SEKI-PROJEKT

Fachbereich Informatik Universität Kaiserslautern Postfach 3049 D-6750 Kaiserslautern 1, W. Germany

Programming in a Distributed Environment : a Collection of CSSA Examples

Hans Voss

Memo SEKI-82-01

<u>Programming in a Distributed Environment</u>: <u>A Collection of CSSA Examples</u>

Hans Voss

Fachbereich Informatik
Universität Kaiserslautern
Postfach 3049
D-6750 Kaiserslautern
West Germany

Abstract :

Several CSSA scripts as solutions of mostly well known problems in the area of parallel activities are documented. All but two examples are compared with "equivalent" programs which are based on the concept of monitors. One example gives a distributed solution of the N-queens problem. Besides the purpose of demonstrating the use of CSSA concepts, the last example deserves particular attention. Here, CSSA is used for simulating and testing the logic of the "window mechanism" which is a representative for the class of communication protocols in computer networks.

Contents :

٥.	Introduction	4
1.	One Slot Buffer	5
	1.1 Problem Specification 1.2 CSSA Solution 1.3 General Remarks	5 5 5
2.	Bounded Buffer	6
	2.1 Problem Specification2.2 CSSA Solution2.3 Comparison with the Monitor Solution	6 6 7
3.	Protected Buffer	9
	3.1 Problem Specification 3.2 CSSA Solution 3.3 Comparison with the Monitor Solution	9 9 10
4.	Readers_Writers Problems	10
	4.1 Readers_Writers with Readers_Priority	11
	4.1.1 Problem Specification	11
	4.1.2 CSSA Solution	11
	4.1.3 Comparison with the Monitor Solution	14
	4.2 Other Versions of the Readers_Writers Problem	15
	4.2.1 The Fair_Readers_Writers Problem	15
	4.2.2 The FIFO_Readers_Writers Problem	16
	4.2.3 Readers_Writers with Writer_Priority	17
5.	Alarmolock	18
	5.1 Problem Specification	18
	5.2 CSSA Solution	18 20
	5.3 Comparison with the Monitor Solution	
6.	N-Queens Problem	21
	6.1 Problem Specification	21
	6.2 CSSA Solution	21

7. Window Mechanism	25
7.1 The Model7.2 Communication between the Transmitter and the Collector	25 26
Literature	
APPENDIX	

0. Introduction

This paper is a documentation of my first programming experiences with CSSA. The study of the examples offers an opportunity to deepen the understanding of CSSA concepts and the corresponding programming methodology. This is even more true, because a comprehensive reference manual and application guide is currently being prepared.

Perhaps with the exception of the alarm clock solution in Section 5, the decision for the ordering of the examples was based on increasing complexity. Therefore, a CSSA greenhorn is advised to profit from the sequence given. For the advanced reader a deviating reading order or picking up one specific example should cause no problems.

In addition to short comments on the well known synchronization problems discussed in Sections 2 to 5, "equivalent" solutions for the same problems using monitors are presented. For sake of coherent and unmisleading reference all these monitor solutions are programmed using syntax from the programming language CLU [Lis, Sny, Atk, Sch 77] and are taken from [Bloom 79]. Without intending a rigorous comparison between the monitor approach and the CSSA approach, some hints at specific differences are given.

Due to personal time constraints I did not succeed in making this paper self contained. I rather decided to make the following assumptions:

- The reader should have some basic knowledge about the CSSA concepts and programming constructs.
 If this is not the case, he should first read [FRV 81] or the more concise and complete publication [FRV 82].
- 2. A full understanding of Sections 2.3, 3.3, 4.1.3 and 5.3 is only possible, if the reader is familiar with the monitor concept. No further comments at the syntax and semantics of the monitor programs are included in this paper.

All the CSSA examples have been compiled and executed by the BMS-CSSA-Simulation System, which was designed and implemented by the students C. Beilken, F. Mattern and M. Spenke (BMS). Without their great efforts and personal engagement programming in CSSA would have remained a paper and pencil exercise for an indefinite amount of time.

In the simulation system, translation from a CSSA source script into executable code is a two step process. First, the CSSA source is compiled into a SIMULA program, which in the second step is embedded in a SIMULA multiprocessor simulation system.

All but one example have been executed with the default processor configuration depicted at the beginning of the first session protocol (fig. 2). For the window mechanism example described in Section 7, a problem oriented configuration was designed by simply changing the default parameters of the simulation system.

In all comments, lines of the source programs are referred to by

enclosing their numbers in parantheses.

1. One Slot Buffer

1.1. Problem Specification

A one slot buffer is an object which may contain exactly one information element. A new information can be put into the buffer only via a write operation and later be inspected by a read operation.

The synchronization problem is specified by the following restrictions:

- write and read operations must take place in alternating order.
- 2. The first operation to be executed must be a write operation.

1.2 CSSA Solution

A CSSA solution for the one slot buffer problem is straightforward (fig.1). The buffer is represented by a string variable BUFFER. In two parallel facets READ and WRITE the only operations RD and WR are defined respectively. Each execution of an RD operation causes a change to facet WRITE, such that a WR operation must be executed next. The same is true vice versa. The initial statement (25) guarantees the first operation to be a WR operation.

1.3 General Remarks

The history information of alternating reads and writes can be very well expressed by use of the facetting mechanism. The CSSA solution appears to be simpler than any monitor solution, since there at least one extra (boolean) variable storing this history information is needed. However, monitors do not have facets. But in my opinion, besides their practical importance the facet structure contributes much to a clear documentation of the CSSA solution.

2. Bounded Buffer

2.1 Problem Specification

A bounded buffer can be regarded as a generalization of the one slot buffer. In contrast to the one slot buffer it can store more than one element up to a fixed maximum number. Users of the buffer can store and inspect information via two operations called insert and remove.

Like a one slot buffer agent, a bounded buffer agent has to solve the following synchronization problems:

- New information may only be inserted into a buffer element iff
 - 1.1 either this element never has been used for insertion before, or
 - 1.2 the last information having been inserted into this element has already been removed.
- 2. A buffer element may only be removed iff information has been written into this element before, and after this insertion no other remove operation for this element has occured.

So, each buffer element can be interpreted as a one slot buffer. A bounded buffer with maximum element number 1 should exhibit the same behaviour as a one slot buffer.

2.2 CSSA Solution

In each creation message for a bounded buffer agent the buffer size MAX (line 1) must be included (cf. fig. 3). According to the problem specification, at each time the buffer agent is in one of three possible states:

- 1. In facet BUFFER_EMPTY, there is no buffer element which can be removed (operation REM). This is the case in the initial state (40) or later, when all inserted elements have been removed and after these removals no new elements have been inserted. Therefore, the only messages which can be processed in this facet are insert messages (operation INS).
- 2. When exactly MAX insertion messages have been processed without an intervening remove operation, the buffer agent's current facet becomes BUFFER_FULL. In this state the enabling of an INS message would destroy the information in a buffer element, which has not yet been inspected by a REM operation. Since this would violate restriction 1.2 of the problem specification, only REM

operations are allowed in this state (18).

3. In facet NO_CONSTRAINT there exists both

- 3.1 a buffer element into which information has been inserted but not removed, and
- 3.2 a buffer element which either never has been used for insertion or which already has been inspected and after inspection no further insertion has taken place.

Because of 3.1 at least one REM message can be enabled, whereas 3.2 allows the processing of at least one INS message.

In order to decide which of these facets is to be chosen next, two integer variables INS_COUNT and REM_COUNT are incremented modulo MAX in each INS and REM operation respectively (27,34). At each time, INS_COUNT is the index of the next buffer element to be used for insertion, and REM_COUNT yields the index for the next REM operation. If REM_COUNT becomes equal to INS_COUNT, the next current facet must either be BUFFER_FULL or BUFFER_EMPTY, depending on what operation was executed last (28,35).

A general comment on the program structure will close this section. Besides the natural disjunction of facets the bounded buffer solution demonstrates how the programmer profits from the possibility to define operations at the top level of a script (3,25-37). The advantage is that he has to write down the operations only once, including them in a facet where needed (14,18,22). In this specific example, the programmer has to put up with a slight disadvantage: as he can't decide in which facet the operations will be executed at any time, each enabled message causes a new facet instantiation to be set up. I.e., a new instantiation of facet NO_CONSTRAINT will be set up, although possibly the agent could have stayed in this very facet. Certainly, this little inefficiency could have been avoided by introducing a further variable remembering the current facet. For facets BUFFER_EMPTY and BUFFER_FULL, there is no such problem, because each operation execution in one of these facets must cause a change to another facet.

2.3 Comparison with the Monitor Solution

In script BOUNDED_BUFFER no event conditions (buffer.nonfull, buffer.nonempty, c.f. fig. 5) are needed. Instead of starting the execution of an arbitrary operation, and then testing if the started operation may continue, always only allowed operations are selected and executed without interruption.

This strategy rules out a more general difference. As a monitor

programmer has no influence on the sequence of started operations, often one of the first actions of a monitor procedure is to check if its execution may continue. In contrast, CSSA operations are indivisible. Once started, they must be executed without interruption. Hence, a CSSA programmer is forced to extract the synchronization code from the "operations" and put it into the facet structure and possibly into assertions governing the selection of messages in the mailbox.

3. Protected Buffer

3.1 Problem Specification

In the bounded buffer solution of section 2. the same agent implemented both the **buffer** and the **synchronization code** for the buffer. In other words, the synchronization code visualized in the special facet structure and pure buffer access functions have been mixed up.

As is discussed in more detail in [Bloom 79], modifiability, modularity and understandibility will be enhanced when the buffer resource object itself is no longer part of the module which implements its synchronization scheme. Defined in such separated modules, the implementation of the buffer may be changed without modifying its synchronization code. Conversely, the synchronization scheme for the buffer can be altered without changing the buffer implementation.

3.2 CSSA Solution

In fig. 6, the synchronization code is defined by script PROTECTED_BUFFER, whereas the definition of the buffer with the buffer access functions is given in script DATA_BASE (6-35). An agent of type DATA_BASE exactly executes the operations he is ordered to by its protector agent (an agent of type PROTECTED_BUFFER). Due to the inherent assumption in the CSSA model of computation that messages may pass each other, protector-resource relationship must be "strongly coupled", guaranteeing that protector orders are followed in the sequence given. This can be achieved by having each execution of an INS or REM operation by the protector agent only finished after receiving a reply (78,91) indicating that the corresponding order to the resource agent (76,89) has been followed.

Script DATA_BASE does not seem to fit very well to the requirements R_COUNT are never needed in this environment. In spite of this inconvenience, the database is included in its present structure, because the same script can be used for the readers_writers solutions in the following section.

Users of the buffer communicate only with an agent of type PROTECTED_BUFFER who delegates requests to an agent of type DATA_BASE. It's impossible for a user to gain direct access to the real resource agent.

3.3 Comparison with the Monitor Solution

The two solutions differ with respect to the interpretation of where the borderline between the synchronization code and the buffer code should be defined. In the CSSA solution, a buffer is simlpy a data structure which can store and retrieve information provided an unique key is presented. In the monitor solution (fig. 8), a buffer still has much similarity with a bounded buffer in that it provides two functions full and empty. As a consequence, the protected buffer monitor no more has to take care of the counters REM_COUNT and INS_COUNT. In my opinion, these counters are essential elements of the synchronization code and not of the buffer definition.

Not willing to go into the particulars of these arguments, I only state that with the monitor concept and the CSSA concept corresponding solutions can be given for both interpretations. Certainly, no lack of expressiveness in either of the two concepts could be derived from such a discussion.

4. Readers Writers Problems

The readers_writers problem is particularly interesting because with only slight modifications of the general problem (cf. section 4.1.1) various versions with different synchronization aspects can be formulated. In section 4.1 the readers_writers problem with readers priority is discussed in more detail. Section 4.2 gives hints at solutions of other versions. Two results are especially noteworthy: whereas the monitor concept cannot succeed in giving a solution for the general readers_writers problem, no satisfying solution for the readers_writers problem with pure first_in_first_out scheduling can be given in CSSA.

4.1 Readers Writers with Readers Priority

4.1.1 Problem Specification

Given a database with read and write access functions, the general readers_writers problem can be specified by the following constraints:

- (1) write operations are mutually excluded with other write and read operations.
- (2) read operations may execute in parallel.

Special versions of the general readers_writers problem are defined by adding one or more further restrictions. By stating

(3) read requests have priority over write requests

we get a specification for the readers_writers problem with readers priority.

4.1.2 CSSA Solution

In fig. 9, script DATA_BASE (3-22) implements the read and write access functions. The use of the third operation RD_ACKN (23-26) will become clear soon. Note, that this is the same database as was used for the protected buffer solution. In the same sense as described in 3.1, the protection module RDER_PRIO defines the synchronization code specific to the readers priority restriction. An instantiation of one particular database can only be achieved by sending a CREATE message including the requested size of the database to an agent of type RDER_PRIO (44-47). Read and write requests can only be adressed to this protector agent because no acquaintance to the database can be communicated to the outside world.

The functionning of the whole system is best described by showing that restrictions (1)-(3) from 4.1 are fulfilled.

To this aim, I first want to interpret the rather intuitive notions in these assertions according to the present concrete environment.

- A read or write **request** occurs when a RD or WR message arrives in the mailbox of the protector agent.
- Read operations RD₁,RD₂,...,RD; execute in **parallel** iff their requests have been accepted and executed by the protector agent, but no "corresponding" acknowledgement has been received at port R_ACKN in the protector's write operation WR.

Hence, from the protector's point of view, these read operations are either

- just being transmitted between the protector and the database,
- in the mailbox of the database.
- just being executed in the database,
- already executed in the database.

Before receiving an acknowledgement at port R_ACKN, the protector has no information about the state of the database. In this case, we also say that RD₁,RD₂,...,RD; are in flight (between the protector and the database).

Hence, this definition of parallel reading only allows for read requests being nondeterministically executed in the data base. As the execution of operations is indivisible and sequential, the database agent can only accept and answer read requests one after another. The execution is nondeterministic, because no one can guarantee that the read operations are accepted by the database in the same order they were received in the protector's mailbox or sent away by the user agents.

The notion of "mutual exclusion" is explained more precisely as:

• Mutual exclusion between read and write requests and between write operations themselves is guaranteed iff no other operation ever can be in flight together with a write operation.

Proof of assertion (1) [mutual exclusion]:

- (1) It's easily shown that one write operation excludes other write operations because it must be acknowledged [wait W_ACKN do ..., (80)] before the next write request may be accepted. Receiving this acknowledgement guarantees that the database has accepted the write operation. So, a next write operation never can't be in flight together with a preceding write operation.
- (2) In order to show that "write excludes reads" we have to prove that a write operation never can't be in flight together with read operations. According to the acknowledgement protocol described in (1), only read operations have to be taken into account.

The proof is by induction:

(2.1) When a protector agent is created, it first must accept a CREATE message [initial CREATION, 90] resulting in a change to facet WRRS (46). Because the idle operation has no effect when enabled before the first write operation [FIRST_OPER = true in line 85) the protector stays in facet WRRS until a write request will be accepted. So, the first write operation clearly is not in flight together with read operations.

- (2.2) Assume the k'th write operation was not in flight together with other read operations.
 As an effect of its execution the protector's RDER_COUNT was reset to 0 (78). Having received an acknowledgement at port R_ACKN (77), the protector is assured that in the database RCOUNT has been reset to 0 (25).
 Then the completion of the protector's WR operation results in a change to facet RDERS (85), since FIRST_WR and FIRST_OPER have been set to false (72,73).
 Now, two cases have to be considered:
 - (2.2.1) No read operation is requested:

 Then the idle operation in facet RDERS immediately leads back to facet WRRS (59).
 - (2.2.1.1) If no write operation is requested, the protector will loop back to facet RDERS. These facet changes will continue until either a write operation (2.2.1.2) or a read operation (2.2.2) will be requested.
 - (2.2.1.2) If a write operation is requested it will execute without any read operations being in flight.
 - (2.2.2) A read operation RD_1 is requested. RD_1 will be accepted and $RDER_COUNT$ will be set to 1 (56). As long as further read operations RD_i (i > 1) are requested before the protector has finished execution of read operation RD_{i-1} , they will be accepted and sent to the database.
 - (2.2.2.1) ViEN.
 - (i > 0 => read operation RD; has been requested before RD; -1 has finished execution)

In this case, an infinite number of read operations will be transmitted to the database. Therefore, no further write operation will ever be executed and "the (k+1)-st write operation is not in flight with read operations" holds trivially.

(Being polite assume here, that CSSA integer variables can store any natural number. So our program never will abort with integer overflow.)

- (2.2.2.2) Assume RD; finishes before RD; has been requested. Then the idle operation will be executed causing a change to facet WRRS.
 - (2.2.2.2.1) A write operation is not requested. Then the idle operation leads back to facet RDERS with RDER_COUNT = j.

 When new read requests have arrived they will be executed either ad infinitum (case 2.2.2.1) or until RD;+K finishes before RD;+K+1 is requested. In the latter case we have the same situation as in 2.2.2.2 with RDER_COUNT = j +

(2.2.2.2) Terminating the induction, we assume that a
 write operation (the (k+1)-st write operation)
 is requested.
 RDER_COUNT > 0 is the number of read operations
 being in flight. When the message
 RD_ACKN(RDER_COUNT) is sent to the database
 (76), it will only be accepted when RDER_COUNT
 read operations have been executed in the
 database (assert COUNT = RCOUNT, 23). There fore, the receipt of an acknowledgement at port
 R_ACKN guarantees that all read operations have
 been executed. When the write operation is sent
 to the database (86), no read operation is in
 flight. ■

In this proof we already described a situation resulting in more than one read operation being in flight. So we have assertion (2) [parallel reading] automatically.

Assertion (3) [priority constraint] is easily shown: Without loss of generality, assume that both a read request and a write request exists and at least one operation has been executed before. I have to prove that whatever operation read or write was executed last, the next request accepted by the protector will be the read request. Now consider the two cases:

- (1) The last operation executed was a read operation:
 Then we stay in facet RDERS, and obviously the read request will be satisfied next.
- (3) The last operation executed was a write operation:
 Because FIRST_WR in facet WRRS is false, no further write
 request is acceptable. Therefore, the protector will
 change to facet RDERS and execute the read operation.

4.1.3 Comparison with the Monitor Solution

It's rather difficult to compare two solutions when one cannot observe much similiarities. The most significant difference stems from the fact that in contrast to the monitor solution (fig.11a and 11b) I don't need a queue storing user's write and read requests in the CSSA solution.

In the CSSA environment, a request was defined to occur when the corresponding message is received in the protector's mailbox. In the monitor concept, a user request can only come into existence from the programmer's point of view, when the execution of the called monitor procedure is initiated. Translated into the monitor terminology, this is the time stamp when the request enters the monitor. However, from the monitor implementation's point of view, user requests already exist before the time stamps of their

procedure entry points. On the implementation level, incoming requests are registered and stored into an internal queue, which the programmer has no access to. In some sense, this initial queue and not the programmer-defined queues must be regarded as the monitor data structure corresponding to the CSSA mailbox. Hypothetically, a monitor solution similar to the CSSA solution could be derived if the following condition were met: The initial monitor queue is not a queue, rather it is a data structure with almost arbitrary programmable access functions. In CSSA we can select nearly arbitrary messages by defining suitable facet structures and assertions.

4.2 Other Versions of the Readers Writers Problem

Constraints (1) [mutual exclusion] and (2) [parallel reads] formulated in 4.1.1 are common to all versions of the readers_writers problem. Therefore, only a third constraint will be stated to give specifications for the following specializations of the general problem.

4.2.1 The Fair Readers Writers Problem

The readers_writers problem with readers_priority allowed writers to starve (cf. case 2.2.2.1 in the proof of assertion (1)). Substituting assertion (3) [readers_priority] by

(3a) eventually every request will be served

a solution is required to be fair against readers and writers. That is what I call the Fair_Readers_Writers Problem.

Note, that requirement (3a) makes no specific assumptions about the order of serving requests. Thus, the quality of a solution should be measured by the freedom that it leaves for selecting the next request to be served. For example, a pure first_in_first_out scheduling of requests fulfills the requirements, but is too restrictive to be regarded as a good solution.

A really satisfying CSSA solution can be derived from the RDER_PRIO script by simply placing the operations RD and WR into only one facet. The priority ensuring idle operations and the assertion FIRST_WR for the write operation are no more needed. With operations RD and WR occuring in one facet the selection of the next request is totally left to the mailbox manager. From the programmer's point of view this message selection strategy can only assumed to be fair and nothing more. Hence, the proposed CSSA solution fits the problem specification in the best possible way. Even more, this solution is perhaps the most natural and certainly the simplest among all solutions for other versions of the readers_writers problem.

It should be not surprising that - if at all - only a rather com-

plex and not efficient solution for the same problem can be programmed with monitors. Here, the only data structure for storing requests is a queue. Each signal statement can only release the first request of a queue. Hence, a monitor programmer can never reach the state of freedom of a CSSA programmer who can rely on the more general message selection strategy of the mailbox manager.

4.2.2 The FIFO Readers Writers Problem

Another version of the readers writers problem is given by

(3b) each request has priority over all later requests.

Here, priority is entirely based on order of requests. Obviously, this version postulates a pure FIFO policy for serving read and write requests.

According to the definition of a "request" in 4.1.2, at each time the earliest message received has to be selected from the mailbox. However, in CSSA there is no mechanism which allows selection to be based on receive order. There is no hope to give a correct CSSA solution in the context of the definitions established in section 4.1.1. This context is important, because it is not generally impossible to program a FIFO solution in CSSA. So, I could require that each request is transmitted with a unique natural number indicating the time stamp when it had been sent away. Then the protector only accepts that message with the time stamp of the previously selected message incremented by one. Certainly, users would be obliged to coordinate in keeping the transmitted tags unique and successive. To this aim, before sending a request to the protector they could be forced to request a time stamp from a globally known "clock agent".

A monitor solution for the FIFO_READERS_WRITERS problem is presented in fig. 12. Although the monitor's queueing principle fits very well to the required FIFO strategy, the solution seems to be rather complex. This complexity is essentially due to the fact that at least the conventional monitor construct provides no means of identifying the process at the head of a queue or determining the conditions for which it is waiting. In fact, read and write requests are stored into a single queue (m.users) when they are not immediately satisfiable. But if a writer is dequeued when readers are in flight (readercount > 0), the writer must be queued again on a second queue until it is released by the last reader in the resource. A more profound discussion of these problems is given in [Bloom 79].

4.2.3 Readers Writers with Writers Priority

Substituting assertion (3) of the readers_writers problem with readers_priority by

(3c) write requests have priority over read requests

yields a specification for the readers_writers problem with writers_priority. The construction of a CSSA solution analogue to script RDER_PRIO is left to the reader as a simple exercise.

5. The Alarmolock

5.1 Problem Specification

The alarmclock is a very nice representative of the class of problems where synchronization is based on the arguments of requests.

It can be considered as an abstraction of a system device allowing users to fall asleep for some specified time period and to be awakened after this time has elapsed. The alarmclock cannot increment the time by itself, it rather waits for a tick request to be received from some other system facility.

5.2 CSSA Solution

In fig. 13, a CSSA solution is presented which looks very elegant but unfortunately is wrong. Notwithstanding, I enclosed this bad solution because it's a good demonstration of the dangers waiting for a programmer in the distributed environment. So I admit, that after having programmed this solution I accepted it as correct until the last moment before publishing this report.

Although perhaps not visible in their surface structures, the ideas behind the wrong solution and the correct one (fig. 14) are much the same. Therefore, I can afford some documenting of the wrong solution without wasting time.

An agent wishing to sleep for T time units sends a message WAKE_ME(T) to an agent of type ALARM_CLOCK [ALARM_CLOCK for short]. When the WAKE_ME message is accepted by ALARM_CLOCK the sleepy agent is immediately resumed if DELAY_TIME (=T) \leq 0 (23). For a DELAY_TIME > 0 , the wake request is registered by sending a private message WAKE_UP(DELAY_TIME + NOW) to self (24). The parameter DELAY_TIME + NOW yields the "absolute" time stamp when the sleeping agent has to be awakened. Later the existence of this WAKE_UP message in its mailbox will remind ALARM_CLOCK of the user's reveille. Because ringing is symbolized by sending a reply, the port address implicitly included in the WAKE_ME message must be transfered to the WAKE UP message via the inherit - clause. Now we arrive at the crucial point of the discussion. Each execution of a TICK request increments the "real time" NOW by 1 (28) sets up a new instance of facet RESUME. The idea is, that in this facet all WAKE_UP requests for the current time (assert TIME = _NOW, 11) should be satisfied. When no such further WAKE_UP request exists, the execution of the idle operation (15,16) leads back to facet REGISTRY.

At first sight, this strategy seems very sound. But did you get on to the problem? So assume for example, that a WAKE_ME message with DELAY_TIME = 1 has been received and in response ALARM_CLOCK has sent a WAKE_UP message with parameter NOW + 1 to itself. After the next execution of a TICK operation, this WAKE_UP message must be served in facet RESUME. Now, we are faced to the problem that

ALARM_CLOCK stays in facet RESUME only until no (further) WAKE_UP message with TIME = NOW exists in the mailbox. When the considered WAKE_UP request has already been received in the mailbox, it will be executed. However, if it has not been delivered for the time being, the current facet will be left via the idle operation and the sleeping agent will sleep forever.

Although from a practical point of view, the probability may be very low that a WAKE_UP message will not have been received when it is needed, this program must be rejected as a wrong solution. The computational model of CSSA only requires message passing times to be finite, but indefinite. That's even true in this case when messages are passed to the sending agent itself.

Obviously, the idle opeation is not the right criterion for leaving facet RESUME. Instead it must be assured that all WAKE_UP requests for the current time value NOW are served before this facet is left. In the "hopefully" correct solution depicted in fig. 14, this is achieved by keeping a relation CALL_LIST recording the number of agents to be awakened (NO_OF_SLEEPERS) for each time stamp which ever has been requested.

I.e., a request WAKE_ME(DELAY_TIME) is served as follows: when another wakeup obligation for time DELALAY_TIME + NOW exists, the corresponding call element (of type CALL_ELEM) is assigned to the implicitly declared variable CE1,(33) and its NO_OF_SLEEPERS' part is incremented by 1 (34). Otherwise, a new call element with "key" WAKE_UP_TIME = DELAY_TIME + NOW and NO_OF_SLEEPERS = 1 is inserted into the relation (36-38).

In both cases, ALARM_CLOCK sends a WAKE_UP message to itself (40). These private messages are still necessary since for reasons not to be discussed here, the inherit clause is the only mechanism available for saving a reply address from one operation execution to another. In this example, however, the use of private messages could be avoided, when ringing would be implemented by "normal" wakeup messages instead of reply messages. Then, in addition to the DELAY_TIME parameter, a sleepy agent must include an acquaintance to itself in the WAKE_ME message, which later will be used by ALARM_CLOCK as the addressee of the corresponding WAKE_UP message.

After incrementing the time (45), a new instantiation of facet RESUME is only set up when a call element for the new time value exists (46). Compared with the first solution this means a slight compensation for the overhead we had to introduce in the second solution. ALARM_CLOCK then stays in facet RESUME, waiting for the first WAKE_UP request which eventually will arrive in the mailbox, if it was not already there. So, there is no need for an idle in this case. Another reason is that the criterion for leaving facet RESUME can be computed during the execution of a WAKE_UP operation: If NO_OF_SLEEPERS for the currently served call element has the value 1 (19), then no further wakeup obligation exists for the current time value and facet RESUME may be left. Besides, the current call element can be deleted (20). Otherwise, NO_OF_SLEEPERS is decremented by 1 (22) and no change of facet takes place.

5.3 Comparison with the Monitor Solution

In monitors, queuing is the only means to stop serving a request which later shall be resumed. Because in this example delayed requests have to be resumed in the order of their arguments, the concept of priority queues has to be introduced (cf. fig. 16). Most of the alarmclock code in the CSSA solution is needed to implement this data structure which is a necessary prerequisite of all monitor implementation languages. From this point of view, the seemingly more complex CSSA solution doesn't make me so unhappy, rather it indicates the provision of greater freedom and flexibility in the CSSA concepts.

An unpleasantness of this special monitor solution is due to the fact that it is not possible to examine the first element of a queue without dequeueing it first. Thus, the first process in the priority queue has to be dequeued in each tick operation, then tested for its arguments (while ac.now < alarmsetting), and possibly requeued again. As already mentioned in 5.2, this awkwardness can be avoided in the CSSA solution by not establishing an instance of facet RESUME when no wakeup obligation exists for the current time. Clearly, this shortcoming of the monitor solution is not so severe because adding a test for the priority of the first element in a priority queue as an additional language feature is all what has to be done.

6. The N-Queens Problem

6.1 Problem Specification

The following problem has to be solved:

How can you place N queens on an NxN chessboard in such a way that no two queens can capture each other (i.e. no two queens are in the same row, column or diagonal)?

The CSSA solution described in the next section is expected to find all such possible placings for any given N.

In general, the N-queens problem is a showboy for the class of problems offering "natural" recursive solutions. In some sense, the CSSA script to be developed also defines recursive behaviour. Instead of recursive function calls, agents of a certain type are created dynamically and provided with partial solutions which they are ordered to expand.

6.2 CSSA Solution

The script NQUEENS in fig. 17 is best described by setting an example for one specific N, say N=4. After having created an agent NQ of type NQUEENS, a user specifies the command

send FIND_SOLUTION(4) to NQ

Because N does not equal 1 (which would lead to the immediate answer: "For one queen solution is: 1" [75-79]), NQ sends a message FIND_SOLUTION to each of four newly created anonymous agents of type NODE [84]. We want to identify these new agents as N(1), N(2), N(3) and N(4). Each agent N(i), $i=1,\ldots,4$, is provided with the information that a queen has been placed by NQ in column i of the first row. This information is represented in the CSSA script by putting the value i into the first element of the array FIRST_ROW [83]. The other array elements retain the value 0 due to default initialization [71].

In the following course of execution nothing remains to be done for NQ. One can terminate it by sending a STOPQ message [89-93], or let it survive when solutions for other sizes of the chessboard shall be generated.

The current situation is skeletonized in the following tree structure:

For example, N(3) is ordered to find a solution for the 4-queens problem with already one queen placed in column 3 of the first row.

The first action of each agent N(i) is to check whether it already was provided with a complete solution. This would be the case if a queen had been placed in some column of the last (N-th) row [if not (Q(N) = 0),19].

The actions to be taken in this case are described later in this section when the condition will be fulfilled for our example execution. Now, for all agents N(i) this condition is not fulfilled. So, they try to find allowable places for the next queen to be placed in the current (second) row. This computation is done in three separated loops.

The first loop [34-36] determines how many queens (ANZ_Q) are already on the board. In our example, ANZ_Q will have the value 1 after leaving the loop.

In the second loop [38-46], all columns of the current row are computed, which are **not** allowed for the next queen. To remember this information, the j-th element $(j \in \{1, \ldots, 4\})$ of the boolean array NOT_POSSIBLE will become **true** iff no queen may be placed into the j-th column of the current row.

In the third loop [48-53], a new agent of type NODE will be created, one for each allowed extension of the board. If no extension is possible (i.e. NOT_POSSIBLE (j) for $j=1,\ldots,4$), the loop has no effect.

The last action of each NODE agent is to request its own termination (56). Hence, all NODE agents are alive only as long as necessary. After their work has been done they release their processors for the execution of other NODE agents which they possibly have created during their own lifetimes.

The coming into existence of new agents in our example execution is represented in the following tree structure which is an expansion of the previous one.

During the construction of the solution 16 NODE agents have been created. However, due to the self destruction of NODE agents this number should not be misunderstood as the number of agents executing simultaneously on the available processors. Agents N(5), N(11), N(14) and N(10) terminate without finding an extension of the given partial solution. For example, N(5) is ordered to place a third queen into the third row with respect to the partial solution depicted by the following board.

Obviously, this board cannot be expanded, and no new agent will be created. Only agents N(15) and N(16) are provided with complete solutions:

(boards for [2,4,1,3] and [3,1,4,2]

For their executions the previously mentioned condition not (Q(N) = 0) is fulfilled. Therefore, their only task is to send a message of success to the user. The envelope of this message is constructed using the string variable ASW and sent to the user (interface) by

send ANSWER(ASW) to interface reply to OK;

The reply obligation is not really necessary. Its only purpose is to enhance the attention of the human user observing or not observing messages being displayed on the screen.

7. Window Mechanism

7.1 The Model

In this example CSSA is used to model the following computer system:

Two host computers communicate via two interface modules which are called gateways. Hi , i \in {1,2} , can send (receive) a complete message to (from) GWi whereas only packets are transmitted and received between GW1 and GW2.

In the model, messages are character strings of variable lengths and the individual characters of the strings are packets.

Each gateway provides two facilities:

- a transmitter (T) as one part of the gateway receives a message m from "its" host and sends the characters of m to the collector in the other gateway.
- a collector (C) as the other part receives packets from the transmitter in the other gateway. When the packets of one message are all received the concatenation of the packets is sent to the host as one message.

We assume that several packets may be simultaneously in flight between T and C. This extended model is described by the following picture:

In the CSSA solution all circled entities will become agents which communicate via the operations labelling the arcs. So H1 can send a message via T1 and C2 to H2 at the same time when H2 is sending a message via T2 and C1 to H1. Therefore the most

effective realization of this CSSA agent structure would supply one (micro-)processor for each of the Ti's and the Ci's.

Now we introduce the following realistic complications:

- packets need not reach the collector in the order they were produced by the transmitter; that means packets can pass each other;
- the transmission medium between the two gateways is unreliable so that packets can be totally lost. (It should be noted that this second asssumption is in contrast to the CSSA model of computation which does not allow loss of messages. In the CSSA solution we therefore simulated this unreliable transmission medium by generating two agents of type FAULTY-CHANNEL (cf. fig. 19, 353-442), which receive and normally forward all messages transmitted between a collector and a transmitter. However, depending on generated random numbers, some messages are received but not transmitted, that means they are lost).

In this situation the communication between a transmitter and collector becomes most interesting.

We are faced with the problem of providing the hosts H1 and H2 with a reliable "virtual" transmission medium which is based on an unreliable "physical" transmission medium.

In a simple solution of this problem the transmitter T would send a packet p1 to the collector C, then wait for an acknowledgement, then send a second packet p2, etc. Because the transmission medium is unreliable not alone for packets but also for acknowledgements, some timeout mechanism must be used when waiting for an acknowledgement. When time is exhausted the packet not yet acknowledged must be sent once more. The implementation of receiving duplics is straightforward in this case.

However, this solution is not really satisfying, because it does not utilize the whole capacity of the transmission medium (more than one packet may be in flight between T and C).

7.2 Communication between the Transmitter and the Collector

The CSSA scripts TRANSMITTER and COLLECTOR implement a mechanism which is described informally in [Cerf, Kahn 74]. This so called window mechanism works as follows:

The transmitter sends packets (in operation SEND_PACKET, 71-88) to the collector. Received packets (operation COLLECT, 156-247) are acknowledged by the collector. Instead of waiting for an acknowledgement (operation ACKNOWLEDGE, 91-116) before the next packet can be transmitted, the transmitter can hurry on ahead; so several

packets can be in flight without having been acknowledged. Obviously, every packet must carry a unique identification (sequence number) which allows the reconstruction of a message from the individual packets. In order to guarantee the perception of lost packets, the transmitter eventually must stop transmitting new packets. Therefore a common upper bound for the maximum number of packets in flight is agreed upon between the sender and the receiver. This upper bound w is the size of the so called window. In the window appears a part of the packet stream which starts just behind the last packet already transmitted and acknowledged, if any. The variable LWE.T is equal to the sequence number of the leftmost packet within the transmitter's window (left window edge).

(the transmitter's window)

If all packets of the current window have been transmitted a next packet can only be transmitted after having received an acknowledgement a with LWE.T < a < LWE.T + W. The receipt of a indicates that the collector has accepted all packets with sequence numbers less than a and now is waiting for the packet with number a. This allows LWE.T to be shifted to the right (LWE.T := a), thereby implicitly advancing the right window edge.

However if a packet -or the acknowledgement itself- is lost, the transmitter never would get the chance of transmitting a new packet. Therefore some timeout mechanism must be used leading to the assumption that a packet or an acknowledgement has been lost. Based on this hypothesis the packet at the left window edge will be transmitted for a second time.

In our CSSA solution the retransmission of a packet is processed in the idle_operation (60-66) of facet TRANSMISSION2 in script TRANSMITTER.

Here we use the idle operation as a simulation of a timeout mechanism, since no real time constructs are available in the current version of CSSA.

An immediately subsequent retransmission of the same packet due to the timeout mechanism is prohibited by setting the boolean variable IDLE_ENABLED to true and changing to facet TRANSMISSION1. So, a next activation of the idle operation becomes only effective after an useful acknowledgement advancing the left window edge has been received. In this implementation, every packet will be transmitted at most two times. It should be noted that this number is not the result of a principal decision. A maximal retransmission rate of 3,4 or 100 times could have been programmed with the same ease.

In facet TRANSMISSION the transmitter works according to the following rules

- 1. The transmitter transmits packets with sequence numbers between LWE.T and up to LWE.T + W 1. Each activation of the operation SEND_PACKET transmits exactly one packet (81). The whole transmission mechanism is initiated by the operation SEND_MESS (25-38) in facet START_TRANSMISSION in which the transmitter sends a "sufficient" number of SEND_PACKET-messages to itself (via procedure ACTIVATE_TRANSMIT, 8-15). Later new SEND_PACKET-messages are only produced in operation ACKNOWLEDGE (98,99). The last packet of the currently transmitted "host-message" is provided with the tag ENDE = true (77).
- 2. The receipt of an acknowledgement with number N indicates that the collector has received all packets with sequence numbers less than N and the packet with number N being the first one not yet received. Note that the acknowledgement N implicitly acknowledges all packets with sequence number less than N. If LWE.T < N ≤ LWE.T + W, the left window edge LWE.T can be set to N (103). Assuming the rest of the message to be transmitted is long enough, N-LWE.T new SEND_PACKET-messages can be produced (98); otherwise the transmitting of all remaining packets of the current message is initiated (99). If the idle operation was disabled before receipt of the acknowledgement, now it will be enabled (104-107).</p>

An acknowledgement with $N \leq LWE.T$ is possible if it was overtaken by a later one with a higher number. Such an acknowledgement can simply be discarded. Only an information message will be sent to the interface in this case.

An acknowledgement with N > LWE.T+W is not possible because at most packet number LWE.T+W-1 can have been transmitted and received before.

An acknowledgement for a packet of an old message (MESS_ID < CURRENT_MESS_ID, 92) has no effect at all.

3. On timeout (no ACKNOWLEDGE- or SEND_PACKET - message can be enabled) the packet with sequence number LWE.T will be retransmitted if the current facet is TRANSMISSION2.

The left edge LWE.C of the collector's window (fig. 20) denotes the least packets number which has not yet been received.

(the collector's window)

Possibly received packets with sequence numbers greater than LWE.C up to the right window edge LWE.C + W - 1 (window packets) are stored in the relation R under their (relative) "window position". Depending on the received packet number CHAR_NO in operation COLLECT the following actions take place:

- 1. $CHAR_NO = LWE.C (179-242)$:
- Let J be the unique number with 0 < J < W such that all packets with sequence numbers less or equal to LWE.C + J have been received but the packet with number LWE.C + J + 1 not yet being received. Then the currently received first part of the "host-message" can be prolonged by the substring defined by packet numbers LWE.C, LWE.C+1,..., LWE.C + J (194-205).

The window is adjusted by setting LWE.C to LWE.C + J + 1 and the relation R is updated as an image of the new window (217-236).

As acknowledgement the number of the new left window edge is sent to the transmitter (207). This implicitly acknowledges packets with numbers less than the index of the new left window edge. When the whole "host-message" has been received it is transmitted to the destination host (184,209-210).

2. LWE.C < CHAR_NO ≤ LWE.C + W - 1:

The currently received packet is not yet acknowledged but stored in the relation R (173-176). The window is not "moved".

3. CHAR_NO < LWE.C:

The currently received packet is a duplicate the original of which already has been received. From the collector's point of view the receipt of a duplicate serves as a hint that the (implicit or explicit) acknowledgement for this packet might have been lost. Therefore the current left window edge LWE.C is sent as acknowledgement once again (243).

4. $CHAR_NO > LWE.C + W - 1$ is not possible.

LITERATURE

[Bloom 79] Bloom, Toby: Synchronization Mechanisms for Modular Programming Languages MIT/LCS/TR-211, Jan. 1979 [Lis,Sny, Atk, Sch 77] Liskov, B.H.; Snyder, A.; Atkinson, R.; Schaffert, C. : Abstraction Mechanisms in CLU Comm.ACM (20,8), Aug. 1977, pp564-576 [FRV 81] Fischer, Hans Ludwig; Raulefs, Peter; Voss, Hans: CSSA-Projekt, Arbeitsbericht April 1979 - März 1981 Memo SEKI-BN-81-02, Institut für Informatik, Universität Bonn, 1981 (in german) [FRV 82] The Programming Language CSSA Multifor computersystems SEKI Report, Institut für Informatik III, Universität Bonn, 1982 [Cerf, Kahn 74] Cerf, V.G.; Kahn, R.E.: A Protocol for Packet Network Intercommunication IEEE Transactions on Communications, Vol-Com-22, No.5, May 1974, pp637-648

APPENDIX

~		One Slot Buffer Script	A1
2	:	One Slot Buffer Execution Protocol	A 2
3	:	Bounded Buffer Script	A 4
4	:	Bounded Buffer Execution Protocol	A 5
5	:	Bounded Buffer Monitor	8 A
6	:	Protected Buffer Script	A 9
7	:	Protected Buffer Execution Protocol	A11
8	:	Protected Buffer Monitor	A15
9	:	Readers Priority Script	A16
10	:	Readers Priority Execution Protocol	A18
11a	:	Readers Priority Monitor	A21
11b	:	Readers Priority Protected Resource Module	A22
12	:	First Come First Serve Monitor	A23
13	:	Alarmclock Script (Wrong Solution)	A24
14	:	Alarmclock Script (Correct Solution)	A25
15	:	Alarmclock Execution Protocol	A26
16	:	Alarmclock Monitor	A29
17	:	N-Queens Script	A30
18	:	N-Queens Execution Protocol	A32
19	:	Window Mechanism Script	A37
20	:	Window Mechanism Execution Protocol	A45
	3 4 5 6 7 8 9 10 11 10 12 13 14 15 16 17 18 19	3 : : : : : : : : : : : : : : : : : : :	<pre>3 : Bounded Buffer Script 4 : Bounded Buffer Execution Protocol 5 : Bounded Buffer Monitor 6 : Protected Buffer Script 7 : Protected Buffer Execution Protocol 8 : Protected Buffer Monitor 9 : Readers Priority Script 10 : Readers Priority Execution Protocol 11a : Readers Priority Monitor 11b : Readers Priority Protected Resource Module 12 : First Come First Serve Monitor 13 : Alarmclock Script (Wrong Solution)</pre>

BMS-CSSA-COMPILER

1981/12/01 11:1!

DEFAULT-OPTIONS: NOTERM,NOTEST, CHECK, OBJECT, SOURCE,NOSTRUCT, XREF,RESWD=A,MAXP= 99,MAXE= 99,MAXD= OPTIONS IN USE: NOTERM,NOTEST, CHECK, OBJECT, SOURCE, STRUCT, XREF,RESWD=A,MAXP= 99,MAXD=

```
---+---1----1----2----3----+----4----+----5----+----6----+---7--| B L O C K N E S T I N G
     type ONE_SLOT_BUFFER is script
 1
 2
       var string: BUFFER;
 3
 5
       facethead READ:
 6
       facet WRITE is
                                                                                     +2
        public: WR;
10
         operation WR(string: MESSAGE) is
         BUFFER := MESSAGE;
replace by READ;
11
12
13
         endoperation
                                                                                      -3
14
       endfacet
                                                                                    1-2
15
                              ١
16
       facet READ is
17
         public: RD;
18
19
         operation RD is
                                                                                      1+5
          reply (BUFFER);
20
         replace by WRITE;
21
         endoperation
22
23
       endfacet
24
                              ı
25
       initial WRITE
26
```

BMS-CSSA-COMPILER - DATE OF RELEASE: 30 SEP 1981 NO ERROR DETECTED END OF COMPILING ON 1981/12/01 AT 11:16:06.00 RETURNCODE = 0 COMPILE-TIME (CPU) = 0.85 SEC. EXECUTION-TIME = 15.00 SEC. NUMBER OF SOURCE-LINES READ = 27 NUMBER OF TOKENS = 62 NUMBER OF OBJECT-RECORDS GENERATED = 302

*** CROSS-REFERENCE-TABLE ***

BUFFER	VARIABLE: STRING	3	11	20
MESSAGE	CONSTANT: STRING	10	11	
ONE_SLOT_	BUF=USER_DEFINED_TYPE: SCRIPT	1		
RD	OPERATION: OPER	17	19	
READ	FACET	5	12	16
WR	OPERATION: OPER	8	10	
WRITE	FACET	7	21	25

- MULTIPLE OCCURENCES ON THE SAME LINE ARE MARKED WITH '+'.
- TOTAL NUMBER OF IDENTIFIERS USED IN THIS PROGRAM: 7

fig. 1 : One Slot Buffer Script

fig. 2 : One Slot Buffer Execution Protocol

```
==> MAILBOX
                                                                                                               <==
MAILBOX OF INTERFACE(1) :
(1) *REPLY(STRING: "A")
>>> 1.100 INTERFACE(1): ENTER CSSA COMMAND -
==> SEND RD TO OSB REPLY TO P; SEND WR("B") TO OSB;RUN
+++ 1.100 P1: INTERFACE(1) SENDS RD(),REPLY TO: P TO ONE_SLOT_BUFFER(1)
+++ 1.100 P1: INTERFACE(1) SENDS WR(STRING:"B") TO ONE_SLOT_BUFFER(1)
                                                                                                               <==
                   P2: ONE_SLOT_BUFFER(1) RECEIVES RD(), REPLY TO: P
                                   FROM INTERFACE(1)
                  P2: ONE_SLOT_BUFFER(1) IS IDLE
P2: ONE_SLOT_BUFFER(1) RECEIVES WR(STRING: "B")
          1.200
          1.300
                                   FROM INTERFACE(1)
          1.300
                  P2: ONE_SLOT_BUFFER(1) STARTING OPERATION WR(STRING:
                                  "B")
                  P2: ONE_SLOT_BUFFER(1) PERFORMS FACETTING: WRITE --> READ P2: ONE_SLOT_BUFFER(1) STARTING OPERATION RD() P2: ONE_SLOT_BUFFER(1) SENDS *REPLY(STRING: "B")
          1.500
+++
          1.500
+++
          1.600
                                   TO INTERFACE(1)
          1.700 P2: ONE_SLOT_BUFFER(1) PERFORMS FACETTING : READ --> WRITE
+++
          1.700 PZ: ONE_SLOT_BUFFER(1) IS IDLE
+++
ONE_SLOT_BUFFER(1)
          2.200 SYSTEM TERMINATED
2.200 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
>>>
==> MAILBOX
                                                                                                              <==
MAILBOX OF INTERFACE(1) :
(1) *REPLY(STRING: "A")
(2) *REPLY(STRING: "B")
          2.200 INTERFACE(1) : ENTER CSSA COMMAND -
==> DUMP OSB
                                                                                                              <==
          2.200 RUNTIME STACK OF ONE_SLOT_BUFFER(1)
                       FACET WRITE
                       ENV: SCRIPT ONE_SLOT_BUFFER
                       LINE:
                       SCRIPT ONE_SLOT_BUFFER
                       ENV:
                       LINE:
                                 27
                       BUFFER = "B"
          2.200
                  INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> TERMINATE
                                                                                                              <==
+++
          2.200 ALL EXISTING AGENTS:
  AGENT
                        FACET
                                       OPERATION
                                                                         MATLBOX
 P1: INTERFACE(1) *
                                                          *REPLY *REPLY
 PZ: ONE_SLOT_BUFF | WRITE
```

CSSA-SESSION-STATISTICS

SESSION STARTED AT 11:48:01.00
SESSION TERMINATED AT 11:51:08.00 ON 1981/12/01
REAL-TIME USED: 188.00 SEC.
CPU-TIME USED: 0.88 SEC.
SIMULATION TIME USED: 2.2000 SEC.
NUMBER OF AGENTS CREATED: 1
NUMBER OF MESSAGES SENT: 6

```
type BOUNDED_BUFFER is script(int: MAX) assert MAX > 0
         public: INS, REM;
         functionhead MOD(int: P1,P2) returns int external;
var array (0..MAX-1) of string: BUFFER;
var int: INS_COUNT,REM_COUNT := 0;
 8
          facethead BUFFER_EMPTY;
10
          facethead BUFFER_FULL;
          facethead NO_CONSTRAINT;
11
12
13
14
15
16
17
18
19
          facet BUFFER_EMPTY is
          include: INS;
         endfacet
                                                                                                                  +3
          facet BUFFER_FULL is
          include: REM;
                                                                                                                   -3
          endfacet
20
21
          facet NO_CONSTRAINT 1s
                                                                                                                   +4
          include: INS, REM;
23
          endfacet
         operation INS(string: MESSAGE) is

| BUFFER(INS_COUNT) := MESSAGE;
| INS_COUNT := MOD(INS_COUNT + 1,MAX);
| if INS_COUNT = REM_COUNT then replace by BUFFER_FULL;
| else replace by NO_CONSTRAINT; endif;
                                                                                                                *1
                                                                                                                   +5
25
26
27
28
29
                                                                                                                  1-5
30
         endoperation
31
         operation REM is

reply (BUFFER(REM_COUNT));

REM_COUNT := MOD(REM_COUNT + 1,MAX);

if INS_COUNT = REM_COUNT then replace by BUFFER_EMPTY;

else replace by NO_CONSTRAINT; endif;
32
34
35
36
37
         endoperation
                                                                                                                  1-7
38
39
40
         initial BUFFER_EMPTY
```

fig. 3 : Bounded Buffer Script

```
PROGRAM GENERATED ON 1981/11/26 AT 11:25:31.00 BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)
```

PROTOCOL OF CSSA SESSION ON 1981/11/27 AT 11:11:40.00

```
0.000 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> VAR AGENT : BB := NEW BOUNDED_BUFFER(3)
          0.000 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> OPER : INS, REM; PORT : P
                                                                                                             <==
          0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> ;DISPLAY
                                                                                                             <==
       IDENTIFIER
                                     TYPE
                                                                     VALUE
                                 AGENT
                                                                 BOUNDED_BUFFER(1)
   BOUNDED_BUFFER
                                 SCRIPT
                                                                 BOUNDED BUFFER
                                 LITERAL
   INS
                                 PORT
   REM
                                 LITERAL
          0.000 INTERFACE(1) : ENTER CSSA COMMAND
>>>
<==
                  P2: BOUNDED_BUFFER(1) IS IDLE
P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING:"111")
+++
          0.000
          0.100
                                  FROM INTERFACE(1)
          0.100
                  P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
                                  "111")
NO_CONSTRAINT
          0.500
                   P2: BOUNDED_BUFFER(1) IS IDLE
          0.500
                   P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING: "222")
                                  FROM INTERFACE(1)
                   P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING: "222")
          0.500
NO_CONSTRAINT
+++
          0.900
                  P2: BOUNDED_BUFFER(1) IS IDLE
>>>
          0.900 SYSTEM TERMINATED
0.900 INTERFACE(1): ENTER CSSA COMMAND -

=> SEND REM TO BB REPLY TO P; SEND REM TO BB REPLY TO P;

+++

0.900 P1: INTERFACE(1) SENDS REM(), REPLY TO: P TO BOUNDED_BUFFER(1)

+++

0.900 P1: INTERFACE(1) SENDS REM(), REPLY TO: P TO BOUNDED_BUFFER(1)

+++

0.900 P1: INTERFACE(1) SENDS REM(), REPLY TO: P TO BOUNDED_BUFFER(1)

+++

0.900 P1: INTERFACE(1) SENDS REM(), REPLY TO: P TO BOUNDED_BUFFER(1)
                                                                                                            <==
                  INTERFACE(1) : ENTER CSSA COMMAND -
>>>
          0.900
==> RUN; MAILBOX; MAILBOX BB
                                                                                                            <==
          1.000 P2: BOUNDED_BUFFER(1) RECEIVES REM(), REPLY TO: P
                                  FROM INTERFACE(1)
          1.000 P2: BOUNDED_BUFFER(1) STARTING OPERATION REM()
1.100 P2: BOUNDED_BUFFER(1) SENDS *REPLY(STRING: "111")
+++
                                  TO INTERFACE(1)
          1.100 P2: BOUNDED_BUFFER(1) RECEIVES REM(), REPLY TO: P
                                  FROM INTERFACE (1)
NO_CONSTRAINT
                  P2: BOUNDED_BUFFER(1) STARTING OPERATION REM()
P2: BOUNDED_BUFFER(1) SENDS *REPLY(STRING: "222")
          1.400
+++
          1.500
                                  TO INTERFACE(1)
                  P2: BOUNDED_BUFFER(1) RECEIVES REM(), REPLY TO: P
+++
          1.500
                                  FROM INTERFACE (1)
BUFFER_EMPTY
          1.800
                  P2: BOUNDED BUFFER(1) IS IDLE
                  P1: INTERFACE(1) RECEIVES *REPLY(STRING: "111")
          1.900
                  FROM BOUNDED_BUFFER(1)
P1: INTERFACE(1) RECEIVES *REPLY(STRING:"222")
          1.900
                                  FROM BOUNDED BUFFER(1)
>>>
         2.000 SYSTEM TERMINATED
```

fig. 4 : Bounded Buffer Execution Protocol

```
MAILBOX OF INTERFACE(1) :
(1) *REPLY(STRING: "111")
(2) *REPLY(STRING: "222")
MAILBOX OF BOUNDED_BUFFER(1) :
(1) REM(), REPLY TO: P
          2.000 INTERFACE(1) : ENTER CSSA COMMAND -
*** SEND INS("333") TO BB; SEND INS("444") TO BB; SEND INS("555") TO BB; RUN

+++ 2.000 P1: INTERFACE(1) SENDS INS(STRING:"333") TO BOUNDED_BUFFER(1)

+++ 2.000 P1: INTERFACE(1) SENDS INS(STRING:"444") TO BOUNDED_BUFFER(1)

+++ 2.000 P1: INTERFACE(1) SENDS INS(STRING:"555") TO BOUNDED_BUFFER(1)
                                                                                                              <==
+++
          2.100
                   P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING: "333")
                                  FROM INTERFACE (1)
+++
          2.100
                   P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
                                 "333")
NO_CONSTRAINT
                   P2: BOUNDED_BUFFER(1) STARTING OPERATION REM()
P2: BOUNDED_BUFFER(1) SENDS *REPLY(STRING:"333")
          2.500
+++
          2.600
                   TO INTERFACE(1)
P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING: "444")
+++
          2.600
                                  FROM INTERFACE(1)
                   P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING: "555")
+++
          2.600
                                  FROM INTERFACE(1)
BUFFER EMPTY
          2.900 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
                                  *444*)
          3.000 P1: INTERFACE(1) RECEIVES *REPLY(STRING: "333")
                                   FROM BOUNDED_BUFFER(1)
NO_CONSTRAINT
          3.300 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
          3.300
                   REAL-TIME LIMIT EXCEEDED
>>>
>>> 3.300 INTERFACE(1): ENTER CSSA COMMAND - => SEND INS("666") TO BB; SEND INS("777") TO BB;RUN
                                                                                                              <==
                   P1: INTERFACE(1) SENDS INS(STRING: "666") TO BOUNDED_BUFFER(1)
P1: INTERFACE(1) SENDS INS(STRING: "777") TO BOUNDED_BUFFER(1)
+++
          3.300
+++
          3.300
          3.600 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING: "666")
+++
                                  FROM INTERFACE (1)
          3.600 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING: "777")
                                  FROM INTERFACE(1)
NO CONSTRAINT
          3.700 PZ: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING: "666")
BUFFER_FULL
          4.100 P2: BOUNDED_BUFFER(1) IS IDLE
+++
          4.100 SYSTEM TERMINATED
4.100 INTERFACE(1): ENTER CSSA COMMAND -
>>>
>>>
==> MAILBOX; MAILBOX BB
                                                                                                              <==
MAILBOX OF INTERFACE(1) :
(1) *REPLY(STRING: "111")
(2) *REPLY(STRING: "222")
(3) *REPLY(STRING: "333")
MAILBOX OF BOUNDED_BUFFER(1) :
(1) INS (STRING - "7777")
          4.100 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> SEND REM TO BB REPLY TO P,RUN
+++ 4.100 P1: INTERFACE(1) SENDS REM(),REPLY TO: P TO BOUNDED_BUFFER(1)
                                                                                                              <==
                   P2: BOUNDED_BUFFER(1) RECEIVES REM(), REPLY TO: P
          4.200
                                  FROM INTERFACE(1)
          4.200 P2: BOUNDED_BUFFER(1) STARTING OPERATION REM()
4.300 P2: BOUNDED_BUFFER(1) SENDS *REPLY(STRING: *444*)
                                  TO INTERFACE(1)
NO_CONSTRAINT
      4.600 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
+++
```

```
BUFFER_FULL
         $.000 P2: BOUNDED_BUFFER(1) IS IDLE

$.100 P1: INTERFACE(1) RECEIVES *REPLY(STRING: "444")
FROM BOUNDED_BUFFER(1)
         5.200 SYSTEM TERMINATED
5.200 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
>>>
==> MAILBOX
MAILBOX OF INTERFACE(1) :
(1) *REPLY(STRING: "111")
(2) *REPLY(STRING: "222")
(3) *REPLY(STRING: "333")
(4) *REPLY(STRING: "444")
         5.200 INTERFACE(1) : ENTER CSSA COMMAND -
==> MAILBOX BB
                                                                                                   <==
MAILBOX OF BOUNDED_BUFFER(1) :
>>> 5.200 INTERFACE(1): ENTER CSSA COMMAND -
                                                                                                   <==
         5.200 RUNTIME STACK OF BOUNDED_BUFFER(1)
+++
                     FACET BUFFER_FULL
                     ENV: SCRIPT BOUNDED_BUFFER
                     LINE: 17
                     SCRIPT BOUNDED BUFFER
                     LINE:
                     MAX = 3
                     ANONYM = (0..2)
                     BUFFER(0) = "777"
BUFFER(1) = "555"
                     BUFFER(2) = "666"
INS_COUNT = 1
                     REM_COUNT = 1
         5.200 INTERFACE(1) : ENTER CSSA COMMAND -
==> TERMINATE
                                                                                                   <==
         5.200 ALL EXISTING AGENTS:
                       FACET
                                    OPERATION
                                                                   MAILBOX
  P1: INTERFACE(1) *
                                                     *REPLY *REPLY *REPLY *REPLY
  P2: BOUNDED_BUFFE | BUFFER_FU
```

CSSA-SESSION-STATISTICS

SESSION STARTED AT 11:11:19.00
SESSION TERMINATED AT 11:20:26.00 ON 1981/11/27
REAL-TIME USED: 547.00 SEC.
CPU-TIME USED: 1.88 SEC.
SIMULATION TIME USED: 5.2000 SEC.
NUMBER OF AGENTS CREATED: 1
NUMBER OF MESSAGES SENT: 15

```
bounded_buffer = monitor is create, append, remove;
am = array[message];
rep = record[ slots:am, max:int, nonempty, nonfull: condition]
create = proc(n:int) returns (cvt);
         return (rep${slots:am$new(),
                          max:n,
                          nonempty,nonfull: condition$create()});
         end create;
append = proc(buffer:cvt, x:message);
         if am$size(buffer.slots) = max
           then condition$wait(buffer.nonfull);
         am$addh(buffer.slots,x);
         condition$signal(buffer.nonempty);
         end append;
remove = proc(buffer:cvt) returns (message);
         if am$size(buffer.slots) = 0
           then condition$wait(buffer.nonempty);
         x:message := am$reml(slots);
         condition$signal(buffer.nonfull);
         return (x);
         end remove:
end bounded_buffer;
```

fig. 5 : Bounded Buffer Monitor

```
---+---1---+---2----3----4---4---+---5----+---6----+---7--| B L O C K N E S T I N G
     type PROTECTED_BUFFER 1s
 2
     script
       public : INS,REM,
 6
        type DATA_BASE is script(int: SIZE)
 7
 8
          var array(1..SIZE) of string: FILE;
 9
10
          facet RD_OR_WR is
                                                                                              +3
            public: WR,RD,RD_ACKN;
var int: RCOUNT := 0;
11
12
13
            operation WR(string: DATA; int: KEY) is
14
              reply;
if KEY > 0 and KEY <= SIZE then
FILE(KEY) := DATA; endif;
15
16
                                                                                               +5
17
18
            endoperation
19
            operation RD (int: KEY) is
20
              RCOUNT := RCOUNT + 1;
if KEY > 0 and KEY <= SIZE then
21
22
                reply (FILE(KEY)); endif;
23
            endoperation
24
25
26
            operation RD_ACKN(int: COUNT) assert COUNT = RCOUNT is
            reply;
RCOUNT := 0;
27
28
29
            endoperation
                                                                                             *3
-3
30
31
          endfacet
32
                                                                                            *2
          initial RD_OR_WR
33
34
35
                                                                                            -2
       endscript:
36
                                                                                            *1
     (* back on top level of script PROTECTED_BUFFER *)
37
38
     var DATA_BASE : DB;
var int : REM_COUNT,INS_COUNT;
39
40
     functionhead MOD(int : P1,P2) returns int external;
41
42
     var int : MAX;
43
44
     facethead BUFFER_EMPTY;
45
     facethead BUFFER_FULL;
     facethead NO_CONSTRAINT;
46
47
48
     facet CREATION is
49
       public : CREATE;
50
                                                                                            1+10
51
        operation CREATE(->MAX) is
52
          if MAX > 0 then
                                                                                               +11
53
           DB := new DATA_BASE(MAX);
          replace by BUFFER_EMPTY; else print(" Buffer size must be greater than 0 ");
54
55
         endif;
```

fig. 6 : Protected Buffer Script

```
57
       endoperation
 58
       endfacet
 59
                                                                                                   +12
 60
       facet BUFFER_EMPTY is
 61
       include : INS;
                                                                                                   -12
 62
       endfacet
                                                                                                 1 *1
 63
       facet NO_CONSTRAINT is include : INS,REM;
 64
65
                                                                                                   +13
 66
67
68
       endfacet
                                                                                                   -13
                                                                                                 1 * 1
       facet BUFFER_FULL is
include : REM;
                                                                                                    +14
 69
70
71
72
73
74
                                                                                                   -14
       endfacet
       operation INS(string : M) is
                                                                                                    +15
        port : ACCEPTED;
oper : WR;
 75
         send WR(M,INS_COUNT + 1) to DB reply to ACCEPTED;
INS_COUNT := MOD(INS_COUNT + 1, MAX);
 76
 77
78
         wait ACCEPTED;
if INS_COUNT = REM_COUNT then replace by BUFFER_FULL;
 79
                                                                                                    +16
 80
         else replace by NO_CONSTRAINT;
 81
82
         endif;
                                                                                                    -16
                                                                                                   1-15
       endoperation
 83
                                                                                                 |±1
|+17
 84
       operation REM is
       port : ACCEPTED;
var string : M;
 85
 86
 87
         oper : RD;
 88
         send RD(REM_COUNT + 1) to DB reply to ACCEPTED;
REM_COUNT := MOD(REM_COUNT + 1, MAX);
wait ACCEPTED(M);
reply (M);
 89
 90
 91
92
93
94
         if REM_COUNT = INS_COUNT then replace by BUFFER_EMPTY; else replace by NO_CONSTRAINT;
                                                                                                    +18
         endif;
 96
       endoperation
                                                                                                   1-17
 97
 98
       initial CREATION
 99
100
      endscript
```

fig. 6 -continued-

VALUE

<==

PROGRAM GENERATED ON 1981/12/07 AT 16:36:49.00 BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

TYPE

PROTOCOL OF CSSA SESSION ON 1981/12/07 AT 16:54:19.00

>>> 0.000 INTERFACE(1): ENTER CSSA COMMAND -

IDENTIFIER

BUFFER_EMPTY

DATA BASE SCRIPT DATA BASE PROTECTED_BUFFER PROTECTED_BUFFER SCRIPT 0.000 INTERFACE(1): ENTER CSSA COMMAND ->>> THE CASA C

THE CA <== INTERFACE(1) : ENTER CSSA COMMAND -==> OPER : CREATE, INS, REM; PORT : P <== >>> 0.000 INTERFACE(1): ENTER CSSA COMMAND -==> OBSERVE; SEND CREATE(3) TO PB;RUN <== +++ O.OOO P1: INTERFACE(1) SENDS CREATE(INT:3) TO PROTECTED_BUFFER(1) P2: PROTECTED_BUFFER(1) IS IDLE 0.000 +++ 0.100 P2: PROTECTED_BUFFER(1) RECEIVES CREATE(INT:3) FROM INTERFACE (1) 0.100 P2: PROTECTED_BUFFER(1) STARTING OPERATION CREATE(INT: *** 0.300 P2: PROTECTED_BUFFER(1) CREATES DATA_BASE(1)(INT: 0.300 P3: DATA_BASE(1) IS IDLE BUFFER_EMPTY 0.400 P2: PROTECTED_BUFFER(1) IS IDLE +++ 0.400 SYSTEM TERMINATED
0.400 INTERFACE(1): ENTER CSSA COMMAND ->>> >>> ==> SEND REM TO PB REPLY TO P; RUN <== 0.400 P1: INTERFACE(1) SENDS REM(), REPLY TO: P TO PROTECTED_BUFFER(1)
0.500 P2: PROTECTED_BUFFER(1) RECEIVES REM(), REPLY TO: P +++ FROM INTERFACE(1) P2: PROTECTED_BUFFER(1) IS IDLE 0.500 +++ 0.500 SYSTEM TERMINATED >>> INTERFACE(1) : ENTER CSSA COMMAND ->>> ==> SEND INS("A") TO PB; RUN +++ 0.500 P1: INTERFACE(1) SENDS INS(STRING: "A") TO PROTECTED_BUFFER(1) 0.600 P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING: "A")
FROM INTERFACE(1) +++ O.600 P2: PROTECTED_BUFFER(1) STARTING OPERATION INS(STRING: 0.700 P2: PROTECTED_BUFFER(1) SENDS WR(STRING: *A*, INT: 1), REPLY TO: ACCEPTED TO DATA_BASE(1) 0.900 P2: PROTECTED_BUFFER(1) IS IDLE ACCEPTED FROM PROTECTED_BUFFER(1) 1.600 P3: DATA_BASE(1) STARTING OPERATION WR(STRING: "A",INT:1)
1.700 P3: DATA_BASE(1) SENDS *REPLY() TO PROTECTED_BUFFER(1)
1.900 P3: DATA_BASE(1) IS IDLE +++ +++ +++ P2: PROTECTED_BUFFER(1) RECEIVES *REPLY() FROM DATA_BASE(1) 2.600 NO CONSTRAINT P2: PROTECTED_BUFFER(1) STARTING OPERATION REM()
P2: PROTECTED_BUFFER(1) SENDS RD(INT:1), REPLY TO: ACCEPTED 2.800 +++ 2.900 TO DATA_BASE(1) 3.100 P2: PROTECTED_BUFFER(1) IS IDLE
3.600 P3: DATA_BASE(1) RECEIVES RD(INT:1), REPLY TO: ACCEPTED FROM PROTECTED BUFFER(1) +++ P3: DATA_BASE(1) STARTING OPERATION RD(INT:1) 3.600 P3: DATA_BASE(1) SENDS *REPLY(STRING: "A") TO PROTECTED_BUFFER(1)
P3: DATA_BASE(1) IS IDLE +++ 3.900 +++ 3.900 +++ 4.600 P2: PROTECTED_BUFFER(1) RECEIVES *REPLY(STRING: "A") FROM DATA_BASE(1) 4.700 P2: PROTECTED_BUFFER(1) SENDS *REPLY(STRING: "A") +++ TO INTERFACE(1)

```
4.900 P2: PROTECTED_BUFFER(1) IS IDLE
PROTECTED_BUFFER(1)
>>> 5.600 SYSTEM TERMINATED
>>> 5.600 INTERFACE(1): ENTER CSSA COMMAND -
==> MAILBOX; SEND INS("B") TO PB; SEND INS("C") TO PB; RUN
                                                                                                                 <==
MAILBOX OF INTERFACE(1) :
(1) *REPLY(STRING: "A")
                   P1: INTERFACE(1) SENDS INS(STRING: "B") TO PROTECTED_BUFFER(1)
P1: INTERFACE(1) SENDS INS(STRING: "C") TO PROTECTED_BUFFER(1)
P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING: "B")
FROM INTERFACE(1)
+++
          5.600
+++
           5.600
+++
          5.700
          5.700
                    P2: PROTECTED_BUFFER(1) STARTING OPERATION INS(STRING:
                                   "B")
          5.800 P2: PROTECTED_BUFFER(1) SENDS WR(STRING: "B", INT:
                                  2) REPLY TO: ACCEPTED TO DATA_BASE(1)
          5.800 P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING: "C")
                                   FROM INTERFACE (1)
           6.000 P2: PROTECTED_BUFFER(1) IS IDLE
ACCEPTED FROM PROTECTED_BUFFER(1)
           6.700 P3: DATA_BASE(1) STARTING OPERATION WR(STRING:
                                  "B", INT: 2)
                    P3: DATA_BASE(1) SENDS *REPLY() TO PROTECTED_BUFFER(1)
+++
                    P3: DATA_BASE(1) IS IDLE
           7.000
+++
           7.700
                    P2: PROTECTED_BUFFER(1) RECEIVES *REPLY() FROM DATA_BASE(1)
NO_CONSTRAINT
           7.900 P2: PROTECTED_BUFFER(1) STARTING OPERATION INS(STRING:
                                   "(")
3), REPLY TO: ACCEPTED TO DATA_BASE(1)
+++ 8.200 P2: PROTECTED_BUFFER(1) IS IDLE
ACCEPTED FROM PROTECTED_BUFFER(1)
+++ 8.700 P3: DATA_BASE(1)
          "C", INT: 3)

8.800 P3: DATA_BASE(1) SENDS *REPLY() TO PROTECTED_BUFFER(1)

9.000 P3: DATA_BASE(1) IS IDLE
+++
+++
                  P2: PROTECTED_BUFFER(1) RECEIVES *REPLY() FROM DATA_BASE(1)
+++
           9.700
NO_CONSTRAINT
                    P2: PROTECTED_BUFFER(1) IS IDLE
          9.900
>>>
          10.000
                  SYSTEM TERMINATED
>>> 10.000 INTERFACE(1): ENTER CSSA COMMAND -
==> SEND INS("D") TO PB; SEND INS("E") TO PB;RUN
+++ 10.000 P1: INTERFACE(1) SENDS INS(STRING:"D") TO PROTECTED_BUFFER(1)
+++ 10.000 P1: INTERFACE(1) SENDS INS(STRING:"E") TO PROTECTED_BUFFER(1)
                                                                                                                 <==
                   P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING: "D")
+++
         10.100
                                   FROM INTERFACE (1)
         10.100 P2: PROTECTED_BUFFER(1) STARTING OPERATION INS(STRING:
+++
         10.200 P2: PROTECTED_BUFFER(1) SENDS WR(STRING: "D", INT:
1), REPLY TO: ACCEPTED TO DATA_BASE(1)
10.200 P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING: "E")
FROM INTERFACE(1)
+++
+++
         10.400 PZ: PROTECTED BUFFER(1) IS IDLE
ACCEPTED FROM PROTECTED BUFFER(1)
+++ 11.100 P3: DATA_BASE(1) STARTING OPERATION WR(STRING:
                                  "D", INT: 1)
         11.200 P3: DATA_BASE(1) SENDS *REPLY() TO PROTECTED_BUFFER(1)
+++
         11.400 P3: DATA_BASE(1) IS IDLE
+++
         12.100 P2: PROTECTED_BUFFER(1) RECEIVES *REPLY() FROM DATA_BASE(1)
BUFFER_FULL
          12.300 PZ: PROTECTED_BUFFER(1) IS IDLE
          12.300 SYSTEM TERMINATED
>>>
         12.300 INTERFACE(1) : ENTER CSSA COMMAND -
                                                                                                                  (==
==> NOOBSERVE; SEND REM TO PB REPLY TO P; SEND REM TO PB REPLY TO P; RUN
         21.400 SYSTEM TERMINATED
         21.400 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> MAILBOX;
                                                                                                                 <==
MAILBOX OF INTERFACE(1) :
 (1) *REPLY(STRING: "A")
 (2) *REPLY(STRING: "B")
 (3) *REPLY(STRING: "C")
 (4) *REPLY(STRING: "D")
```

```
>>> 21.400 INTERFACE(1): ENTER CSSA COMMAND -
==> SEND REM TO PB REPLY TO P; SEND REM TO PB REPLY TO P;RUN
>>> 24.500 SYSTEM TERMINATED
>>> 24.500 INTERFACE(1): ENTER CSSA COMMAND -
                                                                                                      <==
==> MAILBOX
                                                                                                      <==
MAILBOX OF INTERFACE(1) :
(1) *REPLY(STRING: "A")
(2) *REPLY(STRING: "B")
(3) *REPLY(STRING: "C")
(4) *REPLY(STRING: "D")
(5) *REPLY(STRING: "E")
      24.500 INTERFACE(1) : ENTER CSSA COMMAND -
==> DUMP DATA_BASE(1); DUMP PB
        24.500 RUNTIME STACK OF DATA_BASE(1)
                      FACET RD_OR_WR
                      ENV: SCRIPT DATA_BASE
                      LINE: 11
                      RCOUNT = 5
                      SCRIPT DATA BASE
                      ENV:
                      LINE: 35
                      SIZE = 3
                      ANONYM = (1..3)
                     FILE(1) = "D"
FILE(2) = "E"
                      FILE (3) = "C"
        24.500 RUNTIME STACK OF PROTECTED_BUFFER(1)
                      FACET BUFFER_EMPTY
                      ENV: SCRIPT PROTECTED_BUFFER
                      LINE: 60
                    SCRIPT PROTECTED_BUFFER
                     ENV:
                     LINE. 100
                     DATA_BASE = DATA_BASE
                     DB = DATA_BASE(1)
REM_COUNT = 2
                     INS_COUNT = 2
                     MAX = 3
>>> 24.500 INTERFACE(1): ENTER CSSA COMMAND -
>>> 24.600 SYSTEM TERMINATED
MAILBOX OF INTERFACE(1):
(1) *REPLY(STRING: "A")
(2) *REPLY(STRING: "B")
(3) *REPLY(STRING: "C")
(4) *REPLY(STRING: "D")
(5) *REPLY(STRING: "E")
```

fig. 7 -continued-

>>> 24.600 INTERFACE(1): ENTER CSSA COMMAND --> SEND INS("F") TO PB; RUN; MAILBOX
>>> 29.700 SYSTEM TERMINATED
MAILBOX OF INTERFACE(1): <== (1) *REPLY(STRING: "A") (1) *KEPLY(STRING: "A")
(2) *REPLY(STRING: "B")
(3) *REPLY(STRING: "C")
(4) *REPLY(STRING: "D")
(5) *REPLY(STRING: "E")
(6) *REPLY(STRING: "F") <==

>>> 29.700 INTERFACE(1): ENTER CSSA COMMAND ==> TERMINATE
+++ 29.700 ALL EXISTING AGENTS:

AGENT	FACET	OPERATION	MAILBOX
P1: INTERFACE(1) *		T	*REPLY *REPLY *REPLY *REPLY *REPLY *REPLY
P2: PROTECTED_BUF P3: DATA_BASE(1)	BUFFER_EM RD_OR_WR		

CSSA-SESSION-STATISTICS **********

SESSION STARTED AT 16:52:59.00
SESSION TERMINATED AT 17:06:42.00 ON 1981/12/07
REAL-TIME USED: 823.00 SEC.
CPU-TIME USED: 3.06 SEC.
SIMULATION TIME USED: 29.7000 SEC.
NUMBER OF AGENTS CREATED: 2
NUMBER OF MESSAGES SENT: 43

```
protected_buffer = monitor is create, append, remove;
 rep = record[ slots:buffer, nonempty, nonfull: condition ]
create - proc() returns (cvt);
        return (rep${slots:buffer$create(),
               nonempty,nonfull: condition$create()});
        end create;
append = proc(pb:cvt, x:message);
        if buffer$full(pb.slots) then condition$wait(pb.nonfull) end;
        buffer#append(pb.slots, x);
        condition$signal(pb.nonempty);
        end append;
remove = proc(pb:cvt) returns (message);
       if buffer$empty(pb.slots) then condition$wait(pb.nonempty) end;
       x:message := buffer$remove(pb.slots);
       condition$signal(pb.nonfull);
       return (x);
       end remove;
end bounded_buffer;
```

fig. 8 : Protected Buffer Monitor

```
type RDER_PRIO is script
                                                                                            +1
                                                                                             1+2
        type DATA_BASE is script(int: SIZE)
 3
          var array(1..SIZE) of string: FILE;
 5
 6
          facet RD_OR_WR is
  public: WR,RD,RD_ACKN;
  var int: RCOUNT := 0;
                                                                                               +3
 7
 8
 9
10
            operation WR(string: DATA; int: KEY) is
11
              reply;
if KEY > D and KEY <= SIZE then
FILE(KEY) := DATA; endif;
12
13
14
            endoperation
            operation RD(int: KEY) is
16
17
                                                                                              1 * 3
             RCOUNT := RCOUNT + 1;
if KEY > 0 and KEY <= SIZE then
18
19
            endoperation
                reply (FILE(KEY)); endif;
20
21
                                                                                               1-6
22
                                                                                              1 * 3
            operation RD_ACKN(int: COUNT) assert COUNT = RCOUNT is
                                                                                                +8
             reply;
RCOUNT := 0;
24
25
                                                                                                -8
26
            endoperation
                                                                                              | *3
|-3
27
28
          endfacet
                                                                                              *2
29
30
          initial RD_OR_WR
31
                                                                                              -2
32
        endscript;
33
34
     var DATA_BASE: DB; 
var int: RDER_COUNT := 0;
var bool: FIRST_OPER := true;
35
36
37
38
39
      facethead WRRS;
40
41
      facet CREATION is
                                                                                              +9
      public: CREATE;
43
                                                                                               1+10
        operation CREATE(int: SIZE) is
        DB := new DATA_BASE(SIZE);
replace by WRRS;
45
46
                                                                                               -10
47
        endoperation
                                                                                             *9
-9
48
49
      endfacet
                                                                                            1 *1
50
                                                                                              +11
      facet RDERS is
52
       public: RD;
53
        operation RD(int: KEY) is
                                                                                               +12
       send RD(KEY) to DB inherit;
RDER_COUNT := RDER_COUNT + 1;
```

fig. 9 : Readers Priority Script

```
---+---1-----2----+----3------4-----5------6------7-- B L O C K N E S T I N G | -12 | ±11
58
                                                                                               |+13
|-13
59
        operation idle is replace by WRRS;
60
        endoperation
                                                                                              |±11
|-11
61
62
63
      facet WRRS is
64
65
       public: WR;
        var bool: FIRST_WR := true;
66
67
68
        operation WR(string: DATA; int: KEY) assert FIRST_WR is
                                                                                                +15
69
          oper: RD_ACKN;
port: R_ACKN,W_ACKN;
70
71
          if FIRST_OPER then FIRST_OPER := false; endif;
FIRST_WR := false;
72
                                                                                                +16-16
73
                                                                                               1+15
74
75
          if RDER_COUNT > 0 then
           send RD_ACKN(RDER_COUNT) to DB reply to R_ACKN;
wait R_ACKN;
RDER_COUNT := 0;
76
77
78
79
          endif;
                                                                                                 -17
          send WR(DATA, KEY) to DB reply to W_ACKN;
                                                                                               1+15
80
81
         wait W_ACKN;
                                                                                               -15
82
        endoperation
                                                                                              1+14
83
        operation idle is if not FIRST_OPER then replace by RDERS; endif;
84
85
                                                                                               |+18
|+19-19
|-18
86
87
        endoperation
                                                                                              ±14
-14
88
      endfacet
89
90
      initial CREATION
     endscript
```

fig. 9 -continued-

VALUE

<==

PROGRAM GENERATED ON 1981/12/07 AT 15:49:41.00 BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

TYPE

PROTOCOL OF CSSA SESSION ON 1981/12/07 AT 16:02:06.00

>>> 0.000 INTERFACE(1): ENTER CSSA COMMAND - =>> ;DISPLAY

IDENTIFIER

	ER_PRIO	SCRIPT RDER_PRIO	
>>>		INTERFACE(1) : ENTER CSSA COMMAND - : PRT := NEW RDER_PRIO	(==
>>>		INTERFACE(1) : ENTER CSSA COMMAND -	
		WR, CREATE; PORT : P;	<==
>>>		INTERFACE(1) : ENTER CSSA COMMAND -	
==>	OBSERVE; S	END CREATE(1) TO PRT; SEND WR("A",1) TO PRT; RUN	<==
+++	0.000	P1: INTERFACE(1) SENDS CREATE(INT:1) TO RDER_PRIO(1)	
+++		P1: INTERFACE(1) SENDS WR(STRING: "A", INT: 1) TO RDER_PRIJ(1)	
+++		PZ: RDER_PRIO(1) IS IDLE	
+++		P2: RDER_PRIO(1) RECEIVES CREATE(INT:1) FROM INTERFACE(1)	
+++	0.100	P2: RDER_PRIO(1) STARTING OPERATION CREATE(INT:	
+++	0.200	1) P2. DDED BDIO(4) CBEATER DATA DARE(4)(INT.4)	
+++		P2: RDER_PRIO(1) CREATES DATA_BASE(1)(INT:1) P2: RDER_PRIO(1) RECEIVES WR(STRING:"A",INT:1)	
	0.600	FROM INTERFACE(1)	
+++	0.200	P3: DATA_BASE(1) IS IDLE	
+++		P2: RDER_PRIO(1) PERFORMS FACETTING : CREATION> WRRS	
+++		P2: RDER_PRIO(1) STARTING OPERATION WR(STRING:	
		"A",INT:1)	
	0.000	P2: RDER_PRIO(1) SENDS WR(STRING: "A", INT:1), REPLY TO: W_ACKN	
+++	0.800	TO DATA_BASE(1)	
+++	0.900	P2: RDER_PRIO(1) IS IDLE	
+++	1.100	P3: DATA_BASE(1) RECEIVES WR(STRING: "A", INT: 1), REPLY TO: W_AC	KN
		FROM RDER PRIO(1)	
+++	1.100	P3: DATA_BASE(1) STARTING OPERATION WR(STRING:	
		"A",INT:1)	1.40
+++	1.200	P3: DATA_BASE(1) SENDS *REPLY() TO RDER_PRIO(1)	
+++		P3: DATA_BASE(1) IS IDLE	
+++		P2: RDER_PRIO(1) RECEIVES *REPLY() FROM DATA_BASE(1)	
+++		P2: RDER_PRIO(1) STARTING OPERATION IDLE	
+++		P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS> RDERS	
+++		P2: RDER_PRIO(1) STARTING OPERATION IDLE	
***		P2: RDER_PRIO(1) PERFORMS FACETTING: RDERS> WRRS P2: RDER PRIO(1) STARTING OPERATION IDLE	
+++		P2: RDER_PRIO(1) PERFORMS FACETTING: WRRS> RDERS	
***	2.600		
+++		P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS> WRRS	
+++		P2: RDER_PRIO(1) STARTING OPERATION IDLE	
+++		P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS> RDERS	
+++	2.900	P2: RDER_PRIO(1) STARTING OPERATION IDLE	
+++	3.000		
+++	3.000	P2: RDER_PRIO(1) STARTING OPERATION IDLE	
+++	3.200	P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS> RDERS	
+++	3.200	P2: RDER_PRIO(1) STARTING OPERATION IDLE	
+++	3.300	P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS> WRRS	
+++	3.300	P2: RDER_PRIO(1) STARTING OPERATION IDLE	
***		P2: RDER_PRIO(1) PERFORMS FACETTING: WRRS> RDERS P2: RDER_PRIO(1) STARTING OPERATION IDLE	
+++	3.500 3.600	P2: RDER_PRIO(1) PERFORMS FACETTING: RDERS,> WRRS	
+++	3.600	the contract of the contract o	
		P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS> RDERS	
+++			
***		P2: RDER_PRIO(1) STARTING OPERATION IDLE	

```
==> SEND RD(1) TO PRT REPLY TO P; SEND WR("B",1) TO PRT;
+++ 3.800 P1: INTERFACE(1) SENDS RD(INT:1), REPLY TO: P TO RDER_PRIO(1)
+++ 3.800 P1: INTERFACE(1) SENDS WR(STRING: "B", INT:1) TO RDER_PRIO(1)
                                                                                                                                 <==
                       INTERFACE(1) : ENTER CSSA COMMAND -
>>>
            3.800
 --> SEND RD(1) TO PRT REPLY TO P; SEND RD(1) TO PRT REPLY TO P;
                     P1: INTERFACE(1) SENDS RD(INT:1), REPLY TO: P TO RDER PRIO(1)
P1: INTERFACE(1) SENDS RD(INT:1), REPLY TO: P TO RDER_PRIO(1)
 +++
            3.800
 +++
            3.800
>>>
            3.800
                       INTERFACE(1) : ENTER CSSA COMMAND
 ==> RUN;
 +++
            3,900
                       P2: RDER PRIO(1) PERFORMS FACETTING : RDERS --> WRRS
 +++
            3.900
                       P2: RDER_PRIO(1) STARTING OPERATION IDLE
                       P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS --> RDERS
 +++
            4.100
 +++
             4.100
                       P2: RDER_PRIO(1) STARTING OPERATION IDLE
                       P2: RDER_PRIO(1) RECEIVES RD(INT:1), REPLY TO: P
 +++
            4.100
                                         FROM INTERFACE(1)
 +++
            4.100
                       P2: RDER_PRIO(1) RECEIVES RD(INT:1), REPLY TO: P
                                         FROM INTERFACE(1)
+++
            4.100
                      P2: RDER_PRIO(1) RECEIVES RD(INT:1), REPLY TO: P
                                         FROM INTERFACE(1)
                      P2: RDER_PRIO(1) PERFORMS FACETTING: RDERS --> WRRS
P2: RDER_PRIO(1) STARTING OPERATION IDLE
P2: RDER_PRIO(1) PERFORMS FACETTING: WRRS --> RDERS
            4.200
 +++
            4.200
 +++
            4.400
                      P2: RDER_PRIO(1) STARTING OPERATION RD(INT:1)
P2: RDER_PRIO(1) SENDS RD(INT:1), REPLY TO: P TO DATA_BASE(1)
P2: RDER_PRIO(1) RECEIVES WR(STRING: "B", INT:1)
FROM INTERFACE(1)
 +++
            4.400
            4.500
 +++
 +++
            4.500
+++
            4.600
                       P2: RDER_PRIO(1) STARTING OPERATION RD(INT:1)
                      P2: RDER_PRIO(1) SENDS RD(INT:1), REPLY TO: P TO DATA_BASE(1)
P2: RDER_PRIO(1) STARTING OPERATION RD(INT:1)
P2: RDER_PRIO(1) SENDS RD(INT:1), REPLY TO: P TO DATA_BASE(1)
P3: DATA_BASE(1) RECEIVES RD(INT:1), REPLY TO: P
+++
            4.700
+++
            4.800
            4.900
            4.900
                       FROM RDER_PRIO(1)
P3: DATA_BASE(1) STARTING OPERATION RD(INT:1)
            4.900
                       P2: RDER_PRIO(1) STARTING OPERATION IDLE
P2: RDER_PRIO(1) PERFORMS FACETTING: RDERS --> WRRS
+++
            5.000
            5.100
                       P2: RDER_PRIO(1) STARTING OPERATION WR(STRING:
            5.100
                                        "B", INT:1)
                      P3: DATA_BASE(1) SENDS *REPLY(STRING: "A") TO INTERFACE(1)
P3: DATA_BASE(1) RECEIVES RD(INT:1), REPLY TO: P
            5.200
            5.200
                      FROM RDER_PRIO(1)
P3: DATA_BASE(1) STARTING OPERATION RD(INT:1)
P2: RDER_PRIO(1) SENDS RD_ACKN(INT:3), REPLY TO: R_ACKN
            5.200
+++
            5.500
                                         TO DATA_BASE(1)
+++
            5.500
                       P3: DATA_BASE(1) SENDS *REPLY(STRING: "A") TO INTERFACE(1)
                      P3: DATA_BASE(1) IS IDLE
P2: RDER_PRIO(1) IS IDLE
P1: INTERFACE(1) RECEIVES *REPLY(STRING: "A") FROM DATA_BASE(1)
P1: INTERFACE(1) RECEIVES *REPLY(STRING: "A") FROM DATA_BASE(1)
P3: DATA_BASE(1) RECEIVES RD_ACKN(INT:3), REPLY TO: R_ACKN
+++
            5.500
+++
            5.600
+++
            5.800
+++
            5.800
+++
            5.900
                                        FROM RDER_PRIO(1)
                      P3: DATA_BASE(1) IS IDLE
P3: DATA_BASE(1) RECEIVES RD(INT:1), REPLY TO: P
            5.900
            6.000
                                         FROM RDER_PRIO(1)
                      P3: DATA_BASE(1) STARTING OPERATION RD(INT:1)
P3: DATA_BASE(1) SENDS *REPLY(STRING: "A") TO INTERFACE(1)
            6.000
            6.300
                       P3: DATA_BASE(1) STARTING OPERATION RD_ACKN(INT:
+++
            6.300
+++
            6.400
                       P3: DATA_BASE(1) SENDS *REPLY() TO RDER_PRIO(1)
+++
            6.500
                       P3: DATA_BASE(1) IS IDLE
                      P1: INTERFACE(1) RECEIVES *REPLY(STRING: "A") FROM DATA_BASE(1)
+++
            6.800
                      P2: RDER_PRIO(1) RECEIVES *REPLY() FROM DATA_BASE(1)
P2: RDER_PRIO(1) SENDS WR(STRING: "B", INT:1), REPLY TO: W_ACKN
+++
            6.900
+++
            7.100
                                        TO DATA_BASE(1)
                      P2: RDER_PRIO(1) IS IDLE
P3: DATA_BASE(1) RECEIVES WR(STRING: "B", INT: 1), REPLY TO: W_ACKN
+++
            7.200
+++
            7.900
                                        FROM RDER_PRIO(1)
            7.900
                      P3: DATA_BASE(1) STARTING OPERATION WR(STRING:
+++
                      P3: DATA_BASE(1) STARTING OPERATION WR(STRING:

"B", INT:1)

P3: DATA_BASE(1) SENDS *REPLY() TO RDER_PRIO(1)

P3: DATA_BASE(1) IS IDLE

P2: RDER_PRIO(1) RECEIVES *REPLY() FROM DATA_BASE(1)

P2: RDER_PRIO(1) STARTING OPERATION IDLE
            8.000
+++
+++
            8.200
+++
            8.900
+++
            8.900
+++
                      P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS --> RDERS
            9.100
            9.100
+++
                      P2: RDER_PRIO(1) STARTING OPERATION IDLE
+++
            9.200
                      P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS --> WRRS
+++
            9.200
                      P2: RDER_PRIO(1) STARTING OPERATION IDLE
>>>
            9.300
                      REAL-TIME LIMIT EXCEEDED
>>>
            9.300
                      INTERFACE(1) : ENTER CSSA COMMAND -
```

```
9.400 P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS --> RDERS
                        9.400 P2: RDER_PRIO(1) STARTING OPERATION IDLE
9.500 P2: RDER_PRIO(1) PERFORMS FACETTING: RDERS --> WRRS
9.500 P2: RDER_PRIO(1) STARTING OPERATION IDLE
+++
+++
                        9.700 P2: RDER_PRIO(1) PERFORMS FACETTING: WRRS --> RDERS
9.700 P2: RDER_PRIO(1) STARTING OPERATION IDLE
9.800 P2: RDER_PRIO(1) PERFORMS FACETTING: RDERS --> WRRS
+++
+++
+++
                    9.800 P2: RDER_PRIO(1) STARTING OPERATION IDLE
10.000 P2: RDER_PRIO(1) PERFORMS FACETTING: WRRS --> RDERS
10.000 P2: RDER_PRIO(1) STARTING OPERATION IDLE
10.100 P2: RDER_PRIO(1) PERFORMS FACETTING: RDERS --> WRRS
10.100 P2: RDER_PRIO(1) STARTING OPERATION IDLE
10.300 P2: RDER_PRIO(1) PERFORMS FACETTING: WRRS --> RDERS
10.300 P2: RDER_PRIO(1) STARTING OPERATION IDLE
10.400 P2: RDER_PRIO(1) PERFORMS FACETTING: RDERS --> WRRS
10.400 P2: RDER_PRIO(1) STARTING OPERATION IDLE
10.600 P2: RDER_PRIO(1) PERFORMS FACETTING: WRRS --> RDERS
10.600 P2: RDER_PRIO(1) PERFORMS FACETTING: WRRS --> RDERS
10.700 P2: RDER_PRIO(1) STARTING OPERATION IDLE
+++
                         9.800
                                               P2: RDER_PRIO(1) STARTING OPERATION IDLE
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
>>>
                     10.700
                                              REAL-TIME LIMIT EXCEEDED
                      10.700
                                              INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> TERMINATE
                       10.700 ALL EXISTING AGENTS:
```

AGENT FACET OPERATION MAILBOX

P1: INTERFACE(1) +
P2: RDER_PRIO(1) + WRRS
P3: DATA_BASE(1) RD_OR_WR

P3: DATA_BASE(1) RD_OR_WR

<==

CSSA-SESSION-STATISTICS

SESSION STARTED AT 15:56:03.00
SESSION TERMINATED AT 16:17:13.00 ON 1981/12/07
REAL-TIME USED: 1270.00 SEC.
CPU-TIME USED: 2.07 SEC.
SIMULATION TIME USED: 10.7000 SEC.
NUMBER OF AGENTS CREATED: 2
NUMBER OF MESSAGES SENT: 18

fig. 10 -continued-

```
readers_priority = monitor is create,
                           startread,
                           endread.
                           startwrite,
                           endwrite;
rep = record[readercount: int,
                  busy:boolean,
                  readers, writers:condition];
create = proc() returns (cvt);
          return(rep${readercount: 0,
                  busy:false,
                  readers, writers: condition $ create()});
          end create;
startread = proc(m:cvt);
          if m.busy then condition$wait(m.readers) end;
          m.readercount:= m.readercount + 1;
          condition$signal(m.readers);
          end startread;
endread = proc(m:cvt);
          m.readercount:= m.readercount - 1;
          if m.readercount:=0
           then condition$signal(m.writers)
           end:
          end endread;
startwrite = proc(m:cvt);
          if m.readercount > 0 | m.busy
            then condition $ wait (m. writers)
             end:
          m.busy:=true;
          end startwrite;
endwrite = proc(m:cvt);
          m.busy:=false;
          if condition$queue(m.readers)
             then condition$signal(m.readers)
             else condition$signal(m.writers)
             end;
          end endwrite;
end readers_priority;
```

```
protected_data_base = cluster is create,read,write;
rep = record[m: readers_priority,d: data_base]
create = proc()returns(cvt);
         return (rep${m: readers_priority$create(),
                  d: data_base$create()});
         end create:
read = proc(pdb: cvt) returns(data);
         readers_priority$startread(pdb.m);
         x:data :=data_base$read(pdb.d);
         readers_priority$endread(pdb.m);
         return (x);
         end read:
write = proc(pdb: cvt, x:data);
         readers_priority$startwrite(pdb.m);
         data_base$write((pdb.d, x);
         readers_priority$endwrite(pdb.m);
         end write;
```

end protected_data_base;

fig. 11b: Readers Priority Protected Resource Module

```
first_come_first_serve = monitor is create, startread, endread, startwrite, endwrite;
rep = record[ busy: boolean,
              readercount: integer,
              users, writer: condition]
create = proc() returns (cvt);
          return(rep${busy:false, readercount:0, users, writer: condition$create()};
          end create:
startread = proc(m: cvt)
          if m.busy | condition$queue(m.writer) | condition$queue(m.users)
            then condition $ wait (m. users);
            end;
          m.readercount:=m.readercount + 1:
          condition$signal(m.users); %start all readers
          end startread;
endread = proc(m:cvt);
          m.readercount := m.readercount - 1;
          if m.readercount = 0
            then if condition queue (m. writer)
                     then condition$signal(m.writer)
                     else condition$signal(m.users)
                     end;
          %anyone on the writers queue has been waiting longer than those on users queue
          end endread;
startwrite = proc(m:cvt);
          if m.readercount > 0 | m.busy
            then condition $ wait (m. users);
             end:
          if m.readercount > 0
            then condition$wait(m.writer);
             end;
          m.busy := true;
          end startwrite;
endwrite = proc(m:cvt);
          m.busy:=false;
          condition$signal(m.users);
          end endwrite;
end first_come_first_serve;
```

```
type ALARM_CLOCK is
     script
       var int: NOW := 0;
45
67
89
10
11
12
13
14
15
16
17
        facet REGISTRY is
                                                                                      +2
         public: TICK, WAKE_ME;
         facet RESUME is
           private: WAKE_UP;
           operation WAKE_UP(int: TIME) assert TIME=NOW is
           reply;
           endoperation
         operation idle is leave;
endoperation
         endfacet
18
                                                                                       *2
19
20
21
22
23
         operation WAKE_ME(int: DELAY_TIME) is
         oper: WAKE_UP;
          if DELAY_TIME <= 0 then reply;
else send WAKE_UP(DELAY_TIME + NOW) to self inherit; endif;
                                                                                        |+7
|-7
24
25
                                                                                      |-6
|+2
         endoperation
26
27
         operation TICK is
NOW := NOW + 1;
setup RESUME;
                                                                                       +8
28
29
30
         endoperation
31
32
       endfacet
33
34
       initial REGISTRY
35
    endscript
```

fig. 13 : Alarmclock Script (Wrong Solution)

```
---+---1---+---2---+---3---+---4----+---5----+---6---+---7--| B L O C K N E S T I N G
      type ALARM_CLOCK is
      script
       facet REGISTRY 1s
        public : TICK, WAKE_ME;
         type CALL_ELEM is record int : WAKE_UP_TIME; | --> int : NO_OF_SLEEPERS;
                                                                                                        +3
                                endrecord;
                                                                                                        -3
         relation CALL_LIST of CALL_ELEM;
10
11
         var int : NOW := 0;
12
13
         facet RESUME is
           private : WAKE_UP;
14
15
16
           operation WAKE_UP(int : TIME) assert TIME = NOW is
             reply;
find CALL_LIST(TIME) -> CE de
if CE.NO_OF_SLEEPERS = 1 then
delete CE in CALL_LIST;
leave;
17
18
19
20
21
22
                else CE.NO_OF_SLEEPERS := CE.NO_OF_SLEEPERS - 1;
23
               endif;
24
             endfind;
25
          endoperation
26
27
                                                                                                      1 *2
28
         operation WAKE_ME(int : DELAY_TIME) is
                                                                                                        +8
29
           oper : WAKE_UP;
30
           var CALL_ELEM : CE;
31
           if DELAY_TIME <= 0 then reply;
else find CALL_LIST(DELAY_TIME + NOW) -> CE1 do
| CE1.NO_OF_SLEEPERS := CE1.NO_OF_SLEEPERS + 1;
32
33
34
                 otherwise do

CE.WAKE_UP_TIME := DELAY_TIME + NOW;

CE.NO_OF_SLEEPERS := 1;

insert CE into CALL_LIST;
35
36
37
38
39
                 endfind:
                                                                                                          -10
40
                 send WAKE_UP(DELAY_TIME + NOW) to self inherit;
                                                                                                        -9
41
          endif;
42
                                                                                                       1-8
         endoperation
43
                                                                                                      1+2
        operation TICK is
          NOW := NOW + 1;
45
46
           find CALL_LIST(NOW) -> CE do
47
           setup RESUME;
           endfind;
49
        endoperation
                                                                                                       1-11
50
51
       endfacet
52
53
       initial REGISTRY
54
     endscript
```

fig. 14 : Alarmolock Script (Correct Solution)

VALUE

PROGRAM GENERATED ON 1981/12/22 AT 11:59:34.00 BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

TYPE

PROTOCOL OF CSSA SESSION ON 1982/01/18 AT 11:05:29.00

>>> 0.000 INTERFACE(1): ENTER CSSA COMMAND -

IDENTIFIER

LAR	M_CLOCK		SCRIPT	ALARM_CLOCK
,	0.000	INTERF	ACE(1) : ENTER CSSA (COMMAND -
> VA	R AGENT		NEW ALARM_CLOCK;	
>	0.000	INTERF	CE(1) : ENTER CSSA C	COMMAND -
> OP	ER : TIC	K, WAKE_N	1E;PORT : P	
>	0.000	INTERF	CE(1) : ENTER CSSA (COMMAND -
> 0B	SERVE;			
>	0.000	INTERF	CE(1) : ENTER CSSA (COMMAND -
> SE	ND WAKE_	ME (3) T(AC REPLY TO P; RUN	
÷ 3º	0.000	P1: IN1	TERFACE(1) SENDS WAKE TO ALARM_CLOCK	E_ME(INT:3),REPLY TO: P (1)
•	0.000	PZ: AL	RM_CLOCK(1) IS IDLE	
•	0.100	PZ: AL	RM_CLOCK(1) RECEIVES FROM INTERFACE	S WAKE_ME(INT:3),REPLY TO: P (1)
•	0.100	P2: AL	ARM_CLOCK(1) STARTING	G OPERATION WAKE_ME(INT:
•	0.700	P2: AL	27 90 8	AKE_UP(INT:3),REPLY TO: P
• ",	0.700	P2: AL	-	S WAKE_UP(INT:3), REPLY TO: P
•	0.700		RM_CLOCK(1) IS IDLE	
>	0.700		TERMINATED	
>			ACE(1) : ENTER CSSA (COMMAND -
		TO AC; RI		and the second of the second o
+				(() TO ALARM_CLOCK(1)
+				S TICK() FROM INTERFACE(1)
÷, - ,			ARM_CLOCK(1) STARTING	G OPERATION TICK ()
+		_	RM_CLOCK(1) IS IDLE	
>	1.000		TERMINATED	•••
>	1.000		CE(1) : ENTER CSSA C	
> 2E			O AC REPLY TO P; RUN	
•			TO ALARM_CLOCK	
•	1.200	PZ: AL	ARM_CLOCK(1) RECEIVES FROM INTERFACE	S WAKE_ME(INT:2),REPLY TO: P
•	1.200	P2: AL	ARM_CLOCK(1) STARTING 2)	G OPERATION WAKE_ME(INT:
+	1.600	P2: AL	ARM_CLOCK(1) SENDS WA TO ALARM_CLOCK	AKE_UP(INT:3),REPLY TO: P
•	1.600	PZ: AL	ARM_CLOCK(1) RECEIVES FROM ALARM CLOC	S WAKE_UP(INT:3),REPLY TO: P
•	1.600	P2: AL	RM_CLOCK(1) IS IDLE	4
> :			TERMINATED	
>	1.600	INTERF	CE(1) : ENTER CSSA C	COMMAND -
>	SEN	D TICK 1	O AC	S 24
•	1.600	P1: IN1	TERFACE(1) SENDS TICK	(() TO ALARM_CLOCK(1)
>			CE(1) : ENTER CSSA C	
> TR			K TO AC; RUN	
•				(() TO ALARM_CLOCK(1)
٠	1.700	PZ: ALA	RM_CLOCK(1) RECEIVES	S TICK() FROM INTERFACE(1)

```
1.700 TRACING ALARM_CLOCK(1) / REGISTRY _
SEARCHING NEXT_MESSAGE
FOUND: WAKE_UP(INT:3), REPLY TO: P
                  SEARCHING NEXT MESSAGE
                  FOUND : WAKE_UP(INT: 3) , REPLY TO: P
                  SEARCHING NEXT_MESSAGE
                  FOUND : TICK ()
                  STARTING OPERATION TICK()
                  LINE 45: NOW := 2
LINE 46: WAKE_UP_TIME := 2
                  LINE 46: RECORD NOT FOUND
         1.700
                  REAL-TIME LIMIT EXCEEDED
>>>
                  INTERFACE(1) : ENTER CSSA COMMAND -
         1.700
>>>
                                                                                                         <==
==>
                 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
         1.700
                                                                                                         /==
==> RUN
         1.900 TRACING ALARM_CLOCK(1) / REGISTRY / TICK _
          1.900
                  TRACING ALARM_CLOCK(1) / REGISTRY _
                  SEARCHING NEXT_MESSAGE
FOUND : WAKE_UP(INT:3), REPLY TO: P
                  SEARCHING NEXT_MESSAGE
                  FOUND : WAKE_UP(INT:3), REPLY TO: P
                  SEARCHING NEXT_MESSAGE - NO MESSAGE FOUND
                  P2: ALARM_CLOCK(1) IS IDLE
P2: ALARM_CLOCK(1) RECEIVES TICK() FROM INTERFACE(1)
          1.900
+++
          1.900
+++
                 TRACING ALARM_CLOCK(1) / REGISTRY .
SEARCHING NEXT_MESSAGE
         1.900
                  FOUND : WAKE_UP(INT: 3) , REPLY TO: P
                  SEARCHING NEXT_MESSAGE
                  FOUND : WAKE_UP(INT: 3) , REPLY TO: P
                  SEARCHING NEXT_MESSAGE
                  FOUND : TICK()
                  STARTING OPERATION TICK()
                  LINE 45: NOW := 3
LINE 46: WAKE_UP_TIME := 3
LINE 46: RECORD FOUND
                  REAL-TIME LIMIT EXCEEDED
          1.900
>>>
                  INTERFACE(1) : ENTER CSSA COMMAND -
>>>
         1.900
==> RUN
                                                                                                        <==
         2.200
                  TRACING ALARM_CLOCK(1) / REGISTRY / TICK
                  LINE 47: FACETTING: REGISTRY --> RESUME SEARCHING NEXT_MESSAGE
                  FOUND : WAKE_UP(INT:3), REPLY TO: P
LINE 16: TIME := 3
                  STARTING OPERATION WAKE_UP(INT:3)
         2.300 TRACING ALARM_CLOCK(1) / RESUME / WAKE_UP _
LINE 17: SEND *REPLY() TO INTERFACE(1)
         2.300 TRACING ALARM_CLOCK(1) / RESUME / WAKE_UP _
                  LINE 18: WAKE_UP_TIME := 3
LINE 18: RECORD FOUND
                  LINE 22: NO_OF_SLEEPERS := 1
         2.600 TRACING ALARM_CLOCK(1) / RESUME / WAKE_UP __
         2.600 TRACING ALARM_CLOCK(1) / RESUME __
                  SEARCHING NEXT_MESSAGE
                  FOUND : WAKE_UP(INT:3), REPLY TO: P
LINE 16: TIME := 3
                  STARTING OPERATION WAKE_UP(INT:3)
```

>>> >>>	2.600	REAL-TIME LIMIT EXCEEDED INTERFACE(1): ENTER CSSA COMMAND -	
> R		P1: INTERFACE(1) RECEIVES *REPLY() FROM ALARM_CLOCK(1)	<=
<u>.</u>	2.700	TRACING ALARM_CLOCK(1) / RESUME / WAKE_UP LINE 17: SEND *REPLY() TO INTERFACE(1)	
	2.700	TRACING ALARM_CLOCK(1) / RESUME / WAKE_UP LINE 18: WAKE_UP_TIME := 3 LINE 18: RECORD FOUND LINE 20: RECORD DELETED	
	3.100	TRACING ALARM_CLOCK(1) / RESUME / WAKE_UP LINE 21: FACETTING : RESUME> REGISTRY	
	3.100	TRACING ALARM_CLOCK(1) / REGISTRY SEARCHING NEXT_MESSAGE - NO MESSAGE FOUND	
*** *** >>>	3.600 3.700	P2: ALARM_CLOCK(1) IS IDLE P1: INTERFACE(1) RECEIVES *REPLY() FROM ALARM_CLOCK(1) SYSTEM TERMINATED	
>>>		INTERFACE(1) : ENTER CSSA COMMAND -	
+++	3.700	ME(O) TO AC REPLY TO P;RUN P1: INTERFACE(1) SENDS WAKE_ME(INT:O),REPLY TO: P	<=
***		TO ALARM_CLOCK(1) P2: ALARM_CLOCK(1) RECEIVES WAKE_ME(INT:0), REPLY TO: P FROM INTERFACE(1)	
	3.800	TRACING ALARM_CLOCK(1) / REGISTRY SEARCHING NEXT_MESSAGE FOUND: WAKE_ME(INT:0), REPLY TO: P LINE 28: DELAY_TIME := 0 STARTING OPERATION WAKE_ME(INT:0)	
	4.000	TRACING ALARM_CLOCK(1) / REGISTRY / WAKE_MELINE 32: SEND *REPLY() TO INTERFACE(1)	
	4.000	TRACING ALARM_CLOCK(1) / REGISTRY / WAKE_ME	
	4.000	TRACING ALARM_CLOCK(1) / REGISTRY / WAKE_ME	
	4.000	TRACING ALARM_CLOCK(1) / REGISTRY SEARCHING NEXT_MESSAGE - NO MESSAGE FOUND	
***		P2: ALARM_CLOCK(1) IS IDLE	
>>>	4.000	REAL-TIME LIMIT EXCEEDED INTERFACE(1) : ENTER CSSA COMMAND -	
>>> N	OTRACE AC		<=:
>>>	4.000	INTERFACE(1) : ENTER CSSA COMMAND -	<==
> T	ERMINATE 4.000	ALL EXISTING AGENTS:	\
AG	ENT	FACET OPERATION MAILBOX	
P1.	INTERFAC	E(1) * * *REPLY *REPLY	
	ALARM_CL		

CSSA-SESSION-STATISTICS

SESSION STARTED AT 11:05:24.00
SESSION TERMINATED AT 11:15:47.00 ON 1982/01/18
REAL-TIME USED: 623.00 SEC.
CPU-TIME USED: 2.02 SEC.
SIMULATION TIME USED: 4.0000 SEC.
NUMBER OF AGENTS CREATED: 1
NUMBER OF MESSAGES SENT: 11

```
alarmclock - monitor is create, wakeme, tick;
pq=priority_queue;
rep = record[wakeup: pq, now: int];
create = proc() returns(cvt);
         return (rep${wakeup: pq$create(), now: 0});
         end create;
wakeme = proc(ac: cvt, time: int)
         alarmsetting: int := time+ac.now;
         while ac.now < alarmsetting do
            pq\u00e4wait(ac.wakeup, alarmsetting)
         %the while statement is necessary because the first process on the
         %queue is awakened every tick.
         pq$signal(ac.wakeup);
         %in case the next process has same wakeup time.
         end wakeme;
tick = procedure(ac:cvt);
         ac.now := ac.now + 1;
         pq$signal(ac.wakeup);
         end tick;
end alarmclock;
```

fig. 16 : Alarmclock Monitor

```
type NQUEENS is script
       type NODE is script(int:N) assert N > 0
3
                                                                                      +2
5
         facet ONLY_FACET is
6789
           public: FIND_SOLUTION;
           ver erray(1...N) of int : Q;
10
11
12
13
           eperation FIND_SOLUTION (-> Q) 1s
                                                                                        +4
             ver int: I,ANZ_Q;
14
             var array(1..N) of bool: NOT_POSSIBLE;
             port : OK;
             oper : ANSWER;
16
17
              functionhead GENSTRING(int : N) returns string external;
18
                                                                                         1+5
19
             if not( Q(N) = 0)
20
              then begin
                                                                                           +6
                 var string : ASW ;
21
22
                   23
24
                                                                                           1+7
25
26
                                                                                            -7
27
                   endloop;
                   ASW := ASW + GENSTRING(Q(N));
28
                  send ANSWER(ASW) to interface reply to OK; wait OK;
29
30
31
                   end;
32
33
             .150
             loop for I in 1... while not( Q(I) = 0) do ANZ_Q := ANZ_Q + 1;
34
35
             endloop;
36
                                                                                           -8
37
                                                                                         ×5
             loop for I in 1..ANZ_Q de

| NOT_POSSIBLE(Q(I)) := true;

| if Q(I) + (ANZ_Q - I) + 1 <= N then

| NOT_POSSIBLE(Q(I) + ANZ_Q - I + 1) := true;
38
                                                                                           +9
39
                                                                                           +10
40
41
                                                                                           -10
+11
42
               endif;
               if Q(I) - (ANZ_Q - I) - 1 >= 1 then
| NOT_POSSIBLE(Q(I) - (ANZ_Q - I) - 1) := true;
43
44
                                                                                           -11
45
               endif;
             1-9
46
                                                                                         1 *5
47
                                                                                          1+12
48
                                                                                            +13
49
50
51
52
53
             endloop;
             endif;
54
55
             terminate;
```

fig. 17 : N-Queens Script

1981/10/21 09:09:

```
BLOCKNESTING
|-4
|-3
57
58
            endoperation
           endfacet
           initial ONLY_FACET,
59
                                                                                                         +2
60
61
         endscript;
62
63
64
         facet ONLY_FACET is
65
66
           public : STOPQ, FIND_SOLUTION;
67
68
            operation FIND_SOLUTION(int: N) assert N > 0 is
69
70
71
              var int: I;
var array (1..N) of int: FIRST_ROW;
              port : OK;
oper : ANSWER;
72
73
74
75
76
77
78
79
              1 N - 1
                                                                                                           +16
              then
                send ANSWER("For one queen solution is : 1")
| to interface reply to OK;
80
81
              loop for I in 1..N de
| FIRST_ROW(1) := I;
| send FIND_SOLUTION(FIRST_ROW) to new NODE(N);
82
                                                                                                            +17
83
84
85
              endloop;
86
              endif;
           endoperation
87
88
89
            operation STOPQ is
90
91
92
93
94
95
           endoperation
         endfacet
96
97
         initial ONLY_FACET
98
     endscript
```

PROGRAM GENERATED ON 1982/01/18 AT 11:26:35.00 BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

PROTOCOL OF CSSA SESSION ON 1982/01/18 AT 11:43:19.00

>>> 0.000 INTERFACE(1): ENTER CSSA COMMAND -

IDENTIFIER	TYPE	VALUE
NODE	SCRIPT	NODE
NQUEENS	SCRIPT	NQUEENS

(==

<==

```
>>>
            O.DOO INTERFACE(1) : ENTER CSSA COMMAND -
>>> 0.000 INTERFACE(1): ENTER CSSA COMMAND -
==> VAR AGENT: NQ := NEW NQUEENS; OPER: FIND_SOLUTION
>>> 0.000 INTERFACE(1): ENTER CSSA COMMAND -
==> OBSERVE; SEND FIND_SOLUTION(4) TO NQ;RUN
+++ 0.000 P1: INTERFACE(1) SENDS FIND_SOLUTION(INT:4) TO NQUEENS(1)
+++ 0.000 P2: NQUEENS(1) IS IDLE
+++ 0.100 P2: NQUEENS(1) RECEIVES FIND_SOLUTION(INT:4) FROM INTERFACE(1)
            0.100 P2: NQUEENS(1) STARTING OPERATION FIND_SOLUTION(INT:
+++
                                        4)
            0.500 P2: NQUEENS(1) CREATES NODE(1)(INT:4)
0.500 P2: NQUEENS(1) SENDS FIND_SOLUTION(INT:1,INT:
+++
                                        0, INT:0, INT:0) TO NODE (1)
             0.500 P3: NODE(1) IS IDLE
            +++
            0.700 P4: NODE(2) IS IDLE

0.800 P4: NODE(2) RECEIVES FIND_SOLUTION(INT:2,INT:

0,INT:0,INT:0) FROM NQUEENS(1)
             0.800 P4: NODE(2) STARTING OPERATION FIND_SOLUTION(INT:
                                         2, INT: 0, INT: 0, INT: 0)
            0.900 P2: NQUEENS(1) CREATES NODE(3)(INT:4)
0.900 P2: NQUEENS(1) SENDS FIND_SOLUTION(INT:3,INT:
0,INT:0,INT:0) TO NODE(3)
+++
            0.900 PS: NODE(3) IS IDLE
1.000 PS: NODE(3) RECEIVES FIND_SOLUTION(INT:3,INT:
+++
+++
                                         O, INT: O, INT: O) FROM NQUEENS (1)
            1.000 PS: NODE(3) STARTING OPERATION FIND_SOLUTION(INT:
+++
                                         3, INT: 0, INT: 0, INT: 0)
             1.100 PZ: NQUEENS(1) CREATES NODE(4) (INT:4)
            1.100 P2: NQUEENS(1) SENDS FIND_SOLUTION(INT:4,INT:
+++
            0, INT: 0, INT: 0) TO NODE (4)

1.100 P6: NODE (4) IS IDLE

1.100 P2: NQUEENS (1) IS IDLE

1.100 P3: NODE (1) RECEIVES FIND_SOLUTION (INT: 1, INT: 0, INT: 0, INT: 0) FROM NQUEENS (1)
+++
            1.100 P3: NODE(1) STARTING OPERATION FIND_SOLUTION(INT:
            1, INT:0, INT:0, INT:0)

2.300 P5: NODE(3) CREATES NODE(5) (INT:4)

2.300 P5: NODE(3) SENDS FIND_SOLUTION(INT:3, INT:1, INT:
+++
                                         0, INT: 0) TO NODE (5)
            2.300 P7: NODE(5) IS IDLE
2.400 P4: NODE(2) CREATES NODE(6)(INT:4)
+++
+++
+++
            2.400 P4: NODE(2) SENDS FIND_SOLUTION(INT:2,INT:4,INT:
                                         O, INT: 0) TO NODE (6)
```

fig. 18 : N-Queens Execution Protocol

```
2.400 P2: NODE(6) IS IDLE
2.500 P2: NODE(6) RECEIVES FIND_SOLUTION(INT:2,INT:
4,INT:0,INT:0) FROM NODE(2)
2.500 P4: NODE(2) TERMINATED
2.500 P2: NODE(6) STARTING OPERATION FIND_SOLUTION(INT:
+++
+++
                            P3: NODE(6) STARTING OPERATION FIRD_SOLUTION(INT)
P3: NODE(1) CREATES NODE(7)(INT+4)
P3: NODE(7) IS IDLE
P3: NODE(1) SENDS FIND_SOLUTION(INT:1,INT:3,INT:
                2.500
                2.500
+++
                2.500
+++
                2.500 P3: NODE(1) SENDS FIND_SOLUTION(INT:1,INT:
2.500 P3: NODE(7) RECEIVES FIND_SOLUTION(INT:1,INT:
3,INT:0,INT:0) FROM NODE(1)
2.500 P3: NODE(7) STARTING OPERATION FIND_SOLUTION(INT:
+++
+++
                                                      1, INT: 3, INT: 0, INT: 0)
                2.500
                               REAL-TIME LIMIT EXCEEDED
                2.500
                              INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> ;STATUS
 +++
                  2.500 ALL EXISTING AGENTS:
```

AGENT		FACET	OPERATION	MAILBOX
P1: INTERFACE(1)	*			T
P2: NQUEENS(1)	- 1	ONLY_FACE	1. 1. 1. 1. 1.	
P3: NODE (1)	*	ONLY_FACE	FIND_SOLU	N
P5: NODE (3)	*	ONLY_FACE	FIND_SOLU	N
P6: NODE(4)	- 1	ONLY FACE	_	
P7: NODE (5)	- 1	ONLY_FACE		
P2: NODE (6)	*	ONLY_FACE	FIND_SOLU	N
P3: NODE (7)	*	ONLY FACE	FIND SOLU	N .

<==

<==

<==

>>> 2.500 INTERFACE(1) : ENTER CSSA COMMAND -==> ;SYSSTATUS

2.500 SYSTEM STATUS:

PROC.	UTIL.	AGENTS	
P1	100%	INTERFACE(1)*	
P2	0%	NODE(6) * NQUEENS(1)	
P3	56%	NODE(7) * NODE(1) *	
P4	68%		
P5	60%	NODE(3)*	
P6	1%	NODE (4)	
P7	1%	NODE (5)	

BUS	UTIL.	#MSGS	AVG-QLEN	MESSAGES
B1	5%	4	0.00	
B2	4%	2	0.00	
B3	5%	2	0.00	
84	5%	2	0.00	
B 5	0%	1	0.00	FIND_SOLUTION
B6	12	0	0.00	

```
>>>
                   2.500 INTERFACE(1) : ENTER CSSA COMMAND -
==> ; RUN
                   2.600 P6: NODE(4) RECEIVES FIND_SOLUTION(INT:4,INT:
0,INT:0,INT:0) FROM NQUEENS(1)
2.600 P6: NODE(4) STARTING OPERATION FIND_SOLUTION(INT:
+++
+++
                                    4,INT:0,INT:0,INT:0)
P5: NODE(3) TERMINATED
                   2.700
                  2.700 P5: NODE(3) TERMINATED

3.600 P7: NODE(5) RECEIVES FIND_SOLUTION(INT:3,INT:

1,INT:0,INT:0) FROM NODE(3)

3.600 P7: NODE(5) STARTING OPERATION FIND_SOLUTION(INT:

3,INT:1,INT:0,INT:0)

3.800 P6: NODE(4) CREATES NODE(8)(INT:4)

96: NODE(4) SENDS FIND_SOLUTION(INT:4,INT:1,INT:

0,INT:0) TO NODE(8)

3.800 P4: NODE(8) IS IDLE
+++
+++
+++
+++
                   3.800 P4: NODE(8) IS IDLE
```

```
3.800 P3: NODE(1) CREATES NODE(9)(INT:4)
3.800 P5: NODE(9) IS IDLE
4.100 P6: NODE(4) CREATES NODE(10)(INT:4)
 +++
 +++
 +++
              4.100
                          P6: NODE (10) IS IDLE
 +++
              4.100
                         P6: NODE (4) SENDS FIND_SOLUTION (INT: 4, INT: 2, INT:
                                             0, INT: 0) TO NODE (10)
              4.100 P6: NODE(10) RECEIVES FIND_SOLUTION(INT:4,INT:
 +++
                                             2, INT:0, INT:0) FROM NODE(4)
              4.100 P6: NODE(10) STARTING OPERATION FIND_SOLUTION(INT:
 +++
                                             4, INT: 2, INT: 0, INT: 0)
              4.100 REAL-TIME LIMIT EXCEEDED
 >>>
 >>>
              4.100 INTERFACE(1) : ENTER CSSA COMMAND -
 ==> ; RUN
                                                                                                                                                     <==
             N
4.200 P2: NODE(6) CREATES NODE(11)(INT:4)
4.200 P2: NODE(6) SENDS FIND_SOLUTION(INT:2,INT:4,INT:
1,INT:0) TO NODE(11)
4.600 P2: NODE(6) TERMINATED
4.600 P7: NODE(11) IS IDLE
4.800 P3: NODE(7) TERMINATED
4.800 P3: NODE(7) TERMINATED
4.800 P3: NODE(1) SENDS FIND_SOLUTION(INT:1,INT:4,INT:
0,INT:0) TO NODE(9)
4.900 P3: NODE(1) TERMINATED
5.200 P5: NODE(9) RECEIVES FIND_SOLUTION(INT:1,INT:
4,INT:0,INT:0) FROM NODE(1)
5.200 P5: NODE(9) STARTING OPERATION FIND_SOLUTION(INT
 +++
 +++
 +++
 +++
              5.200 PS: NODE (9) STARTING OPERATION FIND SOLUTION (INT:
                                             1, INT: 4, INT: 0, INT: 0)
              5.300 P4: NODE(8) RECEIVES FIND_SOLUTION(INT:4,INT:
1,INT:0,INT:0) FROM NODE(4)
5.300 P4: NODE(8) STARTING OPERATION FIND_SOLUTION(INT:
+++
+++
             5.400 P4: NODE(8) STARTING OPERATION FIND_SOLUTION(INT:

4,INT:1,INT:0,INT:0)

5.400 P6: NODE(4) TERMINATED

5.600 P7: NODE(5) CREATES NODE(12)(INT:4)

5.600 P7: NODE(11) RECEIVES FIND_SOLUTION(INT:2,INT:

4,INT:1,INT:0) FROM NODE(6)

5.600 P7: NODE(11) STARTING OPERATION FIND_SOLUTION(INT:

2,INT:4,INT:1,INT:0)

5.600 P2: NODE(12) IS IDLE
+++
+++
+++
+++
                        P2: NODE(12) IS IDLE
REAL-TIME LIMIT EXCEEDED
              5.600
              5.600
>>>
>>>
                        INTERFACE(1) : ENTER CSSA COMMAND -
==> ; RUN
                                                                                                                                                     <==
+++
              6.400 P6: NODE(10) TERMINATED
              6.600 P7: NODE(5) SENDS FIND SOLUTION(INT:3,INT:1,INT:
4,INT:0) TO NODE(12)
+++
             7.000 PS: NODE(9) CREATES NODE(13) (INT:4)
              7.000 PS: NODE(9) SENDS FIND_SOLUTION(INT:1,INT:4,INT:
+++
                                            2, INT: 0) TO NODE (13)
             7.000 P3: NODE(13) IS IDLE
7.100 P2: NODE(12) RECEIVES FIND_SOLUTION(INT:3,INT:
+++
+++
             7.100 P2: NODE(12) STARTING OPERATION FIND_SOLUTION(INT:
+++
             3,INT:1,INT:4,INT:0)
7.200 P4: NODE(8) CREATES NODE(14)(INT:4)
+++
             7.200 P4: NODE (14) IS IDLE
7.200 P4: NODE (8) SENDS FIND_SOLUTION (INT: 4, INT: 1, INT:
+++
             7.200 P4: NODE(8) SENDS FIND_SOLUTION(INT:4,INT:
3,INT:0) TO NODE(14)
7.200 P4: NODE(14) RECEIVES FIND_SOLUTION(INT:4,INT:
1,INT:3,INT:0) FROM NODE(8)
7.200 P4: NODE(14) STARTING OPERATION FIND_SOLUTION(INT:
             4, INT:1, INT:3, INT:0)
7.200 REAL-TIME LIMIT EXCEEDED
>>>
             7.200 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> ; RUN
+++
             7.300 PS: NODE(9) TERMINATED
+++
             7.700
                        P7: NODE(5) TERMINATED
                        P7: NODE(11) CREATES NODE(15) (INT:4)
             8.000
                         P7: NODE(11) SENDS FIND_SOLUTION(INT:2,INT:4,INT:
             8.000
                         1, INT: 3) TO NODE (15)
P5: NODE (15) IS IDLE
             8.000
                        P3: NODE (13) RECEIVES FIND_SOLUTION (INT: 1, INT:
             8.100
             4, INT: 2, INT: 0) FROM NODE (9)
8.100 P3: NODE (13) STARTING OPERATION FIND_SOLUTION (INT:
                                            1, INT: 4, INT: 2, INT: 0)
             8.200 P7: NODE(11) TERMINATED
8.400 P4: NODE(8) TERMINATED
***
+++
             9.300 P2: NODE(12) CREATES NODE(16)(INT:4)
9.300 P2: NODE(12) SENDS FIND_SOLUTION(INT:3,INT:1,INT:
4,INT:2) TO NODE(16)
+++
```

```
9.300 P6: NODE(16) IS IDLE
+++
         9.400 PS: NODE(15) RECEIVES FIND_SOLUTION(INT:2,INT:
+++
         4, INT:1, INT:3) FROM NODE(11)
9.400 P5: NODE(15) STARTING OPERATION FIND_SOLUTION(INT:
                              2, INT: 4, INT: 1, INT: 3)
         9.600 P2: NODE(12) TERMINATED
9.900 P4: NODE(14) TERMINATED
+++
+++
One solution for 4 queens is : 2,4,1,3"), REPLY TO: OK TO INTERFACE(1)
+++ 10.400 P5: NODE(15) IS IDLE
+++ 10.600 P3: NODE(13) TERMINATED
+++ 10.700 P6: NODE(16) RECEIVES FIND_SOLUTION(INT:3,INT:
                              1, INT: 4, INT: 2) FROM NODE (12)
        10.700 P6: NODE (16) STARTING OPERATION FIND_SOLUTION (INT:
+++
3,INT:1,INT:4,INT:2)

One solution for 4 queens is: 2,4,1,3"),REPLY TO: OK FROM NODE(15)

One solution for 4 queens is: 3,1,4,2"),REPLY TO: OK TO INTERFACE(1)
        11.700 P6: NODE (16) IS IDLE
One solution for 4 queens is: 3,1,4,2"), REPLY TO: OK FROM NODE (16)
        12.100 SYSTEM TERMINATED
12.100 INTERFACE(1): ENTER CSSA COMMAND -
>>>
>>>
==> MAILBOX
                                                                                                   (==
MAILBOX OF INTERFACE(1) :
(1) ANSWER(STRING: "One solution for 4 queens is : 2,4,1,3"), REPLY TO: OK
(2) ANSWER (STRING: "One solution for 4 queens is : 3,1,4,2"), REPLY TO: OK
        12.100 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> REPLY 1

+++ 12.100 P1: INTERFACE(1) SENDS *REPLY() TO NODE(15)
                                                                                                   <==
        12.100 INTERFACE(1) : ENTER CSSA COMMAND .
>>>
==> MAILBOX
                                                                                                   <==
MAILBOX OF INTERFACE(1) :
(1) ANSWER(STRING: "One solution for 4 queens is: 2,4,1,3"), REPLY TO: OK
(2) ANSWER(STRING: "One solution for 4 queens is : 3,1,4,2"), REPLY TO: OK
>>>
        12.100 INTERFACE(1) : ENTER CSSA COMMAND -
==> REPLY 2
                                                                                                   <==
12.100 P1: INTERFACE(1) SENDS *REPLY() TO NODE(16)
>>>
==> ;STATUS
                                                                                                   <==
         12.100 ALL EXISTING AGENTS:
                                                                   MAILBOX
                       FACET
                                     OPERATION
   AGENT
  P1: INTERFACE(1) *
                                                     ANSWER ANSWER
  P2: NQUEENS(1)
                         ONLY_FACE
  P5: NODE (15)
                         ONLY_FACE
                                       FIND_SOLU
                       ONLY_FACE | FIND_SOLU |
  P6: NODE (16)
        12.100 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> ; RUN
                                                                                                   <==
      12.300 P5: NODE(15) RECEIVES *REPLY() FROM INTERFACE(1)
+++
        12.300 P6: NODE(16) RECEIVES *REPLY() FROM INTERFACE(1)
12.400 P5: NODE(15) TERMINATED
+++
+++
+++
        12.400
                 P6: NODE (16) TERMINATED
                 SYSTEM TERMINATED
>>>
       12.400
       12.400
                 INTERFACE(1) : ENTER CSSA COMMAND -
==> ;STATUS
                                                                                                   <==
        12.400 ALL EXISTING AGENTS:
   AGENT
                       FACET
                                    OPERATION
                                                                   MAILBOX
 P1: INTERFACE(1) *
                                                     ANSWER ANSWER
  P2: NQUEENS(1)
                       ONLY_FACE
```

```
>>> 12.400 INTERFACE(1): ENTER CSSA COMMAND —
==> SEND FIND_SOLUTION(2) TO NQ;RUN
+++ 12.400 P1: INTERFACE(1) SENDS FIND_SOLUTION(INT:2) TO NQUEENS(1)
+++ 12.500 P2: NQUEENS(1) RECEIVES FIND_SOLUTION(INT:2) FROM INTERFACE(1)
+++ 12.500 P2: NQUEENS(1) STARTING OPERATION FIND_SOLUTION(INT:
                                                                                                       <==
        12.900 P2: NQUEENS(1) CREATES NODE(17)(INT:2)
        12.900 P2: NQUEENS(1) SENDS FIND_SOLUTION(INT:1,INT:
                               0) TO NODE (17)
        12.900 P7: NODE(17) IS IDLE
13.100 P2: NQUEENS(1) CREATES NODE(18)(INT:2)
+++
+++
+++
        13.100
                 P2: NODE (18) IS IDLE
        13.100 P2: NQUEENS(1) SENDS FIND_SOLUTION(INT:2,INT:
+++
        13.100 P2: NODE (18) RECEIVES FIND_SOLUTION (INT: 2, INT:
+++
                               D) FROM NQUEENS (1)
        13.100 P2: NODE(18) STARTING OPERATION FIND SOLUTION(INT:
+++
                               2, INT: 0)
        13.600 P7: NODE(17) RECEIVES FIND_SOLUTION(INT:1,INT:
+++
                               D) FROM NQUEENS (1)
        13.600 P7: NODE(17) STARTING OPERATION FIND SOLUTION(INT:
+++
                               1. INT: 0)
        14,100 PZ: NQUEENS(1) IS IDLE
+++
        14.300 P2: NODE(18) TERMINATED
14.800 P7: NODE(17) TERMINATED
+++
+++
                 SYSTEM TERMINATED
>>>
        14.800
>>>
        14.800
                 INTERFACE(1) : ENTER CSSA COMMAND -
                                                                                                        <==
==> ,STATUS
         14.800 ALL EXISTING AGENTS:
                                      OPERATION
  AGENT
                        FACET
                                                                      MAILBOX
  P1: INTERFACE(1) *
                                                        ANSWER ANSWER
                        ONLY_FACE
  P2: NQUEENS(1)
        14.800 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> MAILBOX
MAILBOX OF INTERFACE(1) :
(1) ANSWER(STRING: "One solution for 4 queens is : 2,4,1,3"), REPLY TO: OK
(2) ANSWER(STRING: "One solution for 4 queens is: 3,1,4,2"), REPLY TO: OK
        14.800 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> TERMINATE
                                                                                                       <==
        14.800 ALL EXISTING AGENTS:
+++
                        FACET
                                      OPERATION
  AGENT
                                                                      MAILBOX
  P1: INTERFACE(1) *
```

ANSWER ANSWER

CSSA-SESSION-STATISTICS

ONLY_FACE

SESSION STARTED AT 11:42:59.00 SESSION TERMINATED AT 11:49:31.00 ON 1982/01/18 REAL-TIME USED : 392.00 SEC. CPU-TIME USED : 6.34 SEC. SIMULATION TIME USED: 14.8000 SEC.
NUMBER OF AGENTS CREATED: 19
NUMBER OF MESSAGES SENT: 24

P2: NQUEENS(1)

```
type START_NETWORK is
       script(int : UP1,GEN_ZUF1,UP2,GEN_ZUF2;
              bool : SHOW1, SHOW2) assert UP1 > 0 and UP2 > 0
      type TRANSMITTER is
 5
 6
      script(agent : CH; int : WINDOW; agent : H)
                                                                                                 +2
 8
         procedure ACTIVATE_TRANSMIT(int:N) is
 0
           var int: I;
 10
           oper: SEND_PACKET;
 11
12
           loop for I in 1..N do
           send SEND_PACKET to self;
13
          endloop;
15
         endprocedure;
        var string: MESS:="";
var int: LENGTH_OF_MESS, CURRENT_MESS_ID := 0;
17
18
19
20
         facethead TRANSMISSION1;
21
22
         facet START_TRANSMISSION is
                                                                                                  +5
23
           public: SEND_MESS;
24
           operation SEND_MESS(string: M) is
                                                                                                   +6
26
             functionhead LENGTH (string: P1) returns int external;
27
             oper: NEXT_MESS;
28
             CURRENT_MESS_ID := CURRENT_MESS_ID + 1;
29
             MESS := M;

LENGTH_OF_MESS := LENGTH(MESS);

If LENGTH_OF_MESS < WINDOW then

| call ACTIVATE_TRANSMIT(LENGTH_OF_MESS);
30
31
32
                                                                                                    +7
33
34
             else call ACTIVATE_TRANSMIT(WINDOW);
35
             endif:
            send NEXT_MESS to H;
replace by TRANSMISSION1;
36
                                                                                                   *6
37
38
           endoperation
39
40
        endfacet
                                                                                                  -5
41
42
        facet TRANSMISSION1 is
          public: ACKNOWLEDGE;
private: SEND_PACKET;
43
44
45
46
          functionhead MOD (int: P1,P2) returns int external;
47
          functionhead SUBSTR (string:P1;int:P2,P3) returns string external; functionhead GENSTRING(int:P1) returns string external; type PACKET is record int:CHAR_NO;--> string:CHAR;int: MESS_ID;
48
49
                                                                                                   +9
-9
50
                                     bool: ENDE; endrecord;
51
          var PACKET: P:
52
          relation WINDOW_PACKETS of PACKET;
          var int: S_NO,LWE := 1;
var bool: IDLE_ENABLED := false;
53
54
55
          oper: COLLECT;
```

fig. 19 : Window Mechanism Script

```
57
              facet TRANSMISSION2 is
 58
                 include : ACKNOWLEDGE, SEND_PACKET;
                                                                                                                         +10
 59
                                                                                                                         1+11
                 operation idle is
find WINDOW_PACKETS(LWE) --> P de
send COLLECT(P) to CH;
 60
                                                                                                                           +12
 61
 62
                                                                                                                           -12
 63
                    endfind:
                                                                                                                         1+11
                   IDLE_ENABLED := false;
 64
 65
                   leave:
                                                                                                                          -11
 66
                 endoperation
                                                                                                                        +10
-10
 67
 68
              endfacet
 69
                                                                                                                        8
 70
 71
              operation SEND_PACKET is
                                                                                                                         +13
 72
 73
                 P.CHAR := SUBSTR(MESS,S_NO,S_NO);
                P.CHAR_NO := S_NO;
P.MESS_ID := CURRENT_MESS_ID;

If S_NO = LENGTH_OF_MESS then
P.ENDE := true;
else P.ENDE := false;
 74
 75
                                                                                                                          +14
 76
 77
 78
                 endif;
insert P into WINDOW_PACKETS;
                                                                                                                          -14
 79
                                                                                                                        ±13
 80
                 send COLLECT(P) to CH;
 81
                 S_NO := S_NO + 1;
if S_NO = 2 then
    IDLE_ENABLED := true;
 82
                                                                                                                          +15
 83
 84
                  setup TRANSMISSIONZ;
 85
                                                                                                                          -15
 86
                 endif;
                                                                                                                        ×13
 87
                                                                                                                         -13
 88
              endoperation
                                                                                                                        *8
 89
 90
 91
              operation ACKNOWLEDGE (int: N, MESS_ID) is
                                                                                                                        +16
                 if MESS_ID = CURRENT_MESS_ID then
if N = LENGTH_OF_MESS + 1 then
                                                                                                                         +17
 92
                                                                                                                            +18
 93
                    replace by START_TRANSMISSION,
 94
 95
                    else
                      if LVE < N and N <= LVE + WINDOW then
if N + WINDOW - 1 <= LENGTH_OF_MESS then
| call activate_transmit(N - LWE);
                                                                                                                            1+19
 96
                                                                                                                               +20
 97
 98
                         else call ACTIVATE_TRANSMIT(LENGTH_OF_MESS -
 99
                                                                  (LWE + WINDOW - 1));
100
                         endif;
                                                                                                                              -20
101
102
                         LWE := N;
if not IDLE_ENABLED then
103
                                                                                                                              +21
104
                           IDLE_ENABLED := true;
setup TRANSMISSION2;
105
106
                                                                                                                              -21
107
                         endif;
108
                      else
                         if LWE = N then
| print("N= " + GENSTRING(N) + " ignored");
else print("N = " + GENSTRING(N) + " out of range");
endif;
109
                                                                                                                              +22
110
111
                                                                                                                              -22
112
113
                                                                                                                            1-19
                      endif;
114
                                                                                                                           -18
                   endif;
                                                                                                                            -17
                 endif;
                                                                                                                        1-16
              endoperation
```

```
| *8
|-8
117
          endfacet
118
119
                                                                                                       *2
          initial START_TRANSMISSIO
120
121
122
        endscript:
                                                                                                       -2
123
                                                                                                      1 *1
124
125
        type COLLECTOR is
script(agent : H; int : WINDOW)
126
                                                                                                       +23
127
128
          var int:CURRENT_MESS_ID:= 1;
var int:LWE_OLD;
var agent: CH;
129
130
131
132
133
          facethead COLLECTING;
134
135
          facet STARTING is
                                                                                                        +24
136
           public: STARTC;
137
             operation STARTC(->CH) is
| replace by COLLECTING;
138
                                                                                                         +25
139
          endoperation
140
                                                                                                         -25
                                                                                                       1-24
141
          endfacet
                                                                                                      1+23
142
143
          facet COLLECTING is
                                                                                                        +26
144
            public: COLLECT;
145
146
             var bool: FIRST_TIME:=true;
            var int: I;
var string: MESS:= "";
147
148
            type RECEIVED is record int: S_NO;-->
bool: REC; string: CHAR; endrecord;
149
                                                                                                         +27
-27
150
151
            var RECEIVED : RC;
                                                                                                        +26
152
            relation R of RECEIVED;
153
            var int: LWE := 1;
154
            var int: LAST;
155
156
             operation COLLECT(int:CHAR_NO; string:CHAR; int: MESS_ID; bool: ENDE) is
                                                                                                          +28
157
              port: ACCEPTED;
158
               oper: RECEIVE_MESS, ACKNOWLEDGE;
159
                                                                                                          +29
160
               if FIRST_TIME then
                 loop for I in 1..WINDOW do RC.S_NO := I;
161
                                                                                                           +30
162
163
                    RC.REC := false;
164
                   RC.CHAR := "*";
165
                   insert RC into R;
               endloop;
FIRST_TIME := felse;
166
                                                                                                           -30
                                                                                                          +29
-29
167
168
               endif;
169
                                                                                                        *28
               if MESS_ID = CURRENT_MESS_ID then | find R(CHAR_NO - LWE + 1) --> RC do
170
                                                                                                          +31
171
                                                                                                           +32
172
                       RC.CHAR := CHAR;
if not (CHAR_NO = LWE) then
| RC.REC := true;
| insert RC into R;
173
                                                                                                            +33
174
175
```

fig. 19 -continued-

```
if ENDE then LAST := CHAR_NO; endif;
send ACKNOWLEDGE(LWE,CURRENT_MESS_ID) to CH;
else (* CHAR_NO = LWE *)
                                                                                                                      1+34-34
178
                                                                                                                    1+33
179
                                find R(1) --> RC1 do
180
                                                                                                                      +35
181
                                if ENDE then
                                                                                                                        +36
182
                                  send ACKNOWLEDGE(LWE + 1, CURRENT_MESS_ID) to CH;
                                  MESS := MESS + RC1.CHAR;

send RECEIVE_MESS(MESS) to H reply to ACCEPTED;

CURRENT_MESS_ID := CURRENT_MESS_ID + 1;

wait ACCEPTED;
183
184
185
186
                                  LWE_OLD := LWE + 1;
replace by COLLECTING;
187
188
                                  (* EFFECT: new initialization
(* of local variables
189
                                                                                   *)
190
191
                                else begin
                                                                                                                         +37
                                         var int: J;
192
193
194
                                         MESS := MESS + RC1.CHAR;
                                         loop for J1 in 2..WINDOW until EXITLOOP do
find R(J1) --> RC do
195
                                                                                                                          +38
196
                                                                                                                           +39
                                             if RC.REC then
| MESS := MESS + RC.CHAR;
197
                                                                                                                             +40
198
199
                                              else signal EXITLOOP;
200
                                            endif;
                                                                                                                             -40
                                                                                                                           -39
+41-41
201
                                             endfind;
202
                                             if J1 = WINDOW then J := WINDOW + 1; endif;
                                                                                                                          ×38
                                             exit EXITLOOP is
203
204
                                               J := J1;
                                                                                                                           -38
205
                                         endloop;
                                         LWE := LWE + J - 1;
                                                                                                                        1+37
206
                                         send ACKNOWLEDGE (LWE, CURRENT_MESS_ID) to CH;
207
                                         If LWE = LAST + 1 then
                                                                                                                          +42
208
                                            send RECEIVE_MESS (MESS) to H
reply to ACCEPTED;
CURRENT_MESS_ID := CURRENT_MESS_ID + 1;
209
210
211
                                            wait ACCEPTED;
212
                                            LWE_OLD := LWE;
213
214
                                          replace by COLLECTING;
215
                                         else begin
                                                                                                                           +43
216
217
                                                   I := 2;
                                                   1+44
218
219
                                                                                                                              +45
220
                                                                                                                               +46
221
222
                                                     RC2.CHAR := RC3.CHAR;
I := I + 1;
insert RC2 into R;
223
224
225
226
                                                     endfind:
                                                                                                                               -46
                                                                                                                              1-45
                                                   endfind;
227
                                                                                                                            -44
+47
228
                                                   endloop;
                                                  leop while I <= WINDOW do
find R(I) --> RC2 do
delete RC2 in R;
RC2.REC := false;
229
                                                                                                                               +48
230
231
232
                                                       insert RC2 into R;
233
                                                     endfind;
                                                                                                                              -48
234
                                                     I:= I + 1,
235
```

```
endif;
237
238
239
                                  end;
                            endif;
240
241
                            endfind:
                      endif;
242
               otherwise do send ACKNOWLEDGE (LWE, CURRENT_MESS_ID) to CH,
243
244
245
              endfind:
              else send ACKNOWLEDGE(LWE_OLD,CURRENT_MESS_ID - 1) to CH;
246
             endif;
247
           endoperation
248
249
                                                                                                   -26
         endfacet
250
251
         initial STARTING;
252
253
       endscript;
                                                                                                  -23
254
255
256
       type HOST is
257
                                                                                                 +49
258
259
         var agent : TRM;
260
         facethead WORKING;
261
262
         facet INITH is
                                                                                                  +50
263
264
           public : STARTH;
265
266
           operation STARTH(->TRM) is
                                                                                                    +51
267
268
                   replace by WORKING;
                                                                                                   -51
269
           endoperation
                                                                                                  |±50
|-50
270
271
         endfacet
272
                                                                                                  +49
273
274
         facet WORKING is
                                                                                                  +52
275
276
           public : TRANSMIT, RECEIVE_MESS, NEXT_MESS;
277
           private : TWIST_AND_SEND;
278
279
           var int : I, J;
           var bool : READY_TO_TRM, READY_TO_TWIST := true;
280
           var string : M;
type REC_ELEM is record int : IX; --> string : MESS; endrecord;
281
                                                                                                   +53-53
282
           relation REC_MESS of REC_ELEM; var REC_ELEM : RE;
283
                                                                                                  *52
284
285
           functionhead LENGTH( string : P1 ) returns int external;
286
287
           operation TRANSMIT(->M) assert READY_TO_TRM is
   if M = "" then
    print(" <empty message> cannot be transmitted");
                                                                                                   +54
288
                                                                                                    +55
289
290
291
              else
                   I := 0;
READY_TO_TRM := false;
send TWIST_AND_SEND to self;
292
293
294
295
              endif;
                                                                                                    -55
                                                                                                  1-54
           endoperation;
```

```
297
                                                                                                                  1 *52
                                                                                                                    +56
298
              operation NEXT_MESS is
              READY_TO_TWIST := true;
299
                                                                                                                    -56
300
              endoperation;
                                                                                                                  1+52
301
                                                                                                                    +57
              operation TWIST_AND_SEND assert READY_TO_TWIST is
302
               oper : SEND_MESS;
functionhead SUBSTR(string:P1;int:P2;int:P3)
303
304
                returns string external;
305
306
               READY_TO_TWIST := false;
I := I + 1;
send SEND_MESS(M) to TRM;
307
308
309
310
                if I < LENGTH(M) then
| M := SUBSTR(M,2,LENGTH(M)) + SUBSTR(M,1,1);
| send TWIST_AND_SEND to self;
else READY_TO_TRM := true;</pre>
                                                                                                                     +58
311
312
313
314
                                                                                                                     -58
315
               endif;
                                                                                                                   -57
316
             endoperation;
                                                                                                                  *52
317
                                                                                                                     +59
318
              operation RECEIVE_MESS(string : MESS) is
               reply;

J := J + 1;

RE.IX := J;

RE.MESS := MESS;

insert RE into REC_MESS;
319
320
321
322
323
324
                                                                                                                     1+60
                if J >= LENGTH(MESS) then
325
                  begin port : OK;
    oper : ACKN;
    functionhead GENSTRING(int : P1) returns string external;
326
327
328
                           var string : OUT;
329
330
331
                           send ACKN("Host received fully twisted message")
                           to interface reply to OK;
loop for J in 1..LENGTH (MESS) do
find REC_MESS(J) -> MS do
OUT := GENSTRING(J) + ". message : " + MS.MESS;
send ACKN(OUT) to interface;
332
                                                                                                                        1+62
333
                                                                                                                         +63
334
335
336
                                                                                                                         -63
                            endfind;
337
                                                                                                                        1-62
338
                           endloop;
                                                                                                                      1 +61
339
340
                           J := 0;
341
                           wait OK;
                                                                                                                       -61
342
                  end;
                                                                                                                     1-60
343
               endif;
                                                                                                                    1-59
344
             endoperation;
                                                                                                                   *52
-52
345
346
           endfacet
                                                                                                                  *49
347
348
           initial INITH;
349
350
        endscript;
351
352
       type FAULTY_CHANNEL is script(agent : C)
353
354
355
356
       var agent : T;
```

fig. 19 -continued-

```
var int : UP,GEN_ZUF,ZUF,I;
                                                                                                              1 +64
357
        var bool : SHOW;
358
359
         functionhead RANDOM(int:LOW,UP) returns int external;
360
361
362
         facethead TRANSMITTING;
363
                                                                                                                +65
364
         facet INITIALIZATION is
365
         public : STARTCH;
366
           operation STARTCH(->T;->UP;->GEN_ZUF;->SHOW) is
  if UP > 10 then UP := 10; endif;
  loop for I in 1..GEN_ZUF do
  | ZUF := RANDOM(1,UP);
                                                                                                                 1+66
367
                                                                                                                  +67-67
368
369
370
                                                                                                                  -68
              endloop;
371
                                                                                                                 +66
372
            replace by TRANSMITTING;
373
           endoperation
                                                                                                               ±65
-65
374
375
        endfacet
                                                                                                              1+64
376
                                                                                                                1+69
        facet TRANSMITTING is
377
          public : COLLECT, ACKNOWLEDGE, SET_CHNL_PARMS;
378
379
380
           functionhead GENSTRING(int:P1) returns string external;
          var int : COUNT := 1;
var string : MESS;
381
382
383
                                                                                                                 +70
384
           operation COLLECT(int:P1;string:P2;int: P3;bool:P4) is
385
                                                                                                                   +71
386
              if SHOW then
               MESS := "(" + GENSTRING(P1) + " , " + P2 + " , " 
+ GENSTRING(P3) + " , " ; 
if P4 then MESS := MESS + "T)" ; 
else MESS := MESS + "F)" ;
387
388
389
                                                                                                                    +72
390
                                                                                                                    -72
              endif;
391
                                                                                                                 |-71
|+70
392
393
             if COUNT = 1 then ZUF := RANDOM(1,UP); endif;
if COUNT < ZUF then
  send COLLECT(P1,P2,P3,P4) to C;
  COUNT := COUNT + 1;
  if SHOW then print("sends COLLECT" + MESS); endif;
else COUNT := 1;</pre>
                                                                                                                   +73-73
394
395
                                                                                                                   +74
396
397
                                                                                                                   +75-75
398
                                                                                                                  ×74
399
                    if SHOW then print("forgets COLLECT" + MESS);
                                                                                                                    +76
400
401
                                                                                                                  |-76
|-74
402
                    endif;
403
             endif;
                                                                                                                 +70
-70
404
405
          endoperation
406
                                                                                                                +69
                                                                                                                 +77
407
          operation ACKNOWLEDGE(int: P1, P2) is
408
409
              if SHOW then
410
              MESS := "(" + GENSTRING(P1) + "," + GENSTRING(P2) + ")";
                                                                                                                  -78
411
             endif;
412
                                                                                                                  +79-79
413
             if COUNT = 1 then ZUF := RANDOM(1,UP); endif;
414
                                                                                                                 1 * 77
                                                                                                                  +80
415
             if COUNT < ZUF then
            send ACKNOWLEDGE(P1,P2) to T;
```

```
COUNT := COUNT + 1;
if SHOW then print("sends ACKNOWLEDGE" + MESS); endif;
else COUNT := 1;
                                                                                                         *80
417
                                                                                                         |+81-81
|+80
418
419
420
                  if SHOW then
                                                                                                           +82
421
                  print("forgets ACKNOWLEDGE" + MESS);
422
                                                                                                          -82
                  endif;
423
                                                                                                         1-80
           endif;
424
425
                                                                                                         -77
          endoperation
426
427
          operation SET_CHNL_PARMS(-> UP,GEN_ZUF,SHOW) assert UP > 0 is
                                                                                                         +83
428
           if UP > 10 then UP := 10; endif;
loop for I in 1..GEN_ZUF do
   ZUF := RANDOM(1,UP);
                                                                                                         +84-84
+85
429
430
431
           endloop;
COUNT := 1;
                                                                                                         -85
432
433
                                                                                                        *83
434
                                                                                                        -83
435
         endoperation
436
                                                                                                       +69
437
438
       endfacet
                                                                                                      +64
439
       initial INITIALIZATION;
440
441
       endscript;
442
                                                                                                      -64
443
444
445
446
       facet ONLY_FCT is
                                                                                                      +86
447
       public: START_SYSTEM;
448
          operation START_SYSTEM(int:WINDOW_SIZE) assert WINDOW_SIZE > 0 is
                                                                                                       +87
449
450
            const HOST : H1 := new HOST;
451
            const HOST : H2 := new HOST;
452
            const COLLECTOR : C2 := new COLLECTOR(H1, WINDOW_SIZE);
453
            const COLLECTOR : C1 := new COLLECTOR(H2, WINDOW_SIZE);
454
455
456
457
            const FAULTY_CHANNEL : CH1 := new FAULTY_CHANNEL(C1);
            const FAULTY_CHANNEL : CH2 := new FAULTY_CHANNEL(C2);
458
459
           const TRANSMITTER : T1 := new TRANSMITTER(CH1,WINDOW_SIZE,H1);
const TRANSMITTER : T2 := new TRANSMITTER(CH2,WINDOW_SIZE,H2);
460
461
462
            eper: STARTCH, STARTH, STARTC, ACQ_TO_HOST;
463
464
465
           send STARTCH(T1,UP1,GEN_ZUF1,SHOW1) to CH1;
send STARTCH(T2,UP2,GEN_ZUF2,SHOW2) to CH2;
466
467
468
           send STARTH(T1) to H1;
send STARTH(T2) to H2;
469
470
471
472
           send STARTC (CH1) to C1;
473
           send STARTC (CH2) to C2;
474
475
           send ACQ_TO_HOST(H1,H2,CH1,CH2) to interface;
476
                                                                                                       *87
477
478
           terminate;
479
480
         endoperation
                                                                                                       -87
                                                                                                     *86
-86
481
482
       endfacet
483
       initial ONLY_FCT;
484
485
486
      endscript
```

BMS-CSSA-COMPILER - DATE OF RELEASE: 30 SEP 1981 NO ERROR DETECTED END OF COMPILING ON 1982/01/21 AT 14:28:44.00 RETURNCODE = 0 COMPILE-TIME (CPU) = 28.34 SEC. EXECUTION-TIME = 177.00 SEC. NUMBER OF SOURCE-LINES READ = 486 NUMBER OF TOKENS = 2171 NUMBER OF OBJECT-RECORDS GENERATED = 5254

CSSA-SIMULATION-SYSTEM P1 (INTERFACE) . | P PZ PROGRAM GENERATED ON 1981/11/17 AT 12:27:21.00 BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981) PROTOCOL OF CSSA SESSION ON 1981/12/04 AT 12:08:57.00 0.000 INTERFACE(1) : ENTER CSSA COMMAND -==> ;DISPLAY IDENTIFIER TYPE VALUE SCRIPT COLLECTOR COLLECTOR FAULTY_CHANNEL SCRIPT FAULTY_CHANNEL SCRIPT HOST HOST START NETWORK START_NETWORK SCRIPT TRANSMITTER TRANSMITTER SCRIPT 0.000 INTERFACE(1) : ENTER CSSA COMMAND ->>> >>> VAR AGENT : NTW := NEW START_NETWORK (600,10,500,0,TRUE,TRUE)
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND ==> VAR AGENT : H1,H2,CH1,CH2; OPER : START_SYSTEM,TRANSMIT,SET_CHNL_PARMS
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -<== <== ==> SEND START_SYSTEM(2) TO NTW; RUN; MAILBOX >>> 10.300 SYSTEM TERMINATED <== >>> MAILBOX OF INTERFACE(1) : (1) ACQ_TO_HOST (AGENT: HOST (1), AGENT: HOST (2), AGENT: FAULTY_CHANNEL (1) ,AGENT: FAULTY_CHANNEL (2)) >>> 10.300 INTERFACE(1): ENTER CSSA COMMAND -=>> RECEIVE 1 (H1,H2,CH1,CH2); STATUS; DISPLAY +++ 10.300 ALL EXISTING AGENTS: >>> <== MAILBOX FACET OPERATION AGENT P1: INTERFACE(1) * ACQ_TO_HOST P3: HOST (1) WORKING P4: HOST(2) WORKING P5: COLLECTOR(1) COLLECTIN P6: COLLECTOR(2) COLLECTIN P7: FAULTY_CHANNE TRANSMITT P8: FAULTY_CHANNE TRANSMITT P9: TRANSMITTER(1 START_TRA P2: TRANSMITTER(2 START_TRA

fig. 20 : Window Mechanism Execution Protocol

IDENTIFIER	TYPE	VALUE
CH1	AGENT	FAULTY_CHANNEL(1)
CH2	AGENT	FAULTY CHANNEL (2)
COLLECTOR	SCRIPT	COLLECTOR
FAULTY_CHANNEL	SCRIPT	FAULTY_CHANNEL
HOST	SCRIPT	HOST
H1	AGENT	HOST (1)
H2	AGENT	HOST(2)
NTW	AGENT	START NETWORK (1)
SET_CHNL_PARMS	LITERAL	
START NETWORK	SCRIPT	START_NETWORK
START_SYSTEM	LITERAL	_
TRANSMIT	LITERAL	
TRANSMITTER	SCRIPT	TRANSMITTER

```
>>> 10.300 INTERFACE(1): ENTER CSSA COMMAND -
==> SEND TRANSMIT("ABCD") TO H1; SEND TRANSMIT("XYZ") TO H2; RUN

*** 16.700 FAULTY_CHANNEL(2): forgets COLLECT(1, X, 1, F)

*** 16.800 FAULTY_CHANNEL(1): sends COLLECT(1, A, 1, F)

*** 17.800 FAULTY_CHANNEL(1): sends COLLECT(2, B, 1, F)

*** 17.900 FAULTY_CHANNEL(2): sends COLLECT(2, Y, 1, F)

*** 18.900 FAULTY_CHANNEL(1): sends COLLECT(1, A, 1, F)

*** 18.900 FAULTY_CHANNEL(2): sends COLLECT(1, X, 1, F)

*** 21.900 FAULTY_CHANNEL(1): sends ACKNOWLEDGE(2,1)

*** 22.300 FAULTY_CHANNEL(2): sends ACKNOWLEDGE(1,1)

*** 23.500 TRANSMITTER(2): N= 1 ignored
***
               23.500
                                TRANSMITTER(2) : N=
                                                                           1 ignored
***
               24.000
                                FAULTY_CHANNEL(2) : sends ACKNOWLEDGE(3,1)
***
               24.500
                                FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(3,1)
***
               25.900
                                FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(3,1)
                                FAULTY_CHANNEL(1): sends ALKNOWLEDGE(3,1)

FAULTY_CHANNEL(1): forgets COLLECT(3, C, 1, 1)

FAULTY_CHANNEL(1): sends COLLECT(2, B, 1, F)

FAULTY_CHANNEL(2): sends COLLECT(3, Z, 1, T)

FAULTY_CHANNEL(1): sends COLLECT(3, Z, 1, T)

FAULTY_CHANNEL(2): sends COLLECT(3, Z, 1, T)
***
               27.100
***
               28.300
***
               28.500
***
               29.300
***
               29.500
                                FAULTY_CHANNEL(1) : sends COLL
TRANSMITTER(1) : N= 3 ignored
***
               30.300
                                                                            sends COLLECT(3 , C ,
***
               30.700
                                FAULTY_CHANNEL(2): sends ACKNOWLEDGE(4,1)
FAULTY_CHANNEL(1): sends ACKNOWLEDGE(3,1)
***
               32.000
***
               32.800
                                FAULTY_CHANNEL(1): sends ACKNOWLEDGE(3,1)
FAULTY_CHANNEL(1): sends ACKNOWLEDGE(5,1)
               33.800
***
***
               34.800
                                TRANSMITTER(1): N= 3 ignored
TRANSMITTER(1): N= 3 ignored
***
               34.800
***
               35.800
                                FAULTY_CHANNEL(2): forgets COLLECT(1 , Y , 2 , F)
FAULTY_CHANNEL(2): sends COLLECT(2 , Z , 2 , F)
***
               36.600
***
               37.900
                                FAULTY_CHANNEL(2): sends COLLECT(1, Y, 2, F)
FAULTY_CHANNEL(1): sends COLLECT(1, B, 2, F)
FAULTY_CHANNEL(1): sends COLLECT(2, C, 2, F)
FAULTY_CHANNEL(1): forgets COLLECT(1, B, 2, F)
FAULTY_CHANNEL(1): forgets COLLECT(1, B, 2, F)
***
               39.800
***
               40.300
 ***
               41.400
               42.300
***
                                FAULTY_CHANNEL(2) :
FAULTY_CHANNEL(2) :
                                                                           sends ACKNOWLEDGE (4,1)
sends ACKNOWLEDGE (1,2)
***
               44.900
               45.900
 ***
 ***
               47.100
                                TRANSMITTER(2) : N=
                                                                           1 ignored
                                FAULTY_CHANNEL(2): sends ACKNOWLEDGE(3,2)
FAULTY_CHANNEL(1): sends ACKNOWLEDGE(2,2)
 ***
               47.500
***
               48.300
                                                                           sends ACKNOWLEDGE (3,2) sends COLLECT (3, X, 2
***
               50.800
                                FAULTY_CHANNEL(1) :
***
               52.000
                                FAULTY_CHANNEL (2)
***
               53.000
                                FAULTY_CHANNEL(2): sends COLLECT(3, X, 2, T)
FAULTY_CHANNEL(1): sends COLLECT(2, C, 2, F)
***
               53.500
***
               54.500
                                FAULTY_CHANNEL(1) :
                                                                            sends COLLECT(3 , D , 2 , F)
                                                                            sends COLLECT(4 , A , 2 , sends ACKNOWLEDGE(4,2)
***
               55.500
                                FAULTY_CHANNEL (1)
                                                                                                                                     T)
                                FAULTY_CHANNEL(2):
FAULTY_CHANNEL(1):
FAULTY_CHANNEL(1):
 ***
               55.500
                                                                            forgets COLLECT(3 , D , 2 , F) sends ACKNOWLEDGE(3,2)
***
               56.400
 ***
               57.300
 ***
                                TRANSMITTER(1) : N=
               58.500
                                                                            3 ignored
                                FAULTY_CHANNEL(1):
FAULTY_CHANNEL(2):
FAULTY_CHANNEL(1):
FAULTY_CHANNEL(2):
                                                                            sends ACKNOWLEDGE (4,2)
 ***
               59.000
                                                                           forgets COLLECT(1 , Z , 3 , F) sends ACKNOWLEDGE(5,2)
***
               60.100
 ***
               61.000
                                FAULTY_CHANNEL(1): sends ACKNOWLEDGE(5,2)

FAULTY_CHANNEL(2): forgets COLLECT(2, X, 3, F)

FAULTY_CHANNEL(2): sends COLLECT(1, Z, 3, F)

FAULTY_CHANNEL(1): sends COLLECT(4, A, 2, T)

FAULTY_CHANNEL(1): sends COLLECT(1, C, 3, F)

FAULTY_CHANNEL(1): forgets COLLECT(1, C, 3, F)

FAULTY_CHANNEL(1): forgets COLLECT(1, C, 3, F)
 ***
               61.300
 ***
               62.400
               63.700
 ***
 ***
               65.700
               66.800
 ***
***
               67.700
```

```
FAULTY_CHANNEL(2) : sends ACKNOWLEDGE(4,2)
***
          68.400
                      FAULTY_CHANNEL(2): sends ACKNOWLEDGE(2,3)
FAULTY_CHANNEL(1): sends ACKNOWLEDGE(5,2)
***
          70.000
                      FAULTY_CHANNEL(1): sends ACKNOWLEDGE(2,3)
FAULTY_CHANNEL(1): sends ACKNOWLEDGE(2,3)
FAULTY_CHANNEL(2): forgets COLLECT(3, Y, 3, F)
+++
          72.200
          73.700
***
          74.400
***
                       FAULTY_CHANNEL(2): sends COLLECT(2, X, 3
FAULTY_CHANNEL(1): sends ACKNOWLEDGE(3,3)
FAULTY_CHANNEL(1): sends COLLECT(2, D, 3
          75.600
***
          76.300
***
***
          79.000
                       FAULTY_CHANNEL(2) : forgets ACKNOWLEDGE(3,3)
***
          79.600
                       FAULTY_CHANNEL(1): sends COLLECT(3, A, 3, F)
FAULTY_CHANNEL(1): forgets COLLECT(4, B, 3, T)
FAULTY_CHANNEL(1): sends COLLECT(3, A, 3, F)
FAULTY_CHANNEL(1): sends ACKNOWLEDGE(3,3)
***
           80.000
***
           80.900
***
           82.100
           82.900
***
***
           84.100
                       TRANSMITTER(1) : N= 3 ignored
***
                       FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(4,3)
           84.600
***
          85.600
                       FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(4,3)
                       TRANSMITTER(1) : N= 4 ignored
***
           87.200
                       FAULTY_CHANNEL(1) : sends COLLECT(4
***
           88.500
                                                                                       3 , T)
                      FAULTY_CHANNEL(1): sends COLLECT(4, B, 3, 1)

FAULTY_CHANNEL(1): sends COLLECT(1, D, 4, F)

FAULTY_CHANNEL(1): sends COLLECT(2, A, 4, F)

FAULTY_CHANNEL(1): sends COLLECT(1, D, 4, F)

FAULTY_CHANNEL(1): sends ACKNOWLEDGE(2,4)

FAULTY_CHANNEL(1): sends ACKNOWLEDGE(2,4)
***
           91.800
***
          96.500
***
          97.500
          99.700
+++
         103.200
***
***
         104.600
                      TRANSMITTER(1): N= 2 ignored

FAULTY_CHANNEL(1): sends COLLECT(3, B, 4, F)

FAULTY_CHANNEL(1): sends COLLECT(2, A, 4, F)

FAULTY_CHANNEL(1): sends ACKNOWLEDGE(2,4)
         106.400
***
***
***
         108.700
***
         111.200
         112.400
                       TRANSMITTER(1) : N= 2 ignored
***
                       FAULTY_CHANNEL(1): sends ACKNOWLEDGE(4,4)
FAULTY_CHANNEL(1): sends COLLECT(4, C, 4, T)
FAULTY_CHANNEL(1): forgets COLLECT(4, C, 4, T)
         112.900
***
         117.400
***
         118.300
***
                       FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(5,4)
***
         120.800
         127.400
                       SYSTEM TERMINATED
>>>
         127.400 INTERFACE(1) : ENTER CSSA COMMAND -
>>>
==> MAILBOX
                                                                                                                                    <==
MAILBOX OF INTERFACE (1) :
(1) ACQ_TO_HOST (AGENT: HOST (1), AGENT: HOST (2), AGENT: FAULTY_CHANNEL (1)
                                         , AGENT: FAULTY_CHANNEL (2))
(2) ACKN(STRING: "Host received fully twisted message"), REPLY TO: OK (3) ACKN(STRING: "3. message : CDAB")
 (4) ACKN(STRING: "4. message : DABC")
(5) ACKN(STRING: "2. message : BCDA")
(6) ACKN(STRING: "1. message : ABCD")
>>> 127.400 INTERFACE(1): ENTER CSSA COMMAND -
==> REPLY 2; SEND TRANSMIT("A") TO H1;RUN
                                                                                                                                    <==
      133.600 FAULTY_CHANNEL(1) : forgets COLLECT(1 , A , 5 , T)
134.700 FAULTY_CHANNEL(1) : forgets COLLECT(1 , A , 5 , T)
***
         134.700
                       SYSTEM TERMINATED
>>>
>>>
         134.700
                       INTERFACE(1) : ENTER CSSA COMMAND -
==> TERMINATE
                                                                                                                                    <==
          134.700 ALL EXISTING AGENTS:
    AGENT
                               FACET
                                                 OPERATION
                                                                                         MAILBOX
                                                                       ACQ_TO_HOST ACKN ACKN ACKN
   P1: INTERFACE(1) *
                                                                       ACKN ACKN
                                  WORKING
   P3: HOST (1)
   P4: HOST (2)
                                  WORKING
   PS: COLLECTOR(1)
                                  COLLECTIN
   P6: COLLECTOR(2)
                                  COLLECTIN
   P7: FAULTY_CHANNE
P8: FAULTY_CHANNE
                                  TRANSMITT
                                  TRANSMITT
   P9: TRANSMITTER(1
                                  TRANSMISS
   P2: TRANSMITTER(2
                                  TRANSMISS
```

CSSA-SESSION-STATISTICS

SESSION STARTED AT 12:08:27.00
SESSION TERMINATED AT 12:18:17.00 ON 1981/12/04
REAL-TIME USED: 592.00 SEC.
CPU-TIME USED: 12.27 SEC.
SIMULATION TIME USED: 134.7000 SEC.
NUMBER OF AGENTS CREATED: 9
NUMBER OF MESSAGES SENT: 224