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Vectorizing compilers employ divergence analysis to detect at which program point a specific variable is uni-

form, i.e. has the same value on all SPMD threads that execute this program point. They exploit uniformity to

retain branching to counter branch divergence and defer computations to scalar processor units. Divergence

is a hyper-property and is closely related to non-interference and binding time.There exist several divergence,

binding time, and non-interference analyses already but they either sacrifice precision or make significant

restrictions to the syntactical structure of the program in order to achieve soundness.

In this paper, we present the first abstract interpretation for uniformity that is general enough to be ap-

plicable to reducible CFGs and, at the same time, more precise than other analyses that achieve at least the

same generality.

Our analysis comes with a correctness proof that is to a large part mechanized in Coq. Our experimental

evaluation shows that the compile time and the precision of our analysis is on par with LLVM’s default

divergence analysis that is only sound on more restricted CFGs. At the same time, our analysis is faster and

achieves better precision than a state-of-the-art non-interference analysis that is sound and at least as general

as our analysis.
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1 INTRODUCTION

Vectorization is crucial to achieve performance on SPMD1 (i.e. data-parallel) programs. SPMD code
emerges from dedicated single programmultiple data (SPMD) languages such as CUDA or ISPC as
well as in compiler-driven loop vectorization. A SPMD program executes a given scalar program in
multiple instances (often called lanes or threads). Vectorizing compilers employ divergence anal-
ysis to detect at which program point a specific variable is uniform, i.e. has the same value on all
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1single program, multiple data
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(a) 𝑥 is uniform at 𝐷 and 𝐸

but it depends on 𝑐’s
uniformity, if 𝑥 is uniform
at 𝑃 .
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(b) 𝑥 is uniform
everywhere in the loop. 𝑥
is uniform at 𝑃 only if 𝑛 is
uniform.
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(c) A more complicated example with
three loop splits. All three branch
variables 𝑐1, 𝑐2, 𝑐3 need to be uniform for
𝑥 to be uniform.

Fig. 1. Different situations in which a variable is uniform.

instances that execute this program point. They exploit uniformity in order to defer computations
to scalar processor units and fight branch divergence by retaining branching.

Note that the term divergence comes from two different lanes taking different targets upon a
branch whose predicate is varying, i.e. non-uniform. Therefore the pairs of terms uniform, varying

and non-divergent, divergent are sometimes used interchangeably in the literature. In this paper, we
use the term uniformity to emphasize that the goal of the analysis is to identify uniform variables.
Branch divergence is merely a consequence of non-uniform branch variables.

To develop a better intuition of uniformity, consider Figure 1a. Variable 𝑥 is uniform at program
point 𝐷 (and 𝐸) because the states at program point 𝐷 (respectively 𝐸) of all traces that reach it
agree on the value of variable 𝑥 . At program point 𝑃 this is no longer the case under the assumption
that some traces reach 𝑃 via 𝐷 and some via 𝐸. However, if the branch condition 𝑐 is uniform (at 𝑆)
as well, all traces reach 𝑃 either via 𝐷 or 𝐸 and 𝑥 will be uniform at 𝑃 .

Similarly, in Figure 1b, variable 𝑥 is uniform at all program points inside the loop because, for
every iteration of the loop, the states that appear in the particular traces agree on𝑥 for each program
point. For example, the states of all traces that reach 𝑆 in the same loop iteration agree on the value
of 𝑥 . At program point 𝑃 however, 𝑥 is not uniform if there are two traces that exit the loop after
a different number of iterations. This is exactly the case if the loop exit condition 𝑐 is not uniform.

Note that being uniform does not imply being constant. Reconsider Figure 1a. If 𝑐 is uniform,
we do not know if all traces that reach𝐴 will go left to 𝐵 or right to𝐶 . What we know is that either
all of them go left or all of them go right.

From an abstract interpretation [Cousot and Cousot 1977] point of view, divergence analysis is
not a “standard” value analysis (such as constant propagation, intervals, global value numbering,
etc.). A value analysis provides invariants on states that hold for each execution individually. For
example, if an interval analysis provides the invariant 𝑧 ∈ [1, 5] for some program point 𝑝 , this
means that for every single execution of the program, variable 𝑧 has a value between 1 and 5 every
time the execution visits 𝑝 . Uniformity however does not talk about single executions in isolation
but relates different executions: 𝑥 being uniform means that two different executions of the same
program agree on 𝑥 ’s value at a specific point in their execution. In that sense, uniformity is a
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hyper-property [Clarkson and Schneider 2010] and is similar to hyper-properties such as non-in-
terference in information flow analysis and binding time in partial evaluation.2

As discussed by means of Figure 1, the crucial point in divergence analysis is to get the abstract
transformers for control flow joins and loop exits right by identifying the right set of control-flow
split nodes that influence their uniformity. Existing analyses simplify this problem in various ways:
by imposing significant restrictions on the syntactical structure of the program such as supporting
only structured syntax (if-then-else, while loops), or by forbidding branches with more than two
successors, for example. Most formal treatments of divergence analysis rely on inductively-defined
structured syntax. In this setting, the transformers can be formulated locally because all necessary
ingredients (branch/loop condition and the statements in the body of the control structure) are
located in the same syntactical element. Other approaches resort to program representations, such
as the gated SSA (GSA) form, that augment the program by ascribing the branch predicates of all
the relevant split nodes to the respective join nodes. However, these representations are rarely
used in practice and do not come with formalized or even verified construction algorithm which
puts the soundness of divergence analyses that build on them at risk. Finally, several approaches
that are also used in production code use ad-hoc techniques (often involving some sort of control-
dependence criterion) that are unnecessarily imprecise or only sound under significant syntactical
restrictions that are not always clearly documented.

In summary, existing approaches are either not treated formally, imprecise, or make restrictions
on control flow that impedes their use in practice (e.g. LLVM-based GPU drivers) considerably (we
discuss related work in more detail in Section 8).

Contributions. In this paper, we present, to the best of our knowledge, the first formal account
of an abstract interpretation of uniformity on reducible control flow graphs (CFGs). Requiring
reducibility3 is the only restriction we make on the CFG. In summary, we make the following
contributions:

• We formalize the intuition about divergence that we uniformity in this section based on a
novel trace semantics that augments a standard trace semantics by input-independent tags.
These tags uniquely identify instances of program points and permit to relate program point
instances across different executions in a meaningful way (Section 3.2).
• Based on this trace semantics, we formalize abstract domains and transformers (Section 4)

and prove their soundness.The correctness of our analysis is supported by an accompanying
Coq development4 that mechanizes a large part of the proofs. We indicate the parts currently
formalized in Coq with the Coq logo .
• We derive a new criterion of branch divergence directly from the correctness proof of the

abstract transformer (Section 4.3). This criterion is based on identifying nodes of disjoint
paths on a specific directed acyclic graph (DAG) that is derived from the program’s CFG. For
the problem of identifying joins of disjoint paths in a DAG we present a novel, simple, and
optimal 𝑂 (|𝑉 | + |𝐸 |) algorithm (Section 5).
• We also give a completeness theorem (Section 4.6) that shows that our analysis identifies

no more than the relevant split nodes (up to the precision of the abstract edge effects and
semantically infeasible paths).

2In non-interference, uniform and varying correspond to public and private (or low and high). In binding-time analysis

they are called static and dynamic.
3By folk wisdom, an overwhelming majority of practically-relevant CFGs are reducible.
4The development can be found at https://github.com/cdl-saarland/uniana. See also Appendix B.1.
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• We compare our analysis against two state-of-the-art analyses by experimentally evaluating
the analysis time and the precision (in terms of instructions classified uniform) in the con-
text of SPMD vectorization on a wide range of benchmarks sets. The first analysis is LLVM’s
default divergence analysis [Coutinho et al. 2011] that is only sound under syntactical restric-
tions stronger than reducibility. The second, a control-dependence-based non-interference
analysis [Wasserrab et al. 2009], is applicable to reducible CFGs, but is less precise than our
analysis.
In terms of compile time, our analysis is on par with LLVM’s analysis and achieves a speedup
of 25% over the second analysis. In terms of precision, our analysis is equally precise as
LLVM’s and classifies 5% more instructions and branches as uniform as the second. Finally,
no benchmark we encountered contained an irreducible CFG, which supports the practica-
bility of our algorithm.

Structure of this paper. The next section introduces the key concepts of this paper informally
and provides intuition for our analysis. Section 3 reviews basic definitions on CFGs and defines the
semantics we use. Section 4 is the core part of the paper that defines the abstract interpretation and
proves the abstract transformer correct. Section 6 presents an add-on to the analysis that provides
more precision when the program is not under static single assignment (SSA) form. Section 5
introduces a novel algorithm for identifying disjoint paths and proves it correct. Section 7 evaluates
the analysis on several OpenCL benchmarks and tree-traversal kernels and compares the analysis
runtime with the state-of-the-art divergence analysis implemented in LLVM. Finally, Section 8
discusses related work.

2 OVERVIEW

In this section, we review basic concepts and discuss the core elements of our analysis informally.

2.1 Relating States in Different Traces using Tags

We model a single execution of some SPMD program 𝑃 by a set of traces𝑇 where each trace 𝑡 ∈ 𝑇
corresponds to the execution of an instance of this program. (We will use the term thread for an
instance of a program to not confound it with instances of program points.) The set of all SPMD
executions of 𝑃 is therefore given by a set of sets of traces 𝔗. Given a set of sets of states 𝔖,
a variable 𝑥 is called uniform on 𝔖 if for each set of program states 𝑆 ∈ 𝔖 and each pair of
states {𝜎, 𝜎 ′} ⊆ 𝑆 , there is 𝜎 𝑥 = 𝜎 ′ 𝑥 . To lift this notion of state-based uniformity to program
executions, we need to be able to identify individual pairs of states in pairs of traces from one
SPMD execution of the program.

One way of doing this is to relate states that appear at the same program point. However, since
a program point can appear multiple times in a trace, program points alone are inadequate to
uniquely identify pairs of states in traces. To this end, we equip the semantics with an input-
independent part that tags each configuration (element of a trace) with the values of the induction
variables of all loops that surround the program point of the configuration.This way, each program
point instance can be uniquely identified. We write the pair of program point 𝑃 and a tag 𝑖 as 𝑃 ⟨𝑖⟩
and call it an instance of 𝑃 . This is also the reason why we require the CFGs to be reducible: only
then is there a well-defined notion of loop nesting on which our definition of tagging relies on.

This tagging gives rise to the tagged CFG, a potentially5 infinite DAGwhose nodes consist of the
program point instances. Figure 2a shows the tagged CFG for the example program in Figure 1b.

5The tagged CFG is finite if and only if the CFG does not contain loops.
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𝐴⟨⟩ 𝐵⟨0⟩ 𝐶 ⟨0⟩ 𝑆 ⟨0⟩ 𝑃 ⟨⟩

𝐵⟨1⟩ 𝐶 ⟨1⟩ 𝑆 ⟨1⟩

𝐵⟨2⟩ 𝐶 ⟨2⟩ 𝑆 ⟨2⟩

𝐵⟨3⟩ · · ·

(a) The tagged CFG for Figure 1b is an infinite DAG
that consists of all possible program point
instances. Local inhomogeneity at 𝑃 ⟨⟩ is witnessed
by an instance with multiple successors (here e.g.
𝑆 ⟨0⟩) and two disjoint paths from that instances to
𝑃 ⟨⟩.

𝐴

𝐵

𝐶

𝑆

𝑃

(b) The head-rewired CFG for Figure 1b emerges
from the CFG by deleting all outgoing edges of
each loop header (here 𝐵 → 𝐶) and adding edges
from each header to its exit (here 𝐵 → 𝑃 ). For each
pair of instance-disjoint sub-traces that split at
𝑠 ⟨𝑘⟩ and join at 𝑝 ⟨𝑖⟩, there are two node-disjoint
sub-paths splitting at 𝑠 and rejoining at 𝑝 in the
head-rewired CFG. Here, e.g.: 𝑆 ⟨0⟩, 𝑃 ⟨⟩ and
𝑆 ⟨0⟩, 𝐵⟨1⟩,𝐶 ⟨1⟩, 𝑆 ⟨1⟩, 𝑃 ⟨⟩ in the tagged CFG
correspond to 𝑆, 𝑃 and 𝑆, 𝐵, 𝑃 .

Fig. 2. The tagged CFG and the head-rewired CFG for Figure 1b.

2.2 An Abstract Interpretation for Uniformity

Tags allow us to appropriately define what “variable 𝑥 is uniform at a program point 𝑃” means: For
each pair of traces 𝑡, 𝑡 ′ ∈ 𝑇 and each tag 𝑖: If 𝑡 contains a configuration (𝑃 ⟨𝑖⟩, 𝜎) and 𝑡 ′ contains a
configuration (𝑃 ⟨𝑖⟩, 𝜎 ′), then 𝜎 𝑥 = 𝜎 ′ 𝑥 . This is the informal version of the concretization of the
uniformity abstract domain we present in Section 4.1.

Defining abstract transformers for the effects on control flow edges is straightforward for uni-
formity. For example, a sound abstract transformer for the edge effect 𝑧 ← 𝑥 +𝑦, yields that 𝑥,𝑦, 𝑧
are uniform (after executing the statement) if 𝑥 and 𝑦 are uniform (before).

The interesting part of the analysis is the transformer that computes the abstract information for
program points. Reconsider Figure 1a. Intuitively, the uniformity of 𝑥 depends on the uniformity
of 𝑐 . To see this, assume that 𝑐 is not uniform at 𝑆 . Then, there are two traces6

𝑡 = . . . (𝑆 ⟨⟩, 𝜎), (𝐵⟨⟩, ·), (𝐷 ⟨⟩, ·), (𝑃 ⟨⟩, 𝜎𝑃 ), . . .

𝑡 ′ = . . . (𝑆 ⟨⟩, 𝜎 ′), (𝐶 ⟨⟩, ·), (𝐸⟨⟩, ·), (𝑃 ⟨⟩, 𝜎 ′𝑃 ), . . .
(1)

for which 𝜎 𝑐 ≠ 𝜎 ′ 𝑐 . Note that ⟨⟩ denotes the tag for nodes that are not in a loop. One of the traces
“goes left” while the other one “goes right”. It is important to understand that 𝑥 is nevertheless
uniform at 𝐷 because all traces that reach 𝐷 (under the same tag) agree on the value of 𝑥 . (The
same argument applies to 𝐸.) However, both traces disagree on 𝑥 at 𝑃 because𝜎𝑃 𝑥 = 1 and𝜎 ′𝑃 𝑥 = 2.
So, 𝑥 is not uniform at 𝑃 although it is uniform at 𝐷 and 𝐸.

Hence, in contrast to “common” value analyses, we cannot just compute the uniformity of a vari-
able at a program point by “joining” the uniformity information of that variable at its predecessors.

6The dot · means that the state is irrelevant for the example.
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The gist is that we can only leverage uniformity at the predecessors of 𝑃 if the traces behave locally
homogeneously which means that each instance 𝑃 ⟨𝑖⟩ is preceded by the same instance 𝑞⟨ 𝑗⟩ of some
predecessor 𝑞 in every trace.7 This, combined with the fact that 𝑥 is uniform at 𝐷 ⟨⟩ and 𝐸⟨⟩ implies
that 𝑥 has the same value on all traces that reach 𝑃 ⟨⟩. Note that because there is no loop in this
example, the tags of all instances are the same.

This changes in Figure 1b. 𝑃 has only one control flow predecessor 𝑆 . If however𝑛 is not uniform
at 𝑆 , there may be two traces that exit the loop in different iterations, leading to two differently-
tagged instances of 𝑆 preceding 𝑃 ⟨⟩ (This can be nicely seen in the tagged CFG in Figure 2a.):

𝑡 = . . . , (𝐴⟨⟩, 𝜎), (𝐵⟨0⟩, ·), (𝐶 ⟨0⟩, ·), (𝑆 ⟨0⟩, ·), (𝑃 ⟨⟩, 𝜎𝑃 ), . . .

𝑡 ′ = . . . , (𝐴⟨⟩, 𝜎), (𝐵⟨0⟩, ·), (𝐶 ⟨0⟩, ·), (𝑆 ⟨0⟩, ·),

(𝐵⟨1⟩, ·), (𝐶 ⟨1⟩, ·), (𝑆 ⟨1⟩, ·), (𝑃 ⟨⟩, 𝜎 ′𝑃 ) . . .

(2)

Note that 𝑥 is uniform at 𝑆 because for every tag 𝑖 , all traces that contain 𝑆 ⟨𝑖⟩ agree on 𝑥 at 𝑆 ⟨𝑖⟩.
Nevertheless we have 𝜎𝑃 𝑥 = 1 and 𝜎 ′𝑃 𝑥 = 2 and 𝑥 is not uniform at 𝑃 : Although 𝑆 directly
precedes 𝑃 in every trace that contains 𝑃 ⟨⟩, it does so with different instances 𝑆 ⟨0⟩ and 𝑆 ⟨1⟩.

2.3 Split Points and Disjoint Traces

If an instance of a program point is preceded by two different instances (i.e. it is locally inhomo-
geneous), these two different instances can be extended to two instance-disjoint sub-traces. Both
of these sub-traces originate in an instance that appears in both traces (note that all traces start
with the same instance rt⟨⟩). So, local inhomogeneity at some instance 𝑝 ⟨𝑖⟩ is witnessed by a split
instance 𝑠 ⟨𝑘⟩ and two disjoint sub-paths in the tagged CFG.

Reconsider the traces in (2). Both traces correspond to two paths in the tagged CFG in Figure 2a.
The corresponding split instance is 𝑆 ⟨0⟩. If the traces were such that the first trace left the loop
after 4 iterations and the second after 17 iterations, the respective split instance would be 𝑆 ⟨4⟩.

This split instance is the instance of a split node, i.e. a node with multiple control-flow successors.
We will show later that at this instance of the split point both traces diverge, i.e. go to different
successor program points. This can only happen if the branch predicate of the split is varying, i.e.
takes different boolean values on each trace. Conversely, if the branch predicate of every such split
point is uniform, there will be no diverging traces and this split will not cause local inhomogeneity
at other program points.

The core of the uniformity analysis presented in this paper is to identify the split points that
are relevant for local homogeneity at some program point 𝑝 . The main result is that there is a
simple way to transform the CFG of the program into a finite DAG that we call head-rewired
CFG, such that for each pair of instance-disjoint traces (i.e. disjoint sub-paths in the tagged
CFG) that originate from a split 𝑠 and a rejoin at some node 𝑝 , there are two disjoint paths in
the head-rewired CFG and vice versa (Section 4.6).

Therefore, identifying all joins for which 𝑠 is relevant boils down to identifying all program
points where two disjoint paths in the head-rewired CFG rejoin. (Note that the disjoint paths start
at the successors of 𝑠 in the CFG.) For computing these joins, we present a simple, efficient, and
easy-to-implement algorithm (Section 5).

The head-rewired CFG results from the program’s CFG by replacing the outgoing edges of every
loop header by edges to the exits of the corresponding loop. Figure 2b shows the DAG for Figure 1b.

7We use capitals for concrete nodes and lower-case letters for variables that range over nodes.
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The intuition behind the head-rewired CFG is the following: The instance-disjoint sub-traces
in (2) are caused by a split inside a loop that causes one trace to leave the loop and the other to
remain in the loop. Such two sub-traces do not necessarily correspond to two node-disjoint paths
in the CFG (like in this example). The reason is that the trace that remains in the loop may visit the
same nodes as the other trace, howeverwith a “later” tagwhichmakes the traces (instance-)disjoint
but not the paths. Therefore, replacing the outgoing edges of the header with edges that lead to
the loop exits creates node-disjoint paths for such instance-disjoint traces which in turn makes
the disjoint sub-traces identifiable as disjoint paths.

Replacing these edges is compatible with splits that create instance-disjoint traces that do cor-
respond to node-disjoint paths such as the one in (1). On their way to their common join point,
such disjoint paths can enter loops but also have to exit them which is possible via the replaced
edge (because it leads to an exit). It is not possible that both paths need to enter loops (without ex-
iting them) to reach their join point because loop headers dominate all nodes in a loop and would
forcibly be contained on both paths which contradicts their disjointness.

In Section 4.6 we show that the set of split nodes in the head-rewired CFG is equivalent to the
set of split nodes in the tagged CFG.

3 PROGRAMS

3.1 Control Flow Graphs

We consider a program to be given by a control flow graph (CFG) 𝐺 = (Lab,→, rt) that consists
of nodes (also called labels or program points) Lab, edges→⊆ Lab × Lab and a unique root node
rt ∈ Lab that has no incident edges. A path is a sequence of nodes that are connected by edges.
We will use the notation 𝑝 →∗ 𝑞 for a path from 𝑝 to 𝑞. A split point is a node with more than one
control flow successor.

Reducible CFGs. In this paper, we restrict ourselves to reducible [Hecht and Ullman 1974] CFGs.
In practice, this is not a severe constraint because almost every CFG encountered in practice is
reducible. In a reducible CFG, each edge whose target dominates its source is called a back edge.
Its target is the header of a loop and its source is called a latch. The loop of some header ℎ is a set of
nodes that consists of all nodes that are dominated by ℎ and from which a latch of ℎ is reachable
along a path that does not contain ℎ itself. For two different loops it holds that they are either
disjoint or one is contained in the other. Therefore, the loops of a reducible CFG form a forest that
can be turned into a tree by inserting an artificial root. For the sake of simplicity, we assume an
artificial top-level loop that spans the entire CFG.

We identify loops with their headers, thus for a loop header ℎ and node 𝑣 the statement 𝑣 ∈ ℎ
means that 𝑣 is a member of ℎ’s loop. The loop of a node 𝑣 is defined to be the innermost loop that
contains 𝑣 and is written as ℎ𝑣 . The depth of a loop is the distance of the loop to the root in the
loop tree. For nodes 𝑝 and 𝑞, if 𝑝 ∉ ℎ𝑞 and 𝑞 → 𝑝 , we say that 𝑞 is a loop exiting node, 𝑝 is a loop
exit of ℎ𝑞 , and 𝑞 → 𝑝 is an exit edge. Similarly, if 𝑞 ∉ ℎ𝑝 then 𝑞 → 𝑝 is a an entry edge.

Normalizations. We normalize the CFG to simplify the formal treatment by imposing the follow-
ing requirements:

(1) All predecessors of an exit node are in the same loop.
(2) The target of a loop exit edge is not a loop header.
(3) There is no edge from a node to itself.
(4) An exit edge can only exit one loop at a time.

All of these requirements can be easily implemented: Requirements 1, 2, and 3 are met by splitting
the corresponding edges with an additional node per edge. We obey Requirement 4 as follows: We
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split each exit edge that spans several loops by introducing a node per bypassed loop. We place
each such node into its loop by adding a “fake” back edge to the header of its loop. Consequently,
this makes such a node a split node. We assign the exiting edge the effect true and the back edge
the effect false which makes the branch variable of this split uniform.

3.2 Tags

As indicated in Section 2.1, we equip every configuration (element) of a program trace with an
input-independent tag that identifies the configuration uniquely within that trace. We define the
tag of a configuration to be an iteration vector, i.e. the valuation of the induction variables of all
loops that surround the program point of the configuration. Hence, the set of tags is defined as the
set of sequences of natural numbers:

Tag ≜ N∗

We define |𝑖 | as the length of 𝑖 ∈ Tag. The type of an edge 𝑒 = 𝑞 → 𝑝 determines its tag seman-
tics 𝑔𝑞𝑝 .

D५६९ॴ९ॺ९ॵॴ 3.1 (T१७ S५ॳ१ॴॺ९३ॹ).

𝑔𝑞𝑝 ⟨𝑖1 . . . 𝑖𝑛⟩ ≜ ⟨𝑖1 . . . 𝑖𝑛0⟩ if 𝑒 is an entry edge

𝑔𝑞𝑝 ⟨𝑖1 . . . 𝑖𝑛𝑖𝑛+1⟩ ≜ ⟨𝑖1 . . . 𝑖𝑛 (𝑖𝑛+1 + 1)⟩ if 𝑒 is a back edge

𝑔𝑞𝑝 ⟨𝑖1 . . . 𝑖𝑛𝑖𝑛+1⟩ ≜ ⟨𝑖1 . . . 𝑖𝑛⟩ if 𝑒 is an exit edge

𝑔𝑞𝑝 ⟨𝑖1 . . . 𝑖𝑛⟩ ≜ ⟨𝑖1 . . . 𝑖𝑛⟩ otherwise

Note that this case distinction is exclusive because we require the CFG to be reducible. We define the

initial tag to be the empty tuple ⟨⟩.

D५६९ॴ९ॺ९ॵॴ 3.2 (T१७ OR४५R९ॴ७). For each 𝑛 ∈ N, we define the (total) ordering ⊴𝑛 of all tags in

N
𝑛 to be the lexicographic order with innermost loop dimensions being least significant. We further

define ⊴ ≜
⋃

𝑛∈N ⊴𝑛 .

Based on the tag semantics, we define the (possibly) infinite graph of program point instances:

D५६९ॴ९ॺ९ॵॴ 3.3 (T१७७५४ CFG). The tagged CFG is the rooted graph 𝐺𝑇 ≜ (𝑉𝑇 ,→𝑇 , rt⟨⟩):

𝑉𝑇 ≜ {𝑝 ⟨𝑖⟩ ∈ Lab × Tag | depth 𝑝 = |𝑖 |}

→𝑇 ≜ {(𝑞⟨ 𝑗⟩, 𝑝 ⟨𝑖⟩) ∈ 𝑉 2

𝑇 | 𝑞 → 𝑝 ∧ 𝑔𝑞𝑝 𝑗 = 𝑖}.

Analogously to→∗ we use→∗𝑇 for paths on 𝐺𝑇 .

Since every back edge traversal increases the tag, 𝐺𝑇 is a DAG:

L५ॳॳ१ 3.4 (A३ॿ३ॲ९३९ॺॿ). 𝐺𝑇 is acyclic.

We define preceding instances to define a (stricter) notion of dominance on 𝐺𝑇 .

D५६९ॴ९ॺ९ॵॴ 3.5 (PR५३५४९ॴ७ Iॴॹॺ१ॴ३५ॹ). We say an instance 𝑞⟨ 𝑗⟩ precedes an instance 𝑝 ⟨𝑖⟩ on a

𝐺𝑇 path

rt⟨⟩ . . . , 𝑞⟨ 𝑗⟩ , . . . , 𝑝 ⟨𝑖⟩︸    ︷︷    ︸
𝑟

, . . .

if there is no 𝑗 ′ such that 𝑞⟨ 𝑗 ′⟩ ∈ 𝑟 . We write 𝑞⟨ 𝑗⟩ ⪯ 𝑝 ⟨𝑖⟩.
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3.3 Semantics

For each program point 𝑞 there is an effect function 𝑐𝑞 : St ⇀ Lab × St that decides, based on
some state 𝜎 ∈ St ≜ Var ⇀ Val, where the computation shall continue and in what state. The
continuation program point 𝑝 must be a control-flow successor of 𝑞. We require that every split
node 𝑠 has an individual branch variable𝑏𝑠 such that the value of its effect function 𝑐𝑠 only depends
on 𝑏𝑠 . The fact that 𝑐𝑞 is a (partial) function ensures that branching is deterministic.8

An effect function 𝑐𝑞 gives rise to edge effect9 functions 𝑓𝑞𝑝 that describe the transformation of
states along each control flow edge 𝑞 → 𝑝 ∈ 𝐸 in the following way:

𝑓𝑞𝑝 𝜎 = 𝜎 ′ ⇐⇒ 𝑐𝑞 𝜎 = (𝑝, 𝜎 ′) for all {𝜎, 𝜎 ′} ⊆ St

Computations are given by traces. A trace is a sequence of configurations, which are pairs of pro-
gram point instances and states.

For a given set of initial states 𝑆 ⊆ Σ, the semantics of a program is the least fix-point of the
(monotone) function 𝐹𝑆 (aka concrete transformer):

D५६९ॴ९ॺ९ॵॴ 3.6 (Cॵॴ३R५ॺ५ TR१ॴॹ६ॵRॳ५R).

𝐹𝑆 : P (Tr) → P (Tr)

𝑇 ↦→
{
(rt⟨⟩, 𝜎0) | 𝜎0 ∈ 𝑆

}
∪

{
. . . , (𝑞⟨ 𝑗⟩, 𝜎)︸         ︷︷         ︸

𝑡

, (𝑝 ⟨𝑔𝑞𝑝 𝑗⟩, 𝑓𝑞𝑝 𝜎) | 𝑡 ∈ 𝑇 ∧ 𝑞 → 𝑝 ∧ 𝑓𝑞𝑝 𝜎 defined
}

If we do not care about a particular set of start states, we omit the index 𝑆 . Note that when
omitting the states, every trace induces a path in the tagged CFG.

D५६९ॴ९ॺ९ॵॴ 3.7 (T१७७५४ P१ॺ८ॹ ६ॵR १ S५ॺ ॵ६ TR१३५ॹ).

tpaths : P (Tr) → P
(
𝑉 ∗𝑇

)
𝑇 ↦→ {𝑝1⟨𝑖1⟩ →𝑇 · · · →𝑇 𝑝𝑛 ⟨𝑖𝑛⟩ | (𝑝1⟨𝑖1⟩, 𝜎1), . . . , (𝑝𝑛 ⟨𝑖𝑛⟩, 𝜎𝑛) ∈ 𝑇 }

3.4 Hyper-Semantics

The set P (Tr) is called the set of hyper-traces. We lift 𝐹 to hyper-traces and define the hyper-
semantics as the least fixpoint of the function

D५६९ॴ९ॺ९ॵॴ 3.8 (Hॿॶ५R-S५ॳ१ॴॺ९३ॹ).

𝔉𝔖 : P (P (Tr)) → P (P (Tr))

𝔗 ↦→ {{(rt⟨⟩, 𝜎) | 𝜎 ∈ 𝑆} | 𝑆 ∈ 𝔖}

∪ {𝐹∅ (𝑇 ) | 𝑇 ∈ 𝔗}

4 UNIFORMITY ANALYSIS

In this section, we define the uniformity abstract domain, its concretization (Section 4.1) and trans-
former and prove the latter sound with respect to splits on tagged paths (Section 4.3). Because the
tagged CFG is potentially infinite, this does not directly yield an efficiently implementable trans-
former.

Therefore, the crucial step remaining is to show that every pair of disjoint paths on the tagged
CFG relates to a pair of disjoint paths on the head-rewired CFG.We outline this proof in Section 4.4
and carry it out in detail in Section 4.5 and Section 4.6. Section 4.6 also includes a proof of the
backwards direction (i.e. for every pair of disjoint paths in the head-rewired CFG there is a pair of

8Identifying uniform branches in programs with non-deterministic branching is futile.
9Edge effects are more common in abstract interpretation and more amenable to the formal development.
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disjoint paths in the tagged CFG), which is not required for the soundness of the transformer but
shows that we are not losing precision with the use of the head-rewired CFG.

4.1 Abstract Domain and Concretization

First, let us consider the following abstract domain that provides information about the uniformity
of a certain variable in sets of states.

UniS ≜ Var→ {true, false}

A variable 𝑥 is supposed to be uniform if for any two states 𝜎1, 𝜎2 in some set 𝑆 ⊆ St of states, its
value is equal:

𝛾UniS : UniS → P (P (St))

uni ↦→ {𝑆 ∈ P (St) | ∀𝑥 ∈ Var.∀{𝜎1, 𝜎2} ⊆ 𝑆.

uni 𝑥 ⇒ 𝜎1 𝑥 = 𝜎2 𝑥}

Ultimately, we would like to assess the uniformity of variables in program executions in a flow-
sensitive way. This is reflected by the following abstract domain:

Uni ≜ Lab→ UniS

As discussed in Section 2.1, we therefore have to relate the states that appear in two separate
traces at the program point in question. However, since a program point can appear multiple
times in a trace, a program point alone is not sufficient to relate the states in an unambiguous
way. The concretization of the uniformity domain takes this into account by incorporating tags

(cf. Section 3.2): For a variable 𝑥 to be uniform at 𝑝 then means that for two executions, the values
of 𝑥 are equal in all states at 𝑝 that are equally tagged:

D५६९ॴ९ॺ९ॵॴ 4.1 (Cॵॴ३R५ॺ९ঀ१ॺ९ॵॴ ॵ६ Uni).

𝛾Uni : Uni → P (P (Tr))

uni ↦→ {𝑇 ∈ P (Tr) | ∀𝑥 ∈ Var.∀𝑝 ∈ Lab.∀𝑖 ∈ Tag.

∀{𝑡1, 𝑡2} ⊆ 𝑇 .∀𝜎1, 𝜎2 ∈ St. uni 𝑝 𝑥 ⇒

(𝑝 ⟨𝑖⟩, 𝜎1) ∈ 𝑡1 ⇒ (𝑝 ⟨𝑖⟩, 𝜎2) ∈ 𝑡2 ⇒

𝜎1 𝑥 = 𝜎2 𝑥}

T८५ॵR५ॳ 4.2. 𝛾Uni is meet-preserving.10

4.2 Local Homogeneity

In many common static analyses the abstract value of a program point is defined as the join of
the abstract values of its incident edges. The examples discussed in the introduction (cf. Figure 1)
suggest that this is not correct for uniformity analysis. In Section 2.2, we informally introduced
the concept of local homogeneity of a program point 𝑝 which says that on all traces, each instance
of that program point is preceded by the same instance of the same predecessor. Before we turn
to uniformity itself, in this section, we describe homogeneity formally and derive necessary con-
ditions for it that we then employ in the uniformity transformer.

D५६९ॴ९ॺ९ॵॴ 4.3 (Lॵ३१ॲ Hॵॳॵ७५ॴ५९ॺॿ). For a set of tagged paths 𝑃 and a node 𝑝 ∈ Lab,

hom 𝑃 𝑝 ≜ ∀𝑞1, 𝑞2, 𝑝 ∈ Lab.∀𝑗1, 𝑗2, 𝑖 ∈ Tag.

· · · →𝑇 𝑞1⟨ 𝑗1⟩ →𝑇 𝑝 ⟨𝑖⟩ →𝑇 · · · ∈ 𝑃 ⇒

· · · →𝑇 𝑞2⟨ 𝑗2⟩ →𝑇 𝑝 ⟨𝑖⟩ →𝑇 · · · ∈ 𝑃 ⇒

𝑞1 = 𝑞2 ∧ 𝑗1 = 𝑗2 .

10Meet-preserving mappings are monotone and induce a Galois connection.
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Consider a program point 𝑝 , a tag 𝑖 , and two tagged paths 𝜋1 and 𝜋2 that both contain 𝑝 ⟨𝑖⟩:

𝜋1 = · · · →𝑇 𝑠 ⟨𝑘⟩ →𝑇 𝑢1⟨𝑙1⟩ →𝑇 · · · →𝑇 𝑞1⟨ 𝑗1⟩︸                              ︷︷                              ︸
𝑟1

→𝑇 𝑝 ⟨𝑖⟩ →𝑇 · · ·

𝜋2 = · · · →𝑇 𝑠 ⟨𝑘⟩ →𝑇 𝑢2⟨𝑙2⟩ →𝑇 · · · →𝑇 𝑞2⟨ 𝑗2⟩︸                              ︷︷                              ︸
𝑟2

→𝑇 𝑝 ⟨𝑖⟩ →𝑇 · · ·
(3)

Assume that the program is not locally homogeneous at 𝑝 , i.e. 𝑞1⟨ 𝑗1⟩ ≠ 𝑞2⟨ 𝑗2⟩. Since rt⟨⟩ is in every
tagged path, 𝜋1 and 𝜋2 have a at least one common instance. Let 𝑠 ⟨𝑘⟩ be a11 last common instance
of 𝜋1 and 𝜋2 before 𝑝 ⟨𝑖⟩ where 𝑟1 and 𝑟2 are disjoint and at least one of them is non-empty.12 Such
an 𝑠 ⟨𝑘⟩ is a witness of inhomogeneity and we say that 𝑠 is relevant for 𝑝 . Because 𝑟1 and 𝑟2 are
instance-disjoint, 𝑠 ⟨𝑘⟩ is a split instance on the tagged CFG and also a split node in the CFG:

L५ॳॳ१ 4.4. 𝑠 is a split node.

PRॵॵ६. Because of 𝑞1⟨ 𝑗1⟩ ≠ 𝑞2⟨ 𝑗2⟩, 𝑟1 and 𝑟2 cannot both be empty. Since 𝑟1 and 𝑟2 are disjoint
by assumption and since 𝑝 ⟨𝑖⟩ ∉ 𝑟1 ∪ 𝑟2 by Lemma 3.4, there is either 𝑢1 ≠ 𝑢2 or 𝑙1 ≠ 𝑙2. Suppose
𝑢1 = 𝑢2. Then, the determinism of tag semantics (Definition 3.1) implies 𝑙1 = 𝑙2. Contradiction. □

Each split node 𝑠 has a distinct branch variable 𝑏𝑠 whose value determines to which program
point it branches (see Section 3.3). Because of Lemma 4.4 this variable is not uniform at 𝑠 in (3).
Conversely, if the branch variable of every split node that is relevant for 𝑝 is uniform, then all
traces at 𝑝 are locally homogeneous. Therefore, homogeneity at 𝑝 is determined by the uniformity
of the branch variables of its relevant splits.

Relevance, as defined above, is a semantic property that certainly is undecidable. As a first step
towards a decidable criterion for local homogeneity (which will be the focus from Section 4.5
onwards), we consider all possible tagged paths instead of only those that are projections of traces
and thereby get a sound over-approximation:

D५६९ॴ९ॺ९ॵॴ 4.5.

splits𝑇 𝑝 ≜ {𝑠 ∈ 𝑉 | ∃𝜋, 𝜙, 𝑘, 𝑖, such that 𝜋 and 𝜙 are disjoint paths from 𝑠 ⟨𝑘⟩ to 𝑝 ⟨𝑖⟩ in 𝐺𝑇 }.

L५ॳॳ१ 4.6. For all program points 𝑠 and 𝑝 and all uni ∈ Uni:∧
𝑠∈splits𝑇 𝑝

uni 𝑠 𝑏𝑠 =⇒ ∀𝑇 ∈ (𝐹 ◦ 𝛾Uni uni). hom (tpaths𝑇 ) 𝑝

The definition of splits𝑇 does not directly induce an efficient implementation because the tagged
CFG is infinite. From Section 4.5 on, we will establish the equivalence between splits𝑇 and a similar
property splits (cf. Definition 4.18) on the finite head-rewired CFG (briefly explained in Section 2.3,
formally defined in Section 4.6), which can be efficiently computed.

4.3 An Abstract Transformer for Uniformity

In this section, we define an abstract transformer of the uniformity domain and prove its soundness.
First of all, we assume that for each effect on a CFG edge 𝑞 → 𝑝 there is given a correct abstract
effect

𝑓
♯
𝑞𝑝 : UniS→ UniS with (𝔣𝑞𝑝 ◦ 𝛾UniS) 𝑢 ⊆ (𝛾UniS ◦ 𝑓

♯
𝑞𝑝 ) 𝑢 for all 𝑢 ∈ UniS (4)

11There may be more than one instance with this property.
12If 𝑟1 or 𝑟2 is empty, then 𝑞1 = 𝑠 and 𝑢1 = 𝑝 or 𝑞2 = 𝑠 and 𝑢2 = 𝑝 , respectively.
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that computes which variables remain uniform under 𝔣𝑞𝑝 . Here, 𝔣𝑞𝑝 is the function that lifts the
concrete edge transformer 𝑓𝑞𝑝 to sets of sets of states. We do not want to go into details about ab-
stract edge effects because their definition (and soundness proof) is straightforward for the effects
one is typically interested in (such as assignments). Therefore, we assume that for each edge, we
are given a sound abstract edge transformer.

The uniformity abstract transformer makes use of homogeneity information we developed in
the last section:

D५६९ॴ९ॺ९ॵॴ 4.7 (Uॴ९६ॵRॳ९ॺॿ A२ॹॺR१३ॺ TR१ॴॹ६ॵRॳ५R).

𝐹
♯
Uni

: Uni→ Uni

uni ↦→ 𝜆𝑝.𝜆𝑥 .
∧

𝑠∈splits𝑇 𝑝

uni 𝑠 𝑏𝑠

︸              ︷︷              ︸
𝐻𝑝

∧
∧
𝑞→𝑝

𝑓
♯
𝑞𝑝 (uni𝑞) 𝑥

T८५ॵR५ॳ 4.8. 𝐹
♯
Uni

is sound.

PRॵॵ६. We need to show, for all uni ∈ Uni:

(𝔉 ◦ 𝛾Uni) uni ⊆ (𝛾Uni ◦ 𝐹
♯
Uni
) uni

Consider some uni ∈ Uni, a set of traces 𝑇 ∈ (𝔉 ◦ 𝛾Uni) uni, and two traces {𝑡1, 𝑡2} ⊆ 𝑇 . Based on

Definition 4.1, we need to show that for each instance 𝑝 ⟨𝑖⟩ and each variable 𝑥 , if (𝐹
♯
Uni

uni) 𝑝 𝑥 =

true and the configurations (𝑝 ⟨𝑖⟩, 𝜎1) ∈ 𝑡1 and (𝑝 ⟨𝑖⟩, 𝜎2) ∈ 𝑡2 do exist, both agree on 𝑥 , i.e. 𝜎1 𝑥 =

𝜎2 𝑥 .
So, consider a variable 𝑥 , a program point 𝑝 , a tag 𝑖 and two states 𝜎1, 𝜎2 such that (𝑝 ⟨𝑖⟩, 𝜎1) ∈ 𝑡1

and (𝑝 ⟨𝑖⟩, 𝜎2) ∈ 𝑡2. Then, 𝑡1, 𝑡2 look like this:

𝑡1 = . . . (𝑞1⟨ 𝑗1⟩, 𝜎𝑞1 ), (𝑝 ⟨𝑖⟩, 𝜎1), . . .

𝑡2 = . . . (𝑞2⟨ 𝑗2⟩, 𝜎𝑞2 ), (𝑝 ⟨𝑖⟩, 𝜎2), . . .
(5)

Because (𝐹
♯
Uni

uni) 𝑝 𝑥 = true by assumption, it follows from Definition 4.7 that 𝑓
♯
𝑞𝑝 (uni𝑞) 𝑥 =

true for each predecessor 𝑞 of 𝑝 and that 𝐻𝑝 = true.
By the latter and by Definition 4.3 and Lemma 4.6, we have that 𝑞1 = 𝑞2 and 𝑗1 = 𝑗2. Because 𝑞1 =

𝑞2, we have𝜎1 = 𝑓𝑞1𝑝 𝜎𝑞1 and𝜎2 = 𝑓𝑞1𝑝 𝜎𝑞2 , i.e. both edge transformers are the same. Because 𝑗1 = 𝑗2,
there is a set 𝑆 ′ ∈ 𝛾UniS (uni𝑞) such that {𝜎𝑞1 , 𝜎𝑞2 } ⊆ 𝑆 ′ and therefore there is a set

𝑆 ⊆ (𝔣𝑞1𝑝 ◦ 𝛾UniS) (uni𝑞1)

with {𝜎1, 𝜎2} ⊆ 𝑆. By the fact that 𝑓
♯
𝑞1𝑝 (uni𝑞1) 𝑥 = true and the soundness of the edge transform-

ers (4) it follows that 𝜎1 𝑥 = 𝜎2 𝑥 . □

4.4 Outline of the Soundness Proof

As discussed in Section 4.2 we want to prove an equivalence between splits𝑇 and splits. The proof
for the inclusion splits𝑇 𝑝 ⊆ splits 𝑝 works by transforming two (instance-)disjoint paths in the
tagged CFG 𝐺𝑇 into two (node-)disjoint paths in the head-rewired CFG (cf. Section 2.3).

Reconsider Equation (3) where 𝑟1 and 𝑟2 are disjoint. By our normalizations on the CFG (cf. Sec-
tion 3.1), 𝑞1 and 𝑞2 have the same innermost loop. The first observation is that there is no loop
that contains 𝑞1 but not the split node 𝑠 (cf. Lemma 4.9). This allows for inductively constructing
disjoint paths on the head-rewired CFG by exiting the loops that contain 𝑠 one by one. Formally,
the main proof is carried out by induction on depth 𝑠 − depth𝑞1 (Lemma 4.19).
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In the base case, the tags are equal thus the tagged paths are already node-disjoint (cf. the first
part of Lemma 4.13). The disjoint paths on the head-rewired CFG are exactly the underlying CFG
paths, except that visited inner loops are immediately exited using the newly introduced exit edges
on the head-rewired CFG (cf. Lemma 4.16).

If the split node 𝑠 is inside of a loop ℎ that does not contain 𝑞1 (and let ℎ be the outermost such
loop), only one of the tagged paths—w.l.o.g. 𝑟2—can take a back edge of ℎ (Lemma 4.10). Otherwise
the same instance of ℎ would be visited on both.

Similarly to the base case, the prefix of 𝑟2 up to (including) ℎ is node-disjoint to the other tagged
path (cf. the latter part of Lemma 4.13)13 and we can re-connect this prefix to the suffix of 𝑟2 that
starts at the exit of ℎ. The suffices of 𝑟1 and 𝑟2 from the exits of ℎ yield disjoint paths on the head-
rewired CFG in the same way as it is shown in the base case. Lemma 4.13 is formulated in a more
general way to capture both cases.

The inductive proof is not in the final soundness theorem (Theorem 4.20) but instead in a lemma
that argues about inhomogeneous loop exits (Lemma 4.19). An inductive proof of the proposition
of Theorem 4.20 would yield an unusable induction hypothesis, because of the actual join of the
tagged paths at 𝑝 . Thus joining tagged paths from inhomogeneous loop exits is handled in Theo-
rem 4.20.

4.5 Relating Tagged Paths and Paths in the CFG

This subsection investigates the relation between tagged paths and paths in the CFG. The main
result is Lemma 4.13 which is useful to derive node-disjoint paths from instant-disjoint paths.

We generalize the setting fromEquation (3) by relaxing the requirement of equal target instances
to equal target tags:

𝑠 ⟨𝑘⟩ →𝑇 𝑢1⟨𝑙1⟩ →
∗
𝑇 𝑞1⟨ 𝑗1⟩︸                  ︷︷                  ︸
𝑟1

→𝑇 𝑝1⟨𝑖⟩

𝑠 ⟨𝑘⟩ →𝑇 𝑢1⟨𝑙2⟩ →
∗
𝑇 𝑞1⟨ 𝑗2⟩︸                  ︷︷                  ︸
𝑟2

→𝑇 𝑝2⟨𝑖⟩.
(6)

Let 𝑟1 and 𝑟2 be disjoint paths on 𝐺𝑇 . Here, we additionally require 𝑞1 and 𝑞2 to be in the same
loop, i.e. ℎ𝑞1 = ℎ𝑞2 ≕ ℎ𝑞 (which is guaranteed by the CFG normalizations in Equation (3)). W.l.o.g.
we assume 𝑗1 ⊴ 𝑗2. First, we prove some consequences of this setup.

L५ॳॳ१ 4.9. 𝑠 ∈ ℎ𝑞 .

PRॵॵ६. Otherwise ℎ𝑞 would occur in both 𝑟1 and 𝑟2 with the same tag. □

The next lemma states the absence of back edges of the loop ℎ𝑞 in 𝑟1.

L५ॳॳ१ 4.10. If ℎ𝑞 ⟨𝑚⟩ ∈ 𝑟1 then there is a tag𝑚′ such that𝑚 =𝑚′ 0 (i.e. the loop ℎ𝑞 is entered).

PRॵॵ६. Assume the contrary, ℎ𝑞 is visited by a back edge. Since every back edge increases the
tag and because we have 𝑗1 ⊴ 𝑗2, the other path 𝑟2 must contain the same instance of ℎ𝑞 . □

L५ॳॳ१ 4.11. 𝑟1 ∪ 𝑟2 ⊆ ℎ𝑞 .

PRॵॵ६. Because of 𝑠 ∈ ℎ𝑞 a node outside of ℎ𝑞 would require a loop exit of ℎ𝑞 . If there is only
an exit on one of the tagged paths 𝑟1 and 𝑟2, then the tag cannot reconverge at 𝑝1 and 𝑝2. In the
other case both 𝑟1 and 𝑟2 have to contain the same instance of the entry of ℎ𝑞 . □

13If ℎ is not the innermost loop of 𝑠 , we additionally use the induction hypothesis for the inner loops.
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We state the main result of this subsection (cf. Lemma 4.13) in a more general setting than the
one in Equation (6). This is necessary to make use of it in different ways in Section 4.6. The next
lemma shows that Equation (6) indeed implies the requirements of Lemma 4.13.

L५ॳॳ१ 4.12. If ℎ𝑠 = ℎ𝑞 then tl 𝑗1 = tl 𝑗2 (i.e. 𝑗1 and 𝑗2 differ at most at the last index),

𝑙1 = 𝑗1 ∨ (𝑙1 = 𝑗1 0 ∧ 𝑢1 is a header)

and 𝑙2 = 𝑗1 ∨ (𝑙2 = 𝑗1 0 ∧ 𝑢2 is a header) ∨ 𝑢2 = ℎ𝑞 .

PRॵॵ६. Lemma 4.11 prohibits back edges of loops outside of ℎ𝑞 . Consequently, we have 𝑘 = 𝑗1
and only the latest part of the tag can differ at 𝑞1 and 𝑞2, thus tl 𝑗1 = tl 𝑗2. Because of ℎ𝑠 = ℎ𝑞 and
Lemma 4.11 neither 𝑠 →𝑇 𝑢1 nor 𝑠 →𝑇 𝑢2 can be an exit edge. Lemma 4.10 gives us that 𝑠 →𝑇 𝑢1
is not a back edge and if 𝑠 →𝑇 𝑢2 is a back edge, it is a back edge of ℎ𝑞 . By Definition 3.1 only the
stated values for the tags are possible. □

Now we leave the setting of Equation (6) and show the general lemma to translate disjoint 𝐺𝑇

paths to disjoint paths on the CFG.

L५ॳॳ१ 4.13. For nodes 𝑢1, 𝑢2, 𝑞1, 𝑞2 assume ℎ𝑞1 = ℎ𝑞2 ≕ ℎ𝑞 and 𝑢1, 𝑢2 ∈ ℎ𝑞 . Let 𝑙1, 𝑙2, 𝑗1, 𝑗2 be tags

such that tl 𝑗1 = tl 𝑗2,

𝑙1 = 𝑗1 ∨ (𝑙1 = 𝑗1 0 ∧ 𝑢1 is a header)

and 𝑙2 = 𝑗1 ∨ (𝑙2 = 𝑗1 0 ∧ 𝑢2 is a header) ∨ 𝑢2 = ℎ𝑞

hold. Let the paths

𝑟1 ≔ 𝑢1⟨𝑙1⟩ →
∗
𝑇 𝑞1⟨ 𝑗1⟩

𝑟2 ≔ 𝑢2⟨𝑙2⟩ →
∗
𝑇 𝑞2⟨ 𝑗2⟩

be disjoint. If 𝑗1 = 𝑗2, then 𝑟1 and 𝑟2 are node-disjoint . Otherwise there is a prefix 𝑟 ′
2
of 𝑟 ′ that ends

in ℎ𝑞 and 𝑟 and 𝑟 ′
2
are node-disjoint .

PRॵॵ६ ॹK५ॺ३८. First note that Lemma 4.10 and Lemma 4.11 also hold in this setting (with anal-
ogous proofs). We investigate two different cases:

j1 = j2: In this case 𝑟1 and 𝑟2 are interchangeable, thus 𝑟2 also does not contain back edges of ℎ𝑞 .
The tag semantics and the properties shown above ensure that, except for inner loops, every
instance in 𝑟1 and 𝑟2 has the tag 𝑗1. But no inner loop ℎ′ can be visited on both 𝑟1 and 𝑟2
because they would have the same instance on the entry. (In particular this holds for 𝑢1 and
𝑢2.) Thus instance-disjointedness implies node-disjointedness.

j1 ◁ j2: Let 𝑟
′
2
be the prefix of 𝑟2 such that the last member of 𝑟 ′

2
is the first occurence of ℎ𝑞 in 𝑟2.

(Non-existence would imply 𝑗1 = 𝑗2.) Analogous to the first case. □

4.6 Syntactical Characterisation of Inhomogeneity

In this subsection we construct a finite DAG on which we define the set splits similarly to Defi-
nition 4.5. With the use of Lemma 4.13 we prove the equivalence between both sets, yielding an
efficient way to compute witnesses of local inhomogeneity.

D५६९ॴ९ॺ९ॵॴ 4.14 (H५१४-R५ॽ९R५४ CFG). The head-rewired CFG is the graph 𝐺★ ≔ (𝑉 ,→★, rt)

where

→★ ≜ →𝐺 \{ℎ → 𝑣 | ℎ is a header}

∪ {ℎ → 𝑒 | 𝑒 is an exit of loop ℎ}.

The new edges are called early-exits.
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L५ॳॳ१ 4.15 (Eॾॶ१ॴॹ९ॵॴ). Let 𝜋 ≔ 𝑝 →∗𝐺★

𝑞. Then there is a path 𝜙 ⊇ 𝜋 such that 𝜙 = 𝑝 →∗ 𝑞.

PRॵॵ६. For any edge 𝑝 →𝐺★
𝑞: If it is an exit between a header and an exit, then take some

path through the loop 𝑝 in 𝐺 . Such a path exists because every exit node is reachable from its
corresponding header. In any other case take the same edge in 𝐺 as in 𝐺★. □

L५ॳॳ१ 4.16 (CॵॴॺR१३ॺ९ॵॴ). Let 𝜋 ≔ 𝑝 →∗ 𝑞 be a path. If 𝑝 ∈ ℎ𝑞 and either ℎ𝑞 ∉ 𝜋 or 𝑞 = ℎ𝑞 ,

then there is 𝜋 ′ such that 𝑝 →∗𝐺★

𝑞 and 𝜋 ′ ⊆ 𝜋 .

PRॵॵ६. By induction on the loop depth between 𝑝 and 𝑞. If they are in the same loop the outgo-
ing edges from ℎ𝑞 are not used in 𝜋 and any other edge from 𝐺 also exists in 𝐺★. For every loop
ℎ strictly inside of ℎ𝑞 : If there is a back edge of ℎ in 𝜋 the back edge is also traversed on 𝜋 ′ and
afterwards the exit of that loop in 𝜋 is taken directly from ℎ. This process builds up a path 𝜋 ′ that
is a subset of 𝜋 . □

L५ॳॳ१ 4.17. 𝐺★ is a finite DAG.

PRॵॵ६. 𝐺★ is finite since𝐺 is finite. By expansion the reachability relation on𝐺★ is included in
the one on 𝐺 , thus every loop on 𝐺★ is also a loop on 𝐺 . Let ℎ be a loop header. The rewiring of
outgoing edges of ℎ to its exits renders any other node inside of ℎ unreachable from ℎ. Thus every
loop of 𝐺 is cut and ultimately 𝐺★ is acyclic. □

D५६९ॴ९ॺ९ॵॴ 4.18.

splits 𝑝 ≜ {𝑠 ∈ 𝑉 | ∃𝜋, 𝜙, that are disjoint paths from the 𝐺 successors of 𝑠 to 𝑝 in 𝐺★}.

The following lemma contains the critical proof step towards splits𝑇 𝑝 ⊆ splits 𝑝: The node-disjoint
paths inside a loop (as given by Lemma 4.13) are connected to the head-rewired CFG by replacing
reiterations of loops with early exits. This process is done by induction on the loop depth.

L५ॳॳ१ 4.19 (Iॴ८ॵॳॵ७५ॴ५ॵॻॹ ॲॵॵॶ ५ॾ९ॺॹ). For 𝑛1, 𝑛2 ∈ N, consider the paths

𝑠 ⟨𝑘⟩ →𝑇 𝑢1⟨𝑙1⟩ →
∗
𝑇 𝑞1⟨𝑖 𝑛1⟩︸                       ︷︷                       ︸
𝑟1

→𝑇 𝑒1⟨𝑖⟩

𝑠 ⟨𝑘⟩ →𝑇 𝑢2⟨𝑙2⟩ →
∗
𝑇 𝑞2⟨𝑖 𝑛2⟩︸                       ︷︷                       ︸
𝑟2

→𝑇 𝑒2⟨𝑖⟩,
(7)

and assume ℎ𝑞1 = ℎ𝑞2 ≕ ℎ𝑞 and that 𝑟1 and 𝑟2 are disjoint. Then there are nodes 𝑞′
1
, 𝑞′

2
fulfilling the

path conditions

𝑠 → 𝑢1 →∗𝐺★

𝑞′
1︸            ︷︷            ︸

𝑟 ′
1

→𝐺★
𝑒1

𝑠 → 𝑢2 →∗𝐺★

𝑞′
2︸            ︷︷            ︸

𝑟 ′
2

→𝐺★
𝑒2,

(8)

and such that 𝑟 ′
1
and 𝑟 ′

2
are disjoint.

PRॵॵ६ ॹK५ॺ३८. W.l.o.g. assume 𝑛1 ≤ 𝑛2. Because 𝑠 ∈ ℎ𝑞 (cf. Lemma 4.9) we have depth 𝑠 ≥

depth𝑞1. This allows for a proof by induction on 𝑑 ≔ depth 𝑠 − depth𝑞1.

d = 0 (⇔ depth 𝑠 = depth𝑞1): Because of Lemma 4.12 we can apply Lemma 4.13, this gives two
subcases (note that 𝑛1 = 𝑛2 ⇔ 𝑗1 𝑛1 = 𝑗1 𝑛2):
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If 𝑛1 ≠ 𝑛2 there is a prefix 𝑟 ′
2
of 𝑟2 ending in ℎ𝑞 such that 𝑟1 and 𝑟 ′

2
are node-disjoint. Con-

tracting the CFG paths 𝑟1 and 𝑟 ′
2
using Lemma 4.16 we get two disjoint paths in 𝐺★. By the

definition of 𝐺★ (Definition 4.14) there is an edge from ℎ𝑞 to 𝑒2.
If 𝑛1 = 𝑛2 then 𝑟1 and 𝑟2 are disjoint. Again, with Lemma 4.16 we get disjoint paths in 𝐺★.

d→ d + 1 (⇔ depth 𝑠 > depth𝑞1): Let ℎ
′ be the header of the outermost loop containing 𝑠 that is

still strictly inside ℎ𝑞 .
14 Let 𝑒 ′

1
and 𝑒 ′

2
be the first exits of ℎ′ on 𝑟1 and 𝑟2, respectively. The

way ℎ′ is chosen gives depthℎ′ = depth𝑞1 + 1 thus depth 𝑠 − depthℎ′ = 𝑑 . This allows for
the application of the induction hypothesis to get disjoint 𝐺★ paths 𝑟 ′

1
and 𝑟 ′

2
from 𝑠 to 𝑒 ′

1

and 𝑒 ′
2
, respectively. Now, 𝑒 ′

1
and 𝑒 ′

2
are in the same loop as 𝑞1 and 𝑞2. The prerequisites of

Lemma 4.13 can be shown similarly as in Lemma 4.12.15 By the same argument as in the base
case, applying Lemma 4.13 delivers disjoint 𝐺★ paths from 𝑒 ′

1
to 𝑒1 and from 𝑒 ′

2
to 𝑒2. Since

these paths are completely outside of the loop ℎ′, they are disjoint to the paths given by the
induction hypothesis, thus the concatenation of these paths finishes the proof. □

Lemma 4.19 delivers disjoint 𝐺★ paths ending in loop exits. For the soundness proof, this covers
the case where tagged paths join at loop exits as in Figure 1b (but also for nested loops). We argue
similarly in the case of joins of tagged paths that are joins on the CFG as well (cf. Figure 1a). The
general case, visualized in Figure 1c, is shown by combining both concepts.

T८५ॵR५ॳ 4.20 (Sॵॻॴ४ॴ५ॹॹ ॵ६ splits).

𝑠𝑝𝑙𝑖𝑡𝑠𝑇 𝑝 ⊆ 𝑠𝑝𝑙𝑖𝑡𝑠 𝑝

PRॵॵ६. Let 𝑠 ∈ splits𝑇 𝑝 . Then there is a tag 𝑘 and disjoint paths

𝑟1 ≔ 𝑢1⟨𝑙1⟩ →
∗
𝑇 𝑞1⟨ 𝑗1⟩

𝑟2 ≔ 𝑢2⟨𝑙2⟩ →
∗
𝑇 𝑞2⟨ 𝑗2⟩

originating in 𝑠 ⟨𝑘⟩ and rejoining in 𝑝 ⟨𝑖⟩. Because of Requirement 1 (Section 3.1) and the definition
of the tag semantics either 𝑞1 → 𝑝 and 𝑞2 → 𝑝 are both loop exit edges or neither is. In the first
case we can simply apply Lemma 4.19.

In the case where neither edge is an exit edge, the tag semantics give 𝑗1 = 𝑗2. We distinguish
two different cases:

p ∈ hs: Similarly to the base case of Lemma 4.19, we directly apply Lemma 4.13. Since we have
𝑗1 = 𝑗2, we do not have to consider the other sub-case of Lemma 4.13. With Lemma 4.16 we
get the disjoint paths in 𝐺★.

p ∉ hs: Let ℎ
′ be the outermost loop such that 𝑠 ∈ ℎ′ and 𝑝 ∉ ℎ′. Analogously to the proof of the

step case in Lemma 4.19. □

In the completeness proof we make use of the fact that every node is preceded by all its loop
headers with a compatible tag. This is a consequence of dominance of loop headers on reducible
CFGs.

L५ॳॳ१ 4.21 (PR५३५४५ॴ३५ ॵॴ 𝐺𝑇 ). Let 𝜋 ≔ rt⟨⟩ →∗𝑇 𝑝 ⟨𝑖⟩ be the 𝐺𝑇 path to the instance 𝑝 ⟨𝑖⟩.

Then we have for every header ℎ with 𝑝 ∈ ℎ that ℎ⟨𝑖 ′⟩ precedes 𝑝 ⟨𝑖⟩ on 𝜋 for some prefix 𝑖 ′ of 𝑖 with

|𝑖 ′ | = depthℎ.

We want to show that the use of the head-rewired CFG does not overestimate splits𝑇 . The idea
of the proof is to construct the paths on the 𝐺𝑇 from the paths on 𝐺★. This is done by replacing
every early-exit edge with some path through the corresponding loop while every other edge can

14i.e. ℎ′ ∈ ℎ𝑞 ∧ ℎ
′ ≠ ℎ𝑞

15Its proof can be modified to the case where𝑢1 and𝑢2 are not required to succeed 𝑠 , if we instead require ℎ𝑞 = ℎ𝑢1
= ℎ𝑢2

.
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remain the same. We then only have to argue that the instances on the newly introduced passes
through loops are disjoint to the respective other path.

T८५ॵR५ॳ 4.22 (Cॵॳॶॲ५ॺ५ॴ५ॹॹ ॵ६ splits).

𝑠𝑝𝑙𝑖𝑡𝑠 𝑝 ⊆ 𝑠𝑝𝑙𝑖𝑡𝑠𝑇 𝑝

PRॵॵ६. Let 𝑠 ∈ splits 𝑝 . Then there are successors𝑢1, 𝑢2 of 𝑠 in𝐺 and disjoint paths 𝑟1 ≔ 𝑢1 →
∗
𝐺★

𝑞1 and 𝑟2 ≔ 𝑢2 →
∗
𝐺★

𝑞2 with 𝑞1 →𝐺★
𝑝 and 𝑞2 →𝐺★

𝑝 .

Let 𝑘 be the tag consisting of depth 𝑠 zeros, i.e. 𝑘 ≔ 0
depth 𝑠 . The choice of 𝑘 guarantees that there

are no back edges on the path rt⟨⟩ →∗𝑇 𝑠 ⟨𝑘⟩. Let 𝑟 ′
1
and 𝑟 ′

2
be the expanded CFG paths of 𝑟1 and 𝑟2

(cf. Lemma 4.15). 𝑟 ′
1
and 𝑟 ′

2
are disjoint: For any non-early-exit edge (i.e. an edge that exists in the

CFG) exactly the same nodes are used as in the original edge. Let ℎ be the source of an early-exit
edge and let 𝑗 be the corresponding tag. W.l.o.g. we have ℎ ∈ 𝑟1 and ℎ ∉ 𝑟2. Assume there is an
instance 𝑥 ∈ 𝑟2 in the loop ℎ whose tag is prefixed by 𝑗 . By Lemma 4.21 there is an instance of ℎ
with tag 𝑗 in the tagged path to 𝑥 . Because ℎ ∉ 𝑟2, ℎ is on the path to 𝑠 ⟨𝑘⟩. Since there are no back
edges on the path to 𝑠 ⟨𝑘⟩ we have 𝑗 = 0

depthℎ . But then there are two occurrences of ℎ⟨ 𝑗⟩ on the
path rt⟨⟩ →∗𝑇 𝑢1⟨ 𝑗1⟩ →

∗
𝑇 𝑞1⟨ 𝑗1⟩ which contradicts acyclicity (cf. Lemma 3.4). □

5 EFFICIENTLY COMPUTING ENDS OF DISJOINT PATHS IN A DAG

Because of Theorem 4.20 every join node for which a given split node 𝑠 is relevant is characterized
by two disjoint paths in 𝐺★ that originate from two successors of 𝑠 (in 𝐺) to two predecessors
of that join node. Therefore, we now present a simple and efficient algorithm that computes all
join points of pairs of disjoint paths that originate from a given node set 𝑆 (here the successors of
node 𝑠).

Assume we are given a set 𝑆 of source nodes in a DAG for which we want to be able to compute
information such that, given two nodes 𝑝 and 𝑞, we can answer the question “Are 𝑝 and 𝑞 end
nodes of two node-disjoint paths that originate from two nodes in 𝑆?”

Consider a node 𝑝 that is reachable from some node in 𝑆 and consider the set of all paths

𝑃𝑝 ≜ {𝜋 ∈ 𝑠 →
∗ 𝑝 | 𝑠 ∈ 𝑆}

from nodes in the source set to some node 𝑝 . The set

𝐷𝑝 ≜ {𝑑 | ∀𝜋 ∈ 𝑃𝑝 . 𝑑 ∈ 𝜋}

contains all nodes in the DAG 𝐺 that lie on every path in 𝑃𝑝 . (The nodes in 𝐷𝑝 have similar char-
acteristics as the dominators of 𝑝 . We discuss this relationship briefly at the end of this section.)

The set 𝐷𝑝 is not empty (it contains at least 𝑝 itself) and all nodes in 𝐷𝑝 are totally ordered with
respect to the reachability relation of the DAG. So there is a minimum (earliest) node 𝑝∗ in 𝐷𝑝

from which all other nodes in 𝐷𝑝 are reachable.
Nodes like 𝑝∗ are interesting because a pair of them guarantee the existence of disjoint paths:

Assume in the following that we are given two different such nodes 𝑝∗ and 𝑞∗.

L५ॳॳ१ 5.1. There exist two different nodes 𝑠1 and 𝑠2 in 𝑆 that are the origins of two disjoint paths

to 𝑝∗ and 𝑞∗.

PRॵॵ६. Because 𝑝∗ ≠ 𝑞∗, there is no node that lies on all paths from 𝑆 to 𝑝∗ and from 𝑆 to 𝑞∗.
Therefore, aminimal separator16 between 𝑆 and {𝑝∗, 𝑞∗} contains at least two nodes. By the directed
node-disjoint version of Menger’s theorem [e.g. Schrijver 2017, Theorem 3, Chapter 3], there exist
two nodes {𝑠1, 𝑠2} ⊆ 𝑆 such that there are two node-disjoint paths from 𝑠1 to 𝑝∗ and from 𝑠2
to 𝑞∗. □

16a set of nodes whose removal will disconnect two given sets of nodes.
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L५ॳॳ१ 5.2. There exist two disjoint paths 𝑝∗ →∗ 𝑝 and 𝑞∗ →∗ 𝑞.

PRॵॵ६. By contradiction: Consider two paths 𝑝∗ →∗ 𝑝 and 𝑞∗ →∗ 𝑞 and assume they have a
node in common. Let 𝑥 be the first node that both paths have in common. There are two cases:
(1) 𝑥 = 𝑝∗ or 𝑥 = 𝑞∗: Assume w.l.o.g. 𝑥 = 𝑝∗. Because 𝑝∗ ≠ 𝑞∗ by assumption, 𝑝∗ is reachable
from 𝑞∗. Because of Lemma 5.1 there are two disjoint paths to 𝑝∗ and 𝑞∗. Hence there is a path
from 𝑆 to 𝑝∗ to 𝑞 that does not contain 𝑞∗ which violates the definition of 𝑞∗. (2) 𝑥 ≠ 𝑝∗ and 𝑥 ≠ 𝑞∗:
Combining the one path 𝑝∗ →∗ 𝑥 with the suffix 𝑥 →∗ 𝑞 of the other path yields a path to 𝑞 that
does not contain 𝑞∗ which contradicts its definition. □

L५ॳॳ१ 5.3. If 𝑝∗ ≠ 𝑞∗ then there exist two different nodes 𝑠1 and 𝑠2 in 𝑆 and two disjoint paths

from 𝑠1 to 𝑝 and from 𝑠2 to 𝑞.

PRॵॵ६. Combining Lemma 5.1 and Lemma 5.2. □

def labelDisj(G: DAG , sources: Set[Node ]):

# label each source with itself

labels = { s:s for s in sources }

for p in G.toposort_of_nodes ():

# obtain all preds reachable from sources

reach = filter(𝜆 p: p in labels.keys(), p.preds ())

if len(reach) > 0:

# if this node is reachable from S

plabs = map(𝜆 p: labels[p], reach)

if len(set(plabs)) == 1:

# if there is at least one predecessor

# and all predecessors have identical labels

labels[p] = plabs [0]

else:

labels[p] = p

return labels

Algorithm 1. Computing ends of disjoint paths in DAGs

Algorithm 1 exploits Lemma 5.3 by computing for each node 𝑝 the corresponding node 𝑝∗ by
the following observation: If for two predecessors 𝑝1 and 𝑝2 of 𝑝 that are reachable from 𝑆 it holds
that 𝑝∗

1
≠ 𝑝∗

2
, then by Lemma 5.3 there are two disjoint paths from 𝑆 to 𝑝1 and 𝑝2 that join at 𝑝 and

𝑝∗ = 𝑝 . Otherwise, 𝑝∗ is the same node for all reachable predecessors, we have 𝑝∗ = 𝑝∗
1
. Algorithm 1

applies this local consideration along a topological sort of the input DAG.

L५ॳॳ१ 5.4. The following is a loop invariant of Algorithm 1:

∀𝑝. (∃𝑥 .labels(𝑝) = 𝑥) ⇐⇒ reachable𝑆 (𝑝)

PRॵॵ६. Straightforward. □

L५ॳॳ१ 5.5. The following is a loop invariant of Algorithm 1:

∀𝑝. (∃𝑥 .labels(𝑝) = 𝑥) =⇒ labels(𝑝) = 𝑝∗

PRॵॵ६. Because of Lemma 5.4 all reachable predecessors of 𝑝 are labeled. Because of the pre-
condition for each predecessor 𝑝 of 𝑝 that is reachable from 𝑆 it holds that labels(𝑝) = 𝑝∗. If for all
(reachable from 𝑆) predecessors 𝑝1, . . . , 𝑝𝑛 it holds that 𝑝∗

1
= · · · = 𝑝∗𝑛 , then 𝑝∗

1
also is on every path

from 𝑆 to 𝑝 and therefore 𝑝∗ = 𝑝∗
1
( ). If there are 𝑖 ≠ 𝑗 such that 𝑝∗𝑖 ≠ 𝑝∗𝑗 , then 𝑝∗ = 𝑝 ( ). □

T८५ॵR५ॳ 5.6. If two nodes have different labels after running Algorithm 1, they are end points of

two disjoint paths originating in 𝑆 .

PRॵॵ६. Directly from Lemma 5.3 and Lemma 5.5. □
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CॵRॵॲॲ१Rॿ 1. If Algorithm 1 labels a node 𝑝 ∉ 𝑆 with itself, then 𝑝 is the join point of two disjoint

paths starting in 𝑆 .

Complexity. Topological sorting takes𝑂 ( |𝑉 | + |𝐸 |) time. The algorithm itself runs in𝑂 ( |𝑉 | + |𝐸 |)
as well. After the algorithm labelled the graph for a set of source nodes, the question if there are
disjoint paths from 𝑆 to any two nodes is then answered in 𝑂 (1) by comparing their labels.

A note on (post) dominance frontiers. In a lot of related work, iterated dominance or post-
dominance frontiers (IDFs) are used to compute disjoint paths. However, dominance frontiers
over-approximate the set of join points we are interested in because they implicitly consider
joins with the root (end) of the CFG. The relation between IDFs and join points that is proven by
Cytron et al. is IDF+ (𝑆) = Joins(𝑆 ∪ {rt}) [Cytron et al. 1991]. For our setting, using IDFs would
cause imprecision because more nodes might be marked divergent than necessary.

6 DEFINITE REACHING DEFINITIONS ANALYSIS

Reconsider Figure 1a and assume we are interested in the uniformity value of 𝑧 at program point 𝑃 .

Assume that 𝑐 is not uniform at 𝑆 . Then, 𝐹
♯
Uni

produces an abstract state in which 𝑧 is varying
although 𝑧 clearly is uniform. This is because 𝑆 is a relevant split for 𝑃 with a non-uniform branch
predicate: if a set of traces is not locally homogeneous, the transformer yields false although all
traces may still agree on the value of 𝑧 because 𝑧 was defined at an instance that all these traces
include (like the instance 𝑆 ⟨⟩ in this example).

To remedy this problem, we adapt a classic reaching definitions data-flow analysis in the fol-
lowing way. First, one says that a definition17 𝑞 of a variable 𝑥 reaches 𝑝 along a path 𝜋 : 𝑞 ⇀ 𝑝 ,
if 𝜋 does not contain a further definition of 𝑥 . Classic reaching definitions analysis (see for ex-
ample [Nielson et al. 1999]) collects potential reaching definitions, i.e. computes the union of all
possible definitions that reach 𝑝 . In the example, we discussed above however, we are interested
in associating a program point 𝑝 with a single definition that reaches 𝑝 definitely, i.e. along all
paths to 𝑝 or phrased in different terms, a reaching definition that dominates 𝑝 . So our analysis is a
definite reaching analysis which makes it a hybrid of the classic reaching definition analysis by ex-
changing set union by set intersection in the abstract transformer (Definition 6.4) and a data-flow
formulation of dominance (e.g., see [Cooper et al. 2001]).

We extend the classic data-flow formulation to an abstract interpretation by equipping it with a
concretization that delivers the invariants necessary to solve the problem discussed at the begin-
ning of this section.

D५६९ॴ९ॺ९ॵॴ 6.1 (Dॵॳ९ॴ१ॴ३५ Dॵॳ१९ॴ).

RDS ≜ Var→ P (Lab) RD ≜ Lab→ RDS

Lifting subset inclusion toRD in the standard way makesRD a complete lattice. The concretiza-
tion says that a variable 𝑥 is unchanged at a program point 𝑝 with respect to a program point 𝑞 if
on every trace that contains an instance 𝑝 ⟨𝑖⟩ of 𝑝 there is an instance 𝑞⟨ 𝑗⟩ of 𝑞 that precedes 𝑝 ⟨𝑖⟩
and the value of 𝑥 in the configurations that correspond to the two instances are equal.

D५६९ॴ९ॺ९ॵॴ 6.2 (R५१३८९ॴ७ D५६९ॴ९ॺ९ॵॴॹ Cॵॴ३R५ॺ९ঀ१ॺ९ॵॴ).

𝛾RD : RD → P (Tr)

rd ↦→ {𝑡 | ∀𝑝 𝑞 𝑖 𝑥 𝜎.

𝑞 ∈ rd 𝑝 𝑥 ⇒ (𝑝 ⟨𝑖⟩, 𝜎) ∈ 𝑡 ⇒

∃ 𝑗 𝜎 ′. (𝑞⟨ 𝑗⟩, 𝜎 ′) ∈ 𝑡 ∧ 𝑞⟨ 𝑗⟩ ⪯ 𝑝 ⟨𝑖⟩ ∧ 𝜎 𝑥 = 𝜎 ′ 𝑥}

17i.e. the program point where 𝑥 is defined
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T८५ॵR५ॳ 6.3. 𝛾RD is meet-preserving.

D५६९ॴ९ॺ९ॵॴ 6.4 (R५१३८९ॴ७ D५६९ॴ९ॺ९ॵॴॹ A२ॹॺR१३ॺ TR१ॴॹ६ॵRॳ५R).

𝑓
♯
𝑞𝑝 : RDS → RDS

𝑐 ↦→ 𝜆𝑥.

{
∅ isdef 𝑞 𝑝 𝑥

𝑐 𝑥 otherwise

𝐹
♯
RD

: RD → RD

rd ↦→ 𝜆𝑝. 𝜆𝑥 . {𝑝} ∪
⋂
𝑞→𝑝

𝑓
♯
𝑞𝑝 (rd 𝑞) 𝑥

T८५ॵR५ॳ 6.5. 𝐹
♯
RD

is sound.

We exploit this analysis to take the uniformity information of a definitely reaching definition
into account. Coming back to Figure 1a, we can prove 𝑧 uniform at 𝑃 because it is unchanged with
respect to program point 𝑆 and 𝑧 is uniform there.

There is one caveat though. Suppose some variable’s 𝑥 definition at 𝑞 definitely reaches 𝑝 , and 𝑞
is nested in a loop not containing 𝑝 . Then, we cannot conclude that 𝑥 is uniform at 𝑝 even if it is
uniform at 𝑞. For an example, see Figure 1b. Variable 𝑥 is uniform at 𝐶 and 𝐶 definitely reaches 𝑃
but 𝑥 is not uniform at 𝑃 . This is caused by the divergence at the exit of the loop. Hence, we
can only use the “definitely reaches” relationship between two program points 𝑝 and 𝑞 to transfer
uniformity information from 𝑞 to 𝑝 if 𝑞 precedes 𝑝 homogeneously in every trace, i.e. if 𝑞⟨ 𝑗⟩ ≺ 𝑝 ⟨𝑖⟩

in some trace 𝑡 and 𝑞⟨ 𝑗 ′⟩ ≺ 𝑝 ⟨𝑖⟩ in 𝑡 ′, then 𝑗 = 𝑗 ′.
Considering the tag semantics (Definition 3.1) it can be seen that as long as there is no loop that

contains 𝑞 and does not contain 𝑝 , 𝑞 always precedes 𝑝 homogeneously. If this is not the case, an
additional condition needs to make sure that all loops surrounding 𝑞 are exited homogeneously.
This is captured in the following more precise version of the uniformity transformer that uses the
results of the definitely reaching definitions analysis.

D५६९ॴ९ॺ९ॵॴ 6.6 (Uॴ९६ॵRॳ९ॺॿ TR१ॴॹ६ॵRॳ५R ॼ2).

𝐹
♯
Uni,2

uni ≜ 𝜆𝑝. 𝜆𝑥 . (𝐹
♯
Uni

uni) 𝑝 𝑥

∨
∨

𝑞∈(rd 𝑝 𝑥)\{𝑝 }

©«
uni𝑞 𝑥 ∧

∧
𝑠∈lsplits𝑞

uni 𝑠 𝑥
ª®¬

with lsplits𝑞 ≜
⋃

𝑒 is loop exit of a loop containing 𝑞
𝑒→∗𝑝 that does not contain a back edge

splits 𝑒

T८५ॵR५ॳ 6.7. 𝐹
♯
Uni,2

is sound.

6.1 A Note on SSA

One of the major motivations for SSA is to enable sparse analyses by unifying the notion of a
variable and a program point.This works if there is a new SSA value for each program point where
a variable can change its abstract value. In this way𝜙-functions relate to the program points where
data flow values are joined.

For the divergence analysis discussed in this and the last chapter this also works with one excep-
tion: Variables can change their uniformity at loop exits. Loop-closed SSA (LC-SSA, see e.g. [Lat-
tner 2004; Pop et al. 2009]) solves this issue by inserting additional 𝜙-functions at loop exiting
nodes for variables that are modified in a loop and live beyond its exit. These extra LC-SSA 𝜙-
functions can carry the data flow information for the corresponding non-SSA variables at loop
exits. Furthermore, LC-SSA breaks the live ranges of variables that are defined in and live out
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𝐴

𝐵

𝑢 ← 𝑢 ′ + 𝑐

𝐴

𝐵

𝑦 ← 𝑥 − 𝑥

(a) If 𝑢 ′ is classified uniform
and 𝑐 constant, then 𝑢 can
also be classified uniform.
Additionally, if constant
propagation infers an
expression to be constant, it
is also uniform.

𝐴
𝐵 𝐶

𝐷 𝐸
𝑃

𝑥 ≥ 0 𝑥 < 0

𝑢 ← 0 𝑢 ← 𝑣

(b) Assume some value
analysis infers 𝑥 ≥ 0 at 𝐴.
Then, the right branch is
unreachable and 𝑢 can be
classified as uniform at 𝑃 .

𝐴

𝐵 𝐶

𝑢 = 𝑣 𝑢 ≠ 𝑣

(c) If 𝑢 is classified uniform
at 𝐴, a relational domain
expressing equality can
provide that 𝑣 is also uniform
at 𝐵.

Fig. 3. Examples for cooperation with value analyses.

of a loop. Therefore, on LC-SSA 𝐹
♯
Uni,2

and 𝐹
♯
Uni

give the same results and running the definitely

reaching definitions analysis is not necessary.
We leave a formal treatment of an SSA version of our analysis for future work.

6.2 Combining Uniformity with Other Analyses

Thedivergence analysis presented in this paper can be combinedwith other analyses using reduced
products [Cousot and Cousot 1979], a standard abstract interpretation technique that allows anal-
yses to share their information. Essentially, the concretization of a product of two analyses is the
intersection of the two individual concretizations. To make this work in our setting, the concretiza-
tion 𝛾D : D→ Tr of a “non-hyper” value analysis D needs to be intersected with each set of traces
in 𝛾Uni:

𝛾Uni×D (uni, 𝑑) ≜ {𝑇 ∩ 𝛾D 𝑑 | 𝑇 ∈ 𝛾Uni uni}

We also combine Uni and Unch in this way in the Coq development that accompanies this paper
to prove Theorem 6.7.

Most importantly, constant values are uniform: This means that the uniformity edge transform-
ers that compute the abstract information of the effects on edges (such as assignments) can easily
take information from constant propagation into account. But also other analyses can provide help-
ful information to our analysis. Figure 3 gives some examples for integrating uniformity analyses
with other value analyses.

• Adding a constant to a uniform value yields a uniform value (Figure 3a).
• Constant branch predicates lead to unreachable code (Figure 3b)
• Proving equality of a varying variable to a uniform variable makes that variable uniform
(Figure 3c).

7 EXPERIMENTAL EVALUATION

We evaluate our new analysis algorithmwith the Region Vectorizer (RV) [Moll and Hack 2018]. RV
is a vectorizer for SPMD programs and operates on LLVM IR [Lattner and Adve 2004], which is an
SSA-based intermediate representation. Our implementation follows the LC-SSA scheme laid out
at the end of Section 6. RV uses the results of a divergence analysis to retain scalar computations
and branches in the vectorization of CFGs. Therefore, the precision of the divergence analysis
influences the quality of the vectorized code.
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7.1 Baselines

We compare our new algorithm against two other divergence analyses. The first analysis is the
commonly used divergence analysis that ships with LLVM (basically an instance of [Coutinho et al.
2011]). As discussed in Section 8, this analysis is unsound on general reducible CFGs and requires
stronger syntactical restrictions (see Section 8). We will refer to this analysis as llvm. Since llvm is
unsound on general reducible CFGs, we also compare against a state-of-the-art sound analysis that
supports at least reducible CFGs, which is the information-flow analysis byWasserrab et al. [2009].
This analysis is based on slicing (i.e. control dependence) to identify the relevant splits, similar to
the approaches discussed in the section control dependence in Section 8. The notion of control
dependence in this algorithm is based on strong post dominance to account for the divergence
caused by divergent loop exits that is missed if regular post dominance is used. We compute the
strong post-dominance frontier (short spd) and transfer the algorithm to SSA form programs as
follows: If a block is a loop exit, it is divergent if it lies in the transitive closure of the spd frontier of a
divergent branch. Otherwise, a join block node is divergent if at least one predecessors of the block
is in the transitive closure of the spd frontier of a divergent branch. We call this setup strongpd.

We refer to the analysis presented in this paper simply as the new configuration.
Analysis runtime (i.e. compile time) is measured on an AVX2 machine (Intel(R) Core(TM) i7-

8565U CPU) with hyper-threading and turbo boost disabled. The reported analysis runtimes are
geometric means of 30 full divergence analysis runs.

7.2 Benchmark Kernels

We evaluate each of the three divergence analyses in two disciplines. First, on four different
OpenCL benchmark suites to obtain an insight into the analysis runtime on kernels with structured
control flow. For the second part, we consider a set of SPMD kernels that heavily rely on a vector-
izer that is capable to exploit uniformity information to achieve good performance. These SPMD
benchmarks feature complex, unstructured, control-flow and put more stress on the divergence
analysis than the structured OpenCL kernels. Figure 4 shows the benchmark results aggregated
per benchmark suite. Appendix Ahas the detailed results on a per-kernel basis.

OpenCL. We extract the kernels with the POCL OpenCL driver Jääskeläinen et al. [2015] and
apply each divergence analysis (new, llvm and strongpd) to them. The benchmarks comprise
the OpenCL kernels of SPEC ACCEL [Juckeland et al. 2014], RSBench [Tramm et al. 2014a],
XSBench [Tramm et al. 2014b], LuxMark [Bucciarelli et al. 2020] and Hetero-mark [Sun et al.
2016]. The results, shown in Figure 4a, reflect how the analysis algorithm performs on these
kernels.

SPMD-aware Traversal Codes. To put more stress on the divergence analysis, we consider two
benchmarks that were designed explicitly with SPMD code generation in mind. Rodent [Pérard-
Gayot et al. 2019] is a state-of-the-art ray tracing framework whose SPMD code path heavily relies
on RV for vectorization. We run Rodent in the traversal benchmarking mode on the Sponza scene.
Rodent traverses a BVH with a speculative stack-based traversal scheme. The traversal kernels are
vectorized for packets of rays and single rays.

We further evaluate on a suite of SPMD tree traversal codes that were originally used to evaluate
RV [Moll and Hack 2018]. These benchmarks feature more complex control flow than the OpenCL
kernels. We again evaluate the analysis runtimes and the quality of results. The results are shown
in Figure 4b.
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Statistics vs. strongpd Analysis time

Instructions Branches Loops Control Full DA

Suite Total Uni Δ Total Uni Δ Total Uni Δ
llvm
new

control
full_da 𝜇s llvm

new
spd
new

SPEC ACCEL (37) 5734 1695 +278 657 454 +41 110 54 +35 1.13 0.03 379 1.01 1.30
Hetero-Mark (6) 491 118 +26 67 53 +5 16 14 +5 1.04 0.04 292 1.00 1.34
LuxMark (14) 12608 7431 +228 1714 1316 +12 50 8 +8 0.75 0.04 9623 0.98 1.18
Doe Proxy Apps (2) 1573 1409 +66 159 148 +12 15 8 +8 0.97 0.01 4327 1.00 1.30
geom. mean 1.01 0.03 1.00 1.28

(a) OpenCL results.

Statistics vs. strongpd Analysis time

Instructions Branches Loops Control Full DA

Suite Total Uni Δ Total Uni Δ Total Uni Δ
llvm
new

control
full_da 𝜇s llvm

new
spd
new

Rodent (18) 18299 11799 +0 2746 2702 +0 144 144 +0 0.62 0.00 4366 1.00 1.13
Treelogy (13) 2309 1557 +753 402 317 +46 46 36 +14 0.94 0.02 543 1.00 1.29
geom. mean 0.84 0.01 1.00 1.20

(b) SPMD-aware Traversal code results.

Fig. 4. Aggregated benchmark suite results (Number of benchmarks in ’()’). Left half: Entity counts for
Instructions, Branches and Loops. For each, we show the total count (Total), number of uniform entities
found by the new analysis (Uni) and the difference in uniform entities compared to the strongpd baseline.
Right half: Absolute and relative runtime spent in the control-divergence part (i.e. identifying disjoint paths
for new) of the algorithm. The full data broken down to each individual benchmark can be found in Appendix
A.

7.3 Summary of the Results

We call a loop uniform if it contains no splits that lead to control-induced divergence of instructions
outside the loop. Divergent loops trigger control conversion in the vectorizer, which takes a toll on
the efficiency of the generated SPMD code. Therefore, we report the uniformity of loops explicitly
in the result tables.

Correctness & Precision. We did not observe irreducible loops (multi-header loops) in the entire
set of benchmark suites, hence the new analysis was always applicable.The llvm analysis delivered
the same analysis results as new, i.e. the more strict requirements on control flow of the llvm

algorithm did not show in the kernels. Nevertheless, there are practically-relevant programs that
this analysis cannot soundly analyze (see Section 8 and specifically Figure 5b).

new is more precise than strongpd in all benchmark suites except Rodent and detects more
uniform instructions, branches and loops than new. Overall, new classifies 5% more instructions
as uniform as strongpd.

Overall Divergence Analysis Runtime. Comparing new to llvm, the overall analysis runtime is on
par (speedup geomean of 1) with slowdowns of up to 7% for large kernels and speedup of up to 6%
on smaller ones of new. The new analysis is faster than the strongpd baseline (speedup geomean
of 1.25).

The column “Full DA” includes the startup time of the analysis. For new is the time spent to setup
the post-order traversal of the head-rewired CFG to compute the toposort. For strongpd this is the
time needed to construct the (strong) post-dominance frontier. The llvm analysis has no startup
time as all computations happens on the fly.

The startup time of strongpd is higher than that of new as the strong post-dominance frontier is
computed up front. Out of the 76 evaluated kernels, there are only two cases where the strongpd is
faster than new. The outliers are two kernels with more than 300 branches and divergent control.
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For these two, the cost of computing the strong post dominance frontier is amortized by fewer
iterations required for the transitive closures (as compared to the new analysis which iterates over
the control flow edges).

Divergent Branch Analysis Runtime. We now consider the control-dependence part (computing
disjoint paths for new, iterating the post-dominance frontiers for the others) of each analysis in
isolation to better understand the factors that determine how the llvm, strongpd and new analy-
sis perform relative to each other. The new divergence analysis spends up to 13% of its runtime
computing disjoint paths and only 2% in the geometric mean.

For the OpenCL kernels in the geometric mean, the new analysis is slightly faster than the
llvm analysis (geom mean 1.01). On the SPMD kernels, the new analysis is actually slower in the
geometric mean (0.84). The results indicate that kernels with fewer branches (roughly up to 24)
are faster or at least as fast when analyzed by the new analysis compared to llvm. This becomes
evident by comparing the total number of branches in the OpenCL and SPMD kernels (per kernel
results in Appendix A): 20 out of the 31 SPMD kernels, have more than 24 branches. However, only
17 out of the 45 OpenCL kernels have more than 24 branches.

In the worst case, we observe a ratio of 0.45 (116.histo intermediates), meaning that the new analysis
spends×1.22more time in analyzing control divergence than the llvm setting. Yet, in the big picture
of the full divergence analysis runtime for this kernel, the new setting is only about 3% slower. For
short control analysis times, the new analysis can be much faster as witnessed by some OpenCL
kernels. For example, we observe a 60% speedup of the new control-divergence analysis over llvm
for the 122.cfd time step kernel.

8 RELATEDWORK

There exists a huge body of related work from various different domains, especially divergence
analysis, non-interference analysis, and binding-time analysis. We touch the latter only briefly
because it is mostly considered on lambda calculi which is substantially different from a small-
step semantics setting like ours. Of the other works we only discuss those that either use abstract
interpretation or also target CFGs as their code representation.

Gated SSA. GSA uses 𝛾 , 𝜇, and 𝜈 “functions” that select SSA values at control flow joins, loop
headers, and exits. While 𝜙-functions in SSA use control flow to implicitly select one of their
operands, their GSA counterparts explicitly use the branch condition to select one of their operands.
This makes GSA appealing for divergence analysis because the transformers can now directly use
the uniformity of the these branch conditions to infer the uniformity of the variables at a join. Sam-
paio et al. [2013] exploit this and formulate divergence analysis on GSA and prove it correct with
respect to a semantics of that is based on GSA. Therefore, their results depend on the soundness
and precision of GSA construction. Hence, we relate the divergence criterion based on disjoint
paths that is elaborated in this paper to the existing GSA construction techniques in the following.

Employing the standard GSA construction algorithms (Ballance et al. [1990]; Tu and Padua
[1995]) and deriving uniformity from the branch predicates in the 𝛾-expressions is less precise
than our approach. We demonstrate this on two examples.

Consider Figure 5a. The GSA expression for 𝑥 at 𝐽 is 𝛾 (𝑝,𝛾 (𝑞,𝛾 (𝑠, 0, 1),⊥), 0). The results form
Section 4 state that the uniformity of 𝑥 at 𝐽 does not depend on 𝑞. Yet, the branch condition 𝑞

occurs in the GSA expression because the expression includes all control-dependences of the join
point, i.e. under which condition the join point is executed, in this example those of 𝐽 ,

With respect to loops, GSA is less precise because it provides only one loop exit predi-
cate for an entire loop. For example in Figure 5d, the GSA loop exit predicate for loop 𝐻 is
𝛾 (ℎ, 1, 𝛾 (𝑏,𝛾 (𝑐, 1, 0), 0)). If any of ℎ, 𝑏 or 𝑐 are varying, then judging by the 𝛾 expression, both
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exits 𝐶 and 𝐷 are divergent loop exits. By checking for disjoint paths to the latch, our technique
infers that uniformity of the exit 𝐷 is independent of 𝑏 or 𝑐 .

Havlak [1993] introduced thinned gated SSA form (TGSA) based on the observation that the
𝛾 expressions of GSA contain irrelevant branch conditions. However, the TGSA algorithm is in-
correct for loops. In Figure 5d, the TGSA loop predicate for the𝐻 loop is 𝛾 (𝑏,𝛾 (𝑐, true, false), false).
According to this 𝛾 expression the loop will erroneously appear uniform when only ℎ is varying.

Finally, to the best of our knowledge, none of the GSA construction algorithms have been proven
correct. Hence, when working with a non-GSA program representation, the correctness proof
of Sampaio et al. does not protect against potential flaws of the respective GSA construction algo-
rithm.

Post-Dominator Reconvergence. A large body of earlier work assumes that diverged threads will
not reconverge before the immediate post-dominator (IPD) [Coutinho et al. 2011; Farrell and
Kieronska 1996; Habermaier and Knapp 2012; Karrenberg 2015]. IPD reconvergence became pop-
ular through its adoption in NVIDIA GPUs starting with Tesla [Lindholm et al. 2008]. However,
beginning with the more recent Volta GPUs, any two threads may reconverge whenever their pro-
gram counters agree [NVIDIA 2017, Fig. 21], which may be before the IPD. Similarly, in recent
SPMD vectorization techniques [Moll and Hack 2018], reconvergence can happen before the IPD.

When the assumption of IPD reconvergence is lifted, these techniques deliver unsound results
on all unstructured CFGs in Figure 5.18 For example, assuming that 𝑝 is varying in Figure 5b, the
divergence of 𝑥 at 𝐷 goes undetected because the immediate post-dominator of 𝑃 is 𝐹 .

Chandrasekhar et al. [2019] and Collange [2011] consider all join points above the immediate
post-dominator of a divergent branch as joins of disjoint paths. While this repairs the IPD tech-
niques, it is less precise than our approach. Consider the unstructured CFG in Figure 5b. When 𝑝 is
uniform and 𝑞 is varying, 𝑥 will be flagged as varying at 𝐷 despite the fact that 𝑞 has no influence
on the divergence of 𝑥 .

Alur et al. [2017] formalize divergence analysis on structured syntax but the implementation
they use to evaluate their work is based on CFGs. In their implementation, they always set the uni-
formity of 𝜙-functions to varying. In comparison, the core of our work is to provide a transformer
for control-flow joins (which can also be used for 𝜙-functions) that provides more precision.

Control Dependence. In these techniques, the (transitive) control dependence of an assignment
is used for divergence detection [Lee et al. 2013; Liang et al. 2016]. Figure 5a shows that this less
precise than the analysis presented in this paper. The assignment 𝑥 ← 1 is control dependent on
𝐷 . Hence, the uniformity of 𝑞 will influence the one of 𝑥 which is not the case in the analysis
presented in this paper. Similar observations can be made for all CFGs in Figure 5. One additional
complication is that [Lee et al. 2013] does not describe how to handle divergent loop exits.

To improve the precision, some approaches refine control dependences by subtracting the con-
trol dependences of the join point from the control dependences of its predecessors. This approach
used by the AMDHSAIL19 driver and recent work on GPU kernel analysis [Lloyd et al. 2019]. How-
ever, these approaches are unsound on Figure 5a: 𝐵 and 𝐸 are jointly control dependent on𝐴 and𝐶 .
These are also the control dependences of 𝐷 , subtracting them means that a varying 𝑝 does not
force 𝑥 to varying at 𝐷 .

SPMD Languages. SPMD languages like ISPC [Pharr and Mark 2012], Sierra [Leißa et al. 2014],
and Hipacc [Reiche et al. 2017] provide abstractions for the SPMD programming model. Their
compilers all perform divergence analysis to improve the performance of the generated vector

18https://bugs.llvm.org/show_bug.cgi?id=42741
19https://reviews.llvm.org/D50433#1195085
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𝑃 𝐷

𝑆

𝐴 𝐵
𝐶

𝐽

𝑋

𝑝

¬𝑝

𝑠 ¬𝑠

¬𝑞

𝑞

𝑥 ← 0 𝑥 ← 1

(a) Whether 𝑥 is varying
at 𝐽 depends on 𝑝 but not
on 𝑞. Using transitive
cdeps includes 𝑞
spuriously. “Filtering”
cdep nodes erroneously
discards 𝑝 .

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

¬𝑝 𝑝

𝑥 ← 0 𝑥 ← 1

¬𝑞

𝑞

(b) IPD approaches
miss divergence of 𝑥
at 𝐷 when 𝑝 is varying.

𝑃

𝑆

𝐴 𝐵 𝐶

𝐽

𝑋

𝑝¬𝑝

𝑠 = 0 𝑠 = 1 𝑠 = 2

𝑥 ← 0 𝑥 ← 1

(c) Most techniques
assume ≤ 2

successors and break
when there are more.

𝐺

𝐻

𝐵

𝐶

𝑄

𝐷

𝐸

𝑃
𝑋

ℎ ¬ℎ

𝑏

¬𝑏

𝑐 ¬𝑐

𝑒 ¬𝑒

(d) 𝐵 post-dominates 𝐻 and
pre-dominates 𝑄 . The TGSSA
loop predicate is invalid.

Fig. 5. Examples used in the discussion of related work.

code, however in a syntax-driven way: For example, when there is a divergent branch governing
a break in a loop in an ISPC program, ISPC switches to a different code generation scheme for the
entire loop, making every variable live out of the loop divergent and guarding all accesses to these
variables with masking code. In contrast, our analysis however works directly on reducible CFGs.

Binding-Time Analysis. Aiken and Gay [1998] first noted that binding-time analysis [Jones et al.
1989] as it appears in partial evaluation can detect the uniformity of variables at join points.
Binding-time analysis literature (e.g. Consel [1990] or Nielson and Nielson [1988]) almost exclu-
sively deals with functional programs. Among these works, the technique by Auslander et al.
[1996] stands out for supporting unstructured control-flow. In their technique, paths formulas are
constructed containing only uniform branch conditions. Deciding uniformity then boils down to
solving a SAT problem at join points. However, the approach does not treat loops (always flags
loop exits as divergent) in contrast to our work.

Non-Interference Analysis. Another (hyper-) property that is very closely related to uniformity
and binding-time is non-interference. The body of work on non-interference analysis is too big to
discuss here in its entirety. We therefore only mention the work that is closely related to ours with
respect to abstract interpretation and the way that control flow is handled.

Abadi et al. [1999] first noticed the relation between non-interference and binding-time anal-
ysis. Assaf et al. [2017] and Urban and Müller [2018] present abstract interpretations for non-
interference concretizing to hyper-semantics which is similar to our work. However, all these
approaches use structured control flow induced by inductively-defined syntax. In such a setting,
identifying the relevant splits is straightforward because they are contained (as branch expres-
sions) in the syntactic entities (if, while) the abstract transformer operates on. While this makes
their analyses simpler, they are hardly applicable in many practical settings where dealing with
CFGs is necessary (such as LLVM bitcode or Java byte code).
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In a recent publication, Cousot [2019] presents an analysis that is very similar to ours, espe-
cially with respect to the flow-sensitivity of uniformity. He too uses inductively defined syntax
which simplifies certain aspects of the analysis as laid out above. However, his analysis is more
informative in that it does not only classify variables as uniform or varying but reports explicit
dependences, i.e. one knows which variables’ input values contributed to a variable being varying
(dependent) at a certain program point. Furthermore, his semantic definition of dependence (be-
ing varying) is different from ours: In our setting, being varying means that there possibly is an
instance of a program point where two traces disagree on a variable’s value. He however records
all values a variable assumes at a program point and classifies the variable as dependent if these
value lists differ. If one transferred his notion of dependence to the uniform/varying setting, this
would lead to more non-uniformity than in our analysis.

Kovács et al. [2013] also present a non-interference analysis for CFGs based on abstract inter-
pretation. Instead of concretizing to a hyper-semantics, they construct a product program [Barthe
et al. 2011] that executes two instances of the original program. To this end, they define a set of
rewrite rules that rely on the CFG to consist only of structured control flow (if-then-else, while).
Each binary branch is expanded to four successors, one for each combination of the branch pred-
ication valuations ((true, true), (true, false), …) which can super-linearly explode the size of the
CFG. In contrast, we support reducible CFGs and our modifications (see Section 3.1) are purely
technical and local to loop headers and exits which leads only to a linear worst-case increase of
the CFG.

One particular property of their analysis is that for regions where two different control flow
parts are paired ((true, false), (false, true)), they apply a cost metric to pair up the individual in-
structions of a basic block. The goal of the cost metric is to align the two programs in such a
way that the abstract transformers, which operate on pairs of program points, can be made more
precise by allowing information from both programs to interact. In our analysis, we cannot do
something like this because we do not construct pair programs. Even more, in SPMD programs,
the application scenario we focus on in this work, this is also no option, because the “pairing” is
done by the hardware (GPU lanes, CPU vector registers) and cannot be influenced by the compiler.

Another line of work by Wasserrab et al. [2009] and Snelting et al. [2006] on non-interference
for CFGs is based on program dependence graphs. Their work follows Amtoft’s work on the cor-
rectness of slicing using program dependence [Amtoft 2008]. In their particular setting, control
dependences are not considered imprecise (as opposed to the discussion in paragraph “control de-
pendence” above) because they also account for observation: Being able to observe that a certain
program point has been executed is also a disclosure of information which implies that splits that
disjointly reach the end node of the CFG have to be considered. Note that this makes more splits
relevant (and is therefore less precise) in our setting. Our analysis does not consider observation
in this sense, can however be extended to support it in the following way: Insert a dummy variable
and assignments to this variable at every program point whose execution should be observed. All
splits that are relevant at the end node of the CFG for this variables coincide to the set of splits
identified by these analyses. Their work comes with a mechanized [Wasserrab et al. 2009] correct-
ness proof [Snelting et al. 2006] that relates non-interference to PDG-based backward slices. One
particular difference to our approach is that, by using slicing, they implicitly rely on given data
and control dependences which essentially relate to variable names (or at least storage locations).
In contrast, by using abstract interpretation, our analysis relates directly to the semantics of the
program. The difference is that we could combine our analysis with other analyses using standard
abstract interpretation techniques (reduced products) to provide additional invariants that help to
prove variables uniform.
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Computing Disjoint Paths. Algorithm 1 solves the decision version of the 𝑘-sources two-sinks
variant of the node-disjoint paths problem for DAGs, i.e. do there exist two disjoint paths from
a set of 𝑘 source nodes to two sink nodes? Tholey [2012] presents an algorithm that solves the
2-sources variant of this problem and shows that 𝑂 ( |𝑉 | + |𝐸 |) is optimal. Thus, Algorithm 1 is
optimal as well.

The difference between our and Tholey’s algorithm is that his algorithm needs to pre-compute
a dominance tree and a shortest path tree while ours does not. However, his algorithm computes
information that can answer more than the decision problem of the 2-sources variant. He can also
tell which source is connected to which sink in each of the disjoint paths. Our algorithm cannot
do that but it is also not relevant for our analysis.

The seminal work of Cytron et al. [1989] on SSA construction establishes a connection between
dominance frontiers and join points of disjoint paths. However, in this setting, the set of join
points implicitly include joins from paths that emerge from the CFG start node. Similarly, in post-
dominance this criterion implicitly includes splits that lead to the end node of the CFG. Hence,
techniques based on (pos-) dominance frontiers only solve a restricted case of the disjoint paths
problem that leads to imprecision in our setting (see above).

9 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a formal account of an abstract interpretation for uniformity on re-
ducible control flow graphs. Our characterization of the relevant control flow splits, that influence
the uniformity of variables at other program points, derives from semantic considerations that
emerge in the correctness proof of the abstract transformer. Our analysis is more precise than ex-
isting analyses and less constraint with respect to the control flow structure it accepts. Our formal
treatment is to the most part mechanized in Coq.

Our experimental evaluation shows that the compile time and the precision of our analysis is on
par with LLVM’s default divergence analysis that is only sound on syntactically more restricted
CFGs. At the same time, our analysis is faster (speedup of 1.25) and achieves better precision
(5% more instructions classified uniform) than a state-of-the-art non-interference analysis that is
sound and least as general as our analysis.

Interesting future directions could lift the reducibility requirement on the CFG and explore the
connection and applicability of our analysis to non-interference, binding time, and dependency
abstract interpretations in general. Additionally, a more formal treatment of an SSA version of
our analysis would be interesting because it could be connected with a more formal study of loop-
closed and gated SSA forms.
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