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Abstract
The classic regularization theory for solving inverse problems is built on the
assumption that the forward operator perfectly represents the underlying physi-
cal model of the data acquisition. However, in many applications, for instance in
microscopy or magnetic particle imaging, this is not the case. Another important
example represent dynamic inverse problems, where changes of the searched-
for quantity during data collection can be interpreted as model uncertainties. In
this article, we propose a regularization strategy for linear inverse problems with
inexact forward operator based on sequential subspace optimization methods
(SESOP). In order to account for local modelling errors, we suggest to combine
SESOP with the Kaczmarz’ method. We study convergence and regularization
properties of the proposed method and discuss several practical realizations.
Relevance and performance of our approach are evaluated at simulated data
from dynamic computerized tomography with various dynamic scenarios.
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1. Introduction

An inverse problem is concerned with extracting a searched-for quantity f ∈ X from measured
data g ∈ Y where g = A f with forward operator A : X → Y modelling the data acquisition
process. A characteristic property of an inverse problem is its ill-posedness: in general, a
small noise in the measurement can cause a large error in the solution, and therefore, suitable
regularization schemes are required.

Due to simplifications in the underlying physical model of the data acquisition process or
due to calibration errors, the forward operator is usually not exactly known either. A prominent
example arises for instance in the context of microscopic imaging, where the forward operator
depends on the point spread function of the microscope which has to be determined experimen-
tally. In magnetic particle imaging, the model-based determination of the system function is an
unsolved problem which necessitates an experimental calibration step. Our main motivation
to study inverse problems with inexact forward operator is to solve dynamic inverse problems,
where changes of the searched-for quantity during data collection can be interpreted as model
uncertainties.

1.1. Motivating example: dynamic inverse problems

In many practical applications, collecting the measurement g takes a considerable amount of
time. In computerized tomography (CT), for instance, it takes time to rotate the radiation source
around the investigated object. Within the standard formulation A f = g, this can be expressed
by specifying the data variable, i.e., the equation more precisely reads

A f (t, y) = g(t, y) for all (t, y) ∈ [0, T] × ΩY (1)

with time interval [0, T] ⊂ R covering the time period required for collecting the data. ΩY

could be considered, e.g., as bounded subset of Rm.
To simplify the modelling step, A is typically derived under the assumption that the

searched-for quantity f is stationary, i.e., independent of time. However, in many applications,
the investigated quantity changes during the collection of the data, for instance in medical
imaging due to patient or organ motion. In non-destructive testing, the dynamic scenario arises
for example when visualizing driven liquid fronts [1] or performing elasticity experiments
during the scan to determine material parameters [17]. The respective dynamic data then are
inconsistent with the standard model A. Thus, simply applying a standard inversion procedure
for A to such a dynamic data set causes motion artifacts in the reconstruction result which
degrade the reconstruction quality. As a consequence, specific regularization methods taking
into account the dynamic behaviour of the specimen have to be developed for such dynamic
inverse problems.

Typically, the individual states of the specimen show a strong temporal correlation. They can
be correlated to one reference configuration f via a deformation model Γ : [0, T] × R

n → R
n.

In this case, the exact forward model for the dynamic case is given by the operator

AΓ f (t, y) :=Astat( f ◦ Γ)(t, y),

where Astat refers to the forward model of the static scenario. Thus, in the dynamic case, we
have to solve the equation

AΓ f (t, y) = g(t, y) for all (t, y) ∈ [0, T] × ΩY ,

2



Inverse Problems 36 (2020) 124001 S E Blanke et al

see, e.g., [12, 18]. In practice, the exact deformationΓ, and therefore the exact dynamic forward
operator AΓ, will in general be unknown. This either requires a delicate calibration step (so-
called motion estimation) prior to the reconstruction [11, 19, 22] or the simultaneous recovery
of Γ and f which is typically computationally demanding [2, 3]. For specific applications and
special deformations that preserve the underlying data acquisition geometry, exact analytic
reconstruction methods have been derived, especially in CT, where this type of motion includes
affine deformations, [6, 7, 10]. In this case, techniques for rebinning the measured data to make
them feasible for standard reconstruction methods are proposed as well, [4, 34].

To avoid the challenging task of an explicit motion estimation, several approaches incor-
porating less strong prior information on the solution have been studied as well. They typ-
ically invoke some spatio-temporal regularization term, such as, e.g., temporal smoothness
[28, 29]. In [5], a computational method in a Bayesian framework has been proposed, where
spatio-temporal covariance matrices are considered. All-at-once and reduced iterative meth-
ods to solve time-dependent parameter identification problems are described and analyzed in
[16, 25]. Approaches for solving non-linear dynamic tomography problems have been stud-
ied in the context of electrical impedance tomography, for instance using an oppositional
biogeography-based optimization technique to reconstruct organ boundaries [26].

In this article, we propose a different strategy which requires neither explicitly known
deformation fields nor explicit spatio-temporal priors on the solution: instead of the exact but
unknown operator AΓ, utilize a simplified model, such as the inexact operator Astat, and apply
a regularization strategy that accounts for the respective model inexactness.

1.2. Inverse problems with inexact forward operator

The aforementioned examples illustrate that uncertainties in the forward model are highly rele-
vant in practice. This inexactness needs to be taken into account within the reconstruction step
in order to stably determine f from noisy data gδ with

‖gδ −A f ‖ � δ,

while the reconstruction procedure only uses an available approximate model Aη with

‖A−Aη‖ � η ∈ [0,∞) . (2)

We refer to the model error (2) in the following as the global model inexactness.
In the literature, a few methods have been proposed to deal with an imperfection of the

forward model. A well-known technique to compensate modelling errors in the reconstruction
process is total least squares regularization [8]. An optimization approach based on partially-
ordered spaces was proposed and evaluated for the deblurring problem in [21]. In [20], a
reconstruction method for magnetic particle imaging was presented which computes simul-
taneously the searched-for quantity and deviations of the simplified discrete forward model.
Uncertainties in the forward operator are often considered and dealt with in the context of
statistical inverse problems, see, e.g., [33].

In this article, we propose a regularization strategy for linear inverse problems with inex-
act forward operator based on sequential subspace optimization methods. Sequential subspace
optimization (or short SESOP) belongs to the class of iterative reconstruction techniques
[9, 15, 23, 31, 32, 35, 36]. The underlying idea is to sequentially project from some initial
value onto suitable subspaces that contain the searched-for solution. This method has been
successfully applied, for example to solve an integral equation of the first kind [30] or in param-
eter identification [32, 35], particularly in terahertz tomography [37]. The goal in our case is

3
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to choose these subspaces in accordance to the model inexactness such that the sequence of
iterates generated by the imperfect model Aη converges to a solution of A f = g.

The above framework can then be used to solve dynamic inverse problems, where the
dynamic operatorAΓ reprises the role of the unknown exact modelA, i.e., we set AΓ � A. As
simplified operator, we could choose for instance the static forward operator, i.e., Astat � Aη ,
provided we have at least an estimate η on the overall model error.

1.3. Local inexactness and semi-discrete framework

In most cases, a global error such as (2) will quantify the model deviation too pessimistically.
As an example, consider the case of periodic motion, such as respiratory or cardiac motion. Due
to the periodicity, it might hold A f (t, ·) = Aη f (t, ·) for certain time instances, i.e., locally, the
model error is small. In addition, local deformations, e.g. cardiac motion, affect only a small
region of the body and therefore, it can hold A f (t, y) = Aη f (t, y) for some y ∈ ΩY as well.
Thus, we want to consider a framework that takes local model errors depending on the data
variable into account.

For this purpose, we focus on a semi-discrete framework

Ak,l f = gk,l, k ∈ {0, . . . , K − 1}, l ∈ {0, . . .L − 1}

with a finite sequence of linear operators Ak,l in this article. On the one hand, this framework
accounts for the discrete nature of measured data in practice, see also, e.g., [27]. On the other
hand, we can then consider a sequence of imperfect forward models Aη

k,l with

‖Ak,l − Aη
k,l‖ � ηk,l, k ∈ {0, . . . , K − 1}, l ∈ {0, . . .L − 1}. (3)

This allows the level of inexactness, characterized by ηk,l, to vary for each data point. Thus,
such local error estimates will typically be less pessimistic than a global estimate (2) and further
allow to incorporate prior knowledge on the motion (e.g. on periodicity). The indices k and l
may refer, for example, to time instances and detector points in dynamic imaging.

1.4. Outline of the article

The article is organized as follows. Section 2 presents the basic principle of SESOP methods in
the continuous setting with exact model operator and noise-free data. We then provide the math-
ematical framework of our semi-discrete setting. In particular, we suggest to combine SESOP
with Kaczmarz’ method and discuss the resulting advantages regarding practical applications.
Section 2 concludes with the formulation of our regularized version of the SESOP-Kaczmarz
method for inexact forward operators. Its convergence and regularization properties are then
studied in section 3. In Section 4, we discuss possible variations of our proposed algorithms.
Section 5 is devoted to the application in dynamic CT. In particular, our proposed algorithms
are evaluated at different simulated CT data for various dynamic scenarios.

2. A SESOP-Kaczmarz method for linear inverse problems with inexact
forward operator

This section is dedicated to introduce the basic tools that are needed to formulate the SESOP
algorithms and their combinations with Kaczmarz’ method. Detailed descriptions of SESOP
techniques with an exact forward operator can be found in the literature, e.g., [30–32, 35, 36].

4
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2.1. Basic principles of sequential subspace optimization

In the following, we provide a brief introduction to SESOP methods in the continuous setting
with exact model operator and noise-free data.

Let
(
X, ‖ · ‖X

)
and
(
Y, ‖ · ‖Y

)
denote Hilbert spaces equipped with their respective norms.

By 〈·, ·〉X we refer to the inner product on X. If there is no ambiguity, we will omit the indices
on the norms and inner products to simplify the notation. Further, let A : X → Y be a bounded
linear operator with

‖A‖ � ΛA (4)

for some ΛA > 0. By A∗ we denote the adjoint of A. The space

R(A) := {Ax : x ∈ X} ⊂ Y

is called the range of A and the space

N (A) := {x ∈ X : Ax = 0}

is called the null space of A. For given g ∈ Y , the set

MA,g := { f ∈ X : A f = g},

denotes the solution set of the operator equation A f = g.
The underlying idea of SESOP is to create a sequence of iterates fn ∈ X that converges to

a solution f ∈ MA,g by sequentially projecting a starting value f0 ∈ X onto suitable convex
subsets of X. The following definition introduces specific types of subsets of X which play an
important role in this context.

Definition 2.1. Let u ∈ X\{0} and α, ξ ∈ R with ξ � 0. We call

H(u,α) := { f ∈ X : 〈u, f 〉 = α}

a hyperplane in X. The set

H�(u,α) := { f ∈ X : 〈u, f 〉 � α}

below H(u,α) is called a half-space. Analogously we define the half spaces H�(u,α),
H<(u,α), H>(u,α). Finally, we define the stripe

H(u,α, ξ) := { f ∈ X : |〈u, f 〉 − α| � ξ}

with upper bounding hyperplane H(u,α+ ξ) and lower bounding hyperplane H(u,α− ξ).

An illustration of the concept of stripes is given in figure 1.
For arbitrary w ∈ Y , the solution set MA,g is contained in the hyperplane

H(A∗w, 〈w, g〉) = { f ∈ X : 〈A∗w, f 〉 = 〈w, g〉} .

Indeed, we see that for each z ∈ MA,g we have

〈A∗w, z〉 = 〈w,Az〉 = 〈w, g〉 .

5
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Figure 1. Illustration of the concept of stripes for the case ‖u‖ = 1.

Next, we introduce the concept of metric projections, which play a crucial role for SESOP.

Definition 2.2. Let C �= ∅ be a convex subset of X. Then the metric projection PC(x) of
x ∈ X onto C is defined by

PC(x) := argminx̃∈C‖x − x̃‖.

In Hilbert spaces, the metric projection PH(u,α)(x) of x ∈ X onto a hyperplane H(u,α)
coincides with the orthogonal projection and can be expressed as

PH(u,α)(x) = x − 〈u, x〉 − α

‖u‖2
u. (5)

The metric projection onto a halfspace or a stripe corresponds to the metric projection onto the
respective bounding hyperplane.

We now can formulate the nth iteration step (n > 0) of the SESOP method for solving
A f = g, see, e.g., [32]: given a chosen finite index set In and search directions A∗wn,i with
chosen wn,i ∈ Y , i ∈ In, compute the iterate fn+1 as the metric projection

fn+1 :=PHn ( fn) (6)

of the previous iterate fn onto the intersection of hyperplanes

Hn :=
⋂
i∈In

H(A∗wn,i, 〈wn,i, g〉).

In [31] it has been shown that the metric projection PH( f) of f ∈ X onto the (non-empty)
intersection

H :=
⋂
i∈I

H(ui,αi)

of a finite set of hyperplanes H(ui,αi), i ∈ I, |I| < ∞, is given by

PH( f ) = f −
∑
i∈I

t̃iui, (7)

where t̃ := (̃ti)i∈I ∈ R
|I| minimizes the function

h(t) :=
1
2

∥∥∥∥ f −
∑
i∈I

tiui

∥∥∥∥
2

+
∑
i∈I

tiαi. (8)

6
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If {ui : i ∈ I} is linearly independent, the function h is strictly convex and thus, t̃ is unique, see
also [31].

Thus, the iterates (6) of the SESOP method are given by

fn+1 = fn −
∑
i∈In

t̃n,iA∗wn,i.

Under suitable conditions on the index set In, the search directions A∗wn,i and the parameters
t̃n,i, the sequence { fn}n∈N converges to f ∈ MA,g, see [32, 36].

We conclude this subsection by outlining how SESOP can be adapted to a regularization
method in case only noisy data gδ with noise level δ (i.e. ‖g − gδ‖ � δ) and an inexact version
Aη of the forward operator A with inexactness η (i.e. ‖A−Aη‖ � η) are given. The basic
idea consists in replacing the hyperplanes within the projection step by stripes whose width is
chosen in accordance to the noise and uncertainty level.

This idea is based on the property that

Mρ
A,g :=MA,g ∩ Bρ(0),

where Bρ(0) is the open ball with radius ρ > 0 around 0, is contained in the stripe

Hδ,η,ρ :=H
(
(Aη)∗w, 〈w, gδ〉, (δ + ηρ)‖w‖

)
=
{

f ∈ X : ‖ 〈(Aη)∗w, f 〉 −
〈
w, gδ

〉
‖ � (δ + ηρ)‖w‖

}
, (9)

since for all z ∈ MA,g with ‖z‖ � ρ we have

‖ 〈(Aη)∗w, z〉 −
〈
w, gδ

〉
‖ = ‖ 〈w, (Aη −A) z〉+ 〈w,Az〉 −

〈
w, gδ

〉
‖

= ‖
〈
w, (Aη −A) z + g − gδ

〉
‖

� ‖w‖ ·
(
‖Aη −A‖‖z‖+ ‖g − gδ‖

)
� (δ + ηρ) ‖w‖. (10)

This approach has been studied so far for the case of noisy data and exact forward operator
(i.e. η = 0). In particular, combining the respective projection algorithm with the discrepancy
principle yields a finite stopping index n∗ and the respective iterate fn∗ constitutes a regularized
solution of A f = g, see again [32, 36].

One goal of this article is to extend the respective convergence and regularization results to
the setting with inexact forward operator. In order to allow incorporating local estimates for
the modelling errors, we focus in the following on the more general semi-discrete framework
motivated in section 1.

2.2. A SESOP-Kaczmarz method for semi-discrete inverse problems

Let
(
Yk,l, ‖ · ‖Yk,l

)
, where k ∈ K := {0, . . . , K − 1}, l ∈ L := {0, . . . , L − 1}, with integers

K, L � 1, be Hilbert spaces equipped with their respective norms. Further, let Ak,l : X → Yk,l,
k ∈ K, l ∈ L, be bounded linear operators with

‖Ak,l‖ � ΛA (11)

for some ΛA > 0. Their Hilbert space adjoints A∗
k,l as well as their range and null space are

defined in analogy to the ones in the continuous setting. The solution set of the semi-discrete

7
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inverse problem

Ak,l f = gk,l, k ∈ K, l ∈ L (12)

is given by

Msd
A,g := { f ∈ X : Ak,l f = gk,l for all l ∈ L, k ∈ K}

= f + +
⋂
k∈K

⋂
l∈L

N (Ak,l) (13)

for some solution f+ of (12).

Remark 2.3. Depending on the application, it could be of interest to consider a more gen-
eral setting with index sets K := {0, . . . , K − 1} and Lk := {0, . . . , Lk − 1}, K, Lk � 1. In the
context of dynamic inverse problems, this might be relevant if the discretization with respect
to the variable y depends on time, i.e., on the index k. The results presented in this article can
be directly transferred to this more general setting. However, to keep the notation as simple as
possible, we consider in the following the setting where L is independent of k.

In order to solve the semi-discrete inverse problem (12), we propose to combine the SESOP
method with Kaczmarz’ method [24].

Remark 2.4. A combination of Kaczmarz’ method with SESOP allows to incorporate local
properties of the inverse problem: on the one hand, SESOP is designed in such a way that the
local properties of the inverse problem, i.e., particularly local modelling errors, can be easily
included in the regularization. On the other hand, Kaczmarz’ method allows to combine the
respective subproblems.

We also remark that, in view of a comparison to the Landweber method, the additional
computational effort due to solving the required optimization problem in the SESOP iteration
is relatively low compared to the reduction in computation time due to this regulation of the
step width and using multiple search directions, see also, e.g., [30, 35, 37] for a comparison.

To illustrate the basic idea, we first consider a system of linear operator equations

Ak f = gk, k ∈ K,

with only one index set. The standard Kaczmarz’ method reads in this case

fn+1 = PMA[n],g[n]
( fn),

where [n] := n modK and f0 ∈ X is an initial value. Here we use the notation from [13, 14],
where the Landweber–Kaczmarz method for nonlinear inverse problems is investigated.

The projection step can now be replaced by a metric projection onto the intersection
Hn :=

⋂
i∈In

Hn,i of the hyperplanes Hn,i :=H
(
A∗

[i]wn,i, 〈wn,i, g[i]〉
)
. The corresponding SESOP-

Kaczmarz method then reads

fn+1 = fn −
∑
i∈In

tn,iA
∗
[i]wn,i. (14)

Here, tn := (tn,i)i∈In is calculated as a minimizer of the respective function hn from (8) with
un,i :=A∗

[i]wn,i and αn,i := 〈wn,i, g[i]〉. Each parameter tn,i can be interpreted as a regulation of
the step width in the direction of the search direction un,i.

8
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Regarding our semi-discrete setting, the two discretization indices k and l allow for multiple
versions of the basic SESOP-Kaczmarz iteration (14). For instance, the Kaczmarz iterations
can be executed with respect to both k and l. Depending on the nature of the underlying inverse
problem, it might be convenient to use search directions that are averaged with respect to one
of the indices, for instance

un,i :=
∑
l∈L

A∗
[i],lw

l
n,i (15)

resulting from summing up all search directions with respect to the second discretization index.
Respectively, the roles of k and l could be interchanged. A detailed overview of these different
versions can be found in section 4. Please note that the continuous case, i.e., for the operator
equation A f = g, is included in the above framework since it corresponds to a setting with
K = L = {0}.

Throughout sections 2 and 3, we focus on the SESOP-Kaczmarz algorithm with search-
directions (15) for the semi-discrete case, since all the above mentioned versions can be treated
in this framework, see the discussion in section 4.

In order to be able to provide a solution of Ak,l f = gk,l, the hyperplanes associated to the
search directions (15) have to include the solution set Msd

A,g (13). According to the following
lemma, this is indeed the case.

Lemma 2.5. For each iteration index n, the hyperplanes

Hl
n,i :=

{
f ∈ X :

〈
A∗

[i],lw
l
n,i, f
〉
=
〈
wl

n,i, g[i],l

〉}
(16)

with l ∈ L as well as the hyperplanes

Hn,i :=

{
f ∈ X :

∑
l∈L

〈
A∗

[i],lw
l
n,i, f
〉
=
∑
l∈L

〈
wl

n,i, g[i],l
〉}

(17)

with wl
n,i ∈ Y[i],l for all i ∈ In, n ∈ N, and l ∈ L contain the solution set Msd

A,g.

Proof. The proof is analogous to (10). �

2.3. Regularizing SESOP-Kaczmarz iteration for inexact forward operators

In this section, we propose a regularizing SESOP-Kaczmarz iteration that is suited for lin-
ear semi-discrete inverse problems (12) in Hilbert spaces with inexact forward operator and
noisy data. Let Aη

k,l ∈ L(X, Yk,l) denote an inexact version of the forward operator Ak,l with
inexactness

‖Aη
k,l − Ak,l‖ � ηk,l ∈ [0,∞) . (18)

Further, we consider noisy data gδ
k,l ∈ Yk,l with noise level

‖gδ
k,l − gk,l‖ � δk,l ∈ [0,∞) . (19)

Remark 2.6. Please note that we label quantities that are influenced by the inexactness
η = (ηk,l)k∈K,l∈L or the noise level δ = (δk,l)k∈K,l∈L by adding the index η or δ. For example,
we assume that the forward operator Ak,l is inexact with inexactness ηk,l, yet we will only write
Aη

k,l instead of A
ηk,l
k,l .

9
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In analogy to (13), we denote the set of solutions whose norm is bounded by ρ > 0 by

Msd,ρ
A,g :=Msd

A,g ∩ Bρ(0).

For each element z ∈ Msd,ρ
A,g , we obtain the estimate

‖Aη
k,lz − gδ

k,l‖ = ‖
(
Aη

k,l − Ak,l
)

z + Ak,lz − gδ
k,l‖ � ηk,lρ+ δk,l.

We propose to regularize the SESOP-Kaczmarz algorithm with search directions (15),
see section 2.2, by replacing the hyperplanes Hn,i by stripes with width in accordance to
δ, respectively η, and by combining the algorithm with a discrete version of the discrep-
ancy principle. The details are formulated in the following algorithm which is referred to as
RESESOP-Kaczmarz.

Algorithm 2.7. Choose an initial value f0 := f η,δ
0 ∈ Bρ(0) ⊂ X and constants τ k,l > 1 for

k ∈ K, l ∈ L. For each iteration index n ∈ N ∪ {0} set

Dη,δ
n :=

{
l ∈ L : ‖Aη

[n],l f η,δ
n − gδ

[n],l‖ > τ[n],l
(
η[n],lρ+ δ[n],l

)}
.

If Dη,δ
n = ∅, set f η,δ

n+1 := f η,δ
n . Otherwise, define a finite index set Iη,δ

n ⊂ {0, 1, . . . , n} as well as
search directions

uη,δ
n,i :=

∑
l∈L

(
Aη

[i],l

)∗
wη,δ,l

n,i ,

where wη,δ,l
n,i ∈ Y[i],l and wη,δ,l

n,n = 0 for all l /∈ Dη,δ
n .

For each index n = 0, 1, . . . , compute the new iterate

f η,δ
n+1 :=P

Hη,δ
n

(
f η,δ

n

)
(20)

by projecting the current iterate f η,δ
n onto the intersection

Hη,δ
n :=

⋂
i∈Iη,δ

n

H
(

uη,δ
n,i ,αη,δ

n,i , ξη,δ
n,i

)
(21)

of the stripes with the parameters

αη,δ
n,i :=

∑
l∈L

〈
wη,δ,l

n,i , gδ
[i],l

〉
,

ξη,δ
n,i :=

∑
l∈L

(
η[i],lρ+ δ[i],l

)
‖wη,δ,l

n,i ‖.

Stop iterating, as soon as f η,δ
n = f η,δ

n−K and n = 0 mod K.

Remark 2.8. Algorithm 2.7 includes an adaption of the discrepancy principle for our semi-
discrete setting, which considers the discrepancies of all subproblems separately to increase
the accuracy of the reconstruction.

Definition 2.9. The iterates f η,δ
n , n ∈ N, in algorithm 2.7 are called auxiliary iterates. Since

algorithm 2.7 is stopped when n = r · K for some integer r ∈ N (i.e., after a full sweep through
all subproblems), we define f̄ η,δ

r := f η,δ
rK and call { f̄ η,δ

r }r∈N the sequence of full iterates.

Remark 2.10. With δ = 0 and η = 0, our RESESOP-Kaczmarz algorithm coincides with
SESOP-Kaczmarz proposed in section 2.2 for the case of exact data and exact forward operator.

10
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3. Convergence and regularization

In this section, we study convergenceand regularization properties of our RESESOP-Kaczmarz
algorithm 2.7. This requires in particular imposing suitable conditions on the index sets Iη,δ

n and
the search directions.

Regarding the index set Iη,δ
n , we postulate that

n ∈ Iη,δ
n and Iη,δ

n ⊂ {n − N + 1, . . . , n} ∩ N for all n ∈ N, (22)

where N ∈ N\{0} is fixed.
Regarding the search directions, for each n ∈ N, we define

uη,δ
n := uη,δ

n,n :=
∑
l∈L

(
Aη

[n],l

)∗
wη,δ,l

n (23)

with

wη,δ,l
n :=wη,δ,l

n,n :=

{
Aη

[n],l f η,δ
n − gδ

[n],l, if l ∈ Dη,δ
n ,

0, if l /∈ Dη,δ
n .

In other words, we define the search direction uη,δ
n,n as the gradient of the functional

Ψn( f ) :=
1
2

∑
l∈Dη,δ

n

‖Aη
[n],l f − gδ

[n],l‖2

evaluated in the current iterate f η,δ
n .

The section is now organized as follows. We first prove in section 3.1, that the sequence of
iterates for the exact forward operator and exact data converges to a solution f + ∈ Msd

A,g. We
then turn to the case of noisy data and inexact forward operator and show that the respec-
tive iteration scheme provides a regularized solution to the semi-discrete inverse problem
Ak,l f = gk,l, (k, l) ∈ K × L.

3.1. Convergence

In order to prove the convergence of algorithm 2.7 for an unperturbed forward operator and
exact data, we establish in a first step the validity of a descent property.

Lemma 3.1. Let { fn}n∈N be the sequence of iterates generated by algorithm 2.7 for η =
δ = 0. If the conditions (22) and (23) are fulfilled, the descent property

‖z − fn+1‖2 � ‖z − fn‖2 − C‖w̄n‖2 (24)

with

w̄n := argmaxl∈L‖wl
n‖ (25)

holds for all z ∈ Msd
A,g.

Proof. For n ∈ N we set H̃n :=H(un,αn) and

f̃ n+1 :=PH̃n
( fn) = fn −

〈un, fn〉 − αn

‖un‖2
un = fn −

∑
l∈L

‖wl
n‖2

‖un‖2
un.

11
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Using fn+1 = PHn( fn) with Hn :=
⋂

i∈In
H(un,i,αn,i) ⊂ H̃n, we obtain

‖ fn+1 − fn‖ � ‖ f̃ n+1 − fn‖.

Thanks to (11), we estimate

‖un‖ =

∥∥∥∥∥
∑
l∈L

A∗
[n],lw

l
n

∥∥∥∥∥ �
∑
l∈L

‖A∗
[n],l‖ · ‖wl

n‖ � ΛAL‖w̄n‖,

which for all z ∈ Msd
A,g ⊂ Hn yields

‖z − fn+1‖2 � ‖z − fn‖2 − ‖ fn+1 − fn‖2 � ‖z − fn‖2 − ‖ f̃ n+1 − fn‖2

= ‖z − fn‖2 −
∥∥∥∥∑

l∈L

‖wl
n‖2

‖un‖2
un

∥∥∥∥
2

= ‖z − fn‖2

− 1
‖un‖2

(∑
l∈L

‖wl
n‖2

)2

� ‖z − fn‖2 − ‖w̄n‖4

‖un‖2
� ‖z − fn‖2 − 1

(ΛAL)2
‖w̄n‖2.

The assertion follows with C := 1
(ΛAL)2 . �

As a consequence of lemma 3.1, we obtain the descent property

‖z − f̄ r+1‖2 � ‖z − f̄ r‖2 − C
∑
k∈K

‖w̄rK+k‖2

for the full iterates f̄ r := f rK , r ∈ N, i.e., the sequences {‖z − fn‖}n∈N and
{
‖z − f̄ r‖

}
r∈N are

monotonically decreasing. In addition, since z ∈ Msd
A,g is fixed, we deduce from (24) that

fn ∈ Bρ(z) (26)

for a constant ρ > ‖z − f0‖ > 0. This yields the boundedness of the sequences { fn}n∈N and
{ f̄ r}r∈N.

The validity of these descent properties are the starting point for the following theorem.

Theorem 3.2. The sequences { fn}n∈N and
{

f̄ r

}
r∈N, generated by algorithm 2.7 with (22)

and (23), each possess a subsequence that weakly converges to an element of Msd
A,g.

Proof. We consider the sequence { fn}n∈N of auxiliary iterates. From (24) we obtain

C
N∑

n=0

‖w̄n‖2 �
N∑

n=0

(
‖z − fn‖2 − ‖z − fn+1‖2

)
= ‖z − f0‖2 − ‖z − fN+1‖2 � ‖z − f0‖2

for an arbitrary but fixed integer N > 0. We now let N →∞. Since the right-hand side of
the above estimate is independent of N, we deduce that the series

∑∞
n=0 ‖w̄n‖2 is absolutely

convergent, and thus {w̄n}n∈N is a null sequence. Since { fn}n∈N is bounded according to (26),
there exists a weakly converging subsequence of { fn}n∈N with weak limit f̃ . The same holds

12
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for each subsequence, such that we have fn ⇀ f̃ . In particular, we have f̄ r ⇀ f̃ . According
to

‖Ak,l f̃ − gk,l‖ � lim inf
n→∞

‖Ak,l fn − gk,l‖ � lim inf
n→∞

‖w̄n‖ = 0,

where we have used the continuity of Ak,l and the weak lower semicontinuity of the norm, we
have f̃ ∈ Msd

A,g. �

Theorem 3.3 (Convergence of the SESOP-Kaczmarz iteration).
Let { fn}n∈N and

{
f̄ r

}
r∈N be generated by algorithm 2.7 with (22) and

wl
i :=wl

n,i :=A[i],l f i − g[i],l, ui := un,i :=
∑
l∈L

A∗
[i],lw

l
i for all i ∈ In (27)

from an initial value f0 ∈ X. If the optimization parameters |tn,i| � t with i ∈ In, n ∈ N are
bounded by some t > 0, then { fn}n∈N and

{
f̄ r

}
r∈N converge strongly to a solution f+, and

f + = PMsd
A,g

( f0). (28)

The proof is given in appendix A.

3.2. Regularization

In the previous section we have shown that the SESOP-Kaczmarz iterates converge to a solution
of the semi-discrete inverse problem (12) with exact data. The solution is the metric projection
of the initial value onto the solution set Msd

A,g.
Based on these findings, we now want to proceed to noisy data, i.e., we show that the

RESESOP-Kaczmarz iteration, i.e., algorithm 2.7, yields a regularized solution of a semi-
discrete system (12) if only noisy data gδ

k,l and inexact forward operators Aη
k,l, k ∈ K, l ∈ L,

are given. We assume that the noise level can be estimated as in (19) and the inexactness by
(18).

We first remark that if the set Dη,δ
j as defined in algorithm 2.7 is empty for all j = n, . . . , n +

K − 1, then Dη,δ
j = ∅ and, by consequence, f η,δ

j = f η,δ
n for all j � n. Thus there exists an

n = rK for some r ∈ N and

‖Aη
k,l f̄ η,δ

r − gη,δ
k,l ‖ � τk,l

(
δk,l + ηk,lρ

)
for all k ∈ K, l ∈ L. This motivates the following definition.

Definition 3.4. We set

Dη,δ,K
n :=

{
j ∈ {n, . . . , n + K − 1} : Dη,δ

j �= ∅
}

and define the auxiliary stopping index

n∗ := n∗(η, δ) := min
{

n ∈ N : Dη,δ,K
n = ∅

}
.

Correspondingly we define the stopping index by

r∗ := r∗(η, δ) := min
{

r ∈ N : Dη,δ,K
rK = ∅

}
=

n∗(η, δ) − [n∗(η, δ)]
K

+ 1.

If
{

n ∈ N : Dη,δ,K
n = ∅

}
= ∅, we set n∗ :=∞, r∗ :=∞.

13
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We proceed as in the case of the SESOP-Kaczmarz algorithm with (η, δ) = (0, 0) and show
that the RESESOP-Kaczmarz algorithm yields a regularized solution f η,δ

n∗ , i.e., we consider the
iterates f η,δ

n , n ∈ N. Due to definition 3.4, the properties of
{

f̄ η,δ
r

}
r∈N will be inherited from{

f η,δ
n

}
n∈N.

Again we postulate that the conditions (22) and (23) are fulfilled. We can express the search
direction uη,δ

n := uη,δ
n,n by

uη,δ
n =

∑
l∈Dη,δ

n

(
Aη

[n],l

)∗ (
Aη

[n],l f η,δ
n − gδ

[n],l

)
.

The parameters of the stripes can be reformulated as

αη,δ
n :=αη,δ

n,n =
〈
uη,δ

n , f η,δ
n

〉
−
∑

l∈Dη,δ
n

‖wη,δ,l
n ‖2

and

ξη,δ
n := ξη,δ

n,n =
∑

l∈Dη,δ
n

(
δ[n],l + η[n],lρ

)
· ‖wη,δ,l

n ‖.

These conditions assure that the descent property holds:

Proposition 3.5. If Dη,δ
n �= ∅, we have

f η,δ
n ∈ H>

(
uη,δ

n ,αη,δ
n + ξη,δ

n

)
(29)

and

‖z − f η,δ
n+1‖2 � ‖z − f η,δ

n ‖2 −

⎛
⎝∑

l∈Dη,δ
n

‖wη,δ,l
n ‖
(
‖wη,δ,l

n ‖ − (δ[n],l + η[n],lρ)
)

‖uη,δ
n ‖

⎞
⎠

2

(30)

for z ∈ Msd,ρ
A,g .

If Dη,δ
n = ∅, we simply have ‖z − f η,δ

n+1‖2 = ‖z − f η,δ
n ‖2.

Proof. Let l ∈ Dη,δ
n �= ∅. Then

‖wη,δ,l
n ‖ > τ[n],l

(
δ[n],l + η[n],lρ

)
and it follows 〈

uη,δ
n , f η,δ

n

〉
=
∑

l∈Dη,δ
n

‖wη,δ,l
n ‖2 + αη,δ

n

>
∑

l∈Dη,δ
n

(
δ[n],l + η[n],lρ

)
‖wη,δ,l

n ‖+ αη,δ
n

= αη,δ
n + ξη,δ

n , (31)

which proves assertion (29). The descent property (30) follows in the same way as in the the
unperturbed case, i.e., as in the proof of lemma 3.1, by using the representations of uη,δ

n , αη,δ
n

and ξη,δ
n . �

14
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Remark 3.6. By iteratively employing (30), we obtain

‖z − f̄ η,δ
r+1‖2 � ‖z − f̄ η,δ

r ‖2

−
∑

j∈Dη,δ,K
rK

⎛
⎜⎝∑

l∈Dη,δ
j

‖wη,δ,l
j ‖
(
‖wη,δ,l

j ‖ − (δ[ j],l + η[ j],lρ)
)

‖uη,δ
j ‖

⎞
⎟⎠

2

for the iterates f̄ η,δ
r , r ∈ N, and z ∈ Msd,ρ

A,g .

Lemma 3.7. The discrepancy principle yields a finite stopping index r∗ = r∗(η, δ).

Proof. Let us assume that there is no finite stopping index r∗, i.e., Dη,δ,K
rK �= ∅ for all r ∈ N.

Then, for each j ∈ Dη,δ,K
rK , there is at least one l ∈ L such that l ∈ Dη,δ

j and

0 < δ[ j],l + η[ j],lρ <
1

τ[ j],l
‖wη,δ,l

j ‖. (32)

We set

Cτ := min

{(
1 − 1

τk,l

)2

: k ∈ K, l ∈ L
}
.

We plug relation (32) into the descent property from remark 3.6 and obtain

‖z − f̄ η,δ
r+1‖2 � ‖z − f̄ η,δ

r ‖2 −
∑

j∈Dη,δ,K
rK

⎛
⎜⎝∑

l∈Dη,δ
j

‖wη,δ,l
j ‖2

(
1 − 1

τ[ j],l

)
‖uη,δ

j ‖

⎞
⎟⎠

2

� ‖z − f̄ η,δ
r ‖2 − Cτ

∑
j∈Dη,δ,K

rK

‖w̄η,δ
j ‖4

‖uη,δ
j ‖2

.

In particular we have used our definition of w̄η,δ,l
j for the last estimate. Together with

‖uη,δ
j ‖ =

∥∥∥∥∥∥∥
∑

l∈Dη,δ
j

(
Aη

[ j],l

)∗
wη,δ,l

j

∥∥∥∥∥∥∥ �
∑

l∈Dη,δ
j

‖
(

Aη
[ j],l

)∗
‖ · ‖wη,δ,l

j ‖

� ΛAη

∑
l∈Dη,δ

j

‖wη,δ,l
j ‖ � ΛAηL‖w̄η,δ

j ‖

we deduce

‖z − f̄ η,δ
r+1‖2 � ‖z − f̄ η,δ

r ‖2 − Cτ

Λ2
AηL2

∑
j∈Dη,δ,K

rK

‖w̄η,δ
j ‖2.

In a similar way as in the proof of theorem 3.2 we find that∑
j∈Dη,δ,K

rK

‖w̄η,δ
j ‖2 → 0 as r →∞.
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This is a contradiction to (32). �
In the following we want to show that the RESESOP-Kaczmarz iteration is a regularization

method in case the conditions (22) and

wη,δ,l
i :=wη,δ,l

n,i :=

{
Aη

[i],l f η,δ
i − gδ

[i],l, for l ∈ Dη,δ
i ,

0, for l /∈ Dη,δ
i ,

uη,δ
i := uη,δ

n,i :=
∑
l∈L

(Aη)∗[i],lw
η,δ,l
i

(33)

for all i ∈ Iη,δ
n are fulfilled. We begin by showing that the iterates f η,δ

n , n ∈ N, depend
continuously on the noise level δ and the inexactness η.

Lemma 3.8. Let f η,δ
0 = f0 ∈ X be the initial value and Iη,δ

n = In for all n ∈ N. Let { f η,δ
n }n∈N

be the sequence of iterates generated by the RESESOP-Kaczmarz algorithm 2.7 with (22),
(33). By { fn}n∈N we denote the sequence generated by the SESOP-Kaczmarz algorithm 2.7
for (η, δ) = (0, 0) with (22), (27). If the set of search directions

{un,i : i ∈ In}

is linearly independent in each iteration n ∈ N, we have

lim
(η,δ)→(0,0)

f η,δ
n = fn.

Proof. See appendix B. �
We now have assembled all necessary statements to prove the main result for the

RESESOP-Kaczmarz algorithm 2.7: if suitable conditions are fulfilled, the RESESOP-
Kaczmarz algorithm yields a regularization method for semi-discrete linear inverse problems
(12).

Theorem 3.9. Let the conditions from lemma 3.8 be satisfied. We additionally postulate that
the optimization parameters tη,δ

n,i fulfill |tη,δ
n,i | < t for all i ∈ Iη,δ

n , n ∈ N. Then the RESESOP-
Kaczmarz algorithm 2.7 together with the discrepancy principle from definition 3.4 as a
stopping criterion yields a regularized solution f η,δ

r∗(η,δ) ∈ X of the system (12) and

f η,δ
r∗(η,δ) → f + :=PMsd,ρ

A,g
( f0). (34)

The proof is given in appendix C.

4. Practical realizations of the RESESOP-Kaczmarz algorithm

The semi-discrete setting

Ak,l f = gk,l, k ∈ K, l ∈ L,

allows a range of modifications of our RESESOP-Kaczmarz algorithm 2.7. We recall that
algorithm 2.7 first executes an averaging of the search directions

{
ul

[n],i : l ∈ L
}

before
executing a Kaczmarz loop with respect to the index k.

Evidently, the roles of k and l could be interchanged, resulting in an algorithmic version
that performs the Kaczmarz projection with respect to the index l and averages regarding the
index k. Alternatively, the Kaczmarz projection could be executed with respect to both k and l,
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Table 1. Overview of different practical realizations.

Kalg Lalg

Algorithm V1
Kaczmarz projection with respect to k and l K× L {0}

Algorithm V2
Averaging with respect to k and l {0} K × L

Algorithm V3
Kaczmarz iteration regarding k and averaging regarding l K L

Algorithm V4
Kaczmarz iteration regarding l and averaging regarding k L K

omitting any averaging step. In the same spirit, it is possible to average with respect to both k
and l.

The respective algorithms can be inferred from our general formulation in algorithm 2.7. In
order to specify this, we introduce a separate notation for the index sets used in algorithm 2.7 for
the Kaczmarz projection, KAlg, and for the averaging, LAlg, respectively. In case of algorithm
2.7, these sets coincide with the respective index setsK andL given by the semi-discrete inverse
problem. With this additional notation, we can infer the modifications described in table 1.

The performance of these four versions of the RESESOP-Kaczmarz regularization is
evaluated in section 5.1 at numerical examples from dynamic CT.

Furthermore, our framework includes the setting of an inverse problem which is discretized
with respect to one data variable only. This is of particular interest in the context of dynamic
inverse problems if we want to take into account model errors ηk only depending on time. In
this case, simply set L := {0} in our setting for semi-discrete inverse problems. In particular,
in our RESESOP-Kaczmarz framework, algorithms V1 and V3 coincide (we refer to them as
RESESOP-Kaczmarz iteration for a single discretization parameter), as well as algorithms V2
and V4 (referred to as averaged RESESOP iteration for a single discretization parameter in
this case).

Remark 4.1. Algorithm V2 with K = {0} and η = 0 has been used in [37] to solve a param-
eter identification problem in terahertz tomography,where the setL corresponds to the different
detectors.

As remarked earlier, also the continuous setting with global model inexactness ‖A−Aη‖ �
η ∈ [0,∞) is covered by our framework with K = L = {0}.

In analogy to [30, 32, 35, 36] we can derive a fast algorithm with two search directions per
iteration, in which the new iterate is calculated by at most two metric projections onto (intersec-
tions of) bounding hyperplanes. In a Hilbert space setting, these can be formulated explicitly
without an evaluation of the underlying minimization problem. This is outlined in more detail
in appendix D. For our numerical evaluation in section 5.1, we implemented algorithm 2.7 and
the modifications V1–V4 with two search directions as given above.

5. Application in dynamic computerized tomography (CT)

In the following, we evaluate our regularization scheme for inverse problems with inexact
forward operator at the example of dynamic CT.

In CT, a radiation source rotates around the studied object while emitting x-rays through the
specimen to a detector panel. Depending on the density in the interior of the object, the photons
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of the x-ray beam get absorbed. According to the Beer–Lambert law, the observed intensity
loss in 2D is modelled by the Radon transform which integrates the attenuation coefficient
f of the studied tissue along straight lines (namely the travelling paths of the x-rays). In a
semi-discrete setting, this model is given by

Rk,l f :=
∫

f (slθk + βθ⊥k ) dβ,

k ∈ {0, . . .K − 1}=:K, l ∈ {0, . . . , L − 1}=:L,

where θk ∈ S1, k ∈ K, characterizes the different source positions and sl ∈ [−1, 1], l ∈ L,
denotes the affected detector points. The goal is to recover f from the measured CT data

gk,l = Rk,l f , k ∈ K, l ∈ L,

see [24] for a detailed overview.
In modern CT scanners, the time consuming process of data acquisition is the rotation of

the x-ray source around the specimen. Hence, each source position—in our model each unit
vector θk —can be interpreted as a time instance. The standard model above is based on the
assumption that the investigated object is stationary during the data collection. Thus, if the
specimen shows a dynamic behavior during the collection of the data, it is no longer valid.

Correlating the individual states of the specimen to one reference configuration f via
deformation fields Γk : R2 → R

2, k ∈ K, the exact dynamic forward operator is given by

RΓk,l f =

∫
f (Γk(slθk + βθ⊥k )) dβ.

While Rk,l integrates along the straight lines

Ck,l := {x ∈ R
2 : sl = xTθk},

the dynamic model RΓk,l integrates along curved lines

CΓk,l := {x ∈ R
2 : sl = (Γ−1

k x)Tθk}.

If the deformation fields Γk, k ∈ K are not explicitly known, neither is RΓk,l. Therefore, we
propose to solve the dynamic inverse problem

RΓk,l f = gk,l

by applying our developed regularization strategy which uses an inexact version of RΓk,l, for
instance the known static operator Rk,l, along with estimates of the local model errors ηk,l, i.e.,
‖Rk,l − RΓk,l‖ � ηk,l.

5.1. Numerical results

We evaluate our algorithms for two different numerical phantoms, one undergoing a periodic
and affine deformation, the other performing a non-periodic and non-affine motion. The cor-
responding dynamic Radon data are computed for K = 300 source positions with L = 451
detector points using the composite trapezoidal rule and bilinear interpolation on a 400 × 400
grid. For the iterative reconstruction scheme, we choose the initial value f0 = 0, and regarding
the discrepancy principle, we use constantly τ = 1, 00 001 for all arising subproblems.
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Figure 2. Dynamic behaviour of the phantom during one half of a breathing cycle with
contours of the reference state (white solid line).

Figure 3. Visualization of the heart beat with contours of the reference state (white solid
line).

Periodic and affine deformation modelling respiratory and cardiac motion. As first example,
we consider a chest phantom performing 30 breathing cycles and 100 heart beats during the
data collection. The dynamic behavior of the phantom during one half of a breathing cycle is
illustrated in figure 2. The local motion of the heart—without the effect of the breathing—is
further highlighted in figure 3.

In terms of explicit formulas, this dynamic behavior is described as follows. We choose the
initial state, shown in figure 2(a)), as reference configuration. Each ellipse, labelled consecu-
tively by i = 1, . . . , 7 as in table 2, performs an affine deformation described by Γi

k : R2 → R
2,

Γi
kx :=Ai

kx + bi
k.

With the auxiliary variables

ak := k mod 10, αk :=
π

80

{
ak, ak � 4

9 − ak, otherwise
,

dk := 0.08 cos

(
k
5
π

)
+ 0.92, dheart

k :=

{
1, k mod 3 � 1

0.9, otherwise
,

we define the matrices
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Table 2. Chest phantom.

i Ai
k bi

k

1 Spine

(
1 0
0 1

) (
0
0

)

2 Heart Sheart
k bk

3, 7 Left lung, tumor SkU(αk) bk

4 Right lung SkU(−αk) bk

5, 6 Surrounding tissue Sk bk

Figure 4. SESOP reconstruction result using the static forward operator without taking
the model inexactness into account.

U(αk) :=

(
cos(αk) sin(αk)
− sin(αk) cos(αk)

)
, Sk :=

⎛
⎝ 1

dk
0

0 dk

⎞
⎠ ,

Sheart
k :=

⎛
⎝ 1

dheart
k

0

0 dheart
k

⎞
⎠ .

Together with the translation vector

bk := (0, 0.44(dk − 1))T

the individual motion functions Γi
kx = Ai

kx + bi
k are chosen according to table 2.

Our goal is to recover an image of the initial state from the dynamic CT data. Since the
dynamic forward operators RΓk,l are in general unknown, we only want to use the known static
operator Rk,l within the reconstruction step.

Figure 4 shows the result of the classic SESOP algorithm that does not take the model
inexactness into account. The naive use of the static forward operator yields a blurred and
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Figure 5. Results of the reconstruction algorithms incorporating the model inexactness.
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Figure 6. Plot of error reduction.

deformed reconstruction, motivating that the model inexactness needs to be incorporated into
the reconstruction step.

Therefore, we next apply our derived regularization technique for inverse problems with
inexact forward operator. In a first step, we want to use a good approximation for the local
model errors ηk,l which we determine numerically as the discrepancy of computed static and
dynamic data.

The reconstruction results of the individual algorithms presented in section 4 are shown in
figure 5. Each of these algorithms provides an image of the interior structure at the reference
time without motion artefacts. Thus, the suggested approach to treat the unknown dynamics as
uncertainty in the forward model is indeed capable of compensating for the motion.

Drawing a comparison among the results of the different algorithms shows that considering
local modelling errors ηk,l depending on source as well as detector position provides a higher
resolution and sharper images, see figures 5(c)–(f)) in comparison to figures 5(a) and (b)). This
is to be expected since this approach incorporates the richest information on the dynamics. In
particular, the local motion of the heart is more efficiently compensated for. We further observe
that the algorithms involving an averaging part (figures 5(b) and (d), respectively) provide
slightly smoother results than the true Kaczmarz algorithms (see figures 5(a) and (c)). When
incorporating local model errors and combining Kaczmarz with an averaging part regarding
the source position, i.e., regarding different time instances, can result in small artefacts in
the region of local deformations (in our case in the upper part of the heart), see figures 5(d)
and (f)).

In order to gain further insights into the performance of the four algorithms V1–V4 pro-
posed for incorporating source and detector dependent model uncertainties, figure 6 displays
the error of the generated iterates and the ground truth. With an increasing number of iterations,
we clearly observe the monotonicity proved in proposition 3.5 and the consecutive remark.
However, the slope and the magnitude slightly differ for each algorithm. This is due to the
different number of subproblems that are considered for the averaging part. More precisely,
the number of subproblems is
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Figure 7. Reconstruction results for noisy data.
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Figure 8. Reconstruction results with overestimated uncertainty level.
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Figure 9. Images of the phantom at the beginning, the middle, and the end of motion.
Contours of the reference state (determined by θ149) are illustrated.

Figure 10. Computed model errors with respect to the initial state (left) and to the state
at time instance k = 149 (right) chosen as reference configuration.

• 1 in case of algorithm V1 (dashdotted blue),
• L = 451 for algorithm V3 (solid green),
• K = 300 for algorithm V4 (dotted violet) and
• K · L for algorithm V2 (dashed red).

The more subproblems are considered, the faster the error decreases in the beginning (since
more information are included in the first iteration steps). However, the averaging in each
subproblem has an additional smoothing effect resulting in larger errors for higher iteration
indices.

In order to test the stability of our method with respect to perturbations in the measure-
ment, we add noise samples uniformly distributed in [−0.02, 0.02] to our dynamic Radon data.
Again, we obtain good results with our algorithms as shown in figure 7. This illustrates that
our approach can in fact handle both noise in the data and modelling errors. In particular, the
additional smoothing property of the algorithms involving an inner summation part yields a
better noise suppression than their respective counterparts.

So far, we used uncertainty levels computed numerically as the discrepancy of dynamic and
static data. In practice, however, this is not feasible since a static data set will not be available.
Determining good estimates for these error levels will be part of future research (see also the
discussion in section 6). Nevertheless, we want to test the sensitivity of our method regarding
overestimated uncertainty levels ηk,l. For this purpose, we add a sample of noise uniformly
distributed in [0.02, 0.06] to the computed values, which corresponds to an overestimation of
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Figure 11. Reconstruction results for non-periodic and non-affine motion.

the model errors by up to 5%. The respective reconstruction results shown in figure 8 illustrate
that our method still reconstructs a good approximation to the actual reference state. Comparing
the results for the different algorithms reveals that the algorithms of type V1 (V3) are more
stable with respect to overestimations of the uncertainty.

Non-periodic and non-affine deformation. The dynamic behaviour considered so far cor-
responds to an affine motion of periodic nature. Due to the high periodicity, the phantom
returns to its reference state multiple times during the data collection, and, as a consequence,
‖Rk,l − RΓk,l‖ is small for these time instances k. Now, we want to study how our method per-
forms in case of a non-periodic motion. Our test phantom and its (non-affine) dynamic behavior
are illustrated in figure 9. The deformation is described by the motion functions

(Γkx)i := xi

(
0.2(ai(k)xi)

4 + (ai(k)xi)
3 + 2(ai(k)xi)

2 + 2(ai(k)xi) + 1
)

,
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Figure 12. Comparison of reconstruction results (after n = 200 iterations) ignoring
(left) and incorporating (right) the model inexactness with contours of the reference
state.

for i = 1, 2 with

ai(k) := 4
√

5mi(k), m1(k) := sin

(
0.015

k
K

)
, m2(k) := sin

(
0.021

k
K

)
,

where xi refers to the ith component of the vector x ∈ R
2.

We now aim to recover the state of the phantom at time instance k = 149 from the dynamic
data. This is achieved by adapting the model errors ηk,l such that η149,l = 0 for all l. Our choice
serves two purposes: on the one hand, we want to illustrate that we are not restricted to recov-
ering the initial state. In addition, in case of a monotone motion, considering the initial state
will typically be disadvantageous with respect to the magnitude of the model errors, which will
increase monotonically up to the maximum value at the end of the scanning. This is illustrated
in figure 10 (left) which shows the computed model errors with respect to the initial state as
reference configuration. However, if we choose a state during the scanning, then the model
errors will first decrease and then increase, see figure 10 (right). In particular, the maximum
value is lower than for the initial state which corresponds to overall smaller stripe widths.

In order to recover the selected reference state from the dynamic data, we apply our method
with the simplified static operator accounting for the respective modelling errors. Due to the
strong non-linearity of the motion which affects the lower left part of the phantom much more
than the upper right part, we incorporate modelling errors ηk,l depending on both source posi-
tion and detector point. The respective reconstruction results for our respective algorithms
are shown in figure 11. A comparison with the reference state in figure 9(b)) reveals that our
approach can also compensate for a non-periodic and highly non-linear dynamic behavior,
whereas the naive approach ignoring the model errors results in a distorted visualization of the
interior structure, see figure 12.

6. Conclusion

In this article, we presented a regularization strategy for linear inverse problems with inex-
act forward operator based on SESOP. The suggested combination with Kaczmarz’ method
in particular allows to account for local modelling errors. This plays an essential role when
dealing with dynamic inverse problems since characteristics of the motion such as periodicity
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or locality can be incorporated in this way. Our numerical examples from dynamic CT illus-
trate that our iterative reconstruction method compensates for the object motion during the data
acquisition without requiring the explicit deformation fields.

Studying suitable prior information on the motion in more detail will be subject to future
research together with the application on real data. Instead of performing our approach with
the static operator, it is further possible to use a dynamic forward operator with simplified
motion model and to account for modelling and estimation errors regarding the deformation
fields. In particular, we expect further insights regarding the relevant information on the model
inexactness by taking into account specifics of the individual application.
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Appendix A. Proof of theorem 3.3

Proof. According to our assumptions (22) and (27), the absolute convergence of the series∑∞
n=0 ‖w̄n‖2, which we have shown in the proof of theorem 3.2, implies the absolute

convergence of the series

∑
n∈N

∑
i∈In

‖w̄i‖2,
∑
n∈N

∑
k∈Kn

∑
i∈Ik

‖w̄i‖2,
∑
n∈N

‖W̄n‖2,

where Kn := {n − K, . . . , n − 1} ∩ N and

‖W̄n‖ := max {‖w̄i‖ : i ∈ {n − K − N + 1, . . . , n − 1} ∩N} .

Note that

∑
n∈N

‖W̄n‖2 �
∑
n∈N

∑
k∈Kn

∑
i∈Ik

‖w̄i‖2.

Our previous results show that we can find a subsequence { fn j} j∈N with the following
properties:

(a) The sequence {‖ fn j‖} j∈N converges,
(b) The sequence { fn j} j∈N is weakly convergent,
(c) lim j→∞‖W̄n j‖ = 0 and ‖W̄n j‖ � ‖W̄n‖ for all n � nj.

We show that { fn j} j∈N is a Cauchy sequence. For all j, m ∈ N, j > m, we have

‖ fnm − fn j‖2 = ‖ fnm‖2 − ‖ fn j‖2 − 2
〈

fnm − fn j , fn j

〉
→−2

〈
fnm − fn j, fn j

〉
for m →∞
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due to (a). Furthermore, using (b), we obtain〈
fnm − fn j , fn j

〉
=
〈

fnm − fn j , f +
〉
+
〈

fnm − fn j , fn j − f +
〉

→
〈

fnm − fn j , fn j − f +
〉

for m →∞.

We apply the iteration from algorithm 2.7, i.e.,

fn j = fnm −
n j−1∑
n=nm

∑
i∈In

tn,iui,

and estimate

∣∣〈 fnm − fn j , fn j − f +
〉∣∣ =

∣∣∣∣∣∣
n j−1∑
n=nm

∑
i∈In

tn,i
〈
ui, fn j − f +

〉∣∣∣∣∣∣
�

n j−1∑
n=nm

∑
i∈In

t
∣∣〈ui, fn j − f +

〉∣∣ (A.1)

as well as

∣∣〈ui, fn j − f +
〉∣∣ =

∣∣∣∣∣
∑
l∈L

〈
A∗

[i],lw
l
i , fn j − f +

〉∣∣∣∣∣ �
∑
l∈L

‖wl
i‖ · ‖A[i],l

(
fn j − f +

)
‖.

(A.2)

We want to estimate the term ‖A[i],l
(

fn j − f +
)
‖ from (A.2), i.e., the index i, j and l are fixed.

Now let ϑ j ∈ N be defined by

ϑ j :=

{
n j − [n j] + [i] − K, if [i] � [n j],

n j − [n j] + [i], if [i] < [n j],

such that [ϑ j] = [i] and nj − K � ϑ j � n j − 1. We then obtain, analogously to our previous
step,

‖ fn j − fϑ j‖ =

∥∥∥∥∥∥
n j−1∑
n=ϑ j

∑
i∈In

tn,i

∑
l∈L

A∗
[i],lw

l
i

∥∥∥∥∥∥ � t · ΛA

n j−1∑
n=ϑ j

∑
i∈In

L · ‖w̄i‖.

Together with ϑ j ∈ Iϑ j and ‖wl
ϑ j
‖ � ‖w̄ϑ j‖ (by definition, see (25)) the above estimate yields

‖A[i],l
(

fn j − f +
)
‖ = ‖A[i],l

(
fn j − fϑ j + fϑ j − f +

)
‖

� ‖A[i],l
(

fn j − fϑ j

)
‖+ ‖A[ϑ j],l

(
fϑ j − f +

)
‖

� tΛ2
A

n j−1∑
n=ϑ j

∑
i∈In

L · ‖w̄i‖+ ‖w̄ϑ j‖

� tΛ2
A(L + 1)

n j−1∑
n=ϑ j

∑
i∈In

‖w̄i‖

� tΛ2
AN · K(L + 1)‖W̄n j‖.
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With C := tΛ2
AN · K(L + 1) we thus have

‖A[i],l
(

fn j − f +
)
‖ � C‖W̄n j‖. (A.3)

We plug this into (A.1) and arrive at

∣∣〈 fnm − fn j , fn j − f +
〉∣∣ � n j−1∑

n=nm

∑
i∈In

t
∣∣〈ui, fn j − f +

〉∣∣

� Ct

n j−1∑
n=nm

∑
i∈In

∑
l∈L

‖wl
i‖ · ‖W̄n j‖

� CLt

n j−1∑
n=nm

∑
i∈In

‖w̄i‖ · ‖W̄n j‖

� CLNt

n j−1∑
n=nm

‖W̄n+1‖ · ‖W̄n j‖

� C̃

n j−1∑
n=nm

‖W̄n+1‖2,

where C̃ :=CLNt.
Due to the absolute convergence of

∑
n∈N‖W̄n‖2, the right-hand side of the above inequality

converges to 0 as m →∞. Altogether, this shows that
{

fn j

}
j∈N is indeed a Cauchy sequence,

converging to some f̃ ∈ X. The continuity of the norm and the forward operators Ak,l, k ∈ K,
l ∈ L, yield ∥∥∥Ak,l

(
f̃ − f +

)∥∥∥ = lim
j→∞

‖Ak,l
(

fn j − f +
)
‖ � lim

j→∞
C‖W̄n j‖ = 0, (A.4)

i.e., f̃ ∈ Msd
A,g. As before, we conclude fn → f̃ for n →∞ and f̄ r → f̃ for r →∞.

It remains to show that f̃ = f + :=PMsd
A,g

( f0). From (A.4) we derive

(
f̃ − f +

)
∈
⋂
k∈K

⋂
l∈L

N (Ak,l).

On the other hand we have

fn − f0 ∈
∑
k∈K

∑
l∈L

R(A∗
k,l )

and thus

f̃ − f0 ∈
∑
k∈K

∑
l∈L

R(A∗
k,l ) =

∑
k∈K

∑
l∈L

N (Ak,l )⊥ =

(⋂
k∈K

⋂
l∈L

N (Ak,l)

)⊥

.

We finally use proposition 3.7 from [31] for Hilbert spaces to obtain

f̃ = P f ++
⋂

k∈K

⋂
l∈L

N (Ak,l)
( f0) = PMsd

A,g
( f0),
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i.e., the result f̃ of the SESOP-Kaczmarz iteration corresponds to the metric projection of the
initial value f0 onto the solution set Msd

A,g. �

Appendix B. Proof of lemma 3.8

Proof. First we note that our assumptions on the inexactness and the continuity of the
forward operators Ak,l, k ∈ K, l ∈ L, yield wη,δ,l

i → wl
i for (η, δ) → (0, 0) if f η,δ

i → f i for
(η, δ) → (0, 0), since

‖wη,δ,l
i − wl

i‖ = ‖Aη
[i],l f η,δ

i − gδ
[i],l −

(
A[i],l f i − g[i],l

)
‖

� ‖Aη
[i],l f η,δ

i − A[i],l f i‖+ ‖gδ
[i],l − g[i],l‖

� ‖
(
Aη

[i],l − A[i],l
)

f η,δ
i ‖+ ‖A[i],l

(
f η,δ

i − f i

)
‖+ δ[i],l

� η[i],l‖ f η,δ
i ‖+ ΛA‖ f η,δ

i − f i‖+ δ[i],l

→ 0 for (η, δ) → (0, 0).

Similarly, we then also obtain

lim
(η,δ)→(0,0)

uη,δ
i = ui, lim

(η,δ)→(0,0)
αη,δ

i = αi, lim
(η,δ)→(0,0)

ξη,δ
i = ξi = 0.

We now prove by induction that lim(η,δ)→(0,0) f η,δ
n = fn for all n ∈ N. For n = 0 we have

f η,δ
0 = f0 and Iη,δ

0 = I0 = {0}. For

f η,δ
1 =

⎧⎪⎨
⎪⎩

f0, if Dη,δ
0 = ∅,

f0 −
〈uη,δ

0 , f0〉 − αη,δ
0 − ξη,δ

0

‖uη,δ
0 ‖2

uη,δ
0 , if Dη,δ

0 �= ∅

we directly obtain f η,δ
1 → f1 as (η, δ) → (0, 0) according to our initial considerations.

Now suppose that lim(η,δ)→(0,0) f η,δ
j = f j for all j � n. The iterate

f η,δ
n+1 =

⎧⎪⎨
⎪⎩

f η,δ
n , if Dη,δ

n = ∅,

f η,δ
n −

∑
k∈Iη,δ

n

tη,δ
n,k uη,δ

k , if Dη,δ
n �= ∅ (B.1)

fulfills f η,δ
n+1 ∈ Hη,δ

n , i.e., we have

αη,δ
i − ξη,δ

i �
〈

uη,δ
i , f η,δ

n+1

〉
� αη,δ

i + ξη,δ
i

for all i ∈ Iη,δ
n . We plug (B.1) into the above inequality and arrive at

〈
uη,δ

i , f η,δ
n

〉
− αη,δ

i − ξη,δ
i �

∑
k∈Iη,δ

n

tη,δ
n,k

〈
uη,δ

i , uη,δ
k

〉
�
〈

uη,δ
i , f η,δ

n

〉
− αη,δ

i + ξη,δ
i .

(B.2)
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By defining the Gram matrix

Gη,δ
n :=

(〈
uη,δ

i , uη,δ
k

〉)
i,k∈Iη,δ

n

as well as the vectors

tη,δ
n :=

(
tη,δ
n,i

)
i∈Iη,δ

n

, bη,δ
n :=

(〈
uη,δ

i , f η,δ
n

〉
− αη,δ

i

)
i∈Iη,δ

n

, dη,δ
n :=

(
ξη,δ

i

)
i∈Iη,δ

n

,

we reformulate (B.2) as

bη,δ
n − dη,δ

n � Gη,δ
n tη,δ

n � bη,δ
n + dη,δ

n (B.3)

(the inequality is to be understood componentwise). The matrix Gη,δ
n is invertible if and only

if
{

uη,δ
i : i ∈ Iη,δ

n

}
is linearly independent. Thus, Gn :=

(
〈ui, uk〉

)
i,k∈In

is invertible. Since the

search directions uη,δ
i , i ∈ Iη,δ

n , depend continuously on (η, δ), and the inner product is contin-
uous, the matrix Gη,δ

n is invertible if (η, δ) is close to (0, 0). We now let (η, δ) → (0, 0) in (B.3).
Due to our previous considerations, we obtain

lim
(η,δ)→(0,0)

tη,δ
n = lim

(η,δ)→(0,0)

(
Gη,δ

n

)−1
bη,δ

n = tn.

This yields f η,δ
n+1 → fn+1 for (η, δ) → (0, 0), which concludes the proof. �

Appendix C. Proof of Theorem 3.9

Proof. For all k ∈ K, l ∈ L let
{
δi

k,l

}
i∈N with δi

k,l � 0 for all i ∈ N and
{
η j

k,l

}
j∈N

with η j
k,l � 0

for all j ∈ N be null sequences such that

‖gk,l − g
δi

k,l
k,l ‖ � δi

k,l, ‖Ak,l − A
η

j
k,l

k,l ‖ � η j
k,l.

Note that the sequence
{

(η j
k,l, δ

i
k,l)
}

(i, j)∈N×N

is a null sequence if and only if all subsequences{
(η j̃(p)

k,l , δ ĩ(p)
k,l )
}

p∈N
with strictly increasing functions ĩ, j̃ : N→ N are null sequences. In the

following, we set

(η, δ)i, j
k := (η j

k,l, δ
i
k,l)l∈L, (η, δ)i, j :=

(
(η, δ)i, j

k

)
k∈K

for all i, j ∈ N. We further write

(η, δ)p := (η, δ)ĩ(p),̃ j(p)

for p ∈ N.
Let n∗ ((η, δ)p) denote the auxiliary stopping index as defined in definition 3.4. The sequence

{n∗ ((η, δ)p)}p∈N either has a finite accumulation point n ∈ N or n∗ ((η, δ)p) →∞ for p→∞.
We begin with the first case and assume, without loss of generality, that n∗ ((η, δ)p) = n for

all p ∈ N. We then have
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∥∥∥∥∥Aη
j̃(p)
k,l

k,l f (η,δ)p

n − g
δ

ĩ(p)
k,l

k,l

∥∥∥∥∥ � τk,l

(
δ ĩ(p)

k,l + η j̃(p)
k,l · ρ

)

for all p ∈ N and k ∈ K, l ∈ L. By lemma 3.8 we have f (η,δ)p

n → fn for p→∞. In addition,
we obtain

‖Ak,l
(

f (η,δ)p

n − f +
)
‖ �
∥∥∥∥∥Aη

j̃(p)
k,l

k,l f (η,δ)p

n − g
δ

ĩ(p)
k,l

k,l

∥∥∥∥∥+
∥∥∥∥∥Ak,l − A

η
j̃(p)
k,l

k,l

∥∥∥∥∥ · ‖ f (η,δ)p

n ‖

+

∥∥∥∥∥gδ
ĩ(p)
k,l

k,l − gk,l

∥∥∥∥∥
� τk,l

(
δ ĩ(p)

k,l + η j̃(p)
k,l · ρ

)
+ η j̃(p)

k,l · ‖ f (η,δ)p

n ‖+ δ ĩ(p)
k,l

for all k ∈ K, l ∈ L. The right-hand side converges to 0 and the left-hand side to
‖Ak,l

(
fn − f +

)
‖ for p→∞. We thus have

(
fn − f +

)
∈
⋂
k∈K

⋂
l∈L

N (Ak,l).

Similarly as in the proof of theorem 3.3, we also obtain

fn − f0 ∈
(⋂

k∈K

⋂
l∈L

N (Ak,l)

)⊥

and thus fn = f+ and

lim
p→∞

‖ f (η,δ)p

n − f +‖ = 0.

Together with lemma 3.8 we obtain f (η,δ)p

n → f + for p→∞.
Now let us assume that n∗ ((η, δ)p) →∞ as p→∞. From lemma 3.1 we know that the

sequence
{
‖ fn − f +‖2

}
n∈N is a bounded, monotonically decreasing null sequence. Hence,

for all ε > 0 there exists N0(ε) ∈ N such that

‖ fN0(ε) − f +‖2 <
ε

2

and p0 ∈ N with n∗ ((η, δ)p) � N0(ε) for all p � p0. Due to lemma 3.8 and the continuity of the
norm we find a p1 ∈ N with∣∣∣‖ f (η,δ)p

N0(ε) − f +‖2 − ‖ fN0(ε) − f +‖2
∣∣∣ < ε

2

for all p � p1. We finally conclude

‖ f (η,δ)p

n∗((η,δ)p) − f +‖2 � ‖ f (η,δ)p

N0(ε) − f +‖2

� ‖ fN0(ε) − f +‖2 +
∣∣∣‖ f (η,δ)p

N0(ε) − f +‖2 − ‖ fN0(ε) − f +‖2
∣∣∣

< ε

for all p � max{p0, p1}, which finishes our proof.
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Since we have r∗(η, δ) · K � n∗(η, δ), we also have f̄ η,δ
r∗ = f η,δ

n∗(η,δ) and we immediately
obtain

lim
(η,δ)→(0,0)

f̄ η,δ
r∗ = f +.

�

Appendix D. RESESOP-Kaczmarz algorithm with two search directions

Algorithm appendix D.1 (RESESOP-Kaczmarz with two search directions). In

algorithm 2.7, set Iη,δ
n := {n−, n} with n− := max

{
i ∈ {−1, . . . , n − 1} : Dη,δ

i �= ∅
}

. Define

Hη,δ
−1 :=X and Dη,δ

−1 :=K.
Whenever Dη,δ

n �= ∅, we have

f η,δ
n ∈ H>

(
uη,δ

n ,αη,δ
n + ξη,δ

n

)
∩ Hη,δ

n− . (D.1)

Compute f η,δ
n+1 according to the following two steps:

(a) Determine

f̃ η,δ
n+1: = P

Hη,δ
n

(
f η,δ

n

)
= P

H
(

uη,δ
n ,αη,δ

n +ξ
η,δ
n

) ( f η,δ
n

)

= f η,δ
n −

∑
l∈Dη,δ

n

‖wη,δ,l
n ‖ ·

(
‖wη,δ,l

n ‖ −
(
δ[n],l − η[n],lρ

))
‖uη,δ

n ‖2
uη,δ

n .

If now f̃ η,δ
n+1 ∈ Hη,δ

n− , set f η,δ
n+1 := f̃ η,δ

n+1. Otherwise, proceed with step (b):
(b) Decide whether
1. f̃ η,δ

n+1 ∈ H>

(
uη,δ

n− ,αη,δ
n− + ξη,δ

n−

)
or

2. f̃ η,δ
n+1 ∈ H<

(
uη,δ

n− ,αη,δ
n− − ξη,δ

n−

)
.

Calculate accordingly

f η,δ
n+1: = P

H
(

uη,δ
n ,αη,δ

n +ξ
η,δ
n

)
∩H≷

(
uη,δ

n− ,αη,δ
n−±ξ

η,δ
n−

)
(

f̃ η,δ
n+1

)

= f̃ η,δ
n+1 +

〈
uη,δ

n , uη,δ
−n

〉
Tη,δ

n − ‖uη,δ
n ‖2Tη,δ

n ,

where

Tη,δ
n :=

〈
uη,δ

n− , f̃ η,δ
n+1

〉
−
(
αη,δ

n− ± ξη,δ
n−

)
‖uη,δ

n ‖2 · ‖uη,δ
n−‖2 −

〈
uη,δ

n , uη,δ
−n

〉2 .

Then f η,δ
n+1 = P

Hη,δ
n ∩Hη,δ

n−
.

Remark appendix D.2. Algorithm appendix D.1 is inspired by the fast algorithm that was
first presented in [30] and then adapted in [35, 36] for nonlinear inverse problems. The state-
ments given in algorithm appendix D.1 such as (D.1) can be proved in a straightforward way,
see also [30, 35, 36].
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