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Summary (EN) 

T-cell redirecting therapies such as CD3-bispecific antibodies and CAR-T cells are promising assets in our 

fight against cancer. By redirecting T-cells towards tumour cells, these therapies induce efficient eradication 

of tumours. Many questions remain regarding their efficacy and safety in patients. The success of a drug 

candidate starts with nonclinical investigations before going into patients. This work focused on developing 

tools to improve the translatability of nonclinical research of T-cell redirecting therapies. 

In this work, a mechanistic in silico model was developed that integrates an in vitro dataset of the 

pharmacology of cibisatamab, a CD3-bispecific antibody. The model may serve as a tool in early 

development to explore and quantify the impact of target expression densities on the pharmacology of 

CD3-bispecifics. 

Also, this work proposed the collection of data over multiple time points and designed a new experimental 

setup and analysis that allows assessing the pharmacology in an unbiased and time-independent manner. 

As such, the kinetics of experimental readouts can be considered to make informed decisions about the 

development of the compound and assist in dose selection. 

Lastly, the work presents a fresh look on cytokine release syndrome and identifies drug-target disease 

related factors and individual risk factors as the root cause of CRS. It postulates a combination of 

mechanistic modelling with real world data to enable individualized risk assessment. 

 

 

 

 

 

 

 

 



6 
 

Summary (DE) 

Gerichtete T-Zell-Therapien sind ein vielversprechendes Mittel im Kampf gegen Krebs. Bei dieser Therapie 

werden T-Zellen auf Tumorzellen gerichtet, was zu einer hocheffizienten Abtötung des Tumors führt. Es 

bleiben viele Fragen bezüglich ihrer Wirksamkeit und Sicherheit offen. Der Erfolg eines Arzneimittels 

beginnt mit nichtklinischen Untersuchungen. Diese Dissertation konzentrierte sich auf die Entwicklung 

Instrumente zur Verbesserung der nichtklinischen Forschung von gerichtete T-Zell-Therapien. 

In dieser Dissertation wurde ein mechanistisches In-silico-Modell entwickelt, das einen in-vitro-Datensatz 

zur Pharmakologie von cibisatamab integriert. Das Modell kann als Werkzeug in der Entwicklung dienen, 

um die Auswirkungen der Targetdichten auf die Pharmakologie von CD3-bispezifischen Antikörpern zu 

quantifizieren. 

In dieser Dissertation wurde auch ein neuer Versuchsaufbau und Analyse entwickelt, die eine unverzerrte 

und zeitunabhängige Bewertung der pharmakologischen Aktivität ermöglicht. Auf diese Weise kann die 

Kinetik der Messwerte berücksichtigt werden. Dies ist von Bedeutung, um fundierte Entscheidungen über 

die Entwicklung der Wirkstoffe und die Dosisauswahl zu treffen. 

Schließlich wirft die Arbeit einen Blick auf das Cytokine Release Syndrome und identifiziert Risikofaktoren 

als Ursache für CRS und empfiehlt eine Kombination von Modellierung und real-world Daten zur 

Ermöglichung einer individuellen CRS Risikobewertung bei der Behandlung mit gerichteten T-Zell-

Therapien. 
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1. Introduction 

1.1 Background 

Ever since we could recognize tumours as a malignancy, humankind has been looking for ways to combat 

them. Over the centuries, the use of surgery, herbal tinctures, and even hyperthermia found their way in 

the fight against cancers [10]. Later on, more medically advanced strategies of radiation and chemotherapy 

were commonly used, with varying levels of success [11]. Nowadays, media announcements of new and 

groundbreaking immunotherapies - therapies that use the patient’s immune system to fight the cancer- are 

commonplace. The reason for such wide media coverage is undoubtedly due to the promising results that 

we have so far seen with these kind of therapies [12].  

The pretence that the concept of immunotherapy is a child of the 20th and 21st centuries is, however, a false 

one. A papyrus roll, allegedly written by the Egyptian physician Imhotep, recommends treating tumours by 

inducing local infections (ca. 2600BC) [13]. The infection would stimulate the immune system that can 

potentially initiate an attack on the tumour. The first case of modern immunotherapy stems from the 1890s, 

when Dr. William B. Coley injected cancer patients with a concoction of heat-inactivated bacteria 

(Streptococcus pyogenes and Seratia marcescens) to induce infection in order to treat malignant sarcomas 

[14]. He based his hypothesis on frequent literature reports of cancer patients showing spontaneous 

tumour regression after contracting an infectious disease, and the relatively low prevalence of malignancies 

in syphilis patients. Because of his radical new idea and its systematic implementation, Coley is now widely 

seen as the father of immunotherapy. 

1.2 Rationale for targeted therapies 

Non-targeted cytostatics have dominated the oncology scene for a long time [15]. Due to their unspecific 

mechanism of action, undesired side effects are commonplace during treatment with these early anti-

cancer drugs [16]. Alternative therapies, such as kinase inhibitors and monoclonal antibodies, appeared on 

the scene in the last few decades [17]. These therapies employed a much more targeted approach towards 

the tumour and showed promising clinical results with reduced propensity for adverse events commonly 

observed with unspecific treatments [18].  

The use of antibodies that bind to a specific tumour antigen and tag them for destruction has proven to be 

a powerful tool in the physician’s repertoire to target tumours. A few notable examples are rituximab (anti-

CD20, for the treatment of various B-cell malignancies [19]), trastuzumab (anti-HER2, or the treatment of 

breast and stomach cancer [20]), and cetuximab (anti-EGFR, for the treatment of colorectal cancers and 

head-and-neck cancers [21]). 
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Modern immunotherapy forms a big pillar of targeted therapies. A key player here is the class of checkpoint-

inhibitors. These compounds specifically target molecules involved in immune cell activity: immune 

checkpoints. Well-known examples of immune checkpoints are the PD-1/PD-L1 axis and CTLA4, which will 

dampen immune responses or induce exhaustion [22]. A variety of monoclonal antibodies has been 

developed to target these checkpoints, thereby activating immune cells and increasing the chances that 

tumour cells will be detected, recognized, and destroyed by the patient’s own immune system. Additionally, 

immune-agonistic antibodies that target T-cell co-receptors such as CD28 or 4-1BB can bring T-cells into an 

elevated state of activity. Stimulating (recombinant) cytokines such as IL2 or IL15 have been used in clinics 

with varying degrees of success [23, 24] (Figure 1).  

However, these targeted therapies did not prove to be the solution for all tumours. A considerable portion 

of patients are resistant to such treatments; for instance, due to redundant signalling pathways or the 

presence of tumours that are virtually void of immune cells –an immune desert [25, 26]. Furthermore, 

removal of the brakes of the immune system can lead to various adverse events, such as disseminated 

immune activation and tissue damage [22, 27]. 
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1.3 T-cell redirecting therapies 

T-cell redirecting therapies are, for industry standards, a relatively novel class of compounds. As a distinct 

branch of targeted therapies, T-cell redirecting therapies is the umbrella term for various therapeutic 

modalities that will redirect T-cells towards tumour cells. T-cells are specialised immune cells that make up 

an important part of the adaptive immune system in humans. They recognize specific foreign antigens and 

mount an efficient immune response against it. T-cell redirecting therapies take advantage of the highly 

potent killing mechanisms of activated T-cells to eradicate cancer cells. To achieve this, these therapies rely 

on the activation of T-cells through recognition of a specific tumour antigen. As such, T-cells are re-targeted 

en masse towards tumour cells that express this specific antigen. Diverse technologies exist to redirect large 

numbers of T-cells, such as CD3-bispecific antibodies, CAR-T cells, and TCR-T cells (Figure 1). CD3-bispecific 

antibodies (or antibody fragments) are antibodies that have been engineered to bind to two targets 

simultaneously. This is in contrast to naturally occurring antibodies or ‘classical’ therapeutic monoclonal 

Figure 1. Overview of the most prominent targeted therapies in oncology. This field contains both T-cell 

redirecting therapies (top) and Non T-cell redirecting therapies (bottom). ① CD3-bispecifc antibodies 

cross-link T-cells to tumour cells by binding to CD3 and a tumour antigen; ② CAR constructs are 

artificially introduced into the T-cell membrane and can recognize a specific tumour antigen, leading to 

T-cell activation; ③ Engineered TCR complexes have been affinity-matured to bind a specific tumour 

antigen with much higher affinity; ④ Co-stimulatory antibodies bind stimulatory co-receptors (e.g., 

CD28, 4-1BB) to trigger T-cell activation; ⑤ Immune-activating cytokines (e.g., IL2, IL15) bind on their 

respective receptors on T-cells and induce activation and proliferation; ⑥ Checkpoint-inhibitor antibodies 

block important immune checkpoints that may otherwise dampen immune responses (e.g., CTLA4, PD-

1); ⑦ Antigen-specific monoclonal antibodies bind to an antigen that is overexpressed on tumour cells, 

thereby tagging it for destruction.  
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antibodies with two binding arms that both bind the same epitope (figure 2A). The concept of bispecific 

antibodies has been around for some time and has seen a few therapeutic use cases, for instance in 

haemophilia (by cross-linking two clotting factors, thereby compensating for the genetic loss of another 

clotting factor) and in auto-immunity (by sequestering multiple pro-inflammatory cytokines at the same 

time to prevent excessive inflammation) [28]. CD3-bispecific antibodies are a subclass of bispecific 

antibodies. They are characterized by their specificity to CD3. CD3 is a subunit of the T-cell receptor (TCR), 

a complex with which T-cells can recognize antigens and receive activation signals [4]. Besides CD3, these 

antibodies also have specificity towards a tumour antigen. This means that CD3-bispecific antibodies can 

bind simultaneously to CD3 on T-cells with one arm and to an antigen on tumour cells with the other arm, 

thereby cross-linking the two cell types (figure 2B). This crosslinking will mimic a natural immune synapse 

(see Box A), inducing the T-cells to become active and to eliminate the tumour cell [28]. In a few instances, 

CD3-bispecific antibodies have shown promising efficacy in patients, with up to 69% objective response 

rates [29]. Over the years, investigators developed a multitude of construct formats, differing in their 

molecular weight, valency, and specificity [30].  

Chimeric Antigen Receptor (CAR) T-cells are another modality from the class of T-cell redirecting therapies 

and part of the adoptive cell therapies (ACT). These are highly specialized T-cells that were originally isolated 

from the patient. These freshly isolated, 

autologous T-cells are then transfected to 

express a CAR construct (figure 2D). CARs are 

large constructs that contain an extracellular 

domain that recognizes a specific tumour 

antigen (in the same fashion as a binding arm 

of an antibody), a transmembrane ‘linker’, and 

an intracellular signalling domain. Details on 

the CAR structure and signalling cascades are 

reviewed in [31]. Multiple generations of CAR 

constructs have been developed over the 

years, each trying to improve upon the 

previous one by including co-stimulatory 

domains or other structural changes. After 

modification, the T-cells will be expanded in 

great numbers. Afterwards, the patient 

Box A  Immunological Synapse  

A crucial step in mounting a T-cell immune response is the 

formation of an immunological synapse between a T-cell and an 

antigen-presenting cell (APC). APCs are specialised cells that patrol 

the body and are present in all tissues, on the lookout for foreign 

antigens. When a foreign antigen is detected, APCs take it up, 

process it into smaller peptides, and present it to T-cells in 

secondary lymphoid organs. APCs present these peptides via their 

Class 2 Major Histocompatibility Complex (MHC-II) to the T-cell 

Receptor (TCR). In case of intracellular antigens, a similar process 

takes place except that the main pathway of presentation of the 

peptides happens via a class 1 MHC, which is found on all nucleated 

cells in the body [2].  

In both cases, the interaction of a peptide-MHC complex and a TCR 

triggers the build-up of an immunological synapse on the interface 

between both cells involved. This includes the formation of a Supra-

Molecular Activation Cluster (SMAC) that consists of clustered TCRs, 

adhesion and signalling molecules [4]. 

The mechanism-of-action of T-cell redirecting therapies relies on 

mimicking this immunological synapse or on facilitating its 

formation. 
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receives an infusion of billions of the re-engineered T-cells to combat their tumour. When a tumour antigen 

is bound, this will spark a signalling cascade that will lead to activation of the T cell and tumour cell killing. 

Besides their high efficacy, CAR-T cells are notorious for their high cytokine release potential.  

TCR-engineered T cells (TCR-T cells) are another class of ACT. Rather than transducing autologous T cells 

with a specific construct, the isolated T cells are selected ex vivo for specificity towards a specific antigen, 

followed by affinity-enhancement and expansion [32]. The final product contains billions of T cells trained 

to target the tumour antigen with much higher affinity than what would be possible to find in vivo (figure 

2E). Since these T cells still express the canonical, albeit enhanced, TCR on their surface, they target tumour 

cells in a MHC-restricted manner [33]. This limits its versatility in targeting non-MHC expressed surface 

antigens that are common targets of CAR-T cells (and many CD3-bispecific antibodies), but opens the door 

to a whole new repertoire of intracellular antigens expressed on MHC [34]. Multiple clinical trials with TCR-

T cells are ongoing [34]. An overview of the different modalities can be found in [34-36].  

The first T-cell redirecting therapy to receive market authorization was catumaxomab (Removab®), a CD3-

bispecific antibody that binds to EpCAM that is often overexpressed in certain types of cancer. The European 

Medicines Agency (EMEA) approved catumaxomab in 2009 for the symptomatic treatment of malignant 

ascites in ovarian carcinoma patients [37]. After intraperitoneal injection, catumaxomab redirects T-cells 

towards EpCAM-positive cancerous cells floating around in the ascetic fluid. Its mechanism of action allowed 

the redirection of T-cells towards EpCAM-positive cells and reduced the burden of ascites on patients. 

Catumaxomab was withdrawn from the market for economic reasons in 2017.  

Five years after the first CD3-bispecific antibody was approved, the FDA authorized marketing of the 

CD19xCD3 bispecific T-cell Engager (BiTE) blinatumomab (Blincyto®) for the treatment of 

relapsed/refractory Acute Lymphoblastic Leukaemia (ALL) [38]. A few years later, two CAR-T cell therapies 

that target CD19 achieved approval as well: tisagenlecleucel (Kymriah®) and axicabtagene ciloleucel 

(Yescarta®) for the treatment of ALL and NHL, respectively [39, 40]. 
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Figure 2. Structural components 
of T-cell redirecting therapies and 
their natural counterparts. A. a 
natural antibody consists of three 
main domains: two antigen-
binding fragments (Fab) and one 
‘crystallisable’ fragment (Fc). 
Each domain contains various 
peptide sequences. The Fc-
domain consists of heavy 
constant chains (CH2 and CH3). 
Each Fab-domain consists of a 
constant light (CL) and heavy 
(CH1) chain, and a variable light 
(VL) and heavy (VH) domain. The 
latter two are responsible for 
antigen binding. B. a CD3-
bispecific antibody binds, in 
contrast to a natural antibody, to 
two different antigens: a tumour-
antigen and the epsilon-chain of 
CD3. CD3 is a co-stimulatory 

receptor that is part of the T-cell Receptor Complex (TCR), which is responsible for T-cell activation upon 
antigen binding. A CD3-bispecific antibody does not need to resemble structurally the Y-shaped natural 
antibody and exists in many different sizes and formats. C. a simplified depiction of a natural TCR complex, 
found on T cells. The TCR consists of an α and β subunit anchored into the cell membrane. At the distal end, 
a Complementarity Determining Region (CDR) is responsible for detecting specific peptides. A crucial part of 
the TCR signalling machinery is CD3, which consists of various subunits (γ, δ, ε, and ζ). D. a Chimeric Antigen 
Receptor (CAR) can be considered as a chimera between a TCR and an antibody. The antigen-detecting part 
consists of the antigen-binding domain of an antibody (VL and VH chains); followed by a transmembrane 
domain (TMD) that links it to co-stimulatory domains (co-stim., such as CD28 or 4-1BB depending on the 
generation of the CAR involved). CD3ζ makes up the final part of the construct and is required for signal 
transduction. E. An engineered TCR looks and functions identical to a natural TCR with the sole difference 
that the CDR has been artificially affinity-matured in order to exhibit a manifold higher affinity towards the 
desired antigen. 

 

1.4 Aspects in early drug development. 

1.4.1 Regulatory Considerations  

Before exposing humans to any medicinal product, extensive pharmacological and toxicological profiling is 

required to ensure patient safety. The primary goal of a First-In-Human (FIH) study is to assess the 

pharmacology, pharmacokinetics (PK), and safety of an investigational medicinal product (IMP), and to 

determine a Recommended Phase 2 Dose (RP2D) for further clinical testing [9, 41]. It is crucial to ensure 

robust translation of nonclinical safety and efficacy data for the selection of a relevant starting dose for the 

FIH trial. This entails having a good understanding of the nature of the intended target and potential off-
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target risks (see section 1.4.2), making informed decisions about the relevance of animal testing (see section 

1.4.3), and applying a suitable dose selection strategy (see section 1.4.4). Additionally, it is highly 

recommended to inform and support dose selection with PK/PD modelling approaches [9]. Phase I studies 

are carefully designed to maximize safety for the test subjects. Usually –due to rigorous nonclinical testing 

and good trial planning- Phase I studies go well without noticeable reasons for concern. However, over the 

last two decades, a few Phase I studies ended with disastrous consequences, indicating that absolute safety 

cannot be guaranteed [6, 42]. Regulatory agencies have responded in turn with adapted guidelines and 

requirements in an attempt to prevent such clinical disasters from happening again. 

Regulatory agencies and bodies, such as the Food and Drug Administration (FDA), European Medicines 

Agency (EMEA), and the International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH), have formulated guidelines in support of sponsors 

and investigators attempting to develop new medicines. For targeted anti-cancer therapies in general, and 

for T-cell redirecting therapies in particular, the following documents provide guidance in the drug 

development process from nonclinical testing up to early clinical trials. 

1) Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with 

investigational medicinal products. EMA: Committee for Medicinal Products for Human Use (CHMP) 

[9] 

2) Guidance for Industry: S9 Nonclinical Evaluation for Anticancer Pharmaceuticals. FDA: Center for 

Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER) [43] 

3) Guidance for Industry: S6 Addendum to Preclinical Safety Evaluation of Biotechnology-Derived 

Pharmaceuticals. FDA: CDER and CBER [44] 

4) Guidance for Industry: Bispecific Antibody Development Programs. FDA: CDER and CBER [45] 

5) Potency testing of cell-based immunotherapy medicinal products for the treatment of cancer. 

EMEA: CHMP [46] 

 

This is not an exhaustive list by any means, and the regulatory bodies will undoubtedly formulate additional 

guidelines build on the increasing scientific and translational expertise with such compounds. The 

Committee for Medicinal Products for Human Use (CHMP) of the EMEA formulated the original guidelines 

in the aftermath of the TeGenero TGN1412 incident in 2006 [47, 48]. In this controversial incident, various 

human volunteers received for the first time the novel immune-stimulatory compound TGN1412. They 

quickly developed severe adverse events. Section 1.4.4 elaborates further on this case and its impact on 

regulatory guidelines. Briefly, there are multiple –but still debated- potential causes of the unexpected 
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severe effects observed in humans but all are related to unexpected differences between the tested animal 

species and humans, and the corresponding lack of translatability [49-51].  

The Bial disaster in 2016 prompted the Committee to release an updated version of the original 2007 

guidelines [9]. The affected compound in the latter case, BIA-10-2474, is a FAAH enzyme inhibitor developed 

to increase endocannabinoid levels in plasma to combat neuropathic pain. Similar FAAH inhibitors had 

proven to be safe in humans and multiple animal species were tested with no observed toxicities except at 

the highest doses [8]. Yet, after a few uneventful dosing cohorts totalling 84 patients exposed to BIA-10-

2474, a healthy volunteer from a multiple ascending dose (MAD) cohort developed clear signs of adverse 

events after the fifth dose [52]. The volunteer was taken off the trial and was monitored by hospital staff. 

The next day, the MAD cohort’s remaining volunteers proceeded to receive the sixth dose. That day, the 

affected volunteer’s condition deteriorated and the volunteer slipped into a coma, dying a few days later. 

Four out of five volunteers that received the sixth dose later developed similarly severe symptoms, but 

survived with long-term sequelae [52]. It is difficult to pinpoint exactly the root cause of this mishap. 

However, there are two notable aspects highlighted that likely influenced the 2018 revision of the EMEA 

guidelines. After the trial, an independent research group investigated the MoA of BIA-10-2474 and found 

that it altered lipid metabolism in a way not seen with similar FAAH inhibitors studied in humans [53]. This 

suggests that despite being in a class with good tolerability and similar MoA, a compound may still act in an 

unexpected manner. Additionally, dose selection of BIA-10-2474 relied on the NOAEL approach to ensure 

human doses remained below those where safety issues in animal species were seen (see section 1.4.4 and 

Box B). The highest tested dose in humans corresponded to the NOAEL. It was later shown that maximal 

pharmacological activity in humans is achieved at a dose that is 20-fold lower than the highest tested dose 

in the trial [8]. These findings reiterate the importance of using human-relevant assays and denounce the 

reliance on animal findings only. Scientific rationale should be applied when selecting the starting dose and 

defining the maximal exposure. Having almost doubled in size, the new 2018 guidelines put emphasis on 

the integration of pharmacokinetic, pharmacodynamic and safety data, the importance of human 

pharmacology, and conducting dose-exposure-response analysis using PKPD modelling to guide dose 

selection [54]. As opposed to the first version, the revised version does not consider pharmacology to reflect 

only nonclinical safety, but now also includes human pharmacology itself [54]. Especially for targeted 

therapies is human pharmacology important, for exaggerated pharmacology is a dangerous adverse event 

[55]. This becomes especially a problem at higher doses. 

While each document provides specific recommendations, the consensus is the same and the core principle 

for all is ensuring patient and trial participant safety. Additionally, the guidelines promote the 3R concept 
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(Reduce, Refine, and Replace animal experimentation) to limit test animal use when alternatives are 

available. 

Phase I trials with anti-cancer therapeutics are usually conducted in cancer patients only instead of healthy 

volunteers [56]. These patients are often very ill and the administered doses are close to the adverse event 

levels [43]. Diligent nonclinical testing is vital in order to derive a safe and relevant starting dose to deliver 

to these patients. 

Nonclinical studies prior to phase I are required to demonstrate safety and efficacy. This includes the 

primary pharmacodynamic properties (e.g., tumour killing, T cell proliferation; markers of desired 

pharmacological activity) and secondary pharmacodynamic properties (e.g., cytokine release; markers of 

potential safety concerns), thereby establishing a nonclinical proof of principle [43].  

There is an inherent uncertainty involved in early clinical trials concerning the safety and efficacy of an IMP 

(figure 3). The level of uncertainty is influenced by the amount of knowledge available on and the 

uniqueness of the mechanism of action, the presence of (safety) biomarkers, the cross-reactivity of the 

molecule in animal models and the translatability of these animal models, the impact of patient 

heterogeneity in the clinical trials, the suspicion of pleiotropies or inadequate biological feedback loops, etc. 

It is important that the potential risks be identified a priori. The penultimate goal of nonclinical studies, FIH 

studies, and early clinical trials is to reduce the amount of uncertainty around an IMP [9]. Generating 

relevant, high quality nonclinical data is paramount to dissipate some of this uncertainty and to make a 

more informed decision going forward into the clinical phases. Broader initiatives and joint efforts are 

helpful in better understanding what causes uncertainty and how to address them. This includes regulatory 

documents such as the ones reviewed here, cross-sponsor consortia, workshops or whitepapers such as, 

for instance, a workshop on preclinical and translational safety assessment of CD3 bispecifics [57], or a 

whitepaper on CRS by Friends of Cancer Research [58]. It requires specific tools capable of integrating these 

nonclinical findings with clinical or biological knowledge in order to maximise their translational value. The 

field of modelling and simulation (M&S) provides many such tools suitable to tackle this objective. They can 

help to describe experimental findings in a quantitative manner [59].  
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Some tools, such as mechanistic models, also enable the capture of current knowledge about the drug or 

biological system of interest into a mathematical framework. Such a model is capable of describing the 

experimental data, but also opens the door to explore alternative experimental scenarios or drug variants 

by changing the relevant parameters. This can then be supplemented with new experiments whose design 

was influenced by prior simulations, as a learn-and-confirm cycle. If more is known about a drug and its 

related pharmacology and biological effects, investigators can make predictions with more confidence, 

allowing them to explore ‘what-if’ scenarios and more reliably inform about potential risks.  

1.4.2 Nature of the target  

For new medicinal products, the pharmacological target needs to be studied in detail [9]. The expression 

pattern and the physiological function of the target of interest may influence the efficacy and safety of the 

IMP. The occurrence of on- and off-target toxicity may be influenced by the extent of tissue distribution of 

the compound and the target, which may have implications for dosing selection [60]. Some types of models, 

such as physiological-based pharmacokinetic (PBPK) models, consider the various tissues in the body and 

attempt to model the distribution of a drug by means of an elaborate system of equations. PBPK models 

Figure 3. There is a risk involved with going into human with a new IMP, which investigators cannot readily 
quantify. The uncertainty that this brings is influenced by various factors such as the novelty of a 
compound and uniqueness of its mechanism of action. From a nonclinical standpoint, the availability of 
relevant animal species, alternative methods, or identified biomarkers will influence the inherent level of 
uncertainty before going into human. In clinics, the heterogeneity of the tested study population may 
increase uncertainty. On the other hand, clinical experience with similar compounds may decrease 
uncertainty around the risks involved. Lastly, joint efforts and information sharing including regulatory 
documents, consortia, and modelling efforts may help dissipate this uncertainty.  
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integrate in vitro knowledge of compound properties or in vivo data from animal studies to capture the 

distribution of the drug [61, 62].  

A complex mechanism-of-action is almost inherent to T-cell redirecting therapies. For these modalities, not 

only the tumour target but also the T-cell activating processes need to be considered. In addition, not only 

the tumour target but also the T-cell activating machinery at the other end of the therapeutic needs to be 

well considered. For engineered (CAR- or TCR-) T cells, the tumour target is recognised by a (partly) artificial 

biological construct that consists of various TCR subunits (e.g., CD3) and co-receptors (e.g., CD28, 4-1BB). 

CD3-bispecifcs bind simultaneously to the tumour target and to the CD3 subunit. CD3 is part of the T-cell 

receptor complex and, although it has been well studied, should be considered a high-risk target due to 

potential pleiotropic effects it may induce and the potential effects on unexpected T-cell activation that this 

may have [63]. Due to these complexities, developing predictive models for T-cell activity is even more 

challenging. The immune system relies on various feedback loops and this can be modelled with elaborate 

mechanistic or systems pharmacology models [64, 65]. 

For dose selection, PK/PD models allow to relate dose with the drug concentration and its effects. Such 

models provide a lot of information about the pharmacology of a drug and serve as a good basis for scaling 

up and predicting the PK/PD in patients. Some of these models have already been developed for various T-

cell redirecting therapies [66-68]. For such models to be successful, they should be informed with high 

quality experimental data. 

1.4.3 Animal experimentation 

Animal testing plays an important role in the preclinical evaluation of anticancer medicinal products and in 

support of selecting a relevant human dose. Animal models allow investigators to understand the effects of 

an IMP in vivo for the first time. In addition, the selection of dose, schedule or escalation strategy can be 

facilitated when basic PK analysis is performed in animal species (e.g., half-life, AUC, Cmax) [43]. This 

information helps to define the range of efficacious concentrations or the concentration for adverse effects.  

In order to ensure that findings from animal studies have the potential to be translatable to humans, the 

relevance of the animal model of choice needs to be demonstrated [9]. Otherwise this may lead to 

misinterpretation of the results [44]. Relevance of an animal model can be confirmed by assessing the 

sequence homology of the target, its expression level and distribution pattern, kinetics from ligands and 

receptors, PK and PD characteristics. Mechanistic models rely on the distinction between drug-specific and 

system-specific parameters. Drug-specific parameters are inherent to the studied drug and are not 

expected to change between experiments or individuals, such as the drug’s size, stability and affinity. 

System-related parameters describe the biological system (i.e., an in vitro assay, animal species, or patients) 
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and will vary from one experiment to another, or even between 

individuals [69]. Experiments should be performed to quantify both 

the drug- and system-specific parameters. These parameters will, 

when appropriate scaling is performed to account for species 

differences in the system-specific parameters, aid in the prediction 

of drug response in humans. 

However, qualitative or quantitative differences in the drug 

response can occur between animals and humans. This can be due 

to relative differences in expression level, distribution, affinity 

values, and truncated downstream events [9, 56]. In addition, 

similar in vitro data is no guarantee for a similar in vivo response 

between animal and human. Due to increased human-specificity of 

targeted therapies, there is an increase in the uncertainty around 

patient risk evaluation based on nonclinical studies. The high target-

specificity might impair the availability of a relevant animal species 

as a toxicology model [70]. This warrants a more prudent approach 

to be taken.  

Failing to identify relevant animal species, investigators should 

refrain from using non-relevant species simply to fulfil regulatory 

requirements, which often appears to be the case [54]. Instead, the 

use of transgenic or humanized animals, or the use of surrogate 

molecules should be considered [44]. Some T-cell redirecting 

therapies do not cross-react with animal species and must rely on 

alternative approaches for nonclinical testing (Figure 4) [71, 72].  

Current experiences with T-cell redirecting therapies show that 

availability of relevant animal species differs from one compound to 

the other. For some, relevant animal species exist that cross-react with 

the binders of the compound (either the tumour target alone or in 

conjunction with CD3 for CD3-bispecifics). In many cases, these relevant animals are non-human primates 

(Figure 4A) [38, 73, 74]. When no cross-reactive species are identified, some projects opt for implementing 

a transgenic animal study (usually with mice) [75] or to deploy a surrogate compound that does bind the 

animal target (Figure 4B). This does not always yield satisfactory results, as was shown for cibisatamab, a 

Figure 4. Examples of T-cell redirecting 

therapies and the availability of 

relevant animal species. A. Various 

non-human primates are relevant test 

animals as long as there is cross-

reactivity with the target. B. In case of 

cibisatamab, neither approach yielded 

desirable results C. some compounds 

target human antigens with such 

specificity that developing transgenic 

animals becomes challenging. In these 

cases, an in vitro-only approach is the 

only viable option. 
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CD3-bispecific that targets the tumour antigen CEA [76]. In 

other cases, especially when the compounds exhibits very high 

human specificity such as TCR-like CD3-bispecifics that target a 

tumour-specific peptide presented on an MHC-I complex like 

tebentafusp, an in vitro-only approach may be the best choice 

(Figure 4C) [77]. Irrespective of the availability of relevant 

animal species, most projects include animal studies with 

immune-deficient mice that received grafts of human tumour 

cell lines and injected with human immune cells. This allows the 

investigator to study the drug effect in vivo. However, these 

xenograft models have limited relevance since they lack for 

instance a tumour microenvironment and a complete immune 

system. 

1.4.4 Dose selection and the need for better strategies 

A textbook example that highlights the risk of FIH studies with 

immune-agonists is the TeGenero TGN1412 tragedy. A phase I 

study of TGN1412 resulted in life-threatening cytokine release 

and multi-organ failure in all (n = 6) of the healthy volunteers 

[6]. TGN1412 is an agonistic anti-CD28 monoclonal antibody 

that was originally developed for the treatment of B cell 

chronic lymphocytic leukaemia and rheumatoid arthritis [78]. 

The starting dose was selected based on the No Observed 

Adverse Effect Level (NOAEL, see Box B) from a monkey study. 

Undetected species-differences were at the base of the trial 

outcome. 

Due to the learnings from the TeGenero incident, using NOAEL 

for dose selection for immune-agonists was no longer appropriate. EMEA and FDA released new guidelines, 

promoting the implementation of an alternative and more holistic dose selection method where all relevant 

in vitro and in vivo data needs to be integrated to decide on a safe dose. This method is coined the Minimally 

Anticipated Biological Effect Level (MABEL). The use of MABEL requires a deep understanding of the 

pharmacology of the target since it can represent any relevant pharmacological marker. Essentially, MABEL 

is defined, as the exposure required reaching ‘minimal’ biological effect in a non-clinical study.  

Box B  No Observed Adverse Effect Level  

The No Observed Adverse Effect Level, or 
NOAEL, is historically one of the most frequently 
used strategies to calculate FiH doses [3]. NOAEL 
refers to the highest tested dose in a relevant 
animal species that does not elicit a significant 
increase in observable adverse events as 
compared to the control group. The NOAEL is 
converted into a human equivalent dose (HED). 
A popular method to calculate the HED is via 
allometric scaling in which scaling of the dose 
happens in relation to the scaling of a bodily 
metric (e.g., body weight BW) from animal to 
human (see inset equation) [5]. There is a whole 
field of study dedicated to these calculations, 
which falls beyond the scope of this work. 

𝐻𝐸𝐷 = 𝑁𝑂𝐴𝐸𝐿 ∗ ቀ𝐵𝑊𝑎𝑛𝑖𝑚𝑎𝑙
𝐵𝑊ℎ𝑢𝑚𝑎𝑛

ቁ
𝑏

  

b is an allometric exponent used for scaling. 
After calculation of the HED, usually an 
additional safety factors is applied to account for 
any uncertainties. 

The use of NOAEL came under scrutiny after the 
disaster of TeGenero when the HED, even after 
inclusion of a 160-fold safety factor, elicited 
severe adverse events in healthy human 
volunteers. The focus on animal toxicity and lack 
of pharmacologic context in NOAEL-based dose 
calculation was criticised [6, 7]. 

The lethal outcome of the Bial disaster again 
reinforced the use of alternative methods that 
focus on human pharmacology instead of on 
tolerability alone for appropriate dose-exposure-
response prediction in order to determine not 
only the starting dose (MABEL), but also high 
doses [8, 9]. 
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The guidelines do not concretely define the term ‘minimal’ nor do they summarise what exactly is 

considered as ‘biological effect’ [9]. When reviewing the literature, it seems that many investigators to use 

as MABEL 10-20% of the maximal effect reached for a certain readout in a certain study and, in many cases, 

the readout of choice is the most sensitive readout, which is the most straightforward to justify [56, 76, 77, 

79-81]. The FiH dose is set so that expected human exposure to the drug corresponds to the MABEL. An 

additional safety factor could be warranted for compounds with a novel or poorly understood mechanism 

of action or, for instance, when there is uncertainty around the MABEL estimation [9, 56]. 

A retrospective FDA oncology analysis, reviewing dosing and FiH trial design for 32 antibodies used in 

immune-oncology, and assessing the utility of animal toxicology studies, has shown that 44% of the FiH 

doses were at least 2-log units below the dose that could be safely administered to patients [82]. Doses 

based on animal toxicity were often too high to apply in human.  

In another retrospective analysis focusing on CD3-bispecifics, Saber and colleagues concluded that the 

current MABEL-based methodologies result in doses that are too low to warrant treatment in critically ill 

patients. Doses calculated from NOAEL and HNSTD in animal studies did retrospectively prove too high in 

many cases. Dose selection based on 10% or 20% receptor occupancy, as is often the case for immune 

stimulatory antibodies, proved severely inappropriate for bispecific antibodies. Conversely, doses based on 

30% theoretical pharmacological activity seemed to be within safety limits [83]. 

Since anti-cancer therapies often have a narrow therapeutic index, phase I trials are conducted in cancer 

patients only [56]. In most of these cases, these patients have exhausted all available treatment options and 

are turning towards experimental drugs as a last resort. From an ethical point of view, it is unacceptable to 

treat these patients at doses that are considerably lower than the anticipated pharmacologically active dose 

[9]. Moreover, starting from a subtherapeutic dose requires many dose-escalation steps to reach clinical 

efficacy, making the clinical trials more lengthy and costly [84, 85]. 

Dose-escalation in cancer patients is not limited to the highest dose tested in nonclinical studies and can be 

continued until dose-limiting toxicities (DLTs) are reached. However, if nonclinical studies showed a steep 

dose-response curve for a toxicity marker, or failed to identify a toxicity threshold, dose-escalation 

increments should be reduced. Instead of dose-doublings of half-log increments, fractional increases should 

be performed [43]. 

When we consider the current state of knowledge around the class of T-cell redirecting therapies, it 

becomes apparent that precautions are to be taken when advancing such therapies into clinical trials. The 

adverse events related to targeted therapeutics are not often caused by off-target toxicities but rather due 
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to exaggerated pharmacology [55]. The robust integrative analyses applied in FiH dose selection strongly 

contribute to the relatively safe track record of FIH studies [54].  

1.5 Nonclinical translatability 

Preclinical in vitro and in vivo assessment is essential to understand better T-cell redirecting therapies, to 

collect sufficient data to derive a human dose, and to quantify relative patient risks when exposed to the 

treatments. An important quest is the reliable prediction of cytokine release syndrome in patients. Cytokine 

release assays are designed to capture the potency and extent of cytokine release induced by a therapy. 

Despite that these assays are capable of predicting the overall risk in patients, the current pitfall is the lack 

of absolute translatability, which can be ascribed to the existence of many different assay formats [86] and 

the considerable donor-to-donor variability [83].  

Additionally, animal models that reliably recapitulate CRS are lacking. An FDA oncology analysis reviewed 

the preclinical and clinical safety profiles of 17 blinded CD3-bispecifics [83]. From those, 10 compounds had 

cross-reactivity with non-human primates (NHP) for safety assessment. There was however, a discrepancy 

between the cytokine releases observed in the monkey versus those observed in an in vitro assay with NHP 

or human cells. The authors concluded that animal species overall better tolerated the treatment than 

patients, and that in vitro systems should be considered. This again reinforces the revised EMEA guidelines 

that emphasize the importance of understanding human pharmacology and the quantification of dose-

exposure-response relationships. 

The development of physiologically relevant assays is of great importance. The exact developmental 

landscape of these methods falls beyond the scope of this work, but a relevant part is discussed in [87]. The 

use of 3-dimensional spheroid cultures opens new doors to studying T-cell-redirecting therapies [88]. These 

specialized cultures may provide a better understanding of how the immune cells interact with the tumour 

environment and how tumour accessibility affects the treatment. 

It is recommended to make use of a weight-of-evidence approach, integrating in vitro, ex vivo, and in vivo 

data as part of the decision-making process. The use of a modelling framework may help to integrate the 

various sources of data –in vitro and in vivo- and the current biological knowledge in order to scale it up to, 

and make predictions about, the human situation. The use of in vitro human cell systems or human-derived 

material could clarify the translation from animal data to human [44]. Moreover, in vitro data can be very 

informative before going into humans. The steepness of the dose-response curves is an example of an 

interesting metric since risk is a continuous function rather than a discrete (either present or absent) event 

[48, 56]. This metric can tell us more about the potential dose range and the risks involved by going higher.  
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Whereas modelling and other quantitative approaches may give guidance to the translational development 

of a compound, they are ultimately based on prior knowledge and data generated in nonclinical 

experiments. Any inaccuracies with respect to this information may yield a model that is not predictive. 

Likewise, if certain variables are ill-defined or yet to be discovered, they cannot be incorporated into a 

model. To give a related example from the clinical domain, reliable prediction of the extent of cytokine 

release in patients may not be sufficient to predict the risk for CRS in patients [89, 90]. Other, less overt, 

variables may not be so easily identified with mechanistic assays such as cytokine release assays or even 

with animal models. This forms the main topic of one of the projects developed in this work [91]. 

1.6 The role of pharmacometrics in the development of T-cell redirecting therapies 

Quantitative approaches have gained a foothold in the drug development space in the last 50 years. 

Pharmacometrics as a scientific discipline contains many different fields of study that look at drug 

development in a quantitative fashion with varying degrees of complexity. As was shown in the previous 

sections, pharmacometrics has the potential to have a huge impact on many parts of the early development 

process of T-cell redirecting therapies. It can be as simple as establishing a dose-exposure-response 

relationship for a drug, a linear regression analysis or empirical relationship between variables [92], more 

elaborate pharmacokinetic/pharmacodynamic models to predict drug exposure and effect in humans, or 

even full-fledged systems pharmacology models that capture drug-related processes in high detail [62, 67, 

93]. 

Model-informed drug development (MIDD) is becoming more widely accepted by pharmaceutical 

companies and regulatory bodies. Model-based drug development starts -even before the collection of 

experimental data- with the design of experiments and the selection of a relevant PK/PD strategy [94]. This 

is possible thanks to the prospective nature of models and the ability to perform simulations and test 

hypotheses.  

As reviewed by Milton and Horvath, the EMEA guidelines shifted the focus more in favour of risk 

identification and possible mitigation strategies as opposed to hazard identification, which was the norm 

before the TeGenero incident [95]. There is a discernible difference between hazard (a qualitative 

description of the dangers involved with the therapy; e.g., asking “what type of adverse events to we 

expect?”) and risk (a quantitative measure of the dangers; e.g., asking “what is the likelihood of contracting 

that adverse event at the anticipated exposure level?”) [47]. A compound with a hazardous profile might 

have a favourable risk profile as long as systemic exposure is kept low or the compound has a low toxic 

potential. The complicated and still not fully understood MoA of T-cell redirecting therapies makes them 

higher risk compounds, even though most hazards may already have been identified. The inclination of risk 
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to be quantifiable facilitates the use of pharmacometrics approaches. Ideally, pharmacometricians can put 

a number on the risk an IMP forms to the patient, based on previous experiences and solid understanding 

of the biology. 

In his seminal paper, Sheiner presents the learn-and-confirm paradigm and how it is applied in drug 

development [96]. Cycles of learning how a drug acts should be followed by cycles of confirming the 

effective use-case of that drug; first generating a (null) hypothesis followed by an attempt to reject it. He 

explains that learning cycles are all too often treated as if something needs to be confirmed, and how model-

based approaches can help to actually learn from what is known before attempting to confirm anything. 

In his paper, Sheiner focuses on the learn-and-confirm cycles encountered in clinical drug development. It 

can be argued that this paradigm is equally applicable to the nonclinical phase [97, 98]. Nonclinical 

experiments have the potential to generate a large amount of data that can provide insights into the 

mechanism-of-action of a drug, implications on the disease, and the best dosing strategies. These insights 

could be of importance when the drug’s clinical viability as a medical product needs to be confirmed, 

whether it is in an early clinical trial as a proof of concept or in later confirmatory trials [99]. What is needed 

to propagate these learnings to be of use at later stages is a solid modelling framework. 

As outlined in section 1.4.4, investigational medicinal products that seek successful development are 

required to have all available data integrated in a holistic manner in order to select doses and dosing 

strategies that are helpful, not detrimental, to the patients. This is especially true for those IMPs that bring 

along many uncertainties, as is the case for T-cell redirecting therapies. Pharmacometrics and MBDD may 

be helpful, if not a necessity, to guide these compounds through the drug development process. 

The projects outlined in this thesis revolve around the use of pharmacometrics in the early drug 

development of T-cell redirecting therapies. The first project attempted to describe the pharmacology of a 

CD3-bispecific antibody in a quantitative manner in order to understand better the influence of drug- and 

cell-related parameters on its activity. A mechanistic model was developed that displays the use-case of a 

learn-and-confirm cycle with in vitro data. The model succeeded in predicting an experimental outcome 

based on the target expression level of tumour cells that were targeted with a CD3-bispecific antibody. 

Moreover, the project exposes and discusses the relationship between T-cell activation and immune 

synapse formation in a way that has not been presented before. The second project identifies and tackles 

a recurrent problem with compounds exerting a complex mechanism of action, such as T-cell redirecting 

therapies. The pharmacology of these drugs triggers many processes that take place on different timescales. 

This makes it challenging to compare potencies between readouts. This project focused on the development 

of a novel method of analysing experimental data by integration over time. The generation of time-
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independent insights in the pharmacology of these drugs may help to more confidently rank compounds 

and select safe starting doses in an unbiased manner. The third project reviews factors that may contribute 

to the development of cytokine release syndrome in cancer patients treated with T-cell redirecting 

therapies and distinguishes between drug-target-related factors and individual patient risk factors. The root 

causes of CRS formation in some patients are still enigmatic, but understanding them is very important to 

ensure patient safety and successful clinical development of the compounds. As an outlook, it is proposed 

to conduct an exhaustive analysis based on real-world data combined with mechanistic modelling in order 

to predict individual patient risks and pave the way for precision dosing. These projects have the common 

goal of providing robust tools and insights that are of use to the model-based drug development of T-cell 

redirecting therapies. 

 

2. Aims of thesis 

The objective of this work was to contribute to active areas of pharmacometrics and early drug development 

of T-cell redirecting therapies, and to identify and address gaps in our knowledge about their pharmacology 

and safety considerations. Each project looked from a different angle at the development of T-cell 

redirecting therapies, with a central focus on quantitative approaches. Each project has been published in 

a peer-reviewed scientific journal. 

 

2.1 Project I 

It is a widely accepted assumption that the pharmacology of CD3-bispecifics requires the formation of 

trimeric complexes (the so-called immune synapses) to trigger a response. The formation of these trimeric 

complexes depends on many different variables, such as binding affinity and antigen expression levels, from 

which the exact relationships have not been fully elucidated yet. The aim of this project was to better 

characterize the influence of target expression on the pharmacology of cibisatamab, a CD3-bispecifc 

antibody that targets carcinoembryonic antigen (CEA). To this end, the project combined an extensive in 

vitro study with a tailored systems pharmacology model in order to capture the in vitro pharmacology of 

cibisatamab on different tumour cell lines in a quantitative manner. The model was to be used to investigate 

the predictive potential of target expression levels on the pharmacology of CD3-bispecifcs and to establish 

a better understanding of the link between immune synapse formation, T-cell activation, and tumour cell 

killing.  
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2.2 Project II 

In vitro experiments play an important role in the early development of CD3-bispecific antibodies. Due to 

the involvement of the immune system, the mechanism-of-action of CD3-bispecifics is complex and involves 

many different processes that occur on different timescales (e.g., target engagement, cytokine release, T-

cell activation and proliferation, and tumour cell killing). Despite this complexity, in vitro investigations of 

novel CD3-bispecific antibodies usually limit the recording of data to a single or -at most- two time points. 

This risks that important insights into the mechanism-of-action are missed and that comparisons between 

readouts or compounds become irrelevant or biased. The deliverable of this project is to develop tailored 

and less labour intensive in vitro experiments with more frequent time recording and develop a 

methodology to assess the data in a time-independent manner.  

 

2.3 Project III 

The promising therapeutic potential of T-cell redirecting therapies comes with a caveat: the risk for severe 

adverse events. One of the most prominent adverse events exhibited in this class of therapies is cytokine 

release syndrome (CRS). CRS is a life-threatening adverse event and originates from an uncontrolled release 

of cytokines by the immune system and the inability of the human body to respond in kind. The objective 

of this project was to review thoroughly the factors triggering CRS formation. The novelty of this project is 

to look at both nonclinical and clinical evidence simultaneously, and to consider the role that M&S and 

mechanistic models may play in the prediction of cytokine release. Briefly, the project attempts to answer 

the question why some patients develop CRS whereas others do not and why mechanistic models fed with 

our current biological knowledge may be insufficient to predict CRS risk in each patient. The project 

emphasizes that there is a distinction between cytokine release and CRS and that it is important to 

understand why some patients respond differently to cytokine release. In the end, the projected goal is to 

formulate a solution to the prediction problem through a stratagem of combining mechanistic modelling 

with a risk-scoring algorithm and to provide insights that are useful to nonclinical investigators and clinicians 

alike.  
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3. Methods 

This section summarises the methodologies that were central to the presented work. The experimental 

framework used throughout the assays and the theoretical background and rationale of the 

pharmacometrics approaches are presented here. The peer-reviewed articles for each project within this 

work summarise the materials and methods in detail and are found in Section 4. 

3.1 In vitro experimentation 

3.1.1 Assay set-up 

Two-dimensional in vitro co-cultures are common practice in nonclinical testing of candidate compounds 

against cancer [100]. In these assays, various cell types of interest are cultured together in small-volume 

wells (e.g., 96-well plates with a well volume of 250µL) and incubated with the test agent. For T-cell 

redirecting therapies, both tumour cells and T cells need to react with each other and are thus co-cultured 

(Figure 5) [101]. The most important measurements from there T-cell dependent cellular cytotoxicity 

(TDCC) assays are tumour cell killing, T-cell activation, and cytokine release. 

In practice, the start time of an assay corresponds to the time point at which the candidate compound (test 

agent) is added to the co-culture. Recording of this time is important in order to ensure reliable stopping 

times when measurements are made. The assay should be repeated at various drug concentrations 

(including a control group) that span the anticipated sigmoidal dose-response curve (see section 1.4.4). The 

same setup can be repeated under various experimental conditions (e.g., target expression differences, 

different drug candidates and affinity variants, etc.).  

Recording data at multiple time points enables capturing of the time course of various readouts (see section 

2.2). It is advisable to duplicate the number of assay plates depending on the number of time points that 

need to be measured. Like this, each time a ‘fresh’ well will be probed. This will prevent any experimental 

artefacts due to dilution or condensation of the well contents due to previous measurements.  

3.1.2 Cytometry: FACS versus incuCyte 

Measuring tumour cell viability is key to assessing an anti-cancer drug’s cytotoxic potential and is a core 

metric in the large majority of in vitro pharmacology studies of these pharmaceuticals. Various methods 

exist, either a biochemical assay (measuring a soluble marker of tumour cell viability, or killing, such as 

lactate dehydrogenase (LDH) [102] or Chromium-51 [103] release assays) or a cytometric assay (directly 

measuring or counting the tumour cells). Biochemical assays are easier to perform. The drawback of these 

assays is that they provide an indirect measurement; i.e., the number of dead or alive tumour cells needs 

to be calculated form the biochemical readout.  
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Cytometric approaches rely on (semi)direct measurements of the tumour cells, hence providing a more 

interpretable number of killed tumour cells. The staple of these approaches is Fluorescence-Activated Cell 

Sorting (FACS) cytometry. FACS allows the multi-parametric analysis of multiple cell types simultaneously 

and proved to be an indispensable tool in many scientific disciplines, including cancer and immunological 

research [104]. The principles and methodologies are discussed in [105]. In the case of TDCC assays, at the 

predetermined time points (see section 3.1.1 above), the wells will be prepared and its cell contents 

measured with the FACS cytometer. Investigators will often look at the presence of T-cells (CD3 marker), 

markers of T-cell activation (e.g., CD69, CD25), T-cell exhaustion (e.g., PD-1, TIM-3), intracellular cytokines 

Figure 5. The set-up of 2D co-culture experiments is often performed in 96-well plates, which allow for 

relatively high throughput. A.  A 96-well plate consists of 8 rows and 12 columns. The exact setup will 

depend on the specific project requirements. In this work, drug concentrations were titrated from row A 

(highest concentration) down to row H (control group). Each experimental condition was replicated three 

times (e.g., columns A-C). This allows four experimental conditions to be tested on a single plate. B. The 

bottom of an individual well can either be flat or round (U-shaped). The choice of well shape depends on 

the specific experiment. C. Contents of a single well under co-culture conditions for testing of T-cell 

redirecting therapies. The cancer cell line of choice can either be adherent to the well surface (left hand 

side) or soluble in the medium (right hand side). The cancer cells are co-cultured with human immune 

cells, which at a minimum contain T-cells and are often including myeloid cells such as monocytes, 

neutrophils, etc. 
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(e.g., stores of IL6), and number of viable tumour cells (e.g., through counting the number of cells with the 

corresponding morphology, or using a live-dead dye) [106]. 

While FACS technology improved over the years since its inception, more recently researchers have 

developed alternative approaches. An approach that is gaining widespread adoption is real-time cell 

monitoring. Various technologies exist, such as impedance-based [107] or image-based [108] real-time cell 

monitoring. Throughout this work, the image-based technology incuCyte was used and will be discussed 

further. 

An image-based tool such as incuCyte consists of a cell incubator with an integrated fluorescence 

microscope. This technology has a few prerequisites about the TDCC assay preparation. In order for the 

microscope to pick up fluorescence, the cells or cell markers need to be fluorescent. This is achieved through 

cells that have been stably transfected (e.g., nuclear labelling), transiently transfected (dye taken up by cell, 

but will dissipate over time) or with fluorescent antibodies binding specific cell markers [109, 110]. 

The proposition of real-time monitoring is not entirely correct since the microscope takes images at a 

certain time interval (e.g., every two or three hours). Nevertheless, incuCyte takes measurements with a 

temporal resolution that is manifold higher than those found in classical FACS protocols are. Moreover, 

since measurements happen automatically, incuCyte-based approaches are less work-intensive since no 

separate time points need to be sampled and measured by the investigator.  

3.1.3 Cytokine release assays 

Cytokine release forms an integral part of the nonclinical study package of many T-cell redirecting therapies. 

There are various methods to measure and quantify the concentration of released cytokines within an assay. 

The method used throughout this work is the Cytometric Bead Array (CBA) and is based on the FACS 

principle (see section 3.1.2 above). The basic principles of the CBA are discussed in [111]. Briefly, at the 

predetermined time point, the assay plate is centrifuged and a small volume of the supernatant is aspirated. 

This aspirate contains the soluble contents of the assay, including released cytokines. Small microbeads are 

added to the aspirate. These microbeads are covered in antibodies that are specific for a cytokine (e.g., IL6). 

The CBA technology allows multiplexing, meaning that multiple cytokines can be detected within a single 

run simply by adding the corresponding microbeads to the aspirate. After a period of equilibration, 

fluorophore-labelled antibodies are added that are specific to the cytokines of interest.  

A flow cytometer can measure and quantify the signal emitted by the fluorophores that are indirectly bound 

to the cytokines. Since every cytokine is bound to another kind of fluorophore that is distinct from the others 
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in their excitation and emission spectra, the cytometer can measure them simultaneously [112]. By the use 

of a standard curve with cytokines of known concentration, the CBA assay enables the calculation of exact 

concentrations through interpolation. This is extremely helpful for interpretation of the results, comparison 

across assays, and for use in modelling efforts. 

3.2 Mechanism-based model development 

The following section highlights the key components of the mechanistic model developed in Project 1 [113]. 

The model structure, equations and assumptions are presented here. These model components originate 

from seminal papers that were unrelated to the modelling of the pharmacology of CD3-bispecifics, but they 

have proven to be of great use in other models, including a few on CD3-bispecifics [68, 79, 114, 115]. The 

model consists of three main components of which the first one is the formation of trimeric complexes 

between the drug, CD3 and the tumour antigen [116]. This is modelled assuming independent interactions 

between these factors and based on their initial concentrations. Next, trimeric complex formation is 

assumed to trigger the activation of cytotoxic T-cells, the kinetics of which were experimentally determined 

and modelled using a transit compartment model. Lastly, activated T-cells induce lysis of the tumour cells. 

The growth and T-cell mediated killing of tumour cells was captured experimentally and modelled using a 

logistic growth term and a sigmoidal kill term. Each model component is described in detail below.  

3.2.1 Trimeric complex formation 

The formation of trimeric complexes relies on the binding between CD3, tumour antigen, and the CD3-

bispecific antibody. These binding events can be modelled in a sequential manner with a system of ordinary 

differential equations (ODEs), see Equations 1-4. Binding events between multiple binding partners have 

been modelled before, for instance to model the interaction between GTP-binding proteins [117]. A system 

of four coupled ODEs is the most commonly used method to model trimeric complex formation [66, 68, 74, 

114, 115, 118]. The model assumes independent binding events between the different binding partners. 

This signifies that the CD3-bispecific can either bind CD3 or tumour antigen first, without interference of 

the other binding partner. The dimer that follows from this interaction is then capable of binding the 

remaining binding partner. There is no direct interaction between CD3 and the tumour antigen. 

As a generic example, the sequential binding between three entities can be considered with the following 

state variables: A, B, and C are respectively the drug of interest, free antigen B, and free antigen C. AB and 

AC are the dimers between drug A and antigen B or C, respectively. ABC is the trimeric complex (Figure 6). 
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𝑑𝐴
𝑑𝑡

=  −𝑘𝑜𝑛𝐵 ∗ 𝐵 ∗ 𝐴 − 𝑘𝑜𝑛𝐶 ∗ 𝐶 ∗ 𝐴 + 𝑘𝑜𝑓𝑓𝐵 ∗ 𝐴𝐵 +  𝑘𝑜𝑓𝑓𝐶 ∗ 𝐴𝐶           (Eq. 1) 

𝑑𝐴𝐵
𝑑𝑡

= 𝑘𝑜𝑛𝐵 ∗ 𝐵 ∗ 𝐴 − 𝑘𝑜𝑓𝑓𝐵 ∗ 𝐴𝐵 + 𝑘𝑜𝑓𝑓𝐶 ∗ 𝐴𝐵𝐶 − 𝑘𝑜𝑛𝐶 ∗ 𝐶 ∗ 𝐴𝐵      (Eq. 2) 

𝑑𝐴𝐶
𝑑𝑡

=  𝑘𝑜𝑛𝐶 ∗ 𝐶 ∗ 𝐴 − 𝑘𝑜𝑓𝑓𝐶 ∗ 𝐴𝐶 + 𝑘𝑜𝑓𝑓𝐵 ∗ 𝐴𝐵𝐶 − 𝑘𝑜𝑛𝐵 ∗ 𝐵 ∗ 𝐴𝐶       (Eq. 3) 

𝑑𝐴𝐵𝐶
𝑑𝑡

= 𝑘𝑜𝑛𝐵 ∗ 𝐴𝐶 ∗ 𝐵 + 𝑘𝑜𝑛𝐶 ∗ 𝐴𝐵 ∗ 𝐶 − (𝑘𝑜𝑓𝑓𝐵 + 𝑘𝑜𝑓𝑓𝐶) ∗ 𝐴𝐵𝐶                 (Eq. 4) 

With the following initial conditions. 

𝐴(𝑡=0) = 𝐷𝑟𝑢𝑔 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑛𝑎𝑛𝑜𝑚𝑜𝑙𝑒
𝑙𝑖𝑡𝑒𝑟

]  

𝐵(𝑡=0) & 𝐶(𝑡=0) = 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦∗𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
10−9∗𝑁𝑎

 [𝑛𝑎𝑛𝑜𝑚𝑜𝑙𝑒
𝑙𝑖𝑡𝑒𝑟

]  

AB(𝑡=0) = AC(𝑡=0) =  ABC(𝑡=0) =  0 [𝑛𝑎𝑛𝑜𝑚𝑜𝑙𝑒
𝑙𝑖𝑡𝑒𝑟

]  

Na is the Avogadro constant. The concentration of free antigen is captured in the following arithmetic 

function: 

𝐵 = 𝐵(𝑡=0) − 𝐴𝐵 − 𝐴𝐵𝐶         (Eq. 5) 

𝐶 = 𝐶(𝑡=0) − 𝐴𝐶 − 𝐴𝐵𝐶         (Eq. 6) 

 

 

Figure 6. Schematic representation of the immune synapse model as described in equations 1-4. Trimeric 
complexes are formed between three separate entities (A, B, C) of which A is considered the CD3-
bispecific antibody, and B and C are the tumour and CD3 antigens. Sequential binding events will lead to 
the formation of dimers between A and either B (AB) or C (AC). The dimers can bind with the remaining 
antigen through the free binding arm on A. The reactions are governed by second-order association rates 
and first-order dissociation rates. 
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3.2.2 Signal transduction 

The formation of trimeric complexes will trigger the activation of T-cells, but T-cell activation only occurs at 

later time points. In order to capture the delay between trimeric complex formation and T-cell activation, a 

signal transduction model was implemented [119]. 

Lobo and Balthasar presented the original signal transduction model to capture the delayed 

pharmacodynamic effect of a chemotherapeutic agent on a culture of tumour cells [119]. Existing cell phase-

specific and nonspecific models could not capture this delay. Whereas its original use was to capture 

delayed cytotoxic effects, the model is also suitable to describe delayed T-cell activation (Figure 7). 

The signal transduction is triggered by a stimulation cue (Equation 7), which will depend on a certain 

biological function. In the case of Project 1, this biological function is a sigmoidal model in function of the 

number of trimeric complexes per cell [113]. The Potency term defines the number of trimeric complexes 

per cell that induces half-maximal T-cell activation. Emax is the maximal extent of T-cell activation. Delta (δ) 

is a new term introduced in Project 1 that accounts for differences in target expression density between the 

cell line that is being tested and the reference cell line, which was used to estimate the model parameters. 

This parameter was included under the assumption that the potency of the drug does not change between 

cell systems, but the extent of T-cell activation can change under the influence of varying target expression 

densities. There are three transit compartments (delay1, delay2, delay3) through which the signal needs to 

be transduced before it can exert an effect on T-cell activation (Equations 8-10). The transit rate is governed 

by 3/τ with τ (tau) the transit time. In the original paper from Lobo and Balthasar, the transit rate was taken 

as 1/τ, whereas Project 1 resorted to the use of 3/τ as was done previously [114, 120-122]. However, this 

choice was arbitrary and this does not change the model structure nor performance.  

𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝐸𝑚𝑎𝑥∗𝛿∗𝑇𝑟𝑖𝑚𝑒𝑟𝑖𝑐 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑝𝑒𝑟 𝑐𝑒𝑙𝑙

𝑃𝑜𝑡𝑒𝑛𝑐𝑦+ 𝑇𝑟𝑖𝑚𝑒𝑟𝑖𝑐 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑝𝑒𝑟 𝑐𝑒𝑙𝑙
        (Eq. 7) 

𝑑𝑑𝑒𝑙𝑎𝑦1
𝑑𝑡

= 3
𝜏

(𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑑𝑒𝑙𝑎𝑦1)                  (Eq. 8) 

𝑑𝑑𝑒𝑙𝑎𝑦2
𝑑𝑡

= 3
𝜏

(𝑑𝑒𝑙𝑎𝑦1 − 𝑑𝑒𝑙𝑎𝑦2)                    (Eq. 9) 

𝑑𝑑𝑒𝑙𝑎𝑦3
𝑑𝑡

= 3
𝜏

(𝑑𝑒𝑙𝑎𝑦2 − 𝑑𝑒𝑙𝑎𝑦3)                   (Eq. 10) 

delay1(𝑡=0) = delay2(𝑡=0) =  delay3 (𝑡=0) =  0 

delay3 triggers the activation of T-cells by increasing in input rate (Equation 11). For maintaining mass-

balance, there is an outflow of activated T-cells, governed by the rate kout 
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𝑑𝑇𝑐𝑒𝑙𝑙𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝑑𝑡

= 𝑘𝑖𝑛 ∗ (1 + 𝑑𝑒𝑙𝑎𝑦3) ∗ 𝐹𝑏 − 𝑘𝑜𝑢𝑡 ∗ 𝑇𝑐𝑒𝑙𝑙𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑            (Eq. 11) 

𝑇𝑐𝑒𝑙𝑙𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑(𝑡=0) = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒   

The baseline concentration of activated T-cells under steady-state conditions adheres to the following 

relationship: 

 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑘𝑖𝑛
𝑘𝑜𝑢𝑡

         (Eq. 12) 

The net inflow of activated T-cells is not assumed to continue indefinitely and, over time, activated T-cells 

may lose their activation markers, get exhausted or die off. The exact mechanism for this purpose is of low 

importance, but it is crucial to include a model component that captures this type of behaviour 

Friberg and colleagues developed a model on myelosuppression after chemotherapy, which involves a 

similar delayed signal transduction as the one presented by Lobo and Balthasar. In their model, 

chemotherapeutic regimens will affect the proliferation of certain sensitive subsets of hematopoietic cells 

[123]. This will then propagate through multiple maturation steps before its impact can be seen in the pool 

of circulating (mature) blood cells. In addition, this model includes a novel feedback loop that ensures 

homeostasis in the pool of hematopoietic cells and circulating blood cells (Equations 13-17).  

This feedback loop was included in Project 1 (term Fb in equation 11) to capture the reduced rate of T-cell 

activation when the pool of activated T-cells is already large. Fb is the ratio of baseline activated T-cells over 

activated T-cells that went through the transduction process. The transit compartments are now called k1, 

k2, and k3 to make the distinction from equations 8-10. 

𝑑𝑘1
𝑑𝑡

= 𝑘𝑜𝑢𝑡 ∗ (𝑇𝑐𝑒𝑙𝑙𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) − 𝑘𝑜𝑢𝑡 ∗ 𝑘1        (Eq. 13) 

𝑑𝑘2
𝑑𝑡

= 𝑘𝑜𝑢𝑡 ∗ 𝑘1 − 𝑘𝑜𝑢𝑡 ∗ 𝑘2                               (Eq. 14) 

𝑑𝑘3
𝑑𝑡

= 𝑘𝑜𝑢𝑡 ∗ 𝑘2 − 𝑘𝑜𝑢𝑡 ∗ 𝑘3                                 (Eq. 15) 

𝑘1(𝑡=0) = 𝑘2(𝑡=0) = 𝑘3(𝑡=0)  =  0             

 
𝑑𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝑑𝑡
= 𝑘𝑜𝑢𝑡 ∗ 𝑘3 − 𝑘𝑜𝑢𝑡 ∗ (𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)    (Eq. 16) 

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑡=0) = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒          

𝐹𝑏 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒        
𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

          (Eq. 17) 
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3.2.3 Tumour cell kinetics 

Tumour cells are an active entity and will expand over time and various tumour growth models exist to 

capture their behaviour (Figure 8). The growth rate of a specific population of tumour cells can be estimated 

based on their growth curves. Under physiological conditions, tumour cells cannot grow indefinitely; their 

growth is restrained due to a lack of space and a limited supply of resources, as is the case for in vitro cell 

culture assays. At higher tumour cell concentrations, the rate of growth will reduce and the growth curve 

will flatten out at the maximal concentration of tumour cells that the system can support (also called the 

carrying capacity). Therefore, it was chosen to use a logistic growth model with kg the exponential growth 

rate and K the carrying capacity (Equation 18, first term). 

 

 

 

 

Figure 7. Schematic representation of the mechanisms involved in T-cell activation as described in 
equations 5-13. The formation of trimeric complexes (Eqs.1-4) leads to a specific number of immune 
synapses per tumour cell, which will govern T-cell activation through a signal transduction cascade 
(Eqs.7-10). The signal transduction leads to a slower build-up of T-cell activation by providing a delayed 
boost in the inflow of activated T-cells (Eq.11). Accumulation of activated T-cells will dampen over time 
the activation of other T-cells. This dampening over time is captured with another signal transduction 
cascade with feedback loop (Eqs.13-17). 
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𝑑𝑇𝑢𝑚𝑜𝑢𝑟

𝑑𝑡
= 𝑔𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑒 ∗ 𝑇𝑢𝑚𝑜𝑢𝑟 ቀ1 − 𝑇𝑢𝑚𝑜𝑢𝑟

𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
ቁ − 𝑇𝑢𝑚𝑜𝑢𝑟 ∗ kill𝑟𝑎𝑡𝑒     (Eq. 18) 

𝑇𝑢𝑚𝑜𝑟(𝑡=0) = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑢𝑚𝑜𝑢𝑟 𝑐𝑒𝑙𝑙𝑠  

Upon treatment, the concentration of tumour cells will go down due to specific killing of the tumour cells. 

The simplest way to capture this is with a first-order kill rate. The killing will thus depend on the kill rate and 

the remaining concentration of tumour cells (Equation 18, last term). 

In Project 1, the tumour kill rate is a function of the amount of activated cytotoxic T-cells and follows a 

sigmoidal relationship (Equation 19). Since there is an assumed baseline activity of T-cells, tumour killing is 

only elicited (i.e., killrate > 0) when the concentration of activated T-cells exceeds baseline levels. 

Furthermore, the steepness of the kill curve is under the influence of a hill-factor (h). 

𝑘𝑖𝑙𝑙𝑟𝑎𝑡𝑒 =  𝑀𝑎𝑥_𝑘𝑖𝑙𝑙𝑟𝑎𝑡𝑒∗(𝑇𝑐𝑒𝑙𝑙𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)ℎ

𝑃𝑜𝑡𝑒𝑛𝑐𝑦ℎ+ (𝑇𝑐𝑒𝑙𝑙𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)ℎ         (Eq. 19) 

 

 

3.2.4 Modelling strategy 

The structural model was developed using a Non-Linear Mixed Effects (NLME) approach in order to capture 

both structural parameter estimates and variability between experiments. NLME modelling is an advanced 

type of population modelling and was described by Sheiner in the 1970s [124, 125]. NMLE models are mainly 

employed to capture inter-individual (i.e., between-subject) variability in clinical trials as is extremely useful 

to quantify sources of variability. NLME models are equally useful in cases of nonclinical experimental data, 

where variability between assays and replicates can be quantified. 

NLME models break down into two main components: fixed and random effects. This lends NLME its name 

of being a model of mixed effects. The fixed effects describe the parameters that describe the whole study 

Figure 8. Schematic representation 
of tumour growth kinetics and the 
effect of T-cell activation on specific 
tumour cell killing, as described in 
equations 18-19. Tumour cells grow 
with a specific growth rate until a 
maximal density that supports cell 
sustenance, the carrying capacity. 
Considerable killing of tumour cells is 
achieved through large numbers of 
activated T-cells. The killing kinetics 
follow a sigmoidal function (Eq.19). 
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population: the population parameters (designated THETA, θ). THETA describes the typical parameter value 

in the population and is related to the structural model. It is more than likely that the fixed effects alone 

cannot well describe the data from each individual since each individual will be different to some extent. 

Modellers will try to explain this variability between individuals through covariates such as body weight or 

age in patients, or cell culture conditions in in vitro systems. However, even after accounting for covariate 

effects, it is still probable that there is variability that remains unexplained and cannot be captured with the 

fixed effects model. Even though it remains unexplained, the NMLE method allows to quantify this variability 

through random effects [124]. Random effects are parameters related to the statistical model and represent 

the distribution of all individual parameters. 

NLME models follow the principle of nested hierarchy in the random effects. This means that there are 

multiple sources of random (i.e., unexplained) variability that can be identified. At a minimum, the random 

variability consists of inter-individual variability (IIV) and residual variability (RV) [124]. Another frequently 

used random effect is inter-occasion variability (IOV) that deals with variability within an individual that was 

studied at separate occasions [126]. IOV played no part in this work and will not be considered further. 

IIV quantifies the extent to which the individual parameters differ from the population parameters and is 

referred to as ETA (η). ETA is in many cases assumed to follow a normal distribution centred on zero with 

standard deviation OMEGA (ω) (Equation 20). OMEGA is therefore useful to summarise the IIV for a 

parameter. 

       𝜂𝑖 ~ 𝑁(0, 𝜔2)    (Eq. 20)  

   

With i standing for the i-th individual in the population. Individuals each have their own specific value of 

ETA for a model parameter, with each ETA sampled from the same distribution.  

The actual individual parameter value can be described in terms of the population parameter THETA and 

the individual ETA. The most common method to describe the individual parameter in these terms is with 

an exponential distribution (Equation 21). Since many PK/PD parameters are right-skewed, they are log-

normally distributed. When log-transforming the parameters, the IIV becomes additive to the population 

parameters (Equation 22), i.e., there is a constant variance around the log-transformed population 

parameter.  

𝜃𝑖 =  𝜃𝑝𝑜𝑝 ∗ 𝑒𝜂𝑖      (Eq. 21) 

ln(𝜃𝑖) =  ln (𝜃𝑝𝑜𝑝) +  𝜂𝑖    (Eq. 22) 
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With θi the individual parameter and θpop the population parameter. 

Similar to IIV models, the structure of RV models can take different shapes and the modeller needs to 

choose the error model that best describes the noise around the data (such as additive, proportional, or 

exponential error models).    

The purpose of fitting a model to a set of data is to find model parameter values that best describe the data. 

That is, we want to maximize the likelihood of finding back our data given the model parameters (Equation 

23). 

arg max (𝐿(𝑦|𝜃))    (Eq. 23) 

The maximum likelihood estimation (MLE) will determine the vector of parameters θ so that the likelihood 

of the observed data becomes maximal, i.e., its derivative becomes zero (Equation 24). 

 𝐿′(𝑦|𝜃) =  𝑑 𝐿(𝑦|𝜃)
𝑑𝜃

= 0    (Eq. 24) 

It is unlikely that an analytical solution to the MLE problem is available for nonlinear systems such as NLME. 

The solution will need to be approximated numerically. In case of NMLE models, the MLE needs to consider 

both fixed (θ) and random (η, ε) effects.  

The obtained likelihood feeds into an equation to calculate an objective function value (OFV), which is used 

to assess model performance. The OFV is often taken as minus two times the logarithm of the likelihood (-

2*LogL) [127]. When the likelihood increases, the OFV decreases. The key drawback of the classical OFV 

method in model comparison is the difficulty handling complex models with many parameters. Increasingly 

complex models may fit the data better, but potentially at the cost of less generalizability. Alternative OFV 

have been developed to deal with increasing model complexity, such as the Akaike Information Criterion 

(AIC), which has been used in this work [128] (Equation 25). 

𝐴𝐼𝐶 =  −2 ∗ 𝐿𝑜𝑔(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2 ∗ 𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (Eq. 25) 

A penalty factor is added to the objective function so that highly parametrized models do not necessarily 

improve the OFV. A model structure that reduces the AIC with more than 2 points is considered superior to 

the previous model structure [127]. It is however important to realise that such objective functions serve 

as a tool in model assessment and that decision making should not be based solely on their value [128]. 
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3.2.5 Monte Carlo simulations 

The Monte Carlo (MC) simulation is a mathematical method to capture variability or uncertainty in 

simulations. The method relies on random sampling from a probability distribution and is of great use in 

many engineering disciplines and other branches that rely on uncertainty in data. By leveraging from a 

probability distribution, the Monte Carlo method can provide a degree of randomness to an otherwise 

deterministic simulation. This is important to capture potential scenarios that deviate from the ‘expected’ 

outcome, especially when going to the extremes. 

In context on NLME models, the results will consist of fixed (i.e., deterministic) and random effects. As 

described in section 3.2.4, the estimated population parameters (θi) capture the whole population whereas 

the random effects (ηi; as implied by the name) provide sufficient randomness around the population 

parameter in order to capture the unexplained variability exerted by the study population. The random 

sampling from the probability distribution of the random effects (η ~ Ν(0, ω2)) can serve as a basis to run 

an MC simulation and capture the level of uncertainty we expect to see in a simulation. 

To achieve this, the MC method samples the random effect from the i-th population parameter (θi), ηi,j, 

from its normal distribution with mean zero and standard deviation ω.  

𝜂𝑖,𝑠 = 𝑁(0, 𝜔2)  s ∈ [1, T]  (Eq. 26) 

𝜃𝑖,𝑠 =  𝜃𝑖 ∗ exp (𝜂𝑖,𝑗)    (Eq. 27) 

With T being the total number samples taken by the MC method. After sampling the random effects 

(Equation 26) and calculating the individual parameters (Equation 27), the MC method simulates the model 

with a total of T sets of individual parameters. 

These simulations can be visualized and provide an idea about the uncertainty of the parameters. Overlaying 

a dataset with the model prediction and the 5th and 95th percentiles of the MC simulation can serve as a 

good basis for model validation. 

3.3 Time-independent analysis 

3.3.1 NCA: AUCE calculation 

As implied by its name, the area-under-the-curve (AUC) is the calculated surface area underneath the curve 

of interest. Non-compartmental analysis (NCA) often relies on AUC as a powerful descriptor of the 

pharmacokinetics of a drug [129].  
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In addition, AUC does have a place in pharmacodynamics to capture important properties of a drug. For 

instance, investigators used AUC values to compare various antimalarial drugs and to determine which drug 

achieved the best protection against anaemic events in infected children [130]. The AUCs of 

pharmacodynamic –effect– curves (also called AUCEs) allow the interpretation of a readout without the 

need to consider any time-dependencies.  

Calculation of the AUC(E) requires integration of the curve of interest over time (Equation 28). The 

trapezoidal rule is a numerical integration method that provides a good approximation of this integral and 

is usually applied in PK/PD analyses (Equation 29) [131].  

𝐴𝑈𝐶 =  ∫ 𝑓(𝑥)𝑑𝑥𝑡𝑙𝑎𝑠𝑡
𝑡𝑓𝑖𝑟𝑠𝑡

    (Eq. 28) 

𝐴𝑈𝐶 =  ∑ 𝑓(𝑡𝑖−1)+𝑓(𝑡𝑖)
2

∗ (𝑡𝑖 −  𝑡𝑖−1)𝑁
𝑡𝑖   (Eq. 29) 

Equation 29 describes the linear trapezoidal rule. Others such as the logarithmic trapezoidal rule exist and 

are of importance in non-compartmental analyses [131]. These fall outside the scope of this work. 

3.3.2 Estimation of time-independent potency 

Calculation of AUCE values provides a single value for each tested drug concentration. This is a time-

independent metric of drug effect at a specific drug concentration. In order to generate meaningful AUCE 

values, sufficient time points should be captured in the experiments. At least three time points are required 

to perform an adequate assessment of the time course of a drug. 

Investigators can use AUCE values in identical fashion as dose-response data generated from single-time 

point analyses. This means that pharmacodynamic models such as a sigmoidal relationship can be fit to 

dose-AUCE curves (Equation 30). 

𝐴𝑈𝐶𝐸 =  𝐴𝑈𝐶𝐸0 + 𝐸𝑚𝑎𝑥∗𝐷𝑟𝑢𝑔
𝐸𝐶50+𝐷𝑟𝑢𝑔

   (Eq. 30) 

With AUCE0 the AUCE at baseline, Emax the maximal effect, Drug the drug concentration, and EC50 the drug 

concentration at which half-maximal effect is achieved. The drug’s potency, EC50, is now a time-independent 

metric. 

3.3.3 Threshold concentrations 

Not every biological process or dose-response relationship follows a sigmoidal model. This deviation may 

have a biological origin (e.g., zero-order reactions, bell-shaped dose-response curves). More probable, 

however, is a suboptimal experimental design that fails to capture the full range of dose responses from no 
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effect up to maximal effect. In such instances, it may be challenging to fit a model from the sigmoid class of 

functions to the data and, in turn, reliably estimate drug potencies.  

For example, if the dose-range does not capture the maximal drug effect (Emax), both Emax and EC50 may 

become unidentifiable. In these cases, alternative models such as a threshold model may provide metrics 

that summarize pharmacological activity. A threshold model enables the estimation of the threshold drug 

concentration that triggers the initiation of pharmacological activity [132]. This can be a surrogate metric 

when no sigmoidal relationship can be determined. Equation 31 is fit to the AUCE data in order to estimate 

the threshold concentration.  

𝐴𝑈𝐶𝐸 = 𝐴𝑈𝐶𝐸0 + 𝑆 ∗ (𝐷𝑟𝑢𝑔 −  𝐷𝑟𝑢𝑔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ∗ 𝑃+  (Eq. 31) 

Where Drugthreshold is the threshold drug concentration to elicit a pharmacological effect, S is the slope of 

increasing pharmacological activity with increasing drug concentrations over the threshold concentration, 

and P+ is a derived variable. A derived variable will change value based on certain conditions from within the 

equation: 

{
𝑃+ = 0 𝑖𝑓 𝐷𝑟𝑢𝑔 < 𝐷𝑟𝑢𝑔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑃+ = 1 𝑖𝑓 𝐷𝑟𝑢𝑔 ≥  𝐷𝑟𝑢𝑔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 

This is important to prevent a negative pharmacological effect when the drug concentration is still inferior 

to the threshold concentration. 
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4. Results 

4.1 Project I: Predicting tumour killing and T-cell activation by T-Cell Bispecific antibodies as a 

function of target expression: combining in vitro experiments with systems modelling. 

Van De Vyver AJ, Weinzierl T, Eigenmann MJ, Frances N, Herter S, Buser RB, et al. Predicting tumor killing 

and T-cell activation by T-Cell Bispecific antibodies as a function of target expression: combining in vitro 

experiments with systems modeling. Molecular Cancer Therapeutics. 2020:molcanther.0269.2020. doi: 

10.1158/1535-7163.MCT-20-0269. 

 

4.2 Project II: A novel approach for quantifying the pharmacological activity of T-cell engagers 

utilizing in vitro time-course experiments and streamlined data analysis 

Van De Vyver A, Eigenmann M, Ovacik M, Pohl C, Herter S, Weinzierl T, et al. A Novel Approach for 

Quantifying the Pharmacological Activity of T-Cell Engagers Utilizing In Vitro Time Course Experiments and 

Streamlined Data Analysis. The AAPS journal. 2021;24(1):7. doi: 10.1208/s12248-021-00637-2. 

 

4.3 Project III: Cytokine release syndrome by T-cell-redirecting therapies: can we predict and 

modulate patient risk? 

Van De Vyver AJ, Marrer-Berger E, Wang K, Lehr T, Walz A-C. Cytokine release syndrome by T-cell-redirecting 

therapies: can we predict and modulate patient risk? Clinical Cancer Research. 2021:clincanres.0470.2021. 

doi: 10.1158/1078-0432.ccr-21-0470. 

 

5. Discussion 

Drug development is a long and complicated process with an overall low probability of success. In a Nature 

editorial from 2011, the editors reviewed attrition rates of up to 95% of the anti-cancer drugs in preclinical 

development [133]. They pointed out that suboptimal preclinical strategies are an important contributor to 

this attrition at later stages of drug development. Since then, the situation has improved and the 

pharmaceutical industry may have averted a ‘productivity crisis’ [134]. Nevertheless, challenges remain, 

with strict regulatory requirements, complex mechanisms of action, concerns about nonclinical 

translatability, and fragile patient populations. For a nascent class of treatments such as T-cell redirecting 

therapies, a well thought-out development strategy and the leveraging of state-of-the-art methodologies 

are therefore all the more important. 

One aspect that underwent big changes down the line is the role of modelling and simulation in drug 

development. Back in 2004, the FDA proposed the use of Model-Based Drug Development in order to 

improve pharmaceutical productivity [135]. In recent times, modelling and simulation plays a critical role in 

the development of some drugs, either to design or even replace a clinical trial, or to improve their 
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probability of success [136]. The next few paragraphs will summarise the background and key results from 

each project, and paint a wider picture of their applicability.  

Developing a model that can serve as an exploratory tool in the early development of CD3-bispecific 

antibodies formed the rationale for the first project in this work. The link between target expression, target 

binding, immune synapse formation, and effect on tumour killing was not well understood. An extensive in 

vitro data set combined with a tailored mechanistic model allowed us to capture the pharmacological 

activity of cibisatamab. Moreover, the model was predictive for another experiment with a tumour cell line 

that exhibited a much lower target expression level, showing that cibisatamab only induced minimal cell 

killing of cells with low target levels. The model was also predictive for an unrelated experiment that tested 

cibisatamab against more than 100 different cell lines with varying target expression levels. The data 

showed that cibisatamab triggers tumour cell killing when the tumour cells express more than 10’000 target 

molecules on their cell surface. The model correctly predicted this expression threshold. The development 

of this model followed the learn-and-confirm paradigm. The learning phase comprised the fitting of the 

model, its performance was then assessed with the prediction in another cell line (confirming). These 

findings were then used to further optimise the model (learning) until a final model was obtained. This 

model was then used for the prediction of pharmacology in a large and unrelated dataset (confirming), 

leading to satisfactory results. 

An important attribute of models is the possibility to simulate. Through simulations, one can visualise 

alternative scenarios or test hypotheses. The mechanistic model presented in project 1 breaks down in 

three main components: synapse formation, T-cell activation, and tumour cell killing. The inclusion of 

activated T-cells (i.e., CD8+CD25+ T-cells) as a mechanistic component backed-up by data and linked to 

tumour cell killing was a novelty presented in this model.  

For other purposes, we can zoom in on individual model parts to understand better their behaviour. As 

shown in the peer-reviewed article (see section 4.1), the model predicts a bell-shaped relationship when 

plotting synapse number in function of drug concentration. This prediction is not backed-up by data, since 

methods to visualise and quantify synapse formation are still lacking (although this may change in the future 

[137, 138], and a non-CD3 bispecific construct did exhibit bell-shaped binding behaviour [139]). The 

assumption of the bell-shaped relationship is based on stoichiometric considerations of a binding event 

between three entities (i.e., between the bispecific antibody, tumour target, and CD3) and is currently the 

most widely applied assumption in modelling efforts around CD3-bispecifics [66, 68, 79, 114, 140]. Zooming 

in on the next step in the model, plotting T-cell activation in function of the number of synapses per cell 

shows a peculiar characteristic of the model. Namely, two distinct processes drive T-cell activation. Firstly, 
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T-cell activation follows a sigmoidal relationship in function of immune synapses formed per tumour cell. 

Secondly, the target expression density on tumour cells governs the amplitude of T-cell activation. To 

achieve this, the model included an adaptive ‘fudge factor’ in the sigmoidal model. If the cell line of interest 

expresses higher levels of target than the cell line on which the model was built, then there would a larger 

than proportional increase in T-cell activation. Alternatively, a cell line with a lower expression level would 

invoke a less than proportional increase in amplitude of T-cell activation. This fudge factor is not found in 

similar models from literature and was a novelty introduced in this model. 

What is interesting to this, however, is that this behaviour can be visualised by plotting T-cell activation in 

function of synapse formation. Simulations from different cell lines would not overlap and the data would 

agree with the simulations. The last step of this exercise is plotting tumour killing in function of T-cell 

activation, which shows that the model perfectly captures the relationship between activated T-cells and 

tumour cell killing. This three-pronged approach, although it does not add any new data to what was shown 

before during model prediction, nevertheless manages to put the insights behind the mechanism-of-action 

and the model assumptions into a new light. 

In order to translate this model to the human situation, it should be integrated with a PK model to predict 

the local drug concentration at the site of action. Moreover, the local tumour and T-cell concentrations are 

important input parameters. As this model has been developed on in vitro data of a single CD3-bispecific 

antibody, cibisatamab, the first step would be to apply this model to other compounds and investigate its 

performance. In any case, the model considers the most important parts of CD3-bispecific pharmacology 

and forms a good basis for further model development and model translation. In its current form, the model 

is perfectly suited to explore the impact on pharmacology by different expression levels and binding 

affinities. 

Modelling and simulation is playing an increasingly important role in nonclinical research and it forms an 

important tool for assay design, compound selection, and simply for exploratory analysis. Where robust 

preclinical research really begins, however, is with the collection of qualitative and meaningful data. Two-

dimensional in vitro assays are –besides animal testing- probably the most used experimental set-up in 

preclinical drug research. Back in 1906, Ross G. Harrison published the first experiment with a cell culture 

when he studied nerve growth in the field of neuro-embryology [141]. The cell culture assays used today 

benefit from a century’s worth of experience and technological advancements. It would be rather unfair to 

make any technical comparisons between the cell culture experiments performed in this work and those 

from Harrison. However, it is worthwhile to draw some parallels on how the measurements are being made. 

In Harrison’s experiment, he performed serial sampling and documented the daily growth of some nerve 
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and brain structures for multiple days. Additionally, he documented the almost real-time lengthening of a 

nerve fibre over a period of 25 to 50 minutes. It is clear that, although Harrison did not plan to perform any 

sort of modelling on the data (the first PubMed entry on modelling and simulation was published in 1959 

[142]), he captured time course data in detail. Nowadays, cell culture assays are a cornerstone of the 

preclinical research in immune-oncology and are key to gain information about cytotoxicity, T-cell 

behaviour, and cytokine release. What is usually the case, however, is that these assays are read out at one 

or perhaps two time points (e.g., 24h, 48h) and this data is then propagated in the rest of the preclinical 

development of that drug. It seems like current investigators generate data with less temporal resolution 

from cell culture assays than Harrison did with an embryo in a plate in the early 1900s. 

Why this matters is the following. Immuno-oncology drugs –and thus T-cell redirecting therapies- function 

with a complex mechanism-of-action that involves many biological actors, including various T-cell subsets, 

tumour cells, multiple families of cytokines, etc. Many of those function on different timescales. For 

instance, the release of Interleukin-2 (IL2) usually occurs early on in the assay. IL2 binds to CD25 (an IL2-

receptor) on T-cells, is taken up by the T-cell, induces T-cell activation, and prompts an increase in the 

expression of additional CD25 [65]. Due to this cycle, IL2 levels may peak early on whereas CD25 expression 

is induced at a later time point. 

When a single measurement is taken from an in vitro assay, this is effectively a ‘snapshot’ of the biology of 

the system and the pharmacology of the drug. To continue the narrative of the IL2-CD25 cycle, depending 

of the time point of choice, the data will either show a high level of IL2 in the assay (in case of an early time 

point) or a high number of CD25-positive T-cells (in case of a later time point) but not both.  

Besides differences in amplitude, the potency of the drug on a certain readout may also shift from one time 

point to the other as was shown in the peer-reviewed article (see section 4.2). This may have considerable 

implications on the future development of that drug and even on its probability of success. The derived drug 

potencies are used for ranking candidate compounds or for calculation of a FiH dose. Considering that the 

apparent potency of a drug can change if a snapshot analysis is done, time point selection may have a direct 

impact on the dose administered to patients (see section 1.4.4 for more information about dose selection 

strategies). 

The new approach developed in Project 2 proposes the collection of data at multiple time points for each 

readout, hence providing a clearer image about the kinetics of the biological processes. To facilitate 

comparison of potencies and remove the bias when it comes to selecting a time point, project 2 proposes 

the use of a time-independent analysis. This is achieved through integration of the dose-response curves 
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over time, thereby generating an AUCE value for each tested drug concentration. These AUCE values are 

used in the same manner as actual dose-response data to calculate the potency: a time-independent 

potency. 

This time-independent potency, which has not been subjected to any time point selection bias, combined 

with knowledge on the readout’s amplitude changes over time, may provide a good basis for MABEL dose 

selection. Moreover, there is an increased appeal to use the most relevant rather than the most sensitive 

assay to calculate the MABEL dose [143]. The time-independent analysis may be an excellent tool to derive 

the most relevant MABEL since it takes into account kinetic differences over time for each readout in both 

their potency and amplitude. This richness of information may enable investigators to make informed 

decisions on the relevance of certain readouts and influence dose selection. In the peer-reviewed 

manuscript, a retrospective calculation of the MABEL dose based on a time-independent assay for 

cibisatamab resulted in a higher dose than the original. Rather than focusing on the most sensitive assay 

(tumour cell killing), the approach took interleukin-6 (IL6) release (an important safety marker) as the most 

relevant readout. By integrating knowledge on efficacy (tumour killing potency) and the upper-limit of safety 

(based on amplitude and potency of IL6 release), an informed decision on a relevant dose could be made. 

Having a closer look at the guidelines for Nonclinical Evaluation for Anticancer Pharmaceuticals, it appears 

warranted to modify existing nonclinical protocols to less standard procedures in order to study novel 

properties in the class of pharmaceuticals [43]. The time-independent analysis of nonclinical data proposed 

in this work is indeed a diversion from classical testing, but may be warranted and justified given the 

complex and pleiotropic mechanism-of-action of T-cell redirecting therapies. 

Even though clinical trials to study T-cell redirecting therapies have proven to be generally safe, still too 

many patients succumb to the consequences of cytokine release syndrome, an adverse event linked to 

these therapies. For instance, during the clinical development of blinatumomab, 3.5% of the patients spread 

over six clinical trials (phase I up to phase III) perished due to treatment related adverse events, including 

CRS [80]. The root causes of severe CRS remain unknown and it is still unclear why some patients are 

unsusceptible to it while others experience severe outcomes.  

The rationale behind the undertaking of Project 3 was to shed a new light on the biological factors 

influencing CRS formation. Project 3 breaks down cytokine release syndrome into two distinct parts: (1) 

cytokine release on the biological level and (2) its manifestation into a clinical symptom. By making this 

distinction, Project 3 and the accompanied peer-reviewed article (see section 4.3) shed a new light on CRS 

formation and propose a possible solution to the lack of predictive potential of mechanistic models. 
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The release of certain cytokines (such as IL6, TNFα, IFNγ) is influenced by the so-called drug-target-disease 

related factors. These factors -on the most basic level- will affect the amount of target engagement that 

takes place between the tumour cell and the T-cells. The larger the extent of target engagement, the higher 

the pharmacological activity, including the release of cytokines. Project 3 identified the dose, target 

abundancy, target accessibility in the human body, binding affinity, the involved types of T-cells, and the 

amount of T-cells present as the main factors contributing to the extent of cytokine release. Prior knowledge 

about these factors may help to anticipate the ranges of cytokine release in patients. What is more difficult 

to anticipate is how individual patients will react to the cytokine excursion upon treatment with a T-cell 

redirecting therapy. Some patients will experience not as much as a strong fever, whereas others may suffer 

from high-grade CRS even with only low plasma concentrations of the cytokines [89, 90]. This disparity 

between cytokine release and clinical symptoms of CRS makes it difficult to predict in individual patients. 

Putting a number on the anticipated cytokine levels in plasma is of limited use when these levels cannot be 

translated into an individual risk. Information on individual patient risk factors and the effect on CRS 

formation by T-cell redirecting therapies is still lacking. 

The analysis performed in Project 3 concluded that in silico methods might play an important role in 

deciphering the exact link between T-cell redirecting therapies and CRS formation in patients. Mechanistic 

models exist that can capture various drug-target-disease related factors to predict the extent of cytokine 

release [67, 115]. Some models are equally capable of assessing various dosing regimens or even the 

dampening impact of mitigation strategies, such as step-up dosing for CD3-bispecific antibodies [121, 122]. 

These models are however insufficient to predict individual patient risk. Clinical experience shows that 

individual patients react differently to cytokine release and that no two patients are alike [89, 90]. 

Mechanistic models on cytokine release are thus unable to predict the CRS severity in different patients. 

Developing a modelling framework that considers both cytokine release and CRS severity in patients 

requires extensive analysis of real-world data from electronic health records and patient databases that 

record patient characteristics such as comorbidities, the received treatment, and the clinical outcomes. The 

combination of mechanistic modelling with insights gained from real-world data may be an important step 

in the direction of individualised patient safety for T-cell redirecting therapies. 

As proposed by van Iersel on structured risk assessment for First-in-Human studies, the risk in a patient is 

proportional to the vulnerability of that patient and animal species to the IMP, the exposure to the IMP and 

how it is related to toxicity, and the toxicity findings from nonclinical studies [1]. The risk is also inversely 

proportional to the risk mitigation that is in place. For drugs aimed at treating critically ill patients, such as 
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T-cell-redirecting therapies, it can be argued that not only risk, but also rather the risk-benefit for the patient 

is the most important consideration. 

If we draw the line from the equation presented by van Iersel and the findings from Project 3, we can assign 

the different pillars that are involved in the prediction and modulation of cytokine release syndrome to the 

different factors involved in the equation (figure 9). As such, patient-related risk factors may represent 

subject vulnerability, drug-target-disease related factors may dictate the extent of exposure to toxicity, and 

nonclinical findings shed a light on the potential toxicity to be expected during treatment.  

Unfortunately, the risk to which patients are exposed in FiH trials cannot readily be quantified nor does 

previous experience with similar compounds provide a reliable prediction of potential risk [1]. Nevertheless, 

each piece of information may help to create a picture of the risk and it is therefore essential that extensive 

and robust nonclinical testing is performed prior to entry-into-human studies and that experience from 

similar compounds is recorded and considered.  

Figure 9 illustrates the multifactorial nature of patient risk such as CRS and the importance of integrative 

analyses. Knowledge on both drug-target-disease related factors, predicting their impact on cytokine 

release with mechanistic models, and leveraging real-world data to gain insights in individual patient risk 

factors are all part of the equation.  

Lastly, note that risk covers only one part of the equation. As presented in section 1.4 and figure 3, 

uncertainty around the risk also commands attention. Both the aspects ‘What we know’ and ‘What we know 

that we do not know’ should be considered when informed decisions about the IMP are ought to be made.  

This risk and its uncertainty, and how both can be reduced, play a central role in the early drug development 

process. It is recommended to make use of a weight-of-evidence approach, integrating in vitro, ex vivo, and 

in vivo data, and in silico insights as part of the decision-making process.  
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6. Outlook & Limitations 

Thanks to detailed guidelines, rigorous science, and increasing expertise, early clinical studies are generally 

safe despite their high-risk setting and complicated preparation. However, it is clear that there are many 

knowledge gaps that need to be filled by the regulators, sponsors, and investigators. Increasingly complex 

and multimodal therapies only add up to the challenge of going through a safe –and successful- early drug 

development process. 

Each project presented in this thesis aimed to provide support to the early drug development process of T-

cell redirecting therapies. Project 1 focused on the development of mechanistic in silico models to better 

characterize the in vitro pharmacology of CD3-bispecifics and to serve as a predictive tool when designing 

new experiments. Project 2 is the culmination of a time-independent experimental set-up and 

complementary analysis that provides a holistic understanding of the pharmacology and that may fit 

Figure 9. The risk for a patient in a FiH trial is proportional to the vulnerability of the patient, the exposure 
to toxicity, the expected toxicity profile and the inverse of the implemented mitigation strategies, 
according to the equation from van Iersel and colleagues [1]. The boxes represent the findings from 
Project 3 and how these are related to the equation of risk. The bold/italic text represents the in silico 
methods suited to support the prediction of risk from each box. Both real-world data and mechanistic 
modelling means will be required in order to make predictions on individual patient risk. Information from 
prior studies or nonclinical findings can help in better understanding the other pillars of risk. 
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perfectly in the regulator-issued integrative analyses for FiH studies. Finally, Project 3 sheds a light on the 

factors that influence the risk for developing CRS after treatment with T-cell redirecting therapies, a health 

hazard that not only lurks in FiH trials but also forms a serious issue at later stages of the drug development 

process. 

The primary focus of this work was to provide guidance and insights to a few aspects of the nonclinical and 

translational development of T-cell redirecting therapies. It achieved its original objectives by delivering 

tools and ideas that can be applied throughout the drug development process. The outcomes from these 

projects should not be considered as endpoints but rather as steps in the right direction. Some current 

limitations identified in the projects –and potential future steps to overcome them- are summarised 

hereunder. 

The drug-response model from Project 1 leaves room to become more mechanistic. The relationship 

between synapse formation and T-cell activation tells us that additional mechanisms are involved and that 

the empirical fudge factor (i.e., the δ-term in equation 5, section 3.2.2) on target expression density is 

required to reliably capture this behaviour. However, the fudge factor on its own does not provide a 

satisfactory mechanistic explanation for this behaviour and more research is warranted to elucidate this. In 

addition, the impact of varying binding affinities has not been explored in detail. Referring to basic T-cell 

biology, it is well possible that changes in binding reaction kinetics elicit bigger changes than what would be 

expected based on the anticipated change in trimeric complex formation [144]. More complicated model 

components, such as those based on the principles of kinetic proofreading [145], would therefore be 

required. In its current form, the model was validated with data from cibisatamab, but was not expanded 

to other CD3-bispecifics. Similar data packages should be generated with other compounds and the model 

performance should be assessed. In addition, the model focuses on T-cell activation and tumour cell killing 

as biological endpoints. However, as was widely discussed throughout this work, cytokine release is an 

important part of the pharmacology of CD3-bispecifics and is currently lacking in the model. Inclusion of 

mechanisms of cytokine release would benefit the translational relevance of the model.  

Project 2 presents a new methodology to assess the pharmacology of T-cell redirecting therapies in a holistic 

manner. Since this methodology relies on an ad hoc analysis of generated data, it cannot be used, unlike 

computational models, to explore ‘what-if’ scenarios or make predictions of future experiments. Its strength 

lies in enabling unbiased analysis of pharmacology data in a time-independent manner. 

Project 3 in itself discussed an important limitation of mechanistic models; models unable to predict the 

risk for CRS in individual patients. The project presents a potentially powerful solution through a 
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combination of mechanistic modelling -to predict cytokine release and to identify the optimal dosing 

regimen tailored to the drug of interest- and a statistical model to predict individual risk. To be successful, 

such a framework entails the development of mechanistically sound models and the collection of real-world 

data on CRS and patient characteristics. Such a framework can be further developed and applied in early 

drug development (e.g., for compound ranking) or in clinical practice as a clinical decision tool for precision 

dosing. 

It bears mentioning that this work did not touch upon some aspects that have equally important 

implications for the future of T-cell redirecting therapies. Both immunogenicity and neurotoxicity come to 

mind. We speak of immunogenicity when the body mounts an immune response against the administered 

drug. This is a common problem in case of biologics such as antibodies since these drugs are big enough to 

be easily recognised by the immune system as a foreign object. When a drug is subjected to an immunogenic 

response, this may have severe consequences for the PK/PD profile of that drug, potentially rendering it 

ineffective. Many research efforts, including modelling, go into deciphering the exact mechanisms behind 

immunogenicity and in finding out how to prevent/combat them. Neurotoxicity forms, together with CRS, 

the primary toxicity risk by T-cell redirecting therapies. Its pathophysiology (and its potential link with 

cytokine release) are not well understood. Neurotoxicity –also known in this context as immune effector 

cell-associated neurotoxicity syndrome (ICANS) - is a severe side effect that may have a lethal outcome. It 

is therefore crucial that its mechanisms are studied.  

The situation in which T-cell redirecting therapies reside is a tricky one. Their novelty, their high-risk 

character, and our previous experiences dictate us to play on safe and treat patients with low doses when 

first going into clinics. We are aware that these first low doses are unlikely to provide any clinical benefit to 

the receiving patients; patients that are severely ill and enrolled in these clinical trials with the hope on a 

miracle cure. Less conservative approaches on the other hand may result in doses that are unsafe for an 

already fragile patient population. It becomes an ethical dilemma, as much as it is a scientific one. The only 

way out of this stalemate is with robust science. If there is one take-away message from this work, let it be 

that the field of drug development is vast with many different scientific disciplines that each benefit from 

collaboration and integration, and that a holistic and strategic understanding of the available resources is 

crucial for success. This means the integration of non-clinical, clinical, real world, and literature data 

wherever it makes sense scientifically. As shown as case examples in this work and encouraged by health 

authorities with the MIDD initiative, it may not surprise that pharmacometrics as a discipline stands a good 

chance on being this integrator. 
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ABSTRACT
◥

Targeted T-cell redirection is a promising field in cancer immu-
notherapy. T-cell bispecific antibodies (TCB) are novel antibody
constructs capable of binding simultaneously to T cells and tumor
cells, allowing cross-linking and the formation of immunologic
synapses. This in turn results in T-cell activation, expansion, and
tumor killing. TCB activity depends on system-related properties
such as tumor target antigen expression as well as antibody prop-
erties such as binding affinities to target and T cells. Here, we
developed a systems model integrating in vitro data to elucidate
further themechanismof action and to quantify the cytotoxic effects
as the relationship between targeted antigen expression and corre-
sponding TCB activity. In the proposed model, we capture relevant
processes, linking immune synapse formation to T-cell activation,

expansion, and tumor killing for TCBs in vitro to differentiate the
effect between tumor cells expressing high or low levels of the
tumor antigen. We used cibisatamab, a TCB binding to carci-
noembryonic antigen (CEA), to target different tumor cell lines
with high and low CEA expression in vitro. We developed a
model to capture and predict our observations, as a learn-and-
confirm cycle. Although full tumor killing and substantial T-cell
activation was observed in high expressing tumor cells, the model
correctly predicted partial tumor killing and minimal T-cell
activation in low expressing tumor cells when exposed to cibi-
satamab. Furthermore, the model successfully predicted cytotox-
icity across a wide range of tumor cell lines, spanning from very
low to high CEA expression.

Introduction
T-cell bispecific antibodies and antibody fragments are promis-

ing modalities in the field of cancer immunotherapy (1). They bind
simultaneously to CD3 on T cells and a specific antigen on tumor
cells. This will result in crosslinking of T cells and tumor cells,
causing the formation of immune synapses that will promote
activation of T cells and granzyme-induced apoptosis of tumor
cells (2–4). TCBs can redirect non-naive T cells irrespective of their
specificity, thereby inducing a polyclonal T-cell response (5).

Cibisatamab is a novel TCB construct that targets a membrane-
proximal epitope of human carcinoembryonic antigen (CEA) and
CD3 epsilon-chain. Further compound characteristics are summa-
rized in the Supplementary Section S1.1.

CEA is a surface antigen that is mainly found on the apical side of
columnar cells in the colon, where it is expressed at low densities (6).

CEA is often overexpressed in gastrointestinal tumors, where also its
expression is no longer polarized to the apical side. Due to being largely
tumor specific, CEA is an attractive target for targeted therapies against
gastrointestinal tract neoplasms (7).

For such bispecific molecules, drug effect requires formation of
ternary complexes between tumor and T cells, leading to activation
of T cells. These ternary complexes result in the formation of
immunologic synapses that mimic naturally formed synapses
between antigen-specific T cells and tumor cells. This implies that
the effects of TCBs are complex and multifactorial, and cannot
be directly related to the concentration of the compound. Math-
ematical models have been proposed to understand the complex
relationship between target expression, target affinity, T-cell infil-
tration, activation, proliferation, and drug effects (8–10). Such
models are helpful in exploring the potential impact of altering
experimental conditions and predicting the outcome of untested
scenarios, thus assisting in the design of new experiments and
informing on desired compound properties.

Campagne and colleagues proposed a model to capture the expo-
sure–response relationship for TCBs in cynomolgus monkeys with
respect to T-cell trafficking, T-cell–mediated tumor lysis, and the
formation of antidrug antibodies (8). Jiang and colleagues developed a
mechanistic model, based on in vitro data sets, assuming that immune
synapse formation is driving the drug effect and linked this to drug and
system-specific parameters across different compounds and cell
lines (9). The model predicted cytotoxicity at single time points and
showed the impact on cell killing by both system and compound
related properties, such as E:T ratios and binding affinities. Betts
and colleagues employed a translational model during nonclinical
development of LP-DART, a proprietary-format TCB targeting
P-Cadherin, to support clinical dosing regimen projection. They
linked the synapse-based model to in vivo pharmacokinetics (PK) to
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characterize TCB plasma concentrations and in vivo efficacy in
xenograft mice (10). This mechanistic model was also used to project
the in vitro minimally anticipated biological effect level (MABEL)
from LP-DART to in vivo as an alternative to determine the first-in-
human dose (11).

Here, we propose amodeling framework that predicts drug-induced
T-cell activation and tumor cell killing in relation to drug concentra-
tion, target expression, and target antigen affinity. Therefore, we
conducted tailored in vitro experiments and generated a longitudinal
in vitro dataset to inform the model. We developed our model in
conjunction with a learn-and-confirm paradigm, using tailored exper-
imental data from a low and high expression cell line (Fig. 1). We built
themodel with the data of the high target expressing cell line and tested
the predictive power of themodelwith the dataset of the low expression
tumor cell line. Using that approach, we show that the model can
predict in vitro cytotoxicity induced by cibisatamab, based on the
surface expression density of CEA. The application of such a learn-
and-confirm methodology entails the generation of an informative
in vitro dataset over several time points that spans multiple tested
concentrations. In summary, the proposed model is a tool comple-
mentary to experimentation. It allows the investigator to test hypoth-
eses, to explore conditions that go beyond the performed experiments,
and to probe the understanding behind the mechanism of action.

Materials and Methods
In vitro experiments

MKN45 (high CEA expressing tumor, CEA density range 230,000–
690,000/cell) and CX1 (lowCEA expressing tumor, CEA density range
2,000–11,000/cell) were used as target cell lines. To determine tumor
cell lysis andT-cell activation, tumor cells were stainedwith 1.75mmol/
L eFluor670 (#65-0840-85; ebioscience) and PBMCs were isolated
from fresh human blood with Histopaque-1077 density gradient
method (#10771, Sigma Aldrich) and stained with 0.2 mmol/L CFSE
(#21888, Sigma Aldrich). A total of 30,000 target cells (MKN45 or
CX1) were seeded in flat-bottom 96-well plates and co-cultured with
300,000 PBMCs per well to attain an E:T of 10:1 (assay medium
RPMI1640 þ 2% FCS þ 1% GlutaMax). Cibisatamab dilutions were
added to reach the required total TCB concentrations (6, 32, 160, 800,
4,000, 20,000, and 100,000 pmol/L). For the negative control, 50 mL

of assay medium was added. All assays were performed in triplicate.
The co-cultures were incubated for 24, 48, 72, 96, and 168 hours at
37"C in a humidified incubator. At the indicated time points, super-
natants were collected and FACS analysis was performed to quantify
cell killing, T-cell activation, and cytokine release (Supplementary
Section S1).

Model development
A set of ordinary differential equations (ODE) was developed

to describe the formation of immune synapses by cibisatamab, trig-
gering activated T cells (CD25þ), and T-cell–mediated tumor cell
killing. Figure 2 represents the schematic of themodel. All parameters
and their description are listed in Supplementary Table S1.

Target engagement and immune synapse formation
Immune synapse formation was modeled in a well-stirred setting

assuming sequential and independent binding processes between the
molar free fractions of cibisatamab (TCB), CEA antigen (CEA), and
CD3e (CD3), which implies that binding to the first target does not
affect the binding affinity to the second target. For simplicity reasons,
we assume that cibisatamab has only one binding arm for CEA.
When TCB binds to CEA or CD3, dimers between TCB and CEA
(CEAdim) or TCB and CD3 (CD3dim) are formed, respectively.
CEAdim and CD3dim can subsequently bind CD3 and CEA, respec-
tively, to form a ternary complex (Synapse) between the three
entities (Fig. 2A). Synapse formation is described by Eqs. A to
D. It should be noted that cibisatamab binding to soluble CEA that
was shed from tumor cells is negligible and was not accounted for in
the model (3).

dTCB
dt

¼ $konR % CEA%TCB$ konCD3 % CD3%TCB

þ koffR % CEAdim þ koffCD3
% CD3dim

ðAÞ

TCB 0ð Þ ¼ Drug concentration nmol=L½ )

dCEAdim

dt
¼ konR % CEA%TCB$ koffR % CEAdim

þ koffCD3 % Synapse$ konCD3 % CD3 % CEAdim

ðBÞ

Figure 1.
Learn-and-Confirm paradigm: the generation of tailored in vitro data to build and inform a systems-type model. The predictive performance of the model can be
tested with another dataset, which can help refine the model further.
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dCD3dim
dt

¼ konCD3 % CD3 % TCB$ koffCD3
% CD3dim

þ koffR % Synapse$ konR % CEA % CD3dim
ðCÞ

dSynapse
dt

¼ konR % CD3dim % CEAþ konCD3 % CEAdim
% CD3

$ koffR þ koffCD3ð Þ % Synapse
ðDÞ

CEAdim 0ð Þ ¼ CD3dim 0ð Þ ¼ Synapse 0ð Þ ¼ 0 nmol=L½ )

Total concentrations of CEA and CD3e are derived from the
respective cell concentrations (Eq. E). Antigen expression per cell is
assumed to remain constant. Surface expression of CD3 was fixed at
50,000/cell (internal data). The rates kon and koff are the respective
association and dissociation constants between cibisatamab and CEA
(konR and koffR) or CD3e (konCD3 and koffCD3). Only the KD for
binding to CD3 and the FRET IC50 for binding to CEA were known.
Therefore, both koff values were taken as 3.6 h$1 and both kon values
were derived as kon ¼ koff/(KD or IC50).

Antigentotal ¼ 109 * Cell concentration* Antigen density
Na

nmol/L½ )

ðEÞ
CD25 induction and T-cell activation

It is assumed that the density of immune synapses per cell is one of
the drivers behind T-cell activation (Fig. 2B), and that activated T cells
express CD25 on their surface which we monitored in the in vitro
experiments. Bimolecular complexes between cibisatamab and CEA
(CEAdim) or CD3e (CD3dim) are inactive. The molar concentration of
immune synapses is converted into a density of an absolute number of
immune synapses/cell and averaged by the total number of tumor cells
per microliter (Eq. F). The number of synapses/cell will elicit a delayed

stimulation on CD8þ T cells, which was monitored by CD25 expres-
sion (Eqs. G–L).

Synapsecell ¼
Synapse % NA

% 10$6

Tumor cells % 109
Cell$1! "

ðFÞ

STIM ¼ d % Emax % Synapsecell
Complex50þ Synapsecell

ðGÞ

d ¼
CEAexpression

CEAreference
expression

ðHÞ

ktr ¼
3
t

h$1! "

ddelay1
dt

¼ ktr STIM$ delay1ð Þ ðIÞ

ddelay2
dt

¼ ktr delay1$ delay2ð Þ ðJÞ

ddelay3
dt

¼ ktr delay2$ delay3ð Þ ðKÞ

delay1 0ð Þ ¼ delay2 0ð Þ ¼ delay3 0ð Þ ¼ 0

The stimulatory drug effect on T cells (STIM) is dependent on the
number of immune synapses per cell (Synapsecell) and the relative
tumor target expression, captured by a scaling factor d, accounting for
differences in CEA expression between the experimental data and a
reference system (Eq. H). For the presented case, the reference system
is MKN45. This stimulation of T cells is delayed relative to the

Figure 2.
Systems pharmacology model of TCBs redirecting and activating T cells to kill antigen-specific tumor cells. In the model, a TCB will bind sequentially to its targets
(CD3 on T cells and a specific antigen on tumor cells) to form ternary complexes, also called immunologic synapses (A). Thiswill result in a certain amount of synapses
formed on the surface of each tumor cell (B). The average synapse density per cell induces an activation of cytotoxic T cells, indicated by CD25 positivity (C).
Activated T cells directly induce the killing of tumor cells (D). Within the dynamics of T-cell activation, stimulation is counter balanced by a negative feedback (gray
arrow with rounded head). % , Components on which observations were made. A more detailed structural model schematic found in Supplementary Material.
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formation of the synapses and is described by a sigmoidal function
where Emax represents maximal stimulation by immune synapses,
multiplied with the relative target expression. The number of immune
synapses per tumor cell required to reach half-maximal killing is given
by Complex50. The transit compartments delay1, delay2, and delay3
dampen the stimulatory effect of STIM on CD25 induction on CD8þ

cells (Eqs. I–K). Ktr is the transit rate from one compartment to the
other and equals 3/tau.

dCD25
dt

¼ kin % 1þ delay3ð Þ % Reg0
Reg

$ kreg % CD25 ðLÞ

CD25 0ð Þ ¼ CD25baseline cells=mL½ )

CD25baseline ¼
kin
kout

cells
mL

# $
ðMÞ

dTransit1
dt

¼ kreg % CD25$ CD25baselineð Þ $ kreg % Transit1 ðNÞ

dTransit2
dt

¼ kreg % Transit1$ kreg % Transit2 ðOÞ

dTransit3
dt

¼ kreg % Transit2$ kreg % Transit3 ðPÞ

Transit1 0ð Þ ¼ Transit2 0ð Þ ¼ Transit3 0ð Þ ¼ 0 cells
mL

h i

dReg
dt

¼ kreg % Transit3$ kreg % Reg $ Reg0ð Þ ðQÞ

Reg 0ð Þ ¼ Reg0 cells
mL

h i

The gradual increase inCD25þCD8þT cells is capturedwith a delay
compartment linked to a signal transduction cascade with a feedback
loop and captures the transient T-cell activation (Fig. 2C). The
synthesis rate of CD25þ T cells is given by kin, and kreg is the rate
of CD25 turnover (Eq. L). Depending on the amount of Synapsecell
formed, delay3will add up to kin. The output rate of CD25-positivity is
given by kreg and can be calculated assuming a steady state (Eq. M). A
negative feedback loop is described with three transit compartments
(Transit1, Transit2, Transit3). The transit compartments will flow into
theReg compartment, which has an inhibitory effect on kin (Eqs.N–Q)
and is depicted by the light-grey rounded arrow at the far right
of Fig. 2 (12).

Tumor cell killing by activated T cells
A control group without cibisatamab treatment was used to study

unperturbed tumor growth for both CX1 and MKN45. The control
group was used to derive the tumor-related parameters growth rate
(kg) and carrying capacity (K), which are specific for each cell line.
Unperturbed growth is described by a logistic function with para-
meters for tumor growth rate (kg) and maximal tumor capacity (K).
From the tumor growth rate, the tumor doubling time (td) can be
derived (Eq. R)

td ¼
ln2
kg

ðRÞ

The killing of tumor cells is driven by the increase in CD25þCD8þ

T-cell concentration over baseline and is described by a sigmoidal
function (Eq. S, Fig. 2D). The CD25þCD8þ T cells are baseline

corrected to eliminate cytotoxic activity in the control group. The
maximal rate of tumor killing is proportional to the tumor growth rate.
Parameter kappa (k) is the proportionality constant between tumor
growth rate and maximal killing.

dTumor
dt

¼ kg % Tumor 1$ Tumor
K

% &

$ Tumor% kg % k % CD25$ CD25baselineð Þh

CD2550h þ CD25$ CD25baselineð Þh

ðSÞ

Tumor 0ð Þ ¼ iniTumor
cells
mL

# $

All model parameters and their description are listed in Supple-
mentary Table S1.

Model verification
To verify the robustness of the model, the estimated parameter

values obtained during model building with MKN45 (kin, tau, Emax,
Complex50, CD25baseline, CD2550, h, k) were used as an input to predict
the outcome of the assays on CX1 (low CEA-expressing). Cell line
specific parameters (kg, K, CEA-expression level) were changed
accordingly (Table 1). Cell line-specific parameters were either mea-
sured or estimated from the untreated sample. Predictions of tumor
cell and T-cell profiles were overlaid with observed data.

As an external validation, the model was used to simulate an
unrelated dataset presented by Bacac and colleagues (3), where they
show cytotoxicity in function of CEA expression levels. Tumor
cytotoxicity at 48 hours after incubation with 20 nmol/L cibisatamab
was simulated across a 7-log CEA-density range. Cytotoxicity was
calculated as (1 $ Treatment/Control) * 100%. Simulations were
overlaid and compared with published data (3). A Monte Carlo
simulation of 250 iterations was run to capture the random effects
estimated by themodel. Randomeffects for kg andKwere fixed at 0.3 to
account for greater variability between cell lines.

Parameter estimation
Model parameter estimation was performed with nonlinear mixed-

effects modeling in Monolix (version 2018R2; Lixoft). Monolix
employs the stochastic-approximation expectation maximization
(SAEM) algorithm. Model verification and simulations were per-
formed in Berkeley-Madonna (version 8.3.18; University of California,
Berkeley). Diagnostic plots comparing observed versus predicted
values and visual predictive checks assessing goodness-of-fit were
used to check model performance. The precision of the estimations

Table 1. Cell line–specific parameters.

Parameter

MKN45
(model
building)

CX1
(model
verification) Origin

CEA surface expression
(cell$1)

230,000 11,000 Measured

Growth rate (hour$1) 0.058 0.114 Estimated
Carrying capacity (cells) 326 278 Estimated
Initial tumor concentration
(cells/mL)

5.8 1.04 Estimated

Cell line–specific parameters were changed for model verification purposes.
These were either measured experimentally or estimated from the respective
control samples.
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and the identifiability of the parameters were assessed by means of
diagnostic criteria such as the relative standard error (RSE) and
parameter shrinkage.

Cell line characterization
MKN45 (AAC 409) and CX1 (AAC 129) were obtained from

DSMZ. Authentication of MKN45 was performed by Microsynth AG
in 2018 to confirm identity. No authentication was performed on CX1.
No mycoplasma testing was performed prior to the study. Both cell
lines’ CEA expression levels were determined with QIFIKIT (Agilent
Dako), as described elsewhere (3). Cell lines have been in culture for 1
to 4 months at the start of the experiments.

Results
Prediction of T-cell activation and tumor cell killing with a
mechanistic systems model

In high expression tumor cell line MKN45 (230,000 CEA/cell),
we modeled the time course of T-cell activation captured by the
number of CD25þCD8þ T cells (Fig. 3A) and of tumor cells
(Fig. 3B) in the presence and absence of cibisatamab. Overlay of
model prediction (solid line) with observed data (triplicate means,
symbols) are shown. Individual triplicate observations are shown in
Supplementary Fig. S2.

With regards to T-cell activation, we observed a dose-dependent
increase in CD25þCD8þ T cells (Fig. 3A, symbols) with maximal
levels of activated T cells of 164 cells/mL observed in high dose groups
(4,000—100,000 pmol/L). In the control group, number of activated
T cells was low (+3 cells/mL) and only slight changes were observed
throughout the observation period. T-cell activation reached maximal
levels after approximately 4 days, followed by a decrease in
CD25 expression observed at 7 days. We observed gradual and
dose-dependent increases in immune checkpoints TIM-3 and PD-1
(Supplementary Fig. S3). The decline in activated T cells at later time
points may be explained by these inhibitory mechanisms. Activated T
cells remain considerably elevated comparedwith baseline after 1week
incubation.

Tumor cell growth was monitored over time in the presence and
absence of cibisatamab (Fig. 3B) in MKN45. In the control group,
tumor cell growth was characterized with exponential growth phase
during thefirst 3 days reaching a plateau at 168 hours. From the control
group, the estimated tumor growth rate was 0.058 hour$1 (RSE 6.48%)
resulting a doubling time of 12 hours (Fig. 3B) and the estimated
carrying capacity was 326 cells/mL (RSE 9%; Table 1). In the presence

of cibisatamab, we observed a dose-dependent decrease of tumor cell
growth. Almost complete tumor growth reduction occurred at high
cibisatamab concentrations (4,000–100,000 pmol/L). In addition to
the dose-dependent effects on activated T cells and tumor growth
inhibition, we observed a dose-dependent effect on cytokine release
(Supplementary Fig. S3). In this study, we observed an early IL2 release
that triggers T-cell activation and CD25 induction.

In summary, the model well captured the time course of T-cell
activation (Fig. 3A, solid lines) and tumor cell growth (Fig. 3B, solid
lines) in control and treated group across a broad dose range of
cibisatamab. The model parameters were estimated with good preci-
sion, with the highest RSE below 45% (Supplementary Table S2). The
diagnostic plots showed overall good model performance (Supple-
mentary Figs. S4 and S5). At lower TCB concentrations, some obser-
vations fall outside the 90% prediction intervals in Supplementary
Fig. S4A. It should be noted that this misspecification is only observed
for very low T-cell numbers (+3–18 cells/mL). At these levels, the
accuracy of the assaymay not be sufficient to reliablymeasure the exact
T-cell numbers.

Prediction of T-cell activation and cytotoxicity in a low
expressing tumor cell line

For model verification, we tested whether the model could predict
the activity of cibisatamab acting on a tumor cell line (CX1) withmuch
lower surface expression of CEA (11,000/cell) based on themodel built
on the high expression cell line MKN45 (230,000/cell). Therefore, we
simulated the expected time course of CD25þCD8þ T cells (Fig. 4A,
solid line) and tumor cells (Fig. 4B, solid line) and overlaid it with the
observed data (Fig. 4A and B, symbols, triplicate means). For the
simulations, we used the estimated parameters we obtained from
fitting the model to the dataset with MKN45 and replaced only cell
line-specific parameters by accounting for the differences between the
cell lines. These were target expression and the tumor growth para-
meters which was estimated from the control group (Table 1). For
CX1, the estimated tumor growth rate was 0.114 hour$1 (RSE 5%),
which gives a doubling time of 6.1 hours and the estimated carrying
capacity was 278 cells/mL (RSE 4.84%).

Low CEA-expressing tumor cell line CX1 showed only small
increases in CD25þCD8þ T cells, reaching maximal levels in the range
of 7 to 10 CD25þCD8þ cells/mL at concentration of 4,000 to 100,000
pmol/L of cibisatamab. This was approximately 20-fold lower as
compared with MKN45. The baseline levels (control group) as well
as the levels from the low dose groups (6–160 pmol/L) fluctuated
between 1.5 and 7 cells/mL. Tumor cell growth over time (Fig. 4B) was

Figure 3.
Model fit of CD25þCD8þ T-cell (A) and MKN45 tumor cell (B) time-profiles at various cibisatamab concentrations. Dots represent the actual data as the mean of
triplicate values, and lines represent the model fit. Individual triplicate values can be found in Supplementary Figs. S2A and S2B.
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half maximally reduced at 20,000 and 100,000 pmol/L cibisatamab.
Furthermore, for the tested concentration range, no increase in
cytokine was detected (Supplementary Figs. S3N–S3R).

Due to the large difference in target expression, there was a
considerable change in predicted synapses per cell formed. The lower
CEA expression in CX1 decreased scaling factor d, thereby restricting
synapse-mediated T-cell activation.

In summary, the model correctly predicted a dose-dependent
effect on CD25þCD8þ cells with a very low increase of approxi-
mately 9 cells/mL. In addition, the predicting model captured the
effects on tumor cell growth, which was described as a concentra-
tion dependent partial tumor inhibition with a clear concentration-
dependency (Fig. 4B).

Prediction of tumor cytotoxicity over a broad range of target
expression densities

We used the presented model to project the cibisatamab-induced
cytotoxicity to a data set of 110 different tumor cell lines, with CEA
surface densities ranging from1 to 200,000 per cell (3). These cells were

treated with 20 nmol/L cibisatamab and cytotoxicity was recorded
48 hours after treatment.

A simulation of cytotoxicity shows that the model can reliably
predict the observed cytotoxicity over the whole CEA expression
range. The model could distinguish between responding cells
(>10% cytotoxicity, green squares) and nonresponding cells (<10%
cytotoxicity, orange circles) under these experimental conditions. A
clear switch between no/low killing and high killing is present, with a
cut-off value around 10,000 CEA/cell (Fig. 5). The shaded area is
delineated by the 5% and 95% percentiles of the individual predictions.
A part of the cell lines falls outside the prediction interval, which may
be due to cell line specific factors, assay differences or a process not yet
captured by our model.

Quantitative relationship between drug concentration, immune
synapses, T-cell activation, and cytotoxicity

After demonstrating that the model was able to predict the drug
effect across a broad range of tumor cells, we wanted to investigate the
relationship between formation of synapses as a function of drug

Figure 4.
Model prediction of CD25þCD8þ T-cell (A) and CX1 tumor cell (B) time-profiles at various cibisatamab concentrations. Dots represent the actual data as mean
triplicate values, and lines represent the simulated profiles. Individual triplicate values can be found in Supplementary Figs. S2C and S2D.

Figure 5.
Impact of CEA expression on tumor cytotoxicity after 48 hours at a cibisatamab concentration of 20 nmol/L. Orange dots and green squares represent
nonresponding and responding tumor cell lines, respectively. Black line representsmodel-predicted cytotoxicity. The blue lines represent the 5% and95%percentiles
of the Monte Carlo simulations. The dotted line represents 10% cytotoxicity.
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concentration (Fig. 6A), the relative T-cell activation as a function of
synapses per cell (Fig. 6B) and the relative cytotoxicity as a function of
activated T cells (Fig. 6C).

Figure 6A shows the predicted synapse per cell over a range of
cibisatamab concentrations in MKN45 (CEAhigh; Fig. 6A, blue curve)
or CX1 (CEAlow;Fig. 6A, orange curve) cell line. For both cell lines, the
profiles are parallel to each other with CX1 being 20-fold lower. In both
cases, a bell-shaped profile is observed and the amount of immune
synapse formedwill increasewith increasing TCBconcentrations up to
a maximal threshold, after which increasing TCB concentrations
negatively affect synapse formation. In both cases, peak synapse
formation occurs at a cibisatamab concentration of approximately
68 nmol/L.

The model suggests that stimulation of T cells depends on the
number of immune synapses formed per tumor cell and on the target
expression level, relative to a reference system. Figure 6B shows
percent of T-cell activation as a function average synapses. Observed
(symbols) and predicted (lines) data are shown for MKN45 (in blue)
and CX1 (in orange). T-cell activation was expressed relative to the
highest observed value of CD25þCD8þ cells, which was set to 100%
and the respective maximal observed values from each treatment
group was normalized accordingly. We observed the highest T-cell
activation in the MKN45 cell line at 96 hours with 20 nmol/L
cibisatamab and we took this value as 100% T-cell activation. We
observed the highest T-cell activation in the CX1 cell line at 168 hours
with 20 nmol/L cibisatamab. This level of activation corresponded to
4.3% of the maximal T-cell activation observed in MKN45. These
fractions of T-cell activation were well in line with the simulated
profiles (Fig. 6B). Although both cell lines differ strongly in maximal
response with regards to T-cell activation, the model correctly pre-
dicted the relationship of T-cell activation and synapses per cell.
Interestingly, for the same range of synapse per cell, the predicted
and observed response of T-cell activation was much lower with CX1
as comparedwithMKN45. In line with proposedmodel, we concluded
from these findings that the drug effect of cibisatamab on T-cell
activation not only depends on number of synapses per cell but also
on the relative CEA expression level.

The proposedmodel suggests that tumor cell killing depends on the
increase in activated T cells over baseline levels, which is described as
the increase in CD25þCD8þ T cells. We therefore explored the
relationship between the cytotoxicity and maximal CD25þCD8þ T-

cell counts. The highest observed concentration of CD25þCD8þ T
cells was observed for 20 nmol/L cibisatamab inMKN45 andwas set to
100% and normalized the maximal CD25þCD8þ for each treatment
group and cell lines accordingly. Figure 6C shows good agreement
between the predicted and observed cytotoxicity in function of max-
imal T-cell activation for each dose level.

Discussion
In the presented work, we provided a mathematical model that

extends the current knowledge on in vitro TCB activity by including a
biomarker of T-cell activation. By linking ternary complex formation
to T-cell activation, the proposed model predicts correctly a dose-
dependent and transient increase in CD25þCD8þ T cells, which
results into tumor cell killing observed in in vitro experiments with
a high (MKN45) and a low (CX1) target expressing cell line tested over
a broad range of cibisatamab concentrations. Furthermore, the model
was capable of capturing the tumor lysis profile across a very broad
range of CEA expression densities.

Bispecific antibodies redirecting T cells to kill tumor cells are a
promising therapeutic modality in cancer immunotherapy. The
mechanisms behind TCB mediated T-cell redirection and tumor cell
killing have been investigated and it has been described that the
initiation or extent of TCB activity is multifactorial as the bispecific
antibody needs to bind both its binding partners before exerting its
effect. Variousmathematicalmodels have been proposed to investigate
these processes in vivo or in vitro and have been applied to address
relevant questions related to the development of these modalities. We
have expanded on existing models describing TCB activity by linking
tumor cell killing to T-cell activation.

A common denominator between these models is the assumption
that the formation of immunologic synapses is driving directly or
indirectly the cytotoxic effects. T cells have been used as a link between
synapse formation and tumor cell killing. These were either total T-cell
counts (13) or a virtual pool of activated T cells without actual
data (8, 11). In our study with cibisatamab, we used in vitro experi-
ments to build a mechanistic model that integrates formation of
synapses resulting into T-cell activation and tumor cell killing. The
model captures the dynamics of tumor cell and CD25þ cytotoxic
T cells over time. It was successfully applied to predict cytotoxicity as a
function of target expression and to predict the time course profiles of

Figure 6.
Simulated differences in cibisatamab-induced effects betweenMKN45 andCX1 cell lines.A,Average immunologic synapse count formed per tumor cell in function of
TCB concentration. B, Percentage of T-cell activation in function of synapse count per tumor cell. Simulations overlaid with observed T-cell activations in both cell
lines. C,Maximal percentage of theoretical cytotoxicity in function of T-cell activation. Simulation (dashed line) overlaid with observed cytotoxicity for MKN45 (blue
circles) and CX1 (orange circles) in function of the highest T-cell activation (in %) observed for each dose treatment group in both cell lines.
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activated T cells and tumor cell killing of a low expression cell line
based on the modeling results using high expression cell line.

CD25 is the alpha-chain of the trimeric IL2 receptor and a known
marker for T-cell activation [18]. CD25 expression is inducible on
effector T cells and functions within auto- and paracrine feedback
loopswith IL2. Binding of IL2 toCD25will result in receptor-mediated
internalization of IL2, while also inducing higher expression of CD25
on the cell surface [19]. Therefore, we mechanistically linked T-cell
activation—indicated by CD25 expression induction on the cell
surface—to tumor cell killing in our model. We were capable to well
describe killing of the high expressing tumor cell line as well as the
associated T-cell activation.

The extent of synapse formation is dictated by the expression level of
CD3 and tumor antigen, tumor cell concentration, the affinity of the
TCB to both antigens, and the TCB concentration in the system. A
change in antigen expression impacts the amplitude at which immune
synapse can be formed as there will be more or less target available for
the TCB to bind to. The TCB concentration has a more ambiguous
impact on synapse formation. Higher TCB concentrations will
increase synapse concentrations until the optimum is reached. TCB
concentrations above that optimum promote the dimerization
between TCB and a single antigen, rather than formation of ternary
complexes (the actual immune synapses), as was discussed else-
where (9, 14). The relationship between the binding affinities to both
targets will determine at what TCB concentration the tipping point in
synapse formation will occur. In the binding model that we used, the
TCB concentration at which the bell-shaped curve peaks corresponds
to the geometric mean of the bindings affinities from both binding
arms (15). Therefore, information on binding affinities can inform on
the TCB concentration range resulting in maximal synapses per cell,
which may be relevant for experimentation. Our model suggests that
ternary complex formation as well as T-cell activation and tumor lysis
is decreased at high TCB concentration. However, it has not been
shown experimentally and further in vitro tests could be conducted to
confirm this hypothesis.

In this work, we used an in vitro system as this allows is to have a
well-controlled environment to investigate the relationship between all
elements of this complex pharmacological response. Our work is in
line with previous findings showing that in vitro efficacy is closely
related to target expression (3). Moreover, a clear threshold was
observed in vitro at which the system switches from minimal to
complete tumor killing, and which was well captured by the model.
However, it should be noted that this quantitative insight may not
reflect the clinically relevant threshold, which may be dependent on
other factors and is beyond the scope of the work. CEA expression is
the main differentiator in our model. Besides influencing how many
immune synapses will be formed, CEA expression also directly affects
the extent of T-cell activation in our model. Natural immune synapse
formation is a very complex mechanism that involves many TCR–
pMHC complexes clustering together in a small patch on the cell
surface to induce T-cell activation (16). Size and stability of the cluster
depends on the number of TCR–pMHC complexes that can be formed
in that area (17, 18). Therefore, we hypothesized that the density of the
TCB-targeted tumor antigen will affect the probability that sufficient
immune synapses are formed in close proximity to elicit T-cell
activation. As a result, cells with higher antigen densities have a higher
chance to activate T cells when engaged. Consequently, a certain
immune synapse density may exhibit more or less T-cell activation
based on the target expression level. This peculiar dependency between
target expression, immune synapse density, and T-cell activation
predicted by the model is backed by the experimental data as depicted

in Fig. 6. Conversely, tumor cell lysis is unambiguously linked to the
extent of T-cell activation.

We predicted cytotoxicity in function of a broad range of CEA
densities (Fig. 5). We included a Monte Carlo simulation to also
account for the random effects captured by the model. As the
simulation was run with system-related parameters taken from
MKN45 such as kg andK values, we allowed a higher level of individual
variability on these parameters by fixing the random effects at 0.3.

Our simulation was capable of distinguishing responder from
nonresponder cell lines based on CEA expressing level. Moreover,
the simulation nicely captured the general profile of increasing cyto-
toxicity with expression level. Our model underpredicted a part of the
responding cell lines, which accounts for 27.4% of the cell lines.
Potential causes for this discrepancy are discussed below.

An immune response is a multifactorial process, whereas T-cell
activation by formation of ternary complexes is the first step in TCB
activity, and there aremany processes that will impact T-cell activation
and the interaction with tumor cells. The presence of costimulatory or
inhibitory receptors may change the responsiveness of the system to
TCB treatment. Interestingly, we observed an increase inPD1-positivity
in the CD8þ T cells from 10% to 70% over the course of the assay
(Supplementary Fig. S3L), with a clear dose dependency. Differences in
baseline levels of PD1 on T cells and PD-L1 on tumor cells could be one
of the factors attributing to the variability in cytotoxicity between cell
lines observed in Fig. 5. Higher levels of PD1 also suggest potential
susceptibility to anti-PD1 therapy. The presence of regulatory T-cells
(Tregs)may also dampenT-cell response. Baseline levels of Tregs could
be one of the factors contributing to donor-to-donor variability. This
warrants further investigation. The impact of anti-PD1 or other com-
bination therapies to boost the immune response could be investigated
with experiments, requiring further expansion of the model to capture
these therapeutic conditions.

Bacac and colleagues showed that in tumor-bearing mice, tumors
became PD-L1 positive upon cibisatamab treatment (3). Cibisatamab
is also being studied in patients both as a monotherapy and in
combination with anti-PD-L1 antibodies. Radiologic tumor shrinkage
was observed in 50% of patients treated in combination with anti-PD-
L1 therapy, as opposed to 11% of patients that only received
monotherapy (7).

TCBs target antigens that are overexpressed in tumors. However,
the prevalence of the antigen is often not tumor exclusive and it can be
found at lower levels in healthy cells. This could result in the occur-
rence of on-target/off-tumor toxicities. In early drug discovery, the
model presented here could help with selecting the best compound
properties with respect to the expected antigen expression level in
tumor and healthy cells.

Besides target expression described here, there are many more
variables that influence TCB activity. Bluemel and colleagues showed
that antigen size and epitope location affected TCB potency (19).More
specifically, MCSP and EpCAM binding BiTE constructs showcased
higher potency when targeting membrane-proximal epitopes and
truncated variants of antigens.

TCB valency appears to play an important role. Cibisatamab is
bivalent for CEA and monovalent for CD3e to increase tumor selec-
tivity. Multivalency is commonly used to increase the functional
affinity of a molecule and often also the potency. Besides that, target
affinity has been shown to affect the biodistribution in mice (20).

Many different formats are currently under development (for
overview see ref. 21). The effect of compound size and format on
TCB activity is not well understood. However, they do play a big role in
the PK and disposition of the TCB in the body. Depending on the
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format, TCBs may have similar PK profiles as classical mAbs, or could
differ massively (22). Ellerman performed an extensive review of the
most well studied variables (23). The limitation of the current model is
that it has been build and verified with one TCB molecule and further
TCBs should be tested to evaluate if the model is generalizable and if it
can be applied to predict the outcome of T-cell activation and killing
for scenarios when the binding affinity is modified. In addition, the
model assumes a simplistic binding model, which does not fully
capture the bivalency of cibisatamab to the tumor target. Furthermore,
the current binding model in place assumes independent binding of
CD3 and tumor target to form trimolecular complexes, which is a
simplified process assuming that the system is well stirred and no
spatial organization between the different binding partners is taken
into account.

The presented model can be used to investigate the impact of
target expression on TCB activity, or which target affinity would be
optimal for a given expression level. The model can be further
expanded to be more broadly applicable. Betts and colleagues
showed the translational value of implementing a systems model
into a larger PKPD framework, by linking both PK and PD models
together (10). As a result, they were able to calculate the concen-
tration to reach tumor stasis in mice and predict TCB disposition in
patients. Because our model takes TCB concentration as an input, it
could be incorporated into a holistic PKPD framework, linking
intratumoral TCB concentrations to T-cell activation and tumor
cell killing. A model to capture tumor uptake of TCBs is being
developed (Eigenmann, M. J.; unpublished data).

In general, such methodology can be used to derive relevant
therapeutic indices for TCBs. To achieve this, the model needs to be
supported by longitudinal data of tumor killing, T-cell activation and
cytokine release.

Due to the inherently human-specific nature of TCBs, animal
models are often not appropriate or limited to recapitulate the
pharmacologic processes. The use of in vitro-based assays is therefore
of increasing importance (24–26). Moreover, appropriate experimen-
tal design is seminal to maximize the gain from these in vitro studies.
This work presents a synergy between modeling and experimentation,
which helps to dissect complexity and decrease the amount of in vitro
data required to quantify drug action.

Essentially, model development with in vitro data from a single
tumor cell line and model verification with data from another tumor
cell line with lower antigen density gave confidence in the ability to
predict cytotoxicity over a broad range of antigen densities. The
paradigm of learn-and-confirm proved to be sufficient to generate a
model that is predictive for the in vitro activity of cibisatamab. A
similar set-up can be performed for other T-cell bispecifics, allowing
for simulation of efficacy under different target expression levels and
characterization of a cytotoxic threshold.
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Abstract.         CD3-bispecific antibodies are a new class of immunotherapeutic drugs 
against cancer. The pharmacological activity of CD3-bispecifics is typically assessed 
through in vitro assays of cancer cell lines co-cultured with human peripheral blood mono-
nuclear cells (PBMCs). Assay results depend on experimental conditions such as incuba-
tion time and the effector-to-target cell ratio, which can hinder robust quantification of 
pharmacological activity. In order to overcome these limitations, we developed a new, 
holistic approach for quantification of the in vitro dose–response relationship. Our experi-
mental design integrates a time-independent analysis of the dose–response across differ-
ent time points as an alternative to the static, “snap-shot” analysis based on a single time 
point commonly used in dose–response assays. We show that the potency values derived 
from staticin vitro experiments depend on the incubation time, which leads to inconsistent 
results across multiple assays and compounds. We compared the potency values from the 
time-independent analysis with a model-based approach. We find comparably accurate 
potency estimates from the model-based and time-independent analyses and that the time-
independent analysis provides a robust quantification of pharmacological activity. This 
approach may allow for an improved head-to-head comparison of different compounds and 
test systems and may prove useful for supporting first-in-human dose selection.

KEY  WORDS:  CD3-bispecifics; in vitro dose–response; MABEL; PKPD; quantitative pharmacology

INTRODUCTION

CD3-bispecific antibodies are a growing class of promis-
ing therapies in the field of immuno-oncology (1). Since 
the clinical success with blinatumomab—a CD19 × CD3-
bispecific antibody that was approved by the FDA in 2014 
for acute lymphoblastic leukemia (2, 3)—a variety of dif-
ferent CD3-bispecific antibodies or antibody fragments have 
been designed. More than 200 CD3-bispecifics are currently 
in development as novel cancer immunotherapies (1, 4). 
CD3-bispecifics activate an anti-cancer immune response 
by redirecting T-cells to the tumor (5), with promising anti-
cancer activity (6–8) in both hematological (9) and solid 
(10) tumors.

The pharmacological response is based on tumor antigen 
recognition combined with CD3-mediated T-cell recruit-
ment. This involves a cascade of events including T-cell 

1550-7416/19/0000-0001/0 © 2021 The Author(s)

Supplementary Information  The online version contains 
supplementary material available at https:// doi. org/ 10. 1208/ 
s12248- 021- 00637-2.

Arthur Van De Vyver and Miro Eigenmann authors contributed 
equally.
1 Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche 
Innovation Center Basel, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
2 Department of Clinical Pharmacy, Saarland University, Saarbrücken, 
Germany

3 Preclinical Translational Pharmacokinetics, South San Francisco, CA, 
Genentech, USA

4 Roche Pharma Research and Early Development, Roche Innovation 
Center Zürich, Wagistrasse 10, 8952 Schlieren, Switzerland
5 To whom correspondence should be addressed. (e–mail: 
antje-christine.walz@roche.com)

http://orcid.org/0000-0002-2177-545X
http://crossmark.crossref.org/dialog/?doi=10.1208/s12248-021-00637-2&domain=pdf
https://doi.org/10.1208/s12248-021-00637-2
https://doi.org/10.1208/s12248-021-00637-2


  Vol(0123456789)    The AAPS Journal            (2022) 24:7 7 Page 2 of 13

activation and proliferation, cytokine release with involve-
ment of innate immune cells, and T-cell-mediated tumor 
lysis (11–13)—distinct biological processes that occur on 
different  time scales (14–16). CD3-bispecifics’ efficacy 
(tumor cell toxicity) and safety (e.g., cytokine release) are 
both related to the mechanism of action. These effects can 
be investigatedin vitro as a basis for determining the mini-
mum anticipated biological effect level (MABEL) dose for 
first-in-human (FIH) clinical trials (17). Due to the lack of 
cross-reactive animal species for some of the CD3-bispe-
cifics (18–20),in vitro  test systems are often utilized for 
pharmacological profiling of this class of molecules (20). 
In addition,in vitro analysis is suited to differentiate and to 
select compounds and is—in conjunction with in vivo PK/
PD analysis—an important pillar for human PK/PD predic-
tion (21).

The appropriate pharmacological quantificationin vitro 
may help to improve the therapeutic index of these immune 
agonists, allowing for the selection of the most favorable 
compounds during early drug discovery. Appropriate quan-
tification is also critical for predicting a clinically relevant, 
safe, and pharmacologically active starting dose that will 
reduce  the number of patients  exposed  to  subtherapeu-
tic dose levels in FIH studies. This is a key challenge for 
CD3-bispecific therapy development (17). Based on a ret-
rospective assessment of 17 CD3-bispecifics, Saber and 
colleagues conclude that there is no generalizable approach 
for MABEL-based dose selection applicable to all CD3-
bispecifics (17). They highlight  that FIH dose selection 
based on 30%in vitro pharmacological activity of the most 
sensitive readout results in doses that are substantially lower 
than the optimal biological dose, the recommended human 
dose, or the maximum tolerated dose in patients. In addition, 
a 2018 FDA workshop on the preclinical and translational 
safety assessment of CD3-bispecifics concluded that it is 
still unclear whichin vitro experimental conditions (e.g., 
effector-to-target ratio, target cell choice, assay duration, 
assay endpoints) are most appropriate for quantitative clini-
cal translation and FIH starting dose prediction (22).

In the presented study, we suggest a modified experimen-
tal design and data analysis to explore and leveragein vitro 
data and to derive a more robust pharmacological quanti-
fication and a more appropriate integration of the multiple 
drug-induced PD responses  that occur on different  time 
scales. Often, thein vitro quantification of CD3-bispecifics 
is done at a single time point. The derived potency value 
is highly dependent on the incubation time and suscepti-
ble to time point selection bias. Consequently, the apparent 
potency for a specific compound varies from time point to 
time point (23). We demonstrated that the dose–response 
analysis derived from staticin vitro experiments, as tradi-
tionally applied, depends on the incubation time and that 
this “snap-shot” analysis leads to inconsistent results. To 

overcome  this  limitation, we developed a more holistic 
approach for quantification of thein vitro dose–response 
relationship that considers the time course of the pharmaco-
dynamic (PD) responses and that enablesin vitro comparison 
of different readouts (e.g., cytokine release and cytotoxicity) 
or of different test systems (e.g., cancer cell line, organoids 
from a tumor or healthy tissue). This approach includes anin 
vitro experimental design that allows us to monitor the time 
course of the pharmacological responses and a subsequent 
time-independent dose–response analysis  integrating all 
measured time points (24). As a result, we obtain a more 
robust readout that provides more consistent insights into 
the pharmacological activity of CD3-bispecifics. We also 
developed an automated data analysis workflow that can 
be applied to these large datasets. Finally, we illustrate how 
the proposed approach can be implemented to compare the 
pharmacological activity across test systems and compounds 
and how these pharmacological insights can be utilized in 
early drug discovery and development.

MATERIALS AND METHODS

Materials

The CD3-bispecifics (also called T-cell bispecifics; TCBs) 
CEA-TCB (cibisatamab), CEACAM5-TCB, and the FolR1-
TCB affinity variants were produced in-house (Roche, Basel, 
Switzerland). Compound characteristics are summarized in 
Table I. The full list of all materials, cell lines, and reagents 
can be found in supplemental section S1.1.

Methods

Generation of Stably Transduced Cell Lines Expressing 
Human FolR1

HEK 293 T cells were transduced with lentiviral particles 
to express human folate receptor 1 (FolR1) on their cell 
membrane. A high  (FolR1high) and a low  (FolR1low) target-
expressing variant was created, with a surface density of 
505,000 and 20,000 molecules/cell, respectively. Details on 
the generation of the stably transduced cell lines are sum-
marized in supplemental section S1.2. Cell surface density 
of FolR1 was determined by QIFIKIT (Agilent Dako).

Experimental Design of T-Cell-Dependent Cellular 
Cytotoxicity Assay

Thein vitro pharmacology of cibisatamab and CEACAM5-
TCB was tested with a T-cell-dependent cellular cytotoxicity 
(TDCC) assay and flow cytometric analysis for tumor lysis 
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and immune-phenotyping. Additionally,in vitro pharmacol-
ogy of FolR1-TCB variants was tested with an alternative 
TDCC method that included real-time monitoring of fluo-
rescent tumor cells by incuCyte.

FACS  Based  Assay  to  Monitor  Tumor  Cell  Count  After 
Treatment  with  Cibisatamab  and  CEACAM5-TCB  The 
experimental  protocol  forin  vitro  activity  testing  of  cibi-
satamab has been previously described (25). This protocol 
was also applied to thein vitro testing of CEACAM5-TCB. 
Briefly, two cell lines expressing the oncofetal antigen CEA 
(carcinoembryonic  antigen), MKN45  (high  copy  number: 
230,000–690,000 CEA per cell) and CX1 (low copy num-
ber: 2000–11,000 CEA per cell), were seeded at a density 
of  30,000  cells/well  in  an  effector-to-target  ratio  of  10:1 
with  human  PBMCs  and  incubated  at  varying  concentra-
tions of  cibisatamab  (0, 6, 32, 160, 800, 4000, 20,000, & 
100,000  pM)  or  CEACAM5-TCB  (0,  1,  6,  32,  160,  800, 
4000, & 20,000 pM). At 24 h, 48 h, 72 h, 96 h, and 168 h, 
supernatants were collected for cytokine analysis, and cell 
pellets were used for flow cytometric analysis. FACS analy-
sis was performed for tumor cell counting and immune-phe-
notyping of T-cells on the expression of CD3, CD4, CD8, 
CD25, PD-1, and TIM-3.

IncuCyte  Assay  to  Monitor  Tumor  Cell  Cytotoxicity 
with  FolR1-TCB  Staining  of  tumor  cells  and  PBMCs 
compatible with incuCyte imaging was performed as per the 
manufacturer’s instructions (Sartorius). IncuCyte NucLight 
Rapid Red was  used  to fluorescently  label  the  nucleus  of 
HEK cells.

A total of 10,000 FolR1-expressing  FolR1high or  FolR1low 
tumor  cells were  seeded  in  flat-bottom  96-well  plates 
and co-cultured with 100,000 PBMCs in assay medium 
(RPMI1640 + 20% FCS + 1% GlutaMax). Dilutions of either 
a high-affinity or a low-affinity FolR1-TCB were added to 
reach the final drug concentrations (0.5, 5, 50, 500, 5000, 
and 50,000 pM). For the negative control, 50 μL of assay 
medium was  added. All  conditions were  performed  in 
triplicate. The co-cultures were incubated over 4 days in 
a Sartorius incuCyte Zoom (humidified, 37 °C, 5%  CO2) 

for automated imaging at 3-h intervals. All co-cultures were 
duplicated fivefold to allow for supernatant sampling at 18 h, 
44 h, 68 h, and 94 h.

Cytokine Measurements

At the indicated time points (18 h, 44 h, 68 h, and 94 h), 
the plates were centrifuged and 25 μL of supernatant was 
collected from each well. Cytokines IL2, IL6, IL10, IFNγ, 
and TNFα were measured with a multiplexed cytometric 
bead array.

Statistics and Data Analysis  Experiments were performed 
in  triplicate  and  data  were  processed  as  median  values. 
Where  applicable,  the  experimental  data  are  reported  as 
mean  values  with  corresponding  standard  error  (SEM). 
Values  that  are  below  their  lower  limit  of  quantification 
(LLOQ) are reported as ½ LLOQ. Estimated dose–response 
parameters are reported with their respective relative stand-
ard error (%RSE).

Dose–Response Analysis

Dose–response curves were generated based either on a sin-
gle time point or on the time-independent PD effect using 
WinNonlin (Phoenix 8.2, Certara). This time-independent 
response is computed as an area under the curve of effect 
(AUCE)  in  the  readout  for  the  PD  response  over  time 
for each tested TCB concentration. For estimation of the 
potency parameter  EC50, a simple or inhibitory sigmoidal 
model was fitted to the data (Eq. (1)).

E is the value of the experimental readout. In static analy-
sis, E is the actual readout, and in time-independent analy-
sis, E is either the calculated AUCE value of the readout 
or the maximum value (Rmax) of the readout. TCB is the 
independent variable, corresponding to the concentration of 
the CD3-bispecific. E0 is the baseline level of the readout 
or AUCE, Emax is the maximum change in E, γ is the Hill 
coefficient, and EC50 is the drug concentration resulting in 
a half-maximum effect. An additive residual error was used 
to fit Eq. (1) to the respective experimental data. Based on 
Eq. (1), the concentration leading to 30% pharmacological 
activity  (PA30%) was derived as follows:

If a sigmoidal dose–response relationship could not be 
established, a threshold concentration was estimated by fit-
ting the data to the hockey-stick model (26) (Eq. (3)).

(1)E = E0 +
Emax ∗ TCB!

EC
!

50
+ TCB!

(2)PA30% = EC50 ∗
(

30%

100% − 30%

)

1

!

Table I   Summary of Tested CD3-Bispecifics

a Determined with  FRET  as  described  in Van De Vyver  et  al.  (25). 
bDetermined with surface plasmon resonance; TCB, T-cell bispecific; 
kDa, kilodalton; TA, tumor antigen

Compound Molecular 
weight (KDa)

Avidity to TA 
(nM)

Affinity to 
CD3 (nM)

CEA-TCB 194 48.6a 3.7b

CEACAM5-TCB 194 13.12a 3.7b

FolR1high-TCB 194 2.2b 3.7b

FolR1low-TCB 194 60b 3.7b
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TCBthreshold is the threshold drug concentration for elic-
iting the PD effect above baseline (AUCE0) and S  is the 
change in effect when the drug concentration is greater than 
the threshold value. P+ is a derived variable that is zero when 
drug concentration is below the threshold concentration 
and one when the drug concentration is above the threshold 
concentration.

Automated Dose–Response Analysis with Python  An auto-
mated dose–response analysis was conducted using Python. 
The data file was curated using pandas library. The Python 
code is provided in a GitHub repository (https:// github. com/ 
PKPD- coder/ time- indep endent_ analy sis_ in_ vitro. git)  and 
can be updated for other datasets. The workflow of the auto-
mated analysis is illustrated in Figure S1. Further details are 
summarized in supplemental section S2.

Predicting Tumor Growth Inhibition with PK/PD Modeling

The observed cell counts from cibisatamab and CEACAM5-
TCB were fitted to a delayed tumor kill model (27) in Mono-
lix (version 2019R2, Lixoft, France) to estimate the respec-
tive  EC50 values of tumor cytotoxicity. The tumor growth 
model (Eq. (8)) assumes a logistic tumor growth with kg 
representing the tumor growth rate and K the carrying capac-
ity, which can be interpreted as the maximum tumor cell 
number that can be reached. The drug effect (kel) is based 
on a sigmoidal dose–response relationship (Eq. (4)) with 
Emax representing maximum cytotoxicity and TCB represent-
ing the actual drug concentration. A delayed drug effect is 
assumed and described by means of three transit compart-
ments (Eqs. (5)–(6)) with τ describing the transit kinetics 
(27). The model parameters (fixed effects) were estimated 
and the standard errors of the random effects were fixed to 
10% during model fitting. A combined error model was used.

(3)E = E0 + S ∗
(

TCB − TCBthreshold

)

∗ P+

(4)kel = Emax ∗
TCB

EC50 + TCB

(5)dk1∕dt =
1

!

∗ (kel − k1)

(6)dk2∕dt =
1

!

∗ (k1 − k2)

(7)dk3∕dt =
1

!

∗ (k2 − k3)

k1 (0) = k2 (0) = k3 (0) = 0

Trimeric Complex Prediction

The concentration of trimeric complexes formed between 
the tumor target, CD3 and CD3-bispecific antibody, was 
estimated under quasi-equilibrium assumptions and based on 
the equations derived by Schropp and colleagues (28). The 
corresponding equations are summarized in supplemental 
section S3 (Eq. S1-S7). A Python script is provided in order 
to perform the calculation (https:// github. com/ PKPD- coder/ 
time- indep endent_ analy sis_ in_ vitro. git).

RESULTS

In Vitro Dose–Response Analysis

Using a TDCC assay, we assessed the PD effects of cibi-
satamab (CEA-TCB) on MKN45 tumor cell lines express-
ing CEA, co-cultured with human PBMCs in vitro. The in 
vitro kinetics of tumor cell cytotoxicity, cytokine release, 
and T-cell activation induced by cibisatamab are shown in 
Fig. 1 and Figure S2. Cytokine release is shown for IL2 
(Fig. 1a) and IL6 (Fig. 1b), as well as IL10, IFNγ, and TNFα 
(Figure S2). T-cell activation was monitored by measuring 
 CD8+CD25+ T-cells (Fig. 1c). Tumor cell killing was cap-
tured by monitoring the tumor cell count dynamics in the 
absence and presence of the drug (Fig. 1d).

For  all  tested  PD  readouts,  we  observed  a  clear 
dose–response. PD effects increased with increased drug 
concentration. Each readout displayed a maximum response 
at a different time point. Table II summarizes the observed 
maximum response time (tmax) for each readout. IL2 had 
the fastest response, with a maximum release at the first 
observed time point (24 h) at all drug concentrations fol-
lowed by a rapid decline in the presence of constant drug 
exposure. However, T-cell activation increased over time, 
reaching a maximum level of activation  in   CD8+CD25+ 
T-cells at 96 h, when IL2 levels were no longer detectable. 
We observed measurable IL6 released at each time point, 
with peaks occurring between 48 and 96 h depending on 
the drug concentration, followed by a slow decrease in IL6 
concentration. IL10 (Figure S2H) and IFNγ (Figure S2J) 
showed a similar release pattern to IL6, while TNFα (Fig-
ure S2I) showed a similar release pattern to IL2, with a peak 
after 24 h followed by a rapid decrease.

The results of the static dose–response analysis are dis-
played in the insets of Figs. 1a–d showing time-dependent 
 EC50 values observed for various PD readouts. Notably, the 

(8)dTumor∕dt = kg ∗
(

1 −
Tumor

K

)

− k3 ∗ Tumor

https://github.com/PKPD-coder/time-independent_analysis_in_vitro.git
https://github.com/PKPD-coder/time-independent_analysis_in_vitro.git
https://github.com/PKPD-coder/time-independent_analysis_in_vitro.git
https://github.com/PKPD-coder/time-independent_analysis_in_vitro.git
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 EC50 estimates for each readout varied between 3- and 110-
fold across the different time points.

Time‑Independent Quantification of Drug Response

Subsequently, we performed a time-independent, two-step 
in vitro analysis to quantify and compare the dose–response 
on the various PD readouts of the TDCC assays (Fig. 2). 
We illustrate this approach for IL6. First, we compute the 
time-independent PD effect as the area-under-the-effect-
curve (AUCE) with the trapezoidal rule (Fig. 2a and inset 
equation). We then fit a sigmoidal drug effect model to the 
drug concentration-AUCE curve  (Fig. 2b). We overlaid 
this curve with the dose–response of IL6 release (Rmax), 
indicating that there is good agreement between estimated 
exposure–response relationships derived based on AUCE 
and Rmax for IL6. Table II summarizes the estimated  EC50 

values and corresponding Hill coefficients. Figure 2c shows 
the overlay of the derived pharmacological profiles of tumor 
cytotoxicity, T-cell activation, and IL2 and IL6 release. Fur-
thermore, for all tested readouts, the dose–response relation-
ship was similar when the time-independent or the maxi-
mum effect was used (supplemental Figure S3).

In the tested time frame, tumor cytotoxicity (Fig. 2c, red 
curve) was the most sensitive readout for cibisatamab, with 
an  EC50 38-fold lower than T-cell activation and approxi-
mately 145- and 96-fold lower than IL2 and IL6 release, 
respectively. In the tested in vitro system, maximum tumor 
cytotoxicity  (IC99) was reached at a concentration of 155 pM 
cibisatamab, which approximately corresponds to the  EC5 
for IL2 and IL6 release.

Accuracy of AUCE-Based Method to Estimate  EC50

We  compared  the  results  of  the  time-independent 
dose–response analysis to those obtained using a model-
based approach (22). For this exercise, we considered the 
tumor cytotoxicity of  two drugs with  low (cibisatamab, 
KD = 48.6 nM) and high (CEACAM5-TCB, KD = 13.1 nM) 
binding affinities for the same tumor target (CEA). We tested 
the drugs on two different cell lines with low (CX1) and high 
(MKN45) target expression levels allowing for four separate 
comparisons.

We monitored the drugs’ effect on perturbation of tumor 
cell growth dynamics by measuring tumor cell count with 
FACS and used this as a basis to quantify tumor cell cytotox-
icity and drug activity. We derived the model-based potency 
parameters by fitting the model (Eqs. (4)–(5)) to the observed 
tumor cell count data for all four scenarios. Figure 3a shows 
the  EC50 estimates with the corresponding %RSE values 
represented as horizontal error bars. Since the mathemati-
cal model effectively captures the pharmacodynamic effects 

Fig. 1   Time course of 
pharmacodynamic response 
of cibisatamab tested in a 
T-cell-dependent cytotoxicity 
assay on MKN45 tumor cells 
co-cultured with human PBMC 
(E:T 10:1). Dose–response 
over time is shown for a 
IL2 release; b IL6 release; c 
T-cell activation measured as 
CD25 + CD8 + T-cells; and d 
drug-related tumor cell cytotox-
icity. The static  EC50 potency 
estimates for each time point 
are displayed in the inset plots. 
Results are shown as the median 
and range of the replicates

a b

c d

Table  II   Dose–Response  Analysis  of  Cibisatamab  Tested  on 
MKN45, Time of Maximal Response, and Dynamic Potency

Tmax, time of maximal response; %RSE, relative standard error in per-
centage

Parameter Tmax (h) EC50 (pM) 
(%RSE)

Hill coefficient 
(%RSE)

Activated cytotoxic 
T-cells  (CD25+CD8+)

96 596 (13) 0.91 (11)

Tumor cell cytotoxicity 96 15.7 (27) 2.07 (31)
IL2 24 2280 (16) 1.19 (17)
IL6 72 1501 (16) 1.28 (17)
IL10 48 1890 (17) 1.09 (16)
TNFα 24 1437 (19) 0.88 (15)
IFNγ 48 409 (3.0) 1.49 (3.0)
CD4+CD25+ 96 686 (5.0) 1.24 (5.0)
CD4+PD1+ 168 545 (9.0) 1.22 (10)
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over time of all four scenarios and model-misspecification 
was excluded, we regard the estimated  EC50 value as a good 
approximation of the “reference” potency, which can be used 
as a benchmark for the static and time-independent analysis. 
The estimated parameters and %RSE values are summarized 
in supplemental table S1. The model fit and observed data 
are shown in Figure S4.

Finally, we assessed the accuracy of the AUCE-based 
analysis and compared the corresponding  EC50 values from 
all four tested scenarios to those estimated by model fitting 
(Fig. 3a). All four  EC50 values are at the line of identity, sug-
gesting good agreement between the AUCE-based potency 
values and the model-derived method. The same method 
was applied to assess the accuracy of the static approach 
considering all four time points (Fig. 3b). In three out of the 
four scenarios tested, the variability of the potency estimates 
between the time points spanned multiple orders of magni-
tude; 25% of values deviated more than fivefold from the 
model-based estimate.

Time Course Analysis Using Transfected Cell Lines

As a next step, we tested an in vitro image-based TDCC 
kinetic assay that also incorporated cytokine kinetic pro-
filing as a less labor-intensive alternative to flow cytom-
etry-based methods. We measured tumor cell cytotoxicity 
via live-cell imaging (incuCyte), which enables real-time 
visualization of viable tumor cells transfected with a red 

Fig. 2   Time-independent 
analysis workflow example for 
cibisatamab. a Integration with 
trapezoidal interpolation (inset 
equation) of dose–response 
curves for IL6 release over 
time yields individual area-
under-the-effect-curve (AUCE; 
shaded areas) for each TCB 
concentration. b Overlay of 
dose–response curves for IL6 
release based on AUCE (blue 
circles) or maximum response 
(Rmax, orange triangle). c Time-
independent dose–response 
comparison between tumor cell 
cytotoxicity (red), T-cell activa-
tion (green), IL2 (blue), and IL6 
(orange) release

Fig. 3   Comparison  of  tumor  cell-killing  potency   (EC50)  of  cibisa-
tamab  and CEACAM-TCB,  tested  on CX1  and MKN45  tumor  cell 
lines derived by modeling (displayed on the x-axis; %RSE are shown 
as  horizontal  error  bars):  a  time-independent   EC50  derived  from 
AUCE  (displayed  on  the  y-axis;  %RSE  is  shown  as  vertical  error 
bars) or b static  EC50 per given time point (displayed on the y-axis; % 
RSE is shown as vertical error bars)
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fluorescent protein (RFP) with fluorescence microscopy 
at standard cell culture conditions (humidified, 37 °C, 5% 
 CO2). We tested two different CD3-bispecific drugs with 
high (KD = 2.2 nM) and low (KD = 60 nM) binding avidity 
for FolR1 (FolR1-TCBs) and assessed their pharmacologi-
cal activity on RFP-transfected HEK cells with low (20,000 
FolR1/cell) and high (505,000 FolR1/cell) expression lev-
els co-cultured with PBMCs from a healthy donor. Figure 4 
shows the time course profiles of tumor cell cytotoxicity 
reported as percent viable cells. In all tested scenarios, there 
was a clear dose–response. We observed maximum tumor 
cell cytotoxicity in all cases except when the low-affinity 
FolR1-TCB was incubated with the low FolR1-expressing 
cell line, which did not result in either measurable tumor 
cell cytotoxicity or cytokine release. In all four cases, we 
observed an early decrease in viability occurring over the 
first 24 h followed by a recovery and regrowth of the tumor 
cells except for the higher concentrations. The time course 
of different readouts as well as the time that it takes to reach 
the maximal effect (Tmax) varies across readouts and test 
systems (Fig. 1, Table II, Supplemental table S2). As a con-
sequence, the estimated potencies may also vary across the 

different time points, as illustrated for TNFɑ (Supplemental 
figure S5).

The time span between the decrease in viability and the 
recovery was different for each scenario. The longest time to 
regrowth was observed for the high-affinity FolR1-TCB on a 
high expression cell line. In addition, we quantified the dose-
responses of all four scenarios with the time-independent 
analysis of cytokine release. These results are summarized 
in Table III and displayed in Fig. 5.

As an illustrative example of how to assess a molecule’s 
therapeutic index, we compared the dose-responses of effi-
cacy and safety readouts of the high- and low-affinity vari-
ant of FolR1-TCB on high and low target-expressing cells. 
Here, we again used tumor cell cytotoxicity as a readout 
for efficacy. For safety, we used IL6 release, assuming that, 
in this case, IL6 release is a relevant safety marker of on-
target toxicity. When comparing the dose–response on the 
high expression cell line (Fig. 5a), both affinity variants have 
a similar potency for tumor lysis whereas the high-affinity 
compound has an eightfold higher potency for IL6 release 
associated with an approximately twofold higher maximum 
release (higher Emax).

Fig. 4   Time course profiles of 
tumor cells treated with high (a, 
c) and low (b, d) affinity FolR1-
TCB on HEK transduced cell 
lines with high (a, b) and low 
(c, d) FolR1 expression. For 
better visualization of the higher 
doses, the y-axis is truncated at 
200% viability. The complete 
plots can be found in Figure S6. 
The profiles of cytokine release 
are summarized in Figure S7

Table  III   AUCE Dose–Response Analysis  of  FolR1-TCB Affinity Variants  Tested  on  Transfected  HEK  Cells  with  High  and  Low  FolR1 
Expression

N.I., not identifiable; na, not applicable

Test system Tumor cell cytotoxicity 
 EC50 (pM) (%RSE)

Hill (%RSE) IL6 release,  EC50 
(pM) (%RSE)

Hill (%RSE)

Low-affinity FolR1-TCB, low target expression N.I N.I N.I N.I
High-affinity FolR1-TCB, low target expression 30.1 (63) 1 (57) N.I N.I
Low-affinity FolR1-TCB, high target expression 0.42 (15) 1.3 (35) 1026 (36) 0.63 (18)
High-affinity FolR1-TCB, high target expression 0.28 (43) 0.35 (22) 116 (26) 1.3 (23)
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As a second illustrative example of how to assess the 
selectivity of a compound between high and  low  target 
expression, we compared the changes in pharmacological 
activity of both FolR1-TCB variants based on target expres-
sion (Fig. 5b and c). The high-affinity variant  (Fig. 5b) 
induced maximal tumor lysis in both cell lines, whereas the 
low-affinity variant (Fig. 5c) showed selective tumor cell 
cytotoxicity with no effects on the low-expression cell line 
and maximal cytotoxicity in the high expression cell line.

More  specifically,  the  high-affinity FolR1-TCB was 
approximately  100-fold more  potent  towards  the  high 
expression tumor cell line compared with the low-expres-
sion line (Fig. 5b). Furthermore, a 40-fold higher maximum 
IL6 response was observed for the high expression cell line. 
For the low-expression cell line, a sigmoidal model could 
not be fitted. A threshold concentration for IL6 release was 
observed to be 500 pM. The dose–response analysis of low-
affinity FolR1-TCB targeting high- and low-expression cells 
(Fig. 5c) showed that there was only minimal tumor lysis 
and no IL6 release in the low-expression cell line, suggest-
ing that low-expression tissues would be minimally targeted 
by the low-affinity variant.

In addition, we calculated the theoretical trimeric com-
plexes at the corresponding  EC50 (table S3) of both binders 
in the high expression cell line (Eq. S1-S7, supplemental 
section S3). As a result, a 20-fold higher trimeric complex 
concentration is estimated for the high-affinity binder.

Retrospective MABEL Dose Prediction for Cibisatamab

In order to illustrate the value of the time-independent PK/
PD analysis, we conducted a retrospective dose prediction 
based on the dataset and results for cibisatamab presented in 
this manuscript (Fig. 2, Table II). The retrospective MABEL 
dose was based on  PA30% of IL6 release in the high CEA-
expression cell line (MKN45), which was the same cell line 
as previously used to derive the FIH starting dose (19). The 
 PA30% of IL6 release was calculated (Eq. (2)), with the esti-
mated  EC50 and the corresponding Hill coefficient (Table II). 
The MABEL dose is predicted to result in a Cmax (maximal 
serum concentration) that corresponds to this pharmaco-
logical readout. Assuming that the dose of cibisatamab dis-
solves initially in the human serum with a typical volume 
of 3000 mL (29), a predicted MABEL dose of 450 μg is 
obtained (Table IV).

DISCUSSION

In the present study, we propose a simple yet comprehen-
sive method for accurately quantifying the pharmacological 
activity of CD3-bispecific antibodies. The cascade of events 

Fig. 5   Time-independent  dose-responses  of  high-  and  low-affinity 
FolR1-TCB  variants  tested  in  high-  and  low-expression  cell  lines. 
Dose–response of tumor cell cytotoxicity is expressed as the cumula-
tive effect of tumor cell viability normalized to the control group (% 
of max AUCE, orange symbols, left y-axis) and dose–response of IL6 
release is shown as the maximum response (Rmax, blue symbols, right 
y-axis).  Symbols  have  been  overlaid  with  the  sigmoidal  model  fit 
of  the data  (solid/dotted  lines). a Head-to-head comparison of high-
affinity FolR1-TCB (solid circles) and low-affinity FolR1-TCB (open 
circles)  tested on  a high-expressing  tumor  cell  line. b Head-to-head 
comparison  of  dose–response  with  high-affinity  FolR1-TCB  tested 
on a high (solid circles) and low (open circles) expressing cell line. c 
Head-to-head comparison of dose–response with low-affinity FolR1-
TCB tested on a high (solid circles) and low (open circles) expressing 
cell line



The AAPS Journal                       (2022)  24:7       
Vol(0123456789)

Page 9 of 13 7

that lead to drug-induced cytotoxicity and cytokine release 
(11–13) can be investigated in vitro as a basis for determin-
ing the MABEL dose for FIH clinical trials (17). In a recent 
FDA guidance (30) on the development of bispecific anti-
bodies with agonistic properties, reference is made to the 
FDA’s retrospective dose prediction of CD3-bispecifics (17) 
using in vitro assays. These are often done at a single time 
point, which can lead to a variation in the apparent potency 
of a given compound because of differences in incubation 
time and time point selection bias (23). In the present work, 
we found that this variation could span several orders of 
magnitude (Fig. 3b). We also showed that this bias could 
be circumvented by estimating the drug’s potency based 
on the dynamic effect over time, a time-independent met-
ric, which is computed as the area-under-the-effect-curve. 
We demonstrated a reliable and accurate potency estimate 
using this method by cross-validating it with a model-based 
estimation.

In line with earlier observations (14–16), we found that 
the kinetics of the various pharmacodynamic processes trig-
gered by CD3-bispecifics differ, such as tumor cell killing, 
T cell activation, and cytokine release. Based on these find-
ings, we conclude that it is impossible to find a single opti-
mal time point for all readouts. Instead, we suggest monitor-
ing the various PD readouts over time and comparing these 
with their respective AUCE-based potency value in order 
to gain a more holistic understanding of the drug’s pharma-
cological activity.

As observed in the presented datasets with cibisatamab, 
CEACAM5-TCB, and high- and low-affinity FolR1-TCBs, 
the time it takes for the PD readouts to reach their peak 
effect (Tmax) varies across different readouts and test systems 
(supplemental table S2) and is often not known a priori. We 
therefore propose a tailored approach to enable an integrated 
PK/PD analysis of readouts that occur on different time-
scales (Fig. 6) and show it can be applied in drug discovery 
and development. For drug candidate selection, there are 
two options proposed. This is either done based on a single 
PD readout (e.g., potency on tumor cytotoxicity) and with a 
static analysis or based on the anticipated therapeutic index, 
in which case, time course analysis of the corresponding 
safety and efficacy readouts is recommended (Fig. 6a).

The exposure–response relationship of readouts, includ-
ing potency, steepness of response, and maximal effect is 
expected to differ between test systems. Prerequisites for 
a thorough pharmacological assessment are the selection 
of the appropriate test systems as well as the appropriate 
design of the assay. This will enable the investigators to 
derive integrated quantitative insights and to select a rel-
evant PD readout for the MABEL-based dose prediction. 
Together with information on the target biology in a healthy 
and diseased context as well as other supporting data, a time-
independent in vitro analysis could provide a more rational 

basis to select and justify relevant readouts for a starting 
dose selection with minimal pharmacological activity and 
lower risk for adverse effects. This justification needs to be 
done on a case-by-case basis and will be supported by the 
integrated quantitative analysis. An important point to con-
sider for the dose–response analysis is that not every con-
centration-dependent increase of effect can be captured with 
a sigmoidal Emax model. For those cases, we suggest estimat-
ing a threshold concentration at which minimal effects are 
expected (26). Especially in the context of adverse effects, 
this can be utilized to calculate the anticipated exposure 
margins (20) and to potentially give guidance on the dose-
escalation scheme.

In order to demonstrate its utility in the context of FIH 
dose selection, we have conducted a retrospective MABEL 
prediction for cibisatamab and compared it to the clinical 
data (31). The actual MABEL starting dose was originally 
determined as the  EC20 of tumor cytotoxicity with a static 
analysis (19). Here, we evaluated the exposure–response 
of efficacy (cytotoxicity) versus safety (IL6 release) with 
the integrated analysis in the same high-expressing cell line 
(MKN45) as previously utilized (19) to ensure the safety of 
patients with high tumor target expression.

The proposed analysis confirms that for cibisatamab, 
tumor cell cytotoxicity was the most sensitive readout as 
defined on the estimated potency value  (EC50). Furthermore, 
it is suggested that cibisatamab has a favorable therapeutic 
index when comparing IL6 release to cytotoxicity in the 
MKN45 cell line (Fig. 2c). Based on this integrated in vitro 
PK/PD assessment, a  PA30% on IL6 release is selected as a 
basis for the MABEL dose of 450 μg. It was ninefold higher 
than the original starting dose of 50 μg and—when compar-
ing it to clinical data—with an acceptable safety profile. This 
was 50-fold below the dose (2.5 mg) at which pharmacologi-
cal activity was observed in clinics and ~ 80-fold below the 
reported MTD of 400 mg (31). In summary, the proposed 
MABEL approach is safe and may reduce the number of 
patients exposed at subtherapeutic dose levels during dose 
escalation.

In order to tailor and simplify this approach, we proposed 
a workflow where the first detailed time course analysis of 
various readouts is conducted with only one or a few PBMC 
donors in order to assess the potency and maximal response 
for each readout in a time-independent fashion (Fig. 6b). 
For quantification of the donor-to-donor variability and to 
reduce the overall work package, the PD endpoint of inter-
est can subsequently be tested with multiple PBMC donors 
at a single time point. With such a stepwise approach, the 
process can be efficiently adapted and tailored based on the 
specific needs and questions for a given project.

This is applicable in early CD3-bispecific discovery and 
development in order to select favorable tumor-selective 
compounds tailored to the target of interest, to explore the 
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therapeutic index of different molecules, or to define and 
assess the ideal compound properties for a given therapeutic 
target (4, 5, 32). Most tumor targets considered for thera-
peutic applications are overexpressed in tumor tissue and 
exhibit lower target expression levels in most healthy tis-
sues, which allows for selective targeting of tumor cells with 
limited cytotoxicity in normal tissue (33). In these cases, the 
goal is to identify CD3-bispecifics with favorable compound 
properties that selectively kill tumor cells while exhibiting 
limited or no cytotoxicity to non-targeted tissue. To illustrate 
this, two compounds with different binding affinities for the 
same epitope on a both high- and low-expression target cell 
lines were compared with regards to their pharmacological 
profiles. Here, we highlight the utility of real-time imag-
ing systems such as incuCyte or real-time cellular imped-
ance like xCELLigence (34) that generate richer datasets 
and are less labor- and time-intensive than analogous work-
flows that use flow cytometry (35) in early drug discovery. 
The generation of time course data is especially important 
since cytotoxicity kinetics may differ between cell lines as 
we observe in the present study and has been reported for 
TCR-like CD3-bispecifics (36). In addition, the presented 
case example shows the value of a data-driven approach for 
compound selection. Here, a binder with higher affinity did 
not result in higher potency on tumor cytotoxicity as one 
may have anticipated based on in silico prediction that relate 
the formation of trimeric complexes to cytotoxicity (21, 37). 
The time-independent analysis of the high- and low-affinity 
FolR1-TCB revealed similar potency  (EC50) values, but a 
steeper dose–response curve and a more favorable therapeu-
tic index for the low-affinity binder. Further investigations 
are needed to better understand the various factors that trig-
ger cytotoxicity beyond the formation of trimeric complexes 
(25).

Time-independent  analysis  enables  the  meaning-
ful quantitative characterization of in vitro experiments, 
provided that the experimental design is appropriate. An 
informative dose range includes doses that span from mini-
mum to full effect and a tailored observation period that 

captures the time course of the PD readouts of interest. 
However, these TDCC assays are dependent on the experi-
mental conditions, such as the source of human PBMCs 
(e.g., isolated PBMCs, whole blood, frozen/fresh PBMCs, 
purified T cells), the use of adherent or soluble cancer cell 
lines, the absolute number as well as the concentration 
of individual cell types, the PBMC donor-to-donor vari-
ability, and which can hamper robust quantification of the 
pharmacological activity. Another important consideration 
to in vitro experiments is the effector-to-target (E:T) cell 
ratio. The physiological effector-to-tumor (E:T) ratio in 
patients’ tumors is not always known, highly variable, and 
will depend on the site of action (i.e., blood versus solid 
tumors). For illustration, the anticipated E:T ratio for solid 
tumors is reported with 1:150 (21, 38, 39). However, it 
has been discussed that—for in vitro assays—higher E:T 
ratios (e.g., 2:1, 5:1, 10:1) are needed to compensate for 
the short assay duration of only a few days (34). While 
the time course PK/PD approach is certainly an improve-
ment over the static assessment, it has limitations. It does 
not provide a potency estimate independent of all of these 
assay conditions and it does not allow project the outcome 
of other scenarios such as predicting tumor cell cytotoxic-
ity as a function of target expression (25, 37). Instead, it is 
suggested to use a model-based approach (as proposed by 
Chen et al. (15), Betts et al. (21), Jiang et al. (37)) to get 
a potency estimate that can possibly predict the response 
with varying E:T ratios or to predict other untested sce-
narios. However, this would require time course data, and 
therefore, the proposed experimental design is suitable for 
complementary analysis.

The proposed method of time-independent analysis can 
be seen as complementary to PK/PD modeling in the early 
development of CD3-bispecifics. It provides a pragmatic 
means of comparing efficacy and safety data without the 
risk of time bias. Time-independent therapeutic indices may 
prove to be an important asset when comparing compounds. 
In order to facilitate this analysis, an automated workflow 
has  been  developed  that  generates  graphic  and  textual 

Table IV   Comparison of a 
Retrospective Dose Calculation 
Based on Time-Independent 
Experiments and the Actual 
First-in-Human Dose Applied 
in Clinics

* Data presented  in Fig. 1  and Table  II;  **Davies  et  al.  (29),  ***reported FIH  starting dose  (Dudal  et  al. 
[19]), ****back-calculated from EC20, using Eq. (2) and assuming a Hill coefficient of 1

Parameter Retrospective dose prediction Applied FIH dose

Definition of MABEL Cmax corresponding to PA30, IL6 
release in MKN45*

Cmax corresponding to EC20 
of cytotox in MKN45 at 
48  h***

EC20 (ng/mL) 100 46***

PA30 (ng/ml) 150 80****

Assumed human plasma Vol-
ume (mL)**

3000 3000

MABEL dose (μg) 450 50***
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outputs. This allows scientists to analyze, plot, and evalu-
ate the data. The framework is intended to help scientists 
conduct a holistic analysis of their data instead of focusing 
on a single readout or experimental condition. The results of 
this automated analysis should be examined, and, if needed, 
further analysis can be conducted to address any remaining 
questions.

CONCLUSIONS

Our time-independent PK/PD analysis enables robust quan-
tification of the pharmacological activity of CD3-bispecifics 
and provides more accurate potency estimates than tradition-
ally applied in vitro methods. We developed a leaner and 

less labor-intensive experimental protocol for the classical 
T-cell-mediated cytotoxicity assay for monitoring the time 
course of tumor cell cytotoxicity and cytokine release with 
real-time imaging. We also created a semi-automated work-
flow to quantify the pharmacological response. Improved in 
vitro assays and analysis methods may increase their trans-
lational relevance and pave the way for less animal experi-
mentation. The proposed method  enables  head-to-head 
comparison of drug candidates based on their anticipated 
therapeutic index and may improve the identification of rel-
evant FIH dose estimations of CD3-bispecifics.
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Cytokine Release Syndrome By T-cell–Redirecting
Therapies: Can We Predict and Modulate Patient Risk?
Arthur J. Van De Vyver1,2, Estelle Marrer-Berger1, Ken Wang1, Thorsten Lehr2, and Antje-Christine Walz1

ABSTRACT
◥

T-cell–redirecting therapies are promising new therapeutic
options in the field of cancer immunotherapy, but the development
of these modalities is challenging. A commonly observed adverse
event in patients treated with T-cell–redirecting therapies is cyto-
kine release syndrome (CRS). Its clinical manifestation is a burden
on patients, and continues to be a big hurdle in the clinical
development of this class of therapeutics. We review different
T-cell–redirecting therapies, discuss key factors related to cytokine
release and potentially leading to CRS, and present clinical miti-
gation strategies applied for those modalities. We propose to dissect
those risk factors into drug-target-disease–related factors and indi-
vidual patient risk factors. Aiming to optimize the therapeutic
intervention of these modalities, we illustrate how the knowledge
on drug-target-disease–related factors, such as target expression,

binding affinity, and target accessibility, can be leveraged in a
model-based framework and highlight with case examples how
modeling and simulation is applied to guide drug discovery and
development. We draw attention to the current gaps in predicting
the individual patient’s risk towards a high-grade CRS, which
requires further considerations of risk factors related, but not
limited to, the patient’s demographics, genetics, underlying
pathologies, treatment history, and environmental exposures.
The drug-target-disease–related factors together with the indi-
vidual patient’s risk factors can be regarded as the patient’s
propensity for developing CRS in response to therapy. As an
outlook, we suggest implementing a risk scoring system combined
with mechanistic modeling to enable the prediction of an indi-
vidual patient’s risk of CRS for a given therapeutic intervention.

Introduction
The advent of immunotherapies has sparked a revolution in cancer

patients’ treatment and care over the last couple of decades. By
harnessing the patient’s immune system to fight cancer, we have
witnessed some promising outcomes where patients experienced a
long-term or even permanent remission from cancers that until then
were thought to be incurable, and sometimes even untreatable (1). At
an ever-increasing pace, pharmaceutical companies and academic
institutions are developing new and more powerful immunotherapies
that aim to resolve problems encountered with previous generation
therapies (2). T-cell bispecific antibodies and antibody fragments
(CD3-bispecifics), chimeric antigen receptor (CAR)-T cells, and engi-
neered TCR-T cells belong to the T-cell–redirecting therapies. Only a
few of themalready reached themarket, and almost all are indicated for
hematologic malignancies (3–9).

Some of these T-cell–redirecting therapies have lived up to the
promise by providing unpreceded high response rates in patients.
However, the other side of the coin for this class of therapies is the risk
for cytokine release syndrome (CRS), which is the most frequent
serious adverse event associated with these therapies. CRS generally
occurs within hours to days after treatment starts; it is largely reversible
but also represents a major cause of morbidity (10–14).

CRS develops when extensive on-target related T-cell engagement
and subsequent activation of bystander immune cells and nonimmune

cells, such as endothelial cells, lead to a massive release of cytokines,
which in turn induce tissue damage, capillary leakage, neurologic
events, and multiorgan failure (10, 15). The American Society for
Transplantation and Cellular Therapy (ASTCT) defines CRS as “a
supraphysiologic response following any immune therapy that results
in the activation or engagement of endogenous or infused T cells and/
or other immune effector cells. Symptoms can be progressive, must
include fever at the onset, and may include hypotension, capillary leak
(hypoxia) and end organ dysfunction (16).”Building on this, a recently
published white paper on CRS provides core principles for defining
CRS. It considers the therapeutic modality, symptom manifestation,
timing, and response to intervention (17).

The goal of our review is to examine the key factors influencing
cytokine release, potentially leading to CRS, triggered by T-cell–
redirecting therapies. We discuss the utility of computational models
to guide target selection, explore desirable compound properties, and
influence clinical development. Therefore, our findings should gen-
erate new insights into how to improve the therapeutic benefit–risk
profile of T-cell–redirecting therapies by minimizing inflammatory
cytokine release and mitigating CRS. Figure 1 summarizes the key
questions in the discovery and development of novel T-cell–
redirecting therapies and illustrates the major factors affecting cyto-
kine release and the risk for CRS formation. Table 1 summarizes our
results of the literature research on factors that may influence the risk
for CRS toxicity as reported in vitro, in vivo, and in the clinics. Table 2
provides an overview of all T-cell engagers that were considered in this
review. Amore extensive overview of T-cell–redirecting therapies that
are under development can be found in refs. 8, 18, and 19. Modeling
approaches can be used to quantitatively characterize experimental or
clinical data in order to better understand the pharmacokinetics (PK)
and pharmacodynamics (PD) of a drug. Model-informed drug devel-
opment (MID3) is becoming increasingly widespread among phar-
maceutical companies and regulatory agencies (20, 21). We illustrate
how the knowledge on drug-target-disease–related factors can be
leveraged in a model-based framework to improve these modalities
and to optimize therapeutic treatment (Fig. 2).We summarize various
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Figure 1.
The successful development of safe and efficacious cancer immunotherapies requires many considerations. There are pivotal questions during the development of
T-cell–redirecting therapies and good understanding of these questions is key from the discovery phase up until clinical practice. Drug-target-disease–related
factors, such as binding affinity, target expression, and target accessibility that may affect cytokine release need to be identified. In addition, individual risk factors
thatmayput the patients at risk for developing cytokine release syndromeare key considerations. Both are important to establish a benefit–risk profile for the patient
and allow optimizing the treatment strategy. Kd, dissociation constant; TCB, T-cell bispecific antibody. Adapted from an image created with BioRender.com.
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Table 1. Factors that may trigger cytokine release and may increase the risk for CRS as reported in vitro, in vivo, and in the clinics.

Factors Dependency Observed for In vitro In vivo In patients References

Tumor antigen affinity Strong CD3-bispecific, CAR-T X X X 30, 43, 47
CD3 affinity Strong CD3-bispecific X X 15, 42, 44, 45
Tumor burden Strong CD3-bispecific, CAR-T X X X 31–33, 35, 36
Expression level Strong CD3-bispecific, CAR-T X X X 24–26, 30, 34
Target accessibility Mediuma CD3-bispecific, CAR-T X X 39, 53, 59, 94
Indication Mediuma CD3-bispecific, CAR-T X 60
Cell types Medium ACT X X 65, 68, 84, 99
Lymphodepletion Strong ACT X 31, 36, 65, 99

Abbreviation: ACT, adoptive cell therapy, which includes both CAR and autologous T cells.
aDue to limited information. Corresponding references are provided for T-cell–redirecting therapies.

Table 2. Overviewof T-cell–redirecting therapies discussed in this review, including applicable brand names, generic and other relevant
names, tumor target specificity, developmental status, and other relevant information.

Therapeutic modality
Brand
name Generic/other namesa

Tumor target
specificity

Developmental status and
additional remarks References

Adoptive cell therapies
CD19-CAR-T Kymriah tisagenlecleucel (CTL019) CD19 Marketed

KdCD19 ¼ 0.32 nmol/L
47, 74

Yescarta axicabtagene ciloleucel
(KTA-C19)

Marketed 9

N/A CAT19 Clinical development
"50-fold higher dissociation
rate of CD19-binder than Kymriah.

47

HER2-CAR-T N/A N/A HER2 Nonclinical development 46
EGFR-CAR-T N/A N/A EGFR Nonclinical development 46
CAIX-CAR-T N/A N/A CAIX Clinical development

Clinical trial identifier: DDHK97–29/
P00.0040C

108

CD22-CAR-T N/A M971BBz CD22 Clinical development 35
BCMA-CAR-T N/A 1. idecabtagene vicleucel

2. ciltacabtagene autoleucel
BCMA Clinical development

Idecabtagene vicleucel received FDA
approval for the treatment of MM in
03/2021

36

GD2-CAR-T N/A 14.2GA-CAR GD2 Nonclinical development 28
CD3-bispecific antibodies

EpCAMxCD3-
bispecific

Removab catumaxomab EpCAM Withdrawn
First approved
CD3-bispecific antibody (2009)

Market withdrawal in 2017

3

CD19-BiTE Blincyto blinatumomab CD19 Marketed
BiTE

92

P-cadherin-
X-CD3-bispecific

N/A LP-DART (PF-06671008) P-cadherin Clinical development
DART

48

CD20xCD3-
bispecific

N/A mosunetuzumab (BTCT4465A,
RG7828)

CD20 Clinical development 95

HER2xCD3-
bispecific

N/A HER2 –TDB (BTRC4017A, RG61942) HER2 Clinical development
Affinity variants from trastuzumab
(clone 4D5) were used as the HER2
binding arm

30

CEA-TCB N/A cibisatamab (RG-7802,
RO-6958688)

CEA Clinical development
Format contains 2 CEA-binders, 1
CD3-binder

26

Abbreviations: BCMA, B-cell maturation antigen; BiTE: Bispecific T-cell Engager; CAIX, carbonic anhydrase IX; CD, cluster of differentiation; CEA, carcinoembryonic
antigen; DART, Dual-Affinity Re-Targeting; EGFR, epidermal growth factor receptor; EpCAM, epithelial cell adhesion molecule; GD2, disialioganglioside; HER2,
epidermal growth factor receptor 2; Kd, equilibrium dissociation constant; MM, multiple myeloma.
aAll nonbrand names that are affiliated with the therapy, to facilitate literature and database search.
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Figure 2.
Illustration on how modeling and simulation combined with experimentation can be utilized to guide discovery and development of T-cell–redirecting therapies.
Model codes are provided in an online repository (https://github.com/PKPD-coder/Modeling_Cytokine_Release.git) A, The goal in early drug discovery is to select
drug candidates with favorable risk–benefit profiles using a model-based framework. Here, nonclinical experiments are designed and conducted to enable
assessment of dose responses formarkers of efficacy (e.g., tumor killing) and safety (e.g., cytokine release) and a therapeutic index is derived on the basis of the ratio
of EC50safety/EC50efficacy. Furthermore, longitudinal dose-response data are suited for the development of mechanistic models suited to explore the optimal
compound properties in silico, which then can be tested and confirmed experimentally. Quantitative approaches can be used tomaximize the information yield from
experiments and to design new experiments. They are useful to explore drug effects under certain conditions and anticipate their therapeutic index. B–E, Simulation
studies from published computational models that are discussed in the main text (27, 39, 97) are presented. B, The extent of T-cell activation in vitro depends on the
target density (green, high; yellow, intermediate; red, low) and binding affinity as predicted by Van De Vyver and colleagues (27). The arrows show the potency shift
caused by a 4-fold decrease in binding affinity to the tumor target. C, Prediction of local PD effects as a function of systemic CAR-T concentration based on a
physiologically based PK/PD model as proposed by Singh and colleagues (39). Predicted cytokine release in tumor (xenograft mice) upon CAR-T-cell treatment
assuming varying degrees of tumor accessibility. D and E, in silico exploration of cytokine release with step-up dosing using the model from Chen and
colleagues (97). D, Simulated IL6 release upon step-up dosing [dose A at time 0, dose B (5xA) at day 7] of a CD3-bispecific T-cell engager in a patient with a
hematologic tumor. E, Relative drop in maximal IL6 release after stepped dosing with the compound computed on the basis of simulation shown in D. Adapted
from an image created with BioRender.com.
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strategies to mitigate CRS and improve patient safety. Whereas
the cytokine release coming from the drug-target-disease inter-
play can be computationally modeled, each patient will have a
different propensity for developing CRS in response to this
cytokine excursion. This highlights the need to distinguish
between cytokine release and CRS. For instance, an IL6 level of
200 pg/mL postadministration of a CD3-bispecific can be asso-
ciated with a CRS grade 3 in one patient, while being asymp-
tomatic in another patient (22, 23), clearly pointing to further

individual patient risk to be included in the equation in order to
predict who will be at risk of developing a high-grade CRS.
Therefore, we discuss patient characteristics that may put them
at higher risk for developing severe CRS. As an outlook, we
propose to fill this gap by providing a quantitative framework that
combines mechanistic modeling for the given therapeutic treatment
with a risk scoring method that integrates all relevant patient/
individual specific risk factors to predict the probability of CRS
for each patient (Fig. 3).
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Figure 3.
Conceptual framework to predict the probability of severe CRS for the individual patient based on mechanistic modeling of a given therapeutic intervention and on
individual patient risk scores derived from real-world data considering a large number of therapeutic interventions. A, For a given therapeutic intervention, cytokine
release profiles can be predicted usingmechanistic models built for the drug of interest. For illustration, the cytokine release of two patientswith high and low tumor
burden after step-updosing is simulated.B, Individual patient risk factors for severeCRS formation, e.g., demographics, age, comorbidities, and lifestyle, are captured
in risk scoring tables derived from real-world data considering a broad range of therapeutic interventions for which CRS has been clinically observed. C, Prediction
of the probability of CRS for the individual patients. Here, we illustrated the use-cases of 4 hypothetical patients with ALL that are treated with a hypothetical
CD3-bispecific and simulated the respective probability of CRS for these individual patients. It was assumed that patients 1 and 3 have a low tumor burden
whereas patients 2 and 4 have a high tumor burden. Regarding the individual risk profile, patients 1 and 2 have a low, and patients 3 and 4 have a high risk
profile. Adapted from an image created with BioRender.com.
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Drug–target Interaction,
Pharmacologic Response, and Disease
Context
Target expression and cytokine release

T-cell–redirecting therapies rely on the interaction with tumor
cells to convey theirmechanism of action. The extent of which depends
on the density of target antigen on the tumor cell surface (Fig. 1).
Various nonclinical in vitro and in vivo studies showed a strong
correlation between target expression and the pharmacologic response
of CD3-bispecifics (24–27) as well as of CAR-T-cell therapy (28, 29).

In addition, most targets are not restricted to tumor tissue and can
be found on healthy tissues. The selectivity of the therapy will,
therefore, depend on differences concerning location and target
expression level between tumor and healthy tissues (30).

The available target pool is defined by the target density and number
of tumor cells. A dependency between tumor load and CRS has been
described. Blinatumomab, a CD3-bispecific targeting CD19 on B cells,
propagated a higher CRS risk in patients with acute lymphoblastic
leukemia (ALL) with high leukemic burden (31). A correlation
between disease burden and the level of cytokine excursion and CRS
severity was reported in patients treated with CD19-CAR-T (32–34) as
well as with CD22-CAR-T (35) and BCMA-CAR-T (36) therapies.

The complex relationship between target expression and cytokine
release can be investigated with systems pharmacology models.
For instance, models that incorporate immune synapse formation by
CD3-bispecifics are well suited to capture changes in target expres-
sion (37, 38). Van De Vyver and colleagues expanded on these
models by making activated T cells rather than immune synapses
the driver for tumor cell killing. They concluded that T-cell
activation depends on both synapse formation and on the target
expression level on the tumor cell surface. Such a model is useful to
predict tumor killing in function of target expression (Fig. 2B) or
define the threshold to elicit tumor killing (27). Singh and collea-
gues developed a systems model to capture the effect of target
expression on the activity of HER2- and EGFR-CAR-T cells
in vitro (39). The release of IFNg , CAR-T expansion, and tumor
lysis increased with increased target density.

Tumor selectivity could be improved with “pro-drug” like engi-
neering approaches for CD3-bispecifics. The goal is to administer the
CD3-bispecific compound in its pharmacologically inactive form and
that will be converted proteolytically or biochemically into its phar-
macologically active form in the tumor microenvironment (40, 41).

Binding affinity and cytokine release
For T-cell–redirecting therapies, the binding affinity to the tumor

target, and in addition for CD3-bispecifics, the binding affinity to the T
cell, are important properties (Fig. 1). Binding affinity has implications
on their activity (42–45). Understanding this relationship is para-
mount to select optimal compound properties.

In a retrospective FDA analysis, Saber and colleagues looked into
the binding affinities of multiple CD3-bispecifics that undergo clinical
testing. Among those, the most common toxicity was CRS. They
reported a trend of better tolerability among the compounds when
affinity to CD3 was lower than to the tumor target, even though they
did not mention whether there was any link with CRS (15).

Several studies explored the relationship of binding affinity to the
tumor target and CD3. Preclinical in vivo studies with HER2-CD3-
bispecific antibodies (30) showed that a high CD3-affinity variant as
well as higher HER2-binding affinity variants had a lower benefit/risk
profile.While higher inflammatory cytokine release was observed with

the higher binding affinity molecules, there was no additional gain in
antitumor effects. Similar results have been observed with HER2-
CAR-T cells (46). A high-affinity variant induced tumor regression for
a longer time by preventing regrowth compared to the low-affinity
variant, but the high-affinity variant also induced maximal cytokine
release in vitro even at lowHER2 copy numbers, suggesting itmay have
a worse benefit/risk profile.

On the basis of these data, Singh and colleagues built a systems
pharmacology model to investigate the impact of target binding
affinity of CAR-T cells (39). They could make predictions about other
CAR-T therapies, explore the impact of varying binding affinity on
tumor lysis and cytokine release, and enable translation from in vitro
data to in vivo predictions. Ghorashian and colleagues developed a new
CD19-CAR-T therapy, called CAT19. The CAR-construct developed
for CAT19 binds with a low affinity to an epitope on CD19, largely
similar to the epitope bound by the approved CD19-CAR-T therapy
Kymriah (tisagenlecleucel; ref. 47). As a result, CAT19 exhibited
superior proliferative and cytotoxic potential in vitro and in vivo, with
lower cytokine release compared with Kymriah. In addition, good
antitumor responses and a favorable safety profile without any severe
CRSwas observed in pediatric patients withALL. This finding suggests
that cytokine release is not required to induce clinical efficacy.

In silico simulations facilitate the exploration of suitable compound
properties. Systems pharmacology models have been developed to
identify the most promising drug candidate based on their compound
properties, and even for dose selection. Figure 2A gives an illustrative
example of how dose-response analyses and in silicomodels can aid in
selecting optimal compound properties for a given target (Fig. 2A;
refs. 37, 38, 48). Jiang and colleagues developed amechanistic model to
describe synapse formation and subsequent tumor killing in vitrowith
the aim to select the desired compound properties for optimal tumor
lysis by CD3-bispecifics (37). A similar model framework was used to
derive the first-in-human dose for LP-DART, a proprietary format
CD3-bispecific using the Dual-Activity Re-Targeting (DART) plat-
form that targets P-cadherin (48). Figure 2B illustrates the impact of
varying binding affinity of CD3-bispecifics.

Target accessibility and CRS
To predict the safety and efficacy profile of a T-cell–redirecting

therapy, accessibility of the target in healthy and tumor tissues (Fig. 1)
needs to be investigated. The accessibility to the tumor for therapeutic
interventions will depend on the tissue involved, the anatomic loca-
tion, the vasculature, the specific tumor type, and the presence of
metastases (49). Indeed, the biggest clinical successes for this kind of
therapy have been observed for hematologic tumors, while effective
treatment of solid tumors remains to be demonstrated (50, 51). The
accessibility of a hematologic or fluid tumor is usually high while CD3-
bispecifics and T cells need to surmount physical barriers in order to
reach and effectively target a solid tumor (52, 53). Accessibility will
affect the exposure to the treatment andmay therefore affect the extent
of local cytokine release. Moreover, cytokines are short-lived and
therefore systemic cytokine levels may not necessarily reflect intratu-
moral cytokine release.

The disposition of CD3-bispecific antibodies and antibody
fragments depends on the extravasation and lymphatic flow, result-
ing in different tissue partitioning. These physiologic processes of
antibody disposition are captured in physiologically based PK
models that can be utilized to predict the local drug concentration
of CD3-bispecifics (54–56). It has also been observed that com-
pound size and binding affinity play an important role in tumor
uptake (57, 58). The notion of target accessibility becomes even
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more important for CD3 bispecifics and adoptive cell therapies
targeting a solid tumor (7, 58).

Modeling and simulation are helpful to deconvolute the factors that
affect tumor accessibility and to make suggestions on optimal com-
pound properties. For instance, Singh and colleagues aimed to predict
local drug effects of CAR-T cells in vivo. For this, they developed a
multiscale mathematical model to describe both the pharmacoki-
netics (based on mouse data) and pharmacodynamics (based on
in vitro data) of CAR-T cells (39). In Fig. 2C, we illustrate how this
model is useful to investigate the impact of altered accessibility on
intratumoral cytokine release.

Local drug administration may improve the therapeutic window.
For example, catumaxomab—a CD3-bispecific against EpCAM—
showed good tolerability in ovarian cancer patients when administered
via intraperitoneal injection (3). In contrast, intravenous dosing of
catumaxomab was less tolerated (59).

The impact of target accessibility on the therapeutic window in
different indications has been reported for both CAR-T cells and
CD3-bispecifics. In the case of B-cell–related ALL versus non-
Hodgkin lymphoma (B-NHL), it was found that CRS occurs
together with CD19-CAR-T expansion and that both are correlated
with disease burden in ALL but not NHL (60). Generally, ALL
is a solely blood-borne neoplasia whereas NHL has a solid
tumor involvement in the lymphatic tissue (61) and may therefore
be less accessible as a whole, reducing the effect of disease burden on
T-cell activity.

Adoptive cell therapies: lymphodepletion, cell subtypes, and
CRS

Lymphodepletion with cyclophosphamide and/or fludarabine prior
to adoptive cell therapy (ACT) is common practice (62, 63). Lym-
phodepletion removes the circulating T cells, providingmore space for
CAR-T or TCR-T cells to expand (64); the concurrent removal of
regulatory T cells also eliminates potential immunosuppressive
cues (63). The enhanced proliferation of the engineered T cells leads
to improved antitumor effects but also increased incidence of
CRS (36, 65, 66). Due to lack of direct evidence, it is unclear whether
lymphodepletion increases the incidence for all-grade CRS; however,
increased risk for high-grade CRS (> grade 3) has been shown in two
independent analyses (63, 67).

There is limited evidence that the cell contents of the ACT
infusion product may affect the propensity for CRS. For instance,
in a pediatric neuroblastoma population, infusion of purified CD4þ

and CD8þ GD2-CAR-T cells (by removal of other mononuclear
cells) boasted a higher potency for cytokine release compared with
the nonpurified product and necessitated dose deescalation (68).
However, at lower doses the purified product had a markedly
improved risk–benefit profile.

Multiple lines of evidence point out the differences between CD4þ

and CD8þ T-cell subsets in ACT with respect to expansion and
persistence (65, 69–71). The difference in treatment efficacy and safety
is however not well understood.

In terms of noncanonical cell types, engineered CAR-NK cells are
being investigated as a suitable alternative to CAR-T cells as they show
similar tumor lytic potential with less cytokine release (72).

On the molecular scale, the structure of the CAR construct also
influences its cytokine-inducing potential. Multiple generations of
CAR constructs have been developed that are structurally differ-
ent (36, 60, 73). The effect of these differently structured CAR
constructs on CRS formation is not well understood. Schuster and
colleagues reported that patients treated with Kymriah or Yescarta,

each containing different costimulatory domains, had a 58% and 93%
incidence of any-grade CRS, respectively (74).

Alternatives to the viral production of CAR-T cells are being
investigated to improve both the manufacturing efficiency and safety
profile. For instance, the use of transposons to manufacture CAR-T
cells eliminates the risk for insertional mutagenesis (75). A phase I
clinical trial of patients with advanced NHL and ALL that received
hematopoietic stem cell transplantation with adjuvant transposon-
based CAR-T-cell therapy produced favorable safety and efficacy
profiles (76). Similarly, mRNA-based CAR-T cells have been devel-
oped that induce transient expression of the CAR construct to prevent
long-term toxicity. As a consequence, this modality would require
repeated administration and offers the possibility to stop dosing in case
of serious adverse events, which is not feasible with virally transduced
(i.e., stably expressing) CAR-T cells that are administered only once
and persist over a long period (73, 77, 78).

Considering Individual Patient Risk
It has been challenging to establish robust correlations between

cytokine levels and CRS severity grades. Moreover, individual patients
may respond differently to cytokine excursion, thus demonstrating
that patients’ specific characteristics influence the body’s pathophys-
iologic reaction to cytokine release. The predisposing factors for high-
grade CRS in individual patients have not yet been investigated
comprehensively; however, some negative synergies leading to the
exacerbation of pathophysiology can be anticipated. A hallmark of
acute inflammation, whether naturally triggered (infection) or drug-
induced, is the increased vascular permeability leading to the escape
(capillary leakage) of an exudate into the tissues (edema). Numerous
criteria, which are taken into account for the grading of CRS,
are directly related to the increased vascular permeability and its
consequences on the cardiovascular and cardio-pulmonary systems,
i.e., hypotension, hypoxia, and dyspnea (16). Thus, genetic poly-
morphisms associated to—or preexisting pathologies/comorbidities
involving—chronic inflammation, endothelial dysfunctions, and
barrier impairments should be factored in when considering the
consequences of cytokine release. Endothelial dysfunction and/or
inflammation is present in several cardiovascular and metabolic
conditions such as hypertension, chronic heart failure, peripheral
arterial disease, atherosclerosis, diabetes, obesity, septic shock,
and chronic renal failure (79–81). Lifestyle-related conditions have
also been identified as independent risk factors for endothelial
dysfunction. These include obesity, hyperlipidemia, hypertension, age,
and smoking (82). A recent study by Hong and colleagues on a small
cohort of COVID-19 patients identified hypertension history as a
significant risk factor for severe CRS (83), and baseline endothelial
activation (thrombocytopenia) has been described to be predictive
for higher-grade CRS (84). The aforementioned pathologies have
underlying endothelial oxidative stress and chronic inflammation in
common. The association of obesity and severe dengue gives a relevant
example, where chronic inflammation and pro-inflammatory adipo-
kines found in obese individuals cause endothelial and platelet dys-
function, predisposing them to severe dengue defined by stronger
proinflammatory cytokine responses and more severe immunopa-
thology after viral infection (85).

Certain associations between demographics/comorbidities and
increased cytokine levels were recently strengthened in the context
of the comprehensive immunopathology investigation of COVID-
19 (22). Namely, of demographic variables, age and sex were signif-
icantly associated with cytokine levels, especially IL6. Considering
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comorbidities, TNFa and IL8 were significantly increased in patients
with chronic kidney disease, diabetes, and hypertension. TNFa was
also increased in patients with congestive heart failure, and IL6 and IL8
were elevated in patients with a history of atrial fibrillation.

The commonality between viral infections and T-cell–redirecting
therapies is the polyclonal T-cell activation. In both contexts, activated
T cells release IFNg , which activates monocytes/macrophages to
produce additional cytokines such as IL6, TNFa, and IL10. These
cytokines can elicit flu-like symptoms, vascular leakage, diarrhea,
cardiomyopathy, lung injury, and acute phase response. IL6 triggers
effects such as vascular leakage, activation of the complement, and
coagulation cascade inducing disseminated intravascular coagulation,
which are characteristics of severe CRS.

Many cytokines and inflammatory mediators increase vascular
permeability by activating and structurally changing the endothelium;
in turn, activated endothelium has an enhanced capability for (i) T-cell
migration (86) and (ii) release of proinflammatory cytokines. Endo-
thelial cells activated by IL6 will upregulate Ang2 signaling and
produce oxygen radicals, leading to endothelial dysfunction (87),
which critically contributes to the pathogenesis of CRS, both by
amplifying the inflammation and as a target organ for capillary leak
syndrome, hypotension, and coagulopathy. In a CD19-CAR-T-cell
therapy phase I/II study in patients with various B-cell malignancies,
Hay and colleagues (67) observed that a pretreatment activated
endothelium status as defined by elevated vWF and Ang2/Ang1 ratio
was predictive of severe CRS.

A solid base of literature supports the role of underlying diseases in
exacerbating CRS related to viral infections and the implication of
endothelial cells in producing IL6 and hypotension seen in severe CRS
with T-cell–redirecting therapies (88, 89). However, there is not yet
any literature that exposes direct associations of underlying pathol-
ogies (i.e., endothelial dysfunction) with higher CRS grades for T-cell–
redirecting therapies.

Furthermore, clinical fitness appears not to be a reliable pre-
dictor for CRS formation. Hay and colleagues found that there was
no significant difference in CRS formation induced by CD19-
CAR-T therapy between patients with Karnofsky scores (a measure
of clinical fitness) of 60%–70%, 80%–90%, and 100% (67). Because
patients that are in poor health conditions are usually excluded
from clinical trials, we have no information on the link between
low clinical performance scores and the propensity for CRS
formation. Moreover, patients that have an objectively good clin-
ical performance score may still be suffering from underlying
ailments that remain undetected and that pose an increased risk
for CRS formation.

For instance, for immune checkpoint inhibitors, it has been
reported that underlying comorbidities may affect its safety: a history

of kidney dysfunction of at least grade 3 was identified as an inde-
pendent risk factor for immune-related adverse events (90). Although
these findings do not specifically reflect CRS and T-cell–redirecting
therapies, they still suggest caution to be taken when dealing with
patients suffering from these ailments and who will receive immuno-
stimulatory treatment.

Taken together, more research and leveraging real-world data
and details on individual patient characteristics will need to be
collected to improve the prognosis of the individual patient’s risks
concerning CRS.

Identification of the main additional contributors is paramount to
be able to predict reliably which patients are at risk for developing
high-grade CRS triggered by a T-cell–redirecting therapy. This should
guide the decision-making regarding individual dosing schemes and
choice of mitigation or salvage strategies.

Clinical Mitigating Strategies
Investigators have been studying various approaches to downplay

undesirable immune effects while still maintaining a therapeutically
active treatment (Table 3). Li and colleagues demonstrated that
cytokine release is dispensable for antitumor activity. They showed
in vitro as well as in a mouse study that tumor killing is maintained
even when cytokine release is lowered by mitigating strategies (91).
Dosing strategies can be applied to reduce the risk for cytokine
release. One option is to give patients with a high tumor burden
a low initial dose to dampen the cytokine response (66, 69). Alter-
natively, step-up dosing is frequently applied in clinics for CD3-
bispecifics (59, 92–94). By fractionating the dose into two or more
steps, cytokine release is dampened with each subsequent step,
which was demonstrated for HER2xCD3-bispecific antibody
in vitro and in vivo (30, 91) and was also observed clinically for
mosunetuzumab (a CD20xCD3-bispecific; ref. 95).

Li and colleagues demonstrated with nonclinical experiments that
repeat dosing with CD3 bispecifics strongly reduces cytokine release
with subsequent doses. They also showed that a reduction in cytokine
release did not affect the tumor-killing potential of the therapy. The
optimal (step-up) dosing strategies can be explored in silico (for
illustration, see Fig. 2D and E). PK/PD models have been developed
by Jiang and colleagues for blinatumomab (96) and by Chen and
colleagues for blinatumomab and P-cadherin LP-DART (97) that
incorporate mechanistic insights to simulate the cytokine-mitigating
effects of dose fractionation. The model from Jiang and colleagues
assumes that the reduction in tumor burden after the first dose is
responsible for the reduced cytokine release upon repeat dosing,
whereas the model from Chen and colleagues assumes that the main
driver behind reduced cytokine release is a build-up of tolerance in the

Table 3. Toxicity-mitigating strategies for T-cell–redirecting therapies that are either in development or already applied in clinics.

Strategy Modalitya Example Clinical applicationb References

Inverse dose-adjustment All BCMA-CAR-T Yes 31
Cytoreduction All Blinatumomab Yes 69
Cytokine blockade All Tocilizumab, lenlizumab Yes 84, 91, 101, 103, 104, 106
Corticosteroids All Dexamethasone Yes 99, 100
Target masking All Anti-CAIX mAb Yes 108
Dose fractionation CD3-bispecific Mosunetuzumab, blinatumomab Yes 59, 91–94
Kinase inhibitors All Dasatinib No 84, 107

aModalities to which the strategy is applicable.
bWhether the strategies are currently being tested in clinics.
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immune system. The exact mechanism still needs to be elucidated, but
current data would support a combination of both hypotheses (91, 96).
Similarly, Hosseini and colleagues developed a mechanistic model
based on nonclinical data of mosunetuzumab and clinical data of
blinatumomab to construct a virtual patient population and used it to
simulate the effects of dose fractionation on cytokine release and
efficacy of these compounds. These simulations supported the imple-
mentation of dose fractionation in an ongoing phase I trial of
mosunetuzumab (98).

Other mitigation strategies aim to reduce the propensity of T cells
and accessory cells to induce CRS after target engagement. The
most common example is the use of corticosteroids, which has
shown to prevent fatal CRS events and pushed up the MTD in
patients (84, 99, 100). Cytokine sequestration and receptor blocking
are used to prevent downstream cytokine signaling that may be
harmful, which is further supported by the preclinical findings that
cytokines are dispensable for therapeutic efficacy of T-cell–engaging
therapies (84, 100, 101).

Tocilizumab is an anti-IL6R antibody that is FDA approved as a
salvage therapy in case of CRS induced by CAR therapy. It has been
used to great success to reverse CRS in all approved anti-CD19
T-cell–redirecting therapies against B-ALL (tisagenlecleucel, axi-
cabtagene ciloleucel, blinatumomab; refs. 102, 103). A recent line of
evidence suggests the superiority of tocilizumab over corticosteroids
pretreatment to combat CRS because blocking IL6 receptor does not
affect the tumor-killing potential of T cells, in contrast to corti-
costeroids (104). Despite the promising results, it is unknown what
the best timing for tocilizumab intervention is during the course of
CRS to balance efficacy and safety (105). Recently, a prospective
clinical trial of pediatric patients with B-ALL treated with CD19-
CAR-T cells was carried out where cohorts were formed based on
disease burden (106). Risk-adapted preemptive treatment of toci-
lizumab was performed to reduce the incidence of grade 4 CRS. The
high tumor burden (i.e., high-risk) cohort received tocilizumab
early, when persistent fever was reported but before development of
CRS. Compared with a historical cohort that received standard CRS
management, preemptive tocilizumab treatment markedly reduced
the incidence of grade 4 CRS.

Kinase inhibitors such as dasatinib have shown to rapidly reduce
T-cell activity and could be used as a salvage therapy in case of severe
toxicities. However, it will also hamper the treatment efficacy (84, 107).

For CAR-T cells, the administration of mAbs targeting the same
antigen has been explored as a mitigation strategy to reduce on-target
toxicity. In a phase I trial, patients withmetastatic renal cell carcinoma
were treated with CAR-T cells targeting CAIX. There were signs of
liver toxicity at low doses, which were attributed to reactivity against
CAIX-expressing healthy liver tissue. By administering anti-CAIX
antibodies prior to CAR-T-cell treatment, thereby saturating the liver
target pool, the investigators managed to prevent liver toxicities and
allow higher CAR-T-cell doses to be given (108).

Conclusion: Limitations and Outlook
Using a data-driven modeling framework, we are well equipped to

investigate the complex relationship between drug-target-disease–
related factors and cytokine release.

Given the complexities and the interdependencies of the drug-
target-disease–related factors of the T-cell–redirecting therapies, we
argue that it is not meaningful to look at the factors in isolation
when trying to optimize their effectiveness by balancing the ben-
eficial versus the adverse effects. Instead, we suggest the use of

mathematical modeling, integrating all those processes in mecha-
nistic terms supported by the generated data. We can utilize this to
select the most favorable compound properties for a given target in
a given indication and to optimize the dosing regimen with min-
imized inflammatory cytokine release while maximizing antitumor
effects for patients.

We have presented various case studies highlighting the value of
model-based approaches to guide drug discovery and development of
T-cell engagers. The success of these modeling approaches is highly
dependent on the collaboration between in vitro and in silico scientists,
and the appropriate study design of the in vitro experiments as well as
the nonclinical and clinical studies. This includes the collection of
relevant PK and PD datameasured repeatedly over time. In addition, it
is recommended to explore a broad dose range capturing minimal to
maximal drug effects.

However, while these models are well suited to predict cytokine
release, they are not suited to predict the individual risk of severe CRS
in patients because the risk of CRS is multifactorial and not only
dependent on themagnitude of cytokine release (22, 23, 83, 84).While
it was shown that on a population level there is a higher cytokine
release observed in CRS, there is significant overlap in the range of
cytokine levels in patients that are associated with no or with high CRS
risk (22, 23). Therefore, the risk for a patient to experience high-grade
CRS depends on the patient’s propensity for developing CRS in
response to therapy, which can be regarded as a combination and
interplay of both the drug-target-disease–related factors and the
individual patient’s risk factors.

As an outlook, we propose to fill this gap by providing a quantitative
framework that combines mechanistic modeling for the given ther-
apeutic treatment with a risk scoring method that integrates all
relevant patient/individual specific risk factors. The relevant risk
factors can be derived from real-world data of a broad range of
therapeutic interventions associated with CRS and the scoringmethod
can be established using these data. Figure 3 illustrates the conceptual
framework of such an approach, which could enable personalized
risk assessment. It aims to predict the probability of severe
CRS for the individual patient (Fig. 3C), which is achieved by
combining mechanistic modeling that considers the drug-target-
disease–related factors to predict cytokine release for a given
therapeutic intervention (Fig. 3A), and the consideration of the
individual patient risk factors (Fig. 3B). To predict the risk of
high or low grade of CRS, additional patient-specific risk factors
such as hypertension history or endothelial activation can be inte-
grated empirically with the mechanistically predicted cytokine
response. To give a relevant example, the study from Han and
colleagues (109) showed a machine learning–based approach to
predict adverse events after spine surgery, taking into account
patient-, diagnostic-, and procedure-related factors. In the case of
T-cell–redirecting therapies, to establish such an empirical model,
one would need a (large) data set where individual patient cytokine
profiles and comorbidities (prior and during treatment) are recorded.

For prediction of the individual cytokine release profiles, we propose
a data-driven approach utilizing mechanistic-based nonlinear mixed-
effect PK/PD models tailored for the therapeutic intervention of
interest. These approaches are suited to analyze sparse data, to quantify
the dose–response relationships, and may explain the interpatient
variability in mechanistic terms. For example, the individual cytokine
response can be predicted as the result of a given drug–target rela-
tionship in the context of the individual disease factors such as tumor
load and/or target expression. On the basis of the predicted cytokine
profiles and the individual patient’s risk factors, the patient’s individual
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risk for high-grade CRS could be predicted. We proposed to capture
individual risk factors in risk-scoring tables derived from real-world
data considering a broad range of therapeutic interventions for which
CRS has been clinically observed (Fig. 3B). Because of the high
dimension and the high complexity of all the elements, to dissect
comprehensively the patient-specific risk factors, one would need to
collect and analyze information-rich (ideally with high granularity)
datasets from a large number of patients that reflect a cross-section of
the entire population. Real-world data, ideally combining demogra-
phy, well-curated electronic healthcare records (EHR), omics, and
baseline screening data from a large number of patients, provide a
promising opportunity. Besides the sample size, an agnostic and
unbiased approach to mine and analyze the data, in particular, for
the risk markers and comorbidities can be important to uncover the
true picture.

We expect that the proposed optimized predictionmodels result in a
better prognosis of the individual patient’s risk and can be the basis of a
classification of the risks. The individual or classified risk factors can
subsequently be integrated in more standard classical approaches for
further analyses or comparisons (i.e., ROC curves, logistic regression,
and time-to-event).

As an initial step, our future efforts will first focus on the compre-
hensive and agnostic evaluation of demographic, comorbidity, clinical
lab value, and genetic (where available) information frompatients who
experienced a drug-induced CRS. Real-world data sources ranging
from the less granular claims data (e.g., Truven Marketscan) to more
information-rich data/biobank (e.g., UKBiobank, Genomics England)

will be used to identify the relevant individual risk factors to be
considered in our next-generation quantitative framework, which will
aim at differentiating between low- and high-risk patients for severe
CRS induced by T-cell–redirecting therapies. Developing these risk
scores will require further cross-disciplinary research among data
scientists, physicians, and drug developers and will be an important
step towards improved individual risk prediction of severe CRS with
T-cell–redirecting therapy.
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