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Abstract 
The prediction of mechanical deformation behaviour and durability of adhesively bonded 
joints under duty conditions is one of the most important issues for engineering since it is a 
key parameter for design and health evaluation of adhesively bonded structures. 

Due to the viscoelastic nature of polymers, the mechanical behaviour of metal adhesive joints 
depends on temperature and deformation rate or time. Moreover, it happens that their mechan-
ical response is also influenced by the adhesive thickness. This effect can be attributed to in-
terphases which form between the adhesive and the substrates. Hence for a complete descrip-
tion of the thermomechanical behaviour of adhesive joints at small deformation, the theory of 
linear viscoelasticity is utilised to calculate the effective linear viscoelastic functions of adhe-
sive joints. Metal-polyurethane adhesive joints with different adhesive thicknesses have been 
characterised by isothermal shear tests at constant shear rates, creep and stress relaxation ex-
periments as well as dynamic mechanical analysis in a broad temperature range. The bond line 
thickness dependence of their mechanical response is interpreted as proof for a mechanical 
interphase of considerable thickness between the polyurethane adhesive and the metal sub-
strate. To investigate the characteristics of the observed interphase, different methods of the 
scanning differential calorimetry and the dielectric spectroscopy have also been applied. 

Zusammenfassung 
Die Vorhersage des mechanischen Verformungsverhaltens und der Beständigkeit von Kle-
bungen unter unterschiedlichsten Betriebsbedingungen ist eines der wichtigsten Themen für 
die Ingenieurswissenschaften. Es handelt sich hierbei um Schlüsselparameter für die Kon-
struktion und die Überwachung von geklebten Strukturen. 

Aufgrund der viskoelastischen Natur von Polymeren hängt das mechanische Verhalten von 
Metallklebungen von der Temperatur und der Verformungsrate oder -zeit ab. Darüber hinaus 
kommt es vor, dass das mechanische Verhalten auch von der Klebschichtdicke beeinflusst 
wird. Dieser Effekt kann auf Interphasen zurückgeführt werden, die sich in der Klebung aus-
bilden. Zur Beschreibung des thermomechanischen Verhaltens von Klebungen bei kleinen 
Verformungen wird die Theorie der linearen Viskoelastizität verwendet, um die effektiven 
linear viskoelastischen Funktionen zu berechnen. Metall-Polyurethan-Klebungen mit unter-
schiedlichen Klebschichtdicken wurden durch isotherme Scherversuche mit konstanten Scher-
raten, durch Kriech- und Spannungsrelaxationsexperimente sowie durch dynamisch-
mechanische Analysen in einem breiten Temperaturbereich charakterisiert. Die Abhängigkeit 
der mechanischen Antwort von der Klebschichtdicke wird als Beweis für eine mechanische 
Interphase mit beträchtlichem Ausmaß zwischen dem Polyurethan-Klebstoff und dem Metall-
substrat interpretiert. Um die Natur der beobachteten Interphase weitergehend zu charakteri-
sieren, wurden die Auswirkungen der Interphase auf die kalorischen und dielektrischen Eigen-
schaften bestimmt. 
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Résumé 
La prédiction du comportement de déformation mécanique et de la durabilité des assemblages 
collés dans des conditions de service est l'une des questions les plus importantes pour l'ingé-
nierie, car elle constitue un paramètre clé pour la conception et le contrôle des structures col-
lées. 

En raison de la nature viscoélastique des polymères, le comportement mécanique des assem-
blages métalliques collés dépend de la température et de la vitesse ou du temps de déforma-
tion. En outre, il arrive que leur réponse mécanique soit également influencée par l'épaisseur 
de l'adhésif. Cet effet peut être attribué à l’interphase qui se forme entre l'adhésif et le substrat. 
Par conséquent, pour une description complète du comportement thermomécanique des as-
semblages collés à faible déformation, la théorie de la viscoélasticité linéaire est utilisée pour 
calculer les fonctions viscoélastiques linéaires effectives de tels assemblages. Des assemblages 
collés de type métal-polyuréthane de différentes épaisseurs ont été caractérisés par des essais 
isothermes de cisaillement à vitesse de déformation constante, des expériences de fluage et de 
relaxation des contraintes ainsi que des analyses mécaniques dynamiques dans une large 
gamme de température. La dépendance de leur réponse mécanique en fonction de l'épaisseur 
d’adhésif est interprétée comme étant la preuve d'une interphase mécanique d'une épaisseur 
considérable entre l'adhésif polyuréthane et le substrat métallique. Pour étudier les caractéris-
tiques de l'interphase observée, différentes méthodes de calorimétrie différentielle à balayage 
et de spectroscopie diélectrique ont également été appliquées.  

Resumen 
La predicción del comportamiento de la deformación mecánica y de la durabilidad de las 
uniones adhesivas en condiciones de servicio es uno de los retos más importantes para la inge-
niería, ya que es un parámetro clave para el diseño y el control de las estructuras unidas con 
adhesivos. 

Debido a la naturaleza viscoelástica de los polímeros, el comportamiento mecánico de los en-
samblajes metálicos unidos con adhesivos depende de la temperatura y la velocidad de defor-
mación o del tiempo. Además, su respuesta mecánica también puede verse influida por el 
grosor del adhesivo. Este efecto puede atribuirse a las interfases que se forman entre el adhesi-
vo y los sustratos. Por lo tanto, para una completa descripción del comportamiento termo-
mecánico de las uniones adhesivas en deformaciones pequeñas, se utiliza la teoría de la visco-
elasticidad lineal para calcular las funciones viscoelásticas lineales efectivas de dichas 
uniones. Las uniones metal-poliuretano de diversos espesores se han caracterizado mediante 
ensayos de cizallamiento isotérmico a velocidad de tensión constante, experimentos de fluen-
cia y relajación de tensiones y análisis mecánicos dinámicos en una amplia gama de tempera-
turas. La relación de dependencia entre la respuesta mecánica y el espesor del adhesivo se in-
terpreta como prueba de una interfase mecánica de considerable espesor entre el adhesivo de 
poliuretano y el sustrato metálico. Para estudiar las características de la interfase observada, se 
ha aplicado la misma estrategia utilizando diferentes métodos de calorimetría diferencial de 
barrido y espectroscopía dieléctrica. 
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1. Introduction 
 

1.1. Motivation 
 
The use of adhesives to join materials is not a recent technique as it was already used during 
the Middle Palaeolithic. However, during the past decades, the popularity of adhesive bonding 
is growing in every manufacturing industry and even in the medical branch driven by a range 
of interrelated benefits. Whether in cars, trains, planes, wind wheels or microchips, adhesive 
bonding is more and more introduced as a complement to or instead of conventional joining 
techniques such as welding, soldering or riveting.  
 
In contrast to point fixing such as spot-welding which creates localised stress peaks under 
load, adhesive joining spreads the stress of the bond across a wider area, allowing more of the 
material to contribute to energy adsorption and improving for example the crash performance. 
It enables also the use of lightweight and hybrid structures which can be difficult or impossible 
to weld: different materials, such as composite and aluminium, can be joined with adhesives. 
Under the pressure of the economic and environmental requirements of the recent years, the 
implementation of adhesive bonding to design more complex hybrid structures appears to be 
the better alternative to achieve a significant reduction in weight. Nevertheless, comprehension 
of the processes and mechanisms which determine the properties of adhesive joints is neces-
sary to fully exploit the potential of adhesive joining. This requires a fundamental understand-
ing of the processes that influence and change structure and chemistry in the adhesive, namely 
the adhesion phenomena. 
 
The adhesion mechanisms become effective when the adhesive in a fluid state is brought into 
contact with the substrate (solid material). The solidification of the adhesive forms an inter-
face where physical intermolecular interactions (Van der Waals forces), chemical bonds of any 
form or electrostatic attractions are responsible for the adhesion between the two materials. 
This means that mechanical force can be transferred across this interface. 
 
Generally, any adhesive bonding mechanism immobilises adhesive molecules at the contact to 
the substrate (adherend). However, the adhesive interactions trigger also some trend to the de-
mixing of adhesive components and to preferential orientation of adhesive molecules in the 
region at the contact. Hence, they strongly affect the formation of chemical and morphological 
structures as well as the molecular mobility in the underlying region of the adhesive during 
solidification. As a result, gradients of the structure and the properties appear in the adhesive 
layer, forming property-specific interphases. The characteristics of these interphases depend 
on the combination of adhesive and adherend surface condition and the nature of the involved 
adhesion processes. The interphase properties can differ significantly from the behaviour of 
the bulk adhesive.  
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The formation of interphases creates inhomogeneity in adhesive bonds resulting in gradients 
of physical and/or chemical properties. These latter are usually correlated to processes such as 
selective adsorption, segregation or phase separation of polymer components, orientation ef-
fects, steric hindrance or curing shrinkage. Consequently, as illustrated in Figure 1-1 for a gi-
ven adhesive/substrate combination, the behaviour of the adhesive joint should depend on the 
adhesive layer thickness dp. It is obvious that the influence of the interphases (red regions) is 
growing when the thickness of the joint is reduced whereas bulk properties (blue region) do-
minate in thick adhesive layers. 
 

 

Figure 1-1: Schematic illustration of the influence of interphases (red regions) in adhesive joints, 
depending on the adhesive layer thickness dp (according to [1]). 

 
In a similar way, all these considerations also apply to material composites. In this case, inter-
phases form between the matrix and the filler material. Hence, in comparison with sandwich-
structured composites, additional factors can influence the formation of interphases: e.g. frac-
tion, geometry, size distribution and dispersion of the fillers.  
 
In brief, the existence of interphases, regardless of their nature, attests that the effect of adhe-
sion is not restricted to the adhesive-substrate interface. Therefore, the influence of interphases 
must be considered for a realistic description and estimation of the technical performance of 
adhesive joints. 
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1.2. State of the art 
 

 Interphases in polymer-metal adhesive joints 1.2.1.
 
The materials testing conducted for many decades has shown that the knowledge about the 
fundamental adhesion phenomena is an essential issue for the understanding of the properties 
of adhesive joints and other material compounds [2, 3]. Nevertheless, due to the complexity of 
the physicochemical processes responsible for the adhesion and their strong dependence on the 
chemical nature of the adhesive and the metal surfaces, the comprehension of adhesive bond-
ing remains up to now rudimentary. In this context, several works have dealt with the for-
mation of interphases in polymer adhesives on metal substrates, reporting concentration gradi-
ents of the chemical composition in the adhesive at the contact with different metal substrates 
[4-13].  
 
However, quantitative measurements of such chemical gradients are, in many cases, difficult 
to perform and a sufficient local resolution is hard to achieve. Wehlack et al. show differences 
in reaction kinetics and chemical conversion of reactive groups between polyurethane bulk 
adhesive and adhesive in contact with metal layer on the scale of some hundred nanometres 
[10, 11, 13-17]. In epoxy adhesives, many contributions report the formation of organometal-
lic complexes, catalytic effects of metallic ions as well as a preferential adsorption of mono-
mers at the contact region between the adhesive and the metal substrate [5, 6, 8, 18-20]. To 
mention just one of these, Meiser et al. identify, using infrared microscopy, spatial variations 
in the chemical structure – i.e. chemical interphases – in epoxy adhesives at the contact with 
different metals (Cu, Al) for distances of up to a few microns, whereas morphological inter-
phases - i.e. modifications of the adhesive microstructure and presence of anisotropy – extend 
up to 50 µm [8, 18].  
 
As the result, chemical structure and corresponding network morphology differ in that chemi-
cal interphase from the polymer bulk revealed in form of noticeable variations in the degree of 
cross-linking [9, 19, 21-23] and the glass transition [24-35], even for crosslinked polymers 
considered once as homogeneous. Thermal and hydrothermal ageing of these polymers are 
also strongly affected by the interphases [21, 35-41]. Since chemical structure and mechanical 
properties are directly related, the mechanical behaviour of that region also differs from the 
bulk [8, 9, 23, 31, 42-44]. For a given combination of adhesive and substrate, the bond line 
thickness rules the volume ratio of interphase and remaining bulk region. Indeed, such thick-
ness dependence was reported for the mechanical moduli of selected polymer-metal combina-
tions in the literature [9, 25, 45-51]. 
 
These results lead to the conclusion that interphases can generally affect the properties of ad-
hesive joints in a different manner, yielding the extent of these interphases different for each 
property. 
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Considering the crucial role played by mechanical properties of interphase for engineering 
applications, the local measurement of mechanical properties in adhesive joints is in the focus 
of interest. As for the identification of chemical gradients, most publications which deal with 
spatial variation of mechanical behaviour concern epoxy adhesives. Mechanical interphases – 
i.e. gradients in the mechanical properties – are identified in adhesive joints in the same order 
of magnitude as for the chemical gradients. For example, stiffer interphases of about 2-4 µm 
width have been identified in two epoxies in contact to copper using the scanning force mi-
croscopy-based force modulation microscopy [52, 53]. Nanoindentation appears as well to be 
predestined for the characterisation of interphases. Numerical simulations have shown that this 
technique is sensitive enough to detect gradients in the mechanical properties across the front 
surfaces of adhesive layers with a sufficient resolution [54-57]. Therefore, stiffer interphases 
of about 1-2 µm have been detected in epoxy-aluminium adhesive joints [8], whereas softer 
interphases with comparable scale have been measured for the same epoxy adhesive but in 
contact with copper [1, 8]. However indentation measurements on elastomers or ductile poly-
mers are strongly influenced or even distorted in the vicinity of the metal substrate [1, 57]. 
That is why simulations of the experiments have to be used to discern the effects of interpha-
ses from the contributions of the stiffer substrates which dominate the measurements [57]. In 
addition, the viscoelastic nature of polymers complicates both experiments and simulations, 
making the result analysis complex [54-57]. 
 
Spatial variations in the mechanical behaviour of adhesive joints have also been experimental-
ly observed using microscopy techniques to record the surface deformation of adhesive joints 
during shear tests. Markers are applied with the focused ion beam (FIB) technique and used to 
track the deformation with digital light microscope [58, 59] or scanning electron microscope 
(SEM) [57]. However, the results obtained with scanning electron microscope show that the 
inhomogeneity in the shear deformation across the adhesive layer thickness occurs first at in-
elastic deformations. Therefore no conclusion can be drawn on possible elastic stiffness gradi-
ents [57]. Moreover, the local characterisation of mechanical interphases in elastomers or duc-
tile polymers still presents a particular difficult challenge. Numerical simulations have shown 
that the spatial resolution of the contemporary experimental methods used in [57] is not suffi-
cient to detect local variations of mechanical properties in elastomeric polyurethane – metal 
adhesive joints.  
 
Besides the formation of chemical and mechanical interphases, internal stresses arise in the 
adhesive as it shrinks during polymerisation and vitrification. Krüger et al. conclude from Bril-
louin spectroscopy results on internal stresses in the contact region between the adhesive and 
the substrate, which extend up to about 200 µm [42, 60]. Mechanical modelling reveals the 
influence of these internal stresses on the formation of mechanical interphases in adhesive 
joints due to polymerisation shrinkage [61-66]. The effect of these residual stresses gives a 
new dimension to the definition of mechanical interphases that are henceforth not only the 
direct consequence of the formation of chemical interphases. The confinement of the polymer 
layer which is directly attached to the substrate surface – i.e. responsible for the adhesion – 
impacts greatly the mechanical properties of the polymer network. 
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 Modelling of mechanical behaviour of polymers – a brief discussion 1.2.2.
 
Numerous models attempt to describe the mechanical behaviour of polymers in the rubbery 
state [67]. Whether the models are based on a phenomenological approach [68, 69] or on the 
molecular theory [70, 71], the polymer network is considered as a hyperelastic isotropic con-
tinuum. The hyperplastic models can predict the nonlinear stress-strain behaviour exhibited by 
the elastomers in their rubbery state at finite deformations. The deformation mechanisms are 
then assumed to be ideally elastic, i.e. non-dissipative and reversible. On this last point, two 
remarks can be formulated: 
 

i. In practice, however, all processes involving atomic motion are dissipative. Since de-
formation processes in polymers are based on molecular relaxation processes, a part of 
both absorbed and released deformation works (energies) by the polymer is dissipated, 
contributing to the entropy production. Therefore, even if the macroscopical relaxation 
processes cannot be measured on the experimental timescale, deformation processes 
are, from a thermodynamic point of view, always irreversible.  

 
ii. In case of the investigated hyperelastic polymer, if the external load is released, the 

original deformation is invertible. The polymer network returns in its original state. 
The word “invertible” has been deliberately chosen here to point out the difference be-
tween the thermodynamic meaning and the mechanics meaning of the word “reversi-
ble”. Nevertheless, the term “reversible” is widely accepted and used to refer to such a 
mechanical behaviour. 

 
Since the present work follows the footsteps of the works of Johlitz [72] and Batal [1], the 
following discussion rely on the same modelling strategy: to predict the (relaxed) elastic prop-
erties of a similar polyurethane adhesive to that investigated in this work, the Mooney-Rivlin 
model has been implemented [47, 72]. The polyurethane adhesive layer is considered as an 
isotropic and incompressible continuum. A comparison with the experimental results shows 
that the adhesive can be considered as a neo-Hookean material (a special case of the Mooney-
Rivlin solid) in the measured strain range.  
 
The model presented by Johlitz has not been discussed for the energy elastic range of the poly-
urethane adhesive due to the lack of experimental data. In the energy elastic range of the poly-
mers, invertible deformations occur in a small strain range. Polymers behave then almost lin-
ear elastic and their stress-strain relationship can be described by the Hooke’s law. In this case, 
the deformation mechanisms are here also assumed to be ideally elastic, i.e. non-dissipative. 
 
In the transition region, relaxation processes cannot be neglected anymore, and the relaxation 
times increase with decreasing temperature. Due to these viscoelastic effects, dynamic contri-
butions are added to the equilibrium modulus, inducing the increase of the measured modulus 
of the material with decreasing temperature. The different contributions to the modulus cannot 
be experimentally isolated.  
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To model the viscoelastic behaviour of a polyurethane adhesive similar to the one used in this 
work, Johlitz suggests splitting the expression of the free energy function in equilibrium and 
non-equilibrium parts [73]. The resulting stress and strain tensors are then also divided into 
two parts: one purely elastic to describe the relaxed properties of the polymer and one inelastic 
to describe its time-dependent properties. The incompressible neo-Hookean material models 
were chosen for the corresponding constitutive equations because of the good agreement be-
tween the modelled results and the experimental ones. The detailed description of this model 
can be found in [72].  
 

1.3. Aim of this work 
 
The prediction of mechanical deformation behaviour, strength and durability of adhesively 
bonded joints under duty conditions is one of the key parameters for design and health evalua-
tion of adhesively bonded structures. The consideration of the influence of interphases, which 
can play a decisive role in the properties of adhesive bonds, is therefore necessary for the en-
gineering of adhesively bonded structures. To grasp this challenge and to better understand the 
occurring mechanisms, only metal-polymer-metal sandwich composites are considered in this 
work to investigate the influence of interphases on the properties of adhesive joints. 
 
The major part of this work focuses on the detection and identification of mechanical inter-
phases in juvenile metal-polyurethane adhesive joints. In such adhesive joints the local varia-
tions of the mechanical properties cannot be (accurately enough) detected [57]. A way to cir-
cumvent this issue is to consider the adhesive bond line as a homogeneous continuum and to 
measure the effective properties of the whole adhesive layer. All the parameters thus measured 
are then mean values over the whole polymer volume. As illustrated in Figure 1-1, if those 
effective mechanical properties depend on the adhesive bond line thickness, dP, this evidences 
the existence of interphases in such adhesive joints. This strategy has been already successful-
ly applied by Johlitz [72] and Batal [1]. Using the same approach, this work intends to develop 
a method for the characterisation of the mechanical behaviour of adhesive bonds considering 
their temperature and adhesive thickness dependences. The data collected can then, in future 
works, be implemented in a numerical model similar to the one developed by Johlitz [72] in 
order to optimise it. 
 
Besides to its use in mechanical testing the consideration of the effective properties of the 
whole adhesive layer has also been applied in this work to identify interphases using calori-
metric and dielectric methods. This intends to gain a broader insight of the definition of inter-
phase and its influence on further properties of the adhesive. 
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1.4. Outline of this work 
 
One of the major challenges of this work is to detect and quantify the influence of interphases 
on the mechanical behaviour of adhesive joints. As presented in chapter 2, polymers exhibit 
complex mechanical properties depending on time and temperature. It is also necessary to de-
sign equipment that is sensitive and precise enough to characterise these effects. The investi-
gated materials, the designed experimental set-ups as well as the preliminary tests to ensure 
the reliability and accuracy of the results are presented in chapter 3. 
 
To interpret the results of the mechanical testing presented in chapter 4, a strategy similar to 
that developed by Johlitz in [72] has been used to attempt to separate the relaxed elastic prop-
erties from the viscoelastic ones: The relaxed elastic properties (equilibrium moduli) of the 
polymer and their temperature dependence can be extrapolated from the entropy elasticity to 
the transition region. The linear increase of the equilibrium modulus with increasing tempera-
ture is then assumed to be valid in the transition region. The relaxation/retardation time spec-
tra, obtained using the analytical solution of a one-dimensional constitutive model (see sec-
tion 2.4), describe the viscoelastic properties. 
 
To determine whether mechanical interphases can be detected by other experimental methods, 
dynamic mechanical analysis has also been used to investigate adhesive joints with lower bond 
line thickness range. Since the influence of interphases is not limited to mechanical properties 
only, other methods of investigation (calorimetry and dielectric spectroscopy) are also pre-
sented in chapter 5. These investigations intend to improve the understanding of the extent of 
interphase effects and their possible influences on the caloric and dielectric properties of adhe-
sive joints. 
 
Formel-Kapitel (nächstes) Abschnitt 1 
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2. Basics of polymer mechanics 
 
The major focus of this work is the identification of mechanical interphases in adhesive joints 
by measuring the effective mechanical properties as a function of thickness of the whole adhe-
sive layer. Damage mechanisms and plastic deformation are not in the scope of this work, as it 
only deals with invertible deformation1. All the mechanical tests presented in this work are 
performed in the linear viscoelastic region of the adhesive. This means that for infinitesimal 
strain and strain rate, the time-dependent stress-strain relations – i.e. the constitutive equations 
– in the different experiments can be described by linear differential equations with constant 
coefficients. As described by L. Boltzmann, it implies that the responses of the specimen after 
successive arbitrary perturbation steps are linear superpositions of the individual responses 
[74]. According to this definition, if the shear stress due to a shear strain ( )i tγ  is 12 ( )iT γ  and 

that due to another strain ( )j tγ  is 12 ( )jT γ , then the shear stress due to the both shear strains is: 

 12 12 12( ) ( ) ( )i j i jT T Tγ γ γ γ+ = +   (2.1) 

This principle is experimentally verified for the investigated polymer in section 3.4.2.5. 
 
Since mechanical tests are used as probes to detect interphases in adhesive joints, fundamen-
tals on polymers mechanics are therefore necessary to interpret the results presented in sec-
tion 4. As the mechanical behaviour of a polymer is directly related to its molecular structure, 
the following discussion is focussed on the type of polymer used in this work: amorphous pol-
ymer networks.  
 

2.1. Phenomenological description of the thermomechanical behaviour 
 
In polymer networks, the crosslinked macromolecular polymer chains form a three-
dimensional network. The crosslinking prevents viscous flow and restricts the maximum pos-
sible deformation of the network without damage. In such macromolecular materials different 
interatomic interactions coexist. The combination of strong intramolecular covalent bonds and 
weak intermolecular bonds imparts differences in the mobility of the macromolecules as a 
whole and of their segments. The arrangements of the polymer chains or segments, which can 
move relative to one another, can be altered under the action of temperature and/or external 
stress or deformation. These processes of reestablishment of equilibrium are called stress re-
laxation phenomena, if the polymer is submitted to external deformation and strain retardation 
phenomena if the sample is subjected to external loads. Hence, the relaxation/retardation phe-

                                                 
 
1 The term “invertible deformation” has been deliberately chosen here instead of “reversible deformation” to 
point out that although the polymer returns in its initial state without external load or deformation, some energy is 
dissipated during this process. 
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nomena lead to a dependence on time and temperature of the mechanical properties of polymer 
networks. Such time-dependent mechanical response is called viscoelastic.  
 
The involved material rearrangements – i.e. relaxation or retardation phenomena – always re-
quire a finite time. However, when these phenomena cannot be identified at a given tempera-
ture within the experimental timescale whether they are too slow or too fast, the mechanical 
response is usually interpreted as being “elastic”. Thus, the notion of elasticity in polymers is 
directly related to the experimental conditions (timescale and measuring temperature).  
 
To illustrate the viscoelastic response of amorphous polymer networks, the influence of time 
and temperature on their mechanical properties is separately discussed considering different 
shear experiments. 
 

 Time dependence 2.1.1.
 
As the relaxation/retardation phenomena in polymers subjected to external load or deformation 
originate from molecular motions, they necessarily depend on time. To illustrate these phe-
nomena, a shear stress relaxation experiment is considered. At constant temperature, T, an 

amorphous crosslinked polymer sample is subjected, at a constant shear rate, d
dt
γγ = , to a 

constant shear strain, 0γ . At a time 0t the deformation is maintained constant and the resulting 

shear stress ( )12T t  is monitored as a function of time as shown in Figure 2-1. After a defined 

time et  the externally applied shear strain 0γ  is then removed allowing the sample to relax into 

its initial state. This experiment is repeated at different temperatures: 1 2 3T T T< < .  
 

 
 

Figure 2-1: Shear stress relaxation experiments performed at different temperatures: 1 2 3T T T< <  .  
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In the example illustrated in Figure 2-1, the time dependence of the mechanical response of a 
polymer network can be also identified at the measuring temperature T2 while it cannot be 
observed at T1 and T3. The perception of the time dependent mechanical behaviour of polymer 
networks is directly related to the experimental timescale. If the relaxation phenomena cannot 
be observed within the experimental timescale, meaning that the related relaxation times are 
either too short or too long in comparison with the experimental time scale, the mechanical 
response of the polymer seems to be elastic and thus time independent.  
The time-delayed mechanical response is a characteristic feature of viscoelastic behaviour of 
polymers. Thus, even if the external deformation applied by the testing machine is removed at 
t = te, a period of time is necessary until the load-free initial state of the sample is restored. 
During this time, a strain in the polymer network subsists and a stress with inverted sign ap-
pears due to the forced condition of the sample clamping (see green curve for t > te in Figure 
2-1). 
 
Figure 2-2 represents the shear stress ( )12T t  as a function of the shear strain ( )tγ  for the ex-

periments described in Figure 2-1 for 0 et t≤ ≤ . Again, the time dependence of the viscoelastic 
response at temperature T2 is visible while it is not perceptible for temperatures T1 and T3. 
Note here the behaviour of the polymer for 00 t t≤ ≤  which is subjected to constant shear rate, 

d
dt
γγ = : the non-linear evolution of ( )12T γ for T2 (in green) is characteristic of a viscoelastic 

response and results from occurring relaxation processes. This feature is discussed in more 
detail below – Figure 2-4. At T1 and T3 the polymer network behaves according to the 
Hooke’s law, i. e. ( )12T γ  is linear. 

 

 
Figure 2-2: Shear stress ( )12T t  as a function of the shear strain ( )tγ for shear stress relaxation 

experiments performed at different temperatures: 1 2 3T T T< <  as described in Figure 
2-1  
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For any temperature T, the shear stress relaxation modulus ( )G t  with 0 et t t≤ ≤  is defined as 

     ( ) ( )12

0

,  
T const

T t
G t T

γ
=

=   (2.2) 

 
Figure 2-3 depicts the evolution of shear stress relaxation modulus ( )G t  for the three experi-

ments described in Figure 2-1 at the three different temperatures 1 2 3T T T< < . As expected for 

elastic responses, ( )G t  remains constant at T1 and T3 whereas ( )G t  decreases over time at T2 

showing a stress relaxation in the polymer network.  
 

 
Figure 2-3: Shear stress relaxation modulus G(t) for shear stress relaxation experiments performed 

at different temperatures: 1 2 3T T T< <  

 

Through the examples discussed above, three states of the polymer network can be identified. 
Each exhibits a different mechanical response, depending on the measuring temperature T: 

• Energy-“elastic” response also called “glassy state” (T1 – Figure 2-1): the shear relaxa-
tion modulus seems to remain constant in the measuring time domain ( ),G t T  

• Glass transition region which shows a visible viscoelastic response (T2 – Figure 2-1): 
( ),G t T  decreases over time. The polymer network exhibits relaxation processes in the 

experimental time window 
• Entropy-“elastic” state also called rubber-like elastic (T3 – Figure 2-1): ( ),G t T  ap-

pears to not depend on time. 
 
Each polymer exhibits a given spectrum of structural relaxations and every single relaxation 
process displays, in turn, a characteristic probability and speed. This results in specific spectra 
of probability and speed for the corresponding structural rearrangements. 
Provided that relaxation/retardation processes can occur at the measuring temperature, the in-
volved material rearrangements in a polymer network can be influenced by the rate of the ap-
plied external load or deformation for a given experimental timescale. 
The applied strain rate γ  determines which part of these rearrangements absorbs mechanical 
energy and thus significantly builds up the deformation. Assuming that the strains are infini-
tesimal, the speed spectrum itself remains though unchanged during this process.  
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To illustrate this effect, isothermal shear tests at five different constant shear rates 

1 2 3 4 5γ γ γ γ γ> > > >      with 
T const

d
dt
γγ

=

=  are considered. The shear stress 12T  is represented as 

a function of the shear strain γ  in Figure 2-4 for a given experimental timescale. 
 

  
Figure 2-4: Isothermal shear tests at five different constant shear rates: 1 2 3 4 5γ γ γ γ γ> > > >     .  

 
The dynamic shear modulus ( ), ,M t T γ  can be calculated by: 

 ( ) ( )12

,

, ,  
( )

T const

T t
M t T

t
γ

γ
γ

=

=


  (2.3) 

 
Depending on the measuring strain rate 1 2 3 4 5γ γ γ γ γ> > > >     , three typical evolutions of 

( )12T γ  and thus ( ), ,M t T γ  can be observed. These responses correspond respectively to the 

different mechanical behaviours: 
• Energy-“elastic” response ( 1γ  – Figure 2-4): the shear modulus appears to be constant 

in the measuring strain range ( ), ,M t T γ . Since the strain rate dependence of the me-

chanical response is not measurable in the energy-“elastic” region under usual experi-
mental conditions, the shear modulus is often erroneously considered to be indepen-
dent of strain rate γ  and thus of time. In theory, since a polymer always shows a visco-

elastic response, ( )12T γ cannot be linear and must have a curvature. Experimental con-

ditions determine whether this curvature is detectable or not. These remarks are also 
valid for the entropy-“elastic” response. 

• Glass transition region which shows a visible viscoelastic response ( 2 3 4, ,γ γ γ   – Figure 

2-4): the shear modulus depends on the measuring strain ( ), ,t Tµ γ  

• Entropy-“elastic” response ( 5γ  – Figure 2-4): ( ), ,M t T γ  seems to remain constant in 

the measuring strain range. 
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2.1.1.1. Energy-elastic state 
 
In the extreme case where the deformation rate is faster than any relaxation/retardation pro-
cesses in the polymer network, the rearrangement of its structural elements appears to be fully 
blocked and the interatomic bonds are directly strained. In fact, both the extreme fast relaxa-
tion times resulting from the shift of atoms or groups of atoms and the extreme slow relaxation 
times issued from the rearrangement of bigger structural elements cannot be monitored with 
the experimental time and intensity resolution. No relaxation process can be experimentally 
observed at T1 in Figure 2-1, Figure 2-2 and Figure 2-3 and the shear relaxation modulus 

( )G T seems to remain constant in the measuring time range. 

The externally applied shear deformation on this apparently blocked polymer network causes a 
drastic increase of the stress while the strain remains small as depicted by the result obtained 
with a strain rate 1γ  in Figure 2-4.  

The mechanical response appears to be energy-elastic, i.e. independent of time and thusγ . The 

shear stress 12T  is then linear proportional to the shear strain γ  and the resulting shear modulus 
(i.e. the slope in Figure 2-4) is high and seems to remain constant over the measured defor-
mation range. 
 

2.1.1.2. Glass transition region 
 
Provided that structural elements can rearrange within the experimental time scale and that the 
intensity of the corresponding relaxation phenomena is high enough to be experimentally de-
tected, the viscoelastic response of the polymer network becomes evident – green curves in 
Figure 2-1, Figure 2-2 and Figure 2-3.  
Another example is represented for the strain rates 2γ , 3γ and 4γ  in Figure 2-4. The evolution 

of shear stress ( )12T γ  for these strain rates as a function of the shear deformation is obviously 

no longer linear resulting in a shear strain dependent shear modulus. 
At a given strain rate, the rearrangement of each of the structural elements lowers the stress in 
the polymer network, resulting in a negative curvature of ( )12 T constT f γ == .  

With decreasing strain rate 1γ γ<  , more and more structural elements can rearrange according 
to the externally imposed deformation within the experimental time scale, resulting in a de-
creasing shear modulus.  
 

2.1.1.3. Entropy-elastic state 
 
When all the rearrangements in the polymer network are at least as fast as the measured strain 
rate, no relaxation phenomena can be detected anymore. The polymer network behaves appar-
ently elastic and ( )12 T constT f γ ==  is linear. Further decrease of the strain rate no longer seems 

to affect the evolution of ( )12T γ .  
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 Temperature dependence 2.1.2.
 
Thermal motions influence the relaxation/retardation phenomena in the macromolecular struc-
ture of polymers and thus their mechanical properties. This reveals the interdependence of the 
influence of time and temperature on the mechanical behaviour of polymers. The relationship 
between time and temperature is discussed in section 4.3.2. 
 
Repeating the experiment described in Figure 2-1 at different temperatures, the shear stress 
relaxation modulus ( )G T is measured at an arbitrarily constant time t with 0 et t t≤ ≤ . Figure 

2-5 depicts the temperature dependence of the shear stress relaxation modulus ( )
.t const

G T
=

 for 

a typical crosslinked amorphous polymer. Note that similar curves are obtained considering 
other types of deformation. In this plot, the three apparent regions of the viscoelastic be-
haviour described above can be identified.  
 

 
Figure 2-5: Shear stress relaxation modulus-temperature curve after a constant relaxation time t  

with 0 et t t≤ ≤  showing the different regions of the viscoelastic behaviour (according 
to [75]) 

  

2.1.2.1. Energy-elastic state 
 
The measuring temperature 1T  is lower than the beginning of the mechanical glass transition

1( )
agT T<  - Figure 2-5. Cooperative mobility of the statistical polymer segments within the 

polymer network remains possible whatever the temperature (T > 0 K). Nevertheless its prob-
ability of occurrence is directly related to the temperature T  as: 
 

 1 2
1 2 exp Gp

R T
→

→

 ∆
∝ − ⋅ 

  (2.4) 

 

with 1 2p →  the transition probability of the considered type of cooperative segmental mobility 
from a state 1 to a state 2.  
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1 2G →∆  is the difference in molar free enthalpy due to the transition from state 1 to state 2 for a 
given type of motion and R  is the gas constant and is defined as 
 
 1 2 1 2 1 2G H T S→ → →∆ = ∆ − ⋅∆   (2.5) 
 
where 1 2H →∆  and 1 2S →∆  are respectively the molar enthalpy and the molar entropy due to the 
transition from state 1 to state 2. 
 
It implies that the transition probability per unit of time 1 2r →  depends also on the temperature 
as: 

 1 2
1 2 exp Gr

R T
→

→

 ∆
∝ − ⋅ 

  (2.6) 

 
With decreasing temperature, the polymer network needs longer to reach equilibrium because 
the transition probability per unit of time decreases as well.  
Note that 1 2 1 2 1 2G H T S→ → →∆ = ∆ − ⋅∆  depends slightly on the temperature too because the mass 
density and thus the interaction energy increases. However, the decisive factor in equa-
tion (2.6) is the term T in the denominator of the exponent.  
 
In the considered temperature region 1( )

agT T< , the rearrangement of the structural elements 

appears then to be “blocked” and the corresponding relaxation phenomena seem to be inexis-
tent. This gives the impression that no phenomenon of relaxation takes place and is often in-
terpreted as an elastic response, since the corresponding times of relaxation are extreme long 
compared to the experimental timescale. The relaxation of the polymer network to reach equi-
librium is though never “blocked” since 1 2 0r → > . 
 
However, the relaxation processes of the polymer network cannot come to their equilibrium on 
the experimental timescale and the polymer network in this glassy state behaves almost like a 
material usually referred as “elastic solid”2. As a result, the shear stress ( )12T t  in Figure 2-1 is 

proportional to the applied shear strain 0γ  during the whole test. Such materials are termed 

Cauchy elastic. The Cauchy stress ( )12T t  does not depend on the strain path via the current 

                                                 
 
2 However, such an “elastic solid” is a purely theoretical consideration since there is no matter with a non-zero 
mass which can move instantaneously and without loss of energy. Thus, with this consideration, all real materials 
show relaxation phenomena, even if these cannot be observed within the experimental timescale. Therefore, in 
the strict meaning of the term, all real materials behave viscoelastic, regardless of the measuring temperature and 
timescale. 
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strain level is attained, but the work done by the stress, also called strain energy which can 
depend on the deformation path. 
 
Under external stress, the strong covalent intramolecular bonds of the glassy network are 
strained, resulting in a mechanical elastic modulus in the range of 1-10 GPa – Figure 2-5. As 
this apparent “elasticity” involves essentially internal energy changes3 in the polymer due to 
the displacement of atoms or molecular groups in potential energy wells, the macroscopic me-
chanical response of this region is named energy elasticity. With increasing temperature, an-
harmonic effects increase the distance between the structural elements of the polymeric chains. 
Therefore, the bond strengths and the elastic moduli slightly decrease with increasing tempera-
ture [76].  
 
In the energy-“elastic” state, the polymer network is in a non-equilibrium state which tends 
towards equilibrium through very slow relaxation processes at temperatures far below the 
glass transition temperature, Tg. These processes are sometimes denominated as “physical age-
ing” [77].  
 

2.1.2.2. Glass transition region 
 
With increasing temperature 2a eg gT T T< <  motions of the polymer segments begin to be exper-

imentally detectable in the glassy polymer. Brought out of equilibrium by the action of exter-
nal stresses or deformations, the polymer network undergoes processes to re-establish its equi-
librium. It results in a decrease of 12 ( )T t with increasing measuring time as shown in Figure 
2-1. In this temperature region, the higher is the measuring temperature, the faster are the re-
laxation processes and the faster is the equilibrium reached. 
 
The rearrangements in the polymer network are then varied and different numbers of segments 
under different conditions of interaction are involved. Responsible forces for the rearrange-
ment are driven by both enthalpic and entropic effects. With increasing temperature, the role 
of the entropic contribution increases (see section 2.1.3). The corresponding relaxation pro-
cesses and associated relaxation times are responsible for the time-delayed mechanical re-
sponse in the experimental timescale. In this glass transition range, the mechanical properties 
of the polymer are considerably sensitive to any temperature change. As indicated in Figure 
2-5, the relaxation modulus decreases of several decades during this transition. 
  

                                                 
 
3 As the polymer chains cannot be significantly stretched along the deformation axis, the entropic contribution of 
the elasticity of the system can be here neglected in comparison to the energetic/enthalpic one (see section 2.1.3). 
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2.1.2.3. Entropy-elastic state 
 
As the temperature is further increased ( 3 egT T> ), the rearrangement of the structural elements 

occurs so rapidly that no relaxation phenomena can be observed on the experimental timescale 
as depicted in Figure 2-1. There is always time for equilibrium to be established. As this elas-
ticity involves essentially changes of entropy in the polymer due to the configurational chang-
es in the deforming polymer network, the macroscopic mechanical response of this region is 
named entropy elasticity. This elastic behaviour differs sharply from the energy elasticity of 
the glassy polymer in the low values of the moduli of elasticity, in the huge invertible defor-
mation and in the opposite temperature dependence of the elastic moduli as shown in Figure 
2-5. Based on these experimental observations, a theory of the entropy elasticity has been de-
veloped. A detailed overview of the different thermodynamic and statistical approaches are 
discussed in [78, 79]. The thermodynamic description of entropy elasticity considers only the 
macroscopic behaviour (see section 2.1.3) of the polymer network whereas the statistical 
treatment focuses on the (statistical) molecular structure of the polymer network. 

 
In the statistical consideration, it is assumed that the network is a one in that all polymer 
chains contribute to the elastic stress and that the elastic force of the polymer network is en-
tirely attributed to the conformational entropy of the deformation. Any other kind of inter-
atomic interaction is not considered here. As previously mentioned, the entropy elasticity of 
the investigated polyurethane elastomer confirms this assumption. The mechanical behaviour 
of the polymer can be then determined by calculating the entropy S  of the system using the 
Boltzmann’s relation: 

 ( )lnS k= ⋅ Ω   (2.7) 

k  is the Boltzmann’s constant and Ω  the total number of conformations available to the sys-
tem. Statistical mechanics considers the structure of polymer chains and the many different 
conformations that they can assume to determine the entropy of the system. However, the 
presence of various kinds of interactions in polymers makes this statistical calculation very 
complex. To simplify the statistical consideration of the polymer network, idealised models 
are used to derive the average properties and the following assumptions are made [75]: 

• All conformations are isoenergetic. Hence, the internal energy of the system is in-
dependent of the conformations of the individual chains. 

• Each network chain is freely joined, volumeless and continually undergoing con-
formational rearrangements due to thermal motion. The number of conformations 
available to each individual chain is given by the Gaussian distribution function. 

• The total number of conformations of an isotropic network of such Gaussian chains 
is the product of the number of conformations of the individual network chains.  

• Crosslink nodes are fixed at their mean positions in the network and deform affine-
ly. The microscopic strain of the chains is then directly proportional to the macro-
scopic strain of the elastomer. 

• Upon deformation, the volume of the elastomer sample remains constant. 
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Naturally these considerations differ from the behaviour of a real elastomer network and dif-
ferent approaches are discussed [70, 78-83]. If an elastomer is incompressible and has a per-
fect three-dimensional network with tetrafunctional crosslink points, it can be shown that  
 

 R Tµ κ= ⋅ ⋅   (2.8) 
 
where µ  is the relaxed shear modulus of the polymer network, κ  is a parameter representing 
the average crosslink density in the polymer network, R  is the gas constant and T  is the abso-
lute temperature. Note that, according to equation (2.8), the cross-link density is also 0 at a 
theoretical temperature of 0 K as this theory considers only the entropic contribution to the 
internal energy of the sample. This is obviously not the case in reality and this shows one of 
the limitations of this theory. 
 
Simulations have shown that models based on a Gaussian network describe insufficiently the 
experimental results for finite deformation while a model considering Langevin chains obtains 
in general better results, including at large strain [84]. In that case, the expression of κ  in 
equation (2.8) is then modified but the linear relation between µ  and T  remains unchanged. 
 
The experimental results presented later in this work show a linear increase of the relaxed 
shear modulus with increasing temperature and confirm in this way the validity of the equation 
(2.8) for the investigated polyurethane adhesive. 
 

 Thermodynamic description 2.1.3.
 
The thermodynamic considerations provide information about the relative significance of the 
energy and the entropy contributions in the apparent elasticity of the polymer network. Since 
these considerations use the equilibrium thermodynamics, only the equilibrium moduli are 
here concerned.  
Let consider a relaxed polymer network (system) with a volume, V , having the internal ener-
gy, U , and the entropy, S , be deformed by an amount, dl , in tension. The deforming force, 
f , exerted by the sample in equilibrium is measured as a function of temperature, T . This 

closed system, i.e. the polymer sample, is able to exchange work and heat with its surround-
ings: dW  is the increment of work performed on the system by its surroundings and dQ  the 
increment of heat transferred to the system. The first law of thermodynamics gives4: 
 
 dU dQ dW= +   (2.9) 
  

                                                 
 
4 Sign convention: all energy transfers to the system are considered as positive and all energy transfers from the 
system as negative. 
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The initial state (undeformed) and the deformed state of the sample are both in thermodynamic 
equilibrium: 
 deform undeformdU dU dU= −   (2.10) 

For T and p constant and for a change from one equilibrium state to another, the heat quantity 
 dQ TdS=   (2.11) 
must have been exchanged with the environment, even if the deformation process is naturally 
not reversible. 
 
The increment of mechanical work, dW , includes the contributions of the mechanical work, 
fdl  due to the deformation and of the volume work, pdV− , caused by external hydrostatic 

pressure, p, on : 
 dW pdV fdl= − +   (2.12) 
 
p  is the atmospheric pressure and dV  the volume change of the elastomer due to the elonga-

tion. The sign of the term fdl  is the opposite of pdV  because f  is the force applied to the 
system by the environment. In this example, only the one-dimensional elongation dl  of the 
elastomer sample in the longitudinal direction and the corresponding mechanical work dW  
are considered. 
Equation (2.9) can also be written, after substituting the values of dQ  and dW as: 
 dU TdS pdV fdl= − +   (2.13) 
 
Since the experiments are performed at constant (atmospheric) pressure, the state of the sys-
tem can be described using the enthalpy H  as thermodynamic potential: 
 H U pV= +   (2.14) 
 
The corresponding differential equation at constant pressure is: 
 dH dU pdV= +   (2.15) 
 
The expression of dU  from equation (2.13) is replaced in (2.15): 
 dH TdS fdl= +   (2.16) 
 
Hence the deforming force f , applied to the system by the environment at constant tempera-
ture and pressure, can be expressed as: 

 
, ,T p T p

dH dSf T
dl dl

   = −   
   

  (2.17) 
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In equation (2.17), the elastic force f  results from enthalpic and entropic effects. To discuss 
the influence of these contributions, the temperature dependence of the force is considered. 
According to one of the Maxwell’s relations: 

 
, ,T p l p

dS df
dl dT

   = −   
   

  (2.18) 

 
It should be noted that equation (2.18) is of interest because it links a tangible experimental 
result to an entropy change of the system. If during a tensile test at a higher temperature, a 

greater force f is required to deform the sample by the same dl than before (i.e. 
,

0
l p

df
dT

  > 
 

 ) 

also this means that 
,

0
T p

dS
dl

  < 
 

 : the entropy of the system therefore decreases due to the 

deformation. 

In the opposite case where 
,

0
l p

df
dT

  < 
 

 is observed, the entropy of the system is increased due 

to the deformation. 
 
Thus the equation (2.17) becomes 

 
, ,T p l p

dH dff T
dl dT

   = +   
   

 , (2.19) 

 
which can be re-expressed as: 

 ,

, ,

T p

l p T p

dHf
dldf dS

dT T dl

 −  
    = = −   

   
  (2.20) 

 
The equation (2.20) shows that: 

• 
,

0
l p

df
dT

  < 
 

 when 
,T p

dH f
dl

  > 
 

 

• 
,

0
l p

df
dT

  > 
 

 when 
,T p

dH f
dl

  < 
 

 

 
As described above, the deforming force is directly related to the equilibrium stress of the re-
laxed polymer network. The experimental results in the entropy-elastic temperature region of 
the polymer network, presented later in the section 4.1.2 (see Figure 4-6, for example), indi-
cate that the equilibrium stress, i.e. the force f  increases with increasing temperature and thus 

,T p

dH f
dl

  < 
 

.  
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If the enthalpic term can be neglected in comparison with f , equation (2.17) gives the bor-
lerline case for the entropy-elastic temperature region: 

 
,T p

dSf T
dl

 ≈ −  
 

  (2.21) 

 
In this case, the elastic response of the relaxed polymer network originates solely from the 
entropic effect. For this reason, the rubber elasticity is also called entropy elasticity.  
As the external force f is balanced by the restoring force in the deformed material in equilibri-
um, we can write 
 restoringf f M dl= = ⋅   (2.22) 

with M the equilibrium mechanical modulus for uniaxial stretch 
 
With equation (2.21), we get 

 
,T p

f dSM T
dl dl

 = ≈ −  
 

  (2.23) 

for the entropy-elastic temperature region of the polymer network. 
 
The restoring force – i.e. the mechanical moduli – of the relaxed polymer network is then di-
rectly proportional to the absolute temperature.  

Hence, 
,

0
T p

dS
dl

  < 
 

 since 0M >  is found in the mechanical experiments. 

 
The linear temperature dependence of the (relaxed) elastic response of the polymer network 
presented in the section 4.1.2 confirms that the elastic behaviour of the elastomer is governed 
by the entropic contribution under the chosen experimental conditions. At very high defor-
mation, the crosslinks limit the motion of the polymer chains and the enthalpic effects cannot 
be neglected anymore because of the finite extensibility of the network chains. It may be noted 
in passing that the experimental results indicate that the investigated elastomer behaves quasi 
incompressible as the volume work can be neglected. 
 
In the above development, the considered properties are only defined when the polymer net-
work is in a state of thermodynamic equilibrium. This means that all relaxation/retardation 
processes take place on a timescale that is long in comparison to any relaxation time relevant 
to the phenomena that are occurring. Nonetheless the application of these considerations to 
“frozen” inequilibrium, in which relaxation times are infinitely long such as in the energy elas-
tic state of the polymer network, is experimentally successful [85].  
In the energy-elastic temperature region of the polymer network, entropy changes can be ne-
glected as the cooperative mobility in the polymer network is no longer relevant: 1 2p →  in equa-

tion (2.4) and 1 2r →  in equation (2.6) are small enough to be neglected.  
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This gives the borderline case for the energy-elastic temperature region of the polymer net-

work in which 
, ,T p T p

dH dST
dl dl

   >>   
   

  

Equation (2.17) becomes 

 
, , ,T p T p T p

dH dU dVf p
dl dl dl

     ≈ = +     
     

  (2.24) 

With eq. (2.23) in eq. (2.24), we get 

 
, , ,

1 1

T p T p T p

f dH dU p dVM
dl dl dl dl dl dl dl

     = ≈ ≈ +     
     

  (2.25) 

This equation confirms that M is not only correlated with U but also with V when the consid-
ered material is compressible. 
 
In the glass transition temperature region of the polymer network, the equilibrium mechanical 
properties change from one borderline case to the other (E-elastic to S-Elastic or vice versa). 
 

 Mechanical models for linear viscoelasticity 2.1.4.
 
Independently of the phenomenological description developed above, models are often con-
sidered to represent linear viscoelastic behaviour of polymers in order to better visualise the 
relaxation/retardation processes. One of the main groups of models is based on mechanical 
elements. These models usually consist of combinations of elastic elements (springs) and 
damping elements (dashpots).  
  
The elastic element is a Hookean spring which describes purely elastic behaviour, without any 
inertial effect. Subjected to a sudden external load, such a spring responds instantaneously and 
any deformation is completely reversible as shown in Figure 2-6. The relation between the 
applied shear stress T12 and resulting shear strain γ can be described using Hooke's law and the 
shear modulus G [Pa]: 

 12
spring

spring T
G

g =   (2.26) 

 
Figure 2-6: Elastic element (left) obeying Hooke’s law and its mechanical response when subject-

ed to a sudden shear load applied between 0 ≤ t ≤ t0 (right).  
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The damping element is a Newtonian dashpot that describes the dissipation of mechanical 
work during deformation. When the load is applied, there is no instantaneous strain and after 
its removing, there is no elastic recovery but a permanent strain. Newton’s law gives: 
 

 12
dashpotdashpot

dashpot Td
dt

γ γ
h

= =   (2.27) 

where γ [s-1] is the shear rate and η [Pa∙s] the characteristic viscosity of the damping element. 
 
The resulting shear strain dashpotγ  does not only depend on the applied shear stress 12

dashpotT but 
also on the time as illustrated in Figure 2-7 (right).  
 

 
Figure 2-7: Damping element (left) consisting of a piston moving in a viscous liquid obeying 

Newton’s viscosity law and its mechanical response when subjected to a sudden shear 
load applied between 0 ≤ t ≤ t0 (right). 

 

Linear viscoelastic behaviour of polymers cannot be modelled by these simple elements, but 
combinations of these elements can do the job. The simplest conceivable combinations of 
spring and damper are the Maxwell model (Figure 2-8) and the Kelvin-Voigt model (Figure 
2-9). 
 
Maxwell model 
 

 
Figure 2-8: Maxwell model (left) and its mechanical response to a sudden constant shear load 

( )12
extT t  applied between 0 ≤ t ≤ t0 (right)  



2. Basics of polymer mechanics 

24 
Dissertation Ludovic Krogh 

The Maxwell model consists of an elastic element and a damping element in series. Subjected 
to an external shear load, the resulting stress is the same in both elements whereas the resulting 
strain is the sum of the strains of each element: 
 ( ) ( ) ( ) ( )12 12 12 12

ext Maxwell spring dashpotT t T t T t T t= = =   (2.28) 

 ( ) ( ) ( )Maxwell spring dashpott t tggg  = +   (2.29) 

Differentiating (2.29) gives: 
 ( ) ( ) ( )Maxwell spring dashpott t tggg  = +     (2.30) 

 
Putting the first derivative of (2.26) and (2.27) into (2.30) gives the constitutive relation for the 
Maxwell model:  

 ( ) ( ) ( )12 12
Maxwell Maxwell

Maxwell T t T t
t

G
γ

η
= +


   (2.31) 

 
Considering a sudden and constant load ( ) 0

12 12
extT t T=  for 0t ≥ , the response of a Maxwell 

model is: 

 ( )
0

12 1Maxwell T tt
G

γ
t

 = + 
 

  (2.32) 

where the relaxation time τ  [s] is defined as follows: 

 
G
ητ =   (2.33) 

Polymer networks are not able to macroscopically flow such as thermoplastics. Therefore, the 
viscosity parameter η  in the mechanical models is a macroscopic model parameter that depicts 
mechanical energy dissipation due to molecular friction. η  never appears separately but only 

as numerator in the retardation and respectively relaxation times iτ  which are considered in 
this work. 
 
As illustrated in Figure 2-8, when the load is applied, an instantaneous strain is observed and 

then the strain increases linearly with a slope of 
0

12 1T
G τ

⋅  . After removing this load, there is an 

elastic recovery as well as a permanent strain remaining due to the dashpot. A single Maxwell 
model is not able to describe the mechanical behaviour of a polymer network. 
 
If the Maxwell model is suddenly deformed and held to a constant shear strain 0γ  for 0t ≥ , 
the solution of equation (2.31) is 
 ( )12 0

tT t G e tγ −′ = ⋅ ⋅   (2.34) 

The stress decays within a period of time which equals 
G
ητ = .  
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Kelvin-Voigt model 
 

The Kelvin-Voigt model consists of an elastic element and a damping element in parallel –
 Figure 2-9 (left).  
  

 
Figure 2-9: Kelvin-Voigt model (left) and its mechanical response to a sudden constant shear load 

( )12
extT t  applied between 0 ≤ t ≤ t0 (right) 

  

In this parallel arrangement, the resulting stress is the sum of the stress in each element where-
as the strains in both elements are identical: 
 ( ) ( ) ( ) ( )12 12 12 12

ext Kelvin Voigt spring dashpotT t T t T t T t−= = +   (2.35) 

 ( ) ( ) ( )Kelvin Voigt spring dashpott t tggg  − = =   (2.36) 

Using (2.26) and (2.27) in (2.35) the constitutive law for the Kelvin-Voigt model is obtained: 
 ( ) ( ) ( )12

Kelvin Voigt Kelvin Voigt Kelvin VoigtT t G t tgηg  − − −= ⋅ + ⋅    (2.37) 
  

If a constant load ( ) 0
12 12
extT t T=  is suddenly applied to this model for 0t ≥ , the elastic element 

does not stretch immediately because of the delayed response of the damping element – Figure 
2-9 (right). Thus, there is no instantaneous strain and the whole stress is borne by the damping 
element. If the differential equation (2.37) is integrated considering the initial condition 

( )0 0Kelvin Voigtg − = , the response of the Kelvin-Voigt model is: 

 ( ) ( )
0

/12 1Kelvin Voigt tTt e
G

tg − −= −   (2.38) 
  

When the strain starts to take place, the stress is transferred over time from the damping ele-
ment to the elastic one. After infinite time, all the stress will be borne by the elastic element 

and the maximal strain ( )
0

12
max
Kelvin Voigt Tt

G
g − → ∞ =  is reached. 

  

After removing the load at 0t , the damping element retards the response of the elastic element.  

For 0t t= , equation (2.38) gives 

 ( ) ( )0

0
/12

0 1 tKelvin Voigt Tt e
G

tg −− = −   (2.39)  
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Using equation (2.39) as initial condition in (2.37) one finds 

 ( ) ( )( )0

0
/ /12

0
t tKelvin Voigt tTt t e e

G
t tg −− −≥ = −  for 0t t≥   (2.40) 

 

The Kelvin-Voigt model is still too simple to describe appropriately the mechanical behaviour 
of polymer networks because it offers only one relaxation time. Therefore, more sophisticated 
combinations of mechanical elements are necessary to give a more realistic approximation of 
the complex mechanical behaviour of polymer networks. Two models are used in this work for 
this purpose: the generalised Maxwell model and the Zener model. These models contain an 
arbitrary number of model parameters and exhibit a whole array of relaxation and retardation 
times. 
 
Generalised Maxwell model 
 
The generalised Maxwell model consists of n-Maxwell models and a spring connected in par-
allel, each unit having different parameter values (see Figure 2-10). The isolated spring in the 
generalised Maxwell model describes the long-term behaviour of viscoelastic polymer net-
work. 

 
Figure 2-10: Generalised Maxwell model 
 

During stress relaxation tests, the shear strain ( ) 00tγ γ≥ =  is maintained constant and the 

(shear) stress ( )12T t  is measured as a function of time. Since the sum of the stresses of each 

branch corresponds to the total stress and each branch experiences the same strain, the gener-
alised Maxwell model is usually chosen to describe such stress relaxation experiments. The 
corresponding analytical solution for such a sudden constant strain 0γ  is then according to 
(2.26) and (2.34): 

 ( ).
12 0

1

i

n
tgen Maxwell

i
i

T t G G e tg −
∞

=

 = ⋅ + ⋅ 
 

∑  for 0t ≥  (2.41) 

 

The development of the analytical solution for the generalised Maxwell model is presented in 
section 2.5. 
 
The generalised Maxwell model is also used to describe shear tests at constant shear rate 
since the deformation rate is identical in each branch of the model (see section 2.6).  
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Zener model 
 
The Zener model consists of n-Kelvin-Voigt models and an isolated spring connected in series 
(see Figure 2-11). The isolated spring in the Zener model provides an instantaneous response 
under load. Such a response is only a theoretical consideration to describe all retardation or 
relaxation processes that occur too fast to be detected experimentally. 
 

 
Figure 2-11: Zener model 

 
The sum of each elementary strain (isolated spring and each Kelvin-Voigt model) is equal to 
the total strain. Each element experiences the same stress. For this reason, this model is pre-
ferred for the description of creep experiments (see section 2.4). The corresponding analytical 
solution for such a sudden constant load 0

12T  for 0t ≥  is then according to (2.26) and (2.38): 

 ( ) ( )/0
12

10

1 1 1 i

n
tZener

i i

t T e
G G

tγ −

=

 
= + − 

 
∑  for 0t ≥  (2.42) 

 
The generalised Maxwell model and the Zener model describe both well the usual features of 
the viscoelastic behaviour of polymer networks, such as the “instantaneous” deformation, the 
creep/relaxation plateau and the relaxation/retardation processes. 
Provided that the number of elements of the two models are equal and that there are certain 
relationships between their parameters, the two models are mechanically equivalent [86]. 
 
The number n of individual elements in both models is not fixed and can be chosen to achieve 
the highest possible accuracy in modelling the complex mechanical behaviour of polymer 
networks. The distribution of retardation and relaxation times which is, in reality, continuous 
is discretised. 
In fact, the iτ  provided by the model cannot in principle be attributed to molecular relaxations. 

Polymer physics proves that behind every individual relaxation element ( ;i iσ τ ), there is a 
weighted superposition of all molecular motions. Only in the rare exception would only one of 
these weighting factors be 1 and all others 0. The rheological models serve the macroscopic 
phenomenological quantitative description of the mechanical infinitesimal deformation be-
haviour, but they do not give access to the molecular movements and their time constants. 
 
However, the description of the behaviour of polymer networks by means of such one-
dimensional mechanical models is only a simplified approximation; they are an adequate tool 
to better understand the experimental results of this work.  
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2.2. Tensile tests 
 
Uniaxial isothermal tensile tests have been used in this work to determine the mechanical 
properties of the bulk adhesive – i.e. without any influence of metal polymer interphase.  
  

During such tensile tests the applied force, F , the change in length, 0l l l∆ = − , and width, 

0w w w∆ = − , of the specimen are measured – see Figure 2-12.  
 

 
Figure 2-12: Uniform deformation during tensile test 
  

Knowing the initial length 0l , width 0w  and thickness 0d , the longitudinal strain 1ε  and the 

transverse strain 2ε  can be calculated according to the following equations: 

 1 2
0 0

,dl dw
l w

ε ε= =   (2.43) 

Usually, strains iε  are utilised as measures for small deformations only. 
  

The stretches iλ  ( 1, 2,3)i = of the sample in the three spatial directions 1 2 3( , , )e e e  are defined 

as the ratios of the actual dimension of the sample ( , , )l w d  and the initial dimension

0 0 0( , , )l w d : 

 1 2 3
0 0 0

, ,l w d
l w d

lll  = = =   (2.44) 

The stretches iλ  describe large deformations as well. 
Due to the amorphous character of the chosen polyurethane adhesive (see section 3.1.2) it can 
be assumed that the material behaves isotropic when stretched within reasonable limits5, i.e. 
thickness and width change equally: 
 2 3λ λ=   (2.45)  
                                                 
 
5 Uniaxial stretching will generate anisotropy at some point. 



2. Basics of polymer mechanics 

29 
Dissertation Ludovic Krogh 

If the polyurethane adhesive can be considered as “incompressible”, then the following condi-
tion is fulfilled: 
 2

1 2 3 1 2 1λ λ λ λ λ⋅ ⋅ = ⋅ =   (2.46) 

Thus 2λ  can be expressed in function of 1λ  with equation (2.46): 

 2
1

1λ
λ

=   (2.47) 

The equation (2.47) is used to experimentally verify whether the investigated polyurethane can 
be considered as “incompressible”: the measured values of 2λ  are compared to the calculated 

ones using the measured values of 1λ  as illustrated in Figure 2-13. As there is no significant 

deviation between the measured 2λ  and the calculated values in Figure 2-13 (right), the inves-
tigated polyurethane can be considered incompressible within the measured strain range. 
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Figure 2-13: Tensile test with the polyurethane adhesive “PU8020” at 25 °C with a crosshead speed 

of 0.01 mm/s: stretching 1λ  as a function of the crosshead travel (left) and stretching 

2λ  as a function of the crosshead travel (right) 

 

The Cauchy stress component, 11T , (in the direction of the applied load) provides the reaction 

force to the external load, F


 in the tensile test, i.e. 

 11

F FT
A w d

= =
⋅



  (2.48) 

For the rectangular sample with actual cross section area A , as shown in Figure 2-12. 
 
Then, using the equation (2.44) and the fact that the investigated polyurethane is isotropic –
 eq. (2.45) and incompressible – eq. (2.46), the Cauchy stress component 11T can be rewritten 
as: 

 11
0 0 1

FT
w d λ

=
⋅ ⋅

  (2.49) 

Since all the values in the equation (2.49) are measured during the tensile test 11T  can be easily 
calculated.   
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Previous works [1, 72] have shown that the Mooney-Rivlin material model [68, 87] can pro-
vide a good description of the mechanical behaviour of polyurethane adhesives under larger 
deformations. As the investigated polyurethane adhesive is very similar to the one used in 
these works, the analytical solution of the Mooney-Rivlin model has been also used to de-
scribe the tensile tests. In this analytical solution, the Cauchy stress tensor T  is given as a 
function of the Cauchy-Green deformation tensor B : 

 
11 1

2 2Bulk BulkT pI B Bµ β µ β
−   = − + + − −   

   
  (2.50) 

where p  is the pressure, I  the identity tensor, Bulkµ  the hyperelastic shear modulus of the bulk 

adhesive and β  is a material parameter which follows the condition -0.5 ≤ β  ≤ 0.5. 
 
The Cauchy-Green deformation tensor B  is determined from the deformation gradient. After 

taking into account the isotropy and incompressibility conditions for the adhesive, B  and 
1

B
−

 
can be expressed as: 

 

2 2
1 1

1

1
1

1

1

1 0 00 0
10 0 , 0 0

0 010 0

B B

λ λ
λλ

λ
λ

−

         = =            

  (2.51) 

As uniaxial tensile tests are considered, only the Cauchy stress component in the direction of 
the applied load 11T  is not equal to 0: 

 22 33 0T T= =   (2.52) 
Therefore the pressure p  can be deduced from eq. (2.50): 

 1
1

1 1 1
2 2Bulk Bulkp µ β µ β l

l
   = + − −   
   

  (2.53) 

Introducing eq. (2.53) in eq. (2.50) the normal stress component in axial load direction 11T be-
comes: 

 ( )2 2
11 1 1 1

1

1 1 1
2 2Bulk BulkT µ β l µ β ll

l
−    = + − − − −    

    
  (2.54) 

Johlitz shows in his work [72] that the material parameter β  must be set to 0.5 in order to 
achieve a physically meaningful fit of the experimental data. So, it turns out that a special case 
of the Mooney-Rivlin model, the incompressible Neo-Hooke model is obtained: 

 2
11 1

1

1
BulkT µ l

l
 

= ⋅ − 
 

  (2.55) 

Thus, the shear modulus of the bulk adhesive can be calculated using uniaxial isothermal ten-
sile tests. 
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2.3. Shear tests at constant shear rate 
 
Isothermal shear tests at constant shear rate have been performed in this work in order to in-
vestigate a potential bond line thickness dependence of the shear modulus in adhesive joints. 
The corresponding results are presented in chapter 4.  
 

 Description of shear tests at constant shear rate 2.3.1.
 
The sample geometry and the experimental set-ups for these experiments have been designed 
in such a way that the variations in the deformation of the adhesive layer can be neglected (no 
edge effects) and that the adhesive thickness Pd  remains constant during the test (see sec-
tions 3.2.2 and 3.3.3). 

 
Figure 2-14: Homogeneous deformation during shear test 

 

In such simple shear tests, the substrates move parallel at a constant distance Pd  along the 

direction 1e  – Figure 2-14. The quantity ( )u t  denotes the applied displacement in the direc-

tion 1e  and the angle ϕ  is related to the effective shear strain ( )eff tγ  in the following way: 

 ( ) ( ) ( )taneff
p

u t
t t

d
γ ϕ= =   (2.56) 

 
The resulting Cauchy shear stress ( )12T t  is calculated as follows: 

 ( ) ( )
12

F t
T t

A
=   (2.57) 

where ( )F t  is the applied force and A  the bonded area (2000 mm²). 

 
In equation (2.56) the effective shear strain ( )eff tγ  is introduced because the displace-

ment ( )u t  is determined macroscopically across dP and thus refers to the entire adhesive lay-

er. However, as discussed in chapter 1, assuming a mechanical interphase at the interface 
“substrate-adhesive”, the deformation of the adhesive layer cannot be homogeneous and local 
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gradients in its mechanical properties should exist. This mechanical interphase can be either 
more or less compliant than the bulk adhesive. In the continuation of this work, all the mea-
sured shear strains must be considered as effective values regardless of the type of experiment 
(creep, stress relaxation or shear tests at constant shear rate). 
 

The Mooney-Rivlin model describes the quasistatic shear tests for finite shear deformation. As 
for the tensile tests, the Cauchy stress tensor T  is given as a function of the Cauchy-Green 
deformation tensor B : 

 
11 1

2 2eff effT pI B Bµ β µ β
−   = − + + − −   

   
  (2.58) 

where p  is the pressure, I  the identity tensor, effµ  the effective hyperelastic shear modulus 

of the adhesive bondline in an adhesive joint and β  is a material parameter which follows the 
condition -0.5 ≤ β  ≤ 0.5. 
 

After taking into account the isotropy and incompressibility conditions for the adhesive, B  

and 
1

B
−

 become: 

 

2

1 2

1 0 1 0
1 0 , 1 0

0 0 1 0 0 1

eff eff eff

eff eff effB B
γ γ γ

γ γ γ
−

 + − 
   = = − +   
     

  (2.59) 

As shear tests are considered, the Cauchy stress component 33 0T = . Therefore the pressure p  
can be deduced from eq. (2.58): 
 2 effp µ β= ⋅ ⋅   (2.60) 

Introducing eq. (2.60) in eq. (2.58) the other shear stress components of the Cauchy stress ten-
sor T  become: 

 

2
11

12

2
22

1
2

1
2

eff eff

eff eff

eff eff

T

T

T

µ γ β

µ γ

µ γ β

 = ⋅ ⋅ + 
 

= ⋅

 = − ⋅ ⋅ − 
 

  (2.61) 

 

Considering the neo-Hookean behaviour ( 0.5β = ) of the polyurethane adhesive stated in [72], 
we obtain 

 

2
11

12

22

33

0
0

eff eff

eff eff

T
T
T
T

µ γ

µ γ

= ⋅

= ⋅

=
=

  (2.62) 

 

Thus, the effective hyperelastic shear modulus of the bondline in adhesive joints is defined as: 

 12
eff

eff

Tµ
γ

=   (2.63)  



2. Basics of polymer mechanics 

33 
Dissertation Ludovic Krogh 

In the entropy elastic range of the adhesive, the stress-strain behaviour results in a straight line 
whose slope corresponds to the, in this case, constant effective shear modulus effµ  in the 

measured strain range. 
 
In the viscoelastic range, the plot ( )12T t  as a function of the effective shear strain ( )eff tγ  does 

not result in a straight line and the dynamic shear modulus effM   strongly depends on the shear 

strain and the shear rate 
( )eff

eff

d t
dt

γ
γ = . 

 
The shear strength or effective dynamic shear modulus ( ), ,effM t Tγ can be determined by 

plotting the shear stress ( )12T t  as a function of the effective shear strain ( )eff tγ : 

 ( ) ( )
( )

12, ,eff
eff

dT t
M t T

d t
γ

γ
=   (2.64) 

 

 Analytical solution of the generalised Maxwell model 2.3.2.
 
The generalised Maxwell model offers a relatively simple analytical solution for shear tests at 
constant shear rate that can be used to identify material parameters from experimental results. 
 
The generalised Maxwell model consists of n Maxwell models and one spring connected in 
parallel (see Figure 2-10). By first considering a single Maxwell model (see Figure 2-8), we 
assume that the shear strain rate remains constant during the whole shear test6: 
 

 ( ) ( )d t
t const

dt
γ

γ = =   (2.65) 

Inserting eq. (2.65) in eq. (2.31) yields to the following ordinary differential equation: 

 ( ) ( )12 12
Maxwell Maxwell

Maxwell

eff

T t T t
G

γ
η

= +


   (2.66) 

• Solution of the homogeneous equation ( ),
12
Maxwell cT t : 

 ( ) ( ),
12,

12 0
Maxwell c

Maxwell c T t
T t

t
+ =   (2.67) 

 ( ),
12
Maxwell c tT t C e t−= ⋅   (2.68) 

where C is a constant. 
  

                                                 
 
6 Note that the testing machine needs in practice a short period of time to reach a constant shear strain rate. 
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• Solution of the inhomogeneous equation ( ),
12
Maxwell pT t : 

( )C t  is now considered as a time dependent function, thus eq. (2.68) becomes 

 ( ) ( ),
12
Maxwell p tT t C t e t−= ⋅   (2.69) 

Eq. (2.69) in eq. (2.66) gives 

 
( ) tdC t

G e
dt

tγ= ⋅ ⋅   (2.70) 

Integrating eq. (2.70) for 0t ≥ , we obtain 
 ( ) ( )1tC t G e Dtγ t= ⋅ ⋅ ⋅ − +   (2.71) 

where D is a constant. 
 
Eq. (2.71) in eq. (2.69) gives the solution of the inhomogeneous equation: 

 
( ) ( )( )

( )

,
12 1

                 1

Maxwell p t t

t t

T t G e D e

G e D e

t t

t t

γ t

γ t

−

− −

= ⋅ ⋅ ⋅ − + ⋅

= ⋅ ⋅ ⋅ − + ⋅




  (2.72) 

 
The general solution ( )12

MaxwellT t  of the ordinary differential equation (2.66) is then the 

addition of the trivial solution ( ),
12
Maxwell cT t  and the particular solution ( ),

12
Maxwell pT t : 

 
( ) ( ) ( )

( )
, , ,

12 12 12

                 1

Maxwell I Maxwell Ic Maxwell Ip

t t t

T t T t T t

C e G e D et t tγ t− − −

= +

= ⋅ + ⋅ ⋅ ⋅ − + ⋅
  (2.73) 

The boundary value at t = 0 is used to determine the constants C and D: 
 ( )12 0 0MaxwellT =   (2.74) 

 It follows that:  
 ( ),

12 0 0Maxwell IT C D= + =   (2.75) 

The shear stress during a shear test at constant shear strain rate for a Maxwell element 
is then: 

 ( ) ( )12 1      0Maxwell tT t G e ttγ t −= ⋅ ⋅ ⋅ − ∀ ≥   (2.76) 

 
Let now consider a generalised Maxwell model (see Figure 2-10), consisting of a spring and 
n Maxwell models connected in parallel. The resulting shear stress in this model is the addi-
tion of the shear stress of each element: 

 ( ) ( ) ( ).
12 12 12

1

n
gen Maxwell spring i Maxwell

i
T t T t T t−

=

= + ∑   (2.77) 

Inserting(2.26) and eq. (2.76) in eq. (2.77) yields to: 

 ( ) ( )( ).
12

1
1 i

n
tgen Maxwell

i i
i

T t G t G e tgg  t −
∞

=

= ⋅ ⋅ + ⋅ ⋅ ⋅ −∑    (2.78) 

where G∞  is the relaxed or equilibrium shear modulus. 
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Figure 2-15: Calculated shear stress ( ).

12
gen MaxwellT t  as a function of time during shear tests at con-

stant shear rates using 3 Maxwell elements in eq. (2.78). The chosen material parame-
ters ( ), ,i iG G τ∞  are issued from the experimental results obtained for PU-Al joint 
with dP = 736 ± 9 µm at 15 °C. 

  

The evolution of ( ).
12

gen MaxwellT t  during shear tests at constant shear rate is illustrated in Figure 

2-15 for three different shear rates γ : 4·10-2 s-1, 4·10-3 s-1 and 4·10-4 s-1. The plots show a cur-

vature ( ( ).
12 0gen MaxwellT t < ) at small times and run linearly afterwards. The faster the shear rate, 

the stronger the curvature and the longer it takes. At the slowest shear rate (γ  = 4·10-4 s-1), this 
curvature is still present but is sometimes difficult to measure experimentally because distur-
bances during the loading process of the sample (adjustment of the shear rate) overlay this 
phenomenon. 
  

According to eq. (2.64) the effective shear modulus ( )effM t  is given for a constant shear 

strain rate γ  by: 

 
( ) ( )12

1

1

           = i

eff

n
t

i
i

dT t
M t

dt

G G e t

γ

−
∞

=

= ⋅

+ ⋅∑

   (2.79) 

By convention, iτ  grows with increasing index 1i n=  . 
 
Based on the eq. (2.79), two limiting cases can be discussed: 
 

• 1t t<<  (or 1τ → +∞  or γ → +∞ ) and t  the experimental time scale or the duration 
of the experiment: within the experimental time scale none of the Maxwell ele-
ments have enough time to start to relax, the dashpots are “frozen” and the stress is 
distributed into all the spring elements – see Figure 2-16.  



2. Basics of polymer mechanics 

36 
Dissertation Ludovic Krogh 

 
Figure 2-16: Equivalent model (right) of the generalised Maxwell model (left) when 1t t<< (or 

1τ → +∞  or γ → +∞ ). 

Under such conditions, the polymer network is in the glassy state and the equa-
tion (2.79) becomes: 

 
1

= 
n

E elast
eff i

i
M G G−

∞
=

+ ∑   (2.80) 

The effective shear modulus is constant over time and ( ).
12

gen MaxwellT t  would appear line-

ar in Figure 2-15 with an infinite slope (overlap with the ordinate axis). 
 

• nt t>>  (or 0nτ → or 0γ → ): all the relaxation times of the Maxwell elements are 
much shorter than the experimental time scale – i. e. the relaxation processes are faster 
than the applied strain rate so that the corresponding stress only comes from the shear 
modulus of the unpaired spring – see Figure 2-17. 

  

 
Figure 2-17: Equivalent model (right) of the generalised Maxwell model (left) when it t>> (or 

0iτ → or 0γ → ). 

The polymer network is therefore in equilibrium at any time and the equation (2.79) 
becomes: 

 = eff Gµ ∞   (2.81) 

Thus, the effective hyperelastic shear modulus is constant over time as well and 
( ).

12
gen MaxwellT t  would appear linear in Figure 2-15 with a zero slope (overlap with the 

abscissa axis).  
  

The equation (2.79) can be used to evaluate the experimental shear curves in order to identify 
the material parameters ( ), ,i iG G τ∞ . However, because of the short duration of the tests, a fit-

ting operation such as explained later in the sections 2.4.2 and 2.5.2 delivers only few parame-
ters. Moreover, the identified parameters are prone to be affected with larger error than those 
obtained with creep or stress relaxation experiments due to the limited experimental data.  
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2.4. Creep experiments at constant shear stress 
 
Due to the short duration of a shear test, only limited information can be acquired about the 
relaxation/retardation processes and the associated retardation times which characterise the 
viscoelastic behaviour of the polymer network. Therefore, creep experiments are carried out in 
order to have a broader insight into those retardation processes. An appropriate evaluation of 
the creep results provides quantitative information about retardation times and the associated 
retardation spectra as well as their dependence on temperature using the Zener model.  
 

 Analytical solution of the Zener model for creep experiments 2.4.1.
 
In an idealised creep experiment, a constant shear stress 0

12T  is instantaneously applied at a 
time t = 0 and then held constant (Figure 2-18 - red plot). The resulting effective shear defor-
mation ( )eff tγ  is measured as a function of time. In polymer networks, the maximal shear 

deformation reaches a plateau after a sufficiently long time ( .eff constγ = ). Since the resulting 

effective shear is directly proportional to the applied stress 0
12T  according to Boltzmann's su-

perposition principle, the results are plotted using the creep function or compliance, ( )J t , 

defined as 

 ( ) ( )
0

12

eff t
J t

T
γ

=   (2.82) 

Thus, the results of creep experiments using different shear stresses 0
12T  can be compared with 

each other. 

 
Figure 2-18: Shear stress T12 as a function of time during creep experiments (red: instantaneously 

applied stress load; blue: applied stress load in practice) 

  
In practice, a sample can however not be loaded instantaneously and a time interval [0; t0] is 
necessary to reach 0

12T . In this work, the time interval [0; t0] is so small (0 s ≤ t0 ≤ 2 s) that the 
loading stage of the sample can be considered to be linear (Figure 2-18 - blue plot). Of course, 
this is only an approximation of reality but, as shown by the following calculations, the deci-
sive factor is the duration of the loading stage and not its evolution. Furthermore, since the 
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Boltzmann’s superposition principle applies, the evolution of the sample load for [ ]00,t t∈

does not influence the creep behaviour for t ≥ t0. Therefore, the creep experiment can be sepa-
rated into two stages: 
  

• the loading stage (I): [ ]00,t t∈  and ( )12T t  increases linearly from 0 to 0
12T : 

 ( )
0

12
12

0

TT t t
t

 
= ⋅ 

 
  (2.83) 

• and the creep stage (II) for t ≥ t0 where ( ) 0
12 12.T t const T= = . 

 
To be able to determine the material parameters, the experimental creep function ( )J t  is fit-

ted using the analytical solution for the Zener model (see section 2.1.4). Although only the 
experimental data in the creep stage are evaluated, both stages must be considered in this ana-
lytical solution. 
 
The Zener model consists of a spring and n Kelvin-Voigt models connected in series. In order 
to calculate the analytical solution of the Zener model (Figure 2-11) taking into account the 
two previously described stress stages, a single Kelvin-Voigt model (Figure 2-9) is considered 
first: 
 

i. “Loading stage” (region I); [ ]00,t t∈ and ( )
0

12
12

0

I TT t t
t

 
= ⋅ 

 
: 

Using eq. (2.83) in eq. (2.37), the following ordinary differential equation is obtained: 

 ( ) ( )
0

12

0

1
KV

I I
KV

Tt t t
t

γ γ
t η

+ = ⋅
⋅

   (2.84) 

• Solution of the homogeneous equation ( )Ic
KV tγ : 

 ( ) ( )1 0
KV

I I
KVt tγ γ

t
+ =   (2.85) 

 ( )Ic t
KV t C e tγ −= ⋅   (2.86) 

where C is a constant. 
 

• Solution of the inhomogeneous equation ( )Ip
KV tγ : 

( )C t  is now a function of time, so (2.86) becomes 

 ( ) ( )Ip t
KV t C t e tγ −= ⋅   (2.87) 

Eq. (2.87) in eq. (2.84) gives 

 
( ) 0

12

0

tdC t T t e
dt t

t

η
= ⋅ ⋅

⋅
  (2.88) 
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Integrating eq. (2.88) for [ ]00;t t∈ , we obtain 

 ( ) ( )
0

2 212

0

t tTC t t e e D
t

t tt t t
η

= ⋅ ⋅ ⋅ − ⋅ + +
⋅

  (2.89) 

where D is a constant. 
 
Eq. (2.89) in eq. (2.87) gives the solution of the inhomogeneous equation: 

 
( ) ( )

( )

0
2 212

0

0
2 212

0

          

Ip t t t
KV

t t

Tt t e e D e
t

T t e D e
t

t t t

t t

γ t t t
η

t t t
η

−

− −

 
= ⋅ ⋅ ⋅ − ⋅ + + ⋅ ⋅ 

= ⋅ − + ⋅ + ⋅
⋅

  (2.90) 

 
The general solution ( )I

KV tγ  of the ordinary differential equation (2.84) is then the ad-

dition of the trivial solution ( )Ic
KV tγ  (eq. (2.86)) and the particular solution ( )Ip

KV tγ  

(eq. (2.90)): 

 
( ) ( ) ( )

( )
0

2 212

0

          

I Ic Ip
KV KV KV

t t t

t t t

TC e t e D e
t

t t t

γ γ γ

t t t
η

− − −

= +

= ⋅ + ⋅ − + ⋅ + ⋅
⋅

  (2.91) 

The following boundary values are used to determine the constants C and D: 
o at t = 0: 

 ( )0 0I
KVγ =   (2.92) 

  It follows that:  

 
0

12

0

0TC D
t η

+ ⋅ =
⋅

  (2.93) 

o at t = t0: the shear strain reaches a given value ( )0
I
KV tγ  

 

( ) ( )

( )

0 0 0

0 0

0

0
2 212

0 0
0

0 0 0 0
2 212 12 12 12

0 0 0

0
0 0

12 12

0

           

           1

t t tI
KV

t t

t

Tt C e t e D e
t

T T T TC D e e
t t t

T T e
G t G

t t t

t t

t

γ t t t
η

t t t
ηηηη  

t

− − −

− −

=

−

= ⋅ + ⋅ − + ⋅ + ⋅
⋅

 
= + ⋅ ⋅ + ⋅ − ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ 

⋅
= + ⋅ −

⋅

))))(

  (2.94) 

The shear deformation in the region I (loading stage; [ ]00,t t∈ ) is then: 

 ( ) ( ) [ ]
0 0

12 12
0

0

     0,I t
KV

T Tt t e t t
G t G

ttγ t −⋅
= − + ⋅ ∀ ∈

⋅
  (2.95) 
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In a Zener model, consisting of a spring and n Kelvin-Voigt models connected in se-
ries, the shear deformation for [ ]00,t t∈  is 

 
( ) ( )

( ) [ ]

1

00 0
1212 12

0
10 0

     0,i

n
I I I
Zener spring KVi

i

n
ti

i
i i i

t t

TT T t e t t
G G t G

t

ggg 

tt

=

−

=

= +

 ⋅
= + − + ⋅ ∀ ∈ ⋅ 

∑

∑
  (2.96) 

  

ii. “Creep stage” (region II); 0t t≥  and ( ) 0
12 12.T t const T= =  

Under these conditions, the differential equation (2.37) becomes: 

 ( ) ( )
0

121 II II
KV KV

Tt tγ γ
t η

+ =   (2.97) 

• Solution of the homogeneous equation ( )IIc
KV tγ : 

 ( ) ( )1 0
KV

II II
KVt tγ γ

t
+ =   (2.98) 

 ( )IIc t
KV t K e tγ −= ⋅   (2.99) 

where K is a constant. 
  

• Solution of the inhomogeneous equation ( )IIp
KV tγ : 

Considering ( )K t , now a function of time, eq. (2.99) becomes 

 ( ) ( )IIp t
KV t K t e tγ −= ⋅   (2.100) 

 Eq. (2.100) in eq. (2.97) gives 

 
( ) 0

12 tdK t T e
dt

t

η
= ⋅   (2.101) 

 The integration of eq. (2.101) for 0t t≥  yields to 

 ( ) ( )0

0
12 ttTK t e e Bttt
η

= ⋅ ⋅ − +   (2.102) 

 with B the constant of integration. 
 Inserting eq. (2.102) in eq. (2.100), we obtain the solution of the inhomogeneous equa-

tion: 

 
( ) ( )

( )( )

0

0

0
12

0
12          1

tIIp t t
KV

t t t

Tt e e B e

T e B e
G

tt t

t t

γ t
η

−

− −

 
= ⋅ ⋅ − + ⋅ 

 

= ⋅ − + ⋅

  (2.103) 

The general solution ( )II
KV tγ is then 

 
( ) ( )( )

( ) ( )( )

0

0

0
12

0
12

1

          1

t tII t t
KV

t tt

Tt K e e B e
G

TK B e e
G

tt t

tt

γ −− −

−−

= ⋅ + ⋅ − + ⋅

= + ⋅ + ⋅ −
  (2.104)  
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Let us introduce a new constant defined as following: A K B= +  and consider the eq. (2.104) 
for the boundary condition at t = t0: 
 ( ) 0

0
tII

KV t A e tγ −= ⋅   (2.105) 

At t = t0, the shear strain in both regions I and II must be equal: 
 ( ) ( )0 0

I II
KV KVt tγ γ=   (2.106) 

 ( )0 0

0 0
12 12

0

1t tT T e A e
G t G

t tt − −+ ⋅ ⋅ − = ⋅
⋅

  (2.107) 

The constant A can be then determined: 

 ( )0 0

0 0
12 12

0

1t tT TA e e
G t G

t tt= ⋅ + ⋅ ⋅ −
⋅

  (2.108) 

The shear strain as a function of the time in the creep stage (or region II) for one Kelvin-Voigt 
element ( )II

KV tγ is then 

 
( ) ( ) ( )( )

( )( )

00 0

0

0 0 0
12 12 12

0

0 0
12 12

0
0

1 1

               

t tt tII t
KV

t tt

T T Tt e e e e
G t G G

T T e e t t
G t G

tt t t

tt

γ t

t

−−

−−

 
= ⋅ + ⋅ ⋅ − ⋅ + ⋅ − ⋅ 

⋅
= + ⋅ − ∀ ≥

⋅

  (2.109) 

  

In a Zener model, consisting of a spring and n Kelvin-Voigt models connected in series, the 
resulting shear strain during the creep stage ( 0t t≥ ) is the addition of the shear strains of each 
element: 

 ( ) ( ) ( )0 0 0
1

n
i

Zener spring KV
i

t t t t t tggg 
=

≥ = ≥ + ≥∑   (2.110) 

Inserting(2.26) and eq. (2.109) in eq. (2.110) yields to 

 
( ) ( )( )

( )( )

0

0

00 0
1212 12

0
10 0

0
12

10 0

1 1                   

i i

i i

n
t tti

Zener
i i i

n
t tti

i i i

TT Tt t e e
G G t G

T e e
G G t G

tt

tt

tγ

t

−−

=

−−

=

 ⋅
≥ = + + ⋅ − ⋅ 

  
= ⋅ + + ⋅ −   ⋅  

∑

∑
  (2.111) 

 

The corresponding effective creep compliance for 0t t≥  can be expressed as 

 
( ) ( )( )

( )( )

0

0

0 0
1 0

0 0
1 1 0

                  t t

i i

i i

n
t tti i

eff i
i

n n
t tti i

i
i i

JJ t t J J e e
t

JJ J e e
t

tt

tt

t

t

−−

=

−−

= =

 ⋅
≥ = + + ⋅ − 

 
 ⋅

= + + ⋅ − ∀ ≥ 
 

∑

∑ ∑
 (2.112) 

with 0
0

1J
G

=  and 
1

i
i

J
G

= . 

  

The equation (2.111) will be used to evaluate the experimental creep curves in order to identi-
fy the pairs of material parameters ( ),i iJ τ and 0J .  
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As previously for the shear test at constant shear rate, two limiting cases of the eq. (2.112) can 
be discussed: 
 

• 1t t<<  (or 1τ → +∞ ) with ( 1 )i n=  : within the experimental time scale t  none of the 
Kelvin-Voigt elements has enough time to start to relax, the dampers are “frozen” and 
avoid the deformation of their paired spring elements. Thus, the stress and the strain 
come solely from the unpaired spring element – see Figure 2-19. 

 

 
Figure 2-19: Equivalent model (bottom) of the Zener model (top) when 1t t<< (or 1τ → +∞ ). 

Under such conditions, the polymer network is in the glassy state and equation (2.112) 
becomes: 

 0
0

1= J = glassy
effJ

G
  (2.113) 

The effective creep compliance is constant over time. 
 

• nt t>>  (or 0nτ → ) with ( 1 )i n=  : all the retardation times of the Kelvin-Voigt el-
ements are much shorter than the experimental time scale – i. e. the retardation pro-
cesses are faster than the applied strain rate so that the corresponding stress and strain 
are distributed in all the spring elements – see Figure 2-20. 
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Figure 2-20: Equivalent model (bottom) of the Zener model (top) when nt t>> (or 0nτ → ). 

The polymer network is therefore in an equilibrium state and equation (2.79) becomes: 

 ( )
0 0

1n n

i
i i i

J t J J
G∞

= =

→ ∞ = = =∑ ∑   (2.114) 

Thus, the effective creep compliance is constant over time as well. 
 

 Calculation of the discrete retardation time spectrum 2.4.2.
 
As mentioned above, the experimental data for 0t t≥ of creep tests are fitted using the analyti-
cal solution of the Zener model in order to determine material parameters. This is done using 
the Origin® software, into which the equation (2.111) has been implemented as follows: 

 ( ) ( )( )0
0

1

ii

n
t tt

i
i

t A e e ttγ γ −−

=

= + ⋅ −∑   (2.115) 

where the fit parameters by identification with eq. (2.111) are: 

0
0 12 0

1

n

i
i

T J Jγ
=

 = ⋅ + 
 

∑  and 
0

12

0

i i
i

T JA
t

t⋅ ⋅
= . 

 
While 0

12T  and t0 are directly read from the experimental data7, equation (2.115) provides the 
values of the fit parameters J0, Ai and τi, with which the material parameters (Ji, τi) with 
( 1 )i n=   can be calculated. The number n of Kelvin-Voigt elements in the chosen Zener 
model is empirically selected in such a way that the error of the fit parameters is as small as 

                                                 
 
7 t0 is defined as the time when a constant load is reached. The corresponding value of 0

12T  is then determined 
for t = t0. 
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possible. Based on the experience gained from experiments a maximal error of 10 % of the 
fitting parameters has been chosen as upper limit. Therefore, n corresponds to the number of 
discrete retardation times that can be determined and depends strongly on the quality of the 
measurement (measuring duration, noise and stable measuring conditions). The "cleaner" the 
measurement is, the more pairs of material parameters (Ji, τi) can be determined with small 
errors. Moreover, the number of discrete retardation times is also limited through the calcula-
tion method presented here, namely a maximum of one per time decade. The resolution and 
the sampling frequency of the sensors limit the identification of the retardation processes and 
therefore the number of discrete retardation times. As the sample becomes more and more 
elastic with increasing temperature, there comes a point where the viscoelastic properties can-
not be spotted anymore at a given temperature and the calculation of the (discrete) retardation 
spectrum is thereby impossible. This limit is also determined by the quality of the measure-
ment. 
 
An example of the fitting operation of a creep experiment performed at 15 °C with a PU-
AlMg3 adhesive joint with an adhesive thickness dP = 736 ± 9 µm is displayed in Figure 2-21. 
In this example, the number of Kelvin-Voigt elements is n = 7. The thus obtained parameters 
are shown in Table 2-1. The low values of the standard deviations of the fit parameters as well 
as those of the coefficient of determination R² and the reduced χ² attest the goodness of the fit 
operation. 
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Figure 2-21: Experimental creep test with a PU-AlMg3 adhesive joint with an adhesive thickness 

dP = 736 ± 9 µm at 15 °C (in black) and the fit curve using 7 Kelvin-Voigt elements in 
eq. (2.111) (in red). 
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Table 2-1: Fit parameters of the creep curve shown in Figure 2-21 

Model ExpDec_Retard_ZN_7 (User) 
Equation γ = A1

.(exp(-t/τ1)-exp((t0-t)/τ1)) + A2
.(exp(-t/τ2)-exp((t0-t)/τ2)) 

+ A3
.(exp(-t/τ3)-exp((t0-t)/τ3)) + A4

.(exp(-t/τ4)-exp((t0-t)/τ4)) 
+ A5

.(exp(-t/τ5)-exp((t0-t)/τ5)) + A6
.(exp(-t/τ6)-exp((t0-t)/τ6)) 

+ A7
.(exp(-t/τ7)-exp((t0-t)/τ7)) + γ0 

Reduced χ² 4.25609.10-9  
Coeff. of determination R² 0.99964  
 Parameter Value Standard deviation [%] 

t0; set 1.70 0 
γ0 0.18 4.6.10-4 
A1 0.03 1.06 
τ1 2.38 0.62 
A2 0.22 0.39 
τ2 9.41 0.44 
A3 2.26 0.14 
τ3 178 0.29 
A4 17.41 0.06 
τ4 6818.47 0.12 
A5 0.81 0.35 
τ5 42.32 0.39 
A6 112.1 0.15 
τ6 107902.05 0.15 
A7 7.37 0.1 
τ7 1074.51 0.16 

 
The obtained fit parameters are then used to determine the retardation spectrum of the material 
at 15 °C. A retardation spectrum describes the distribution of the retardation times by assign-
ing each discrete retardation time τi an associated spectral compliance Ji [88]. The Zener mod-
el (see Figure 2-11), which describes linear viscoelastic behaviour of polymer networks, repre-
sents a discrete retardation time spectrum. Most of the methods exposed in the scientific litera-
ture to calculate retardation time spectra are based on creep experiments in which the stress 
test is suddenly applied, i.e. t0 is set to zero. In this case, the creep compliance J(t) can be rep-
resented as follows [86, 89]: 

 ( ) ( )0
1

1     t 0i

n
t

i
i

J t J J e t−

=

= + ⋅ − ∀ ≥∑   (2.116) 

Here again each retardation time τi is associated with a spectral compliance Ji. In the Zener 
model the term J0 describes the “instantaneous compliance" corresponding to the elastic re-
sponse of the spring G0. 
 
The summation notation of eq. (2.116) can be generalised using the following integration nota-
tion [86]: 

 ( ) ( ) ( )0
0

1     t 0tL
J t J e dtt

t
t

+∞
−= + ⋅ − ∀ ≥∫   (2.117) 

with ( )L τ  the continuous retardation time spectrum. 
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According to Alfrey’s approximation, it is assumed that [89-91]: 

 
0 for 
1 for 

t

t

e t
e t

t

t

t

t

−

−

 ≈ ≤


≈ >
  (2.118) 
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
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t
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L L L
e d e d e d

L
d

t t tt t t
t t t

t t t

t
t

t

+∞ +∞
− − −

≈ ≈

   ⋅ − = ⋅ − + ⋅ −   
  

≈ ⋅

∫ ∫ ∫

∫
  (2.119) 

So, we can write: 

 ( ) ( )
0

0

t L
J t J d

t
t

t
≈ + ⋅∫   (2.120) 

 
The derivative of eq. (2.120) gives the retardation time spectrum: 

 ( ) ( )
t

dJ t
L t

dt
t

t
=

≈ ⋅   (2.121) 

 
The continuous retardation time spectrum ( )L τ  is a material function for the linear visco-

elastic deformation range at constant temperature. It is difficult to determine the continuous 
retardation time spectrum from the retardation function but the difference between a continu-
ous spectrum and a discrete spectrum is a mathematical formality [92]. 
 
Therefore the time derivative of ( )J t  given in eq. (2.116) is inserted in eq. (2.121) to obtain 

the discrete retardation time spectrum ( )L τ∗ : 

 
1

( ) i

tn
i

i i t

JL t e
−

t∗

=
=t

t ≈ ⋅ ⋅
t∑   (2.122) 

 
With the equation (2.122) it is then possible to determine a discrete retardation time spectrum 

( )L τ∗  from creep compliance ( )J t . The fit parameters in Table 2-1 are independent of the 

experimental procedure (e.g. sudden load or linear loading stage) and can therefore be used to 
calculate the retardation time spectra. The results are presented in Figure 2-22. The Gaussian 
error propagation is used to calculate the error bars in the retardation time spectrum from the 
errors of the fit parameters. A close-up view gives an impression of these error bars. 
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Figure 2-22: Discrete retardation time spectrum for an AlMg3-PU adhesive joint with 

dP = 736 ± 9 µm at 15 °C. 

 

2.5. Stress relaxation experiments at constant shear strain 
 
Stress relaxation experiments offer another possibility to gain information about the visco-
elastic behaviour of the investigated polyurethane adhesive. Furthermore these results are used 
to complete and verify the calculations presented in the section 2.6 to model the viscoelastic 
functions of adhesive joints. 
 

 Analytical solution of the generalised Maxwell model 2.5.1.
 
In relaxation experiments, an effective shear strain 0γ  is imposed to the sample at t = 0. The 

shear strain is then maintained constant and the resulting shear stress ( )12T t  is measured as a 

function of time. In the case of cross-linked polymers, the stress rises abruptly as the strain is 
applied and then falls steadily until it reaches a plateau value after a sufficiently long time. 
Analogous to the creep function ( )effJ t , the measured stress curve is also normalised to the 

applied shear strain 0γ  during relaxation tests in order to compare the results of different 

measurements. The relaxation function ( )effG t , also referred to as relaxation modulus, is thus 

defined as: 

 ( ) ( )12

0
eff

T t
G t

γ
=   (2.123) 
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Similar to the creep test, the shear strain cannot be imposed instantaneously in an experiment 
but within a brief period [ ]00, t . Therefore, two regions have to be distinguished (see Figure 

2-23): 
• Region 1, “loading stage”: [ ]00,t t∈  the shear strain is applied by a constant shear 

strain rate 0

0t
γγ = ; ( ) 0

0

t t
t
γ

γ = ⋅  

• Region 2, “relaxation stage”: 0t t≥  the constant shear strain 0γ  is reached and kept 
constant. 

 
Figure 2-23: Shear strain γ as a function of time during stress relaxation experiments (red: instanta-

neously applied strain; blue: applied strain in practice) 
  

In order to determine the relaxation times analogous to the retardation times, the experimental 
data of ( )G t  are fitted with the analytical solution of the generalised Maxwell model. Like the 

creep experiments, both shear strain regions must be considered, although only the data at 
constant shear strain (region 2) are evaluated.  
 
The generalised Maxwell model consists of n Maxwell models and one spring connected in 
parallel (see Figure 2-10). In order to calculate the solution for the generalised Maxwell mod-
el, taking into account the shear strain regions described above, a single Maxwell model is first 
considered (see Figure 2-8). 
 

i. “Loading stage” (region I); [ ]00,t t∈ : 

 ( ) ( )0 0

0 0

 ;  t t t
t t
γ γ

γ γ= ⋅ =   (2.124) 

Inserting eq. (2.124) in eq. (2.31) yields to the following ordinary differential equation: 

 ( ) ( ), ,
12 12, 0

0

Maxwell I Maxwell I
Maxwell I T t T t

t G
γγ

η
= = +


   (2.125) 

• Solution of the homogeneous equation ( ),
12
Maxwell IcT t : 

 ( ) ( ),
12,

12 0
Maxwell I

Maxwell I T t
T t

t
+ =   (2.126) 
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 ( ),
12
Maxwell Ic tT t C e t−= ⋅   (2.127) 

where C is a constant. 
 

• Solution of the inhomogeneous equation ( ),
12
Maxwell IpT t : 

Introducing ( )C t , now a time dependent function, eq. (2.127) becomes 

 ( ) ( ),
12
Maxwell Ip tT t C t e t−= ⋅   (2.128) 

Eq. (2.128) in eq. (2.125) gives 

 
( ) 0

0

tdC t G e
dt t

tγ ⋅
= ⋅   (2.129) 

Integrating eq. (2.129) for [ ]00;t t∈ , we obtain 

 ( ) ( )0

0

1tGC t e D
t

tγ t⋅ ⋅
= ⋅ − +   (2.130) 

where D is a constant. 
 
Eq. (2.130) in eq. (2.128) gives the solution of the inhomogeneous equation: 

 
( ) ( )

( )

, 0
12

0

0

0

1

                  1

Maxwell Ip t t

t t

GT t e D e
t

G e D e
t

t t

t t

γ t

γ t

−

− −

 ⋅ ⋅
= ⋅ − + ⋅ 

 
⋅ ⋅

= ⋅ − + ⋅

  (2.131) 

  

The general solution ( ),
12
Maxwell IT t  of the ordinary differential equation (2.125) is then 

the addition of the trivial solution ( ),
12
Maxwell IcT t  (eq. (2.127)) and the particular solution 

( ),
12
Maxwell IpT t  (eq. (2.131)): 

 
( ) ( ) ( )

( )

, , ,
12 12 12

0

0

                 1

Maxwell I Maxwell Ic Maxwell Ip

t t t

T t T t T t
GC e e D e
t

t t tγ t− − −

= +

⋅ ⋅
= ⋅ + ⋅ − + ⋅

  (2.132) 

The following boundary values are used to determine the constants C and D: 
o at t = 0: 

 ( ),
12 0 0Maxwell IT =   (2.133) 

  It follows that:  
 ( ),

12 0 0Maxwell IT C D= + =   (2.134) 

o at t = t0: the shear stress reaches a given value ( ),
12 0
Maxwell IT t  

 
( ) ( ) ( )

( )

0 0

0

, 0
12 0

0 0

0

0

1

                  1

t tMaxwell I

t

GT t e C D e
t

G e
t

t t

t

γ t

γ t

− −

=

−

⋅ ⋅
= ⋅ − + + ⋅

⋅ ⋅
= ⋅ −

))(
  (2.135)  
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The shear stress in the region I (loading stage; [ ]00,t t∈ ) is then: 

 ( ) ( ) [ ], 0
12 0

0

1      0,Maxwell I tGT t e t t
t

tγ t −⋅ ⋅
= ⋅ − ∀ ∈   (2.136) 

 
In a generalised Maxwell model (see Figure 2-10), consisting of a spring and n Maxwell mod-
els connected in parallel, the resulting shear stress during the loading stage ( [ ]00,t t∈ ) is the 

addition of the shear stress of each element: 

 
( ) ( )

( ) [ ]

. , 0 ,
12 12 12

1

0 0
0

10 0

1      0,i

n
gen Maxwell I i Maxwell I

i
n

ti i

i

T t T T t

G Gt e t t
t t

tgg  t

−

=

−∞

=

= +

⋅ ⋅ ⋅
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∑

∑
  (2.137) 

At 0t t= , eq. (2.137) gives 

 ( ) ( )0. , 0
12 0 0

1 0

1 i

n
tgen Maxwell I i i

i

GT t G e
t

tg tg −
∞

=

⋅ ⋅
= ⋅ + ⋅ −∑   (2.138) 

 
ii. “Relaxation stage” (region II); 0t t≥  and ( ),

0.Maxwell II t constγ γ= =  

The shear strain is kept constant, so the differential equation (2.125) becomes: 

 
( ) ( ), ,

12 12 0
Maxwell II Maxwell IIT t T t

G η
+ =


  (2.139) 

Thus, only this homogeneous differential equation must be solved ( ),
12
Maxwell IIcT t : 

 ( ),
12

itMaxwell IIT t K e t−= ⋅   (2.140) 

where K is a constant. 
 
At t = t0, the shear stress in both regions I and II must be equal: 

 ( ) ( ), ,
12 0 12 0
Maxwell I Maxwell IIT t T t=   (2.141) 

 ( )0 00

0

1 t tG e K e
t

t tγ t − −⋅ ⋅
⋅ − = ⋅   (2.142) 

The constant K can be then determined: 

 ( )00

0

1tGK e
t

tγ t⋅ ⋅
= ⋅ −   (2.143) 

Inserting eq. (2.143) in eq. (2.140), we obtain the shear stress as a function of the time in the 
relaxation stage (or region II) for one Maxwell element ( ),

12
Maxwell IIT t : 

 ( ) ( )( )0, 0
12 0

0

     t tMaxwell II tGT t e e t t
t

t tγ t − −⋅ ⋅
= ⋅ − ∀ ≥   (2.144) 
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In a generalised Maxwell model (see Figure 2-10), consisting of a spring and n Maxwell mod-
els connected in parallel, the resulting shear stress during the relaxation stage ( 0t t≥ ) is the 
addition of the shear stress of each element: 

 ( ) ( ) ( ). ,
12 0 12 0 12 0

1

n
gen Maxwell spring i Maxwell II

i
T t t T t t T t t−

=

≥ = ≥ + ≥∑   (2.145) 

Inserting(2.26) and eq. (2.144) in eq. (2.145) yields to: 

 ( ) ( )( )0. 0
12 0 0

1 0

i i

n
t t tgen Maxwell i i

i

GT t t G e e
t

t tg tg − −
∞

=

 ⋅ ⋅
≥ = ⋅ + ⋅ − 

 
∑   (2.146) 

where 
( )12

0

T t
G

γ∞

→ ∞
=  is the relaxed shear modulus. 

The equation (2.146) will be used to evaluate the experimental stress relaxation curves in order 
to identify the pairs of fit parameters ( ),i iG τ and G∞ .  

 
The corresponding stress relaxation function or relaxation modulus for 0t t≥  is then: 

 ( ) ( )( )0.
0 0

1 0

   t ti i

n
t t tgen Maxwell i i

eff
i

GG t t G e e
t

t tt − −
∞

=

 ⋅
≥ = + ⋅ − ∀ ≥ 

 
∑  (2.147) 

  

As shown in Figure 2-24, .gen Maxwell
effG  decreases over time to reach asymptotically the value of 

G∞ .  
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Figure 2-24: Calculated shear stress relaxation modulus ( ).

0
gen Maxwell
effG t t≥  (in black) as a function 

of time during stress relaxation test at constant shear strain using 3 maxwell elements 
in eq. (2.147). The orange and green plots represent the limiting cases of (2.147). The 
chosen parameters ( ), ,i iG G τ∞  are issued from the experimental results obtained for 
PU-Al joint with dP = 736 ± 9 µm at 15 °C.  
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Two limiting cases of the eq. (2.147) can be discussed: 
• 1t t<<  (or 1τ → +∞ ) with ( 1 )i n=  : within the experimental time scale t  none of the 

Maxwell elements has enough time to start to relax, the dampers are “frozen” and the 
stress and strain are distributed into all spring elements – see Figure 2-25. 
  

 
Figure 2-25: Equivalent model (right) of the generalised Maxwell model (left) when it t<<

(or iτ → +∞ ). 

Under such conditions, the polymer network is in the glassy state (non-equilibrium) 
and equation (2.147) becomes: 

 
1

= 
n

E elast
eff i

i
G G G−

∞
=

+ ∑   (2.148) 

The effective shear relaxation modulus in the glassy state is constant over time – see 
orange plot in Figure 2-24. 
  

• nt t>>  (or 0nτ → ) with ( 1 )i n=  : all relaxation times of the Maxwell elements are 
much shorter than the experimental time scale – i. e. the relaxation processes are faster 
than the applied strain rate so that the stress and the strain come solely from the un-
paired spring element – see Figure 2-26. 

   

 
Figure 2-26: Equivalent model (right) of the generalised Maxwell model (left) when nt t>>

(or 0nτ → ). 

The polymer network is therefore in an equilibrium state and equation (2.147) be-
comes: 

 S elast
eff effG Gµ−

∞= =   (2.149) 

Thus, the effective relaxation modulus at the equilibrium is constant over time – see 
green plot in Figure 2-24. 

   

It may be noted that these borderline cases are the same as for the shear tests at constant shear 
rate since the rheological model used is identical.  
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 Calculation of the discrete relaxation time spectrum 2.5.2.
 
Like the method described above for the evaluation of the creep curves, the experimental data 
obtained for the relaxation modulus are fitted using the analytical solution of the generalised 
Maxwell model in order to determine material parameters. This is done using Origin® soft-
ware, into which the equation (2.146) has been implemented as follows: 

 ( ) ( )( )0
0

1

i i

n
t t t

i
i

y x y A e et t− −

=

= + ⋅ −∑   (2.150) 

with 0 0y G γ∞= ⋅  and 0

0

i i
i

GA
t
t γ⋅ ⋅

= . 

The fitting provides the fit parameters iA , iτ  and 0y , while 0t  is known from the experiment. 

Using these values, the material parameters ( ), ,i iG G τ∞  with (i = 1...n) can be calculated. The 

number n of Maxwell elements is adjusted so that the errors of the fit parameters are minimal. 
As for the creep experiments, the number n of determinable discrete relaxation times depends 
strongly on the quality of the measured curve and is also limited to one relaxation time per 
decade.  
 
An example of the fitting operation of a stress relaxation experiment performed at 15 °C with 
a PU-AlMg3 adhesive joint (with an adhesive thickness dP = 736 ± 9 µm) is displayed in Fig-
ure 2-27. In this example, the number of Maxwell elements is n = 3. The obtained parameters 
are shown in Table 2-2. 
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Figure 2-27: Experimental stress relaxation test with a PU-AlMg3 adhesive joint with an adhesive 

thickness dP = 736 ± 9 µm at 15 °C (in black) and the fit curve using 3 Maxwell ele-
ments in eq. (2.150) (in red).  
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Table 2-2: Fit parameters of the relaxation modulus shown in Figure 2-27 

Model ExpDec_Relax_Mx_3 (User) 
Equation y = A1

.(exp((t0-t)/τ1)-exp(-t/τ1)) + A2
.(exp((t0-t)/τ2)-exp(-t/τ2)) + 

A3
.(exp((t0-t)/τ3)-exp(-t/τ3)) + y0 

Reduced χ² 132750.25  
Coeff. of determination R² 0.95269  
 Parameter Value Standard deviation [%] 

t0 – set 10.01 0 
y0 94033.49 0.01 
A1 117008.77 0.91 
τ1 24.37 1.09 
A2 362865.01 0.98 
τ2 337.62 1.45 
A3 1.76387E6 0.79 
τ3 5735.72 1.21 

 
The resulting material parameters provide the possibility to determine a discrete relaxation 
time spectrum. A relaxation time spectrum describes the distribution of relaxation times by 
assigning a relaxation modulus iG  to each relaxation time iτ . The generalised Maxwell model 
displays a discrete relaxation time spectrum. Assuming an instantaneously applied shear strain 
to the sample (red curve in Figure 2-23), the relaxation function can then be expressed as fol-
lows [86]: 

 ( ) ( )
1

 i

n
t

eff i
i

G t G G e t−
∞

=

= + ⋅∑   (2.151) 

The summation notation of eq. (2.151) can be generalized using the following integration no-
tation [86]: 
 

 ( ) ( )
0

t
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H
G t G e dtt

t
t

∞
−

∞= + ⋅ ⋅∫   (2.152) 

( )H τ  is the continuous relaxation time spectrum. 

 
According to Alfrey’s approximation, we assume once again that [89-91]: 
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So, we can write: 

 ( ) ( )   Geff
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After derivating the eq. (2.155) the continuous relaxation time spectrum can be computed as 
follows: 

 ( ) ( )eff

t

dG t
H t

dt
t

t
=

≈ − ⋅   (2.156) 

 
The continuous relaxation time spectrum ( )H τ  is a material function for the linear visco-

elastic deformation range at constant temperature. As for the retardation time spectrum, it is 
difficult to determine the continuous relaxation time spectrum from the relaxation function but 
the difference between a continuous spectrum and a discrete spectrum is a mathematical for-
mality [92]. 
 
Therefore the time derivative of ( )effG t  given in eq. (2.151) is inserted in eq. (2.156) to obtain 

the discrete relaxation time spectrum ( )H τ∗ : 
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With equation (2.157) it is then possible to determine a discrete relaxation time spectrum 

( )H τ∗  from the relaxation function or shear modulus ( )effG t . The material parameters de-

termined in Table 2-2 are independent of the experimental procedure (e.g. instantaneous load 
or linear loading stage) and can therefore be used to calculate the discrete relaxation time spec-
tra. The results, calculated from the above presented fit operation, are displayed in Figure 
2-28. The Gaussian error propagation is used to calculate the error bars in the relaxation time 
spectrum from the errors of the fit parameters. 
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Figure 2-28: Discrete relaxation time spectrum ( )*H τ  for an AlMg3-PU adhesive joint with 

dP = 736 ± 9 µm at 15 °C.  
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2.6. Interrelations among the viscoelastic functions 
 
According to Boltzmann's superposition principle, the applied shear strain is directly related to 
the resulting shear stress in the linear-viscoelastic range and vice versa – see section 3.4.2.5. 
Accordingly, the creep function ( )effJ t  and the relaxation function ( )effG t  cannot be inde-

pendent of each other in the linear-viscoelastic range. Rather, the linear-viscoelastic theory 
provides equations that describe the relationships between the individual viscoelastic func-
tions. The interrelations between the retardation and relaxation spectra are of particular interest 
because these spectra describe entirely the viscoelastic properties of the polymer network. In 
the following section, the approach to calculate the different viscoelastic functions is explained 
and the corresponding equations are presented. All the numerical implementations (program 
code and preliminary tests) can be found in [93]. 
 
The experiments carried out in this work showed that creep tests provided more information 
than other types of experiments. For this reason, the results from such experiments are used as 
starting point for the calculation of other viscoelastic functions. Nevertheless, it is necessary to 
consider both types of spectra to ensure the accuracy of the calculations. While the relaxation 
time spectrum weights contributions to modulus, the retardation time spectrum weights contri-
butions to compliance. In most of the references about this topic, interrelations between the 
spectra are given for the continuous ones. Therefore, the calculation of the continuous spectra 
from the discrete ones is needed to calculate the other viscoelastic functions. 
 
Continuous retardation time spectra from discrete retardation time spectra: 
 
After the fitting operation of the creep curves described in the section 2.4.2, the discrete retar-
dation time spectrum is obtained for a limited time range (see Figure 2-22). The only further 
information known at first glance about the continuous retardation time spectrum is: 
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From a material physics point of view, there is in every material a fastest process with 
0lowerτ >  , where ( ) 0lowerL τ =  and a slowest process with upperτ < ∞ , where ( ) 0upperL τ = . 

Thus eq. (2.158) becomes: 
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These limiting conditions imply that: 
• ( )L τ  must have at least one maximum 

• if a minimum in ( )L τ  exists (besides those for lowerτ  and upperτ ), this minimum has 

to be framed between two maxima.  
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Based on these conditions and on the limited information obtained from the discrete spectra, 
three functions have been considered to fit the discrete retardation spectra: a Gaussian func-
tion, a truncated and inversed “Lennard-Jones potential” function and a cubic polynomial 
function. The first trials have shown that the fit operation with the cubic polynomial function 
provides the best result and computing time for the further calculations [93]. For this reason, 
only the method using the following polynomial function is presented in the rest of this work: 
 ( ) 2 3

0 1 2 3L a a a aττττ   = + ⋅ + ⋅ + ⋅   (2.160) 

It is obvious that this polynomial function does not satisfy the above conditions since: 
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However considering the limited information gained from the discrete retardation time spectra, 
the results obtained using the cubic polynomial fit reach a sufficient accuracy and reliability as 
proved by the results shown in section 4.3.1. Nevertheless, it is necessary to define some re-
strictions for the use of the cubic polynomial fit to describe the continuous retardation time 
spectra. For example, Figure 2-29 shows that the cubic polynomial function is only reasonable 
in the time range [ ],a eττ   to calculate the viscoelastic functions8. Further details about these 

restrictions and their numerical implementation can be found in [93]. 
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Figure 2-29: Fitting operation of a discrete retardation time spectrum (in black) with a cubic poly-

nomial function (in red) for an AlMg3-PU adhesive joint with dP = (1896 ± 11) µm at 
10 °C. The surface in blue is used for the further calculations.  

                                                 
 
8 In order to avoid the limitation of the calculation due to the local minimum of the polynomial function, a further 
optimisation has also been tested: the continuous spectrum is extended to longer retardation time by a linear 
slope. The value of this slope corresponds to that calculated at the inflexion point before the local minimum in the 
cubic polynomial function. However, this consideration has not shown any significant improvement in the further 
calculations.  
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The goodness of this fitting operation can be easily assessed by calculating the creep curve 
using the continuous retardation time spectrum with the eq. (2.120). It is here reasonable to 
use the same approximation (see eq. (2.118)) for the back calculation as for the approximation 
of ( )*L τ . If this recalculated creep function matches the measured curve, the approximation 

for ( )L τ can be regarded as accurate enough to pursue the further calculations. 

 
Continuous relaxation time spectra from continuous retardation time spectra: 
 
With the following approximate equations it is possible to calculate numerically a continuous 
spectrum if the other is known [89, 94]: 
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The previously determined ( )L τ  is then inserted in the equation (2.163) to obtain an approx-

imation of ( )H τ  in the same time range [ ],a eττ  . A series of numerical integrations with the 

increment lnd ε  are required to convert ( )L τ  into ( )H τ  and vice versa. 
 
Stress relaxation modulus from continuous relaxation time spectra: 
 
To evaluate the stress relaxation modulus ( )effG t  from the calculated continuous relaxation 

time spectrum ( )H τ , equation (2.155) can be used. The calculations hitherto have been made 

considering the Alfrey’s approximation – see (2.153). That is why equation (2.155) is pre-
ferred to eq. (2.152) for the calculation of ( )effG t : 
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G∞  can be obtained from eq. (2.150). If ( )H τ  and ( )L τ  are known, G∞  can also be deter-

mined from the creep compliance ( )effJ t  [95]: 

 
0 0

( ) ( ) ( ) ( )
t t

eff eff eff effG t J d J t G d teeeeee     − = − =∫ ∫   (2.165) 

  



2. Basics of polymer mechanics 

59 
Dissertation Ludovic Krogh 

This relation has been used in this work to cross-check the consistency of the results obtained 
from the creep tests with the ones from the stress relaxation tests and vice-versa. 
Previously, it has been shown that: 
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For the sake of clarity, the following substitution in eq. (2.166) is made: 
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where ( )
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Replacing ( )effG t  and ( )effJ t in eq. (2.165) with their expression from eq. (2.167): 
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According eq. (2.165), we obtain from eq. (2.168): 
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It is now possible to deduce G∞  from the equation (2.169): 
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Note that the obtained value for G∞  should be constant regardless of the chosen time t . 

The value found for G∞  can also be compared with those obtained from stress relaxation tests 
and be placed, for example, in eq. (2.78) to model shear tests at constant shear rate. 
 
The interrelations between viscoelastic functions thus offers the possibility to calculate the 
results of a relaxation test and shear tests at different shear rates from the experimental results 
of a creep test – Figure 2-30. Finally, calculated and measured curves can be compared and 
thus the consistency of the results and the validity of the underlying calculations/equations can 
be verified – see section 4.3.1. Once this validity is ensured, the mechanical behaviour of the 
investigated adhesive joints can be calculated using the presented method. 
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Figure 2-30: Strategy for the calculation of viscoelastic functions from an experimental isothermal creep test (in red) and from an experimental isothermal stress 
relaxation test (in blue)Formel-Kapitel (nächstes) Abschnitt 1 

Creep test Creep compliance Discrete retardation time spectrum 
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3. Experimental approach 
 

3.1. Materials 
 

 Polyurethane adhesive 3.1.1.
 
Over the last decades, polyurethanes (PU) are widely used as adhesives because of their relia-
bility and high performance in many applications including, construction, automotive industry, 
packaging applications and furniture assembly. Depending on the chemical structure of the 
components used for polyurethane synthesis, the properties of the resulting polymer can be 
tailored to meet the user’s needs [96]. In contrast to most commercial polyurethane adhesive 
formulations, the reactive PU adhesive utilised for this work contains, for the sake of clarity, 
no additives. The technical monomers used for the fabrication of all the samples are presented 
in section 3.1.1.1. The chemical reactions between those components lead to the formation of 
a crosslinked amorphous polyurethane as described in section 3.1.1.2.  
Besides the chemical nature of the components, the properties of the polyurethanes are influ-
enced by stoichiometric ratio of reactive groups, curing conditions and crosslinking density 
[97-99]. For these reasons, a careful preparation of the adhesive is essential to succeed in de-
tecting interphases in adhesive joints. All the preparation steps as well as the determination of 
the curing regime of the PU are detailed in section 3.1.3. 
 

3.1.1.1. Polyurethane components  
 

Isocyanate hardener 
 
The commercial monomer Desmodur® VP.PU 1806 (Bayer MaterialScience AG, Leverkusen, 
Germany) is used as isocyanate hardener in the investigated polyurethane adhesive. It consists 
of three methylene diphenyl diisocyanate isomers (MDI) - Figure 3-1. At room temperature, 
this isomer mixture is a yellowish liquid [100]. Due to its structure containing phenylene 
groups and its relatively low molecular weight (cf. Table 3-1), MDI molecules provide hard-
ness and stiffness to the resulting polymer structures. 
 

 
Figure 3-1: Desmodur® VP.PU 1806: mixture of the three methylene diphenyl diisocyanate iso-

mers (MDI), M ≈ 250.26 g/mol, (Bayer MaterialScience AG, Leverkusen, Germany)  
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Table 3-1: Technical data of Desmodur® VP.PU 1806 [100]. 

Average molar mass [g∙mol-1] 250.26 
NCO-content [%] 33.4 – 33.6 
Functionality [-] 2 
Monomeric diisocyanate content [%] 100 
Viscosity at 25 °C [mPa∙s] 10 - 14 
Density at 25 °C [g∙cm-3] approx. 1.21 
Vapour pressure at 20 °C [mbar] < 1∙10-5 
Equivalent weight [g∙mol-1] approx. 125 

 
In 2014, MDI was the largest volume industrial isocyanate produced. MDI is an aromatic 
diisocyanate, wherein the reactivity of each isocyanate functionality [-N=C=O] is governed 
both by the electrophilic character of the carbon atom, which can react with nucleophilic com-
pounds, and by the nucleophilic character of oxygen and nitrogen atoms, which can react with 
electrophilic reagents.  
In the case of aromatic isocyanates, like MDI, unshared electrons of the nitrogen are delo-
calised into the aromatic ring, thus increasing the reactivity of the isocyanate group in compar-
ison with aliphatic isocyanates [101]. 
 
The isomer structure also influences the physical properties and the reactivity. For example, 
the 4,4′ isomer is more reactive compared to the sterically hindered 2,4’ and 2,2’ isomers, but 
it has a limited shelf life. The pure 4,4′ monomer is a solid at room temperature with a melting 
point of 38 °C [102]. Even in the solid state, the 4,4′ monomer undergoes a facile dimerisation 
reaction to form uretdione (Figure 3-2) [103]. In the presence of the others isomers, the dimer-
isation of the 4,4′ monomer in Desmodur® VP.PU 1806 is significantly slowed down due to 
the steric hindrance [104]. Although the dimer converts back to the monomers on heating 
(T > 160 °C), MDI must be used in a relatively short time after production and stored at low 
temperatures [101, 105]. The formation of another class of isocyanate dimer, such as car-
bodiimides, is also possible through selective catalysis [103] (or long-time storage at high 
temperature). As no catalyst is used in this work, these structures are not discussed. 
 

 

Figure 3-2: Dimerisation reaction of MDI [106] 
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Upon heating (T > 160 °C) or in the presence of catalysts (as well as some acids, amines and 
carboxylates), the trimerisation of MDI can also occur to form a thermally stable isocyanurate 
group (Figure 3-3) [103]. Therefore, the temperature of the monomers during the storage and 
the fabrication process is still less than 160 °C to limit or even to avoid the formation of such 
trimers.  

 

Figure 3-3: Formation of isocyanurates: trimerisation of isocyanates 

 

Polyol resin mixture 
 
A mix of polyol resins, consisting of a linear oligopropylene ether diol (Desmophen® 3600Z, 

1M 2000 g mol−≈ ⋅ , Bayer MaterialScience AG, Leverkusen, Germany) and a branched oli-

gopropylene ether triol (Baygal® K55, 1M 440 g mol−≈ ⋅ , Bayer MaterialScience AG, Leverkus-
en, Germany), is used as comonomers for the diisocyanate hardener - Figure 3-4. Hereinafter 
these monomers are referred to as diol and triol respectively. At room temperature, both mon-
omers are colourless to yellow-coloured, low viscous liquids (Table 3-2) [107, 108]. 
 

 

Figure 3-4: Chemical structures of the polyols (a) Linear polypropylene ether diol, n 34.2≈ ,
1M 2000 g mol−≈ ⋅  (b) Branched polypropylene ether triol, k+l+m 5.3≈ ,

1M 440 g mol−≈ ⋅  

 
Table 3-2: Technical data of Desmophen® 3600Z and Baygal® K55 [107, 108] 

 Desmophen® 3600Z Baygal® K55 
Average molar mass [g∙mol-1] 2000 440 
Functionality [-] 2 (diol) 3 (triol) 
Hydroxyl number [mg (KOH)∙g-1] 56 ± 2 385 ± 15 
Viscosity at 25 °C [mPa∙s] 310 ± 25 600 ± 50 
Density [g∙cm-3] approx. 1 (at 20 °C) approx. 1.03 (at 25 °C) 
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The polyether polyols are hydroxyl-terminated [-OH] oligomolecules made from the reaction 
between an initiating alcohol and a cyclic ether (oxirane)  
 
Compared to the MDI monomers, the polyols tend to provide softness and flexibility to the 
resulting polymer structures due to their flexible etheric backbone and their high-molecular-
weight [102]. By choosing different mixing ratios of the two polypropylene polyols (diol and 
triol), different polyurethane adhesives can be obtained with respect to their molecular mobili-
ty/glass transition temperature. Thus, it is possible to design the properties of the resulting 
polymer to meet the need for this work, without adding any additive. 
 

3.1.1.2. Chemical reactions 
 
The chemistry of polyurethanes is based on the high reactivity of isocyanates towards proton-
bearing nucleophiles (cf. section 3.1.1.1). For the purpose of this work, only the reactions, 
which can occur with the monomers presented in section 3.1.1.1, are considered in this sec-
tion. The resulting polyurethane structure will be discussed in section 3.1.2. 
 
The major reaction in polyurethanes is the reaction of isocyanates with hydroxyl components, 
such as alcohols. This addition polymerisation of diisocyanates with macroglycols, or so-
called polyols, to produce urethane polymers was pioneered in 1937 at IG Farbenindustrie 
(Leverkusen, Germany) by O. Bayer [109]. This nucleophilic addition which occurs at room 
temperature (20 °C) without catalyst, produces urethane groups, also known as carbamate 
groups (Figure 3-5) [101]. Different mechanisms are proposed for this reaction but they all 
lead to the same ultimate molecular structure [110, 111].  

 

Figure 3-5: Formation of urethane / carbamate groups 

 
Thus, the polyaddition reaction of diisocyanates with polyols forms polyurethane: reaction 
between bifunctional educts (MDI with diol, for example) results in thermoplastic poly-
urethanes (i.e. with linear chains) whereas reaction of diisocyanates with triols results in ther-
moset polyurethanes (i.e. with a three-dimensional cross-linked network). 
 
Besides the relatively straightforward addition reaction, side reactions can occur having pro-
found effects on polyurethane properties. For instance, water, which can come from air mois-
ture or be adsorbed onto the substrate surface, can also react with isocyanate. This reaction is 
somewhat complex because an unstable carbamic acid is first formed. This intermediate de-
composes into an amine and gaseous carbon dioxide. Although this production of CO2 is a 
most important reaction in the polyurethane foam industry, the same cannot be said for the 
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purpose of this work since the presence of CO2 gas bubbles in the adhesive decreases in a 
nonhomogeneous way (but significantly) its mechanical properties.  
The strong nucleophilic nature of the primary amine, formed by the decomposition of the un-
stable carbamic acid, allows it to react immediately with an additional isocyanate to give a 
urea or carbamide, as shown in Figure 3-6. These urea compounds can increase the reaction 
kinetics of the polyurethane formation [112]. 

 

Figure 3-6: Reaction of water with isocyanate 

 
The presence of water in the reaction mixture impacts the final structure and properties of the 
polyurethane adhesive. Therefore the preparation of the adhesive is carried out in a dried at-
mosphere (absolute humidity between 0.01 and 0.03 g/m3) to limit as much as possible the 
presence of water and so, the formation of urea species (cf. section 3.1.3).  
 
Both urethane and urea group contain acid hydrogen atoms which can react with a further iso-
cyanate group. While these reactions can be neglected at room temperature, they can occur 
without catalyst at temperatures above 100 °C (generally at 150 °C) [101, 113]. The addition 
of a urethane to an isocyanate results in the formation of an allophanate (cf. Figure 3-7) 
whereas the reaction between a urea and an isocyanate forms a biuret (cf. Figure 3-8).  
 

 

Figure 3-7: Formation of allophanate 

 

Figure 3-8: Formation of biuret 
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If the R group in Figure 3-7 or Figure 3-8 contains an additional isocyanate moiety, the for-
mation of an allophanate or, respectively, a biuret results in crosslinking [114, 115]. These 
new linkages do in turn influence the properties of the resulting polymer [116, 117]. 
 

 Structure and homogeneity of the polyurethane adhesive in bulk 3.1.2.
 
While the primary structure of the two-part polyurethane is largely determined by the addition 
reaction of isocyanates with alcohols, inter- and intramolecular interactions, such as hydrogen 
bonds [118, 119], also influence the morphology of the polymer [11, 113]. Nevertheless, the 
nature of the resulting polyurethane can be discussed considering the structure of the three 
monomers presented in section 3.1.1.1.  
 
First, the miscibility of components and emerging oligomers as well as kinetic effects are key 
factors for the formation of a macroscopically homogeneous bulk phase. Mixing of monomers 
is also an important operation in the adhesive preparation to ensure the reproducibility of the 
results (cf. section 3.1.3).  
 
Unlike many technical adhesives, no additives are contained in the polyurethane used in this 
work. The presence of triol in the reaction mixture leads to the formation of polyurethane with 
a three-dimensional crosslinked network. By choosing different mixing ratios of the two poly-
propylene polyols, different crosslinked polyurethane adhesives can be obtained with respect 
to their molecular mobility/glass transition temperature (ranging from duromers to elastomers 
at room temperature). Thus, the greater the concentration of diol in the reaction mixture, the 
bigger the mesh size in the resulting polyurethane network and hence, the lower the glass tran-
sition temperature of the polymer.  
 
Across the glass transition, the structure and dynamics of polymer systems undergo a major 
change which results in a drastic modification of its physical properties. That is why the study 
of the mechanical glass transition of the polyurethane system presented in section 3.1.1 also 
attracted a particular interest in this work.  
Therefore, a polyurethane adhesive having a mechanical glass transition region near room 
temperature has been chosen to ease the experimental investigations. This means that a tem-
perature variation of only a few Kelvin is necessary to cause a big change in the mechanical 
properties of the polyurethane. 
 
In the polyurethane adhesive used in this work, the polyols are mixed at a hydroxyl group ratio 
of OHtriol : OHdiol = 80 : 20. That amount of triol in the reaction mixture results in a considera-
ble crosslink density. As a result, this chemical crosslinking avoids the formation of hard and 
soft segments [120] which are common in thermoplastic polyurethanes [121-126]. Without 
such phase separation, a relatively homogeneous polyurethane network can be expected, as-
suming that all monomers are thoroughly mixed during the preparation, as discussed in the 
next section.  
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 Preparation and curing regime of the PU adhesive 3.1.3.
 
Besides the chemical nature of the monomers, the preparation of the reaction mixture and the 
curing regime determine the structure and the properties of the resulting polymer. To describe 
the influence of interphases in adhesive joints, the adhesive bulk must have clearly defined, 
reproducible and constant properties over time.  
 
The polyols are mixed at a hydroxyl group ratio of OHtriol : OHdiol = 80 : 20 at room tempera-
ture with a magnet stirrer for 15 minutes. The whole preparation of the adhesive and any types 
of samples is performed in a glove box, purged with dry air (dew point between -55 °C and -
60 °C) to minimise any disturbing reaction described in Figure 3-6. Considering a room tem-
perature of 23 °C and a pressure of 1013.25 hPa, the absolute humidity in the glove box lies 
between 0.01 and 0.03 g/m3. Therefore, the influence of atmospheric water on crosslinking 
reactions can be neglected. 
The diisocyanate hardener is then added as fast as possible to the polyols and the reactive mix-
ture is stirred for additional 15 minutes at room temperature. Finally, the mixture is gently 
degassed in vacuum to remove all the air bubbles due to the mixing / stirring operation. 
 
The reactive adhesive is prepared as a mixture of the resin and the hardener with a stoichio-
metric ratio of hydroxyl and isocyanate groups. Maximal curing to PU is obtained in dried 
atmosphere by 72 h at room temperature followed by 4 h post-curing at 403 K in dried atmos-
phere as well. Infrared spectroscopy by attenuated total reflection has been used to monitor the 
conversion of isocyanate groups over time during the post curing. Figure 3-9 depicts the ob-
tained spectra (left) and the close-up view on the asymmetrical stretch vibrations of the iso-
cyanate groups ( )a NCOυ  (right) after different post-curing conditions. It is only after 4 hours 

post curing at 130 °C (approx. 403 K) that no remaining isocyanate group could be detected.  
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Figure 3-9: Attenuated total reflexion infrared reflectance (IR-ATR) spectra of PU8020 after dif-
ferent post-curing conditions. Complete spectrum (left) and close-up view on the 
asymmetrical stretch vibrations of the isocyanate groups ( )a NCOυ  (right).  
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The caloric glass transition of the resulting PU bulk ranges from 213 K to 303 K (measured by 
DSC at 10 K/min, Figure 3-10). The glass transition temperature is DSC,bulk

gT  = 266 ± 1 K.  
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Figure 3-10: Specific heat capacity cp(T) measured with differential scanning calorimetry (DSC) 
during heating with 10 K/min for a cured PU-bulk sample and its first derivative for 
proper identification of the caloric glass transition range and Tg. 

 
Such an adhesive system offers the following advantages for the experimental investigations: 

• The temperature region of interest is easy to reach without heavy cooling or heating of 
the sample. This is especially important for the design of the experimental set-ups (see 
chapter 3.3) 

• Even a slight change in measuring temperature influences significantly the physical 
properties of the adhesive (see Figure 3-10 and section 4.1) 

• At room temperature the PU network is right in the upper part of the glass transition 
region, but full mobility is achieved by rising the temperature to some 310 K. There-
fore the mechanical properties of the adhesive (joints) can be easily characterised in 
both viscoelastic and entropy elastic states (see section 4.1). 

 
Samples for DSC investigations have been cut from PU 80:20 bulk material, casted in PTFE 
mold. The clean and smooth surface, which is in direct contact with the dry air atmosphere, is 
placed on the surface of the DSC pans to ensure the best possible thermal contact between the 
sample and the DSC pan. Despite thorough adhesive and sample preparation, experimental 
discrepancies between different batches cannot be completely eliminated, leading to a varia-
tion of the adhesive properties. Figure 3-11 illustrates this effect, using the caloric glass transi-
tion as an example. Although the presented plots are “normalised” by dividing the heat flow 
signal by the corresponding sample mass, the absolute value of the specific heat flow, the step 
height and the peak area are different for each measurement. This can be explained by the dif-
ference of heat transfer between the different samples: all samples cannot be identical and the 
contact surface between the polymer sample and the DSC pan may vary from measurement to 
measurement, especially for solid samples. Apart from these effects, the glass transition region 
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also slightly varies between the different batches. This could thus affect the comparability of 
the results from different batches. 
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Figure 3-11: Specific heat flow curves measured with DSC during heating with 10 K/min for dif-
ferent cured PU-bulk batches (left) and their first derivative for proper identification of 
the glass transition range and Tg (right). 

 

Considering these disturbing effects, only the samples prepared from the same adhesive batch 
can be quantitatively compared. Thus, all the samples for a given test series must be prepared 
in one shot. Within the same adhesive batch, optical observation (e.g. bubble in the sample), 
tensile tests, DSC and IR-ATR measurements do not reveal any phase separation or variation 
in the physical and chemical properties of the polyurethane. A homogeneous polymer network 
is also expected. 
The usual quantity for the preparation of an adhesive batch is 500 g. The reactive adhesive is 
used within 60 minutes after the last mixing operation. In this time period, the spectroscopic 
isocyanate conversion of the bulk adhesive is ≤ 8 % [11], the reactive adhesive is still liquid 
and can be easily cast for the preparation of the sample.  
 

3.2. Sample preparation 
 

 Bulk samples for tensile tests 3.2.1.
 
In order to determine the mechanical bulk properties, tensile tests are performed (see sec-
tion 3.4). For the preparation of the required specimens, the polyurethane adhesive is prepared 
as described in section 3.1.3 and casted on a PTFE surface to obtain a film of about 2 mm 
thickness. Specimens for the tension tests according to ISO 527-2:1996 Type 5A (Figure 3-12) 
are then die cut from the film and marked with a black serigraph colour9 using a mask, cf. Fig-
ure 3-13. With a backlighting system, this dark pattern gives a good contrast for optical de-
formation measurements – Figure 3-14.   
                                                 
 
9 “schwarze Kodierfarbe” supplied by Fiedler Optoelektronik GmbH. 
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Figure 3-12: Tensile test specimen (according to standard ISO 527-2:1996 Type 5A), marked with 
a dark pattern [72] 

 

    

Figure 3-13: Preparation of the tensile test specimens: dye cutting (left) and marking with a tem-
plate (right) 

 

 

Figure 3-14: Dark pattern captured by the CCD camera 
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 Polyurethane-metal adhesive joints 3.2.2.
 
Shear experiments have been chosen to investigate the effective mechanical properties of ad-
hesive joints. In this work, two types of adhesive joints have been investigated to detect the 
influence of interphases: 
 

• Aluminium-magnesium alloy (AlMg3) substrates bonded with PU8020 
• Stainless steel (1.4301) plates bonded with PU8020. 

 
Both substrates are relevant for many technical applications and possess different features 
which will be described below. 
 

3.2.2.1. PU-AlMg3 adhesive joints 
 
AlMg3 is used as adherend for the preparation of adhesive joints. This alloy is typically used 
in treadplate, shipbuilding, vehicle bodies, rivets, fishing industry equipment, food processing, 
welded chemical and nuclear structures. AlMg3 features a modulus of elasticity of about 
70.5 GPa and its chemical composition is given in Table 3-3. 
 
Table 3-3: Chemical composition of AlMg3 according to the standard DIN EN 573-3 [127] 

Chemical 
element Si Fe Cu Mn Mg Cr Zn Ti Mn + Cr 

Residuals 
Al 

each total 

Min. [wt.%]     2.6    0.1   Rest 
Max. [wt.%] 0.4 0.4 0.1 0.5 3.6 0.3 0.2 0.15 0.6 0.05 0.15 
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Geometry of the specimens 
 
The sample blanks (20 mm x 190 mm x 100 mm) (Figure 3-15, left) are CNC-machined and 
provided with the necessary drillings before they are spark eroded into two point-symmetrical 
halves (Figure 3-15, right). The pairs are numbered with a letter/number punch to prevent 
mismatching.  
 

 

Figure 3-15: AlMg3 sample blank before (left) and after spark erosion machining (right) [1]  

 
The dimensions of the AlMg3 substrates are given in Figure 3-16 and the drillings for the 
mounting of the displacement transducer, temperature sensors and heating/cooling system are 
depicted in the technical drawing shown in Figure 3-17. 

 

Figure 3-16: Geometry of the PU-AlMg3 shear specimens (dimensions in mm) [1] 

  

Bonding surface 

Gap for spacer 

Self-adhesive tape 

Bonding surface 
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Figure 3-17: Technical drawing of the PU-AlMg3 shear specimens including drillings for sensors 
and heating/cooling system (dimensions in mm). 

 
Surface treatment 
 
Prior to the bonding operation, the bonding surfaces of the AlMg3 blocks are treated to obtain 
a defined and reproducible surface quality for all the specimens: During the manufacturing and 
machining process of the sample blanks, the surface of the alloy comes into contact with vari-
ous contaminations and the working environment can influence the surface condition as well. 
 
The surfaces are ultrasonically cleaned in acetone for 15 minutes to remove possible organic 
contamination and etched in 1-molar aqueous NaOH for 15 min. During this step, the alumini-
um oxide layer naturally formed, and the aluminium metal underneath dissolve: 
 

2 𝐴𝐴2𝑂3 + 2 𝑂𝑂− + 3 𝐻2𝑂 ⇆ 2 [𝐴𝐴(𝑂𝑂)4]− 
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When metallic aluminium is exposed to air or rather to oxygen, a thin amorphous oxide layer 
(ca. 5 nm) forms instantly on its surface [128]. This natural coating can grow over time, de-
pending on the surrounding conditions (temperature, humidity and pH). Its chemical structure 
is though irregular, not well-defined [129] and should be removed. Once the Al2O3 layer is 
dissolved, the sodium hydroxide can also react with the subjacent metallic aluminium forming 
gaseous hydrogen: 
 

2 𝐴𝐴 + 2 𝑂𝑂− + 6 𝐻2𝑂 ⇆ 2 [𝐴𝐴(𝑂𝑂)4]− +  3 𝐻2 
 
It may be thus noted that this treatment must be performed under an extractor hood. 
 
After the etching operation, the sample halves are thoroughly rinsed successively with tap wa-
ter and distilled water to eliminate all the remains of sodium hydroxide and other residues. As 
the substrates come into contact with air during this operation, a thin aluminium oxide layer is 
thus formed again. 
The AlMg3 substrates are then pickled in an aqueous nitric acid solution with a concentration 
of 20 wt.% for 2-3 minutes at room temperature. The diluted nitric acid solution does not etch 
directly the metallic aluminium but promotes its oxidation, forming a thicker but still amor-
phous Al2O3 coating [130]. The possible chemical reactions which are taking place during 
etching processes are: 
 

2 𝐴𝐴 + 3 𝐻𝐻𝐻3  ⇆ 𝐴𝐴2𝑂3 + 3 𝐻𝐻𝐻2 
 

2 𝐴𝐴 + 6 𝐻𝐻𝐻3  ⇆ 𝐴𝐴2𝑂3 + 6 𝑁𝑁2 +  3 𝐻2𝑂 
 
A slight formation of a brownish gas on the substrate surfaces after the immersion in the acid 
bath indicates the formation of nitrogen dioxide (NO2) as described by the last chemical reac-
tion. 
 
Despite the exact progress of the involved chemical reactions during the pickling process is 
still unclear; a reproducible and chemically defined oxide layer is formed at the surface of the 
substrates. 
Finally, the AlMg3 parts are successively rinsed in distilled water, acetone and dried. 
 
The topography of the bonding surfaces has been analysed with white light interferometry 
(WLI) provided by Zygo (NewView 200) and mounted with a 3D Imaging Surface Structure 
Analyser. This technique combines an interferometer and microscope in one instrument. The 
WLI is a noncontact three-dimensional optical profiler based on the Michelson's interferome-
ter (cf. Figure 3-18).   
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Figure 3-18: Schematic illustration of a Michelson interferometer 

 
Illumination from a white light source with a coherence length in the micron range is spitted 
into two beams: an object beam and a reference beam. The object beam reflects from the sur-
face being analysed and the reference beam reflects from a reference mirror. The reflected 
light from each beam is recombined at the beam splitter and captured by a CCD camera. The 
recombined beams generate an interferogram composed of bright and dark bands called 
“fringes” [131, 132]. For each point of the surface, the pattern of the fringes is analysed and 
converted into height information.  
If the optical path for a point on the surface in the measurement arm is the same as the optical 
path in the reference arm, there is constructive interference and the corresponding camera pix-
el show a high intensity. Otherwise, the pixel has a lower intensity. Consequently, this intensi-
ty signal can be processed to determine, which points are at the same height.[133]. 
 
Figure 3-19 depicts the obtained bonding surface profile after the surface treatment with WLI. 
 

 

Figure 3-19: Topography of the bonding surface after the surface treatment obtained with WLI 
(measured surface: 0.283 x 0.212 mm²) 
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Figure 3-20: Example of a height profile 

Thus, the geometrical parameters such as depth and the roughness parameters can be charac-
terised using the WLI. The arithmetic average roughness Ra and the root mean squared 
roughness Rq are calculated for 5 different height profiles (Figure 3-20). They are defined as 
following: 

 ( )
0

1  
L

aR z x dx
L

= ∫   (3.1) 

 ( )2

0

1  
L

qR z x dx
L

= ∫   (3.2) 

where L is the sampling length, z the height at position x along L. 
The measured parameters are: Ra = 2.93 ± 0.37 µm and Rq = 3.67 ± 0.45 µm. 
 
Bonding 
 
The sample halves are paired according to their markers and arranged on a clean, flat surface. 
The clearance between the bonding surfaces is adjusted by inserting spacers with predeter-
mined nominal thickness next to the drill holes. Both halves are screwed together to set their 
respective position (see Figure 3-21, left). Prior to bonding, the width of the gap between the 
paired halves is measured at two opposite positions and on both sides with micrometre preci-
sion (using a measuring optical microscope with Quadra-Check® system). Poor parallelism 
can be eventually corrected by slightly tightening/loosening one of the screws or by changing 
the spacer(s).  
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Figure 3-21: Assembling (left) and bonding (right) of the PU-AlMg3 shear specimens [1] 

 
The gap between the bonding surfaces is sealed with adhesive tape at the sides and the bottom, 
to leave the top side open for later filling with the liquid adhesive. The so prepared AlMg3 
substrates are introduced into the glove box through a vacuumable chamber. The samples are 
evacuated twice inside this chamber down to a pressure of about 5 Torr (≈ 667 Pa) at room 
temperature. This operation removes most of the water adsorbed on the surfaces of the halves 
and therefore minimises the unwanted side reaction presented in Figure 3-6. Under these tem-
perature and pressure conditions, non-chemically bound water is in gaseous form and can be 
evacuated by the vacuum pump [134].  
Finally, the gap between the paired halves of the shear samples is carefully filled with the liq-
uid monomer mix (see preparation in chapter 3.1.3) by means of a pipette avoiding the for-
mation of air bubbles. It should be noted that the polyurethane adhesive must be directly used 
within 60 minutes after the last mixing operation as the polymerisation starts with the addition 
of MDI in the polyol mixture and thus increases the viscosity of the adhesive. 
 
After the curing (72 hours at room temperature) and the post curing (4 hours at 130 °C) in dry 
air, the samples are taken out of the glove box and the adhesive tape is removed - Figure 3-21, 
right. The screws and the spacers are then removed. 
 
During the polymerisation and the cross-linking of the polyurethane adhesive, volume shrink-
age occurs which induces internal stresses in the adhesive layer and influences the bond line 
thickness. After loosening the screws and removing the spacers, it is thus necessary to measure 
again the thickness of the adhesive layer every 25 mm using the optical microscope for both 
sides of the joint. The mean value and the standard deviation are calculated from these ten 
values. In this work, the nominal values of the bond line thickness dP refer to the thus meas-
ured mean values (and standard deviations). 
  

Gap for spacer 
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3.2.2.2. PU-stainless steel adhesive joints 
 
The method presented in this work for the identification of mechanical interphases in adhesive 
joints is implementable to bonding joints with different adhesive-substrate combinations. 
Therefore, the existence of mechanical interphases in PU-stainless steel adhesive joints has 
been investigated as well. 
 
Geometry of the specimens 
 
As part of this work, new samples and testing jigs have been designed and manufactured to be 
able to vary the metal substrates in the adhesive joints. The geometry of the specimens had to 
be adapted due to the processing and costs.  
 
Chromium-nickel austenitic stainless steel EN 1.4301 is used as substrate. This material is 
manufactured by ThyssenKrupp AG under the name NIROSTA® 4301 and features an elastic 
modulus of about 200 GPa. The chemical composition of this classic stainless-steel grade is 
X5CrNi18-10. The typical applications are automotive industry, building and construction 
industry, chemical industry, food and beverage industry, decorative items and kitchen utensils, 
electronic equipment and petrochemical industry. 
 
The surface of a stainless-steel sheet (2 x 1 m) is mirror-like polished and then covered with a 
protective film. Small plates (130 x 20 x 2 mm) are cut from this metal sheet by laser beam 
fusion cutting to minimise any mechanical deformation or surface modification during ma-
chining or the oxidation of the edges. The longitudinal (length) direction of the plates is the 
rolling direction of the steel. The flatness of each plate is checked using the nearly perfect flat 
surface of a silicon wafer to ensure an accurate and homogeneous adhesive thickness after the 
bonding operation. If there is no visible light gap between the silicon wafer and the steel plate, 
this latter is used for the fabrication of adhesive joints. 
 
Surface treatment 
 
As for the AlMg3 substrates, the stainless-steel plates must be treated to obtain a defined and 
reproducible surface quality for all the specimens. 
First, the plates are cleaned: 

• using lint-free tissues and acetone to remove dirt and residues from the protective film, 
• ultrasonically in ethyl acetate for 15 minutes at room temperature, 
• ultrasonically in acetone for 15 minutes at room temperature. 

 
After this operation the bonding surfaces are free from organic contaminations. However, the 
topography and the hydroxide/oxide layer on the surfaces are undefined and may vary from 
plate to plate. Besides, preliminary tests have shown that adhesion is weak between the poly-
urethane adhesive and stainless-steel plates without surface treatment. 
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Therefore, the steel plates are then electropolished to get a defined and reproducible bonding 
surface state and to achieve a better adhesion between the adhesive and the substrate. 
 
Electropolishing is an anodic treatment removing a thin layer from the metal surface through a 
series of electrochemical reactions.  
 
The electrodes are immersed in an electrolyte consisting of concentrated acid solutions having 
a high viscosity. The stainless steel plates to treat serve as the anode: metal on the surface is 
oxidised and dissolved into the electrolyte while a reduction reaction occurs at the cathode 
producing hydrogen - Figure 3-22.  
 

 

Figure 3-22: Electropolishing principle [135] 

 
Although the exact mechanisms are not fully understood yet, following reactions are described 
for the two main components of the stainless steel [136, 137]: 
 

Anode surface (sample)  Electrolyte  Cathode surface 

Fe  Fe3+  Fe2+ 

Cr  Cr6+  Cr3+ 

 
After electropolishing, the treated parts are thoroughly rinsed with water and passivated with 
an aqueous nitric acid solution with a concentration of 20 wt.% for 2-3 minutes at room tem-
perature. It results in the formation of a new and thin oxide layer which has an even thickness 
and rich of chromium oxide [136]. Therefore, electropolished stainless steel parts exhibit a 
better corrosion resistance [136, 138-141]. 
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The involved mechanisms or reactions as well as the final surface condition after treatment 
depend on many parameters such as: 
 

• Initial surface condition of the samples 
• Type of electrode and electrolyte 
• Temperature of the electrolyte 
• Stirring conditions during the treatment 
• Current density which is inversely proportional to the processing time [142] 
• Size of the installation: the distance between the electrodes should be big enough to 

not obstruct the gassing and the mass transfer [138, 142]. 
 
Further information about the influence of these parameters is detailed in [135, 136, 138-140, 
142-150]. 
 
Based on parameters found in [136], the selected electropolishing parameters for the treatment 
of the stainless steel plates in this work have been adapted to the experimental set-up presented 
in Figure 3-23: 
 

• Electrolyte: 50 vol% of 95 wt.% sulphuric acid and 50 vol% of 85 wt.% of orthophos-
phoric acid 

• Cathodes consist of the same stainless-steel grade as the samples 
• The electrolyte is tempered between 30 °C and 40 °C and stirred 
• Current density: 12.4 A . dm-2 
• Processing time: 1 hour 
• Anode-cathode distance: 2 cm 
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Figure 3-23: Experimental set-up for electropolishing of the stainless steel substrates [135] 

 
After the electropolishing process, the samples are thoroughly washed with distilled water to 
remove the rests of the acid mixture (electrolyte). Remaining metal salts are eliminated from 
the surfaces using an aqueous nitric acid solution with a concentration of 20 wt.% for 2-
3 minutes at room temperature. With this relatively low concentration, the nitric acid dissolves 
the metal salts without etching the metal and contributes to the passivation of the stainless 
steel [143, 145, 148, 150]. Then the samples are rinsed with distilled water once again and 
dried. The resulting surface condition is designated in the rest of this work as electropolished 
surface. 
 
Once the treatment is completed, the effect of the treatment is clearly visible as depicted in 
Figure 3-24: the apparent lines on the right picture indicate hardening from the rolling process 
during the manufacturing of the stainless steel. 
 

Cathode 

Anode 
(samples) 
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Figure 3-24: Picture of a stainless steel substrate before (left) and after (right) the electropolishing 

process [135] 

 
White light interferometer (WLI) and scanning electron microscope (SEM) are used to charac-
terise the topography of the bonding surfaces. The effect of the surface treatment is evidenced 
by comparing surfaces which have been solely treated with solvents (reference) to those after 
electropolishing. 
 

   
Figure 3-25: Topography of a bonding surface measured by WLI before (left) and after elec-

tropolishing (right) [135] 

 
Figure 3-25 shows that the reference surface is smoother than the electropolished one which 
exhibits small craters (in blue). Cavities and scratches due to the rolling process or the me-
chanical polishing are microscopically easy to identify on the reference surface (Figure 3-25, 
left) whereas the surface after electropolishing does seem to have a preferential orientation 
(Figure 3-25, right). The arithmetic average roughness Ra and the root mean squared 
roughness Rq are averaged for 5 height profiles. The results in Table 3-4 confirm that the 
bonding surfaces are rougher after the “electropolishing” operation, contrary to what the name 
implies.  
 
Table 3-4: Average roughness parameters using WLI (corresponding to Figure 3-25) before (ref-

erence) and after electropolishing 

 Reference After electropolishing 
Ra 0.04 ± 0.01 µm 0.1 ± 0.01 µm 
Rq 0.05 ± 0.01 µm 0.13 ± 0.02 µm 

Before After 
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The bonding surfaces have been also investigated with scanning electron microscopy (SEM). 
The secondary electron (SE) imaging provides information on the topography of the sample 
(Figure 3-26, right). The backscattered electrons (BE) detect contrast between areas with dif-
ferent chemical compositions: elements with a high atomic number backscatter electrons more 
strongly than lighter elements and thus appear brighter in the image (Figure 3-26, left). BE 
imaging is also used to determine the grain orientation of the sample. 
 

 
Figure 3-26: Backscattered electron (BE) imaging – grain orientation (left) and secondary electron 

(SE) imaging – topography (right) of the bonding surface before (top) and after elec-
tropolishing (bottom) obtained by SEM (magnification: 2000x) [135] 

 
The reference surface (Figure 3-26, top) exhibits again scratches and cavities probably due to 
the manufacturing process. The electropolished sample (Figure 3-26, bottom) has a typical 
pitted surface but no evidence of mechanically-induced surface defects. 
 
A further feature of the SEM used for these investigations is the energy-dispersive X-ray spec-
troscopy (EDX) to analyse the chemical composition of the sample. However, the depth of 
information of EDX is much greater than the thickness of the electropolished surface and no 
significant difference can be identified between the reference and the electropolished sample. 
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The “electropolished” stainless steel plates are slightly rougher after the treatment and their 
bonding surfaces are cleaner and well-defined than in their original state. Hence the aim of the 
surface treatment for this work is achieved and the substrates can be bonded. 
 
Bonding 
 
For the bonding of the stainless-steel substrates, jigs have been designed to hold the stainless-
steel plates in place. Between the two substrates, PTFE spacers are used to adjust the bond line 
thickness and PFTE films are used to prevent the substrate from sticking to the jigs (Figure 
3-27).  

 

Figure 3-27: Bonding jigs for stainless steel substrates [135] 

 
For these samples, the spacers are also used to seal and to adjust the length of the bonding gap. 
It is thus necessary to exactly predetermine the size of the spacers to have a bond length of 
100 mm. This is achieved by cutting them by means of a hollow punch, designed for this pur-
pose - Figure 3-28. 
 

 

Figure 3-28: Hollow punch for cutting the PTFE spacers [135] 

 
On the bottom side of the assembly, the gap between the bonding surfaces is sealed with adhe-
sive tape. The rest of the bonding process is exactly the same as the one for the PU-AlMg3 

PTFE spacer 

Stainless steel substrates 
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samples (see page 77). The resulting samples have an adhesive surface of 100 x 20 mm² as for 
the PU-AlMg3 samples. As a reminder, the dimensions of the steel plates are: 
130 x 20 x 2 mm.  
 
Figure 3-29 depicts a PU-stainless steel specimen ready to be mounted in the testing jig as 
presented in Figure 3-31. 
 

 

Figure 3-29: PU-stainless steel shear specimen [135] 

 
Mechanical testing 
 
Testing jigs have also been designed and manufactured to be able to test the PU-stainless steel 
specimens using the same experimental set-ups as for the PU-AlMg3 adhesive joints (Figure 
3-30). The stainless-steel plates are mounted in the testing jig only after the bonding operation. 
The design of the test jig is directly inspired from the specimen geometry of the PU-AlMg3 
adhesive joints and can be used in all experimental set-ups described in section 3.3. The adhe-
sive joint is inserted in the slots of the testing jig and is held securely in place by a stop 
screwed to the rest of the jig as illustrated in Figure 3-31. 
  

Substrates PU-adhesive 



3. Experimental approach 

86 
Dissertation Ludovic Krogh 

 

 

Figure 3-30: Testing jigs for PU-stainless steel adhesive joints 

 

 

Figure 3-31: Geometry of the PU-stainless steel shear specimen (in dark blue) with the adhesive 
bond line (in yellow) mounted in a testing jig made of AlMg3 (in grey) 

 

3.2.2.3. Shear stress distribution in polyurethane-metal adhesive joints 
 
In order to minimise the edge effects or any inhomogeneity in the stress and deformation dis-
tribution in the adhesive layer during the shear tests, the geometry of the specimens has been 
designed by means of finite element analysis [1]. These considerations proved that the shear 
stress along the substrate surface deforms the polymer part without significant deformation of 
the substrates as well [1, 72]. The selected geometry for the both types of specimen is 100 mm 

Stop 
Slot 
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long and 20 mm wide, resulting in a relatively large bonding surface of 2000 mm² in compari-
son to the usual standards [151-153].  
 
A crude consideration of the stress distribution in the adhesive layer within the bonded joints 
is also made using the linear elastic analysis suggested by Volkersen [154]. It is assumed that 
the adhesive layer deforms only in simple shear while the adherend deforms elastically only in 
tension. For the case of adherends of equal thickness, the adhesive shear stress distribution 

( )12

12,mean

T x
T

 along the length l of the adhesive joint is given by [155]: 
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where 
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and M is the adhesive shear modulus, l the length of the joint, E the substrate Young’s modu-
lus, ds the thickness of the substrate and dP the adhesive thickness. 12,meanT  is the averaged ap-

plied shear stress to the joint and ( )12T x  the shear stress at position x along the length of the 

joint (
2 2
l lx−

≤ ≤ ). 

Figure 3-32 and Figure 3-33 show the calculated shear stress distribution respectively in PU-
AlMg3 and PU-stainless steel adhesive joints during a shear test at constant shear rate 

2 14 10d dt sγ − −= ⋅  at different temperatures. The x-axis corresponds to the variable position along 
the length l = 100 mm of the adhesive joint. The chosen adhesive thickness, temperatures and 
shear rate for these calculations correspond to the extreme experimental parameters used in 
this work. The stiffer the adhesive layer, the worse shear stress distribution in the adhesive 
joint is expected. That is why the calculations are performed with the fastest shear rate and the 
lowest temperatures used for the mechanical characterisation of the corresponding adhesive 
joints in this work. The corresponding experimental values for M, obtained by isothermal 
shear stress at constant shear rate, have been considered. 
In all cases, the maximum shear stress occurs at the end of the joints. For a given adhesive 
thickness, the lower the temperature, the less homogeneous is the shear stress distribution in 
the adhesive joint. Thin adhesive joints exhibit more heterogeneous shear stress distribution 
than thicker ones.  
For a PU-AlMg3 adhesive joint with dP = 2000 µm (Figure 3-32, left), the maximal variation 
in the shear stress distribution is about 0.3 % at 0 °C whereas it reaches about 6 % for a thin 
adhesive joint at 10 °C (Figure 3-32, right). The Volkersen's analysis shows a quite homoge-
neous stress distribution in PU-AlMg3 adhesive joints for the experimental parameters. 
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Figure 3-32: Calculation of the shear stress distribution in two different PU-AlMg3 adhesive joints 
with an adhesive thickness dP ≈ 2000 µm (left) and dP ≈ 137 µm (right) during a shear 
test at constant shear rate 2 14 10d dt sγ − −= ⋅  at different temperatures 

 
For comparable values of the adhesive thickness dP and temperature, PU-stainless steel adhe-
sive joints exhibit a less homogeneous shear stress distribution than PU-AlMg3 joints - Figure 
3-33. A maximal shear stress variation of circa 3 % is calculated for a thick PU-stainless steel 
adhesive joint at 0 °C (Figure 3-33, left). For a thin one, the maximal variation is about 43 % 
at 10 °C and decreases to circa 12 % at 15 °C. The higher calculated values of the shear stress 
variation in the PU-stainless steel adhesive joints are due to the smaller thickness of the steel 
substrates.  
To prevent any plastic deformations caused by the inhomogeneity in the stress and defor-
mation distribution in the adhesive joints during their mechanical characterisation, the maxi-
mal calculated shear stress magnitude is taken into account to determine the upper limits of 
shear deformation and stress as discussed in section 3.4.2.5. 
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Figure 3-33: Calculation of the shear stress distribution in two different PU-stainless steel adhesive 
joints with an adhesive thickness dP ≈ 2000 µm (left) and dP ≈ 160 µm (right) during a 
shear test at constant shear rate 2 14 10d dt sγ − −= ⋅  at different temperatures. 
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3.3. Experimental set-ups  
 
The strong influence of temperature on the mechanical behaviour of polymers is mentioned in 
chapter 2.1. In addition, mechanical testing of polymers, especially in their glass transition 
region or in their glassy state, requires high sensitivity of force and deformation measurement. 
These are the requirements for an accurate and reliable characterisation of the mechanical 
properties of polymers. For these reasons, experimental set-ups have been designed and/or 
adapted for the investigations presented in this work.  
 

 Tensile testing device for bulk samples 3.3.1.
 
The tensile tests presented in this work are performed with a custom-made high precision de-
vice consisting in two high-precision linear positioners (x.act LT 150-1 ST, LINOS / Qioptiq), 
a force sensor (KD24s, ME-Meßsysteme GmbH), a high-resolution CCD camera (XCD-
SX910, Sony) and a custom-made temperature control system, positions 1, 2 , 3 and 4 in Fig-
ure 3-35, respectively. The sample (see Figure 3-12, page 70) marked with a dark pattern is 
clamped between the two linear positioners. The central part of the specimen is temperature-
controlled in an insulated chamber – Figure 3-36. This chamber is continuously purged with 
cold nitrogen gas resulting from the evaporation of liquid nitrogen (T = -195.79 °C) while a 
heating wire heats the chamber atmosphere. The chamber temperature is then controlled by 
adapting the nitrogen gas flow and the power supply of the heating wire. This system runs 
automatically using a proportional–integral–derivative controller implemented in LabVIEW® 
(NI Vision Development Systems®). The temperature sensor measures and controls the tem-
perature of the chamber atmosphere close to the dark pattern on the sample. Isothermal tensile 
tests with different tempering times show that no difference can be identified in the stress-
strain curves (not shown) after 5-7 minutes at the measuring temperature. This result indicates 
that the thermal equilibrium in the tempered part of the sample is achieved. Considering a 
safety margin, isothermal tensile tests are performed 15 minutes after reaching the measuring 
temperature. 
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Figure 3-34: Temperature as a function of time in the sample cell of the tensile testing device over 

time for different set temperatures: 70 °C (left) and 50 °C (right) 
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The sample cell allows performing isothermal tensile tests in a temperature range from -40 °C 
to 80 °C with a stability of ± 0.05 K – Figure 3-34. 
 
The CCD camera monitors contact-free and locally the two-dimensional pattern deformation 
(in e1 and e2 directions) in response of the synchronised driving of the two linear positioners –
 Figure 3-37. During a tensile test, both linear positioners move with the same displacement 
amplitude and the same constant travel speed. Each positioner has a linear travel range of 
150 mm. According to the manufacturer’s specifications, the tables have a positioning accura-
cy of 0.5 µm with a reproducibility of 0.5 µm. The force sensor has a nominal force range of 
±20 N with an accuracy < 0.1 %.  
 
The temperature control, the image capture and analysis as well as the control of the linear 
positioners (position and speed) have been programmed using LabVIEW®. The custom-made 
temperature control systems used in this work have been designed and built by Mr. Peter Kohl. 
 

 

Figure 3-35: Custom-made high precision tensile testing device:  linear table, force sensor, 
 high-resolution CCD camera and  temperature control system 

 

     

Figure 3-36: Clamping and mounting of a tensile specimen in the testing device:  temperature 
control system consisting of an insulated chamber with an illumination system of the 
sample, temperature sensor as well as heating and cooling system;  clamp 
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Figure 3-37: Monitoring of the pattern deformation by the CCD camera: from left to right, start of 
the measurement until fracture of the specimen 

 

 Creep testing machine for adhesive joints 3.3.2.
 
Isothermal creep tests at constant shear stress have been performed with a custom-made creep 
testing device consisting of a steel frame, a force sensor (KD9363s ME-Meßsysteme GmbH), 
an incremental length gauge (MT 1281, HEIDENHAIN GmbH), temperature sensors (Pt 100) 
and thermostatic devices for heating/cooling of the sample and different sensors – Figure 3-38. 
 

    

Figure 3-38: Creep testing machine (left) and close up view on the sample chamber (right)  

 
This testing machine has been exclusively designed for creep experiments. Its operating prin-
ciple is relatively basic: a weight is attached to the sample exerting a constant shear stress 
(about 178000 Pa; Figure 3-41) due to the gravitational force. A height-adjustable platform is 
used for the loading and unloading of the sample. 
  

e1 
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The sample is placed in an insulated chamber and connected to the cooling and heating sys-
tems. To control the sample temperature, two thermocouples, placed in each halve near the 
bonding surface control the heating/cooling system. Cold gaseous nitrogen (evaporated liquid 
nitrogen) flows continuously with a variable rate (always > 0 l / s) through the cooling chan-
nels of the sample while the heating system heats the two halves independently for a better 
temperature control. Therefore, the measurements are performed in a nitrogen atmosphere. 
Sample temperatures and thus the heating and cooling powers are permanently controlled by a 
PID controller implemented in a LabVIEW® program. The heating systems used in this work 
operate using the heat generated by NPN transistors. The short times of response of the tran-
sistors allow controlling the sample temperature accurately. With these self-made devices, the 
experimental sample temperature range is -100 °C to +100 °C with fluctuations of 
± 0.1 K (Figure 3-39 in red and black). 
 
An incremental length gauge is installed on the back of the sample and is thermally isolated 
from the sample. This sensor measures the displacement between the two substrates and has a 
measuring range of 12 mm with an accuracy of ± 0.2 µm.  
 
A special feature of creep tests is the long measuring time, especially at low temperatures and 
high adhesive thickness, dP – Table 3-5. Therefore, the measuring and control systems must 
work in a stable way over a long period of time. The values given in Table 3-5 are estimated 
times on the basis of the experiments and can vary from test to test. A creep test is completed 
when the shear deformation has reached a plateau. 
 
Table 3-5: Approximate creep test duration at different temperatures for PU-AlMg3 adhesive 

thickness with dP ≈ 200 µm and 2000 µm. 

 
 
Observations made during the creep experiments have shown that any temperature variation in 
the environment of the force and displacement sensors generates signal drifts. An accurate 
measurement of the shear deformation and force are key factors for the isothermal creep tests 
performed in this work. Consequently, the length gauge has been housed in an insulated 
chamber which is equipped with a temperature control device. The temperature of the length 
gauge is controlled by a PID controller implemented in a LabVIEW® program at 
30 °C ± 0.4 K, within its operating temperature range [156]. The electronic interface for the 
displacement transducer (EIB 741, HEIDENHAIN GmbH) is also influenced by the room 
temperature variation in the laboratory and has been housed in an insulated chamber as well. 
Here the heat generated by the electronic components is enough to heat the chamber at 
32.5 °C ± 0.5 K without any extra temperature control system. Figure 3-39 illustrates the regu-
lating accuracy and stability of the whole temperature control system for a creep test at 15 °C.  
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Figure 3-39: Thermal stability of the experimental set-up: sample (red and black), length gauge 
(blue) and electronic interface (magenta) temperatures as a function of time during a 
creep test at 15 °C 

 
To reduce the heat transfer between the thermostated specimen and the structure of the ma-
chine as well as the length gauge, ceramic insulators are used as depicted in Figure 3-40. 
These insulators have a high stiffness and therefore do not affect the mechanical characterisa-
tion of the adhesive joint. 
 

 

Figure 3-40: Schematic representation of the sample chamber with the ceramic insulators 

 
During creep tests, the force sensor does not play such a significant role as the length gauge 
because the shear stress results from the gravitational force and thus remains constant. Never-
theless, the force sensor is housed in an insulated box and is used to check in real time the ap-
plied load to the sample. Thanks to that, if the weight guiding system gets stuck or something 
disturbs the load of the sample, it can be directly detected, and a new test can be started. The 
force sensor has a nominal force range of ±10 kN with an accuracy < 0.1 %. 
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Before starting a creep experiment, it is necessary to wait until all devices have reached their 
operating temperatures to ensure accurate measurements: 15 minutes after reaching the set 
temperatures guarantee thermal equilibrium in the devices and thus the stability of the whole 
system. Moreover, the sample has to be relaxed before each creep test to release the potential 
residual stresses in the samples that are arisen from preparation or from previous mechanical 
tests (cf. section 3.4). In addition, after the installation of the sample in the creep testing ma-
chine, it is recommended to load and unload 5 times consecutively at the relaxation tempera-
ture to be sure that all devices are firmly in place. Experience shows that more accurate and 
reproducible results can thereby be obtained [157, 158]. 
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Figure 3-41: Creep tests: loading of a sample at different temperatures; shear stress T12 as a function 

of time 

 
Figure 3-41 shows that the constant shear stress T12, required for a creep test, is not instantly 
applied to the sample: from few tens of a second to few seconds are necessary to reach the 
constant stress. This delay has been considered for the subsequent calculations using the re-
sults from creep experiments (see section 2.4).  
Nevertheless, the loading stage of the sample and the constant stress load are reproducible. 
The experimental data confirm that the loading stage can be approximated by a linear function. 
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 Universal testing machine 3.3.3.
 
A universal testing machine Kappa 20DS [159], manufactured by Messphysik Materials Test-
ing GmbH, is used to perform shear tests, stress relaxation tests and creep tests on poly-
urethane-metal adhesive joints.  
As shown in Figure 3-42, the testing machine is equipped with: 
 

• a load frame with double lead-screw drive and precision guidance provided via 4 steel 
columns (accuracy of travel measurement is ±7.1 nm and position accuracy < 2 µm) 
[160] 

• a large crosshead travel of about 1000 mm (without sample fixation system) 
• constant moving crosshead speed accuracy of ± 0.1 % of specified speed in a meas-

urement range from 1 µm / h to 6·106 µm / h 
• load cell with a nominal force range of ±20 kN with a maximum display deviation of 

1 % of the measured value  
• a set of compression plates 
• an optical deformation measurement system (video extensometer VideoXtens®): a vid-

eo camera detects the light-to-dark transitions applied on the specimen surface and 
tracks these during deformation. 

 

 

Figure 3-42: Setup of the universal testing machine Kappa 20DS 
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The machine can operate from 10 °C to 35 °C but temperature variations higher than 1 K 
should be avoided during the test to exclude the influence of the thermal expansion of the load 
frame [160]. Therefore, the room in which the testing machines are located has been equipped 
with an air conditioning and heating system to attenuate variations in the room temperature. 
Figure 3-43 depicts the evolution of the room temperature over 87 hours with maximal fluctu-
ations smaller than ± 0.5 K. 
  

 

Figure 3-43: Room temperature control over 87 hours 

  

Stress relaxation tests require a good stability of the force signal. For this reason, the load cell 
has been housed in an insulated box which is actively heated at 30 °C ± 0.4 K – Figure 3-44. 
The heating system is based on the same principle as for the gauge length temperature control 
described in section 3.3.2. Since the load cell is directly attached to the load frame, this latter 
is also heated slightly above room temperature. However, as a result of the relatively high 
thermal inertia of the system, it takes longer to heat up to the set temperature. 
 

 

Figure 3-44: Upgrading of the universal testing machine for isothermal mechanical tests 
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As for the creep testing machine, the sample is housed in a self-made Styrofoam box with a 
Plexiglas window. The sample box is continuously flowed with gaseous nitrogen issued from 
the cooling system. A similar temperature control system, implemented in LabVIEW®, is used 
for the tempering of the specimen. Hence the temperature range and accuracy are comparable 
to those of the creep testing machine presented in section 3.3.2. 
 
To avoid the heat transfer between the thermostated sample and the structure of the machine, 
ceramic parts are used. These insulators have a high stiffness and therefore do not influence 
the mechanical characterisation of the adhesive joint – Figure 3-44, right. 
 
A video camera monitors the displacement of marks applied on the sample: Metal plates 
marked with a black and white pattern are attached to each substrate in a line so that the dis-
placement of the substrates during the mechanical test corresponds to the one of the marks. 
The video camera, used as an extensometer, detects the light-to-dark transitions on the marks 
and tracks these during deformation. For a better measuring accuracy, it is important that the 
marks are always in the same focal plane which has been used for the calibration of the cam-
era. Therefore, the position of the sample on the lower compression plate is marked during the 
calibration. The position of the sample on the compression plate is thus determined and always 
the same for all the tests. The video extensometer provides non-contact, high-resolution meas-
urement of deformations in real time and is also suitable for recording transverse strain. The 
video camera has a theoretical resolution of 270 nm [161].  
 
Further benefits of the video extensometer in comparison to length gauges are: 
 

• more precise results because they do not influence the test specimen 
• more consistent results regardless of operator due to more reproducible positioning of 

the sample 
• wide application range because it can be used with environmental chambers over a 

broad temperature range without need to temper the extensometer 
• large measuring range up to sample failure. 

 
Once all the devices and the sample are mounted, tempered and calibrated, the universal test-
ing machine can be used to perform: 
 

• shear test at constant shear rate 
• stress relaxation experiment at constant shear deformation 
• creep experiment at constant shear stress (in this work, only to verify and validate the 

data obtained with the creep testing machine presented in the section 3.3.2). 
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Shear test at constant shear rate 
 
A constant effective shear rate effγ  is achieved by controlling the velocity of displacement of 

the substrates u , given by the marks, with the video extensometer. The relation between those 
rates is given by: 
 eff Pu dγ= ⋅   (3.5) 

where dP is the adhesive thickness. 
 
After each measurement, the effective shear rate is verified as illustrated in Figure 3-45. At the 
beginning of the test, the video extensometer needs a few seconds to control the deformation 
rate. Hence the effective shear rate is not constant in this short period of time. Only the data 
measured with a constant shear rate are analysed. 
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Figure 3-45: Verification of the effective shear rate effγ  

 
In this example, there is a satisfactory discrepancy of less than 1 % between the nominal effec-
tive shear rate (4∙10-3 s-1) and the measured one (4.01∙10-3 s-1). If the experimental effective 
shear rate deviates from the nominal one by a few per cent, the experiment must be repeated. 
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Stress relaxation test at constant shear deformation 
 
As for a shear test at constant shear rate, the video extensometer controls the constant sample 
strain u  during the stress relaxation test. The sample displacement in the strained state ( )u t , 
measured through the displacement of the marks on the specimen, is proportional to the effec-
tive shear strain ( )eff tγ  of the adhesive layer: 

 
( )( )eff
P

u tt
d

γ =   (3.6) 

At the beginning of the test, the sample is deformed until reaching a constant effective shear 
deformation of about 0.1 which is small enough to avoid any plastic strain of the sample (and 
to stay in the linear viscoelastic region of the adhesive – see chapter 3.4). 
 

Figure 3-46 depicts the evolution of the effective shear deformation during a stress relaxation 
test at 15 °C. In this temperature region, the adhesive is strongly viscoelastic, and any varia-
tion of the deformation affects significantly the resulting stress response. Hence a maximal 
force of 1300 N is chosen as abort criterion for the relaxation tests to avoid any damage of the 
sample.  
 

The response time of the strain control system results in overshooting the set value for the ef-
fective shear strain as shown in Figure 3-46. This additional loading and unloading phase of 
the sample influences directly the adhesive dynamics and so, they must be considered for the 
evaluation of the results. Shear strain stays constant after t0 ≈ 30 s in this test. 
 

If the threshold of 1300 N is reached during the loading of the sample or if the overshoot of 
the strain plateau is too high, the experiment must be repeated with a reduced strain rate to 
reach the deformation plateau. However, this leads to a significant increase in the duration of 
the loading stage, t0, resulting in a loss of information for the calculation of relaxation time 
spectra for instance. Therefore, a compromise between the amount of data (ideally, t0 tends 
to 0) and their accuracy (ideally, without overshooting in γeff) must be found, limiting the in-
formation of stress relaxation tests. 
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Figure 3-46: Stress relaxation test at constant shear deformation – evolution of the effective shear 

deformation  
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Creep test at constant shear stress 
 
For the creep tests, the force sensor controls the positioning of the load frame, i. e. the strain of 
the sample, to have a constant effective shear stress in the adhesive joint. The set value for the 
constant shear force is 350 N corresponding to a shear stress of 0.175 MPa, which is compara-
ble to those used in the creep testing machine described in the section 3.3.2. 
 
Similarly to stress relaxation tests, a compromise between a short loading stage and a minimal 
force overshooting has to be made. 
 
Figure 3-47 illustrates the evolution of the shear stress T12 during the loading stage of the sam-
ple. The time to reach the plateau, t0 ≈ 3 s, is shorter than for the relaxation tests (Figure 3-46) 
but longer than with the creep testing machine (Figure 3-41). An overshooting of the plateau 
value during the loading stage cannot be avoided completely and should therefore be consid-
ered for the analysis of the results. 
 

10-3 10-2 10-1 100 101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

T 12
 [M

P
a]

t [s]

t0

PU-AlMg3
dP= 1493 ± 13 µm
T = 15 °C
t0 = 3,29 s

 
Figure 3-47: Creep test at constant shear stress – evolution of the shear stress T12 

 
In view of the limitations encountered by performing stress relaxation and creep tests, the re-
sults, obtained with the universal testing machine, were almost only used for the determination 
of the relaxed properties ( ,effG ∞  and ,effJ ∞ ). The latter do actually not dependent on the load 

conditions in contrast to the evolution of 12T  and effγ  as well as the corresponding relaxa-

tion/retardation time spectra. 
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3.4. Preliminary tests 
 
To characterise the properties of adhesive joints, experiments require well-defined, accurate 
and reproducible conditions. Tests are performed to detect the possible effects which could 
disturb or corrupt the analysis of the results. 
 

 Stability of the polyurethane adhesive 3.4.1.
 

3.4.1.1. Thermal stability of the polyurethane adhesive 
 
The characterisation of the thermomechanical behaviour of the adhesive requires measure-
ments at different temperatures. It is thus necessary to determine the thermal stability of the 
polyurethane. For this purpose, thermogravimetric analysis (TGA) is performed. TGA or 
thermogravimetry (TG) is the technique of thermal analysis which monitors continuously the 
mass10 of a substance as a function of temperature (or time) as the substance is exposed to a 
controlled temperature program in a specified atmosphere [163]. Not all thermal events cause 
a change in the mass of the sample (for example melting, crystallisation or glass transition), 
but there are some very important physical and chemical phenomena which include desorp-
tion, absorption, sublimation, vaporisation, oxidation, reduction and decomposition.  
 
The basic instrumental requirements for thermogravimetric analysis are a precision balance 
and a furnace which is programmed for a controlled evolution of the temperature with time. 
 
Since the TG investigations are carried out under a gas atmosphere, the sample mass measured 
by the precision balance, balancem , is also subject to buoyancy, i.e. 

 balance sample gas sample

balance sample gas sample

m g m g V g
m m V

ρ

ρ

⋅ = ⋅ − ⋅ ⋅

= − ⋅
  (3.7) 

Provided that the thermobalance is sensitive enough, the TG measurement balancem  thus reacts 

not only to the change of samplem  (due to the above mentioned effects) but also to the change of 

the sample volume sampleV  due to thermal expansion and all changes of state where sampleρ  

changes, such as melting, crystallisation and glass transition. 
 
In this work, TGA is used to evaluate the thermo-oxidative stability of the cured bulk adhe-
sive. The measurements are carried out with the TGA Q5000 IR from TA Instruments (New 
Castle, DE, USA) in a temperature range of 35–200 °C at a heating rate of 10 K/min under 
dried air. The result is shown in Figure 3-48. The polyurethane bulk adhesive exhibits a ther-
                                                 
 
10 The International Union of Pure and Applied Chemistry (IUPAC) and the International Confederation of 
Thermal Analysis and Calorimetry (ICTAC) have determined that the property measured by TGA should be 
referred to as “mass” and not as “weight.” [162] 
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mal stability up to about 225 °C (ca. 500 K). In this temperature region, balancem  does not re-

main constant, but small mass changes occurs because ( )sampleV T  grows and, in the opposite 

direction, ( )gas tρ  decreases. Whether, gas sampleVρ ⋅  grows or decreases with T depends of 

course on which factor dominates. 
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Figure 3-48: Thermo-oxidative stability of PU8020 measured with thermogravimetric analysis 

(TGA) during heating with 10 K/min in dried air atmosphere: weight loss (in red) and 
its first derivative (in blue). 

 

3.4.1.2.  Stability of the polyurethane bulk properties over time 
 
To determine the adhesive properties, it is essential that they do not change during or between 
the experiments, as some mechanical tests take several days to be performed. Physical proper-
ties of polyurethane can be affected by moisture absorption [164]. To avoid it, all measure-
ments presented in this work are performed in a nitrogen atmosphere. In addition, when the 
samples are not being tested, they are stored in a glove box, purged with dried air.  
 
Differential scanning calorimetry measurements are performed to ensure the stability of the 
caloric properties of the adhesive over the time. The basic principles of this investigation 
method can be found in chapter 5.3. Figure 3-49 shows that the glass transition temperature Tg 
and the upper half width of the glass transition (ΔT = Tg,e - Tg) remain unchanged within the 
experimental deviation (± 1 K) over 138 days. Data derived from DSC 1st heating runs of 
3 samples with Tstart = -50 °C, T  = +10 K/min, Tstart = 120 °C; same samples at each storage 
time. 
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Figure 3-49: Stability of the caloric glass transition of the polyurethane bulk adhesive over storage 

time: Tg glass transition temperature (left, in red) and Tg,e temperature of the end of the 
glass transition (left, in blue) and the upper half width of the glass transition ΔT (right, 
in grey). 

 
In the same way, the stability of the mechanical properties of the bulk adhesive is checked by 
isothermal tensile tests. No modification of the shear modulus of the polyurethane adhesive 
µbulk could be identified within 492 days after its preparation – see Figure 3-50. 
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Figure 3-50: Stability over 492 days of the shear modulus of the polyurethane adhesive µbulk meas-

ured by tensile tests at 25 °C with a crosshead speed of 0.01 mm/s. 

 
Under the experimental conditions used in this work, no modification of the physical proper-
ties of the bulk adhesive was detected during the whole testing period. Consequently, varia-
tions in the mechanical properties of the adhesive joints do not result from ageing effects of 
the adhesive bulk but reveal a change in the intrinsic properties of the adhesive layer caused by 
the influence of the substrate. 
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 Verifications for the mechanical testing 3.4.2.
 
Prior to detection of possible interphases in adhesive joints, some preliminary tests are neces-
sary to ensure the accuracy and reliability of the mechanical measurements. Adhesive joints 
are tested several times by means of two different set-ups at different temperatures. 
 

3.4.2.1. Verification of the displacement measuring devices 
 
Preliminary experiments have shown that the signal from the original linear variable dis-
placement transducer (LVDT) was not stable and accurate enough to measure the thermome-
chanical properties of polymers despite of the controlled measurement conditions discussed in 
the previous chapter [158, 165]. To ensure the consistency of the results between the set-ups, 
the performance of the both length gauges, which are used in this work, is checked: the dis-
placement of the two halves of a PU-AlMg3 adhesive joint (dP = 993 µm) is measured simul-
taneously with the incremental length gauge of the creep testing machine and the video exten-
someter of the universal testing machine. The sample is mounted in the universal testing ma-
chine and tested with a constant crosshead speed of 40 µm / min at 25 °C. The results are 
shown in Figure 3-51. 
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Figure 3-51: Verification of the performance of the different length gauges (blue curve nearly over-

laps the blue one) 

 
The video extensometer measures a travel speed of 39.44 µm/min whereas the incremental 
length gauge 40.03 µm/min. This represents deviations of 1.4 % and 0.76 %, respectively, 
which are within the experimental tolerance limit. 
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3.4.2.2. Sample conditioning 
 
In this work, the same adhesive joint must be mechanically characterised many times in differ-
ent experimental set-ups at different temperatures. Because of the viscoelastic nature of the 
polyurethane adhesive, mechanical stresses and strains resulting from the mechanical test may 
take a while to relax, depending on the previous measuring temperature and deformation rate. 
However, a well-defined initial state of the sample is necessary for comparing the results. To 
reset the mechanical history of the adhesive joint between two experiments, the samples are 
heated up to the entropy elastic state where the relaxation processes take place very fast. The 
conditioning time necessary to reach the initial mechanical state is investigated as shown in 
Figure 3-52. Shear tests are carried out at a measuring temperature of 15 °C. The sample is 
then viscoelastic and the induced stresses are not relaxed right after the experiment. Directly 
after this first test, a further shear test is carried out at 15 °C without any waiting time. The 
resulting shear modulus seems to be 0.05 MPa higher than the initial one. Of course, this is an 
artefact caused by the residual stresses from the initial measurement. Subsequently, the sample 
is heated to 50 °C and after different conditioning times (0; 5; 10; 15 or 20 min), the sample is 
cooled down to 15 °C with 0.5T ≈ −  K·min-1 and shear tests are carried out again.  
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Figure 3-52: Influence of the conditioning time after the 1st test on the effective dynamic shear 

modulus effM  for a PU-AlMg3 adhesive joint with dP = 993 µm 

 
Figure 3-52 illustrates that right after reaching 50 °C, the shear modulus is not influenced by 
the residual stresses in the sample anymore. In this work, samples are heated to 50 °C between 
each mechanical test (tensile, shear, creep and stress relaxation test) for 15 min in order to en-
sure that the internal stresses caused by the prior investigation are completely removed. As a 
consequence of these results, the samples are also conditioned after their preparation to relieve 
the internal stresses – at least partially – resulting from the adhesive crosslinking. 
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3.4.2.3. Influence of the mounting of the sample 
 
Considering the relatively complex mounting of the sample in the experimental set-ups, shear 
tests at constant shear rate are performed with the same sample for repeated mounting. The 
orientation or arrangement of the different parts could namely influence the measurements. 
Figure 3-53 illustrates that carefully reproduced sample mounting causes a maximal error of 
0.7 % in the determination of the shear modulus. 
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Figure 3-53: Effective hyperelastic shear modulus µeff of a PU-ALMg3 adhesive joint with 
dP = 591 µm at 50 °C and a shear rate of 4∙10-3 s-1 for five sample mountings 

 
For a given mounting of the sample, the reproducibility of the shear modulus has also a devia-
tion of about 0.7 % as shown in Figure 3-54. Therefore, the mounting of the sample in the ex-
perimental set-ups does not influence the measurement and a good reproducibility of the re-
sults is provided. 
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Figure 3-54: Reproducibility of the effective shear modulus measurements for a given sample 
mounting  
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3.4.2.4. Influence of the tempering rate during mechanical tests 
 
By cooling the sample to perform measurements at low temperature, relaxation processes slow 
down. As a result, non-equilibrium molecular dynamics in the adhesive are created and can 
corrupt the characterisation of the mechanical behaviour of the bonded joint.  
 
To determine the influence of the cooling rate on the mechanical tests, shear tests are per-
formed after treating the sample with different cooling rates. The cooling rate range of the ex-
perimental set-ups is relatively narrow because of the considerable dimensions of the speci-
mens. Moreover, the temperature control system is designed to keep the sample temperature 
constant over a long period of time. The slowest cooling rate is about 0.4 K/min whereas the 
fastest is about 0.8 K/min. Figure 3-55 proves that the cooling rate in this range does not influ-
ence the mechanical response of the sample. 
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Figure 3-55: Shear tests for a PU-AlMg3 adhesive joint with dP = 763 µm at 10 °C with a shear rate 

of 4∙10-3 s-1 after cooling the sample with different rates from 50 °C. 

 

3.4.2.5. Boltzmann superposition principle – Verification 
 
Most of the equations given in chapter 2, including the constitutive laws generated by the me-
chanical models, are only applicable for the linear viscoelastic region of the adhesive. That is 
why it is essential to verify experimentally if the adhesive behaves linear viscoelastic in the 
measuring ranges of strain, stress and temperature. 
 
Figure 3-56 depicts the tests performed to verify the applicability of the Boltzmann superposi-
tion principle. For a given temperature, a constant load T12

1
 is applied to the adhesive joint and 

the resulting shear strain γ1(t) is measured. This experiment is repeated after the conditioning 
of the sample with a different shear stress T12

2 = 2∙T12
1 which is twice as high as T12

1. Accord-
ing to the equation (2.1), the resulting relaxed shear strain should be equal to γ2(t) = 2∙γ1(t). 
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Figure 3-56: Verification of the Boltzmann superposition principle with stress relaxation experi-

ments at 70 °C for a PU-AlMg3 adhesive joint with dP = 591 µm 

 
Figure 3-56 shows the results obtained for a PU-AlMg3 adhesive joint with dP = 591 µm at 
70 °C. The shear stress is set at T12

1 = 0.15 MPa. The resulting shear strain at equilibrium is 
γ1 = 0.1237. After doubling the shear stress to T12

2 = 0.3 MPa, the measured shear strain is 
γ2 = 0.2471. This corresponds to a deviation of 0.13 % with the theoretically expected result. 
As this deviation could be an indication that T12

2(γ2) is already slightly above the limit of the 
linear response, the maximal value for the shear stress has been therefore chosen considering 
the maximal load of the sample during the creep experiments (T12 ≈ 0.175 MPa). 
 
The mechanical behaviour of the polyurethane adhesive strongly depends on the temperature 
and it is also necessary to verify that the Boltzmann superposition principle applies for the 
whole measuring temperature range. The same experiments as above are performed at differ-
ent temperatures. The results are presented in Table 3-6. 
 
Table 3-6: Verification of the Boltzmann superposition principle at different temperatures 

Temperature T12
1 T12

2 γ1 γ2 Deviation 
[°C] [MPa] [MPa] [-] [-] [%] 
10 0.149 0.301 0.153 0.316 + 1.78 
30 0.15 0.3 0.151 0.298 - 1.5 
50 0.15 0.3 0.131 0.268 + 2.37 
70 0.15 0.3 0.123 0.247 + 0.13 

 
Considering the small deviation of the experimental values, the results in Table 3-6 indicate 
that the Boltzmann superposition principle applies to all temperatures for shear strain γ < 0.3. 
With the chosen parameters, the polyurethane adhesive behaves linear viscoelastic and the 
relations presented in chapter 2 can be used. Furthermore, the results show that the shear strain 
increases with decreasing temperature for a given constant shear stress. This effect is dis-
cussed in more detail in the next chapters.  
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 Mechanical characterisation of the PU bulk adhesive 3.4.3.
 
The mechanical properties of the thick polyurethane bulk samples are not expected to be influ-
enced by a (mechanical) interphase. Hence, the mechanical behaviour of the adhesive bulk can 
serve as a reference for the identification of the interphase in adhesive joints and provides data 
for prospective numerical simulations [47, 72]. Moreover, because of the quite complex prepa-
ration of the adhesive joints, bulk samples have been used to determine the appropriate polyol 
mixture ratio. In this work, the mechanical behaviour of the adhesive bulk is characterised by 
tensile tests with constant extension rate using the experimental set-up described in sec-
tion 3.3.1. As the apparatus could only measure with constant travel speed, v [mm / s], the 
strain rate, dε/dt [s-1], can vary from test to test and, of course, with the temperature. However, 
the corresponding deformation rate is subsequently calculated and only the measurements per-
formed with a constant extension rate are considered.  
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Figure 3-57: Tensile test of PU8020 bulk sample at 25 °C (left) and corresponding determination of 

the bulk shear modulus µbulk according to the equation (2.55) (right) (B11 is the first 
component in the left Cauchy-Green strain tensor) 

 
Figure 3-57 (left) illustrates a stress-strain curve for a tensile test performed at 25 °C with an 
extension rate of about dε/dt = 2.3∙10-4 s-1 until the rupture of the specimen. For these measur-
ing conditions, ( )11T ε  seems to be linear but the comparison with a linear trend curve (in red) 

reveals a non-linear evolution of ( )11T ε  with a positive curvature. This feature is characteris-

tic for hyperelastic behaviour. The modulus of elasticity is thus not constant over the strain 
range. Using the Neo-Hooke model for an incompressible material (see section 2.2), the bulk 
shear modulus µbulk = 0.98 ± 4·10-5 MPa is determined as the slope in the plot shown in Figure 
3-57 (right). In the entropy elastic state of the polyurethane, all the relaxation (and retardation) 
processes are too fast to be detected and thus, µbulk seems to not significantly depend on time 
or deformation rate. 
Although at first glance the response of the PU8020 bulk at 25°C, as shown in Figure 3-57 
(right), appears to be hyperelastic, Figure 3-58 (left) shows that the viscoelasticity of PU8020 
bulk is still detectable as µbulk still depends on the strain rate. In the viscoelastic state, the re-
laxation processes strongly influence the mechanical response of the adhesive and the shear 
modulus depends on the strain rate. At 25 °C, the strain rate dependence of the shear modulus 
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can be identified by the increase of slope with increasing ε  and indicates also that the relaxa-
tion processes are still “active”. Imagine that ε  would be increased further and further, one 
would get negatively bended tensile curve at 25 °C in the same way as observed at 0 °C –
 Figure 3-58 (right). That is the dynamic nature of the viscoelastic state. At 0 °C, the polymer 
mobility is slow enough in the PU bulk and hence the ε -dependence is seen as negatively 
bended tensile curve11. The viscoelastic response is fully developed. 
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Figure 3-58: Tensile tests of the polyurethane adhesive at 25 °C (left) and 0 °C (right) with different 

extension rates 

 
Since the desired ε  is only met randomly with the set-up, the measurement effort for system-
atic investigations of the viscoelastic state of the bulk would be incalculably high. Conse-
quently, a quantitative comparison of the results in the viscoelastic range is not possible. That 
is why the evaluation of the bulk tensile test results is focussed on the entropy elastic range, 
where the mechanical properties of the adhesive do not significantly depend on the extension 
rate. An additional reason is that the deformation of the outer (non-thermostated) stiff regions 
has only a minor influence on the deformation of the pattern when this thermostated region of 
the sample is in the entropy elastic state. At room temperature, the viscoelastic relaxation pro-
cesses still exist as shown in Figure 3-58 . Hence the strain of the outer regions of the sample 
is delayed whereas the strain of the pattern follows instantaneously the applied deformation. 
Therefore, the travel speed is proportional to the extension rate in the entropy elastic range as 
follows: v = 0.01 mm/s, v = 0.1 mm/s and v = 1 mm/s correspond to the extension rates 
dε/dt ≈ 2.5∙10-4 s-1, dε/dt ≈ 2.5∙10-3 s-1 and dε/dt ≈ 2.5∙10-2 s-1 respectively. 
 
The entropy elastic range begins as soon as the shear modulus shows no systematic depend-
ence on the measured strain rate. For the given measurements and sample sets, this occurs at a 
temperature of 30 °C as depicted in Figure 3-59.  
  

                                                 
 
11 Note that entropy-elastic tensile curves show positive curvature as indicated in Figure 3-57 (left). 
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Figure 3-59: Shear modulus of the polyurethane adhesive µbulk measured at different extension rates 

and temperatures. These results are from three different polyurethane adhesive batch-
es. 

 
As expected by equation (2.8), the shear modulus increases linearly with increasing tempera-
ture in the entropy elastic range. Using this equation, it is possible to calculate the average 
crosslink density of the polyurethane bulk, κbulk. The experimental data are fitted with a linear 
function with a fixed point of intersection with the y-axis at 0 (µbulk (0 K) = 0), as shown in 
Figure 3-60 for dε/dt ≈ 2.5∙10-4 s-1. The slope of the function is proportional to the average 
crosslink density of the polyurethane adhesive and gives: 

4 1( / 2.5 10 )Bulk d dt sk ε − −≈ ⋅  ≈ 404 ± 3 mol·m-3.  
 

300 310 320 330 340 350 360 370 380
0.8

1.0

1.2

1.4

µ bu
lk [

M
Pa

]

T [K]

 Linear fit curve

PU8020 ; bulk ; de/dt ≈ 2.5⋅10-4 s 

 
Figure 3-60: Temperature dependence of the shear modulus of the polyurethane adhesive µbulk 

measured by tensile tests with dε/dt ≈ 2.5∙10-4 s-1 
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Although no systematic dependence of µbulk as a function of the strain rate, dε/dt, can be iden-
tified in Figure 3-59, the calculated values of the average crosslink density show a tendency to 
increase with increasing strain rate – see Figure 3-61. This shows that the dynamic nature of 
the viscoelasticity is still detectable. These dynamic effects are superimposed on the entropic 
contribution in the stiffness of the polymer network and the measured shear modulus is higher 
than in a pure entropy elastic state. Thus, the µbulk values obtained for the slowest strain rate, 
dε/dt ≈ 2.5∙10-4 s-1, give a better approximation of κbulk since the theory from which equa-
tion (2.8) is derived is only valid for a polymer in the entropy elastic state.  
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Figure 3-61: Average crosslink density of the polyurethane bulk, κbulk measured by tensile tests with 

three different strain rates. 

 
Provided the bondline of the adhesive joint is thick enough, the behaviour of the “bulk-like” 
adhesive is expected to predominate because a mechanical interphase would not noticeably 
influence their properties anymore. Therefore, in the entropy elastic state, the values for the 
shear moduli from tensile tests should be comparable to those from the shear tests. The com-
parison of these values is illustrated in Figure 3-62. 
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Figure 3-62: Comparison between the shear moduli obtained with tensile tests, µbulk, and those ob-

tained with shear test at constant shear rate, µeff in the entropy elastic range of the pol-
yurethane adhesive 

 

The data in Figure 3-62 allow determining the effective cross-linking in the adhesive joints in 
the same manner as before: 

3
1896 ( 3) 404 4 /µm AlMg mol mκ = ±   

3
2000 ( 3) 376 2 /µm AlMg mol mκ = ±   

These values of κ are also comparable to that from the tensile tests.  
Figure 3-62 shows that systematically 1896 ( 3) 2000 ( 3)µm AlMg µm AlMgmm > . Even if the µ values for the 

two bonded joints are in the same range of variation as the bulk, these results show that, on the 
one hand, only the results from the same adhesive batch can be compared quantitatively. 
On the other hand, if mechanical interphases exist in the investigated adhesive joints, they 
seem to not influence the mechanical behaviour of adhesive joints with dP ≈ 1900 - 2000 µm. 
Hence, the maximal extent of these interphases is also expected to be a lot smaller than 
2000 µm.  
 
Formel-Kapitel (nächstes) Abschnitt 1 
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4. Mechanical interphase in PU-metal adhesive joints 
 
Once all environmental influences and other disturbing effects have been minimised, the ex-
perimental results can be analysed and discussed. 
 
Isothermal shear at constant shear rate, creep and stress relaxation tests were carried out on 
two types of adhesive joints: 
 

• PU-AlMg3 
• PU-stainless steel 

 
These two kinds of adhesive joints were prepared from two different adhesive batches. Despite 
strict control of the experimental conditions (temperature, atmosphere) and a well-defined ex-
perimental protocol during the preparation (see section 3.1.3), small variations in the composi-
tion or in the network structure of the bulk material between two batches cannot be completely 
prevented. These differences could then lead to a wrongly interpreted influence of the sub-
strate. To avoid that, the results for both substrates are not quantitatively compared.  
The investigation of PU-stainless steel adhesive joints aims principally to apply and confirm 
the general method suggested in this work to identify and characterise interphases in adhesive 
joints.  
The mechanical tests (mainly creep experiments), carried out on PU-stainless steel samples, 
were performed with a displacement sensor having a lower resolution and accuracy, thereby 
limiting the quantitative evaluation of the results in some cases. 
 
The bond line thickness dP of the samples varies from about 100 μm to 2000 μm. Experiments 
were carried out every 5 K in a temperature range from 10 °C to 80 °C. 
In this temperature range and for the measured deformation rates, both viscoelastic and relaxed 
elastic properties of the polyurethane adhesive can be addressed experimentally. The energy-
elastic state of the elastomer was not investigated in this work. 
As mentioned in chapter 2.1, the definition of the viscoelastic and entropy-elastic state of a 
polymer is intrinsically tied to the deformation rate or, respectively, the measuring time. 
Hence, the transition from the entropy-elastic to the viscoelastic response of the adhesive is 
defined in this work as soon as the viscoelastic properties can be identified with the predeter-
mined experimental conditions. 
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4.1. Isothermal mechanical properties as a function of temperature 
 
First, the temperature dependence of the isothermal mechanical behaviour of the adhesive 
joints of varying bondline thickness is discussed. For this purpose, experiments are performed 
isothermally at different temperatures and the corresponding results are compared. 
 

 Isothermal shear tests at constant shear strain rate 4.1.1.
 
Shear tests were carried out for each temperature and sample thickness at three shear rates γ  
(4∙10-2 s-1, 4∙10-3 s-1, 4∙10-4 s-1). Depending on the shear rate, an experiment lasts between 
10 minutes for the slowest and 6 seconds for the fastest shear rate. As described in section 2.3, 
the analysis of the measurements differs for the entropy-elastic and viscoelastic region. The 
results are therefore presented separately for these two regions. 
 

4.1.1.1. Entropy elastic state 
 
In this hyperelastic region, also called rubber elasticity, a constant effective shear modulus is 
expected – eq. (2.63). It implies therefore a linear relationship between the effective shear de-
formation γ and the resulting shear stress T12. Figure 4-1 shows the results of shear tests for 
three different shear rates at 70 °C on a sample with an average adhesive thickness of 736 μm. 
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Figure 4-1: Shear tests at different constant shear strain rates at 70 °C for a AlMg3-PU adhesive 

joint with an adhesive thickness of 736 ± 9 µm 

 
The experimental results confirm the Neo-Hookean linear relation between shear and shear 
stress – see eq. (2.63). In addition, as expected for the entropy-elastic state, no influence of the 
shear rate on the results is seen. The cooperative movements of the polyurethane chains are 
fast enough to follow the shear deformation. This fact also provides a possibility to define the 
entropy-elastic region for our measurements. As soon as the stress-strain curves depend on the 
shear rate, the viscoelastic properties of the adhesive can be detected with the measured pa-
rameters.   
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Each stress-strain curve is fitted with a linear function. The slope of the fit curve corresponds 
to the effective hyperelastic shear modulus µeff of the adhesive bondline – eq. (2.63). The val-
ues of effµ  are determined for each effective shear rate and temperature. Since the effective 

shear modulus in the entropy-elastic state is independent of the shear rate, effµ  can be aver-

aged over the three values obtained for a given temperature. These average values are then 
plotted with the corresponding error bars as function of the temperature – Figure 4-2. 
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Figure 4-2: Temperature dependence of the effective shear modulus effµ  for a PU-AlMg3 adhe-

sive joint with dp = 736 µm 

 
As it can be seen in Figure 4-2, the effective shear modulus in the entropy-elastic state de-
pends on the measuring temperature. The restoring force of the polymer network is then most-
ly governed by entropic effects which increase as the temperature rises. It results thus in an 
increase of the shear modulus. Despite the influence of the shear rate cannot be directly identi-
fied (as ( )12T γ  still seems to be linear), the growing error bar of the results from T ≤ 320 K 

indicates the “apparition” of the viscoelastic effects. According to eq. (2.8), the temperature 
dependence of effµ  is fitted with a linear function passing through the origin, with a resulting 

correlation coefficient R² > 0.99. 
The linear increase of the shear modulus as a function of the temperature expected by the theo-
ry of the rubber elasticity is thus confirmed. According to the equation (2.8) the slope of the 
linear fit curve is proportional to the effective cross-link density effκ  (which is an average 

value for the whole adhesive thickness). The resulting apparent effective cross-link density is 
equal to 429.1 ± 0.8 mol⋅m-3 for the given example. The values for different adhesive thick-
nesses are discussed in section 4.2.1.1.  
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4.1.1.2. Linear viscoelastic state 
 
Figure 4-3 shows the results of three shear tests with different shear rates on a PU-AlMg3 ad-
hesive joint with a dP = 736 μm sample at 15 °C. According to eq. (2.78), the shear rate influ-
ences the stress-strain curves in the viscoelastic range. As already mentioned in section 2.1.1, 
the applied strain rate γ  determines which part of the cooperative movements absorbs me-
chanical energy and thus significantly builds up the deformation.  
Provided that relaxation/retardation processes can occur at the measuring temperature, the in-
volved material rearrangements in a polymer network can be influenced by the rate of the ap-
plied external load or deformation for a given experimental timescale. With increasing strain 
rate, fewer and fewer relaxation processes can follow the applied strain leading to an increase 
of the sample stiffness. The viscoelasticity of the sample can be identified as soon as the ap-
plied strain rate is faster than one of the measurable relaxation or retardation processes of the 
polymer. 
 
The stress-strain curves measured with the shear rates γ  = 4∙10-2 s-1 and 4∙10-3 s-1 no longer 
show a linear evolution of the shear stress T12 as a function of the effective shear strain γeff. 
Hence, if tγ γ⋅ = is inserted in eq. (2.78), it is evident that the effective dynamic shear modu-
lus depends on the shear strain in the viscoelastic range. The evolution of the slope of the plots 

( )12T γ  is described by the equation (2.79). 

At first glance, the measured curve for a shear rate of γ  = 4∙10-4 s-1 could be considered as 
linear by mistake, since the typical curvature at low strain cannot be clearly identified – cf. 
Figure 2-15 for γ  = 4·10-4 s-1. 
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Figure 4-3: Shear tests at different constant shear deformation rates at 15 °C for an AlMg3-PU 

adhesive joint with an adhesive thickness of 736 ± 9 µm 

 

Since the shear modulus depends on time in the viscoelastic state, the complete evolution must 
be considered to evaluate the influence of the temperature on the stiffness of the sample. Shear 
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tests measured with the same constant shear rate and at different temperatures are thus com-
pared in Figure 4-4. 

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T 12
 [M

P
a]

γeff [-]

 25°C
 20°C
 15°C

AlMγ3-PU ; dγ/dt = 4×10-2 s-1 ; dP= 736 ± 9  µm

 
Figure 4-4: Shear tests at a constant shear deformation rate dγ/dt = 4∙10-2 s-1 at different tempera-

tures for an AlMg3-PU adhesive joint with an adhesive thickness of 736 ± 9 µm 

 
Figure 4-4 shows that the dynamic shear modulus effM  of the tested samples – i.e. the slope 

and the curvature of ( )12T γ  – increases significantly in the viscoelastic range with decreasing 

measuring temperature. As already mentioned, the lower the temperature, the slower the coop-
erative movements are and the more the relaxation processes resist against the applied shear 
deformation. The resulting stresses are then greater than at higher temperature for a given 
shear rate and the rigidity of the sample is thereby higher. 
 
The evolution of the plots with decreasing temperature reminds those measured at different 
shear rates presented in Figure 4-3, but the physical origin is quite different: in eq. (2.78), all 

iτ  become smaller as T  increases. Consequently, the curved initial region becomes weaker and 
"shorter" as T  increases. 
The question is whether temperature change at constγ =  and variation of γ  at T const=  are 
only phenomenologically similar or if there is a quantitative relation between γ  and T  – i.e. a 
temperature-time equivalence. This will be discussed in section 4.3.2.  
 
Résumé 
 
In the entropy-elastic region, shear tests provide quantitative information about the tempera-
ture dependence of the mechanical behaviour of the adhesive joints. At lower temperatures, 
viscoelastic effects can be observed by detecting the shear rate dependence of the mechanical 
properties. However, these viscoelastic properties cannot be accurately quantified due to the 
limited number of measured shear rates and a relatively short measuring time. For this pur-
pose, stress relaxation and creep tests are performed. The corresponding results are presented 
in the following.  
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 Stress relaxation tests at constant shear deformation 4.1.2.
 
In stress relaxation experiments, the relaxation modulus ( )effG t  is defined as the strain/stress 

ratio at constant deformation, as described in section 2.5. To depict the influence of tempera-
ture, relaxation moduli are plotted against t with logarithmic scale for a given adhesive thick-
ness at different temperatures (Figure 4-5). In presenting the overall aspect of ( )effG t , the 

range of the time scale is so enormous that the only way to give a complete representation in a 
single graph is to make the time coordinate logarithmic. This procedure is followed in this 
work for depicting all the viscoelastic functions. The evolution of ( )effG t  in the entropy-

elastic state (here: 40, 60 and 80 °C) differs from the viscoelastic state (here: 15, 20 °C). 
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Figure 4-5: Temperature dependence of the shear stress relaxation modulus effG  as a function of 

time for a AlMg3-PU adhesive joint with an adhesive thickness of 1493 ± 13 µm. The 
t0-values of the measurements lie within the grey shaded area. 

 
Above 35 °C, the sample behaves entropy elastic and all the relaxation processes are faster 
than the loading rate, so that the polymer network is in equilibrium right after loading. The 
relaxation modulus rises at short times (up to approximately 20 seconds) due to the loading of 
the sample. Once the constant deformation is reached by the machine, ( )effG t  is also constant 

at a value representing the effective equilibrium shear modulus, ,effG∞ . 

 
At lower temperatures (T < 35 °C), stress relaxation processes are active and the stress gradu-
ally falls as the deformation of the polymer network adjusts itself through cooperative motions 
of the segments of the polymer network. Their direction of motions, which is isotropic in a 
force-free state, becomes anisotropic in the direction of the force due to the applied mechani-
cal force. This preferential direction of the segment motions builds up the deformation, and 
does so in a delayed manner, because the motions are hindered. Since the loading of the sam-
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ple is relatively slow, the stress relaxation of the sample takes already place before reaching 
the deformation plateau. Therefore, the relaxation processes are influenced by the loading, 
limiting the analysis of the ( )effG t  curves. As the analytical solution of the rheological model 

only describes the mechanical response of the polymer from t0 onwards – see equation (2.147), 
the loss of information is irremediable and the time range of the corresponding relaxation time 
spectrum is severely affected. That is why the retardation time spectra have been preferred to 
the relaxation time spectra for the quantitative analysis of the viscoelastic properties of the 
adhesive. 
 
Nevertheless, the loading stages are throughout the tests almost the same. Hence, the ( )effG t  

curves can be compared with each other. A comparison of the measured curves at 15 °C and 
20 °C shows that the lower the temperature, the slower the relaxation processes. At long times, 

( )effG t  reaches a constant value corresponding to the relaxed shear modulus, ,effG∞ , in a good 

approximation12. 
 
In Figure 4-5, it is obvious that the effective relaxed shear modulus ,effG∞  depends on the 

measuring temperature. The temperature dependence of ,effG∞  is depicted in Figure 4-6.  
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Figure 4-6: Temperature dependence of the equilibrium shear stress relaxation modulus ,effG∞  for 

a AlMg3-PU adhesive joint with an adhesive thickness of 1493 ± 13 µm. Error bars 
are smaller than the symbols. 

  

                                                 
 
12 According to eq. (2.147), we have ( )lim

t
G G t∞ →∞

= . 
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Figure 4-6 shows that ( ),effG T∞  is described with a linear function ( )1493
,

µm
effG T a T∞ = ⋅  with 

a = 33.10-4 ± 7.10-6 MPa.K-1. It is interesting that both the G∞ values from the entropy-elastic 
range (T ≥ 35 °C) and from the viscoelastic range (T < 35 °C) lie on this linear fit curve. It is 
therefore obvious to compare this result with eq. (2.8), i.e. 
 1493µm

effa R Tκ= ⋅ ⋅   

Thus, we obtain 
 1493 3397 0.8 mol mµm

effκ −= ± ⋅   

Considering the experimental errors, this value of the effective crosslink density is almost the 
same as the value obtained from the shear tests at the slow rate (γ  = 4∙10-4 s-1): 

3400.8 0.3 mol m−± ⋅ (see Figure 4-20). Therefore, this shear rate was indeed slow enough to 
obtain quasi-relaxed deformation. 
 

Thus, it is clear that both ,effG∞  from the stress relaxation experiments and effµ  from the shear 

tests describe very well the mechanical response of the PU in the entropy-elastic state. 
Since the linear evolution of ( ),effG T∞  continues into the viscoelastic state (T < 35 °C, cf. 

Figure 4-6 and Figure 4-7), it proves that the modulus in the relaxed viscoelastic state is also 
dominated by the entropic restoring forces. 
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Figure 4-7: Comparison between the equilibrium shear stress relaxation modulus ,effG∞  and the 

effective hyperelastic shear modulus effµ  with 4 110  4 sγ − −= ⋅  for an AlMg3-PU ad-
hesive joint with an adhesive thickness of 1493 ± 13 µm 

 

In addition to the results of the shear tests, the relaxation experiments provide information on 
the influence of the temperature on the relaxed elastic properties in a broader temperature 
range. In the viscoelastic region, it is possible to display the relaxation processes and their 
temperature dependence. However, because of the slowness of the sample loading, relaxation 
spectra cannot be calculated in a sufficiently large time domain to describe quantitatively the 
temperature dependence of the viscoelastic properties. For this reason, creep tests at constant 
shear stress were carried out.  
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 Creep tests at constant shear stress 4.1.3.
 
To describe creep experiments, the evolution of the creep compliance ( )effJ t  is plotted over 

time. Figure 4-8 shows the creep curves at different temperatures for two adhesive joints: a 
PU-AlMg3 sample with an average adhesive layer thickness dP of 736 μm (left) and a PU-
stainless steel adhesive joint with dP = 1853 µm (right). In both cases, the lower the measuring 
temperature, the longer it takes to reach a given level of deformation or compliance. This im-
plies that the retardation processes slow down with decreasing temperature. At long times, 

( )effJ t  reaches a plateau which corresponds to the effective equilibrium compliance ,effJ∞ . 

While it takes some time to reach ,effJ∞  in the viscoelastic state, the plateau is reached quickly 

in the entropy-elastic state directly after applying the load (see orange to brown curves in Fig-
ure 4-8, right). Due to the elasticity of the adhesive at high temperatures, the sample oscillates 
a bit in the testing machine right after the loading, causing small fluctuations in ( )effJ t .  

The corresponding evolution of ( )12T t  for the same creep tests as in Figure 4-8 are shown in 

Figure 4-9. 
 

 
Figure 4-8: Temperature dependence of the effective shear creep compliance ( )effJ t  as a func-

tion of time for a AlMg3-PU adhesive joint with an adhesive thickness of 736 ± 9 µm 
(left) and a stainless steel-PU with dP = 1853 µm (right) 
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Figure 4-9: Shear stress 12T  as a function of time for a AlMg3-PU adhesive joint with an adhesive 

thickness of 736 ± 9 µm (left) and a stainless steel-PU with dP = 1853 µm (right) dur-
ing the creep tests shown in Figure 4-8 

 

In Figure 4-8, the temperature dependence of the equilibrium compliance ,effJ∞  in adhesive 

joints can be identified qualitatively. To describe this effect quantitatively, the corresponding 
values of ,effJ∞  are plotted as function of the measuring temperature for both kinds of adhe-

sive joints in Figure 4-10.  
 
The equilibrium creep compliance decreases linearly with increasing temperature: the adhesive 
becomes also stiffer. This observation confirms the results obtained with shear and relaxation 
tests for the relaxed elastic properties. At low temperatures, ,effJ∞  shows a modification of its 

temperature dependence in Figure 4-10, left: the equilibrium creep compliance seems to tend 
to a constant value. This indicates that the equilibrium creep compliance is not yet reached 
despite a measuring time of about 4 days! These measurements were stopped too early. For 
thick adhesive joints, the time needed to reach the equilibrium at 5 °C amounts to more than 
3 weeks. For measurements at lower temperatures, it will be necessary to improve the stability 
of the creep testing machine and to increase the measuring time drastically.  
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Figure 4-10: Temperature dependence of the effective equilibrium shear compliance ,effJ∞  for a 

AlMg3-PU adhesive joint with an adhesive thickness of 736 ± 9 µm (left) and a PU-
stainless steel with a dP = 1853 µm (right). Error bars are smaller than the symbols.  
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In contrast to ( )effJ t  and ( )effG t , the effective equilibrium compliance ,effJ∞  and the effec-

tive equilibrium shear modulus ,effG∞  as well as the effective shear modulus of the adhesive in 

the entropy-elastic state, effµ  , are time-independent material parameters. The following rela-

tion should thus be verified [166]: 
  

 ,
,

1
effeff

effJ
G µ∞

∞

= =   (4.1) 

 
Only the measured values, obtained at equilibrium deformation, can be considered to test 
equation (4.1). For example, the equilibrium moduli and compliance for a PU-AlMg3 adhesive 
joints with a dP = 1493 µm, represented in Figure 4-11, confirm the relation given by the equa-
tion (4.1). Therefore ,effG∞ , effµ  and 1

,effJ −
∞  exhibit the same temperature dependence, which is 

described by the theory of entropy elasticity – see equation (2.8). After linear fitting of the 
data sets, the values for the average crosslink density 1493µmκ  for an AlMg3-PU adhesive joint 

with an adhesive thickness of 1493 ± 13 µm are calculated: 
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It is obvious that 1
,effJ −

∞  from the creep experiments also describes very well the mechanical 

response of the PU in the entropy-elastic state. 
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Figure 4-11: Comparison between the effective equilibrium shear stress relaxation modulus ,effG∞ , 

the reciprocal effective equilibrium creep compliance 1
,effJ −

∞  and the effective shear 

modulus effµ  (in the entropy-elastic temperature range) for a AlMg3-PU adhesive 
joint with an adhesive thickness of 1493 ± 13 µm. Error bars are smaller than the sym-
bols.  
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The creep experiments presented in Figure 4-8 were carried out with the creep testing machine 
featured in section 3.3.2. As already mentioned the loading regime of the sample is approxi-
mately the same for all experiments and lasts about one to two seconds only. The considera-
tion of the loading stage in the calculation of the retardation spectra allows an accurate and 
quantitative evaluation of the viscoelastic properties of the adhesive joints, while limiting the 
loss of information due to the non-instantaneous response of the sample – see eq. (2.112). The 
calculation of such retardation time spectra is presented in section 2.4.  
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Figure 4-12: Temperature dependence of the discrete effective retardation time spectra for a 

AlMg3-PU adhesive joint with an adhesive thickness of 736 ± 9 µm and a PU-
stainless steel with dP = 1853 µm plotted on a logarithmic scale. 

 
The calculated discrete effective retardation time spectra13 for an AlMg3-PU adhesive joint 
with dP = 736 ± 9 µm and a PU-stainless steel with dP = 1853 µm are plotted on a logarithmic 
scale in Figure 4-12. The error bars; calculated from the error of the fit parameters (see sec-
tion 2.4), are depicted here, but they are smaller than the symbols. These discrete effective 
retardation time spectra correspond to the creep curves presented in Figure 4-8. 
 
In the following discussion, the discrete effective retardation time spectra are plotted with log-
arithmic coordinates on both axes – Figure 4-13. The calculation of the relaxation time spec-
trum from the retardation time spectrum, presented in the section 2.6, requires indeed this rep-
resentation for the fitting operation of the discrete effective spectrum with a cubic polynomial 
function. 
  

                                                 
 
13 The discrete retardation/relaxation time spectra calculated for adhesive joints are effective values since the me-

chanical properties in the bondline are not expected to be homogeneous because of the existence of mechanical 
interphase. The “true” relaxation/retardation time spectra can only be determined for PU bulk. 
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Figure 4-13: Discrete effective retardation time spectra for a AlMg3-PU adhesive joint with an 

adhesive thickness of 736 ± 9 µm and a PU-stainless steel with dP = 1853 µm plotted 
with logarithmic coordinates on both axes. The represented trend lines are the cubic 
polynomial functions used to calculate the continuous effective retardation time spec-
tra. 

 
In both sample types, the effective retardation time spectra shift to longer retardation times 
with decreasing temperature. This reflects the fact that the retardation processes are slower. 
Qualitatively, this is a further indication for the time-temperature equivalence14. 
However, besides the temporal shift of the effective retardation time spectra to longer retarda-
tion times, a shift of the spectra to higher compliance with decreasing temperature is identified 
for PU-AlMg3 adhesive joints (Figure 4-12, left and Figure 4-14) as well as for PU-stainless 
steel samples (Figure 4-12, right and Figure 4-15). 
This issue is discussed further in the section 4.3.2. 
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Figure 4-14: Temperature dependence of the discrete effective retardation time spectra for a 

AlMg3-PU adhesive joint with an adhesive thickness of 1482 ± 15 µm (left) and close-
up view on the maxima of the spectra (right). The represented trend lines are the cubic 
polynomial functions used to calculate the continuous effective retardation time spec-
tra.  

                                                 
 
14A first indication for time-temperature equivalence has already been observed with the results of isothermal 

shear tests at constant shear strain rate in section 4.1.1.2. 
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Figure 4-15: Temperature dependence of the discrete effective retardation time spectra for two dif-

ferent PU-stainless steel adhesive joints with dP = 1853 µm (left) and dP = 166 µm 
(right).  

 
In addition to showing the shift of the retardation time spectra to higher value of ( )*

effL τ  with 

decreasing temperature, Figure 4-14 illustrates once again that even a small temperature dif-
ference (only 2 K) has a drastic influence on the viscoelastic properties of the adhesive. By the 
way, these results demonstrate the high accuracy of measurements and temperature control of 
the sample. 
 
However, in order to ensure that the observed shifts (to longer retardation time and to higher 
compliance) do not result from an experimental error, following situations are considered: 
 

a) Between two measurements, the displacement transducer is not reset to zero. This 
would result in an offset in the measurement of the creep strain for the second test 
(provided that the position of the length gauge stays in its linear measuring range). 
Figure 4-16 illustrates a simulation of this effect:  
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Figure 4-16: Influence of an offset in the creep strain/compliance signal (left) on the retardation 
time spectrum (right) 

  

An offset in the creep strain or compliance signal has no influence either on the posi-
tion of the retardation time spectrum or on its shape in the measured time range.  
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b) The creep equilibrium is not reached at the end of the measurement. As discussed 
above, the values of J∞,eff at low temperatures in Figure 4-10 (left) indicates that the 
creep equilibrium was not completely reached. Therefore, the calculation of the corre-
sponding retardation time spectra is surely affected. However, the issue is to determine 
how and to what extent this fact will influence the results. Figure 4-17 presents a simu-
lation of this effect. If the creep equilibrium is not reached, the values of the retarda-
tion time spectrum are shifted to lower compliances for given retardation times: the 
longer the retardation time, the bigger is the discrepancy. The shape of the retardation 
time spectra is thereby impacted, letting this latter appear narrower than it should be. 
Figure 4-17 depicts a worst case which is experimentally easy to detect. As the conse-
quence, only creep curves that have reached the equilibrium should be used to calcu-
late the retardation time spectra. Nevertheless, at longer measuring times or low meas-
uring temperatures, the attainment of the creep plateau is sometimes hard to identify 
because the variation of J(t) is very small. That is why this effect must be considered 
in the discussion of the presented results. A method to verify the results is presented 
and discussed in section 4.3.1. 
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Figure 4-17: Distortion of the retardation time spectrum (right) caused by its calculation using an 

uncompleted creep test (red curve, left) 

Moreover, the experimentally observed shifts to longer retardation time and to higher compli-
ance of the retardation time spectra with decreasing temperature cannot, though, result from 
the distortion of the spectra illustrated in Figure 4-17: 

• The retardation time spectra show namely a constant shift to longer time for all the re-
tardation processes with decreasing temperature, preserving a priori the shape of the 
spectra (in the measured range).  

• The shift of the spectra to higher compliances should be reduced due to the narrowing 
of the spectra (if it would exist). Even by considering that the creep experiments did 
not reach the equilibrium, the existence of this upward shift cannot be caused by the 
distortion of the spectra.  

 
The retardation time spectra describe therefore the effective polymer dynamics of the poly-
urethane adhesive inside the bonding joint. The evolution of the retardation time spectra with 
the measuring temperature reveals a complex temperature dependence of the mechanical be-
haviour of the adhesive joints.  
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4.2. Bond line thickness dependence of mechanical properties 
 
Now that the temperature dependence of the relaxed effective elastic and viscoelastic proper-
ties of the adhesive joints is characterised, the analysis presented so far can also be applied to 
investigate the influence of the bond line thickness dP on the mechanical behaviour of adhe-
sive joints. If it turns out that the effective mechanical properties depend on the adhesive 
thickness, it would prove the existence of mechanical interphases in adhesive joints. 
  

 Shear tests at constant shear strain rate 4.2.1.
  

4.2.1.1. Entropy-elastic state 
  
Figure 4-18 shows the evolution of the effective hyperelastic shear modulus effµ  15 as function 

of the temperature for samples with different adhesive thickness within the entropy-elastic 
region of the adhesive. The shear modulus is determined for each temperature and bond line 
thickness and averaged with the values for the three measured shear rates γ : 4∙10-2 s-1, 4∙10-3 s-

1, 4∙10-4 s-1 by means of the equation (2.63). For a given shear strain γ, the displacement in the 
strained state u  is smaller for thin adhesive joints than for thick ones. Therefore, the relative 
measurement error increases with decreasing adhesive thickness. 
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Figure 4-18: Temperature dependence of the effective hyperelastic shear modulus effµ  for PU-

AlMg3 adhesive joints with different dP. To ensure the comparability between the re-
sults, all the measurements have been performed with the same maximum shear strain 
criterion of max 0.25effγ = .  

                                                 
 
15 cf. eq. (2.63) 
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For a given temperature, the effective shear modulus rises with decreasing dP as depicted in 
Figure 4-18. Thinner adhesive joints behave stiffer than the thicker ones. This bond line thick-
ness dependence of the entropy-elastic effµ  is also represented in Figure 4-19. From 

dP ≥ 1493 µm effµ  lies in the range of the values measured for the PU bulk. This would mean 

that the influence of the interphase on the mechanical behaviour of those adhesive joints ex-
tends up to a range of about 1.5 mm. This result should be confirmed by the stress relaxation 
and creep experiments. 
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Figure 4-19: Bond line thickness dependence of the effective hyperelastic shear modulus effµ  for 

PU-AlMg3 adhesive joints and bulkµ  at 40 °C, 60 °C and 80 °C 

In addition to the variation of effµ  with different dP, Figure 4-18 depicts the linear evolution of 

the entropy-elastic effµ  with the measuring temperature, as described in Figure 4-2. This linear 

dependence applies to all types of samples (data not shown) and across the whole adhesive 
thickness range as well. The apparent effective crosslink density effκ  can therefore be calcu-
lated, as shown in section 4.1.1.1, for different dP. 
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Figure 4-20: Effective crosslink density, effκ for AlMg3-PU joints as a function of the adhesive 

thickness, dP.  
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The bond line thickness dependence of the apparent effκ is depicted in Figure 4-20. The hori-
zontal and vertical error bars, resulting respectively from the variations of the adhesive thick-
ness and the error of the fit parameter (slope of the linear regression), are almost completely 
masked by the symbols. The effective cross-link density effκ  for AlMg3-PU joints increases 
with decreasing bond line thickness. The calculated values of effκ , averaging the cross-link 
density over the whole adhesive thickness, consist in a contribution of the interphases (if exist-
ing) and bulk (if still existing) adhesive. As discussed in the introduction of this work, it is 
obvious that the contribution of the interphases increases with decreasing adhesive thickness. 
This would mean that the interphase would have an apparently higher cross-link density than 
the bulk adhesive. However, this assessment must be interpreted with great caution because: 
 

• Besides the simplifications made in the classical theory of the entropy elasticity which 
considers free crosslinked macromolecules, adhesive molecules in the bonding joint 
are attached to the surface of the substrates. The adhesion of the molecules on the sub-
strate surfaces results in local immobilisation of the polyurethane network, increasing 
also its local stiffness without influencing its chemical crosslink density. In other 
words, the adhesive bonding sites add a new type of immobilisation of the PU network 
chains but their effect on stiffness cannot be attributed quantitatively. 

 
• The shrinkage during the crosslinking of the polyurethane leads to residual stresses in 

the adhesive layer. These stresses will grow with decreasing dP because the adhesion 
sites provide additional hindrance to their relaxation during and after network for-
mation. Hence a thin adhesive joint could be stiffer than a thick one, even though both 
samples have the same crosslink density, because residual stresses pretend increased 
stiffness as demonstrated in section 3.4.2.2 for the PU bulk. 

 
Both the influence of the adhesion mechanism and the residual stresses cannot be separated 
and can therefore corrupt the calculation of the true crosslink density in adhesive joints. 
 
Despite these limitations, the evolution of the crosslink density, as illustrated by the trend 
curve in Figure 4-20 matches the results obtained so far, showing that the interphase is stiffer 
than the bulk adhesive. In addition, the crosslink density approaches a plateau value with in-
creasing sample thickness, which corresponds to the crosslink density of the adhesive bulk. A 
crude consideration of the polyurethane network architecture provides namely an average 
crosslink density of about 400 mol∙m-3 [167]. 
For thinner adhesive joints than dP < 137 µm, the evolution of the cross-link density remains 
though undefined since the adhesion mechanism(s) of polyurethane on the metallic substrate 
are hitherto not well understood. However, recent and future works of the group headed by 
Professor W. Possart deal with this topic [10, 11, 14, 168-174]. 
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4.2.1.2. Linear viscoelastic state 
 
The linear viscoelastic shear modulus effM  depends on the shear strain γ , the constant shear 

rate .const
t
γγ ∂

= =
∂

  (proportional to the time) and the measuring temperature: 

( , , )eff effM M t Tγ= . To describe the influence of the adhesive thickness on effM , shear tests 

measured with given shear rate and at given temperature are compared for different dP. 
 
Figure 4-21 depicts the results for different PU-AlMg3 joints at 20 °C and different constant 
shear rates γ . The thinner the adhesive joint, the more sensitive is the measuring curve to the 
fluctuations in the displacement signal. That is why the red curves exhibit the strongest meas-
urement noise. Nevertheless, the shear stress T12(γ) in a thin sample is always higher and more 
curved than for a thicker one: the effective dynamic shear modulus is higher. Adhesive joints 
behave thus dynamically stiffer with decreasing dP in the viscoelastic state. Therefore effM  

depends also on the bond line thickness: ( , , , )eff eff PM M t T dγ= . 

 
In Figure 4-21, the curvature at the beginning of the shear test, which is a defining characteris-
tic of the viscoelastic behaviour, reduces with increasing dP. This indicates a decreasing hin-
drance of segment mobility in thicker adhesive bondline. 
 
Since all the PU-AlMg3 joints have been prepared with the same batch of polyurethane and 
under the same conditions, the bondline thickness dependence of the effective dynamical me-
chanical properties in adhesive joints is interpreted as an evidence for the existence of mechan-
ical interphase with specific cooperative segment mobility. 
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Figure 4-21: Shear tests at different constant shear rates dγ/dt at 20 °C for AlMg3-PU adhesive 

joints with different dP 

 

 Isothermal stress relaxation tests at constant shear deformation 4.2.2.
 
In Figure 4-22, the relaxation function ( )effG t  is plotted for samples with different adhesive 

thickness at a constant measuring temperature of 15 °C.  
During the variable and relatively long loading of the samples (up to 40 s, see section 3.3.3), 
the retardation processes of the adhesive cannot be analysed accurately and the evolution of 

( )effG t  should not be quantitatively considered as displayed in Figure 4-22. The fast relaxa-

tion processes are largely relaxed with τj < 40 s. Figure 4-22 shows a weak time dependence 
for ( )effG t  for t > 40 s. It follows that the slow relaxations are weak and consequently cannot 

be quantified due to the limits of measurement accuracy. Therefore, these measurements do 
not provide enough information to determine the effective relaxation time spectra ( )*

effH τ . 

That is why the evaluation of the results is focussed on the relaxed elastic properties, at the 
end of the stress relaxation tests. A qualitative increase of the relaxation modulus with de-
creasing adhesive thickness is nonetheless observable in Figure 4-22, thus confirming the re-
sults obtained hitherto. 
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Figure 4-22: Bond line thickness dependence of the effective shear stress relaxation modulus effG  

as a function of time at 15 °C for AlMg3-PU adhesive joints 

 
In order to characterise the effect of the bond line thickness more precisely, the equilibrium 
relaxation modulus ,effG∞  according to eq. (2.147) is plotted as a function of dP in Figure 4-23. 

As already mentioned, ,effG∞  is a time-independent material parameter and thereby not affect-

ed by the loading of the sample.  
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Figure 4-23: Bond line thickness dependence of the equilibrium relaxation modulus ,effG∞  for 

AlMg3-PU adhesive joints at 15 °C, 30 °C and 60 °C. The dashed lines represent the 
trend of G∞,eff (dP) for each temperature. 
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The equilibrium relaxation modulus ,effG∞  increases with decreasing adhesive thickness. 

Hence, this result indicates the existence of stiffer interphases. With increasing adhesive 
thickness, the equilibrium relaxation modulus tends to reach a plateau. The contribution of the 
bulk adhesive then predominates in the effective mechanical behaviour of the joints and the 
contribution of the interphases is minimal. The investigation of adhesive joints with higher dP 
is however necessary to assess the extent of the mechanical interphases in these samples. 
 
The evolution of ,effG∞  at lower dP is also an interesting issue: does ( ),eff PG d∞  continue to 

increase steadily up to reach a limited value corresponding to the stiffness of the interphase? 
To answer this question, local investigations of the mechanical properties in the adhesive 
joints would be necessary in the future.  
 
A comparison of the ,effG∞  values with those of effµ , presented in Figure 4-18, shows that 

both ,effG∞  and effµ  lie on the same straight line – cf. Figure 4-24.  
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Figure 4-24: Comparison between the equilibrium shear stress relaxation modulus ,effG∞  (sym-

bols “”) and the effective hyperelastic shear modulus effµ  (symbols “”) for PU-
AlMg3 adhesive joints with different dP. 
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Since the linear evolution of ( ),effG T∞  and ( )eff Tµ  continues into the viscoelastic state 

(T < 35 °C), it proves that the modulus in the relaxed viscoelastic state is also dominated by 
the entropic restoring forces for the measured dP. As a consequence, ( ),effG T∞  must satisfy 

eq. (2.8)16. Thus, it is obvious that the evolution of ( ),eff PG d∞  in Figure 4-23 is reminiscent of 

apparent crosslink density ( )eff Pdκ  presented in Figure 4-20 – see Figure 4-25. Both quanti-

ties are directly ( ,effG∞ ) or indirectly ( effκ ) related to the stiffness of the sample – see eq. (2.8). 

The comparison of their evolution with the bond line thickness proves the consistency of the 
results obtained with the shear tests at constant shear rate ( effκ ) and those of stress relaxation 

tests ( ,effG∞ ). The stiffness and the apparent effective crosslink density of the sample increase 

with decreasing adhesive thickness. As discussed above, those both effects are surely linked 
together or even identical. If a link exists, it is though not possible to discern the cause and the 
effect without investigating the properties of the adhesive locally. 
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Figure 4-25: Comparison of the evolution of ( ),eff PG d∞  and ( )eff Pdκ  for PU-AlMg3 adhesive 

joints 

 
To gain quantitative information about the bond line thickness dependence of the viscoelastic 
properties of the adhesive joints, and hence, to provide the required information for the charac-
terisation of the interphases, creep tests are performed.  
  

                                                 
 
16 Eq. (2.8): R Tµ κ= ⋅ ⋅  
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 Isothermal creep tests at constant shear stress 4.2.3.
 
Figure 4-26 shows the creep curves of PU-AlMg3 samples with different dP for a temperature 
of 15 °C. The adhesive thickness clearly influences the creep behaviour of the joints. The equi-
librium compliance ,effJ∞  has a lower value and is reached faster with decreasing dP. These 

observations are also valid for the PU-stainless steel adhesive joints, as illustrated in Figure 
4-27. 

 
Figure 4-26: Bond line thickness dependence of the shear creep compliance Jeff(t) as a function of 

time for AlMg3-PU adhesive joints at 15 °C. 

 

 
Figure 4-27: Comparison of the creep compliance Jeff(t) as a function of time at different tempera-

tures for PU-stainless steel adhesive joints with dP = 1853 µm and 166 µm 
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First, the evolution of the reciprocal equilibrium compliance 1
,effJ −

∞  is plotted versus tempera-

ture as function of adhesive thickness and for both types of adhesive joint in Figure 4-28. Be-
sides the linear evolution of 1

,effJ −
∞  with the temperature, already discussed in section 4.1.3, its 

bond line thickness dependence is obvious for both kinds of sample. The values of 1
,effJ −

∞  at 

high temperatures (T > 313 K) for the thin PU-stainless steel adhesive joint are surprisingly 
too high and point out a possible measurement error (see Figure 4-28, right). However, this 
does not affect that the thin and the thick samples have different mechanical properties at equi-
librium, which confirms the existence of a mechanical interphase in these adhesive joints. 
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Figure 4-28: Evolution of the reciprocal equilibrium compliance 1

,effJ −
∞  as a function of the temper-

ature for PU-AlMg3 (left) and PU-stainless steel (right) adhesive joints with different 
dP. The dashed lines represent the linear fit curves ( ) ( )1

,eff PJ T a d T−
∞ = ⋅  with a  the 

slope of each fit curves. 

 

Figure 4-29 confirms the eq. (4.1) for PU-AlMg3 adhesive joints with different dP 17. 1
,effJ −

∞ , 

,effG∞  and effµ  show the same linear temperature dependence. 

  

                                                 
 
17 No stress relaxation tests were performed on PU- stainless steel joints. Therefore, the following discussion 
focus only on the results obtained with PU-AlMg3 adhesive joints. 
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Figure 4-29: Comparison between the reciprocal equilibrium compliance 1

,effJ −
∞  (symbols “”), the 

equilibrium shear stress relaxation modulus G∞,eff (symbols “”) and the effective hy-
perelastic shear modulus effµ  (symbols “”) for PU-AlMg3 adhesive joints with dif-
ferent dP. 

 
Figure 4-30 gives a more precise description of the evolution of the equilibrium compliance 

,effJ∞  with the adhesive thickness for PU-AlMg3 samples. The measured values depict a near-

ly linear relation between ,effJ∞  and Pd  in the measured adhesive thickness range at different 

temperatures. At high Pd , a plateau value for the bulk adhesive is expected. Further experi-
ments with thicker samples will be necessary to determine the extent of the observed mechani-
cal interphase. At low Pd , 1

,effJ −
∞  is also expected to approach a limit value corresponding to 

the stiffness of the “pure” interphase according to Figure 1-1. This linear approximation is 
used to describe quantitatively the influence of Pd  on the isothermal equilibrium creep com-
pliance: 
 ( ) ( ) ( ),eff P PJ d T d Tα β∞ = ⋅ +   (4.2) 

where ( )Tα  and ( )Tβ  are fit parameters. 
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Figure 4-30: Bond line thickness dependence of the equilibrium shear compliance ,effJ∞  for 

AlMg3-PU adhesive joints at 15 °C, 30 °C and 60 °C. The dashed lines represent the 
linear fit curves ( ) ( ) ( ),eff P PJ d T d Tα β∞ = ⋅ +  for each temperature. 

 
An increasing creep compliance with increasing adhesive thickness means that thinner sam-
ples are stiffer than the thicker ones. The results from shear, stress relaxation and creep tests 
thus show the same size effect. A comparison between the equilibrium shear stress relaxation 
modulus ,effG∞  and the reciprocal equilibrium compliance 1

,effJ −
∞  is given in Figure 4-31. Ac-

cording to eq. (4.1) and (4.2), we have 

 ( ) ( ) ( ) ( ) ( )
1
,,

1
P eff P effeff P

P

G d J d d
T d T

µ
α β

−
∞∞ = = =

⋅ +
  (4.3) 

 
Equation (4.3) is used to quantify the isothermal bondline thickness dependence of ,effG∞  and 

1
,effJ −

∞  in PU-AlMg3 adhesive joints – see dashed lines in Figure 4-31. The experimental re-

sults show that this rough approximation allows describing the influence of dP on ,effG∞  and 
1
,effJ −

∞  at given temperature. One could note that the plotted values of 1
,effJ −

∞  have been obtained 

from creep experiments performed with the universal testing machine and the creep testing 
machine. Since the results are quantitatively similar, the accuracy of the experimental set-ups 
is thus ensured. 
 
The existence of stiff (or less compliant) interphase in the investigated adhesive joints is 
thereby proven. 
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Figure 4-31: Adhesive thickness dependence of the equilibrium shear stress relaxation modulus 

,effG∞  and the reciprocal equilibrium compliance 1
,effJ −

∞  for AlMg3-PU joints at 15 °C, 
30 °C and 60 °C. Dashed lines represent the isothermal bondline thickness dependence 
using eq. (4.3). 

 
In order to characterise the viscoelastic properties of that interphase and more generally of the 
adhesive joints, discrete retardation time spectra are calculated from the creep experiments 
shown in Figure 4-26. For a better identification of the influence of the bond line thickness, 
the discrete retardation time spectra, displayed in Figure 4-32, have been fitted with cubic pol-
ynomial functions (dashed lines, according to section 2.6). 
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Figure 4-32: Bond line thickness dependence of the discrete retardation time spectra of AlMg3-PU 

adhesive joints at 15 °C  
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The retardation time spectra reveal the bond line thickness dependence of the viscoelastic 
properties in AlMg3-PU adhesive joint. The evolution of the spectra with Pd  describes quanti-
tatively the observation made by the eye from the creep curves in Figure 4-26. At a first sight 
and for a given retardation time τ  , the corresponding compliance ( )*

effL τ  is higher for thicker 

samples.  
However, as suggested by the black arrow in Figure 4-32, the influence of the bond line thick-
ness does not only result in a vertical shift of the spectra to higher compliance with increasing 

Pd , but is also accompanied with a slight temporal shift.  
In order to highlight this effect, Figure 4-33 focuses on the maxima of the retardation time 
spectra for the thinnest and the thickest measured sample. The horizontal shift to longer retar-
dation time is then clearly visible. The spectrum of the thin sample reaches its maximum at 
shorter retardation times than that of the thick one. This indicates that the retardation processes 
occur more rapidly in thinner samples, confirming thereby the qualitative observation made 
from the creep curves in Figure 4-26: The thinner the adhesive joint, the shorter it takes to 
reach the creep equilibrium.  
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Figure 4-33: Close-up on the bond line thickness dependence of the discrete retardation time spec-

tra of AlMg3-PU adhesive joints at 15 °C 
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Similar findings concerning the bond line thickness dependence of the retardation time spectra 
have been noticed for PU-stainless steel adhesive joints, as depicted in Figure 4-34. 
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Figure 4-34: Bond line thickness dependence of the discrete retardation time spectra of PU-stainless 

steel adhesive joints at 5 °C (left) and 10 °C (right) 

 
 
Résumé 
 
Both elastic and viscoelastic properties of the investigated adhesive joints depend on the bond 
line thickness. The samples become stiffer with decreasing adhesive thickness. This effect is 
interpreted as the formation of mechanical interphases in the polyurethane adhesive in contact 
with the metal substrates. The evaluation of the retardation time spectra reveals complex ther-
morheological behaviour of the viscoelastic functions in the adhesive joints. 
Besides a straight mathematical translation of the retardation spectrum as a function of the 
temperature and adhesive thickness, a modification of its shape can be envisaged, especially at 
low temperature and long retardation times. However, the measuring time range and the accu-
racy of the measurements limit the amount of information in these ranges. A calculation of the 
viscoelastic function is performed in the next chapter to discuss a further possibility to de-
scribe quantatively the influence of interphases on the mechanical behaviour of adhesive 
joints. 
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4.3. Calculation of the viscoelastic functions of PU-metal adhesive joints 
 
Now that the adhesive thickness and temperature dependence of the mechanical behaviour of 
adhesive joints has been independently identified and characterised by means of shear, stress 
relaxation and creep experiments, the correlation between the measured viscoelastic properties 
can be assessed. As presented in the previous chapter, the elastic properties of adhesive joints 
can be directly and completely characterised in the measured range, because they are time-
independent material parameters (and thus, not influenced by some measurement conditions 
such as the strain rate or the measuring time range). This is, by definition, not the case for the 
viscoelastic properties. Only a part of the adhesive dynamics could be characterised by deter-
mining a fraction of the retardation time spectrum. The question is whether this limited 
amount of information is enough for a good approximation of the mechanical behaviour of the 
investigated bonded joints and whether this approximation could consider both the tempera-
ture and the adhesive thickness dependence. 
 

 Interrelation among the viscoelastic functions - Verification 4.3.1.
 
Using the relations given in section 2.6, it is possible to calculate a relaxation time spectrum or 
any other viscoelastic function or constant from a retardation time spectrum – see red path in 
Figure 2-30. This interrelation between the viscoelastic functions is of special interest to verify 
the experimental results. For instance, a relaxation test can be calculated from a creep test and 
quantitatively compared to an experimental curve. Consequently, this is a way of verifying the 
accuracy of the measured viscoelastic functions and determining whether the information from 
the discrete retardation spectrum is enough to describe the viscoelastic properties of the adhe-
sive joints. The results of these calculations are discussed in this section using the measure-
ments obtained for a PU-AlMg3 adhesive joint with a Pd  = 736 ± 9 µm. 
 
As already mentioned, all the equations necessary for the calculation of the following results 
are discussed in chapter 2.6. For the sake of clarity, the calculation steps are here briefly re-
peated.  
 
In comparison to the other tests performed in this work, creep experiments describe the adhe-
sive dynamics in the broadest time and temperature range, providing more information on the 
viscoelastic properties of the adhesive joints. Creep compliance ( )effJ t  is then chosen as 

starting point for the calculation. The creep curve is fitted with the analytical solution for a 
creep test in the Zener model, considering the non-sudden load of the sample – see eq. (2.115)
18 and fit parameters in Table 2-1 (page 45). This consideration prevents the influence of the 
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sample loading in the calculation of the retardation time spectrum. After the determination of 
the corresponding discrete retardation time spectrum ( )*

effL τ , this latter is fitted with a cubic 

polynomial function to obtain, by extrapolation, a continuous retardation time spec-
trum ( )effL τ  (red curve in Figure 4-35) – see eq. (2.160). The cubic polynomial function and 

the fit parameters used in Figure 4-35 are presented in Table 4-1.  
 
Since ( )effJ t  is measured for t ≥ t0 (see Figure 4-26), the parameters ,effJ ∞ , iτ  and iJ  are also 

determined for t ≥ t0. Thus ( )*
effL τ  is calculated for the same iτ  interval – Figure 4-32. 

Through the fit operation with the cubic polynomial function, ( )*
effL τ  is converted in ( )effL τ . 

Therefore, ( )effL τ  is validated by experimental data in the same iτ  interval as ( )*
effL τ  - see 

again Figure 4-32.  
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Figure 4-35: Discrete and continuous retardation spectrum for an AlMg3-PU adhesive joint with 

dP = 736 ± 9 µm at 15 °C.  

 
Table 4-1: Parameters of the continuous retardation time spectrum shown in Figure 4-35. 

Model Cubic 
Equation Log (Leff(τ)) = a0 + a1

.(log τ) + a2
.(log τ)² + a3

.(log τ)³ 
Reduced χ² 2.9789·10-4  
Coeff. of determination R² 0,99915  
 Parameter Value Standard deviation [%] 

a0 -7.136 0.4076 
a1 0.5396 8.901 
a2 -0.3221 6.479 
a3 0.0324 7.84 
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This simulated continuous retardation spectrum is in turn used for the backward calculation of 
the creep compliance as a function of time ( )effJ t . Inserting the cubic polynomial function 

presented in Table 4-1 in eq. (2.120)19, it gives 
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In this way, it is possible to check if the approximations, made hitherto, are acceptable or not 
by comparing the experimental ( )effJ t  with the back calculated one, as shown in Figure 4-36.  
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Figure 4-36: Comparison between the experimental and the calculated creep function ( )effJ t  for 
an AlMg3-PU adhesive joint with dP = 736 ± 9 µm at 15 °C 

 

Figure 4-36 shows that the calculated and the experimental creep compliance coincide very 
well as discussed above. The increasing deviations at short measuring times result from the 
experimental limitation for measuring times t ≥ 10 s. Because of the duration of the sample 
loading, the fast retardation processes, which are already taking place then, cannot be experi-
mentally monitored. In turn, the calculated discrete retardation time spectrum cannot consider 
these retardation processes. This loss of information affects all further calculations. However, 
only after about 10 seconds, both curves superimpose. Below this value, the discrepancies be-
tween the calculated ( )effJ t  and the measured one increases as shown in Table 4-2.  
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Table 4-2: Discrepancy between the calculated and experimental values of ( )effJ t . 

t 
[s] 

( )effJ t  experi-
mental 
[Pa-1] 

( )effJ t  calculated 
[Pa-1] 

Discrepancy 
[%] 

16.4 6.3326.10-7 6.4340.10-7 1.6 
10.3 5.6889.10-7 5.8414.10-7 2.6 
8.2 5.3361.10-7 5.6372.10-7 5.4 
4.1 4.3136.10-7 4.6707.10-7 7.6 
2.1 3.3539.10-7 3.9025.10-7 14 

 
Hence, the approximations made so far are acceptable and the fitted continuous retardation 
time spectrum gives a realistic description of the mechanical behaviour of the adhesive joints. 
In this case, the calculations can be carried on.  
If the calculated and measured creep curves would be different, the calculated parameters 
should not be used for subsequent calculations. Experimental observations have shown that the 
back calculation of the creep curve succeed when the (main) maximum in the (discrete) retar-
dation time spectrum is clearly displayed. This finding limits the measuring temperature range 
for these backward calculations. A clear maximum in the retardation spectra can only be ob-
served within the experimental time window if the measuring temperature is in the upper half 
of the glass transition. If the temperature is too high, most of the retardation processes are too 
fast to be observed. The maximum occurs then at very short time, which cannot be experimen-
tally measured. At low measuring temperature, the maximum occurs at very long retardation 
time, drastically increasing the experiment duration. 
 
A successful back calculation of the creep curve also means that the theory underlying the 
calculations applies and hence that the experiments have been performed in the linear visco-
elastic range of the polyurethane adhesive. This confirms the results obtained in the sec-
tion 3.4. 
 
In the following step, the continuous relaxation time spectrum ( )effH τ  is calculated using 

eq. (2.163)20 – see Figure 4-37 in black. Inserting eq. (2.160) in eq. (2.163), we obtain: 
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The numerical values are calculated with the parameters ia   presented in Table 4-1. By calcu-

lating ( )effH τ  from ( )effL τ , ( )effH τ  is validated by experimental data in the same iτ  interval 

as ( )L τ . The values of the discrete relaxation time spectrum ( )*
effH τ  (see Figure 4-37 in red) 

obtained from a stress relaxation experiment (see Figure 2-28) confirm the calculated continu-
ous relaxation time spectrum ( )effH τ . 
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Figure 4-37: Calculated continuous relaxation time spectrum ( )effH τ  from the continuous retarda-

tion time spectrum ( )effL τ  and discrete relaxation time spectrum ( )*
effH τ  fitted from 

the experimental stress relaxation modulus ( )effG t  (see Figure 2-28) for an AlMg3-
PU adhesive joint with dP = 736 ± 9 µm at 15 °C 

  

The stress relaxation modulus ( )effG t   is determined by means of eq. (2.164)21. Again, meas-

ured and calculated results are compared - Figure 4-38. The calculated stress relaxation modu-
lus overlaps the experimental one, thereby demonstrating the accuracy of the calculation 
method. Since the calculated values are based on the results from an experimental creep test, it 
can be concluded that the measured creep and relaxation tests provide quantitatively compara-
ble results. 
 
Besides the remarkable consistency of the results from creep and stress relaxation tests, Figure 
4-38 gives the opportunity to evaluate those relaxation processes, which normally cannot be 
observed with experimental stress relaxation tests as they occur during the loading of the sam-
ple. Figure 4-37 shows that at 15 °C most of the relaxation processes are completed when the 
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constant strain is reached, after about 40 seconds. Thus, ( )effG t  calculated from ( )effH τ  is 

indirectly validated in a larger time range by the creep test than the stress relaxation test (red 
curve in Figure 4-38).  
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Figure 4-38: Comparison between the experimental and the calculated stress relaxation modulus 

( )effG t  for an AlMg3-PU adhesive joint with dP = 736 ± 9 µm at 15 °C 

  

As for the calculated creep function ( )effJ t  in Figure 4-36, the values of ( )effG t  at short re-

laxation times are only the results of the mathematical extrapolation without any experimental 
verification. These data cannot be experimentally measured due to the non-sudden loading of 
the adhesive joint. 
One could note that ( )effG t  so calculated represents the stress relaxation curve after a sudden 

strain since the influence of the non-sudden sample loading during the creep experiment have 
been eliminated. This explains the small discrepancies between the experimental and the cal-
culated values of ( )effG t  for t between 40 s and 60 s. 

This approach not only shows that the interrelations among the viscoelastic functions for the 
linear viscoelasticity applies, but also that more information about ( )effH τ  and ( )effG t  can be 

obtained from creep tests than from stress relaxation tests.  
 

Since the calculated stress relaxation modulus ( )effG t  reproduces the experimental curves in 

the experimental time window, the data can be used for the final step of the calculation. The 
calculated ( )effG t  is fitted with the analytical solution of the generalised Maxwell model for a 

stress relaxation test after sudden strain in order to obtain the discrete material parameter pairs: 
( );i iG τ . These parameters can be then implemented in the analytical solution of the general-

ised Maxwell model for shear test at constant shear rate. Figure 4-39 depicts the comparison of 
calculated and measured shear tests for three different shear rates d dtγ γ= : 4∙10-2 s-1, 4∙10-

3 s-1, 4∙10-4 s-1.  
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Figure 4-39: Comparison between the experimental and the calculated shear tests at constant shear 

rate for an AlMg3-PU adhesive joint with dP = 736 ± 9 µm at 15 °C 

 

The calculated and measured curve coincides very well for the two slower shear rates. Howev-
er, the calculated shear test for the fastest shear rate shows a big discrepancy with the experi-
mental curve. This statement is observed not only in the example chosen here, but also in all 
other adhesive joints which have been tested with shear tests. For all samples, the experi-
mental curve with 2 14 10  sγ − −⋅=  shows higher value of the shear modulus ( , , )eff PM t dγ  than 

the calculated one. To understand this effect, it is necessary to remember that the original data 
chosen for performing the calculations are those from the creep tests. As mentioned, many 
times before, the retardation processes occurring during the sample loading cannot be consid-
ered in the subsequent calculations and the corresponding information gets lost. This systemat-
ic underestimation of ( )effM t , which occurs in the simulated curves, is due to the fact that fast 

relaxation processes are neither detected in creep experiments (t0 ≈ 2-3 s) nor in stress relaxa-
tion experiments (t0 ≥ 30 s). However, these fast processes are obviously already relevant for 

( )2 1
12 , 4 10T sγ γ − −= ⋅ . Shear tests with 2 14 10  sγ − −⋅=  last about five to six seconds. The fast 

relaxation processes occurring within this period play an important role in the mechanical re-
sponse of the adhesive joint. Since a significant part of these relaxation processes are not con-
sidered by the calculation, the sample appears to be more ductile than it actually is.  
The contribution of these fast relaxation processes is not so high for the slower shear rates and 
thus influences the corresponding calculations to a lesser extent. The mainly relevant contribu-
tions of the relaxation processes for the strain rates can be measured in the experimental time 
window of the creep tests. 
 
With the calculation of shear tests, the calculation is completed. The presented example shows 
that the calculation of viscoelastic functions allows comparing quantitatively the results of the 
different experiments for a given measuring temperature, time interval or deformation rate and 
adhesive thickness. The consistency of the results indicates that the experimental procedure is 
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accurate enough to characterise the mechanical behaviour of adhesive joints. The temperature 
and thickness dependence of the effective viscoelastic properties, shown in chapter 4 is also 
verified for different measured temperatures and dP. 
 
Based on these findings, a way to predict the mechanical behaviour of adhesive joints should 
be found by implementing both temperature and adhesive thickness dependence into the calcu-
lations presented above.  
 
For this purpose, the suitability of the time-temperature equivalence is first considered whether 
it can describe the temperature dependence of the mechanical properties in adhesive joints 
discussed in section 4.1. 
 

 Time – temperature equivalence - Discussion 4.3.2.
 
An indication of the relation between the measuring time and temperature in the mechanical 
behaviour of the investigated adhesive joints has already been noticed in the results presented 
in section 4.1.  
 
In practice, the experimental time scale and measuring temperature range are limited. There-
fore, not all relaxation phenomena can be observed within one experiment. To overcome this 
issue, the interdependence of the viscoelastic behaviour on time and temperature has been in-
vestigated over the last decades. 
 
As early as in 1941 Leaderman noticed that the shape of the creep curves of some viscoelastic 
materials at different temperatures does not change much and that the curves shift on time 
scale [175]. This concept, also known as the time–temperature equivalence, intends to describe 
the temperature dependence of the mechanical properties in polymers by a simple temporal 
shift of the viscoelastic functions to longer times with decreasing measuring temperature. It 
can also be used to build a master curve based on different isothermal creep curves. It implies 
that the viscoelastic behaviour at one temperature can be related to that at another temperature 
by only altering the timescale with a shift factor, ( )Ta T [176]. The mechanical behaviour of 
such materials is qualified as “thermo-rheologically simple”. 
 
Based on the fitting of a large number of data for different polymers in the glass transition 
region, Williams, Landel and Ferry suggested the following equation to describe the tempera-
ture dependence of the shift factor ( )Ta T  [177]: 
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refT  is an arbitrarily chosen reference temperature, 1C  and 2C  are material-specific parameters 

whose values depend on the chosen reference temperature. 
 
Further models have been established in order to improve the long-term prediction of the creep 
compliance of polymers because experimental data show that ( )J t  curves happen to show 

some vertical shift in addition to the horizontal shift ( )Ta T . A commonly applied approach is 

the addition of a vertical shift factor ( )ga T  [178]. A time-dependent shift factor can be defined 

to give a better description of thermo-rheologically complex material behaviour. Although 
some physical motivations have been put forward, the use of such vertical shift – unlike the 
horizontal one – does not base on a clear physical foundation [176]. That is why, the simple 
time-temperature equivalence, i.e. the thermo-rheologically simple shift, is used in this work 
to give an approximation of the experimentally observed phenomena.  
 
A representative example, illustrating the results obtained for a PU-AlMg3 adhesive joint with 
dP = 1482 ± 13 µm, is given in what follows. The temporal shift factor, ( )Ta T , (or respectively 

( )log Ta T  in the logarithmic time scale) is determined for the time-temperature equivalence 

by means of the isothermal creep curves as depicted in Figure 4-40. A reference value of 
( )ref

effJ t  is arbitrarily chosen (here: ( )ref
effJ t  = 6∙10-7 Pa-1) and ( )log Ta T  is calculated with re-

spect to a reference temperature (here: refT  = 5 °C) for different temperatures: 

 ( ) ( )ref ref
eff T eff reft J T a t J T   = ⋅      (4.7) 

Thus 
 ( ) ( )log log logref ref

eff T eff reft J T a t J T   = +      (4.8) 

 
For a better sensitivity, the chosen value for ( )ref

effJ t  should be in the transition region of the 

creep curves, i.e. within the range of ( )effJ t  showing the greatest slope.  

 
At the chosen reference temperature refT  = 5 °C, the retardation processes are slower than at 

the other measuring temperatures. The time required to reach the specified compliance is then 
shorter with increasing temperature ( )ref

efft J T   < ( )ref
eff reft J T   . Therefore, 1Ta <  and 

log 0Ta <  hold for all measuring temperatures. These values are then plotted as a function of 

the temperature difference ( refT T− ) and fitted with the Williams–Landel–Ferry equation (4.6) 

in Figure 4-41. The obtained fit curve is supposed to approximate the temperature dependence 
of the viscoelastic properties of the adhesive joint, at least in the measuring temperature range.  
 
In addition to the time shift of the viscoelastic properties with the measuring temperature, dif-
ferences in the equilibrium plateau values of the creep curves can also be identified in Figure 
4-40. This is the result of the temperature dependence of the equilibrium compliance ( ),effJ T∞  
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which was already discussed in chapter 4.1.3. It is obvious, that this effect cannot be reflected 
only by a mathematical translation of the creep curve along the time scale with the temperature 
– see Figure 4-40, right. It is a limitation of the time-temperature equivalence which only de-
scribes thermo-rheologically simple behaviour.  
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Figure 4-40: Time - temperature equivalence – Determination of the shift factor, log Ta  (left) and 

shifted creep compliance ( )effJ T  providing the master curve (right) according to the 
calculated shift factor for a PU-AlMg3 adhesive joint with dP = 1482 ± 13 µm. 
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Figure 4-41: Time - temperature equivalence – Approximation of the temperature dependence of 

the shift factor, Ta , using the Williams–Landel–Ferry equation ; see eq.(4.6), for a 
PU-AlMg3 adhesive joint with dP = 1482 ± 13 µm 
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Table 4-3: Fit parameters of the data shown in Figure 4-41 using the WLF equation. 

Model WLF equation 
Equation ( )

( )
1

2

log ( , ) ref

T ref

ref

C T T
a T T

C T T

⋅ −
= −

+ −
    (4.6) 

Reduced χ² 0.00382  
Coeff. of 
determination 
R² 

0,99583  

 Parameter Value Standard 
deviation [%] 

C1 95.17133 75 
C2 17.50789 66 

 
Despite of the limitation of the time-temperature equivalence, this constitutes a relatively easy 
way to approximate the temperature dependence of the mechanical properties of adhesive 
joints. Figure 4-40 (right) shows that the so-called master curve for ( ), refJ t T  only works in a 

certain time range. For smaller and larger times, the creep curves diverge from each other. In 
order to estimate the relevance of its approximation and its appropriateness for the calculations 
presented in the previous section, the time-temperature equivalence is applied to the discrete 
retardation time spectra ( )* ,effL Tτ .  

 
At a given retardation time 1t , the corresponding intensity of the discrete retardation time 

spectrum ( )*log effL τ  measured at a temperature 1T  can be calculated with the equation (2.122) 

expressed in term of logarithms: 

 

( )

1

i

1

1

i

1

1

tn
* i
eff 1

i 1 i t

tn
i

1 t
i 1 i t

Jlog L ( ) log t e

Jlog t log e

t
−

t

=
=t

−
t

=t
=

=t

 
 ≈ × ×
 t
 

 
 ≈ + ×
 t
 

∑

∑
  (4.9) 

Figure 4-42 illustrates the mathematical construction of a creep curve at a temperature T2 (in 
red) from an experimental creep curve (in black) measured at T1 (T1 > T2)22, as described by 
the time-temperature equivalence. The relation between the time scales of the creep curves is 
given by 
 2 1 Tlog t log t log a= +   (4.10) 
  

                                                 
 
22 Here is 1 2T T>  considered in contrast to the examples presented in Figure 4-40 and in Figure 4-41. 
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Figure 4-42: Time – temperature equivalence: mathematical construction of J(t,T2) with the exper-

imental creep curve J(t,T1) with T1 > T2 

 
This time-temperature equivalence implies that the shape of ( )effJ t  does not depend on T  

and hence the nature of the relaxation/retardation processes and their activation sequence oc-
cur invariant of temperature; only the speed of these processes is changed by the same factor. 
In this case, all the retardation times are affected by the same shift factor as described by the 
equation (4.10) for the creep curves: 
 
 ( ) ( )2 1log log log                   i i T iT T aτττ  = + ∀   (4.11) 

 

Combining the equations (4.9) and (4.10) the intensity of the shifted discrete retardation time 
spectrum (obtained using the time-temperature equivalence) is 

 [ ] ( )
2

i

2

tn
(T )* i

eff 2 t (T )
i 1 i

Jlog L (T ) log t log e
(T )

2

2

−
t

2 =t
= 2

 
t ≈ + ×  t 

∑   (4.12) 

By considering that ( ) ( )i 2log T
i 2T 10 ττ =  and with equation (4.11), equation (4.12) becomes 
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∑   (4.13) 

 
Eq. (4.13) demonstrates that ( )*

effL τ  shifts only horizontally on τ -axis according to eq. (4.11). 

Hence, the shape and the intensity of the retardation spectra are thus not modified by applying 
the time-temperature equivalence in the way defined by eqs. (4.10) and (4.11).  
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The retardation time spectra, corresponding to the creep curves shown in Figure 4-40, are then 
shifted using the determined values of log Ta  in Figure 4-41 by means of the WLF equation. 
The results are shown in Figure 4-43. 
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Figure 4-43: Application of the time - temperature equivalence to the retardation spectra of a PU-

AlMg3 adhesive joint with dP = 1482 ± 13 µm: left, measured retardation spectra; 
right, shifted retardation spectra (Tref = 5 °C) providing the ( )effL τ  master curve. 

 
As expected by the calculations above, the shifted spectra are superimposed at first sight.  
The deviations occur mainly at large τ : 

- The value on the right at 5 °C is too high because ( )effJ t  did not reach the equilibri-

um due to the perturbation in J(t) for t = 3-4∙105 s – see Figure 4-40.  
- The value at 15°C is also a little too high, but Figure 4-40 shows that the creep plateau 

has been reached. 
- Figure 4-40 confirms that the creep equilibrium has been reached at 20 °C. Therefore, 

the value on the right is reliable. 
The data in Figure 4-43 are thus consistent, and the temporal shift seems to give a good ap-
proximation of the temperature dependence of the retardation time spectra.  
A closer examination of Figure 4-43 reveals a slight vertical translation of the shifted spectra, 
particularly in the region of the maxima. The maximum of the spectrum increases with de-
creasing temperature, as already discussed in section 4.1.3. This effect cannot be considered 
by the horizontal shift of the spectra and shows the limitations of the simple time-temperature 
equivalence. 
 
The consequences of the neglected vertical shift can be checked in the following way. If the 
time-temperature equivalence gives a good approximation of the temperature dependence of 
the viscoelastic properties of the adhesive, it is possible to use the superposed spectra in order 
to have access to more information, namely more values of ( )*

effL τ  in a broader retardation 

time range, than in a single discrete spectrum. Moreover, the consideration of all the shifted 
values of L*(τ) reduces the effect of measurement errors and averages the vertical shift of the 
spectra in the measured temperature range. This induces a modification of the spectra intensi-
ties in comparison to a pure horizontal shift of the spectra and consists thereby in an alteration 
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towards the time-temperature equivalence. By combining the data of the shifted discrete spec-
tra, a continuous master retardation time spectrum is constructed in the same way as for the 
single continuous time spectrum, described in section 2.4 - Figure 4-44 and Table 4-4. The 
master retardation time spectrum is then not an exact copy of a measured spectrum but an av-
eraged spectrum for all the measuring temperatures and is thus an averaged description of the 
viscoelastic properties of the adhesive joints in the considered temperature range. Note that the 
“outlier” in the discrete retardation spectrum at 5 °C (cf. Figure 4-43) has not been considered 
for the determination of the master retardation time spectrum. 
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Figure 4-44: Determination of the master retardation time spectrum of a PU-AlMg3 adhesive joint 

with dP = 1482 ± 13 µm (Tref = 5 °C) 

 
Table 4-4: Parameters of the master retardation time spectrum shown in Figure 4-44 (in red). 

Model Cubic 
Equation log (Leff(τ)) = a0 + a1

.(log τ) + a2
.(log τ)² + a3

.(log τ)³ 
Reduced χ² 0.0015  
Coeff. of determination R² 0,9926  
 Parameter Value Standard deviation [%] 

a0 -8.23536 1.11 
a1 1.21867 6.7 
a2 -0.30872 7.2 
a3 0.01822 10.26 

 
The master retardation time spectrum is then shifted back along the time axis into the positions 
of the original measured retardation spectra, using the values for the shift factor log aT deter-
mined using the WLF equation in Figure 4-41. The corresponding creep curves ( ),effJ t T  are 

then calculated from the back-shifted master retardation spectrum. Creep curves can obviously 
be calculated for any temperature within the mechanical glass transition of the adhesive using 
the WLF equation given in Figure 4-41 but the validity of the time-temperature equivalence 
should be verified first. 
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Figure 4-45 illustrates the comparison of the measured creep curves with those calculated from 
the master retardation spectrum. The calculated curves provide a reasonable approximation of 
the experimental curves in the transition region (between the glassy and rubber-like plateaux). 
Due to the averaging of the retardation processes through the determination of the master re-
tardation spectrum, the calculated creep curve at the reference temperature T = 5 °C does not 
so well fit the measured one as it was the case with the experimental ( )effL τ  spectrum – cf. 

e.g. Figure 4-36. That is the visualised result of all the simplifications made for the master 
curve construction. 
Deviations between the calculated and the measured curves at short creep time cannot be dis-
cussed since the experimental data do not exist because of the non-sudden loading of the sam-
ple. 
In addition, discrepancies between the experimental and the calculated data in Figure 4-45 can 
be imputed, at least partially, to the temperature dependence of the equilibrium compliance 
which is not considered by the simple time-temperature equivalence, cf. Figure 4-42. 
Besides the different plateau values for ( ),effJ t T , it is obvious that the contributions of the 

long iτ  are not properly included in the master curve. This can be explained as we only have a 

limited measured time expt  . Consequently, the "plateau" may still be corrupted by much slow-

er processes. These are not explicitly taken into account in ( )effL τ . They merely increase 

( )max
eff iL τ . But since max

...i iττ  +<  of the slow processes, the calculated ( ). ,calc
effJ t T  must decay 

faster at high measuring time t  than the measured ( )exp. ,effJ t T . This becomes more obvious the 

lower the measuring temperature expT  is – see Figure 4-45. 

A further assumption for this effect is that the shape and the intensity of the retardation spec-
trum depend on the measuring temperature but cannot be experimentally identified with the 
employed experimental set-ups.  
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Figure 4-45: Time - temperature equivalence – Comparison between experimental (solid lines) and 

calculated (dashed lines) creep curves  
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Despite of its limitations discussed previously, the time-temperature equivalence gives an ac-
ceptable approximation of the temperature dependence of the viscoelastic properties of the 
adhesive joints. This indicates that the shape and the intensity of the retardation spectra do not 
undergo major changes in the measuring temperature range. Many additional compromises 
made with the master curve construction for ( )effL τ  result in additional systematic deviations 

of the calculated from the measured creep curves ( ), .effJ t T const= . 

Since the viscoelastic functions of the adhesive depend on Pd , the WLF parameters 1C  and 2C
are expected to behave in the same way. However, Figure 4-46 shows that the evolution of the 
shift factor Ta  with the temperature seems to not depend on the adhesive thickness in the 
measuring temperature range. Because of the narrow measuring temperature range and the 
small number of measured points, the absolute values of the WLF parameters for the different 

Pd  are not discussed. For the given level of accuracy, the dynamics of the interphase and the 
bulk adhesive in the bonded joints appear to have similar temperature dependence, as evi-
denced by the apparently adhesive thickness independent shift factor. 
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Figure 4-46: Temperature dependence of the shift factor Ta  using the Williams–Landel–Ferry 

equation ; see eq.(4.6), for a PU-AlMg3 adhesive joint with different dP. The fit pa-
rameters show no systematical dependence on Pd . 

 
Nevertheless, the application of the time-temperature equivalence, as it is, gives a first approx-
imation to describe the temperature dependence of the viscoelastic properties of the adhesive 
joints. Based on this finding, similar considerations as for the time-temperature equivalence 
are attempted in the following section to describe the bond line thickness dependence of the 
viscoelastic properties in adhesive joints.  
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 Bond line thickness - time equivalence – An attempt 4.3.3.
 
The results discussed in section 4.2 describe the bond line thickness dependence of the viscoe-
lastic behaviour of the investigated adhesive joints. More specifically, the influence of the ad-
hesive thickness on the retardation time spectra is shown in Figure 4-32, Figure 4-33 and Fig-
ure 4-34. For the given measuring temperature, the spectra shift to higher ( )effL τ -values and, 

to a lesser extent, longer retardation times with increasing adhesive thickness Pd . In the same 
way as for the approximation of the temperature dependence, a shift of the retardation spectra 
is attempted to depict this bond line thickness dependence. 
 
Unlike the WLF equation for the temporal shift of the linear viscoelastic properties of pol-
ymers by varying the measuring temperature, no relation is known so far for the adhesive 
thickness dependence of the mechanical behaviour in adhesive joints. As a starting point for a 
first approximation, the combination of a horizontal and vertical shift of the retardation spec-
trum for a PU-AlMg3 adhesive joint with Pd  = 736 ± 9 µm is considered at 15 °C. The spec-
trum is shifted so that it overlaps the measured retardation spectrum at the same temperature of 
an adhesive joint with Pd  = 281 ± 9 µm as shown in Figure 4-47. In doing so, it is important 
that the maxima of the spectra are superimposed because they reflect the most important con-
tribution in the adhesive dynamics. Two new shift factors are to be defined for this: bτ  for the 

horizontal shift and Lb  for the vertical shift. Note that the chosen Pd  are both influenced by 
the mechanical interphase, but in different proportions, as the properties of the corresponding 
adhesive joint depend on Pd , as seen in section 4.2. 
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Figure 4-47: Bond line thickness - time equivalence – Shift of the retardation spectrum. Retardation 

time spectra before (left) and after (right) shift. The blue dashed lines indicate the 
maxima of the retardation time spectra. Only the measured τ  range of the spectra has 
been considered. The values of the shift factors used here are: log 0.25bτ =  and 

log 0.055Lb = .  
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Since the two curves have a comparable fit quality with respect to the discrete measured val-
ues ( )*

i iL τ , the deviation shows that the slow processes with maxττ >  in the thicker adhesive 

layer provide a higher contribution to the linear viscoelastic behaviour than in the thinner lay-
er. 
 
After the spectrum measured for Pd  = 736 ± 9 µm is shifted to overlap the spectrum measured 

for Pd  = 281 ± 9 µm, as described in Figure 4-47, the back calculation of the corresponding 
creep curves can be carried out. This approach aims to assess the quality of the approximation 
obtained with this bond line thickness-temperature equivalence. Figure 4-48 shows the results 
of these calculations.  
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Figure 4-48: Bond line thickness - temperature equivalence – Verification: comparison between 

experimental and calculated creep curves 

 
The red curve represents the creep function of a PU-AlMg3 adhesive joint with 

Pd  = 281 ± 9 µm, which was calculated based on the shifted spectrum for a PU-AlMg3 adhe-

sive joint with Pd  = 736 ± 9 µm. The black creep curve is calculated using the continuous 

retardation time spectrum obtained from the experimental ( )*
effL τ . At short retardation times, 

lowerττ → , both curves are identical. This results from the good match of the both spectra in 
the region of their maxima (3 s ≤ τ  ≤ 12 s). Thus, the corresponding calculated values of the 
“instantaneous” compliance 0,effJ , which are influenced by fast retardation processes, are also 

identical. The retardation processes are well approximated by the bond line thickness-
temperature equivalence in the transition region. By approaching the entropy-elastic plateau, 
the deviation between the experimental and the calculated curve increases, resulting in a con-
siderable discrepancy between the both plateau values. The influence of Pd  on the relaxed 
elastic properties of the adhesive joint (see chapter 4.2) is not reproduced by the attempted 
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shift of the retardation time spectrum as described above, even in a relatively narrow range of 

Pd . The contribution of long retardation processes is underestimated by the calculation where-
as the shifted retardation time spectrum is broader that the experimental one in the measured 
time range – Figure 4-47, right. Figure 4-48 shows that the calculated creep compliance 

( )effJ t  is lower than the measured one at long retardation times. This could indicate that the 

integral of ( )effL τ  is too small and thus that the calculated spectrum is either too narrow or its 

maximum too low. In both cases, this proves that there is no simple bond line thickness equiv-
alence for the viscoelastic properties in adhesive joints. The modification of the shape of the 
retardation spectrum with Pd  cannot be neglected to approximate the bond line thickness de-
pendence of the adhesive dynamics. In other words, the mechanical interphases exhibit differ-
ent properties from those of the adhesive bulk.  
 
A bigger experimental database will be necessary to discuss the quality and the limitations of 
the bondline thickness - time equivalence. An interesting aspect will be, for instance, the evo-
lution of the shift factors bτ  and Lb  as a function of adhesive thickness Pd  at different temper-
atures to determine a WLF-like equation. 
 

 Residual stress as origin of mechanical interphase – short discussion 4.3.4.
 
The formation of mechanical interphases in adhesive joints causes gradients in the mechanical 
properties of the adhesive joints. As mentioned in the introduction of this work (cf. chapter 1), 
several hypotheses are put forward to explain the causes of the formation of mechanical inter-
phases in adhesive joints. One of these suggests that the mechanical interphase originates from 
residual stresses resulting from the shrinkage of the adhesive during its network formation. 
Due to the adhesion of the polyurethane molecules in contact with the metallic substrate, these 
stresses cannot be relaxed and can thereby influence the mechanical properties of the neigh-
bouring adhesive chains and so on. Hence, such internal stresses influence the adhesive dy-
namics depending on the adhesive thickness. Therefore, the distribution of the retardation and 
relaxation processes would be also affected by the existence of such internal stresses. 
 
In order to get an impression of the mentioned residual stresses, an adhesive sample with an 
average thickness of 1896 µm has been delaminated from both substrate surfaces. Figure 4-49 
shows a picture of the loosely peeled adhesive layer placed on a substrate half for comparison 
purpose. The other end of the adhesive layer is made flush with the edge of the bonding sur-
face. As it can be clearly seen, the adhesive layer no longer completely covers the bonding 
surface. This means that the adhesive layer is considerably shrunk after peeling off the sub-
strates. Once the adhesive forces are no longer present, a significant part of the internal stress-
es can relax. Figure 4-49 shows the influence of these internal stresses for dP = 1896 µm. The 
bulk properties of the adhesive in a bonded joint can also be characterised first when the influ-
ence of the internal stresses can be neglected. 
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Figure 4-49: Shrinkage of a delaminated adhesive layer at 25 °C [157] 

 
The length of the peeled adhesive layer is determined by means of a measuring microscope: 
l  = 98.47 ± 0.01 mm. The accuracy of the measuring system is not good enough to detect a 
variation in the width and in the thickness of the adhesive layer after peeling. Considering the 
original length of the adhesive layer, 0l  = 100 mm, this value is used to estimate the internal 
stresses in the sample23. 
For this purpose, a specimen is dye cut from the peeled adhesive layer and a tensile test is car-
ried out at a temperature of 50 °C (in entropy-elastic region). A shear modulus μ of 1.15 MPa 
is determined. As the polyurethane adhesive can be considered as an incompressible material 
(see section 2.2) the Neo-Hooke material law is used to calculate the normal stress component 
T11 in the longitudinal direction of the sample: 
 

 2
11 1

1

1T µ λ
λ

 
= ⋅ − 

 
  (2.55) 

where λ1 = l / l0. 
 
The measured data yield to a longitudinal stress of 0.053 MPa. In this case, only the longitudi-
nal stresses are considered because the effects are more pronounced in this direction. The rela-
tive error in the measurement of the peeled adhesive layer is therefore the lowest. This result is 
only an approximation for the internal stresses in the sample. For a more precise description of 
the residual stresses, the exact three-dimensional deformation state in the adhesive sample 
should be considered. It is also to be expected that the residual stresses are not homogeneously 
distributed along the thickness of the sample. As already described, the internal stresses are 
expected to be substantially higher in the immediate vicinity of the substrate than in the middle 
layer of the sample.  
  

                                                 
 

23 l∆  = (100-98.47) mm = (1.53 ± 0.01) mm and 
0

l
l
∆

 = 
1.52 1.54
100 100

  = 1.52…1.54 % 
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Figure 4-49 proves that residual stresses are present and also gives a clever estimate of these 
latter. However, residual stress components still exist due to temperature effect. Furthermore, 
it is not yet clear how the residual stresses influence the modulus, which is then measured in 
the experiments. 
 
According to the experimental observations made with the tensile tests (cf. Figure 3-58), we 
have: 

• In the entropy-elastic region, 11T  as a function of 2
1

1

1λ
λ

 
− 

 
 is linear with a constant 

slope, i.e. µ  = const. Thus the stress level 11T  does not affect µ . 

• In the viscoelastic region the slope of 2
11 1

1

1T λ
λ

 
− 
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 decreases with increasing 11T  (as a 

function of 2
1λ ). Thus, the local slope 

11
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1

1eff

T

dT

d
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λ
λ

=
 
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decreases as 11T  increases. 

It therefore follows that residual stresses should lead to a tendency towards a more 
compliant response of the polymer network. 

 
With µ-Brillouin spectroscopy [42, 60], the opposite effect has been observed – but with a 
static measurement method. The effect of residual stresses on the viscoelastic modulus is 
therefore not obvious. 
 
According to these results, it is conceivable that the internal stresses are a possible cause for 
the existence of the mechanical interphase in adhesive joint. Moreover, the existence of inter-
nal stresses can also explain the huge extent of these mechanical interphases, measured in the 
investigated adhesive joints. The monitoring of the shrinkage during the cure of the polyure-
thane adhesive is currently studied with a new characterisation method: the temperature modu-
lated optical refractometry (TMOR) [179]. This should contribute to a further improved under-
standing of the formation of such mechanical interphases in adhesive joints. 
 
Formel-Kapitel (nächstes) Abschnitt 1 
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5. Further methods to detect interphases in PU-metal ad-
hesive joints 

 
The previous mechanical experiments described the influence of mechanical interphases in 
PU-AlMg3 and PU-stainless steel adhesive joints with a bond line thickness from about 
2000 µm to ca. 140 µm. This raises two questions: how is the influence of mechanical in-
terphases in the lower bond line thickness range and does the observed mechanical interphase 
change other physical properties of the bonded joints? 
To investigate these both issues, a new sample geometry with a more accurate bond line thick-
ness is necessary to be able to distinguish the effect of the interphase in thinner adhesive joints 
(dP ≤ 100 µm) by means of dynamic mechanical analysis (DMA), differential scanning calo-
rimetry (DSC) and dielectric spectroscopy (DES). 
 

5.1. Sample preparation 
 
Now, the metal substrate is prepared by physical vapour deposition (PVD) of Au (99.99 %) on 
clean glass slides in high vacuum. The compact polycrystalline gold layer has a thickness of 
about 50 - 100 nm24.  
 
The unreacted adhesive, prepared as described in section 3.1.3, is cast between two gold sub-
strates. PTFE spacers adjust dP appropriately between 37 and 550 µm. Due to the poor adhe-
sion between gold and glass, the fully cured adhesive joints can be easily pulled off from the 
glass slide using tweezers. The samples are then used for DMA, DSC and DES measurements 
(cf. Figure 5-1 for sample geometry).  
 

 
Figure 5-1: Sample geometry (dP: sample thickness, including the gold layers (50-100 nm); W: 

width; L: length) 

 

                                                 
 
24 Scanning force microscopy (SFM) has been used in the contact mode to measure the thick-
ness of the gold layer: the glass slide is partially masked before the gold deposition and the so 
obtained step can be measured with SFM, originally referred also as atomic force microscopy 
(AFM) [180, 181]. 
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In the same way, copper and aluminium substrates are prepared by vapour deposition, except 
that a gold layer is first deposited between the glass substrate and the final metal layer to fa-
cilitate the separation of the adhesive bond from the glass slides. To avoid the formation of an 
Au-Cu alloy during the cure of the adhesive [182], an aluminium layer is deposited between 
the gold and the copper layer. 
 

5.2. Dynamic mechanical analysis 
 
Dynamical Mechanical Analysis (DMA) appears to be a promising tool for the analysis of 
dynamic stiffness and molecular mobility in adhesive joints, if accuracy and sensitivity are 
sufficient. For bonded joints of Al foil with a commercial epoxy network, Caussé et al. report 
a dependence of molecular mobility on dP within 100 and 600 µm but for only three dP values 
[183]. The authors interpret their data as consequence of stiffening that extends from the 
epoxy-Al contact (interface adhesive-substrate) into the adhesive bond line. However, their 
body of data is limited and the connection between epoxy immobilisation at the Al surface and 
the mechanical behaviour remains vague. Moreover, the epoxy composition and the state of 
curing are not reported in necessary detail. That data encourages extending such measure-
ments. They are needed to model the dynamic mechanical properties of adhesive joints [184]. 
In this chapter, the suitability of DMA is tested further for gold-polyurethane adhesive joints 
in an extended thickness range. These results are also presented in [167]. 
 

 Experimental 5.2.1.
 

5.2.1.1. Measuring mode 
 
In material compounds, sample orientation plays an important role for the selection of the op-
timal measurement mode, for the display of the measured data, and, hence, for the detection of 
mechanical effects. This is illustrated in Figure 5-2 for coatings or laminates where the com-
pound consists of just two components with different mechanical parameters. Obviously, only 
shear measurements with shear stress along the substrate surface deform the bi-layer part 
without significant deformation of the substrates. In the shear mode the stiffness of thin glassy 
samples is rather high. Moreover, a high-resolution measurement of small deformation is re-
quired to make sure that the material properties are determined in the linear range.  
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Figure 5-2: Sketch of the influence of the measuring mode on the measured mechanical proper-

ties in the case of polymer bi-layered samples consisting of a stiff (dark grey) and a 
compliant (light grey) layer. A = clamped area, d = sample thickness, l = sample 
length, J = shear compliance, G = shear modulus, E = tensile modulus, D = tensile 
compliance of the bi-layer [167] 

 

5.2.1.2. Sample geometry 
 
DMA is performed with a DMA861e from Mettler-Toledo AG. This high-performance in-
strument combines a stiffness of about 1.4∙108 N/m with a displacement resolution of about 
0.5 nm. The force generator provides 40 N at maximum. The optimum sample size depends on 
the material properties of the sample. For definition of the sample geometry, an estimation of 
the mechanical properties is required. The complex shear modulus, Ĝ G ' iG ''= + , of a material 
is proportional to the complex sample shear stiffness Ŝ   

 ˆ ˆG g S= ⋅   (5.1) 

with the geometry factor, g , depending on the thickness, Pd , and the clamped area, A , of the 
sample: 

 Pdg
2A

=   (5.2) 

Generally, the sample stiffness must be significantly lower than the stiffness of the instrument, 

iS . Otherwise, the measured deformation cannot be attributed to the sample anymore. In the 

DMA861e the maximum sample stiffness should be at least three times lower than iS . Inser-

tion of equation (5.2) in (5.1) yields an estimation for the maximum sample area, maxA : 

 i
max

g

d SA
6G

⋅
≤

′
  (5.3) 
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with  the storage shear modulus to be measured in the stiffest sample state. Assuming 

 ≈ 1 GPa as a typical value of for polymers in the glassy region and  = 40 µm, we get 

 ≈ 1 mm². 
For such small samples the external sample preparation is necessary. The samples are first 
mounted in the shear clamps outside the DMA and then the shear clamps are mounted in the 
measuring device. 
 

5.2.1.3. Sample mounting 
 
To double the effective sample thickness, sandwiches of two samples with a plane-parallel 
steel plate in between (see Figure 5-3) are clamped for those adhesive joints having a thickness 
below 300 μm. The steel plates have a surface area A ≈ 4 mm² and a thickness d ≈ 350 µm. 
The sample area is nearly quadratic in the range of 1 to 3 mm². The larger area is used for the 
thicker samples to get the optimum for the geometry factor for shear samples to avoid sample 
bending. Furthermore, the clamps must exert a small but sufficient normal stress on the sample 
for shear force transfer. 
 

 
 

Figure 5-3: Sample mounting in the shear clamps 

 
The shear deformation is given as the deformation amplitude over the effective sample thick-
ness at one side of the shear clamp. Deformation sweep experiments were performed with dis-
placement amplitudes from 1 nm to 500 nm on samples with 50 μm to 200 μm PU thickness at 
room temperature (T = 22 °C ± 1 K). As the result, a maximum shear strain of 0.3 % was 
found for linear response. At larger deformations the samples behave non-linear, i.e. the meas-
ured modulus declines with increasing deformation amplitude.  
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In addition, the shear force amplitude must be set small enough to limit the shear stress in the 
case of a stiff glassy sample - the sample would decouple from the shear clamps at too high 
shear forces. Thus, DMA force amplitude and clamp force have to be chosen carefully. Oth-
erwise for too large shear and compression stresses, the storage modulus grows with decreas-
ing temperature in the glassy region and/or the loss modulus is too high. Appropriate values 
were determined in screening experiments in the glassy state. 
 
The sample is pre-clamped at room temperature with a force enough to hold it in place. After 
reaching the start temperature of about -100 °C, the sample is in glassy state and cannot be 
easily deformed. The sample is then clamped with the determined force. At this temperature, 
the samples are in the glassy state and the polymer deformation due to the clamping force can 
be neglected, therefore. 
 
After mounting shear clamps with the sample, the setup is annealed at 50 °C for 15 minutes in 
the DMA furnace to eliminate potential internal stresses caused by sample preparation and 
clamping.  
 
Due to thermal expansion of the samples, the bond line thickness and the sample area vary 
slightly during the measurement. An estimation of the resulting stress in the sample shows that 
this effect can be neglected in comparison with the applied small clamping force. The corre-
sponding calculation is discussed in the section 5.2.2. 
 

5.2.1.4. Approach 
 
In the glassy state the measurement is shear stress controlled. During heating, the storage 
modulus decreases and hence the deformation amplitude grows. To keep the measurement in 
the linear range the control switches automatically to strain control as the maximum defor-
mation reaches 0.3 %. 
 
The amplitudes of the sinusoidal deformation and force, as well as the related phase shift are 
measured for temperature sweeps from 210 to 400 K at a heating rate of 4 K/min. A measuring 
frequency of 10 Hz was chosen in order to determine a sufficient number of data points at this 
relatively high heating rate. 
 

 Results 5.2.2.
 
The temperature dependent viscoelastic shear modulus Ĝ G ' iG ''= +  of a 50 µm gold-pol-
yurethane adhesive joint is shown in Figure 5-4. The curves represent the dynamic glass tran-
sition (α-relaxation) of the amorphous PU-network. The storage modulus decreases by about 3 
orders of magnitude. The G' inflection point at 279 K correlates with the peak maximum of the 
loss modulus, G''. The rubbery plateau follows beyond the dynamic glass transition. 
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Figure 5-4: Dynamic shear moduli G'(T) and G''(T) at 10 Hz during heating with 4 K/min for gold-

PU adhesive joints displayed in the linear (left) and a semi-logarithmic (right) diagram 
for 50 μm, 90 μm and 220 μm samples as an example 

 
 
NOTE: As mentioned in section 5.2.1.3, the influence of thermal expansion of the samples on 
the results has been considered. For a polyurethane adhesive very similar to PU 80:20, the 
linear thermal expansion coefficient is about αglass = 47∙10-6 K-1 in the glassy state and  
αrubber = 177∙10 -6 K-1 in the rubber-like state (personal communication Prof. J.-K. Krüger). 
With these data, thermal expansion of the free PU (not clamped) is estimated:  

• From 173 K to 240 K, the glassy polyurethane adhesive (see Figure 5-4) experiences a 
thermal expansion of about 0.3 %. 

• Across the glass transition (240 - 340 K), α(T) is approximated by a linear curve: αtransi-

tion = 1.3∙10-6∙T – 2.65∙10-4 K-1. Correspondingly, the glass transition temperature range 
provides another contribution of ca. 1.12 % expansion. 

• In the rubber-like state, from 340 K to 380 K (the end of the measured T-range), an-
other 0.71 % are added to the thermal expansion of the sample equals. 

Thus, the total thermal expansion is ca. 2.1 % for the measured T-range. 
If an ideally stiff sample clamping is assumed, the portions of thermal expansion from 173 K 
to 380 K would give rise to corresponding thermal stress, σ = G∙ε, where G is the mechanical 
modulus. For this estimation, the modulus in the glassy state G’glass = 1.5∙103 MPa and in the 
rubber-like state G’rubber = 20 MPa from Figure 5-4 are considered. Across the glass transition, 
G’(T) is again described by a linear approximation G’glass transition = ( 14.8 5052)T− ⋅ +  MPa. 
Then, the total thermal stress is  

( )

( ) ( )

3

340
6 4

240

240 173 1.5 10

                             1.3 10 2.65 10 ( 14.8 5052) 280 240 2

   11.6

glass

K

rubber
K

T T dT
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a− −
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For a sample area of 1 to 3 mm², this stress corresponds to a counterforce of 11.6 to 34.8 N 
from the stiff clamps, which certainly can be neglected in comparison to usual clamping forces 
applied in DMA. 
Obviously, this calculation is a conservative estimation as real clamps will never be perfectly 
stiff. The real clamping force would be smaller than the estimated one. 
Nevertheless, the effect of clamping, or more generally, external pressure on the viscoelastic 
properties of adhesive joints is an interesting issue for future work. 
 

 
 
According to the interphase and bulk regions in the PU layer, one could expect to see two 
glass transitions in the modulus curves. This is obviously not the case (Figure 5-4). Conse-
quently, the measured curves represent the effective mechanical response of the adhesive lay-
er. Therefore, the effective dynamic glass transition must be analysed in more detail as a func-
tion of PU thickness.  
 
The temperature of the G''-maximum is taken as the dynamic glass transition temperature, 

dyn, G
gT ′′  for the given frequency of 10 Hz. The thickness dependence is shown in Figure 5-5. 

 

 
 

Figure 5-5: Dynamic glass transition temperature, dyn, G
gT ′′  as function of bond line thickness, dP in 

Au-PU adhesive joints 

 

According to these data, the function 

 ( )dyn, G
g P 1

P

AT d T
d

′′ = +   (5.4) 

is chosen for the phenomenological fitting of ( )dyn, G
g PT d′′ . This provides T1 = 265 K and 

A = 800 μm / K. Interestingly, T1 is equal to the calorimetric glass transition temperature, 
measured by DSC at 10 K/min, of a bulk sample ( ,DSC bulk

gT  = 266 ± 1 K.). Thin adhesive joints 
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tend to possess a higher dyn, G
gT ′′ . That dependence indicates the existence of an interphase in 

terms of cooperative mobility in the polyurethane adhesive at the contact with the gold sur-
face. A higher glass transition temperature in thin joints corresponds to a lower mobility of the 
polymer network chains. Consequently, one would expect increased mechanical stiffness in a 
corresponding mechanical interphase. 
 
An equation similar to equation (5.4) results from the assumption of an ideal athermal mixture 
of bulk and interphase material. This analogy to the well-known DiBenedetto equation [185] is 
not easy to comprehend for heterogeneous systems as anticipated for the PU adhesive layers. 
As a first explanation one could assume that the cooperative rearrangement regions average 
the molecular dynamics. 
 
This view is supported by the thickness dependence of the upper half width of the glass transi-
tion, ( ) ( ){ }G '' dyn, G ''

end P g PT d T d− , from the peak maximum ( )dyn, G ''
g PT d  to the upper end of the glass 

transition ( )G ''
end PT d  in G'' (Figure 5-6). The decrease in ( ) ( ){ }G '' dyn, G ''

end P g PT d T d−  indicates a re-

duced variation of segmental mobility inside the mechanical interphase. 
 

 
 
Figure 5-6: Upper half width of the dynamic glass transition in Au-PU adhesive joints 

 
The height of the α-relaxation step in log G' from the glassy plateau (T = 233 K) to the rubbery 
state (T = 353 K) is presented in Figure 5-7. The increase of the logarithmic modulus step 
height with sample thickness is mainly caused by the modulus change in the rubbery plateau. 
  



5. Further methods to detect interphases in PU-metal adhesive joints 

173 
Dissertation Ludovic Krogh 

 
Figure 5-7: Step height ( ) ( )logG logG 233 K logG 353 K′ ′ ′∆ = −  as a function of PU thickness, 

dP in Au-PU adhesive joints 

 
The height of the G''-peak gives a measure of the mechanical energy dissipated at the dynamic 
glass transition temperature. According to Figure 5-4, no thickness dependence is obtained 
within experimental uncertainty. 
 
For an ideal entropic network i.e. ( )G ''

end PT T d> , the theory for a Gaussian network with chemi-

cal cross-links provides the temperature coefficient for the equilibrium shear modulus eqG′ at 

infinitesimal deformation [79, 86, 89, 186, 187]: 

 eqG
R

T
′∂

= κ ⋅
∂

  (5.5) 

where κ  is the molar crosslink density of the polymer and R the universal molar gas constant.  
It is noted in passing that equation (5.5) applies to a ‘perfect’ network where all network 
chains contribute to the elastic stress. In particular, the entropy-elastic network has to be ho-
mogeneous in the whole sample and, as a consequence, the κ -value obtained from eq. (5.5) 
must not depend on the size of the sample. In case of a nonhomogeneous sample, eq. (5.5) will 
provide some effective value, effκ , because the straight line measured for ( )eqG T′  in fact rep-

resents eqG′ –data averaged over the whole sample volume. Hence, variations of inhomogenei-

ty will result in varying data for effκ . Actually, the application of eq. (5.5) to ( )eqG T′  on the 

rubbery plateau for the various dP-values of the PU-layer in the Au-joints results in a thick-
ness-dependent apparent effective cross-link density ( )eff Pdκ - Figure 5-8. The growth of 

( )eff Pdκ  with decreasing film thickness indicates a dP-dependent inhomogeneity in the PU-
layers. In accordance with the picture of a mechanical interphase developed above, we con-
clude that the deduced effκ –inhomogeneity corresponds to an apparently tighter cross-linking 
close to the polymer-metal interface. That also explains the higher G’ in the entropy-elastic 
state shown in Figure 5-4. 
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Figure 5-8: Apparent effective cross-link density, effκ for Au-PU joints of varying polymer 

thickness, dP 
  

The comparison of these results with those for AlMg3-PU adhesive joints and PU bulk, pre-
sented in Figure 4-20, reveals a discrepancy – Figure 5-9. Several reasons can be at the origin 
of this difference: 

• The samples are made of different adhesive batches. 
• Different substrates can cause the formation of different mechanical interphases and 

thus, influence the apparent effκ . However, the results obtained with shear test for 
dP ≥ 1500 µm correlate the value obtained for the PU bulk. This confirms the reliabil-
ity of the results for AlMg3-PU joints. DMA measurements with thicker adhesive 
joints would help to discuss the difference as well as the evolution of ( )eff Pdκ  in more 
detail. 
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Figure 5-9: Apparent effective cross-link density, effκ  for Au-PU joints measured with DMA (in 

blue), for AlMg3-PU joints measured with shear tests at constant shear rate (in black), 
for PU bulk measured with tensile tests (in orange) as a function of polymer thickness, 
dP.  
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The same experiments have been also performed with Al-PU adhesive joints with a dP down to 
5 µm. The thickness dependence of the glass transition temperature in such adhesive joints is 
shown in Figure 5-10. It is similar to the data for Au-PU joints. 
 

 
 

Figure 5-10: Dynamic glass transition temperature, dyn, G
gT ′′  as function of bond line thickness, dP in 

Al-PU and Au-PU adhesive joints 

 
The glass transition temperature of the PU bulk (determined with DMA) is also depicted in 
Figure 5-10. It is important to note that the Al-PU and Au-PU adhesive joints have not been 
prepared from the same PU preparation batch. That is why the absolute measured values such 
as the glass transition temperature of the bulk adhesive could differ. For the same reason the 
influence of the metal substrate on the mechanical properties cannot be discussed here. 
Nevertheless, the interphases formed between the aluminium substrates and the polyurethane 
adhesive influence the dynamic mechanical behaviour of the adhesive joints up to a dP of 
about 620 µm.  
Unfortunately the measured data do not permit a quantitative evaluation of the rubbery plat-
eau. However, the results indicate qualitatively an increase of the apparent average PU cross-
link density with decreasing adhesive thickness. 
 

 Conclusions 5.2.3.
 
In the given configuration, high-performance DMA is capable to provide reasonable data for 
metal-polymer sandwich samples down to some few µm polymer thickness. We mention that 
DMA is averaging over the whole polymer volume and all deduced parameters are mean val-
ues, therefore. For Au-PU samples, the dynamic glass transition parameters as well as the en-
tropy elasticity depend on sample thickness, dP between ca. 30 and 550 µm. The same obser-
vations are made for Al-PU adhesive joints having a dP between ca. 5 and 620 µm. Assuming 
ideal entropy elasticity as an approximation for the rubbery plateau, G'(T) provides an average 
PU crosslink density, effκ  as a function of dP. These findings are interpreted as proof for the 
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dynamic mechanical properties of an interphase between the polyurethane adhesive and the 
metal substrate.  
As DMA is averaging over the whole polymer volume, all deduced parameters are mean val-
ues that cannot be split easily into contributions from the interphase and bulk regions in the 
polymer layer of given thickness.  
In future work it will be possible to consider the effects of the mechanical interphase as a func-
tion of the substrate surface state, the adhesive composition and the adhesive joint preparation 
conditions, etc., provided the sample preparation and thickness are well controlled. 
 

5.3. Differential scanning calorimetry 
 
The classical technique to describe the glass transition and its related effects in polymer bulk 
materials is differential scanning calorimetry [188-192]. Although the nature of the excitation 
in DMA and DSC is different, the response of these methods gives in both cases information 
about the structural relaxation(s) in the sample. For the same reasons, the absolute temperature 
values characterising the mechanical and the caloric glass transition (obtained respectively 
with DMA and DSC) cannot be directly compared. However, one can expect that the existence 
of interphases in metal-polyurethane adhesive joints can be detected with DSC as it has been 
the case for the mechanical interphases hitherto. Mechanical techniques have indirectly shown 
the existence of mechanical interphases in adhesive joints, which are stiffer than the bulk ad-
hesive. Therefore, the caloric glass transition in adhesive joint is expected to depend on the 
adhesive thickness as well. The glass transition of the interphase is supposed to occur at higher 
temperature than that of the adhesive bulk. Similarly to DMA, DSC is averaging over the 
whole polymer volume: all deduced parameters are thus mean values.  
 
However, the accuracy of conventional DSC measurements is not very high [191], that could 
preclude the detection of interphases. New differential scanning calorimetry techniques, such 
as flash differential scanning calorimetry, can reach high sensitivity and reproducibility which 
are necessary to study such effect. 
 

 Conventional differential scanning calorimetry 5.3.1.
 
As for all DSC techniques, heat effects, resulting from chemical reactions and/or physical 
transitions in the sample are monitored as a function of temperature or time. In a heat flux dif-
ferential scanning calorimeter such as those used in this work, endothermic and exothermic 
processes as well as heat capacity changes across the glass transition lead to a temperature 
difference between the sample and a reference25. In steady-state, equal heat flow rates flow 
from the oven into sample and reference; the differential temperature signal T∆  is thus zero. 
If a transition or reaction occurs in the sample, a signal T∆  is generated which is proportional 

                                                 
 
25 An empty pan has been used as reference in this work. 
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to the heat flow between the sample and the reference sample SRΦ  (this is achieved by a cali-
bration). Since the used differential scanning calorimeter works at constant pressure (atmos-
pheric pressure), the heat flow changes between the sample and the reference for a measure-

ment with a constant cooling/heating rate dT
dt

 are equivalent to enthalpy changes in the sam-

ple (in case that no change occurs in the reference sample): 
 

 ( )SR p r
p p

dQ dH dTc t m
dt dt dt

   Φ = = = ⋅ ⋅ + Φ   
   

  (5.6) 

where dQ  is the change of the amount of heat in the sample, dH  the change of the enthalpy 

in the sample, ( )pc t  the specific heat capacity at constant pressure, m the sample mass and 

rΦ  heat flow contribution resulting from enthalpy changes in the sample due to e.g. chemical 
reaction(s), mixing and phase transition(s). 
 
For metal-polyurethane adhesive joints similar to those described in section 5.1, conventional 
DSC has been used to investigate the influence of the substrate on the glass transition tempera-
ture as depicted in Figure 5-11. These results have been obtained with a constant heating rate 
of 10 K / min. The samples exhibit an adhesive thickness of about 40 – 60 µm [1]. Thinner 
adhesive bondlines did not provide useful signals in the DSC apparatus (DSC TA Q100, TA 
Instruments) available at that time. These results show a slightly higher glass transition tem-
perature in adhesive joint with gold, aluminium, copper and AlMg3 substrates (neat and ano-
dised: AlOx) than for the adhesive bulk.  
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Figure 5-11: Glass transition temperature of a polyurethane adhesive in contact with different sub-

strates (cf. abscissa) compared to the bulk material (in red) [1] 
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However, due to the relatively high standard deviation of these measurements, these results 
provide no final proof for the influence of the substrate on the caloric properties of the ad-
hesive joints. Hence additional measurements were conducted in this work with the sample 
described in 5.1: 

• DSC: Pyris-1, Perkin Elmer26 
• Temperature ramp from 100 °C to -90 °C with a cooling / heating rate of ±10 K / min 

(2 runs) 
 
As for all others measurement techniques, the samples are annealed at 50 °C for 15 minutes 
before each first measurement to eliminate potential internal stresses caused by curing and 
sample preparation. 
The caloric glass transition temperature cal

gT  is determined as the corresponding maximum of 

the first derivative of the heat flow. The width of the glass transition is given by the base 
points of the maximum of that 1st derivative: Tga is the temperature at the beginning of the 
glass transition and Tge the end. Possible enthalpy retardation during the heating of the sample 
may have an influence on the analysis of the glass transition temperature. That is why the 
evaluation of the data has been made by using the cooling runs. 
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Figure 5-12: Thickness dependence of the caloric glass transition for PU-Al-adhesive joints meas-

ured at cooling with -10 K/min (error bars are smaller than the symbols) 

 
No thickness dependence of the caloric glass transition is found for the Al-PU-adhesive joints 
under the given experimental conditions – Figure 5-12. 
The same result holds for the height of the step in the heat capacity – Figure 5-13. 

  

                                                 
 
26 Caloric investigations have been performed at the institute of Physics, university of Rostock. I would like to 
thank Professor C. Schick and his team for allowing me to carry out the measurements and for their support.  
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Figure 5-13: Thickness dependence of the height of the step in the heat capacity for PU-Al-adhe-

sive joints measured at cooling with -10 K/min 
  

The same experiments have been performed with PU-Cu adhesive joints and Figure 5-14 
shows the corresponding results. Again, there is no thickness dependence of the caloric glass 
transition.  
Moreover, the caloric glass transition is not modified by the other metal substrates – Figure 
5-14. 
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Figure 5-14: Thickness dependence of the caloric glass transition for PU-Al- and PU-Cu-adhesive 

joints measured at cooling with -10 K/min 
  

 Flash differential scanning calorimetry 5.3.2.
 
Flash DSC is a calorimetry technique which has a broad range of scanning rates: it allows 
(quasi) isothermal measurements and scanning rates up to 10000 K/s. As a result, it is possible 
to generate quantitative information on the temperature dependence of the kinetics of process-
es which could hardly be obtained with conventional DSC. More detailed discussion on this 
technique can be found in [147, 193-195]. Such fast scanning calorimetry technique has been 
successfully used to describe the glass transition under confinement [191].   
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The presented measurements were performed with the following parameters: 
• Apparatus: Flash DSC 1 (Mettler-Toledo AG, Schwerzenbach, Switzerland). 
• Temperature ramp from 100 °C to -90 °C with -50; -100; -200; -500 and -1000 K / s 

(2 runs each) 
 
The glass transition temperature and the width of the glass transition are determined by draw-
ing tangents on the heat flow curve at temperatures above and below the glass transition –
 Figure 5-15. The tangents should be selected carefully because they have a significant effect 
on the quality and reproducibility of the evaluation. The glass transition temperature has been 
determined as the temperature at half the step height between the tangents with the measure-
ment curve. 
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Figure 5-15: Caloric glass transition of a Al-PU adhesive joint with dP = 13 µm measured by flash-

DSC with a cooling rate of -50 K/s 
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Figure 5-16: Cooling rate dependence of the caloric glass transition for PU-Al-adhesive joints for 

dp = 13 µm 
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Now, a slight increase of the glass transition temperature is noticeable with rising cooling rate 
– Figure 5-16. In the same way, the width of the glass transition increases. The faster the cool-
ing rate, the bigger is the temperature difference between the set value and the sample and the 
higher is the thermal inhomogeneity in the sample. The results for a cooling rate of 500 K/s 
are strongly influenced by the thermal inertia (i.e. thermal inhomogeneity) of the sample and 
should be considered with prudence.  
 
For the same reason, it is not possible to characterise the thickness dependence of the caloric 
glass transition with the flash-DSC at a constant cooling rate in a reliable manner for the 
thicker part of the samples. For the thinner samples, a slight trend to a decreased Tg and width 
of the glass transition is indicated however for cooling rates of 50 and 100 K/s – Figure 5-17. 
The influence of thermal inhomogeneity in the samples is also indicated in Figure 5-18 by the 
non-systematic dependence of the glass transition temperature on the cooling rates for a given 
dp. For this reason, only the results for cooling rates of 50 and 100 K/s are reliable for 
dp < 40 µm. Flash-DSC with constant cooling rates turned out to be not well suited for the 
detection of caloric effects from the interphases in the PU-metal joints. 
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Figure 5-17: Thickness dependence of the caloric glass transition for PU-Al-adhesive joints for 

different cooling rates: 50, 100 and 200 K/s 
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Figure 5-18: Thickness dependence of the caloric glass transition temperature for PU-Al-adhesive 

joints for different cooling rates: 50, 100 and 200 K/s 

 

 Temperature modulated flash differential scanning calorimetry 5.3.3.
 
To avoid the influence of thermal inhomogeneity in the sample (see section 5.3.2) temperature 
modulated DSC has been performed with the flash-DSC as described in Figure 5-19.  
A temperature step scan is performed from 100 °C to -90 °C with 1 K step and isotherms for 
0.2 s with the flash DSC 1. The measured data are transformed by Fourier transformation from 
the time domain to the temperature domain. 

 
Figure 5-19: Temperature-time profile consisting of repeated isotherm-cooling segments 

 
In Figure 5-20, the resulting convolution curve shows the temperature dependence of the heat 
capacity for a sample with a bond line thickness of 12 µm. The glass transition is analysed by 
fitting the first derivative of Cp(T) with a Gaussian function: 

 ( )22*(( )/ )
0 ( )

2
cx x wAy y b x e

w π
− −

= + ⋅ + ⋅
⋅

  (5.7)  
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The parameter cx  is defined as the glass transition temperature and the width of the glass tran-
sition is evaluated with the fit parameter w  – Figure 5-21 and Figure 5-22. 
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Figure 5-20: Temperature dependence of heat capacity from TM flash-DSC for a PU-Al-adhesive 

joint with dp = 12 µm 

 

 
Figure 5-21: Fit parameters of a Gaussian function 
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Figure 5-22: Fit of the first derivative of the heat capacity in TM flash-DSC experiments for a PU-

Al-adhesive joint with dp = 12 µm 
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Figure 5-23 and Figure 5-24 depict the results obtained for different thicknesses. In both plots, 
the measured points and the error bars results from three successive measurements with the 
same sample. A thickness dependence of the glass transition temperature ( cx ) is noticed for 
Al-PU-adhesive joints with 0 < dp < 150 µm.  
Because of the high thermal gradient in samples with  dp > 150 µm (cf. contact area 150 x 150 
µm²), the corresponding results should not be considered (red points in Figure 5-23). 
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Figure 5-23: Thickness dependence of the caloric glass transition temperature in TM flash-DSC 

experiments for PU-Al-adhesive joints 
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Figure 5-24: Thickness dependence of the width of the caloric glass transition for PU-Al-adhesive 

joints 

 
The width of the glass transition, w  also depends on dP, cf. Figure 5-24, and it follows the 
same trend as Tg. 
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 Conclusions 5.3.4.
 

Conventional Differential Scanning Calorimetry measurements have shown neither an in-
fluence of the adhesive thickness nor of the metallic substrate on the caloric properties of the 
glass transition in PU-metal-adhesive joints. 
 
Because of experimental problems, the investigations with flash-DSC on these adhesive joints 
are limited to dP < 60 µm (thicker samples are suspected to develop thermal gradients). The 
results reveal a trend: Tg for dP < 60 µm lies clearly above Tg of the PU bulk which might re-
sult from the very different cooling rates. Also the Flash DSC shows ( )g PT d const≈  for thin 

samples dP < 60 µm. Only the TM-Flash-DSC is sensitive enough to detect ( )g PT d  for 

dP < 50 µm. 
 
In conclusion, the caloric results give some possible first hints on the existence of interphases 
in the adhesive joints, but further investigations are necessary for their characterisation. Never-
theless, the presented results corroborate qualitatively the results obtained so far: the stiffer 
interphases, as revealed by the mechanical testing, exhibit also higher glass transition tem-
peratures. 
 

5.4. Dielectric spectroscopy 
 
As prominent methods to investigate the glass transition and the related molecular dynamics in 
polymers, DMA and DSC have already been discussed in the chapter 5.2 and 5.3 respectively. 
Dielectric spectroscopy is another technique to gain information about structural relaxations in 
adhesive joints. Polarisation mechanisms and charge carrier transport in the adhesive layer 
might be affected by the existence of interphases. Both orientation polarisation of permanent 
dipoles and charge hopping transport in the PU network get support from polymer chain dy-
namics, namely from the co-operative segment mobility. 
 
DES analyses the frequency and temperature-depending response of the adhesive’s structure to 
an external alternating electric field. Because of the different nature of the excitation, the ob-
served effects cannot be directly correlated with DMA or DSC results.  
 

 Experimental 5.4.1.
 
The dielectric spectroscopy is based on the temperature- and frequency-dependent interactions 
of an alternating electric field with the charge carriers and dipoles of the investigated material. 
The wide frequency range from 10-6 to 1011 Hz allows characterising the molecular dynamics 
of the sample in a broad time range at given temperature. However, this wide frequency range 
can only be covered with the help of different techniques. In this work, the experiments are 
based on the frequency-response analysis, which enables measurements in the frequency range 
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from 10-6 to 107 Hz. Further information about the physical background and the different tech-
niques of the dielectric spectroscopy can be found in [196, 197]. 
 

5.4.1.1. Measuring principle 
 
The principle of the frequency-response analysis is to calculate the complex impedance Z*(ω) 
from the measured harmonic alternating voltage U*(ω) (generator voltage) and the resulting 
sample current I*(ω): 

 ( ) ( )
( ) ( )

*
*

* *

1
i ω

U
Z

I C
ω

ω
ω ω

= =
⋅ ⋅

  (5.8) 

 
where C*(ω) is the complex capacity of a plate capacitor (sample), i, the imaginary unit and 
ω = 2⋅π⋅f, the angular frequency 
 
The sample is placed in the experimental setup (cf. Figure 5-25) as a dielectric and is exposed 
to the alternating electrical field of a plate capacitor at a variable temperature T or frequency f. 
 

 
 

Figure 5-25: Experimental setup of the dielectric spectroscopy [198] 

 
Under the influence of the alternating electric field, hopping of charge carriers and orientation 
permanent dipoles take place on a molecular level. Thereby, the time dependence of these mo-
tions is causes a phase shift between the electric field and the dielectric displacement. This 
physical process can be described by the dielectric displacement D


 and depends on the mag-

nitude of the electric field E


. Provided that E


 obeys the condition of linear response, we 

have 
 *

0( )D Eε ω ε= ⋅ ⋅
 

 (5.9) 
 

*( )ε ω  designates the complex dielectric function of the sample and 0ε  the dielectric permit-

tivity of the vacuum ( 0ε = 8.854⋅10-12 A2⋅s4⋅kg−1⋅m−3). It has to be pointed out, that *( )ε ω  in-

Sample 
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Capacitor plate Thermocouple (Pt100) 
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cludes, in real polymers, the effects from time-dependent orientation polarisation of permanent 
dipoles and time-dependent charge transport (hopping) as well. Hence, DES cannot discrimi-
nate between these two mechanisms but this does not matter in the context of this study be-
cause we are interested in a macroscopic quantity that couples to the average processes of pol-
ymer mobility in the sample, like *( )ε ω . 
The complex dielectric function determines the capacitance C*(ω) of a plate capacitor with the 
area of the overlap of the two plate electrodes, A, and the separation between the plate, d: 
 

 * *
0( ) ( ) AC

d
ω ε ω ε= ⋅ ⋅   (5.10) 

For the metal-adhesive joints, A is given by the bonded area and d = dP. 
The complex dielectric function is given by 
 
 *( ) ( ) ( )iε ω ε ω ε ω′ ′′= − ⋅   (5.11) 
 
The real part ( )ε ω′  represents the reversibly stored electric energy whereas the imaginary part 

( )ε ω′′  describes dissipated energy. Both parts depend on the angular frequency ω, with 
ω = 2⋅π⋅f (where f is the measuring frequency). 
 
The dielectric function *( )ε ω  of the sample is calculated from the measured impedance Z by 
combining the equations (5.8) and (5.10). 
 
For the investigated amorphous polyurethane, three main mechanisms affect the dielectric 
function *( )ε ω : Orientation polarisation, conductivity and electrode polarisation. 
The interpretation of these effects will be resumed throughout the discussion of the measured 
dielectric spectra. 
 

5.4.1.2. Experimental set-up 
 
A calibrated dielectric broadband spectrometer from NOVOCONTROL Technologies GmbH 
& Co. KG is used for all tests. This spectrometer allows measurements in a temperature range 
from -160 ° C to 500 ° C and covers a frequency range from 3 μHz to 10 MHz. The setup con-
sists of the Broadband Dielectric Converter and the Alpha High Resolution Dielectric Analys-
er, which enable the impedance measurement by using the frequency response analyser and 
current-to-voltage converter. Furthermore, the device includes a Quatro Cryosystem (see Fig-
ure 5-26), which controls the sample temperature. This system contains a cryostat with the 
sample cell and a vaporisation device for liquid nitrogen. A heater evaporates the liquid nitro-
gen (-196 °C) inside of a Dewar vessel and a pressure sensor controls the gaseous nitrogen 
flow. The gaseous nitrogen is heated up to the desired temperature and flows through the sam-
ple cell. With this assembly, maximum heating rates of up to 8 K / min can be achieved. The 
entire electronics are controlled by computer via the measuring and control software 
WinDETA [199]. 
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Figure 5-26: Experimental set-up of the dielectric spectrometer with the Quatro Cryosystem and the 
integrated Sample cell BDS 1200 [200] 

 

5.4.1.3. Approach 
 
Similar to the investigations with DMA and DSC, the same adhesive joints with different dP 
and different metal substrates (PVD deposited Au, Cu and Al) are analysed with DES by tem-
perature scans (from about -100 °C to +100 °C) with 8 K / min, for different frequencies (1, 
10, 102, 103, 104, 105, 106 Hz) to detect and characterise possible interphases. 
 
By varying the sample thickness dP, the magnitude E of the external electric field between the 
capacitor plates of the sample cell is also changed for a given voltage U: 
 

 
P

UE
d

=   (5.12) 

 
Above a particular electric field, the dielectric (i. e. the sample) in the capacitor becomes con-
ductive. The voltage at which this occurs is called the breakdown voltage. Therefore, it is nec-
essary to ensure that the applied voltage during the experiment does not exceed the breakdown 
voltage. Moreover, U has to be set small enough for the given dP that the resulting E (eg. 
eq. (5.12)) meets the linear response presumed by eq. (5.9). The condition of linear response is 
met when the measured ( )ε ω′  and ( )ε ω′′  do not depend on magnitude the applied electric 
field. 
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To determine the lowest possible magnitude of the electric field for the measurements, a poly-
urethane bulk sample is characterised with three different voltages: 0.1, 0.5 and 1 V – Figure 
5-27. Bulk samples are prepared in a similar way as described in section 3.2.1. Pieces of the 
casted polyurethane adhesive plate are coated (after post-curing of the adhesive) with gold by 
PVD. Samples with 1 cm diameter are then die cut from these pieces, so that there is no metal 
on the edges of the samples. 
 

-100 -80 -60 -40 -20 0 20 40 60 80 100

10

100

 1 V
 0.5 V
 0.1 V

PU bulk ; dP =  2100 µµ ; f = 1 Hz

 

 

ε' 
[-]

T [°C]   
-100 -80 -60 -40 -20 0 20 40 60 80 100 120

10-3

10-2

10-1

100

101

102

103

104

 1 V
 0.5 V
 0.1 V

PU bulk ; dP =  2100 µµ ; f = 1 Hz

 

 

ε''
 [-

]

T [°C]  

-100 -80 -60 -40 -20 0 20 40 60 80 100 120
4

5

6

7

8

9

10
11
12

 1 V
 0.5 V
 0.1 V

PU bulk ; dP =  2100 µµ ; f = 103 Hz

 

 

ε' 
[-]

T [°C]   
-100 -80 -60 -40 -20 0 20 40 60 80 100

10-2

10-1

100

101

PU bulk ; dP =  2100 µµ ; f = 103 Hz

 

 

ε''
 [-

]

T [°C]

 1 V
 0.5 V
 0.1 V

 
Figure 5-27: Real (ε’, left) and imaginary (ε”, right) parts of the dielectric function of a poly-

urethane bulk sample (dP ≈ 2100 µm) measured at different voltages (0.1, 0.5 and 1 V) 
and different frequencies (1 Hz , top and 103 Hz, bottom) as a function of the tempera-
ture 

 
Figure 5-27 shows a strong deviation of the results obtained with 1 V from those for the other 
voltages. Hence, a voltage of 1 V is not within the linear response range of the sample and is 
thus not adapted for the measurements. At low temperature, measurements are disrupted for 
measuring voltages of 0.1 and 0.5 V, especially for the imaginary parts of the dielectric func-
tion, ε”. The scatter of the values grows with decreasing electric field strength. However, the 
values in the major electric relaxation range (step in ε’ and maximum in ε”) do not seem to be 
influenced by this effect.  
 
The voltages 0.1 V and 0.5 V correspond to electric field strengths of 47.6 and 238.1 V∙m-1 
respectively for the bulk sample. Since the two measuring curves overlap, both voltage param-
eters can also be considered for the measurements for thick samples. However, as shown by 
the equation (5.12), the influence of the magnitude of the electric field is inversely proportion-
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al to the sample thickness. Therefore measurements with the thinnest adhesive joint are per-
formed at different frequencies as well to determine the maximal measuring voltage – Figure 
5-28. 
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Figure 5-28: Real (ε’, left) and imaginary (ε”, right) parts of the dielectric function of a PVD alu-
minium - polyurethane adhesive joint (dP ≈ 26 ± 1 µm) measured at different voltages 
(0.01, 0.1 and 0.5 V) and different frequencies (1 Hz , top and 103 Hz, bottom) as a 
function of the temperature 

 
For a sample with a dP ≈ 26 ± 1 µm, a voltage of 0.01 V corresponds to an electric field 
strength of about 384.6 V∙m-1 which is in the same order of magnitude than the value obtained 
with 0.5 V for the bulk sample. Nevertheless, the experimental curves at low measuring fre-
quencies are scattered – Figure 5-28. 
The results obtained with a voltage of 0.1 V – i. e. electric field strength of 3846.2 V∙m-1 –
 cannot be distinguished from those obtained with 0.01 V. Therefore, all the following DES 
experiments, presented in this work, are performed with a voltage of 0.1 V regardless of the 
sample thickness. The results illustrated in Figure 5-27 and Figure 5-28 demonstrate that the 
electric field strength, obtained with a voltage of 0.1 V, does not influence the results within 
the sample thickness, temperature and frequency range. 
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 Results 5.4.2.
 
The temperature and frequency dependent dielectric function * ' i ''ε = ε − ⋅ ε  of a 26 µm alu-
minium-polyurethane adhesive joint is shown in Figure 5-29. The plots represent a major elec-
tric relaxation in the amorphous PU-network. In the glassy state of the adhesive, most of the 
motions in the polymer chains are blocked and the orientation of the dipoles and charge hop-
ping processes are limited. The real part, 'ε , and the imaginary part, ′′ε , are relatively low and 
slowly increase with increasing temperature as the number of thermally activated motions 
grows. Similarly to the DMA experiments, the relaxation processes are shifted to higher tem-
perature with increasing measuring frequency. This indicates that the major electric relaxation 
observed in the same temperature range can be associated with the co-operative mobility of the 
polymer chain segments (average over dP) and thus, with the dynamic glass transition of the 
polyurethane adhesive. This major electric relaxation process is characterised by a peak in ′′ε  
and a step-like increase of 'ε  versus temperature at each given frequency. After the major re-
laxation in the sample with dP = 26 µm, a new relaxation appears at high temperatures in 'ε  
and ′′ε . Since it is only visible at low f (1 , 10 Hz), there must be a very slow process behind it. 
There could be two reasons for this: 

• severely impaired cooperative mobility in interphase 
or 

• electrode polarisation: the accumulation of charge carriers at the surface of the elec-
trode plates can cause an increase in 'ε  and ′′ε  at high temperatures and low fre-
quency. This so-called electrode polarisation (interface polarisation) 

 
Because of this secondary relaxation the end of the glass transition and sometimes even the 
glass transition temperature cannot be evaluated for these frequencies. 
 
Another interesting feature for f ≥ 102 Hz in these curves, which is also visible in Figure 5-30, 
is that 'ε  does not run into a plateau after the step-like relaxation as prescribed for dielectric 
relaxation in textbooks, but 'ε  falls off again. This already shows that not only dipole polarisa-
tion is involved here but also charge hopping. 
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Figure 5-29: Real (ε’, left) and imaginary (ε”, right) parts of the dielectric function of a PVD alu-
minium - polyurethane adhesive joint (dP ≈ 26 ± 1 µm) measured at different frequen-
cies as a function of the temperature  
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As for the results obtained with DMA and the different DSC techniques, only one glass transi-
tion can be observed in Figure 5-30. Consequently the measured plots represent the effective 
dielectric response of the adhesive layer. The plots in Figure 5-30 illustrate the influence of dP 
on the dielectric properties of the adhesive joints. In the glassy state of the adhesive, the meas-
urements depict no systematic bond line thickness dependence of the dielectric function27.  
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Figure 5-30: Real ( 'ε , left) and imaginary ( ′′ε , right) parts of the dielectric function of PVD alu-

minium - polyurethane adhesive joints with different dP and polyurethane adhesive 
bulk measured at 103 Hz as a function of the temperature 

 
Using the 1st derivative of 'ε  and ′′ε , the temperature for the inflection point in 'ε  and the 
temperature for the ′′ε -maximum are taken as the dynamic glass transition temperature, re-
spectively dyn,

gT ′ε  and dyn,
gT ′′ε for the measured frequencies. The thickness dependence of dyn,

gT ′ε  

(top) and dyn,
gT ′′ε  (bottom) for Al-PU adhesive joints is shown in Figure 5-31. 

  

                                                 
 
27 Note that the dielectric function was not calibrated for this study. Hence, neither ε'- nor ε''-data should be com-
pared on a quantitative basis for different samples. 
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Figure 5-31: Dynamic glass transition temperatures, dyn,

gT ′ε  (top) and dyn,
gT ′′ε  (bottom) as function of 

bond line thickness, dP in Al-PU adhesive joints for different frequencies (“” sym-
bols represent the values measured for PU bulk) 

 
By considering only the results obtained for the Al-PU adhesive joints, the glass transition 
temperatures dyn,

gT ′ε  and dyn,
gT ′′ε  tend to decrease with increasing adhesive thickness for most of 

the measured frequencies. However, the maximal difference between the glass transition tem-
peratures of the thinnest and the thickest adhesive joints is only about 6 K. Because of these 
small variations in Tg, an influence of dP in the dielectric properties of the adhesive joints can-
not be clearly identified. Nevertheless, similarities in the evolution of Tg with the results ob-
tained with TM-flash-DSC can be noticed – Figure 5-23. The analysis of the glass transition 
temperature for frequencies 1 and 10 Hz is especially influenced by the secondary relaxation 
observed at high temperatures. This raises question the reliability of these results. 
 
Although the same polyurethane batch has been used for the preparation of the adhesive joints 
and the bulk samples, the glass transition temperature of the bulk adhesive is relatively high in 
comparison with the adhesive joints. This effect could be also caused by a secondary electric 
relaxation. 
 
The analysis of the width of the glass transition is limited to its lower half; between the begin-
ning of the glass transition ( ),

dyn
g begin PT d and the glass transition temperature ( )dyn

g PT d . Figure 

5-32 illustrates the adhesive thickness dependence of the lower half width of the dynamic 
glass transition in Al-PU adhesive joints measured with 104 Hz for ε’ and ε”. Although the 
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results display a trend to decrease with increasing adhesive thickness, the value of 
( ) ( ), ,

,
dyn dyn

g P g begin PT d T dee ′ ′− , measured for the bulk sample with the ε’ curve does not reflect this 

effect. Regardless of the value obtained for the bulk adhesive, a decreasing lower half width of 
the glass transition with increasing dP would indicate a larger dipole mobility within the inter-
phase region. This result somehow contradicts the observation made in Figure 5-31 and those 
obtained with the mechanical testing methods. The different nature of the interphase, charac-
terised by DES, could explain this difference.  
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Figure 5-32: Lower half width of the dynamic glass transition in Al-PU adhesive joints, measured 

with 104 Hz (“” symbols represent the values measured for PU bulk) 

 
The same experiments have been carried out with PU-Cu and PU-Au adhesive joints to identi-
fy a possible influence of the metal substrate on the dielectric properties of the assumed inter-
phase. However, no dependence could be detected as illustrated in Figure 5-33. The glass tran-
sition temperature of the three types of adhesive joints shows a trend to decrease with increas-
ing adhesive thickness but the non-systematic variation of dP for all the measuring frequencies 
weakens the interpretation of this effect. 
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Figure 5-33: Dynamic glass transition temperatures, dyn,

gT ′ε  (top) and dyn,
gT ′′ε  (bottom) as function of 

bond line thickness, dP in PU-Al, PU-Au and PU-Cu adhesive joints for different fre-
quencies (“” symbols represent the values measured for PU bulk) 

 

 Conclusions 5.4.3.
 
Although the experimental conditions should allow comparing the results of different adhesive 
thickness to each other, no clearly defined influence of dP and the metal substrate on the die-
lectric properties could be identified in the investigated samples. The results show that the 
observed electric relaxations originate not only from dipole polarisation but also from charge 
hopping transport. The major electric transition can be related to the glass transition of the 
adhesive. The glass transition temperature of Al-, Au-, and Cu-PU adhesive joints tends to 
decrease with increasing dP. This would corroborate the results obtained with mechanical test-
ing and DSC methods whereby it indicates an interphase in terms of cooperative mobility in 
the polyurethane adhesive at the contact with the metal surface. A secondary electric relaxa-
tion could be observed at high temperature for low frequencies. The nature of this relaxation 
remains to be determined whether it originates from a strongly hindered co-operative mobility 
in the interphase or from electrode polarisation. 
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6. Conclusions and outlook 
 

6.1. Conclusions 
 
This work focuses on demonstrating the existence of interphases in polymer-metal adhesive 
bonds. Since the definition of interphase is directly related to the nature of the excitation, this 
problem has been limited, for a major part of this work, to the identification of mechanical 
interphases in adhesive joints. In order to identify and characterise potential mechanical inter-
phases, it is first necessary to understand the complex mechanical behaviour of crosslinked 
polymers. Such polymer networks show a viscoelastic response, which depends on time and 
temperature. These effects are particularly evident in the (mechanical) glass transition range, 
also called transition region. It is important to note that under certain conditions, the behaviour 
of such polymers is often considered elastic. Two kinds of “elasticity” can be distinguished in 
polymer networks: entropy (or rubber-like) elasticity and energy elasticity (glassy state). 
However, these observations are only due to the limitation of the experimental conditions 
(i. e.: device resolution, temperature and measurement time). Regardless of the experimental 
conditions, a crosslinked polymer always exhibits viscoelastic behaviour.  
 
In order to detect the influence of the interphases, PU-AlMg3 and stainless steel-PU adhesive 
joints having adhesive thicknesses from about 130 µm to circa 2 mm were mechanically tested 
with: 

• Shear tests at constant shear rates 
• Creep experiments at constant shear stress 
• Stress relaxation experiments at constant shear strain. 

 
All these tests were carried out in the linear viscoelastic region of the adhesive. By considering 
the analytical solutions of simple and one-dimensional constitutive models (Zener and general-
ised Maxwell model), the mechanical parameters, specific to the adhesive, can be obtained 
from the experimental results. These parameters are then used to calculate the relaxation and 
retardation time spectra which define the viscoelastic properties of the adhesive in the bond-
ing. With these spectra it is finally possible to calculate the other viscoelastic functions. 
Thanks to this method, it is not only possible to compare and verify the experimental results 
with each other but also to quantify the mechanical properties of the adhesive bonds for a giv-
en temperature and thickness. 
 
In this work, the adhesive layer is considered to be a homogeneous continuum. Of course, this 
consideration is an aberration and contradicts the concept of interphase but, since local gradi-
ents in the mechanical properties of such bonds remain difficult to measure in situ to date, this 
strategy still allows the detection of interphases. Indeed, if such interphases exist, then the 
properties of the bond should depend on the adhesive thickness: the influence of interphases is 
predominant in adhesive bonds with a thin adhesive layer, whereas the properties of the bulk 
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adhesive are expected to rule the mechanical behaviour of thick adhesive bonds. This approach 
can be applied for the identification of other interphase types as well. It is thus possible to in-
directly (ex situ) characterise the gradients in the physical properties of such adhesive bonds. 
 
Although the method described above may seem simple, defined and precise experimental 
conditions are necessary for its implementation. 
Particular attention was paid to the preparation of the adhesive, the surface treatment of the 
substrates and finally the bonding of the substrates to ensure that the samples have the same 
initial conditions. Thus the results obtained from the different samples can be quantitatively 
compared with each other. Following a strict preparation protocol and monitoring the envi-
ronmental conditions of the samples proved to be decisive in achieving this goal. The investi-
gated adhesive is a fully cured thermoset, amorphous polyurethane. The glass transition of the 
bulk material ranges from 213 K to 303 K (measured by DSC at 10 K/min) and the glass tran-
sition temperature is DSC,bulk

gT  = 266 ± 1 K. 

Another challenge was the design and construction of experimental devices reliable and accu-
rate enough to be able to characterise the thermomechanical behaviour of bonded joints. One 
of the greatest challenges was the elimination of environmental factors (variations in ambient 
temperature and humidity, vibrations and temperature dependence of the force and displace-
ment sensors) that affected the experimental measurements. Accurate temperature control of 
samples and installations over a long period of time is indeed necessary for the precise deter-
mination of the thermomechanical properties of polymers.  
The disturbing effects outlined above have been detected and greatly limited through pre-
liminary tests and the development of an approach that allows reproducible experimental con-
ditions. The chemical, thermal and mechanical stability of the adhesive (joints) was also moni-
tored to ensure that the samples remained unchanged throughout the experiments. 
 
The temperature dependence of the mechanical properties of PU-AlMg3 and PU-stainless steel 
bonds was characterised in a temperature range from about 268 K to ca. 353 K. The experi-
mental results of the isothermal shear test at constant shear rate, creep and stress relaxation 
experiments have shown that the relaxed elastic properties (equilibrium moduli) of the poly-
mer and their temperature dependence can be extrapolated from the entropy “elasticity” to the 
transition region. It proves that the moduli in the relaxed viscoelastic state are dominated by 
the entropic restoring forces. The resulting linear increase of the equilibrium moduli with in-
creasing temperature is then valid in the transition region and leads to a good approximation of 
the thermomechanical behaviour of the polyurethane adhesive in the investigated temperature 
region. Moreover the determination of the retardation time spectra allows a quantitative analy-
sis of the viscoelastic properties of the adhesive joints and their temperature dependence.  
 
Mechanical tests conducted on PU-AlMg3 and PU-stainless steel bonds reveal a bond line 
thickness dependence of both relaxed "elastic" and viscoelastic properties in a thickness range 
from about 130 µm to about 2000 µm. The analysis of the results of shear, creep and stress 
relaxation tests shows the same effect: as the adhesive thickness decreases, the stiffness of the 
bonded joint increases. Moreover, the retardation time spectra, which are material-specific 
viscoelastic functions, depend clearly on the bondline thickness. These effects are interpreted 
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as the formation of interphases in the polyurethane adhesive in contact with the metal sub-
strates. These mechanical interphases appear stiffer or less compliant than the bulk adhesive. 
The results show that these interphases influence the effective mechanical properties of the 
adhesive joints up to a bond line thickness of about 1.5 mm.  
Due to the experimental conditions (finite measurement time and temperature range), only part 
of the viscoelastic properties of bonded joints can be measured. In order to find out whether 
the measured data are sufficient to represent the adhesive dynamics fairly accurately, the inter-
relations between the different viscoelastic functions are used. This method allows not only to 
calculate viscoelastic functions from others but also to check the quality of the experimental 
measurements by comparing them with data calculated from other mechanical tests. The 
agreement of the measured viscoelastic functions with those calculated shows that the experi-
mental data are sufficient to give a good approximation of the thermomechanical behaviour of 
bonded joints. From an isothermal creep curve, it is thus possible to calculate the correspond-
ing retardation and relaxation time spectra, the stress relaxation modulus as well as the shear 
modulus for different constant shear rates. 
 
To complement these calculations, an attempt to predict the mechanical behaviour of adhesive 
joints by implementing both temperature and adhesive thickness dependence to the calcula-
tions has been suggested. Although the evaluation of the retardation time spectra reveals com-
plex thermorheological behaviour of the viscoelastic functions in the adhesive joints, the time-
temperature equivalence, as described by Williams, Landel and Ferry, provides a good approx-
imation of the thermomechanical behaviour of a bonded joint for given adhesive thickness. 
Based on this finding, similar consideration as for the time-temperature equivalence has been 
attempted to describe the bond line thickness dependence of the viscoelastic properties in ad-
hesive joints: a vertical shift of the retardation spectra is implemented to simulate the bond line 
thickness dependence. However a bigger experimental database is necessary to discuss the 
quality and the limitations of this bondline thickness - time equivalence, the first results lead to 
the conclusion that the mechanical interphase exhibits different mechanical properties from 
those of the adhesive bulk. 
 
To investigate the (dynamical) mechanical properties of metal-polymer sandwich samples 
down to some few µm thickness, the suitability of dynamical mechanical analysis (DMA) has 
been confirmed. The thickness dependence of the mechanical properties of Au-PU and Al-PU 
adhesive joints are interpreted as proof for a dynamic mechanical interphase between the pol-
yurethane adhesive and the metal substrate. This interphase possesses a higher crosslink densi-
ty and, therefore, a higher glass transition temperature implying less cooperative mobility than 
in the PU bulk. Moreover the interphase network structure should be more uniform than in 
bulk PU as the glass transition range is getting narrower with respect to temperature. 
In order to identify the possible influence of this interphase on further physical properties, the 
same sample types as those used for DMA have been investigated with different methods 
namely differential scanning calorimetry (DSC) and dielectric spectroscopy (DES). 
The caloric results only indicate the existence of interphases in a thickness range up to 50 µm 
in the adhesive joints. These results should be complemented with further investigations. 
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The same applies for the results obtained with DES which show that no clearly defined influ-
ence of the adhesive thickness on the dielectric properties could be identified.  
These results illustrate that the interphase influences the physical properties of the bonds to 
different extents and that knowledge of the processes triggering the formation of such in-
terphases is necessary to better understand the adhesion mechanisms. 
 

6.2. Outlook 
 
The existence of mechanical interphase in adhesive joints could be proved and their influence 
on the mechanical properties as a function of the temperature and bond line thickness has been 
quantitatively characterised by shear, creep and relaxation tests as well as dynamic mechanical 
analysis. The method used in this work for the quantitative analysis of viscoelastic properties 
is based on simple one-dimensional constitutive models. By using more complex rheological 
models, which are more appropriate to describe the behaviour of polymer networks, a higher 
resolution in the experimental range can be expected.  
Although the cubic polynomial function gives a fairly good approximation of the continuous 
retardation time spectrum in this work, a function such as a truncated and inversed "Lennard-
Jones potential" function seems more appropriate to physically describe the evolution of such 
a spectrum, especially if the number of known data pairs ( ){ }*;i iLττ   is large. 

Nevertheless, the experimental data pool from this work can be used as a basis for the de-
velopment and verification of a numerical model to predict the thermomechanical behaviour of 
bonded joints considering the bond line thickness. Such a model is also necessary to separate 
the contributions of the interphase from that of the adhesive bulk in the mechanical response 
of bonded joints. 
 
The formation of internal stresses during the cure of the adhesive in contact with the substrate 
could be an explanation for the existence of mechanical interphases in bonded joint. A dedi-
cated study on this topic would help to improve the understanding of the formation of such 
interphases and thus the adhesion mechanisms in general. 
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A. List of acronyms 
 
aT Horizontal shift factor in time – temperature equivalence 
bτ Horizontal shift factor in bond line thickness – time equivalence 
bL Vertical shift factor in bond line thickness – time equivalence 
BE Backscattered electrons 
DES Dielectric spectroscopy 
DMA Dynamic mechanical analysis 
dP Bond line thickness / Adhesive layer thickness 
DSC Differential scanning calorimetry 
EDX Energy-dispersive X-ray spectroscopy 
FIB Focused ion beam 
γ Shear strain 
G(t) Relaxation shear modulus / relaxation function 
G∞ Equilibrium shear modulus / Relaxed shear modulus 
H(τ) Continuous relaxation time spectrum 
H*(τ) Discrete relaxation time spectrum 
J(t) Creep compliance / creep function 
J∞ Equilibrium creep compliance / Relaxed creep compliance 
L(τ) Continuous retardation time spectrum 
L*(τ) Discrete retardation time spectrum 
µ Hyperelastic shear modulus 
M Dynamic shear modulus 
MDI Methylene diphenyl diisocyanate 
PU Polyurethane 
PTFE Polytetrafluoroethylene 
SE Secondary electrons 
SEM Scanning electron microscopy 
SFM Scanning force microscopy 
τ Retardation time / Relaxation time 
Tg Glass transition temperature 
T12 Shear stress 
TGA Thermogravimetric analysis 
WLF Williams–Landel–Ferry (equation) 
WLI White light interferometry 
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