1
1
4

a Collection

@
+J
=
Q
ol
-
+J
3]
S
[an]
1]
=
o .
o
=]
E
L]
-
o
o]
13
[a¥

of CSSA Examples
Memo SEKI-82-01

Environment
Hans Voss

Auewsgy M 'L uisine|siasiey 05.9-Q
6¥0¢ Yydepusod osuz
WI2INE|SIasIRY JBLISIBAMUN =
¥HewIoU| Yo1848quoey -:um

oqrammi in a Di ib d r t

A Collection of CSSA Examples

Hans Voss

Fachbereich Informatik
Universitdt Kaiserslautern
Postfach 3049
D-6750 Kaiserslautern

West Germany

Abstract :

Several CSSA scripts as solutions of mostly well known problems in
the area of parallel activities are documented. ALl but two exam-
ples are compared with "equivalent" programs which are based on
the concept of monitors. One example gives a distributed solution
of the N-queens problem. Besides the purpose of demonstrating the
use of CSSA concepts, the last example deserves particular atten-
tion. Here, CSSA is used for simulating and testing the logic of
the "window mechanism"™ which is a representative for the class of
communication protocols in computer networks.

0.

S.

6.

Introduction

One Slot Buffer

1.1 Problem Specification

1.2 CSSA Solution

1.3 Genereal Remarks

Bounded Buffer

2.1 Problem Specification

2.2 CSSA Solution

2.3 Comparison with the Monitor Solution
Protected Buffer

3.1 Problem Specification

3.2 CSSA Solution

3.3 Comparison with the Monitor Solution

Readers_Writers Problems

4.1 Readers_Writers with Readers_Priority

4.1.1 Problem Specification

4.1.2 CSSA Solution

4.1.3 Comparison with the Monitor Solution
4.2 Other Versions of the Readers_Writers Problem

4.2.1 The Fair_Readers_MWriters Problem

4.2.2 The FIFO_Readers_Writers Problem

4.2.3 Readers_Writers with Writer_Priority
Alarmclock

5.1 Problem Specification
5.2 CSSA Solution
5.3 Comparison with the Monitor Solution

N-Queens Problem

6.1 Problem Specification
6.2 CSSA Solution

(S Y]

~N oo

10
11
11
i
14
15
15
16
17
18
18
18
20
21

21
21

7. Window Mechanism

7.1 The Model

7.2 Communication between the Transmitter

and the Collector

Literature

APPENDIX

25

25
26

30

0. Introduction

This paper is a documentation of my first programming experiences
with CSSA. The study of the examples offers an opportunity to
deepen the understanding of CSSA concepts and the corresponding
programming methodology. This is even more true, because a com-
prehensive reference manual and application guide is currently be-
ing prepared.

Perhaps with the exception of the alarm clock solution in Section
5, the decision for the ordering of the examples was based on in-
creasing complexity. Therefore, a CSSA greenhorn is advised to
profit from the sequence given. For the advanced reader a
deviating reading order or picking up one specific example should
cause no problems.

In addition to short comments on the well known synchronization
problems discussed in Sections 2 to 5, "equivalent" solutions for
the same problems using monitors are presented. For sake of
coherent and unmisleading reference all these monitor solutions
are programmed using syntax from the programming Llanguage CLU
[Lis, Sny, Atk, Sch 77] and are taken from [Bloom 79]. Without in-
tending a rigorous comparison between the monitor approach and the
CSSA approach, some hints at specific differences are given.

Due to personal time constraints I did not succeed in making this
paper self contained. I rather decided to make the following
assumptions:

1. The reader should have some basic knowledge about the CSSA
concepts and programming constructs.
If this is not the case, he should first read [FRV 81] or
the more concise and complete publication [FRV 82].

2. A full understanding of Sections 2.3, 3.3, 4.1.3 and 5.3 is
only possible, if the reader is familiar with the monitor
concept. No further comments at the syntax and semantics of
the monitor programs are included in this paper.

ALl the CSSA examples have been compiled and executed by the BMS-
CSSA-Simulation System, which was designed and implemented by the
students C. Beilken, F. Mattern and M. Spenke (BMS). Without their
great efforts and personal engagement programming in CSSA would
have remained a paper and pencil exercise for an indefinite amount
of time.

In the simulation system, translation from a CSSA source script
into executable code is a two step process. First, the CSSA source
is compiled into a SIMULA program, which in the second step is
embedded in a SIMULA multiprocessor simulation system.

All but one example have been executed with the default processor
configuration depicted at the beginning of the first session
protocol (fig. 2). For the window mechanism example described in
Section 7, a problem oriented configuration was designed by simply
changing the default parameters of the simulation system.

In all comments , Llines of the source programs are referred to by

4

enclosing their numbers in parantheses.

1.1. Spec iqn

A one slot buffer is an object which may contain exactly one in-
formation element. A new information can be put into the buffer
only via a write operation and later be inspected by a read oper-
ation,
The synchronization problem is specified by the following restric-
tions:

1. write and read operations must take place 1in alternating
order.

2. The first operation to be executed must be a write oper-
ation.

1.2 0 jon

A CSSA solution for the one slot buffer problem is straightforward
(fig.1). The buffer is represented by a string variable BUFFER.

In two parallel facets READ and WRITE the only operations RD and
WR are defined respectively. Each execution of an RD operation
causes a change to facet WRITE, such that a WR operation must be
executed next. The same is true vice versa. The initial statement
(25) guarantees the first operation to be a WR operation.

1.3 General Remarks

The history information of alternating reads and writes can be
very well expressed by use of the facetting mechanism. The CSSA
solution appears to be simpler than any monitor solution, since
there at least one extra (boolean) variable storing this history
information is needed. However, monitors do not have facets. But
in my opinion, besides their practical importance the facet struc-
ture contributes much to a clear documentation of the CSSA solu-
tion.

2. Bounded Buffer

2.1 Problem Specification

A bounded buffer can be regarded as a generalization of the one
slot buffer. 1In contrast to the one slot buffer it can store more
than one element up to a fixed maximum number.

Users of the buffer can store and inspect information via two
operations called insert and remove,

Like a one slot buffer agent, a bounded buffer agent has to solve
the following synchronization problems:

1. New information may only be inserted into a buffer element
iff

1.1 either this element never has been used for insertion
before, or

1.2 the last information having been inserted into this
element has already been removed.

2. A buffer element may only be removed iff information has
been written into this element before, and after this in-
sertion no other remove operation for this element has
occured.

So, each buffer element can be interpreted as a one slot buffer. A
bounded buffer with maximum element number 1 should exhibit the
same behaviour as a one slot buffer.

2.2 CSSA Solution

In each creation message for a bounded buffer agent the buffer
size MAX (Line 1) must be included (cf. fig. 3). According to the
problem specification, at each time the buffer agent is in one of
three possible states:

1. In facet BUFFER_EMPTY, there is no buffer element which can
be removed (operation REM).
This is the case in the initial state (40) or later, when
all inserted elements have been removed and after these
removals no new elements have been inserted. Therefore, the
only messages which can be processed in this facet are in-
sert messages (operation INS).

2. When exactly MAX insertion messages have been processed
without an intervening remove operation, the buffer agent's
current facet becomes BUFFER_FULL.

In this state the enabling of an INS message would destroy
the information in a buffer element, which has not yet been
inspected by a REM operation. Since this would violate
restriction 1.2 of the problem specification, only REM

6

operations are allowed in this state (18).
3. In facet NO_CONSTRAINT there exists both

3.1 a buffer element into which information has been in-
serted but not removed, and

3.2 a buffer element which either never has been used for
insertion or which already has been inspected and after
inspection no further insertion has taken place.

Because of 3.1 at Lleast one REM message can be enabled,
whereas 3.2 allows the processing of at Lleast one INS
message.

In order to decide which of these facets is to be chosen next, two
integer variables INS_COUNT and REM_COUNT are incremented modulo
MAX in each INS and REM operation respectively (27,34).

At each time, INS_COUNT is the index of the next buffer element to
be used for insertion, and REM_COUNT yields the index for the next
REM operation. If REM_COUNT becomes equal to INS_COUNT, the next
current facet must either be BUFFER_FULL or BUFFER_EMPTY,
depending on what operation was executed last (28,35).

A general comment on the program structure will close this sec-
tion. Besides the natural disjunction of facets the bounded buffer
solution demonstrates how the programmer profits from the possi-
bility to define operations at the top Llevel of a 'script
(3,25-37). The advantage is that he has to write down the oper-
ations only once, including them in a facet where needed
(14,18,22). In this specific example, the programmer has to put up
with a slight disadvantage: as he can't decide in which facet the
operations will be executed at any time, each enabled message
causes a new facet instantiation to be set up. 1I.e., a new in-
stantiation of facet NO_CONSTRAINT will be set wup, although
possibly the agent could have stayed 1in this very facet.
Certainly, this little inefficiency could have been avoided by in-
troducing a further variable remembering the current facet. For
facets BUFFER_EMPTY and BUFFER_FULL, there is no such problen,
because each operation execution in one of these facets must cause
a change to another facet.

2.3 Comparison with the Monitor Solution

In script BOUNDED_BUFFER no event conditions (buffer.nonfull,
buffer.nonempty, c.f. fig. 5) are needed. Instead of starting the
execution of an arbitrary operation, and then testing if the
started operation may continue, always only allowed operations are
selected and executed without interruption.

This strategy rules out a more general difference. As a monitor

7

programmer has no influence on the sequence of started operations,
often one of the first actions of a monitor procedure is to check
if its execution may continue. In contrast, CSSA operations are
indivisible. Once started, they must be executed without interrup-
tion. Hence, a CSSA programmer is forced to extract the synchro-
nization code from the "operations" and put it 1into the facet
structure and possibly into assertions governing the selection of
messages in the mailbox.

3. P t uf

3.1 Problem Specification

In the bounded buffer solution of section 2. the same agent imple-
mented both the buffer and the synchronization code for the
buffer. In other words, the synchronization code visualized in the
special facet structure and pure buffer access functions have been
mixed up.

As 1is discussed in more detail in [Bloom 79], modifiability,
modularity and understandibility will be enhanced when the buffer
resource object itself is no longer part of the module which im-
plements its synchronization scheme. Defined 1in such separated
modules, the implementation of the buffer may be changed without
modifying 1its synchronization code. Conversely, the synchro-
nization scheme for the buffer can be altered without changing the
buffer implementation.

3.2 CSSA Solutio

In fig. 6, the synchronization code 1is defined by script
PROTECTED_BUFFER, whereas the definition of the buffer with the
buffer access functions is given in script DATA_BASE (6-35).

An agent of type DATA_BASE exactly executes the operations he is
ordered to by its protector agent (an agent of type
PROTECTED_BUFFER). Due to the inherent assumption in the CSSA
model of computation that messages may pass each other, the
protector-resource relationship must be "strongly coupled",
guaranteeing that protector orders are followed in the sequence
given. This can be achieved by having each execution of an INS or
REM operation by the protector agent only finished after receiving
a reply (78,91) indicating that the corresponding order to the
resource agent (76,89) has been followed.

Script DATA_BASE does not seem to fit very well ¢to the require-
ments R_COUNT are never needed in this environment. In spite of
this inconvenience, the database is included in its present struc-
ture, because the same script can be used for the readers_uwriters
solutions in the following section.

INS,REM

— -

PROTECTED_
BUFFER

DATA_BAS

REPLY,REPLY (BUFFER (REM_COUNT))

~ -
~ -

\$EPLY
, (BUFFER(REM_COUNT))
]

/féEATE
e

Users of the buffer communicate only with an agent of type
PROTECTED_BUFFER who delegates requests to an agent of type
DATA_BASE. It's impossible for a user to gain direct access to the
real resource agent.

3.3 Comparison with the Monitor Solution

The two solutions differ with respect to the interpretation of
where the borderline between the synchronization code and the
buffer code should be defined. In the CSSA solution, a buffer is
simlpy a data structure which can store and retrieve information
provided an unique key is presented. In the monitor solution
(fig. 8), a buffer still has much similarity with a bounded buffer
in that it provides two functions full and empty, As a con-
sequence, the protected buffer monitor no more has to take care of
the counters REM_COUNT and INS_COUNT. 1In my opinion, these coun-
ters are essential elements of the synchronization code and not of
the buffer definition.

Not willling to go into the particulars of these arguments, I only
state that with the monitor concept and the CSSA concept cor-
responding solutions can be given for both interpretations.
Certainly, no lack of expressiveness in either of the two concepts
could be derived from such a discussion.

4. Readers Writers Problems

The readers_writers problem is particularly interesting because
with only slight modifications of the general problem (cf. section
4.1.1) various versions with different synchronization aspects can
be formulated. In section 4.1 the readers_writers problem with
readers priority is discussed in more detail. Section 4.2 gives
hints at solutions of other versions. Two results are especially
noteworthy: whereas the monitor concept cannot succeed in giving a
solution for the general readers_writers problem, no satisfying
solution for the readers_uriters problem with pure
first_in_first_out scheduling can be given in CSSA.

10

4.1 Readers Writers with Readers Priority

4.1.1 Problem Specification

Given a database with read and write access functions, the general
readers_writers problem can be specified by the following con-
straints:

(1) write operations are mutually excluded with other write
and read operations.
(2) read operations may execute in parallel.

Special versions of the general readers_writers problem are
defined by adding one or more further restrictions. By stating

(3) read requests have priority over write requests

we get a specification for the readers_writers problem with
readers priority.

4.1.2 A Solut

In fig. 9, script DATA_BASE (3-22) implements the read and write
access functions. The use of the third operation RD_ACKN (23-26)
will become clear soon. Note, that this is the same database as
was used for the protected buffer solution. In the same sense as
described in 3.1, the protection module RDER_PRIO defines the
synchronization code specific to the readers priority restriction.
An instantiation of one particular database can only be achieved
by sending a CREATE message including the requested size of the
database to an agent of type RDER_PRIO (44-47). Read and write
requests can only be adressed to this protector agent because no
acquaintance to the database can be communicated to the outside
world.

The functionning of the whole system is best described by showing
that restrictions (1)-(3) from 4.1 are fulfilled.

To this aim, I first want to interpret the rather intuitive no-
tions in these assertions according to the present concrete
environment.

= A read or write request occurs when a RD or WR message
arrives in the mailbox of the protector agent.

= Read operations RD, ,RD,,...,RD; execute in parallel iff
their requests have been accepted and executed by the
protector agent, but no "corresponding" acknowledgement has
been received at port R_ACKN in the protector's write oper-
ation WR.

Hence, from the protector's point of view, these read operations
are either

11

* just being transmitted between the protector and the
database,

¢ in the mailbox of the database.

* just being executed in the database,
already executed in the database.

Before receiving an acknowledgement at port R_ACKN, the protector
has no information about the state of the database. In this case,
we also say that RD;,RD,,...,RD; are 1in flight (between the
protector and the database).

Hence, this definition of parallel reading only allows for read
requests being nondeterministically executed in the data base. As
the execution of operations is indivisible and sequential, the
database agent can only accept and answer read requests one after
another. The execution is nondeterministic, because no one can
guarantee that the read operations are accepted by the database in
the same order they were received in the protector's mailbox or
sent away by the user agents.

The notion of "mutual exclusion" is explained more precisely as:

= Mutual exclusion between read and write requests and between
write operations themselves is guaranteed iff no other oper-
ation ever can be in flight together with a write operation.

Proof of assertion (1) [mutual exclusion]:

(1) It's easily shown that one write operation excludes other
write operations because it must be acknowledged [wait W_ACKN
do ...,(80)] before the next write request may be accepted.
Receiving this acknowledgement guarantees that the database
has accepted the write operation. So, a next write operation
never can't be in flight together with a preceding write oper-
ation.

(2) In order to show that "write excludes reads" we have to prove
that a write operation never can't be in flight together with
read operations. According to the acknowledgement protocol
described in (1), only read operations have to be taken into
account.

The proof is by induction:

(2.1) When a protector agent is created, it first must accept a
CREATE message [initial CREATION,90] resulting in a change
to facet WRRS (46). Because the idle operation has no effect
when enabled before the first write operation [FIRST_OPER =
true in Line 85) the protector stays in facet WRRS until a
write request will be accepted. So, the first write oper-
ation clearly is not in flight together with read oper-
ations.

12

(2.2) Assume the k'th write operation was not in flight together
with other read operations.
As an effect of its execution the protector's RDER_COUNT was
reset to 0 (78). Having received an acknowledgement at port
R_ACKN (?77), the protector is assured that in the database
RCOUNT has been reset to 0 (25).
Then the completion of the protector's WR operation results
in a change to facet RDERS (85), since FIRST_WR and
FIRST_OPER have been set to false (72,73).
Now, two cases have to be considered:

(2.2.1) No read operation is requested:
Then the 1idle operation in facet RDERS immediately
leads back to facet WRRS (59).

(2.2.1.1) If no write operation is requested, the protector
will Lloop back to facet RDERS. These facet changes
will continue until either a write operation
(2.2.1.2) or a read operation (2.2.2) will be
requested.

(2.2.1.2) If a write operation is requested it will execute
without any read operations being in flight.

(2.2.2) A read operation RD, is requested.
RD, will be accepted and RDER_COUNT will be set to 1
(56). As Llong as further read operations RD; (i > 1)
are requested before the protector has finished execu-
tion of read operation RD;.,, they will be accepted and
sent to the database.

(2.2.2.1) VieN.
i > 0 => read operation RD; has been
requested before RD;.; has finished execution)

In this case, an infinite number of read operations
will be transmitted to the database. Therefore, no
further write operation will ever be executed and
"the (k+1)-st write operation is not in flight with
read operations" holds trivially.

(Being polite assume here, that CSSA integer
variables can store any natural number. So our
program never will abort with integer overflow.)

(2.2.2.2) Assume RD; finishes before RD;.,, has been
requested. Then the idle operation will be executed
causing a change to facet WRRS.

(2.2.2.2.1) A write operation is not requested.

Then the 1idle operation Lleads back to facet
RDERS with RDER_COUNT = j.

When new read requests have arrived they will
be executed either ad infinitum (case 2.2.2.1)
or until RD;,y finishes before RD;.yx+; 1is
requested. In the lLatter case we have the same
situation as in 2.2.2.2 with RDER_COUNT = j +

13

k.

(2.2.2.2.2) Terminating the induction, we assume that a

write operation (the (k+1)-st write operation)
is requested.
RDER_COUNT > 0 is the number of read operations
being in flight. When the message
RD_ACKN (RDER_COUNT) 1is sent to the database
(76), it will only be accepted when RDER_COUNT
read operations have been executed in the
database (assert COUNT = RCOUNT, 23). There-
fore, the receipt of an acknowledgement at port
R_ACKN guarantees that all read operations have
been executed. When the write operation is sent
to the database (86), no read operation is in
flight. =

In this proof we already described a situation resulting in more
than one read operation being in flight. So we have assertion (2)
[parallel reading] automatically.

Assertion (3) [priority constraint] is easily shoun:

Without loss of generality, assume that both a read request and a
write request exists and at least one operation has been executed
before. I have to prove that whatever operation read or write was
executed last, the next request accepted by the protector will be
the read request. Now consider the two cases:

(1) The last operation executed was a read operation:
Then we stay 1in facet RDERS, and obviously the read
request will be satisfied next.

(3) The last operation executed was a write operation:
Because FIRST_WR in facet WRRS is false, no further write
request 1is acceptable. Therefore, the protector will
change to facet RDERS and execute the read operation.

4.1.3 Comparison with the Monitor Solution

It's rather difficult to compare two solutions when one cannot
observe much similiarities. The most significant difference stems
from the fact that in contrast to the monitor solution (fig.11a
and 11b) I don't need a queue storing user's write and read
requests in the CSSA solution.

In the CSSA environment, a request was defined to occur when the
corresponding message is received in the protector's mailbox. In
the monitor concept, a user request can only come into existence
from the programmer's point of view, when the execution of the
called monitor procedure is initiated. Translated into the monitor
terminology, this is the time stamp when the request enters the
monitor, However, from the monitor implementation's point of view,
user requests already exist before the time stamps of their

14

procedure entry points. On the implementation Llevel, incoming
requests are registered and stored into an internal queue, which
the programmer has no access to. In some sense, this initial queue
and not the programmer-defined queues must be regarded as the
monitor data structure corresponding to the CSSA mailbox.
Hypothetically, a monitor solution similar to the CSSA solution
could be derived if the following condition were met: The initial
monitor queue is not a queue, rather it is a data structure with
almost arbitrary programmable access functions. In CSSA we can
select nearly arbitrary messages by defining suitable facet struc-
tures and assertions.

4.2 Other Versions of the Readers Writers Problem

Constraints (1) [mutual exclusion] and (2) [parallel reads] formu-
lated in 4.1.1 are common to all versions of the readers_writers
problem. Therefore, only a third constraint will be stated to give
specifications for the following specializations of the general
problem.

4.2.1 The Fajr Readers Writers Problem

The readers_writers problem with readers_priority allowed writers
to starve (cf. case 2.2.2.1 in the proof of assertion (1)).
Substituting assertion (3) [readers_priority] by

(3a) eventually every request will be served

a solution is required to be fair against readers and writers.
That is what I call the Fair_Readers_Writers Problem,

Note, that requirement (3a) makes no specific assumptions about
the order of serving requests. Thus, the quality of a solution
should be measured by the freedom that it leaves for selecting the
next request to be served. For example, a pure first_in_first_out
scheduling of requests fulfills the requirements, but is too
restrictive to be regarded as a good solution.

A really satisfying CSSA solution can be derived from the
RDER_PRIO script by simply placing the operations RD and WR into
only one facet. The priority ensuring 1idle operations and the
assertion FIRST_WR for the write operation are no more needed.
With operations RD and WR occuring in one facet the selection of
the next request is totally left to the mailbox manager. From the
programmer's point of view this message selection strategy can
only assumed to be fair and nothing more. Hence, the proposed CSSA
solution fits the problem specification in the best possible way.
Even more, this solution is perhaps the most natural and certainly
the simplest among all solutions for other versions of the
readers_writers problem.

It should be not surprising that - if at all - only a rather com-

15

plex and not efficient solution for the same problem can be
programmed with monitors. Here, the only data structure for
storing requests is a queue. Each signal statement can only
release the first request of a queue. Hence, a monitor programmer
can never reach the state of freedom of a CSSA programmer who can
rely on the more general message selection strategy of the mailbox
manager.

4.2.2 The FIFO Readers Writers Problem

Another version of the readers_writers problem is given by
(3b) each request has priority over all later requests.

Here, priority is entirely based on order of requecsts. Obviously,
this version postulates a pure FIFO policy for serving read and
write requests.

According to the definition of a "request" in 4.1.2, at each time
the earliest message received has to be selected from the mailbox.
However, in CSSA there is no mechanism which allows selection to
be based on receive order. There is no hope to give a correct CSSA
solution in the context of the definitions established in section
4.1.1. This context is important, because it is not generally im-
possible to program a FIFO solution in CSSA. So, I could require
that each request is transmitted with a unique natural number in-
dicating the time stamp when it had been sent away. Then the
protector only accepts that message with the ¢time stamp of the
previously selected message incremented by one. Certainly, users
would be obliged to coordinate in keeping the transmitted tags
unique and successive. To this aim, before sending a request to
the protector they could be forced to request a time stamp from a
globhally known "clock agent™.

A monitor solution for the FIFO_READERS_WRITERS problem is
presented 1in fig. 12. Although the monitor's queueing principle
fits very well to the required FIFO strategy, the solution seems
to be rather complex. This complexity is essentially due to the
fact that at least the conventional monitor construct provides no
means of identifying the process at the head of a queue or deter-
mining the conditions for which it is waiting. 1In fact, read and
write requests are stored into a single queue (m.users) when they
are not immediately satisfiable. But if a writer is dequeued when
readers are in flight (readercount > 0), the writer must be queued
again on a second queue until it is released by the last reader 1in
the resource. A more profound discussion of these problems is
given in [Bloom 79].

16

4.2.3 Readers Writers with Writers Priority

Substituting assertion (3) of the readers_writers problem with
readers_priority by

(3c) write requests have priority over read requests
yields a specification for the readers_writers problem with

writers_priority. The construction of a CSSA solution analogue to
script RDER_PRIO is left to the reader as a simple exercise.

17

5. The Alarmclock

5.1 Problem Specification

The alarmclock is a very nice representative of the «class of
problems where synchronization 1is based on the arguments of
requests.

It can be considered as an abstraction of a system device allowing
users to fall asleep for some specified time period and to be
awakened after this time has elapsed. The alarmclock cannot incre-
ment the time by itself, it rather waits for a tick request to bhe
received from some other system facility.

5.2 CSSA Solution

In fig. 13, a CSSA solution is presented which lLooks very elegant
but unfortunately is wrong. Notwithstanding, I enclosed this bad
solution because it's a good demonstration of the dangers waiting
for a programmer in the distributed environment. So I admit, that
after having programmed this solution I accepted it as correct un-
til the lLast moment before publishing this report.

Although perhaps not visible 1in their surface structures, the
ideas behind the wrong solution and the correct one (fig. 14) are
much the same. Therefore, I can afford some documenting of the
wrong solution without wasting time.

An agent wishing to sleep for T time units sends a message
WAKE_ME (T) to an agent of type ALARM_CLOCK [ALARM_CLOCK for
short]. When the WAKE_ME message is accepted by ALARM_CLOCK the
sleepy agent is immediately resumed if DELAY_TIME (=T) < 0 (23).
For a DELAY_TIME > 0 , the wake request is registered by sending a
private message WAKE_UP(DELAY_TIME + NOW) to self (24). The
parameter DELAY_TIME + NOW yields the "absolute" time stamp when
the sleeping agent has to be awakened. Later the existence of this
WAKE_UP message in its mailbox will remind ALARM_CLOCK of the
user's reveille. Because ringing is symbolized by sending a reply,
the port address implicitly included in the WAKE_ME message must
be transfered to the WAKE_UP message via the inherit - clause. Now
we arrive at the crucial point of the discussion. Each execution
of a TICK request increments the "real time" NOW by 1 (28) and
sets up a new instance of facet RESUME. The idea is, that in this
facet all WAKE_UP requests for the current time (assert TIME =
_NOW, 11) should be satisfied. When no such further WAKE_UP
request exists, the execution of the idle operation (15,16) Lleads
back to facet REGISTRY.

At first sight, this strategy seems very sound. But did you get on
to the problem? So assume for example, that a WAKE_ME message with
DELAY_TIME = 1 has been received and in response ALARM_CLOCK has
sent a WAKE_UP message with parameter NOW + 1 to itself. After the
next execution of a TICK operation, this WAKE_UP message must be
served in facet RESUME. Now, we are faced to the problem that

18

ALARM_CLOCK stays in facet RESUME only until no (further) WAKE_UP
message with TIME = NOW exists in the mailbox, When the considered
WAKE_UP request has already been received in the mailbox, it will
be executed. However, if it has not been delivered for the time
being, the current facet will be left via the idle operation and
the sleeping agent will sleep forever.

Although from a practical point of view, the probability may be
very low that a WAKE_UP message will not have been received when
it is needed, this program must be rejected as a wrong solution.
The computational model of CSSA only requires message passing
times to be finite, but indefinite. That's even true in this case
vhen messages are passed to the sending agent itself.

Obviously, the idle opeation 1is not the right criterion for
leaving facet RESUME. Instead it must be assured that all WAKE_UP
requests for the current time value NOW are served bhefore this
facet is left. 1In the "hopefully" correct solution depicted in
fig. 14, this 1is achieved by keeping a relation CALL_LIST
recording the number of agents to be awakened (NO_OF_SLEEPERS) for
each time stamp which ever has been requested.

I.e., a request WAKE_ME(DELAY_TIME) is served as follows: when
another wakeup obligation for time DELALAY_TIME + NOW exists, the
corresponding call element (of type CALL_ELEM) is assigned to the
implicitly declared variable CE1,(33) and its NO_OF_SLEEPERS' part
is incremented by 1 (34). Otherwise, a new call element with "key"
WAKE_UP_TIME = DELAY_TIME + NOW and NO_OF_SLEEPERS = 1 is inserted
into the relation (36-38).

In both cases, ALARM_CLOCK sends a WAKE_UP message to itself (40).
These private messages are still necessary since for reasons not
to be discussed here, the inherit clause is the only mechanism
available for saving a reply address from one operation execution
to another. In this example, however, the use of private messages
could be avoided, when ringing would be implemented by "normal"
wakeup messages instead of reply messages. Then, in addition to
the DELAY_TIME parameter, a sleepy agent must include an
acquaintance to itself in the WAKE_ME message, which later will be
used by ALARM_CLOCK as the addressee of the corresponding WAKE_UP
message.

After 1incrementing the time (45), a new instantiation of facet
RESUME is only set up when a call element for the new time value
exists (46). Compared with the first solution this means a slight
compensation for the overhead we had to introduce in the second
solution. ALARM_CLOCK then stays in facet RESUME, waiting for the
first WAKE_UP request which eventually will arrive in the mailbox,
if it was not already there. So, there is no need for an idle
operation in this case. Another reason is that the criterion for
leaving facet RESUME can be computed during the execution of a
WAKE_UP operation: If NO_OF_SLEEPERS for the currently served call
element has the value 1 (19), then no further wakeup obligation
exists for the current time value and facet RESUME may be Lleft.
Besides, the current call element can be deleted (20). Otherwise,
NO_OF_SLEEPERS is decremented by 1 (22) and no change of facet
takes place.

19

5.3 Comparison with the Monitor Solution

In monitors, queuing is the only means to stop serving a request
which later shall be resumed. Because in this example delayed
requests have to be resumed in the order of their arguments, the
concept of priority queues has to be introduced (cf. fig. 16).
Most of the alarmclock code in the CSSA solution is needed to im-
plement this data structure which is a necessary prerequisite of
all monitor implementation languages. From this point of view, the
seemingly more complex CSSA solution doesn't make me so unhappy,
rather it indicates the provision of greater freedom and flexibil-
ity in the CSSA concepts.

An unpleasantness of this special monitor solution is due to the
fact that it 1is not possible to examine the first element of a
queue without dequeueing it first. Thus, the first nrocess in the
priority dqueue has to be dequeued in each tick operation, then
tested for its arguments (while ac.now < alarmsetting), and
possibly requeued again. As already mentioned 1in 5.2, this
awkwardness can be avoided 1in the CSSA solution by not
establishing an instance of facet RESUME when no wakeup obligation
exists for the current time. Clearly, this shortcoming of the
monitor solution 1is not so severe because adding a test for the
priority of the first element in a priority queue as an additional
language feature is all what has to be done.

20

6. Th -Queens P lem

6.1 Problem Specification

The following problem has to be solved:

How can you place N queens on an NxN chessboard in such a way that
no two queens can capture each other (i.e. no two queens are 1in
the same row, column or diagonal)?

The CSSA solution described 1in the next section is expected to
find all such possible placings for any given N.

In general, the N-queens problem is a showboy for the <class of
problems offering "natural" recursive solutions. In some sense,
the CSSA script to be developed also defines recursive behaviour.
Instead of recursive function calls, agents of a certain type are
created dynamically and provided with partial solutions which they
are ordered to expand.

6.2 CSSA Solution

The script NQUEENS in fig. 17 is best described by setting an ex-
ample for one specific N, say N=4.

After having created an agent NQ of type NQUEENS, a user specifies
the command

send FIND_SOLUTION(4) to NQ

Because N does not equal 1 (which would lead to the immediate
answer: "For one queen solution is : 1" [75-79]), NQ sends a
message FIND_SOLUTION to each of four newly created anonymous
agents of type NODE [84]. We want to identify these new agents as
N(1),N(2),N(3) and N(4). Each agent N(i), i=1,...,4 , is provided
with the information that a queen has been placed by NQ in column
i of the first row.This information is represented in the CSSA
script by putting the value i into the first element of the array
FIRST_ROW [83]. The other array elements retain the value 0 due to
default initialization [71].

In the following course of execution nothing remains to be done
for NQ. One can terminate it by sending a STOPQ message [89-93],
or let it survive when solutions for other sizes of the chessboard
shall be generated.

The current situation is skeletonized in the following tree struc-
ture:

21

m’% S

N(3) N (4)
t1,0,0,01 [2,0,0,0] [3,0,0,0] [4,0,0,0]

For example, N(3) 1is ordered to find a solution for the 4-queens
problem with already one queen placed in column 3 of the first
row.

The first action of each agent N(i) is to check whether it already
was provided with a complete solution. This would be the case if a
queen had been placed in some column of the last (N-th) row [if
not (Q(N) = 0),191].

The actions to he taken in this case are described later in this
section when the condition will be fulfilled for our example ex-
ecution. Now, for all agents N(i) this condition is not fulfilled.
So, they try to find allowable places for the next queen to be
placed in the current (second) row. This computation is done in
three separated loops.

The first Lloop [34-36] determines how many queens (ANZ_Q) are
already on the board. In our example, ANZ_Q will have the value 1
after leaving the Lloop.

In the second Lloop [38-46], all columns of the current row are
computed, which are not allowed for the next queen. To remember
this information, the j-th element (j€{1,...,4} of the boolean
array NOT_POSSIBLE will become true iff no queen may be placed
into the j-th column of the current row.

In the third Lloop [48-53], a new agent of type NODE will be
created, one for each allowed extension of the board. If no exten-
sion is possible (i.e. NOT_POSSIBLE (j) for j=1,...,4), the loop
has no effect.

The Llast action of each NODE agent is to request its own ter-
mination (56). Hence, all NODE agents are alive only as long as
necessary. After their work has been done they release their
processors for the execution of other NODE agents which they
possibly have created during their own lifetimes.

The coming into existence of new agents in our example execution
is represented in the following tree structure which is an expan-
sion of the previous one.

22

N(1)"—f N (2) N(3) N (4)
[1,0,0,0] (2,0,0,0] [3,0,0,0] [4,0,0,0]
N(5) N(6) N(7) N (8) N(9) N(10)

t1,3,0,0] [41,4,0,0] [2,4,0,0] [3,1,0,0] [4,1,0,0] [4,2,0,0]

| | l l

N(11) N(12) N(13) N(14)
(1,4,2,0]1 [2,4,1,0] [3,1,4,0] [4,1,3,0]

| l

N(15) N(16)
[2,4,1,3] [3,1,4,2]

During the construction of the solution 16 NODE agents have been
created. However, due to the self destruction of NODE agents this
number should not be misunderstood as the number of agents ex-
ecuting simultaneously on the available processors.

Agents N(5),N(11) ,N(14) and N(10) terminate without finding an ex-
tension of the given partial solution. For example, N(5) is
ordered to place a third queen into the third row with respect to
the partial solution depicted by the following board.

Obviously, this board cannot be expanded, and no new agent will be
created. Only agents N(15) and N(16) are provided with complete
solutions:

23

1 * *
4 * *
3 * *
4 * *
1 2 3 4 1 2 3 4

(boards for [2,4,1,3] and [3,1,4,2]

For their executions the previously mentioned condition

not (Q(N) = 0) is fulfilled. Therefore, their only task is to send
a message of success to the user. The envelope of this message is
constructed using the string variable ASW and sent to the user
(interface) by

send ANSWER(ASW) to interface reply to 0K;
The reply obligation is not really necessary. Its only purpose is

to enhance the attention of the human® user observing or not
observing messages being displayed on the screen.

24

7. Window Mechani

7.1 The Model

In this example CSSA is used to model the following computer sys-

tem:
(::>< ><::> O :Hosts
O:Gateways

Two host computers communicate via two interface modules which are
called gateways. Hi , i€{1,2} , can send (receive) a complete
message to (from) GWi whereas only packets are transmitted and
received between GW1 and GW2.

In the model, messages are character strings of variable Llengths
and the individual characters of the strings are packets.

> GW1 | {—>| GW2 |<

Each gateway provides two facilities:

¢ a transmitter (T) as one part of the gateway receives a
message m from "its" host and sends the characters of m to
the collector in the other gateway.

¢ a collector (C) as the other part receives packets from the
transmitter 1in the other gateway. When the packets of one
message are all received the concatenation of the packets
is sent to the host as one message.

We assume that several packets may be simultaneously in flight
between T and C. This extended model is described by the following

o B ' @

-
~ i '

ACKNOWLEDGE

@
SEND_MESS— |

RECEIVE_MESS

’

N o

|

RECEIVE_MEQE\j<::>

]

'
P

[’

1

/

COLLECT E
i

! SEND_ME
<::> f’/, _MESS

D

GW1

ACKNOWLEDGE GW2

25

In the CSSA solution all circled entities will become agents which
communicate via the operations labelling the arcs.

So H1 can send a message via T1 and C2 to H2 at the same time when
H2 is sending a message via T2 and C1 to H1. Therefore the most
effective realization of this CSSA agent structure would supply
one (micro-)processor for each of the Ti's and the Ci's.

Now we introduce the following realistic complications:

¢ packets need not reach the collector in the order they were
produced by the transmitter; that means packets can pass
each other;

¢ the transmission medium between the two gateways is unreli-
able so that packets can be totally lost.
(It should be noted that this second asssumption is in con-
trast to the CSSA model of computation which does not allow
the Lloss of messages. In the CSSA solution we therefore
simulated this unreliable transmission medium by generating
two agents of type FAULTY-CHANNEL (cf. fig. 19, 353-442),
which receive and normally forward all messages transmitted
between a collector and a transmitter. However, depending
on generated random numbers, some messages are received but
not transmitted, that means they are lost).

In this situation the communication between a transmitter and a
collector becomes most interesting.

We are faced with the problem of providing the hosts H1 and H2
with a reliable "virtual" transmission medium which is based on an
unreliable "physical" transmission medium.

In a simple solution of this problem the transmitter T would send
a packet p1 to the collector C, then wait for an acknowledgement,
then send a second packet p2, etc. Because the transmission medium
is unreliable not alone for packets but also for acknowledgements,
some timeout mechanism must be used when waiting for an acknowl-
edgement. When time is exhausted the packet not yet acknowledged
must be sent once more. The implementation of receiving duplics is
straightforward in this case.

However, this solution is not really satisfying, because it does

not wutilize the whole capacity of the transmission medium (more
than one packet may be in flight between T and C).

7.2 Communication between the Transmitter and the Collector

The CSSA scripts TRANSMITTER and COLLECTOR implement a mechanism
which 1is described informally in [Cerf,Kahn 74]. This so called
window mechanism works as follows:

The transmitter sends packets (in operation SEND_PACKET, 71-88) to
the collector. Received packets (operation COLLECT, 156-247) are
acknowledged by the collector. Instead of waiting for an acknowl-
edgement (operation ACKNOWLEDGE, 91-116) before the next packet
can be transmitted, the transmitter can hurry on ahead; so several

26

packets can be in flight without having been acknowledged.
Obviously, every packet must carry a unique identification
(sequence number) which allows the reconstruction of a message
from the individual packets. In order to guarantee the perception
of lost packets, the transmitter eventually must stop transmitting
new packets. Therefore a common upper bound for the maximum number
of packets in flight 1is agreed upon between the sender and the
receiver. This upper bound w is the size of the so called window,
In the window appears a part of the packet stream which starts
just behind the last packet already transmitted and acknowledged,
if any. The variable LWE.T is equal to the sequence number of the
leftmost packet within the transmitter's window (left window
edge) .

(——— window -————1

1 S e b .o b+w-1 .ie ...packet
—y— ~— ~ 7 " — stream
packets LWE.T possibly transmitted packets not yet

already but not vyet transmitted

acknowledged acknowledged

(the transmitter's window)

If all packets of the current window have been transmitted a next
packet can only be transmitted after having received an acknowl-
edgement a with LWE.T < a < LWE.T + W. The receipt of a indicates
that the collector has accepted all packets with sequence numbers
less than a and now is waiting for the packet with number a. This
allows LWE.T to be shifted to the right (LWE.T := a), thereby im-
plicitly advancing the right window edge.

However 1if a packet -or the acknowledgement itself- is lost, the
transmitter never would get the chance of transmitting a new
packet. Therefore some timeout mechanism must be used leading to
the assumption that a packet or an acknowledgement has been Llost.
Based on this hypothesis the packet at the left window edge will
be transmitted for a second time.

In our CSSA solution the retransmission of a packet is processed
in the 1idle_operation (60-66) of facet TRANSMISSION2 in script
TRANSMITTER.

Here we use the idle operation as a simulation of a timeout
mechanism, since no real time constructs are available in the
current version of CSSA.

An immediately subsequent retransmission of the same packet due to
the timeout mechanism is prohibited by setting the boolean varia-
ble IDLE_ENABLED to true and changing to facet TRANSMISSION1. So,
a next activation of the idle operation becomes only effective af-
ter an useful acknowledgement advancing the left window edge has
been received. In this implementation, every packet will be trans-
mitted at most two times. It should be noted that this number is
not the result of a principal decision. A maximal retransmission
rate of 3,4 or 100 times could have been programmed with the same
ease.

27

In facet TRANSMISSION the transmitter works according to the
following rules

1. The transmitter transmits packets with sequence numbers between
LWE.T and up to LWE.T + W - 1.
Each activation of the operation SEND_PACKET transmits exactly
one packet (81). The whole transmission mechanism is initiated
by the operation SEND_MESS (25-38) in facet START_TRANSMISSION
in which the transmitter sends a "sufficient" number of
SEND_PACKET-messages to itself (via procedure
ACTIVATE_TRANSMIT, 8-15).
Later new SEND_PACKET-messages are only produced 1in operation
ACKNOWLEDGE (98,99). The Llast packet of the currently trans-
mitted "host-message" is provided with the tag ENDE = true
77) .

2. The receipt of an acknowledgement with number N indicates that
the collector has received all packets with sequence numbers
less than N and the packet with number N being the first one
not yet received. Note that the acknowledgement N implicitly
acknowledges all packets with sequence number less than N. If
LWE.T < N < LWE.T + W, the left window edge LWE.T can be set to
N (103). Assuming the rest of the message to be transmitted is
long enough, N-LWE.T new SEND_PACKET-messages can be produced
(98); otherwise the transmitting of all remaining packets of
the current message is initiated (99). If the idle operation
was disabled before receipt of the acknowledgement, now it will
be enabled (104-107).

An acknowledgement with N < LWE.T 1is possible if it was
overtaken by a later one with a higher number. Such an acknowl-
edgement can simply be discarded. Only an information message
will be sent to the interface in this case.

An acknowledgement with N > LWE.T+W is not possible because at
most packet number LWE.T+W-1 can have been transmitted and
received before.

An acknouwledgement for a packet of an old message (MESS_ID <

CURRENT_MESS_ID, 92) has no effect at all.

3. On timeout (no ACKNOWLEDGE- or SEND_PACKET - message can be

enabled) the packet with sequence number LWE.T will be
retransmitted if the current facet is TRANSMISSIONZ2.

The Lleft edge LWE.C of the collector's window (fig. 20) denotes
the least packets number which has not yet been received.

28

I—— window —ﬁ

s e b o o o b+W"1 e e o
1) ~— —) S— ~ __J
received and LWE.C possibly received not yet received

acknowledged d
not yet received

(the collector's window)

Possibly received packets with sequence numbers greater than LWE.C
up to the right window edge LWE.C + W - 1 (window packets) are
stored in the relation R under their (relative) "window position".
Depending on the received packet number CHAR_NO in operation
COLLECT the following actions take place:

1. CHAR_NO = LWE.C (179-242):
Let J be the unique number with 0 < J < W such that all packets
with sequence numbers less or equal to LWE.C + J have been
received but the packet with number LWE.C + J + 1 not yet being
received. Then the currently received first part of the "host-
message" can be prolonged by the substring defined by packet
numbers LWE.C,LWE.C+1,...,LWE.C + J (194-205).
The window is adjusted by setting LWE.C to LWE.C + J + 1 and
the relation R is updated as an image of the new window
(217-236) .
As acknowledgement the number of the new left window edge is
sent to the transmitter (207). This implicitly acknowledges
packets with numbers less than the index of the new left windouw
edge. When the whole "host-message" has been received it is
transmitted to the destination host (184,209-210).

2. LWE.C < CHAR_NO < LWE.C + W - 1:

The currently received packet 1is not yet acknowledged but
stored in the relation R (173-176). The window is not "moved".

3. CHAR_NO < LWE.C:

The currently received packet is a duplicate the original of
which already has been received. From the collector's point of
view the receipt of a duplicate serves as a hint that the (im-
plicit or explicit) acknowledgement for this packet might have
been lost. Therefore the current left window edge LWE.C is sent
as acknowledgement once again (243).

4. CHAR_NO > LWE.C + W - 1 is not possible.

29

LITERATURE

[Bloom 79]

[Lis,Sny,
Atk,Sch 77]

[FRV 81]

[FRv 82]

[Cerf,Kahn 74]

Bloom, Toby : Synchronization Mechanisms for
Modular Programming Languages
MIT/LCS/TR-211, Jan. 1979

Liskov,B.H.; Snyder,A.; Atkinson,R.;Schaffert,C.
: Abstraction Mechanisms in CLU
Comm.ACM (20,8), Aug. 1977, pp564-576

Fischer,Hans Ludwig; Raulefs,Peter; Voss,Hans
CSSA-Projekt, Arbeitshericht April 1979 - Marz
1981

Memo SEKI-BN-81-02, Institut fur Informatik,
Universitdat Bonn, 1981 (in german)

The Programming Language CSSA for Multi-
computersystems

SEKI Report, Institut fir Informatik 111,
Universitat Bonn, 1982

Cerf,V.6.; Kahn,R.E. : A Protocol for Packet Net-
work Intercommunication

IEEE Transactions on Communications, Vol-Com-22,
No.5, May 1974, pp637-648

30

APPENDIX

fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.
fig.

VNV WN =

-
-0
o

11b
12
13
14
15
16
17
18
19
20

e oo

One Slot Buffer Script

One Slot Buffer Execution Protocol
Bounded Buffer Script

Bounded Buffer Execution Protocol
Bounded Buffer Monitor

Protected Buffer Script

Protected Buffer Execution Protocol
Protected Buffer Monitor

Readers Priority Script

Readers Priority Execution Protocol
Readers Priority Monitor

Readers Priority Protected Resource Module
First Come First Serve Monitor
Alarmclock Script (Wrong Solution)
Alarmclock Script (Correct Solution)
Alarmclock Execution Protocol
Alarmclock Monitor

N-Queens Script

N-Queens Execution Protocol

Window Mechanism Script

Window Mechanism Execution Protocol

A1

A2

A4

AS

A8

A9

A11
A15
A16
A18
A21
A22
A23
A24
A25
A26
A29
A30
A32
A37
A4S

Al

BMS-CSSA-COMPILER

1981/12/01 11:1¢

DEFAULT-OPTIONS: NOTERM,NOTEST, CHECK, OBJECT, SOURCE,NOSTRUCT, XREF,RESWD=A,MAXP= 99,MAXE= 99,MAXD=
OPTIONS IN USE: NOTERM,NOTEST, CHECK, OBJECT, SOURCE, STRUCT, XREF,RESWD=A,MAXP= 99,MAXE= 99,MAXD=
el mm 2 mmmm e c e pmmm—fmm == m=§ e pmmmnfmm—=p====T7~=| BLOCKNESTING
1 type ONE_SLOT_BUFFER is script +1
2
3 var string: BUFFER;
4
E) facethead READ; |
6
7 facet WRITE s +2
8 public: WR;
9
10 operation WR(string: MESSAGE) is +3
11 BUFFER := MESSAGE;
12 replace by READ;
13 endoperation -3
14 endfacet I-Z
15 | |*1
16 facet READ is lu
17 public: RD;
18 |
19 operation RD is +5
20 reply (BUFFER);
21 replace by WRITE;
22 endoperation -5
23 endfacet I-‘
24 | *1
25 initial WRITE
26 |
27 endscript -1
BMS-CSSA-COMPILER - DATE OF RELEASE: 30 SEP 1981 NO ERROR DETECTED

END OF COMPILING ON 1981/12/01 AT 11:16:06.00
COMPILE-TIME (CPU) = 0.85 SEC.
NUMBER OF SOURCE-LINES READ = 27
NUMBER OF OBJECT-RECORDS GENERATED =

RETURNCODE = 0

EXECUTION-TIME = 15.00 SEC.

NUMBER OF TOKENS = 62
302

#%% CROSS-REFERENCE-TABLE ##

BUFFER VARIABLE:STRING 3 11 20
MESSAGE CONSTANT:STRING 10 11
ONE_SLOT_BUF=USER_DEFINED_TYPE:SCRIPT 1

RD OPERATION: OPER 17 19

READ FACET 5 12 16
WR OPERATION:OPER 8 10

WRITE FACET T .21 25

- MULTIPLE OCCURENCES ON THE SAME LINE ARE MARKED WITH *+°.

- TOTAL NUMBER OF IDENTIFIERS USED IN THIS PROGRAM: 7

fig. 1 : One Slot Buffer Script

AL

CSSA-SIMULATION-SYSTERMNM

P1 (INTERFACE)
. PROCESSOR .
P2 CONFIGURATION P3
P4 PS P6 P?
| P S S— S
NSNS EEEEEE RSN ESSENERENE mmmnm

PROGRAM GENERATED ON 1981/12/01 AT 11:15:51.00
BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

PROTOCOL OF CSSA SESSION ON 1981/12/01 AT 11:48:14.00

A RSN SN ISR EEOEESCIESIEEIEIIIETIIEES

>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> DISPLAY K==
IDENTIFIER TYPE VALUE
ONE_SLOT_BUFFER SCRIPT ONE_SLOT_BUFFER
> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> VAR AGENT : 0SB := NEW ONE_SLOT_BUFFER (==
>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> OPER : RD,WR; PORT : P (==
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> OBSERVE; SEND RD TO 0SB REPLY TO P ==
+e4 0.000 P1: INTERFACE(1) SENDS RD() ,REPLY TO: P TO ONE_SLOT_BUFFER(1)
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> ;RUN Cu=
+ee 0.000 P2: ONE_SLOT_BUFFER(1) IS IDLE
e 0.100 P2: ONE_SLOT_BUFFER(1) RECEIVES RD() ,REPLY TO: P
FROM INTERFACE (1)
e 0.100 P2: ONE_SLOT_BUFFER(1) IS IDLE
>> 0.100 SYSTEM TERMINATED
>>> 0.100 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND WR("A") TO 0SB;RUN o=
+ee 0.100 P1: INTERFACE(1) SENDS WR(STRING:"A") TO ONE_SLOT_BUFFER(1)
‘e 0.200 P2: ONE_SLOT_BUFFER(1) RECEIVES WR(STRING:"A")
FROM INTERFACE (1)
+ee 0.200 P2: ONE_SLOT_BUFFER(1) STARTING OPERATION WR(STRING:
QAI)
‘44 0.400 P2: ONE_SLOT_BUFFER(1) PERFORMS FACETTING : WRITE --> READ
‘e 0.400 P2: ONE_SLOT_BUFFER(1) STARTING OPERATION RD()
‘44 0.500 P2: ONE_SLOT_BUFFER(1) SENDS *REPLY(STRING:"A")
TO INTERFACE (1)
+es 0.600 P2: ONE_SLOT_BUFFER(1) PERFORMS FACETTING : READ --> WRITE
+oe 0.600 P2: ONE_SLOT_BUFFER(1) IS IDLE
ONE_SLOT_BUFFER(1)
>> 1.100 SYSTEM TERMINATED
>> 1.100 INTERFACE(1) : ENTER CSSA COMMAND -

fig. 2 : One Slot Buffer Execution Protocol

==> MAILBOX
MAILBOX OF INTERFACE (1)

A3

(1) *REPLY(STRING:"A")

>>> 1.100 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND RD TO 0SB REPLY TO P; SEND WR("B") TO OSB;RUN
et 1.100 P1: INTERFACE(1) SENDS RD(),REPLY TO: P TO ONE_SLOT_BUFFER(1)
44 1.100 P1: INTERFACE(1) SENDS WR(STRING:"B") TO ONE_SLOT_BUFFER(1)
e 1.200 P2: ONE_SLOT_BUFFER(1) RECEIVES RD(),REPLY TO: P
, FROM INTERFACE (1)
PO 1.200 P2: ONE_SLOT_BUFFER(1) IS IDLE
‘e 1.300 P2: ONE_SLOT_BUFFER(1) RECEIVES WR(STRING:"B")
FROM INTERFACE (1)
P 1.300 P2: ONE_SLOT_BUFFER(1) STARTING OPERATION WR(STRING:
"B")
e 1.500 P2: ONE_SLOT_BUFFER(1) PERFORMS FACETTING : WRITE --> READ
e 1.500 P2: ONE_SLOT_BUFFER(1) STARTING OPERATION RD()
et 1.600 P2: ONE_SLOT_BUFFER(1) SENDS *REPLY(STRING:"B")
TO INTERFACE (1)
‘et 1.700 P2: ONE_SLOT_BUFFER(1) PERFORMS FACETTING : READ --> WRITE
e 1.700 P2: ONE_SLOT_BUFFER(1) IS IDLE
ONE_SLOT_BUFFER(1)
>>> 2.200 SYSTEM TERMINATED
>>> 2.200 INTERFACE(1) : ENTER CSSA COMMAND -

==> MAILBOX
MAILBOX OF INTERFACE(1)

(1) *REPLY(STRING:"A")
(2) *REPLY(STRING:"B")

>>> 2.200 INTERFACE(1) : ENTER CSSA COMMAND -

==> DUMP 0SB

++e 2.200 RUNTIME STACK OF ONE_SLOT_BUFFER(1)

FACET WRITE

LINE: 7

ENV: SCRIPT ONE_SLOT_BUFFER

ENV:
LINE: 27

BUFFER = "B"

SCRIPT ONE_SLOT_BUFFER

s esessssssssessecessccsassesn s

> 2.200 INTERFACE(1) : ENTER CSSA COMMAND -
==> TERMINATE
t4e 2.200 ALL EXISTING AGENTS:

AGENT [Facer | oPERATION | MAILBOX

P1: INTERFACE(1) *
P2: ONE_SLOT_BUFF | WRITE

*REPLY #*REPLY

CSSA-SESSION-STATISTICS

SESSION STARTED AT 11:48:01.00

SESSION TERMINATED AT 11:51:08.00 ON 1981/12/01

REAL-TIME USED : 188.00 SEC.
CPU-TIME USED : 0.88 SEC.
SIMULATION TIME USED :
NUMBER OF AGENTS CREATED : 1
NUMBER OF MESSAGES SENT : 6

2.2000 SEC.

fig. 2

-continued-

{m=

L4 1]

==

{m=

{as

VNV EAEWN

Ak

mmeedocmeqeccmtemecRmmmetmmme e pmmmefmm et =G e pmmemfemmmb====T-=| B LOCKNESTING
type BOUNDED_BUFFER is Tcrlpt(lnt: MAX) assert MAX > 0 +1

public: INS,REM;

functionhead MOD(int: P1,P2) returns int external;
var array (0..MAX-1) of string: BUFFER;

var int: INS_COUNT,REM_COUNT := 0;

facethead BUFFER_EMPTY;
facethead BUFFER_FULL;

facethead NO_CONSTRAITT;

initial BUFFER_EMPTY

endscript

fig. 3 : Bounded Buffer Script

facet BUFFER_EMPTY is +2
| include: INS;
endfacet -2
I [*1
facet BUFFER_FULL is +3
| include: REM;
endfacet -3
| *1
facet NO_CONSTRAINT {s +4
include: INS,REM;
endfacet o4
[*1
operation INS(string: MESSAGE) {s +5
BUFFER(INS_COUNT) := MESSAGE;
INS_COUNT := MOD(INS_COUNT + 1,MAX);
1f INS_COUNT = REM_COUNT then replace by BUFFER_FULL; +6
else replace by NO_CONSTRAINT; endif; -6
endoperation |-5
] *1
operation REM is +7
reply (BUFFER(REM_COUNT));
REM_COUNT := MOD(REM_COUNT + 1,MAX);
1f INS_COUNT = REM_COUNT then replace by BUFFER_EMPTY; |+s
else replace by NO_CONSTRAINT; endif; -8
endoperation 1;7

-1

AS

PROGRAM GENERATED ON 1981/11/26 AT 11:25:31.00
BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

PROTOCOL OF CSSA SESSION ON 1981/11/27 AT 11:11:40.00

>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> VAR AGENT : BB := NEW BOUNDED_BUFFER(3) Cnm
>>> D0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> OPER : INS,REM; PORT : P ==
>»> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==n> ;DISPLAY ==
IDENTIFIER TYPE VALUE
BB AGENT BOUNDED_BUFFER(1)
BOUNDED_BUFFER SCRIPT BOUNDED_BUFFER
INS LITERAL
P PORT
REM LITERAL
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> OBSERVE; SEND INS("111") TO BB; SEND INS("222") TO BB;RUN ==
++4 0.000 P1: INTERFACE(1) SENDS INS(STRING:"111") TO BOUNDED_BUFFER(1)
+4+4 0.000 P1: INTERFACE(1) SENDS INS(STRING:"222") TO BOUNDED_BUFFER(1)
+ee 0.000 P2: BOUNDED_BUFFER(1) IS IDLE
++4 0.100 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING:"111")
FROM INTERFACE (1)
tee 0.900 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
"111")
NO_CONSTRAINT
+44 0.500 P2: BOUNDED_BUFFER(1) IS IDLE
‘e 0.500 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING:"222")
FROM INTERFACE (1)
+ee 0.500 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
"222")
NO_CONSTRAINT
+44 0.900 P2: BOUNDED_BUFFER(1) IS IDLE
>>> 0.900 SYSTEM TERMINATED
>>> 0.900 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND REM TO BB REPLY TO P; SEND REM TO BB REPLY TO P;SEND REM TO BB REPLY TO P {==
e 0.900 P1: INTERFACE(1) SENDS REM() ,REPLY TO: P TO BOUNDED_BUFFER(1)
+++4 0.900 P1: INTERFACE(1) SENDS REM() ,REPLY TO: P TO BOUNDED_BUFFER(1)
e 0.900 P1: INTERFACE(1) SENDS REM(),REPLY TO: P TO BOUNDED_BUFFER(1)
>>> 0.900 INTERFACE(1) : ENTER CSSA COMMAND -
==> RUN; MAILBOX; MAILBOX BB ==
++4 1.000 P2: BOUNDED_BUFFER(1) RECEIVES REM() ,REPLY TO: P
FROM INTERFACE (1)
++4 1.000 P2: BOUNDED_BUFFER(1) STARTING OPERATION REM()
e 1.100 P2: BOUNDED_BUFFER(1) SENDS *REPLY(STRING:"111")
TO INTERFACE (1)
+44 1.100 P2: BOUNDED_BUFFER(1) RECEIVES REM(),REPLY TO: P

FROM INTERFACE (1)
NO_CONSTRAINT

+++ 1.400 P2: BOUNDED_BUFFER(1) STARTING OPERATION REM()

+++ 1.500 P2: BOUNDED_BUFFER(1) SENDS *REPLY(STRING:"222")
TO INTERFACE (1)

+++ 1.500 P2: BOUNDED_BUFFER(1) RECEIVES REM() ,REPLY TO: P

FROM INTERFACE (1)
BUFFER_EMPTY

‘e 1.800 P2: BOUNDED_BUFFER(1) IS IDLE

e 1.900 P1: INTERFACE(1) RECEIVES *REPLY(STRING:"111")
FROM BOUNDED_BUFFER(1)

4+ 1.900 P1: INTERFACE(1) RECEIVES *REPLY(STRING:"222")
FROM BOUNDED_BUFFER(1)

>>> 2.000 SYSTEM TERMINATED

fig. 4 : Bounded Buffer Execution Protocol

A6

MAILBOX OF INTERFACE (1)

(1) *REPLY(STRING:"111")
(2) *REPLY(STRING:"222")

MAILBOX OF BOUNDED_BUFFER(1)

(1) REM() ,REPLY TO: P

>>> 2.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND INS("333") 7O BB; SEND INS("444"™) TO BB; SEND INS("S5S55") TO BB;RUN Cum
+e 2.000 P1: INTERFACE(1) SENDS INS(STRING:"333") TO BOUNDED_BUFFER(1)
e 2.000 P1: INTERFACE(1) SENDS INS(STRING:"444") TO BOUNDED_BUFFER(1)
e 2.000 P1: INTERFACE(1) SENDS INS(STRING:"555") TO BOUNDED_BUFFER(1)
+et 2.100 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING:"333")

FROM INTERFACE (1)
4t 2.100 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:

"333")
NO_CONSTRAINT
e 2.500 P2: BOUNDED_BUFFER(1) STARTING OPERATION REM()
e 2.600 P2: BOUNDED_BUFFER(1) SENDS *REPLY(STRING:"333")

TO INTERFACE (1)
e 2.600 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING:"444")

FROM INTERFACE (1)
tee 2.600 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING:"555")

FROM INTERFACE (1)
BUFFER_EMPTY

+ee 2.900 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
"444")
e 3.000 P1: INTERFACE (1) RECEIVES #*REPLY(STRING:"333")

FROM BOUNDED_BUFFER(1)
NO_CONSTRAINT

44 3.300 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
"555")
>>> 3.300 REAL-TIME LIMIT EXCEEDED
>>> 3.300 INTERFACE(Y) : ENTER CSSA COMMAND -
==> SEND INS("666") TO BB; SEND INS("777") TO BB;RUN (n=
e 3.300 P1: INTERFACE(1) SENDS INS(STRING:"666") TO BOUNDED_BUFFER(1)
e 3.300 P1: INTERFACE(1) SENDS INS(STRING:"777") TO BOUNDED_BUFFER(1)
e 3.600 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING:"666")
FROM INTERFACE (1)
e 3.600 P2: BOUNDED_BUFFER(1) RECEIVES INS(STRING:"777")

FROM INTERFACE (1)
NO_CONSTRAINT

+++ 3.700 'P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
"666")
BUFFER_FULL
+e 4.100 P2: BOUNDED_BUFFER(1) IS IDLE
> 4.100 SYSTEM TERMINATED
>>> 4.100 INTERFACE(1) : ENTER CSSA COMMAND -
==> MAILBOX; MAILBOX BB ==

MAILBOX OF INTERFACE(1) :

(1) *REPLY(STRING:"111")
(2) *REPLY(STRING:"222")
(3) *REPLY(STRING:"333")

MAILBOX OF BOUNDED_BUFFER(1) :

(1) INS(STRING:"777")

>>> 4.100 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND REM TO BB REPLY TO P;RUN {n=
+ee 4.100 P1: INTERFACE(1) SENDS REM() ,REPLY TO: P TO BOUNDED_BUFFER(1)
+4+ 4.200 P2: BOUNDED_BUFFER(1) RECEIVES REM() ,REPLY TO: P
FROM INTERFACE (1)
+ee 4.200 P2: BOUNDED_BUFFER(1) STARTING OPERATION REM()
e 4.300 P2: BOUNDED_BUFFER(1) SENDS *REPLY(STRING: "444")

TO INTERFACE (1)
NO_CONSTRAINT
4+ 4.600 P2: BOUNDED_BUFFER(1) STARTING OPERATION INS(STRING:
"7

fig. 4 -continued-

BUFFER_FULL

4 $.000 P2: BOUNDED_BUFFER(1) IS IDLE

e $.100 P1: INTERFACE(1) RECEIVES *REPLY(STRING: "444")
FROM BOUNDED_BUFFER(1)

>>> 5.200 SYSTEM TERMINATED

>>> 5.200 INTERFACE(1) : ENTER CSSA COMMAND -

==> MAILBOX

MAILBOX OF INTERFACE(1)

AR

(1) *REPLY(STRING:"111")
(2) *REPLY(STRING:"222")
(3) *REPLY(STRING:"333")
(4) *REPLY(STRING:"444")

>>> 5.200 INTERFACE(1) : ENTER CSSA COMMAND -

==> MAILBOX BB

MAILBOX OF BOUNDED_BUFFER(1)

>>> 5.200
==> DUMP BB

INTERFACE(1) : ENTER CSSA COMMAND -

44 5.200 RUNTIME STACK OF BOUNDED_BUFFER(1)
FACET BUFFER_FULL
ENV: SCRIPT BOUNDED_BUFFER
LINE: 17
SCRIPT BOUNDED_BUFFER
ENV:
LINE: 42
MAX = 3
ANONYM = (0..2)
BUFFER(D) = "777"
BUFFER(1) = "555"
BUFFER(2) = "666"
INS_COUNT = 1
REM_COUNT = 1
>>> 5.200 INTERFACE(1) : ENTER CSSA COMMAND -
==> TERMINATE
+ee 5.200 ALL EXISTING AGENTS:
AGENT [FAceT T OPERATION |

P1: INTERFACE(1) ¥

P2: BOUNDED_BUFFE BUFFER_FU

*REPLY *REPLY *REPLY *REPLY

CSSA-SESSION-STATISTICS

SESSION STARTED AT 11:11:19.00
SESSION TERMINATED AT 11:20:26.00 ON 1981/11/27

REAL-TIME USED
CPU-TIME USED

547.00 SEC.
1.88 SEC.

SIMULATION TIME USED : 5.2000 SEC.
NUMBER OF AGENTS CREATED : 1
NUMBER OF MESSAGES SENT : 15

fig. 4 -continued-

==

{m=

==

{n=

A8

bounded _buffer = monitor is create, append, remove;

am= array[message};
rep = record(slots:am, max:int, nonempty, nonfull: condition)

create = proc(n:int) returns (cvt);
return (rep${slots:aménew(),
maxn,
nonempty,nonfull: condition§create()});
end create;

append = proc(buffer:cvt, x:message) ;
if am§size(buffer.slots) = max
then condition$wait(buffer.nonfull);
end;
am$addh(buffer.siots,x);
condition§signal(buffer.nonempty);
end append;

remove = proc(buffer:cvt) returns (message);

if am8size(buffer.slots) = 0
then condition$wait(buffer.nonempty);
end;

x:message := am$reml|(slots);

condition8signal(buffer.nonfull);

return (x);

end remove,

end bounded_buffer;

fig. 5 : Bounded Buffer Monitor

VO NONHAWN =

Al

[-]

+ 1 $=—==2 + Jemmmpmm b ====§ +
type PROTECTED_BUFFER is
script

public : INS,REM;
type DATA_BASE is Tcrlpt('nt: SIZE)
var array(1..SIZE) of string: FILE;

facet RD_OR_WR {s
public: WR,RD,RD_ACKN;
var int: RCOUNT := 0,

operation WR(string: DATA; int: KEY) {s
reply;
if KEY > 0 and KEY <= SIZE then
FILE(KEY) := DATA; endif;
endoperation

operation RD(int: KEY) {s

RCOUNT := RCOUNT + 1;

if KEY > 0 and KEY <= SIZE then
reply (FILE(KEY)); endif;

endoperation

operation RD_ACKN(int: COUNT) assert COUNT = RCOUNT is
reply;
RCOUNT := 0;

endoperation

endfacet
fnitial RD_OR_WR

endscript;

(* back on top level of script PROTECTED_BUFFER *)

var DATA_BASE : DB;

var int : REM_COUNT,INS_COUNT;

functionhead MOD(int : P1,P2) returns int external;
var int : MAX;

facethead BUFFER_EMPTY;
facethead BUFFER_FULL;
Taccthead NO_CONSTRAINT;

facet CREATION is
public : CREATE;

operation CREATE (->MAX) is
if MAX > 0 then
DB := new DATA_BASE (MAX);
replace by BUFFER_EMPTY;
else print(" Buffer size must be greater than 0 ");
endif;

fig. 6 : Protected Buffer Script

BLOCKNESTING

+1

*2

+3

+9

|+10
+11

-1

AlD

BMS-CSSA-COMPILER 1981/12/07 16:3t
SRR PG PRI MY + . 6————+ 7--| BLOCKNESTING

$7 || endoperation |-10
58 |endfacet |-9
s9 || | *4

60 facet BUFFER_EMPTY is +12
61 | include : INS;

62 endfacet -12
63 | 4

64 facet NO_CONSTRAINT is +13
65 | include : INS,REM;

66 endfacet -13
67 | *1

68 facet BUFFER_FULL {s +14
69 || tnclude : REM;

70 endfacet =14
71 | %4

72 operation INS(string : M) s +15
73 port : ACCEPTED;

74 oper : WR;

75 —emmeccecc—————

76 send WR(M,INS_COUNT + 1) to DB reply to ACCEPTED;

7 INS_COUNT := MOD(INS_COUNT + 1, MAX);

78 wait ACCEPTED;

79 if INS_COUNT = REM_COUNT then replace by BUFFER_FULL; +16
80 else replace by NO_CONSTRAINT;

81 endif; =16
82 endoperation |-1S
83 | %1

84 operation REM {s +17
85 port : ACCEPTED;

86 var string : M;

87 oper : RD;

88 || -—-m=mememmme-

89 send RD(REM_COUNT + 1) to DB reply to ACCEPTED;

90 REM_COUNT := MOD(REM_COUNT + 1, MAX);

91 wait ACCEPTED(M);

92 reply (M);

93 if REM_COUNT = INS_COUNT then replace by BUFFER_EMPTY; +18
94 else replace by NO_CONSTRAINT;)

95 endif; -18
96 endoperation |-17
o7 *1

98 ifnitial CREATION

99
100 endscript -1

fig. 6 -continued-

All

PROGRAM GENERATED ON 1981/12/07 AT 16:36:49.00

BY BMS-CSSA-COMPILER (VERS.

30 SEP 1981)

PROTOCOL OF CSSA SESSION ON 1981/12/07 AT 16:54:19.00

>>> 0.000 INTERFACE (1) ENTER CSSA COMMAND -~
==> DISPLAY =n=
IDENTIFIER TYPE VALUE
DATA_BASE SCRIPT DATA_BASE
PROTECTED_BUFFER SCRIPT PROTECTED_BUFFER
>»> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> VAR AGENT : PB := NEW PROTECTED_BUFFER Cu=
>>> 0.000 INTERFACE (1) ENTER CSSA COMMAND -
==> QOPER CREATE,INS,REM; PORT : P ==
>>> 0.000 INTERFACE (1) ENTER CSSA COMMAND -
==> OBSERVE; SEND CREATE(3) TO PB;RUN <==
‘e 0.000 P1: INTERFACE(1) SENDS CREATE(INT:3) TO PROTECTED_BUFFER(1)
++d 0.000 P2: PROTECTED_BUFFER(1) IS IDLE
‘e 0.100 P2: PROTECTED_BUFFER(1) RECEIVES CREATE(INT:3)
FROM INTERFACE (1)
‘e 0.100 P2: PROTECTED_BUFFER(1) STARTING OPERATION CREATECINT:
3)
‘e 0.300 P2: PROTECTED_BUFFER(1) CREATES DATA_BASE (1) (INT:
3)
e 0.300 P3: DATA_BASE(1) IS IDLE
BUFFER_EMPTY
FOUN 0.400 P2: PROTECTED_BUFFER(1) IS IDLE
>>> 0.400 SYSTEM TERMINATED
> 0.400 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND REM TO PB REPLY TO P; RUN <==
+ee 0.400 P1: INTERFACE(1) SENDS REM() ,REPLY TO: P TO PROTECTED_BUFFER(1)
e 0.500 P2: PROTECTED_BUFFER(1) RECEIVES REM(),REPLY TO: P
FROM INTERFACE (1)
++e 0.500 P2: PROTECTED_BUFFER(1) IS IDLE
>>> 0.500 SYSTEM TERMINATED
>>> 0.500 INTERFACE (1) ENTER CSSA COMMAND -
==> SEND INS("A") TO PB;RUN {nm
o4 0.500 P1: INTERFACE(1) SENDS INS(STRING:"A") TO PROTECTED_BUFFER(1)
et 0.600 P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING:"A")
FROM INTERFACE (1)
++4 0.600 P2: PROTECTED_BUFFER(1) STARTING OPERATION INS(STRING:
"AT)
‘e 0.700 P2: PROTECTED_BUFFER(1) SENDS WR(STRING:"A",INT:
1),REPLY TO: ACCEPTED TO DATA_BASE (1)
‘e 0.900 P2: PROTECTED_BUFFER(1) IS IOLE
ACCEPTED FROM PROTECTED_BUFFER(1)
++4 1.600 P3: DATA_BASE(1) STARTING OPERATION WR(STRING:
"A",INT:1)
++4 1.700 P3: DATA_BASE(1) SENDS *REPLY() TO PROTECTED_BUFFER(1)
+e 4 1.900 P3: DATA_BASE(1) IS IDLE
‘e 2.600 P2: PROTECTED_BUFFER(1) RECEIVES #*REPLY() FROM DATA_BASE (1)
NO_CONSTRAINT
et 2.800 P2: PROTECTED_BUFFER(1) STARTING OPERATION REMQ)
‘e 2.900 P2: PROTECTED_BUFFER(1) SENDS RD(INT:1),REPLY TO: ACCEPTED
TO DATA_BASE (1)
e 3.100 P2: PROTECTED_BUFFER(1) IS IDLE
+4++ 3.600 P3: DATA_BASE(1) RECEIVES RD(INT:1),REPLY TO: ACCEPTED
FROM PROTECTED_BUFFER(1)
‘e 3.600 P3: DATA_BASE(1) STARTING OPERATION RDCINT:1)
e 3.900 P3: DATA_BASE(1) SENDS *REPLY(STRING:"A") TO PROTECTED_BUFFER(1)
e 3.900 P3: DATA_BASE(1) IS IDLE
+ee 4.600 P2: PROTECTED_BUFFER(1) RECEIVES #REPLY(STRING:
"A") FROM DATA_BASE (1)
‘e 4.700 P2: PROTECTED_BUFFER(1) SENDS *REPLY(STRING:"A")
TO INTERFACE (1)
BUFFER_EMPTY
fig. 7 : Protected Buffer Execution Protocol

Al2

e 4.900 P2: PROTECTED_BUFFER(1) IS IDLE
PROTECTED_BUFFER (1)
> 5.600 SYSTEM TERMINATED
> 5.600 INTERFACE(1) : ENTER CSSA COMMAND -
==> MAILBOX; SEND INS("B") TO PB; SEND INS("C") TO PB;RUN K==
MAILBOX OF INTERFACE (1)
(1) *REPLY(STRING:"A")
e 5.600 P1: INTERFACE(1) SENDS INS(STRING:"B") TO PROTECTED_BUFFER(1)
+ee 5.600 P41: INTERFACE(1) SENDS INS(STRING:"C") TO PROTECTED_BUFFER(1)
*ee $.700 P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING:"B")
FROM INTERFACE (1)
‘e 5.700 P2: PROTECTED_BUFFER(1) STARTING OPERATION INS(STRING:
"B")
e $.800 P2: PROTECTED_BUFFER(1) SENDS WR(STRING:"B",INT:
2) ,REPLY TO: ACCEPTED TO DATA_BASE (1)
44 5.800 P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING:"C")
FROM INTERFACE (1)
+ee 6.000 P2: PROTECTED_BUFFER(1) IS IDLE
ACCEPTED FROM PROTECTED_BUFFER(1)
e 6.700 P3: DATA_BASE(1) STARTING OPERATION WR(STRING:
“B",INT:2)
‘e 6.800 P3: DATA_BASE(1) SENDS #REPLY() TO PROTECTED_BUFFER(1)
+ee 7.000 P3: DATA_BASE(1) IS IDLE
‘et 7.700 P2: PROTECTED_BUFFER(1) RECEIVES #*REPLY() FROM DATA_BASE (1)
NO_CONSTRAINT
e 7.900 P2: PROTECTED_BUFFER(1) STARTING OPERATION INS(STRING:
ey
‘e 8.000 P2: PROTECTED_BUFFER(1) SENDS WR(STRING:"C",INT:
3),REPLY TO: ACCEPTED TO DATA_BASE (1)
‘e 8.200 P2: PROTECTED_BUFFER(1) IS IDLE
ACCEPTED FROM PROTECTED_BUFFER(1)
+ee 8.700 P3: DATA_BASE(1) STARTING OPERATION WR(STRING:
"C",INT:3)
‘et 8.800 P3: DATA_BASE(1) SENDS *REPLY() TO PROTECTED_BUFFER(1)
e 9.000 P3: DATA_BASE(4) IS IDLE
‘e 9.700 P2: PROTECTED_BUFFER(1) RECEIVES *REPLY() FROM DATA_BASE (1)
NO_CONSTRAINT
+4e 9.900 P2: PROTECTED_BUFFER(1) IS IDLE
> 10.000 SYSTEM TERMINATED
> 10.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND INS("D") TO PB; SEND INS("E") TO PB;RUN K==
+4e 10.000 P41: INTERFACE(1) SENDS INS(STRING:"D") TO PROTECTED_BUFFER(1)
+ee 10.000 P1: INTERFACE(1) SENDS INS(STRING:"E") TO PROTECTED_BUFFER(1)
+ee 10.100 P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING:"D")
FROM INTERFACE (1)
e 10.100 P2: PROTECTED_BUFFER(1) STARTING OPERATION INS(STRING:
"D")
e 10.200 P2: PROTECTED_BUFFER(1) SENDS WR(STRING:"D",INT:
1) ,REPLY TO: ACCEPTED TO DATA_BASE (1)
‘e 10.200 P2: PROTECTED_BUFFER(1) RECEIVES INS(STRING:"E")
FROM INTERFACE (1)
‘e 10.400 P2: PROTECTED_BUFFER(1) IS IDLE
ACCEPTED FROM PROTECTED_BUFFER(1)
‘e 11.100 P3: DATA_BASE(1) STARTING OPERATION WR(STRING:
: *“D",INT:1)
e 11.200 P3: DATA_BASE(1) SENDS *REPLY() TO PROTECTED_BUFFER(1)
e 11.400 P3: DATA_BASE(1) IS IDLE
+ee 12.100 P2: PROTECTED_BUFFER(1) RECEIVES *REPLY() FROM DATA_BASE(1)
BUFFER_FULL
e 12.300 P2: PROTECTED_BUFFER(1) IS IDLE
> 12.300 SYSTEM TERMINATED
>>> 12.300 INTERFACE (1) ENTER CSSA COMMAND -
==> NOOBSERVE; SEND REM TO PB REPLY TO P; SEND REM TO PB REPLY TO P; RUN C==
>>> 21.400 SYSTEM TERMINATED !
> 21.400 INTERFACE(1) : ENTER CSSA COMMAND -
==> MAILBOX; £=m
MAILBOX OF INTERFACE (1)
(1) *REPLY(STRING: "A")
(2) #REPLY(STRING:"B")
(3) *REPLY(STRING:"C")
(4) *REPLY(STRING:"D")

fig. 7 -continued-

A3

>>> 21.400 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND REM TO PB REPLY TO P; SEND REM TO PB REPLY TO P;RUN
>>> 24.500 SYSTEM TERMINATED

>>> 24.500 INTERFACE(1) : ENTER CSSA COMMAND -
==> MAILBOX
MAILBOX OF INTERFACE(1) :

(1) *REPLY(STRING:"A")
(2) *REPLY(STRING:"B")
(3) *REPLY(STRING:"C")
(4) *REPLY(STRING:"D")
(5) *REPLY(STRING:"E")

>>> 24.500 INTERFACE(1) : ENTER CSSA COMMAND -
==> DUMP DATA_BASE(1); DUMP PB

e 24.500 RUNTIME STACK OF DATA_BASE(1)

FACET RD_OR_WR
ENV: SCRIPT DATA_BASE

LINE: 11

RCOUNT = §

SCRIPT DATA_BASE
ENV:

LINE: 35

SIZE = 3

ANONYM = (1..3)
FILE(1) = "D"
FILE(2) = “g"
FILE(3) = "C"

*ee 24.500 RUNTIME STACK OF PROTECTED_BUFFER(1)

FACET BUFFER_EMPTY
ENV: SCRIPT PROTECTED_BUFFER
LINE: 60

SCRIPT PROTECTED_BUFFER
ENV:

LINE. 100

DATA_BASE = DATA_BASE

DB = DATA_BASE (1)
REM_COUNT = 2

INS_COUNT = 2

MAX = 3

>>> 24.500 INTERFACE(1) : ENTER CSSA COMMAND -

>>> 24.600 SYSTEM TERMINATED
MAILBOX OF INTERFACE (1)

(1) *REPLY(STRING:"A")
(2) *REPLY(STRING:"B")
(3) *REPLY(STRING:"C")
(4) *REPLY(STRING:"D")
(5) *REPLY(STRING:"E")

fig. 7 -continued-

{m=

==

==

Al

>>> 24.600 INTERFACE(1) : ENTER CSSA COMMAND -

==> SEND INS("F") TO PB; RUN; MAILBOX Cn=
>>> 29.700 SYSTEM TERMINATED

MAILBOX OF INTERFACE (1)

(1) *REPLY(STRING:"A")
(2) *REPLY(STRING:"B")
(3) *REPLY(STRING:"C")
(4) *REPLY(STRING:"D")
(5) *REPLY(STRING:"E")
(6) *REPLY(STRING:"F")

>>> 29.700 INTERFACE(1) : ENTER CSSA COMMAND -
==> TERMINATE Cnm=
e 29.700 ALL EXISTING AGENTS:

AGENT | FAceT | OPERATION | MAILBOX

P1: INTERFACE(1) * *REPLY *REPLY *REPLY *REPLY
*REPLY #*REPLY

P2: PROTECTED_BUF | BUFFER_EM

P3: DATA_BASE (1) RD_OR_WR

CSSA-SESSION-STATISTICS

SESSION STARTED AT 16:52:59.00
SESSION TERMINATED AT 17:06:42.00 ON 1981/12/07
REAL-TIME USED : 823.00 SEC.

CPU-TIME USED : 3.06 SEC.
SIMULATION TIME USED : 29.7000 SEC.
NUMBER OF AGENTS CREATED : 2

NUMBER OF MESSAGES SENT : 43

fig. 7 -continued-

AS

protected_buffer = monitor is create, append, remove;
rep = record(slots:buffer, nonempty, nonfull: condition]

create = proc() returns (cvt);
return (rep${slots:buffer§create(),
nonempty,nonfull: condition§create()});
end create;

append = proc(pb:cvt, x:message) ;
if buffer§full(pb.slots) then condition$wait(pb.nonfull) end;
buffer§append(pb.siots, x); i
condition§signal(pb.nonempty);
end append;

remove = proc(pb:cvt) returns (message),
if bufferfempty(pb.slots) then condition§wait(pb.nonempty) end;
x:message := buffer§remove(pb.siots);
condition§signal(pb.nonfull);
return (x);
end remove,;

end bounded_buffer;

fig. 8 : Protected Buffer Monitor

VO NI WN =

Ale

e et T S S T e L S T T

type RDER_PRIO is script
type DATA_BASE s seript(int: SIZE)
var array(1..Sf2T) of string: FILE;

facet RD_OR_WR is
public: WR,RD,RD_ACKN;
var int: RCOUN} := 0;

operation WR(string: DATA; {int: KEY) {s
reply;
if KEY > 0 and KEY <= SIZE then
FILE(KEY) := DATA; endif;
endoperation

operation RD(int: KEY) {s

RCOUNT := RCOUNT + 1,

i# KEY > 0 and KEY <= SIZE then
reply (FILE(KEY)); endif;

endoperation

reply;
RCOUNT := 0;
endoperation

|
endfacet |
fnitial RD_OR_YRI

endscript;

var DATA_BASE: DB;
var int: RDER_COUNT := 0;
var bool: FIRST_OPER := true;

facethead WRRS;

facet CREATION {s
public: CREATE;

operation CREATE(int: SIZE) {s
DB := new DATA_BASE(SIZE);
replace by WRRS;

endoperation

endfacet

facet RDERS is
public: RD;

operation RD(int: KEY) is
send RD(KEY) to DB {inherit;
RDER_COUNT := RDER_COUNT + 1;

fig. 9 : Readers Priority Script

operation RD_ACKN(int: COUNT) assart COUNT = RCOUNT is

BLOCKNES STING
+1

*2

+3

+9

+10

*9
-9

+11

+12

Al?

BMS-CSSA-COMPILEHR

D it et [ETETSP O PR YR, S +

endoperation

w
+

[Y—

operation idle is replace by WRRS;
endoperation

endfacet

facet WRRS is
public: WR;
var bool: FIRST_WR := true;

operation WR(string: DATA; int: KEY) assert FIRST_WR s
oper: RD_ACKN;

port: R_ACKN,W_ACKN;

1f FIRST_OPER then FIRST_OPER := false; endif;

FIRST_WR := fa?so;

1€ RDER_COUNT > O then
send RD_ACKN (RDER_COUNT) to DB reply to R_ACKN;
wait R_ACKN ;
RDER_COUNT := 0,

endif;

send WR(DATA,KEY) to DB reply to W_ACKN;

wait W_ACKN;

endoperation

operation idle is
if not FIRST_OPER then replace by RDERS; endif;
endoperation

endfacet
initial CREATION

endscript

fig. 9 -continued-

T

1981/12/07 15:42

BLOCKNESTING
|-12
|14
+13
-13
*11
-11
|+
+14

+15

|+16-16
15

+17

A\

PROGRAM GENERATED ON 1981/12/07 AT 15:49:41.00
BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

PROTOCOL OF CSSA SESSION ON 1981/12/07 AT 16:02:06.00

>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> ;DISPLAY
IDENTIFIER TYPE VALUE
DATA_BASE SCRIPT DATA_BASE
RDER_PRIO SCRIPT RDER_PRIO
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> VAR AGENT : PRT := NEW RDER_PRIO
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> OPER : RD,WR,CREATE; PORT : P;
>>> 0.000 INTERFACE(1) ENTER CSSA COMMAND -
==> OBSERVE; SEND CREATE(1) TO PRT, SEND WR("A",1) TO PRT;RUN
‘e 0.000 P1: INTERFACE(1) SENDS CREATE(INT:1) TO RDER_PRIO(1)
++4+ 0.000 P1: INTERFACE(1) SENDS WR(STRING:"A",INT:1) TO RDER_PRiu(1)
e 0.000 P2: RDER_PRIO(1) IS IDLE
e 0.100 P2: RDER_PRIO(1) RECEIVES CREATE(INT:1) FROM INTERFACE (1)
*ee 0.100 P2: RDER_PRIO(1) STARTING OPERATION CREATE (INT:
1)
‘e 0.200 P2: RDER_PRIO(1) CREATES DATA_BASE (1) (INT:1)
AAad 0.200 P2: RDER_PRIO(1) RECEIVES WR(STRING:"A",INT:1)
FROM INTERFACE (1)
e 0.200 P3: DATA_BASE(1) IS IDLE
*ee 0.300 P2: RDER_PRIO(1) PERFORMS FACETTING : CREATION --> WRRS
*ee 0.300 P2: RDER_PRIQ(1) STARTING OPERATION WR(STRING:
"A",INT:1)
e 0.800 P2: RDER_PRIO(1) SENDS WR(STRING:"A",INT:1),REPLY TO: W_ACKN
TO DATA_BASE (1)
tre 0.900 P2: RDER_PRIO(1) IS IDLE
e 1.100 P3: DATA_BASE(1) RECEIVES WR(STRING:"A",INT:1),REPLY TO: W_ACKN
FROM RDER_PRIO(1)
+ee 1.100 P3: DATA_BASE(1) STARTING OPERATION WR(STRING:
"A",INT:1)
+ée 1.200 P3: DATA_BASE(1) SENDS *REPLY() TO RDER_PRIO(1)
‘e 1.400 P3: DATA_BASE(1) IS IDLE
‘e 2.100 P2: RDER_PRIO(1) RECEIVES #*REPLY() FROM DATA_BASE (1)
tee 2.100 P2: RDER_PRIO(1) STARTING OPERATION IDLE
+ee 2.300 P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS --> RDERS
e 2.300 P2: RDER_PRIO(1) STARTING OPERATION IDLE
e 2.400 P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS =-=> WRRS
+e 2.400 P2: RDER_PRIO(1) STARTING OPERATION IDLE
e 2.600 P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS =-~> RDERS
+ee 2.600 P2: RDER_PRIO(1) STARTING OPERATION IDLE
‘e 2.700 P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS ~-> WRRS
+ée 2.700 P2: RDER_PRIO(1) STARTING OPERATION IDLE
+ee 2.900 P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS =--> RDERS
+ee 2.900 P2: RDER_PRIO(1) STARTING OPERATION IDLE
+re 3.000 P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS =--> WRRS
+ee 3.000 P2: RDER_PRIO(1) STARTING OPERATION IDLE
*ee 3.200 P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS =--> RDERS
e 3.200 P2: RDER_PRIO(1) STARTING OPERATION IDLE
e 3.300 P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS --> WRRS
+ee 3.300 P2: RDER_PRIO(1) STARTING OPERATION IDLE
+ee 3.500 P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS ~--> RDERS
A A A4 3.500 P2: RDER_PRIO(1) STARTING OPERATION IDLE
e 3.600 P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS, --> WRRS
+ee 3.600 P2: RDER_PRIO(1) STARTING OPERATION IDLE
+ie 3.800 P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS =-=> RDERS
e 3.800 P2: RDER_PRIO(1) STARTING OPERATION IDLE
>»>> 3.800 REAL-TIME LIMIT EXCEEDED
>>> 3.800 INTERFACE (1) ENTER CSSA COMMAND -

fig. 10 : Readers Priority Execution Protocol

m=

{nm

==

==

==)
++4
+ee
>>>
m=)
++ e
+e+e
>>>
mm)
+ee
++4
+++
++ e
++4

*++e

+ee

+*+e e
+4+e
++4
++e
++e
++e

+ e

++e
4+
++ 4
++4

++4
+++
+++
4

+4+4
++e

+*+4
++e

+++
++e
++e
+++
+++
+*++

++e
++e

++4
++e
+++

+++
+++
++4
+++
++4

+++
+*++e

++e

+44
+e
+ee
+ee
++e
s
+4e
++4
>>>
>>>

SEND RD (1)
3.800
3.800
3.800

SEND RD (1)
3.800
3.800
3.800

RUN;

3.900
3.900
4.100
4.100
4.100

4.100
4.100

4.200
4.200
4.400
4.400
4.500
4.500

4.600

4.700
4.800
4.900
4.900

4.900
5.000
5.100
5.100

5.200
5.200

5.200
5.500

5.500
5.500
$.600
5.800
5.800
5.900

5.900
6.000

6.000
6.300
6.300

6.400
6.500
6.800
6.900
7.100

7.200
7.900

7.900

8.000
8.200
8.900
8.900
9.100
9.100
9.200
9.200
9.300
9.300

A9

TO PRT REPLY TO P, SEND WR("B",1) TO PRT; ==
P1: INTERFACE(1) SENDS RD(INT:1),REPLY TO: P TO RDER_PRIO(1)
P1: INTERFACE(1) SENDS WR(STRING:"B",INT:1) TO RDER_PRIO(1)
INTERFACE(1) : ENTER CSSA COMMAND -
TO PRT REPLY TO P; SEND RD(1) TO PRT REPLY TO P; (==
P1: INTERFACE(1) SENDS RD(INT:1),REPLY TO: P TO RDER_PRIO(1)
P1: INTERFACE(1) SENDS RD(INT:1),REPLY TO: P TO RDER_PRIO(41)
INTERFACE(1) : ENTER CSSA COMMAND -
{un

P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS --> WRRS
P2: RDER_PRIO(1) STARTING OPERATION IDLE
P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS --> RDERS
P2: RDER_PRIO(1) STARTING OPERATION IDLE
P2: RDER_PRIO(1) RECEIVES RD(INT:1),REPLY TO: P

FROM INTERFACE (1)
P2: RDER_PRIO(1) RECEIVES RD(INT:1),REPLY TO: P

FROM INTERFACE (1)
P2: RDER_PRIO(1) RECEIVES RDCINT:1),REPLY TO: P

FROM INTERFACE (1)
P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS --> WRRS
P2: RDER_PRIO(1) STARTING OPERATION IDLE
P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS --> RDERS
P2: RDER_PRIO(1) STARTING OPERATION RD(INT:1)
P2: RDER_PRIO(1) SENDS RD(CINT:1),REPLY TO: P TO DATA_BASE (1)
P2: RDER_PRIO(1) RECEIVES WR(STRING:"B",INT:1)

FROM INTERFACE (1)
P2: RDER_PRIO(1) STARTING OPERATION RDCINT:1)

P2: RDER_PRIO(1) SENDS RD(INT:1),REPLY TO: P TO DATA_BASE (1)
P2: RDER_PRIO(1) STARTING OPERATION RDC(INT:1)
P2: RDER_PRIO(1) SENDS RD(INT:1),REPLY TO: P TO DATA_BASE(1)
P3: DATA_BASE(1) RECEIVES RD(INT:1),REPLY TO: P

FROM RDER_PRIO(1)
P3: DATA_BASE(1) STARTING OPERATION RDCINT:1)
P2: RDER_PRIO(1) STARTING OPERATION IDLE
P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS --> WRRS
P2: RDER_PRIO(1) STARTING OPERATION WR(STRING:

“B",INT:1)
P3: DATA_BASE(1) SENDS *REPLY(STRING:"A") TO INTERFACE(1)
P3: DATA_BASE(1) RECEIVES RD(INT:1),REPLY TO: P

FROM RDER_PRIO(1)
P3: DATA_BASE(1) STARTING OPERATION RDC(INT:1)
P2: RDER_PRIO(1) SENDS RD_ACKNCINT:3),REPLY TO: R_ACKN

TO DATA_BASE (1)
P3: DATA_BASE(1) SENDS *REPLY(STRING:"A") TO INTERFACE (1)
P3: DATA_BASE(1) IS IDLE
P2: RDER_PRIO(1) IS IDLE
P1: INTERFACE(1) RECEIVES *REPLY(STRING:"A") FROM DATA_BASE (1)
P1: INTERFACE(1) RECEIVES #REPLY(STRING:"A") FROM DATA_BASE (1)
P3: DATA_BASE(1) RECEIVES RD_ACKN(INT:3),REPLY TO: R_ACKN

FROM RDER_PRIO(1)
P3: DATA_BASE (1) IS IDLE
P3: DATA_BASE(1) RECEIVES RD(INT:1),REPLY TO: P

FROM RDER_PRIO(1)
P3: DATA_BASE(1) STARTING OPERATION RDCINT:1)
P3: DATA_BASE(1) SENDS *REPLY(STRING:"A") TO INTERFACE(1)
P3: DATA_BASE(1) STARTING OPERATION RD_ACKN(INT:

3)
P3: DATA_BASE(1) SENDS *REPLY() TO RDER_PRIO(1)
P3: DATA_BASE(1) IS IDLE
P1: INTERFACE(1) RECEIVES *REPLY(STRING:"A") FROM DATA_BASE (1)
P2: RDER_PRIO(1) RECEIVES *REPLY() FROM DATA_BASE (1)
P2: RDER_PRIO(1) SENDS WR(STRING:"B",INT:1) ,REPLY TO: W_ACKN

TO DATA_BASE(1)
P2: RDER_PRIO(1) IS IDLE
P3: DATA_BASE(1) RECEIVES WR(STRING:"B",INT:1),REPLY TO: W_ACKN

FROM RDER_PRIO (1)
P3: DATA_BASE(1) STARTING OPERATION WR(STRING:

"B",INT:1)
P3: DATA_BASE (1) SENDS *REPLY() TO RDER_PRIO(1)
P3: DATA_BASE(1) IS IDLE
P2: RDER_PRIO(1) RECEIVES #REPLY() FROM DATA_BASE (1)
P2: RDER_PRIO(1) STARTING OPERATION IDLE
P2: RDER_PRIO(1) PERFORMS FACETTING : WRRS ~--> RDERS
P2: RDER_PRIO(1) STARTING OPERATION IDLE
P2: RDER_PRIO(1) PERFORMS FACETTING : RDERS =--> WRRS
P2: RDER_PRIO(1) STARTING OPERATION IDLE
REAL-TIME LIMIT EXCEEDED
INTERFACE(1) : ENTER CSSA COMMAND -

fig. 10 -continued-

ALo

‘e 9.400 P2: RDER_PRIO(1) PERFORMS FACETTING
+ee 9.400 P2: RDER_PRIO(1) STARTING OPERATION
e 9.500 P2: RDER_PRIO(1) PERFORMS FACETTING
+e 9.500 P2: RDER_PRIO(1) STARTING OPERATION
*+e 9.700 P2: RDER_PRIO(1) PERFORMS FACETTING
‘e 9.700 P2: RDER_PRIO(1) STARTING OPERATION
e 9.800 P2: RDER_PRIO(1) PERFORMS FACETTING
‘e 9.800 P2: RDER_PRIO(1) STARTING OPERATION
‘e 10.000 P2: RDER_PRIO(1) PERFORMS FACETTING
*te 10.000 P2: RDER_PRIO(1) STARTING OPERATION
*+e 10.100 P2: RDER_PRIO(1) PERFORMS FACETTING
e 10.100 P2: RDER_PRIO(1) STARTING OPERATION
++e 10.300 P2: RDER_PRIO(1) PERFORMS FACETTING
*e 10.300 P2: RDER_PRIO(1) STARTING OPERATION
e 10.400 P2: RDER_PRIO(1) PERFORMS FACETTING
*ee 10.400 P2: RDER_PRIO(1) STARTING OPERATION
e 10.600 P2: RDER_PRIO(1) PERFORMS FACETTING
e 10.600 P2: RDER_PRIO(1) STARTING OPERATION
++e 10.700 P2: RDER_PRIO(1) PERFORMS FACETTING
e 10.700 P2: RDER_PRIO(1) STARTING OPERATION
>>> 10.700 REAL-TIME LIMIT EXCEEDED

>>> 10.700 INTERFACE(1) : ENTER CSSA COMMAND -

==> TERMINATE
+ee 10.700 ALL EXISTING AGENTS:

: WRRS =--> RDERS
IDLE

RDERS ==> WRRS
IDLE

WRRS ~--> RDERS
IDLE

RDERS =--> WRRS
IDLE

WRRS =-> RDERS
IDLE
: RDERS ==> WRRS
IOLE
: WRRS ==> RDERS
IDLE
: RDERS =--> WRRS
IDLE
: WRRS =-=> RDERS
IDLE
: RDERS =-=> WRRS
IDLE

MAILBOX

AGENT | FAcET | OPERATION |
P1: INTERFACE (1) *

P2: RDER_PRIO(1) *| WRRS IDLE

P3: DATA_BASE (1) RD_OR_WR

*REPLY *REPLY *REPLY

CSSA-SESSION-STATISTICS

SESSION STARTED AT 15:56:03.00

SESSION TERMINATED AT 16:17:13.00 ON 1981/12/07
REAL-TIME USED : 1270.00 SEC.

CPU-TIME USED 2.07 SEC.

SIMULATION TIME USED : 10.7000 SEC.

NUMBER OF AGENTS CREATED : 2

NUMBER OF MESSAGES SENT : 138

fig. 10 =continued-

==

AZi

readers_priority = monitor is create,
startread,
endread,
startwrite,
endwrite;

rep = record[readercount: int,
busy:boolean,
readers, writers:condition;

create = proc() returns (cvt);
return(rep8${readercount: 0,
busy:false,

readers,writers:condition$create()});

end create;

startread = proc(m:cvt);

if m.busy then condition§wait(m.readers) end;

m.readercount:= m.readercount « |;
condition8signal(m.readers);
end startread;

endread = proc(m:cvt);
m.readercount:= m.readercount - |;
if m.readercount:=0
then condition§signal(m.writers)
end;
end endread,;

startwrite = proc(m:cvt),
if m.readercount > 0 | m.busy
then condition8wait(m.writers)
end;
m.busy:=true;
end startwrite;

endwrite = proc(m:cvt);
m.busy:=false;
if condition§queue(m.readers)
then condition$signal(m.readers)
else condition8signal(m.writers)
end;
end endwrite;

end readers_priority,

fig. 11a : Readers Priority

Monitor

AL

protected_data_base = cluster is create,read,write;
rep = record(m: readers_priority,d: data_base)

create = proc()returns(cvt);
return (rep8{m: readers_priority$create(),
d: data_base8create()});
end create;

read = proc(pdb: cvt) returns(data);
readers_priority#startread(pdb.m);
x:data :=data_base$read(pdb.d);
readers_priority§endread(pdb.m);
return (x);
end read;

write = proc(pdb: cvt, x:data);
readers_priority8startwrite(pdb.m);
data_base$write((pdb.d, x);
readers_priority§endwrite(pdb.m),
end write;

end protected_data_base;

fig. 11b : Readers Priority Protected Resource Module

A23

first_come_first_serve = monitor is create, startread, endread, startwrite, endwrite;

rep = record(busy: boolean,
readercount: integer,
users, writer: condition]

create = proc() returns (cvt);
return(rep#{busy:false, readercount:0, users, writer: condition$create()};
end create;

startread = proc(m: cvt)
if m.busy | conditionfqueue(m.writer) | condition8queue(m.users)
then condition§wait(m.users);
end;
m.readercount:=m.readercount + I;
condition8signal(m.users); %start all readers
end startread;

endread = proc(m:cvt);
m.readercount := m.readercount - |;
if m.readercount = 0
then if condition8queue(m.writer)
then condition§signal(m.writer)
else conditionf§signal(m.users)
end;
end;
%anyone on the writers queue has been waiting longer than those on users queue
end endread;

startwrite = proc(m:cvt);

if m.readercount > 0 | m.busy
then condition§wait(m.users);
end;

if m.readercount > 0
then condition§wait(m.writer);
end;

m.busy := true;

end startwrite;

endwrite = proc(m:cvt);
m.busy:=false;
condition$signal(m.users);
end endwrite;

end first_come_first_serve;

fig. 12 : First Come First Serve Monitor

-
2 O00VONONVNEWN 2

N Ddddddada
DOVO®~NOWVAIWN

NNV N
N WN =

WHWWUNNNNN
PUNL>—OCOO0OON

ww
own

AN

+*
w
]
+
F S
+
w
1
1
]
]
+
]
]
1
|}
(- 3
]
]
]
[}
+
]
[}
]
1
B
]
]

LRl Rl e BTt 2
type ALARM_CLOCK {s
script

var int: NOW := 0;

facet REGISTRY is
public: TICK,WAKE_ME;

facet RESUME is
private: WAKE_UP;

operation WAKE_UP(int: TIME) assert TIME=NOW s
reply;
endoperation

operation idle is leave;
endoperation
endfacet

operation WAKE_ME(int: DELAY_TIME) s
oper: WAKE_UP;
if DELAY_TIME <= 0 then reply;
else send WAKE_UP(DELAY_TIME + NOW) to self inherit; endif;
endoperation

operation TICK s
NOW := NOW + 1;
setup RESUME;

endoperation

endfacet

initial REGISTRY

endscript

fig. 13 : Alarmclock Script (Wrong Solution)

BLO

+1

+2

+3

-8
*2
-2
*1

-1

CKNESTINGEG

VONOVNHAUWUN=

A2

+

B T e Dt e it it ittt T3 +
type ALARM_CLOCK {s
script

w

facet REGISTRY {s
public : TICK,WAKE_ME;

type CALL_ELEM {is record int : WAKE_UP_TIME;
-=> int : NO_OF_SLEEPERS;
endrecord;
relation CALL_LIST of CALL_ELEN;
var int : NOW := 0;

facet RESUME is
private : WAKE_UP;

operation WAKE_UP(int : TIME) assert TINE = NOVW s
reply;
find CALL_LIST(TIME) -> CE do
if CE.NO_OF_SLEEPERS = 1 then
delete CE in CALL_LIST;
leave;
else CE.NO_OF _SLEEPERS := CE.NO_OF_SLEEPERS - 1,
endif;
endfind;
endoperation
endfacet

operation WAKE_ME(int : DELAY_TIME) {s
oper : WAKE_UP;
var CALL_ELEM : CE;
1# DELAY_TIME <= 0 then reply;
else find CALL_LIST(DELAY_TIME + NOW) -> CE1 do
| CE1.NO_OF_SLEEPERS := CE1.NO_OF_SLEEPERS + 1;
otherwise do
CE.WAKE_UP_TIME := DELAY_TIME + NOW;
CE.NO_OF_SLEEPERS := 1;
insert CE into CALL_LIST;
endfind;
send WAKE_UP(DELAY_TIME + NOW) to self inherit;
endif;
endoperation

operation TICK s

NOW := NOW + 1,

find CALL_LIST(NOW) =-> CE do
| setup RESUME;

endfind;

endoperation

endfacet
;nitia! REGISTRY

endscript

fig. 14 : Alarmclock Script (Correct Solution)

-7--

BLOCKNESTING
+1

*2

+3

-3
*2

+4

A6

PROGRAM GENERATED ON 1981/12/22 AT 11:59:34.00
BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

PROTOCOL OF CSSA SESSION ON 1982/01/18 AT 11:05:29.00

>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
=) ;DISPLAY {u=
IDENTIFIER TYPE VALUE
ALARM_CLOCK SCRIPT ALARM_CLOCK
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
s=> VAR AGENT : AC := NEW ALARM_CLOCK; {==
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> OPER : TICK,WAKE_ME;PORT : P (u=
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> OBSERVE; (==
>>> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND WAKE_ME(3) TO AC REPLY TO P; RUN ==
*ee 0.000 P1: INTERFACE(1) SENDS WAKE_ME(INT:3) ,REPLY TO: P
TO ALARM_CLOCK (1)
*ee 0.000 P2: ALARM_CLOCK (1) IS IDLE
+4e 0.100 P2: ALARM_CLOCK (1) RECEIVES UAKE_ﬂE(I“T:S),lEPLY T0: P
FROM INTERFACE (1)
e 0.100 P2: ALARM_CLOCK (1) STARTING OPERATION WAKE_ME (INT:
3)
+*tee 0.700 P2: ALARM_CLOCK (1) SENDS WAKE_UP(INT:3),REPLY TO: P
TO ALARM_CLOCK (1)
*+ee 0.700 P2: ALARM_CLOCK (1) RECEIVES WAKE_UP(INT:3),REPLY TO: P
FROM ALARM_CLOCK (1)
*ee 0.700 P2: ALARH_FLOCK(1) IS IDLE
>>> 0.700 SYSTEM TERMINATED
> D.700 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND TICK TO AC;RUN ==
+ee 0.700 P1: INTERFACE(1) SENDS TICK() TO ALARM_CLOCK (1)
44 0.800 P2: ALARM_CLOCK (1) RECEIVES TICK() FROM INTERFACE (1)
+4e 0.800 P2: ALARM_CLOCK(1) STARTING OPERATION TICK()
+4+e 1.000 P2: ALARM_CLOCK(1) IS IDLE
>>> 1.000 SYSTEM TERMINATED
>>> _1.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND WAKE_ME(2) TO AC REPLY TO P; RUN {u=
+ee 1.100 P1: INTERFACE(1) SENDS WAKE_ME (INT:2),REPLY TO: P
TO ALARM_CLOCK (1)
e 1.200 P2: ALARM_CLOCK(1) RECEIVES WAKE_ME (INT:2) ,REPLY TO: P
FROM INTERFACE (1)
*+e 1.200 P2: ALARM_CLOCK (1) STARTING OPERATION WAKE_ME (INT:
2)
e 1.600 P2: ALARM_CLOCK (1) SENDS WAKE_UP(INT:3) ,REPLY TO: P
TO ALARM_CLOCK (1)
++e 1.600 P2: ALARM_CLOCK (1) RECEIVES WAKE_UP(INT:3) ,REPLY TO: P
FROM ALARM_CLOCK (1)
+44 1.600 P2: ALARM_CLOCK(1) IS IDLE
>>> 1.600 SYSTEM TERMINATED
>>> 1.600 INTERFACE(1) : ENTER CSSA COMMAND -
=) SEND TICK TO AC {==
++e 1.600 P1: INTERFACE(1) SENDS TICK() TO ALARM_CLOCK (1)
>>> 1.600 INTERFACE(1) : ENTER CSSA COMMAND -
==> TRACE AC; SEND TICK TO AC; RUN ==
+*r+e 1.600 P1: INTERFACE(1) SENDS TICK() TO ALARM_CLOCK (1)
+ee 1.700 P2: ALARM_CLOCK(1) RECEIVES TICK() FROM INTERFACE (1)

fig. 15 : Alarmclock Execution Protocol

A2}

4.700 TRACING ALARM_CLOCK (1) / REGISTRY
SEARCHING NEXT_MESSAGE
FOUND : WAKE_UP(INT:3),REPLY TO: P
SEARCHING NEXT_MESSAGE
FOUND : WAKE_UPC(INT:3),REPLY TO: P
SEARCHING NEXT_MESSAGE
FOUND : TICKO)
STARTING OPERATION TICK()
LINE 45: NOW := 2
LINE 46: WAKE_UP_TIME := 2
LINE 46: RECORD NOT FOUND
>>> 1.700 REAL-TIME LIMIT EXCEEDED
>>> 1.700 INTERFACE(1) : ENTER CSSA COMMAND - o
=n)
> 1.700 INTERFACE(1) : ENTER CSSA COMMAND -
==> RUN o
_ 1.900 TRACING ALARM_CLOCK(1) / REGISTRY / TICK
. 1.900 TRACING ALARN_CLOCK(1) / REGISTRY
SEARCHING NEXT_MESSAGE
FOUND : WAKE_UP(INT:3),REPLY TO: P
SEARCHING NEXT_MESSAGE
FOUND : WAKE_UPCINT:3),REPLY TO: P
SEARCHING NEXT_MESSAGE - NO MESSAGE FOUND
A 1.900 P2: ALARM_CLOCK(1) IS IDLE
e 1.900 P2: ALARM_CLOCK (1) RECEIVES TICK() FROM INTERFACE(1)
. 1.900 TRACING ALARM_CLOCK(1) / REGISTRY
SEARCHING NEXT_MESSAGE
FOUND : WAKE_UP(INT:3),REPLY TO: P
SEARCHING NEXT_MESSAGE
FOUND : WAKE_UP(INT:3),REPLY TO; P
SEARCHING NEXT_MESSAGE
FOUND : TICKQ)
STARTING OPERATION TICKO)
LINE 45: NOW := 3
LINE 46: WAKE_UP_TIME := 3
LINE 46: RECORD FOUND
>>> 1.900 REAL-TIME LIMIT EXCEEDED
>>> 1.900 INTERFACE(1) : ENTER CSSA COMMAND -
==> RUN Cu=
_ 2.200 TRACING ALARM_CLOCK (1) / REGISTRY / TICK
LINE 47: FACETTING : REGISTRY —-> RESUME
SEARCHING NEXT_MESSAGE
FOUND : WAKE_UP(INT:3),REPLY TO: P
LINE 16: TIME := 3
STARTING OPERATION WAKE_UPCINT:3)
___ 2.300 TRACING ALARM_CLOCK (1) / RESUME / WAKE_UP
LINE 17: SEND *REPLY() TO INTERFACE(1)
_ 2.300 TRACING ALARM_CLOCK(1) / RESUME / WAKE_UP
LINE 18: WAKE_UP_TIME := 3
LINE 18: RECORD FOUND
LINE 22: NO_OF_SLEEPERS := 1
_ 2.600 TRACING ALARM_CLOCK (1) / RESUME / WAKE_UP
2.600 TRACING ALARM_CLOCK (1) / RESUME

SEARCHING NEXT_MESSAGE

FOUND : WAKE_UP(INT:3),REPLY TO: P
LINE 16: TIME := 3

STARTING OPERATION WAKE_UPC(INT:3)

fig. 15 -continued-

ALl

>»> 2.600 REAL-TIME LIMIT EXCEEDED
> 2.600 INTERFACE(1) : ENTER CSSA COMMAND -
==> RUN
e 2.600 P1: INTERFACE(1) RECEIVES #REPLY() FROM ALARM_CLOCK (1)
2.700 TRACING ALARM_CLOCK (1) / RESUME / WAKE_UP
LINE 17: SEND #REPLY() TO INTERFACE (1)
2.700 TRACING ALARM_CLOCK (1) / RESUME / WAKE_UP
LINE 18: WAKE_UP_TIME := 3
LINE 18: RECORD FOUND
LINE 20: RECORD DELETED
— 3.1900 TRACING ALARM_CLOCK (1) / RESUME / WAKE_UP
LINE 21: FACETTING : RESUME --> REGISTRY
3.100 TRACING ALARM_CLOCK (1) / REGISTRY
SEARCHING NEXT_MESSAGE - NO MESSAGE FOUND
*e 3.100 P2: ALARM_CLOCK(1) IS IDLE
+et 3.600 P1: INTERFACE(1) RECEIVES *REPLY() FROM ALARM_CLOCK (")
>>> 3.700 SYSTEM TERMINATED
>>> 3.700 INTERFACE(1) : ENTER CSSA COMMAND -

==> SEND WAKE_ME (0) TO AC REPLY TO P;RUN

‘e 3.700 P1: INTERFACE(1) SENDS WAKE_ME (INT:0),REPLY TO: P
TO ALARM_CLOCK (1)
+4e 3.800 P2: ALARM_CLOCK(1) RECEIVES WAKE_ME(INT:D0),REPLY TO: P
FROM INTERFACE (1)
_— 3.800 TRACING ALARM_CLOCK(1) / REGISTRY
SEARCHING NEXT_MESSAGE
FOUND : WAKE_ME(INT:0),REPLY TO: P
LINE 28: DELAY_TIME := 0
STARTING OPERATION WAKE_ME(INT:0)
- 4.000 TRACING ALARM_CLOCK(1) / REGISTRY / WAKE_ME
LINE 32: SEND #REPLY() TO INTERFACE(1)
4.000 TRACING ALARM_CLOCK(1) / REGISTRY / WAKE_ME
- 4.000 TRACING ALARM_CLOCK (1) / REGISTRY / WAKE_ME
4.000 TRACING ALARM_CLOCK(1) / REGISTRY
SEARCHING NEXT_MESSAGE - NO MESSAGE FOUND
tee 4.000 P2: ALARM_CLOCK(1) IS IOLE
1333 4.000 REAL-TIME LIMIT EXCEEDED
> 4.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> NOTRACE AC
>>> 4.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> TERMINATE
‘e 4.000 ALL EXISTING AGENTS:
AGENT | FACET [oPERATION |

P1: INTERFACE(1) *

P2: ALARM_CLOCK (1 REGISTRY

*REPLY #*REPLY

CSSA-SESSION-STATISTICS

SESSION STARTED AT 11:05:24.00
SESSION TERMINATED AT 11:15:47.00 ON 1982/01/18

REAL-TIME USED
CPU-TIME USED

623.00 SEC.
2.02 SEC.

SIMULATION TIME.USED § 4.0000 SEC.
NUMBER OF AGENTS CREATED : 1
NUMBER OF MESSAGES SENT : 1"

fig. 15 =-continued-

==

==

{m=

{m=

A29

alarmclock = monitor is create, wakeme, tick;
pPq=priority_queue;
rep= record[wakeup: pq, now: int};

create = proc() returns(cvt);

return (rep8{wakeup: pq8create(), now: 0});
end create,;

wakeme = proc(ac: cvt, time: int)
alarmsetting: int := timesac.now;
while ac.now < alarmsetting do
pq8wait(ac.wakeup, alarmsetting)
end;
“the while statement is necessary because the first process on the
%queue is awakened every tick.
pq¥signal(ac.wakeup);
%in case the next process has same wakeup time.
end wakeme;

tick = procedure(accvt);
ac.now := ac.now + |;
pyésignal(ac.wakeup),
end tick;

end alarmclock;

fig. 16 : Alarmclock Monitor

- b
20 OVOENCNI-WUN=

Neddddcdcdd b
CO®NOWVERWN

NN
WN -

NN
v

NNNN
o ®~NO

“w w
-0

SUUUWUWWUWUWW
DOVO®NOGOWVIWUN

L R R R
N WN =

A20

B et L S B e, i . Dttt ST TR, 2

type NQUEENS is script

type NODE {s script(int:N) assert N > 0
Facet ONLY_FACET {s
public: FIND_SOLUTION;
var array(1..N) ef int : Q,
operation FIND_SOLUTION(-> Q) {s

var int: I,AN2_Q;
var array(1..N) of boel: NOT_POSSIBLE;
port : 0K;
oper : ANSWER;
functionhead GENSTRING(int : N) returns string external;
1# not(Q(N) = 0)
then begin
var string : ASY ;
ASW := "One solution for * + GENSTRING(N) ¢
®* queens is : *;
loop for I in 1..N-1 do
ASW := ASW + GENSTRING(Q(I)) + *,",
endloop;
ASW := ASW + GENSTRING(Q(N));
send ANSWER(ASW) to interface reply te 0K;
wait 0K;
.nd'

else

loop for I in 1..N while net(Q(I) = 0)
| do ANZ_Q := ANZ_Q + 1;

endloop

| i1

oop for I in 1..ANZ_Q deo

NOT_POSSIBLE(Q(I)) := true;

1f Q(I) + (ANZ_Q - I) + 1 <= N then

| NOT_POSSIBLE(Q(I) + ANZ_Q - I + 1) := true;
endif;

1f# Q(I) - (ANZ_Q - I) - 1 >= 1 then

| NOT_POSSIBLE(Q(I) - (ANZ_Q - I) - 1) := true;
endif;
endloop

loop for I in 1..N do
if not NOT_POSSIBLE(I) then
| Q(ANZ_Q + 1) := I;
send FIND_SOLUTION(Q) to new ownmode(N);
endif;
endloop;
endif;

terminate;

fig. 17 : N-Queens Script

BLOCKNESTINGEG
+1

+3

"

+6

7

-7
*6

-6

+8

+*9

+10

-10
+11

A2l

BMS-CSSA-CONPILER

S B e
| endoperation
endfacet

initial ONLY_FACET;
endscript;

facet ONLY_fACTT is
public : STOPQ, FIND_SOLUTION;
operation FIND_SOLUTION(int: N) assert N > 0 s

var int: I;

var array (1..N) of int: FIRST_ROW;

port : 0K;

oper : ANSVER;

i{¢ N = 9

then

send ANSWER("For one queen solution is : 1*)
to interface reply te 0K;

wait 0K;

else

oop for I in 1..N de

FIRST_ROW(1) := I,

send FIND_SOLUTION(FIRST_ROW) to new NODE(N);
endloop;

endif;

endoperation

operation ST?PO is
terainate;

endoperation

endfacet
initial ONLY_F?CET

endscript

fig. 17 -continued-

1981/10/21 09:09:

BLOCKNESTING
|-4
|-3
2

-2
1

+14

+15

*16

17

-17
|-16
|-1s
|*14
+18

-18
*14
-14

*9

-1

A2

PROGRAM GENERATED ON 1982/01/18 AT 11:26:35.00
BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)

PROTOCOL OF CSSA SESSION ON 1982/01/18 AT 11:43:19.00

B R TR R E S IS SRS XS ESCIASEERNISIESNEEIES

> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
=) ;ODISPLAY
IDENTIFIER TYPE VALUE
NODE SCRIPT NODE
NQUEENS SCRIPT NQUEENS

> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -

==> VAR AGENT : NQ := NEW NQUEENS; OPER : FIND_SOLUTION

> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -

s==> OBSERVE; SEND FIND_SOLUTION(4) TO NQ;RUN

*te 0.000 P1: INTERFACE(1) SENDS FIND_SOLUTIONCINT:4) TO NQUEENC (1)

+ee 0.000 P2: NQUEENS(1) IS IDLE

+e e 0.100 P2: NQUEENS(1) RECEIVES FIND_SOLUTIONC(CINT:4) FROM INTERFACE(1)

*ee 0.100 P2: NQUEENS (1) STARTING OPERATION FIND_SOLUTIONCINT:
4)

e 0.500 P2: NQUEENS(1) CREATES NODE (1) (INT:4)

‘ee 0.500 P2: NQUEENS(1) SENDS FIND_SOLUTIONCINT:1,INT:

. O,INT:0,INT:0) TO NODE (1)

‘e 0.500 P3: NODE(1) IS IDLE

+ee 0.700 P2: NQUEENS(1) CREATES NODE (2) (INT:4)

e 0.700 P2: NQUEENS(1) SENDS FIND_SOLUTION(CINT:2,INT:
O,INT:0,INT:0) TO NODE (2)

e 0.700 P4: NODE(2) IS IDLE

‘e 0.800 P4: NODE(2) RECEIVES FIND_SOLUTION(CINT:2,INT:
0,INT:0,INT:0) FROM NQUEENS (1)

e 0.800 P4: NODE(2) STARTING OPERATION FIND_SOLUTIONCINT:
2,INT:0,INT:0,INT:0)

e 0.900 P2: NQUEENS(1) CREATES NODE (3) (INT:4)

*ee 0.900 P2: NQUEENS(1) SENDS FIND_SOLUTION(INT:3,INT:
O,INT:0,INT:0) TO NODE(3)

‘44 0.900 PS: NODE(3) IS IDLE

e 1.000 PS: NODE(3) RECEIVES FIND_SOLUTIONCINT:3,INT:
0,INT:0,INT:0) FROM NQUEENS (1)

+ée 1.000 PS:.NODE(S) STARTING OPERATION FIND_SOLUTIONCINT:
3,INT:0,INT:0,INT:0)

+e 1.100 P2: NQUEENS(1) CREATES NODE(4) (INT:4)

++4 1.100 P2: NQUEENS(1) SENDS FIND_SOLUTION(INT:4,INT:
0,INT:0,INT:0) TO NODE(4)

+ee 1.100 P6: NODE(4) IS IDLE

+ee 1.100 P2: NQUEENS(1) IS IDLE

+4e 1.100 P3: NODE(1) RECEIVES FIND_SOLUTIONCINT:1,INT:
O,INT:0,INT:0) FROM NQUEENS (1)

e 1.100 P3: NODE(1) STARTING OPERATION FIND_SOLUTIONCINT:
1,INT:0,INT:0,INT:0)

+ee 2.300 PS: NODE(3) CREATES NODE(S5) (INT:4)

+ee 2.300 PS: NODE(3) SENDS FIND_SOLUTION(CINT:3,INT:1,INT:
0,INT:0) TO NODE(S)

++e 2.300 P7: NODE(S) IS IDLE

‘e 2.400 P4: NODE(2) CREATES NODE(6) (INT:4)

+e 2.400 P4: NODE(2) SENDS FIND_SOLUTION(INT:2,INT:4,INT:

0,INT:0) TO NODE(6)

fig. 18 : N-Queens Execution Protocol

{u=

==

{um

+ee
++ 4+

++e
++e

++4+
+4++
+4++
++4

+++

>>>
>>>

2.400
2.500

2.500
2.500

2.500
2.500
2.500
2.500
2.500

2.500
2.500

==> ;STATUS

A3

P2: NODE(6) IS IDLE

P2: NODE(6) RECEIVES FIND_SOLUTIONCINT:2,INT:
4,INT:0,INT:0) FROM NODE(2)

P4: NODE(2) TERMINATED

P2: NODE(6) STARTING OPERATION FIND_SOLUTIONCINT:
2,INT:4,INT:0,INT:0)

P3: NODE(1) CREATES NODE(7) (INT+4)

P3: NODE(7) IS IDLE

P3: NODE(1) SENDS FIND_SOLUTIONCINT:1,INT:3,INT:
0,INT:0) TO NODE(7)

P3: NODE(7) RECEIVES FIND_SOLUTIONCINT:1,INT:
3,INT:0,INT:0) FROM NODE(1)

P3: NODE(7) STARTING OPERATION FIND_SOLUTIONCINT:

_ 1,INT:3,INT:0,INT:0)

REAL-TIME LIMIT EXCEEDED

INTERFACE(1) : ENTER CSSA COMMAND -

e 2.500 ALL EXISTING AGENTS:
AGENT | FACET | OPERATION | MAILBOX
P1: INTERFACE(1) «
P2: NQUEENS (1) ONLY_FACE
P3: NODE (1) *| ONLY_FACE | FIND_SOLU | N
P5: NODE(3) *| ONLY_FACE | FIND_SOLU | N
P6: NODE (4) ONLY_FACE
P7: NODE(S) ONLY_FACE
P2: NODE(6) *| ONLY_FACE | FIND_SOLU | N
P3: NODE(7) *| ONLY_FACE | FIND_SOLU | N
>>> 2.500 INTERFACE(1) : ENTER CSSA COMMAND -~

==> ;SYSSTATUS

+4+ 2.500 SYSTEM STATUS:
PROC. | UTIL. | AGENTS
P1 100% INTERFACE (1) *
P2 0% NODE (6)* NQUEENS (1)
P3 56% NODE (7)* NODE(1)*
P4 68%
PS 60% NODE (3) *
P6 1% NODE (4)
P7 1% NODE (5)
BUS] uTiL. | #MSGS | AVG-QLEN | MESSAGES
B1 S% 4 0.00
B2 4% 2 0.00
B3 5% 2 0.00
B4 S% 2 0.00
BS 0% 1 0.00 FIND_SOLUTION
Bs 1% 0 0.00
>> 2.500 INTERFACE(1) : ENTER CSSA COMMAND -
==> ;RUN
‘44 2.600 P6: NODE(4) RECEIVES FIND_SOLUTIONCINT:4,INT:
0,INT:0,INT:0) FROM NQUEENS (1)
e 2.600 P6: NODE(4) STARTING OPERATION FIND_SOLUTIONCINT:
4,INT:0,INT:0,INT:0)
+ee 2.700 PS: NODE(3) TERMINATED
e 3.600 P7: NODE(S) RECEIVES FIND_SOLUTION(INT:3,INT:
1,INT:0,INT:0) FROM NODE(3)
‘s 3.600 P7: NODE(S) STARTING OPERATION FIND_SOLUTIONCINT:
3,INT:1,INT:0,INT:0)
+ee 3.800 P6: NODE(4) CREATES NODE(8) (INT:4)
e 3.800 P6: NODE(4) SENDS FIND_SOLUTIONCINT:4,INT:1,INT:
0,INT:0) TO NODE(8)
‘e 3.800 P4: NODE(8) IS IDLE

fig. 18 -continued-

{u=

{m=

{m=

‘e
*ee
‘4
+ee
++e

+ee

+44

>»>>
>>>
mz)
++e
+4e

+++
+e+e
+*eé
+4 4

++ e
+ee

++ 4

+*+4

+4+

*ee
+*te
++4

+e+e

+4+e
>»>
>>>
=x)
+*+4+
+ee

++ e
+e e

+*+e
++e

+44

+++
*+44
+é4e

+44

+4e

>
>

=s)

++4
+ee
++4+
+ét

++e
*4e

+4 e

*ee
+ed
++e
*t+er

3.800
3.800
4.100
4.100
4.100

4.100
4.100

4.100
4.100
JRUN
4.200
4.200

4.600
4.600
4.800
4.800

4.900
5.200

5.200
5.300
5.300
5.400
5.600
5.600
5.600
5.600
5.600
5.600
3RUN
6.400
6.600

7.000
7.000

7.000
7.100

7.100

7.200
7.200

7.200

7.200
7.200

7.200
7.200
JRUN

7.300
7.700
8.000
8.000

8.000
8.100

8.100

8.200
8.400
9.300
9.300

AlN

P3: NODE(1) CREATES NODE(9) (INT:4)

PS: NODE(9) IS IDLE

P6: NODE(4) CREATES NODE(10) (INT:4)

P6: NODE(10) IS IDLE

P6: NODE(4) SENDS FIND_SOLUTIONCINT:4,INT:2,INT:
0,INT:0) TO NODE(10)

P6: NODE(10) RECEIVES FIND_SOLUTION(CINT:4,INT:
2,INT:0,INT:0) FROM NODE(4) -

P6: NODE(10) STARTING OPERATION FIND_SOLUTIONCINT:
4,INT:2,INT:0,INT:0)

REAL-TIME LIMIT EXCEEDED

INTERFACE(1) : ENTER CSSA COMMAND -

P2: NODE(6) CREATES NODE(11) (INT:4)

P2: NODE(6) SENDS FIND_SOLUTIONCINT:2,INT:4,INT:
1,INT:0) TO NODE (11)

P2: NODE(6) TERMINATED

P7: NODE(11) IS IDLE

P3: NODE(7) TERMINATED

P3: NODE(1) SENDS FIND_SOLUTIONCINT:1,INT:4,INT:
0,INT:0) TO NODE(9)

P3: NODE(1) TERMINATED

PS: NODE(9) RECEIVES FIND_SOLUTION(CINT:1,INT:
4,INT:0,INT:0) FROM NODE(1)

PS: NODE(9) STARTING OPERATION FIND_SOLUTIONCINT:
1,INT:4,INT:0,INT:0)

P4: NODE(8) RECEIVES FIND_SOLUTIONCINT:4,INT:
1,INT:0,INT:0) FROM NODE (4)

P4: NODE(8) STARTING OPERATION FIND_SOLUTIONCINT:
4,INT:1,INT:0,INT:0)

P6: NODE(4) TERMINATED

P?7: NODE(5) CREATES NODE(12) (INT:4)

P7: NODE(11) RECEIVES FIND_SOLUTIONCINT:2,INT:
4,INT:1,INT:0) FROM NODE(6)

P7: NODE(11) STARTING OPERATION FIND_SOLUTIONC(INT:
2,INT:4,INT:1,INT:0)

P2: NODE(12) IS IDLE

REAL-TIME LIMIT EXCEEDED

INTERFACE(1) : ENTER CSSA COMMAND -

P6: NODE(10) TERMINATED

P7: NODE(S) SENDS FIND_SOLUTIONCINT:3,INT:1,INT:
4,INT:0) TO NODE(12)

PS: NODE(9) CREATES NODE(13) (INT:4)

P5: NODE(9) SENDS FIND_SOLUTIONCINT:1,INT:4,INT:
2,INT:0) TO NODE(13)

P3: NODE(13) IS IDLE

P2: NODE(12) RECEIVES FIND_SOLUTIONCINT:3,INT:
1,INT:4,INT:0) FROM NODE(S)

P2: NODE(12) STARTING OPERATION FIND_SOLUTIONCINT:
3,INT:1,INT:4,INT:0)

P4: NODE(8) CREATES NODE(14) (INT:4)

P4: NODE(14) IS IDLE

P4: NODE(8) SENDS FIND_SOLUTIONCINT:4,INT:1,INT:
3,INT:0) TO NODE(14)

P4: NODE(14) RECEIVES FIND_SOLUTIONCINT:4,INT:
1,INT:3,INT:0) FROM NODE (8)

P4é: NODE(14) STARTING OPERATION FIND_SOLUTIONCINT:
4,INT:1,INT:3,INT:0)

REAL-TIME LIMIT EXCEEDED

INTERFACE(1) : ENTER CSSA COMMAND -

PS: NODE(9) TERMINATED

P7: NODE(5) TERMINATED

P7: NODE(11) CREATES NODE(15) (INT:4)

P7: NODE(11) SENDS FIND_SOLUTION(CINT:2,INT:4,INT:
1,INT:3) TO NODE(15)

P5: NODE(15) IS IDLE

P3: NODE(13) RECEIVES FIND_SOLUTIONCINT:1,INT:
4,INT:2,INT:0) FROM NODE (9)

P3: NODE(13) STARTING OPERATION FIND_SOLUTIONCINT:
1,INT:4,INT:2,INT:0)

P7: NODE(11) TERMINATED

P4: NODE(8) TERMINATED

P2: NODE(12) CREATES NODEC(16) (INT:4)

P2: NODE(12) SENDS FIND_SOLUTIONCINT:3,INT:1,INT:
4,INT:2) TO NODE(16)

fig. 18 =-continued-

{u=

{u=

{m=

A3Y

P6: NODE(16) IS IDLE

PS: NODE(15) RECEIVES FIND_SOLUTIONCINT:2,INT:
4,INT:1,INT:3) FROM NODE(11)

P5: NODE(15) STARTING OPERATION FIND_SOLUTIONCINT:
2,INT:4,INT:1,INT:3)

P2: NODE(12) TERMINATED

P4: NODE(14) TERMINATED

One solution for 4 queens is : 2,4,1,3"),REPLY TO: OK TO INTERFACE (1)

+e 9.300
* e 9.400
+ee 9.400
e 9.600
+e+ 9.900
+44 10.400
+44 10.600
++e 10.700
* e 10.700

PS: NODE(15) IS IDLE

P3: NODE(13) TERMINATED

P6: NODE(16) RECEIVES FIND_SOLUTIONCINT:3,INT:
1,INT:4,INT:2) FROM NODE(12)

P6: NODE(16) STARTING OPERATION FIND_SOLUTION(INT:
3,INT:1,INT:4,INT:2)

One solution for 4 queens is : 2,4,1,3"),REPLY TO: OK FROM NODE (15)
one solution for 4 queens is : 3,1,4,2"),REPLY TO: OK TO INTERFACE(1)

P6: NODE(16) IS IDLE

one solution for 4 queens is : 3,1,4,2"),REPLY TO: OK FROM NODE(16)

*+4 11.700
>>> 12.100
>>> 12.100

==> MAILBOX
MAILBOX OF INTERFACE (1)

SYSTEM TERMINATED
INTERFACE(1) : ENTER CSSA COMMAND -

(1) ANSWER(STRING: "One solution for 4 queens is : 2,4,1,3"),REPLY TO: 0K
(2) ANSWER(STRING:"One solution for 4 queens is : 3,1,4,2"),REPLY TO: 0K
>>> 12.100 INTERFACE(1) : ENTER CSSA COMMAND -

==> REPLY 1

D i 12.100 P1: INTERFACE(1) SENDS *REPLY() TO NODE(15)

>>> 12.100 INTERFACE(1) : ENTER CSSA COMMAND -

==> MAILBOX

MAILBOX OF INTERFACE (1)

(1) ANSWER(STRING:"One solution for 4 queens is : 2,4,1,3"),REPLY TO: 0K
(2) ANSWER(STRING:"One solution for 4 queens is : 3,1,4,2") ,REPLY TO: 0K

>>> 12.100
==)> REPLY 2

‘e 12.100
>>> 12.100

==> ;STATUS

INTERFACE(1) : ENTER CSSA COMMAND -

P1: INTERFACE(1) SENDS *REPLY() TO NODE(16)
INTERFACE(1) : ENTER CSSA COMMAND -

‘e 12.100 ALL EXISTING AGENTS:
AGENT | FACET [opPerATION | MAILBOX
P1: INTERFACE(1) * ANSWER ANSWER
P2: NQUEENS (1) ONLY_FACE
P5: NODE(15) ONLY_FACE | FIND_SOLU | N
P6: NODE(16) ONLY_FACE | FIND_SOLU | N
>>> 12.100 INTERFACE(1) : ENTER CSSA COMMAND -
==> ;RUN
++4 12.300 P5: NODE(15) RECEIVES *REPLY() FROM INTERFACE (1)
e 12.300 P6: NODE(16) RECEIVES *REPLY() FROM INTERFACE (1)
e 12.400 P5: NODE(15) TERMINATED
+4e 12.400 P6: NODE(16) TERMINATED
>>> 12.400 SYSTEM TERMINATED
>>> 12.400 INTERFACE(1) : ENTER CSSA COMMAND -
==> ;STATUS
e 12.400 ALL EXISTING AGENTS:
AGENT | FACET | OPERATION | MAILBOX
P1: INTERFACE(1) + ANSWER ANSWER
P2: NQUEENS (1) ONLY_FACE

fig. 18 =-continued-

{nm

{u=

{um=

{us=

{m=

=

{n=

Al6

> 12.400 INTERFACE(1) : ENTER CSSA COMMAND -
==> SEND FIND_SOLUTION(2) TO NQ;RUN e
*ee 12.400 P1: INTERFACE(1) SENDS FIND_SOLUTIONC(INT:2) TO NQUEENS (1)
+4+ 12.500 P2: NQUEENS(1) RECEIVES FIND_SOLUTIONCINT:2) FROM INTERFACE (1)
‘e 12.500 P2: NQUEENS(1) STARTING OPERATION FIND_SOLUTIONCINT:
2)
‘e 12.900 P2: NQUEENS (1) CREATES NODE(17) (INT:2)
‘e 12.900 P2: NQUEENS (1) SENDS FIND_SOLUTION(CINT:1,INT:
0) TO NODE(17)
e 12.900 P7: NODE(17) IS IDLE
*ee 13.100 P2: NQUEENS(1) CREATES NODE (18) (INT:2)
e 13.100 P2: NODE(18) IS IDLE
‘e 13.100 P2: NQUEENS (1) SENDS FIND_SOLUTION(CINT:2,INT:
D) TO NODE(18)
+te 13.100 P2: NODE(18) RECEIVES FIND_SOLUTIONCINT:2,INT:
0) FROM NQUEENS (1)
*ee 13.100 P2: NODE(18) STARTING OPERATION FIND_SOLUTION (INT:
2,INT:0)
+ee 13.600 P7: NODE(17) RECEIVES FIND_SOLUTIONCINT:1,INT:
0) FROM NQUEENS (1)
+ee 13.600 P7: NODE(17) STARTING OPERATION FIND_SOLUTIONCINT:
1,INT:0)
+ee 14,100 P2: NQUEENS(1) IS IDLE
e 14.300 P2: NODE(18) TERMINATED
e 14.800 P7: NODE(17) TERMINATED

>>> 14.800 SYSTEM TERMINATED
> 14.800 INTERFACE(1) : ENTER CSSA COMMAND -
==> ,;STATUS K==
‘e 14.800 ALL EXISTING AGENTS:
AGENT | FAceT | OPERATION | MAILBOX
P1: INTERFACE(1) * [’Aususa ANSWER
P2: NQUEENS (1) ONLY_FACE

>> 14.800 INTERFACE(1) : ENTER CSSA COMMAND -
==) MAILBOX
MAILBOX OF INTERFACE (1)

(1) ANSWER(STRING:"One solution for 4 queens is : 2,4,1,3") ,REPLY TO: 0K
(2) ANSWER(STRING:"One solution for 4 queens is : 3,1,4,2"),REPLY TO: 0K

>>> 14.800 INTERFACE(1) : ENTER CSSA COMMAND -
==> TERMINATE ==
e 14.800 ALL EXISTING AGENTS:

AGENT | FACET | OPERATION | MAILBOX

P1: INTERFACE(1) «

ANSWER ANSWER
P2: NQUEENS (1) ONLY_FACE

CSSA-SESSION-STATISTICS

SESSION STARTED AT 11:42:59.00
SESSION TERMINATED AT 11:49:31.00 ON 1982/01/18
REAL-TIME USED : 392.00 SEC.

CPU-TIME USED : 6.34 SEC.
SIMULATION TIME USED : 14.8000 SEC.
NUMBER OF AGENTS CREATED : 19

NUMBER OF MESSAGES SENT : 24

fig. 18 -continued-

CONOVNEHEWN =

A3?

e T P B el) ST S EPUNISIE Sy PR LR EEEES S
type START_NETWORK is
script(int : UP1,GEN_ZUF1,UP2,GEN_ZUF2;

bool : SHOW1,SHOW2) assert UP1 > O and UP2 > O

type TRANSMITTER is
script(agent : CH; int : WINDOW, agent : H)

procedure ACTIVATE_TRANSMIT(int:N) is
var int: I;
oper: SEND_PACKET;
loop for I in 1..N do
send SEND_PACKET to self;
endloop;
endprocedure;

var string: MESS:="";
var int: LENGTH_OF_MESS, CURRENT_MESS_ID := 0,

facethead TRANSMISSION1;

facet START_TRANSMISSION is
public: SEND_MESS;

operation SEND_MESS(string: M) is
functionhead LENGTH (string: P1) returns int external;
oper: NEXT_MESS;

CURRENT_MESS_ID := CURRENT_MESS_ID + 1;
MESS := M;

LENGTH_OF_MESS := LENGTH(MESS);

{f LENGTH_OF_MESS < WINDOW then

| call ACTIVATE_TRANSMIT(LENGTH_OF_MESS);
else call ACTIVATE_TRANSMIT(WINDOW);
endif;

send NEXT_MESS to H;

replace by TRANSMISSION1;

endoperation

endfacet

facet TRANSMISSION1 is
public: ACKNOWLEDGE;
private: SEND_PACKET;

functionhead MOD (int: P1,P2) returns int external;

functionhead SUBSTR (string:P1;1int:P2,P3) returns string external;

functionhead GENSTRING(int:P1) returns string external;

type PACKET is record int:CHAR_NO;--> string:CHAR;int: MESS_ID;
bool:ENDE; endrecord;

var PACKET: P;

relation WINDOW_PACKETS of PACKET;

var int: S_NO,LWE := 1;

var bool: IDLE_ENABLED := false;

oper: COLLECT;

fig. 19 : Window Mechanism Script

BLOCKNESTING

+1

+2

+3

+4

-4

|
*2

+5

+6

*7

-7
*6

-6
*5
-5

+8

+*9
-9
*8

A3&

facet TRANSMISSION2 is
include : ACKNOWLEDGE,SEND_PACKET;

operation idle is
find WINDOW_PACKETS (LWE) --> P de
send COLLECT(P) to CH;
endfind;
IOLE_ENABLED := false)
leave;
endoperation

endfacet

operation SEND_PACKET s

P.CHAR := SUBSTR(MESS,S_NO,S_NO);
P.CHAR_NO := S_NO;
P.MESS_ID := CURRENT_MESS_ID;
1# S_NO = LENGTH_OF_MESS then
| P.ENDE := true;
else P.ENDE := false;
endif;
insert P into WINDOW_PACKETS;
send COLLECT(P) to CH;
S_NO := S_NO + 1;
if S_NO = 2 then

IDLE_ENABLED := true;

setup TRANSMISSION2;
endif;

endoperation

operation ACKNOWLEDGE(int:N,MESS_ID) {s
f MESS_ID = CURRENT_MESS_ID then

{¢ N = LENGTH_OF_MESS + 1 then

| replace by START_TRANSMISSION;

else
i{f LWE < N and N <= LWE + WINDOW then

1# N + WINDOW - 1 <= LENGTH_OF_MESS then

| call ACTIVATE_TRANSMIT(N - LWE);
else call ACTIVATE_TRANSMIT(LENGTH_OF_MESS -

(LWE + WINDOW - 1)),

endi¢f;

LWE := N;
if not IDLE_ENABLED then
IDLE_ENABLED := true;
setup TRANSMISSION2;
endif;
else
if LWE = N then
| print("N= " + GENSTRING(N) + " fgnored");
else print("N = " + GENSTRING(N) + * out of range®);
endif;
endif;
endif;
endif;
endoperation

fig. 19 -continued-

+10
*10

|+14
+12

-12
*11

-11
*10
-10

+13

+14

-1
Iﬂs

+15

=15
*13
-13

|+16
|+17
+18

|+19
+20

-20
|*19

+21
=21

| *19
+22

-22
|-19
|-18

117

119
120
121
122
123
124
125
126
127
128

A29

endfacet
inftial START_TRANSMISSIO

endscript;

type COLLECTOR is
script(agent : H; int

WINDOW)

var int:CURRENT_MESS_ID:= 1;
var int:LWE_OLD;

var agent: CH;

facethead COLLECTING;

facet STARTING s

public: STARTC;

operation STARTC(->CH) is
replace by COLLECTING;
endoperation

endfacet

facet COLLECTING is

public: COLLECT;

var bool: FIRST_TIME:=true;
var int: 1;
var string: MESS:= "";
type RECEIVED is record int: S_NO;-->
bool: REC; string: CHAR; endrecerd;
var RECEIVED : RC;
relation R of RECEIVED;
var int: LWE := 1;
var int: LAST;

operation COLLECT(int:CHAR_NO;string:CHAR; int:MESS_ID;bool:ENDE) {s
port: ACCEPTED;
oper: RECEIVE_MESS,ACKNOWLEDGE;
if FIRST_TIME then
loop for I in 1..WINDOW do

RC.S_NO := I;

RC.REC := false;

RC.CIHAR :m "x";

insert RC into R;

endloo);
FIRST_IIME := false;
endif;

if MESS_ID = CURRENT_MESS_ID then
find R(CHAR_NO - LWE + 1) --> RC do

RC.CHAR := CHAR;

if not (CHAR_NO = LWE) than
RC.REC := true;
insert RC into R;

fig. 19 -continued-

*8
-8

-2
*19

+23

+24

+27
=27
*26

+28

|+29
+30

-30
*29
-29
|#28

| +34

+32

+33

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

195

196
197
198
199
200
201

202
203
204
205

206
207
208
209
210
211

212
213
214
215§
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232
233
234
23S
236

if

ANO

ENDE then LAST := CHAR_NO; endif;

send ACKNOWLEDGE (LWE,CURRENT_MESS_ID) to CH;

(* CHAR_NO = LWE *)
find R(1) --> RC1 do
{¢ ENDE then

MESS := MESS + RC1.CHAR;

CURRENT_MESS_ID := CURRENT_MESS_ID + 1;
wait ACCEPTED;

LWE_OLD := LWE + 1;

replace by COLLECTING;

(* EFFECT: new initialization *)
(* of local variables *)
else begin

var int: J ;

send ACKNOWLEDGE (LWE + 1,CURRENT_MESS_ID) to CH;

send RECEIVE_MESS (MESS) to H reply to ACCEPTED;

MESS := MESS + RC1.CHAR;

find R(J1) --> RC do
if RC.REC then
MESS := MESS + RC.CHAR;
else signal EXITLOOP;
endif;
endfind;

exit EXITLOOP is
J = J1;

endloop;

LWE := LWE + J - 1;

{f LWE = LAST + 1 then
send RECEIVE_MESS (MESS) to H
reply to ACCEPTED;

wait ACCEPTED;

LWE_OLD := LWE;
replace by COLLECTING;
else begin

1 :=m 2;

find R(1) --> RC2 do
find R(I + J - 1) ==> RC3 do
delete RC2 fn R;
RC2.REC := RC3.REC;
RC2.CHAR := RC3.CHAR;
I := 1 +1;
fnsert RC2 into R;
endfind;
endfind;
endloop;
oop while I <= WINDOW do
find R(I) --> RC2 do
delete RC2 {in R;
RC2.REC := false;
insert RC2 into R;
endfind;
I:= 1 + 1,
endloop;

fige 19 =-continued-

oop for J1 in 2..WINDOW until EXITLOOP do

1€ J1 = WINDOW then J := WINDOW + 1;endif;

send ACKNOWLEDGE (LWE,CURRENT_MESS_ID) to CH;

CURRENT_MESS_ID := CURRENT_MESS_ID + 1,

loop while I + J - 1 ¢= WINDOVW do

| +34-34
*33

|+35
+36

+37

|+38
|+39
+40

-40

l-sv

+41-41
*38

-38
Itn

+*42

+43

|+66
| +4S
+46

-46
|-45
l-“
47
+48

-48
ltn
-47

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
2t
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

AN

| | end;
endif;
end;
endif;
endfind;
endif;

otherwise do send ACKNOWLEDGE (LWE,CURRENT_MESS_ID) to CH,
endfind;
else send ACKNOWLEDGE (LWE_OLD,CURRENT_MESS_ID - 1) to CH;
endif;

endoperation

endfacet

initial STARTING;
endscript;

type HOST is

script

var agent : TRM;

facethead WORKING;

Facet INITH is
public : STARTH;
operation STARTH(~->TRM) 1{s

replace by WORKING;
endoperation

endfacet

facet WORKING is

public : TRANSMIT,RECEIVE_MESS,NEXT_MESS;
private : TWIST_AND_SEND;

var int : 1,J;

var bool : READY_TO_TRM,READY_TO_TWIST := true,

var string : M;

type REC_ELEM {s record int : IX; --> string : MESS; endrecord;
relation REC_MESS of REC_ELEM;

var REC_ELEM : RE;

" functionhead LENGTH(string : P1) returns int external;

operation TRANSMIT(->M) assert READY_TO_TRM is
if M = "" then
| print(" <empty message> cannot be transmitted");
else
I :=0;
READY_TO_TRM := false;
send TWIST_AND_SEND to self;
endif;

endoperation;

fig. 19 -continued-

|-43

+49

+50

+51

-51
*50
-50
|-49

+52

|+53-53
*52

|+s4
+55

-5s
|-56

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
334
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

AN

operatfon NEXT_MESS {s
| READY_TO_TWIST := true;
endoperation;

operation TWIST_AND_SEND assert READY_TO_TWIST f{s

oper : SEND_MESS;

functionhead SUBSTR(string:P1;int:P2;1int:P3)
raturns string external;

READY_TO_TWIST := false;

I :=1 + 1;

send SEND_MESS(M) to TRM;

1f# I < LENGTH(M) then
M := SUBSTR(M,2,LENGTH(M)) + SUBSTR(M,1,1);
send TWIST_AND_SEND to self;

else READY_TO_TRM := true;

endif;

endoperation;

operation RECEIVE_MESS(string : MESS) is
reply;

Jd = J o+ 1;

RE.IX := J;

RE.MESS := MESS;

insert RE into REC_MESS;

i1¢ J >= LENGTH(MESS) then
begin port : 0K;
oper : ACKN;

var string : OUT;

to interface reply to 0K;
loop for J in 1..LENGTH(MESS) de
¢ind REC_MESS(J) -> MS do
OUT := GENSTRING(J) + ". message :
send ACKN(OUT) to interface;

endfind;
endloop;
J := 0;
waft 0K;
end;
endif;

endoperation;

endfacet

fnitial INITH;

endscript;

type FAULTY_CHANNEL s
script(agent : C)

var agent : T;

fig. 19 -continued-

functionhead GENSTRING(int : P1) returns string external;

send ACKN("Host received fully twisted message")

" + RAS.MESS;

+58

-s8
|-s7
|x52
+59

|+60
+61

+66

357
358
359
360
361
362
363
364
365
366
367
368
369
370
37
372
373
374
375
376
377
378
379
380
381
382
383
384
385

412
413
414
415
416

Av3

var int : UP,GEN_Z2UF,2UF,I;
var bool : SHOW;

functionhead RANDOM(int:LOW,UP) returns int external;
facethead TRANSMITTING;

facet INITIALIZATION {s
public : STARTCH;

operation STARTCH(=>T;=->UP;->GEN_ZUF;->SHOW) {s
if UP > 10 then UP := 10; endif;
loop for I in 1..GEN_ZUF do
ZUF := RANDOM(1,UP);
endloop;
replace by TRANSMITTING;
endaoperation

endfacet

facet TRANSMITTING is
public : COLLECT,ACKNOWLEDGE,SET_CHNL_PARMS;

functionhead GENSTRING(int:P1) returns string external;
var int : COUNT := 1;
var string : MESS;

operatfon COLLECT(int:P1;string:P2;int: P3;bool:P4) is

{f SHOW then
MESS := "(" + GENSTRING(P1) + " , " + P2 + " , *
+ GENSTRING(P3) + " , " ,
{f P4 then MESS := MESS + "T)" ,
else MESS := MESS + "F)" ;
endif;
endif;

{f COUNT = 1 then 2UF := RANDOM(1,UP); endif;
if COUNT < ZUF then
send COLLECT(P1,P2,P3,P4) to C;
COUNT := COUNT + 1;
if SHOW then print(”"sends COLLECT™ + MESS); endif;
else COUNT := 1;

if SHOW then

print("forgets COLLECT" + MESS);

endif;

endif;

endoperation
operation ACKNOWLEDGE (int:P1,P2) (s
1f SHOW then
MESS := "(" + GENSTRING(P1) + "," + GENSTRING(P2) + ")";
endif;
t¢# COUNT = 1 then ZUF := RANDOM(1,UP); endif;

1€ COUNT < ZUF then
| send ACKNOWLEDGE(P1,P2) to T;

fig. 19 -continued-

%64

+65

|+66
+67-67
+68

-68
*66
-66
65
-65
|*64
+69

+70

+71

+72

-72
|-71
|*70
+73-73
+74

|+75-75
|*74
+76

-76

*70
-70
| %69
+77

-78
| 277
|+79-79
|77
+80

A%y

417 COUNT := COUNT + 1, |«80
418 1¢ SHOW then print("sends ACKNOWLEDGE"™ + MESS), endif, |+81-81
419 ®lse COUNT := 1, |*80
420 {f SHOW then +82
421 | print("forgets ACKNOWLEDGE" + MESS);

422 endif; -82
423 endif; |-80
424 *77
425 endoperation -77
426 |*69
427 operation SET_CHNL_PARMS(-> UP,GEN_ZUF,SHOW) assert UP > 0 is +83
428 .

429 1 UP > 10 then UP := 10; endif; +84-84
430 loop for I in 1..GEN_ZUF do +85
431 l ZUF := RANDOM(41,UP);

432 endloop; -85
433 COUNT := 1; *83
434

435 endoperation -83
436 *69
437 endfacet -69
438 | *64
439 nitial INITIALIZATION;

440

441

442 endscript; -64
443 *9

644

445

446 |facet ONLY_FCT is |+|s
447 public: START_SYSTEM;

448 operation START_SYSTEM({int:WINDOW_SI2E) assert WINDOW_SI2E > O is +87
449

450 const HOST : H1 := new HOST;

451 const HOST : H2 := new HOST;

452

453 const COLLECTOR : C2 := new COLLECTOR(H1,WINDOW_SIZE);

454 const COLLECTOR : C1 := new COLLECTOR(H2,WINDOW_SIZE);

4SS

456 const FAULTY_CHANNEL : CH1 := pew FAULTY_CHANNEL(C1);

457 const FAULTY_CHANNEL : CH2 := new FAULTY_CHANNEL(C2);

458

459 const TRANSMITTER : T1 := new TRANSMITTER(CH1,WINDOW_SIZE,H1);

460 const TRANSMITTER : T2 := new TRANSMITTER(CH2,WINDOW_SIZE,H2);

461

462 oper: STARTCH,STARTH,STARTC,ACQ_TO_HOST;

463

466 || | —m--mmmmmmm———- ~— - ———

465

466 send STARTCH(TY,UP1,GEN_ZUF1,SHOWY) to CH1;

467 send STARTCH(T2,UP2,GEN_ZUF2,SHOW2) to CH2;

468

469 send STARTH(T1) to Hi;

470 send STARTH(T2) to H2;

471

472 send STARTC(CHY) teo C1;

473 send STARTC(CH2) to C2;

474

475 send ACQ_TO_HOST(H1,H2,CH1,CH2) to {nterface;

476

477 *87
478 terninate;

479

480 endoperation -87
481 *86
482 endfacet -86
83 (| *1

484 initial ONLY_FCT;

485 |

486 endscript : -1

BMS-CSSA-COMPILER - DATE OF RELEASE: 30 SEP 1981 NO ERROR DETECTED
END OF COMPILING ON 1982/01/21 AT 14:28:44.00 RETURNCODE = O
COMPILE-TIME (CPU) = 28.34 SEC. EXECUTION-TIME = 177.00 SEC.
NUMBER OF SOURCE-LINES READ = 486 NUMBER OF TOKENS = 2171
NUMBER OF OBJECT-RECORDS GENERATED = 5254

fig. 19 =-continued-

ANS

CSSA-SIMULATION-SYSTERM

P1 | C(INTERFACE)
. . P8 |...] P6 |...| ps .
P2 |. de
S IV (PO) 2 (PR BT -
S S I S T IS EE S A S ST I NSNS ENEEEES == m-EmEs
PROGRAM GENERATED ON 1981/11/17 AT 12:27:21.00
BY BMS-CSSA-COMPILER (VERS. 30 SEP 1981)
PROTOCOL OF CSSA SESSION ON 1981/12/04 AT 12:08:57.00
A ST TSEIEISEISINSS SIS EEEIR =.
> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -
==> ;DISPLAY
IDENTIFIER TYPE VALUE
COLLECTOR SCRIPT COLLECTOR
FAULTY_CHANNEL SCRIPT FAULTY_CHANNEL
HOST SCRIPT HOST
START_NETWORK SCRIPT START_NETWORK
TRANSMITTER SCRIPT TRANSHMITTER
> 0.000 INTERFACE(1) : ENTER CSSA COMMAND -

==> VAR AGENT :

>>>

m=> VAR AGENT :

>>>

NTW
0.000

0.000

:= NEW START_NETWORK (600,10,500,0, TRUE, TRUE)

INTERFACE (1)
H1,H2,CH1,CH2;
INTERFACE (1)

OPER

==> SEND START_SYSTEM(2) TO NTW; RUN; MAILBOX

>>>

10.300

SYSTEM TERMINATED

MAILBOX OF INTERFACE (1)

ENTER CSSA COMMAND -
: START_SYSTEM,TRANSMIT,SET_CHNL_PARNS
ENTER CSSA COMMAND -

(1) ACQ_TO_HOST(AGENT:HOST (1) ,AGENT:HOST (2) ,AGENT: FAULTY_CHANNEL (1)

SAGENT: FAULTY_CHANNEL (2))

>>>

==> RECEIVE 1

10.300

INTERFACE(1) :
(H1,H2,CH1,CH2) ;

STATUS;

ENTER CSSA COMMAND -
DISPLAY

e 10.300 ALL EXISTING AGENTS:
AGENT | FACET | oPERATION | MAILBOX

P1: INTERFACE(1) »* ACQ_TO_HOST

P3: HOST(1) WORK ING

P4: HOST(2) WORKING

PS: COLLECTOR(1) COLLECTIN

P6: COLLECTOR(2) COLLECTIN

P7: FAULTY_CHANNE | TRANSMITT

P8: FAULTY_CHANNE | TRANSMITT

P9: TRANSMITTER(1 | START_TRA

P2: TRANSMITTER(2 | START_TRA

fig. 20

: Window Mechanism Execution Protocol

4 1]

==

{um

{m=

C=s

AVe

IDENTIFIER TYPE VALUE

CH1 AGENT FAULTY_CHANNEL (1)
CH2 AGENT FAULTY_CHANNEL (2)
COLLECTOR SCRIPT COLLECTOR
FAULTY_CHANNEL SCRIPT FAULTY_CHANNEL
HOST SCRIPT HOST
H1 AGENT HOST (1)
H2 AGENT HOST (2)
NTW AGENT START_NETWORK (1)
SET_CHNL_PARNS LITERAL
START_NETWORK SCRIPT START_NETWORK
START_SYSTEM LITERAL
TRANSMIT LITERAL
TRANSMITTER SCRIPT TRANSMITTER

>>> 10.300 INTERFACE (1) ENTER CSSA COMMAND -

==> SEND TRANSMIT("ABCD") TO H1;

==

SEND TRANSMIT ("XYZ") TO H2 ;RUN

thd 16.700 FAULTY_CHANNEL(2) forgets COLLECT(1 , X , 1 , F)
LA g 16.800 FAULTY_CHANNEL (1) sends COLLECT(1 , A , 1 , F)
LA 17.800 FAULTY_CHANNEL (1) sends COLLECT(2 , B , 1 , F)
LR 17.900 FAULTY_CHANNEL (2) sends COLLECT(2 , Y , 1 , F)
s 18.800 FAULTY_CHANNEL (1) sends COLLECT(1 , A , 1 , F)
LA A 18.900 FAULTY_CHANNEL(2) sends COLLECT(1 X , 1, F)
LAt 21.900 FAULTY_CHANNEL (1) sends ACKNOVLEDGE(Z 1)

*h 22.300 FAULTY_CHANNEL(2) : sends ACKNOWLEDGE (1,1)

121 23.500 TRANSMITTER(2) : N= 1 ignored

Rk 24.000 FAULTY_CHANNEL(2) : sends ACKNOWLEDGE(3,1)

LA 24.500 FAULTY_CHANNEL(1) sends ACKNOWLEDGE (3,1)

LA 25.900 FAULTY_CHANNEL (1) sends ACKNOWLEDGE(3,1)

LA 27.100 FAULTY_CHANNEL (1) forgets COLLECT(3 , € , 1 , F)
ke 28.300 FAULTY_CHANNEL (1) sends COLLECT(2 , B , 1 , F)
LA 28.500 FAULTY_CHANNEL (2) sends COLLECT(3 , 2 , 1, T)
LE A 29.300 FAULTY_CHANNEL (1) sends COLLECT(4é , D , 1 , T)
1217 29.500 FAULTY_CHANNEL(2) : sends COLLECT(3 , 2 , 1, T)
*RR 30.300 FAULTY_CHANNEL(1) : sends COLLECT(3 , C , 1 , F)
L 30.700 TRANSMITTER(1) : N= 3 ignored

LA A 32.000 FAULTY_CHANNEL(2) : sends ACKNOWLEDGE (4,1)

1117 32.800 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(3,1)

the 33.800 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE (3,1)

hd 34.800 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(5,1)

A% 34.800 TRANSMITTER(1) : N= 3 ignored

tkk 35.800 TRANSMITTER(1) : N= 3 ignored

Lat 36.600 FAULTY_CHANNEL(2) : forgets COLLECT(1 , Y , 2 , F)
*kk 37.900 FAULTY_CHANNEL (2) sends COLLECT(2 , 2 , 2 , F)
L2 2 39.800 FAULTY_CHANNEL(2) sends COLLECT(1 , Y , 2 , F)
LA 40.300 FAULTY_CHANNEL (1) sends COLLECT(1 , B , 2 , F)
L3 2 41.400 FAULTY_CHANNEL (1) sends COLLECT(2 , C , 2 , F)
kkd 42.300 FAULTY_CHANNEL(1) forgets COLLECT(1 , B , 2 , F)
L d s €4.900 FAULTY_CHANNEL(2) sends ACKNOWLEDGE (4,1)

[22} 45.900 FAULTY_CHANNEL(2) : sends ACKNOWLEDGE (1,2)

k¥ 47.100 TRANSMITTER(2) : N= 1 ignored

LA 47.500 FAULTY_CHANNEL(2) : sends ACKNOWLEDGE(3,2)

ke 48.300 FAULTY_CHANNEL (1) sends ACKNOWLEDGE (2,2)

LA 50.800 FAULTY_CHANNEL (1) sends ACKNOWLEDGE (3,2)

g 52.000 FAULTY_CHANNEL(2) sends COLLECT(3 , X , 2 , T)
1217 $3.000 FAULTY_CHANNEL(2) sends COLLECT(3 , X , 2 , T)
k& $3.500 FAULTY_CHANNEL(1) sends COLLECT(2 , C , 2 , F)
*hx $54.500 FAULTY_CHANNEL (1) sends COLLECT(3 , 0D , 2 , F)
LA A $5.500 FAULTY_CHANNEL (1) sends COLLECT(, A , 2, T
ki 55.500 FAULTY_CHANNEL (2) sends ACKNOWLEDGE (4,2)

LA 56.400 FAULTY_CHANNEL (1) forgets COLLECT(3 , D , 2 , F)
L g $7.300 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE (3,2)

LA $8.500 TRANSMITTER(1) : N= 3 ignored

e g $9.000 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE (4,2)

L33 60.100 FAULTY_CHANNEL (2) forgets COLLECT(1 , 2 , » F)
L2 61.000 FAULTY_CHANNEL (1) sends ACKNOWLEDGE (5,2)

khk 61.300 FAULTY_CHANNEL(2) forgets COLLECT(2 , X , 3 , F)
k¥ 62.400 FAULTY_CHANNEL(2) sends COLLECT(1 , 2 , 3 , F)
*h 63.700 FAULTY_CHANNEL (1) sends COLLECT(4 , A , 2 , T
LA 65.700 FAULTY_CHANNEL (1) sends COLLECT(1 , C , 3 , F)
ke 66.800 FAULTY_CHANNEL (1) sends COLLECT(2 , D , 3 , F)
kR 67.700 FAULTY_CHANNEL (1) forgets COLLECT(1 , € , 3 , F)

fig.

20 -=continued-

AN

Ak 68.400 FAULTY_CHANNEL(2) sends ACKNOWLEDGE (4,2)
122 70.000 FAULTY_CHANNEL(2) sends ACKNOWLEDGE (2,3)
LA 3 72.200 FAULTY_CHANNEL(1) sends ACKNOWLEDGE (5,2)
*hw 73.700 FAULTY_CHANNEL(1) sends ACKNOWLEDGE (2,3)
L 22 74.400 FAULTY_CHANNEL(2) : forgets COLLECT(3 , Y , 3 , T)
1227 75.600 FAULTY_CHANNEL(2) : sends COLLECT(2 , X , 3 , F)
L3 2 76.300 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(3,3)
[121 79.000 FAULTY_CHANNEL(1) : sends COLLECT(2 , D , 3 , F)
*hd 79.600 FAULTY_CHANNEL(2) : forgets ACKNOWLEDGE(3,3)
223 80.000 FAULTY_CHANNEL(1) : sends COLLECT(3 , A , 3 , F)
hhkw 80.900 FAULTY_CHANNEL(1) : forgets COLLECT(4¢ , B , 3 , T)
i 82.100 FAULTY_CHANNEL(1) : sends COLLECT(3 , A , 3 , F)
Ll 82.900 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE (3,3)
*hw 84.100 TRANSMITTER(1) : N= 3 ignored
*hk 84.600 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(4,3)
121 85.600 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE (4,3)
L3 87.200 TRANSMITTER(1) : N= 4 ignored
1224 88.500 FAULTY_CHANNEL(1) : sends COLLECT(4 , B8 , 3 ,'T)
*hk 91.800 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(S5,3)
*kk 96.500 FAULTY_CHANNEL(1) : sends COLLECT(1 , D , 4 , F)
*hd 97.500 FAULTY_CHANNEL(1) : forgets COLLECT(2 , A , é , F)
wddr 99.700 FAULTY_CHANNEL(1) : sends COLLECT(Y , D , 4 , F)
121 103.200 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(2,4)
(11 104.600 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE (2,4)
T2 106.400 TRANSMITTER(1) : N= 2 ignored
k¥ 107.700 FAULTY_CHANNEL(1) : sends COLLECT(3 , B , & , F)
LA 2 108.700 FAULTY_CHANNEL(1) : sends COLLECT(2 , A , 4 , F)
L3 3 111.200 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE(2,4)
ket 112.400 TRANSMITTER(1) : N= 2 ignored
P22 112.900 FAULTY_CHANNEL(1) : sends ACKNOWLEDGE (4,4)
Rk 117.400 FAULTY_CHANNEL(1) : sends COLLECT(4é , C , & , T)
*hk 118.300 FAULTY_CHANNEL (1) forgets COLLECT(4 , C , 4 , T)
kK 120.800 FAULTY_CHANNEL (1) sends ACKNOWLEDGE (5,4)
>>> 427.400 SYSTEM TERMINATED
>>> 427.400 INTERFACE(1) : ENTER CSSA COMMAND -
==> MAILBOX &nm
MAILBOX OF INTERFACE (1) :
(1) ACQ_TO_HOST(AGENT:HOST (1) ,AGENT:HOST (2) ,AGENT:FAULTY_CHANNEL (1)
»AGENT: FAULTY_CHANNEL (2))
(2) ACKN(STRING:"Host received fully twisted message®) ,REPLY TO: 0K
(3) ACKN(STRING:"3. message : CDAB")
(4) ACKN(STRING:"4. message : DABC")
(5) ACKN(STRING:"2. message : BCDA")
(6) ACKN(STRING:"1. message ABCD")
>>> 427.400 INTERFACE(1) : ENTER CSSA COMMAND -
a=> REPLY 2; SEND TRANSMIT("A") TO H1;RUN Cnm
T2 133.600 FAULTY_CHANNEL (1) forgets COLLECT(1 , A, 5 , T)
121 134.700 FAULTY_CHANNEL (1) forgets COLLECT(1 , A , 5, T)
>>> 134.700 SYSTEM TERMINATED
>>> 134.700 INTERFACE(1) : ENTER CSSA COMMAND -
==> TERMINATE Cusm
+ee 134.700 ALL EXISTING AGENTS:
AGENT | FACET | OPERATION | MAILBOX
P1: INTERFACE(1) « ACQ_TO_HOST ACKN ACKN ACKN
ACKN ACKN
P3: HOST(1) WORK ING
P4: HOST(2) WORKING
PS: COLLECTOR(1) COLLECTIN
P6: COLLECTOR(2) COLLECTIN
P?: FAULTY_CHANNE TRANSMITT
P8: FAULTY_CHANNE TRANSMITT
P9: TRANSMITTER(1 TRANSMISS
P2: TRANSMITTER(2 TRANSMISS

SESSION STARTED

CSSA-SESSION-STATISTICS

AT 12:08:27.00

SESSION TERMINATED AT 12:18:17.00 ON 1981/12/04

REAL-TIME USED
CPU-TIME
SIMULATION TIME USED :

USED :

: 592.00 SEC.
12.27 SEC.

NUMBER OF AGENTS CREATED : 9

NUMBER OF MESSAGES SENT :

224

fig.

20

134.7000 SEC.

-continued-

