Medium Es faellt der Schnee 0.25 S
210 Medium Sie braet das Schnitzel 0.5 S
211 Medium Er bindet den Schuh 0.5 S
212 Medium Er bewacht das Schwein 0.16 O
213 Medium Sie kennt das Spiel 0.12 O
214 Medium Sie behuetet den Stall 0.1 S
215 Medium Sie kuendigt die Stelle 0.25 S
216 Medium Sie sperrt die Stra§e 0.25 S
217 Medium Sie vermeidet den Streit 0.2 S
218 Medium Er zimmert den Stuhl 0.15 S
219 Medium Sie bringt die Suppe 0.14 O
220 Medium Er ruehrt den Teig 0.5 S
221 Medium Er verlangsamt das Tempo 0.35 S
222 Medium Sie vergisst den Termin 0.25 S
223 Medium Sie poliert den Tisch 0.15 S
224 Medium Sie verrueckt den Tisch 0.25 S
225 Medium Er repariert die Tuer 0.1 S
226 Medium Er reinigt die Tuer 0.21 O
227 Medium Sie rupft das Unkraut 0.16 O
228 Medium Er leugnet das Verbrechen 0.35 S
229 Medium Er praesentiert den Vertrag 0.17 O
230 Medium Es flattern die Voegel 0.5 S
231 Medium Sie reicht das Wasser 0.16 O
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sn predictability sentence
cloze probability of
the noun sources

232 Medium Er beschreitet den Weg 0.35 S
233 Medium Er trotzt dem Wetter 0.45 S
234 Medium Er riecht das Wild 0.14 O
235 Medium Sie uebersetzt das Wort 0.4 S
236 Medium Er desinfiziert die Wunde 0.2 S
237 Medium Er verfehlt das Ziel 0.5 S
238 Medium Sie dreht die Zigarette 0.1 S
239 Medium Er streicht das Zimmer 0.3 S
240 Medium Er rangiert den Zug 0.4 S
241 Low Er vernachlaessigt die

Aufgabe
0 S

242 Low Sie kontrolliert die Aussage 0 S
243 Low Er kriegt das Auto 0.08 O
244 Low Er entrostet das Auto 0.09 O
245 Low Er fragt den Autofahrer 0 S
246 Low Er durchsucht das Bad 0 S
247 Low Sie findet die Baelle 0 S
248 Low Er kauft den Ball 0 S
249 Low Er besucht die Bank 0 S
250 Low Er verletzt den Baum 0.04 O
251 Low Sie lockert das Beet 0 S
252 Low Er testet das Bein 0 S
253 Low Er zeichnet den Berg 0 S
254 Low Sie beschmutzt das Bett 0 S
255 Low Er bringt das Bier 0.05 S
256 Low Sie sieht das Bild 0 S
257 Low Sie zerreisst das Blatt 0.07 O
258 Low Sie verschenkt den Bleistift 0 S
259 Low Sie bestaunt die Blumen 0.05 S
260 Low Sie begutachtet den Boden 0.05 S
261 Low Er ö�net das Bonbon 0 S
262 Low Sie fertigt das Brot 0.05 S
263 Low Sie verleiht das Buch 0.06 O
264 Low Sie verliert das Deckchen 0 S
265 Low Sie haelt das Eis 0 S
266 Low Sie verbessert das Ergebnis 0.03 O
267 Low Er macht das Essen 0.04 O
268 Low Er konstruiert die Falle 0 S
269 Low Er beginnt den Fehler 0.05 S
270 Low Er misst das Feld 0.03 O
271 Low Sie beruecksichtigt das

Fenster
0.08 O

272 Low Er bejubelt das Fest 0.05 S
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A. Experimental items

sn predictability sentence
cloze probability of
the noun sources

273 Low Er zerstoert das Feuer 0 S
274 Low Er rollt die Flagge ein 0 S
275 Low Es stehen die Flammen 0 S
276 Low Er bewegt das Flugzeug 0 S
277 Low Sie druckt das Foto 0 S
278 Low Sie kann das Gedicht 0.04 O
279 Low Er verdraengt das

Geheimnis
0.05 S

280 Low Sie beobachtet das Geld 0 S
281 Low Sie behandelt das Gemuese 0 S
282 Low Sie glaubt die Geschichte 0.04 O
283 Low Sie benoetigt das Geschirr 0 S
284 Low Sie vergleicht das Gewicht 0 S
285 Low Er greift das Glas 0.06 O
286 Low Er klebt das Gras 0 S
287 Low Sie erschliesst das

Grundstueck
0.03 O

288 Low Sie sammelt die Haare 0 S
289 Low Es springt der Hahn 0 S
290 Low Sie erkennt das Haus 0 S
291 Low Er bewirft das Haus 0.05 S
292 Low Sie bricht das Holz 0.03 O
293 Low Sie bewertet das Hotel 0 S
294 Low Er teilt das Huhn 0 S
295 Low Er untersucht den Hund 0.05 S
296 Low Sie braucht die Karto�eln 0 S
297 Low Sie benachrichtigt das Kind 0 S
298 Low Er befragt das Kind 0.04 O
299 Low Sie versetzt das Kind 0.05 S
300 Low Sie bewundert das Kleid 0.05 S
301 Low Sie streichelt das Knie 0 S
302 Low Sie bestellt den Kuchen 0.05 S
303 Low Sie betrauert die Kuh 0 S
304 Low Sie informiert den Kunden 0.03 O
305 Low Sie nennt das Land 0 S
306 Low Er veraendert die

Landschaft
0 S

307 Low Er spuert das Leid 0.04 O
308 Low Sie kopiert das Lied 0 S
309 Low Er sucht das Loch 0 S
310 Low Er verlaesst den Loewen 0 S
311 Low Sie verpflichtet den Mann 0.09 O
312 Low Er bezahlt das Medikament 0 S

124



A. Experimental items

sn predictability sentence
cloze probability of
the noun sources

313 Low Sie pustet das Mehl 0 S
314 Low Er spielt die Melodie 0 S
315 Low Er verraeumt das Messer 0 S
316 Low Er holt den Muell 0 S
317 Low Sie bewegt die Nase 0.03 O
318 Low Er saeubert den Ofen 0 S
319 Low Er beordert das Orchester 0 S
320 Low Sie schliesst das Paket 0 S
321 Low Er sticht das Pferd 0.05 S
322 Low Er versucht die Pruefung 0.03 O
323 Low Sie traegt den Pullover 0.03 O
324 Low Er vergisst die Rechnung 0.05 S
325 Low Sie roentgt den Ruecken 0.05 S
326 Low Sie benutzt das Salz 0.08 O
327 Low Er betritt das Schi� 0 S
328 Low Er nimmt den Schnee 0 S
329 Low Es kommt der Schnee 0 S
330 Low Sie klopft das Schnitzel 0.05 S
331 Low Er stiehlt den Schuh 0 S
332 Low Er beruehrt das Schwein 0 S
333 Low Sie verstaut das Spiel 0 S
334 Low Sie baut den Stall aus 0 S
335 Low Sie entdeckt die Stelle 0 S
336 Low Sie kratzt die Stra§e 0 S
337 Low Sie verantwortet den Streit 0.04 O
338 Low Er verwandelt den Stuhl 0.03 O
339 Low Sie erhitzt die Suppe 0.05 S
340 Low Er zerteilt den Teig 0 S
341 Low Er ignoriert das Tempo 0 S
342 Low Sie bestaetigt den Termin 0.06 O
343 Low Sie hebt den Tisch 0.05 S
344 Low Sie zertruemmert den Tisch 0.05 S
345 Low Er erkennt die Tuer 0.05 S
346 Low Er dreht die Tuer 0 S
347 Low Sie hasst das Unkraut 0 S
348 Low Er filmt das Verbrechen 0 S
349 Low Er liest den Vertrag 0.05 S
350 Low Es fehlen die Voegel 0 S
351 Low Sie liebt das Wasser 0 S
352 Low Er bestimmt den Weg 0.04 O
353 Low Er fuerchtet das Wetter 0.05 S
354 Low Er erschrickt das Wild 0 S
355 Low Sie erlernt das Wort 0.08 O
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sn predictability sentence
cloze probability of
the noun sources

356 Low Er reinigt die Wunde 0 S
357 Low Er ermittelt das Ziel 0.06 O
358 Low Sie verlangt die Zigarette 0 S
359 Low Er bevorzugt das Zimmer 0.08 O
360 Low Er erwischt den Zug 0.07 O

Sources: O=Obleser and Kotz(2010); S=SFB 1102, Project A4
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B
Forward prediction vs Backward guessing

in Chapter 6

Complementary analyses were performed on verb-accuracy in the noun-correct trials

to examine the backward guessing e�ect. The complementary analyses showed

that the main e�ects of target word predictability, channel condition and their

interactions were significant. However, subsequent subgroup analyses showed that

when listeners identified nouns correctly at 4 channels condition, their response

accuracy (of verb recognition) in high predictability sentences was not di�erent

than in medium predictability sentences (— = 0.19, SE = 0.29, z(1878) = 0.66, p =

.51). There was only a significant di�erence in accuracy between low predictability

and medium predictability sentences (— = 0.56, SE = 0.28, z(1878) = 2.01, p =

.04). Compared to the model estimates of accuracy in verb-correct trials (estimates

— = 1.14 and — = 1.01), the accuracy for noun-correct trials (— = 0.19 and — =

0.56) were smaller (see Results and Conclusions of Chapter 6).
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B. Forward prediction vs Backward guessing in Chapter 6

Table B.1: Estimated e�ects of the best-fitting model accounting for the correct verb-
recognition in noun-correct trials

Fixed e�ects Estimate Std. Error z value p value
Intercept 3.28 .14 23.51 <.001

Noise condition (4-channel) -2.13 .13 -15.76 <.001

Noise condition (6-channel) -.35 .14 -2.55 .011

Target word predictability (Low-Medium) -.72 .28 -2.57 .01

Target word predictability (High-Low) .27 .28 .97 .33

Noise condition (4-channel) ◊ .04 .34 .14 .89
Target word predictability (Low-Medium)

Noise condition (6-channel) ◊ .66 .31 2.15 .03
Target word predictability (Low-Medium)

Noise condition (4-channel) ◊ .61 .31 1.95 .05
Target word predictability (High-Low)

Noise condition (6-channel) ◊ .35 .33 1.05 .29
Target word predictability (High-Low)

Global channel context ◊ -.37 .13 -2.80 .005
(Unpredictable - Predictable)

Table B.2: Estimated e�ects of the best-fitting model accounting for the correct verb-
recognition in noun-correct trials in 4-channel condition

Fixed e�ects Estimate Std. Error z value p value
Intercept 1.17 .13 8.90 <.001

Target word predictability (Medium-Low) .56 .28 2.01 .04

Target word predictability (High-Medium) .19 .29 .66 .51

Global channel context ◊ -.42 .14 -2.94 .003
(Unpredictable - Predictable)
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C
Forward prediction vs Backward guessing

in Chapter 7

Results of the complementary analysis discussed in the Conclusion section of Chapter

7:

We performed complementry analyses on noun-correct trials to compare the

estimate of backward guessing e�ect and the forward prediction. The results showed

that in both Experiments 1 (fast speech vs normal speech rate) and 2 (slow speech

vs normal speech rate), the main e�ects of target word predictability and speech

rate were significant while the interaction of the latter two was not significant (see

Tables C.1 and C.2). These model estimates, i.e., the e�ect of noun-correct trials

(—nounExp1 = .73 and —nounExp2 = .78) were smaller than the model estimates of

verb-correct trials presented in Chapter 7 (—verbExp1 = 2.42 and —verbExp2 = 2.58).

Thus, these findings supported the interpretation of forward-prediction much more

strongly than backward-guessing e�ect.
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C. Forward prediction vs Backward guessing in Chapter 7

Table C.1: Estimated e�ects of the best-fitting model accounting for the correct verb-
recognition in noun-correct trials in Experiment 1

Fixed e�ects Estimate Std. Error z value p value
Intercept .55 .18 3.00 .003

Speech rate (Fast) -.89 .15 -6.12 <.001

Target word predictability (High) .73 .23 3.19 .001

Speech rate ◊ Target word predictability .09 .21 .45 .65

Table C.2: Estimated e�ects of the best-fitting model accounting for the correct verb-
recognition in noun-correct trials in Experiment 2

Fixed e�ects Estimate Std. Error z value p value
Intercept .89 .19 4.71 <.001

Speech rate (Slow) -.20 .11 -1.82 .07

Target word predictability (High) .78 .24 3.23 .001

Speech rate ◊ Target word predictability .22 .16 1.413 .15
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D
Data and code

All the code, data, and experimental lists used in the studies presented in this

thesis, are available in the following publicly accessible repository: https://

osf.io/rtsz3/.
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