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Abstract
In financial and actuarial applications, marginal risks and their dependence structure
are often modelled separately. While it is sometimes reasonable to assume that the
marginal distributions are ‘known’, it is usually quite involved to obtain informa-
tion on the copula (dependence structure). Therefore copula models used in practice
are quite often only rough guesses. For many purposes, it is thus relevant to know
whether certain characteristics derived from d-variate risks are robust with respect to
(at least small) deviations in the copula. In this article, a general concept of copula ro-
bustness is introduced and criteria for copula robustness are presented. These criteria
are illustrated by means of several examples from quantitative risk management. The
concept of aggregation robustness introduced by Embrechts et al. (Finance Stoch.
19:763–790, 2015) can be embedded in our framework of copula robustness.

Keywords Copula · Fréchet class · Lp-weak topology · Risk measure · Portfolio
optimisation
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1 Introduction

As pointed out by Embrechts et al. [17] and McNeil et al. [33, Sect. 6.2.1], in financial
mathematics and actuarial science, marginal risks and their dependence structure are
often modelled separately. While the marginal risks of a d-variate risk are identified
with probability distributions μ1, . . . ,μd on the real line, the dependence structure
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is most often modelled by a d-variate copula C. The distribution function Fμ of the
joint distribution μ is then given by

Fμ(x1, . . . , xd) = C
(
Fμ1(x1), . . . ,Fμd

(xd)
)

for all x1, . . . , xd ∈ R, (1.1)

where Fμi
is the distribution function of μi .

In practical applications, quantitative risk managers and actuaries are interested in
various aspects Td(μ) of the joint distribution μ of the individual risks. An important
example is Td = RAd

with

RAd
(μ) := R(μ ◦ A−1

d ), (1.2)

where R is the risk functional corresponding to some distribution-invariant ‘down-
side’ risk measure and Ad : Rd → R is a fixed Borel-measurable map regarded as an
aggregation map in the spirit of McNeil et al. [33, Sect. 6.2.1]. Standard examples
for the aggregation map are Ad(x1, . . . , xd) := ∑d

i=1 xi and the three other maps pre-
sented in Example 4.4 below. Note that μ◦A−1

d is the distribution of Ad(X1, . . . ,Xd)

when (X1, . . . ,Xd) is a random vector distributed according to μ. Therefore RAd
(μ)

can be seen as the downside risk of the aggregate position Ad(X1, . . . ,Xd).
More generally, one could consider Td = RAd

with

RAd
(μ) := inf{R(μ ◦ A−1

d ) : Ad ∈ Ad} = inf{RAd
(μ) : Ad ∈Ad}, (1.3)

where Ad is a fixed set of Borel-measurable maps Ad : Rd → R. If there exists an
A∗

d ∈ Ad at which the infimum in (1.3) is attained, then RAd
(μ) can be seen as the

smallest possible risk of a position Ad(X1, . . . ,Xd) derived from the single risks
X1, . . . ,Xd with joint distribution μ through a function Ad ∈ Ad . It is worth noting
that ‘risk’ here does not necessarily mean downside risk, but can also be for instance a
mean–downside risk mixture which is the target value in many portfolio optimisation
problems. For details, see Sect. 5.2, in particular Remark 5.5.

Of course, there are many other examples for Td . One of them is the optimal value
in a multi-period portfolio optimisation problem that is addressed in Sect. 6.2. In this
example, the role of μ is played by the joint distribution of the relative price changes
of the d risky assets that are available on the considered financial market.

When starting from separate models for the copula and the marginal distributions,
it is reasonable to regard Td as a functional of the copula C and the marginal distri-
butions μ1, . . . ,μd via

Td(C,μ1, . . . ,μd) := Td

(
pd

(
C(Fμ1, . . . ,Fμd

)
))

, (1.4)

where pd assigns to a d-variate distribution function its corresponding Borel proba-
bility measure on R

d .
In [33, Sect. 6.2.1], McNeil et al. point out that practitioners are often required to

work only with partial information. For instance, in some situations, it is possible to
obtain (sufficient) information on μ1, . . . ,μd , but it is much more difficult to obtain
information on the dependence structure. Carrying this to the extreme, McNeil et al.
assume that μ1, . . . ,μd are fully known and C is fully unknown. In this case, one
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cannot specify Td(C,μ1, . . . ,μd), because C is unknown. This leads to the ‘Fréchet
problem’ of specifying the range of the map C �→ Td(C,μ1, . . . ,μd). In the special
case where Td takes values in R, this is often related to finding (sharp) upper and
lower bounds for this map. There is a vast literature dealing with this problem; see
for instance the works of Rüschendorf [43], [44, Chap. 4], Embrechts and Puccetti
[14], Embrechts et al. [15], Puccetti [39], Embrechts et al. [17] and the references
cited therein.

In the present paper, a related but different problem is addressed. Still in the case
where μ1, . . . ,μd are known (and fixed), assume that Ĉ is a guess for the true cop-
ula C. It might be based on an expert opinion, a statistical estimation, or the like. Of
course, as a guess, Ĉ can differ from C. It is clear that a deviation of Ĉ from C can
imply a significant difference between Td(Ĉ,μ1, . . . ,μd) and Td(C,μ1, . . . ,μd).
On the other hand, one might ask whether the difference remains small if the devi-
ation of Ĉ from C is small. This question was raised and answered by Embrechts
et al. [17] in the context of (1.2) with Ad(x1, . . . , xd) := ∑d

i=1 xi . Krätschmer et al.
[28, Sect. 4.2.4] took up this concept and generalised the respective result of [17].
In fact, in the latter two references, continuity of the functional Td at the probability
measure pd(C(Fμ1 , . . . ,Fμd

)) (with fixed marginal distributions μ1, . . . ,μd having
finite pth moments) was not considered with respect to a metric on the set of copulas,
but with respect to the (relative) weak topology on the set of d-variate distributions
(with marginal distributions μ1, . . . ,μd ). However, it can be seen from Theorem 3.10
below that this is equivalent when the set of copulas is equipped with the supremum
distance.

Despite this equivalence, it might be a little more accessible for some readers
to measure the difference between two dependence structures directly through the
difference between the corresponding copulas, in particular if one starts from separate
models for the copula and the marginal distributions. If one follows this approach,
one ought to take into account that a d-variate distribution μ with fixed marginal
distributions μ1, . . . ,μd depends on the copula C only through the values that C

takes on ranFμ1 × · · · × ranFμd
(⊆ [0,1]d ), where ranFμi

is the range of Fμi
. This

is apparent from (1.1) and suggests to measure the distance between copulas (in the
considered framework) only on ranFμ1 × · · · × ranFμd

.
We propose to say that the functional Td underlying Td (recall Eq. (1.4)) is

copula robust if for any ‘admissible’ univariate distributions μ1, . . . ,μd , the map
C �→ Td(C,μ1, . . . ,μd) is continuous with respect to pointwise (or uniform) con-
vergence on ranFμ1 × · · · × ranFμd

, where it is assumed that Td (and thus Td ) takes
values in a topological space. By ‘admissible’ we mean that one can find at least
one copula C such that the probability measure pd(C(Fμ1 , . . . ,Fμd

)) is contained
in the domain of Td . The precise definition of copula robustness is given in Sect. 3.
The required notation and terminology as well as some auxiliary results are given
before in Sect. 2. It is worth mentioning that Theorem 2.3 provides a generalisation
of Deheuvels’ [10] copula convergence theorem and that Corollary 2.9 provides a
characterisation of weak convergence in Fréchet classes of d-variate distributions.

In the second part of the paper, we discuss three examples for copula robust func-
tionals Td . First, in Sect. 4, we address the quantification of the ‘downside risk’ of
aggregate financial positions. It will be seen that the functional in (1.2) is copula
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robust under mild assumptions (Sect. 4.2). The relation of copula robustness to the
concept of aggregation robustness of Embrechts et al. [17] (Sect. 4.3) as well as cop-
ula robustness of inf-convolution functionals (Sect. 4.4) are also discussed in detail.
Second, in Sect. 5, we address stochastic programming problems. It can be inferred
from results of Claus et al. [9] that the optimal value of a general stochastic program-
ming problem depends copula robustly on the distribution of the underlying d-variate
input random variable Z. This covers in particular classical one-period portfolio op-
timisation problems (where the role of Z is played by the vector of the relative price
changes of d risky assets) and therefore backs in a way a hypothesis of Saida and
Prigent [45]. In [45, Sect. 1], they conclude from their numerical investigations that
‘investors must more take care of the specification of the marginal distribution than
of the copula function’. Third, in Sect. 6, we address multi-period portfolio optimisa-
tion problems and derive results that are similar to those in the one-period case. The
main tool in this context is Theorem 6.2 which is a variant of a result of Müller [35]
about the continuous dependence of the value function on the transition function in
a Markov decision model. Theorem 6.2 is of independent interest and contributes to
the general theory of Markov decision processes.

Throughout this paper, | · | denotes any norm on R
d and 〈 · , · 〉 is the Euclidean

scalar product defined by 〈x, y〉 := ∑d
i=1 xiyi for any elements x = (x1, . . . , xd) and

y = (y1, . . . , yd) of R
d . Moreover, we set R+ := [0,∞) and R++ := (0,∞). The

proofs of all results can be found in Appendix A.

2 Preliminary notation, terminology and results

2.1 Fréchet classes and copulas

For any d ∈ N, let us use Md to denote the set of all Borel probability mea-
sures on R

d . For any fixed μ1, . . . ,μd ∈ M1, denote by Md(μ1, . . . ,μd) the set
of all μ ∈ Md having marginals μ1, . . . ,μd , i.e., satisfying μ ◦ π−1

i = μi for any
i = 1, . . . , d , where πi : Rd → R is the projection on the ith coordinate. The set
Md(μ1, . . . ,μd) is known as Fréchet class associated with the univariate Borel prob-
ability measures μ1, . . . ,μd . The distribution function of a Borel probability measure
μ will be denoted by Fμ.

By definition a d-variate copula is the distribution function C : [0,1]d → [0,1] of
a Borel probability measure on [0,1]d whose marginal distributions are all given by
the uniform distribution on [0,1]. The latter condition ensures that each d-variate
copula C is Lipschitz-continuous. Theorem 2.10.7 in Nelsen’s textbook [36] in-
deed shows that every d-variate copula C satisfies |C(u) − C(v)| ≤ |u − v|1, where
|x|1 := ∑d

i=1 |xi | for any x = (x1, . . . , xd) ∈R
d .

Let us denote by Cd the set of all d-variate copulas. With any C ∈ Cd and
μ1, . . . ,μd ∈ M1, we associate an element μ of the Fréchet class Md(μ1, . . . ,μd)

through (1.1). It is indeed easily seen that the right-hand side of (1.1) defines
a probability distribution function on R

d and that the corresponding Borel prob-
ability measure μ has μ1, . . . ,μd as its marginal distributions. Sklar’s theorem
([49]; see also [36, Theorem 2.10.9]) shows that the distribution function of any
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element μ of Md(μ1, . . . ,μd) admits the representation (1.1). That is, for any
μ ∈Md(μ1, . . . ,μd), one can find a copula C ∈ Cd such that (1.1) holds. On the
set ranFμ1 × · · · × ranFμd

, the copula C is uniquely determined and given by

C(u1, . . . , ud) = Fμ

(
F←

μ1
(u1), . . . ,F

←
μd

(ud)
)
, (2.1)

where F←
μi

(ui) := inf{x ∈R : Fμi
(x) ≥ ui}. In particular, if Fμ1, . . . ,Fμd

are all con-
tinuous, then the copula C is unique and given by (2.1) on the whole unit cube [0,1]d .
For background on copulas, see for instance the textbooks by Durante and Sempi
[12, Chaps. 1–2] or Nelsen [36, Chaps. 1–2].

For any nonempty compact set K ⊆ [0,1]d , we can define a pseudo-metric dK on
Cd through

dK(C1,C2) := sup
u∈K

|C1(u) − C2(u)|.

Since the elements of Cd are all Lipschitz-continuous with Lipschitz constant 1 on
[0,1]d , the set Cd is uniformly equicontinuous. This implies that convergence of a
sequence (Cn)n∈N ∈ CN

d to some C ∈ Cd with respect to dK is equivalent to pointwise
convergence of (Cn)n∈N to C on K . The topology on Cd generated by dK is denoted
by OK . For any μ1, . . . ,μd ∈ M1, we let

dμ1,...,μd
:= dK and Oμ1,...,μd

:= OK with K := ranFμ1 ×· · ·× ranFμd
. (2.2)

For K = [0,1]d , the pseudo-metric dK is even a metric, and the topology OK is the
standard topology on Cd (and the counterpart of the weak topology on the set of
all Borel probability measures on [0,1]d whose distribution functions are d-variate
copulas). In particular, if Fμ1, . . . ,Fμd

are all continuous, then dμ1,...,μd
= d[0,1]d and

Oμ1,...,μd
= O[0,1]d .

Convergence of copulas with respect to O[0,1]d has been addressed in the literature
several times, for instance by Charpentier and Segers [7] and Trutschnig [51]. Metrics
inducing topologies that are at least as fine as O[0,1]d have been studied for instance
by Li et al. [30], Trutschnig [50], Fernández Sánchez and Trutschnig [19] and Kasper
et al. [24]. On the other hand, the (pseudo-) metric dμ1,...,μd

defined by (2.2) generates
a topology that is at most as fine as O[0,1]d . It is finally worth mentioning that the
metric on the set of bivariate subcopulas that was recently introduced by Rachasingho
and Tasena [40] basically differs from the metric dμ1,μ2 and from its variant d∼

μ1,μ2
introduced in the following Remark 2.1; for details, see Appendix B.

Remark 2.1 For any fixed μ1, . . . ,μd ∈ Md , one can regard the pseudo-metric
dμ1,...,μd

as a metric when changing from Cd to the quotient set Cd/∼μ1,...,μd
with

respect to the equivalence relation

∼μ1,...,μd
:= {(C,C′) ∈ Cd × Cd : C = C′ on ranFμ1 × · · · × ranFμd

}.
On the resulting quotient set Cd/∼μ1,...,μd

, one may then define a metric through
d∼
μ1,...,μd

(C,C′) := dμ1,...,μd
(C,C′), where C,C′ are (arbitrary) representatives of

the equivalence classes C,C′ ∈ Cd/∼μ1,...,μd
. The topology on Cd/∼μ1,...,μd

generated
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by d∼
μ1,...,μd

, henceforth denoted by O∼
μ1,...,μd

, preserves the topological structure in
the sense that a set G ⊆ Cd lies in Oμ1,...,μd

if and only if the set

{C ∈ Cd/∼μ1,...,μd
: there exists a C ∈C with C ∈ G}

lies in O∼
μ1,...,μd

.

2.2 The set Mp
d and the p-weak topology

Fix p ∈ R+ and let Mp
d be the set of all μ ∈ Md for which

∫
Rd |x|p μ(dx) < ∞.

Note that Md = M0
d ⊇ Mp1

d ⊇ Mp2
d for any p1,p2 ∈ R+ with p1 ≤ p2. The

p-weak topology on Mp
d , henceforth denoted by Op

d , is defined as the coarsest topol-
ogy for which all mappings μ �→ ∫

f dμ, f ∈ Cp
d , are continuous, where Cp

d is the
space of all continuous functions f : Rd → R with supx∈Rd |f (x)|/(1 + |x|p) < ∞.
The 0-weak topology on M0

d (= Md ) is just the classical weak topology, and the
p-weak topology Op

d is finer than the relative weak topology O0
d ∩Mp

d when p > 0.
It is known from Krätschmer et al. [28, Lemma 2.1] that (Mp

d ,Op
d ) is a Polish

space and that μn → μ in Op
d if and only if both μn → μ in O0

d ∩Mp
d and

∫

Rd

|x|p μn(dx) −→
∫

Rd

|x|p μ(dx).

In particular, Op
d is metrised by

d(μ, ν) := dweak(μ, ν) +
∣∣∣∣

∫

Rd

|x|p μ(dx) −
∫

Rd

|x|p ν(dx)

∣∣∣∣

for any metric dweak which metrises O0
d . Already in the 1980s, Bickel and Freed-

man [5, Lemma 8.3] proved for p ∈ [1,∞) that Op
d is also metrisable by the

Lp-Wasserstein metric. The following proposition is a sort of continuous mapping
theorem.

Proposition 2.2 Let d, d ′ ∈ N and p,p′ ∈ R+. Let h : Rd → R
d ′

be a continuous
function such that supx∈Rd |h(x)|p′

/(1 + |x|p) < ∞. Then h(μ) := μ ◦ h−1 lies in

Mp′
d ′ for any μ ∈Mp

d , and the map h : Mp
d → Mp′

d ′ is (Op
d ,Op′

d ′ )-continuous.

2.3 A generalisation of Deheuvels’ copula convergence theorem

Deheuvels’ convergence theorem [10, Théorème 2.3, Lemma 4.1] says that given a
d-variate distribution μ ∈ Md whose marginal distributions μ1, . . . ,μd ∈ M1 all
possess continuous distribution functions Fμ1, . . . ,Fμd

, a sequence (μn)n∈N ∈MN

d

converges to μ in O0
d if and only if (μn,i) converges to μi in O0

1, i = 1, . . . , d , and
d[0,1]d (Cn,C) → 0. Here C is the unique copula of μ, Cn is any copula of μn,
and μn,i is the ith marginal distribution of μn. Sempi [47] and Lindner and Szi-
mayer [31] extended Deheuvels’ result to the general case where the marginal dis-
tribution functions Fμ1, . . . ,Fμd

might be discontinuous. Theorem 2.1 in [31] shows
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that (μn)n∈N ∈ MN

d converges to μ in O0
d if and only if (μn,i) converges to μi in

O0
1, i = 1, . . . , d , and dμ1,...,μd

(Cn,C) → 0 (a similar result was proved earlier for
d = 2 in [47, Theorems 2 and 3]). Recall that C is uniquely determined only on
ranFμ1 × · · · × ranFμd

. The results of [47, Example 2] and [31, Example 2.2] show
that convergence of the copula on the whole unit cube [0,1]d can indeed fail. The-
orem 2.3 below is a version of the Sempi–Lindner–Szimayer result where the weak
topologies are replaced by p-weak topologies.

Consider the map Pd : Cd ×M1 × · · · ×M1 → Md defined by

Pd(C,μ1, . . . ,μd) := pd

(
C(Fμ1 , . . . ,Fμd

)
)
, (2.3)

where pd assigns to a d-variate distribution function its corresponding Borel proba-
bility measure on R

d . Note that Pd(C,μ1, . . . ,μd) remains unchanged when C is
modified outside ranFμ1 × · · · × ranFμd

. It is easily seen (see Appendix A.2) that
for any p ∈ R+, the univariate distributions μ1, . . . ,μd lie in Mp

1 if and only if the
d-variate distribution Pd(C,μ1, . . . ,μd) lies in Mp

d , regardless of the copula C. In
particular, the restriction of Pd to Cd × Mp

1 × · · · × Mp

1 can be regarded as an
Mp

d -valued map.

Theorem 2.3 Fix p ∈ R+ and let (C,μ1, . . . ,μd) and (Cn,μn,1, . . . ,μn,d), n ∈ N,
be elements of Cd ×Mp

1 × · · · ×Mp

1 . Then

Pd(Cn,μn,1, . . . ,μn,d) −→ Pd(C,μ1, . . . ,μd)

in Op
d if and only if μn,i → μi in Op

1 , i = 1, . . . , d , and dμ1,...,μd
(Cn,C) → 0.

Recall that a sequence in a product space converges in the product topology if
and only if for each projection, the corresponding marginal sequence converges. As a
direct consequence, we can obtain from Theorem 2.3 the following corollary, taking
into account that each of the involved topologies is metrisable, or at least pseudo-
metrisable, and that dμ1,...,μd

(C,C) = 0 for any C ∈ Cd and μ1, . . . ,μd ∈ M1.

Corollary 2.4 For any p ∈ R+, C ∈ Cd and μ1, . . . ,μd ∈ Mp

1 , the following two
assertions hold:

(i) The map Pd( · ,μ1, . . . ,μd) : Cd → Mp
d is (Oμ1,...,μd

,Op
d )-continuous.

(ii) The map Pd(C, · , . . . , · ) :Mp

1 ×· · ·×Mp

1 → Mp
d is continuous for the pair

(Op

1 × · · · ×Op

1 ,Op
d ).

2.4 Characterisation of (p-)weak convergence in Fréchet classes

For any p ∈R+ and μ1, . . . ,μd ∈ Mp

1 , the image of the map

Pd( · ,μ1, . . . ,μd) : Cd → Mp
d

is the Fréchet class Md(μ1, . . . ,μd), and we have μ1, . . . ,μd ∈ Mp′
1 as well as

Md(μ1, . . . ,μd) ⊆ Mp′
d for any p′ ∈ [0,p]. Therefore, Corollary 2.4 (i) immedi-

ately yields the following result.
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Corollary 2.5 For any p ∈ R+ and μ1, . . . ,μd ∈Mp

1 , the map

Pd( · ,μ1, . . . ,μd) : Cd → Md(μ1, . . . ,μd)

is (Oμ1,...,μd
,Op′

d ∩Md(μ1, . . . ,μd))-continuous for any p′ ∈ [0,p].

As a simple consequence of Theorem 2.3, we obtain the following corollary (see
Appendix A.3). The result is already known from Krätschmer et al. [28, Proposi-
tion 3.9] (with Ad chosen to be the identity on R

d ), where other arguments have been
used for the proof.

Corollary 2.6 For any p ∈ R+ and μ1, . . . ,μd ∈Mp

1 , we have that

Op
d ∩Md(μ1, . . . ,μd) = Op′

d ∩Md(μ1, . . . ,μd)

for any p′ ∈ [0,p].

For any fixed μ1, . . . ,μd ∈ Mp
d , we use as before Cd/∼μ1,...,μd

to denote the
quotient set of Cd with respect to the equivalence relation ∼μ1,...,μd

of identity on
ranFμ1 ×· · ·× ranFμd

. Recall from Remark 2.1 that we denote by O∼
μ1...,μk

the topol-
ogy on Cd/∼μ1,...,μd

generated by the metric d∼
μ1,...,μd

corresponding to the pseudo-
metric dμ1,...,μd

, and that O∼
μ1,...,μd

preserves the topological structure of Oμ1,...,μd
.

Let us denote by Pμ1,...,μd
: Cd/∼μ1,...,μd

→ Md(μ1, . . . ,μd) the map that as-
signs to each equivalence class C ∈ Cd/∼μ1,...,μd

the unique probability measure
μC ∈ Md(μ1, . . . ,μd) that satisfies μC = Pd(C,μ1, . . . ,μd) for all representatives
C ∈C. Then Corollary 2.5 can be reformulated as follows.

Corollary 2.7 For any p ∈ R+ and μ1, . . . ,μd ∈Mp

1 , the map

Pμ1,...,μd
: Cd/∼μ1,...,μd

→ Md(μ1, . . . ,μd)

is (O∼
μ1,...,μd

,Op′
d ∩Md(μ1, . . . ,μd))-continuous for any p′ ∈ [0,p].

Let Cμ1,...,μd
: Md(μ1, . . . ,μd) → Cd/∼μ1,...,μd

be the map that assigns to each
μ ∈ Md(μ1 . . . ,μd) the unique equivalence class Cμ ∈ Cd/∼μ1,...,μd

whose repre-
sentatives are copulas of μ. Then we have the following converse of Corollary 2.7.

Corollary 2.8 For any p ∈ R+ and μ1, . . . ,μd ∈Mp

1 , the map

Cμ1,...,μd
: Md(μ1, . . . ,μd) → Cd/∼μ1,...,μd

is (Op′
d ∩Md(μ1, . . . ,μd),O∼

μ1,...,μd
)-continuous for any p′ ∈ [0,p].

As an immediate consequence of Corollaries 2.7 and 2.8, we obtain the following
result. Note that the equivalence (a) ⇔ (b) also follows from Corollary 2.6, and that
condition (c) is equivalent with dμ1,...,μd

(Cn,C) → 0 for any copulas C and Cn,
n ∈N, of μ and μn, n ∈N, respectively.



Copula robustness 833

Corollary 2.9 Fix p ∈ R+ and μ1, . . . ,μd ∈ Mp

1 . Then the following assertions are
equivalent for any (μn)n∈N ∈Md(μ1, . . . ,μd)N and μ ∈ Md(μ1, . . . ,μd):

(a) μn → μ in O0
d ∩Md(μ1, . . . ,μd).

(b) μn → μ in Op
d ∩Md(μ1, . . . ,μd).

(c) Cμ1,...,μd
(μn) → Cμ1,...,μd

(μ) in O∼
μ1,...,μd

.

3 Copula robustness

3.1 Definition of copula robustness

Let M′
d ⊆ Md and Td : M′

d −→ E be any map taking values in some topological
space (E,OE). As before, let the map Pd : Cd × M1 × · · · × M1 → Md be de-
fined by (2.3). Let D′

d be the set of all (C,μ1, . . . ,μd) ∈ Cd ×M1 × · · · ×M1 for
which Pd(C,μ1, . . . ,μd) lies in M′

d . Then we can associate with Td a functional
Td :D′

d → E through

Td(C,μ1, . . . ,μd) := Td

(
Pd(C,μ1, . . . ,μd)

)
. (3.1)

Let M′
d be the set of all d-tuples (μ1, . . . ,μd) ∈ M1 × · · · ×M1 for which there

exists a copula C ∈ Cd such that (C,μ1, . . . ,μd) ∈ D′
d . Moreover, for any fixed

(μ1, . . . ,μd) ∈ M′
d , let the set C′

d(μ1, . . . ,μd) consist of all those copulas C ∈ Cd

for which (C,μ1, . . . ,μd) ∈ D′
d .

Definition 3.1 The map Td is copula robust if for any fixed (μ1, . . . ,μd) ∈ M′
d , the

map Td( · ,μ1, . . . ,μd) : C′
d(μ1, . . . ,μd) → E is continuous for the pair

(Oμ1,...,μd
∩ C′

d(μ1, . . . ,μd),OE).

The sets M′
d and C′

d(μ1, . . . ,μd) are illustrated by Examples 3.2 and 3.3 below.
The examples show in particular that the set C′

d(μ1, . . . ,μd) can be quite different
from case to case. In Example 3.2, and in the further course, let N1 be the set of
all non-degenerate univariate normal distributions and for d ≥ 2, let Nd be the set of
all (possibly degenerate) d-variate normal distributions with continuous marginals. In
Example 3.2, we also need the notion of a Gaussian copula. Recall that, by definition,
a d-variate Gaussian copula is an element C ∈ Cd given through

C(u1, . . . , ud) := Φ0,R

(
Φ−1

0,1(u1), . . . ,Φ
−1
0,1(ud)

)
(3.2)

for some correlation matrix R, i.e., for some symmetric and positive semi-definite
matrix R ∈ [−1,1]d×d which has entries 1 on the diagonal. Here Φ0,1 and Φ0,R are
respectively the distribution function of the univariate standard normal distribution
and the distribution function of the centered d-variate normal distribution N0,R with
covariance matrix equal to R, and we set Φ−1

0,1(0) := −∞ and Φ−1
0,1(1) := +∞ as

well as

Φ0,R(x1, . . . , xd) := N0,R

[ d

i=1
(−∞, xi] ∩R

d
]
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for any x1, . . . , xd ∈R := R∪ {−∞,+∞}. The set of all Gaussian copulas is denoted
by CGa

d .

Example 3.2 If M′
d = Nd , then D′

d = CGa
d × N1 × · · · × N1 (see Appendix A.5).

In particular, M′
d = N1 × · · · × N1 and C′

d(μ1, . . . ,μd) = CGa
d for any

(μ1, . . . ,μd) ∈ M′
d .

Example 3.3 If M′
d = Mp

d for some p ∈R+, then D′
d = Cd ×Mp

1 × · · · ×Mp

1 (see
Appendix A.6). In particular, M′

d = Mp

1 × · · · ×Mp

1 and C′
d(μ1, . . . ,μd) = Cd for

any (μ1, . . . ,μd) ∈ M′
d .

The following lemma is trivial, but, nevertheless, worth to be written down. In the
lemma, (E′,O′

E) is another topological space.

Lemma 3.4 If Td is copula robust and U : E → E′ is any (OE,O′
E)-continuous map,

then the composition T ′
d := U ◦ Td is copula robust.

3.2 Copula robustness of functionals on Nd

In this section, let specifically M′
d = Nd . That is, let Td :Nd → E be any map taking

values in some topological space (E,OE). In view of Example 3.2, the definition of
copula robustness of Td (Definition 3.1) can then be reformulated as follows.

Definition 3.5 The map Td on Nd is copula robust if for any fixed μ1, . . . ,μd ∈ N1,
the map Td( · ,μ1, . . . ,μd) : CGa

d → E is (O[0,1]d ∩ CGa
d ,OE)-continuous.

Remark 3.6 Convergence in (CGa
d ,O[0,1]d ∩ CGa

d ) is nothing but pointwise (or uni-
form) convergence in CGa

d . This sort of convergence is therefore equivalent to con-
vergence of the respective correlation matrices in any matrix norm; for details, see
Appendix A.7.

Example 3.7 The identity map Pd : Nd → Nd is copula robust in the sense of Def-
inition 3.5 when the role of (E,OE) is played by (Nd ,Op

d ∩ Nd) for arbitrary (but
fixed) p ∈R+. For details, see Appendix A.8.

Example 3.7 and Lemma 3.4 (applied to T ′
d := Td , Td := Pd , U := Td ) immedi-

ately yield the following result.

Theorem 3.8 If Td is (Op
d ∩Nd ,OE)-continuous for some p ∈ R+, then it is copula

robust.

Of course, Theorem 3.8 can be generalised to larger sets of parametric distribu-
tions as for instance to the set Sd of all d-variate (Student) t-distributions with con-
tinuous marginals; see for instance Demarta and McNeil [11] for the definitions of
d-variate t-distributions and t-copulas. However, for the sake of clarity and ease,
the exposition here is restricted to the Gaussian setting. A perhaps more interesting
setting is addressed in the next section.
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3.3 Copula robustness of functionals on Mp
d

In this section, let specifically M′
d = Mp

d for some p ∈R+. That is, let Td : Mp
d → E

be any map taking values in some topological space (E,OE). In view of Example 3.3,
the definition of copula robustness of Td (Definition 3.1) can then be reformulated as
follows.

Definition 3.9 The map Td on Mp
d is copula robust if for any fixed μ1, . . . ,μd ∈Mp

1 ,
the map Td( · ,μ1, . . . ,μd) : Cd → E is (Oμ1,...,μd

,OE)-continuous.

With the help of Corollaries 2.5 and 2.8, we can derive the following characterisa-
tion of copula robustness of Td . For details, see Appendix A.9.

Theorem 3.10 Let Td : Mp
d → E be any map. Then Td is copula robust if and only

if for any fixed μ1, . . . ,μd ∈Mp

1 , its restriction Td |Md (μ1,...,μd ) to the Fréchet class
Md(μ1, . . . ,μd) is continuous for the pair (O0

d ∩Md(μ1, . . . ,μd),OE).

Example 3.11 Corollary 2.4 (i) shows that the identity map Pd : Mp
d → Mp

d is copula
robust in the sense of Definition 3.9 when the role of (E,OE) is played by (Mp

d ,Op
d ).

Example 3.11 and Lemma 3.4 (applied to T ′
d := Td , Td := Pd , U := Td ) immedi-

ately yield the following result.

Theorem 3.12 If Td is (Op
d ,OE)-continuous, then it is copula robust.

Now fix d ′ ∈ N and p′ ∈ R+. Proposition 2.2 ensures that in the scope of the

following corollary, we have μ ◦ h−1 ∈Mp′
d ′ for any μ ∈Mp

d .

Corollary 3.13 Let Td ′ : Mp′
d ′ → E be an (Od ′

p′ ,OE)-continuous map and suppose

h : Rd → R
d ′

is a continuous map with supx∈Rd |h(x)|p′
/(1 + |x|p) < ∞. Then the

map T ′
d :Mp

d → E defined by T ′
d (μ) := Td ′(μ ◦ h−1) is copula robust.

4 Example 1: risk measures of aggregate risks

4.1 Foundations of risk measures

Let (Ω,F ,P) be an atomless probability space and denote by L0 := L0(Ω,F ,P) the
usual class of all finite-valued random variables modulo the equivalence relation of
P-a.s. identity. Moreover, let Lp = Lp(Ω,F ,P) be the usual Lp-space, p > 0. For
any p ∈ R+, we say that a map ρ : Lp → R is a risk measure when the following
three conditions are satisfied:

(i) (monotonicity) ρ(X) ≤ ρ(Y ) for X, Y ∈ Lp with X ≤ Y ;
(ii) (cash-additivity) ρ(X + m) = ρ(X) + m for X ∈ Lp and m ∈R;
(iii) (distribution-invariance) ρ(X) = ρ(Y ) for X,Y ∈ Lp with PX = PY .



836 H. Zähle

In this context, the elements of Lp should be seen as payoff profiles where positive
realisations correspond to losses. Following Föllmer and Schied [22], [23, Chap. 4],
a risk measure ρ : Lp → R is said to be convex if it satisfies the following condition:

(iv) (convexity) ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for all X,Y ∈ Lp and
λ ∈ [0,1].

The following example recalls three risk measures which are popular in practice
and/or among academics. For background, see Emmer et al. [18] and references cited
therein.

Example 4.1 Fix α ∈ (0,1).
(i) The value at risk at level α is the risk measure VaRα : L0 → R defined

by VaRα(X) := F←
X (α), where F←

X (α) := inf{x ∈ R : FX(x) ≥ α} is the lower
α-quantile of PX . It is not convex.

(ii) The average value at risk at level α is the risk measure AVaRα : L1 →R de-
fined by AVaRα(X) := 1

1−α

∫ 1
α

F←
X (s) ds and known to be convex; see for instance

the work of Wang and Dhaene [53].
(iii) The α-expectile at level α is the risk measure Eptα : L1 → R defined

by Eptα(X) := Uα(X)−1(0), where Uα(X)−1 denotes the inverse of the function
Uα(X)(m) := E[Uα(X − m)] with Uα(x) := αx or (1 − α)x depending on whether
x ≥ 0 or x < 0. It is well defined, and known to be convex if and only if α ≥ 1/2; see
the work of Bellini et al. [3].

For any risk measure ρ : Lp → R, we may define a functional Rρ : Mp

1 → R

through

Rρ(μ) := ρ(Xμ), (4.1)

where Xμ is any random variable on (Ω,F ,P) with distribution μ. We refer to Rρ as
the risk functional associated with ρ. The assertion of the following result is a direct
consequence of Cheridito and Li [8, Theorem 4.1] combined with the representa-
tion theorem of Krätschmer et al. [27, Theorem 3.5]. Here OR refers to the natural
topology on R.

Theorem 4.2 Let p ∈R+. For any convex risk measure ρ : Lp →R, the correspond-
ing risk functional Rρ :Mp

1 →R is (Op

1 ,OR)-continuous.

4.2 Copula robustness of risk measures of aggregate risks

Let ρ : Lp′ → R be a risk measure for some p′ ∈ R+. Let Ad : Rd → R be
any continuous map, regarded as an aggregation map in the spirit of McNeil et
al. [33, Sect. 6.2.1]. Assume that for some p ∈ R+ and any X1, . . . ,Xd ∈ Lp ,
the random variable Ad(X1, . . . ,Xd) lies in Lp′

. Then we can define a map
Rρ,Ad

: Mp
d → R through

Rρ,Ad
(μ) := Rρ(μ ◦ A−1

d ). (4.2)
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We refer to Rρ,Ad
as aggregation risk functional associated with ρ and Ad . Note

that the right-hand side in (4.2) equals ρ(Ad(X1, . . . ,Xd)) when (X1, . . . ,Xd) is an
R

d -valued random variable with distribution μ. As a direct consequence of Corol-
lary 3.13 (applied to T1 := Rρ , h := Ad , T ′

d := Rρ,Ad
) and Theorem 4.2, we obtain

the following result.

Corollary 4.3 Take p,p′ ∈ R+, a convex risk measure ρ : Lp′ → R and a continuous
map Ad :Rd →R satisfying supx∈Rd |Ad(x)|p′

/(1 + |x|)p < ∞. Then the aggrega-
tion risk functional Rρ,Ad

:Mp
d →R defined by (4.2) is copula robust.

Example 4.4 In risk management, Ad is frequently chosen as one of the following
maps; see for instance the textbook by McNeil et al. [33, Sect. 6.2]:

(i) Ad(x1, . . . , xd) := ∑d
i=1 xi ;

(ii) Ad(x1, . . . , xd) := max{x1, . . . , xd};
(iii) Ad(x1, . . . , xd) := ∑d

i=1(xi − ti )
+ for thresholds t1, . . . , td > 0;

(iv) Ad(x1, . . . , xd) := (
∑d

i=1 xi − t)+ for a threshold t > 0.

It is easily seen that for each of these four maps, supx∈Rd |Ad(x)|p/(1 + |x|)p < ∞
holds for any p ∈R+. That is, all these maps satisfy the assumptions of Corollary 4.3
for p′ = p (and thus for any p ∈ R+ and p′ ∈ [0,p]). In particular, for each of these
four maps Ad and for any convex risk measure ρ : Lp → R, the corresponding ag-
gregation risk functional Rρ,Ad

: Mp
d → R defined by (4.2) is copula robust for any

d ∈N.

Remark 4.5 Of course, the assertion of Corollary 4.3 and the last assertion in Exam-
ple 4.4 also hold true for any other risk measure ρ for which the corresponding risk

functional Rρ :Mp′
1 → R is (Op′

1 ,OR)-continuous.

Remark 4.5 indicates that in the setting of Corollary 4.3, the assumed convex-
ity of ρ is not necessary. To give an example that shows that this is indeed true,
let ρ be the α-expectile Eptα with α < 1/2 (see Example 4.1 (iii)). Then ρ is not
convex (see Bellini et al. [3, Proposition 7(b–c)]), but the corresponding risk func-
tional Rρ : M1

1 →R is (O1
1,OR)-continuous (see Krätschmer and Zähle [29, Theo-

rem 2.1]), and the latter implies that the aggregation risk functional Rρ,Ad
: M1

d → R

is copula robust.

On the other hand, if the risk functional Rρ : Mp′
1 →R corresponding to some

ρ is not (Op′
1 ,OR)-continuous, then copula robustness of Rρ,Ad

: Mp′
d → R can

indeed fail to hold. For instance, Example 4.7 below shows that Rρ,A2 : M0
2 → R is

not copula robust when ρ := VaRα (see Example 4.1 (i)) and A2(x1, x2) := x1 + x2.
Note here that the risk functional Rρ :M0

1 → R associated with ρ := VaRα is known
not to be weakly continuous, and that weak continuity is just (O0

1,OR)-continuity.
It is further known that the risk functional Rρ : M0

1 → R associated with

ρ := VaRα can be made weakly continuous when restricting it to the set M(α)
1 of all

those Borel probability measures on R that possess a unique α-quantile (see e.g. van
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der Vaart [52, Lemma 21.2]), or even to the set ML
1 of all μ ∈ ⋂

s∈(0,1) M
(s)
1 that pos-

sess a Lebesgue density. Nonetheless, the corresponding aggregation risk functional
Rρ,A2 , with A2(x1, x2) := x1 + x2, defined on the set ML

2 of all Borel probability
measures on R

2 with marginal distributions in ML
1 , is still not copula robust. This is

also a consequence of Example 4.7. The lack of copula robustness of Rρ,A2 on ML
2

is not immediately obvious. Note, however, that for μ ∈ ML
2 , the image measure

μ ◦A−1
2 can be purely discrete (see Example 4.7), i.e., μ ◦A−1

2 can lie outside the set

M(α)
1 on which Rρ is weakly continuous.
When restricting Rρ,A2 , with ρ := VaRα and A2(x1, x2) := x1 + x2, to the much

smaller set N2 introduced before (3.2), then copula robustness holds true. Note that
μ ◦ A−1

2 ∈ N ′
1 ⊆ M(α)

1 for all μ ∈ N2, where N ′
1 (⊇ N1) is the set of all (possibly

degenerate) univariate normal distributions. The copula robustness follows from The-
orem 3.8 since the restriction of Rρ,A2 to N2 is (O0

2 ∩N2,OR)-continuous. The latter
follows from the (O0

2 ∩N2,O0
1 ∩N ′

1)-continuity of the map h :N2 →N ′
1 defined by

h(μ) := μ ◦ A−1
2 and the (O0

1 ∩ N ′
1,OR)-continuity of the restriction of Rρ to N ′

1

(⊆ M(α)
1 ).

4.3 Relation to aggregation robustness of risk measures

In [17], Embrechts et al. consider the special case where Ad is defined as in (i) of
Example 4.4 and ρ is a coherent distortion risk measure defined on a subset of L1.
In this case, they obtain an analogue of Corollary 4.3 and refer to it as aggregation
robustness. In fact, they do not explicitly consider continuity in the copula, but rather
weak continuity of the analogous functional defined on the corresponding Fréchet
class. However, as seen in Theorem 3.10, this is the same. A generalisation to more
general risk measures and more general aggregation maps is given in the work of
Krätschmer et al. [28, Sect. 4.2.4].

The following definition is a reformulation of the definition of aggregation ro-
bustness of a risk measure ρ : Lp → R (i.e., of [17, Definition 2.1]). As before, the
aggregation risk functional Rρ,Ad

associated with ρ and Ad(x1, . . . , xd) := ∑d
i=1 xi

is defined by (4.2).

Definition 4.6 Let p ∈ R+. A risk measure ρ : Lp → R is said to be aggregation
robust if the corresponding aggregation risk functionals Rρ,Ad

: Mp
d → R, d ≥ 2,

are copula robust.

In view of Corollary 4.3 and Example 4.4, any convex risk measure ρ : Lp → R is
aggregation robust. This assertion remains true when replacing in Definition 4.6 the
map Ad(x1, . . . , xd) := ∑d

i=1 xi by any other of the maps introduced in Example 4.4.
In their Example 2.2, Embrechts et al. [17] demonstrated that for any α ∈ (0,1),

the value at risk VaRα : L0 → R is not aggregation robust. The following example ex-
tends the first part of that example (from α = 1/2 to general α ∈ (0,1)) and shows that
for any α ∈ (0,1) and p ∈ R+, the aggregation risk functional RVaRα,A2 : Mp

2 → R

is not copula robust. The example is in particular interesting in that it shows that even
if the marginal distributions μ1, . . . ,μd possess Lebesgue densities and unique quan-
tiles, the map C �→RVaRα,Ad

(C,μ1, . . . ,μd) need not be continuous when choosing
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Ad(x1, . . . , xd) := ∑d
i=1 xi (here RVaRα,Ad

is derived from Rρ,Ad
as Td is derived

from Td in (3.1)). The point here is that for random variables X1, . . . ,Xd with dis-
tributions μ1, . . . ,μd , the distribution of

∑n
i=1 Xi can be discrete even if μ1, . . . ,μd

possess Lebesgue densities. This fact has already been pointed out in [17].

Example 4.7 Generalising the first part of Embrechts et al. [17, Example 2.2], define
for α ∈ (0,1/2] a bivariate copula C

(α)
0 through

C
(α)
0 (u1, u2)

:= max
{

min{u1, α} + min{u2, α} − α,0
} + max{u1 + u2 − (1 + α),0},

let C1 be the bivariate independence copula, i.e., C1(u1, u2) := u1u2, and define for
any t ∈ [0,1] the copula C

(α)
t as a mixture of C

(α)
0 and C1 via

C
(α)
t (u1, u2) := (1 − t)C

(α)
0 (u1, u2) + t C1(u1, u2).

Moreover, for any t ∈ [0,1], let Ĉ
(α)
t be the survival copula of C

(α)
t which is defined

by Ĉ
(α)
t (u1, u2) := u1 +u2 −1+C

(α)
t (1−u1,1−u2). Finally, let μ1 := μ2 := U[0,1]

as well as μ̂1 := μ̂2 := U[−1,0], where UI is used to denote the uniform distribution
on I . Then the following two assertions are valid:

(i) RVaRα,A2(C
(α)
0 ,μ1,μ2) = α and RVaRα,A2(C

(α)
t ,μ1,μ2) = √

2α for any

t ∈ (0,1]. Therefore we have limt↘0 C
(α)
t = C

(α)
0 uniformly, but

lim
t↘0

RVaRα,A2(C
(α)
t ,μ1,μ2) �= RVaRα,A2(C

(α)
0 ,μ1,μ2).

(ii) RVaR1−α,A2(Ĉ
(α)
0 , μ̂1, μ̂2) = −1 − α and RVaR1−α,A2(Ĉ

(α)
t , μ̂1, μ̂2) = −√

2α

for any t ∈ (0,1]. Therefore we have that limt↘0 Ĉ
(α)
t = Ĉ

(α)
0 uniformly, but

lim
t↘0

RVaR1−α,A2(Ĉ
(α)
t , μ̂1, μ̂2) �= RVaR1−α,A2(Ĉ

(α)
0 , μ̂1, μ̂2).

For details, see Appendix A.11.

It is worth commenting on the copulas C
(α)
0 , C1 and C

(α)
t in the preceding ex-

ample. The copula C1 is well known; it is simply the distribution function of the
uniform distribution on [0,1]2. The copula C

(α)
0 is the distribution function of the

‘uniform distribution’ on the union of the two disjoint line segments Sα
1 and Sα

2 with
endpoints (α,0), (0, α) and (1, α), (α,1), respectively (see Appendix A.11 for the
precise definition). Thus C

(α)
t is the distribution function of the Borel probability

measure on [0,1]2 that is defined as a convex combination (with coefficients t and
1− t) of the uniform distribution on [0,1]2 and the ‘uniform distribution’ on Sα

1 �Sα
2 .

For a visualisation of C
(α)
0 , see Fig. 1, and note that the distribution of the sum of

two U[0,1]-distributed random variables coupled via C
(α)
0 is the two-point distribu-

tion αδα + (1 − α)δ1+α .
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Fig. 1 Visualisation of the

copula C
(α)
0 and of the sets Sα

1
and Sα

2 for α = 0.3

4.4 Application to optimal capital and risk allocations

Let p ∈ [1,∞). As in the work of Filipović and Svindland [21], consider d agents,
or business units, with endowments X1, . . . ,Xd ∈ Lp . We then assume that these
agents assess the riskiness of their positions by means of some convex risk measures
ρ1, . . . , ρd : Lp → R (in the sense of Sect. 4.1). In order to minimise the total and in-
dividual risk, the agents redistribute the aggregate endowment X := ∑d

i=1 Xi among
themselves. By a redistribution of X, we mean any d-tuple (Y1, . . . , Yd) of random
variables (payoffs) in Lp such that X = ∑d

i=1 Yi . A redistribution (X∗
1, . . . ,X∗

d) is
called an optimal capital and risk allocation of X if

n∑

i=1

ρi(X
∗
i ) = inf

{ n∑

i=1

ρi(Yi) : Y1, . . . , Yd ∈ Lp and
n∑

i=1

Yi = X

}
. (4.3)

Here it is assumed that the redistribution is not subject to frictions, i.e., that every
redistribution of X is admissible, even if this is not always the case (as pointed out
by Filipović and Kupper [20]).

Note that an optimal capital and risk allocation (X∗
1, . . . ,X∗

d) as a redistribution

must satisfy X = ∑d
i=1 X∗

i . An optimal capital and risk allocation of X need not
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exist. If it exists, it coincides with the inf-convolution of ρ1, . . . , ρd at X, denoted by
�d

i=1 ρi(X), which is defined by the right-hand side of (4.3). Using the convention
inf∅ = ∞, the inf-convolution can be seen as a map �d

i=1 ρi : Lp → (−∞,∞]. For
background, see [21] and references cited therein.

In the above economic setting, the inf-convolution can also be regarded as a map
�d

i=1 ρi : Lp × · · · × Lp → (−∞,∞] through

d

�
i=1

ρi(X1, . . . ,Xd) := d

�
i=1

ρi

( d∑

i=1

Xi

)
.

Since we assumed ρ1, . . . , ρd to be convex risk measures on Lp , a result of Filipović
and Svindland [21, Corollary 2.7] ensures that the inf-convolution �d

i=1 ρi is a con-
vex risk measure on Lp , too (note that in [21, Corollary 2.7], �d

i=1 ρi is exact, and
hence it is R-valued if ρ1, . . . , ρd are R-valued). As a convex risk measure, �d

i=1 ρi

is distribution-invariant, and so is �d
i=1 ρi . Thus we may associate with �d

i=1 ρi a
corresponding functional R�d

i=1 ρi
: Mp

d → R through

R�d
i=1 ρi

(μ) := R�d
i=1 ρi ,Ad

(μ) = R�d
i=1 ρi

(μ ◦ A−1
d )

with Ad(x1, . . . , xd) = ∑d
i=1 xi , where R�d

i=1 ρi
and R�d

i=1 ρi ,Ad
are defined as in

(4.1) and (4.2), respectively.
It is worth mentioning that [21, Corollary 2.7] even ensures that for any X ∈ Lp ,

there exists a comonotone optimal capital and risk allocation (X∗
1, . . . ,X∗

d). This im-
plies that whenever ρ1 = · · · = ρd and ρ := ρ1 is comonotonic (i.e., finitely additive
for all comonotone risks), we have

R�d
i=1 ρ

(μ) = Rρ(μ ◦ A−1
d ) (4.4)

for any μ ∈Mp
d (see Appendix A.12). Of course, for convex risk measures ρ that are

not comonotonic, the representation (4.4) need not apply. An example for a comono-
tonic convex risk measure is the average value at risk at level α ∈ (0,1). A counterex-
ample is the α-expectile at level α ∈ [1/2,1); see Emmer et al. [18].

The following result is a direct consequence of Corollary 4.3 and Exam-
ple 4.4 since we have seen above that �d

i=1 ρi is a convex risk measure on Lp if
ρ1, . . . , ρd are.

Corollary 4.8 Let p ∈ [1,∞) and ρ1, . . . , ρd : Lp → R be convex risk measures. Then
R�d

i=1 ρi
: Mp

d → R is copula robust.

The following example shows that if the risk measures ρ1, . . . , ρd are not assumed
to be convex, copula robustness of R�d

i=1 ρi
may fail; recall that VaRα is not convex.

Example 4.9 It is known from the work of Embrechts et al. [13, Corollary 2] that
�2

i=1 VaRα = VaR2α on L1 when α ∈ (0,1/2). Therefore

R�2
i=1 VaRα

(μ) = R�2
i=1 VaRα,A2

(μ) = RVaR2α,A2(μ) = RVaR2α
(μ ◦ A−1

2 )
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for any μ ∈M1
2 and α ∈ (0,1/2). Thus it follows from Example 4.7 that

R�2
i=1 VaRα

: M1
2 → R

is not copula robust for any α ∈ (0,1/2).

5 Example 2: stochastic programming problems

5.1 A class of stochastic programming problems

Adopting the framework of Claus et al. [9], let Ξ be a nonempty and compact subset
of Rk , h : Ξ × R

d → R a Borel-measurable function and Z an R
d -valued random

variable on an atomless probability space (Ω,F ,P). Let p ∈ [1,∞) and assume that
h(ξ,Z) is contained in Lp = Lp(Ω,F ,P) for any ξ ∈ Ξ . Consider the optimisation
problem

min
{
ρ
(
h(ξ,Z)

) : ξ ∈ Ξ
}
, (5.1)

where ρ : Lp → R is any map. A classical example for ρ is the expectation, i.e.,
ρ(Y ) = E[Y ], where p = 1. In Sect. 5.2, we consider another example where ρ is
a more general monotone, distribution-invariant and convex function on Lp . Prob-
lem (5.1) can be written as min{Rρ(P ◦ h(ξ,Z)−1) : ξ ∈ Ξ} or, equivalently, as

min
{
Rρ

(
(δξ ⊗ μ) ◦ h−1) : ξ ∈ Ξ

}
, (5.2)

where Rρ is derived from ρ as in (4.1) and μ denotes the distribution of Z.
Lemma 5.1 below assumes the following three conditions, where monotonicity,

distribution-invariance and convexity are defined as in (i), (iii) and (iv) in Sect. 4.1.
Recall that (Ω,F ,P) is assumed to be atomless.

(a) ρ : Lp → R, for some p ∈ [1,∞), is monotone, distribution-invariant and con-
vex.

(b) h : Ξ ×R
d → R is Borel-measurable and limited by an exponent γ ∈R++.

(c) (δξ ⊗ μ)[Dh] = 0 for any ξ ∈ Ξ and μ ∈ Mγp

d .

The second requirement in (b) means that there exists some locally bounded map
η : Ξ → (0,∞) such that |h(ξ, z)| ≤ η(ξ)(1 + |z|)γ for all (ξ, z) ∈ Ξ × R

d . In (c),
the set Dh is the set of all discontinuity points of h. Under conditions (a) and (b), the
map Qρ,h : Ξ ×Mγp

d →R given by

Qρ,h(ξ,μ) := Rρ

(
(δξ ⊗ μ) ◦ h−1)

is well defined. The following lemma is known from Claus et al. [9, Theorem 5.2].

Lemma 5.1 If conditions (a)–(c) hold true, then the map Qρ,h : Ξ × Mγp

d → R is
((ORk ∩ Ξ) ×Oγp

d ,OR)-continuous.
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Lemma 5.1 can be used to obtain the following result on the map

Rρ,h :Mγp

d → R∪ {−∞},
Rρ,h(μ) := inf{Qρ,h(ξ,μ) : ξ ∈ Ξ}. (5.3)

Recall that the set Ξ was assumed to be compact.

Theorem 5.2 If conditions (a)–(c) hold true, then the infimum in (5.3) is attained for
any μ ∈Mγp

d , and the map Rρ,h : Mγp

d →R is (Oγp

d ,OR)-continuous.

Note here that if the infimum in (5.3) is attained, then Rρ,h(μ) is a solution to
(5.2). Theorem 5.2 is a variant of Claus et al. [9, Corollary 2.4].

Remark 5.3 The (Oγp

d ,OR)-continuity of Rρ,h : Mγp

d → R obtained in the preced-
ing theorem can be seen as robustness of ρ relative to (G,Z,π

γp

d ) in the sense of
Embrechts et al. [16, Definition 1], where G := {h(ξ, · ) : ξ ∈ Ξ} and π

γp

d is any
metric metrising the (pγ )-weak topology Oγp

d .

5.2 Example: one-period mean–risk portfolio optimisation

Consider a one-period financial market consisting of one riskless bond and d risky
assets with prices per unit S0

0 := 1 and S1
0 , . . . , Sd

0 ∈R++ at time 0. In between time 0
and time 1, the prices change to S0

1 , S1
1 , . . . , Sd

1 according to Si
1 = ZiSi

0, i = 0, . . . , d ,
where the bond’s relative price change Z0 is deterministic (∈ R++) and known at
time 0 and the assets’ relative price changes Z1, . . . ,Zd are R+-valued random vari-
ables on a common atomless probability space (Ω,F ,P) and are unobservable at
time 0. Let x0 ∈ R++ be an amount of capital to be invested in the bond and in the d

assets at time 0. If for any i = 1, . . . , d , the amount of capital invested in the asset i

is denoted by ξi , then the amount of capital invested in the bond is ξ0 := x0 − 〈ξ,1〉,
where ξ := (ξ1, . . . , ξd) and 1 := (1, . . . ,1) ∈ R

d . When identifying a portfolio with
the corresponding amounts of capital ξ1, . . . , ξd and assuming that taking loans and
short selling are banned, the set

Ξ := {(ξ1, . . . , ξd) ∈R
d+ : 〈ξ,1〉 ≤ x0} (5.4)

can be seen as the set of all admissible portfolios. The realised loss at time 1 of a
portfolio ξ = (ξ1, . . . , ξd) ∈ Ξ is given by

h(ξ, z) := (x0 − 〈ξ,1〉)(1 − Z0) + 〈ξ,1 − z〉, (5.5)

when z = (z1, . . . , zd) is the vector of the assets’ realised relative price changes, i.e.,
the realisation of Z := (Z1, . . . ,Zd).

Of course, the portfolio ξ = (ξ1, . . . , ξd) ∈ Ξ should be chosen such that the ex-
pected profit is as high as possible, i.e., such that the expected loss E[h(ξ,Z)] is as
small as possible. Simultaneously the portfolio’s downside risk should be as small as
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possible, where the downside risk can be measured by σ(h(ξ,Z)) for a suitable given
‘downside’ risk measure σ : Lp → R. This leads to the mean–risk model

min
{
E[h(ξ,Z)] + κσ

(
h(ξ,Z)

) : ξ ∈ Ξ
}
, (5.6)

where κ ∈ R++ is a risk aversion parameter. Note that the model (5.6) aims at min-
imising the weighted sum of two competing objects and is in line with Markowitz’
[32] classical mean–variance optimisation theory (where σ(h(ξ,Z)) = Var[h(ξ,Z)]).
It is also worth mentioning that mean–risk models are related to the corresponding
multiobjective optimisation problems; see for instance the works of Ogryczak and
Ruszczyński [37, 38] and Schultz and Tiedemann [46].

The mean–risk model (5.6) coincides with problem (5.2) when Z is distributed
according to μ and ρ : Lp → R is defined by

ρ(Y ) := E[Y ] + κσ(Y ), (5.7)

where one should note that ρ is monotone, distribution-invariant and convex if σ is.
For any fixed p ∈ [1,∞), the following corollary is a simple consequence of Theo-
rem 5.2; see Appendix A.14.

Corollary 5.4 Let σ : Lp → R be monotone, distribution-invariant and convex. For
any μ ∈ Mp

d , let Rρ,h(μ) be defined by (5.3) (and (5.7)). Then the infimum on the
right-hand side of (5.3) is attained (and thus finite) for any μ ∈ Mp

d , and the map
Rρ,h :Mp

d → R is (Op
d ,OR)-continuous.

Remark 5.5 If we use Ad to denote the set of all functions h(ξ, · ) : Rd → R, ξ ∈ Ξ ,
then Rρ,h = Rρ,Ad

for the functional Rρ,Ad
defined by (1.3), i.e., by

Rρ,Ad
(μ) := inf{Rρ(μ ◦ A−1

d ) : Ad ∈Ad} = inf{Rρ,Ad
(μ) : Ad ∈Ad}.

Here Rρ is derived from ρ as in (4.1), and Rρ,Ad
is derived from Rρ and Ad as

in (4.2).

5.3 Copula robustness of stochastic programming problems

In the setting of Sect. 5.1, assume that conditions (a)–(c) are satisfied and recall that
Ξ was assumed to be compact. Then by Theorem 5.2, the map Rρ,h : Mγp

d → R

is (Oγp

d ,OR)-continuous. Together with Theorem 3.12, this leads to the following
result.

Corollary 5.6 If conditions (a)–(c) hold true, then the map Rρ,h : Mγp

d →R is copula
robust.

Corollary 5.6 shows that under conditions (a)–(c), the minimal value of prob-
lem (5.2) is robust with respect to slight changes in the copula of μ.
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Example 5.7 Let us return to the specific setting of Sect. 5.2 (mean–risk portfo-
lio optimisation), where μ played the role of the joint distribution of the relative
price changes (Z1, . . . ,Zd). In this framework, it can be seen in the proof of Corol-
lary 5.4 that conditions (a)–(c) are satisfied for p = 1 when σ : Lp →R is monotone,
distribution-invariant and convex. Thus under the latter assumptions on σ , Corol-
lary 5.6 ensures that the functional Rρ,h : Mp

d → R is copula robust. Of course, the
copula robustness of Rρ,h also directly follows from Theorem 3.12 and Corollary 5.4.

6 Example 3: multi-period portfolio optimisation

In this section, the objective is to show that the maximal expected utility of the ter-
minal wealth of a portfolio in a multi-period financial market model (see Sect. 6.2)
is copula robust if it is regarded as a function of the joint distribution of the assets’
relative price changes. The terminal wealth portfolio optimisation problem can be re-
garded as a Markov decision problem as introduced in the textbook by Bäuerle and
Rieder [1, Chaps. 1 and 2] and in other standard monographs. To prove the main re-
sult of this section (Corollary 6.8), it is therefore useful to first establish a variant of
a result of Müller [35, Theorem 4.2] about the dependence of the value function on
the Markov transition probability function. This variant can be found in Theorem 6.2
and is of independent interest. It is worth pointing out that the factor 1/ψ(x) on the
right-hand side of (6.3) is essential for our purposes; see the proof of Corollary 6.7.

6.1 Groundwork: a class of Markov decision models

6.1.1 Basic notation and terminology

Let (E,E) be a measurable space, to be regarded as the state space, and N ∈N

the fixed finite planning horizon. For each n = 0, . . . ,N − 1 and x ∈ E, let
An(x) be a nonempty set whose elements are regarded as the admissible actions
at time n in state x. For each n = 0, . . . ,N − 1, let An := ⋃

x∈E An(x) and
Dn := {(x, a) ∈ E × An : a ∈ An(x)}. The elements of An can be seen as the actions
that may basically be selected at time n, whereas the elements of Dn are the pos-
sible state–action combinations at time n. We equip An with a σ -algebra An and
Dn with the trace σ -algebra Dn := (E ⊗ An) ∩ Dn. We use A to denote the fam-
ily that consists of all sets An(x), n = 0, . . . ,N − 1, x ∈ E, and of all σ -algebras
An, n = 0, . . . ,N − 1. All the sets and spaces just introduced are fully determined by
(E,E) and A. Although all the objects introduced in what follows depend on (E,E)

and A, we suppress this dependence in the notation.
By a (Markov decision) transition function associated with (E,E) and A, we mean

an N -tuple P = (Pn)
N−1
n=0 , where Pn is a probability kernel from (Dn,Dn) to (E,E),

to be seen as the one-step transition kernel at time n. The set of all transition func-
tions is denoted by P . The actions are governed by a so called N -stage strategy,
i.e., by an N -tuple π = (f0, . . . , fN−1) where fn is a decision rule at time n, i.e., an
(E,An)-measurable map fn : E → An satisfying fn(x) ∈ An(x) for all x ∈ E. Let
Fn be a nonempty set of decision rules at time n, and define the set of all ‘admissible’
strategies by Π := F0 × · · · × FN−1.
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For any P = (Pn)
N−1
n=0 ∈ P , π = (fn)

N−1
n=0 ∈ Π and n = 0, . . . ,N − 1, define

the probability kernel P π
n from (E,E) to (E,E) by P π

n (x,B) := Pn((x,fn(x)),B),
x ∈ E, B ∈ E . The probability measure P π

n (x, · ) can be seen as the one-step tran-
sition probability at time n given state x when the actions are chosen according to
π . On the measurable space (Ω,F) := (EN+1,E⊗(N+1)), we can define for any
x0 ∈ E and π ∈ Π the probability measure P

x0,P ;π := δx0 ⊗ P π
0 ⊗ · · · ⊗ P π

N−1,
where the right-hand side is the usual product of the probability measure δx0 and
the kernels P π

0 , . . . ,P π
N−1. Under the probability measure P

x0,P ;π , the identity map
X = (Xn)

N
n=0 on Ω is called Markov decision process (MDP) associated with initial

state x0, transition function P and strategy π .
Let rn : Dn → R be a (Dn,B(R))-measurable map, referred to as one-stage re-

ward function, and rN : E → R an (E,B(R))-measurable map, referred to as terminal
reward function. Here rn(x, a) specifies the one-stage reward when action a is taken
at time n in state x, and rN(x) specifies the reward of being in state x at the terminal
time N . Finally, set �r := (rn)

N
n=0.

For any fixed subset P ⊆ P , the collection of the objects (E,E), A, Π , P ,
{Px0,P ;π : x0 ∈ E,P ∈ P,π ∈ Π}, X and �r introduced so far are often referred to
as Markov decision model. In fact, in the standard literature, the set P is typically a
singleton. If, however, there is uncertainty with respect to the ‘true’ transition func-
tion, then one should allow a whole bundle of transition functions in the model.

6.1.2 Intrinsic optimisation problem

We assume that rk(Xk,fk(Xk)), k = 0, . . . ,N −1, and rN(XN) are Px0,P ;π -integrable
for any x0 ∈ E, P ∈ P , π ∈ Π (for a sufficient condition, see Lemma 6.1 be-
low). As a consequence, we can define for any P ∈ P and π = (fn)

N−1
n=0 ∈ Π an

(E,B(R))-measurable map V
P ;π
0 : E →R by

V
P ;π
0 (x0) := E

x0,P ;π
[N−1∑

k=0

rk
(
Xk,fk(Xk)

) + rN(XN)

]
.

The value V
P ;π
n (x0) specifies the expected total reward of X under P

x0,P ;π . Here
‘under Px0,P ;π ’ means that X starts in x0 and that the random transitions of X are
governed by P and π . For fixed P ∈ P , it is natural to look for those strategies π ∈ Π

for which the expected total reward from time 0 to N is maximal for a given initial
states x0 ∈ E. This results in the optimisation problem

max{V P ;π
0 (x0) : π ∈ Π}. (6.1)

We assume that supπ∈Π V
P ;π
0 (x0) < ∞ for any x0 ∈ E, which means that it is impos-

sible to gain an arbitrarily high reward. A strategy πP ∈ Π is said to be optimal for

(6.1) if V
P ;πP

0 (x0) = V P
0 (x0) for any x0 ∈ E, where the map V P

0 : E → R is defined

by V P
0 (x0) := supπ∈Π V

P ;π
0 (x0). The map V P

0 is referred to as value function.
Some known facts about the existence of optimal strategies are recalled in Ap-

pendix C. Part (i) of Theorem C.1 shows that under some assumptions, the value
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function can be obtained by the Bellman iteration scheme. The latter involves the
time-n value functions V P

n , n = 1, . . . ,N , defined by V P
n (x) := supπ∈Π V

P ;π
n (x),

where for any π = (fn)
N−1
n=0 ∈ Π the (E,B(R))-measurable map V

P ;π
n : E → R is

defined by V
P ;π
n (x) := E

x0,P ;π [∑N−1
k=n rk(Xk,fk(Xk))+ rN (XN)|Xn = x] (note that

the right-hand side is independent of x0 ∈ E). Here and in the following, we use the
convention

∑N−1
n=N := 0. The maps V

P ;π
n ( · ), π ∈ Π , are sometimes called policy

value functions and appear in Theorem 6.2.

6.1.3 Bounding function

For the Markov decision model introduced above and P ∈P , an (E,B([1,∞))-mea-
surable function ψ : E → [1,∞) is called a bounding function for P if there exist
constants K1,K2,K3 ∈R+ such that the following three assertions hold:

(a) |rn(x, a)| ≤ K1ψ(x) for any n = 0, . . . ,N − 1 and (x, a) ∈ Dn;
(b) |rN(x)| ≤ K2ψ(x) for any x ∈ E;
(c)

∫
E

ψ(y)Pn((x, a), dy) ≤ K3ψ(x) for any n = 0, . . . ,N − 1 and (x, a) ∈ Dn.

This terminology is adapted from the work of Müller [34, Definition 2.4] and the
textbook by Bäuerle and Rieder [1, Definition 2.4.1]. Denote by M(E) the set of
all (E,B(R))-measurable maps v : E → R, and by Mψ(E) the set of all v ∈ M(E)

satisfying ‖v‖ψ < ∞, where ‖v‖ψ := supx∈E |v(x)|/ψ(x).

Lemma 6.1 Let P ∈ P . If there exists a bounding function ψ for P , then the random
variables rk(Xk,fk(Xk)), k = 0, . . . ,N − 1, and rN(XN) are P

x0,P ;π -integrable for
any x0 ∈ E and π ∈ Π , and moreover, ‖V P

n ‖ψ < ∞ (in particular, V
P ;π
n ∈ Mψ(E)

for any π ∈ Π ) for any n = 0, . . . ,N − 1.

6.1.4 Continuous dependence of the optimal value on the transition function

Let ψ : E → [1,∞) be an (E,B([1,∞))-measurable function, and note that the in-
tegral

∫
E

v dm exists and is finite for any v ∈Mψ(E) and m ∈ Mψ

1 (E), the set of all
probability measures on (E,E) with

∫
ψ dm< ∞. For any fixed subset M ⊆ Mψ(E),

the distance between m1 and m2 from Mψ
1 (E) can be measured by

dM(m1,m2) := sup
v∈M

∣∣∣∣

∫

E

v dm1 −
∫

E

v dm2

∣∣∣∣. (6.2)

Note that (6.2) defines a probability pseudo-metric (in the sense of Rachev
[41, Sect. 2.3]), i.e., a map dM : Mψ

1 (E) × Mψ
1 (E) → R+ which is symmetric

and fulfils the triangle inequality. If M separates points in Mψ

1 (E) (i.e., if any two

m1,m2 ∈ Mψ
1 (E) coincide when

∫
E

v dm1 = ∫
E

v dm2 for all v ∈ M), then dM is
even a probability metric. It is sometimes called integral probability metric or proba-
bility metric with a ζ -structure; see Müller [35] and Zolotarev [54].

In some situations, the (pseudo-)metric dM (with M ⊆ Mψ(E) fixed) can be rep-
resented by the right-hand side of (6.2) with M replaced by a different subset M′
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of Mψ(E). Each such set M′ is said to be a generator of dM. The largest generator
of dM is called the maximal generator of dM and will be denoted by M. That is, M
is the set of all v ∈ Mψ(E) for which | ∫

E
v dm1 − ∫

E
v dm2| ≤ dM(m1,m2) for all

m1,m2 ∈ Mψ

1 (E); see [35, Definition 3.1]. Examples for dM and M are discussed in
Kern et al. [26] and Müller [34, 35].

Now denote by Pψ the set of all transition functions P = (Pn)
N−1
n=0 ∈ P with

Pn((x, a), · ) ∈ Mψ
1 (E) for all (x, a) ∈ Dn and n = 0, . . . ,N − 1. For any P ∈ Pψ ,

the integrals
∫
E

v(y)Pn((x, a), dy), v ∈ Mψ(E), (x, a) ∈ Dn, n = 0, . . . ,N − 1, ex-
ist and are finite. For any M ⊆ Mψ(E), we may define the distance between two
transition functions P = (Pn)

N−1
n=0 and Q = (Qn)

N−1
n=0 from Pψ by

dM,ψ (P,Q) := max
n=0,...,N−1

sup
(x,a)∈Dn

dM

(
Pn

(
(x, a), · ),Qn

(
(x, a), · )

)
/ψ(x). (6.3)

For any M ⊆ Mψ(E), the Minkowski functional �M : Mψ(E) → R+ (in the sense
of Rudin [42, paragraph after Definition 1.33]) is defined by

�M(v) := inf{λ ∈ R++ : v/λ ∈M},

where we set inf∅ := ∞. Examples for M and �M are discussed in Kern et al. [26]
and Müller [34]. In the following result, we assume that ψ is a bounding func-
tion for any Q ∈ Pψ . By Lemma 6.1, it then follows that V

Q
n (x) < ∞ for any

n = 0, . . . ,N , Q ∈ Pψ and x ∈ E. In particular, we can define a functional

Vx

n :Pψ → R by Vx

n(Q) := V
Q
n (x). Note that Theorem 6.2 is a refinement of Kern’s

PhD thesis [25, Theorem 2.2.8] and that a related result was proved earlier by Müller
[34, Theorem 4.2]. We use K3,P to denote the constant in condition (c) of a bounding
function for P .

Theorem 6.2 We assume that ψ is a bounding function for any Q ∈ Pψ , and we let
M ⊆ Mψ(E) and M

′ be a generator of dM. Then for any n = 0, . . . ,N − 1, xn ∈ E

and Q,P ∈ Pψ , we have

|Vxn

n (Q) − Vxn

n (P )|

≤
N−1∑

j=n

sup
π∈Π

�M′(V P ;π
j+1 )

(
K3,P + �M′(ψ)dM,ψ (Q,P )

)n−j
ψ(xn) dM,ψ (Q,P ).

As a direct consequence of Theorem 6.2, we get the following result.

Corollary 6.3 Assume that ψ is a bounding function for any Q ∈ Pψ and let
P ∈ Pψ . Let M ⊆ Mψ(E) and M

′ be a generator of dM. If �M′(ψ) < ∞ and

supπ∈Π �M′(V P ;π
n+1 ) < ∞ for any n = 0, . . . ,N − 1, then Vxn

n is (dM,ψ , | · |)-conti-
nuous at P for any n = 0, . . . ,N − 1 and xn ∈ E.
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6.2 A utility-based portfolio optimisation problem

6.2.1 Financial market model and a terminal wealth optimisation problem

Consider an N -period financial market consisting of one riskless bond S0 = (S0
n)Nn=0

and d risky assets Si = (Si
n)

N
n=0, i = 1, . . . , d , for some fixed d ∈N. Assume that the

value of the bond evolves deterministically according to

S0
0 = 1 and S0

n+1 = Z0
n+1S

0
n, n = 0, . . . ,N − 1,

for some fixed constants Z0
1, . . . ,Z0

N ∈ [1,∞), and that the value of the ith asset
evolves stochastically according to

Si
0 = si

0 and Si
n+1 = Zi

n+1S
i
n, n = 0, . . . ,N − 1,

for a constant si
0 ∈ R++ and independent R+-valued random variables Zi

1, . . . ,Z
i
N

on a common probability space (Ω,F ,P). For n = 0, . . . ,N , set Sn := (S1
n, . . . , Sd

n )

and Zn := (Z1
n, . . . ,Z

d
n) and denote by μn the distribution of Zn. We also de-

fine 1 := (1, . . . ,1) ∈ R
d , F0 := {∅,Ω}, Fn := σ(S0, . . . , Sn) = σ(Z1, . . . ,Zn),

n = 1, . . . ,N , and F := (Fn)
N
n=0.

Now, an agent invests a given amount of capital x0 ∈ R++ in the bond and
the assets according to some self-financing trading strategy. By a trading strat-
egy, we mean an F-adapted R

d+1+ -valued stochastic process ξ = (ξ0
n , ξn)

N−1
n=0 with

ξn = (ξ1
n , . . . , ξd

n ), where ξ0
n and ξ i

n specify the amounts of capital invested in the
bond and in the ith asset, respectively, during the time interval [n,n + 1). The non-
negativity of ξ0

n , ξ1
n , . . . , ξd

n , n = 0, . . . ,N − 1, means that taking loans and short
selling of the assets are excluded. The corresponding (F-adapted) portfolio process
Xξ = (X

ξ
n)Nn=0 associated with ξ = (ξ0

n , ξn)
N−1
n=0 is defined by

X
ξ
0 := ξ0

0 + 〈ξ0,1〉, X
ξ
n+1 := ξ0

nZ0
n+1 + 〈ξn,Zn+1〉, n = 0, . . . ,N − 1. (6.4)

A trading strategy ξ = (ξ0
n , ξn)

N−1
n=0 is called self-financing with respect to the initial

capital x0 if x0 = ξ0
0 + 〈ξ0,1〉 and X

ξ
n = ξ0

n + 〈ξn,1〉 for any n = 1, . . . ,N . Note
that ξ0

n and 〈ξn,1〉 specify the amounts of capital invested during the time interval
[n,n + 1) in the bond and in the d assets, respectively. For any self-financing trad-
ing strategy ξ = (ξ0

n , ξn)
N−1
n=0 with respect to x0, we have ξ0

n = X
ξ
n − 〈ξn,1〉 for any

n = 0, . . . ,N − 1, and therefore the corresponding portfolio process admits the rep-
resentation

X
ξ
0 = x0, X

ξ
n+1 = Z0

n+1X
ξ
n +〈ξn,Zn+1 −Z0

n+11〉 for n = 0, . . . ,N −1. (6.5)

In view of (6.5), we identify a self-financing trading strategy with respect to x0
with an F-adapted R

d+-valued stochastic process ξ = (ξn)
N−1
n=0 with ξn = (ξ1

n , . . . , ξd
n )

such that 〈ξ0,1〉 ∈ [0, x0] and 〈ξn,1〉 ∈ [0,X
ξ
n] for any n = 1, . . . ,N − 1. We restrict

ourselves to Markovian self-financing trading strategies ξ = (ξn)
N−1
n=0 with respect to

x0 which means that ξn only depends on n and X
ξ
n . To put it another way, we assume
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that for any n = 0, . . . ,N − 1, there exists a Borel-measurable map fn : R+ → R
d+

such that ξn = fn(X
ξ
n). Then in particular, Xξ is an R+-valued F-Markov process

whose one-step transition probability at time n ∈ {0, . . . ,N − 1} given state x ∈ R+
and strategy ξ = (ξn)

N−1
n=0 (resp. π := (fn)

N−1
n=0 ) is given by μn+1 ◦ η−1

n,(x,fn(x)), where

ηn,(x,a)(z) := Z0
n+1x + 〈a, z − Z0

n+11〉, z ∈R
d+. (6.6)

The agent’s aim is to find a self-financing trading strategy ξ = (ξn)
N−1
n=0 (resp.

π = (fn)
N−1
n=0 ) with respect to x0 for which her expected utility of the relative terminal

wealth is maximised. We assume that the agent is risk-averse and that her attitude
towards risk is set via the power utility function uα : R+ →R+ defined by

uα(x) := xα (6.7)

for some fixed α ∈ (0,1). Hence the agent is interested in those self-financing trading
strategies ξ = (ξn)

N−1
n=0 (resp. π = (fn)

N−1
n=0 ) with respect to x0 for which the expecta-

tion of uα(X
ξ
N/(x0S

0
N)) is maximised. Since uα(X

ξ
N/(x0S

0
N)) = uα(X

ξ
N)/(x0S

0
N)α ,

this is equivalent to maximising the expectation of uα(X
ξ
N). For notational simplic-

ity, we consider the terminal wealth optimisation problem in the latter form. We as-
sume that Z1

n, . . . ,Z
d
n are P-a.s. strictly positive and E[uα(〈Zn,1〉)] < ∞ for any

n = 1, . . . ,N .

Example 6.4 Assume that the bond and the d assets evolve according to the 1-dimen-
sional ordinary (Itô stochastic) differential equations

ds0
t = δ0s0

t dt, s0
0 = 1,

dsi
t = δis

i
t dt + σis

i
t dBi

t , si
0 = si

0, i = 1, . . . , d,

where δ0, δ1, . . . , δd , σ1, . . . , σd ∈ R++ are constants and B1, . . . ,Bd are (jointly
Gaussian) correlated 1-dimensional standard Brownian motions which satisfy for
any t ∈ R+ that Cov(Bi

t ,B
j
t ) = Ri,j t , where R = (Ri,j )1≤i,j≤d ∈ R

d×d is a fixed
correlation matrix (i.e., R is symmetric and positive semi-definite with entries 1 on
the diagonal). This is a multivariate version of the classical Black–Scholes–Merton
model. Choose the trading period to be the unit interval [0,1] and assume that
the bond and the assets can be traded only at N equidistant time points in
[0,1], namely at tN,n := n/N , n = 0, . . . ,N − 1. Then the relative price changes
Z0

n+1 := S0
n+1/S

0
n = s0

tN,n+1
/s0

tN,n
and Zi

n+1 := Si
n+1/S

i
n = si

tN,n+1
/si

tN,n
are given

by, respectively, eδ0(tN,n+1−tN,n) and e
(δi−σ 2

i /2)(tN,n+1−tN,n)+σi(B
i
tN,n+1

−Bi
tN,n

)
, i.e., for

n = 0, . . . ,N − 1,

Z0
n+1 = eδ0/N and Zi

n+1 = e
(δi−σ 2

i /2)/N+σi(B
i
tN,n+1

−Bi
tN,n

)
, i = 1, . . . , d.

That is, we have Zn+1 = (eG1 , . . . , eGd ) for a d-variate random variable (G1, . . . ,Gd)

which has a d-variate normal distribution Nδ,Γ with δ := ((δi − σ 2
i /2)/N)di=1 and

Γ := (σiRi,j σj /N)1≤i,j≤d . Thus we have μ1 = · · · = μN = LNδ,Γ , where LNδ,Γ is
a d-variate log-normal distribution with parameters δ and Γ .
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6.2.2 Interpretation as a Markov decision problem

The terminal wealth optimisation problem just introduced can be embedded in the
framework of Sect. 6.1 as follows. Let Z0

1, . . . ,Z0
N ∈ [1,∞) be a priori fixed and

choose (E,E) := (R+,B(R+)). For any x ∈R+ and n = 0, . . . ,N − 1, let

An(x) := A(x) := {a ∈R
d+ : 〈a,1〉 ≤ x}.

Hence An = R
d+ and Dn = D := {(x, a) ∈ R

d+1+ : a ∈ A(x)} for n = 0, . . . ,N − 1.
Let An := B(Rd+) and Dn := B(Rd+1+ ) ∩ D for any n = 0, . . . ,N − 1, and let
the set F consist of all those Borel-measurable maps f : R+ → R

d+ that satisfy
〈f (x),1〉 ∈ [0, x] for any x ∈ R+. Finally, let Fn := F for n = 0, . . . ,N − 1 and
Π := F0 × · · · × FN−1 = FN .

Let Mα
1 (Rd++) be the set of all Borel probability measures on R

d++ for which∫
R

d+ |z|α μ(dz) < ∞. The latter condition is equivalent to
∫
R

d++〈z,1〉α μ(dz) < ∞,
which can be shown by using arguments as at the beginning of Appendix A.2. For
any �μ = (μn)

N
n=1 ∈ Mα

1 (Rd++)N , we define a transition function P �μ = (P
�μ
n )N−1

n=0 by

P �μ
n

(
(x, a), · ) = (μn+1 ◦ η−1

n,(x,a))[ · ], (x, a) ∈ Dn, n = 0, . . . ,N − 1,

where the map ηn,(x,a) : Rd+ → R+ is defined by (6.6). The set of all such transition
functions is denoted by Pα , i.e., Pα := {P �μ : �μ ∈ Mα

1 (Rd++)N }, and plays the role
of P .

Let rn := 0, n = 0, . . . ,N − 1, and rN(x) := uα(x), x ∈ R+. Then

V
P ;π
0 (x0) = E

x0,P ;π [rN (XN)] = E
x0,P ;π [uα(XN)]

for any x0 ∈ R+, P ∈ Pα and π ∈ Π , and the terminal wealth problem introduced
subsequent to (6.7) can be identified with the optimisation problem (6.1), i.e., with

max{Ex0,P ;π [uα(XN)] : π ∈ Π} (6.8)

for any x0 ∈ R+ and P ∈Pα . A strategy πP ∈ Π is called an optimal (self-financing)
trading strategy for P if it solves the maximisation problem (6.8) for any x0 ∈ R+.
Note that the coordinate process X plays the role of the portfolio process Xξ in-
troduced in (6.4), and that for each x0 ∈ R+, any self-financing trading strategy
ξ = (ξn)

N−1
n=0 with respect to x0 may be identified with some π = (fn)

N−1
n=0 ∈ Π

through ξn = fn(X
ξ
n). Theorem C.3 ensures that optimal trading strategies exist.

6.2.3 Continuous dependence of the optimal value on P �μ

Let the function ψα :R+ → [1,∞) be defined by ψα(x) := 1 + uα(x). Moreover, let
Pψα be derived from Pα as Pψ is derived from P in Sect. 6.1.

Lemma 6.5 ψα is a bounding function for any P ∈Pα , and we have Pψα = Pα .
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Let M := MHöl,α := {v ∈ R
R+ : ‖v‖Höl,α ≤ 1}, where the Hölder-α norm is

defined by ‖v‖Höl,α := supx,y∈R+:x �=y |v(x) − v(y)|/|x − y|α . We obviously have
MHöl,α ⊆ Mψα (R+), and in view of Lemmas 6.5 and 6.1, we can therefore define a
functional Vx

n : Pψα → R through Vx

n(P ) := V P
n (x). The set MHöl,α separates points

in Mψα

1 (R+), implying that dMHöl,α (defined by (6.2) with M := MHöl,α) provides a

metric on Mψα

1 (R+); see Kern et al. [26] for details. Let dMHöl,α,ψα
be defined by

(6.3) with M := MHöl,α and ψ := ψα .

Theorem 6.6 For any n = 0, . . . ,N − 1 and x ∈ R+, the map Vx

n : Pψα → R is
(dMHöl,α,ψα

, | · |)-continuous.

Recall that the elements of Pα (= Pψα ) are parametrised by the elements of the
set Mα

1 (Rd++)N . For any μ ∈ Mα
1 (Rd++), denote by μ the element of Mα

1 (Rd++)N

whose N entries are all equal to μ, i.e., μ := (μ)Nn=1. Then we can define a functional
Vx

n : Mα
1 (Rd++) → R by

Vx
n (μ) := Vx

n(μ) = V P μ

n (x). (6.9)

Since we used Oα
d to denote the α-weak topology on Mα

1 (see Sect. 2.2), we use
Oα

d (Rd++) to denote the analogous topology on Mα
1 (Rd++).

Corollary 6.7 For any n = 0, . . . ,N − 1 and x ∈ R+, the map Vx
n : Mα

1 (Rd++) → R

defined by (6.9) is (Oα
d (Rd++),OR)-continuous.

6.3 Copula robustness of the maximal expected utility of the terminal wealth

For any n = 0, . . . ,N − 1 and x ∈ R+, let the map Vx
n : Mα

1 (Rd++) → R be defined
by (6.9), and note that Vx0

0 (μ) corresponds to the maximal expected utility of the
terminal wealth in (6.8) with P = P μ. When regarding each μ ∈ Mα

1 (Rd++) as a
Borel probability measure on the whole Euclidean space R

d (with μ[Rd++] = 1), the
set Mα

1 (R++) can be seen as a subset of Mα
1 . Thus Cd(μ1, . . .μd) = Cd for any

μ1, . . . ,μd ∈ Mα
1 (Rd++), and Theorem 3.12 and Corollary 6.7 together imply the

following result.

Corollary 6.8 For any n = 0, . . . ,N − 1 and x ∈ R+, the map Vx
n : Mα

1 (Rd++) → R

defined by (6.9) is copula robust.

Appendix A: Proofs

A.1 Proof of Proposition 2.2

By the assumption imposed on h, we can find a constant c ∈R++ such that
∫

Rd′ |y|p′
h(μ)(dy) =

∫

Rd

|h(x)|p′
μ(dx) ≤ c

(
1 +

∫

Rd

|x|p μ(dx)

)
< ∞
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for any μ ∈ Mp
d . This gives the first assertion. Since the involved topologies are

metrisable, it suffices for the second assertion to show that the map h :Mp
d →Mp′

d ′ is
sequentially continuous. Let μ and μn, n ∈ N, be elements of Mp

d such that μn → μ

in Op
d and thus in particular in O0

d ∩Mp

1 . By the classical continuous mapping the-

orem, we have h(μn) → h(μ) in O0
d ′ ∩Mp′

d ′ . Moreover, by the assumption on h, the

function fh :Rd →R defined by fh(x) := |h(x)|p′
lies in Cp

d . This implies

lim
n→∞

∫

Rd′ |y|p′
h(μn)(dy) = lim

n→∞

∫

Rd

fh(x)μn(dx)

=
∫

Rd

fh(x)μ(dx) =
∫

Rd′ |y|p′
h(μ)(dy).

Thus h(μn) → h(μ) in Op′
d ′ . This gives the second assertion. �

A.2 Proof of Theorem 2.3

We first prove that μ1, . . . ,μd ∈ Mp

1 if and only if Pd(C,μ1, . . . ,μd) ∈ Mp
d , re-

gardless of the copula C ∈ Cd . If we have μ1, . . . ,μd ∈ Mp

1 , then

∫

Rd

|x|p Pd(C,μ1, . . . ,μd)(dx) ≤
∫

Rd

c1|x|p1 Pd(C,μ1, . . . ,μd)(dx)

= c1

∫

Rd

( d∑

i=1

|πi(x)|
)p

Pd(C,μ1, . . . ,μd)(dx)

≤ cp

d∑

i=1

∫

R

|xi |p μi(dxi) < ∞,

where cp := c12max{0,p−1}, |x|1 := ∑d
i=1 |xi | is the 1-norm of x = (x1, . . . , xd) and

c1 ∈ R++ is a suitable constant. Thus Pd(C,μ1, . . . ,μd) ∈Mp
d . Conversely, assume

that Pd(C,μ1, . . . ,μd) ∈Mp
d . Then we have

∫

R

|xi |p μi(dxi) =
∫

Rd

|πi(x)|p Pd(C,μ1, . . . ,μd)(dx)

≤
∫

Rd

|x|p Pd(C,μ1, . . . ,μd)(dx) < ∞,

i.e., μi ∈ Mp

1 , for any i = 1, . . . , d .
To prove the main assertion of Theorem 2.3, we first let (C,μ1, . . . ,μd) and

(Cn,μn,1, . . . ,μn,d), n ∈ N, be elements of Cd × Mp

1 × · · · × Mp

1 such that
μn,i → μi in Op

1 , i = 1, . . . , d , and dμ1,...μd
(Cn,C) → 0. Since p-weak conver-

gence implies weak convergence, we then have in particular that μn,i → μi in
O0

1 ∩ Mp

1 , i = 1, . . . , d . So Lindner and Szimayer [31, Theorem 2.1] implies that
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Pd(Cn,μ1,n, . . . ,μd,n) →Pd(C,μ1, . . . ,μd) in O0
d ∩ Mp

d . For the convergence
Pd(Cn,μn,1, . . . ,μn,d) → Pd(C,μ1, . . . ,μd) in Op

d (when p > 0), it remains to
show the convergence

∫

Rd

|x|p Pd(Cn,μn,1, . . . ,μn,d)(dx) −→
∫

Rd

|x|p Pd(C,μ1, . . . ,μd)(dx).

Clearly,
∣∣∣∣

∫

Rd

|x|p Pd(Cn,μn,1, . . . ,μn,d)(dx) −
∫

Rd

|x|p Pd(C,μ1, . . . ,μd)(dx)

∣∣∣∣ (A.1)

≤
∣∣∣∣

∫

Rd

|x|p Pd(Cn,μn,1, . . . ,μn,d)(dx)

−
∫

Rd

(|x|p ∧ a)Pd(Cn,μn,1, . . . ,μn,d)(dx)

∣∣∣∣

+
∣∣∣∣

∫

Rd

(|x|p ∧ a)Pd(Cn,μn,1, . . . ,μn,d)(dx)

−
∫

Rd

(|x|p ∧ a)Pd(C,μ1, . . . ,μd)(dx)

∣∣∣
∣

+
∣∣∣∣

∫

Rd

(|x|p ∧ a)Pd(C,μ1, . . . ,μd)(dx) −
∫

Rd

|x|p Pd(C,μ1, . . . ,μd)(dx)

∣∣∣∣

=: S1(n, a) + S2(n, a) + S3(a)

for any a ∈ R++. Since Pd(C,μ1, . . . ,μd) ∈ Mp
d (as seen above), we can choose

for every ε > 0 a suitable constant a3 ∈R++ such that

S3(a3) ≤
∫

Rd

|x|p1(a3,∞)(|x|)Pd(C,μ1, . . . ,μd)(dx) ≤ ε/3.

Furthermore, for any a1 ∈ R++, we have

S1(n, a1)

≤
∫

Rd

|x|p 1
(a

1/p
1 ,∞)

(|x|)Pd(Cn,μn,1, . . . ,μn,d)(dx)

≤
∫

Rd

c1|x|p1 1(a
1/p
1 ,∞)

(c∞|x|∞)Pd(Cn,μn,1, . . . ,μn,d)(dx)

≤ cp

d∑

i=1

∫

Rd

|πi(x)|p 1
(a

1/p
1 /c∞,∞)

(|x|∞)Pd(Cn,μn,1, . . . ,μn,d)(dx)

≤ cp

d∑

i=1

d∑

j=1

∫

Rd

|πi(x)|p1
(a

1/p
1 /c∞,∞)

(|πj (x)|)Pd(Cn,μn,1, . . . ,μn,d)(dx),
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where cp := c1 2max{0,p−1}, |x|1 := ∑d
i=1 |xi | and |x|∞ := maxi=1,...,d |xi | for

x = (x1, . . . , xn), and c1, c∞ ∈ R++ are suitable constants. For i = j , the last integral
equals

∫
R

|xi |p1(a
1/p
1 /c∞,∞)

(|xi |)μn,i(dxi). Since we assumed μn,i → μi in Op

1 (i.e.,

μn,i → μi in O0
1 ∩ Mp

1 and
∫
R

|xi |p μn,i(dxi) → ∫
R

|xi |p μi(dxi)), Krätschmer et
al. [28, Theorem 2.3 (5.⇒3.)] ensures that we can choose a1,i,i ∈ R++ so large so
that this expression (with a1 = a1,i,i ) is bounded above by ε/(3dcp) uniformly in
n ∈N. For i �= j and any b ∈ R++, the summand is bounded above by

∫

Rd

|πi(x)|p1[0,b](|πi(x)|)1
(a

1/p
1 /c∞,∞)

(|xj |)Pd(Cn,μn,1, . . . ,μn,d)(dx)

+
∫

Rd

|πi(x)|p1(b,∞)(|πi(x)|)Pd(Cn,μn,1, . . . ,μn,d)(dx)

=: S1,i,j (n, a1, b) + S1,i (n, b).

Again by [28, Theorem 2.3] and the assumed convergence μn,i → μi in Op

1 , we
can choose bi so large that supn∈N S1,i (n, bi) ≤ ε/(6d2cp). Once we have cho-

sen bi , we can in view of S1,i,j (n, a1, b) ≤ bpμn,j [[−a
1/p

1 /c∞, a
1/p

1 /c∞]c] choose
a1,i,j ∈ R++ so large that supn∈N S1,1(n, a1,i,j , b) ≤ ε/(6d(d − 1)cp); take into
account that (μn,j )n∈N as a weakly convergent sequence is tight. That is, we
have supn∈N S1(n, a1) ≤ ε/3 when we set a1 := maxi,j=1,...,d a1,i,j . Finally, by the
already established convergence Pd(Cn,μn,1, . . . ,μn,d) → Pd(C,μ1, . . . ,μd) in
O0

d ∩Mp
d , we can choose n0 ∈ N such that S2(n, a) ≤ ε/(3cp) for a := max{a1, a3}

and all n ≥ n0. Altogether, we have shown that for any given ε > 0, we can find an
n0 ∈N such that the left-hand side of (A.1) is ≤ ε for all n ≥ n0.

Conversely, let (C,μ1, . . . ,μd) and (Cn,μn,1, . . . ,μn,d), n ∈ N, be elements of
Cd × Mp

1 × · · · × Mp

1 such that Pd(Cn,μn,1, . . . ,μn,d) → Pd(C,μ1, . . . ,μd) in
Op

d . Since p-weak convergence implies weak convergence, it is a direct consequence
of Lindner and Szimayer [31, Theorem 2.1] that this implies dμ1,...,μn(Cn,C) → 0
and μn,i → μi in O0

1, i = 1, . . . , d . Moreover, for any i = 1, . . . , d we have

lim
n→∞

∣∣
∣∣

∫

R

|xi |p μn,i(dxi) −
∫

R

|xi |p μi(dxi)

∣∣
∣∣

= lim
n→∞

∣∣∣∣

∫

Rd

|πi(x)|p Pd(Cn,μn,1, . . . ,μn,d)(dx)

−
∫

Rd

|πi(x)|p Pd(C,μ1, . . . ,μd)(dx)

∣∣∣∣ = 0

since the function |πi |p : Rd → R lies in Cp
d . Thus we even have μn,i → μi in Op

1 ,
i = 1, . . . , d . �

A.3 Proof of Corollary 2.6

Of course, it suffices to show that Op
d ∩Md(μ1, . . . ,μd) = O0

d ∩Md(μ1, . . . ,μd).
Recall that the p-weak topology is metrisable. Therefore it suffices to show that
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for any sequence (μn)n∈N ∈ Md(μ1, . . . ,μd)N and any μ ∈ Md(μ1, . . . ,μd),
it holds that μn → μ in Op

d ∩ Md(μ1, . . . ,μd) if and only if μn → μ in
O0

d ∩ Md(μ1, . . . ,μd). If μn → μ in Op
d ∩ Md(μ1, . . . ,μd), then μn → μ

in O0
d ∩Md(μ1, . . . ,μd) because Op

d ∩ Md(μ1, . . . ,μd) is finer than
O0

d ∩Md(μ1, . . . ,μd). Conversely, if μn → μ in O0
d ∩ Md(μ1, . . . ,μd), we ob-

tain by Theorem 2.3 (with p = 0) that (Cn)n∈N converges to C in Oμ1,...,μn , where
Cn and C are (arbitrary) copulas of μn and μ, respectively. Again with Theorem 2.3,
we conclude that μn → μ in Op

d ∩Md(μ1, . . . ,μd). �

A.4 Proof of Corollary 2.8

Since the involved topologies are both metrisable, it suffices to show that the map
Cμ1,...,μd

: Md(μ1, . . . ,μd) → Cd/∼μ1,...,μd
is sequentially continuous for the pair

(Op′
d ∩ Md(μ1, . . . ,μd),O∼

μ1,...,μd
) for any p′ ∈ [0,p]. Let μ and μn, n ∈ N, be

elements of Md(μ1, . . . ,μd) such that μn → μ in Op′
d ∩Md(μ1, . . . ,μd) for some

p′ ∈ [0,p]. By Corollary 2.6, we obtain that μn → μ in Op
d ∩Md(μ1, . . . ,μd), and

by Theorem 2.3, it follows that limn→∞ dμ1,...,μd
(Cn,C) = 0 for any copulas Cn and

C of μn and μ, respectively. So we arrive at

lim
n→∞d∼

μ1,...,μd

(
Cμ1,...,μd

(μn),Cμ1,...,μd
(μ)

) = 0,

i.e., Cμ1,...,μd
(μn) → Cμ1,...,μd

(μ) in O∼
μ1,...,μd

. �

A.5 Proof of Example 3.2

We here show that if M′
d = Nd , then D′

d = CGa
d ×N1 × · · · ×N1.

“⊇” Let (C,μ1, . . . ,μd) ∈ CGa
d × N1 × · · · × N1, which means that we have

μ1 = Nm1,s
2
1
, . . . ,μd = Nmd,s2

d
for some m1, . . . ,md ∈ R and s1, . . . , sd ∈ R++,

and C is given by (3.2) for some correlation matrix R. Recall that quantiles
are translation-equivariant and positively homogeneous (on the level of univariate
random variables). For the distribution function of the Borel probability measure
μ := Pd(C,μ1, . . . ,μd), we thus obtain

Fμ(x1, . . . , xd)

= C
(
Fμ1(x1), . . . ,Fμd

(xd)
)

= Φ0,R

(
Φ−1

0,1

(
Φm1,s

2
1
(x1)

)
, . . . ,Φ−1

0,1

(
Φmd,s2

d
(xd)

))

= Φ0,R

(Φ−1
m1,s

2
1
(Φm1,s

2
1
(x1)) − m1

s1
, . . . ,

Φ−1
md,s2

d

(Φmd,s2
d
(xd)) − md

sd

)

= Φ0,R

(
x1 − m1

s1
, . . . ,

xd − md

sd

)
= Φm,SRS(x1, . . . , xd),
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where m := (m1, . . . ,md)� and S is the d ×d diagonal matrix with entries s1, . . . , sd
on the diagonal. Note that the matrix SRS is again symmetric and positive semi-
definite, implying that μ is the d-variate normal distribution Nm,SRS . Since the en-
tries on the diagonal of the matrix SRS are the strictly positive numbers s2

1 , . . . , s2
d ,

the marginal distributions of μ = Nm,SRS are Nm1,s
2
1
, . . . ,Nmd,s2

d
, i.e., elements of

N1. In particular, μ is a (possibly degenerate) d-variate normal distribution with con-
tinuous marginals, i.e., μ = Pd(C,μ1, . . . ,μd) lies in M′

d = Nd . Thus we obtain
that (C,μ1, . . . ,μd) ∈D′

d .
“⊆” Let (C,μ1, . . . ,μd) ∈ D′

d , i.e., μ1, . . . ,μd ∈ M1 and C ∈ Cd are such
that μ := Pd(C,μ1, . . . ,μd) ∈ M′

d = Nd . Then μ1 = Nm1,s
2
1
, . . . ,μd = Nmd,s2

d

for some m1, . . . ,md ∈ R and s1, . . . , sd ∈ R++, and μ = Nm,V for the vector
m := (m1, . . . ,md)� and a symmetric and positive semi-definite matrix V ∈R

d×d

with entries s2
1 , . . . , s2

d on the diagonal. By (2.1) and the translation-equivariance and
positive homogeneity of quantiles (on the level of univariate random variables), we
have

C(u1, . . . , ud) = Φm,V

(
Φ−1

m1,s
2
1
(u1), . . . ,Φ

−1
md,s2

d

(ud)
)

= Φm,V

(
s1Φ

−1
0,1(u1) + m1, . . . , sdΦ−1

0,1(ud) + md

)

= Φ0,S−1V S−1

(
Φ−1

0,1(u1), . . . ,Φ
−1
0,1(ud)

)
,

where S−1 is the d × d diagonal matrix with entries s−1
1 , . . . , s−1

d on the diagonal.
The matrix R := S−1V S−1 is again symmetric and positive semi-definite, and for
any i, j ∈ {1, . . . , d}, its entry at (i, j) is equal to vi,j /(sisj ), where vi,j is the entry at
(i, j) of the matrix V . Since vi,i = s2

i for any i = 1, . . . , d , it follows that R is a corre-
lation matrix. Thus C ∈ CGa

d and therefore (C,μ1, . . . ,μd) ∈ CGa
d ×N1 × · · · ×N1.

�

A.6 Proof of Example 3.3

We here show that if M′
d = Mp

d for some p ∈ R+, then D′
d = Cd ×Mp

1 ×· · ·×Mp

1 .
“⊇” Let (C,μ1, . . . ,μd) ∈ Cd × Mp

1 × · · · × Mp

1 . Then, as shown in the first
paragraph of Sect. A.2, Pd(C,μ1, . . . ,μd) ∈ Mp

d = M′
d . Thus (C,μ1, . . . ,μd) lies

in D′
d .

“⊆” Let (C,μ1, . . . ,μd) ∈ D′
d , i.e., μ1, . . . ,μd ∈ M1 and C ∈ Cd are such that

Pd(C,μ1, . . . ,μd) ∈ M′
d = Mp

d . Then, as shown in the first paragraph of Sect. A.2,
μ1, . . . ,μd ∈Mp

1 . Thus (C,μ1, . . . ,μd) ∈ Cd ×Mp

1 × · · · ×Mp

1 . �

A.7 Proof of Remark 3.6

The univariate standard normal distribution function Φ0,1 is continuous and strictly
increasing. This implies that pointwise convergence of a sequence of d-variate Gauss-
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ian copulas (Φ0,Rn
(Φ−1

0,1( · ), . . . ,Φ−1
0,1( · )))n∈N to a d-variate Gaussian copula

Φ0,R

(
Φ−1

0,1( · ), . . . ,Φ−1
0,1( · ))

is the same as pointwise convergence of Φ0,Rn
( · , . . . , · ) to Φ0,R( · , . . . , · ). The

d-variate distribution function Φ0,R( · , . . . , · ) is continuous since it can be repre-
sented as

Φ0,R( · , . . . , · ) = Φ0,R

(
Φ−1

0,1

(
Φ0,1( · )), . . . ,Φ−1

0,1

(
Φ0,1( · ))

)

and Φ0,R(Φ−1
0,1( · ), . . . ,Φ−1

0,1( · )) as a (Gaussian) copula is Lipschitz-continuous with
respect to | · |1 and the univariate standard normal distribution function Φ0,1( · ) is
continuous. Therefore (see Shiryaev [48, Sect. III.1]) the latter pointwise conver-
gence is equivalent to weak convergence of the d-variate normal distribution N0,Rn

to the d-variate normal distribution N0,R , and by Lévy’s continuity theorem, this is
the same as

e−〈Rnt,t〉/2 = ϕN0,Rn
(t) −→ ϕN0,R

(t) = e−〈Rt,t〉/2

for any t ∈ R
d . Obviously, the latter holds if and only if t�(Rn − R)t → 0 for any

t ∈ R
d .

If ‖Rn − R‖Mat → 0 for some matrix norm ‖ · ‖Mat, then ‖Rn − R‖max → 0 for
the maximum norm ‖ · ‖max, and thus t�(Rn − R)t → 0 for any t ∈ R

d .
Conversely, assume that t�(Rn − R)t → 0 for any t ∈ R

d . Then for any
i = 1, . . . , d , we can conclude by choosing t as the ith unit vector ei that the en-
try (i, i) of the matrix Rn − R converges to 0. For t := ei + ej , the expression
t�(Rn − R)t is twice the entry (i, j) plus entries (i, i) and (j, j) of the symmet-
ric matrix Rn −R. It follows that also the entry (i, j) of the matrix Rn −R converges
to 0 for any i, j = 1, . . . , d with i �= j . Thus ‖Rn − R‖max → 0, and consequently
‖Rn − R‖Mat → 0 for any matrix norm ‖ · ‖Mat. �

A.8 Proof of Example 3.7

For any correlation matrix R, use CR to denote the Gaussian copula associated with
R. By definition, the set CGa

d is parametrised by the set of all correlation matrices.
Now fix Nm1,s

2
1
, . . . ,Nmd,s2

d
∈ N1 and let R,R1,R2, . . . be correlation matrices such

that CRn converges to CR pointwise, i.e., CRn(u1, . . . , ud) → CR(u1, . . . , ud) for
any u1, . . . , ud ∈ [0,1]. In particular,

CRn
(
Φm1,s

2
1
(x1), . . . ,Φmd,s2

d
(xd)

) −→ CR
(
Φm1,s

2
1
(x1), . . . ,Φmd,s2

d
(xd)

)
(A.2)

for all x1, . . . , xd ∈ R. Now Fn(x1, . . . , xd) := CRn(Φm1,s
2
1
(x1), . . . ,Φmd,s2

d
(xd)) and

F(x1, . . . , xd) := CR(Φm1,s
2
1
(x1), . . . ,Φmd,s2

d
(xd)) are the distribution functions of

Pd(CRn,Nm1,s
2
1
, . . . ,Nmd,s2

d
) and Pd(CR,Nm1,s

2
1
, . . . ,Nmd,s2

d
), respectively. More-
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over, F is continuous since CR as a copula is Lipschitz-continuous with respect to
| · |1 and the univariate normal distribution functions Φm1,s

2
1
( · ), . . . ,Φmd,s2

d
( · ) are

continuous. Therefore (see Shiryaev [48, Sect. III.1]) the convergence in (A.2) is
equivalent to

Pd(CRn,Nm1,s
2
1
, . . . ,Nmd,s2

d
) −→Pd(CR,Nm1,s

2
1
, . . . ,Nmd,s2

d
) in O0

d .

Moreover, as in (A.1) (with μn,i = μi = Nmi,s
2
i
, n ∈N, i = 1, . . . , d), we obtain

∫

Rd

|x|p Pd(CRn,Nm1,s
2
1
, . . . ,Nmd,s2

d
)(dx)

−→
∫

Rd

|x|p Pd(CR,Nm1,s
2
1
, . . . ,Nmd,s2

d
)(dx).

Thus Pd(CRn,Nm1,s
2
1
, . . . ,Nmd,s2

d
) → Pd(CR,Nm1,s

2
1
, . . . ,Nmd,s2

d
) in Od

p ∩ Nd . In
view of Pd ◦ Pd = Pd and since the involved topologies are metrisable, we arrive
at copula robustness of Pd : Nd → Nd , where the image space Nd is equipped with
Od

p ∩Nd . �

A.9 Proof of Theorem 3.10

Let us first assume that the map Td |Md (μ1,...,μd ) : Md(μ1, . . . ,μd) → E is con-
tinuous for the pair (O0

d ∩Md(μ1, . . . ,μd),OE) for any μ1, . . . ,μd ∈ Mp

1 . Since
the map

Pd( · ,μ1, . . . ,μd) : Cd → Md(μ1, . . . ,μd)

is (Oμ1,...,μd
,O0

d ∩ Md(μ1, . . . ,μd))-continuous for any μ1, . . . ,μd ∈ Mp

1 by
Corollary 2.5, it follows that the map

Td( · ,μ1, . . . ,μd) = Td ◦Pd( · ,μ1, . . . ,μd) : Cd → E

is (Oμ1,...,μd
,OE)-continuous for any μ1, . . . ,μd ∈Mp

1 . Thus Td is copula robust.
Conversely, assume Td is copula robust, i.e., Td( · ,μ1, . . . ,μd) : Cd → E is

(Oμ1,...,μd
,OE)-continuous for any μ1, . . . ,μd ∈ Mp

1 . By way of contradiction, as-
sume that Td |Md (μ1,...,μd ) : Md(μ1, . . . ,μd) → E is not continuous for the pair
(O0

d ∩ Md(μ1, . . . ,μd),OE), for some μ1, . . . ,μd ∈ Mp

1 . Then one can find el-
ements μn, n ∈ N, and μ of Md(μ1, . . . ,μd)N such that we have μn → μ in
O0

d ∩Md(μ1, . . . ,μd), but Td(μn) �→ Td(μ) in OE. However, in view of Corol-
lary 2.8, the convergence μn → μ in O0

d ∩ Md(μ1, . . . ,μd) implies that Cn → C

in Oμ1,...,μd
for any copulas Cn and C of μn and μ, respectively. Because the map

Td( · ,μ1, . . . ,μd) : Cd → E is (Oμ1,...,μd
,OE)-continuous by assumption, we ob-

tain that Td(μn) → Td(μ) in OE. This contradicts Td(μn) �→ Td(μ) in OE. �
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A.10 Proof of Corollary 3.13

The map h : Mp
d → Mp′

d ′ defined by h(μ) := μ ◦ h−1 is (Op
d ,Op′

d ′ )-continuous by
Proposition 2.2 and therefore copula robust by Theorem 3.12. Because the map

Td ′ : Mp′
d ′ → E is (Op′

d ′ ,Op
d )-continuous by assumption, it follows by Lemma 3.4

(with U := Td ′ and Td := h) that T ′
d = Td ′ ◦ h :Mp

d → E is copula robust. �

A.11 Proof of Example 4.7

(i) The natural extension C
(α)

0 of C
(α)
0 to R

2 is the distribution function of the Borel

probability measure P2(C
(α)
0 ,μ1,μ2) on R

2. Thus P2(C
(α)
0 ,μ1,μ2) = H1

Sα
1 �Sα

2
/
√

2,

where H1
Sα

1 �Sα
2
[ · ] := H1[ · ∩ (Sα

1 �Sα
2 )] is the 1-dimensional (Borel) Hausdorff mea-

sure H1 on R
2 restricted to the union of the two disjoint line segments Sα

1 and
Sα

2 with endpoints (α,0), (0, α) and (1, α), (α,1), respectively. That is, the total

mass 1 of P2(C
(α)
0 ,μ1,μ2) is uniformly distributed over Sα

1 � Sα
2 . In particular,

H1[Sα
1 ] = α and H1[Sα

2 ] = 1 − α. In view of Sα
1 = {(x1, x2) ∈ [0,1]2 : x1 + x2 = α}

and Sα
2 = {(x1, x2) ∈ [0,1]2 : x1 + x2 = 1 + α}, we can conclude that

P2(C
(α)
0 ,μ1,μ2) ◦ A−1

2 = αδα + (1 − α)δ1+α.

In particular, RVaRα,A2(C
(α)
0 ,μ1,μ2) = α.

The natural extension C1 of C1 to R
2 is the distribution function of the Borel

probability measure P2(C1,μ1,μ2) on R
2. Thus P2(C1,μ1,μ2) = L(2)

[0,1]2 , where

L(2)

[0,1]2 [ · ] := L(2)[ · ∩ [0,1]2] is the (Borel) Lebesgue measure L(2) on R
2 restricted

to [0,1]2. Then

P2(C1,μ1,μ2) ◦ A−1
2 = (L(1)

[0,1] ⊗L(1)
[0,1]) ◦ A−1

2 = L(1)
[0,1] ∗L(1)

[0,1] = �[0,2],

where L(1)
[0,1][ · ] := L(1)[ · ∩ [0,1]] is the (Borel) Lebesgue measure L(1) on R re-

stricted to [0,1] and �[0,2] is the symmetric triangular distribution. Therefore

P2(C
(α)
t ,μ1,μ2) ◦ A−1

2

= (1 − t)P2(C
(α)
0 ,μ1,μ2) ◦ A−1

2 + tP2(C1,μ1,μ2) ◦ A−1
2

= (1 − t)
(
αδα + (1 − α)δ1+α

) + t�[0,2]

for any t ∈ (0,1]. For the distribution function F�2 of �[0,2], we have
F�2(x) = 0, = 1

2x2, = 1 − 1
2 (2 − x)2, = 1 according to whether x < 0, x ∈ [0,1],

x ∈ (1,2], x > 2. For the distribution function F (α) of αδα + (1 − α)δ1+α , we have
F (α)(x) = 0, = α, = 1 according to whether x < α, x ∈ [α,1 + α), x ≥ 1 + α. Thus
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for any t ∈ (0,1], the distribution function F
(α)
t of P2(C

(α)
t ,μ1,μ2)◦A−1

2 is given by

F
(α)
t (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ∈ (−∞,0),

t 1
2x2, x ∈ [0, α),

t 1
2x2 + (1 − t)α, x ∈ [α,1),

t (1 − 1
2 (2 − x)2) + (1 − t)α, x ∈ [1,1 + α),

t (1 − 1
2 (2 − x)2) + (1 − t), x ∈ [1 + α,2),

1, x ∈ [2,∞),

so that RVaRα,A2(C
(α)
t ,μ1,μ2) = √

2α.

(ii) For any t ∈ [0,1], let (X
(α),t
1 ,X

(α),t
2 ) be a bivariate random variable with distri-

bution P2(C
(α)
t ,μ1,μ2). The distribution of the random variable −(X

(α),0
1 + X

(α),0
2 )

is then αδ−α + (1 − α)δ−(1+α). Thus VaR1−α(−(X
(α),0
1 + X

(α),0
2 )) = −(1 + α).

For any t ∈ (0,1], the distribution function F̂
(α)
t of −(X

(α),t
1 + X

(α),t
2 ) satisfies

F̂
(α)
t (x) = 1 − F

(α)
t (−x) for all those x ∈ R for which −x is a continuity point

of F
(α)
t . Thus for any t ∈ (0,1], we get VaR1−α(−(X

(α),t
1 +X

(α),t
2 )) = −√

2α. Hence,

RVaR1−α,A2(C
(α),−
0 , μ̂1, μ̂2) = −(1 + α),

RVaR1−α,A2(C
(α),−
t , μ̂1, μ̂2) = −√

2α for any t ∈ (0,1],

where C
(α),−
t denotes the copula of the distribution of (−X

(α),t
1 ,−X

(α),t
2 ); here we

use that μ̂j is the distribution of −X
(α),t
j , j = 1,2. This gives the assertion since

C
(α),−
t = Ĉ

(α)
t for any t ∈ [0,1]. The latter equality holds true since the distribution

function F (α),t,− of (−X
(α),t
1 ,−X

(α),t
2 ) satisfies

F (α),t,−(x1, x2) = F
(α),t

(−x1,−x2) = Ĉ
(α)
t

(
1 − Fμ1(−x1),1 − Fμ2(−x2)

)

= Ĉ
(α)
t

(
Fμ̂1(x1),Fμ̂2(x2)

)

for any t ∈ [0,1], where F
(α),t

denotes the survival function of (X
(α),t
1 ,X

(α),t
2 ). �

A.12 Proof of (4.4)

Let p ∈ [1,∞) and ρ : Lp → R be a comonotonic convex risk measure. More-
over, let μ ∈ Mp

d . Since (Ω,F ,P) is assumed to be atomless, we can choose
(X1, . . . ,Xd) ∈ Lp × · · · × Lp such that P ◦ (X1, . . . ,Xd)−1 = μ. A result of Fil-
ipović and Svindland [21, Corollary 2.7] ensures that there exist a comonotone opti-
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mal capital and risk allocation (X∗
1, . . . ,X∗

d) of X := ∑d
i=1 Xi (∈ Lp). Thus

R�d
i=1 ρ

(μ) = R�d
i=1 ρ

(
P ◦ (X1, . . . ,Xd)−1)

= d

�
i=1

ρ(X1, . . . ,Xd) = d

�
i=1

ρ

( d∑

i=1

Xi

)
=

d∑

i=1

ρ(X∗
i )

= ρ

( d∑

i=1

X∗
i

)
= ρ

( d∑

i=1

Xi

)

= Rρ

(
P ◦

( d∑

i=1

Xi

)−1
)

= Rρ(μ ◦ A−1
d ),

where the fifth equality relies on the comonotonicity of ρ. �

A.13 Proof of Theorem 5.2

We can use arguments similar to those used in the proof of Claus et al. [9, Corol-
lary 2.4]. In view of Lemma 5.1 and the compactness of Ξ , we can apply Bonnans
and Shapiro [6, Proposition 4.4] to obtain that the map Rρ,h : Mγp

d → R is continu-
ous with respect to (Oγp

d ,OR). Berge [4, Theorem VI.3.2] ensures that the infimum
in (5.3) is attained for any μ ∈Mγp

d . �

A.14 Proof of Corollary 5.4

Conditions (a)–(c) of Sect. 5.1 hold true for p = 1. Indeed, condition (a) holds true
since monotonicity, distribution-invariance and convexity carry over from σ to ρ.
Condition (b) with p = 1 clearly holds true for the function h : Ξ ×R

d →R defined
by (5.5), and condition (c) holds true since h is continuous everywhere. Thus, since
the set Ξ defined by (5.4) is a compact subset of R

d , the assertions follow from
Theorem 5.2. �

A.15 Proof of Lemma 6.1

Since we assumed that conditions (a) and (c) hold true, we have that

E
x0,P ;π [∣∣rk

(
Xk,fk(Xk)

)∣∣]

≤ E
x0,P ;π [K1ψ(Xk)]

= K1

∫
· · ·

∫ ∫
ψ(yk)Pk−1

((
yk−1, fk−1(yk−1)

)
, dyk

)

Pk−2

((
yk−2, fk−2(yk−2)

)
, dyk−1

)
· · ·P0

((
x0, f0(x0)

)
, dy1

)

≤ K1K
k
3 ψ(x0).
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Thus rk(Xk,fk(Xk)), k = 0, . . . ,N − 1, are P
x0,P ;π -integrable for any x0 ∈ E,

P ∈ P ′ and π ∈ Π . Using (b) and (c), we analogously obtain that rN(XN) is
P

x0,P ;π -integrable for any x0 ∈ E, P ∈ P ′ and π ∈ Π . For any n = 1, . . . ,N − 1,
we get in the same way that

|V P,π
n (x)| =

∣∣∣∣E
x0,P ;π

[N−1∑

k=n

rk
(
Xk,fk(Xk)

) + rN(XN)

∣∣∣∣Xn = x

]∣∣∣∣

≤
N−1∑

k=n

E
x0,P ;π [∣∣rk

(
Xk,fk(Xk)

)∣∣∣∣Xn = x
] +E

x0,P ;π [|rN(XN)|∣∣Xn = x
]

≤
N−1∑

k=n

K1K
k−n
3 ψ(x) + K2K

N−n
3 ψ(x) = Knψ(x)

holds true for all π ∈ Π and x ∈ E, where Kn := ∑N−1
k=n K1K

k−n
3 +K2K

N−n
3 . There-

fore, we indeed have that

‖V P
n ‖ψ = sup

x∈E

| sup
π∈Π

V P,π
n (x)|/ψ(x) ≤ sup

x∈E

sup
π∈Π

|V P,π
n (x)|/ψ(x) < ∞

for any n = 0, . . . ,N − 1 and P ∈P . �

A.16 Proof of Theorem 6.2

Let n ∈ {0, . . . ,N − 1} and xn ∈ E. Since P
x0,Q;π = δx0 ⊗ Qπ

0 ⊗ · · · ⊗ Qπ
N−1, we

have for any Q ∈ Pψ that

V Q;π
n (xn) =

N−1∑

k=n

E
x0,Q;π [

rk
(
Xk,fk(Xk)

)∣∣Xn = xn

] +E
x0,Q;π [rN(XN)|Xn = xn]

= rn
(
xn,fn(xn)

)

+
N−1∑

k=n+1

∫

E

· · ·
∫

E

rk
(
xk, fk(xk)

)
Qπ

k−1(xk−1, dyk) · · ·Qπ
n (xn, dxn+1)

+
∫

E

· · ·
∫

E

rN(xN)Qπ
N−1(xN−1, dxN) · · ·Qπ

n (xn, dxn+1)

and thus
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V Q;π
n (xn) − V P ;π

n (xn)

=
N−1∑

k=n+1

∫

E

· · ·
∫

E

rk
(
xk, fk(xk)

)
Qπ

k−1(xk−1, dxk) · · ·Qπ
n (xn, dxn+1)

−
N−1∑

k=n+1

∫

E

· · ·
∫

E

rk
(
xk, fk(xk)

)
P π

k−1(xk−1, dxk) · · ·P π
n (xn, dxn+1)

+
∫

E

· · ·
∫

E

rN(xN)Qπ
N−1(xN−1, dxN) · · ·Qπ

n (xn, dxn+1)

−
∫

E

· · ·
∫

E

rN(xN)P π
N−1(xN−1, dxN) · · ·P π

n (xn, dxn+1)

=
N−1∑

k=n+1

k−1∑

j=n

∫

E

· · ·
∫

E

∫

E

∫

E

· · ·
∫

E

rk
(
xk, fk(xk)

)
P π

k−1(xk−1, dxk) · · ·

P π
j+1(xj+1, dxj+2) (Qπ

j − P π
j )(xj , dxj+1)

Qπ
j−1(xj−1, dxj ) · · · Qπ

n (xn, dxn+1)

+
N−1∑

j=n

∫

E

· · ·
∫

E

∫

E

∫

E

· · ·
∫

E

rN(xN)P π
N−1(xN−1, dxN) · · ·

P π
j+1(xj+1, dxj+2) (Qπ

j − P π
j )(xj , dxj+1)

Qπ
j−1(xj−1, dxj ) · · · Qπ

n (xn, dxn+1)

=
N−2∑

j=n

∫

E

· · ·
∫

E

∫

E

( N−1∑

k=j+1

∫

E

· · ·
∫

E

rk
(
xk, fk(xk)

)
P π

k−1(xk−1, dxk) · · · P π
j+1(xj+1, dxj+2)

+
∫

E

· · ·
∫

E

rN(xN)P π
N−1(xN−1, dxN) · · · P π

j+1(xj+1, dxj+2)

)

(Qπ
j − P π

j )(xj , dxj+1)Qπ
j−1(xj−1, dxj ) · · · Qπ

n (xn, dxn+1)

+
∫

E

· · ·
∫

E

∫

E

rN(xN) (Qπ
N−1 − P π

N−1)(xN−1, dxN)

Qπ
N−2(xN−2, dxN−1) · · · Qπ

n (xn, dxn+1)
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=
N−2∑

j=n

∫

E

· · ·
∫

E

∫

E

V
P ;π
j+1 (xj+1) (Qπ

j − P π
j )(xj , dxj+1)

Qπ
j−1(xj−1, dxj ) · · ·Qπ

n (x, dxn+1)

+
∫

E

· · ·
∫

E

∫

E

rN(xN) (Qπ
N−1 − P π

N−1)(xN−1, dxN)

Qπ
N−2(xN−2, dxN−1) · · · Qπ

n (xn, dxn+1)

=
N−1∑

j=n

∫

E

· · ·
∫

E

∫

E

V
P ;π
j+1 (xj+1) (Qπ

j − P π
j )(xj , dxj+1)

Qπ
j−1(xj−1, dxj ) · · · Qπ

n (x, dxn+1),

where we used the conventions

∫

E

∫

E

rN(xN)P π
N−1(xN−1, dxN)P π

N (xj+1, dxN+1) := rN(xN),

∫

E

· · ·
∫

E

∫

E

V
P ;π
n+1 (xn+1) (Qπ

n − P π
n )(xn, dxn+1)

Qπ
n−1(xn−1, dxn) · · ·Qπ

n (x, dxn+1)

:=
∫

E

V
P ;π
n+1 (xn+1)(Q

π
n − P π

n )(xn, dxn+1),

and other similar ones. Therefore,

|Vxn

n (Q) − Vxn

n (P )|

=
∣∣∣ sup
π∈Π

V Q;π
n (xn) − sup

π∈Π

V P ;π
n (xn)

∣∣∣

≤ sup
π∈Π

|V Q;π
n (xn) − V P ;π

n (xn)|

≤
N−1∑

j=n

sup
π∈Π

sup
x∈E

(∣∣∣∣

∫

E

V
P ;π
j+1 (y)Qπ

j (x, dy) −
∫

E

V
P ;π
j+1 (y)P π

j (x, dy)

∣∣∣∣
1

ψ(x)

×
∫

E

· · ·
∫

E

ψ(xj )Qπ
j−1(xj−1, dxj ) · · · Qπ

n (xn, dxn+1)

)
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≤
N−1∑

j=n

sup
π∈Π

(
�M′(V P ;π

j+1 )

× sup
(x,a)∈Dj

(
dM

(
Qj

(
(x, a), · ),Pj

(
(x, a), · )

) 1

ψ(x)

)

×
∫

E

· · ·
∫

E

ψ(xj )Qπ
j−1(xj−1, dxj ) · · · Qπ

n (xn, dxn+1)

)

≤
N−1∑

j=n

sup
π∈Π

(
�M′(V P ;π

j+1 ) dM,ψ (Q,P )

×
∫

E

· · ·
∫

E

ψ(xj )Qπ
j−1(xj−1, dxj ) · · · Qπ

n (xn, dxn+1)

)
.

For the latter multiple integral, we have

∫

E

· · ·
∫

E

ψ(xj )Qπ
j−1(xj−1, dxj ) · · · Qπ

n (xn, dxn+1)

≤
∫

E

· · ·
∫

E

∫

E

ψ(xj )P π
j−1(xj−1, dxj )Qπ

j−2(xj−2, dxj−1) · · · Qπ
n (xn, dxn+1)

+
∫

E

· · ·
∫

E

∣∣∣∣

∫

E

ψ(xj )
(
Qπ

j−1(xj−1, dxj ) − P π
j−1(xj−1, dxj )

)
∣∣∣∣

Qπ
j−2(xj−2, dxj−1) · · · Qπ

n (xn, dxn+1)

≤
∫

E

· · ·
∫

E

K3,P ψ(xj−1)Qπ
j−2(xj−2, dxj−1) · · · Qπ

n (xn, dxn+1)

+
∫

E

· · ·
∫

E

�M′(ψ)dM
(
Qπ

j−1(xj−1, · ),P π
j−1(xj−1, , · ))

Qπ
j−2(xj−2, dxj−1) · · · Qπ

n (xn, dxn+1)

≤ K3,P

∫

E

· · ·
∫

E

ψ(xj−1)Qπ
j−2(xj−2, dxj−1) · · · Qπ

n (xn, dxn+1)

+�M′(ψ)dM,ψ (Q,P )

×
∫

E

· · ·
∫

E

ψ(xj−1)Qπ
j−2(xj−2, dxj−1) · · · Qπ

n (xn, dxn+1)

= (
K3,P + �M′(ψ)dM,ψ (Q,P )

)

×
∫

E

· · ·
∫

E

ψ(xj−1)Qπ
j−2(xj−2, dxj−1) · · · Qπ

n (xn, dxn+1).

Treating the remaining multiple integral analogously and proceeding iteratively in
this way, we may continue with
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= (
K3,P + �M(ψ)dM,ψ (Q,P )

)n−j−1
∫

E

ψ(xj−1)Qπ
n (xn, dxn+1)

≤ (
K3,P + �M(ψ)dM,ψ (Q,P )

)n−j−1

×
(∫

E

ψ(xj−1)P π
n (xn, dxn+1)

+
∫

E

ψ(xj−1)
(
Qπ

n (xn, dxn+1) − P π
n (xn, dxn+1)

))

≤ (
K3,P + �M(ψ)dM,ψ (Q,P )

)n−j−1
(
K3,P ψ(xn) + �M(ψ)dM,ψ (Q,P )ψ(xn)

)

1 = (
K3,P + �M(ψ)dM,ψ (Q,P )

)n−j
ψ(xn).

Altogether, we obtain the asserted inequality. �

A.17 Proof of Lemma 6.5

Let P ∈ Pα , i.e., P = P �μ for some �μ = (μn)
N
n=1 ∈ Mα

1 (R++)N . We have to ver-
ify that the defining conditions (a)–(c) of a bounding functions are satisfied. Condi-
tions (a) and (b) are trivially satisfied. Since 〈a,1〉 ∈ [0, x] for any (x, a) ∈ D and
〈a, z〉 ≤ 〈a, 〈z,1〉1〉 = 〈a,1〉〈z,1〉 for any a, z ∈ R

d+, we also have
∫

R+
ψα(y)P �μ

n

(
(x, a), dy

)

= 1 +
∫

R+
uα

(
ηn,(x,a)(z)

)
μn+1(dz)

= 1 +
∫

R++
(Z0

n+1x + 〈a, z − Z0
n+11〉)α μn+1(dz)

≤ 1 + (Z0
n+1)

α(x − 〈a,1〉)α +
∫

R++
〈a, z〉α μn+1(dz)

≤ 1 +
(

max
k=1,...,N

Z0
k

)α

xα +
∫

R++
〈a,1〉α〈z,1〉α μn+1(dz)

≤ 1 +
((

max
k=1,...,N

Z0
k

)α +
∫

R++
〈z,1〉α μn+1(dz)

)
xα ≤ K3ψα(x)

for any n = 0, . . . ,N − 1 and (x, a) ∈ D, where

K3 :=
(

max
k=1,...,N

Z0
k

)α + max
k=1,...,N

∫

R++
〈z,1〉α μk(dz)

is independent of n = 0, . . . ,N − 1 and (x, a) ∈ D. This shows that condition (c) is
also satisfied and that Pψα = Pα . �

A.18 Proof of Theorem 6.6

In view of Theorem C.3 below, we may and do replace without loss of generality the
set of all strategies Π by the subset Πlin of all those π = (fn)

N−1
n=0 ∈ Π for which
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for any n = 0, . . . ,N − 1, the decision rule fn : R+ → R
d admits the representation

fn(x) = κnx for some κn ∈ K . For any �κ = (κn)
N−1
n=0 ∈ KN , we set π�κ := (f

κn
n )N−1

n=0
with f

κn
n (x) := κnx. Thus KN can be seen as a parameter set for Πlin.

We now show that the assumptions of Corollary 6.3 are met, so that this result en-
sures the assertion of Theorem 6.6. Let �μ ∈ Mα

1 (Rd++)N . By Lemma 6.5, we know
that ψα is a bounding function for Q ∈ Pα , and obviously �MHöl,α (ψα) < ∞. So it re-

mains to show that sup�κ∈KN �MHöl,α (V
P �μ;π�κ
n+1 ) < ∞ for n = 0, . . . ,N − 1. By Lemma

C.4, we have for any n = 0, . . . ,N − 1 and �κ ∈ KN that V
P �μ;π�κ
n ( · ) = φ

�μ;π�κ
n uα( · ),

where φ
�μ;π�κ
n := ∏N−1

j=n γ
�μ;κj

j is finite, and therefore �MHöl,α (V
P �μ;π�κ
n+1 ) = φ

�μ;π�κ
n < ∞

since �MHöl,α (uα) = 1. Along with Lemma C.2, we conclude that the assumptions of
Corollary 6.3 are indeed met. �

A.19 Proof of Corollary 6.7

Recall the definition M
d
Höl,α := {h ∈ R

R
d++ : ‖h‖d

Höl,α ≤ 1} with the Hölder-α
norm ‖h‖d

Höl,α := supz1,z2∈Rd++:z1 �=z2
|h(z1) − h(z2)|/|z1 − z2|α . It is known from

Kern et al. [26] that d
M

d
Höl,α

(defined analogously to (6.2)) provides a metric on

Mα
1 (Rd++) that metrises the α-weak topology Oα

d (Rd++).
We now show that the mapping Mα

1 (R++) →Pα , μ �→ P μ, is continuous for the
pair (d

M
d
Höl,α

, dMHöl,α,ψα
). The assertion of Corollary 6.7 then directly follows from

Theorem 6.6. For any ν,μ ∈ Mα
1 (R++), we have

dMHöl,α,ψα
(P ν,P μ)

= max
n=0,...,N−1

sup
(x,a)∈Dn

dMHöl,α

(
Qν

n

(
(x, a), · ),P μ

n

(
(x, a), · )

)
/ψα(x)

= max
n=0,...,N−1

sup
(x,a)∈D

dMHöl,α

(
ν ◦ η−1

n,(x,a) [ · ],μ ◦ η−1
n,(x,a) [ · ]

)
/ψα(x)

= max
n=0,...,N−1

sup
(x,a)∈D

sup
v∈MHöl,α

∣∣∣∣

∫

R
d+

v
(
Z0

n+1(x − 〈a,1〉) + 〈a, z〉) (
ν(dz) − μ(dz)

)
∣∣∣∣

1

ψα(x)

≤ sup
(x,a)∈D

sup
v∈MHöl,α

sup
y∈R+

∣∣∣∣

∫

R
d+

v(y + 〈a, z〉) ν(dz) −
∫

R
d+

v(y + 〈a, z〉)μ(dz)

∣∣∣∣
1

ψα(x)

≤ sup
(x,a)∈D

sup
w∈MHöl,α

∣∣∣
∫

R
d+

w(〈a, z〉) ν(dz) −
∫

R
d+

w(〈a, z〉)μ(dz)

∣∣∣
1

ψα(x)

= sup
(x,a)∈D

sup
w∈MHöl,α

∣∣
∣
∫

R
d+

hw,a(z) ν(dz) −
∫

R
d+

hw,a(z)μ(dz)

∣∣
∣

1

ψα(x)
,
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where Dn := D := {(x, a) ∈ R
d+1+ : 〈a,1〉 ≤ x} and hw,a(z) := w(〈a, z〉). For the

map hw,a :Rd++ → R, we have

‖hw,a‖d
Höl,α = sup

z1,z2∈Rd++:z1 �=z2

|hw,a(z1) − hw,a(z2)|/|z1 − z2|α

= sup
z1,z2∈Rd++:z1 �=z2

|〈a, z1〉 − 〈a, z2〉|α
|z1 − z2|α

|hw,a(z1) − hw,a(z2)|α
|〈a, z1〉 − 〈a, z2〉|

= sup
z1,z2∈Rd++:z1 �=z2

xα|z1 − z2|α∞
|z1 − z2|α ‖w‖Höl,α ≤ cα∞ xα,

where c∞ ∈ R++ is chosen such that | · |∞ ≤ c∞| · | and we used that

|〈a, z1 − z2〉| ≤ 〈a,1〉|z1 − z2|∞ ≤ x|z1 − z2|∞.

Since ψα(x) = 1 + xα , the above calculation can therefore be continued with

≤ sup
x∈R+

(
cα∞ xα d

M
d
Höl,α

(ν,μ)/ψα(x)
) ≤ cα∞ d

M
d
Höl,α

(ν,μ). �

Appendix B: A comment on the relation between dμ1,μ2 and the
metric introduced in [40]

Rachasingho and Tasena [40] recently defined a distance d on the set of bivariate
subcopulas as follows. For two bivariate subcopulas C0 and C′

0, they put

d(C0,C
′
0) := hd[0,1]2 ([C0], [C′

0]) + h| · |
(
dom(C0),dom(C′

0)
)
,

where the summand hd[0,1]2 ([C0], [C′
0]) is the Hausdorff distance (with respect to

d[0,1]2 ) between the sets of bivariate copulas [C0] and [C′
0] induced by C0 and C′

0,
respectively, and the summand h| · |(dom(C0),dom(C′

0)) is the Hausdorff distance
between the domains dom(C0) and dom(C′

0) of C0 and C′
0, respectively.

The distance dμ1,μ2 defined by (2.2) basically differs from d for the following
reasons. First of all, d is a metric on the set of bivariate subcopulas, whereas dμ1,μ2

is a pseudo-metric on the set of bivariate copulas. Moreover, dμ1,μ2 is designed to
be a reasonable distance measure on the set of copulas associated with probability
measures from the Fréchet class M2(μ1,μ2); it defines the distance between two
such copulas C and C′ by the maximal pointwise distance between the corresponding
subcopulas with domain K := ranFμ1 × ranFμ2 . On the other hand, d is designed
to be a reasonable distance measure on the set of arbitrary subcopulas. Even when
restricting d to the set of those subcopulas with domain K (and dμ1,μ2 to the set
of copulas associated with probability measures from M2(μ1,μ2)), the resulting
distance measures are different. Indeed, if C0 and C′

0 are two subcopulas with domain
K , then

dμ1,μ2(C,C′) = sup
u∈K

|C0(u) − C′
0(u)|,
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but d(C0,C
′
0) ≥ supu∈[0,1]2 |C(u) − C′(u)| for any copulas C and C′ induced by C0

and C′
0, respectively. Note here that dμ1,μ2 is defined in such a way that it does not

take into account the behaviour of copulas outside K = ranFμ1 × ranFμ2 , which is
motivated by the fact that the behaviour of a copula C outside K is irrelevant for a
probability measure from the Fréchet class M2(μ1,μ2) with copula C.

Appendix C: Supplements to Sect. 6

Here we discuss the existence of optimal strategies in the Markov decision model
considered in Sect. 6. In Sect. C.1, we first consider the general model introduced in
Sect. 6.1. Thereafter, in Sect. C.2, we study in detail the special case of the multi-
period portfolio optimisation problem considered in Sect. 6.2.

C.1 Existence of optimal strategies in the general model

For any n = 0, . . . ,N − 1 and P ∈ P , denote by M
P
n (E) the set of all v ∈ M(E)

for which
∫
E

|v(y)|Pn((x,fn(x)), dy) < ∞ for any x ∈ E and fn ∈ Fn. Re-
call that M(E) is the set of all (E,B(R))-measurable maps v : E → R. For any
n = 0, . . . ,N − 1, fn ∈ Fn and v ∈ M

P
n (E), we define maps T P

n,fn
v : E → R and

T P
n v : E → R∪ {∞} by

T P
n,fn

v(x) := rn
(
x,fn(x)

) +
∫

E

v(x′)Pn

((
x,fn(x)

)
, dx′),

T P
n v(x) := sup

fn∈Fn

T P
n,fn

v(x).

Note that T P
n,fn

and T P
n can be seen as maps from M

P
n (E) to M(E) and from M

P
n (E)

to (R∪ {∞})E , respectively.
For any n = 0, . . . ,N − 1, P ∈P and v ∈M

P
n (E), a decision rule f P

n ∈ Fn is said
to be a maximiser of v if T P

n,f P
n

v(x) = T P
n v(x) for all x ∈ E. The following result is

known from Bäuerle and Rieder [1, Theorem 2.3.8].

Theorem C.1 Let P ∈ P and assume that for any n = 0, . . . ,N − 1, there exist sets
M

P
n ⊆ M

P
n (E) and FP

n ⊆ Fn such that the following three conditions hold:

(a) rN ∈M
P
N−1.

(b) T P
n v ∈M

P
n−1 for any v ∈ M

P
n and n = 1, . . . ,N − 1.

(c) For any n = 0, . . . ,N − 1 and v ∈ M
P
n , there exists an f P

n ∈ FP
n that is a

maximiser of v.
Then the following three assertions hold true:

(i) V P
0 ∈ M(E) and V P

n+1 ∈ M
P
n , n = 0, . . . ,N − 1. Moreover, the Bellman itera-

tion scheme holds true, i.e., V P
N = rN and V P

n = T P
n V P

n+1, n = 0, . . . ,N − 1.
(ii) V P

n = T P
n T P

n+1 · · ·T P
N−1rN for any n = 0, . . . ,N − 1.

(iii) For any n = 0, . . . ,N − 1, there exists an f P
n ∈ FP

n that is a maximiser of
V P

n+1. Any such maximisers f P
0 , . . . , f P

N−1 form a strategy πP := (f P
n )N−1

n=0 ∈ Π that
is optimal for the optimisation problem (6.1).
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C.2 Existence of optimal trading strategies in the setting of Sect. 6.2

We now focus on the specific setting of Sect. 6.2, i.e., we discuss the existence
of optimal trading strategies for the multi-period portfolio optimisation problem
considered there. Let K := {κ ∈ [0,1]d : 〈κ,1〉 ≤ 1} and note that K is com-
pact. For any �μ = (μn)

N
n=1 ∈ Mα

1 (R++)N , κ ∈ K and n = 0, . . . ,N − 1, set

γ
�μ;κ
n := ∫

R
d+ uα(Z0

n+1 +〈κ, z − Z0
n+11〉)μn+1(dz). Moreover, set γ �μ

n := supκ∈K γ
�μ;κ
n

for any n = 0, . . . ,N − 1.

Lemma C.2 For any �μ = (μn)
N
n=1 ∈ Mα

1 (R++)N and n = 0, . . . ,N − 1, there exists

at least one solution κ
�μ
n ∈ K to the optimisation problem max{γ �μ;κ

n : κ ∈ K}. In

particular, the maximal value γ
�μ
n = γ

�μ;κ �μ
n

n is finite.

Proof Let �μ = (μn)
N
n=1 ∈ Mα

1 (R++)N and n ∈ {0, . . . ,N − 1}. Define a map
gn :Rd+ × K → R+ by gn(z, κ) := uα(Z0

n+1 + 〈κ, z − Z0
n+11〉). The map gn( · , κ)

is Borel-measurable for any fixed κ ∈ K , and we have

|gn(z, κ)| = uα(Z0
n+1 + 〈κ, z − Z0

n+11〉) ≤ uα(Z0
n+1 + 〈1, z〉)

for any (z, κ) ∈ R
d+ × K . Therefore, gn is dominated by the Borel-measurable

function hn : Rd+ → R+ defined by hn(z) := uα(Z0
n+1 + 〈z,1〉). This function

is μn+1-integrable since
∫
R

d+ hn dμn+1 ≤ (Z0
n+1)

α + ∫
R

d+〈1, z〉α μn+1(dz) < ∞
(take into account the definition of Mα

1 (R++)), and gn(z, · ) is continuous on
K for any z ∈ R

d+. So we can apply the continuity lemma (in the form of
Bauer [2, Lemma 16.1]) to obtain that the map Gn : K → R++ defined by
Gn(κ) := ∫

R
d+ gn(z, κ)μn+1(dz) is continuous. Since K is compact, we can infer that

there exists a solution κ
�μ
n ∈ K to the optimisation problem max{γ �μ;κ

n : κ ∈ K}. �

Part (ii) of the following result shows in particular that an optimal trading strat-
egy can be found in the subset Πlin of all those π = (fn)

N−1
n=0 ∈ Π for which for

any n = 0, . . . ,N − 1, the decision rule fn : R+ → R
d admits the representation

fn(x) = κnx for some κn ∈ K . For any n = 0, . . . ,N − 1, let κ
�μ
n ∈ K be any solution

to the optimisation problem max{γ �μ;κ
n : κ ∈ K} (see Lemma C.2).

Theorem C.3 For any �μ ∈Mα
1 (R++)N , the following two assertions hold true:

(i) For any n = 0, . . . ,N − 1, the time-n value function V P �μ
n : R+ → R admits the

representation V P �μ
n ( · ) = φ

�μ
n uα( · ), where φ

�μ
n := ∏N−1

j=n γ
�μ
j .

(ii) If for every n = 0, . . . ,N − 1, a decision rule f
�μ

n : R+ → R
d+ at time n is

defined by f
�μ

n (x) := κ
�μ
n x, then π �μ := (f

�μ
n )N−1

n=0 forms an optimal trading strategy
for P �μ.

Proof (i) We intend to apply Theorem C.1. Let M
P �μ
n := M

′ and FP �μ
n := F ′ for

any n = 0, . . . ,N − 1, where M
′ := {vθ : θ ∈ R++} and F ′ := {fκ : κ ∈ K} with
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vθ (x) := θuα(x) and fκ(x) = κx, x ∈ R+. It can be inferred from Lemma 6.5 that
M

P �μ
n := M

′ ⊆ M
P �μ
n (R+) for any n = 0, . . . ,N − 1, where M

P
n (R+) is defined as in

Sect. C.1. Moreover, we clearly have FP �μ
n := F ′ ⊆ F =: Fn for any n = 0, . . . ,N −1.

Below, we show that conditions (a)–(c) of Theorem C.1 are met. Thus the Bellman
iteration scheme in part (i) of Theorem C.1 holds true, and so

V P �μ
N−1(xN−1) = T P �μ

N−1V
P �μ
N (xN−1) = T P �μ

N−1rN(xN−1) = T P �μ
N−1uα(xN−1)

= sup
fN−1∈FN−1

T P �μ
N−1,fN−1

uα(xN−1)

= sup
fN−1∈FN−1

∫

R+
uα(xN)PN−1

((
xN−1, fN−1(xN−1)

)
, dxN

)

= sup
fn∈FN−1

∫

R+

(
Z0

NxN−1 + 〈fN−1(xN−1), z − Z0
N1〉)α

μN(dz)

= sup
κ∈K

∫

R+

(
Z0

NxN−1 + 〈κ xN−1, z − Z0
N1〉)α

μN(dz)

= uα(xN−1) sup
κ∈K

∫

R+
(Z0

N + 〈κ, z − Z0
N1〉)α μN(dz)

= uα(xN−1) sup
κ∈K

γ
�μ,κ
N−1

= γ
�μ
N−1 uα(xN−1) = φ

�μ
N−1 uα(xN−1) (C.1)

for any xN−1 ∈ R+. If we continue this way, we successively get V P �μ
n ( · ) = φ

�μ
n uα( · ),

n = N − 2, . . . ,0.
It remains to verify that conditions (a)–(c) of Theorem C.1 are met. Condition (a)

is trivially satisfied, and (b) can be shown by proceeding analogously to (C.1). Fur-
thermore, similarly to (C.1), we obtain for any n = 0, . . . ,N − 1 and θ ∈ R++
that supfn∈Fn

T P �μ
n,fn

vθ ( · ) = θuα( · ) supκ∈K γ
�μ,κ
n and θuα( · )γ �μ,κ

n = T P �μ
n,fκ

vθ ( · ) for

all κ ∈ K . By Lemma C.2, we know that there exists a maximum point κ
�μ
n ∈ K of

the map κ �→ γ
�μ,κ
n , and therefore for any n = 0, . . . ,N − 1, the decision rule f

κ
�μ
n

is
a maximiser of vθ . This shows that condition (c) is satisfied, too.

(ii) In the proof of (i), we have seen that the assumptions of Theorem C.1 are
fulfilled. Thus Theorem C.1 (i) gives V P �μ

n+1 ∈ M
′ =: MP �μ

n for any n = 0, . . . ,N − 1.
In particular, the above elaborations under (c) show that for any n = 0, . . . ,N − 1,

the decision rule f
κ

�μ
n

∈ F ′ =: FP �μ
n provides a maximiser of V P �μ

n+1. Hence Theo-

rem C.1 (iii) ensures that the strategy π �μ := (f
κ

�μ
n
)N−1
n=0 ∈ Πlin forms an optimal trad-

ing strategy for P �μ. �
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The following lemma specifies the value functions for fixed strategies. Recall that
the values γ

�μ;κ
n , n = 0, . . . ,N − 1, κ ∈ K , were defined before Lemma C.2, and note

that for any �κ = (κn)
N−1
n=0 ∈ KN , one defines a trading strategy π�κ := (f �κ

n )N−1
n=0 ∈ Πlin

by setting f �κ
n (x) := κnx for any x ∈R+ and n = 0, . . . ,N − 1.

Lemma C.4 Let �μ ∈Mα
1 (R++)N and �κ = (κn)

N−1
n=0 ∈ KN . For n = 0, . . . ,N − 1, the

time-n value function V
P �μ;π�κ
n : R+ → R associated with strategy π�κ then admits the

representation V
P �μ;π�κ
n ( · ) = φ

�μ;π�κ
n uα( · ), where φ

�μ;π�κ
n := ∏N−1

j=n γ
�μ;κj

j .

Proof For any n = 0, . . . ,N − 1 and xn ∈ R+, we have

V
P �μ;π�κ
n (x)

= E
x0,P

�μ;π�κ [rN (Xn)|Xn = xn] = E
x0,P

�μ;π�κ [uα(Xn)|Xn = xn]

=
∫

R+
· · ·

∫

R+

∫

R+
uα(xN)P �μ;π�κ (xN−1, dxN)

P �μ;π�κ (xN−2, dxN−1) · · ·P �μ;π�κ (xn, dxn+1)

=
∫

R+
· · ·

∫

R+

∫

R+
(Z0

NxN−1 + 〈κN−1xN−1, z − Z0
N 1〉)α μN(dz)

P �μ;π�κ (xN−2, dxN−1) · · ·P �μ;π�κ (xn, dxn+1)

=
∫

R+
· · ·

∫

R+
xα
N−1

∫

R+
(Z0

N + 〈κN−1, z − Z0
N 1〉)α μN(dz)

P �μ;π�κ (xN−2, dxN−1) · · ·P �μ;π�κ (xn, dxn+1)

= γ
�μ;κN

N

∫

R+
· · ·

∫

R+
uα(xN−1)P �μ;π�κ (xN−2, dxN−1) · · ·P �μ;π�κ (xn, dxn+1).

If we continue successively in this way, we end up with

V
P �μ;π�κ
n (x) =

N−1∏

j=n+1

γ
�μ;κj

j

∫

R+
uα(xn+1)P �μ;π (xn, dxn+1) =

N−1∏

j=n

γ
�μ;κj

j uα(xn).

This proves the assertion of the lemma, since
∏N−1

j=n γ
�μ;κj

j = φ
�μ;π�κ
n . �
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30. Li, X., Mikusiński, P., Taylor, M.D.: Strong approximation of copulas. J. Math. Anal. Appl. 225,
608–623 (1998)

31. Lindner, A., Szimayer, A.: A limit theorem for copulas. Discussion paper 433, Sonderforschungs-
bereich 386, Ludwig-Maximilian-Universität München (2005). Available online at https://epub.ub.
uni-muenchen.de/1802/

32. Markowitz, H.M.: Portfolio selection. J. Finance 7, 77–91 (1952)
33. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management, 1st edn. Princeton University

Press, Princeton (2005)
34. Müller, A.: How does the value function of a Markov decision process depend on the transition prob-

abilities? Math. Oper. Res. 22, 872–885 (1997)
35. Müller, A.: Integral probability metrics and their generating classes of functions. Adv. Appl. Probab.

29, 429–443 (1997)
36. Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)
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